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Abstract

The recent emergence of surgical data science holds the promise to enable a new generation

of operating room (OR) support systems. The fine-grained localization of clinicians in

the OR, either at the keypoint-level using human pose estimation or at the pixel-level

using instance segmentation, is a key component to design such systems. The task

is however challenging not only because OR images contain significant visual domain

differences compared to traditional vision datasets, but also because data and annotations

are hard to collect and generate in the Operating Room (OR), due to privacy concerns.

Approaches that can adapt a model to an unseen and unlabeled target domain are

therefore very promising.

In this dissertation, we explore Unsupervised Domain Adaptation (UDA) methods

to enable visual learning for the target domain, the operating room, by working in two

complementary directions. First, we study how low-resolution images with a downsam-

pling factor as low as 12x can be used for fine-grained clinicians localization to address

privacy concerns. Second, we propose several self-supervised methods to transfer learned

information from a labeled source domain to an unlabeled target domain to address the

visual domain shift and the lack of annotations. These methods employ self-supervised

predictions in allowing the model to learn and adapt to the unlabeled target domain.

We first propose to perform domain adaptation across visual modalities of color (RGB)

to depth (D) images by exploiting synchronized properties of the RGB-D images and

utilizing state-of-the-art human pose estimation models on RGB images for human pose

estimation on depth images. Second, we explore knowledge- and data-distillation to

generate accurate pseudo labels from a multi-stage, larger, and accurate teacher model

to train a single-stage, smaller, and deployable student model for joint 2D/3D human

pose estimation. Finally, we propose to employ spatial and geometric constraints on

the different augmentations of the image and disentangle feature normalization layers

in the backbone model to simultaneously learn from the labeled source and the un-

labeled target domain data for joint pose estimation and instance segmentation. To

demonstrate the effectiveness of our proposed approaches, we release the first public

dataset, called the multi-view operating room (MVOR), generated from recordings of

real clinical interventions. We obtain state-of-the-art results on the MVOR dataset,
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specifically on the privacy-preserving low-resolution OR images. We hope our proposed

UDA approaches could help to scale up and deploy novel AI assistance applications for

the OR environments.
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isons un détecteur de personnes à cadre (Mask-RCNN avec ResNet-152)
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de façon souple ou dure, pour estimer conjointement les points clés 2D et

3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.7 Un exemple de résultat qualitatif de notre approche d’adaptation de
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pour s’entrâıner sur les images non étiquetées fortement augmentées con-

jointement avec les images du domaine source étiquetées. Les poids du
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B.10 Certains des cas d’échec de nos approches d’estimation de pose 3D sur les images

couleur et les images profondeur sont principalement dus à la forte occlusion
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Part IIntroduction and related work
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1 Introduction

What we want is a machine that can learn from experience.

– Alan Turing, 1948

The large amount of data produced by the modern operating rooms can enable the development
of a new generation of support systems, such as “surgical control towers” and “OR black-boxes”
for real-time activity analysis and efficient offline recording, respectively, with the overall aim to
improve patient care [Mascagni 2021c].
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1.1 Background

One of the theories of evolution suggests that we are living through the fourth epoch of

technological advancement: the information age [Kurzweil 2005], witnessing an

unprecedented rise in computing power and digital data. Compute capabilities of digital

devices have seen an incredible increase over the past few years. Much of it can be

attributed to the current Graphics Processing Unit (GPU) whose compute power can be

equivalently compared with the computers that navigated the first satellite launch into

orbit and the moon landings. If we follow Moravec’s argument [Moravec 1998], a single

computer will have the same computing power as humans by 2025. Alongside computing

power, the past decade has also witnessed an exponential growth in digital data

facilitated by the rise of the internet and inexpensive visual sensors. According to a

rough estimates, we upload 400 million pictures every day on Facebook and 300 hours of

video content every minute on YouTube. To put this number in perspective, Facebook

adds a full ImageNet sized dataset [Russakovsky 2015] - one of the largest computer

vision datasets with 14 million images divided among 22k categories - every hour, and

YouTube does this every 13 minutes.

This rapid growth in computing power and large-scale datasets has brought about a

renaissance in Artificial Intelligence (AI), specifically in ‘deep learning’: a subset of

machine learning techniques capable of learning generic representations from the raw

data. The deep learning algorithms aim to estimate the parameters of deep neural

networks from the pair of input and desired output examples; it does so by iterating

through billions of input-output possibilities in an optimization loop. Effectively training

these algorithms requires massive datasets needed to capture virtually all the different

possibilities. Although the foundational concepts of deep learning have been around
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since the 1980s [Rumelhart 1986,LeCun 1989], it is the current highly efficient

computers and the large-scale datasets that are unlocking the true AI capabilities.

One component in the large-scale datasets contributing to the success of AI is the need

for human-generated labels. These labels provide necessary supervision signals to let the

deep neural network converge towards the optimal solution. It was first illustrated

through the state-of-the-art performance for the image-classification task on the

ImageNet dataset [Russakovsky 2015,Krizhevsky 2012]. This flagship benchmark result

exploiting the large-scale manually labeled dataset started the successful journey of deep

neural networks. The supervised deep learning paradigm has now flourished to more

complex computer vision tasks with improved performance and new applications. For

example, Mask-RCNN [He 2017] can provide pixel-level segmentation for the objects in

the image; OpenPose [Cao 2017] can localize the body joints of all the persons in a given

image.

However, these models work well if the test time images have the same distribution as

the train time image. More often, the images a model receives at test time differ

significantly from the ones received at training time leading to the failure of such models

in a real-world deployment setting. To illustrate this, we evaluate one of the

state-of-the-art models, ResNet-50 [He 2016], on some YouTube images. Although these

images belong to the same ImageNet classes, the model fails remarkably on these

real-world data, see figure 1.1. Similarly, when we evaluate state-of-the-art human pose

estimation models on the real-world OR data, we see significant localization errors, as

shown in the figure 1.2. The problem is nevertheless not new and even goes back to the

inception of AI. An often-told story from the early 1970s goes as follows: ARPA (now

known as DARPA (Defense Advanced Research Projects Agency)) organized a challenge

to classify a given image in two classes: images containing tank vs. non-tank. They gave

participants a dataset for this binary image classification problem. Although the AI

model achieved accurate results on the given dataset, the model failed remarkably when

deployed in the real-world setting. Further analysis showed that the dataset contained

images of the tank on sunny days and images of non-tank on cloudy days. So instead of

learning about the visual concept of a tank, the AI models found a shortcut and

classified the images based on just the brightness [Efros 2019].

One way to overcome the challenge of train-test distribution mismatch is to train the

model with manual labels from all types of domain distributions. The hope is that as

the model would have seen different possibilities, the test-time generalization would

eventually become an interpolation problem. However, it poses challenges in the

following two dimensions: first, manual annotation is time-consuming and expensive; for

example, the ImageNet dataset took about 19 years for the annotations, and for more

involved annotation task such as pixel-level segmentation, annotating a single image can

take up to 90 minutes [Cordts 2016]. Second, the manual annotation gets further

complicated if the target domain is privacy-sensitive or requires expert annotations.

One such domain is healthcare which actively faces the challenges of lack of manually

annotated data and the need for privacy-preserving approaches. In this sector, surgery
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Lab coat

Oxygen mask

Syringe

Sample images from ImageNet

Steel arch bridge Harp Harp

Syringe Stethoscope Barber shop

Oxygen mask Oxygen mask Spotlight

Predictions from ImageNet trained Resnet50 model on YouTube frames

Figure 1.1: Qualitative evaluation of the ResNet-50 model on real-world frames. The model fails
and misclassifies, for example, “Oxygen mask” to detect classes like “syringe,” “Stethoscope,”
and “Barbershop.” See [Williams 2011] for more examples.

Figure 1.2: Qualitative evaluation of the state-of-the-art 2D human pose models show large
localization errors on the real-world frames from the OR. We evaluate OpenPose [Cao 2017],
Keypoint-RCNN [He 2017], CPN [Chen 2018a], and AlphaPose [Fang 2017] models.

in an operating room Operating Room (OR) is an exciting and challenging field, given

its socio-economic value. Clinicians in the modern-day OR interact in a constrained and

cluttered environment to achieve one common goal: to heal a patient. Accurate

localization of the clinicians from the ceiling-mounted cameras in the dynamic OR

environment could open up a path to various new applications ranging from augmented
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1.2. Operating room

Figure 1.3: The figure shows an illustrative comparison of an OR from the early 1900 with a
modern-day OR. The left-hand side, image courtesy [Jackson 1915], shows a surgeon performing
an esophagoscopy procedure from limited knowledge of anatomy and using basic instruments.
The modern-day OR shown in the right-hand side, image courtesy [5Gw ], has become very
specialized where a dedicated team of surgeons and the clinical staff uses advanced technology to
perform surgery while minimizing damage to the intricate patient anatomy.

reality, automatic skills evaluation to novel context-aware systems.

This thesis studies the problem of Unsupervised Domain Adaptation (UDA) in the

context of the OR. We propose several domain-adaptation approaches for person

localization without using any manual annotations from the OR. We also consider the

privacy-sensitive nature of the OR to extend further the methods to respect the privacy

of clinicians and patients. In the following, we discuss the OR as a target domain and

describe various applications of the person localization problem, followed by a brief

description of our UDA approaches.

1.2 Operating room

The OR is a dedicated unit inside the hospital where clinicians collaborate in a complex,

high-risk, dynamic, technologically advanced, and cluttered environment to treat the

patients by altering their anatomy. The history of the surgery is much older, even date

back to 3000 BC when the Egyptians performed the first recorded trephination - a

surgical intervention where a hole is drilled into the skull using simple surgical

tools [Rutkow 2000]. Much of the advances in surgery have been brought in the last

century predominantly due to the advances in medical technology ranging from

cutting-edge surgical tools, navigation and monitoring systems to novel imaging

technologies. The figure 1.3 illustrate how a modern-day OR has evolved compared to

an OR from the last century. Coupled with the digital revolution, the OR has now

become a financial nexus inside the hospital. A rough estimate per-minute cost of the

OR comes around $36 and accounts for up to 40% of a hospital’s costs and 60-70% of

revenues [Childers 2018].
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Figure 1.4: The person localization can be performed at the coarse level using bounding box
detection or at the fine-grained level using pixel-based instance segmentation or keypoint-based
2D/3D human pose estimation.

1.2.1 Privacy in the OR

The current age of AI exploiting the “big data” has started to enable intelligent

applications with improved efficacy in various sectors while simultaneously raising the

growing public concern regarding the ethical use of data. Indeed, the recent

controversies [Powles 2017] have raised public awareness regarding how personal data

should be collected and controlled, along with how the AI algorithms should use personal

data in a privacy-safe way1 [Symons 2017]. Health-care data, especially the direct video

recording of OR using ceiling cameras, raises the understandable concern about misuse

of this highly privacy-sensitive OR data. Adapting a model to very low-resolution

images has been suggested in the literature to improve privacy [Chou 2018]. Indeed, as

low-resolution images significantly degrade the spatial details, it could provide a viable

means to improve privacy. However, fine-grained spatial localization tasks such as pose

estimation or instance segmentation become challenging. This dissertation has explored

the ways to address these concerns by utilizing spatial and geometric constraints to

effectively adapt the model to privacy-preserving low-resolution OR images.

1.3 Person localization in the OR

The OR produces rich signals using various instruments and sensors to monitor and

treat the patient and document the procedure. Notably, ceiling cameras capture a global

view of the OR in the form of color, depth, or both types of images. We can use these

non-invasive informative signals for a variety of new applications. As the clinicians in

the OR are the main dynamic actors, these signals could help for their localization. The

clinicians’ localization can be performed at the coarse level using bounding box

detection or at the fine-grained level using human pose estimation or person instance

segmentation, see figure 1.4. In the following, we discuss applications of various

localization approaches in the OR.

1https://decodeproject.eu/
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1.3. Person localization in the OR

1.3.1 Applications of person localization in the OR

1.3.1.1 Context-aware system

A context-aware system is a system that can understand different activities and provide

an appropriate response in a given environment. In the OR, surgery is the main activity

performed by clinicians in a visually cluttered environment consisting of complicated

steps and proceeds in progressive stages. A context-aware system for the OR therefore

aims to automatically track and analyze progress in an ongoing surgical operation.

Digitally enabled modern OR provides multi-modality signals consisting of videos

captured from either endoscopic or ceiling-mounted cameras, radiographic images, device

signals, and electronic health reports.

The tremendous progress in AI has enabled the Computer-Assisted Intervention (CAI)

community to exploit these rich signals to develop various components for the

context-aware systems for the OR. Inspired from other high-stake sectors such as

aviation and Formula One [Helmreich 2000,Gawande 2011,Catchpole 2007], on the one

hand, these components can serve as OR black-box [Goldenberg 2017], similar to flight

recorders, to capture the multi-modality OR data for offline analysis. On the other hand,

these components can serve as a surgical control tower [Padoy 2018], similar to air traffic

control towers, to online stream the OR data for overseeing, coordinating, and providing

an instantaneous assessment of the OR activities [Mascagni 2021c]. A variety of

underlying components have been developed by analysing endoscopic videos. Example of

such components are surgery type recognition [Kannan 2019], surgical phase and activity

recognition [Yengera 2018,Yu 2018,Ramesh 2021,Padoy 2009,Padoy 2012,

Twinanda 2015,Tran 2016,Twinanda 2016a], surgical tool detection and

tracking [Bouget 2015,Nwoye 2019,Sestini 2021], assessment of critical view of safety in

laparoscopic cholecystectomy

procedures [Mascagni 2021b,Mascagni 2021d,Mascagni 2021a,Mascagni 2021e], and

fine-grained action triplet recognition [Nwoye 2020].

While endoscopic videos provide a rich context for the surgical workflow analysis in

minimally invasive surgical procedures, they do not capture the activities happening

inside the whole OR. Therefore, using ceiling-mounted cameras to capture the scene

from an external view can help recognize and analyze activities by localizing clinicians in

the OR. As the clinicians are the main dynamic actors in an otherwise passive OR

environment, localizing and monitoring their postures would endow the machines using a

variety of signals to build a complete context-aware

system [Nara 2010,Agarwal 2007,Meißner 2014,Bardram 2011].

1.3.1.2 Surgical skill assessment

Minimally Invasive Surgical (MIS) procedures have gained enormous interest in the past

decade due to reduction in postoperative recovery time, morbidity, hospitalization time,

and cost of patient care [Jaffray 2005]. It provides a surgeon with high-fidelity

visualization of the complex surgical site while minimizing damage to the intricate
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anatomy. A surgeon in minimally invasive surgical procedures needs to perform surgery

by looking at the two-dimensional screen; the margin of error in these procedures is

minimal. It requires elaborate and effective training for eye-hand coordination, depth

perception, and bi-manual dexterity. As the complexity in these technologically

advanced surgical procedures has been increasing, iatrogenic errors have also been

drawing increased attention to the skills of a surgeon [Donaldson 2000,Makary 2016].

The notion of “learning by doing” is diminishing due to high-risk factors in surgery,

increased patient demands, and scrutiny on a surgeon’s

performance [Bridges 1999,Vozenilek 2004]. Therefore, designing effective methods for

teaching and assessing surgical skills is imperative in the hospital. A study

in [Wanzel 2002] suggests that direct supervision of an expert surgeon on the gestures

and movements of novice surgical residents can improve their performance. An expert

surgeon directly supervising the novice surgeons for all the repeatable training

procedures would be a time-consuming, costly and non-scalable process [Ghani 2016].

Authors in [Reiley 2011] suggest that the motion of the tool and the body joints of the

trainee surgeons can provide objective and measurable parameters to evaluate surgical

skills. Given the repeated nature of the training procedures and the advent of

vision-based AI approaches, an automatic skills evaluation could provide an objective

assessment, real-time feedback, and staged development of skills without the supervision

of an expert surgeon [Bridges 1999]. Human pose estimation utilizing the

non-obstructive camera feeds to track and analyze the body joints could be a

fundamental step towards building such automatic evaluation systems.

1.3.1.3 Radiation safety monitoring

Intraoperative X-ray imaging has become fundamental in several fields of medicine,

especially in hybrid surgeries such as minimally invasive image-guided procedures. These

intra-operative procedures rely on the x-rays to control and monitor the tools inserted in

the patient; hence the clinicians need to remain close to the patient and eventually to

the potentially harmful ionizing radiations. The clinicians usually wear protective lead

shields and use dosimeters to monitor the exposure. As these harmful radiations are

invisible to the eye, and studies have consistently shown their deteriorating effects,

especially on the clinicians [Vanhavere 2008,Carinou 2011,Roguin 2013,Nowak 2020], it

is crucial to develop an intuitive radiation risk awareness system for the hybrid OR.

Recent works such as [Ladikos 2010,Rodas 2016,Krebs 2021] have developed a radiation

simulation system that uses person-body models to measure the radiations at different

body parts. These systems, which show great promise to build such an intuitive

radiation risk awareness in the OR, can be further extended by accurately measuring

pixel-level radiation risks using fine-grained localization such as person instance

segmentation.
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1.3.1.4 Modeling team dynamics

Humans convey their thoughts, emotions, and intentions using a variety of signals, for

example, language, voice, facial expression, and body gestures. Clinicians in the OR also

use the same signals to communicate in the OR, either verbally or non-verbally.

Non-verbal communication in the OR is essential in a critical phase of surgery to work

effectively. Endowing machines with the ability to encode and decode these broad

spectrum of human gestures would facilitate understanding interactions, non-verbal

communications and cognitive load, especially in the critical phases of

surgery [Dias 2019,Soenens 2021].

1.3.2 Challenges for person localization in the OR

As discussed in section 1 and illustrated in the figure 1.1, a change in the data

distribution could result in a significant failure of the recognition models. OR as a target

domain poses specific challenges in data distribution changes at the global and person

instance levels. The OR has particular lighting conditions giving global level appearance

changes. The clinicians wear loose clothes and surgical masks and occlude one another

due to close proximity and instrument clutter, giving instance-level appearance changes.

As the loose and texture-less clothes worn by clinicians appear very similar to the

materials used to cover the other surfaces in the room, it becomes particularly

challenging for the models trained on the natural images to generalize in the OR

environment. Figure 1.5 shows global and instance-level visual differences between

natural images and OR images, and how a model trained on the natural images fails in

the challenging OR scenario. One way to overcome such domain differences is to

fine-tune a model on the manually labeled data from the target domain. This however is

particularly unscalable for the OR due to privacy concerns. The scalable and successful

crowd-sourcing platforms, for example, Amazon Turk, can not be easily used for the

privacy-sensitive OR images to provide large-scale manually labeled data. Approaches

that can adapt a model to the unseen and unlabeled target domain are therefore very

promising.

1.4 Our approach

This thesis explores several UDA directions to enable the visual learning on the OR

images as a target domain while simultaneously tackling OR privacy. The aim is to

adapt learned information from a labeled source domain to the unlabeled target domain

sharing a common label space. We further propose initial works that take into

consideration the privacy-sensitive nature of the OR environment. The repercussions of

our approaches are twofold; first, as manual annotations, especially for pixel-based dense

localization tasks, are considered the main bottleneck in the design of AI systems, a

model trained on just the unlabeled data are easily scalable to more target domains.

Second, as the approaches consider the privacy-sensitive nature of the target domain, it

could be better accepted in the clinical institutions.
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Figure 1.5: Global and instance-level visual differences between source domain natural images and
target domain OR images. When a model trained on the source domain is applied to the unseen
target domain, we see a substantial decrease in the localization accuracy and increase in the missed
detections. Unsupervised domain adaptation approaches aim to effectively adapt a given source
domain trained model to the target domain. The separate clusters of the source domain and the
target domain images are obtained by running a dimension reduction technique: Uniform Manifold
Approximation and Projection for Dimension Reduction (UMAP) [McInnes 2018, Duhaime ].
The source and the target domain images are a subset of COCO [Lin 2014] and the MVOR
[Srivastav 2018] datasets, respectively.

How can a model trained on fundamentally different domain data adapt itself to another

target domain by just using unlabeled target domain data for supervision? We

hypothesize that the use of self-supervised predictions is the key to this answer. As

suggested in the literature ranging from centuries-long human philosophy to modern

neuro-science, the human brain follows a similar idea to refine its predictions in an

unsupervised way. David Hume, a famous philosopher from the 1800s, emphasizes in his

book Treatise of Human Nature that mental perceptions - ideas or representations -

from the sensory data - impressions - enforces invariant associations for the semantically

similar images [Norton 2000]. Modern neuro-science has also observed experimentally

that self-supervised deep-learning models to learn generic features representations

resembles the ventral visual stream of the brain [Konkle 2021]. Moreover, the recent

results in the self-supervised learning methods to learn generic feature representations

from unlabeled data uses the similar idea that different views of the same image under

different data augmentation should give similar

predictions [Chen 2020,Grill 2020,He 2020]. Inspired by these ideas, we propose generic

mechanisms that employ prediction as a self-supervisory signal in allowing the model to

learn and adapt to the target domain. In the following, we briefly describe our

contributions.
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I. Release of MVOR dataset and comparison of state-of-the-art methods

As our first contribution, we introduce a new multi-view operating room dataset, called

MVOR, as the first public dataset recorded during real clinical interventions for

multi-person detection and 2D/3D Human Pose Estimation (HPE). MVOR shows the

inherent visual challenges from the real-world OR environment, illustrating significant

variations in color distributions compared to natural images and clinicians wearing loose

clothes and masks under close proximity. We release the MVOR dataset with the aim to

advance the state-of-the-art for fine-grained person localization in the OR by proposing

it as a comparative test-bed. We evaluate state-of-the-art approaches for person detection

and human pose estimation at the original (1x) and downsampled (12x) scales. We

observe a significant performance degradation, specifically on the low-resolution images

helping us to set up initial source-only baselines for our proposed UDA approaches.

II. Domain adaptation across visual modalities for HPE on low-resolution

depth images

As our second contribution, we design UDA approaches for HPE on low-resolution depth

images. As the depth images are texture-less and only encode the distance between an

object to the sensor, these provide a viable option to preserve the privacy of patients

and clinicians. As highlighted in 1.2.1, we further use only the low-resolution depth

images at the test time to enforce more substantial constraints for the privacy-sensitive

OR environment.

To train a model on the low-resolution depth images without manual annotations, we

put forward an idea that two different visual modalities, such as color and depth images,

can serve as two distinct domains. If these two domains are synchronized, as simply

possible through the Red-Green-Blue-Depth (RGBD) cameras, then a model working

reasonably well on one domain can effectively be adapted to the other. To enable this,

we propose to perform inference on the color images using state-of-the-art HPE models,

refine the inference results to generate pseudo labels, and transfer the pseudo labels to

the corresponding depth image for the training.

We further propose two training strategies using the generated pseudo labels to adapt a

model to the low-resolution depth images. As the first strategy, we propose to integrate

super-resolution feature maps in the bottom-up RTPose [Cao 2017] method that utilizes

intermediate super-resolution feature maps for effective learning of the high-frequency

features. As the second strategy, we exploit advanced data-augmentations such as

low-resolution down- and up-sampling, rand-augment [Cubuk 2020] and random

cut-out [DeVries 2017] in the top-down Keypoint-RCNN [He 2017] model. We show

significantly better results on the challenging MVOR dataset for both of our strategies,

specifically on the privacy-preserving low-resolution depth images with a downsampling

factor as low as 12x.
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III. Self-supervision on unlabelled OR color images for joint 2D/3D hu-

man pose estimation

For our third contribution, we propose a UDA approach based on the teacher-student

learning paradigm to develop an easily deployable model for joint 2D/3D human pose

estimation on the OR color images. The teacher model exploits

knowledge-distillation [Hinton 2015,Zhang 2019a] - using complex three-stage models -

along with data-distillation [Radosavovic 2018] to generate accurate pseudo labels. We

propose to use two sets of labels from the teacher model: a hard-labels set by removing

low confidence detections and a soft-labels set by keeping all the detections along with

their confidence value.

We further propose an end-to-end single-stage student model based on

Mask-RCNN [He 2017] where we replace mask-head with a keypoint-head for joint 2D

and 3D pose estimation. The student model exploits both the hard-labels and the

soft-labels for effective training. Furthermore, to adapt the model to the

privacy-preserving low-resolution images, we extend the data augmentation pipeline to

generate low-resolution images by down-sampling and up-sampling the input OR image

with a random scaling factor between 1x to 12x. The model trained on these very

low-resolution OR images learns to give accurate results as the training progresses.

Results on the MVOR dataset show that the student model performs on par with the

teacher network despite being a lightweight and single-stage. Furthermore, it can also

yield accurate results on low-resolution images, as needed to ensure privacy, even using a

downsampling rate of 12x.

IV. Unsupervised domain adaptation for clinician pose estimation and

instance segmentation in the OR

In our first two contributions, we propose to use a robust multi-stage teacher model to

generate accurate pseudo labels. However, a strong teacher may not always be available

to train a student model. In this work, we ask the following question: instead of relying

on a strong teacher model to give pseudo labels, can a model become its own teacher for

the training?

As our final contribution, we propose a novel UDA approach, called AdaptOR, for joint

person pose estimation and instance segmentation. We first propose to extend the Mask

R-CNN [He 2017] using Disentangled Feature Normalization (DFN) to train on two

statistically different domains: natural images from COCO, and OR images from MVOR

or TUM-OR [Belagiannis 2016]. DFN replaces every feature normalization layer in the

feature extractor of the backbone model with two feature normalization layers: one for

the source domain and another for the target domain. We propose to modify the loss

function for our improved design of the backbone model. We pass the features of the

source and the target domains separately to the downstream heads needed for separate

weighing of the losses for the two domains.

Given a backbone model with the ability to train on two statistically distinct domains,
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we propose to exploit explicit geometric constraints on the different augmentations of

the unlabeled target domain images to generate accurate pseudo labels and to use these

pseudo labels to train the model on high- and low-resolution OR images. The geometric

constraints need to satisfy transformation equivariant constraints by transforming the

model’s predictions to observe the same geometric augmentations as of the input image.

These explicit geometric constrains help the model to adapt to the target domain

effectively.

Evaluation of the method on the two target domain datasets, MVOR and TUM-OR,

with extensive ablation studies, show the effectiveness of our approach. The significantly

better results on low-resolution images encourage the use of our method for the

privacy-sensitive OR environment.

1.5 Outline

We first present related work in unsupervised domain adaptation and person localization

methods in chapter 2. We then describe the unlabeled training and test datasets,

evaluation metrics and performance of the state-of-the-art approaches in chapter 3. This

Work has been published in [Srivastav 2018]. Chapter 4, published in [Srivastav 2019],

puts forward the idea of two different image modalities as two distinct domains and

describes our UDA approach to adapt the model to low-resolution OR depth images for

the task of 2D HPE. Chapter 5 describes our UDA approach to train a model using the

predictions coming from the multi-stage complex teacher model to train a generic model

applied to low and high-resolution images from the target domain for joint 2D/3D pose

estimation. This work has been published in [Srivastav 2020]. Finally, in chapter 6, we

propose UDA approach for joint person pose estimation and instance segmentation that

does not rely on complex multi-stage teacher network to provide the pseudo-labels.

Instead, we propose a novel framework that exploit spatial and geometric constrains on

the different augmentations of the unlabeled image to provide accurate pseudo labels.

The work has been submitted to the journal Medical Image Analysis. Finally, some

potential applications and the conclusion of the thesis with interesting new ideas for

future work are presented in chapter 7 and chapter 8.

We also describe in Appendix A an iterative self-supervised approach for face detection

in the OR, which has been published in [Issenhuth 2019]. This work won the runner-up

award in the “Bench-to-Bedside category” at IPCAI 2019.
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2 Related work

It is not the strongest of the species that survives, nor the most intelligent that survives.

It is the one that is most adaptable to change.

– Charles Darwin

A cartoon illustration of the “street light effect”. By drawing a similar comparison with the current
deep learning literature, a model trained in one domain, when applied to a visually different
target domain, results in a significant decrease in the performance. The domain adaptation aims
to adapt an initial model trained on a source domain distribution to a different target domain
distribution with few or no new annotations.
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This chapter describes related literature on the domain adaptation methods applied to

various computer vision tasks, ranging from image classification and object detection to

semantic segmentation. Then, we discuss different computer vision approaches applied

to low-resolution images to improve privacy. Finally, we describe various fine-grained

person localization approaches ranging from 2D and 3D Human Pose Estimation (HPE)

estimation to person instance segmentation.

2.1 Domain adaptation

2.1.1 Problem definition

Standard supervised learning approaches assume that the data, d, and the corresponding

labels, y, are drawn from a distribution, D, during training to minimize some defined loss

between the model’s predictions, p, and the true labels, y. One of the key assumption

being that the testing time data dtest will also be drawn from the same distribution D.

The performance guarantees of the model are measured on this assumption. In the

domain adaptation, however, the assumption is that there exists a large labeled source

domain dataset, {x, y} drawn from the distribution X . At the test time we assume the

model can receive the data, u, from a different domain U . The goal of the domain

adaptation is to learn to adapt the source domain model to the target domain.
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Figure 2.1: Different example cases for domain adaptation, image courtesy [Csurka 2017]

It can be achieved by a small set of labeled data from the target domain, not necessarily

to tra in a model fully on the target domain data alone, but enough to adapt

information from a model trained on a source domain to a target domain. These

approaches are called supervised domain adaptation or transfer learning.

Conversely, unsupervised domain adaptation is the learning problem to adapt the model

to the target domain, but without having access to any ground truth labels from the

target domain. The main idea explored in the Unsupervised Domain Adaptation (UDA)

is to learn the domain independent features to align the two distributions in some

low-dimensional embedding space. In the next section, we provide a brief discussion to

cover some related domain adaptation work in Automatic Speech Recognition (ASR)

and Natural Language Processing (NLP) followed by a discussion on the visual domain

adaptation.

2.1.2 Domain adaptation for ASR and NLP

The ASR approaches aim to convert the spoken language into text. The ASR has

significantly improved over the past few years through improved neural networks and

large-scale annotated datasets. Domain adaptation has started to become a key

component in ASR, where the set of labeled human speeches are considered source

domains and a particular person who uses the ASR system is considered the target

domain. Approaches using teacher-student [Meng 2019] and self-training [Khurana 2021]

learning have been used for the domain adaptation for ASR.

Domain adaptation has been extensively studied in the NLP, where the focus is to train

a model on a large corpora of language text for a particular end task, such as sentiment

analysis or document summarization, and then apply the learned model to the related

but distinct domains. Several methods such as structural correspondence
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learning [Liu 2010], feature replication [Daumé III 2009] have been proposed for the

NLP tasks.

