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Résumé 

La sécheresse urbaine menace le bien-être des êtres humains et la durabilité du 

développement socio-économique des villes. Elle peut être estimée en fonction de la quantité 

d'eau douce disponible et de la consommation d'eau dans une ville. Pour réduire les risques 

induits par la sécheresse urbaine, il est urgent d'étudier les risques futurs de sécheresse urbaine. 

La plupart des recherches antérieures prennent habituellement la précipitation, l'humidité du 

sol, l'évapotranspiration et d’autres paramètres comme base pour calculer la sécheresse urbaine. 

Cependant moins d’intérêt est mis sur le flux d'eau - particulièrement dans les villes par manque 

de données. Pour la plupart des villes, le débit des cours d'eau et les eaux souterraines 

constituent la ressource en eau douce disponible. Mais dans les villes qui manquent de données, 

l’absence de longues séries de surveillance sur le débit et les eaux souterraines empêche de 

prédire avec précision la ressource en eau douce disponible dans le futur. Par conséquent, il est 

urgent de produire de longues séries de données sur cette ressource avant de prédire la 

sécheresse urbaine future. Cette thèse est consacrée au développement d'un cadre pour la 

prédiction de la sécheresse urbaine (consommation d'eau / eau douce disponible) pour les 

années 2030 et 2050 pour soutenir la politique de contrôle de la sécheresse dans les zones de 

manque de données. Cela comprend l'extension des séries de débits dans les zones de manque 

de données et la production de longues séries de données d'eau souterraine disponible liées au 

calcul de l'eau douce disponible afin de prédire la sécheresse en 2030 et 2050. L'étude a été 

menée dans le Bassin du Fleuve Jaune, en Chine, avec une superficie de 752,443 km2, en 

prenant comme exemples les grandes villes avec une population supérieure à 5 millions 

d’habitants -- Jinan, Zhengzhou, et Xi'an.  

L'organisation de cette thèse est la suivante. Le chapitre 1 présente le contexte de la 

recherche et l'état de l'art ainsi que la motivation du travail. Le chapitre 2 présente les données 

utilisées et les caractéristiques de la zone d'étude. Le chapitre 3 explore de nouvelles façons 

d'extraire le débit des cours d'eau dans les zones où les mesures in situ sont rares afin d'aider à 

calculer plus précisément la ressource en eau douce disponible dans les zones urbaines lors de 

l'évaluation de la sécheresse. Le chapitre 4 conçoit un nouveau cadre pour l'estimation de la 

ressource en eau souterraine disponible dans lequel la série de données de GRACE a été étendue 

des deux dernières décennies à plus de sept décennies depuis 1948. Le Chapitre 5 présente le 

calcul de  la consommation d'eau des trois secteurs d’usage domestique, de l’industrie et des 

écosystèmes naturels et agricoles pour refléter la situation de la consommation d'eau en 

évaluant la sécheresse. Le Chapitre 6 prédit la sécheresse urbaine future en 2030 et 2050, y 

compris la prédiction de l'eau douce disponible et la consommation d'eau, basée sur les modèles 

établis dans les Chapitres 3-5 et les données présentées dans les scénarios CMIP5 IPCC ainsi 

que les littératures publiées. Le chapitre 7 conclut les résultats de la recherche et suggère des 

sujets connexes qui méritent une recherche continue.  

Le chapitre 1 donne une brève introduction sur le contexte et les objectifs de cette thèse. 

Avec le changement climatique, l'étendue, la sévérité et la fréquence des sécheresses dans le 

monde devraient augmenter. Les villes sont particulièrement vulnérables aux risques 

climatiques en raison de leur agglomération de personnes, de bâtiments et d'infrastructures. La 
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gravité de la sécheresse est généralement fortement liée à l'efficacité de la conservation de l'eau, 

en particulier dans les zones urbaines, et la conservation varie selon la région hydrologique, ou 

la variation du débit des cours d'eau. Cependant, l'évaluation de la sécheresse dans les zones où 

les données sont rares néglige souvent l'écoulement fluvial, ce qui induit de grandes incertitudes 

dans les résultats. Beaucoup de chercheurs ont consacré des d'efforts importants à l'inversion 

de la surface de l'eau ou à l'estimation du stockage de l'eau basale en utilisant des données multi-

satellites, mais l'estimation du débit à partir d'observables "géométriques" de la surface 

d'écoulement reste un problème inverse difficile, en particulier dans le cas d'une mauvaise 

connaissance de la bathymétrie et de la friction de la rivière. Certains chercheurs ont essayé 

d'inverser le débit des rivières de grande largeur (i.e., plus de 100 mètres) et ont obtenu des 

résultats satisfaisants, mais la précision est faible lorsqu'elle est appliquée à des affluents plus 

étroits (ie moins de 40 mètres), ce qui induit de grandes incertitudes dans l'estimation de l'eau 

totale disponible dans une zone. Cela entrave grandement l'estimation précise de l'eau douce 

disponible et la prévision de la gravité des sécheresses futures. Le débit des cours d'eau, l'eau 

du sol et les eaux souterraines constituent la plupart des proportions d'eau douce disponible. Le 

débit des cours d'eau peut être récupéré en utilisant des images satellites et les deux derniers 

indicateurs peuvent être estimés en utilisant GRACE (Gravity Recovery and Climate 

Experiment de la NASA, série courte mais précise) combiné avec des données GLDAS (Global 

Land Data Assimilation System, série longue mais moins précise) visant à obtenir les champs 

optimaux d'états et de flux de la surface terrestre à partir de données satellites, de données in 

situ et de modélisation. Par conséquent, il est nécessaire et urgent de produire des séries de 

données longues sur la ressource en eau douce disponible (FWA) basées sur les sources de 

données ci-dessus afin de prédire la sécheresse urbaine future dans le cadre du changement 

climatique. 

Le chapitre 2 décrit les données et la zone d'étude, notamment la collecte des données 

(données satellitaires d’imagerie satellitaire Landsat TM, Sentinel et MODIS 

(spectroradiomètre imageur à résolution modérée) ; des produits géophysiques GRACE ; des 

données d'imagerie UAV (véhicule aérien sans pilote), des données d’états de sols issues de 

GLDAS, et des données hydrologiques au sol et des données statistiques locales sur le PIB 

(produit intérieur brut). Enfin ce chapitre présente les caractéristiques de la zone d'étude 

(utilisation des terres et végétation, rivières, eaux souterraines, population, économie et société). 

Les données GRACE et GLDAS ont été utilisées pour l'estimation des eaux souterraines ; les 

données Landsat TM, les données UAV ainsi que les données hydrologiques ont été collectées 

pour l'extraction et la vérification du débit des cours d'eau ; les données MODIS ont été utilisées 

pour calculer l'évapotranspiration des plantes dans la consommation d'eau et les données PIB 

ont été collectées pour calculer la consommation d'eau des ménages et des industries. 

  Les données GRACE TWSC (Terrestrial Water Storage Change) sont fournies par 11 

instituts, dont le CSR (Center for Space Research, États-Unis), le GFZ (Geo Forschungs 

Zentrum, Allemagne), le JPL (Jet Propulsion Laboratory, Japon) et le GRGS (Groupe de 

Recherche de Géodésie Spatiale, France). L'analyse d'incertitude sur ces solutions montre que 

la solution CSR a l'incertitude minimale en Chine avec une erreur de 13,2 mm alors que celle 

du GRGS a l'incertitude maximale avec une erreur de 58,8 mm. Par conséquent, pour mener à 

bien cette étude,  les solutions CSR ont été choisies comme source des données GRACE. La 
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nouvelle version de la solution CSR exprime l'anomalie de stockage de l'eau avec la hauteur 

équivalente de la colonne d'eau à une résolution spatiale de 0,25°× 0,25°, couvrant la période 

de 2002 à 2016. Des images Landsat TM, correspondant aux périodes de mesure in situ de 2007 

à 2009, ont été utilisées. Parmi les sept bandes des images, la bande 4 (0,76-0,96 μm) avec une 

haute résolution spatiale (30 m) a été utilisée dans cette étude pour l'estimation de la vélocité, 

sur la base de laquelle le débit des cours d'eau en saison humide a ensuite été obtenu. Sentinel-

1, une constellation de deux satellites en orbite polaire pour la continuité et l'amélioration des 

services opérationnels et des applications SAR, peut fournir une capacité d'observation de 

routine, jour et nuit, par tous les temps. Les données radar de Sentinel-1 peuvent répondre 

principalement à des applications de moyenne à haute résolution grâce à un mode de 

fonctionnement principal qui présente à la fois une large fauchée (250 km) et une haute 

résolution géométrique (5 m × 20 m) réechantillonée à un pixel spacing de 10m. Lonnées SAR 

Sentinel-1 ont été utilisées pour améliorer la précision de la surveillance de la largeur des cours 

d'eau dans cette étude et cela afin de permettre une meilleure estimation des débits des cours 

d'eau, les. Afin de réduire au maximum les incertitudes de la modélisation de 

l'évapotranspiration (ET) du GLDAS l'ET dérivée des données satellitaires MODIS a été 

utilisée pour l'ajustement sur les trois villes représentatives (Xi'an, Zhengzhou et Ji'nan), . L'ET 

ajustée a ensuite été exploité afin de’évaluer  la consommation d'eau des écosystèmes dans les 

trois villes. Outre l'ET, le GLDAS peut également fournir des données globales sur l'humidité 

du sol (10, 30, 60 et 100 cm, à partir de la surface du sol), l'équivalent en eau de la neige, le 

stockage de l'eau dans la canopée, le ruissellement, etc. Nous avons recueilli les données 

mensuelles à des résolutions spatiales de 0,25°× 0,25°, de 1948 à 2016 et les avons utilisées 

pour étendre les séries de l'ET, du ruissellement ainsi que de GRACE TWSC dans les chapitres 

3-6. 

Le chapitre 3 présente deux nouvelles méthodes pour l'estimation du débit dans les zones 

où les données sont rares afin de produire de longues séries de données sur la ressource en eau 

douce disponible (FWA). Deux nouvelles méthodes respectivement pour les saisons sèches et 

humides ont été développées dans un premier temps ; puis en utilisant les deux méthodes, les 

flux d'écoulement à long terme par les trois grandes villes ont été récupérés en utilisant des 

images de satellite ; finalement, basé sur le flux d'écoulement à long terme récupéré par satellite, 

la ressource en eau douce de surface disponible pour les trois villes représentatives a été estimée. 

Cette ressource estimée a pu être utilisée ensuite pour prévoir l'eau douce de surface disponible 

dans le futur 2030 et 2050. Parmi les deux méthodes, la première a été nommée VHR-AMHG 

(Virtual Hydraulic Radius at-many-stations hydraulic geometry) pour les saisons sèches, et la 

seconde a été nommée transcaled spatial C/M method pour les saisons humides.  La première 

utilise uniquement la largeur de la surface en eau libre d’une rivière, tandis que la seconde se 

base sur la réflectance du sol du lit majeur et de l'eau pour estimer le débit de la rivière.   

La méthode VHR-AMHG est utilisée pour estimer le débit des cours d'eau de taille 

moyenne à petite avec peu de mesures au sol en utilisant l'imagerie haute résolution de drones 

(UAV). Dans le cadre de VHR-AMHG, une nouvelle méthode de rayon hydraulique virtuel 

(VHR) a été proposée pour compléter la méthode AMHG (at-many-stations hydraulic geometry) 

ne nécessitant aucune mesure au sol lorsque des paramètres globaux sont utilisés (global-

AMHG) dans les rivières à grande échelle, mais conduisant à de grandes incertitudes dans les 
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rivières à plus petite échelle. La VHR utilise un drone pour déterminer la topographie au-dessus 

de la surface de l'eau pendant les saisons sèches et calcule la valeur du rayon hydraulique, le 

périmètre mouillé et la zone d'écoulement dans l'équation de Manning en supposant que la 

largeur réelle de la surface de l'eau récupérée à partir des images du drone est le fond de la 

rivière, formant une section transversale virtuelle incomplète. Ainsi, le débit virtuel 

correspondant à la section transversale virtuelle, et non le débit réel, est alors calculé sur la base 

de l'équation de Manning. Notre analyse a montré qu'il existe une relation linéaire entre le débit 

virtuel et le débit réel. Ce dernier fait référence au débit calculé sur la base d'une section 

transversale réelle plutôt que virtuelle. Sur la base de cette relation linéaire, le débit réel à 

n'importe quel niveau d'eau peut être facilement calculé et peut ensuite être utilisé pour calibrer 

les paramètres dans AMHG, améliorant ainsi la précision du débit estimé par AMHG. 

La vérification de la précision de la méthode VHR-AMHG a été effectuée en comparant 

les sorties de modèle aux données de mesure in situ et aux paramètres globaux de la méthode 

AMHG originale (global-AMHG). L'erreur quadratique moyenne (RMSE) calculée à partir de 

la méthode VHR-AMHG est inférieure de 32,15  m3/s à la RMSE de la méthode originale 

(global-AMHG), qui était de 305,65  m3/s, ce qui indique que la méthode VHR-AHRG offre 

une précision nettement supérieure pour l'estimation du débit des rivières de taille moyenne à 

petite. 

Les résultats impliquent que la méthode VHR-AMHG proposée élargit le champ 

d'application de l'AMHG aux rivières de toutes tailles. La méthode VHR proposée dans cette 

étude fournit une méthode alternative de paramétrage pour les zones où les observations 

historiques de débit sont rares et améliore la précision du débit calculé par AMHG dans ces 

zones, en particulier pendant les saisons sèches. Lorsque les saisons humides arrivent, le débit 

peut être obtenu en utilisant la deuxième méthode, la méthode transcaled spatial C/M qui a été 

développée principalement pour l'estimation de la vitesse d'écoulement. La méthode Riba-zéro, 

a été développée et appliquée pour estimer la bathymétrie des rivières non jaugées afin de 

calculer la surface d'écoulement. En multipliant la surface d'écoulement par la vitesse 

d'écoulement, on obtient le débit. En d'autres termes, la méthode transcaled spatial C/M couplée 

à la méthode Riba-zero permet d'obtenir le débit des rivières non jaugées. La méthode 

transcaled spatial C/M surmonte les défauts de la méthode C/M originale de Tarpanelli et al 

(2013) (méthode originale nécessitant des données de plusieurs stations et négligeant 

l'hétérogénéité spatiale des rivières). Le principe de la méthode C/M est que l'augmentation de 

la surface de l'eau dans une zone donnée entraîne généralement une diminution de la valeur de 

réflectance NIR (proche infrarouge) de la zone et, par conséquent, le rapport (C/M) entre la 

réflectance de surface d'un pixel terrestre, nommé C (calibrage), et d'un pixel d'eau, nommé M 

(mesure), change en conséquence. Pour pallier les insuffisances de la méthode C/M originale, 

la plus grande surface de plan d'eau dans les images satellite dans une zone de 1 km * 1 km est 

utilisée comme limite, ou limite maximale de la rivière (MRB), sur la base de laquelle nous 

extrayons le proche infrarouge de tous les pixels de la zone. La valeur moyenne de la bande est 

prise comme M, et sa valeur change avec la zone inondée de la rivière. Toutes les zones urbaines 

sur l'image sont extraites, et la valeur moyenne des bandes du proche infrarouge dans les zones 

urbaines sur différentes images est comptée comme C. Pour surmonter l'inconvénient d'exiger 

des données de plusieurs stations, cette étude a développé de nouvelles méthodes pour n’utiliser 
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qu’une seule station hydrologique pour établir une relation régionale C/M~V à des stations non 

jaugées. Pour atteindre cet objectif, cette étude a d'abord utilisé des images Landsat TM et des 

données de vitesse d'écoulement mesurées à une seule la station hydrologique pendant la saison 

humide pour établir une relation régionale entre le pixel (C) et le pixel d'eau (M) avec la vitesse 

d'écoulement ; ensuite, pour surmonter le défaut de négliger l'hétérogénéité spatiale des rivières, 

nous avons établi la relation linéaire entre la valeur M d'une station non jaugée et d'une station 

de référence pour réduire l'influence de l'hétérogénéité spectrale sur les résultats. Grâce à ces 

étapes, la vitesse d'écoulement à une station non jaugée peut être calculée. La méthode C/M 

améliorée résout le problème des grandes différences spatiales dans la réflectance qui existait 

dans la méthode C/M originale, ce qui améliore l'applicabilité de la méthode C/M originale. En 

plus de la vitesse d'écoulement, la surface d'écoulement est une variable essentielle pour le 

calcul du débit. Comme les satellites ou les drones ne sont capables de surveiller qu'une section 

transversale au-dessus de la surface de l'eau, nous devons simuler la section transversale sous-

marine par une méthode mathématique. Une section transversale peut être exprimée sous la 

forme d'une fonction de puissance dont la valeur est généralement inférieure à 2. Sur la base de 

ces principes, nous avons présenté la méthode Riba-zéro de modélisation de la section 

transversale sous-marine en prenant comme base la section transversale au-dessus de l'eau 

mesurée par drone, avec laquelle la surface d'écoulement de la section transversale peut être 

facilement calculée. Par la suite, le débit des rivières non jaugées peut être récupéré en couplant 

la méthode transcaled spatial C/M avec la méthode Riba-zéro. La vérification montre que 

l'erreur quadratique moyenne relative (rRMSE) et l'erreur relative (RE) de la vitesse simulée en 

utilisant la méthode transcaled spatial C/M dans notre zone d'étude est rRMSE : 0,36 (RE : 

19,00%) pour l'année entière, 0,15 (14,56%) dans les saisons humides et 0,25 (20,88%) dans 

les saisons sèches, ce qui suggère que la performance de la méthode transcaled spatial C/M a 

une plus grande précision pour les saisons humides. En utilisant les deux méthodes couplées 

avec l'ensemble de données de ruissellement GLDAS de la NASA, le débit des cours d'eau à 

long terme (1948-2018) a été estimé en utilisant des images satellites pour les trois grandes 

villes représentatives (Xi'an, Zhengzhou et Ji'nan). Xi'an et Zhengzhou ont presque la même 

valeur moyenne de débit (~1000  m3/s) de 1948 à 2018, et Jinan a une valeur moyenne de débit 

plus faible (~600  m3/s). Sur la base du débit à long terme (1948-2018) et des données officielles 

du "Bulletin des ressources en eau" des trois villes, la quantité totale d'eau douce de surface 

disponible (SFWA) entre 2000 et 2017 pour les trois villes a été estimée, posant ainsi les bases 

de la prévision de la SFWA pour les années 2030 et 2050.  

Suite aux résultats obtenus dans la production de séries longues de données SFWA au 

chapitre 3, un nouveau cadre pour estimer les séries longues d'eau douce souterraine disponible 

(UFWA) est développé dans le chapitre 4. Les longues séries de SFWA et d'UFWA sont 

constituées de longues séries de FWA (eau douce disponible). Parallèlement, la série de données 

de GRACE (ou TWSC : terrestrial water storage change) a été étendue des deux dernières 

décennies (2002-2016) à plus de sept décennies depuis 1948. Tout d'abord, les facteurs 

environnementaux entraînant la variation du TWSC ont été déterminés par des méthodes 

statistiques basées sur 11 facteurs potentiels sélectionnés dans la littérature. La méthode VIP 

(Very Important Projection) a été utilisée pour sélectionner les facteurs clés, VIP>1,0 signifiant 

une grande influence sur le TWSC. Pour sélectionner les facteurs clés optimisés, quatre 

scénarios avec trois périodes représentatives ont été établis. Pour le scénario 1, sept facteurs 
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clés ont été sélectionnés, dont la température de l'air, la fonte des glaciers, l'humidité du sol, le 

stockage de l'eau terrestre, l'évapotranspiration, les précipitations, la transpiration, qui varient 

selon les périodes ; dans le scénario 2, sept facteurs, dont la fonte des glaciers, la température 

de l'air, l'évaporation directe du sol nu, les précipitations, l'humidité du sol de 0 à 200 cm de 

profondeur, le ruissellement, les précipitations moins l'ET sont les plus importants ; quant au 

scénario 3, 10 facteurs, dont la transpiration, l'évapotranspiration, la température de l'air, 

l'humidité du sol dans la zone des racines, le stockage terrestre de l'eau, l'humidité du sol de 0 

à 200 cm de profondeur, les précipitations, l'évaporation directe du sol nu, la fonte des glaciers, 

le ruissellement, sont d'une plus grande importance ; pour le scénario 4, les 11 facteurs 

environnementaux ont été sélectionnés. Ensuite, les facteurs sélectionnés ont été utilisés pour 

vérifier et améliorer un modèle de prédiction neuronal artificiel -LSTM-N (Long short-term 

memory network) dont les paramètres LSTM-N optimisés ont été déterminés. Pour la 

prédiction de GRACE TWSC, le paramètre optimisé "Unité" est 460, la fonction d'activation 

est la fonction "Sigmoïde", l'époque d'apprentissage est 650 pour le LSTM-N. En utilisant le 

LSTM-N avec les paramètres optimisés, la prédiction de performance des facteurs moteur 

sélectionnés dans les quatre scénarios a été testée. Les résultats montrent que le modèle LSTM-

N basé sur le scénario 4 a le R2 le plus élevé (>0,8) dans tous les tronçons supérieurs, moyens 

et inférieurs de l'YRB ; toutes les valeurs de RMSE dans les tronçons supérieurs, moyens et 

inférieurs sont toutes inférieures à 5 cm. La comparaison de la valeur de prédiction avec 

l'observation GRACE montre que le modèle LSTM-N dans les zones du bief supérieur à la plus 

grande précision avec une RMSE inférieure à 0,1 cm, tandis que dans le bief moyen, il a une 

précision relativement plus faible avec une RMSE inférieure à 5,0 cm. Ces résultats indiquent 

que le modèle LSTM-N basé sur le scénario 4 donne des résultats satisfaisants dans l'ensemble 

de l'YRB, qui a ensuite été utilisé pour étendre les séries de données GRACE TWSC de 1948 

à 2002 lorsque la surveillance GRACE est manquante. Sur la base de la longue série de données 

GRACE TWSC, les eaux douces souterraines disponibles (UFWA) dans les trois villes 

représentatives de 1948 à 2016 ont été produites. Parmi elles, Xi'an présente la moyenne la plus 

élevée de 1,92 milliard de  m3 et Zhengzhou la moyenne la plus basse de 0,46 milliard de  m3. 

Tous ces résultats serviront à la prédiction de l'UFWA souterrain pour les années 2030 et 2050 

dans le chapitre 6. 

Pour mieux prévoir la consommation d'eau future, le chapitre 5 explore un ensemble de 

méthodes permettant de calculer la consommation d'eau des trois secteurs que sont le secteur 

domestique, l'industrie et les écosystèmes naturels et agricoles. La consommation d'eau 

domestique comprend celle des zones urbaines et des zones rurales. La consommation d'eau 

industrielle comprend la consommation d'eau dans les secteurs fabriquant des produits destinés 

au développement national et à la vie quotidienne. La consommation d'eau de l'écosystème 

comprend l'évapotranspiration des terres vertes urbaines, du sol nu et des terres cultivées. Pour 

évaluer la consommation d'eau des ménages, nous avons d'abord utilisé les données de la 

population mondiale de LandScan et ce afin egalement d’analyser  le changement de population 

dans les trois villes représentatives. Des données de tatistiques locales ont été exploité afin de 

vérifier /qualifier ces données LandScan; puis nous avons utilisé la formule 

"Population*(consommation moyenne d’eau par personne)" pour estimer la consommation 

d'eau des ménages. Nous avons recherché la variable (utilisation de l'eau par personne) dans les 

livres de statistiques régionales des trois villes. Pour la consommation d'eau industrielle, nous 
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avons retenu la variable du PIB (produit intérieur brut) industriel à partir de statistiques 

régionales, puis nous avons utilisé la formule "PIB * (consommation d'eau par PIB)" pour 

estimer la consommation d'eau industrielle. Pour la consommation d'eau des écosystèmes, nous 

avons d'abord utilisé l'ET récupérée par MODIS pour rectifier l'ET modélisée par le GLDAS 

afin d'améliorer la précision de ce dernier ; ensuite, sur la base de l'ET GLDAS rectifiée (en 

mm), nous avons extrait l'ET dans les trois villes représentatives et calculé la consommation 

d'eau des écosystèmes (en milliards de  m3) en les multipliant respectivement par leur superficie.  

Les résultats montrent que pendant la même période avec les données de GRACE, la 

consommation d'eau domestiques dans les trois villes représentatives de Xi'an, Zhengzhou et 

Ji'nan a tendance à augmenter légèrement avec l'augmentation de la population. Elle est 

essentiellement affectée par la variation de la population. Xi'an a la plus forte consommation 

d'eau pour les ménages (0,35 milliard de  m3 en moyenne) et Ji'nan la plus faible (0,21 milliard 

de  m3 en moyenne). La consommation d'eau industrielle dans les trois villes fluctue autour de 

1,60 milliard de  m3, sans tendance évidente à la hausse ou à la baisse. En moyenne, Zhengzhou 

a la consommation la plus élevée (1,73 milliard de  m3) tandis que Ji'nan a la plus faible (1,66 

milliard de  m3). En ce qui concerne la consommation d'eau des écosystèmes, Xi'an et Ji'nan 

ont des valeurs similaires (moyenne : 7,13 et 7,11 milliards de  m3) tandis que Zhengzhou a la 

plus faible (moyenne : 5,05 milliards de  m3). La différence de superficie des trois villes (Xi'an, 

Ji'nan et Zhengzhou : 10752, 10244 et 7446 km2) a entraîné la différence de consommation 

d'eau des écosystèmes entre elles. En résumé, la consommation totale d'eau dans les trois villes 

a fluctué au cours de la période, Xi'an et Ji'nan ayant des processus similaires avec des valeurs 

moyennes de 9,17 et 8,99 milliards de  m3, tandis que Zhengzhou a la valeur la plus faible de 

7,07 milliards de  m3. La consommation d'eau de l'écosystème domine la consommation d'eau 

totale avec des ratios de l'écosystème à la consommation d'eau totale allant de 71,45% à 79,06%. 

Tout ces calculs constituent une base solide pour l'analyse de la consommation d'eau dans les 

années 2030 et 2050 au chapitre 6. 