2.1.3 Visual domain adaptation

The focus of this dissertation is on visual domain adaptation. Contrary to domain

adaptation for ASR and NLP, the visual data has the problem of containing ill-defined

domains. Therefore, the standard practice assumes that each collected dataset belongs

to a single visual domain while adaptation algorithms are evaluated across source and

target domain datasets. The current UDA approaches for the different end tasks can be

broadly classified in two main areas: adversarial domain alignment and self-training.

2.1.3.1 Adversarial domain alignment

The main idea in adversarial domain alignment based UDA approaches is to update

either the feature, input, or output space from the target domain such that they are

distributed in the same way as the source domain. At the feature space, for example,

the domain invariant feature space is achieved using an additional neural network, called

domain classifier, which essentially plays a min-max game with the feature extractor

using adversarial learning [Goodfellow 2014]. Here, the domain classifier tries to fool the

feature extractor by accurately distinguishing the source and the target domain features

using a binary classification loss on the domain labels; the feature extractor, in turn,

tries to fool the domain classifier by producing domain invariant feature such that the

domain classifier would result in poor domain discrimination accuracy. The adversarial

domain alignment at the feature space has been studied

in [Ben-David 2010,Hoffman 2016,Chen 2018b,Chen 2019a,Du 2019,Saito 2019,

Tran 2019,Hsu 2020,Sindagi 2020,VS 2021]

At the input space, these approaches utilize a image-to-image translation paradigm to

mitigate the visual differences. The first method, Cycle-GAN [Zhu 2017], proposes to

learn a function that can transform input image pixels across visual domains. These

approaches, therefore, aim to transform the labeled source domain images to target-like

source domain images. Since the annotations for the source domain images are readily

available, the model trained on these target-like source domain images performs better

on the original target domain images for a given end-task. These approaches aim to

transfer the visual attributes - i.e., color, contrast - from the target domain to the source

domain while preserving semantic content - i.e., shape and location of objects. The

adversarial domain alignment at the input space has been studied

in [Zhu 2017,Chen 2019c,Chen 2019d,Choi 2019,Li 2019]

Although these methods have made significant progress, stable training in the

adversarial setup requires complicated training routines with careful adjustment of

training parameters. Moreover, aligning the two domains using the domain classifier

may not guarantee a required discriminative capability for a given end task.
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2.1.3.2 Self-training

The self-training based UDA methods have emerged as promising alternatives to

adversarial domain alignment as they follow a simple approach to learn the domain

invariant representations. The main idea in the self-training is to generate pseudo labels

on the unlabeled target domain by refining the predictions - generated from a given

source domain trained model - using domain/task-specific heuristics, for example,

confidence score in object detection [Deng 2021] or uncertainty in semantic

segmentation [Liang 2019,Zheng 2021]. These pseudo labels are then used to train a

model on the target domain jointly with the labeled source domain. The self-training

has been extensively studied for object detection and semantic segmentation

tasks [Inoue 2018,Zou 2018,RoyChowdhury 2019,Khodabandeh 2019,Kim 2019,

Zou 2019,Zhao 2020a,Wang 2020a,Zheng 2021]. The self-training methods could further

be improved in a mean-teacher framework to tackle noise in the pseudo

labels [Cai 2019a,Liang 2019]. The main idea in the mean-teacher framework is to

utilize two closely coupled models: a teacher model and a student model. The teacher

model generates the predictions on the target domain unlabeled data, and the student

model exploit these predictions for the training along with the source domain labeled

data for training. The student model further improves the teacher model with the

Exponential Moving Average (EMA). This mutual training improves both the teacher

and student models gradually throughout the training. The mean-teacher and the

self-training based UDA approaches have predominantly been inspired by the advances

in the Semi-supervised Learning

(SSL) [Tarvainen 2017,Berthelot 2019b,Sohn 2020a,Liu 2021b]. In fact, the UDA can be

posed inside an SSL framework with the source domain data as the labeled and the

target domain data as unlabeled along with additional complexity of the visual shift of

the two domains. The mean-teacher paradigm has shown its effectiveness in the recent

state-of-the-art approaches for self-supervised learning [Grill 2020,He 2020],

semi-supervised learning [Sohn 2020a,Liu 2021b], as well as domain

adaptation [Cai 2019a,Deng 2021].

2.1.3.3 Domain-specific feature learning

Some of the recent works aim to learn domain-specific feature representations instead of

domain invariant using disentangled feature normalization. These approaches modify the

feature normalization layers - as these control the feature distribution statistics - with

two separate layers to disentangle the features from the two domains [Chang 2019]. The

domain-specific features learning has been studied in the UDA for image

classification [Chang 2019,Wang 2019], and federated learning on medical

imaging [Li 2021]. It has also been used to boost performance in the supervised

learning [Xie 2020], and adversarial robustness [Xie 2019]. The authors in [Wu 2021]

comprehensively discuss the feature normalization under various visual recognition tasks.

There also exist several survey papers that extensively discuss UDA for the end task of
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image classification [Patel 2015,Wang 2018a,Zhuang 2020], semantic

segmentation [Toldo 2020,Zhao 2020b], and object detection [Oza 2021].

A few notable works propose to use the UDA on the medical domain for cross-domain

segmentation task [Li 2020a,Ouyang 2019,Orbes-Arteainst 2019,Chen 2019a], and image

classification [Zhang 2020]. The authors in [Dong 2020] also study the UDA to identify

domain invariant transferable features for endoscopic lesions segmentation. The authors

in [DiPietro 2019] study the surgical workflow recognition with as few as one labeled

sequence using SSL.

2.2 Low-resolution image recognition

The privacy-sensitive OR environment poses challenges in bringing the AI inside the OR.

The recent controversies [Powles 2017] have raised public awareness regarding how

personal data should be collected and controlled, along with how AI algorithms should

use personal data in a privacy-safe way [Symons 2017]. One way to address these

challenges is by using the federated learning [McMahan 2017] framework that allows

training the model in a decentralized manner without explicitly sharing data. The

federated learning has been recently used in medical imaging for segmenting the brain

tumor [Sheller 2018] and detecting COVID-19 lung abnormalities in CT [Dou 2021].

Unlike medical imaging data, where privacy-sensitive information essentially lies in the

metadata, direct video recording of OR using ceiling cameras contains the private

information in the data itself. Adapting a model to very low-resolution images has been

suggested in the literature to improve privacy [Chou 2018] that can further be

incorporated inside the federated learning setup to improve multi-centric generalization.

The low-resolution images entail significant degradation in the perceptual details of the

image. It can be caused either due to poor image quality at the camera source or when

capturing a large scene containing tiny objects. Low-resolution images can also be

synthetically generated by applying handcrafted filters, for example, bicubic

interpolation. These techniques, therefore, provide an automatic way to provide the

training data to train a deep-learning model, called super-resolution (SR) models, that

aims to learn a mapping function from low-resolution images to high-resolution images.

The computer vision approaches enabling image recognition on low-resolution images for

various end-tasks mainly utilize these super-resolution models to mitigate the spatial

degradation of low-resolution images. Authors in [Bai 2018] employ Generative

Adversarial Network (GAN) based architecture to directly regress for the high-quality

SR face regions from blurry small input regions. The authors in [Shermeyer 2019] study

the effect of various SR architectures for object detection in satellite imagery. They

experimentally prove that the SR techniques enable the detection of tiny objects. The

low-resolution image recognition has further been studied for 2D human pose

estimation [Neumann 2018], face recognition [Ge 2018], image classification [Wang 2016],

image retrieval [Tan 2018], object detection [Haris 2018,Li 2017], and activity

recognition [Chou 2018,Ryoo 2017] tasks.
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Figure 2.2: Authors in [Johansson 1973] showed in their seminal work that motion of few dots on
the human body give rise to a compelling motion. See illustrative videos at1

In medical imaging, it has been mainly studied for image classification problems.

Authors in [Chen 2021] present an integrated approach of super-resolution and medical

diagnostic on the wireless capsule endoscopy and histopathological images. They first

enhance the low-resolution images using a super-resolution framework and then use

enhanced and low-resolution images in their proposed diagnosis classification network for

accurate disease classification. Authors in [Mahapatra 2019] propose a progressive GAN

and a triplet loss to improve the image quality that further improves the performance on

vasculature segmentation and microaneurysm detection.

2.2.1 Privacy-preserving approaches using low-resolution images

As the low-resolution images significantly degrade the image quality, it can provide an

effective means to develop privacy-preserving

approaches [Haque 2017,Chou 2018,Gochoo 2020]. The authors

in [Haque 2017,Chou 2018] propose to utilize low-resolution depth images for preserving

privacy. They used an off-the-shelf super-resolution model to increase the perceptual

details in the input depth image. The super-resolved image is then further passed to the

action classification for the activity detection. The authors in [Gochoo 2020] propose to

utilize ultra low-resolution thermal images indoor posture recognition. They propose to

use a shallow architecture for the training on these privacy-preserving low-resolution

images.

2.3 Person localization approaches

This section reviews various approaches for person localization, such as person instance

segmentation and 2D/3D HPE on color and depth images. Person instance segmentation

aims to estimate segmentation masks of each person in the image while differentiating

each segmentation mask from the other one. HPE aims to localize different body parts,

for example, eyes, nose, etc., either in 2D or 3D. Figure 1.4 shows example outputs for

person localizations ranging from coarse person bounding box detection to fine-grained

person instance segmentation and 2D/3D HPE.

2.3.1 Human pose estimation

HPE is a challenging problem as human poses are very high dimensional, showing

different articulation and unusual motions. Moreover, there is an inherent occlusion

1https://youtu.be/1F5ICP9SYLU and https://youtu.be/rEVB6kW9p6k

23

https://youtu.be/1F5ICP9SYLU
https://youtu.be/rEVB6kW9p6k


Chapter 2. Related work

problem due to the proximity of a person to other persons or other objects. There is

also a loss of 3D in the 2D projection of images.

Almost half a century ago, Johansson et al. showed in their experiment that just a few

dots (keypoints) on a human body could provide a compelling sense of human motion

such as walking, running, and dancing [Johansson 1973], see figure 2.2. In the same year,

Fischler et al. proposed the first computational approach called pictorial structure,

where the idea was first to detect different parts in a bottom-up approach and then join

them into a network-like structure [Fischler 1973]. These two seminal works provided a

key influence and impelled the computer science community towards HPE. In the

following, we discuss various HPE approaches that estimate keypoints either at 2D, on

the image coordinates, or infer 3D orientation of the poses.

2.3.1.1 2D human pose estimation

Current 2D HPE approaches have been mainly studied either using bottom-up

(keypoint-first) or top-down (person-first) approaches. The bottom-up approaches first

detect all the keypoints for all the persons and then use a group post-processing method

to associate keypoints to person instances; conversely, the top-down approaches first

obtain the bounding box for each person instance using an off-the-shelf object detector

and then employ a single-person pose estimation method to get the keypoints. The

group post-processing methods in bottom-up approaches include Part Affinity Fields in

CMU-Pose [Cao 2017], Part Association Field in PifPaf [Kreiss 2019], and Associative

Embedding (AE) in [Newell 2017,Cheng 2020]. The leading methods for single-person

pose estimation in the top-down approaches include Simple-Baseline [Xiao 2018],

Alpha-Pose [Fang 2017], Cascaded-Pyramid-Network [Chen 2018a], HRNet [Sun 2019],

and EvoPose2D [McNally 2020].

The bottom-up approaches are computationally faster due to their person-agnostic

keypoint localization but yield inferior accuracy compared to the top-down approaches.

The two-stage design in the top-down approaches helps them achieve significantly better

accuracy, but at a more computational cost. Built on top of anchor-free

detectors [Tian 2019b], some recent approaches such as DirectPose [Tian 2019a] and

FCPose [Mao 2021] consider the keypoints as a special bounding-box with more than

two corners and propose to regress the keypoint coordinates directly.

2.3.1.2 3D human pose estimation

3D HPE aims to predict locations of body joints in 3D space. This section focuses on

the deep-learning based approaches that estimate 3D HPE from monocular RGB images

either for a single-person or multi-persons.

3D single-person pose estimation

Single-person pose estimation approaches mainly use 3D datasets, such as

Human3.6M [Ionescu 2013] or HumanEva [Sigal 2010], which provide both 2D and 3D
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pose annotations, but with a single person performing actions in a controlled

environment. Most approaches therefore leverage these datasets to learn an effective

mapping from a given 2D pose to a 3D pose.

Authors in [Martinez 2017] designed a simple 2D-to-3D lifting network using few

residual-based fully-connected layers and showed state-of-the-art performance on the

Human3.6M dataset. A matching strategy is proposed [Chen 2017] to utilize 3D pose

datasets of 2D to 3D mapping libraries and give estimated 2D pose. Authors

in [Moreno-Noguer 2017] propose to encode pairwise distances of 2D and 3D body joints

into two Euclidean distance matrices. They then train a regression network to learn the

mapping of the two matrices. Authors in [Wang 2018b] propose to predict depth

rankings of human keypoints as a viable cue for the 3D keypoint inference. Authors

in [Yang 2018] adopted a 3D pose generator from the authors of [Zhou 2017] and

propose a multi-source discriminator utilizing a given image, pairwise geometric

structure, and joint location information.

3D multi-person pose estimation

3D multi-person pose estimation from a single image is an ill-defined problem because it

involves inferring the relative positioning of the persons in the image in 3D from only a

2D image. It is a new field, and most approaches resolve the relative positioning by

using various heuristics.

A bottom-up approach is proposed in [Mehta 2017] by using RTPose [Cao 2017] to infer

person instances and further propose an Occlusion-robust Pose-maps (ORPM) to provide

multi-style occlusion information irrespective of the number of people in an image. A

top-down approach is proposed in [Rogez 2017] by using different models in a three-stage

pipeline: faster R-CNN to detect person pose proposals, a classifier to score the different

pose proposals, and a regressor network that refines pose proposals both in 2D and 3D.

Authors in [Dabral 2019] used a similar top-down approach by modifying mask head in

Mask R-CNN [He 2017] with an hourglass based 2D heat-map estimator and the

2D-to-3D lifting network from [Martinez 2017]. They further propose an optimization

approach to determine the root-location in the 3D scene of a lifted root-relative 3D pose.

2.3.1.3 Human pose estimation in the OR

HPE in the OR is a relatively new field with approaches applied to either single or

multi-view images and on color (RGB), depth (D), or both color and depth (RGB-D)

images. The initial work [Kadkhodamohammadi 2014] propose a method to consistently

track the upper body poses by offline optimization using discrete Markov Random Field

(MRF) on the short RGB-D video sequences. The authors further propose an approach

using the pictorial structure model [Fischler 1973,Felzenszwalb 2005] initially designed

for the RGB images to the RGB-D images with a handcrafted Histogram of Depth

Difference (HDD) features [Kadkhodamohammadi 2015]. Subsequent work use the

multi-view RGB images [Belagiannis 2016] and multi-view RGB-D
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images [Kadkhodamohammadi 2017c,Kadkhodamohammadi 2017a] for 3D HPE along

with the corresponding multi-view RGB and multi-view RGB-D extensions to the

pictorial structure model. Some recent work utilizes multi-view depth data for 3D HPE

in the OR either using a voxel-based model [Hansen 2019] or point R-CNN

model [Bekhtaoui 2020].

2.3.2 Person instance segmentation

Instance segmentation aims to identify the semantic class of each pixel as well as

associate each pixel with a physical instance of an object. The task is challenging as it

combines the two computer vision tasks into a single framework: object detection, where

the goal is to classify individual objects and localize each using a bounding box and

semantic segmentation, where the goal is to classify each pixel into a fixed set of

categories without differentiating object instances. Similar to 2D HPE, the instance

segmentation approaches can also be categorized into the bottom-up and top-down

approaches. The top-down method also uses a two-stage design first to detect the

bounding box and then either classify mask proposals or estimate segmentation masks

from the bounding box proposals [He 2017,Chen 2019b,Bai 2017,Liu 2017,Lee 2020].

Similarly, the bottom-up methods associate pixel-level semantic segmentation output to

the object instance. These approaches start from per-pixel classification results (e.g.,

FCN outputs), and attempt to cut the pixels of the same category into different

instances [Zhang 2016,Liang 2017,Kirillov 2017,Arnab 2017]. Inside the OR, the only

related work [Li 2020b] addresses a 3D scene semantic segmentation from multi-view

depth images; however, the data is obtained from simulated clinical activities.

2.3.3 Joint person pose and instance Segmentation

A few notable works address the joint person pose estimation and instance

segmentation [Papandreou 2018,He 2017,Zhang 2019b,Zhou 2020]. The authors

in [Zhang 2019b,Zhou 2020] use pose estimation as a strong prior for the person instance

segmentation. The PersonLab [Papandreou 2018] as a bottom-up method and Mask

R-CNN [He 2017] as a top-down method are designed for the joint person pose

estimation and instance segmentation.

2.4 Thesis positioning

Fine-grained person localization approaches that can not only exploit the abundant

unlabeled and unseen data but also tackle Operating Room (OR) privacy are needed to

develop and scale up novel assistance applications for the OR. In this chapter, we explore

extensive literature in mainly three dimensions: domain adaptation, person localization

architectures, and privacy-preservation using low-resolution. In the following, we

highlight key points relevant to our proposed approaches described in this dissertation.

As discussed in section 2.3.1, the multi-stage models for HPE provide state-of-the-art

localization accuracy. In contrast, single-stage models are faster and therefore more
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suited in the development of real-time applications. We have explored state-of-the-art

two-stage models, for example, cascade Mask R-CNN [Cai 2019b] followed by

HRNet [Sun 2019] as a teacher network to generate accurate pseudo labels. While as a

student model, we extend run-time optimized models such as RTPose [Cao 2017], and

Mask-RCNN [He 2017] for the real-time deployment in the OR. As discussed in section

2.3.1.2, a few residual-based fully-connected layers network to learn 2D to 3D pose

mapping provide state-of-the-art accuracy on Human3.6

dataset [Ionescu 2013,Martinez 2017]. We, therefore, propose to extend Mask-RCNN by

integrating 2D-to-3D lifting network for end-to-end multi-person joint 2D/3D human

pose estimation.

The section 2.2.1 explores how low-resolution images can provide possible directions

towards building privacy-preserving approaches for the OR. Adapting the models to

these spatially degraded low-resolution images is, however, challenging. Different from

the current literature, which handles the low-resolution images by using off-the-shelf

super-resolution models to enhance the spatial details, we directly adapt the features of

the model for a given end-task by proposing two strategies. First, we propose integrating

a feature-based super-resolution architecture in the end-to-end pipeline without

generating intermediate super-resolution images. Second, we utilize advanced data

augmentations to enforce consistency constraints between the high- and the

low-resolution images derived from the pseudo labels, consequently enhancing the

features for the low-resolution image.

As discussed in section 2.1.3.2, the self-training based approaches provide a robust

paradigm for visual domain adaptation. These approaches adapt the model to the target

domain by training the model on its refined predictions. Training the model on these

refined predictions, also called pseudo-labels, optimizes its feature for the given end task.

Refining the predictions to generate accurate pseudo labels is however challenging. We

have proposed two strategies for generating accurate pseudo-labels. First, we propose to

exploit complex and multi-stage models to generate pseudo labels on the target domain

to train a faster and single-stage model. Here the accurate pseudo labels are generated

by utilizing knowledge- [Hinton 2015,Zhang 2019a] and

data-distillation [Radosavovic 2018]. Second, we propose to exploit spatial and geometric

constraints on the different augmentations of the unlabeled target domain image to

generate accurate pseudo labels. The mean-teacher framework [Tarvainen 2017], as

discussed in 2.1.3.2, helps to stabilize the training by handling noise in the pseudo labels.

As discussed in section 2.1.3.3, we propose to extend the backbone model with

disentangled feature normalization layers for simultaneous training on the source and

target distributions.
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3 MVOR: Multi-view operating

room dataset

You can have data without information, but you cannot have information without data.

– Daniel Keys Moran

View 1 View 2 View 3

3D View

Multi-view operating room (MVOR) is the first public dataset recorded during real clinical
interventions. Dataset and code are available here: https://github.com/CAMMA-public/MVOR
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3.1 Introduction

The availability of large-scale annotated datasets has been key in spurring interest and

progress in human pose estimation and instance segmentation. 2D datasets captured in

natural and in the wild environments such as MPII [Andriluka 2014], COCO [Lin 2014],

and OCHuman [Zhang 2019b] include scenes with a wide amount of variability. 3D

datasets, such as Human3.6M [Ionescu 2013], HumanEva [Sigal 2010], provide both 2D

and 3D annotations, but with a single person performing actions in a controlled

environment. As obtaining 3D ground truth on real-world images is an inherently

difficult task, most approaches leverage these datasets to learn an effective mapping

from 2D pose to 3D pose. The mapping is however learned from the simulated activities

that do not cover real-world challenges. Therefore, models trained on such data do not

generalize well to the challenging complex scenes such as OR. The TUM-OR dataset

introduced in [Belagiannis 2016] is a multi-view OR dataset with 2D and 3D human

poses. However, the dataset was captured during activities simulated by actors.

As our first contribution, we introduce the Multi-view Operating Room (MVOR)

dataset, which is the first public Operating Room (OR) dataset captured during real

surgical interventions. The MVOR dataset illustrates the complexity of a visually
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different and challenging OR environment at a global and instance level. At a global

level, it shows particular lighting conditions and instrument clutter in the OR. At the

instance level, it shows clinicians wearing loose clothes and surgical masks and occluding

one another due to close proximity. The MVOR dataset consist of 732 synchronized

multi-view frames recorded by three RGB-D cameras in a hybrid OR. The dataset

however is small and not suitable to train the deep learning algorithms and proposed to

use as a test dataset to evaluate a model’s ability to generalize to unseen configurations

and color distribution. For training, we use an unlabeled dataset from the same OR,

called MVOR-unlabeled, consisting of 80k synchronized color and depth images. In this

chapter, we present the datasets, its ground-truth annotations, as well as baseline results

from several approaches for person detection and 2D/3D human pose estimation.

3.2 MVOR

The MVOR dataset consists of RGB-D images sampled from eight days of recording in

an interventional room at the University Hospital of Strasbourg during vertebroplasty

and lung biopsy procedures. The images were captured using three synchronized RGB-D

cameras (Asus Xtion Pro) mounted on the ceiling using articulated arms. The

synchronized multiple cameras help to create a multi-view frame where the multi-view

frame consists of RGB-D images recorded from all the cameras simultaneously. The

cameras were mounted in such a way as to capture the key activities around the

operating table, as shown in figure 3.1. The image and depth data were captured at 20

FPS in 640x480 VGA resolution using a recording software developed in-house. The

intrinsic camera parameters of each camera were computed using a calibration pattern.

The rigid transformation between the cameras and transformation of each camera to the

global coordinate system were done in the two-step process described

in [Svoboda 2005,Rodas 2015]. The operating table was considered to be the reference

for the global coordinate system.

3.2.1 MVOR training set: MVOR-unlabeled

The unlabeled training set, called MVOR-unlabeled, consists of 80k RGB-D images

sampled from four days of video recording. The full-day recordings of these videos

include the frames when no activities are happening in the OR, so to select proper

frames, we use OpenPose [Cao 2017], a multi-person pose estimator, on these videos to

get the approximate number of persons in each frame. The computational efficiency of

OpenPose allows us to make the inference on all the recording videos in a reasonable

time. We divide the images into four categories: images with one, two, three, and four or

more detected persons. Since OpenPose also gives a confidence score for each detected

skeleton, we average the scores of the detected skeletons and take the 20k highest-scored

images from each category (i.e., 80k images overall). This selection method ensures that

the images contain persons in different numbers. We use the MVOR-unlabeled as the

unlabeled training dataset to develop various unsupervised domain adaptation
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RGB-D camera arrangments on the ceiling inside the OR

View 1

View 2

View 3

Figure 3.1: Multi-view setup and corresponding views in a room from the Interventional Radiology
Department at the University Hospital of Strasbourg.

Figure 3.2: Illustration of the blurring process for the public release. The face of the patient,
nudity and the eyes of the staff have been blurred.

approaches as explained in the following chapters.

3.2.2 MVOR test set: MVOR and MVOR+

3.2.2.1 Data

The test dataset of MVOR consists of 2196 frames sampled from four days of recording.

The four days of videos are different from the ones of MVOR-unlabeled dataset to ensure

the absence of overlap between the unlabeled training dataset and the test dataset. For

public release of the dataset, the color images are needed to be blurred to ensure the
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Figure 3.3: The tool used to generate the annotations, displaying the three views and the 3D
point cloud in the interface. Right side body parts are shown in green and occluded body parts
are marked by crosses. The annotators can move the joints in either 2D or 3D.

anonymization of the data. Patient faces and nude parts are fully blurred, while

clinicians’ faces are only blurred around the eyes when wearing a mask and fully blurred

otherwise. A sample image is shown in figure 3.2.

3.2.2.2 Ground truth annotations

We release two iterations of the ground truth annotations for the MVOR test set:

MVOR and MVOR+

• MVOR: It contains annotations for person bounding boxes and 2D/3D human

poses. All persons are annotated with a full bounding box and staff who have

more than 50% of their upper-body parts visible in at least one view are annotated

with 2D and 3D upper-body pose keypoints. The 10 keypoints annotating the

upper-body poses are shown in figure 3.4. To generate the annotations, we use a

tool that displays all the three 2D views as well as the 3D point cloud, illustrated in

figure 3.3. First, the annotator draws the 2D skeletons in all 2D views. To generate

the 3D annotations, the 2D poses are back-projected into 3D using the depth

information and initial 3D skeletons are computed by averaging all 3D skeletons

across all views. We compute average 3D joint locations only among visible body

joints. These initial 3D skeletons are not always accurate due to depth errors and

differences in 2D joint annotations among the views, which are in turn caused by

the large visual differences due to cameras rotation angles and partial occlusions.

The annotator is therefore required to then ensure the quality of each 3D skeleton

by verifying the accuracy of its projections to all views and by updating its locations

directly in 3D when needed. Examples of available 2D/3D annotations are shown
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View 1 View 2 View 3

annotation format 3D View

Figure 3.4: Visualization of 2D and 3D ground truth from the MVOR dataset

View 1 View 2 View 3 annotation format

Figure 3.5: Visualization of the ground truth from the extended MVOR+ dataset

in figure 3.4.

• MVOR+: The MVOR dataset does not contain the annotations for all the persons,

and 2D keypoints are only annotated for ten upper body parts. We extend

the dataset with additional annotation to complete the annotations for all the
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Figure 3.6: Visualization of 2D pose variability of upper-body poses from MVOR and full-body
poses from MVOR+ datasets. The 2D pose variability is also compared against the public
Armlet [Gkioxari 2013], MPII [Andriluka 2014], and COCO [Lin 2014] datasets.

Figure 3.7: Statistics for the number of keypoints in the MVOR, MVOR+ and COCO dataset.
Our updated MVOR+ dataset reaches close to the challenging COCO dataset in terms of the
number of keypoints.

persons and use them in the standardized COCO evaluation framework. Before the

extension, MVOR consists of 4699 person bounding boxes, 2926 2D upper body

poses with ten keypoints, and 1061 3D upper body poses. The extended MVOR

dataset, called MVOR+, consists of 5091 person bounding boxes and 5091 body

poses with 17 keypoints in the COCO format; see example annotation in 3.5. We
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use the visipedia tool1 to extend the dataset in the COCO format. The MVOR+

contains the same 3D annotations as MVOR.

Figure 3.6 shows the variability in upper-body and full-body poses from MVOR and

MVOR+, respectively, along with a visual comparison against some of the natural image

datasets. Figure 3.7 shows the statistics for the number of keypoints in the MVOR and

updated MVOR+ dataset and compares against the COCO dataset.

3.3 Comparison of state-of-the-art approaches

In this section, we present the comparison of state-of-the-art approaches for person

detection and human pose estimation.

3.3.1 Compared person detection methods

Person detection can be performed using coarse bounding box detection or fine-grained

instance segmentation. We evaluate several state-of-the-art approaches for person

bounding box detection and person instance segmentation on MVOR and MVOR+

datasets. These methods are trained on the large-scale in the wild COCO dataset for 80

object class categories. We evaluate these methods on the detections corresponding to

only the person category. These approaches can be divided into two categories:

one-stage and two-stage. The one-stage object detectors such as RetinaNet [Lin 2017b]

for bounding box detection, and SoloV2 [Wang 2020c] for instance segmentation treat

object detection as a regression problem on the fixed number of locations on the input

image grid. These approaches take an input image and learn the class probabilities and

bounding box coordinates. Two-stage object detectors such as Faster-RCNN [Ren 2015]

for bounding box detection, and Mask-RCNN [He 2017] for instance segmentation first

uses a Region Proposal Network (RPN) to generate bounding box proposals for the

region of interests and then pass these proposals through separate heads for object

classification and bounding-box regression and mask segmentation in the second stage.

The two-stage detectors reach the highest accuracy rate than the one-stage detectors but

are typically slower.

• RetinaNet [Lin 2017b]: This is a one-stage object detection approach. The authors

hypothesize that the lower accuracy of the typical one-stage object detectors is

primarily due to the extreme foreground-background class imbalance. They improve

the performance of their one-stage object detector by proposing a novel focal loss

that down-weights the loss assigned to well-classified predictions.

• SOLOv2 [Wang 2020c]: This is an improvement over the SOLO (segment objects by

locations) [Wang 2020b]. SOLO is a single-shot approach for instance-segmentation

that distinguishes different object instances based on the object centers and sizes.

SOLOv2 further improves the SOLO by utilizing dynamic convolutions and matrix

non-maximum suppression.

1https://github.com/visipedia/annotation tools
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• Faster-RCNN [Ren 2015]: This is a two-stage approach and the third object detector

of the R-CNN family (R-CNN [Girshick 2014] and Fast-RCNN [Girshick 2015] are

the first two). It enhances the R-CNN framework by making the region proposal

network fully convolutional. Deep features are used instead of the input image

to select the region of interests with a sliding window approach. Then, a second

network classifies and refines the bounding box for each region of interest.

• Mask-RCNN [He 2017]: It extends the Faster-RCNN approach by adding an addi-

tional head for the object instance segmentation. The authors also proposed an

ROI-align layer instead of ROI-pooling to improve the fine-grained pixel segmenta-

tion performance.

• Cascade-RCNN [Cai 2019b]: It improves the Mask-RCNN by proposing a sequence

of multi-stage detectors that are trained with different Intersection over Union

(IoU) thresholds.

The RetinaNet, Faster-RCNN, Mask-RCNN and Cascade-RCNN are evaluated using

detectron2 framework 2 while SOLOv2 is evaluated using their official code 3.

3.3.2 Human pose estimation

We evaluate several approaches for 2D and 3D Human Pose Estimation (HPE) on the

MVOR and MVOR+ datasets. The 2D HPE has been mainly studied either using

bottom-up (keypoint-first) or top-down (person-first) approaches. The bottom-up

approaches first detect all the keypoints for all the persons and then use a group

post-processing method to associate keypoints to person instances. Conversely, the

top-down approaches first obtain the bounding box for each person instance using an

off-the-shelf object detector and then employ a single-person pose estimation method to

get the keypoints. The bottom-up approaches are computationally faster due to their

person-agnostic keypoint localization but yield inferior accuracy compared to the

top-down approaches. The two-stage design in the top-down approaches helps them

achieve significantly better accuracy, but at a more computational cost. We evaluate

RTPose [Cao 2017] as the bottom-up approach and Keypoint-RCNN [He 2017],

Simple-Baseline (Simple-BL) [Xiao 2018], and HRNet [Sun 2019] as the top-down

approaches. For 3D HPE, we assume the availability of 2D poses from 2D HPE methods

and predict the 3D poses by lifting them from the 2D poses.

3.3.2.1 Compared 2D pose estimation methods

Bottom-up approaches

• RTPose [Cao 2017]: This is a bottom-up method, particularly well suited for

real-time detections in RGB images. A deep multi-stage and two-branch CNN

2https://github.com/facebookresearch/detectron2
3https://github.com/aim-uofa/AdelaiDet/
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jointly predicts heatmaps and part affinity fields to capture bodyparts and pairwise

dependencies between body joints. Keypoints are then assembled into skeletons

through a bipartite graph matching algorithm. We use the PyTorch version of

RTPose in our evaluation4.

• OpenPose [Cao 2017]: This is same as the RTPose but uses optimized inference

models for faster inference. We use their official caffe version of OpenPose in our

evaluation5.

Top-down approaches

• Simple-BL [Xiao 2018]: The authors propose a simple single-person pose estimation

model by adding a few deconvolutional layers on top of the ResNet backbone

model. Despite its simplistic design, Simple-BL achieves competitive performance

on the COCO dataset. We use the official PyTorch version of Simple-BL in our

evaluation6.

• HRNet [Sun 2019]: The authors propose a single-person pose estimation model that

maintains the high-resolution feature map throughout the model design, helping it

achieve much better localization accuracy and state-of-the-art performance. We

use the official code of HRNet in our evaluation7

• Keypoint-RCNN [He 2017]: It is also a top-down approach extended from the Faster-

RCNN by adding an additional head for the keypoint localization. However, unlike

Simple-BL and HRNet that use an off-the-shelf object detectors for person bounding

box detection, it uses shared features across the heads, making it computationally

faster. We use the detectron2 API for the evaluation8.

3.3.2.2 3D pose estimation

• 2D to 3D lifting from depth (depth3D): As the MVOR dataset consists of synchro-

nized color and depth images, we lift the 2D poses to 3D from the corresponding

depth image. However, depth images are usually noisy containing black patches on

the image with zero depth value. To minimize the noise from the depth image, we

estimate the depth value by calculating the median depth value inside the 15x15

bounding box around the 2D keypoint.

• 2D to 3D lifting using FCN (2Dto3D) [Martinez 2017]: The authors proposed a

simple fully connected neural network to lift the 2D keypoints to 3D. The authors

learn the mapping from the 2D/3D ground truth obtained from the Human3.6

dataset [Ionescu 2013]. The authors show that given the accurate 2D keypoint

4https://github.com/tensorboy/pytorch Realtime Multi-Person Pose Estimation
5https://github.com/CMU-Perceptual-Computing-Lab/openpose
6https://github.com/microsoft/human-pose-estimation.pytorch
7https://github.com/HRNet/deep-high-resolution-net.pytorch
8https://github.com/facebookresearch/detectron2
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detections, their lifting network could accurately lift them to the 3D keypoints. We

use the PyTorch version of 2Dto3D in our evaluation9.

3.3.3 Evaluation metrics

3.3.3.1 Person detection

We use the Average Precision (AP) AP0.5:0.95 metric from COCO [Lin 2014] for the

evaluation. The bounding box evaluation metric AP bbperson uses IoU over boxes. As the

MVOR and MVOR+ datasets do not have a ground-truth for the person segmentation

masks, we opt for an alternate approach for the instance segmentation evaluation. We

evaluate the instance segmentation by computing a tight bounding box on the prediction

masks and comparing them with ground-truth bounding boxes called AP
bb(from mask)
person .

3.3.3.2 2D human pose estimation

We use the AP AP0.5:0.95 metric from COCO [Lin 2014] for the evaluation on the

MVOR+ dataset. The pose estimation evaluation metric AP kpperson uses the Object

Keypoint Similarity (OKS) over person keypoints to compare the ground and the

predictions. As the MVOR dataset contains 10 keypoints in non COCO format, we use

the mean percentage of correct keypoints (meanPCK ) [Yang 2012] to compare the

baseline pose estimation methods. This metric measures the localization accuracy of the

body joints, based on the scale of the person. To match detected and ground-truth

skeletons, a tight bounding box is computed for each ground-truth skeleton from its

keypoints. Then, for each ground-truth skeleton, we select the detection with the highest

confidence score among the detections which have more than 30% of their keypoints in

the ground-truth bounding-box.

3.3.3.3 3D human pose estimation

We use the 3D Mean Per Joint Position Error (MPJPE) in millimeters (mm) to evaluate

the 3D keypoints. The MPJPE metric is computed using the eight keypoints from the

upper-body pose (shoulder, elbow, hand, hip), as both MVOR and MVOR+ contain the

same number of 3D poses with eight common 3D keypoints. The 3D ground-truth

keypoints are expressed in the camera-coordinate frame, and each joint in the 3D pose is

subtracted from the pelvis root-joint (taken as the mean of left and right hips) to obtain

the root-relative pose. The root-relative pose is computed before calculating the MPJPE

error.

High values are desired for the bounding box detection metric (AP bbperson), person

instance segmentation metric (AP
bb(from mask)
person ), and 2D HPE metrics (meanPCK and

AP kpperson), while a low value is desired for the 3D HPE metric (MPJPE).

9https://github.com/weigq/3d pose baseline pytorch
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Table 3.1: Person bounding box detection and instance segmentation results from the state-of-
the-art methods on MVOR, MVOR+. All these methods are trained on the large-scale annotated
COCO dataset and evaluated on the MVOR and MVOR+ datasets without any OR training. We
also show the results on the COCO dataset for comparative analysis. The two-stage detectors
perform better than the one-stage detectors. Increasing the model complexity also contribute to
the increase in the accuracy. R50-FPN and R101-FPN correspond to the ResNet backbone with
50 and 101 layers, respectively, along with the Feature Pyramid Network (FPN). X101, X152
correspond to the ResNext backbone with 101 and 152 layers, respectively. X152-FPN-DConv is
a very deep network that uses Deformable Convolution (DConv), particularly suited for object
detection networks. It is trained for a much longer duration, helping it achieve better results. The
significantly poor results on the depth (D) images and very low-resolution images (downsampled
with 12x scale) are understandable as these images are not represented in the training dataset.
The APmask

person results show the instance segmentation results on the COCO dataset by using
ground truth person masks.

MVOR MVOR+ COCO

Models APbb
person

RGB D RGB D RGB

1x 12x 1x 12x 1x 12x 1x 12x

one-stage

RetinaNet(R50-FPN) 47.10 23.37 12.40 03.25 46.30 22.61 11.81 03.12 52.52

RetinaNet(R101-FPN) 48.60 23.17 13.70 04.70 47.79 22.46 13.08 04.59 53.43

two-stage

Faster-RCNN(R50-FPN) 48.10 24.69 15.30 07.65 47.31 23.88 14.58 07.25 54.47

Faster-RCNN(R101-FPN) 49.70 22.88 17.60 05.90 48.85 22.04 16.85 05.62 55.67

Faster-RCNN(X101-FPN) 50.30 20.63 14.80 06.40 49.38 19.88 14.24 06.10 56.58

Mask-RCNN(R50-FPN) 49.10 25.77 13.70 05.63 48.50 24.90 13.15 05.35 55.30

Mask-RCNN(R101-FPN) 50.20 25.19 16.00 05.98 49.31 24.27 15.29 05.73 56.56

Mask-RCNN(X101-FPN) 50.80 19.81 13.90 04.61 49.91 19.22 13.45 04.33 57.65

Cascade-Mask-RCNN(R50-FPN) 51.40 27.16 14.10 08.38 50.49 26.31 13.43 07.95 58.83

Cascade-Mask-RCNN(X152-FPN-DConv) 54.50 25.20 11.50 03.53 53.88 24.38 10.88 03.39 62.21

AP
bb(from mask)
person APmask

person

one-stage

SOLOv2(R50-FPN) 47.40 23.93 11.90 07.75 45.86 23.00 11.19 07.34 50.94 45.87

SOLOv2(R101-FPN) 49.39 21.12 16.43 01.95 47.87 20.39 15.67 01.87 52.36 47.12

two-stage

Mask-RCNN(R50-FPN) 48.34 25.11 13.57 05.92 46.88 24.03 12.98 05.59 53.42 47.66

Mask-RCNN(R101-FPN) 48.74 24.49 15.90 06.05 47.20 23.31 15.05 05.71 54.25 48.66

Mask-RCNN(X101-FPN) 50.08 19.24 13.73 04.53 48.36 18.48 13.19 04.28 55.53 49.69

Cascade-RCNN(R50-FPN) 49.71 26.04 13.56 07.96 48.19 24.98 12.89 07.46 55.69 48.58

Cascade-RCNN(X152-FPN-DConv) 53.71 23.90 11.62 03.57 52.37 22.80 10.93 03.39 60.28 52.41
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3.3.4 Results

3.3.4.1 Person detection

Table 3.1 shows the results for person bounding box detection and instance

segmentation results on MVOR, MVOR+ at original (1x: 640x480) and downsampled

(12x: 53x40) images. The evaluated methods are trained on the large-scale annotated

COCO dataset without any training on the OR images. We observe a similar trend from

to natural images where the two-stage detectors perform better than the one-stage

detectors. Increasing the model complexity also contributes to the increase in the

accuracy. We observe a significant drop in the performance on the original resolution

and much poorer results on the depth (D) images and very low-resolution images. The

significantly poor results on the depth and the low-resolution images are understandable

as these images are not represented in the training dataset. Figure 3.8 shows the

qualitative results for person bounding box detection and instance segmentation from

the state-of-the-art approaches.

3.3.4.2 Human pose estimation

Table 3.2 and 3.3 show the results for 2D HPE and 3D HPE on the MVOR, MVOR+

and COCO datasets and 3D HPE on the MVOR+ dataset at original (1x: 640x480) and

downsampled (12x: 53x40) images. We evaluate these methods for different backbones

and different input resolutions. The top-down approaches perform better than the

bottom-up approaches. 3D HPE using the 2Dto3D lifting network [Martinez 2017]

performs better than lifting the poses from the corresponding depth images.

3.4 Conclusion

In this chapter, we present a new multi-view dataset for multi-person detection and

2D/3D human pose estimation in a challenging environment, namely a modern

operating room, which contains inherent visual challenges such as multiple occlusions.

We also present the results of several recent baseline methods. This dataset can thus be

helpful to evaluate a detector’s ability to generalize to unseen configurations and color

distribution and assess the performance of 3D multi-person pose estimation methods on

real-world data. We observe a decrease in the accuracy on the original scale (1x) and

significantly poorer accuracy on the downsampled images (12x) and depth images. As

discussed in chapter 1, the low-resolution images could effectively tackle the OR privacy;

the following chapter therefore designs unsupervised domain adaptation approaches that

work particularly well on the depth and low-resolution images.
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Figure 3.8: Qualitative results for person detection from the state-of-the-art approaches on a
sample color and depth image from the MVOR dataset with downsampling factor 1x and 12x.
M-RCNN-R-50, M-RCNN-R-101, M-RCNN-X-101, C-RCNN-R-50, and C-RCNN-X-152 corre-
spond to Mask-RCNN(R50-FPN), Mask-RCNN(R101-FPN), Mask-RCNN(X101-FPN), Cascade-
RCNN(R50-FPN), and Cascade-RCNN(X152-FPN-DConv), respectively.
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Table 3.2: Results for 2D HPE on MVOR, MVOR+ and COCO datasets and 3D HPE on
MVOR+ dataset at original resolution (1x: 640x480) for bottom-up and top-down approaches.
Keypoint-RCNN is evaluated with three backbone networks ResNet with 50 and 101 layers and
ResNext with 101 layers. The Simple-BL method is also evaluated with a ResNet backbone
consisting of 50, 101, and 152 layers. The HRNet model is evaluated with W32 and a more
deeper W48 network. Both Simple-BL and HRNet models are evaluated at the input resolution
of 256x192 and 384x288 pixels. We use Mean Percentage of Correct Keypoints (meanPCK) on
the MVOR dataset and AP kp

person on the MVOR+ dataset for 2D HPE. 3D HPE is evaluated by
lifting the 2D coordinates to 3D from the corresponding depth images and by using a 2Dto3D
lifting network [Martinez 2017].

2D Pose Estimation 3D Pose Estimation

MVOR MVOR+ COCO MVOR+

meanPCK APkp
person MPJPE (in mm)

3D lifter → 2Dto3D depth3D

2D pose models ↓ RGB D RGB D RGB RGB D RGB D

bottom-up

OpenPose 56.60 07.37 43.38 02.80 52.33 432.37 628.70 358.04 434.26

RTPose 70.28 10.55 33.38 01.25 46.21 522.75 775.85 413.12 694.23

top-down

Keypoint-RCNN(R50-FPN) 74.70 17.55 45.67 04.84 65.50 144.15 319.45 264.61 443.28

Keypoint-RCNN(R101-FPN) 75.40 20.07 46.24 06.90 66.10 143.44 320.34 264.83 377.80

Keypoint-RCNN(X101-FPN) 74.30 20.43 46.17 06.12 66.00 145.18 340.47 266.16 389.10

Simple-BL(R50 256x192) 75.20 22.90 51.91 11.11 70.40 136.64 222.92 262.39 267.93

Simple-BL(R50 384x288) 74.90 22.30 52.46 08.83 72.20 139.62 232.30 264.74 268.05

Simple-BL(R101 256x192) 75.20 22.70 53.30 10.72 71.40 137.18 223.54 265.28 271.95

Simple-BL(R101 384x288) 75.30 23.10 54.12 10.76 73.60 137.37 221.39 265.80 265.31

Simple-BL(R152 256x192) 75.70 22.30 53.95 09.82 72.00 134.68 230.25 262.87 271.87

Simple-BL(R152 384x288) 75.50 23.80 54.59 12.01 74.30 135.81 218.23 261.67 262.44

HRNet(W32 256x192) 75.80 22.70 55.73 10.56 74.40 135.41 223.95 262.05 274.85

HRNet(W32 384x288) 76.40 22.00 56.39 08.98 75.80 133.84 230.49 260.94 268.66

HRNet(W48 256x192) 75.80 22.30 56.39 10.24 75.10 134.55 225.33 262.04 270.08

HRNet(W48 384x288) 76.00 20.40 57.10 07.30 76.30 134.54 234.94 260.82 276.44
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Table 3.3: Results for 2D HPE on MVOR, MVOR+ and COCO datasets and 3D HPE on
MVOR+ dataset at downsampled resolution (12x: 53x40). Images are upsampled to the original
size after the downsampling before being fed to the models. We see significantly poor results
especially on the AP metric from all the approaches on these heavily downsampled images.

2D Pose Estimation 3D Pose Estimation

MVOR MVOR+ MVOR+

meanPCK APkp
person MPJPE in mm

3D lifter → 2Dto3D depth3D

2D pose models ↓ RGB D RGB D RGB D RGB D

bottom-up

OpenPose 36.55 08.10 12.43 00.64 567.04 714.97 450.12 559.74

RTPose 39.97 08.91 05.20 00.35 830.65 807.36 596.00 653.64

top-down

Keypoint-RCNN(R50-FPN) 49.90 18.66 14.42 02.35 194.35 350.95 293.62 424.13

Keypoint-RCNN(R101-FPN) 51.90 16.37 15.53 03.55 192.39 325.75 295.86 379.71

Keypoint-RCNN(X101-FPN) 49.79 06.99 13.75 00.42 202.96 500.48 293.64 495.58

Simple-BL(R50 256x192) 62.86 18.48 25.53 07.35 166.67 238.92 265.95 293.65

Simple-BL(R50 384x288) 61.24 17.99 23.77 05.75 172.96 250.69 270.83 299.66

Simple-BL(R101 256x192) 63.19 16.80 26.84 06.19 163.12 250.66 264.48 309.81

Simple-BL(R101 384x288) 61.28 15.95 23.84 04.73 169.65 259.01 274.89 321.50

Simple-BL(R152 256x192) 63.88 18.15 26.35 06.21 162.37 245.55 267.83 302.68

Simple-BL(R152 384x288) 61.11 18.45 23.89 07.13 169.72 244.16 266.15 294.95

HRNet(W32 256x192) 53.59 15.99 19.94 05.73 193.60 280.91 310.96 352.02

HRNet(W32 384x288) 50.87 15.14 17.93 05.28 195.86 297.16 320.80 372.25

HRNet(W48 256x192) 54.57 15.87 21.32 06.02 186.68 286.57 312.26 352.35

HRNet(W48 384x288) 47.58 15.87 16.42 05.45 211.60 276.06 356.02 353.84
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mation on low-resolution depth

images

Supervision is the opium of the AI researcher.

– Jitendra Malik

1x 8x 10x

A sample qualitative result from our unsupervised domain adaptation approach on different
low-resolution depth images for 2D/3D human pose estimation. Demo video is available here:
https://cutt.ly/depthpose. Project page: https://github.com/CAMMA-public/ORPose-depth
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4.1 Introduction

Color (RGB) and depth (D) images are different but offer complementary information.

The RGB images contain rich texture details and are pervasive due to cheap visual

sensors. Conversely, depth images are texture-less and encode the object’s distance from

the camera center. The current progress in the RGB-D visual sensors capturing

synchronized color and depth images can open up the novel ways to develop automated

assistance applications for the Operating Room (OR). Deploying these applications

inside the OR environment is, however, challenging due to the use of these

privacy-intrusive visual sensors. Direct processing of OR images at high-resolution can

intrude the privacy, significantly in the RGB images, but also in texture-less depth

images [Cheng 2017,Chou 2018]. This is particularly relevant in environments where the

number of persons is limited and where the persons could potentially be more easily

identified. As outlined in section 1.2.1 and illustrated in figure 4.1, the low-resolution

images significantly degrade the spatial details. Therefore, these could provide a viable

means to tackle OR privacy and to develop more privacy-compliant computer-vision

applications inside the clinical institutions. In [Chou 2018], it has been shown that

activity recognition can be performed on low-resolution depth images captured for the

tasks of hand-hygiene classification and Intensive Care Unit (ICU) activity logging.

In this chapter, as our first contribution, we first investigate whether low-resolution

depth images contain sufficient information for accurate 2D/3D Human Pose

Estimation (HPE). The large-scale RGB datasets for HPE such as COCO [Lin 2014] and

MPII [Andriluka 2014] have recently shown remarkable progress on in the wild natural
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images. The availability of annotated depth data is however limited to either synthetic

annotations [Shotton 2013] or real datasets [Haque 2016] recorded by the actors

performing simulated actions. These annotations may not capture the intricacies of the

challenging real-world environment such as OR.

Given the well performing 2D HPE models on the RGB images, as our second

contribution, we proposed an Unsupervised Domain Adaptation (UDA) approach for

2D/3D HPE across visual modalities i.e from RGB to depth images. Our approach does

not require any manual labels and only needs synchronized color and depth images

during the training. We use MVOR-unlabeled as described in section 3.2.1 for training

and propose to use the detections from a state-of-the-art method applied to the color

images as pseudo labels for the corresponding depth images. This simple idea turns out

to be very effective. Indeed, as our approach only requires a set of RGB-D images at

train time, it can be easily retrained in any facility since no annotation process is needed.

Then, it can run round the clock on low-resolution depth images from the same facility.

We propose two strategies for effective low-resolution feature learning to tackle the loss

of spatial details in low-resolution images. As our first strategy, we propose to integrate

super-resolution feature maps in the bottom-up RTPose [Cao 2017] method that utilizes

intermediate super-resolution feature maps to learn the high-frequency features better.

As our second strategy, we exploit advanced data-augmentations such as low-resolution

down- and up-sampling, rand-augment [Cubuk 2020] and random cut-out [DeVries 2017].

We use top-down Keypoint-RCNN [He 2017] model to train on these heavily augmented

images along with the pseudo labels. We show significantly better results specifically on

the low-resolution depth images for both of our strategies. The top-down

Keypoint-RCNN model utilizing state-of-the-art data augmentations performs

significantly better than the bottom-up approach. For 3D HPE, we investigate the

lifting of 2D keypoints to 3D from the depth value and the use of a 2Dto3D lifting

network as explained in section 3.3.2.2. We observe better results from the 2Dto3D

network compared to naively getting the 3D depth value from the depth image.

4.2 Methodology

4.2.1 Pseudo label generation

In the literature, authors have either used manually annotated or synthetically

generated datasets to train for HPE on depth images. Manual annotations can be

expensive and time-consuming, and synthetic annotations are difficult to generate due to

the constraint of realistic rendering and do not always generalize well to real scenarios.

Therefore, we use an alternate approach to generate annotations. This approach is based

on the observation that the RGB-D cameras capture synchronized color and depth

streams, and recent HPE methods trained on the COCO dataset [Lin 2014] work

remarkably well on the color images. Therefore, we use detections from the color images

to train the model for the depth images. To facilitate this approach, we use

MVOR-unlabeled dataset containing 80k synchronized color and depth images captured
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1x(640x480) 8x(80x60) 12x(64x48)

Figure 4.1: Depth and color images from MVOR down-sampled at different resolutions using
bicubic interpolation (resized for better visualization). Low-resolution depth images contain little
information for the identification of patient and health professionals. Corresponding color images
in the second row are shown for better appreciation of the downsampling process.

in the OR during real surgical procedures. Then, we use the state-of-art person detector

Mask-RCNN [He 2017] and a single person pose estimator Simple-BL [Xiao 2018] on

color images to generate detections. We filter out the false positives and retain

high-quality detections in both the stages using thresholds selected from the qualitative

results on a small set of images. The pseudo labeling process is shown in figure 4.2 (a).

This approach generates pseudo labels truth automatically without using any human

annotation efforts. It is therefore scalable and can be deployed to any facility. For

human pose estimation, we choose here a two steps method based on Mask-RCNN and

Simple-BL for their state-of-the-art performance on the public COCO dataset as shown

in table 3.2.

4.2.2 Proposed architectures

We propose two strategies to learn better features for the low-resolution images and

effectively exploit the pseudo labels in training the model. As our first strategy, we use

the bottom-up RTPose [Cao 2017] model and extend it with super-resolution feature

maps to better learn the high-frequency features. As our second strategy, we use

top-down Keypoint-RCNN [He 2017] model and propose to exploit advanced

data-augmentations to adapt the model to low-resolution images.

4.2.2.1 Bottom-up: ORPose-Depth(RT)

Our proposed model is inspired by the recent developments in the area of

super-resolution and multi-person human pose estimation. We propose to integrate a

super-resolution image estimator and a 2D multi-person pose estimator in a joint
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MVOR-Unlabeled
(synchronized color and depth frames)

Pose Estimation
(Simple-BL-152)
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ORPose-Depth(RT) ORPose-Depth(krcnn)

Pseudo-labels

Figure 4.2: Proposed approach. (a) Pseudo-label generation: we use a person-bounding box
detector (Mask-RCNN with ResNet-152) followed by a single person pose estimator (Simple-
BL with ResNet-152) to generate the pseudo labels on the color images of MVOR-unlabeled.
These labels are then transferred to the corresponding depth images. (b) ORPose-Depth(RT):
we propose modifying bottom-up RTPose architecture to train the model on low-resolution
depth images. The super-resolution block increases the spatial resolution by a factor of 8x and
generates intermediate SR feature maps (S1, S2) used by the pose estimation block to learning
high-frequency features. All losses are mean square error losses. C1 to C16 are convolution
layers grouped together for better visualization and described below the figure, where c1(n1,n2),
c3(n1,n2), c7(n1,n2) each represent a convolution layer with kernel size 1x1, 3x3, 7x7 and padding
0, 1, 3, respectively. Parameters n1 and n2 are the numbers of input and output channels, and all
convolution layers are followed by RELU non-linearity. (c) ORPose-Depth(krcnn): we propose to
utilize advanced data augmentations to better learn the low-resolution features in the top-down
Keypoint-RCNN model

architecture, illustrated in figure 4.2 (b). This architecture is based on modification from

the RTPose network [Cao 2017]. Besides yielding competitive results on COCO and
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MVOR, RTPose has the advantage to perform multi-person pose estimation in a single

step, thereby simplifying the integration and training of the super-resolution modules. It

is composed of a feature extraction block and a pose estimation block shown in figure 4.2

(b).

We introduce a super-resolution block, which does not only increase the spatial resolution

but also generates super-resolution (SR) feature maps (S1, S2). These intermediate

feature-maps contain high-frequency details, which are lost during the low-resolution

(LR) image generation process and used in the pose estimation block for better

localization. The super-resolution block uses a multi-stage design, where each stage

increases the spatial resolution of the features maps by a factor of two using the

pixel-shuffle algorithm [Shi 2016] (while reducing the number of channels by four).

During training, a complete SR image is generated to compute the auxiliary loss L HR,

which compares the SR image to the ground truth high-resolution (HR) depth image

using the L2 norm. This helps to train the super-resolution block and refines the input

to the SR features block. Note that during training, errors from the pose estimation are

also back-propagated to these blocks. Furthermore, at test time only LR images are

used and no SR images need to be generated by the network since only the SR feature

maps are used.

RTPose was originally developed for color images. Since depth images contain fewer

texture details, we have made the architecture more computationally efficient by

reducing the number of iterative refinement stages from five to three. The network uses

two separate branches, one for keypoint localization and another to compute part

affinity maps [Cao 2017]. In our architecture, these two branches consume the 3 types of

features (F, S1, S2), where F are the features extracted from the high-resolution feature

maps provided by the super-resolution block. The final skeleton is generated from the

part affinity and keypoint localization heatmaps using the bipartite graph matching

algorithm presented in [Cao 2017]. Losses in the pose estimation network are used as

in [Cao 2017], but now take the input from the SR feature maps (S1, S2). At each stage

t, two L2 losses L Bt and L Ct are computed from the predicted part affinity/keypoint

localization heatmaps (Bt/Ct) and the ground truth heatmaps (B∗/C∗) derived from

pseudo labels. All the L Bt and L Ct losses are summed together to form the pose

estimation loss L P. Finally, the total loss is the sum of L HR and L P. We have

chosen to weigh both terms equally as we observe that their magnitudes are similar. The

complete network is trained end-to-end jointly for both super-resolution and pose

estimation.

4.2.2.2 Top-down: ORPose-Depth(krcnn)

We choose the Keypoint R-CNN [He 2017] model as a top-down model illustrated in

figure 4.2 (c). We refer to this model as ORPose-Depth(krcnn) tailored to joint person

detection and pose estimation. It works as follows: it first extracts the image features

using a feature pyramid network (FPN) [Lin 2017a] with a Resnet-50 backbone [He 2016].

The extracted features pass through a region proposal network (RPN) to generate the
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bounding-box proposals. The RoiAlign layer [He 2017] uses these proposals to extract

the fixed-size feature maps. The fixed size feature maps pass through three heads:

bounding box head and keypoint head. The bounding box head classifies and regresses

for the person bounding box, and the keypoint head generates the spatial heat-maps

corresponding to each body keypoint. We use the same multi-task losses as described

in [He 2017]. Overall, the loss term L consists of five losses: binary cross-entropy loss for

RPN proposal classification Lrpncls , L1 loss for RPN proposal regression Lrpnreg ,

cross-entropy loss [Ross 2017] for bounding box classification Lbboxcls , smooth L1 loss for

bounding box regression Lbboxreg , and cross-entropy loss for the keypoint head Lkpsce .

(4.1)L =
∑
i

Lrpncls (xli, y
l
i) + Lrpnreg (xli, y

l
i) + Lbboxcls (xli, y

l
i) + Lbboxreg (xli, y

l
i) + Lkpce (xli, y

l
i)

To train the ORPose-Depth(krcnn), we first convert the single-channel depth image to

the three channels RGB image by applying the OCEAN colormap from OpenCV

library1. We then propose to exploit advanced data augmentations to adpat the model

to the low-resolution depth images. Specifically, we choose a random downscaling factor

between 1x to 12x. Then we apply down-sampling and up-sampling operation on the

input depth image. The down-sampling operation generates the privacy-preserving

low-resolution image, and the up-sampling operation gives the appropriate input

resolution needed to train the model. We also use rand-augment [Cubuk 2020], random

cut-out [DeVries 2017], and random-flip for the effective regularization.

4.3 Experiments and Results

4.3.1 Training setup

We use the MVOR-unlabeled dataset of 80k images and the pseudo labels truth

described in Section 4.2.1 for training. When downsampling the images to sizes 80x60

(8x) and 64x48 (10x), we use bicubic interpolation. To generate pseudo labels truth, we

use a threshold of 0.7 in the person-detector stage and then select the skeleton if at least

4 keypoints are detected with a score greater than 0.35. We use PyTorch deep learning

framework in our experiments. The depth images are normalized in the range [0, 255].

We train the bottom-up models using the stochastic gradient descent optimizer with a

momentum of 0.9. The initial learning rate is set to 0.001 with a step decay of 0.1 after

12k iterations and each model is trained for 32k iterations with a batch size of 12. We

use the pre-trained weights from the authors of RTPose to initialize the pose-estimator

networks. Note that these weights were originally obtained using the color images from

the COCO dataset. For the layers that have been modified in the pose-estimation

network and contain a larger number of channels (e.g. to accommodate S1 and S2), we

repeated the same weights and perturbed them by a small random number. The weights

of the super-resolution network are initialized using orthogonal initialization [Saxe 2013].

The top-dwon model, ORPose-Depth(krcnn), is trained on four V100 GPUs with batch

1https://docs.opencv.org/4.5.0/d3/d50/group imgproc colormap.html
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size of 16 (4 images/GPU) and learning rate of 0.001 for 65k iterations using detectron2

framework2.

Table 4.1: Results of our proposed method (ORPose-Depth(RT) and ORPose-Depth(krcnn))
compared to the baselines(RTPose and source-only) for different image resolutions on the MVOR+
dataset. The source-only results correspond to the model evaluated on the color images of the
MVOR+.