Le chapitre 6 vise à prédire la sécheresse urbaine future en 2030 et 2050, y compris la 

prédiction de l'eau douce disponible et de la consommation d'eau. Cela a été réalisé en mettant 

en place un ANN (Artificial Neural Network) avec l'eau douce de surface disponible (SFWA) 

estimée au chapitre 3 et l'eau douce souterraine disponible (UFWA) au chapitre 4, ainsi que les 

facteurs environnementaux influençant la variation de l'eau douce de surface, présentés dans 

les scénarios CMIP5 (Coupled Model Intercomparison Project Phase 5). Les facteurs 

environnementaux comprennent les précipitations, l'évapotranspiration, la température de l'air 

proche de la surface. Ensuite, à l'aide de l'ANN entraîné, nous avons utilisé les facteurs 

environnementaux en 2030 et 2050 présentés dans les scénarios CMIP5 du GIEC RCP 2.6, RCP 

4.5 et RCP 8.5 pour prédire la SFWA et l'UFWA en 2030 et 2050. Par ailleurs, la consommation 

d'eau future pour les ménages, l'industrie et l'écosystème a été prédite sur la base des modèles 

établis au chapitre 5 et des données de base prédites présentées dans les publications. En ce qui 

concerne la future consommation d'eau des ménages, nous avons utilisé les projections 

démographiques de la Division de la population de l'ONU pour prévoir la population des trois 

villes en 2030 et 2050, en supposant que les trois villes ont le même taux de changement que 

la Chine ; puis nous avons estimé la "consommation d'eau par personne" en 2030 sur la base de 

la recherche de Guo et al. (2021) avec laquelle la consommation d'eau des ménages en 2030 est 

facile à estimer. Ensuite, nous avons estimé la consommation d'eau des ménages en 2050 sur la 
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base des recherches d'Ercin et Hoekstra (2012) en supposant que les trois villes ont le même 

taux de consommation d'eau des ménages que le reste de la Chine. En ce qui concerne la 

consommation d'eau industrielle, nous avons d'abord utilisé les projections du PIB de la Chine 

publiées par l'Organisation de coopération et de développement économiques (OCDE) pour 

estimer le PIB des trois villes en 2030 et 2050 ; puis nous avons estimé la " consommation d'eau 

par PIB " en 2030 et 2050 en nous basant sur les recherches de Meng et al. (2021) qui ont prévu 

la consommation d'eau annuelle dans 31 régions de la Chine avec un scénario d'augmentation 

future du PIB ; enfin, avec la formule " (PIB industriel) * (consommation d'eau par PIB) " 

présentée au chapitre 5, nous avons estimé la consommation d'eau industrielle en 2030 et 2050. 

En ce qui concerne la future consommation d'eau des écosystèmes, nous avons multiplié 

l'évaporation du sol et la transpiration de la végétation (ET, en mm) dans le cadre des trois 

scénarios CMIP5 du GIEC (RCP 2.6, RCP 4.5 et RCP 8.5) par la superficie des trois villes 

respectivement, ce qui nous a permis d'obtenir la consommation d'eau des écosystèmes (en 

milliards de  m3) pour les trois villes en 2030 et 2050. Avec la prédiction ci-dessus de l'eau 

douce disponible et la consommation d'eau en 2030 et 2050, nous avons estimé la sécheresse 

urbaine future dans les trois villes avec la formule "(consommation d'eau / eau disponible)". 

Les résultats montrent que comme et les facteurs environnementaux, présentés dans les 

scénarios CMIP5 (Coupled Model Intercomparison Project Phase 5), influençant la variation 

de l'eau douce de surface. Les scénarios CMIP5 du GIEC RCP 2.6, RCP 4.5 et RCP 8.5 ont été 

utilisés où les principaux facteurs environnementaux en 2030 et 2050 sont présentés. La 

consommation d'eau future, pour les ménages/industriels/écosystèmes, a été prédite sur la base 

des modèles établis au chapitre 5 et des données de base prédites présentées dans les ouvrages 

publiés. En ce qui concerne l'eau douce disponible, Xi'an, Zhengzhou et Ji'nan disposeront de 

2,01-2,04, ~1,95 et 2,36-2,43 milliards de  m3 d'eau douce pour la consommation en 2030, et 

de 2,05-2,14, 1,95-1,96 et 2,33-2,43 milliards de  m3 en 2050. En détail, il y aura jusqu'à 1,14, 

0,91 et 2,03 milliards de  m3 d'eau douce de surface, et 0,87-0,90, 1,04-1,06 et 0,33-0,40 

milliards de  m3 d'eau douce souterraine pour la consommation en 2030, et 0,91-1,00, 1,04-1,05 

et 0,30-0,40 milliards de  m3 en 2050 dans les trois villes. En ce qui concerne les eaux 

souterraines (évaluées à l'aide du LWE), Ji'nan présente le taux de diminution le plus élevé. Les 

trois PCR ont prédit un taux de diminution similaire de la LWE (~0,8 cm en moyenne). En ce 

qui concerne la consommation d'eau future en 2030 et 2050, la quantité totale d'eau consommée 

par les ménages, l'industrie et les écosystèmes à Xi'an, Zhengzhou et Ji'nan en 2030 sera de 

17,23, 14,31, 14,06 milliards de  m3 en moyenne, et en 2050 de 16,84, 14,35, 13,62 milliards 

de  m3 en moyenne. La consommation d'eau des écosystèmes (EWC) domine la consommation 

totale d'eau (81-90% en 2030 et 75-91% en 2050). Dans le cadre des scénarios du GIEC CMIP5 

RCP 2.6, RCP 4.5 et RCP 8.5, l'écosystème de la plupart des trois villes consommera plus d'eau 

en 2030 qu'en 2050 dans les trois villes représentatives. En 2030, l'écosystème consommera 

une quantité d'eau allant de 14,78-15,45, 10,91-12,72 et 12,15-13,21 milliards de  m3 

respectivement à Xi'an, Zhengzhou et Ji'nan, alors qu'en 2050, l'écosystème consommera 

14,05-15,19, 10,47-11,08 et 12,09-12,59 milliards de  m3 respectivement. La consommation 

future d'eau des ménages sous le RCP 2.6 est la plus élevée (15,32, 11,90 et 12,90 milliards de  

m3 pour Xi'an, Zhengzhou et Ji'nan) alors que celle sous le RCP 8.5 est la plus faible (14,52, 

10,98 et 12,18 milliards de  m3). Les ratios de la consommation d'eau des ménages par rapport 

au total sont les plus faibles, soit 1,0-3,0 % en 2030 et 1,0-2,0 % en 2050. L'ampleur du rapport 



IX 

 

entre la consommation d'eau et l'eau douce disponible suggère le degré de sécheresse urbaine. 

En 2030 et 2050, la sécheresse urbaine est la plus sévère à Xi'an (avec un rapport supérieur à 

8,0 en moyenne) et moins sévère à Ji'nan (moins de 6,0 en moyenne). La gravité de la sécheresse 

urbaine en 2030 est un peu plus élevée qu'en 2050. L'adaptation de l'évapotranspiration réelle 

de l'écosystème comme consommation d'eau de l'écosystème augmente le rapport jusqu'à 

environ 6 fois celui qui ne tient pas compte de l'évapotranspiration de l'écosystème. En d'autres 

termes, si l'évapotranspiration de l'écosystème n'est pas prise en compte dans l'estimation de la 

consommation totale d'eau, le rapport de la sécheresse urbaine en 2030 et 2050 sera de ~1,2, ce 

qui peut être facilement résolu en combinant les techniques d'économie d'eau et le détournement 

de l'eau des zones abondantes en eau comme le fleuve Yangtze. 

Le chapitre 7 résume les conclusions et les perspectives. Dans cette thèse, nous avons tout 

d'abord conçu deux nouvelles méthodes pour l'estimation du débit des cours d'eau dans les 

zones où les données sont rares afin de produire des séries longues de données sur l'eau douce 

de surface disponible (SFWA). Puis nous avons conçu un nouveau cadre pour l'estimation des 

séries longues d'eau douce souterraine disponible afin de produire des séries longues d'eau 

douce souterraine disponible (UFWA) et nous avons exploré un ensemble de méthodes pour 

calculer la consommation d'eau des trois secteurs des ménages, de l'industrie et de l'écosystème, 

et enfin nous avons prédit l’évolution de la sécheresse urbaine future des trois villes chinoises 

représentatives en 2030 et 2050. On peut conclure que la précision de l'estimation de la SFWA 

a été grandement améliorée en couplant le VHR-AMHG nouvellement développé et la méthode 

transcaled spatial C/M ; le premier a une plus grande précision en saison sèche tandis que le 

second a une plus grande précision en saison des crues. L'UFWA peut être estimée à l'aide de 

la TWSC surveillée par GRACE après avoir trouvé les facteurs de variation de la TWSC. En 

utilisant une méthode d’interpolation et de prédiction des valeurs TWSC dans les zones et les 

périodes où les données sont rares, les données GRACE ont été étendues de 2002-2016 à 1948-

2016. Cela facilite grandement les études sur la gestion durable des ressources en eau, et peut 

également fournir un soutien scientifique à l'élaboration des politiques lors de la résolution des 

problèmes liés au changement climatique. Il ressort de ce travail que la sévérité de la sécheresse 

en 2030 pour les trois villes sera un peu plus élevée qu'en 2050 et, par conséquent, des 

techniques d'économie d'eau sont nécessaires de toute urgence à l'avenir. Pour les travaux futurs, 

davantage de facteurs environnementaux et d'images satellites à plus haute résolution spatiale, 

telle que Sentinel2, devraient être introduits afin d'améliorer la précision des estimations ; une 

analyse approfondie des simulations climatiques du CMIP5 devrait être menée afin de réduire 

les incertitudes des résultats actuels. 



1 

 

Chapter 1 Introduction 

1.1 Background 

In the history of the earth, though sometime strom occurs, drought threats the welfare of 

human beings and the sustainability of the socio-economic development of cities, especially 

with the severity of climate change. Urban drought can be estimated based on the quantity of 

available freshwater and of water consumption in a city. To sustain the welfare of human, risks 

induced by urban drought need to be reduced. Therefore, under climate change future risk of 

available freshwater and water consumption in urban areas is urgently necessitated to be studied. 

 
Fig. 1-1 Urban drought under climate change and intensive human activities 

With climate change, the extent, severity, and frequency of droughts around the world are 

expected to increase (Palazzo et al. 2017), as illustrated in Fig. 1-1. Cities are particularly 

vulnerable to climate risks due to their agglomeration of people, buildings and infrastructure. 

In previous researches, urban drought was often assessed based on precipitation. Differences in 

methodology, hazards, and climate models limit the utility and comparability of climate studies 

on individual cities (Bryant et al., 1992; Phillips and McGregor, 1998; Guerreiro et al., 2018). 

Drought severity is usually highly related to the efficiency of water conservation -- especially 

in urban areas, and conservation varies by hydrologic region, or the change in streamflow 

(Svoboda,2000; Palazzo et al. 2017). However, drought assessment in data scarce areas often 

neglects the streamflow which induced great uncertainties in results. 

The Surface Water and Ocean Topography (SWOT) satellite, to be launched in 2021, will 

bring observations of water surface with an unprecedented spatio-temporal coverage 

(Rodríguez et al., 2018). Many scholars devoted greatly to water surface inversion or basinal 

water storage estimation by using multisatellite data, such as MODIS imagery, ENVISAT 

satellite altimetry data or the derived virtual stations (Silva et al, 2010; Pham-Duc et al., 

2019&2020; Kitambo et al., 2021). However, estimating streamflow from “geometric” 

observables of flow surface remains a difficult inverse problem particularly in case of poor 

knowledge on river bathymetry and friction. Moreover, few recent studies address the effective 

https://www.sciencedirect.com/science/article/pii/S0022169420307915?via%3Dihub#b0340
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modeling of ungauged river channels using multisatellite data, and the estimation of streamflow 

from SWOT water surface observations is a difficult inverse problem because of the correlated 

influence of flow controls on the observable water surface signatures, which may be solved 

when in situ depth/discharge data are available (Garambois et al., 2020; Pujol et al., 2020). 

Some scholars tried inversing streamflow in large-scaled rivers (e.g., more than 100 meter wide) 

and got a satisfactory results yet the accuracy is poor when applied to narrower tributary streams 

(e.g., less than 40 meter wide) (Gleason and Smith, 2014; Chen et al. 2016; Feng, et al., 2019; 

Zhao et al., 2019). 

So far, urban drought was assessed by using the Drought Severity Index (DSI) where only 

precipitation was considered (Bryant et al., 1992; Phillips and McGregor, 1998; Guerreiro et 

al., 2018), or by using the most comprehensive data source for drought monitoring, e.g., the 

United States Drought Monitor (USDM) dataset (Svoboda,2000; Palazzo et al., 2017). However, 

water use information was often neglected. In addition, many methods were developed for local 

areas in which many data are not available in other regions, especially in the Yellow River basin 

(YRB) China. When assessing urban drought in these regions, it is highly necessary to set up a 

new framework for urban drought assessment by considering both water quantity available and 

water use / consumption in urban areas. 

Water quantity available and water use information can be comprehensively reflected by 

the terrestrial water storage change (TWSC). Till now, the Global Land Data Assimilation 

System (GLDAS) is the mostly widely used dataset for hydrological study and disaster 

assessment. This dataset can also roughly calculate the TWSC in many regions globally. The 

GLDAS was jointly developed by scientists at NASA, GSFC, NOAA and NCEP to provide 

terrestrial water and energy storages data. It drives four land surface models: Noah, CLM 

(Community Land Model), VIC (Variable Infiltration Capacity) and Mosaic, incorporating both 

ground and satellite-based data (e.g., the global land cover and soil type dataset). The model 

output produced by the Noah land surface model includes soil moisture data (10, 30, 60 and 

100 cm, from the soil surface down), snow water equivalent, evapotranspiration, LAI and 

canopy water storage (Rodell et al., 2004; Friedl et al., 2010). 

In contrast, the NASA’s Gravity Recovery and Climate Experiment (GRACE), or the 

GRACE satellite, can provide global monitoring on TWSC including the variation of 

groundwater, soil moisture, evapotranspiration, air moisture and precipitation as well as 

moisture in clouds. The GRACE data were widely used to regional drought, glacier melting 

monitoring as well as assessment of other disaster (Chen et al., 2013; Houborg et al., 2010; Nie 

et al., 2018; Yin et al., 2020). 

In brief, when assessing urban drought in previous researches many scholars took 

precipitation as basis to calculate urban drought, yet less consideration is put on streamflow, 

especially in data-scarce areas. However, streamflow is significantly important for accurately 

estimation drought related variables (Lv et al., 2019). In addition, lack of long series of on-

ground hydrological monitoring on streamflow in data scarce areas hinders accurately 

estimating freshwater available and predicting future drought severity. Streamflow, soil water 

and undergroundwater consist of most of proportions of freshwater available. Streamflow can 

be retrieved by using satellite imageries and the latter two indicators can be estimated by using 

https://www.sciencedirect.com/science/article/pii/S0022169420307915?via%3Dihub#b0180
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GRACE and GLDAS data (Bettadpur, 2012; Zhao et al., 2013; Gleason and Smith, 2014; Chen 

et al. 2016; Shen et al., 2016). Therefore, it is urgently necessitated to produce long series data 

of freshwater available based on GRACE and GLDAS data whereby to predict future urban 

drought with water consumption and freshwater availability. 

1.2 Objectives 

To develop a framework for the prediction of urban drought (water consumption / available 

water) in the year 2030 and 2050 to support making drought-control policy in data-scarce areas, 

inclusive of 

(1) Extending streamflow series in data-scarce areas by exploring new ways to retrieve 

streamflow to help more accurately calculate available freshwater in urban areas when 

assessing future drought; 

(2) Producing long series of available groundwater data related to calculation of freshwater 

available with the help of GRACE and GLDAS data for accurately predicting available 

freshwater; 

(3) Predicting drought in 2030 and 2050 coupled with CMIP5 IPCC models and scenarios. 

1.3 State of the art of drought assessment and prediction 

Drought is often caused by a lack of rainfall or by intensive use of water 

resources(Trenberth et al., 2014). Climate change deteriorates it as higher temperature and less 

precipitation yielding runoff in urban areas. A lack of rainfall results in shortage of water 

available, and intensive use of water resoruces is the outcome of excessive water consumption. 

Generally, the ratio of water consumption to water available can reflect the degree of drought. 

Generally, the assessment methodologies can be categorized as four classes. 

1.3.1 Meteorological drought 

Meteorological drought can be defined as a prolonged lack of (or below normal) rainfall, 

possibly aggravated by hot temperatures causing high evapotranspiration rates (Spinoni et al., 

2019). In general, the meteorological drought is the origin of the other three types of droughts, 

and the hydrological drought tends to be caused by the accumulation of meteorological drought. 

Once the hydrologic drought occurs, it is easy to lead to the shortage of agricultural water 

supply and socioeconomic drought (Yi et al., 2020). Till now, scholars developed many 

algorithms to calculate meteorological drought (e.g., SPI, SPEI, PET, PDSI, scPDSI, PHDI, Z-

Index, PMDI, PNP etc.), among which three algorithms of SPI, SPEI and DPI were widely used. 

SPI and SPEI are multi-scale and can reflect different drought types (Hernandez and Uddameri, 

2014; Stagge et al., 2015). DPI is based on the difference between the data and the average 

value. It does not impose any probability distribution on the precipitation data (Tayfur, 2021). 

It is a more representative drought assessment tool for arid climate regions. Moreover, these 

three indexes are also commonly used in drought assessment. Details are as follows: 



4 

 

(1) Standardized Precipitation Index (SPI) 

The (SPI) is calculated in the following sequence. A monthly precipitation data set is 

prepared for a period of m months, ideally a continuous period of at least 30 years. A set of 

averaging periods are selected to determine a set of time scales of period j months where j is 3, 

6, 12, 24, or 48 months. These represent arbitrary but typical time scales for precipitation 

deficits to affect the five types of usable water sources. The data set is moving in the sense that 

each month a new value is determined from the previous i months. Each of the data sets are 

fitted to the Gamma function to define the relationship of probability to precipitation. Once the 

relationship of probability to precipitation is established from the historic records, the 

probability of any observed precipitation data point is calculated and used along with an 

estimate of the inverse normal to calculate the precipitation deviation for a normally distributed 

probability density with a mean of zero and standard deviation of unity. This value is the SPI 

for the particular precipitation data point (Mckee et al., 1993). 

(2) Standardized Precipitation-Evapotranspiration Index (SPEI) 

Drought is not only affected by precipitation, but also closely related to evapotranspiration. 

In 2010, Vicente-Serrano used the difference between precipitation and evapotranspiration to 

construct SPEI (Vicente-Serrano et al., 2012), and used the log-logistic probability distribution 

function of 3 parameters to describe its changes. Through normalization processing, the 

cumulative frequency distribution of standardized precipitation and potential 

evapotranspiration was finally standardized to classify drought. Potential evapotranspiration 

(PET) means the maximum evapotranspiration that can be reached on a fixed underlying 

surface when the water supply is not restricted under certain meteorological conditions 

(Hernandez and Uddameri, 2014; Wu et al., 2021). Potential evapotranspiration is a key factor 

for the evaluation of regional dry and wet conditions, the estimation of crop water requirements, 

and the rational planning of water resources. 

(3) Discrepancy Precipitation Index (DPI) 

The DPI does not impose any probability distribution on the precipitation data, which is 

based on the discrepancy of the data with respect to the mean value (Tayfur et al., 2021). The 

drought classifications are proposed based on the D-score values. Its drought classification 

ranges are straightforward as those of the Standard Precipitation Index (SPI). The proposed 

drought index is based on the discrepancy of precipitation data with respect to the mean value 

and does not impose any transformation or any other probability distribution function. It does 

not require the normal distribution of the data yet requires only the long-term precipitation data 

which can be easily available in most part of the world (Tayfur et al., 2021). 

In summary, both SPI and SPEI are standardized indicators that fit the input variable(s) 

with a statistical distribution over a baseline and classify the drought conditions with a simple 

scheme related to standard deviations from the median. Both indicators have been computed at 

multiple temporal accumulation periods (from 3 to 72 months), in order to let the user choose 

the accumulation period which best accounts for the sector of interest (Spinoni et al., 2019). It 

does not consider moisture condition and therefore it can be effectively used in both summer 

and winter, not affected by the topography. It is simply a fine transformation of precipitation 
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time series into a standardized normal distribution (z-distribution). The categories and the 

related ranges of the DPI are straightforward as the z-values of the SPI method (Tayfur et al., 

2021). 

However, the SPI is based on precipitation only and what is worth noticing is that semi-

arid and arid areas can be problematic with meteorological indicators computed at short periods, 

especially with SPI (Spinoni et al., 2019) since the precipitation data in semi-arid and especially 

in arid regions have a strong discrepancy due to the sporadic rainfall occurring in such regions. 

Therefore, in the analysis of the drought for such regions, imposing any probability distribution 

function to the data could be futile (Tayfur et al., 2021). Moreover, SPI and SPEI may not be 

capable of identifying regions that may be more ‘drought prone’ than others (Tayfur et al., 2021). 

In addition, ftting the difference between precipitation and PET over a short baseline period can 

result in problems computing SPEI due to climate change effects (i.e. rising temperatures) that 

are manifest in PET over recent decades and SPEI values of recent years (or decades) may be 

unrealistic because recent differences between precipitation and PET fall outside the range 

recorded during the baseline period, thus biasing the fit of the statistical distribution (Spinoni 

et al.,2019). In this sense, these indices need to be applied to different climatic regions to show 

its capabilities and the limitations (Tayfur et al., 2021). 

1.3.2 Agricultural drought 

Agricultural drought is usually caused by the stress of soil moisture in the root zone, which 

results in chlorophyll content losses, vegetation wilting and even crop failure over time. The 

onset of agricultural drought may lag that of the meteorological drought depending on the 

previous effective soil water content. To monitor different kinds of droughts (severity or 

magnitude), over 70 drought indices and several drought information systems have been 

developed. Based on a review of previous studies, two aspects need to be considered. Firstly, 

agricultural drought is the result of meteorological drought in agriculture areas. One of the best 

statistical indicators of meteorological drought is precipitation. however, the drought indices 

that include this indicator, such as SPI or SPEI, may not be suitable for monitoring agriculture 

drought, especially in irrigated areas. The main reason is that irrigation leads to overestimations 

of drought severity by certain drought indices, Secondly, agricultural drought is affected by 

meteorological factors, soil properties, vegetation types and other factors (e.g., field 

management and disease) (Wu et al., 2021a). Agricultural drought occurs when a deficiency in 

soil moisture (SM) starts adversely affecting crop growth and ultimately reducing crop yield 

(Baik et al., 2019). 

Three methodologies were widely used as follows: 

(1) EDI (Evapotranspiration Deficit Index) 

To highlight the soil moisture response to surface dryness, a simple EDI, following the 

evaporative stress index, is designed from the improved actual ET model and PET model, given 

by 1 minus the ET/PET ratio. Generally, EDI is sensitive to moisture stress and is comparable 

at different spatial scales. Higher EDI means more severe water stress or drying of the soil 

surface and lower EDI means less water stress or ample surface soil moisture (Yao et al., 2010). 

The sensitivity of vegetation drought response enhances drought detection capability. Also, EDI 
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highlights surface dryness integrated energy fluxes in response to soil moisture stress and can 

accurately monitor long term land surface drought (Wu et al., 2021b). 

(2) SEDI (Standardized Evapotranspiration Deficit Index) 

Kim et al., (2016) adopted the structure of SPEI to produce a probability-based relative 

drought index. The precipitation minus the reference ET of SPEI was replaced with the ET 

deficit obtained from the modified GG method. Since SPI and SPEI show strong correlations 

with PDSI at 9 to 12 months of duration, they hypothesized that the 9 months duration for 

accumulating ET deficit would show high correlations with the precipitation-based indices. The 

accumulation of ET deficit considers influence of moisture availability in the previous months 

on the drought conditions of the current month. Hence, the series of 9-month ET deficit for each 

grid cell of the PRISM data sets over 119 years. Using the fitted log-logistic distribution and 

the gridded 9 months ET deficit, they produced monthly drought indices from 1896 to 2014 at 

a 4 km grid resolution. While the SPEI uses the nonexceedance probability (p) of accumulated 

precipitation, the exceedance probability (1 − p) of the 9-month ET deficit was standardized 

because the ET deficit inversely indicates water availability. As such, the novel drought index 

derived from the ET deficit was referred to as the Standardized Evapotranspiration Deficit 

Index (SEDI) hereafter, which simplifies the computation of ET with meteorological data and 

performs well in identifying agricultural drought (Wu et al., 2021b). 

(3) ETDI (Evapotranspiration Deficit Index) (Narasimhan et al., 2005) 

The water stress anomaly during any week ranges from -100 to +100 indicating very dry 

to very wet conditions with respect to evapotranspiration. Adopting a similar cumulating 

procedure of SMDI, drought severity due to evapotranspiration deficit is given whereby 

Evapotranspiration Deficit Index (ETDI) were calculated. ETDI is a good indicator of short-

term agricultural drought monitoring which comparable irrespective of climatic zones. It 

underscores the importance of LAI and vegetation type capturing well the two-peak seasonality 

of ET variations as well as the drought area and yield loss (Wu et al., 2021b). 

However, EDI lacks physical basis and cannot easily quantify the wetness or dryness of a 

region in a given monthly or yearly period. SEDI does not consider wind speed yet decrease in 

wind speed will reduce evaporative demand. ETDI limits the river basin level and therefore 

remote sensing products are the only viable data for mapping ET and PET in large catchments. 

What is more, it performs poorly in mountain areas due to the lack of observed meteorological 

data (Wu et al., 2021b). 

1.3.3 Hydrological drought 

Hydrological drought refers to the deficit of river discharge. The impact of droughts 

typically increases when a meteorological drought turns into a hydrological drought, affecting 

the ecosystem (e.g., water quality), residents, as well as industrial and agricultural production. 

Following its onset, the lifecycle of a hydrological drought includes development and recovery 

or termination. Development is defined as the period from the onset of hydrological drought to 

the time when the maximum intensity is realized, while the recovery refers to the period from 

the maximum intensity of hydrological drought to complete recovery (Wu et al., 2020). 
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Three methodologies were widely used as follows: 

(1) SSI (Standardized Streamflow Index) 

If the probability distribution is suitable for fitting the monthly streamflow series, the 

average value of the SSI and the standard deviation must equal 0 and 1, respectively. The SSI 

is a standardized variable and can therefore be compared with other SSI values across time and 

space (Vicente-Serrano et al., 2012). Moreover, it applies to multiple timescales with simple 

calculation and less data input (Wu et al., 2020). SSI with the advantages of simplicity and 

effectiveness is viewed as the most commonly utilized method for quantifying the streamflow-

based hydrological droughts (Wang et al., 2020). 