2D Pose Estimation 3D Pose Estimation

APbb
person APkp

person MPJPE

3D lifter → depth 2Dto3D

Models ↓
source-only

RTPose - 33.38 410.00 519.02

Keypoint-RCNN 52.02 45.67 264.61 144.15

Mask-RCNN+Simple-BL 48.74 54.59 261.67 135.81

RTPose 1x 18.02 30.19 392.24 411.76

RTPose 8x 16.79 26.49 405.90 431.29

RTPose 10x 14.48 21.56 416.43 444.56

ORPose-Depth(RT) 8x 18.71 31.68 395.48 414.50

ORPose-Depth(RT) 10x 19.51 30.78 394.40 401.91

ORPose-Depth(krcnn)

1x 48.94 50.98 256.04 139.68

8x 47.64 47.21 254.87 140.77

10x 46.88 45.84 255.40 141.90

12x 45.82 43.63 258.10 142.88

4.3.2 Testing setup

We evaluate our method on the MVOR+ dataset. During testing of bottom-up models,

we use the flip-test, namely average the original heatmaps with the heatmaps obtained

after flipping the images horizontally to refine the predictions. We use the AP kpperson for

the evaluation of 2D HPE and MPJPE error for the evaluation of 3D HPE as explained

in 3.3.3.

4.3.3 Results

We show our results in Table 4.1. The source-only results correspond to the evaluation

of the default models on the color images of MVOR+. As these methods are originally

designed for the color images, the aim is to observe how better these models adapt to

2https://github.com/facebookresearch/detectron2
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the depth images than the counter-part color images. The RTPose and Keypoint-RCNN

are the models we use in our training, and Mask-RCNN+Simple-BL is the two-stage

model we use to obtain the pseudo labels.

RTPose 1x, RTPose 8x, and RTPose 10x are baseline RTPose models that do not use

any super-resolution and are trained on 1x (full-size), 80x60, and 64x48 size depth

images, respectively. These RTPose variants are the original models modified to take a

1-channel input. The low-resolution 80x60 and 64x48 images are resampled to the

original size using bicubic interpolation to match the input size of the network. The

ORPose-Depth(RT) 8x and ORPose-Depth(RT)˙10x are our proposed bottom-up

approaches directly trained on 80x60 and 64x48 low-resolution images.

The ORPose-Depth(krcnn) is our proposed top-down approach trained on low-resolution

images with a downsampling factor from 1x to 12x. We evaluate the

ORPose-Depth(krcnn) on 1x, 8x, 10x, 12x downsampled images. Images are upsampled

to the original size before feeding to the ORPose-Depth(krcnn) model.

4.3.3.1 Person bounding box detection

As the top-down approaches, RTPose and ORPose-Depth(RT), do not directly regress

for the person bounding box, we evaluate these approaches by fitting a tight bounding

box around the keypoints. The top-down approaches regress for the person bounding

boxes by design, and as shown in the table 4.1 the top-down approaches perform

significantly better than the bottom-up approaches.

Results show that the ORPose-Depth(RT) 8x and ORPose-Depth(RT) 10x models

improve by over 1.9% and 5% compared to the baseline RTPose 8x, RTPose 10x models,

respectively. We observe a decrease of 3.0% when evaluated at 12x resolution compared

to 1x resolution. Compared to source-only evaluation, we observe a similar performance

for ORPose-Depth(krcnn) at 1x and a decrease in accuracy of around 3% at 12x

compared to the pseudo label generator model (Mask-RCNN+Simple-BL). We however

observe a decrease of around 3.0% at 1x and 6.0% at 12x for ORPose-Depth(krcnn)

compared to Keypoint-RCNN source-only baseline. This is likely due to the better

bounding box results of Keypoint-RCNN compared to Mask-RCNN as Keypoint-RCNN

is trained specifically for a single person class, and Mask-RCNN is trained for 80 COCO

classes.

4.3.3.2 2D human pose estimation

Results show that the ORPose-Depth(RT) 8x and ORPose-Depth(RT) 10x models

improve by over 5% and 9% compared to the baseline RTPose 8x, RTPose 10x models,

respectively. More interestingly, Both ORPose-Depth(RT) 8x, ORPose-Depth(RT) 10x

perform better than RTPose 1x model. We attribute these improvements to our

proposed design improvements in the architecture compared to the full-size RTPose 1x

model. The ORPose-Depth(krcnn) model performs significantly better than the

ORPose-Depth(RT) models on all resolutions and improves the source-only
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Keypoint-RCNN model over 5% at 1x, 1.5% at 8x, and 0.1% at 10x. The AP result for

the pseudo label generator model (Mask-RCNN+Simple-BL) on the color images is

54.59, showing that there still exists a gap of around 4% at 1x and around 11% at 12x to

be filled between the depth and color images.

4.3.3.3 3D human pose estimation

As shown in 4.1, lifting the 2D keypoints to 3D using an off-the-shelf 2Dto3D lifting

network gives better results compared to lifting them from the depth images. The

bottom-up approaches perform much more poorly compared to top-down approaches,

likely due to poor keypoint localization, which is used in the MPJPE calculation to

match the ground truth person with the detected person using glsoks metric.

Figure 4.3 shows qualitative results comparing our proposed approach with the baselines.

Additional qualitative results are available in the illustrative video3

4.4 Conclusion

In this chapter, we present an approach for high-resolution multi-person 2D pose

estimation from low-resolution depth images. Our evaluation on the MVOR+ dataset

shows that even with a 12x subsampling of the depth images, our method achieves

results equivalent to a pose estimator trained and tested on the original-size images.

These results suggest the high potential of low-resolution images for scaling up and

deploying privacy-preserving AI assistance in hospital environments. Furthermore, we

show that by exploiting high-quality pose detections on the color images of a

non-annotated RGB-D dataset, we can generate pseudo labels for the depth images and

train a decent OR pose estimator. We further show that using improved underlying

HPE architecture and strong data augmentations significantly boosts the performance

and effectively learns the features for low-resolution images. These experimental

observations lay the foundations for designing the unsupervised domain adaption

approach on the color images for our next chapter.

3https://cutt.ly/depthpose
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Figure 4.3: ORPose-Depth(RT) 8x and ORPose-Depth(RT) 10x, w.r.t the baseline models
RTPose 1x, RTPose 8x, and RTPose 10x. We also show the labels truth (GT) on color images
for better appreciation of the qualitative results. These results show that ORPose-Depth(RT) 8x
and ORPose-Depth(RT) 10x perform better for removing false positives and spurious detections
and improve the part localization (see red and green arrows in the figures)
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5 Self-supervision on unlabelled

OR color images for joint 2D/3D

human pose estimation

Self-supervised learning is the cake, supervised learning is the icing on the cake,

reinforcement learning is the cherry on the cake.

– Yann LeCun

1x 8x 10x

A sample qualitative result from our unsupervised domain adaptation approach on different
low-resolution color images for multi-person 2D/3D human pose estimation. Demo video is
available here: https://cutt.ly/orpose3d. Project page: https://github.com/CAMMA-public/
ORPose-Color
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5.1 Introduction

Following the motivation from the last chapter that devises an unsupervised domain

adaptation approach for adapting a model trained on the color images to the depth

images, in this chapter, we propose an unsupervised domain adaptation approach on

Operating Room (OR) color images for real-time 2D/3D Human Pose Estimation

(HPE). As outlined in the section 3.3, the current deep learning approaches for HPE

employ multi-stage deep neural networks to achieve state-of-the-art performance. For

example, top approaches for the task of 2D pose estimation on the COCO dataset use a

two-stage approach, in which the first stage determines the person’s bounding boxes and

the second stage estimates the keypoints for each bounding box. This multi-stage design

using high-capacity deep neural networks in both stages helps to achieve better accuracy.

The run-time performance of such a design is however considerably low. More practical

solutions such as Mask-RCNN [He 2017] or RTPose [Cao 2017] use low-capacity and

single-stage networks for the same task to achieve better run-time performance, but the

accuracy of these system is low compared to the multi-stage systems. Therefore, one key

challenge for the deployment of HPE network inside the OR is not only to give accurate

predictions, but also to be fast using a light-weight and single-stage end-to-end design,

as needed for real-time applications.

In this chapter, we work at the intersection of knowledge

distillation [Hinton 2015,Zhang 2019a] and data distillation [Radosavovic 2018] and

exploits these techniques to solve the task of multi-person 2D/3D HPE without using

any manual annotations. We use knowledge distillation to transfer knowledge from an

accurate, larger, and multi-stage teacher network to a practical, smaller, and single-stage

student network. The idea of knowledge distillation has been adapted to different

problems. In [Hinton 2015], authors use the probability output vector of a teacher
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network as soft-labels to train a student network for multi-class classification. The

student network learns jointly from the soft-labels generated by the teacher output and

from the hard-labels given by the ground truth. Similarly, in [Zhang 2019a], authors use

this approach for single-person 2D HPE by jointly training the student network from the

soft output heatmaps of a teacher network and the hard ground truth heatmaps. Both

the student and the teacher network work on the fully supervised dataset, and the soft

output of the teacher network serves as additional useful labels along with the hard

labels obtained from the supervised ground truth.

We aim at applying knowledge distillation when only non-annotated data is available in

the target domain. Instead of using supervised annotations, we propose to use data

distillation to generate labels automatically from the non-annotated dataset. We run a

complex teacher network which ensembles output predictions on geometrically

transformed input images. Unlike the standard use of data

distillation [Radosavovic 2018], which only exploits hard predictions obtained by

removing the low confidence keypoints, we also use the soft predictions from the

confidence value for each keypoint.

As student network, we use a low capacity single stage network based on

Keypoint-RCNN. The architecture of the student network is inspired from [Dabral 2019]

and further extended to effectively use the hard-set and soft-set for joint 2D/3D

multi-person HPE in the OR. By utilizing our approach, the student network reaches an

accuracy on par with the teacher network.

As discussed in section 1.2.1, another specific issue in the OR is to preserve the privacy

of patients and clinicians while performing computer vision tasks. Human pose

estimation on low-resolution images has been suggested to improve the privacy as

discussed in the previous chapter. We therefore also extend our approach to deliver

accurate poses on low-resolution images with downsampling factor as low as 12x.

5.2 Methodology

5.2.1 Problem overview

Given a monocular RGB input image I of size W ×H, our task is to detect the 2D and

3D body keypoints for multiple persons using a single efficient end-to-end network. The

2D keypoints P2D ∈ Rm×n×2 are in image coordinates, and the 3D keypoints

P3D ∈ Rm×n×3 are in the root-relative coordinates (where the root-joint is set to be the

origin and all other joints are measured w.r.t root-joint). Here, m is the number of

persons, and n = 17 is the number of joints for each pose. We also consider

low-resolution images for the same task, which have very small input sizes. To tackle the

problem, we utilize a teacher/student approach to train the end-to-end student network

by distilling the knowledge in a teacher network on large-scale unlabelled data. We

follow a two-step approach: in the first step, a multi-stage high-capacity neural network

(a teacher network) is used to generate pseudo labels; in the second step, these pseudo

labels are used to train an end-to-end low-capacity network (a student network).
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Figure 5.1: Proposed self-supervised methodology for joint 2D/3D keypoint estimation using
the teacher/student paradigm. The teacher network is a three-stage network which uses the
unlabelled dataset to extract person bounding boxes, estimate 2D keypoints, and regress 2D
keypoints to 3D. It generates soft and hard pseudo labels to be used by the student network. The
student network is a single-stage network and effectively utilizes the soft and hard pseudo labels
to jointly estimate the 2D and 3D keypoints.

5.2.2 Knowledge generation using the teacher network

The teacher network, shown in figure 5.1, is a three-stage network: The first stage uses

the cascade-mask-rcnn [Cai 2019b] with the resnext-152 [Xie 2017] backbone to generate

person bounding boxes, the second stage estimates the 2D keypoints for each bounding

box using the HRNet architecture [Sun 2019] after discarding low-score bounding boxes,

and the third stage lifts the detected 2D keypoints to the 3D using a residual-based

2-layer fully-connected network [Martinez 2017]. The three stages in the teacher network

are selected based on their state-of-art performance on the COCO and Human3.6

dataset. The first and second stages are trained on the COCO dataset [Lin 2014] and

the third stage is trained on the Human3.6 dataset [Ionescu 2013]. Multi-level scaling

and flipping transformations are applied in the first and the second stage to obtain good

quality person bounding boxes and 2D keypoints. However, errors can still be present in

the keypoints and are encoded in the keypoint confidence scores. Therefore, we propose

to construct two sets of pseudo-labels: the soft-set S and the hard-set H. The soft-set

S = {S2D,S3D} consists of soft 2D keypoints and soft 3D keypoints. Soft 2D keypoints

S2D ∈ Rm×n×3 are obtained by storing the confidence value for each keypoint along with

their coordinates. The last dimension in Rm×n×3 represents the channel for the

confidence value. S2D is sent to the third stage to obtain the soft 3D keypoints S3D.

Similarly, the hard-set H = {H2D,H3D} consists of hard 2D keypoints and hard 3D
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keypoints. H2D is obtained by only keeping the high confidence 2D keypoints and

discarding the low confidence keypoints. H3D is obtained by passing H2D to the lifting

network. We show in the experiments that these two sets provide useful learning signals

when used to train the student. In the next section, we show how we exploit these two

sets of pseudo labels for effectively training the student network.

5.2.3 Knowledge distillation in the student network:

The student network presented in figure 5.1 is an end-to-end network based on

Keypoint-RCNN that jointly predicts the 2D and 3D poses. We replace the mask head

of the Mask-RCNN network with a keypoint-head for joint 2D and 3D pose estimation.

The keypoint-head accepts the fixed size proposals from the ROIAlign layer and passes

them through 8 conv-block layers to generate the features. These features are upsampled

using a deconv and bi-linear upsampling layer into two branches to generate 17 channel

heatmaps corresponding to each body joint. The first branch upsamples the features to

generate the heatmaps HMsoft, and the second branch upsamples them to generate the

heatmaps HMhard. The HMsoft and HMhard heatmaps are connected to their

respective lifting networks i.e 2Dto3Dsoft and 2Dto3Dhard to lift the incoming 2D

keypoints to 3D.

Training: Training of the network follows the same framework as Mask-RCNN along

with the additional losses coming from the keypoint-head. In the keypoint-head, we

compute 2D and 3D losses L2D and L3D to estimate the 2D and 3D keypoints. L2D

consists of soft and hard 2D keypoint losses. The soft 2D keypoint loss L2Dsoft is

obtained by first multiplying HMsoft with the corresponding confidence values from the

last channel of S2D and then computing its cross-entropy loss with S2D. The hard 2D

keypoint loss L2Dhard is obtained by calculating the cross-entropy loss between HMhard

and H2D. Similarly, the 3D loss L3D consists of soft and hard 3D keypoint losses. Soft

3D keypoint loss L3Dsoft is obtained by taking the smooth L1 loss between S3D and the

output of 2Dto3Dsoft using the input S2D, and hard 3D keypoint loss L3Dhard is

obtained by taking the smooth L1 loss between S3D and the output of 2Dto3Dhard

using the input H2D. All four losses are added together to obtain the loss for the

keypoint-head Lkpt. The overall loss is the sum of Lkpt with the standard Faster-RCNN

loss, ie. the bounding box classification and regression loss, and the region proposal loss.

Inference: During inference, the 2D keypoints are computed by taking the arg-max

over each channel from the mean output of HMsoft and HMhard, and the 3D keypoints

are computed by calculating the 2D keypoints from HMsoft and HMhard using arg-max,

passing the 2D keypoints to the respective 2Dto3D lifting network, and averaging the

3D output.
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Figure 5.2: Qualitative results for 2D and 3D keypoints estimation from the student network
(ORPose all) at original and downsampled image sizes. GT-2D and GT-3D are the visualization
results from 2D and 3D ground truth keypoints respectively. Since we are not predicting the
scale of the 3D pose in the camera frame, we use the depth of the root node from the ground
truth as scale to generate this visualization.

5.3 Experiments and results

5.3.1 Training and testing dataset

We use MVOR-unlabeled dataset to generate pseudo labels and train our networks and

the MVOR+ dataset as a test set as described in section 3.2.1 and 3.2.2.2, respectively.

Since we are evaluating 3D poses from the MVOR+ dataset for the single view, we

projected these 1061 3D poses into the respective camera coordinates to obtain 2926

valid 3D poses (we discarded the not-visible poses). The original size of all the images is

640x480. We also conduct experiments with downsampled images using the scaling

factors 8x, 10x, and 12x, yielding images of size 80x64, 64x48, and 53x40. We use

AP bbperson for person bounding box evaluation, AP bbperson for 2D keypoint evaluation, and

MPJPE error for 3D keypoint evaluation, respectively, as described in section 3.3.3.

5.3.2 Experiments

The student network is trained differently for two sets of experiments, yielding the

networks ORPose fixed sx (s=1,8,10,12) and ORPose all. ORPose fixed sx is trained

using either images of the original size (s=1) or low-resolution images at a fixed scaling

factor (s=8,10,12). When feeding the networks, low-resolution images are first

upsampled to match the original input size.

Evaluation of networks ORPose fixed sx is done on the same scale they are trained on.
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Results of default student network for 1x and 12x downsampling scale

Results of trained student network for 1x and 12x downsampling scale

Figure 5.3: Comparative qualitative results for the default and the trained student networks. (a)
The default student network uses the pre-trained COCO and Human3.6 weights. (b) The trained
student network exploits the soft and hard pseudo labels obtained from the teacher network. The
left side shows the 2D/3D visualization results at 1x scale, and the right side shows the 2D/3D
visualization results at 12x scale.

In the second experiment, ORPose all is trained using original and downsampled images

with a random downsampling factor. This is similar to the scaling data augmentation

technique, but we consider here a very low-resolution scenario where the input image is

downsampled up to 12x. We choose the random scale such that for 30% of the training

time there is no downsampling, for 35% the downsampling scale is randomly chosen

between 2 and 8, and for the remaining 35% of training time downsampling scale is

randomly chosen between 8 and 12. The intention to train the network using this

strategy is to obtain a single model that can work on high-resolution images and should

also perform considerably better on the low-resolution images. The base learning rate

for ORPose fixed 1x is set to 1e-3 for 5k total number of iterations with a step decay of

0.1 after 2k, 3k, and 4k iterations; the base learning rate for ORPose fixed sx

(s=8,10,12) is set to 1e-2 for 10k total number of iterations with a step decay of 0.1 after

7k, 8k, and 9k iterations; the base learning rate for ORPose all is set to 1e-1 for 20k

total number of iterations with step decay of 0.1 after 14k, 16k, and 18k iterations. The

downsampling and upsampling operation is performed using bilinear interpolation. We

use a detectron2 framework [Wu 2019a] to run all the experiments on two V100 NVidia

GPUs using the distributed data parallelism framework of PyTorch. We use a batch size

of 32 and the stochastic gradient solver as the optimizer for all the experiments.

5.3.3 Results

Table 5.1 shows the results for the teacher and the student networks on MVOR+, along

with the network parameter complexity, before training on OR data. These networks are

initialized from the COCO and Human3.6 pre-trained network weights. We evaluated

both on the original image size (1x) and downsampled images of scale 8x, 10x, and 12x.

As shown in the Table 5.1, there exists a margin of 11.6% 2D keypoint AP. Also, the 3D
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Network #Params GFLOPs Scale AP bbperson AP kpperson MPJPE

1x 53.81 57.78 134.88
Teacher 250.1M 1048.8 8x 39.03 29.28 170.25

10x 31.90 18.60 203.89
12x 24.38 8.89 260.83

1x 52.77 46.17 147.17
Student 67.9M 215.0 8x 40.21 27.02 168.10

10x 34.12 20.06 181.69
12x 29.19 14.42 194.35

Table 5.1: Baseline results on MVOR+ for teacher and student networks when no training is
performed on OR data. Higher AP and lower MPJPE are better. Student and teacher networks
are evaluated at original and low-resolution sizes. The aim is to train the student to reach the
same performance as the teacher at high resolution (1x).

Student Network Scale AP bbperson AP kpperson MPJPE

ORPose fixed 1x 1x 50.87 55.20 134.23
ORPose fixed 8x 8x 49.50 53.50 137.40
ORPose fixed 10x 10x 49.01 51.98 137.71
ORPose fixed 12x 12x 48.23 49.88 138.83

1x 50.59 55.80 134.13
8x 49.57 53.31 136.45

ORPose all 10x 49.25 52.12 136.95
12x 47.54 49.51 138.35

Table 5.2: Results of our student network evaluated at original size and low resolution images.
ORPose fixed sx (s=1,8,10,12) are trained and evaluated at fixed scale. ORPose all is a single
model trained on random size low resolution and high resolution images, and evaluated on original
size images and fixed scale downsampled images.

Student Network Scale AP bbperson AP kpperson MPJPE

Single-branch(hard) 1x 50.61 54.73 145.77
Single-branch(soft) 1x 51.04 54.70 134.20
Single-branch(hard+soft) 1x 50.95 55.11 152.28
Double-branch(hard+soft) 1x 50.59 55.80 134.13

Table 5.3: Ablation study on the student network, by comparing to a single branch trained using
hard, soft and hard+soft labels. We achieve the best result when using our proposed two-branch
design for both 2D and 3D keypoint estimation.

error in the student network is 12.30 mm more compared to the teacher network. When

we evaluate these models on the low-resolution images, we observe a strong decrease in

the performance, likely because such low-resolution images were not much represented in

the training dataset. The low-resolution results of the teacher network are somewhat

worse compared to the student network, possibly due to the multi-stage design of the

teacher network, where the poor performance of the current stage affects the next stage.

The student network is less affected, likely due to its single-stage design. We believe the
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this due to the fact that the distribution of input images on these extreme

low-resolutions changes considerably which results in such a large decrease in the

performance.

Table 5.2 shows the results for our student network when trained using the soft and hard

pseudo labels for 2D/3D keypoints obtained from the teacher network. We observe

improved performance in all the models when trained with the pseudo labels. ORPose all

achieves nearly the same performance compared to the models trained for specific scale

low-resolution images. Performance of ORPose all on the high-resolution images nearly

reaches the teacher network and on the low-resolution images this network performs

much better. This is illustrated in the qualitative results shown in figure. 5.2 and figure.

5.3. This suggest single network with better training paradigm is able to learn the pose

details in domain specific scenario for example the operating room in our case.

5.3.4 Ablation study

To evaluate the effect of soft-labels on the student network, we keep only one branch for

2D/3D keypoint estimation i.e only one heatmap layer and one 2Dto3D network. We

train this single branch keypoint-head with only hard labels, only soft labels, and both

hard and soft labels. To train for both the hard and soft labels, the 2D losses are

computed using the same heatmap layer and 3D losses are computed using the same

2Dto3D network. As shown in Table 5.3, we observe that training with the hard labels

hurts the 3D keypoint estimation, and training using only the soft labels achieves good

overall results. 2D keypoint estimation is however inferior compared to our two-branch

design trained for soft and hard losses.

5.4 Conclusion

In this chapter, we tackle joint 2D/3D pose estimation from monocular RGB images and

propose a self-supervised approach to train an end-to-end and easily deployable model

for the OR. We use data distillation to exploit non-annotated data and knowledge

distillation to benefit from the high-quality predictions of a multi-stage high capacity

pose estimation model. Our approach does not require any ground truth poses from the

OR and evaluation on the MVOR+ dataset suggests its effectiveness. We further

demonstrate that the proposed network can yield accurate results on low-resolution

images, as needed to ensure privacy, even using a downsampling rate of 12x.
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6 Unsupervised domain adaptation

for person pose estimation and

instance segmentation in the OR

Instead of trying to produce a programme to simulate the adult mind, why not rather try

to produce one which simulates the child’s? If this were then subjected to an appropriate

course of education one would obtain the adult mind.

– Alan Turing, 1950, “Computing Machinery and Intelligence”

1x 8x 10x

A sample qualitative result from our unsupervised domain adaptation approach on differ-
ent low-resolution color images for joint person pose estimation and instance segmentation.
Demo video: https://youtu.be/gqwPu9-nfGs, project page: https://github.com/CAMMA-public/
HPE-AdaptOR
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6.1 Introduction

In this chapter, we propose a novel Unsupervised Domain Adaptation (UDA) approach,

called AdaptOR, for joint person pose estimation and instance segmentation. We aim to

adapt a model from a labeled source domain, i.e., unconstrained natural images from

COCO [Lin 2014] to an unlabeled target domain, i.e., constrained low-resolution OR
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images downsampled at different resolutions from 1x to 12x. The UDA methods have

been extensively studied for various computer vision tasks ranging from image

classification [Zhuang 2020], object detection [Oza 2021] to semantic

segmentation [Toldo 2020]. Unlike the existing UDA approaches that have primarily

been applied to general object classes, we aim to study the UDA for a single but highly

challenging “person” class inside the visually complex OR environment while

simultaneously exploiting the articulated “person” class properties for effective domain

adaptation.

We choose Mask R-CNN [He 2017] as our backbone model for joint person pose

estimation and instance segmentation, which is primarily designed for a single domain

fully supervised training. Inspired from UDA for image classfication [Chang 2019], we

propose disentangled feature normalization (DFN) for our backbone model to train it on

two statistically different domains. DFN replaces every feature normalization layer in

the feature extractor of the backbone model with two feature normalization layers: one

for the source domain and another for the target domain. With the improved design, the

backbone model expects an input batch containing half the images from the source

domain and another half from the target domain. DFN therefore modifies the multi-task

loss function to compute and weigh the loss differently for the two domains. The use of

separate feature normalization layers for the two domains effectively disentangle the

feature learning and stabilizes the training.

Given a backbone model with the ability to train on two statistically distinct domains,

we build our approach based on a self-training

framework [Sohn 2020a,Liu 2021b,Deng 2021], where we aim to predict similar

predictions from a model under different augmentations of the same image, thereby

taking the confident predictions from one augmented image - called weakly augmented

image - as pseudo labels for the other augmented image - called strongly augmented

image. The idea has primarily been utilized for the image classification

tasks [Berthelot 2019a,Sohn 2020a] where the model predictions need to be invariant to

the different augmentations applied to the input image. The spatial localization tasks

such as pose estimation or instance segmentation, however, can change the model

predictions under certain geometric augmentations, e.g., random-flip or random-resize.

Thankfully, these changes in the predictions need to satisfy transformation equivariant

constraints, i.e. prediction labels also need to be transformed according to the applied

geometric augmentations. We therefore use the transformation equivariant constraints

to add explicit geometric constraints on the weakly and the strongly augmented

unlabeled images to generate high-quality pseudo labels; for example, the random-flip

operation has to exploit the chirality property [Yeh 2019] for pose estimation to map the

keypoints to the horizontally flipped image.

To improve the performance of the model on low-resolution OR images as needed for

privacy preservation, we also propose to extend the data augmentation pipeline with a

strong-resize augmentation for the strongly augmented image by applying two resize

operations on the input image: a down-sampling and an up-sampling operation with a
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scaling factor randomly chosen between 1x to 12x. It generates heavily blurred images

(see the example downsampled images in figure 6.1) that naturally extend our approach

to the privacy-preserving low-resolution images. Training the model using the two sets

of weak and strong augmentations also enforces consistency

regularization [Tarvainen 2017,Sajjadi 2016,Sohn 2020a]: a popular regularization

technique utilized in a Semi-supervised Learning (SSL). The SSL is closely related to the

UDA and aims to generalize a model to the same domain with limited labeled and

large-scale unlabeled data.

We further extend our approach with mean-teacher for stable training [Tarvainen 2017],

where instead of using a single model to generate and consume the pseudo labels, we

create two copies of a given source domain trained model: a teacher and a student

model. The teacher model generates the pseudo labels on the weakly augmented image

that is used by the student model to train on the corresponding strongly augmented

image. The weights of the teacher model are updated using temporal ensembling of the

weights of the student model, thereby helping it to improve its predictions due to

ensembling while simultaneously generating better pseudo labels to improve the student

model. Figure 6.2 illustrates the complete architecture of our approach.

We evaluate our approach on the two OR datasets: MVOR+ and

TUM-OR-test [Belagiannis 2016]. The default annotation in the TUM-OR-test contains

only the six common COCO keypoints in the upper body bounding box. Therefore, we

re-annotate the TUM-OR-test using a semi-automatic approach1. Both MVOR+ and

TUM-OR-test do not contain ground-truth for the person instance masks. We therefore

evaluate the mask segmentation results by computing tight bounding boxes around the

prediction masks and comparing them with the corresponding ground-truth bounding

boxes, along with qualitative results. We show that our approach performs significantly

better after domain adaption and against strongly constructed baselines, especially on

privacy-preserving low-resolution OR images even downsampled up to 12x. As our

backbone model based on Mask R-CNN performs person bounding box detection by

design, we use the model to evaluate for the person bounding boxes and show significant

improvements in the bounding box detection results. We also conduct extensive ablation

studies to shed light on the different components of our approach and their contributions

to the results. The figure ?? shows a comparative qualitative result before and after the

domain adaptation.

Finally, without bells and whistles, our UDA approach can be easily used as an SSL

approach on the same domain dataset - by using regular feature normalization instead of

DFN. We show the generality of our approach as an SSL method on the same domain

COCO dataset with different percentages of supervision. With as few as 1% of labeled

supervision, we obtain 57.7% (38.2 keypoint Average Precision (AP)) in the pose

estimation and 72.3% (36.1 mask AP) in instance segmentation, a strong improvement

against the model trained with 100% of labeled supervision (66.2 keypoint AP and 49.9

1The updated MVOR+ dataset and the new TUM-OR-test annotations along with the source code
and models will be available at https://github.com/CAMMA-public/HPE-AdaptOR.
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(a) 640x480 (1x) (b) 80x60 (8x) (c) 64x48 (10x) (d) 53x40 (12x)

Figure 6.1: Sample image from the OR downsampled at different resolutions. With significant
degradation in the spatial details, these are more suitable for activity analysis in privacy-sensitive
OR environments.

mask AP). These initial valuable baselines for the joint person pose estimation and

instance segmentation could help foster SSL research on large-scale traditional vision

datasets.

6.2 Detailed methodology

6.2.1 Problem overview

Given an end-to-end model for joint person pose estimation and instance segmentation

trained on the source domain labeled dataset X = {xi|yi}Nli=1, we aim to adapt it to the

unlabeled target domain dataset U = {uj}Nui=1. The source domain images are natural in

the wild images, whereas the target domain images are the high-resolution and

low-resolution (downsampled up to 12x) images from the OR. Nl and Nu are the number

of labeled and unlabeled images, respectively. The source domain’s labeled dataset

consists of images xi with the corresponding ground-truth labels yi. The ground-truth

labels yi consist of bounding boxes Pbbox ∈ Rm×4, keypoints Pkp ∈ Rm×n×2, and masks

Pmask ∈ Rm×p×2, where m is the number of persons, n is the number of 2D keypoints

for each pose, and p is the number of contour points on the ground-truth binary mask.

The unlabeled data from the target domain consists of only the images uj .

We first explain the backbone models chosen for this work and the proposed UDA

method, which we call AdaptOR. Briefly, we first extend Mask R-CNN [He 2017] with

disentangled feature normalization (DFN) to handle the statistically different datasets

from the two domains. Then we develop our approach by designing geometrically

constrained data augmentations to generate and use the pseudo labels for adapting the

model to the unlabeled target domain consisting of high- and low-resolution images from

the OR.