(2) SRI (Standardized Runoff Index) 

The procedure for calculating the SRI includes the following steps (Shukla et al., 2008): 

first, a retrospective time series of runoff is obtained by simulation, and a probability 

distribution is fit to the sample represented by the time series values. Second, the distribution 

is used to estimate the cumulative probability of the runoff value of interest (either the current 

accumulation or one from a retrospective date). Third, the cumulative probability is converted 

to a standard normal deviate (with zero mean and unit variance). It has been extensively used 

for hydrological drought assessment (Wang et al., 2020). 

(3) SAP (Streamflow Anomaly Percentage) 

The equation for SAP is 𝐹𝑑𝑦 =
(𝑙𝑛𝑄𝑑̅̅ ̅̅ ̅̅ ̅−𝑙𝑛𝑄𝑑𝑦)

(𝑙𝑛𝑄𝑑)
 where Fdy, is the flow anomaly occurring on 

day d of year y and Qdy is the flow occurring on day d of year y. Qd represents the set of flows 

occurring on day d (where d can range between 1 and 365), hence lnQ 𝑑̅̅ ̅̅ ̅̅ ̅ is the mean value of 

lnQd over a period of n years, whilst σ (lnQd) is the standard deviation of the lnQd values 

within the n year period (Zaidman et al., 2002). 

What is worth noticing is that SSI does not directly reflect the amount of water required 

for recovery as they are dimensionless indices. Belonging to standardized drought index family, 

the SSI is developed directly under the assumption that the distribution of streamflow is 

statistically stationary. However, the non-stationarities in long-term observations cannot be 

ignored under a changing environment, which to some extent becomes the main obstacle to the 

validity and usefulness of the traditional indices. SRI does not directly reflect the amount of 

water required for recovery as they are dimensionless indices and suffered from the lack of 

appropriate universal approaches at basin scale. As to SAP, it employs a fixed timescale (e.g., 

monthly or annual) and average streamflow as the calculation parameter. Consequently, the 

cumulative effects of drought for a prolonged event are neglected (Wang et al., 2020; Wu et al., 

2020). 

1.3.4 Socio-economic drought 

Different from meteorological, hydrologic, and agricultural drought, socioeconomic 

drought is an only non-physical phenomenon among these four types of drought, which refers 

to that available water cannot satisfy the demand, and directly results in negative effects on 

industrial, irrigation, hydroelectric power and environment. However, socioeconomic drought 
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is difficult to quantify(Guo et al., 2019; Mehran et al., 2017; Mehran et al., 2015). In addition, 

it should be noted that as an unnatural phenomenon, once the socioeconomic drought occurs, it 

will directly affect the stability of human production and living (Guo et al., 2019a). In the 

socioeconomic system, its population is most influenced by drought due to the direct impact of 

drought on the water and food supply. Still, various economic sectors can be seriously affected 

by drought, and the huge economic impact of drought is most important in developing countries. 

The spatial distributions of populations and economic activity are also highly correlated, which 

has enabled the effects of climate change on socioeconomic systems to be assessed, although 

economic impacts have not received the same attention as population (Liu et al., 2020). 

There are three wide-used methods for this kind of drought. 

(1) MSRRI (Multivariate Standardized Reliability and Resilience Index) 

The index MSRRI is not only a hybrid index (consisting of two fundamentally different 

indicators) but also covers both common approaches in vulnerability studies (top-down and 

bottom-up). MSRRI can be considered as a measure of socioeconomic drought since it 

evaluates the supply and storage relative to the demand. Similar to other standardized drought 

indicators, positive values indicate sufficient water to satisfy demand, while negative values 

indicate shortage of water relative to the demand. Here the standardization is based on a 

nonparametric approach that does not require parameter estimation or any a priori assumption 

on the underlying distribution function of the original data. The values of MSRRI and the 

corresponding socioeconomic drought severity can be interpreted similar to the commonly 

available drought indicators such as the Standardized Precipitation Index (SPI) -- i.e., a negative 

value indicates socioeconomic drought, while a positive value represents a wet period (Mehran 

et al., 2015). In fact, given that MSRRI is based on the joint distribution, MSRRI indicates the 

onset of the stress based on the onset of the hydrologic drought and recovery of the system from 

a socioeconomic perspective. This behavior of MSRRI provides an assessment of the overall 

stress on the system including the system resilience (Mehran et al., 2015); MSRRI has better 

performance in assessing socioeconomic droughts than Inflow-Demand Reliability index (IDR) 

and Water Storage Resilience index (WSR) (Huang et al., 2016); Multivariate Standardized 

Reliability and Resilience Index (MSRRI) framework to quantify the socioeconomic drought, 

which provided complementary information on socioeconomic drought development and 

recovery based on reservoir storage and demand (Guo et al., 2019a). 

(2) IDR (Inflow-Demand Reliability index) 

IDR is designed to investigate socioeconomic drought and is a multivariate approach that 

relies on two individual (univariate) indicators. At first, a time frame is defined based on the 

type of reservoir system (within-year or over-year). After defining the time frame, two new 

indicators are defined as follows: water storage resilience indicator and inflow-demand 

reliability indicator. Inflow-demand reliability (IDR) indicator is derived by computing the sum 

of the percent change of inflow with respect to water demand during the projected time frame. 

This indicator (inflow-demand reliability) corresponds to the “top-down” approach where the 

available inflow is assessed relative to the water demand. In other words, this indicator shows 

whether the available water (inflow to the system) is sufficient to satisfy water demand, 

regardless of the storage in the reservoir (Mehran et al., 2015). 
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(3) WSR (Water Storage Resilience index) 

WSR in respect to “bottom-up” methodology is the water storage resilience indicator. This 

indicator is defined based on monthly inflow, monthly water demand, monthly storage, and 

total water demand during the time frame. Water storage resilience (WSR) indicator is 

computed monthly and shows whether the reservoir storage is enough to satisfy water demand 

for the selected period (Mehran et al., 2015). 

In summary, MSRRI is overly sensitive to inflow, and could not accurately depict the 

reservoir operation process and the capacity to resist the future drought, especially in flood 

season. IDR and WSR cannot clearly reveal the severity of water stress. In the IDR index 

framework, the outflow of a reservoir was regarded as the demand, but the outflow cannot 

accurately represent the demand, especially during the drought period when the outflow is small, 

the demand is large, and the outflow is much less than the actual demand. It could not accurately 

monitor the drought situation of the reservoir during the flood season (Mehran et al., 2015; Guo 

et al., 2019b). 

1.4 Large-scaled drought assessment with multi-source data inclusive 

of satellite imageries 

When assessing drought at large scales, using the method (water comsumption / freshwater 

available) is the best way due to the lack of ground observations. 

FWA includes surface freshwater available and underground FWA. Surface freshwater is 

usually stored in large waters (such as lakes, reservors and wetland), and transported via surface 

streamflow. 

1.4.1 Assessment of surface freshwater storage with satellite images 

The water storage of surface waters is frequently monitored by using satellite imageries 

with which hydrological models were developed (Donchyts et al., 2016; Feng et al., 2016; Pekel 

et al., 2016). Song et al., (2018) used the Landsat archived images, including those from the 

Landsat 4 & 5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematio Mapper-plus (ETM+) 

and the Landsat 8 Operational Land Imager (OLI), to detect surface water dynamics in New 

Area during the past three decades; Kim et al. (2020) used C-band Sentinel-1A and -1B SAR 

images to derive reservoir surface water areas; in addition, Yésou et al. (2011) monitored the 

variation of water resource over the Yangtze middle reaches by coupling satellite imageries of 

ENVISAT, MODIS, altimetric data and field measurements; Hulth et al. (2020) monitored 

water dynamics based on Sentinel-1 Time Series; Xing et al. (2018) monitored monthly surface 

water dynamics of Dongting Lake using Sentinel-1 data at 10 m spatial resultion; Yang et al., 

(2020) estimated monthly variation of surface water extent in metropolitan France at a 10-m 

resolution using Sentinel-2 data; Che et al. (2019) estimated seasonal water cover and change 

in arid and semi-arid Central Asia by using Landsat imagery; Paul et al. (2020) developed 

Satellite‐based hydrological model (SHM) on 1 km × 1 km spatial grid resolution to estimate 

and forest surface water, snowmelt, groundwater and study runoff routing processes. 

1.4.2 Assessment of stream flow with satellite images 

As to surface streamflow, estimation methods with satellite imageries are products of in-
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depth research in the fields of computer science and spatial science during recent years. Using 

these methods, researchers can perform the inversion of discharge under difficult geology and 

harsh conditions without gauging the water (Fisher et al., 2020; Hirpa et al., 2013; Syvitski et 

al., 2000). There are two main types of inversion methods: near-surface remote sensing and 

satellite remote sensing. Near-surface remote sensing mainly includes stereo vision—

particularly imaging (Li et al., 2016), Doppler radar and ground penetrating radar (Costa et al., 

2006; Costa et al., 2000), aircraft–radar–water surface elevation (LeFavour & Alsdorf, 2005), 

water-level/slope/hydraulic method (Bjerklie et al., 2018; Jung et al., 2010; Pujol et al., 2020), 

etc. However, the expensive instruments limit the wide application of such methods. In contrast, 

satellite remote-sensing methods have the advantages of low cost, high speed and convenience, 

and ease of implementation. They have been widely used in large rivers and can be 

approximately divided into five types: water surface area (satellite–water surface area), water 

surface width (satellite–water surface width), water level (satellite–water level) and 

hydrological multi-parameter set (satellite–multiparameter) and coupling of satellite data and 

hydrological model (satellite–hydrological model). 

The satellite–water surface area method uses in the 1990’ ERS-1 radar satellite images and 

simultaneous ground measurement data to establish a correlation between water surface area 

and discharge for the inversion of streamflow (Smith et al., 1996; Smith et al., 1995; Song et 

Al., 2011). The satellite–water surface width method uses water surface width information 

obtained from satellite images such as QuickBird-2 together with fitting curves generated from 

survey stations to invert streamflow (Pavelsky et al., 2014; Xu et al., 2004). The satellite–water 

level method converts the information on the underlying surface water level estimated using 

TOPEX/Poseidon satellite data into a series of water level values. It establishes the relationship 

between the water level values from satellite data and the measured discharge from adjacent 

hydrological stations. Thus, the discharge can be estimated using TOPEX/Poseidon (TP) 

satellite data (Zhang et al., 2002; Zhang et al., 2004) or by directly using satellite altimetry data 

of Jason 3, Jason CS, Sentinel3 and the coming SWOT, etc., to estimate discharge for areas 

with no data (Getirana et al., 2013; Papa et al., 2010). The satellite–multiparametric method 

measures hydrodynamic and hydrological parameters such as water surface width, hydraulic 

gradient, and water level to invert the discharge of large rivers with widths >100 m 

(Biancamaria et al., 2016; Birkinshaw et al., 2014; Durand et al., 2016; Gosling Et al, 2011; 

Pavelsky et al., 2014). Alternatively, it calculates water cycle components from satellite 

inversions by linking remote sensing and synchronized ground measurement (Li et al., 2012; 

Lu et al., 2010). The satellite–hydrological modeling method combines satellite data, surface 

climate data, and hydrological modeling to measure the discharge of large rivers (Andreadis et 

al., 2007; Vörösmarty et al., 1996). 

Among the five methods previously described, most are highly dependent on ground 

measurement data, whereas the global parameters in at-many-stations hydraulic geometry 

(AMHG) is one of McFLI (Gleason et al., 2016). It calculates the streamflow solely from the 

variation in river width, making it among the mainstream methods widely used for streamflow 

estimation via remote sensing (Bonnema et al., 2016; Durand et al., 2016; Gleason et al., 2014; 

Gleason et al., 2018). However, satellite-induced scale problems (Wu and Li, 2009), restricted 

its wide application in medium and small rivers. In other words, because of the limitations of 
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satellite spatial resolution or sensor capacity, the accuracy of this method is relatively high for 

large rivers (average river width ≥100 m) but unstable for medium-to-small rivers (average 

river width ≤ 100 m, and small rivers with width <40 m) (Gleason et al., 2014; Feng et al., 

2019), thus greatly limiting its application to medium-to-small rivers lacking hydrological 

monitoring data. Therefore, there is an urgent need to explore new methods to enhance the 

AMHG method and to expand the scope of its application. 

1.4.3 Estimation of underground water variation with satellites 

In aspect of underground water study, Gravity Recovery and Climate Experiment 

(GRACE)(Tapley et al., 2004) observations and DInSAR Data were often combined with other 

models as the water balance method and Darcy's law (Ramillien et al., 2011, 2012 & 2015). 

GRACE observations were used to assess underground water exchange patterns. GRACE-

derived TWS anomalies are the sum of all components, including GWS, soil moisture, snow 

water equivalent (SWE), and canopy water storage (CWS) (Yin et al., 2020). DInSAR Data 

were often used to derive ground displacements based on SAR-derived deformation series as 

DInSAR processing allows the evaluation of the temporal evolution of surface displacement 

using SAR images over large areas since the first SAR satellites became operational in 1992 

(Massonnet et al., 1993; Ezquerro et al., 2017). 

In addition, variaious satellite products were integrated together to set up mathematical 

model to study groundwater variation. Shu et al. (2018) modeled groundwater processes using 

remote sensing data and took the results as input variables of distributed hydrological modelling. 

They merged ground observations and the RS data by forcing the RS data to obey the 

measurements at the gauge stations. 

1.4.4 Estimation of precipitation with satellite imageries 

Precipitation, as the most active element in the water cycle, and its tempo-spatial 

distribution play an important role in accurate prediction and assessment of factors in hydrology, 

meteorology and agriculture (Shi et al., 2019). With the techniques of high-speed computation 

and remotely sensed satellite, meteorological satellite has been a new tool to estimate 

precipitation. Through satellite imageries, researchers can calculate high- spatial-resolution and 

high-accuracy precipitation observations (Amitai, et al., 2009). Globally, there emerged many 

satellite precipitation datasets, such as GPCP (global precipitation climatology project), TRMM 

(tropicalrainfall measuring mission), CMORPH (climate predictioncenter morphing technique), 

PERSIANN (precipitationestimation from remotely sensed information usingartificial neural 

networks), GSMaP (global satellitemapping of precipitation), GPM (global 

precipitationmeasurement mission) etc. (Amitai, et al., 2009; Jiang et al, 2010; Shi et al., 2019; 

Guo et al, 2021). These datasets lay solid foundation for the researches of hydrology and 

meteorology in data-scarce and ungauged areas. However, spatial resultion of most satellite 

dataset is not very high, e.g., GPCP has a spatial resolution of 1.5°×1.5°; CMORPH, 

PERSIANN and TRMM have a spatial resolution of 0.25°×0.25°. Though GSMaP and GPM 

have a relative higher spatial resolution (0.1°×0.1°) (Guo et al, 2021).  

1.5 Assessment of water consumption 

This section will evaluate water consumption from three aspects: household water 
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consumption, industrial water consumption and agricultural and naturals ecosystem water 

consumption. 

1.5.1 Household water consumption 

In the estimation of household water comsumption, population is an important variable. 

Several principle global databases for population such as Landscan (with historical values and 

some forecast one, https://landscan.ornl.gov/), the GUF from DLR 

(http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454/), GHSL from 

JRC (http://ghsl.jrc.ec.europa.eu/) are available (Bhaduri et al., 2002; Florczyk et al., 2019; 

Mück et al., 2017). 

Among the three datasets, ORNL’s LandScan™ (Dobson et al., 2000 & 2003) is a 

community standard for global population distribution data with approximately 1 km (30″ by 

30″) spatial resolution, it represents an ambient population (average over 24 hours) distribution. 

LandScan is now available at no cost to the research and education communities. Dataset from 

2000 to 2018 are available now. It is developed using best available demographic (Census) and 

geographic data, remote sensing imagery analysis techniques within a multivariate dasymetric 

modeling framework to disaggregate census counts within an administrative boundary. Since 

no single population distribution model can account for the differences in spatial data 

availability, quality, scale, and accuracy as well as the differences in cultural settlement 

practices, LandScan population distribution is essentially a combination of locally adoptive 

models that are tailored to match the data conditions and geographical nature of each individual 

country and region. 

The second dataset, the “Global Urban Footprint” (GUF) project aims at mapping the 

worldwide settlements with unprecedented spatial resolution of 0.4 arcsec (~12 m). A total of 

180 000 TerraSAR-X and TanDEM-X scenes have been processed to create the GUF. The 

resulting map shows the Earth in three colors only: black for “urban areas”, white for “land 

surface” and grey for “water”. This reduction emphasizes the settlement patterns and allows for 

the analysis of urban structures, and hence the proportion of settled areas, the regional 

population distribution and the arrangement of rural and urban areas. For scientific and non-

commercial applications, the GUF data are free for use. Global coverage of the Earth’s land 

surface (generated based on ~180.000 single TerraSAR-X/TanDEM-X image products) for the 

reference year 2011. Data collection of satellite imagery between 2011 and 2012 (93 %); single 

scenes with more recent acquisition dates (2013 / 2014) used to fill data gaps. 

The third dataset of GHSL is a new open and free tool for assessing the human presence 

on the planet. It produces new global spatial information, evidence-based analytics and 

knowledge describing the human presence on the planet and operates in an open and free data 

and methods access policy (open input, open method, open output). The GHSL Data Package 

2019 consists of multitemporal products, that offers an insight into the human presence in the 

past: 1975, 1990, 2000, and 2014. 

Except for population there exist five other ways to measure household water consumption, 

directly or indirectly, as follows: 

https://landscan.ornl.gov/
http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454/
http://ghsl.jrc.ec.europa.eu/
https://ghsl.jrc.ec.europa.eu/datasets.php
https://ghsl.jrc.ec.europa.eu/datasets.php
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（1）By water meters 

Traditionally, the primary source of household water usage data is water meters (Willis et 

al., 2013). Water meters is a household instrument to measure how much water the household 

consumes. The temporal resolution of the data obtained differs significantly depending on the 

generation of meter used to collect the data — from monthly to yearly intervals with ordinary 

manually read (‘dumb’) meters (Sønderlund et al., 2016) to smart meters capable of generating 

real-time or near real-time usage data (Cole and Stewart, 2013; Nguyen et al., 2018a). Some of 

the more modern generations of ordinary meters have Automatic Meter Reading (AMR) 

technology, which allows remote meter reading and data transfer (Pericli and Jenkins, 2015; 

Abu-Bakar et al., 2021). 

（2） Via surveys 

A primary survey pertaining to water consumption pattern was conducted by means of 

structured questionnaire as main research instrument. The survey instrument contained both 

closed and open-ended questions. The household survey incorporated questions on daily and 

activity wise consumption, sources, quality, duration and frequency of water supply, distance 

of different sources and the level of awareness about rainwater harvesting technology in the 

village. What is worth noticing using this method is that the season impacts the populations 

water needs (Singh et al., 2013). 

（3）Dividing the household’s reported monthly bill by the unit tariff 

In this method, the key dependent variable water consumption was obtained by dividing 

the household’s reported monthly bill by the unit tariff corresponding to the household’s water 

delivery system (Basani et al., 2008). 

（4）Statistical forecasting methods 

Statistical forecasting methods rely on historic data to define relationships between 

independent and dependent variables (Memon and Butler 2006). These relationships can then 

be used to predict future household water demand but forecast accuracy is highly dependent on 

the quality of the underlying data (Tate 2000). Water demand forecasts are typically derived 

from explanatory variables (e.g., population, household size and climate variables) using linear 

regression methods. Alternatively, water companies employ geodemographic profiling to 

estimate household demand via factor analysis of census data to identify areas with common 

attributes. For example, the ACORN (A Classification of Residential Neighbourhoods) metric 

is widely used with household demand coefficients (derived from sample surveys) to estimate 

household consumption across the regional population (Parker et al., 2013). 

Water companies also base predictions on ownership-frequency-volume models which 

consider the number of waters using fixtures, how often they are used, and the average quantity 

of water per use. ‘Microsimulation’ techniques have also been applied to household demand 

estimation and forecasting (Clarke et al. 1997; Williamson et al. 2002). 

（5）Basing on household population 

Domestic water consumption (DWC) depends on the living habits of communities. The 
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registered population during 2006–2015 (without taking account of the non-registered 

population) living in Chao Phraya watershed was collected from the Bureau of Registration 

Administration of the Department of Provincial Administration of Thailand. According to the 

Government Gazette (2010) of Thailand, 80% of domestic water demand (DWD) was set at an 

average rate of domestic wastewater for Thailand. Consequently, 20% of DWD was determined 

as DWC in this study. The DWD was calculated from using a DWD coefficient of each 

community multiplied by the population (Kaewmai et al., 2019). 

（6）Via household water demand prediction model 

There are four attributes of a household agent: total water consumption, water consumption 

per capita, household population and education. Economic, climate and some other factors are 

usually considered to drive water consumption (Arbués et al.2003). Each household may be 

affected by surrounding households to change its water consumption in reality. Thus, the 

household agent in the HWDP has self-learning ability which is related to education. Not only 

does it enhance interpretations by defining the behavioral characteristics of elements, but also 

it makes the model more realistic by revealing internal feedbacks. Therefore, when modeling 

water demand by agents, factors including geographic, cultural, socio-economic, behavioral etc. 

are needed (Athanasiadis et al. 2005; Barthel et al. 2008; Galán et al. 2009; Valkering et al. 

2009; Chu et al. 2009). The complexities and uncertainties caused by the randomness and 

feedbacks in the system can be deeply investigated to show the variations of urban household 

water demand (Yuan et al., 2020). 

However, most traditional meters have significant limitations (Pericli and Jenkins, 2015), 

making them unsuitable for consumption measurement without being linked to data loggers 

(Giurco et al., 2008). Other methods of surveys, monthly bill and statistics are conducted with 

ground investigation house by house, which is impossible for large-scaled estimation of 

household water consumption. The last two methods based on household population are good 

way yet collection of registered household population data is difficult in China. Also, the data 

for spatial distribution of educated household population are hard to get in China. Fortunately, 

the role of educated household population in the prediction model is only slight adjustment and 

can be ignored at large scales. The most suitable way is firstly estimating population via 

satellites or other sources like Landscan, secondly estimating water use per captia by way of 

investigation in representative areas like Ercin and Hoekstra (2012), Yuan et al. (2020) and Guo 

et al. (2021), and thirdly estimating household water consumption, or the total water 

consumption in the prediction model of Yuan et al. (2020), via formula of (population* water 

consumption per captia). In other words, a simplified household water demand prediction 

model of Yuan et al. (2020) will be used in this study. 

1.5.2 Industrial water consumption 

There are four ways to calculate water consumption by industry (IWC) as follows. 

（1）Data collection 

The bottom-up data collection method is often used, and the comprehensive data sources 

include but are not limited to the following: government statistics, official park websites, and 

open sources, such as Google Maps. These data can be classified into the following categories: 

https://link.springer.com/article/10.1007/s11269-014-0649-4#ref-CR7
https://link.springer.com/article/10.1007/s11269-014-0649-4#ref-CR10
https://link.springer.com/article/10.1007/s11269-014-0649-4#ref-CR31
https://link.springer.com/article/10.1007/s11269-014-0649-4#ref-CR52
https://link.springer.com/article/10.1007/s11269-014-0649-4#ref-CR24
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Resource-environment data include the source and quantity of water withdrawal, water 

consumption, energy consumption, wastewater treatment and emission, and reclaimed water 

use; economic data include the industrial added value (IAV) (BEA, 2006), the annual growth 

rate of IAV, and leading industries in NIPs; geographical data include the geographical location 

of the parks; other related data include local economic development, availability of local water 

resources, and local water consumption performance (Hu et al., 2021). 

（2）Statistic 

The water comsumption of an industry (IWC) depends on the type of industry (Kaewmai 

et al., 2019), e.g., a food industry requires the most water in Thailand at 75  m3 hectare 

(ha)−1 day−1, followed by the chemical and non-metal industries at 50  m3 ha−1 day−1 (RID, 

2011a). The historical data on the daily water demand of industry were multiplied by the 

number of workdays in each month to obtain the monthly water demand by the industry. The 

IWC for the Southeast Asian countries in 2010 was set at 31.7% of the total industrial water 

withdrawal (Flörke et al., 2013; Shiklomanov, 2000). 

（3）Water Input–Output model 

Mohan, et al. (2021) developed a water I-O model which defines total water consumption 

and differentiates between direct and indirect water consumption. These concepts can be 

presented in the model, which allows us to formulate a matrix of intersectoral water 

relationships and analyze the relative importance of direct and indirect water consumption. The 

sum of the entire round of consumption is called total indirect water consumption (Wang et al., 

2009). 

（4）Aggregated IOT and the direct water consumption data 

FWS is based on the Leontief I-O framework (Leontief,1986). In a general I-O framework, 

an economy has N sectors where each sector i produces aunique good. To better reflect the 

economic structure and water consumption conditions, the IOT is further aggregated. Thus, the 

water consumption among different industries can be obtained through using the aggregated 

IOT and the direct water consumption data (Chen et al,2010; Zhang et al., 2014; Zheng, et al., 

2021). 

（5）Industrial GDP-based model 

This model firstly analyzes the water consumption variation with the industrial GDP of 

different industries whereby to determine the representative industry. Secondly, the water 

consumption per GDP is determined for every representative industry. When calculating 

industrial water consumption, what people need do is to classify local industries based on the 

class of representative industries and then uses “water consumption per GDP for every 

representative industry” multipied by GDP of local industries to get water consumption by 

every individual industry. All water consumption quantities total up to the water consumption 

for a region (Zhou and Xu, 2012; Ayiguli et al., 2015). 

In summary, the bottom-up approach is a vital tool that provides the most accurate 

information and gathers reliable data from an industrial facility (Hu et al., 2021). However, due 

to its time consuming and confidentiality obstacles, such approach is avoided (Hu et al., 2021). 
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LDMI has been argued to be a superior IDA approach (Ang, 2004), as it satisfies all of the key 

desirable properties for a decomposition approach, including (1) a perfect decomposition (i.e. 

does not result in a “residual” element), (2) it is robust to negative or zero values, and (3) and 

is straightforward to implement and explain to non-specialists (Wang et al., 2017). The last 

method of industrial GDP-based model needs to determine “water consumption per GDP for 

every representative industry” which can be accessed via local industrial statistic report. But it 

is a little difficult for large-scaled study. If the method can be simplified with the variable being 

replaced by region-averaged value, industrial water consumption will be easily calculated. 

1.5.3 Ecosystem water consumption (EWC) 

Ecosystem includes natural and wetland, crop land, meadow etc. In a broader sense, 

ecosystem includes vegetation and the surrounding environment, or land without vegetation. A 

constructed wetland (CW) is an artificial wetland to treat sewage, greywater, stormwater runoff 

or industrial wastewater. It may also be designed for land reclamation after mining, or as a 

mitigation step for natural areas lost to land development(Lu et al., 2015). Water consumtion 

for this vegetation can be evaluated based on their life cycle with a temporal scale of monthly, 

e.g., the methods of IWRC, evapotranspiration which are usually applicable for humid areas. 

But in the arid areas distributing groundwater-dependent vegetation, the phreatic evaporation 

method is applicable. In detail, 

（1）Irrigation water requirement of crops (IWRC) 

Crops include rice, maize, sugarcane, cassava, para rubber, soybean, coffee, oil palm, 

longan, mungbean, and peanuts etc. The monthly planted area of each crop within the irrigation 

zone can be collected from several agencies, e.g., the RID, the Office of Agricultural Economics, 

the IWMD, and the Department of Agriculture Extension of Thailand (Kaewmai et al., 2019). 

For the calculation of the monthly IWRC within the irrigation zone of the watershed, the 

monthly planted areas of each crop should be multiplied by an irrigation demand coefficient for 

each crop based on the crop evapotranspiration, the effective rainfall, the infiltration rate and 

irrigation efficiency (RID, 2011b). Then, the total irrigation water requirement of all crops was 

summed up. 

（2）Evapotranspiration from vegetation 

The EWCs were calculated with evpotranspiration using the Penman–Monteith formula, 

and the characteristics of the spatial-temporal evolution of EWCs were analyzed. The EWCs of 

vegetation are affected by vegetation type, climate and soil moisture. The water conditions in 

the YRB can fully support the growth of vegetation, while the coefficient of Penman-Monteith 

K values of grassland, cropland and forestland are 0.4, 0.35 and 0.5, respectively (Zhang and 

Yang, 2002; Zhang, 2003; Zhang, 2017; Zhao et al., 2019). Under given climatic conditions, if 

a region with expansive land, adequate fertility, and appropriate soil moisture, which promote 

vegetation growth to achieve standard conditions of healthy production without pest and disease 

damage, then, according to recommendations from FAO (Allen et al., 1998), vegetation 

evapotranspiration rate can be determined. Under nonstandard conditions, vegetation growth is 

affected by soil water content. When soil water content is below a specified threshold, 

vegetation will be subject to water stress, and the effect is determined by the soil moisture 
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limitation coefficient (Ks). Vegetation degradation is therefore significant. For the incomplete 

coverage and destroyed natural vegetation, the calculation of the EWC must be done under 

nonstandard conditions and take the area of vegetation coverage into account (Chi et al., 2018). 

（3）The phreatic evaporation method 

The phreatic evaporation method is applicable for the vegetation of arid regions and is 

mainly related to groundwater. The actual evapotranspiration of the riparian vegetation is 

supplied by soil water (generated by upward phreatic water), and the soil water condition is 

thus determined by the evaporation of phreatic water (Chen et al., 2008). On a larger spatial 

scale, when the soil has a stable evaporation rate, the surface evaporation intensity is stable, 

and the soil water content also remains unchanged (Chen et al., 2008). The phreatic water 

evaporation intensity, soil water flux and soil evapotranspiration intensity are all equal (Li, 

1988). Accordingly, the phreatic evaporation method is applicable in calculating the EWR of 

desert riparian vegetation. The phreatic evaporation method can be applied to estimate 

indirectly the EWC of the desert riparian vegetation, as based on the remote sensing 

interpretation (Song et al., 2000; Ling et al., 2014). 

In summary, when estimating ecosystem water consumption evaptranspiration is the core. 

Among all the widely used three method, that for irrigation water requirement of crops are more 

applicable for crop areas, and the infiltration rate and irrigation efficiency vary with regions 

and crop types which need local experiment to determine and therefore it is hard to apply at 

large scales; the phreatic evaporation method is applicable for the vegetation of arid regions in 

stead of urban areas; the method of evapotranspiration from vegetation is applicable for studies 

in urban areas especially in the YRB as the coefficient of Penman-Monteith K values of 

grassland, cropland and forestland are given in advance. Therefore, the second method 

“evapotranspiration from vegetation” will be adopted in this study. 

1.6 Flow chart and outline of the dissertation research 

1.6.1 Flow chart of the dissertation research 

To describe the routine of this research, we draw the flowchart of this dissertation as shown 

in Fig. 1-2. 

Urban drought can be estimated by using the ratio of the quantity of freshwater available 

to the quantity of water consumption in a city. To reduce risks induced by urban drought, future 

risk of freshwater available and water consumption is urgently necessitated to be studied. But 

lack of long series of monitoring on freshwater (streamflow and groundwater storage) hinders 

accurately predicting future available freshwater. It is urgently necessitated to produce long 

series data of freshwater available. Freshwater available consists of surface freshwater available 

(SFWA) and underground freshwater available (UFWA). Surface freshwater includes 

streamflow dynamically flowing in rivers and water quietly stored in lakes and reservoirs. 

Underground freshwater includes water stored in shallow soil layer and deep underground layer.  

The variation of freshwater available can be indicated by using TWSC (terrestrial water 

storage change). Streamflow is significantly important for accurately estimate TWSC. But 

difficulties in collection of ground-observed streamflow (instead of water-height) data resulted 
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in high uncertainties in TWSC estimation. To overcome this, two novel methods for streamflow 

retrieval with multisource data were developed in Chapter 3. The first one was named VHR-

AMHG (Virtual Hydraulic Radius and at-many-stations hydraulic geometry) based on river 

water-surface width for streamflow retrieval in dry seasons, and the second one was named 

transcaled spatial C/M method based on the reflectance of soil and water more accurate in wet 

seasons. After validating the methods, we coupled the results with runoff data from GLDAS 

(Global Land Data Assimilation System) dataset to recitiy the latter whereby to get long-series 

streamflow (runoff) data (1948-2018). With the long series streamflow, the SFWA in the three 

representative cities (Xi’an, Zhengzhou, Jinan in the Yellow River basin, China) was estimated. 

The long-termed data of past SFWA can be used to predict SFWA in future 2030 and 2050. 

As surface and underground freshwater available （SFWA+UFWA）consist of total 

freshwater available, we secondly put forward a new framework in Chapter 4 to estimate 

UFWA where factors driving the variation of underground water were identified based on which 

the whole Yellow River basin was clustered. All factors are from GLDAS dataset and 

underground variation is from GRACE (NASA's Gravity Recovery and Climate Experiment) 

monitoring. With the driving factors and spatial clusters, an ANN (artificial neural network) 

prediction model –LSTM-N (Long short-term memory network) was trained and validated to 

extend the GRACE data from 2002- to 1948-, almost 70 years long. Then the extended GRACE 

data were used to calculate long termed UFWA (1948-) which will be finally used to predict 

underground FWA in future 2030 and 2050. 

With total freshwater available (of surface and underground) estimated, water consumption 

in the three representative cities was further calculated in Chapter 5 as our goal is to predict 

future drought, or the ratio of water consumption to freshwater available, in 2030 and 2050. 

Since water consumption for household, industry and ecosystem totals up the most of water 

consumption in urban areas, the three types of water consumption were estimated based on the 

data of population, GDP (gross domestic product) and ET (evapotranspiration). LandScan 

global population data was used to analyze the change in the three representative cities by using 

local statistical data to verify them. MODIS (moderate-resolution imaging spectroradiometer) 

derived ET (evapotranspiration) was used to rectify GLDAS modeled ET to make the latter 

able to represent the whole study area. 
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Fig. 1-2 Flow chart of this dissertation conducted in the Yellow River basin (YRB). UAV: Unmanned Aerial 

Vehicle; ANN: artificial Neural Network; GRACE: NASA's Gravity Recovery and Climate Experiment; 

GLDAS: Global Land Data Assimilation System; GDP: Gross Domestic Product; ET: Evapotranpiration. 

Finally, with CMIP5 (Coupled Model Intercomparison Project Phase 5) IPCC senarios and 

based on the results for total freshwater available and water consumption, future urban drought, 
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or the ration of total water consumption to total freshwater available, for 2030 and 2050 was 

analyzed with help of literature and ANN predictions in Chapter 6. The total freshewater 

available includes SFWA and UFWA. The SFWA was predicted by setting up ANN (Artificial 

Neural Network) with SFWA estimated in Chapter 3 as output and environmental factors 

presented in CMIP5 influencing the variation of surface freshwater.as input variables. Likely, 

UFWA was predicted by setting up ANN with UFWA estimated in Chapter 4 and CMIP5-

environmental factors. CMIP5 IPCC scenarios of RCP 2.6, RCP 4.5 and RCP 8.5 were used 

where principal environmental factors in 2030 and 2050 were presented. The future water 

consumption in 2030 and 2050 for household/industrial/ecosystem, was predicted based on 

models established in Chapter 5 and predicted data presented in published literatures. 

1.6.2 Outline of the dissertation research 

This disseratation focuses on the prediction of future urban drought in 2030 and 2050. Its 

organization is as follows: Chapter 1 introduces the research background and state of the art as 

well as motivation. Chapter 2 introduces data used and the characteristics of the study area. 

Chapter 3 explores new ways to retrieve streamflow in data-scarce areas to help more accurately 

calculate available freshwater in urban areas when assessing drought. Chapter 4 designs a new 

framework for estimating underground freshwater available wherein the data series of GRACE 

was extended from the last two decades to more than seven decades from 1948. Chapter 5 

calculates the water consumption of three-sectors of household, industry and ecosystem to 

reflect the situation of water consumption when assessing drought. Chapter 6 predicts future 

urban drought in 2030 and 2050 including prediction of freshwater available and water 

consumption, based on models established in Chapters 3-5 and data presented in CMIP5 IPCC 

scenarios as well as published literatures. Chapter 7 concludes the research results and suggests 

related topics worth ongoing research. 

. 
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Chapter 2 Data and study area 

This chapter introduced all data used in this study as well as the study area. In the data 

collection section, satellite and UAV (unmanned aerial vehicles) data—imageries and their 

derived geophysical products, GLDAS (Global Land Data Assimilation System) data, ground 

observed and statistical data were introduced. Afterwards, study area characteristics of land use, 

river, underground water, vegetation and economy /society were introduced. 

2.1 Data collection and verification 

In this section, satellite / UAV data, GLDAS data and ground observed / statistical data are 

collected. 

2.1.1 Satellite and UAV data 

Satellite and UAV imageries (including Landsat, Sentinel and UAV), their derived 

geophysical products (derived from GRACE--the Gravity Recovery and Climate Experiment, 

MODIS-- moderate-resolution imaging spectroradiometer), and data from GLDAS are 

introduced in this section.  

(1) Satellite and UAV imagery 

(a) Landsat 

Landsat satellite data have been available since the early 1970s. Onboard the early series 

Landsat satellites 1–5 were MSS sensors with four spectral bands in the visible to near-infrared 

spectral range at an approximate spatial resolution of 60 m; band 4 of Landsat 5 MSS failed in 

1995. The TM onboard Landsat 4 and 5 satellites with seven spectral bands covered the 

shortwave range at a resolution of 30 m from 1984 to 2011 (He et al., 2018). Since then its 

imagery has become an important data resource in environmental remote sensing due to its 

moderate spatial resolution, multiple spectral bands and continuous observation (Kun 2008). 

Landsat Thematic Mapper (TM), launched in 1984 and retired in 2012, provided nearly 30-year 

continuous imaging of the Earth. TM collects seven multispectral bands: six bands in 30 m 

pixel size from blue to mid-infrared regions of the electromagnetic spectrum and one band in 

120 m pixel size on thermal-infrared region. The major application of Landsat TM imagery is 

to detect the land use and land cover changes over time (Jensen 1986). Landsat TM imagery 

has seven spectral bands, and information in certain bands is redundant, which can reduce the 

accuracy in water extraction (Zhong and Wang, 2006). In this study Landsat TM images, 

corresponding to the ground-measurement periods (2007-2009), will be used. Among the seven 

bands the band 4 (0.76-0.96 μm) with a high spatial resolution (30 m) is used in this study for 

velocity estimation. By cloud filter and NIR value anomaly filter, we select 27 images covering 

the study area. All the images were acquired from https://earthexplorer.usgs.gov.  

(b) Sentinel  

To better monitoring the water surface in the study area, we also used Sentinel-1 radar data. 

In the frame of the Global Monitoring for Environment and Security (GMES) Space 

https://earthexplorer.usgs.gov/
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Component program, the European Space Agency (ESA) undertook the development of a 

European Radar Observatory (Sentinel-1), a polar orbiting two-satellite constellation for the 

continuation and improvement of SAR operational services and applications. Satellite and 

payload are being built to provide routine, day-and-night, all-weather medium (typically 10 m) 

resolution observation capability. Ground infrastructure is provided for planning, mission 

control, data processing, dissemination and archiving. Free and open data access is provided. 

Data quality of the Sentinel-1 data products is shown along with uncertainty estimation of 

retrieved information products confirming specified performance and indicating application 

growth potential. The unique data availability performance of the Sentinel-1 routine operations 

makes the mission particularly suitable for emergency response support, marine surveillance, 

ice monitoring and interferometric applications such as detection of subsidence and landslides. 

Sentinel-1 is designed to work in a pre-programmed conflict-free operation mode, imaging 

global landmasses, coastal zones, sea–ice, polar areas, and shipping routes at high resolution, 

and covering the global ocean with imagettes. The Sentinel-1 mission comprises a constellation 

of two polar-orbiting satellites, operating day and night performing C-band synthetic aperture 

radar imaging, enabling them to acquire imagery regardless of the weather   

(https://sentinel.esa.int/web/sentinel/missions/sentinel-1). This ensures a reliability of service 

required by operational services and a consistent long-term data archive built for applications 

based on long time series. Sentinel-1 revisit and coverage are dramatically improved with 

respect to the ERS-1/2 SAR and ENVISAT ASAR. The two-satellite constellation offers six s 

free operations based on two main operational modes allowing exploiting every single data take. 

To deal with user requirements for both high and medium resolution data conventional SAR 

system designs include different operational modes that either optimize the spatial resolution 

(at the expense of the swath, hence the coverage) or the swath width (at the expense of the 

resolution). Taking account of data access through GMES to complementary national very high-

resolution SAR missions (TerraSAR-X by DLR/Astrium GmbH, Cosmo-SkyMed by ASI) 

Sentinel-1 has been designed to address primarily medium to high resolution applications 

through a main mode of operation that features both a wide swath (250 km) and high geometric 

(5 m × 20 m) and radiometric resolution. Over sea–ice and polar zones or certain maritime areas, 

an extra-wide swath mode may be used to satisfy the observation requirements of certain 

service providers (e.g. sea–ice monitoring), to ensure in particular wider coverage and better 

revisit time by sacrificing geometric and radiometric resolution (Torres R et al.2012).  

The Sentinel-1 mission is designed as a two-satellite constellation. The identical satellites 

orbit Earth 180° apart and at an altitude of almost 700 km. This configuration optimises 

coverage, offering a global revisit time of just six days. This study did not exploited Sentinel-2 

imagery because we used landsat imageries for the purpose of long-termed stream flow retrieval 

as landsat has been launched more than 50 years and has a very long series of imageries. 

Meanwhile, satellite data with higher spatial resolution but shorter time-series than landsat TM 

as Sentinel-1 imagery were also used as complement of landsat imageries. 

(c) UAV 

A large-scale field survey of the entire study area was carried out during September of 

2016 in the Jinan City, downstream the YRB. The UAV flew across nine rivers (for one river, a 
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total of 11 river segments in the upper, middle, and lower reaches were covered) and collected 

a total of 2,477 photographs. From 200 to 300 images per station were taken using a controlled 

flight method, with the photograph shooting overlap rate set to 90% to ensure the accuracy of 

the subsequent software-generated data such as stereo image pair, point cloud, and digital 

surface model (DSM) datasets. The generated DSM had a spatial resolution of from 2.22 cm 

(flight altitude: 50 m) to 4.23 cm (flight altitude: 50 m) (Zhang et al., 2018). 

The UAV used in this study was DJI Phantom-3-pro small drone, which has the advantages 

of light weight, low cost, flexibility, portability, and high speed. It was equipped with a DJI 

FC300X camera with a field of view of 94°, which produced photographs 4000 × 3000 pixels 

in size. The basic parameters of the UAV are shown in Figure 2-1. The flight control software 

used was Pix4Dcapture developed by the Pix4D team (https://pix4d.com/). 

 

 

 

Basic parameter of UAV 

UAV Product Phantom-3-pro 

Camera FC300X 

Camera Sensor Sony Exmor R 

CMOS 

Max Photo Resolution 4000×3000 

Max Aperture f/2.8 

Focal Length 20mm 

Field of View (FOV) 94° 

Max Flight Altitude 500m 

Max Flight Time 23min 
 

Fig. 2-1 DJI Phantom-3-pro drone and its basic parameters 

UAV were used to collect the topography data of rivers at lower Yellow River where flight 

environment is favorable and river cross-section is stable, permitting the produce of high 

precision topography data. The basic parameters of the UAV are shown in Table 2. The UAV 

flew across 2 rivers (BDK, ZGNL) and collected 200 to 300 images per river using a controlled 

flight method, with the photograph shooting overlap rate set to 90% so as to ensure the accuracy 

of the subsequent software-generated data such as stereo image pair, point cloud, and digital 

surface model (DSM) datasets, which are generated in Pix4dMapper Software (Version 

2.0.104). The generated DSM had a spatial resolution is 2.22 cm when flight altitude is set on 

50 m (Zhang et al., 2018), and the elevation precision were verified by Total Station, which 

were implemented during flight. The results show that the RMSE between UAV data and Total 

Station measured data is 24 cm in BDK, where the channel is dried up, while the RMSE 

between UAV data and field data in ZGNL is 23.6 cm above the water, where the channel is 

partly drown by water, indicating that UAV can obtain high precision above-water cross-section 

data (Zhao et al., 2017; Zhao et al., 2019). 

(2) Geophydical products 

(a) From GRACE 

The GRACE mission was launched by NASA and the Germany Aerospace Centre in 2002, 

to provide global mass change information by detecting gravity field changes. It is the first 

https://pix4d.com/
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dedicated satellite time-variable gravity mission and provides an alternative and unique 

approach for monitoring large-scale mass changes in the Earth system (Tapley et al., 2004). 

Since its launch in March 2002, GRACE has been measuring global gravity changes monthly, 

with unprecedented accuracy (Wahr et al., 2004). Earth gravity changes are caused by mass 

redistribution within different components of the Earth’s system, including the atmosphere, 

ocean, hydrosphere, cryosphere, and solid Earth. GRACE-observed gravity changes can be 

used to infer terrestrial water storage (TWS, the sum of snow water equivalent, surface water, 

soil water, and groundwater storage) changes, given that other geophysical causes of gravity 

change can be estimated and removed (e.g., Wahr et al., 2004; Chen et al., 2009). As 

atmospheric and oceanic contributions to gravity change have been removed in GRACE data 

processing using estimates from numerical models (Bettadpur 2012), over non-glaciated land 

areas, GRACE-observed mass changes mostly reflect TWS changes. The TWS anomaly 

(TWSA) data are provided by 11 institutes including CSR (Center for Space Research, USA), 

GFZ (Geo Forschungs Zentrum, Germany), JPL (Jet Propulsion Laboratory, Japan) and GRGS 

(Groupe de Recherche de Géodésie Spatiale, France), as shown in Table 1. Yao (2017) 

estimated the uncertainties of the solutions in China, showing that the solution of CSR has the 

minimum uncertainty with an error of 13.2 mm as that of GRGS has the maximum uncertainty 

in China with an error of 58.8 mm. Therefore, this study selected CSR monthly solutions as the 

source of GRACE data. The new version CSR solutions were pre-processed with a Gaussian 

filter and can be directly used after downloading. The new version GRACE TWSA (or TWSC) 

dataset expresses the water storage anomaly with equivalent water column height at a spatial 

resolution of 0.25°× 0.25°, covering the period of 2002 to 2016.  

(b) From MODIS 

To calculate ecosystem evaporation, this study used the method developed by Twine et al. 

(2000) and Yao et al. (2013) to calculate the latent heat (LE) according to 

where LE is the corrected latent heat flux, and Hori and LEori 

are the uncorrected sensible heat flux and latent heat flux, respectively. The 8-day MODIS 

FPAR/LAI (MOD15A2) product (Myneni et al., 2002) with 1 km spatial resolution was used 

to drive the LE algorithms in this study, and the daily FPAR/LAI values were temporally 

interpolated from the 8-day averages using linear interpolation. Similarly, the 16-day MODIS 

NDVI/EVI (MOD13A2) (Huete et al., 2002) and MODIS albedo (MOD43B3) products (Liang 

et al., 1999; Schaaf et al., 2002) were also used to validate the LE models. The basis of the 

above research is GLASS system. The GLASS system can be used to generate five land surface 

remote sensing products: Leaf Area Index (LAI), shortwave broadband albedo, broadband 

emissivity (BBE), downwelling shortwave radiation (DSR), and photosynthetically active 

radiation (PAR). The newest algorithms that utilize multi-source remote sensing data, such as 

MODIS and AVHRR, to generate GLASS products are integrated into the system. The GLASS 

product generation system was designed to implement high-performance computing (HPC) on 

a clustered environment. The system also has relatively high efficiencies for utilizing the 

distributed and parallel computing techniques. Five GLASS products have been generated with 

the system. The five products are eight-day LAI, albedo and BBE products with resolutions of 

5 km and 1 km for the years before and after 2000, respectively, and three-hour DSR and PAR 
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datasets with a 5-km resolution from the years 2008 to 2010. In the GLASS system, MODIS 

and AVHRR data were used as input data to generate GLASS products. The data quality of the 

MODIS and AVHRR images was greatly influenced by clouds, cloud shadows, snow, and other 

abnormal climate conditions, which hindered the surface reflectance inversion and further 

impacted the GLASS products’ quality. Some data, such as AVHRR, MOD09A1, MOD09GA, 

MCD43B3 and MOD02, were preprocessed before they were used to produce the GLASS 

products. To improve the data quality, the existing MODIS snow and cloud mask and the 

reflectance characteristics of the non-snow/cloud pixels were used in combination to identify 

pixels of snow, clouds and abnormal values. All of the identified values were filled by the clear 

pixel values over a long period of time to remove the effects of snow, clouds and cloud shadows 

(Zhao et al.2013). 

Another important source for ecosystem evapotranspiration estimation is MODIS satellite 

data. To take full advantage of MODIS’s multi-angular and multi-spectral observation ability, 

a physical algorithm based on Radiative Transfer (RT) was developed for generating MODIS 

LAI/FPAR products (MOD15) (Knyazikhin et al.1998; Knyazikhin 1999). The MODIS science 

team aims to provide users with better products by updating product cohorts that are called 

collections. Since the launch of Terra in December 1999, MODIS land data records have been 

reprocessed four times. Having stage one validation status, Collection 3 (C3) is the first release 

of MODIS LAI/FPAR products and covered the period of November 2000 to December 2002. 

The product accuracy of this version has been estimated using ground measurements obtained 

from some field campaigns (Yang et al.2006a). Collection 4 (C4) covered the period from 

February 2000 to December 2006 and benefited from the improved inputs and updated look-

up-tables (LUTs) (Yang et al.2006b). Aimed at reducing the impact of environmental conditions 

and temporal compositing period, Collection 5 (C5) combined Terra- and Aqua-MODIS sensor 

data and generated four LAI/FPAR products from February 2000 to present (Yang et al.2006c). 

In addition, C5 used a static 8-biome land-cover map instead of previous 6-biome one. 

Algorithm refinements were carried out over all biomes but with a major focus on woody 

vegetation for which a new stochastic RT model was utilized (Shabanov et al., 2000; Yan et al., 

2016).  

(3) GLDAS database 

The Global Land Data Assimilation System (GLDAS) was jointly developed by scientists 

at NASA, GSFC, NOAA and NCEP to provide terrestrial water and energy storages data. It 

drives four land surface models: Noah, CLM (Community Land Model), VIC (Variable 

Infiltration Capacity) and Mosaic, incorporating both ground and satellite-based data (e.g., the 

global land cover and soil type dataset). The model output produced by the Noah land surface 

model includes soil moisture data (10, 30, 60 and 100 cm, from the soil surface down), snow 

water equivalent, evapotranspiration, canopy water storage. In this project, we collected the 

monthly data simulated by Noah from NASA (http://ldas.gsfc.nasa.gov/index.php) at spatial 

resolutions of 0.25°× 0.25°, from 1948 to 2010 and from 2011 to 2016, respectively.  

Subsequently, a theoretical uncertainty analysis was conducted showing that the GLDAS 

has an averaged standard deviation (Std) of random error value of less than 3.6 mm/8 day. For 

various vegetation structures considered, the absolute uncertainties generally follow the order 
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of best to worst (grassland < rice paddy < forest) for GLDAS. Similarly, the relative uncertainty 

analysis also demonstrated better performance of the GLDAS dataset with less (20%, 11% and 

32%) uncertainties compared to those obtained for MOD16 (15%, 38% and 36%), and flux 

tower (25%, 32% and 27%) measurement (forest, rice paddy, and grassland) at point scale, 

respectively. The ranking of grid-based uncertainties for three (MOD16, GLEAM, GLDAS) 

datasets showed their tendency to produce better estimations in the respective proportion of 

(12.3%, 55.5%, 32.2%) in forest, (4.9%, 46.2%, 48.9%) rice paddy, and (5.3%, 39.4%, 55.4%) 

grassland which constitutes approximately ∼75% of the total study area. The merged product 

developed by combining the least uncertainties of the three datasets revealed the better accuracy 

for GLDAS (47%) followed by GLEAM (42%) and MOD16 (11%) over the entire study region 

(Khan et al., 2018).   