6.2.2 Backbone models

We choose the Mask R-CNN [He 2017] model, where the mask and the keypoint head are

designed to use a single person class. We refer to this model as km-rcnn tailored to joint

person pose estimation and instance segmentation. It can also perform person bounding

box detection by design. km-rcnn works as follows: it first extracts the image features

using a feature pyramid network (FPN) [Lin 2017a] with a Resnet-50 backbone [He 2016].
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Figure 6.2: Overview of our approach for unsupervised domain adaptation. We generate two types
of augmentations on the given unlabeled target domain images: weak and strong. The weakly
augmented images pass through a frozen teacher model and a thresholding function to generate
the pseudo labels. These pseudo labels are then geometrically transformed to the corresponding
strongly augmented image space. A student model uses these transformed pseudo labels to train
on the strongly augmented unlabeled images jointly with the labeled source domain images. The
weights of the frozen teacher model are updated using the exponential moving average (EMA)
of the student model’s weights. We also replace every group normalization (GN) layer in the
feature extractor with two GN layers (GN(S) and GN(T)) to normalize features of two domains
separately, as needed to handle statistically different source and target domains.

The extracted features pass through a region proposal network (RPN) to generate the

bounding-box proposals. The RoiAlign layer [He 2017] uses these proposals to extract

the fixed-size feature maps. The fixed-size feature maps pass through three heads:

bounding box head, keypoint head, and mask head. The bounding box head classifies

and regresses for the person bounding box, the keypoint head generates the spatial

heat-maps corresponding to each body keypoint, and the mask head generates

segmentation masks. We use the same multi-task losses as described in [He 2017] except

for bounding box classification loss where we use focal loss [Ross 2017] instead of

cross-entropy loss for the better handling of foreground-background class imbalance in

our UDA framework [Liu 2021b]. Overall, the supervised loss term Ls consists of six

losses: binary cross-entropy loss for RPN proposal classification Lrpncls , L1 loss for RPN

proposal regression Lrpnreg , focal loss [Ross 2017] for bounding box classification Lbboxcls ,

smooth L1 loss for bounding box regression Lbboxreg , cross-entropy loss for the keypoint

head Lkpsce , and the binary cross-entropy for the mask head Lbce.
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(6.1)
Ls =

∑
i

Lrpncls (f li , y
l
i) + Lrpnreg (f li , y

l
i) + Lbboxcls (f li , y

l
i)

+ Lbboxreg (f li , f
l
i ) + Lkpce (f li , y

l
i) + Lmaskbce (f li , y

l
i).

Here, f li and yli correspond to the features and the ground-truth labels for the labeled

input image xli.

6.2.2.1 Initialization

The state-of-the-art approaches for downstream tasks such as object

detection [Ren 2015] and instance segmentation [He 2017] initialize the backbone

network from the supervised ImageNet [Deng 2009] weights. The feature normalization

during the training is performed using frozen batch normalization (BN) in all the feature

extraction layers. It, in turn, uses statistics (mean and variance) derived from the

ImageNet training set and freezes its affine parameters (weights and biases).

The current advancements in self-supervised methods to learn generic feature

representations exploiting large-scale unlabeled data have started to surpass the

supervised ImageNet baselines on the downstream tasks [Chen 2020,He 2020,Misra 2020].

However, the backbone feature extractor weights from the self-supervised methods may

not have the same distribution as supervised ImageNet methods. The use of frozen BN

during the training therefore could lead to unstable training. Authors in [He 2020]

suggest training the BN layers using Cross-GPU BN [Peng 2018] to circumvent the issue.

We find in our experiments that group normalization (GN) [Wu 2018] works equally well

without the overhead of communicating the batch statistics over all the GPUs resulting

in an increased training speed. We follow the network design from [Wu 2018,Wu 2019c]

to change the BN layers of km-rcnn with the GN layers. The updated model, called

km-rcnn+, is initialized from the self-supervised method MoCo-v2 [Chen 2020,He 2020]

and trained on the source domain dataset.

6.2.2.2 Disentangled feature normalization

Given the model, km-rcnn+, trained on the labeled source domain dataset, we aim to

adapt it to the unlabeled target domain. We observe in our experiments that feature

normalization plays a vital role in training the model on different domains as suggested

in the literature [Xie 2020,Chang 2019,Wu 2021]. We propose disentangled feature

normalization (DFN) to effectively disentangle the feature learning for the datasets of

different domains by replacing every group normalization (GN) layer in the feature

extractor with two GN layers: one for the source domain images, GN(S), and another for

the target domain images, GN(T). The updated model, called km-rcnn++, uses separate

affine parameters at every normalization stage in the feature extractor for the source

and the target domain images, efficiently normalizing the features of the two domains,

see figure 6.2. The GN parameters for the target domain, GN(T), are initialized from

the source domain GN parameters, GN(S), before the domain adaptation training.
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The UDA approaches require weighing the losses differently for unlabeled and labeled

images, usually to weigh more the unlabeled losses than the labeled ones to overcome

the over-fitting to the labeled set. It can be easily performed if the underlying model is

the same for the two domains: the usual case of the existing UDA approaches. However,

with our improved design, the km-rcnn++ model expects an input batch containing the

first half of images from the source domain and the second half of images from the target

domain. DFN therefore modifies the loss function described in equation 6.1 to compute

and weigh the losses on the source and the target domain images differently. The input

batch passes through the feature extractor, and the obtained features are divided into

two halves corresponding to the source and the target domains. Each half then passes

through the RPN network and the three heads to compute the separate RPN, bounding

box, keypoint, and mask losses for source and the target domain images as given below.

Ls =
∑
i

Lrpncls (f li , y
l
i)+Lrpnreg (f li , y

l
i)+Lbboxcls (f li , y

l
i)+Lbboxreg (f li , f

l
i )+Lkpce (f li , y

l
i)+Lmaskbce (f li , y

l
i)

(6.2)

(6.3)
Lu =

∑
i

Lrpncls (fui , y
u
i ) + Lrpnreg (fui , y

u
i ) + Lbboxcls (fui , y

u
i )

+ Lbboxreg (fui , f
u
i ) + Lkpce (fui , y

u
i ) + Lmaskbce (fui , y

u
i ).

Here, f li and fui correspond to the features of the labeled and unlabeled domain,

respectively. The yli corresponds to the source domain labeled ground-truth labels, and

yui correspond to the target domain pseudo labels. The following section explains the

automatic generation of target domain pseudo labels yui . The km-rcnn++ in the

inference mode uses only the GN layers corresponding to the target domain, thereby

maintaining the same number of parameters and inference cost compared to km-rcnn+.

6.2.3 AdaptOR

Given a model, km-rcnn++, that can handle the datasets of different domains, we

explain AdaptOR, our proposed method for unsupervised domain adaptation. We first

explain transformation equivariance constraints, as needed to add explicit geometric

constraints, and then the data augmentation pipeline, followed by the complete

algorithm.

6.2.3.1 Transformation equivariance constraints

The state-of-the-art UDA or SSL approaches for image classification exploit the

transformation invariance property on the unlabeled data, i.e., the classification labels

remain unchanged irrespective of the transformation applied to the input image.

However, the invariance property does not hold for the spatial localization tasks, and

labels get changed with the viewpoint changes of the image due to geometric transforms,

for example, resize and horizontal flip. But, these changes in the labels are equivariant
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Algorithm 1 : AdaptOR algorithm to adapt a model trained on the labeled source
domain dataset to the unlabeled target domain (operating room)

Inputs:

• Labeled dataset from the source domain X = {xi|yi}Nli=1, unlabeled dataset from

target domain U = {uj}Nui=1, yi = (Pbbox,Pkp,Pmask): ground-truth labels for the
bounding box, keypoints, and mask for each person in the given labeled image.

• pt(y|x; φ̃): teacher model, ps(y|x;φ): student model, φ̃, φ: weights of the teacher
and the student model respectively

• Γ (p, δ = δbbox, δkp, δmask): function to convert predictions (p) to pseudo labels
using thresholds (δ) consisting of bounding box threshold δbbox, keypoint threshold
δkp, and mask threshold δmask

• Tw(.): weak transform, Ts(.): strong transform

• L: modified multi-task loss function as described in section 6.2.2.2 and equations
6.2 and 6.3, α: EMA decay rate, λ: unsupervised weight loss value, η: learning rate

Outputs: φ̃: Final teacher model weights

1: for all (Xb, yb,Ub) ∈ (X ,U) do // sample a batch from the labeled and unlabeled dataset

2: Xw, yw,Uw = Tw(Xb, yb,Ub) // apply weak transform to the labeled and unlabeled batch to construct weakly augmented

labeled (Xw, yw) and unlabeled (Uw) batch

3: Xs, ys,Us = Ts(Xb, yb,Ub) // apply strong transform to the labeled and unlabeled batch to construct strongly augmented

labeled (Xs, ys) and unlabeled (Us) batch

4: ỹs = Γ (pt(Uw; φ̃), δ) // run the teacher model pt(y|x; φ̃) on the weakly augmented unlabeled batch Uw , and convert the

predictions into the pseudo labels ỹs using the thresholding function Γ (p, δ)

5: ȳs = Ts(T −1
w (ỹs)) // apply the transform to convert the pseudo labels ỹs into the coordinates of strongly augmented unlabeled

batch (Us)

6: X , y = concat(Xw,Xs,Us), concat(yw, ys, ȳs) // concatenate the strongly augmented unlabeled batch with the

weakly and strongly augmented labeled batch

7: Ls,Lu = L(ps(X ;φ), y) // compute the loss using the multi-task loss function on the student model

8: loss = Ls + λLu // add the supervised and the unsupervised losses

9: φ = SGD(φ, η,∇φ(loss)) // update the parameters of the student model φ using stochastic gradient descent with momentum

10: φ̃ = αφ̃+ (1− α)φ // update the parameters of teacher model φ̃ using the exponential moving average

11: end for

to the applied transformations. Mathematically, if F(.) is a model that outputs the

spatial localization labels for the input image I under transformation T , we can

minimize ‖F(T (I))− T (F(I))‖ under transformation equivariance constraints, i.e., the

transformation T can be to used map the localization labels to the transformed image

space. We use this property to provide the explicit geometric constraints on the

unlabeled images. Additionally, specific to the human pose estimation under horizontal

flipping transformation, we exploit the chirality transform [Yeh 2019] for the mapping of

the human pose to the horizontally flipped image.
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6.2.3.2 Data augmentations

Data Augmentations construct novel and realistic samples by computing stochastic

transforms on the input data. The recent advancements in data augmentations have

been the key to the performance boost in the supervised as well as SSL

approaches [Cubuk 2019,Cubuk 2020,DeVries 2017]. We use two types of

augmentations: weak and strong. The weak augmentations, Tw, consist of random-flip

and random-resize whereas strong augmentations, Ts, consist of spatial augmentations

from rand-augment [Cubuk 2020], random cut-out [DeVries 2017], random-flip, and

random-resize, along with strong-resize augmentation to generate privacy-preserving

low-resolution images. The strong-resize data augmentation down-sample and up-sample

the input image with a random scaling factor chosen between 1x to 12x. Fig. 6.1 shows

sample images from the OR at different downsampling scales.

6.2.3.3 Algorithm

Given the weakly augmented image, constructed using transformation Tw, and the

strongly augmented image, constructed using the transformation Ts, our idea is to

geometrically transform the pseudo labels - obtained from the model’s predictions - of

the weakly augmented image to the corresponding strongly augmented image. As the

weakly and the strongly augmented images are generated using different geometric

transformations with the pseudo labels being in the weakly augmented image coordinate

system, we exploit transformation equivariance constraints to transform the pseudo

labels by applying a transformation, TsT −1
w , to go from weakly augmented image space

to the strongly augmented image space. The model is trained on the strongly augmented

images with the transformed pseudo labels.

However, training the same model to generate and consume the pseudo labels may lead

to unstable training. The mean-teacher [Tarvainen 2017] from semi-supervised learning

has been proposed to stabilize the training using closely coupled teacher and a student

model. We therefore adapt mean-teacher in our approach, where we use the teacher

model to generate the pseudo labels on the weakly augmented image, and the student

model to train on the corresponding strongly augmented image using the pseudo labels.

As the source domain GN parameters, GN(S), are trained under the direct supervision,

we use GN(S) layers in the teacher model for the inference on the unlabeled target

domain. The weights of the teacher and the student models are initialized from the

same model, kmrcnn++. The weights of the student model are updated using the

stochastic gradient descent based back-propagation, whereas the weights of the teacher

model are updated using the exponential moving average (EMA) of the weights of the

student model:

φ̃ = αφ̃+ (1− α)φ,

where φ̃ and φ are the weights of the teacher model and the student models, respectively,

and α is a decay parameter. The EMA helps the teacher model to generate better
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predictions due to its temporal ensembled weights from the student model, in turn

improving the student model for better training. The detailed algorithm is explained in

algorithm 1 and illustrated in figure 6.2.

Furthermore, we also test AdaptOR as an SSL approach, called AdaptOR-SSL, on a

source domain dataset by making minimal changes. We use the kmrcnn+ model,

without disentangled feature normalization, as the images are coming from the same

domain and do not concatenate the labeled and the unlabeled batches. The labeled and

the unlabeled batches pass separately through the kmrcnn+ model to calculate the

separate losses on the labeled and the unlabeled data. The AdaptOR-SSL uses

x%(x=1,2,5,10) of images from the source domain as the labeled dataset and the rest of

the images as the unlabeled dataset.

6.3 Baselines

We first introduce several self-training based baselines that we have constructed for our

joint person pose estimation and instance segmentation task by extending representative

approaches. We extend pseudo-label [Lee 2013,Sohn 2020b],

data-distillation [Radosavovic 2018], and ORPose, from the previous chapter, as our

baselines approaches. We refer to the extended version of pseudo-label, data-distillation,

and ORPose as KM-PL, KM-DDS, and KM-ORPose, respectively. The KM as a prefix

signifies that these approaches have been extended for the joint pose (keypoint)

estimation and instance (mask) segmentation tasks. The baselines approaches are

two-stage approaches where the first stage generates the pseudo labels on the unlabeled

data. The second stage jointly trains the model using the pseudo and the ground truth

labels. AdaptOR on the other hand generates the pseudo labels on the unlabeled data

on-the-fly during the training. For a fair comparison, we train all the baseline methods

with the same training strategy, data augmentation pipeline, and kmrcnn++ model. We

give a brief overview of extended baseline approaches as follows.

6.3.1 KM-PL

We modify the pseudo-labeling [Lee 2013] approach to generate the pseudo labels on a

single-scale image on the unlabeled target domain data. The authors in [Sohn 2020b]

recently use a similar approach with advanced data augmentations for the object

detection task.

6.3.2 KM-DDS

KM-DDS [Radosavovic 2018] is also a pseudo-labeling approach, but instead of

generating pseudo labels on a single scale, it aggregates the labels from multiple scales

with random horizontal flipping transformations. Authors use the approach for

multi-class object detection and human pose estimation. We further extend it to

generate pseudo labels for the masks. Similar to the authors, we use scaling and random

horizontal flipping transformations on nine predefined image sizes ranging from 400 to
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Table 6.1: An overview of the source and the target domain datasets used in this work.

Dataset type # images # instances
Source domain labeled dataset
COCO train 57,000 150,000
COCO-val test 5,000 10,777

Target domain unlabelled datasets
MVOR train 80,000 -
MVOR+ test 2,196 5,091

TUM-OR train 1,500 -
TUM-OR-test test 2,400 11,611

1200 pixels with a step size of 100. Here, the image size corresponds to the shorter side

of the image; the size of the longer side of the image is computed by maintaining the

same aspect ratio.

6.3.3 KM-ORPose

KM-ORPose uses the teacher-student learning paradigm for the domain adaptation in

the OR for joint person detection and 2D/3D human pose estimation as described in

previous chapter. It combines the knowledge-distillation [Hinton 2015,Zhang 2019a] -

using complex three-stage models - along with data-distillation [Radosavovic 2018] to

generate accurate pseudo labels. In the first stage, it uses cascade-mask-rcnn [Cai 2019b]

with the deformable convolution [Dai 2017] based resnext-152 [Xie 2017] to generate the

person bounding boxes. We use the same network to get the pseudo masks as well. In

the second stage, it uses the HRNet-w48 model (384x288 input size) [Sun 2019] to get

the pseudo labels for the poses. KM-ORPose is a strong baseline as it uses a complex

multi-stage teacher model to generate accurate pseudo labels for the training.

6.4 Experiments

6.4.1 Datasets and Evaluation Metrics

We use COCO [Lin 2014] as source domain dataset. It contains 57k images and 150k

person bounding boxes along with a segmentation mask and 17 body keypoints. The

test dataset of COCO, called COCO-val, contain 5k images with 10777 person instances.

We train our approach on an unlabelled training dataset of MVOR, called

MVOR-unlabeled (see section 3.2.1), and TUM-OR containing 80k and 1.5k images,

respectively. We evaluate our approach on the two target domain OR datasets: MVOR+

as described in section 3.2.2.2 and TUM-OR-test [Belagiannis 2016]. The original

TUM-OR-test consists of only the upper-body bounding boxes with six common COCO

keypoints. These annotations are not suitable for our evaluation purpose; hence we

annotate the TUM-OR-test using a semi-automatic approach. We first use a

state-of-the-art person detector [Cai 2019b] to get the person bounding boxes and

manually correct all the bounding boxes. We then run the HRNet model [Sun 2019] on
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all the corrected bounding boxes to get the poses. The predicted poses are corrected

using the keypoint annotation tool 2. An overview of the datasets used in this work is

shown in the Table 6.1

The image sizes of MVOR+ and TUM-OR-test datasets are 640x480 and 1280x720,

respectively. We also conduct experiments with downsampled images using the scaling

factors 8x, 10x, and 12x, yielding images of size 80x64, 64x48, and 53x40 for the

MVOR+ dataset and 160x90, 128x72, and 107x60 for the TUM-OR-test dataset.

We use AP bbperson for person bounding box evaluation, AP bbperson for 2D keypoint

evaluation, and AP
bb (from mask)
person for instance segmentation, respectively, as described in

section 3.3.3.

6.4.2 Experiments

6.4.2.1 Source domain fully supervised training

The models are trained on the source domain COCO dataset in a fully supervised

manner for three experiments: supervised ImageNet initialization with Frozen batch

normalization (BN) [He 2016], self-supervised MOCO-v2

initialization [Chen 2020,He 2020] with Cross-GPU BN [Peng 2018], and self-supervised

MOCO-v2 initialization [Chen 2020,He 2020] with group normalization (GN) [Wu 2018].

The goal of these experiments is to obtain one suitable source-only baseline as an

initialization model for the UDA experiments. The last model with self-supervised

MOCO-v2 initialization and GN, called kmrcnn+, is further used in the SSL

experiments and extended in UDA experiments.

6.4.2.2 AdaptOR: unsupervised domain adaptation (UDA) on target do-

mains

The UDA experiments on source domain COCO datasets and target domains MVOR

and TUM-OR datasets are conducted to train the kmrcnn++ model for eight sets of

experiments. The first four experiments are for the target domain MVOR and the last

four for TUM-OR. For each target domain, the first three experiments train the

kmrcnn++ model on three constructed baseline methods: KM-PL, KM-DDS, and

KM-ORPose, respectively, and the fourth experiment trains the kmrcnn++ model on our

AdaptOR method. Eleven ablation experiments are conducted with the source domain

COCO dataset and the target domain MVOR dataset: the first experiment evaluates

the contribution of disentangled feature normalization, the next five different types of

strong augmentations, and the last five different unsupervised loss weights loss values λ.

6.4.2.3 AdaptOR-SSL: semi-supervised learning (SSL) on source-domain

The SSL experiments on the source domain COCO dataset are conducted for four

experiments where we train the kmrcnn+ model using 1%, 2%, 5%, and 10% of COCO

2https://github.com/visipedia/annotation tools
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dataset as the labeled set and the rest of the data as the unlabeled set. The kmrcnn+

model uses the regular GN layers instead of disentangled feature normalization layers.

We use the same labeled and unlabeled images and training iterations as used by

Unbiased-teacher [Liu 2021b], the current state-of-the-art in SSL for object detection.

6.4.2.4 Domain adaptation on AdaptOR-SSL model

AdaptOR assumes it has access to all the source-domain labels in the previous

experiments. We conduct a final experiment to see how AdaptOR performs when

initialized from a source-domain model trained with less source domain data. We take a

AdaptOR-SSL model trained using 10% labeled and 90% unlabeled source domain data

and use it to initialize AdaptOR.

6.4.3 Implementation details

The source domain fully supervised training experiments, explained in section 6.4.2.1,

are conducted with batch size 16 and learning rate 0.02 for 270k iterations with

multi-step (210k and 250k) learning rate decay on eight V100 GPUs.

The AdaptOR and the AdaptOR-on-AdaptOR-SSL experiments explained in section

6.4.2.2, 6.4.2.4, respectively, are conducted on four V100 GPUs with a labeled and

unlabeled batch size of eight (four images/GPU) and a learning rate of 0.001. The

experiments are conducted for 65k iterations for the MVOR dataset and 10k iterations

for the TUM-OR dataset. Finally, the AdaptOR-SSL experiments explained in 6.4.2.3

are conducted on four V100 GPUs following the linear learning rate scaling

rule [Goyal 2017].

The spatial augmentations from rand-augment [Cubuk 2020] consist of “inversion”,

“auto-contrast”, “posterize”, “equalize”, “solarize”, “contrast-variation”, “color-jittering”,

“sharpness-variations”, and “brightness-variations” implemented using a python image

library3. The random cut-out [DeVries 2017] augmentation places square boxes of

random sizes chosen between 40 to 80 pixels at random locations in the image. The

random-resize operation for the weakly and strongly augmented images resize the image

to a size randomly sampled from 600 to 800 pixels for SSL experiments

following [He 2017]. For the UDA experiments, we choose the random-resize range from

480 to 800 pixels to provide more size variability in the data augmentation and match

the original size of the MVOR dataset (640x480). The image size corresponds to the

shorter side of the image.

We use a detectron2 framework [Wu 2019a] to run all the experiments with automatic

mixed precision (AMP) [Micikevicius 2017]. We use bounding box threshold δbbox = 0.7,

keypoint threshold δkp = 0.1, mask threshold δmask = 0.5, EMA decay rate α = 0.9996,

unsupervised loss weight λ = 3.0 for AdaptOR, and λ = 2.0 for AdaptOR-SSL.

3https://github.com/jizongFox/pytorch-randaugment
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Table 6.2: Results on the source domain COCO-val dataset with 100% labeled supervision. The
kmrcnn+ model using GN [Wu 2018] and initialized using self-supervised MoCo-v2 approach
[Chen 2020, He 2020] perform equally well with the model using Cross-GPU BN [Peng 2018]
but using less training time. The first row results for the kmrcnn model is obtained from the
paper [He 2017]. Rest of the results correspond to the models that we train. Inference is performed
on a single-scale of 800 pixels following [He 2017]. Automatic mixed precision (AMP) uses single-
and half-precision (32 bits and 16 bits) floating operation to speed up the training while trying
to maintain single-precision (32 bits) model accuracy.

Model initialization Normalization AMP ≈ Training-time APbb
person APkp

person APmask
person

kmrcnn Supervised-Imagenet Frozen BN 7 32 hours 52.0 64.7 45.1
kmrcnn Supervised-Imagenet Frozen BN X 16 hours 56.4 65.7 49.1
kmrcnn MoCo-v2 Cross-GPU BN X 22 hours 57.5 66.6 49.8
kmrcnn+ MoCo-v2 GN X 18 hours 57.5 66.2 49.9

6.5 Results

6.5.1 Source domain fully supervised training

Table 6.2 shows the results of kmrcnn and kmrcnn+ models trained on the source

domain COCO dataset. The kmrcnn trained using self-supervised MoCo-v2 weights

with Cross-GPU BN [Peng 2018] obtains improvement of approximately 1% in all the

three metrics compared to supervised ImageNet weights using frozen BN. The kmrcnn+

using GN performs equally well but with less training time. The kmrcnn+ model is

therefore further used in the SSL experiments and extended in UDA experiments.

6.5.2 AdaptOR: unsupervised domain adaptation (UDA) on target do-

mains

Table 6.3 and figure 6.3 show the result of our unsupervised domain adaptation

experiments using AdaptOR. The first and the second half in table 6.3 show the results

for MVOR+ and TUM-OR-test datasets, respectively. We evaluate the models at four

downsampling scales (1x, 8x, 10x, and 12x). As the model is trained on unlabeled image

sizes from 480 to 800 pixels (shorter side), we evaluate the model on nine target

resolutions (480, 520, 560, 600, 640, 680, 720, 760, and 800), i.e., for a given

downsampling scale, we down-sample the image with the scale and up-sample it to the

given target resolution. The target resolution also corresponds to the shorter size of the

image to maintain the aspect ratio. We use bilinear interpolation for the downsampling

and up-sampling. The results in Table 6.3 show the mean and standard deviation of the

results computed on all the target resolutions for bounding box detection AP bbperson, pose

estimation AP kpperson, and instance segmentation AP bbperson (from mask) on a given

downsampling scale.

The first row shows the source-only results for the kmrcnn+ model trained on source

domain images and evaluated on the target domain. The significant decrease in the

low-resolution results of the kmrcnn+ is likely because such heavily downsampled images

4https://github.com/matteorr/coco-analyze
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Table 6.3: Results for the baseline approaches and AdaptOR. We see improvements in all three
metrics on both the target domain datasets, especially on the low-resolution images making the
proposed approach suitable for the deployment inside the privacy-sensitive OR environment.
The source-only results correspond to the model trained on the labeled source domain without
any training on the target domain images. The KM-PL, KM-DDS, and KM-ORPose are strong
baselines proposed in this work.

Methods
MVOR+ TUM-OR-test

1x 8x 10x 12x 1x 8x 10x 12x

APbb
person (mean±std)

source-only 56.61±0.34 40.42±2.17 34.87±2.47 29.61±2.69 68.61±1.54 41.84±2.33 31.08±2.83 24.00±2.90

KM-PL 60.21±0.51 57.14±0.34 55.88±0.39 54.26±0.41 72.28±1.51 65.44±1.45 62.84±1.02 62.42±1.55

KM-DDS 60.79±0.47 57.88±0.39 56.74±0.37 55.12±0.45 72.51±1.45 65.98±1.18 63.87±0.99 62.68±1.32

KM-ORPose 58.88±0.69 55.14±0.56 53.81±0.52 51.96±0.47 69.73±1.22 63.46±0.93 60.71±0.73 60.14±0.94

AdaptOR 61.41±0.40 59.48±0.35 58.55±0.36 57.33±0.43 72.75±0.88 67.33±0.78 65.53±0.57 65.65±0.66

APkp
person (mean±std)

source-only 50.55±0.39 23.99±2.25 16.86±2.16 11.31±1.91 65.60±4.55 27.21±1.49 19.41±1.86 13.18±1.81

KM-PL 58.72±0.44 55.19±0.43 52.81±0.55 49.53±0.46 77.49±1.87 67.57±1.03 63.46±0.89 58.24±1.05

KM-DDS 59.83±0.40 55.60±0.49 53.16±0.48 50.02±0.46 78.39±1.76 69.24±1.07 65.29±0.93 60.56±1.21

KM-ORPose 62.50±0.53 57.18±0.60 54.59±0.59 51.24±0.47 80.49±1.74 69.90±1.03 65.64±0.94 60.67±0.73

AdaptOR 60.86±0.38 57.35±0.61 55.42±0.66 52.60±0.60 77.84±1.24 70.65±1.04 67.36±0.96 63.27±1.21

AP
bb (from mask)
person (mean±std)

source-only 54.95±0.37 37.98±2.21 32.58±2.37 27.56±2.48 69.33±1.46 40.38±2.30 30.11±2.79 22.97±2.93

KM-PL 56.50±0.60 54.06±0.44 52.90±0.48 51.33±0.46 71.93±1.34 65.43±1.46 63.16±0.89 62.67±1.11

KM-DDS 57.12±0.47 54.76±0.50 53.78±0.49 52.06±0.67 71.99±1.18 65.96±1.07 64.02±0.70 63.01±1.02

KM-ORPose 55.46±0.76 52.37±0.62 51.23±0.55 49.34±0.46 68.05±1.13 61.15±1.09 58.53±0.86 57.89±1.00

AdaptOR 59.34±0.40 57.44±0.42 56.62±0.41 55.39±0.51 72.13±0.91 66.55±0.80 65.04±0.52 65.15±0.65

are not present in the source domain. The improved result for the KM-DDS approach

compared to KM-PL shows the effects of generating pseudo labels using the multi-scale

and flipping transformation. The bounding box and segmentation results for the

KM-ORPose are slightly worse than the KM-PL and KM-DDS. It may be because

KM-ORPose uses a state-of-the-art object detector trained on all the 80 class categories

from COCO whereas, KM-PL and KM-DDS use the model trained specifically for the

person class. The AdaptOR performs significantly better compared to baseline

approaches, especially on the low-resolution at different target resolutions, see figure 6.3,

suggesting the potential of our approach for low-resolution images in the

privacy-sensitive OR environment. We observe a slight decrease in the accuracy for

AP kpperson metric on original size, likely due to the use of the multi-stage complex teacher

model to generate the pseudo poses. Instead, our approach improves the given model in

a model agnostic way without relying on an external teacher model to generate the

pseudo labels. We also plot the results at individual scales in the figure 6.3. The figure

6.4 and 6.5 show qualitative results comparing our approach with the baseline

approaches.

We further analyze the impact of different localization errors at the keypoint level before

and after the domain adaptation using an approach described in [Ruggero Ronchi 2017].

As shown in Fig. 6.7, after domain adaptation, our approach correctly detects more
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Figure 6.3: Bounding box detection AP bb
person, pose estimation AP kp

person, and instance segmen-

tation AP bb
person (from mask) results for unsupervised domain adaptation experiments on four

downsampling scales (1x, 8x, 10x, and 12x) and nine target resolution (480, 520, 560, 600,
640, 680, 720, 760, and 800) corresponding to the shorter side of the image for MVOR+ and
TUM-OR-test datasets. We see an increase in the accuracy with the increase in target resolution
for the TUM-OR-test dataset. We also observe an increase in accuracy for the MVOR+ dataset
but only up to around 680 pixels.

keypoints while reducing the impact of different localization errors. Additional

qualitative results for the UDA experiments on MVOR+ and TUM-OR-test are
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Figure 6.4: Qualitative results for bounding box detection, pose estimation, and instance seg-
mentation on a sample MVOR+ image for the baseline approaches and AdaptOR. Results are
displayed on the for original image and corresponding downsampled images with downsampling
factor 8 and 12. The red arrows show either missed detections or localization errors. Localization
errors are noticeable on the low-resolution images.

presented in the supplementary video5

5https://youtu.be/gqwPu9-nfGs
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Figure 6.5: Qualitative results for bounding box detection, pose estimation, and instance segmen-
tation on a sample TUM-OR-test image for the baseline approaches and AdaptOR.

6.5.2.1 Ablation experiments

Disentangled feature normalization

Fig. 6.8 shows t-sne feature visualization [Van der Maaten 2008] of the layer5 resnet

features of the backbone model illustrating the appropriate segregation of the features

after the domain adaptation. We also conduct experiments to quantify the use of two

separate GN layers, GN(S) and GN(T), in the feature extractor for domain-specific

normalization compared to either a single GN layer or a single frozen BN layer. The first

row in Table 6.4 shows the results for the krcnn [He 2017,Wu 2019b] model using frozen

BN [He 2016] layers for joint bounding box detection and pose estimation. We take the

source domain COCO trained weights from detectron2 [Wu 2019a] library and train it

on the MVOR dataset. The second row shows the results for the kmrcnn+ model using

a single GN layer for both domains. We also evaluate kmrcnn++ where we use the GN
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1% supervision 2% supervision

5% supervision 100% supervision

Figure 6.6: Qualitative results on a sample image from COCO-val dataset with x%(x=1,2,5,100)
of labeled supervision. We use the AdaptOR-SSL for 1%, and 5% labeled supervision with the
rest of the data as the unlabeled data. We see comparable qualitative results with 1% of labeled
supervision to 100% of labeled supervision. The red arrows show either missed detections or
localization errors.

layers corresponding to source domain GN(S) to evaluate on the target domain

(kmrcnn++ GN(S)). We obtain significantly better results by using our design of the

two separate GN layers for feature normalization.

Components of AdaptOR

Table 6.5 shows the ablation experiments to see the effect of using different types of

augmentations on the strongly transformed images used by the student model during

training. The results show that the strong-resize augmentations are needed to adapt the

model to the low-resolution OR images. The geometric transform exploiting the

transformation equivariance constraints significantly improves the results, especially for

the pose estimation task, where we also utilize the chirality transforms to map the

flipped keypoints to the horizontally flipped image. The results are further improved

using the random-augment and random-cut augmentations.

Effect of unsupervised loss weight (λ) values

Unsupervised loss weight (λ) controls the proportion of the total loss attributed to the

unsupervised loss for the target domain. As the aim is to adapt the model to the target

domain, higher value of λ generally leads to better performance. Fig. 6.9 shows the

ablation results for different values of unsupervised loss weight (λ). We observe that the

increase in the λ increases the accuracy; however, it starts to decrease after the λ value

of 4.0.

88



6.5. Results

Good : 63.0
Jit. : 13.1
Inv. : 6.2
Miss : 15.8
Swap : 2.0

Miss

Nose   : 14.0
Eyes   : 18.7
Ears   : 10.5
Should.: 11.7
Elbows : 9.2

Wrists : 5.7
Hips   : 11.9
Knees  : 11.1
Ankles : 7.1

Jitter

Nose   : 12.6
Eyes   : 18.5
Ears   : 13.0
Should.: 10.8
Elbows : 10.4

Wrists : 5.5
Hips   : 17.3
Knees  : 9.2
Ankles : 2.6

Inversion

Nose   : 0.0
Eyes   : 9.2
Ears   : 3.5
Should.: 15.4
Elbows : 11.0

Wrists : 13.2
Hips   : 26.0
Knees  : 12.4
Ankles : 9.1

Swap

Nose   : 2.2
Eyes   : 5.0
Ears   : 9.0
Should.: 26.9
Elbows : 17.8

Wrists : 15.9
Hips   : 18.7
Knees  : 2.8
Ankles : 1.7

(a) source-only
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Figure 6.7: Localization errors at individual keypoint level for the pose estimation task before and
after the domain adaptation. “Jitter”, “Inversion”, “Swap”, and “Miss” are various localization
errors defined in [Ruggero Ronchi 2017]: “Jitter” error is the error in predicted keypoint w.r.t
close proximity of the correct ground truth, “Inversion” error is due to the right-left swap of the
body part, “Swap” is the error in assigning predicted keypoint to a wrong person, and “Miss”
error is due to completely missing the correct ground truth location. We use the author’s code
repository [Ruggero Ronchi 2017]4 for plotting the results.

source-only AdaptOR source-only AdaptOR

MVOR+ COCO-val TUM-OR-test COCO-val

Figure 6.8: t-sne feature visualization [Van der Maaten 2008] of the layer5 resnet features of the
backbone model on random 200 images of the source and the target domain test datasets. The
source-only model uses only the GN(S) layers whereas the AdapOR uses separate GN(S) and
GN(T) layers for the source and the target domain images, respectively. The AdapOR model
appropriately segregates the source and the target domain image features from the two domains
helping in improving the domain adaptation for the downstream heads.

6.5.3 AdaptOR-SSL: semi-supervised learning (SSL) on source-domain

Table 6.6 shows the results of SSL experiments using AdaptOR-SSL on the COCO

dataset with 1%, 2%, 5%, and 10% labeled supervision. The results with 100% labeled
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Table 6.4: Ablation study comparing the kmrcnn++ model using the two GN layer-based design
for feature normalization with the kmrcnn+ that uses only a single layer. We also compare it
with a krcnn model using single frozen BN, and kmrcnn++ GN(S), the same kmrcnn++ model
but using the GN layers corresponding to the source domain.

Models
MVOR+

1x 8x 10x 12x

APbb
person (mean±std)

krcnn 59.00±0.35 56.78±0.37 55.87±0.34 54.43±0.36

kmrcnn+ 60.71±0.16 58.75±0.33 58.03±0.31 56.97±0.39

kmrcnn++ GN(S) 59.64±0.46 55.86±0.48 53.84±0.64 51.61±0.74

kmrcnn++ 61.41±0.40 59.48±0.35 58.55±0.36 57.33±0.43

APkp
person (mean±std)

krcnn 57.96±0.32 55.48±0.62 53.34±0.55 50.50±0.44

kmrcnn+ 47.15±0.30 45.27±0.44 43.89±0.44 42.01±0.44

kmrcnn++ GN(S) 58.64±0.40 52.37±0.41 49.51±0.46 46.08±0.51

kmrcnn++ 60.86±0.38 57.35±0.61 55.42±0.66 52.60±0.60

AP
bb (from mask)
person (mean±std)

krcnn - - - -

kmrcnn+ 55.18±0.25 53.85±0.42 53.28±0.5 52.44±0.58

kmrcnn++ GN(S) 58.22±0.46 54.77±0.62 53.06±0.67 50.70±0.72

kmrcnn++ 59.34±0.40 57.44±0.42 56.62±0.41 55.39±0.51

copy.png copy.png

Figure 6.9: Results for different values of unsupervised loss weight (λ) on the MVOR+ dataset.
Results show the mean and confidence interval computed using different downsampling scales
(1x, 8x, 10x, and 12x) and target resolutions (480, 520, 560, 600, 640, 680, 720, 760, and 800).

supervision are presented in Table 6.2. The first two rows in Table 6.6 show the results

of two fully supervised baselines: supervised and supervised++. The supervised baseline

uses random-resize and random-flip augmentations as used [He 2017], whereas the
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Table 6.5: Ablation study quantifying the different augmentations on the strongly transformed
image used by the student model for the training. Here, sr: strong-resize, ra: random-augment, rc:
random-cut, and geom: geometric transformations consisting of random-resize and random-flip.

MVOR+

sr ra rc geom 1x 8x 10x 12x

APbb
person (mean±std)

Baseline 56.61±0.34 40.42±2.17 34.87±2.47 29.61±2.69

7 7 7 7 58.06±0.28 45.14±1.70 40.19±2.09 35.45±2.28

X 7 7 7 58.34±0.34 58.03±0.31 57.25±0.33 55.97±0.33

X 7 7 X 59.64±0.34 58.74±0.30 58.01±0.36 56.80±0.32

X X 7 7 58.43±0.31 57.72±0.31 56.99±0.33 55.58±0.29

X X X 7 59.79±0.54 58.38±0.44 57.48±0.45 56.21±0.46

X X X X 61.41±0.40 59.48±0.35 58.55±0.36 57.33±0.43

APkp
person (mean±std)

Baseline 50.55±0.39 23.99±2.25 16.86±2.16 11.31±1.91

7 7 7 7 52.32±0.30 31.33±1.56 24.48±2.07 18.19±1.97

X 7 7 7 54.22±0.39 53.53±0.63 51.65±0.58 49.13±0.58

X 7 7 X 57.07±0.31 55.41±0.62 53.68±0.55 51.19±0.48

X X 7 7 54.51±0.24 52.67±0.62 50.74±0.68 47.97±0.50

X X X 7 57.44±0.37 54.73±0.47 52.64±0.47 49.96±0.49

X X X X 60.86±0.38 57.35±0.61 55.42±0.66 52.60±0.60

AP
bb (from mask)
person (mean±std)

Baseline 54.95±0.37 37.98±2.21 32.58±2.37 27.56±2.48

7 7 7 7 56.08±0.32 42.12±1.78 37.19±2.13 32.56±2.27

X 7 7 7 55.81±0.38 55.66±0.46 54.94±0.43 53.73±0.51

X 7 7 X 57.14±0.35 56.52±0.38 55.84±0.42 54.62±0.41

X X 7 7 56.06±0.32 55.50±0.33 54.70±0.41 53.30±0.40

X X X 7 57.58±0.50 56.34±0.45 55.48±0.50 54.21±0.62

X X X X 59.34±0.40 57.44±0.42 56.62±0.41 55.39±0.51

supervised++ uses the our data augmentation pipeline containing weakly and strongly

augmented labeled images. We observe significant improvement in the results by

utilizing our data augmentation pipeline. We also compare our bounding box detection

results with the current state-of-the-art SSL approach for object detection,

Unbiased-teacher [Liu 2021b]: a multi-class object bounding box detection approach

using self-training and mean-teacher based SSL approach. Different from ours, it uses

fully supervised ImageNet weights for initialization and does not exploit the

transformation equivariance constraints using geometric augmentations. As the

Unbiased-teacher performs bounding box detection on 80 COCO classes, we compare

our results with their person category results AP bbperson from the model obtained from

their GitHub repository6. We observe significant improvement in results attributed to

our initialization using the self-supervised method, feature normalization using GN,

6https://github.com/facebookresearch/unbiased-teacher
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Table 6.6: Results for AdaptOR-SSL on COCO-val dataset under the semi-supervised learning
setting with x%(x=1,2,5,10) of labeled supervision. We compare it with the fully supervised
baselines trained on the same labeled data without using any unlabeled data. The supervised
baseline uses only the random resize and random-flip data augmentations as used in [He 2017]
whereas supervised++ uses the same data augmentation pipeline as in AdaptOR-SSL containing
weakly and strongly augmented labeled images. We also compare it with the current state-of-the-
art SSL object detector Unbiased-Teacher [Liu 2021b] for the person bounding box detection
task. The inference is performed on a single scale of 800 pixels (shorter side) following the same
settings as used in [He 2017,Liu 2021b].

Methods
APbb

person APkp
person APmask

person

1% 2% 5% 10% 1% 2% 5% 10% 1% 2% 5% 10%

supervised 22.09 28.43 34.52 37.88 15.91 23.58 30.96 37.77 18.13 23.93 29.34 33.47

supervised++ 28.59 34.27 41.18 43.60 25.78 32.14 41.45 46.51 24.18 29.14 35.40 37.83

Unbiased-Teacher 39.18 40.76 43.72 46.64 - - - - - - - -

AdaptOR-SSL 42.57 45.37 49.90 52.70 38.22 44.08 49.79 56.65 36.06 38.96 43.10 45.46

exploitation of the geometric constraints on the unlabeled data, and single class training

for person category exploiting mask and the keypoint annotations. Fig. 6.6 shows the

qualitative results from the models trained with 1%, 2%, 5% and 100% labels. We also

show the qualitative results in the supplementary video on some YouTube videos and

observe comparable qualitative results with 1% of labeled supervision w.r.t 100% of

labeled supervision.

6.5.4 Domain adaptation on AdaptOR-SSL model

Table 6.7 shows results when we evaluate AdaptOR-SSL models trained using 1%, 2%,

5%, and 10% source domain labels to our MVOR+ target domain. We observe a

significant decrease in the results (see “Before UDA” results in the Table 6.7). As a final

experiment, we initialize our AdaptOR approach with AdaptOR-SSL model trained using

10% source domain labels. We observe an increase in the performance after the domain

adaptation. However, there still exists a gap of around 4% for AP bbperson and

AP
bb (from mask)
person , and 12% for AP kpperson. These results show the need to develop

effective domain adaptation approaches in the presence of limited source domain labels.

6.6 Conclusion

Manual annotations, especially for spatial localization tasks, are considered the main

bottleneck in the design of AI systems. With advances in digital technology providing a

wide variety of visual signals, the modern OR has started to use AI to develop

next-generation smart assistance systems. However, the progress is hindered due to the

cost and privacy concerns for obtaining manual annotations. In this work, we tackle the

joint person pose estimation and instance segmentation task needed to analyze OR

activities and propose an unsupervised domain adaptation approach to adapt a model

trained on a labeled source domain to an unlabeled target domain. We propose a new
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Table 6.7: Performance comparison when applying AdaptOR-SSL models trained with 1%,
2%, 5%, and 10% source domain labels to the target domain of MVOR+ (see “Before UDA”
results). When we apply the AdaptOR approach on the AdaptOR-SSL model (trained using 10%
source domain labels), we observe an improvement in the performance (see “After UDA” results).
Results corresponding to 100% source domain labeled supervision in “Before UDA” and “After
UDA” are obtained from Table 6.2 and 6.3, respectively.

models
MVOR+

1x 8x 10x 12x

APbb
person (mean±std)

Before UDA

1% 48.33±0.67 39.89±1.97 34.46±2.44 28.63±3.25

2% 48.28±0.64 41.12±2.00 35.93±2.16 30.51±2.54

5% 51.27±0.48 43.11±2.08 37.95±2.14 31.75±2.72

10% 53.95±0.65 44.74±1.92 39.83±2.03 34.13±2.60

100% 56.61±0.34 40.42±2.17 34.87±2.47 29.61±2.69

After UDA

10% 57.58±0.56 55.80±0.60 54.70±0.51 53.44±0.38

100% 61.41±0.40 59.48±0.35 58.55±0.36 57.33±0.43

APkp
person (mean±std)

Before UDA

1% 25.28±1.06 16.64±1.17 12.72±1.90 08.34±1.94

2% 30.16±0.58 21.44±1.91 16.28±2.22 11.35±2.39

5% 37.09±0.30 25.93±2.22 20.12±2.38 13.84±2.50

10% 41.51±0.58 28.57±1.88 22.57±2.15 16.17±2.38

100% 50.55±0.39 23.99±2.25 16.86±2.16 11.31±1.91

After UDA

10% 48.52±0.50 45.73±0.56 43.74±0.47 40.90±0.44

100% 60.86±0.38 57.35±0.61 55.42±0.66 52.60±0.60

AP
bb (from mask)
person (mean±std)

Before UDA

1% 47.54±0.78 38.37±2.32 32.44±2.73 26.32±3.42

2% 47.96±0.90 39.32±2.29 33.54±2.30 27.87±2.44

5% 50.55±0.74 41.09±2.30 35.68±2.16 29.45±2.69

10% 52.79±0.69 42.63±2.17 37.18±2.10 31.41±2.60

100% 54.95±0.37 37.98±2.21 32.58±2.37 27.56±2.48

After UDA

10% 55.60±0.52 54.07±0.58 53.00±0.49 51.55±0.35

100% 59.34±0.40 57.44±0.42 56.62±0.41 55.39±0.51

self-training based framework with advanced data augmentations to generate pseudo

labels for the unlabeled target domain. The high-quality effectiveness in the pseudo

labels is ensured by applying explicit geometric constraints of the different

augmentations on the unlabeled input image. We also introduce disentangled feature

normalization for the statistically different source and the target domains and use the

mean-teacher paradigm to stabilize the training. Evaluation of the method on the two
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Chapter 6. Unsupervised domain adaptation for person pose estimation
and instance segmentation in the OR

target domain datasets, MVOR+ and TUM-OR-test, with extensive ablation studies,

show the effectiveness of our approach. We further demonstrate that the proposed

approach can effectively be adapted to the low-resolution images of the target domain,

as needed to ensure OR privacy, even up to a downsampling factor of 12x. Finally, we

illustrate the generality of our approach as the SSL method on the large-scale COCO

dataset, where we obtain significantly better results with as few as 1% of labeled

annotations.
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7 Potential applications

The greatest opportunity offered by AI is not reducing errors or workloads, or even

curing cancer: it is the opportunity to restore the precious and time-honored connection

and trust - the human touch - between patients and doctors.

– Eric Topol, Deep Medicine

Our approaches can be applied inside as well as outside the OR, for example,
in radiation risk monitoring (see [Loy Rodas 2018]), and medical infant motion
analysis (see qualitative video https://cutt.ly/mini-rgbd-qual)
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In this chapter, we discuss some of the potential applications of our approaches inside

the Operating Room (OR). We also demonstrate the generality of our approach outside

the OR environment by illustrating an initial work on medical infant pose analysis.

7.1 Radiation exposure estimation

As discussed in section 1.3.1.3, the rise of intraoperative X-ray imaging in hybrid

surgeries demands the clinicians to remain close to the imaging device and eventually to

the potentially harmful ionizing radiations. Recent works such

as [Rodas 2016,Krebs 2021] have developed a radiation simulation system utilizing

person-body models to measure the radiations at different body parts. Figure 7.1 shows

one such application developed in our lab utilizing human pose estimation to calculate

radiation exposure at different parts of the body. This intuitive risk awareness

application can be further extended by utilizing our pixel-based instance segmentation

approach, as discussed in chapter 6, for a more fine-grained assignment to different body

parts in the radiation simulation. It would be more clinically relevant not just because

of the fine-grained pixel-level radiation assignment to clinicians, but even more because

of the more accurate simulation modeling by considering the detailed OR layout.

Figure 7.1: Integrating human pose estimation for radiation exposure estimation inside the
OR, see [Loy Rodas 2018]
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7.2 Surgical skills assessment

As discussed in section 1.3.1.2, it is essential to develop automated ways to evaluate

surgeon’s skills inside the OR. The current methods of evaluating surgeon skills mainly

utilize the tool motion, and surgical workflow analysis [Liu 2021a]. While these provide

essential cues for surgical skills, a fine-grained analysis of the surgeon’s face and hand

motion can provide essential complementary cues. Approaches that can automatically

analyze these complementary visual cues could help develop a complete surgical skills

evaluation system. Moreover, it could also further help understand the essential

non-verbal communications inside the OR to analyze cognitive load, especially during

the critical phases of surgery. As an initial work, we develop a Unsupervised Domain

Adaptation (UDA) approach to estimate 133 whole-body keypoints with dense 68 face

keypoints and 42 hand keypoints. Our approach, similar to ORPose discussed in chapter

5, utilizes the recently introduced COCO whole-body [Jin 2020] as the source domain

dataset and the MVOR-unlabeled dataset (see section 3.2.1) as a target domain dataset.

Figure 7.2 shows some qualitative results for the whole-body pose estimation. The

detailed motion analysis of these dense face and hand keypoints can help not only to

evaluate essential surgical skills but also to understands non-verbal communications in

the OR.

Figure 7.2: Qualitative results for full body pose estimation including dense hand and face
keypoints.
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7.3 Medical infant motion analysis

Infant motion analysis to assess spontaneous movements at a very young age by trained

experts enables early detection of neurodevelopmental disorders like Cerebral Palsy

(CP). Authors in [Prechtl 1990] observe that the quality of spontaneous movements of

infants is a good marker for detecting impairments of the young nervous system at the

age of 2-4 months.

An automated motion analysis system requires accurately capturing body movements,

ideally without markers or attached sensors not to affect the movements of infants. A

vast majority of recent approaches for human pose estimation focus on adults having

very few infants’ poses, leading to a degradation of accuracy when applied to infants.

Specifically in the clinical setting, it is particularly hindered due to privacy constrains in

collecting the infants’ motion data. Protection of privacy of infants has been more strict

than adults, as infants can not decide whether or not they want their image to be

published.

As our initial experiments in this direction, we utilize the first publicly available

synthetic dataset, called MINI-RGBD [Hesse 2018a], to develop UDA approach for the

young infants. As the dataset is synthetically generated containing limited texture and

motion various, we observe that an model trained on the COCO dataset, called

kmrcnn++ (see section 6.2.2.1) works well on the original size. Our domain adaption

approach, called Adapt-OR (see section 6.2.3), on the MINI-RGBD dataset, achieves

significantly better results on the privacy-preserving low-resolution images.

MINI-RGBD is a synthetic dataset of infants in motion created using the Skinned

Multi-Infant Linear (SMIL) [Hesse 2018b] body model specifically designed for infants.

It has 12 sequences each consisting of 1000 RGBD-frames containing 2D/3D poses and

segmentation masks. We use video sequence ”01”, ”03”, ”04”, ”06”, ”07”, ”09”, ”10”,

”12” for unsupervised training and ”02”, ”05”, ”08”, ”11” for testing. We do not use

ground truth annotations to train our model. It uses 25 keypoints, however we use 13

common COCO keypoints for testing. We use our AdaptOR approach described in

section 6.2.3 to train on the MINI-RGBD dataset. We train the model for 10k iterations

with same experimental settings as discussed in chapter 6, section 6.4.3.

Table 7.1 shows the quantitative results. We observe a slight improvement at the

original resolution, most likely due to the synthetic nature of the data. However, we

obtain significantly better results on the heavily down-sampled low-resolution with

Table 7.1: Quantitative results on the MINI-RGBD dataset for before and after domain
adaptation.

Model APbb
person APkp

person

1x 12x 1x 12x

source-only(kmrcnn++) 87.86 81.85 94.22 51.17

AdaptOR 87.94 85.25 95.59 68.55
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7.3. Medical infant motion analysis

1x 8x 12x

Figure 7.3: Qualitative results on the MINI-RGBD dataset at various low resolution

about 4% improvement in bounding box AP and 17% improvement in keypoint AP.

Figure 7.3 show the qualitative results on some sample MINI-RGBD frames at various

downsampled scales (1x, 8x, 12x).
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8 Conclusions

The next AI revolution will not be supervised.

– Alyosha Efros

Chapter Summary

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.1 Multi-view multi-person absolute 3D pose estimation . . . . . . . . 106

8.2.2 Multi-modality person localization using RGBD images . . . . . . 107

8.2.3 Exploiting temporality for accurate pose estimation and consistent

tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2.4 Human body pose and shape estimation . . . . . . . . . . . . . . . 108

We finally conclude this dissertation by summarizing the contributions of our work. We

also discuss the possible directions of future research to address the current limitations

and improve the performance of our methods. We also discuss the new ideas originating

from these works which could enable novel applications inside the Operating Room (OR).
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8.1 Conclusion

The fine-grained localization of clinicians in the OR is a key component in designing the

new generation of OR support systems. Computer vision models for pixel-based

segmentation and body-keypoint detection are needed to understand the OR’s clinical

activities and spatial layout. This task, however, poses challenges in the following two

dimensions: 1) significant visual domain differences of OR images w.r.t traditional vision

datasets, and 2) privacy barriers in collecting and generating the data and annotations.

The principal goal of this dissertation is to develop approaches that exploit large-scale

unlabeled OR data for fine-grained person localization while preserving the privacy of

clinicians.

As our first contribution, we introduce a new Multi-view Operating Room (MVOR)

dataset, the first public dataset recorded during real clinical interventions. The MVOR

dataset illustrates the inherent visual challenges at a global-level showing significant

color distribution variations and at a instance-level showing challenging clinicians’ poses

due to proximity, loose clothes and masks, and multiple occlusions from instrument

clutter. The MVOR dataset contains 2196 Red-Green-Blue-Depth (RGBD) frames from

3 synchronized cameras and annotations for multi-person detection and 2D/3D human

pose estimation. Given the small size of the MVOR dataset, it is proposed to serve as a

test-bed to evaluate a model’s ability to generalize to unseen configurations and color

distribution of the real-world data. The ground-truth annotations of the dataset are

subsequently updated to the COCO format for standardized evaluation and compared

against the model trained on the natural images. We set up our baselines on the MVOR

color and depth images at original size images (1x) and heavily downsampled images

(12x) by evaluating several current state-of-the-art methods for person bounding box

detection, instance segmentation, and 2D/3D human pose estimation. As expected, the

results show a substantial decrease in the accuracy at the original scale (1x) and

significantly poor accuracy at the downsampled scale (12x). These initial baseline

evaluation results show a large margin of improvement on the challenging OR images,

specifically on the privacy-preserving low-resolution images.

In the chapter 4, we present our first Unsupervised Domain Adaptation (UDA) approach

for multi-person human pose estimation on low-resolution depth images. We propose a

novel method to perform domain adaptation across visual modalities of color (RGB)

images to depth (D) images. We exploit the synchronized properties of the RGBD

images and the recent pose estimator’s performance on the RGB images to propose a

pseudo-labeling based approach. We propose using the model’s prediction on the

high-resolution RGB images as pseudo labels for the corresponding low-resolution depth

images. Our approach uses the high-resolution color images only during the training

thus can be applied in the clinical setting where we need the model for the

low-resolution depth images. We evaluate the effectiveness of our approach of generating

automatic pseudo labels on the two types of human pose estimation models: on a

bottom-up RTPose where we integrate super-resolution feature blocks to effectively for
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low-resolution feature learning and on a top-down Keypoint-RCNN where we propose to

exploit advance data-augmentations for the effective low-resolution feature learning. Our

evaluation of these two methods on MVOR dataset shows that even with a 12x

sub-sampling of the depth images, our method achieves results better than the pose

estimator trained on original-size RGB images. These results suggest the high potential

of low-resolution images for scaling up and deploying privacy-preserving AI assistance in

hospital environments. We further show that improved underlying HPE architecture and

strong data augmentations significantly boosts the performance and effectively learns

the features for low-resolution images.

In chapter 5, we propose a UDA approach for joint 2D/3D pose estimation on monocular

RGB OR images. We propose to use a teacher-student based pseudo-labeling paradigm

where a multi-stage, larger, and accurate teacher model generates pseudo labels for a

single-stage, smaller, and practical student model. We propose to generate accurate

pseudo labels using the teacher model by combining advances from the data-distillation

and knowledge-distillation. The data-distillation has been utilized by averaging

predictions from the multiple augmentations of the same instance to reduce the pose

ambiguities, and knowledge-distillation has been utilized by incorporating hard as well

as soft averaged predictions in the training loop. The hard predictions contain high

confidence detections, whereas soft predictions contain all the predictions along with

their confidence value. This effective strategy to generate accurate pseudo labels greatly

benefits the student model during the training. Our evaluation on the MVOR+ dataset

demonstrates that the proposed network can yield accurate results on low-resolution

images, as needed to ensure privacy, even using a downsampling rate of 12x.

As our last contribution, in chapter 6, we tackle the joint person pose estimation and

instance segmentation task and propose a UDA approach to adapt a model trained on a

labeled source domain to an unlabeled target domain. We propose a new self-training

based framework with advanced data augmentations to generate pseudo labels for the

unlabeled target domain. The high-quality effectiveness in the pseudo labels is ensured

by applying the explicit geometric constraints of the different augmentations on the

unlabeled input image. We also introduce disentangled feature normalization where we

use different feature normalization layers to tackle two statistically different source and

the target domains distributions. The training is further stabilized by utilizing

mean-teacher paradigm where we use closely coupled teacher and student models to

generate and consume the pseudo labels, respectively. Evaluation on the two target

domain datasets, MVOR and TUM-OR-test, with extensive ablation studies, shows the

effectiveness of our approach. We further demonstrate that the proposed approach can

effectively be adapted to the low-resolution images of the target domain, as needed to

ensure OR privacy, even up to a downsampling factor of 12x. Finally, we illustrate the

generality of our approach as Semi-supervised Learning (SSL) method on the large-scale

COCO dataset, where we obtain significantly better results with as few as 1% of labeled

annotations.
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8.2 Perspectives

We believe that several possible lines of research could spawn from work presented in this

dissertation exploiting large-scale unlabeled data in novel ways. These could open up

possibilities for exploring exciting research problems, consequently enabling the OR of

the future as the OR of the present. Several perspectives of our work are discussed below.

8.2.1 Multi-view multi-person absolute 3D pose estimation

In this dissertation, we have introduced the single-view person localization approaches

utilizing only the unlabelled data from the OR. However, in a single view, it is possible

that the clinicians can hardly become visible due to the heavy occlusion. It could

eventually result in poor performance, specifically in the 3D pose estimation, which

relies on accurate 2D pose estimation input, see figure 8.1. Multi-view images can not

only help to resolve the occlusion failures but also help to provide absolute 3D pose

estimation in the OR room coordinates as opposed to root-relative coordinates

predominantly used in single-person 3D pose estimation. The current research for

Figure 8.1: Some of the failure cases of our approaches in 3D pose estimation on color and
depth images arising mainly due to the heavy occlusion from other clinicians and instrument
clutter. Multi-view images can help to resolve these failure cases by taking complementry cues
from other views.

106



8.2. Perspectives

multi-view multi-person absolute 3D pose estimation is however limited to fully

supervised approaches [Tu 2020,Reddy 2021] on the datasets recorded during simulated

social activities [Joo 2015]. Utilizing UDA framework to extend these fully supervised

approaches to an unseen unlabeled real-world OR environment with a limited number of

camera views for accurate absolute 3D pose estimation is a challenging future research

direction to pursue. More interestingly, another promising direction would be learning

absolute 3D pose estimation in a purely self-supervised manner. When multi-view

images are available, the 3D pose in absolute coordinates can be determined by using

multi-view geometry, and triangulation [Andrew 2001]. However, the bottleneck lies in

the inaccuracy of 2D pose estimations due to occlusion and limited camera views. The

spatial and geometric constraints as discussed in chapter 6 can be extended in the

multi-view volumetric space to iteratively refine the 3D poses by exploiting these

constraints, triangulation, and more robust 2D human pose estimation.

8.2.2 Multi-modality person localization using RGBD images

This thesis has primarily focused on the use of unlabeled data to develop various

fine-grained person localization approaches. However, the developed approaches take

single modality (color or depth) input images at the inference time. With the advent of

inexpensive RGBD cameras, the depth and color images are readily available, providing

complementary information of the scene - 2D texture details from the color and 3D

environment details from the depth images. The Convolutional Neural Network (CNN)

based models have shown significantly improved performance for the 2D color images.