2.1.2 Ground data 

(1) Hydrological data 

In total, ground monitored hydrological data of eight stations in the Yellow River basin 

(YRB) were collected. Two in the lower reach—Jinan City, and six in the middle reach of 

YRB—Shaanxi City. In the lower reach, the cross-sections data of two stations (BDK & ZGNL) 

were collected by Total Station during UAV flight. In middle Yellow River, or the Wei River, 

river discharge, river velocity, water level and cross-sections of six typical stations during the 

period of 2007–2009 were obtained and qualified by the hydrological bureau of the Yellow 

River Conservancy Commission, whose main responsibility is monitoring, collecting and 

distributing this information regarding the Yellow River. The measurement criteria of the data 

for different years were consistent through the entire recorded period, and the data quality for 

the discharge and velocity was strictly controlled before the data were released. The collected 

river discharge and river velocity were linearly interpolated to daily scale for matching the 

satellite images, while river velocity is used for calibration and validation of newly developed 

method in this study, the river discharge is only used for validation. Cross-section data were 

used to inverse the shape and area of the underwater cross-section. 

 (2) Local / regional statistics (GDP)  

The gross domestic product (GDP) data for the three representative cities of Xi’an, 

Zhengzhou, and Jinan can be found in the Provincial Statistic Yearly book. A few past yearly 

book can be accessed via China Academic Journal Network Publishing Database (CNKI) 

https://kns.cnki.net/, or statistic book share websites, e.g., 

https://www.yearbookchina.com/index.aspx. The statistic data can be accessed from before 

2000 to 2019. 

2.2 Characteristics of study area 

 The studies will be conducted taking as the study area the Yellow River Basin (YRB), 

China with an area of 752,443 km2 (Fu et al., 2004), taking as examples big cities with 

population great than 5 million as example, e.g., Jinan, Zhengzhou, Xi’an in the Yellow River 

Basin. Accordingly, the middle reach where Zhengzhou and Xi’an locate, and the lower reach 

where the Jinan locates will be taken as key area for studying. The middle and upper reaches 

https://kns.cnki.net/
https://www.yearbookchina.com/index.aspx
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of the basin are affected by climate, topography, water resources and economic development 

where the population is sparse and increasing rate is slow. The conflict in water use between 

human and nature is severe. The downstream area is economically developed and is the densely 

populated area of the entire basin (Song, 2018). 

 

 

Fig. 2-2 Location of stations and important cities in the YRB. 

 

2.2.1 Land use &vegetation 

There are many types of vegetation in the YRB where the type of land use is complex and 
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diverse (Figure 2-3). The principal land use type in the entire basin is agricultural land, while 

non-agricultural land and water areas account for a relatively small proportion. The principal 

type of agricultural land includes cultivated land and grassland, which respectively account for 

28.84% and 48.48% of the agricultural land area in the entire basin (Yan et al., 2006; Xie, 2020). 

The Yellow River Basin is an important base of agricultural products and grain production area 

in China. The area of agricultural arable land is 15.509 million hm2, accounting for 13% of the 

country (Jiang et al., 2017; Zhang, 2019). 

 

Fig. 2-3 Land use and rivers in the YRB (modified from Guo et al., 2021) 

Affected by climate, hydrology and topography, the vegetation in the Yellow River Basin 

mainly includes grasslands, alpine vegetation, meadows and swamps, artificial woodlands, 

temperate coniferous forests, temperate broad-leaved forests, shrubs, deserts and sand plants. 

The distribution of vegetation is in a synchronous trend with the distribution of precipitation, 

which is distributed in strips from southeast to northwest. The vegetation types in the upper 

reaches of the Yellow River are dominated by grasslands. Meadows and grasslands account for 

more than half of the vegetation area of the Yellow River Basin. Grasses, meadows and alpine 

vegetation are widely distributed in plateau areas. Among them, meadows are mainly 

distributed in the Qinghai-Tibet Plateau, and grasslands are distributed in the Loess Plateau; 

grasses and shrubs are mostly distributed in the middle reaches of the YRB; coniferous and 

broad-leaved forests are mixed in the lower reaches of the YRB (Zhu, 2019). The diverse types 

of ecosystems in the Yellow River Basin have created favorable conditions for the development 

of various types of vegetation, and the vegetation types are regionally representative and typical. 

The vegetation of crops, grasslands, forests and shrubs account for 98% of the entire watershed, 

and the remaining 2% are vegetation types such as tundra and herbaceous swamps (Fan, 2017). 

Vegetation in the YRB is affected by horizontal zonality and monsoon. From east to west, it is 

crops, broad-leaved forest, coniferous forest, grassland and sparse shrub grassland (Zhang, 

2019). The YRB includes many plateaus, plains, valleys, and many rain-fed irrigated 

agricultural areas. From the perspective of crop planting structure, wheat and corn are the 
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largest and most widely distributed crops in the YRB, accounting for 30% and 27% of the total 

sown area respectively (Song, 2017; Zhang, 2019). 

 

Fig. 2-4 Multi-year averaged fractional vegetation cover in the YRB (modified from Zhang et al., 2021) 

2.2.2 Rivers 

The Yellow River is the second longest river in China (after the Yangtze River) and the 

fifth longest river in the world. The main river is about 5,464 kilometers in length. It originates 

from the Qinghai-Tibet Plateau, or the third polar of the world. After flowing through Qinghai, 

Sichuan, Gansu, Ningxia, Inner Mongolia, Shanxi, Shaanxi, Henan and other provinces in turn, 

it finally flows into the Bohai Sea of China (Huang et al., 2015; Xie, 2020). There are many 

tributaries of the Yellow River. From the source to the estuary, there are 220 tributaries with a 

drainage area greater than 100 km2; 76 of the tributaries have an area greater than 1000 km2 

with the drainage area is 580,000 km2, accounting for 77% of the total river catchment area; 

there are 11 tributaries larger than 10,000 km2 with a drainage area of 370,000 km2, accounting 

for 50% of the river catchment area. The principal tributaries of the Yellow River have more 

than 20 among which the Wei River is the largest (Zhou, 2020). The representative city studied 

in this paper -- Xi’an City is in the tributary--Wei River; Zhengzhou and Jinan are located on 

the main stream of the Yellow River. 

The Yellow River Basin (YRB) is located between 95°E-119°E and 32°N-41°N. The 

drainage area is about 795,000 km2 (including the internal flow area of 42,000 km2). The 

drainage area crosses the Qinghai-Tibet Plateau, the Inner Mongolia Plateau, the Loess Plateau 

and the North China Plain, with the average altitude more than 3000 m. and the terrain gradually 

low from west to east. There are great differences in climatic types and landforms among the 

sub-basins (Wang et al., 2012). According to its hydrological characteristics and geographical 

types of the Yellow River basin, the entire basin can be roughly divided into upstream, middle 

and lower reaches (Figure 2-3). The total length of the upstream river is 1206.4 km with a 

control area of ~428,000 km2, accounting for 53.8% of the total drainage area. The boundary 
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between the middle and lower reaches of the Yellow River is located at Zhengzhou City, Henan 

Province. The total length of the middle reach is about 1206.4 km with a control area of 

~344,000 km, accounting for 43.3% of the entire basin area. The total length of the downstream 

river is about 785.6 km with a control area of 23,000 square kilometers, accounting for about 

3% of the entire basin area (Xie, 2020). 

 

Fig.2-5 The spatial distribution of comprehensive drought disaster risk assessment in Yellow  

River Basin (Han et al, 2021) 

 
Fig.2-6 Regions Divided by risk of drought and flooding (modified form Lv 1998) 

2.2.3 Underground water 

The annual-average total water resources of the YRB are 71.9 billion  m3, of which surface 

water resources are 60.7 billion  m3 and groundwater resources are 11.2 billion  m3 (Tao, 2020). 

The Yellow River Basin seriously over-exploited groundwater. The total groundwater 

withdrawal has increased from 336 k m3 in 2003 to 412 k m3 in 2015. In recent years, the 

amount of groundwater extraction has gradually increased. In some areas, 12 shallow 
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groundwater funnels have been formed, and three of them are serious over-exploited. In general, 

the Yellow River Basin has insufficient and uneven inter-annual distributed water resources, 

which limits the sustainable development of the social economy to a great extent (Wang, 2020). 

The total amount of groundwater withdrawal in the basin was 12.327 billion  m3 in 2015, 

of which urban public water withdrawal was 576 million  m3 accounting for 4.7%; residents 

water withdraw was 1.975 billion  m3 accounting for 16.0%; that for ecological environment 

was 267 million  m3 accounting for 2.2%. The proportions of groundwater withdrawal in 

different industries of the YRB in 2015 are shown in Figure 2-7. 

 

 

 
Fig. 2-7 Ground withdraw in the YRB 

in 2015 (modified form Zhang 2019) 

 Fig. 2-8 Ground water consumption in the YRB in 2015 

(modified form Zhang 2019) 

 

 

Fig. 2-9 Groundwater withdraw and consumption in provinces crossed by the Yellow River (modified form 

Zhang 2019) 

As to the total water consumption of groundwater in the basin in 2015 was 9.171 billion  

m3, of which 4.633 billion  m3 was consumed by agricultural irrigation, accounting for 50.5% 

of the total groundwater consumption in the whole basin. The water consumption of forest, 

animal husbandry, fishery and livestock are ~11.5% of the total. Water consumption by industry 

accounted for 17.7%, by urban public accounted for 3.9%, by residents accounted for 13.9%, 

by ecological environment accounted for 2.5%. The proportion of total groundwater 
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consumption of various industries in the YRB is shown in Figure 2-8. 

Among all provinces the Yellow River crossed, Shaanxi Province, where Xi’an is located, 

has the largest amount of groundwater withdrawal and the largest water consumption, with a 

water withdrawal of 3.024 billion  m3 accounting for 24.5% of the total groundwater withdrawal 

in the basin; also with a water consumption of 2.193 billion  m3, accounting for 23.9% of the 

total groundwater consumption in the basin, as shown in Figure 2-9. 

Human activities and climate change together resulted in a decrease in the amount of water 

resources. With the increasing population size year by year and the rapid economic growth in 

the river basin, water consumption has increased by 3.130 billion  m3 in the past 20 years, which 

further intensified the contradiction between water supply and demand, and therefore restricts 

the sustainable development of the economy and society (Zhang, 2019). The impact of climate 

change on the water resources of the YRB has two aspects: climate change affects the 

hydrological cycle of precipitation and evapotranspiration, and causes changes in surface runoff; 

climate change has also led to changes in the temporal and spatial distribution of hydrological 

elements such as surface-, ground-, and soil-water in the basin, which in turn caused the 

migration and redistribution of water resources in the basin (Xie, 2020). 

2.2.4 Population 

The YRB is the birthplace of Chinese civilization. Since the reform and opening up of 

China, the total population of the basin has continued to grow. The total population in 2000 was 

135.42 million, accounting for 10.45% of the total population of China. In 2015, the total 

population was 160.44 million, accounting for 11.67% of the total population of China, with an 

average annual growth rate of 7.89%. The population density in 2000 was 184.35 people/km2, 

and in 2015 it was 218.43 people/km2. At the same time, due to the large differences in natural 

conditions and economic conditions between the upstream and downstream, the population 

growth within the YRB is also regionally unbalanced (Song, 2018).  

 

Fig.2-10 Total population in the YRB from 1912 to 2018 (Wang et al., 2009) 

0

20

40

60

80

100

120

140

1
9
1

2

1
9
1

6

1
9
2

0

1
9
2

4

1
9
2

8

1
9
3

2

1
9
3

6

1
9
4

0

1
9
4

4

1
9
4

8

1
9
5

2

1
9
5

6

1
9
6

0

1
9
6

4

1
9
6

8

1
9
7

2

1
9
7

6

1
9
8

0

1
9
8

4

1
9
8

8

1
9
9

2

1
9
9

6

2
0
0

0

2
0
0

4

2
0
0

8

2
0
1

2

2
0
1

6

p
o
p
 (

m
il

li
o
n
)

year



33 

 

 

Fig.2-11 The population density in the YRB (Zhang et al 2021)  

2.2.5 Economy and society 

The gross national product (GDP) of the YRB is about 8 trillion RMB (about 14% of 

China’s GDP), and the agricultural land area is about 200,000 km2 (about 15% of China’s total 

arable land), Mainly distributed in Henan, Shaanxi, Inner Mongolia and Shanxi provinces. Due 

to its important role in social and economic development, in ecological resource protection, and 

in agricultural and food production, the YRB has always been regarded as one of the most 

important research areas in China (Cai et al., 2004; Xie, 2020). 

In 2017, the GDP of the basin was 6,148.8 billion RMB, and the industrial added value 

was 2,386.6 billion RMB. At present, the total arable land area is 191.58 million Mu, and the 

effective irrigation area of farmland is 81.37 million Mu (Tao, 2020). Cultivated land accounts 

for about 14% of China's total cultivated land, and it is an important grain producing area in 

China. The upper reaches of the Yellow River are highly different in topography and are rich in 

hydropower resources. The cities in the middle reaches of Ordos, Yulin, and Jincheng are 

important coal producing areas in China. The lower reaches are rich in hills, plains and rich in 

natural gas and oil resources, laying an important foundation for China's social and economic 

development (Zhu, 2019). The average GDP growth rate was 7.4%, which was higher than the 

national average growth rate of 6.9%. The lower Yellow River has a highly-developed economy 

with the area only accounts for 3% of the entire basin (Song, 2018). 
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Chapter 3 Estimation of surface freshwater available 

This chapter aims at the first objective of this thesis to explore new ways to retrieve 

streamflow in data-scarce areas to help more accurately calculate available freshwater in urban 

areas when assessing drought. For this goal, two new methods respectively for dry and wet 

seasons were developed firstly; and then by using the two methods the long-termed streamflow 

in the Yellow River flowing by the three representative cities were retrieved by using satellite 

imageries; finally, based on the satellite retrieved streamflow the surface freshwater available 

(FWA) for the three representative cities was estimated which can be used to predict surface 

FWA in future 2030 and 2050.  

3.1 Retrieval of long-termed streamflow for the three representative 

cities 

3.1.1 Development of new methodologies for estimating surface streamflow by using 

satellite imageries 

 Two methods for streamflow retrieval by using satellite imageries were developed. The 

first one was named VHR-AMHG which is derived from Glob AMHG (Gleason et al., 2018), 

and the second one was named transcaled spatial C/M method, an improved version of C/M 

method (Tarpenelli et al., 2013). The first one has a higher accuracy in dry season yet the second 

one is more accurate in wet season. 

 
Fig. 3-1 Graphical illustration of VHR-AMHG comparing with original AMHG applicable to rivers without 

historical streamflow observations (priori knowledge)—Global-AMHG 

(1) Surface streamflow estimation in dry seasons 

 Across the world many tributaries of rivers including the Yellow River have a few ground 

measurements on streamflow. Therefore, we developed a new framework for estimation of 

streamflow with few ground measurements based on high-resolution imageries, e.g., from 
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unmanned aerial vehicle (UAV). Among the framework a new Virtual Hydraulic Radius (VHR) 

method was proposed to improve AMHG (at-many-stations hydraulic geometry by Gleason et 

al., 2018), a method not requiring any ground measurements when global parameters are used 

(global–AMHG) in large-scaled rivers (with width larger than 100m) but yielding great 

uncertainties in smaller scaled rivers (with width less than 40 m). It is named as VHR-AMHG 

method for medium-to-small rivers. The accuracy verification of the proposed method was 

performed by comparing it to field measurement data and the global parameters of the original 

AMHG (global–AMHG), as shown in Figs. 3-1 and 3-2. 

Gleason and Wang (2015) give a derivation of the original AMHG which is formulated as 

   𝑏 = −
1

log(𝑄𝑐)
∗ log(𝑎) +

1

log(𝑄𝑐)
∗ log (𝑤𝑐)      (1) 

where 1/logQc and logwc/logQc respectively represent two important parameters, AMHG 

slope, AMHG intercept as described by Gleason and Smith (2014).  

AMHG calculates the streamflow solely from the variation in river width, making it widely 

used for streamflow estimation via remote sensing (Bonnema et al., 2016; Durand et al., 2016; 

Gleason et al., 2014; Gleason et al., 2018). AMHG needs priori knowledge of long-termed 

streamflow observations to ensure its accuracy. For rivers lacking long-termed streamflow 

observations, it gives a set of global parameters to estimate streamflow. Trials shows that the 

global parameters are not applicable to medium and small rivers without long-termed past 

streamflow observations as priori knowledge (Zhao et al., 2019). In other words, the accuracy 

of AMHG with global parameters is relatively high for large rivers (average river width ≥ 100 

m) but unstable for medium-to-small rivers (average river width ≤ 100 m) (Gleason et al., 2014; 

Feng & Gleason, et al., 2019), thus greatly limiting its application to medium-to-small rivers 

lacking hydrological monitoring data such as streamflow. Therefore, there is an urgent need to 

explore a new way to enhance the AMHG method making it applicable in medium and small 

rivers, especially in small tributary rivers with width less than 40 m and lacking streamflow 

observations. 

With this method, Feng et al. (2019) presented the first assessment of the suitability of 

CubeSat satellite data for river discharge estimation by using Landsat 8, Sentinel-2 individual 

and fused satellite data sets on rivers from <20 to >1,000 m wide. Their research shows that 

small rivers (<40 m wide) are too small for Landsat and Sentinel-2 data sets, and their discharge 

is also not well estimated using CubeSat data alone. For small rivers, the method does not 

perform well, probably due to both the poor width extractions and worsened prior information. 

More importantly, a precise measurement of widths at cross section scales requires high 

resolution images, which makes most of the current remote sensing imagery with moderate 

spatial resolutions (e.g., MODIS) poor for small rivers. In addition, although Landsat and 

Sentinel‐2 have coarser spatial resolutions (30/10/20 m) as compared to Planet (3 m), SPOT 

6/7 (1.5 m), GF-7 (0.8 m) etc., the widths from these governmental satellites have lower 

uncertainties than those from the CubeSat due to the higher quality of Landsat 8 and Sentinel‐

2 imagery compared to Planet imagery. Landsat 8 can provide very accurate flow width 

information for large rivers, but has a very long revisiting period (~16 days), i.e., its temporal 
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data density is very low. Sentinel-2 can provide more usable images at finer scales, but the 

quality of the extracted widths is not as good as that of Landsat, likely due to cloud classification 

issues that introduces bias to water masks. The impact of cloud reduces the usable images of 

the optical satellites (Feng, Gleason, et al., 2019).  

To overcome the shortcomings above, the present study used an UAV combined with 

SAR-based Sentinel-1 image (with 10 m resolution) to determine the topography above the 

water surface during dry seasons. We directly measured the water surface width from UAV-

derived DEM and SAR-based Sentenel-1 image. 

Based on the principle of Manning Equation, the value of R (hydraulic radius) was 

calculated under the assumption that the actual water surface width was the river bottom 

forming an incomplete virtual cross-section. 

Q = A ∙ v =
1

𝑛
𝐴 ∙ 𝑅

2

3 ∙ 𝑆
1

2 =
1

𝑛
𝐴 ∙ (

𝐴

𝑃
)

2

3 ∙ 𝑆
1

2        (2) 

where A is the area of the cross-section (m2); V is the cross-sectional flow rate (m/s); R is the 

hydraulic radius (m), which is the ratio of the cross-sectional area A to the wetted perimeter 

P(m); S is the gradient; and n is the roughness. 

  

Fig. 3-2 VHR method and the Q-Q’ relationship. (a) VHR diagram, in which the y axis is the relative 

elevation with the water surface as a reference; (b) scatter plot of the virtual streamflow (Q) and 

real streamflow (Q’) bothcalculated from the Manning Equation at different water levels according 

to VirtualP and RealP 

Then, the virtual streamflow (Q), instead of the real streamflow (Q’), was calculated 

according to the Manning Equation. If a reference station with a complete cross-section was 

selected in a study area, the equation for determining the real streamflow (Q’) from Q could be 

established. The method is named as VHR (virtual hydraulic radius) method, as shown in Fig. 

3-2 and Equations 7,8, and 9. In VHR, the wetted perimeter P and the water area A were 

calculated based on the assumed river bottom, then the hydraulic radius R at different water 

levels was calculated using the equation R=A/P. In Fig. 3-2a, the thin red line indicates the 
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assumed wetted perimeter (VirtualP) and the thick blue line indicates the true wetted perimeter 

(RealP). Combined with the Manning Equation (Equation 6), the virtual streamflow (Q) and 

real streamflow (Q’) at different water levels were calculated. Regression analysis was then 

performed to determine the correlation between Q and Q’ (Eq. 3, Fig. 3-2b) to deduce the real 

streamflow Q’. 

Fig. 3-2a shows that there is a strong linear relationship existing between Q and Q’ 

Q′ = 𝑚 ∗ 𝑄 + n                                         (3) 

where m and n are linear regression coefficients. Using the streamflow Q calculated using the 

VHR method and Eq. 3, the Manning-Equation-based streamflow with complete cross-section 

data or the real streamflow Q’ could be obtained. Because of the scarcity of hydrological 

monitoring stations along medium-to-small rivers, there is usually a lack of cross-section and 

streamflow data for such rivers. To apply this method to the calculation of streamflow at actual 

cross-sections of all rivers using the Manning Equation, a reference station must be selected to 

determine the initial values of m and n in Eq. 3. Considering that river width is an important 

characteristic reflecting the streamflow magnitude, and that medium-to-small rivers within the 

same study area have similar cross-section formation mechanisms, a river width ratio was 

introduced to obtain the coefficients m and n of other stations, as shown in Eq. 4: 

WRatio =
𝑊1

𝑊𝑖
(i = 1, … , k)                                   (4) 

where WRatio is the river width ratio; W1 is the average river width (m) at the reference 

station; Wi is the average river width at the other stations, where i represents the station number; 

and k represents the total number of stations (k is equal to number of rivers we study). By 

combining Equations 7 and 8, a universal equation for estimating the actual streamflow at each 

station was obtained (Eq. 5) as follows: 

𝑄′ = 𝑊𝑅𝑎𝑡𝑖𝑜 ∗ (𝑚 ∗ 𝑄 + 𝑛)                          (5) 

By substituting Q calculated with the VHR method using UAV data into Eq. 5, the real 

streamflow Q’ at other stations in the study area can be estimated. The results from VHR are 

then used to provide initial values for parameters in the AMHG. The coupled method is named 

as VHR-AMHG. 

To validate the results from VHR-AMHG method, we compared them with that from the 

original AMGH method with and without priori knowledge (historical streamflow observations) 

as well as ground observations, as shown in Fig. 3-3.  
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Fig. 3-3 Flowchart for VHR-AMHG validation. Two scenarios were designed: Scenario 1 with priori 

knowledge or long-term historical streamflow observations; Scenario 2 without priori knowledge. 

The results by using the Manning Equation and the original AMHG with and without priori 

knowledge in medium-to-small rivers were calculated as shown in Fig. 3-4. 

Fig. 3-4 shows that the Manning Equation has the best performance in streamflow 

calculation when comparing its results (dark blue line) with the ground measurements (gray 

circles). Therefore, the streamflow calculated using the Manning Equation was used to verify 

the AMHG accuracy. The simulations by AMHG with priori knowledge (Scenario 1) and those 

by the Manning Equation share the same trend, with some small errors occurring at low values. 

The calculated NSE (Nash–Sutcliffe efficiency coefficient) and RMSE (root mean square error) 

were 0.94 and 5.12  m3/s, respectively. Results from the t-test show P=0.73>0.05, implying that 

there were no statistically significant differences between the results calculated using the 

AMHG with priori knowledge and those calculated using the Manning Equation. In other words, 

the Manning Equation based VHR method can well provide priori knowledge for AMHG. 

To perform an in-depth evaluation of the error, the results of the AMHG method under 

these two scenarios were further verified using ground-measured streamflow data, as shown in 

Fig. 3-5. 
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Fig. 3-4. Medium-to-small river streamflow (or discharge) calculated using the AMHG under two scenarios. 

Scenario 1 (S1, green line) represents the streamflow estimated by the AMHG driven by priori 

knowledge. Scenario 2 (S2, light blue line) represents the AMHG-estimated streamflow driven by the 

global parameters by Gleason et al. (2014) without priori knowledge. Gray circles stand for ground-

measured streamflow; dark blue thick line is discharge calculated based on Manning equation.  

 

Fig. 3-5 Error analysis diagram of the VHR-AMHG (or AMHG-UAV) estimated streamflow; the grey line 

represents the 1:1 line 
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Fig. 3-6 Stations selected in different rivers of Jinan City. (a)–(d), (f)–(i), and (k) represent the generated 

digital surfacemodel (DSM) and point cloud using UAV imagery; (e) shows the locations of the 

representative monitoring stations; and (j) is an aerial photo corresponding to k via UAV.  

As shown in Figure 3-6, Scenario 1 had an NSE of 0.88, an RMSE of 8.38  m3/s, and an 

average relative error of 15.99% for all data. Therefore, the AMHG had high accuracy and can 

be applied when priori knowledge exists. Scenario 2 had an NSE of -161.54, an RMSE of 

310.23 m3/s, and P=0.00<0.05, meaning that the calculation accuracy of the global-AMHG was 

low. Here we also respectively discussed streamflow in dry and wet periods to evaluate errors: 

in dry season, scenario 1 had an RMSE of 15.27 m3/s and scenario 1 had an RMSE of 226.04  

m3/s; while in wet season, scenario 1 had an RMSE of 24.25  m3/s and scenario 1 had an RMSE 

of 403.82  m3/s, indicating that AMHG perform better in dry season. 
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Relatively speaking, because Scenario 1 is highly dependent on historical data, the global–

AMHG (scenario 2) is more likely to be used in medium-to-small rivers where historical data 

(cross-section and streamflow) is scarce. However, global–AMHG has low calculation 

accuracy. To further verify its accuracy, eight representative stations in Jinan City were selected, 

as shown in Fig. 3-6. The ground-measured streamflow data of these stations were used for 

further error analysis of the Global-AMHG, as shown in Table 3-1 and Fig. 3-7. 

 

Table 3-1 Medium-to-small streamflow estimation results using the global parameters 

 

As shown in Fig. 3-7 and Table 3-1, the estimation accuracy for medium-to-small rivers 

using the global parameters was poor, with the RMSE and average absolute streamflow error 

of each station being 332.64  m3/s and 234.37  m3/s, respectively. 

 

Fig. 3-7 Streamflow estimated via VHR-AMHG compared with that via Global-AMHG and ground 

measurement. 