However, the straightforward application of CNN models on the depth images may not

be optimal. An interesting research direction would be to explore a unified architecture

for RGBD images exploiting complementary information from both the modalities at the

inference time. Such an architecture can help not just to improve accuracy at the

inference time but even more to extend UDA approach, such as discussed in chapter 6,

for more robust domain adaptation.

8.2.3 Exploiting temporality for accurate pose estimation and consis-

tent tracking

Temporality is another dimension that can be exploited to improve further and stabilize

the localization accuracy. For example, the teacher-student based UDA framework

described in chapter 5 can exploit temporality in the teacher model to get more accurate

pseudo labels. The student model can further be extended with the temporal component

to exploit these accurate pseudo labels to get more accurate output and consistently

track the clinicians. As another example, the UDA framework described in chapter 6

can also exploit the temporality to more accurately generate and consume the pseudo

labels for the temporal sequence.
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Figure 8.2: Failure cases of some of the state-of-the-art approaches for human body pose and
shape estimation when applied to the challenging OR images.

8.2.4 Human body pose and shape estimation

This thesis has primarily worked on the fine-grained person localization ranging from

person instance segmentation to 2D and 3D human pose estimation. Although extremely

useful, the instance segmentation is limited to the 2D image, and pose estimation

localizes sparse keypoints either in 2D or 3D. The current research directions have been

evolving to estimate parametric 3D human mesh model from a given image combining

the pixel-based instance segmentation and the 3D pose estimation into a unified

field [Loper 2015,Kanazawa 2018]. The research however has primarily been focused on

learning the body shape model from synthetic datasets such as Human3.6 [Ionescu 2013].

When applied to challenging real-world environments such as OR, these approaches fail

remarkably, as illustrated in figure 8.2. The UDA frameworks discussed in this

dissertation could help enable bringing human body shape estimation inside the OR.
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A Face Detection in the Oper-

ating Room: Comparison of

State-of-the-art Methods and a

Self-supervised Approach

Figure A.1: Examples images from the MVOR-Faces dataset collected in the OR, illustrating
the challenges for face detection systems: occlusion with medical equipment or other persons,
masked faces, absence of visible skin. Ground-truth is shown with green bounding boxes. Our
proposed self-supervised approach significantly improves face-detection results on the challenging
OR images.
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In this chapter, we describe our work on face detection in the OR. This work was carried

out by Thibaut Issenhuth (currently the Ph.D. candidate at Criteo and Ponts ParisTech)

during an internship, which I co-supervised with Prof. Nicolas Padoy. It was presented

at the international conference on information processing in computer-assisted

interventions (IPCAI) conference and published in the international journal of

computer-assisted radiology and surgery (IJCARS) [Issenhuth 2019].

A.1 Introduction

Face detection in the operating room is one of the key steps needed to develop intelligent

context-aware systems for the automatic analysis of human activities. It can indeed

serve for person detection and identification as well as for the anonymization of sensitive

OR data.

Face detection is a very active research topic in computer vision. Before the rise of deep

learning, traditional methods for face detection used machine learning algorithms on top

of hand-crafted features [Viola 2001]. With the advent of deep learning architectures

based on convolutional neural networks (CNNs), the performance of face detectors has

drastically improved. CNNs are trained end-to-end and are able to learn semantically

rich and robust data representations that yield great accuracy. The face detection

architectures are often inspired by deep object detectors, whether they are

one-stage [Najibi 2017,Zhang 2017] or two-stage detectors [Jiang 2017]. The one-stage

detectors generally divide the image into a grid of boxes and directly classify and regress

the localization of objects in each box. The two-stage networks first use a Region
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Proposal Network (RPN) [Ren 2015] to extract Region of Interests (ROIs), then a second

network to classify and localize each ROI more accurately. These detectors manage to

handle the variety of scales, by setting up strategies to specifically detect small faces.

They perform contextual reasoning and use image or features pyramids to achieve

robustness. The success of these methods can also be attributed to the availability of

large-scale annotated dataset. Indeed, WIDER Faces [Yang 2016], the standard dataset

for training and testing face detection methods in the wild, contains 32,203 images with

393,703 labeled faces. Apart from the bounding box based face detection methods, faces

can also be extracted from the face keypoints of human pose estimators, which is

performed by mainly two types of approaches: bottom-up and top-down. Bottom-up

approaches [Cao 2017, Insafutdinov 2016] first detect all the keypoints, then assemble

them into skeletons, whereas top-down approaches [Fang 2017,Xiao 2018,Chen 2018a]

first detect persons, often with standard object detectors, and then detect keypoints for

each detected person using a single person pose estimator. The top-down approaches

resolve better the keypoint to person assignment and therefore largely outperform

bottom-up approaches on the standard public datasets [Lin 2014,Andriluka 2014].

The automatic recognition of activities during real surgeries to develop intelligent

context-aware assistance systems is a recent field that has started to gain traction in the

medical as well as computer vision

community [Twinanda 2016b,Maier-Hein 2017,Yeung 2018]. Work on analyzing humans

in OR videos have generally focused on person bounding box detection and on human

pose estimation, using either RGB or RGB-D

data [Kadkhodamohammadi 2017b,Kadkhodamohammadi 2017c,Belagiannis 2016]. So

far, face detection in the OR has however received very little attention,

besides [Nieto-Rodŕıguez 2015] and [Flouty 2018], described below. Furthermore, current

state-of-the-art face detectors, even those close to the human-level performance, do not

generalize well to OR images. Their inferior generalization can be explained by the fact

that they have been trained on natural images, whereas OR images are very specific and

challenging: persons’ faces are often occluded due to equipment clutter, masks, and

glasses. Figure A.1 shows some examples of the challenging situations occurring inside

the OR.

One standard approach to overcome this visual domain difference is to use an annotated

dataset from the target application to either retrain a fully supervised method or adapt

an existing method by fine-tuning its parameters through transfer learning. For example,

in [Nieto-Rodŕıguez 2015] models based on AdaBoost [Friedman 2000] are trained from

scratch to detect faces and the absence/presence of masks. Whereas in [Flouty 2018],

authors recently proposed a method to detect the faces in the OR by finetuning the

Faster-RCNN detector [Jiang 2017] on OR videos. In [Flouty 2018], the video dataset

consists of youtube OR videos, which have been manually annotated with face bounding

boxes. The results are further improved by using temporal smoothing. Manual

annotations, as required by the aforementioned approaches, can however be expensive

and time-consuming, whereas non-annotated data is in abundance and often inexpensive.
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Therefore, this work aims at distilling knowledge from non-annotated OR data to

improve the baseline performance of a face detector.

This chapter investigates face detection and visual domain adaptation for the OR

environment. We first present a comparison of 6 state-of-the-art face detectors. We

consider methods where faces can be obtained either directly from bounding box based

methods or from face keypoints generated by human pose estimators. We evaluated

these methods on the MVOR-Faces, an extension of the MVOR dataset [Srivastav 2018]

augmented with face bounding box annotations. To the best of our knowledge, this

chapter presents the first comparison of state-of-the-art face detectors in an OR

environment. We also select one detector, SSH [Najibi 2017], and propose to improve it

by using an iterative self-supervised method. Several variants of self-supervised methods

have been recently used to improve the quality of the synthetic annotations, for instance

by using temporal ensembles [Laine 2016] or by combining the results of different

geometric transformations [Radosavovic 2018]. In this work, we found it effective to

iteratively generate synthetic annotations and fine-tune the model. This approach

significantly improves the original model, and largely outperforms the best face detectors

on all metrics.

A.2 Methodology

Filtered Synthetic Labels

Synthetic Labels

Filter Best Labels

Generate
Detections

Update the Weights

Train Using
Synthetic Labels

CNN Based Pretrained Face Detection Model

Unlabeled Images

Figure A.2: An iterative approach to adapt a face detector to a target operating room. First, we
obtain a trained face detector (SSH [Najibi 2017]) and unlabeled images of the same operating
room. Then, we repeat the following steps: (a) use the detector to generate the labels (b) filter the
detections with a heuristic to create good quality synthetic annotations (c) retrain the detector
using synthetically generated annotations.

A.2.1 Comparison of state-of-the-art face detector

We present below the state-of-the-art methods for face detection used in our comparison.

In this study, the faces are represented by bounding boxes. We consider 4 methods

where the faces are directly obtained as the output of the detector and 2 methods where

the face bounding boxes are generated from face keypoints detected by human pose

estimators. These methods are selected based on their ranking on standard public

116



A.2. Methodology

datasets, namely the WIDER dataset [Yang 2016] for bounding box based face detectors

and the COCO dataset [Lin 2014] for human pose estimators. For reproducibility, we

only choose open-source methods.

A.2.1.1 Bounding box based face detectors

Faster-RCNN face detector [Jiang 2017]. The Faster-RCNN, originally designed

as a generic two-stage object detector, was trained for the face detection task on the

WIDER Faces dataset. First, the RPN generates ROIs with a sliding window approach

on deep feature maps. At each sliding window location, anchors, bounding boxes of

different scales and aspect ratios, are predicted as either background or ROI. Then,

ROIs are pooled and used as input for a second network, which classifies the face and

regresses for the exact coordinates of its bounding box.

Finding tiny faces [Hu 2017]. This method is specifically conceived to detect faces

of different scales. The input of the algorithm is an image pyramid, with three versions

of the image: one downsampled, the original and one upsampled image. Each rescaled

image is processed by a shared pyramidal CNN, which predicts binary heatmaps for

bounding box templates of different sizes.

SSH: Single stage headless face detector [Najibi 2017]. This is a one-stage face

detector that includes a context module, namely a set of convolutional layers to increase

the effective receptive field and different branches to achieve scale-invariance. It uses

three different detector networks to predict small, medium and large face anchors. SSH

achieves a similar accuracy than the tiny face detector [Hu 2017], while maintaining

real-time performance.

S3FD: Single shot scale-invariant face detector [Zhang 2017]: This is also a

one-stage face detector inspired by the RPN [Ren 2015] and SSD [Liu 2016]

architectures. They design strategies to increase the number of positive anchors

matching tiny faces during training. Their CNN architecture includes feature maps and

detectors that are specific to a range of scales and uses a max-out background label on

small anchors to reduce the number of false positives.

A.2.1.2 Human pose estimation based face detectors

Human pose estimation aims to localize the anatomical keypoints of all the persons

present in an image. These anatomical keypoints are spread across the whole body

including the face keypoints. Current state-of-the-art methods are trained on the COCO

dataset, which includes five face keypoints (nose, left eye, right eye, left ear, right ear).

We fit a bounding box of fixed size, 30x30 pixels, at the average location of these five

keypoints to extract the face bounding box. We now describe the pose estimation

methods that we used for the evaluation.

OpenPose [Cao 2017]. This is one of the best bottom-up approaches for human pose

estimation. First, a CNN predicts confidence heat-maps for all keypoints and part

affinity fields for each joint. These maps are then used to construct a graph of keypoints
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and body joints. Finally, this graph is parsed using a bi-partite graph matching

algorithm to produce a set of human poses.

AlphaPose [Fang 2017]. This is one of the state-of-the-art top-down methods. It uses

Faster-RCNN [Ren 2015] to detect persons. Then, cropped human bounding boxes are

processed by a single person pose estimator, which is composed of several modules,

including spatial transformers, to refine the keypoint detections in the bounding box.

This method successfully handles the problems caused by inaccurate and duplicate

bounding boxes.

A.2.2 Iterative self-supervised approach for face detection in the OR

We use the following two steps to improve the selected state-of-the-art face detector on

OR images: 1. Generation of the unlabeled dataset 2. Iterative refinement using a

self-supervised approach.

A.2.2.1 Generation of the unlabeled dataset

We use an unlabeled dataset of 20k images generated from videos captured in the OR.

The videos were collected on days different from the ones of the test dataset to ensure

the absence of overlap between the unlabeled dataset and the test dataset. We then use

OpenPose [Cao 2017], a multi-person pose estimator, on the OR videos to get the

approximate number of persons in each frame. The computational efficiency of

OpenPose allows us to make the inference on the entire dataset in a reasonable time. We

divide the images into four categories: images with one, two, three, and four or more

detected persons. Since OpenPose also gives a confidence score for each detected

skeleton, we average the scores of the detected skeletons and take the 5k highest-scored

images from each category (i.e., 20k images overall). This selection method ensures that

the images contain persons in different numbers.

A.2.2.2 Iterative refinement using self-supervised approach

We utilize an iterative self-supervised approach to adapt the state-of-the-art model to

the target OR dataset. This approach consists of fine-tuning the model on a subset of its

own detections. We use SSH [Najibi 2017], pre-trained on WIDER Faces, as the

CNN-based model for the iterative refinement. We choose this model because it has high

computational efficiency and also yields state-of-the-art results on WIDER Faces. This

detector is then used to generate synthetic labels on the unlabeled dataset. To select

quality face bounding boxes, we use a simple yet effective heuristic criteria: with a

dataset of N images, we select the best 2*N detections. Since we have approximately 2.5

persons/image in the unlabeled dataset, 2*N best detections contain the face bounding

boxes with a high recall. These synthetically annotated images are then used to finetune

the original model. We perform these steps iteratively to improve the detections and the

detector at each iteration as shown in Fig. A.2. It is to be noted that no validation set

is available as we did not use any supervised annotation. Therefore, our experiments
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differ from the traditional deep learning experiments, which fine-tune the

hyper-parameters based on the performance on a validation set. We mainly conduct the

fine-tuning experiments with a different number of training batches before relabelling

and different iteration numbers. We present the result of each experiment on the test-set.

A.3 Experimental setup

A.3.1 Test dataset (MVOR-Faces)

We compare the state-of-the-art face detectors on MVOR-Faces, a dataset of operating

room images captured during real surgical procedures. MVOR-Faces is an extension of

the public MVOR dataset [Srivastav 2018], which consists of 732 multi-view frames

(2196 images) recorded in an interventional room. In the MVOR dataset, faces of

persons without a mask and nude parts of patients are fully blurred, and the persons

with masks are blurred only on the eyes. MVOR-Faces contains the same images as

MVOR, except that the eyes of the persons wearing a mask are not blurred. Also, it

contains the manually annotated face bounding box of all visible faces wearing a mask.

All fully-visible faces and nudity zones are still blurred in the MVOR-Faces as needed for

anonymity. Overall, the dataset contains 2262 face bounding boxes for 2196 images.

A.3.2 Evaluation metrics

We use the standard metrics for object detection from COCO [Lin 2014], i.e. Average

Precision (AP) and Average Recall (AR). AP IoU is the average precision at a fixed

intersection over union (IoU), and AP is the average of AP IoU at different IoU

thresholds. While the public implementation averages between IoU of 0.5 and 0.95 with

a step of 0.05, we average between an IoU of 0.3 and 0.95 to support a slightly looser

metric. The consideration of a slightly looser metric is motivated by the fact that face

detection in a medical context is quite challenging: clinicians wear mask, glasses, and

hats, and are often occluded. Therefore, a looser metric reduces the bias in favor of the

face detectors.

A.4 Results and discussion

A.4.1 Comparison of state-of-the-art face detectors

Table A.1 shows the comparison of state-of-the-art face detectors. The first four

methods in Table A.1 directly output face bounding boxes, as described in section 2.1.1.

The next two methods detect the human skeletons, including face keypoints (i.e. ears,

eyes and nose). We extract the face bounding boxes from face keypoints as specified in

Section 2.1.2. Unless otherwise stated, we use the exact same models provided by the

authors, without modifying any hyper-parameter.

On AP(0.3:0.95), Tiny Face detector [Hu 2017] is the best model, with 0.340;

SSH [Najibi 2017] and S3FD [Zhang 2017] are close, with respectively 0.314 and 0.302.
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Faster-RCNN

S3FD

Tiny Face

SSH

AlphaPose

OpenPose

Figure A.3: Qualitative results from the face detectors evaluated on MVOR-Faces. The displayed
detections were selected based on a score threshold of the detector corresponding to a recall
threshold of 70% at an IoU of 0.3.
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Figure A.4: Comparison of the original SSH model (left column) with the best self-supervised
model trained with our iterative approach (right column). To filter the displayed detections, we
use the score threshold corresponding to a recall threshold of 70% at an IoU of 0.3, as in Fig. A.3.
The self-supervised model detects much harder examples, with occlusion or uncommon poses.

On AP(0.3), AlphaPose is the best model with 0.785. With this looser metric, human

pose estimators perform better. Indeed, in the OR environment, when clinicians wear
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Detector AP(0.3:0.95) AP(0.3) AP(0.5) AR(0.3:0.95)

Faster-RCNN [Ren 2015,Jiang 2017] 0.254 0.651 0.407 0.345
S3FD [Zhang 2017] 0.302 0.627 0.486 0.395
Tiny Face [Hu 2017] 0.340 0.734 0.556 0.428
SSH [Najibi 2017] 0.314 0.704 0.517 0.421

AlphaPose [Fang 2017] 0.279 0.785 0.463 0.358
OpenPose [Cao 2017] 0.240 0.776 0.365 0.316

Self-supervised SSH 0.402 0.800 0.648 0.474

Table A.1: Results of state-of-the-art face detectors on MVOR-Faces. First four methods are
bounding box based face detectors. AlphaPose and OpenPose are human pose estimators, from
which face bounding boxes are generated from the face keypoints. Results show the margin for
improvement on the MVOR-Faces dataset.

Detector AP(0.3:0.95) AP(0.3) AP(0.5) AR(0.3:0.95)

Tiny Face [Hu 2017] 0.237 0.627 0.369 0.331
SSH [Najibi 2017] 0.229 0.600 0.368 0.368

AlphaPose [Fang 2017] 0.239 0.742 0.370 0.323

Self-supervised SSH 0.306 0.711 0.492 0.403

Table A.2: Comparative study: results of state-of-the-art face detectors on MVOR [Srivas-
tav 2018], the public version of MVOR-Faces. Here, clinicians wearing a mask are blurred around
the eyes. Results show the significant decrease in the performance as compared to MVOR-Faces
shown in Table A.1

mask and hats, face detectors cannot rely on the same features as in the outside

environment, such as the mouth shape and the nose. Human pose estimators, which also

detect other body keypoints, are more robust than face detectors. However, they do not

localize the bounding boxes accurately enough to perform well on stricter metrics. For

Figure A.5: Failure examples from the self-supervised model showing best results on the test-set,
i.e. MVOR-Faces. False positives mainly come from hands, which are mistaken as faces. False
negatives arise with hard examples, i.e. faces strongly occluded or with difficult poses.
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AP(0.3:0.95) AP(0.3) AP(0.5) AR(0.3:0.95)

Original SSH model results → 0.314 0.704 0.517 0.421
Number of training batches ↓

1000 0.372 0.781 0.597 0.462
2000 0.373 0.769 0.593 0.458
3000 0.374 0.770 0.595 0.458
5000 0.372 0.770 0.598 0.454
10000 0.378 0.778 0.608 0.462
15000 0.372 0.781 0.600 0.457

Table A.3: Comparative study: training SSH model without re-generating the synthetic labels.
One training batch is composed of two images. Here, the self-supervised model is trained on the
images annotated by the original SSH model and initialized with SSH weights. The AP saturates
quite fast. After 1k batches, the AP does not significantly increase. The best results are much
lower than best results with the iterative approach in Figure A.2.

Iteration AP(0.3:0.95) AP(0.3) AP(0.5) AR(0.3:0.95)

Original SSH model Results → 0.314 0.704 0.517 0.421
Number of training batches before relabelling ↓

1

1000

0.373 0.782 0.598 0.462
2 0.365 0.783 0.590 0.461
3 0.367 0.785 0.592 0.450
4 0.365 0.788 0.594 0.456

1

2000

0.373 0.773 0.596 0.459
2 0.385 0.796 0.622 0.466
3 0.393 0.808 0.630 0.465
4 0.402 0.800 0.648 0.474

1

3000

0.373 0.772 0.595 0.457
2 0.377 0.793 0.608 0.452
3 0.383 0.806 0.614 0.459
4 0.371 0.797 0.604 0.448

Table A.4: The iterative process of self-supervision with different hyper-parameters. One
iteration consists of three steps: (1) Generate predictions on the unlabeled dataset with the last
model. (2) Filter detections: select the best 2N detections on N images. (3) Retrain the model on
1k, 2k or 3k training batches. When training with 2k or 3k batches before relabelling, it improves
the results from the baseline approach (see in Table A.3). One batch is composed of two images.

comparison, we also provide the results on the original MVOR dataset, where the eyes

are blurred, in Table A.2. The results show a significant drop in the performance

highlighting the importance of the eyes for face detection.

Overall, results of state-of-the-art detectors show a large margin for improvement on the

MVOR-Faces dataset. With an IoU of 0.5, which is a less strict metric, the AP of the

best model is only 0.556. On the WIDER Faces dataset, tiny face detector [Hu 2017]

achieves 0.819 using the same metric, while SSH [Najibi 2017] reaches 0.944 and

S3FD [Zhang 2017] 0.958. Qualitative results shown in Fig. A.3 illustrate some of the

mistakes made by the state-of-the-art detectors on the MVOR-Faces dataset, e.g.

multiple detections, false positives, false negatives.
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A.4.2 Iterative self-supervision

As mentioned in section 2.2, we use SSH [Najibi 2017] for the self-supervised process.

We conduct several experiments on self-supervision to demonstrate the interest of this

iterative approach. During training, we use the following hyper-parameters: stochastic

gradient descent with a learning rate of 0.04, momentum of 0.9 and weight decay of

5e−4. The batch size is 2. Anchors, which correspond to a location (x,y) in the image

and a predefined bounding box size (width, height), are considered as positives if their

IoU with a ground-truth bounding box is greater than 0.5, as negatives otherwise.

During inference, we use an image pyramid of four levels, as the authors. The aspect

ratio of each rescaled image is preserved. The weights are initialized with the ones

provided by the authors, after training on the WIDER Faces dataset.

In Table A.4, we provide the test-results of our proposed iterative process, with different

hyper-parameters (number of iterations and number of training batches used before

relabelling). When relabelling, we filter the detections with the same criteria as

explained in section 2.2, i.e. 2*N best detections where N is the number of images. The

training is done with the same parameters as mentioned above. The model which

performs best on the test dataset is achieved at iteration 4 when training with 2000

batches before regenerating the labels. The model outperforms the state-of-the-art with

a large margin on all metrics. On AP(0.5), it outperforms tiny face detector [Hu 2017]

by more than 9%, and the original SSH model by 13.1%.

In Fig. A.4, we compare a few detections from the original SSH and the best

self-supervised model on the test-set. The latter detects much harder examples, with

occlusion or uncommon poses, and has fewer false positives. Figure A.5 shows some

common failure cases of the self-supervised model. It consists mainly of detecting hands

as faces. It shows an overfitting on skin texture. Since the persons wear gowns and

masks, faces and hands are almost the only body parts with visible skin. In Table A.3,

we show an ablation study of self-supervision for domain adaptation, with no relabelling

of target images by the self-supervised model. The 20k images of the unlabeled dataset

are annotated with the detections of the original SSH model. We filter the predictions

with the same criteria: since we have 20k images, we take the best 40k detections. Then,

the model is fine-tuned by training on synthetically annotated images on 15k training

batches. We observe a quick saturation on the test-set, MVOR-Faces: the AP(0.3:0.95)

reaches 0.372 after 1k batches and 0.378 after 10k batches (i.e., with one epoch on the

entire unlabeled dataset). At 15k batches, the AP(0.3:0.95) is back at 0.372. The quick

saturation of this process highlights the interest of our iterative approach.

A.5 Conclusion

In this chapter, we propose the first broad evaluation of state-of-the-art face detectors

on OR images. Since the results show a large margin for improvement, we also propose

to use an iterative self-supervised approach to adapt a face detector to a given OR. It

consists of gathering images of the target environment, generating synthetic annotations

124



A.5. Conclusion

with a model trained on a manually annotated dataset, and retraining it iteratively

using the synthetic labels. This method is generic and applicable to any OR

configuration. Our self-supervised detector outperforms the state-of-the-art on

MVOR-Faces by a large margin, namely by more than 6% on AP(0.3:0.95). By

significantly improving the accuracy of face detection, we show that self-supervision is a

promising direction to transfer state-of-the-art computer vision approaches to the

medical context, where annotations are challenging to generate.
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B.1. Abstract

B.1 Abstract

L’émergence récente de la science des données chirurgicales promet une nouvelle

génération de systèmes d’assistance en salle d’opération (OR, pour ”Operating Room”).

La localisation précise des cliniciens dans la salle d’opération, soit en termes de points

clés en utilisant l’estimation de la pose humaine, soit en termes de pixels en utilisant la

segmentation par instances, est un élément clé pour concevoir de tels systèmes. La tâche

est cependant difficile non seulement parce que les images OR contiennent des

différences visuelles significatives par rapport aux ensembles de données ordinaires en

vision par ordinateur, mais aussi parce que les données et les annotations sont difficiles à

collecter et à générer dans la salle d’opération, en raison de problèmes de confidentialité.

Les approches qui peuvent adapter un modèle à un nouveau domaine cible non étiqueté

sont donc très prometteuses.

Dans cette thèse, nous explorons les méthodes d’adaptation de domaine non supervisées

pour permettre l’apprentissage visuel pour le domaine cible, la salle d’opération, en

travaillant dans deux directions complémentaires. Tout d’abord, nous étudions comment

des images basse résolution avec un facteur de sous-échantillonnage allant jusqu’à 12x

peuvent être utilisées pour une localisation précise des cliniciens afin de résoudre les

problèmes de confidentialité. Deuxièmement, nous proposons plusieurs méthodes

auto-supervisées pour transférer les informations apprises d’un domaine source étiqueté

vers un domaine cible non étiqueté pour traiter le changement de domaine visuel et le

manque d’annotations. Ces méthodes utilisent des prédictions auto-supervisées pour

permettre au modèle d’apprendre et de s’adapter au domaine cible non étiqueté. Nous

proposons d’abord d’effectuer une adaptation de domaine à travers les modalités

visuelles, des images couleur (RGB) vers les images de profondeur (D) en exploitant les

propriétés synchronisées des images RGB-D et en utilisant des modèles RGB

d’estimation de pose humaine de pointe pour l’estimation sur des images de profondeur.

Deuxièmement, nous explorons la distillation des données et celle des connaissances pour

générer au mieux des pseudo-étiquettes à partir d’un modèle mâıtre à plusieurs étages,

lourd mais précise, afin d’entrâıner un modèle élève à un étage, plus petit et déployable

pour une estimer la pose humaine 2D/3D. Enfin, nous proposons d’utiliser des

contraintes spatiales et géométriques sur les différentes augmentations des couches de

normalisation des caractéristiques d’image et de découplage dans le modèle de base pour

apprendre simultanément de la source étiquetée et des données du domaine cible non

étiquetées pour conjointement estimer la pose et segmenter par instances. Pour

démontrer l’efficacité de nos approches, nous publions le premier ensemble de données

public, appelé Multi-View Operating Room (MVOR), généré à partir d’enregistrements

d’interventions cliniques réelles. Nous obtenons des résultats de pointe sur MVOR, en

particulier sur les images OR à basse résolution préservant la confidentialité. Nous

espérons que nos approches d’adaptation de domaine non supervisées proposées pourront

aider à développer et à déployer de nouvelles applications d’assistance par IA pour les

salles d’opération.
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Figure B.1: Différences visuelles globales ainsi qu’au niveau de l’instance entre les images
naturelles du domaine source et les images OR du domaine cible. Lorsqu’un modèle entrâıné
sur le domaine source est appliqué au nouveau domaine cible, nous constatons une diminution
substantielle de la précision de la localisation et une augmentation des détections manquées.
Notre méthode d’adaptation de domaine non supervisée améliore considérablement les résultats
sur les images OR haute et basse résolution. Les clusters séparés du domaine source et des images
du domaine cible sont obtenus en exécutant une technique de réduction de dimension: Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP) [McInnes 2018]. Les
images des domaines source et cible font partie des ensembles de données COCO [Lin 2014] et
MVOR [Srivastav 2018], respectivement.

B.2 Motivation

Les approches de localisation de personne à haut niveau de granularité, telles que

l’estimation de la pose humaine à partir de points clés (HPE) ou la segmentation

d’instance sur les pixels peuvent fournir dans la salle d’opération

(OR) [Kadkhodamohammadi 2017c,Belagiannis 2016] des informations sémantiques de

haut niveau sur les cliniciens et les patients. Les nouveaux systèmes d’assistance

contextuelle pour la salle d’opération moderne peuvent utiliser ces modèles pour faciliter

d’assistance applications telles que la surveillance des activités, la compréhension de la

dynamique d’équipe et la surveillance des risques radiologiques. La surveillance de

l’exposition aux rayonnements [Rodas 2017], par exemple, pourrait utiliser de tels

modèles pour comprendre quel pixel ou point clé des cliniciens est exposé à des

rayonnements nocifs. Bien que l’émergence des techniques d’apprentissage profond ait

conduit à des modèles très précis pour les images naturelles in the wild, la localisation

des personnes dans la salle d’opération pose toujours des scénarios difficiles. Les données

OR ont une complexité visuelle élevée en raison de l’occlusion et de l’encombrement de

divers équipements, des vêtements amples portés par les cliniciens, de la proximité des

personnes présentes sur la scène et du changement de distribution des données par
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Arrangements de caméras RVB-D au plafond à l’intérieur de la salle
d’opération

View 1

View 2

View 3

Figure B.2: Configuration multi-vues et vues acquises dans une salle d’opération de radiologie
interventionnelle du CHU de Strasbourg

rapport aux images naturelles. Les méthodes d’apprentissage profond actuelles, qui

fonctionnent remarquablement bien pour les images naturelles, montrent une précision

réduite lorsqu’elles sont appliquées aux images OR en raison des différences de domaine

visuel globales et au niveau de l’instance, comme le montre la Figure B.1. Les ensembles

de données supervisés à grande échelle servent de cheval de bataille pour les modèles

d’apprentissage profond hautement précis et déployables. Cependant, dans le cas de la

salle d’opération, l’obtention d’une annotation de vérité terrain n’est pas triviale, et

l’utilisation de techniques de crowdsourcing telles qu’Amazon Mechanical Turk est peu

pratique en raison des problèmes de confidentialité des patients et des cliniciens. Les

approches, par conséquent, qui peuvent adapter un modèle au domaine cible invisible et

non étiqueté tel que la OR tout en préservant la confidentialité sont des poursuites

prometteuses. Les approches d’adaptation de domaine non supervisé (UDA) visent à

généraliser un modèle dans différents domaines avec accès aux données étiquetées du

domaine source et aux données non étiquetées du domaine cible, voir l’exemple dans la

Figure B.1. Cette thése explore plusieurs approches d’adaptation de domaine non

supervisée (UDA) pour l’estimation HPE et la segmentation d’instances de personnes,

comme indiqué ci-dessous.

B.3 Contributions

B.3.1 Publication de l’ensemble de données MVOR et comparaison

des méthodes de pointe

Comme première contribution, nous introduisons un nouvel ensemble de données de salle

d’opération à vues multiples, appelé MVOR, en tant que premier ensemble de données
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View 1 View 2 View 3

3D View

Figure B.3: exemples d’images et d’annotations de l’ensemble de données MVOR. L’ensemble de
données et le code sont disponibles ici : https://github.com/CAMMA-public/MVOR

public enregistré lors d’interventions cliniques réelles pour la détection multi-personnes

et 2D/3D, voir Figure B.2. MVOR montre les défis visuels inhérents à l’environnement

réel de la salle d’opération, illustrant des variations significatives dans la distribution des

couleurs par rapport aux images naturelles et aux cliniciens près les uns des autres

portant des vêtements amples et des masques. Nous publions l’ensemble de données

MVOR dans le but de faire progresser l’état de l’art pour la localisation précise des

personnes dans la salle d’opération en le proposant comme un banc de test comparatif,

voir la figure B.3. Nous évaluons des approches de pointe pour la détection de personnes

et l’estimation de la pose humaine à l’échelle originale (1x) et à l’échelle

sous-échantillonnée (12x). Nous observons une dégradation significative des

performances, en particulier sur les images basse résolution, ce qui nous aide à établir

des planchers initiaux source-only pour nos approches UDA.

B.3.2 Adaptation de domaine non supervisée à travers les modalités vi-

suelles pour des images de profondeur basse résolution

Comme deuxième contribution, nous concevons des approches d’adaptation de domaine

non supervisée pour l’estimation de pose humaine sur des images de profondeur basse

résolution. Comme les images de profondeur sont sans texture et n’encodent que la
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Figure B.4: Approche proposée. (a) Génération de pseudo-étiquettes : nous utilisons un
détecteur de personnes à cadre (Mask-RCNN avec ResNet-152) suivi d’un estimateur de pose
d’une seule personne (Simple-BL avec ResNet-152) pour générer les pseudo-étiquettes sur les
images couleur de MVOR-unlabeled. Ces étiquettes sont ensuite transférées sur les images de
profondeur correspondantes. (b) ORPose-Depth(RT) : nous proposons de modifier l’architecture
ascendante RTPose pour entrâıner le modèle sur des images de profondeur à faible résolution.
Le bloc de super-résolution augmente la résolution spatiale d’un facteur 8 et génère des cartes
de caractéristiques super-résolues intermédiaires (S1, S2) utilisées par le bloc d’estimation de
pose pour apprendre des caractéristiques à haute fréquence. Toutes les pertes sont des pertes
d’erreur quadratiques moyennes. C1 à C16 sont des couches de convolution regroupées pour une
meilleure visualisation et décrites sous la figure, où c1(n1,n2), c3(n1,n2), c7(n1,n2) représentent
chacune une couche de convolution avec une taille de noyau 1x1, 3x3, 7x7 et remplissage 0, 1, 3,
respectivement. Les paramètres n1 et n2 sont les nombres de canaux d’entrée et de sortie, et
toutes les couches de convolution sont suivies par la fonction non-linéaire RELU. (c) ORPose-
Depth(krcnn) : nous proposons d’utiliser des augmentations de données avancées pour mieux
apprendre les fonctionnalités à basse résolution dans le modèle Keypoint-RCNN descendant.

133



Appendix B. Résumé en français

1x 8x 10x

Figure B.5: Un exemple de résultat qualitatif de notre approche d’adaptation de domaine non
supervisée sur différentes images de profondeur à basse résolution pour l’estimation de la pose
humaine 2D/3D. La vidéo de démonstration est disponible ici : https://cutt.ly/depthpose. Page
du projet : https://github.com/CAMMA-public/ORPose-depth

distance entre un objet et le capteur, elles offrent une option viable pour préserver la

confidentialité des patients et des cliniciens. Comme souligné dans 1.2.1, nous n’utilisons

en outre que les images de profondeur basse résolution au moment du test pour appliquer

des contraintes plus importantes pour la salle d’opération, sensible à la confidentialité.

Pour entrâıner un modèle sur les images de profondeur basse résolution sans annotations

manuelles, nous avons avancé l’idée que deux modalités visuelles différentes, telles que

les images couleur et profondeur, peuvent servir en tant que deux domaines distincts. Si

ces deux domaines sont synchronisés, aussi simplement que possible grâce aux caméras

RGBD, alors un modèle fonctionnant raisonnablement bien sur un domaine peut

effectivement être adapté à l’autre. Pour ce faire, nous proposons d’effectuer une

inférence sur les images couleur à l’aide de modèles d’estimation de pose humaine de

pointe, d’affiner les résultats d’inférence pour générer des pseudo-étiquettes et de

transférer les pseudo-étiquettes sur l’image de profondeur correspondante pour

l’entrâınement.

Nous proposons en outre deux stratégies d’entrâınement utilisant les pseudo-étiquettes

générées pour adapter un modèle aux images de profondeur à basse résolution. Comme

première stratégie, nous proposons d’intégrer des cartes de caractéristiques

super-résolues dans la méthode ascendante RTPose [Cao 2017] qui utilise des cartes de

caractéristiques intermédiaires super-résolues pour un apprentissage efficace des

caractéristiques à haute fréquence. Comme deuxième stratégie, nous exploitons des

augmentations de données avancées telles que le sous-échantillonnage et l’échantillonnage

à basse résolution, l’augmentation aléatoire [Cubuk 2020] et le recadrage

aléatoire [DeVries 2017] dans le Keypoint-RCNN descendant [He 2017]. La figure B.4
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Figure B.6: Méthodologie auto-supervisée proposée pour l’estimation conjointe de points clés
2D/3D à l’aide du paradigme mâıtre/élève. Le réseau mâıtre est un réseau à trois étages qui
utilise l’ensemble de données non étiqueté pour extraire les cadres de délimitation des personnes,
estimer les points clés 2D et régresser les points clés 2D en 3D. Il génère des pseudo-étiquettes
logicielles et matérielles à utiliser par le réseau élève. Le réseau élève est un réseau à un seul
étage et utilise efficacement les pseudo-étiquettes, définies de façon souple ou dure, pour estimer
conjointement les points clés 2D et 3D.

montre l’architecture de notre approche proposée. Nous montrons des résultats

nettement meilleurs pour nos deux stratégies sur MVOR, ensemble de données difficile;

en particulier sur les images de profondeur à basse résolution préservant la

confidentialité avec un facteur de sous-échantillonnage allant jusqu’à 12x. La figure B.5

montre quelques résultats qualitatifs de notre approche.

B.3.3 Auto-supervision sur des images couleur OU non étiquetées pour

l’estimation conjointe de la pose humaine 2D/3D

Pour notre troisième contribution, nous proposons une approche d’adaptation de

domaine non supervisée fondée sur le paradigme d’apprentissage enseignant-élève pour

développer un modèle facilement déployable pour l’estimation conjointe de la pose

humaine 2D/3D sur les images couleur de la salle d’opération. Le modèle mâıtre exploite

la distillation des connaissances [Hinton 2015,Zhang 2019a] - en utilisant des modèles

complexes à trois étages - ainsi que la distillation des données [Radosavovic 2018] pour

générer des pseudo-étiquettes précises. Nous proposons d’utiliser deux ensembles

d’étiquettes du modèle mâıtre: un ensemble ”dur” en supprimant les détections à faible

confiance et un ensemble ”souple” en conservant toutes les détections avec leur valeur de

confiance.

Nous proposons en outre un modèle élève en une seule étape de bout en bout fondé sur
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Figure B.7: Un exemple de résultat qualitatif de notre approche d’adaptation de domaine non
supervisée sur différentes images couleur basse résolution pour l’estimation de pose humaine
2D/3D multi-personnes. La vidéo de démonstration est disponible ici : https://cutt.ly/orpose3d.
Page du projet : https://github.com/CAMMA-public/ORPose-Color

Mask-RCNN [He 2017] où nous remplaçons la tête à masque par une tête à point clé

pour l’estimation conjointe de pose 2D et 3D. Le modèle élève exploite à la fois les

étiquettes ”dures” et ”souples” pour un entrâınement efficace. De plus, pour adapter le

modèle aux images basse résolution préservant la confidentialité, nous étendons le

processus d’augmentation de données pour générer des images basse résolution en

sous-échantillonnant et en sur-échantillonnant l’image d’entrée venant de la salle

d’opération avec un facteur d’échelle aléatoire compris entre 1 et 12. Le modèle entrâıné

sur ces images de salle d’opération à très basse résolution apprend à donner des résultats

précis au fur et à mesure de la progression de la formation. La figure B.6 montre

l’architecture de notre approche proposée. Les résultats sur MVOR montrent que le

modèle élève égale le réseau mâıtre, bien qu’il soit léger et à un seul étage. De plus, il

peut également donner des résultats précis sur des images à basse résolution, comme

nécessaire pour garantir la confidentialité, même en utilisant un taux de

sous-échantillonnage de 12x. La figure B.7 montre quelques résultats qualitatifs de notre

approche.

B.3.4 Adaptation de domaine non supervisée pour l’estimation de la

pose du clinicien et la segmentation des instances dans la salle

d’opération

Dans nos deux premières contributions, nous proposons d’utiliser un modèle mâıtre

multi-étapes robuste pour générer de façon précise des pseudo-étiquettes. Cependant, un

modèle mâıtre peut ne pas toujours être disponible pour entrâıner un modèle élève.

Dans ce travail, nous posons la question suivante : au lieu de s’appuyer sur un modèle
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Figure B.8: Présentation de notre approche pour l’adaptation de domaine non supervisée. Nous
générons deux types d’augmentations sur les images de domaine cible non étiquetées : faible et
forte. Les images faiblement augmentées passent par un modèle mâıtre gelé et une fonction de
seuillage pour générer les pseudo-étiquettes. Ces pseudo-étiquettes sont ensuite transformées
géométriquement dans l’espace image fortement augmenté correspondant. Un modèle élève
utilise ces pseudo-étiquettes transformées pour s’entrâıner sur les images non étiquetées fortement
augmentées conjointement avec les images du domaine source étiquetées. Les poids du modèle
d’enseignant gelé sont misà jour à l’aide de la moyenne mobile exponentielle (EMA) des poids
du modèle d’élève. Nous remplaçons également chaque couche de normalisation de groupe (GN)
dans l’extracteur de caractéristiques par deux couches GN (GN(S) et GN(T)) pour normaliser les
caractéristiques des deux domaines séparément, selon les besoins pour gérer les domaines source
et cible, statistiquement différents.

mâıtre fort pour donner des pseudo-étiquettes, un modèle peut-il devenir son propre

mâıtre pour l’entrâınement?

Comme dernière contribution, nous proposons une nouvelle approche d’adaptation de

domaine non supervisée, appelée AdaptOR, pour l’estimation de la pose d’une personne

conjointement à la segmentation des instances. Nous proposons d’abord d’étendre le

Mask R-CNN [He 2017] en utilisant DFN pour s’entrâıner sur deux domaines

statistiquement différents : les images naturelles de COCO, et les images OR de MVOR

ou TUM-OR [Belagiannis 2016]. DFN remplace chaque couche de normalisation de

caractéristiques dans l’armature extractrice de caractéristiques par deux couches de

normalisation: une pour le domaine source et une autre pour le domaine cible. Nous

proposons de modifier la fonction de perte pour améliorer l’armature. Nous

transmettons les caractéristiques des domaines source et cible séparément aux têtes en

aval, nécessaires pour pondérer séparément les pertes pour les deux domaines.

Étant donné une armature avec la capacité de s’entrâıner sur deux domaines
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Figure B.9: Un exemple de résultat qualitatif de notre approche d’adaptation de domaine non
supervisée sur différentes images couleur basse résolution pour l’estimation de la pose d’une
personne conjointement à la segmentation des instances. Vidéo de démonstration : https:
//youtu.be/gqwPu9-nfGs, page du projet : https://github.com/CAMMA-public/HPE-AdaptOR

statistiquement distincts, nous proposons d’exploiter des contraintes géométriques

explicites sur les différentes augmentations des images du domaine cible non étiquetées

pour générer de manière précise des pseudo-étiquettes et d’utiliser ces pseudo-étiquettes

pour entrâıner le modèle sur et des images OR à basse résolution. Les contraintes

géométriques doivent satisfaire des contraintes équivariantes de transformation en

transformant les prédictions du modèle pour observer les mêmes augmentations

géométriques que sur l’image d’entrée. Ces contraintes géométriques explicites aident le

modèle à s’adapter efficacement au domaine cible. Nous étendons encore notre approche

avec un ”mâıtre moyen” pour un entrâınement stable [Tarvainen 2017], où au lieu

d’utiliser un modèle unique pour générer et consommer les pseudo-étiquettes, nous

créons deux copies d’un modèle entrâıné sur le domaine source: un mâıtre et un modèle

élève. Le modèle mâıtre génère les pseudo-étiquettes sur l’image faiblement augmentée

qui est utilisée par le modèle élève pour s’entrâıner sur l’image fortement augmentée

correspondante. Les poids du modèle mâıtre sont mis à jour à l’aide d’un assemblage

temporel des poids du modèle élève, l’aidant ainsi à améliorer ses prédictions grâce à

l’assemblage tout en générant simultanément de meilleures pseudo-étiquettes pour

améliorer le modèle élève. La figure B.8 montre l’architecture de notre approche.

L’évaluation de la méthode sur les deux ensembles de données du domaine cible, MVOR

et TUM-OR, avec des études d’ablation approfondies, montre l’efficacité de notre

approche. Les résultats nettement meilleurs sur les images à basse résolution

encouragent l’utilisation de notre méthode pour la salle d’opération, sensible à la vie

privée. La figure B.9 montre quelques résultats qualitatifs de notre approche sur un

exemple d’image MVOR.
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B.4 Conclusion

La localisation précise des cliniciens en salle d’opération est un élément clé dans la

conception de la nouvelle génération de systèmes d’assistance au bloc opératoire. Le

développement de modèles de vision par ordinateur pour la segmentation d’images basée

sur les pixels ainsi que la détection des points saillants du corps est nécessaire pour

mieux comprendre les activités cliniques et la disposition spatiale de la salle d’opération.

Cette tâche, cependant, pose des défis dûs aux deux limitations suivantes : 1) différence

significative de domaine visuel entre les images du bloc opératoire et celle de l’ensemble

des données de vision traditionnelle, et 2) obstacles à la confidentialité lors de la collecte

et de la génération des données et des annotations.

L’objectif principal de cette thèse est de développer des approches exploitant des

données de salle d’opération non annotées à grande échelle pour une localisation précise

des personnes tout en préservant la confidentialité des cliniciens. Cette thèse explore les

méthodes d’adaptation de domaine non supervisée (UDA pour Unsupervised Domain

Adaptation) afin d’améliorer l’apprentissage visuel pour le domaine cible, le bloc

opératoire, et ce en travaillant dans deux directions complémentaires. Tout d’abord,

nous étudions comment des images basse résolution avec un facteur de

sous-échantillonnage aussi faible que 12x peuvent être utilisées pour une localisation

précise des cliniciens, ce sous-échantillonage permettant de résoudre les problèmes de

confidentialité. Deuxièmement, nous proposons plusieurs méthodes auto-supervisées

pour transférer les informations apprises d’un domaine source annoté vers un domaine

cible non annoté pour faire face au changement de domaine visuel et au manque

d’annotations. Ces méthodes utilisent des prédictions auto-supervisées pour permettre

au modèle d’apprendre et de s’adapter au domaine cible non annoté. Nous obtenons des

résultats qui font état de l’art sur l’ensemble des images du jeu de données MVOR

recueilli à partir d’interventions cliniques réelles. Nous espérons que cette thèse pourra

contribuer à la mise à l’échelle et au déploiement de nouvelles applications d’assistance

utilisant l’IA pour la salle d’opération.

B.5 Perspectives

Nous pensons que plusieurs axes de recherche pourraient nâıtre des travaux présentés

dans cette thèse exploitant de manière novatrice des données non étiquetées à grande

échelle. Ceux-ci pourraient ouvrir des possibilités pour explorer des problèmes de

recherche novateurs, permettant ainsi au bloc opératoire du futur de devenir le bloc

opératoire du présent. Différentes perspectives de notre travail sont présentées ci-dessous.

B.5.1 Estimation de pose 3D absolue en multi-vues et multi-personnes

Dans cette thèse, nous avons proposé des approches de localisation de personne en vue

unique utilisant uniquement les données non annotées provenant de la salle d’opération.

Cependant, avec une seule vue, il est possible que les cliniciens ne soient pas visibles en
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raison de fortes occlusions. Cela pourrait éventuellement entrâıner de mauvaises

performances, en particulier dans l’estimation de pose 3D, qui repose sur une donnée

d’entrée précise de l’estimation de pose 2D, voir la figure B.10. Les images multi-vues

peuvent non seulement aider à résoudre les cas d’occlusion, mais également aider à

fournir une estimation de pose 3D absolue dans le repère de coordonnées de la salle

d’opération, par opposition aux coordonnées relatives à la racine principalement utilisées

dans l’estimation de pose 3D pour une seule personne. La recherche actuelle sur

l’estimation de pose 3D absolue en multi-vues et multi-personnes est cependant limitée à

des approches entièrement supervisées [Tu 2020,Reddy 2021] sur des ensembles de

données acquis lors d’activités sociales simulées [Joo 2015]. L’utilisation de l’adaptation

de domaine non supervisé gls uda permettrait d’étendre ces approches entièrement

supervisées à un environnement de salle d’opération réel non annoté, avec un nombre de

perspectives limité. Plus intéressant encore, une autre direction prometteuse serait

d’apprendre l’estimation de pose 3D absolue de manière purement auto-supervisée.

Lorsque des images multi-vues sont disponibles, la pose 3D en coordonnées absolues

peut être déterminée en utilisant des approches de géométrie multi-vues et de

Figure B.10: Certains des cas d’échec de nos approches d’estimation de pose 3D sur les images
couleur et les images profondeur sont principalement dus à la forte occlusion des autres cliniciens
et à l’encombrement des instruments. Les images multi-vues peuvent aider à résoudre ces
situations d’échec en prenant en compte des informations complémentaires à partir d’autres
vues.
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triangulation [Andrew 2001]. Cependant, un obstacle important réside dans

l’imprécision des estimations de pose 2D en raison des potentielles occlusions et des vues

de caméra limitées. Les contraintes spatiales et géométriques décrites au chapitre 6

peuvent être étendues dans l’espace volumétrique multi-vues pour affiner de manière

itérative les poses 3D en exploitant ces contraintes, la triangulation ainsi qu’une

estimation plus robuste de l’estimation de pose humaine en 2D.

B.5.2 Localisation de personnes multi-modalités à l’aide d’images RGBD

Cette thèse s’est principalement concentrée sur l’utilisation de données non annotées

pour développer diverses approches fines de localisation de personnes. Cependant, les

approches développées prennent des images d’entrée à modalité unique (couleur ou

profondeur) au moment de l’inférence. Avec l’avènement des caméras RGBD peu

coûteuses, les images de profondeur et de couleur sont facilement disponibles, fournissant

des informations complémentaires sur la scène - des informations sur la texture 2D à

partir de la couleur et des informations sur l’environnement spatial 3D à partir des

images de profondeur. Les modèles basés sur des réseaux convolutionnels CNN

(Convolutional Neural Networks) ont montré des performances nettement améliorées

pour les images RGB. Cependant, l’application directe de ces modèles CNN sur des

images de profondeur peut être sous-optimale. Une direction de recherche intéressante

serait d’explorer le développement d’une architecture unifiée pour les images RGBD

exploitant les informations complémentaires des deux modalités au moment de

l’inférence. Une telle architecture peut aider non seulement à améliorer la précision au

moment de l’inférence, mais également à étendre l’approche UDA, comme discuté au

chapitre 6, pour une adaptation de domaine plus robuste.

B.5.3 Exploitation de la temporalité pour une estimation précise de la

pose et un suivi cohérent

La temporalité est une autre dimension qui peut être exploitée pour une stabilité et une

précision accrue de la localisation. Par exemple, dans le cadre des approches

d’adaptation de domaine non-supervisé UDA basées sur les modèles enseignant-élève

décrit dans le chapitre 5, on peut exploiter la temporalité dans le modèle de l’enseignant

pour obtenir des pseudo-étiquettes plus précises. Le modèle étudiant peut lui aussi être

étendu avec la composante temporelle pour exploiter ces pseudo-étiquettes précises afin

d’obtenir une donnée de sortie plus précise et un suivi plus cohérent des cliniciens. Par

ailleurs, les approches UDA décrites dans le chapitre 6 peuvent également exploiter la

temporalité pour générer et utiliser plus précisément les pseudo étiquettes dans leur

temporalité.
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Input CenterHMR [Sun 2020] VIBE [Kocabas 2020]

Figure B.11: Echecs de certaines approches de pointe pour l’estimation de pose et de forme du
corps humain pour des images provenant de l’environnement exigeant qu’est le bloc opératoire

B.5.4 Estimation de la pose et de la forme du corps humain

Cette thèse s’est principalement concentré sur la localisation fine de la personne allant

de la segmentation d’instances à l’estimation de pose humaine en 2D et 3D. Bien

qu’extrêmement utile, la segmentation d’instance est limitée à l’image 2D; l’estimation

de pose, elle, localise les points saillants dispersés en 2D ou en 3D. Les directions de

recherche actuelles ont évolué pour estimer le modèle de maillage humain 3D

paramétrique à partir d’une image donnée, combinant ainsi la segmentation d’instance

basée sur les pixels et l’estimation de pose 3D dans un champ

unifié [Loper 2015,Kanazawa 2018]. Cependant, la recherche s’est principalement

concentrée sur l’apprentissage du modèle de forme corporelle à partir d’ensembles de

données synthétiques tels que Human3.6 [Ionescu 2013]. Lorsqu’elles sont appliquées à

des environnements réels difficiles tels que le bloc opératoire OR, ces approches échouent

remarquablement, comme illustré dans la figure B.11. Les approches d’adaptation de

domaine non supervisées UDA discutées dans cette thèse pourraient aider à intégrer

l’estimation de forme du corps humain au bloc opératoire OR.
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[Daumé III 2009] H. Daumé III. Frustratingly easy domain adaptation. arXiv preprint

arXiv:0907.1815, 2009. (Cited on page 20)

[Deng 2009] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009. (Cited on page 75)

[Deng 2021] J. Deng, W. Li, Y. Chen and L. Duan. Unbiased Mean Teacher for Cross-

Domain Object Detection. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 4091–4101, 2021. (Cited on

pages 21 and 71)

[DeVries 2017] T. DeVries and G. W. Taylor. Improved regularization of convolutional

neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017. (Cited on

pages 13, 49, 53, 78, 82, and 134)

[Dias 2019] R. D. Dias, M. A. Zenati, R. Stevens, J. M. Gabany and S. J. Yule. Physio-

logical synchronization and entropy as measures of team cognitive load. Journal of

biomedical informatics, vol. 96, page 103250, 2019. (Cited on page 11)

[DiPietro 2019] R. DiPietro and G. D. Hager. Automated surgical activity recognition

with one labeled sequence. In International conference on medical image computing

and computer-assisted intervention, pages 458–466. Springer, 2019. (Cited on

page 22)

[Donaldson 2000] M. S. Donaldson, J. M. Corrigan, L. T. Kohnet al. To err is human:

building a safer health system. 2000. (Cited on page 10)

[Dong 2020] J. Dong, Y. Cong, G. Sun, B. Zhong and X. Xu. What can be transferred:

Unsupervised domain adaptation for endoscopic lesions segmentation. In Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 4023–4032, 2020. (Cited on page 22)

[Dou 2021] Q. Dou, T. Y. So, M. Jiang, Q. Liu, V. Vardhanabhuti, G. Kaissis, Z. Li,

W. Si, H. H. Lee, K. Yuet al. Federated deep learning for detecting COVID-19

147



References

lung abnormalities in CT: a privacy-preserving multinational validation study.

NPJ digital medicine, vol. 4, no. 1, pages 1–11, 2021. (Cited on page 22)

[Du 2019] L. Du, J. Tan, H. Yang, J. Feng, X. Xue, Q. Zheng, X. Ye and X. Zhang. Ssf-

dan: Separated semantic feature based domain adaptation network for semantic

segmentation. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 982–991, 2019. (Cited on page 20)

[Duhaime ] D. Duhaime, P. Leonard, T. Eskildsen, S. Choudhary, C. DeRose, W. Sanger,

D. Reagan and o. Sorba. YaleDHLab/pix-plot: A WebGL viewer for UMAP or

TSNE-clustered images. https://github.com/YaleDHLab/pix-plot. (Accessed on

07/30/2021). (Cited on pages xiv and 12)

[Efros 2019] A. Efros. Alexei Efros: In the end, it’s all about the Data. https://youtu.

be/M1VHu1d4sGQ?t=2339, 2019. The story appears at 39:00. (Cited on page 5)

[Fang 2017] H.-S. Fang, S. Xie, Y.-W. Tai and C. Lu. Rmpe: Regional multi-person pose

estimation. In Proceedings of the IEEE International Conference on Computer

Vision, pages 2334–2343, 2017. (Cited on pages xiii, 6, 24, 115, 118, and 122)

[Felzenszwalb 2005] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for

object recognition. International journal of computer vision, vol. 61, no. 1, pages

55–79, 2005. (Cited on page 25)

[Fischler 1973] M. A. Fischler and R. A. Elschlager. The representation and matching

of pictorial structures. IEEE Transactions on computers, vol. 100, no. 1, pages

67–92, 1973. (Cited on pages 24 and 25)

[Flouty 2018] E. Flouty, O. Zisimopoulos and D. Stoyanov. Faceoff: anonymizing videos

in the operating rooms. In OR 2.0 Context-Aware Operating Theaters, Computer

Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image

Analysis, pages 30–38. Springer, 2018. (Cited on page 115)

[Friedman 2000] J. Friedman, T. Hastie, R. Tibshiraniet al. Additive logistic regression:

a statistical view of boosting (with discussion and a rejoinder by the authors). The

annals of statistics, vol. 28, no. 2, pages 337–407, 2000. (Cited on page 115)

[Gawande 2011] A. Gawande. The checklist manifesto: How to get things right. Journal

of Nursing Regulation, vol. 1, no. 4, page 64, 2011. (Cited on page 9)

[Ge 2018] S. Ge, S. Zhao, C. Li and J. Li. Low-resolution face recognition in the wild via

selective knowledge distillation. IEEE Transactions on Image Processing, vol. 28,

no. 4, pages 2051–2062, 2018. (Cited on page 22)

[Ghani 2016] K. R. Ghani, D. C. Miller, S. Linsell, A. Brachulis, B. Lane, R. Sarle,

D. Dalela, M. Menon, B. Comstock, T. S. Lendvayet al. Measuring to improve:

peer and crowd-sourced assessments of technical skill with robot-assisted radical

148

https://github.com/YaleDHLab/pix-plot
https://youtu.be/M1VHu1d4sGQ?t=2339
https://youtu.be/M1VHu1d4sGQ?t=2339


References

prostatectomy. European urology, vol. 69, no. 4, pages 547–550, 2016. (Cited on

page 10)

[Girshick 2014] R. Girshick, J. Donahue, T. Darrell and J. Malik. Rich feature hierarchies

for accurate object detection and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 580–587,

2014. (Cited on page 39)

[Girshick 2015] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 1440–1448, 2015. (Cited on page 39)
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Unsupervised Domain Adaptation Approaches for 

Person Localization in the Operating Rooms 

Summary 

The fine-grained localization of clinicians in the operating room (OR) is a key component in designing the new 
OR support systems. However, the task is challenging not only because OR images contain significant visual 
domain differences compared to traditional vision datasets but also because data and annotations are hard to 
collect and generate in the OR due to privacy concerns. This thesis explores Unsupervised Domain Adaptation 
(UDA) methods to enable visual learning for the target domain, the OR, by working in two complementary 
directions. First, we study how low-resolution images with a downsampling factor as low as 12x can be used for 
fine-grained clinicians' localization to address privacy concerns. Second, we propose several self-supervised 
methods to transfer learned information from a labeled source domain to an unlabeled target domain to address 
the shift of visual domain and lack of annotations. These methods employ self-supervised predictions in allowing 
the model to learn and adapt to the unlabeled target domain. To demonstrate the effectiveness of our proposed 
approaches, we release the first public dataset, called the multi-view operating room (MVOR), generated from 
recordings of real clinical interventions. We obtain state-of-the-art results on the MVOR dataset, specifically on 
the privacy-preserving low-resolution OR images. We hope our proposed UDA approaches could help to scale 
up and deploy novel AI assistance applications for the OR environments. 

Key-words: Unsupervised Domain Adaptation, Human Pose Estimation, Person Instance Segmentation, 

Operating Room, Low resolution Images, Semi-supervised Learning, Self-training, Depth Images. 

Résumé 

La localisation précise des cliniciens dans la salle d'opération est un élément clé dans la conception des nouveaux 

systèmes de support clinique. Cependant, la tâche est difficile non seulement parce que les images de la salle 

d'opération contiennent des différences visuelles significatives par rapport aux images ordinaires, mais aussi 

parce que les données et les annotations sont difficiles à collecter et à générer dans la salle d'opération en raison 

de problèmes de confidentialité. Cette thèse explore les méthodes d'adaptation de domaine non supervisées 

pour permettre l'apprentissage visuel pour le domaine cible, la salle d'opération, en travaillant dans deux 

directions complémentaires. Tout d'abord, nous étudions comment des images basse résolution avec un facteur 

de sous-échantillonnage allant jusqu'à 12x peuvent être utilisées pour une localisation précise des cliniciens afin 

de résoudre les problèmes de confidentialité. Deuxièmement, nous proposons plusieurs méthodes auto-

supervisées pour transférer les informations apprises d'un domaine source étiqueté vers un domaine cible non 

étiqueté pour faire face au changement de domaine visuel et au manque d'annotations. Ces méthodes utilisent 

des prédictions auto-supervisées pour permettre au modèle d'apprendre et de s'adapter au domaine cible non 

étiqueté. Pour démontrer l'efficacité des approches proposées, nous publions le premier ensemble de données 

public, appelé Multi-View Operating Room (MVOR), généré à partir d'enregistrements d'interventions cliniques 

réelles. Nous obtenons des résultats de pointe sur l'ensemble de données MVOR, en particulier sur les images 

de salle d'opération à basse résolution préservant la confidentialité. Nous espérons que nos approches 

d'adaptation de domaine non supervisées proposées pourront aider à développer et à déployer de nouvelles 

applications d'assistance par IA pour les salles d'opération. 

Mots-clés: Adaptation de domaine non supervisée, estimation de pose humaine, segmentation d'instance de 

personne, salle d'opération, images basse résolution, apprentissage semi-supervisé, auto-formation, images de 

profondeur. 
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