Fig. 3-7 also shows that the VHR-AMHG (Red) was more suitable for the estimation of 

medium-to-small streamflow. The RMSE between the estimation and ground measurement 

(dark blue) was 32.15  m3/s, while the average error was 24.06  m3/s. However, the RMSE 

between the streamflow estimated using global–AMHG (gray dotted line) and the ground 
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measurement was 301.80  m3/s, while the average error was 220.33  m3/s. Moreover, the results 

at each station were unstable compared to the ground measurement values (dark blue). When 

the proposed VHR-AMHG method was used to calculate streamflow in data-scarce medium-

to-small rivers in the Ji’nan City, an RMSE of 32.15  m3/s and an average absolute error of 

24.06  m3/s were obtained, which were superior to those of the global parameter-AMHG 

method and indicated a significant enhancement of calculation accuracy. Therefore, the 

proposed VHR-AMHG method expanded the application range of AMHG to rivers of all sizes. 

Overall, it is feasible to use the AMHG method to calculate the streamflow of global medium-

to-small rivers with proper initial value setting of the parameters. The VHR method proposed 

in the present study provides an alternative parameter-setting method for areas with scarce 

historical data and improves the accuracy of the AMHG for streamflow calculation in these 

areas. In conclusion, the VHR-AMHG method (Equations 7–9) proposed in the present study 

is suitable for streamflow calculation in medium-to-small rivers, especially in dry seasons. 

(2) Surface streamflow estimation in wet seasons 

To facilitate streamflow calculation in wet seasons, this section proposed a rapid and 

accurate framework for estimating the streamflow of ungauged rivers by combining satellite 

and unmanned aerial vehicle (UAV) data, which includes a newly developed C/M method 

(transcaled spatial C/M method) for flow velocity estimation, and a newly method to estimate 

river bathymetry with zero ground measurement at ungauged rivers (the Riba-zero method). 

Both two methods were verified by field-measured data. To conduct the research, six 

representative hydrological stations in the middle reach of the Yellow River were selected for 

this study, as shown in Fig. 3-8. 

 
Fig. 3-8 Six representative hydrological stations along the middle reach of the Yellow River.  

TS: Tianshui, LJC: Linjiacun, WJB: Wujiabao, XY: Xianyang, LT: Lintong, HX: Huaxian. 

(a) Development of the transcaled spatial C/M method—an improved method for 

estimating river velocity for ungauged rivers 
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The transcaled spatial C/M method is an improved version of the orginal C/M method by 

Tarpanelli et al (2013). The former overcomes the shortcomings of the latter (requiring data 

from multiple stations and overlooking the spatial heterogeneity of rivers). According to 

Tarpanelli et al.(2013 & 2015), water surface increase in any given area usually causes a 

decrease in the NIR (near infrared) reflectance value of the area. As results, the ratio (C/M) 

between the surface reflectance of a land pixel, named C (calibration), and of a water pixel, 

named M (measurement), changes accordingly. This principle is then used for calculating river 

velocity. In previous studies, exploiting water and land in the NIR portion of the 

electromagnetic spectrum by computing the ratio (C/M) and then establishing the regional 

relationship between C/M and river velocity would require data from multiple hydrological 

stations, which is difficult in ungauged basin, besides, the established relationship is not stable 

in large scale because of the failure to consider the spatial heterogeneity of both spectral 

behavior and river morphology. Considering that relationship between C/M and flow velocity 

(V) established by one-pixel method have difficulties in being applied at large scale area, 

especially when the relationship was only determined by limited hydrological stations. Besides, 

due to best location for wet pixels M are supposed to be near the river in zone not only 

completely full of water but also sensitive to variations of the inundated area during flood events, 

while dry pixels C of calibration are supposed to be determined by selecting all the urban areas 

that are not affected by the seasonal cycle of vegetation (Tarpanelli et al., 2018). In addition, 

the inconsistent reflectance caused by different surface water bodies with different complex 

heterogeneous backgrounds and spectral noise characteristics, e.g. the variable sand content in 

different segment of a river, usually result in the spectral heterogeneity in space.  

To overcome these shortcomings, we improved the original C/M method in this section. 

The water body area corresponding to the largest water body area in the image recording within 

1km * 1km area is used as a boundary, or maximum river boundary (MRB), to extract the near-

infrared reflectance (or luminance) values of all the pixels in the area. The mean value of the 

band value is taken as M, and its value changes with the flooded area of the river, and all urban 

areas on the images are extracted, and the average value of the near-infrared bands in the urban 

areas on different images is counted as C. The improved method can effectively overcome the 

shortcomings of requiring data from multiple stations and overlooking the spatial heterogeneity 

of rivers. The improved C/M method can establish a reliable regional relationship between C/M 

and V based on solely one (not multiple any longer) hydrological station. 

In order to use a single hydrological station to establish a regional C/M~V relationship at 

ungauged stations, this study first uses Landsat TM images and measured flow velocity data at 

the single hydrological station during the wet season to establish a regional pixel (C) and water 

pixel (M) regional relationship with the flow velocity during non-wet seasons, such as Eq. 6; 

secondly, as there is spectral heterogeneity in space, we established the linear relationship 

between the M value of the ungauged station and of the reference station (Eq. 7) to remove the 

influence of spectral heterogeneity on results. With these steps, the flow velocity at an ungauged 

station (𝑉𝑢) can be calculated by using Eq. 8. The improved method solves the problem of large 

spatial differences in reflectance existed in the original C/M method, which enhances the 

applicability of the original C/M method. Therefore, the improved method is named as 

transcaled spatial C / M method. 
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V = p ∙ C/M + q                                    (6) 

𝑀𝑟𝑒𝑓 = 𝑔 ∙ 𝑀𝑢 + ℎ                                                 (7) 

𝑉𝑢 = p ∙ C/(𝑔 ∙ 𝑀𝑢 + ℎ) + q                                            (8) 

 (b) Estimation of flow area 

To calculate the flow area the shape and size of cross section has to be gotten. But 

nowadays sensors of both satellite and UAV can not “see” the cross section under water surface. 

In other words, one can only use satellite or UAV to monitor the cross section above water. 

Therefore, we must simulate the underwater cross section by mathematical method. From the 

viewpoint of mathematics, the cross section of a river, i.e. the width and depth of the river can 

be expressed in the form of a power function, and the power value of the function is usually 

less than 2 (Dingman, 2007).  

In this section, we monitored the above-water cross section by using UAV and developed 

a new algorithm for modelling underwater cross-section taking as basis the UAV-measured 

above-water cross-section. To model underwater cross-section the whole one (above plus under 

water) is firstly to be formulated by using information of the starting point distance and water 

depth, as shown in Eq. 9 and Fig. 3-9. 

{
y𝑟 = a𝑟(|x𝑟 − b𝑟|)𝑡𝑟 + 𝑐𝑟

y𝑙 = a𝑙(|x𝑙 − b𝑙|)𝑡𝑙 + 𝑐𝑙
                             (9) 

where y represents the water depth of the river; x represents the starting distance; t represents 

the power of the river shape; a represents the opening size of the river; b represents the central 

axis point of the fitting function; the subscript r and l respectively stands for right- and left-side 

cross-section. 

 
Fig. 3-9 Ideal cross-section or relationship between water depth and distance in Eq. 9 with t <= 1 (Left) and 

t>= 1 (Right).  

In Fig. 3-9 and Eq. 9, the difference in power value represents the shape of the cross-

section of the river. For instance, the curve with t = 1 represents a triangle-type cross section, t 

= 1.75 the 'Lane Type B stable channel', t = 2 a parabola shape cross-section (Dingman, 2007; 

Bjerklie et al., 2018).  

So far, the cross-section formula are established. But in a real river there will be slope 
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break points in a cross-section not as smooth as in Fig. 3-9 due to the frequent eroding and 

sedimentation, as shown in Fig. 3-10.  

 

Fig. 3-10 Examples of slope break point on cross-sections 

To model the actual across-section in Fig. 3-10, the slope (dy/dx) and the change rate of 

slope (d2y/dx2) of the above-water cross-section is calculated and local maximum of d2y/dx2 is 

used as the slope mutation point for extracting the segment of above water cross-section that is 

closest to water surface. The relationship between the slope of the cross-section and the starting 

distance can be formulated as Eq. 10.  

{
slope𝑟 = a𝑟 ∙ t𝑟 ∙ (x𝑟 − b𝑟)𝑡𝑟−1

slope𝑙 = a𝑙 ∙ t𝑙 ∙ (x𝑟 − b𝑙)𝑡𝑙−1                          (10) 

   
Fig. 3-11 Example of 3 scenarios when determine the below water cross-section. a) Scenario 1, b) Scenario 2, 

c) Scenario 3 

Depending on whether the power of the fitted relationship is less than 1, the segmented 

cross-sections of the cross section closest to the water surface are divided into convex cross 

section or concave cross section, and underwater cross-section is determined according to 3 

scenarios: (a) Scenario 1: tr <1 and tl <1 (Fig. 3-11a), that is, both the left and right sides of the 

cross-section are convex cross-section. In order to fit the underwater cross-section with Eq. 9 

using segments that are closest to the water surface, we uses the points with xr = br and xl = bl 

(i.e., slope equal to infinite) as the bottom points of the river on two sides; (b) Scenario 2: tr <1, 

tl> 1 or tr> 1, tl <1 (Fig. 3-11b), i.e., only one side of the cross-section is convex cross-section. 

We detect the bottom point of cross-section by finding the point with slope equal to infinite; (c) 

Scenario 3: tr> 1 and tl> 1 (Fig. 3-11c), the intersection of the formulas fitted by left and right 

sides of the above water cross section are used as river bottom point, thereby determining the 

(a) (b) (c) Scenario 1 Scenario 2 Scenario 3 



46 

 

underwater cross-section. 

Combined with Eq. 9 and Eq.18, we can model the underwater cross-section using above 

water cross-section produced by UAV, which do not require any ground-measured data. The 

method is named Riba-zero method. 

After modelling underwater cross-section with the Riba-zero method (Eq. 9 and Eq. 10), 

we can then calculate flow area (or underwater cross-section area) based on two scenarios in 

Fig. 3-12 according to the principle whether the left and right fitting formulas cross under water. 

In Scenario 1, the left and right fitting formulas do not cross under water (Fig. 3-12a), we 

calculate flow area with Eq. 11. In Scenario 2, the left and right fitting formulas have 

intersections (shown in Fig. 3-12b), and we calculate flow area with Eq. 12. 

  

Fig. 3-12 Scenarios. Left-Scenario 1: no intersection in fitting formula of two side of cross-section; Right-

Scenario 2: intersection is found in fitting formula of two side of cross-section. 

{
A = |𝑥𝑟0 − 𝑥𝑙| ∙ y𝑙 − (∫ (𝑎𝑙(𝑥 − 𝑏𝑙)𝑡𝑙 + 𝑐𝑙)

𝑥𝑙𝑜

𝑥𝑙
+ ∫ (𝑎𝑟(𝑥 − 𝑏𝑟)𝑡𝑟 + 𝑐𝑟)

𝑥𝑟

𝑥𝑟0

y𝑙 =  |(𝑎𝑙(𝑥𝑙 − 𝑏𝑙)𝑡𝑙 + 𝑐𝑙) −  (𝑎𝑙(𝑥𝑙𝑜 − 𝑏𝑙)𝑡𝑙 + 𝑐𝑙)|
           (11) 

{
A = |𝑥0 − 𝑥𝑙| ∙ y𝑙 − (∫ (𝑎𝑙(𝑥 − 𝑏𝑙)𝑡𝑙 + 𝑐𝑙)

𝑥𝑜

𝑥𝑙
+ ∫ (𝑎𝑟(𝑥 − 𝑏𝑟)𝑡𝑟 + 𝑐𝑟)

𝑥𝑟

𝑥0

y𝑙 =  |(𝑎𝑙(𝑥𝑙 − 𝑏𝑙)𝑡𝑙 + 𝑐𝑙) −  (𝑎𝑙(𝑥𝑜 − 𝑏𝑙)𝑡𝑙 + 𝑐𝑙)|
            (12) 

where A represents the flow area, xl and xr represent the distance of the left and right sides of 

the cross-section crossed by water surface. In addition, in Eq. 11, xl0 and xr0 represent the lowest 

underwater points on the left and right sides, and yl represents the water surface line to the 

height difference between the lowest point underwater; in Eq. 12, x0 represents the underwater 

intersection point, and yl represents the height difference from the water surface line to the 

underwater intersection point. 

with the flow velocity (V) determine in Section 3.1.2.2 (1) and flow area (A) in Section 

3.1.2.2 (2), we can finally calculate the streamflow with Eq. 13. 

Q = A ∙ V                               (13) 

 (c) Test and validation of the transcaled spatial C/M method 
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To make the result more accuracy, we further tested the methods in the middle reach of 

the Yellow River. 

The flow velocity was firstly estimated. Before determining the C / M-V relationship, one 

first need to extract the corresponding areas from the image according to the C and M 

calculation methods specified in 3.1.2.2 (1). For the range of C a large number of town pixels 

both far from and near the Wei River, a tributary in the middle reach of the Yellow river, were 

extracted from the Landsat TM 127 and 128 image, as shown in Fig. 3-13.  

For the extraction of M value, we visually extract the water body area corresponding to 

the largest water body area recorded in the image during 2007-2009 as the boundary, called 

maximum river boundary (MRB), as shown in Fig. 3-14. 

 

 

(a) 

(b) 



48 

 

 

 

Fig. 3-13 Extracted boundary for C value calculation from Landsat TM. Sub-figures a & b: image No. 127; c 

& d: image No. 128. Images a&c are true color images, and b&d are near-infrared images. Red 

circles stand for urban area selected with lower reflectivity in the near-infrared band. 

(d) 

(c) 
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Fig. 3-14 Extracted boundary for M value calculation based on TM imagery, the red line represents the 

maximum river boundary. (a) XY, (b) LT, (c) HX, (d) WJB, (e) LJC, (f) TS. Blue and green colors 

show the value of landsat NIR channel, like Fig. 3-13. 

 

 

Fig. 3-15 Actual water surface (dark blue) variation over time within the maximum river boundary (MRB, 

red line) of the LT (a downward hydrological station in Figs. 3-8 & 3-13) based on TM images. Blue 

and green colors show the value of landsat NIR channel, like Fig. 3-13. 
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The MRB extracted at each station is different, the largest is XY with an area of 853233 

m2, and the smallest is TS with an area of 61586 m2. We used the average reflectance within 

the MRB at different times as M value. Within every MRB, the internal reflectance changes 

significantly over time, as shown in Fig. 3-15 by taking LT as an example. When water level 

rises, the water pixels increase and land pixels decrease, and vice versa, as shown in Fig. 3-15. 

After obtaining the values of C and M at each station, we first select 27 pairs of C / M and 

V of reference station (WJB), and establishes the relationship between wet season and non- 

flood season, as shown in Fig. 3-16. 

 

Fig. 3-16 The relationship between C / M and the velocity of the reference station (WJB) in different seasons. 

(a) during the wet season, and (b) during the dry season. R2 value is used to evaluate the correlation 

between flow velocity and C/M, while RMSE represents Root-mean-square error. 

According to Fig. 3-16, the relationships between C / M and V at the reference station 

WJB in wet and dry seasons are different. During wet season, the absolute value of the fitting-

curve slope is higher than 0.63, and R2 is 0.83, with V =-0.63C / M + 1.29; while in dry season, 

the absolute value of the slope is 0.21, and R2 is 0.68, with V = -0.21C / M + 0.61. This is 

because that the Wei River basin lies in the semi-arid area of the northern hemisphere. Majority 

of rainfall falls in the wet season from May to October. During the wet season, the river velocity 

changes greatly (0.30-1.13m / s). As water level rises, the value of M changes less (0.13-1.10), 

so the slopes of V and C / M are larger; while in the remain dry season the variability of flow 

velocity is small (0.19-0.78m / s) due to sparse rainfall. Therefore, the slope of V and C / M is 

small.  

According to the fitting formula, for all periods, the overall average error of the inversed 

velocity is 0.07 m/s, the RMSE is 0.09 m/s, and the average relative error is 14.07%, which 

indicate a high accuracy. In wet season, the average velocity error is 0.09 m/s, the RMSE is 

0.11 m/s, and the average relative error is 14.57%. In dry season, the average velocity error is 

0.06 m/s, the RMSE is 0.08 m/s, and the average relative error is 15.16%. The precision of 

velocity estimation in the wet season is higher than that in the dry season. 

The fitting relationship between M values at the reference station and ungauged stations is 

established according to Eq. 7 in wet and dry seasons, as shown in Table 3-2. 
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Table 3-2 Fitting of M value relationship between ungagged stations and the reference station (WJB).  

Station MRB (m2) Wet season  R2 F-Sig Dry season  R2 F-Sig 

XY 853233 MWJB=1.00MXY-0.04 0.95 
8.16E-

4 
MWJB = 1.25MXY+0.03 0.94 4.06E-6 

LT 78262 MWJB=0.76MLT+0.01 0.68 0.04 MWJB = 0.58MLT+0.05 0.78 6.94E-4 

HX 61586 MWJB=0.74MHX+0.08 0.74 0.02 MWJB = 1.09MHX+0.05 0.80 3.51E-3 

LJC 377855 MWJB=0.41MLJC+0.10 0.87 0.04 MWJB = 0.59MLJC+0.02 0.91 9.24E-4 

TS 121003 MWJB = 2.92MTS-0.56 0.99 0.03 MWJB = 0.94MTS-0.03 0.93 3.41E-6 

 

According to Table 3-2, in wet seasons, the highest R2 fitted by the TS station is 0.99, and 

the lowest R2 fitted by the LT is 0.68; in the dry season, the highest R2 fitted by the XY station 

is 0.94, and the lowest R2 fitted by the HX is 0.78. After obtaining the fitting relationship 

between the M value of each station and the reference station, one can calculate flow velocity 

with Eq. 8 for each ungauged station. We used satellite imagery to extract the M value of the 

corresponding station at different times and calculated flow velocity for the stations other than 

the reference station (WJB), and performed error analysis with the measured flow velocity, as 

shown in Fig. 3-17. 

 

Fig. 3-17 The errors between estimated velocity and ground-measured velocity. The red dash line represents 

the linear fit line of ground-measured velocity (GV) and simulated velocity (SV), the black lines 

represent 1:1 line. (a) dry season, (b) wet season. 

According to Fig. 3-17, the simulated velocity RMSE of all station in the whole period is 

0.12 m/s, the average relative error is 19.00%, and the rRMSE is 0.36 with a F-test significance 

of 0 < 0.01, indicating the relationship is reliable. In wet season, the simulated velocity RMSE 

of all stations is 0.12 m/s, the average relative error is 14.56%, and the rRMSE is 0.15. In dry 

season, the simulated velocity RMSE of all stations is 0.12 m/s, the average relative error is 

20.88%, and the rRMSE is 0.25. It can be concluded from the above results that our improved 

method (transcaled spatial C / M method) gives better simulation in wet season instead of dry 

season and is especially better at estimating big flow velocity than small one. The rRMSE of 

each station is shown in Table 3-3. 
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Table 3-3 rRMSE of flow velocity of all stations in middle Yellow River. relative root-mean-square error 

(rRMSE) 

 XY LT HX LJC TS 

Wet season 0.116057 0.207085 0.153012 0.119668 0.112241 

Dry season 0.243814 0.387174 0.227191 0.237509 0.131788 

All periods 0.173656 0.29033 0.192475 0.190149 0.123728 

 

As shown in Table 3-3, among all stations, the result of TS performed best both in wet and 

dry seasons, with rRMSE values of 0.11 and 0.13, respectively; while LT performed worst with 

rRMSE values of 0.21 in the wet season and 0.39 in the dry season. The regional relationship 

between C/M and V is established by introducing Eq. 7 to address reflectance differences 

caused by optically active substances in water body on the absorption and scattering of solar 

radiation (Beck et al., 2016). However, due to some instinctive differences in the water bodies 

of stations caused by sediment and chlorophyll, the reliability of the M value relationship is 

different at 5 stations. It can be concluded that the stations with higher R2 in the M value 

relationship of ungauged- referenced stations (e.g., XY, TS) performed better in velocity 

calculation. 

After the formula for flow velocity calculation have been tested, flow area estimation model 

is subsequently tested and validated. The above-water cross-sections collected by UAV in the 

lower Yellow River area were used to analyze the precision of our underwater cross-section 

modelling method (Riba-zero method). Specifically, based on the recorded historical minimum 

and maximum water level interval, 9 water levels are taken at equal intervals between the 

highest and lowest water level to analyze the error of the simulated underwater cross section, 

as shown in Fig. 3-18.  

According to Fig. 3-18, the Riba-zero method performed better in ZGNL, where the shape 

of the cross-section is more similar to a parabola, the RMSE of the 9 simulations is 29.81 m2, 

the rRMSE is 0.18, the lowest relative error in the 9 simulations is 1.47% when the relative 

water level is 1.0, and the highest relative error in the 9 simulations is 25.12% when the relative 

water level is 5.0. Interestingly, based on our data, the lowest relative error occurred when the 

bias between the elevation of the simulated and real river bottom was the least, while the highest 

relative error occurred when the bias was the largest. In BDK, where the shape of the cross-

section is close to a trapezoid, the RMSE of the 9 simulations is 417.13 m2, and the rRMSE is 

4.76, indicating that the Riba-zero method did not perform well in dealing with such a cross 

section, of which the lowest point of the cross section is not easy to simulate by the above-water 

cross section. 

After verifying the applicability of the Riba-zero method with precise UAV data in the 

lower Yellow River, we then validated it with non-trapezoidal cross section in the middle 

Yellow River, as shown in Fig. 3-19. There we used the measured flow area as a benchmark to 

analyze the accuracy of the modelled flow area at each station.  
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Fig. 3-18 Cross-section simulated by UAV data in Lower Yellow River. (a) the simulation of ZGNL, relative 

water level is 1m; (b) the simulation of ZGNL, relative water level is 2m; (c) the simulation of ZGNL, 

relative water level is 3m; (d) the simulation of ZGNL, relative water level is 4m; (e) the simulation 

of ZGNL, relative water level is 5m; (f) the simulation of ZGNL, relative water level is 6m; (g) the 

simulation of ZGNL, relative water level is 7m; (h) the simulation of ZGNL, relative water level is 

8m; (i) the simulation of ZGNL, relative water level is 9m; (j) the simulation of BDK, relative water 

level is 0.5m; (k) the simulation of BDK, relative water level is 1.0m; (l) the simulation of BDK, 

relative water level is 1.5m; (m) the simulation of BDK, relative water level is 2.0m; (n) the simulation 

of BDK, relative water level is 2.5m; (o) the simulation of BDK, relative water level is 3.0m; (p) the 

simulation of BDK, relative water level is 3.5m; (q) the simulation of BDK, relative water level is 

4.0m; (r) the simulation of BDK, relative water level is 4.5m. 
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Fig. 3-19 Five cross-section simulated in middle Yellow River. (a), (b), and (c) are 3 of 16 typical underwater 

cross-section simulations of 2007,2008 and 2009 at XY; (d), (e), and (f) are 3 of 16 typical underwater 

cross-section simulations of 2007,2008 and 2009 at LT; (g), (h), and (i) are 3 of 16 typical underwater 

cross-section simulations of 2007,2008 and 2009 at HX; (j), (k), and (l) are 3 of 11 typical underwater 

cross-section simulations of 2007,2008 and 2009 at LJC; (m), (n), and (o) are 3 of 11 typical 

underwater cross-section simulations of 2007,2008 and 2009 at TS. 

According to Fig. 3-19, the RMSE of the estimated flow area of all stations in the middle 

Yellow River regardless of season is 69.59 m2, the relative error is 27.76%, the rRMSE is 0.49, 

and the relationship between the ground-measured and the simulated flow area was tested by 
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using the F-test method and has a significance of 0 < 0.01. In the wet season, the RMSE of 

estimated flow area of all stations in the middle Yellow River regardless of season is 102.52 m2, 

the relative error is 34.12%, the rRMSE is 0.57, and the relationship between the ground-

measured and simulated flow area is verified by the F-test with significance of 4.10E-10, less 

than 0.01. In the dry season, the RMSE of the estimated flow area of all stations in the middle 

Yellow River regardless of season is 59.06 m2, the relative error is 24.00%, the rRMSE is 0.40, 

and the relationship between the ground-measured and simulated flow area is verified by the 

F-test with significance of 0, less than 0.01. The precision of estimating the flow area in the wet 

season is worse than that in the dry season. 

Similar to the results in the lower Yellow River, among all the 5 stations, the estimated flow 

area error of LJC, where the shape of the cross section is most similar to a parabola, is the 

lowest, and the rRMSE is 0.23; while in HX, where the shape of the cross section is long and 

narrow, the rRMSE is 0.40, which is the biggest among the 5 stations. In other words, errors 

are from (positively correlated with) the degree of bias (from an ideal parabola curve) of the 

actual cross section. Based on the results on both the lower Yellow River and middle Yellow 

River, it can be concluded that the Riba-zero method is more suitable for parabola-shaped cross 

sections. 

After having obtained flow area and flow velocity, we then used Eq. 13 to calculate the 

streamflow at each station. Results are as shown in Fig. 3-20. 

 

Fig. 3-20 The errors between estimated and ground-measured streamflow (discharge). The red dash line 

represents the linear fit line of ground-measured discharge (GD) and simulated discharge (SD), the 

black lines represent 1:1 line. (a) dry season, (b) wet season. 

According to Fig. 3-20, the simulated streamflow RMSE of all stations in the whole year 

is 36.42  m3/s, the average relative error is 35.31%, NSE is 0.86, the rRMSE is 0.41, and the 

relationship between the ground-measured and the simulated streamflow is verified by the F-

test with significance of 0, less than 0.01, indicating that the relationship is reliable. In the wet 

season, the simulated streamflow RMSE of all stations is 82.49  m3/s, the average relative error 

is 45.81%, the NSE is 0.85 and the rRMSE is 0.56, and the F-test shows that the relationship 

between the ground-measured and the simulated streamflow is reliable with a significance of 0, 

less than 0.01. In the dry season, the simulated streamflow RMSE of all stations is 19.17  m3/s, 

the average relative error is 29.10%, the NSE is 0.86 and the rRMSE is 0.34, and the F-test 
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indicaes that the relationship is reliable with significance of 0, less than 0.01. It can be 

concluded that, unlike the simulated velocity, the result of the simulated streamflow is similar 

to that of the flow area estimation, which is more precise in the dry season than in the wet 

season and is caused by the uncertainties of estimating the flow area from the above-water cross 

section. Among all the stations, the simulated streamflow of TS shows the least rRMSE (0.31), 

in which the precision of velocity is the highest and the flow area is the second highest among 

all the stations. The performance of our method is worst in HX, which is mainly due to the error 

in the estimated underwater cross-sectional area caused by its irregular shape (Fig. 3-20). 

To discuss the application potential of our method, we compared the streamflow result of 

our proposed method with previously developed methods. Based on four hydrological stations 

in the Po River, Italy, Tarpanelli et al. (2013) established a regional relationship of C/M and V 

to calculate the river streamflow at ungauged stations. The NSE value of their results is between 

0.59–0.83, which is lower than that of our result in the middle Yellow River (0.86), indicating 

that our improved method successfully managed using data from one hydrological station to 

establish a more robust regional relationship for estimating streamflow at ungauged stations. Li 

et al. (2019) proposed a multiple-pixel ratio (MPR)-based C/M calculation method that is like 

our MRB-based C/M calculation but overlooked the spatial heterogeneity of spectral 

information when applying their method in small rivers of the Tibetan Plateau, China. The 

rRMSE of their result is between 0.67-0.81, which is higher than that of our result of 0.41, 

indicating that considering spectral information can successfully improve the performance of 

C/M-based streamflow estimation. However, Tarpanelli et al. (2015) proposed using the 

relationship between velocity and C/M to calculate river streamflow in ungauged basins, and 

the rRMSE is 0.37, which is slightly better than that of our result (0.41) because they applied 

river bottom elevation information that is absent in our study in inversing cross-section. 

Apart from estimating river streamflow through spectral information, there are also many 

remote sensing-based streamflow estimation methods based on river width and height that can 

easily be observed by remote sensing sensors (Zhao et al., 2019; Huang et al., 2018). Gleason 

& Smith (2014) proposed the at-many-stations hydraulic geometry (AMHG) method for river 

streamflow estimation in ungauged rivers based on Landsat Thematic Mapper images and 

tested their method over 3 large rivers in the United States, Canada, and China; the rRMSE was 

within 0.20-0.30. We expand this method into medium- to small-sized rivers by using 

unmanned aerial vehicles (UAV), proposing a virtual hydraulic radius AMHG (VHR-AMHG) 

and found that in global scale, AMHG can now only be suitable for large rivers with high river 

streamflow. Huang et al. (2018) proposed multisource remote sensing (including satellite 

altimetry data, Landsat TM data and UAV data) to extract river width and water level to estimate 

the streamflow of rivers on the Tibetan Plateau, China. Their results indicated that large rivers 

show less uncertainty in the errors of river width and water level than that of small rivers (width 

<400 m). However, Li et al. (2019) exploited spectral information by the C/M ratio in estimating 

the streamflow of rivers with widths less than 100 m in China, and the NSE value of their result 

is 0.45, indicating the potential of using the C/M-based method to monitor the streamflow of 

small ungauged rivers. Apart from being applied in small rivers, Tarpanelli et al. (2018) applied 

the C/M method in estimating the streamflow of the Niger River (width is approximately 2800 

m) at Lokoja and achieved great results (rRMSE is 0.12), indicating that the C/M-based method 
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can also be applied on large rivers.  

In conclusion, previous research on estimating river streamflow through extracted width 

and height from satellites is generally suitable for large rivers, while using spectral information 

from satellite images, e.g., Chinese GF-7 (0.8 m), has the potential for river streamflow in both 

small and large rivers.  

3.1.2 Long-termed streamflow estimation by using satellite imageries for the three 

representative cities  

(1) Selection of stations for long-termed streamflow estimation for three cities 

Surface freshwater in rivers, or streamflow is important water sources for a city. To 

accurately estimate surface water resources for the three representative cities, one has to select 

stations on rivers crossing by or flowing nearby the three representative cities. Since Xi’an lies 

near two tributaries (Jing River and Wei River) in the middle reach of the Yellow River, two 

stations were selected for Xi’an; while Zhengzhou and Ji’nan are located near the main stream 

of the Yellow River, two stations (HYK and LK) were respectively selected for the two cities. 

Selected stations are as shown in Fig. 3-21 and Table 3-4 

. 

 

Fig. 3-21 The four selected stations for streamflow retrieval with satellite and UAV imageries (red point) for 

the three representative cities*. XA: Xi’an City; ZZ: Zhengzhou City; JN: Ji’nan City; JR: Jing 

River Station; WR: Wei River Station; HYK: Huayuankou Station; LK: Luokou Station. 
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Table 3-4 The position of the four stations 

City 
Station for 

streamflow  retrieval 
Long Lat 

Streamflow 

( m3/s) 

Maximum 

water-

level(m) 

XA 

(Xi’an) 

JR 

(Jing River) 
108.9932 34.4574 100-9200 451.98 

WR 

(Wei River) 
108.9993 34.4404 50-13300 385.40 

ZZ 

(Zhengzhou) 
HYK 113.8693 34.8922 20-22300 94.42 

JN 

(Ji’nan) 
LK 117.0241 36.7542 200-11000 35.19 

(2) Long-termed streamflow estimation for representative stations 

With the selected four stations, we begin to calculate streamflow value series at the four 

stations in Table 3-4 by using VHR-AMHG with Sentinel-1 imageries in dry seasons and 

transcaled spatial C/M method with Landsat TM imageries in wet seasons.  

After downloading Sentinel-1 data, it is necessary to pre-process the data by using ESA 

SNAP (Java) (https://senbox.atlassian.net/wiki/spaces/SNAP/overview) to improve the image 

data that suppresses unwanted noise, distortions and enhances some image features important 

for further applications. First, we need to apply precise orbit files to know where the satellites 

are. Second, we're going to convert Digital Numbers (DNs) to Backscatter. The conversion is 

mission-specific. Then we have to perform Specckle-Filter, including Multi-look processing 

and Image Filtering. Finally, we need to complete the geometric correction. To derive a precise 

geolocation for each pixel of the image, the Range-Doppler approach is the most appropriate 

way to perform geometric correction. With the corrected Sentinel-1 data, we can easily 

recoginize water from land via visual interpretation  whereby to produce multiple water surface 

widith values of a river section which are then used by the VHR-AMHG method. Water surface 

widith values are validated by manually checking the randomly selected Sentinel-1 images to 

ensure the accuracy of results.  

Likely, after downloading TM images, radiometric calibration is conducted under ENVI 

environment converting DN values to spectrial radiance values. Then, FLAASH is used for 

atmospheric correction converting the spectrial radiance values into surface reflectance values. 

With the reflectance values, we can estimate C and M values in the transcaled spatial C/M 

method. 

In total, more than 200 tiles and 2,000 Sentinel-1 images were explored to retrieve dry-season 

streamflow at the four stations from 2014 to 2021. And more than 1,000 tiles and 15,000 landsat 

TM images were used to retrieve wet-season streamflow from 1980s. To incorporated with 

Sentinel-retrieved streamflow in dry seasons, TM-retrieved wet-season streamflow from 2014 

to 2021 were used and retrieved streamflow in upper (Xi’an: JR&WR), middle (Zhengzhou: 

HYK), down-stream (Ji’nan: LK) of the Yellow River are shown in Fig. 3-22. Monthly 

imageries of Sentinel-1 and Landsat TM were used. In other words, multiple images of 

Sentinel-1 or TM for a station and its adjacent cities were fused together as an imagery. The 

first imagery of Sentinel-1 or TM of every month was downloaded and explored as the monthly 

imagery.  

https://senbox.atlassian.net/wiki/spaces/SNAP/overview
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Fig. 3-22 RS-retrieved streamflow in the four stations for past dates with VHR-AMGH method plus Sentinel-

1A data used in dry seasons as transcaled C/M method plus TM imageries were used in wet seasons. 

Streamflow in some dates are missing due to the availability of satellite imageries. 

 If the percentage of cloud area in a TM image is greater than 50%, the image is replaced by 

0

500

1000

1500

2000

2500

 2
0

1
4

-1
0

 2
0

1
5

-0
1

 2
0

1
5

-0
4

 2
0

1
5

-0
7

 2
0

1
5

-1
0

 2
0

1
6

-0
1

 2
0

1
6

-0
4

 2
0

1
6

-0
7

 2
0

1
6

-1
0

 2
0

1
7

-0
1

 2
0

1
7

-0
4

 2
0

1
7

-0
7

 2
0

1
7

-1
0

 2
0

1
8

-0
1

 2
0

1
8

-0
4

 2
0

1
8

-0
7

 2
0

1
8

-1
0

 2
0

1
9

-0
1

 2
0

1
9

-0
4

 2
0

1
9

-0
7

 2
0

1
9

-1
0

 2
0

2
0

-0
1

 2
0

2
0

-0
4

 2
0

2
0

-0
7

 2
0

2
0

-1
0

 2
0

2
1

-0
1

R
S

-r
et

ri
ev

ed
 Q

p
 (

m
3
/s

)

Date

JR

0

500

1000

1500

2000

2500

 2
0

1
4

-1
0

 2
0

1
5

-0
1

 2
0

1
5

-0
4

 2
0

1
5

-0
7

 2
0

1
5

-1
0

 2
0

1
6

-0
1

 2
0

1
6

-0
4

 2
0

1
6

-0
7

 2
0

1
6

-1
0

 2
0

1
7

-0
1

 2
0

1
7

-0
4

 2
0

1
7

-0
7

 2
0

1
7

-1
0

 2
0

1
8

-0
1

 2
0

1
8

-0
4

 2
0

1
8

-0
7

 2
0

1
8

-1
0

 2
0

1
9

-0
1

 2
0

1
9

-0
4

 2
0

1
9

-0
7

 2
0

1
9

-1
0

 2
0

2
0

-0
1

 2
0

2
0

-0
4

 2
0

2
0

-0
7

 2
0

2
0

-1
0

 2
0

2
1

-0
1

R
S

-r
et

ri
ev

ed
 Q

p
 (

m
3
/s

)

Date

WR

0

500

1000

1500

2000

2500

3000

3500

 2
0

1
5

-0
2

 2
0

1
5

-0
5

 2
0

1
5

-0
8

 2
0

1
5

-1
1

 2
0

1
6

-0
2

 2
0

1
6

-0
5

 2
0

1
6

-0
8

 2
0

1
6

-1
1

 2
0

1
7

-0
2

 2
0

1
7

-0
5

 2
0

1
7

-0
8

 2
0

1
7

-1
1

 2
0

1
8

-0
2

 2
0

1
8

-0
5

 2
0

1
8

-0
8

 2
0

1
8

-1
1

 2
0

1
9

-0
2

 2
0

1
9

-0
5

 2
0

1
9

-0
8

 2
0

1
9

-1
1

 2
0

2
0

-0
2

 2
0

2
0

-0
5

 2
0

2
0

-0
8

 2
0

2
0

-1
1

 2
0

2
1

-0
2

R
S

-r
et

ri
ev

ed
 Q

p
 (

m
3
/s

)

Date

HYK

0

200

400

600

800

1000

1200

 2
0

1
5

-0
3

 2
0

1
5

-0
5

 2
0

1
5

-0
7

 2
0

1
5

-0
9

 2
0

1
5

-1
1

 2
0

1
6

-0
1

 2
0

1
6

-0
3

 2
0

1
6

-0
5

 2
0

1
6

-0
7

 2
0

1
6

-0
9

 2
0

1
6

-1
1

 2
0

1
7

-0
1

 2
0

1
7

-0
3

 2
0

1
7

-0
5

 2
0

1
7

-0
7

 2
0

1
7

-0
9

 2
0

1
7

-1
1

R
S

-r
et

ri
ev

ed
 Q

p
 (

m
3
/s

)

Date

LK



60 

 

another image on other day of the month. What is worth noticing is that the image has to be 

replaced if the station-located river section is covered by cloud (even if the percentage is less 

than 5%) whereby to ensure the estimation of M value in the transcaled spatial C/M method not 

to be affected by any cloud. All these imageries were processed via the platform of Google 

Earth Engine (https://developers.google.cn/earth-engine/).  

 

 

Fig. 3-23 Relationship between RS-retrieved streamflow (Qp) and runoff modeled in the dataset of NASA 

GLDAS 2 NOAH with (a) for JR and WR, and (b) for HYK and LK. 

 Fig. 3-22 shows that streamflow in the four stations fluctuates with dry and wet seasons. 

Due to continually withdrawing water out of the Yellow River from upper to downward reaches, 

streamflow increases in the upper and then decreases in the downward reach. In the upper reach 

(JR&WR) the averaged streamflow is ~600  m3/s and in the middle reach (HYK) it is ~1000  

m3/s, but in the downstream (LK) it is ~600  m3/s which implies that in the downstream water 

withdraw greatly decreases the quantity of streamflow in the Yellow River.  

With streamflow RS-retrieved in the four stations, relationship between it and runoff 

modeled in the dataset of NASA GLDAS 2 NOAH (or GLDAS Noah Land Surface Model L4 
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monthly 0.25×0.25 degree, V2.0 (DOI: 10.5067/9SQ1B3ZXP2C5) (Hiroko and Rodell, 2016)) 

can be established. By using the relationship as a bridge, RS-retrieved streamflow in the four 

stations can be extended from the last decade to the period of almost 70 years (from 1948 to 

current). The relationships established are as shown in Fig. 3-23. 

Fig. 3-23 shows that there is an evident power relationship between the RS-retrieved 

streamflow (Qp) and the runoff from NASA GLDAS. By using the relationships, the RS-

retrieved streamflow can be extended to 1948-, as shown in Fig. 3-24. 

 
Fig. 3-24 Streamflow or FWA retrieved based on GLDAS runoff data from 1948 year with (a) for Xi’an, (b) 

for Zhengzhou, and (c) for Ji’nan. 

 Fig. 3-24 shows that Xi’an (a) and Zhengzhou (b) have almost the same averaged 

streamflow value (~1000  m3/s) from 1948 to 2018, and Jinan (c) has a lower averaged 

streamflow value (~600  m3/s). With these streamflow values, FWA can be estimated in the next 

section. Streamflow in the upper reach (Xi’an in Fig. 3-24a) fluctuates more intensively than 

the lower reaches (Fig. 3-24b & c: Zhengzhou and Ji’nan). The reason is that there are a fewer 

tributaries concentrated into the mainstream of rivers in upper reaches than in the low- and 
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middle- reaches and therefore the streamflow process in Xi’an fluctuates more intensively than 

in Zhengzhou and Ji’nan. In addition, Xi’an lies adjacent to the two tributaries of the Yellow 

River -- Jing river and Wei River (see Table 3-4 and Fig. 3-22) while Zhengzhou and Ji’nan lie 

in the mainstream. The maximum magnitude of streamflow of the two tributaries (9200~13300  

m3/s) is much lower than these in the mainstream (11000~22300  m3/s). As for the two 

tributaries, streamflow in the Wei River fluctuates more intensively than in the Jing River (WR 

& JR in Fig. 3-22). In othe words, the fluctuations in streamflow of Xi’an are mostly contributed 

by the Wei River.  

Also, we looked up the flood in the cities and found historical extraordinary high flood all 

occurred in Summer and Fall. In addition, as an example, the food years of the Wei River 

flowing through Xi’an include 1933, 1954, 1981 and 2019 NOT in accordance with the peak 

values in Fig. 3-24a. Therefore we further investigated the input data of our model and found 

that the extraordinary high peak values in 198105, 200801 and 201601 are resulted by the 

uncertainties in GLDAS data. In other words, uncertainties in GLDAS dataset also induced 

uncertainties in the results of Fig. 3-24, especially in the Fig. 3-24a, the extraodinary peak 

values occurred in 198105, 200801 and 201601 come from the extraordinary low value of 

GLDAS: 8.06*10-8, 8.06*10-8, and 3.23*10-7 kg m-2 per 3-hour while the average value is 

8.17*10-3 kg m-2 per 3-hour. During the stage of application, the extraordinary peak values are 

suggested to be interpolated by using the before- and after-month values. 

In addition, in the year 1998 floods occurred through most basins in China including 

Yangtze River, the Nen River, the Songhua River and the Pearl River as well as the YR. But 

because of most floods occurred in the tributaries of the YR, so the food of the mainstream of 

YR is not as severe as in Yangtze River. As literatures recorded, the extraordinary peak flood 

in the mainstream of the YR occurred five times in 1761, 1843, 1933, 1958, 1982. 

3.2 Surface freshwater available (FWA) for the three representative 

cities 

 Water resources or streamflow in the Yellow River are assigned by the Yellow River 

administrators to cities along the Yellow River proportionally for use. Literatures show that in 

the year 1987, 1.58 billion  m3 streamflow in the Yellow River was assigned to Xi’an, 0.42 

billion  m3 to Zhengzhou*(Nie, 2008). The averaged quantity of streamflow in the Yellow River 

(0.58 billion  m3 in the period from 2011 to 2013) was assigned to Ji’nan (Zhou et al., 2015).  

 From Fig. 3-24, we can learn that in the year 1987, the Yellow River flowing by Xi’an has 

an annual runoff of 382.39 billion  m3, that flowing by Zhengzhou has an annual runoff of 

378.09 billion  m3; in the period from 2011 to 2013, the average annual runoff in the Yellow 

River flowing by Ji’nan is 229.57 billion  m3. With these data we can calculate the allowable 

proportions of water withdraw from the Yellow River for Xi’an, Zhengzhou, and Ji’nan, which 

are respectively 0.41%, 0.11%, and 0.25%. With these proportions, we can get the surface 

freshwater available (FWA) from the Yellow River, and those from 2013 to 2017 are as shown 

in Table 3-5 (2).  

 According to “Water Resource Bulletin of Xi’an (2013-2017)”, “Water Resource Bulletin 

of Zhengzhou (2013-2017)”, and “Water Resource Bulletin of Ji’nan (2013-2017)”, surface 
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freshwater available (FWA) for the three cities varies are as shown in Table 3-5 (1). With the 

averaged ratio of surface FWA from the Yellow River to that from “Water Resource Bulletin” 

in Table 3-5 (which are respectively 1.01, 1.14, and 1.22), we can derive total surface FWA 

quantity for the three cities in other prediction years. Surface freshwater available for the three 

representative cities from the year 2000 are as shown in Fig. 3-25. 

 

Table 3-5 Surface FWA variable from the Yellow River, from "Water Resource Bulletin" and their ratios. XA: 

Xi’an, ZZ: Zhengzhou, JN: Ji’nan. 

Year Surface FWA variable （billion  m3） XA ZZ JN 

2013 

(1) Quantity from "Water Resource Bulletin" 1.56 0.35 1.16 

(2) Quantity from the Yellow River 1.61 0.41 0.58 

(3) Ratio=(2)/(1) 1.03 1.18 0.50 

2014 

(1) Quantity from "Water Resource Bulletin" 1.73 0.35 0.25 

(2) Quantity from the Yellow River 1.56 0.44 0.56 

(3) Ratio=(2)/(1) 0.90 1.24 2.23 

2015 

(1) Quantity from "Water Resource Bulletin" 1.71 0.42 0.52 

(2) Quantity from the Yellow River 1.62 0.42 0.58 

(3) Ratio=(2)/(1) 0.95 0.99 1.13 

2016 

(1) Quantity from "Water Resource Bulletin" 1.42 0.44 0.89 

(2) Quantity from the Yellow River 1.90 0.41 0.57 

(3) Ratio=(2)/(1) 1.34 0.92 0.64 

2017 

(1) Quantity from "Water Resource Bulletin" 2.03 0.28 0.35 

(2) Quantity from the Yellow River 1.63 0.38 0.56 

(3) Ratio=(2)/(1) 0.80 1.37 1.60 

* What is worth noticing is some of the ratios in Table 3-5 are great than 1.0 due to uncertainties in the estimation 

of surface FWA above. The uncertainties were mostly resulted from the relatively lower spatial resolution (the 

minimum: 10 m) of satellite imageries when we estimate streamflow. Fortunately, the ratios greater than 1.0 have 

little influence on the derived total surface FWA in other prediction years because they act only as a bridge (or an 

adjusting coefficient to the real values from "Water Resource Bulletin"). 

 

Fig. 3-25 Surface FWA for the three representative cities of Xi’an (XA), Zhengzhou (ZZ), and Ji’nan (JN). 
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With the surface freshwater available for the three representative cities in Fig. 3-25, ANN 

(Artificial Neural Network) model can be set up based on environmental factors, presented in 

CMIP5 (Coupled Model Intercomparison Project Phase 5) scenarios, influencing the variation 

of surface freshwater. By using the ANN models, future surface FWA in the year 2030 and 2050 

can be predicted with environmental factors in CMIP5 scenarios. Details can be found in 

Chapter 6. 

3.3 Summary 

This chapter firstly two new methods to estimate streamflow respectively for dry (VHR-

AMHG) and wet seasons (transcaled spatial C/M method). The accuracy verification of VHR-

AMHG was performed by comparing it to field measurement data and the global parameters of 

the original AMHG (global–AMHG).The root mean square error (RMSE) calculated from 

VHR-AMHG was 32.15  m3/s lower than the RMSE from original method (global–AMHG) of 

305.65  m3/s, indicating that the VHR-AHRG method yields a significantly higher accuracy for 

streamflow estimation for medium-to-small rivers. The second method, transcaled spatial C/M 

method was developed mainly for flow velocity estimation. Complementally the Riba-zero 

method was developed to estimate river bathymetry at ungauged rivers. The transcaled spatial 

C/M method coupled with the Riba-zero method can be used to retrieve streamflow at ungauged 

rivers. Verification show that the relative root mean square error (rRMSE) and the relative error 

(RE) of the simulated velocity by using the transcaled spatial C/M method in our study area is 

rRMSE: 0.36 (RE: 19.00%) for the whole year, 0.15 (14.56%) in wet seasons and 0.25 (20.88%) 

in dry seasons, suggesting the performance of the transcaled spatial C/M method has higher 

precision in wet seasons. The streamflow estimation at ungauged rivers using transcaled spatial 

C/M plus Riba-zero is better than that of previous studies. 

 Using the two methods coupled with NASA GLDAS runoff dataset, long-termed 

streamflow (1948-2018) was estimated by using satellite imageries for the three representative 

cities (Xi’an, Zhengzhou and Ji’nan). Xi’an and Zhengzhou have almost the same averaged 

streamflow value (~1000  m3/s) from 1948 to 2018, and Jinan has a lower averaged streamflow 

value (~600  m3/s). 

 Based on the long-termed streamflow (1948-2018) and official data from "Water Resource 

Bulletin" of the three cities, total surface freshwater available (SFWA) in the period from 2000 

to 2017 for the three cities was estimated, laying foundation for SFWA prediction in future 2030 

and 2050.  
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Chapter 4 Estimation of underground freshwater available 

Following on the achievement of the first objective in Chapter 3, this chapter, aiming at 

the second objective and designed a new framework for estimating underground freshwater 

available. Meanwhile the data series of GRACE (or named as TWSC: terrestrial water storage 

change) was extended from the last two decades to more than seven decades from 1948. For 

this goal, environmental factors driving the variation of TWSC were firstly determined via 

literature analysis and statistic methods. Secondly, the selected factors were used to verify and 

improve an artificial neural prediction model –LSTM-N (Long short-term memory network) 

wherein the optimized LSTM-N parameters were determined. By using the LSTM-N with 

optimized parameters, the prediction performance of driving factor selected in the four 

scenarios was tested. Finally, using the driving factors which perform the best along with the 

LSTM-N with optimized parameters the data series of GRACE TWSC were extended from the 

period of 2002-2016 to the period of 1948-2016 with which the corresponding underground 

freshwater available (UFWA) were produced to serve for the prediction of UFWA in future 

2030 and 2050 in Chapter 6. 

4.1 Determining factors driving the variation of underground FWA 

(vertical water flux) 

4.1.1 Potential factors driving the variation of underground FWA 

Globally, GRACE observations were often used to assess terrestrial water storage change 

(TWSC), or the sum of all components, including groundwater storage (GWS), soil moisture, 

snow water equivalent (SWE), and canopy water storage (CWS) (Massonnet et al., 1993; 

Ezquerro et al., 2017; Shu et al, 2018; Yin et al., 2020). TWSC is usually expressed as LWE 

(Liquid Water Equivalent) in the GRACE dataset. From previous literatures, all potential 

factors that may influence the temporal and spatial variation of underground FWA, e.g., ET, 

precipitation, irrigation, air temperature, runoff, glacier melting etc. were determined 

meanwhile the spatiotemporal characteristics of TWSC were often validated or downloaded 

against hydrological model simulations and precipitation data (Döll et al., 2014; Cao et al., 

2015; Pellet et al., 2020; Vishwakarma et al., 2021). The rest factors can be accessed through 

GLDAS dataset. Correlation between underground FWA and other factors were analyzed. The 

variation of underground FWA was surrogated by using the terrestrial water storage (TWS), or 

the sum of surface FWA and underground FWA whereby to select potential driving factors for 

underground FWA variation. 

Terrestrial water storage (TWS) variation is crucial for global and basinal hydrological 

cycles and water resources management under climatic changes. As to the whole China, the 

inner-annual variations in TWS exhibited remarkable downward trends with decreased rate of 

0.1 cm/yr (Chen et al., 2017). Spatial patterns of TWS in China can be divided into three distinct 

sub-regions of TWS region with increased (Fig.4-1 (A)), TWS region with decreased (Fig.4-1 

(B)), TWS region with insignificant variation (Fig.4-1 (C)). The TWSC decline in the Hai River 

basin can be largely attributed to GWS depletion, and meanwhile the decrease of consumptive 

agricultural water use alleviated the TWSA reduction rate by 4.1% in the basin. The increase 
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of irrigation consumption accelerated the TWSA depletion trend by 4.9% and 13.4% in the 

Yellow River and Huai River basins, respectively. The correlation coefficients were 0.742-

0.952 between TWSC and the residual of precipitation, ET, flow into the sea, and irrigation 

consumption over the four river basins (Lv et al., 2021). In addition, the human activities (e.g., 

irrigation and inter-basin water diversion) are very important factors influencing regional water-

cycle inclusive of TWSC as the TWSC is an important factor of regional water budget (Lv et 

al., 2017 & 2019). 

 

Fig. 4-1 Spatial distributions of the TWS variation sub-regions: (A) increasing TWS region, (B) decreasing 

TWS region, and (C) the insignificant change region (from Chen et al., 2017) 

Chen et al. (2017) took West, Northeast and South China as examples and studied the 

dominant factors influencing the variation of TWS with GRACE and GLDAS (Global Land 

Data Assimilation System Version 2) data between 1948 to 2015. Results show that the 

Northeast had decreased trends (−0.05 cm/yr) due to climate change and anthropogenic 

activities. Urban expansion is a non-ignorable factor to TWS reduction in Jing-Jin-Ji region (r 

= 0.61); the west had increased from 1948 to 2015 (0.03 cm/yr) due to precipitation increased 

and recharge by glacier melt; the south had insignificant trends and TWS varied with 

precipitation (r = 0.78). As to the dominant factors influencing the variation of TWS, 

precipitation, air temperature and glacier mass loss dominate the TWSC in the west of China 

(Sub-region A); LUCC and human activities (especially, urbanization and population growth) 

dominate the variation of TWS in the Northeast of China (Sub-region B); Sub-region C is one 

of the most densely populated parts of China and the depletion of water storage should not be 

ignored. In addition, the high number of dams influences the hydrological regime. However, 

anthropogenic activities have lower influence on water storage changes in the sub-region C. 

Overall, TWS variation exhibits a high correlation to climate change and land cover and land 

use changes or constructions of dams. TWSC variations in different regions of China depend 

on the certain climate condition and geographical characteristics (land cover change and 

regional development plan). 

The Yellow River basin crosses some regions of Sub-region A and Sub-region B and 

therefore factors may vary with the geographical position. Further analysis (Lin et al., 2019) on 

the GRACE datasets suggests that the groundwater storage had an overall decreasing trend 

(R2=0.57) during the last 14 year, and over the whole basin decreased significantly (p<0.0001, 
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slope changed from −0.0137 cm/month to −0.0684 cm/month) since 2010 (2010–2016) and 

showed stronger fluctuations than the time before (2003–2009). Despite the overall trend, the 

changes were heterogeneous if looking at finer scales: spatially, there was a gradual decline of 

storage from west to east (e.g. the change in December 2016 was −3.6, −9.1 and −25.8 cm for 

the upper, middle and lower reach, respectively); and temporally, the timeseries among the 

reaches were significantly different (p=0.023). Hotspot analysis also indicated the 

heterogeneity in groundwater decline across the basin and through the time. Additionally, it 

showed that human factors (e.g. groundwater consumption) become dominant in determining 

the groundwater change pattern over climatic variations (Lin et al., 2019).  

In addition, the TWS data present an overall downward trend and the variation of TWS, or 

TWSC, is influenced by runoff, or surface streamflow most directly. The reason is that surface 

streamflow usually recharges underground water in wet seasons and is recharged by the latter 

in dry seasons, therefore the variation of surface streamflow has great influence on TWSC. 

Additionally, the main hydrological and meteorological factors influencing TWSC are 

precipitation and temperature. 

The research of (Lv et al., 2019) suggests that, as for the source regions of the Yellow River, 

decline of evaporation and degradation of permafrost had led storage capacity increasing 

significantly and then surface runoff increasing. Moreover, one of the potential factors for the 

TWSC in the whole YRB is precipitation mimus ET (Fig. 4-2) as ET is highly influenced by 

LAI (Fig. 4-3) which was directly influenced by groundwater. Another important influencing 

factor for TWSC is irrigation in the YRB, as shown in Fig. 4-4. 

As to the middle reaches of the Yellow River Basin, TWS had an increasing trend from 

2003 to 2012. The increase of water storage was caused by the decrease in runoff loss in the 

middle reaches of the Yellow River Basin, that the average annual decreasing amount was 2.93 

mm equivalent water depth. There was obvious spatial variation of the water storage change. 

The most obvious increasing of water storage is at Longmen-Sanmenxia section, where the 

average annual increasing amount was 4.59 mm equivalent water depth. The second is at the 

Hekou-Longmen section, where the average annual increasing amount was 3.47 mm equivalent 

water depth. And the last one is at Sanmenxia- Huayuankou section, where the average annual 

increasing amount was 2.71 mm equivalent water depth. 

As to the Loess Plateau, precipitation has a greater influence on the TWSC in the southwest 

and south of Loess Plateau, but the surface temperature plays dominated role in the southeast 

and east. Human activities have a greater impact on TWSC in Shanxi province and the border 

zone of Shaanxi, Shanxi and Henan. The TWS has decreased (increased) more and more 

quickly (slowly) in the Loess Plateau (headwater region). The TWS increase corresponded to 

increased runoff and soil moisture in the headwaters, and the TWS depletion corresponded to 

decreased runoff and groundwater in the Loess Plateau and downstream regions. The increase 

in evapotranspiration (ET) dominated the basin‐averaged TWSC reduction, while the increase 

in ET was highly related to the increases in vegetation cover and irrigation water use. For spatial 

TWSC variations, the value of precipitation minus ET could account for most changes in TWSC, 

except for those in the headwater region and a region near the internally drained area. 

Importantly, the irrigation‐induced TWSC was considerable and varied with different irrigation 
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water sources (i.e., surface water and groundwater). Overall, the impacts of afforestation and 

irrigation on TWS are sufficiently important (Lv et al., 2019).  

 

Fig. 4-2 Correlations between P-ET and TWSC (Lv et al., 2019)     

Fig. 4-2 shows that, in most areas of the YRB P-ET has positive correlation with TWSC, 

except for very small proportion of upstream area in the west. This reveals P-ET is an important 

factor influencing the TWSC in most areas of the YRB. 

 

Fig. 4-3 Correlations between ET and LAI (Lv et al., 2019) 

Fig. 4-3 shows that, in most areas of the YRB ET has positive correlation with LAI, except 

for very small proportion of upstream area in the west and downstream area in the east. This 

reveals ET changes with LAI positively in most areas of the YRB. 
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Fig. 4-4 Irrigation-induced TWSC (Lv et al., 2019) 

Fig. 4-4 shows that, in most areas of the YRB intensive irrigation reduced the TWS. The 

TWS in the north and east decreases the most and decrease a little in the west. In contrary, in 

some areas of the middle reach of the YRB, irrigation resulted in increase of TWS. The reason 

maybe because of the withdraw of surface water from the Yellow River and its tributaries. 

Overall, irrigation is a very important factor influencing the TWSC in most areas of the YRB 

but varies with space. 

All in all, literatures (Lin et al., 2019; Lv et al., 2019; Pellet et al., 2020; Vishwakarma et 

al., 2021) show that potential factors for underground FWA include precipitation, air 

temperature, evaptranspiration, precipitation minus evaptranspiration, human activities or 

groundwater consumption, and surface runoff. In details, the source regions of YRB have 

declined evaporation, degraded permafrost, and increased soil moisture / streamflow which had 

led underground FWA increasing significantly. Differently, the middle and lower reaches of 

YRB have decreased runoff and groundwater leading to underground FWA decreasing.  

4.1.2 Determination of factors driving underground FWA variation 

Based on data series of all potential factors, mainly from GLDAS dataset, I use VIP (Very 

Important Projection) method to refine the factors influencing underground FWA variation 

whereby to lay foundation for GRACE data series extension, i.e. underground FWA. 

(1) Determination of representative periods for underground FWA variation 

With climate change, FWA in different periods has variable driving factors. So, 

respectively selecting representative periods to set up prediction models is helpful for prediction 

precision improvement. 

To determine factors for the different representative periods by using VIP method. Three 

representative periods were determined by using trend analysis plus Mann-Kendall method.  

Of most GRACE solutions in China, the solutions from Jet Propulsion Laboratory (JPL) 
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and the Center for Space Research (CSR) are more reliable than others (Lv et al., 2021) and the 

RMSE of the two solutions in mainland China is respectively 31.3 mm and 13.2 mm (Yao, 

2017). So this study selected the CSR RL06 monthly solutions (with a resolution of 0.25°) as 

the database. GRACE TWS, or underground FWA increased from July 2003 to Nov. 2005, and 

kept a recharge-use balance between Dec. 2015 and Oct. 2006. After the ~1 year balance period, 

TWS decreased first abruptly within a half year (Nov. 2006-Jun. 2007), then slowly in the 

following 6 years (July 2007-Oct. 2013), and finally abruptly within nearly 3 years (Nov. 2013-

May 2016). 

 

Fig. 4-5 Three representative periods in the GRACE TWS data at monthly scale 

Therefore, there are three representative periods of TWS-increasing period (July 2003-Nov. 

2005), TWS-balancing period (Dec. 2005-Oct. 2006), and abruptly TWS-decreasing period 

(Nov. 2013-May 2016). 

To further verify the change-point identification results, I used the Mann-Kendall change 

point identification method to verify them, as shown in Fig. 4-6.  

 

Fig. 4-6 Change point analysis on the GRACE TWS data by using Mann-Kendall change point identification 

method. 

Fig. 4-6 shows that the change point (CP) firstly appeared in 201311.After CP, increased 

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

20
03

01

20
03

05

20
03

10

20
04

02

20
04

06

20
04

10

20
05

02

20
05

06

20
05

10

20
06

02

20
06

06

20
06

10

20
07

02

20
07

06

20
07

10

20
08

02

20
08

06

20
08

10

20
09

02

20
09

06

20
09

10

20
10

02

20
10

06

20
10

10

20
11

03

20
11

07

20
11

11

20
12

03

20
12

07

20
12

12

20
13

05

20
13

11

20
14

04

20
14

09

20
15

02

20
15

06

20
15

12

20
16

05

GRACE_TWS_Mean_accumulated 



71 

 

amount (recharged water amount) was less than decreased amount (water usage amount) and 

therefore lasting decrement in TWS appeared. 

Therefore, three representative periods were selected to further explore the TWS spatial 

heterogeneity and its driving factors and extend the data series of GRACE-TWS.  

⚫ TWS-increasing period (07/2003-11/2005) 

⚫ TWS-balancing period (12/2005-10/2006) 

⚫ TWS abruptly -decreasing period (11/2013-05/2016)  

(2) Determination of driving factors for representative periods 

VIP method was used to determine the driving factors for the three representative periods. 

VIP method is often used to explain the weight of the independent variable in explaining the 

dependent variable, which is usually considered to have important roles in the partial least 

squares discriminant analysis process, suggesting the variables are important when VIP values 

exceed 1.0  (Gao et al., 2018; Lee et al., 2018; Wang et al., 2020). The VIP was calculated with:  

     (1) 

where VIPk is the kth wavelength for a partial least square regression (PLSR) algorithm with 

jth factors, Wjk denotes the loading of the kth wavelength in the jth PLSR factor, SSYj and SSYt 

represent the explained and total sum of squares of target Y (soil property of interest), 

respectively, and K is the total number of wavelengths. The VIP value greater than 1.0 indicates 

that the factor is significant for spatial-temporal variation of underground FWA.  

Based on the GLDAS dataset, the five potential factors from literatures (precipitation, air 

temperature, evapotranspiration, precipitation minus evapotranspiration, and surface runoff) 

(Lin et al., 2019; Lv et al., 2019; Pellet et al., 2020; Vishwakarma et al., 2021) were calculated 

as shown in Table 4-1. Factor indicating human activities or groundwater consumption was not 

calculated because in the GLDAS dataset no variables can be used to calculate the factor. 

Moreover, in the statistical book only annual (not monthly) values are presented and hard to 

match with the monthly variables in GLDAS dataset. In addition, only data in the unit of district 

instead of footprint are presented in the statistical book which are hard to match to the other 

variables in the GLDAS dataset (at footprint scale).  

To make up the mistake missing groundwater abstraction data, I collected other factors 

(transpiration, glacier melting, root zone soil moisture, soil moisture from 0 to 200 cm in depth, 

terrestrial water storage, direct evaporation from baresoil) from GLDAS likely influencing 

groundwater variation to complement the potential factor list, as shown in Table 4-1.  

The ultimate goal of this study is to extend the series of GRACE dataset from 2002-2016 

to 1948-2016. Finding the key driving factors is the primary step. But only finding factors for 

the whole YRB is far from enough. Therefore, this research tries different ways to find factors 

driving the variation of TWS of every spatial classes and even every pixel (0.25°×0.25°) for the 

three representative periods whereby to set up prediction model with a temporal scale of month. 
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For this purpose, I set up other four scenarios to select key driving factors for TWS variation 

and in the next section accordingly use them to predict TWS in the period of 2002-2016 

whereby to verify the precision of prediction model. The four scenarios uses different scale of 

data as input: Scenarios No.1 uses the YRB-averaged environmental factors which are 

separated into three periods; Scenario No.2 uses cluster-averaged factors to replace YRB-

averaged ones with three periods; Scenario No.3 is an improved version of Scenario No.2 where 

all factors were rearranged by using the same principal as the GRACE data used; Scenario No.4 

uses pixel environmental factors to replece YRB- or cluster-avearaged environmental factors 

where the analysis was conducted one month after another from 2002 to 2016 instead of using 

the three periods. The key-factor-driving model with the highest accuracy will finally be 

selected to predict TWS from 1948 to 2016.  

(a) Scenario No. 1: using the YRB-averaged environmental factors to determine key 

driving factors for the three periods (3 sets of key driving factors) 

Scales have great influence on the results of driving factors selection. To begin with, I try 

to get factors driving the variation of TWS at the scale of the whole YRB. In other words, I 

averaged footprint values of a factor in Table 4-1 in the whole basin into one value. E.g., as the 

whole YRB has 1271 pixels or footprints in the GRACE dataset (CSR GRACE/GRACE-FO 

RL06 Mascon Solutions with a spatial resolution of 0.25° or ~120 km), I averaged the 1271 

values of air temperature per month into one value per month and then a series of values of air 

temperature from 07/2003 to 05/2016 was formed. In this way 11 series of values of the 11 

potential factors in Table 4-1 from 07/2003 to 05/2016 along with a series of GRACE TWS 

values from 07/2003 to 05/2016 were inputted into VIP methods to determine driving factors 

at the scale of the whole YRB. The results are listed in Table 4-1.  

 

Table 4-1 Potential factors corresponding to the GLDAS data: VIP value and formula 
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Overall, at the scale of the whole YRB driving factors detected (with VIP value great than 

1.0, from big to small) include air temperature, precipitation, evapotranspiration, and 

transpiration, as shown in Column 2 of Table 4-2. 

Likely, I selected the driving factors at the scale of the whole YRB for the three 

representative periods, as shown in Column 3-5 of Table 4-2. The results show that driving 

factors in the three representative periods differ from those in the whole period from 2002-2017 

except for the last periods of 11/2013-05/2016, or TWS abruptly -decreasing period. In other 

words, TWS abruptly -decreasing period has the same driving factors as the whole period: air 

temperature, precipitation, evapotranspiration, and transpiration. However, the TWS-increasing 

period (07/2003-11/2005) and TWS-balancing period (12/2005-10/2006) have the same driving 

factors (with VIP values great than 1.0 and in the order from big to small) of air temperature, 

glacier melting, soil moisture from 0 to 200 cm in depth, and terrestrial water storage. In other 

words, the YRB in the period from 2002 to 2017 has an overall trend of decreasing. 

 

Table 4-2 driving factors in the whole period from 2002 to 2017 and in the three representative periods 

 

Table 4-2 shows that every one of the three periods has four key driving factors. The key 

driving factors shared by periods 1, 2 and 3 is air temperature the VIP value of which is the 

largest. The driving factors selected for the period 1 and period 2 are the same. According to 

the VIP value from high to low, the four key driving factors are air temperature, glacier melt, 

soil moisture, and Terrestrial Water Storage. The driving factors selected for period 3 have four 

members of air temperature, evapotranspiration, precipitation, transpiration. 

(b) Scenario No. 2: using cluster -averaged environmental factors to determine key 

driving factors for the three periods (9 sets of key driving factors) 

Based on the results in the last section this section lowers the scale of the whole YRB to 

sub-basins of the YRB. In other words, the whole YRB will be divided into several sub-basins 

for this research. To unveil the inner rule driving the variation of TWS in every sub-basin, this 

study takes as sub-basins those classes with 12 factors (11 potential factors and one TWS factor) 

having similar variation trend.  

In detail, averaged values of individual factor and TWS at every pixel (0.25°, ~25 km) of 

the YRB from 2002 to 2017 are calculated. In this way 12 temporal-averaged spatial maps are 

produced. Every spatial map has 1271 pixels with values of an individual factor. Using the 12 

maps as input, the K-mean method was used to cluster the whole YRB into different classes. In 

details, firstly, every one of the environmental factors (Table 4-1) plus lwe within the 163 
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months from 2002 to 2016 are averaged into that for one averaged month. In this way, we get 

12 averaged monthly variable values for every one of the total 1271 pixels in the whole YRB. 

Secondly, the K-means method is used to spatially cluster the 1271 pixels with 12 averaged 

variables into three classes, as shown in Fig. 4-7 (a). Finally, in the same way, 1271 pixels in 

the 3 representative periods (07/2003-11/2005, 12/2005-10/2006, 11/2013-05/2016) are also 

respectively clustered into three classes, as shown in Fig. 4-7 (b,c,d). 

 

Fig. 4-7 Clustering the 1271 pixels of the YRB into three classes for the whole period (2002-2016) (Upper left-

(a)), and for the three representative periods (Upper right-(b), Lower left-(c), and Lower right-(d)). 

Overall, the 1271 pixels in YRB are clustered into three classes with clear boundaries 

which are in the north-central, western and southeast of the basin. The classes for the first and 

second periods are roughly the same. They are scattered, and the boundary is not very clear. 

Based on the classes for the three representative periods in Fig. 4-7, the VIP method is used to 

determine the key driving factors respectively for the three classes in every one of the three 

periods, as shown in Table 4-3. 

In Table 4-3, the VIP value of a certain impact factor exceeding 1 indicates that the factor 

has a significant impact on lwe. The larger the proportion of VIP>1 in the 9 groups within one 

column, the greater the importance of the factor. To avoid missing important factors, a screening 

scheme of fuzzy membership degree is introduced, with (1±0.1) as the fuzzy standard. The 

factor with its value greater than the standard can be selected as the key driving factor of the 

period, as shown in red bold letters in rows 5, 9, and 13 in Table 4-3. Generally, as can be seen 

from Table 4-3, there are 7 influencing factors with a larger proportion of VIP>1 in the 9 groups, 

including glacier melt (8/9 of the VIP values are greater than 1): air temperature (8/9), and 

evaporation2 (Direct Evaporation from Bare Soil) (5/9), precipitation (4/9), soil moisture2 (or 

soil moisture from 0 to 200 cm in depth)(3/9), runoff (3/9), precipitation minus ET (3/9), which 

indicates that the 7 factors are of higher importance. 

  

(c) 

(a) (b) 

(d) 
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Table 4-3 VIP values of the 11 environmental factors for the three classes in the three representative periods 

respectively. VIP>1.0 (in bold font) means the corresponding factor has great influence on LWE. 
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1 

0 0.63 1.14 0.63 1.15 1.31 0.57 1.49 0.44 1.17 1.16 0.64 

1 0.55 1.83 0.81 1.50 0.13 0.23 1.72 0.68 0.60 0.60 0.50 

2 0.95 1.01 0.91 0.54 0.74 1.41 1.11 1.23 0.83 0.83 1.15 

Mean 0.71 1.33 0.78 1.06 0.73 0.74 1.44 0.78 0.87 0.86 0.76 

2 

0 0.44 1.00 0.53 0.80 1.40 0.79 1.40 1.17 0.95 0.94 1.09 

1 0.71 1.65 0.57 1.08 0.93 1.09 1.71 0.34 0.55 0.55 0.75 

2 0.98 1.31 0.88 0.71 0.93 1.09 1.68 0.74 0.82 0.82 0.54 

Mean 0.71 1.32 0.66 0.86 1.09 0.99 1.59 0.75 0.77 0.77 0.79 

3 

0 1.16 0.79 1.05 1.21 1.33 0.84 1.33 0.35 1.00 0.99 0.34 

1 0.26 1.42 0.37 1.44 0.27 0.28 2.04 1.22 0.28 0.28 0.85 

2 1.14 1.02 1.08 0.69 0.86 1.58 0.96 0.79 0.79 0.79 1.02 

Mean 0.85 1.08 0.84 1.11 0.82 0.90 1.44 0.79 0.69 0.69 0.74 

(c) Scenario No. 3 — improvement of Scenario 2: using the same principal of GRACE to 

rearrange GLDAS dataset (9 sets of key driving factors) 

This section continues to select key driving factors with VIP method by using similar steps 

in the Scenario No.2. Actually, this section is an improvement of the Scenario No.2. The idea 

of improvement comes from the difference between GRACE data and GLDAS data. The 

GRACE satellite dataset reflects the abnormality of LWE based on the reference value (the 

average value from 2004 to 2009). In other words, the GRACE observations users downloaded 

are the original observations subtracted by the reference value year by year. However, 

environmental factors from GLDAS dataset are the original values instead of abnormality. To 

keep consistent with the GRACE LWE data we used, the GLDAS data must be rearranged to 

get abnormalities. Therefore, GLDAS data are processed with the principles of GRACE data. 

In details, environmental factors in GLDAS dataset are firstly subtracted by the reference values 

(average values in the period of 2004-2009) whereby to obtain the abnormal values of 

environmental factors. 

After obtaining the abnormal values of environmental factors in the GLDAS dataset, the 

1271 pixels of the whole YRB are re-clustered by using the GLDAS abnormality data stage by 

stage in the three representative periods (as determined in Fig. 4-5). Clustering results are 

shown in Fig. 4-8 ~ Fig. 4-10. 
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Fig. 4-8 Clustering in the first representative period of 07/2003-11/2005 

Fig. 4-8 shows that, after having been reclustered the first stage has similar clusters with 

Fig. 4-7(b) and as a whole there are no clear boundaries among the three clusters having a 

direction of north-south. Most clusters lie in the middle reach of the Yellow River.   

 
Fig. 4-9 Clustering in the second representative period of 12/2005-10/2006 

Fig. 4-9 shows that, after having been reclustered the second stage has similar clusters with 

Fig. 4-7(c) and the three clusters have a direction of north-south. The three clusters have almost 

the same number of pixels.  
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Fig. 4-10 Clustering in the third representative period of 11/2013-05/2016 

Fig. 4-10 shows that, after having been reclustered the third stage has different clusters 

with Fig. 4-7(d). On the whole there are no clear boundaries among the three clusters with an 

evident direction of north-south. The pixel number of the three clusters are almost equal.  

Overall, it can be seen from Fig. 4-8 ~ Fig. 4-10 that the three classes in the three periods 

are relatively similar in overall distribution, with little difference. Basically, three classes are 

distributed from north to south, and the main differences of the three figures lie in the west, east 

and the middle of YRB. 

Comparison of the clustering results in Figs. 4-8 ~ Fig. 4-10 with those of Scenario 2 (Figs. 

4-7 (b)~(d)) shows that the rearrangement of GLDAS dataset has little impact on the first and 

second period but has great impact on the third period (11/2013-05/2016). Comparison of Fig. 

4-10 with Fig. 4-7 (d) shows that regular pattern of the three classes in Fig. 4-7 (d) was changed 

into spatially irregular pattern. 

Based on the new classes in Fig. 4-10, the key driving factors are further screened by using 

the VIP method, as shown in Table 4-4. There are 10 factors with a larger proportion of VIP>1 

in the 9 groups, including transpiration (8/9 of the VIP values are greater than 1), 

evapotranspiration (7/9), air temperature (7/9), moisture1 (or root zone soil moisture) (6/9), 

terrestrial water storage (6/9), soil moisture2 (or soil moisture from 0 to 200 cm in depth) (5/9), 

precipitation (5/9), evaporation2 (or direct evaporation from bare soil)(3/9), glacier melt (2/9), 

runoff (1/9) indicating the 10 factors are of higher importance. 
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Table 4-4 VIP values of the 11 environmental factors for the three classes in the three representative periods 

respectively. VIP>1.0 (in bold font) means the corresponding factor has great influence on LWE. 

R
ep

resen
ta

tiv
e 

p
erio

d
 

C
la

ss 

E
v

a
p

o
tra

n
sp

ira
tio

n
 

G
la

cier m
elt 

T
ra

n
sp

ira
tio

n
 

E
v

a
p

o
ra

tio
n

 2
 

S
o

il m
o

istu
re 2

 

P
rec

ip
ita

tio
n

 

A
ir tem

p
era

tu
re 

R
u

n
o

ff 

S
o

il m
o

istu
re1

 

T
er

restr
ia

l 

w
a

ter sto
ra

g
e 

P
rec

ip
ita

tio
n

 

m
in

u
s E

T
 

1 

0 1.05 0.64 1.09 0.65 1.33 0.84 1.03 0.52 1.39 1.39 0.46 

1 0.97 0.51 0.95 0.81 1.37 0.94 0.90 0.76 1.34 1.43 0.48 

2 0.96 0.49 1.05 0.70 1.36 0.76 0.95 0.86 1.41 1.41 0.45 

2 

0 1.11 0.81 1.14 1.00 1.15 1.03 1.12 0.70 1.11 1.10 0.48 

1 1.28 0.89 1.27 1.21 0.74 1.21 1.30 0.88 0.47 0.55 0.69 

2 1.09 0.72 1.08 0.99 1.01 1.05 1.13 1.02 1.00 1.01 0.83 

3 

0 1.43 0.55 1.32 1.39 0.74 1.36 1.39 0.08 0.44 0.48 0.47 

1 1.16 1.60 1.07 0.98 0.66 1.14 1.10 0.66 0.78 0.82 0.59 

2 1.06 1.50 1.02 0.95 0.81 0.96 1.02 0.61 1.11 1.11 0.48 

(d) Scenario No. 4 —using pixel-scaled all environment factors to determine key driving 

factors without clustering and without using the three-representative period (1271 sets 

of key driving factors) 

Scenarios No. 1-3 are all using averaged environmental factors which dismissed many 

details at the pixel scale. In other words, the heterogeneity of the relationship between 

environmental factors and the LWE value at the pixel scale were neglected, which inevitably 

induce uncertainties on the results. To avoid this, this scenario begins at the pixel scale, i.e., 

every pixel has all its environmental factors as the last key driving factors to force prediction 

model (LSTM-N model) to work. Thus, there will produce 1271 sets of key driving factors. 

However, the workload of model prediction will increase dramatically (consuming much more 

working time) because over the whole YRB 1271 pixel-based LSTM-N model will be set up 

for verification and prediction in the current Scenario No. 4 while at most 9 LSTM-N model 

need be set up in Scenarios No. 1-3.  

To ensure the objectivity of the screening results, the screening results were further verified 

against four scenarios. The one with the highest prediction accuracy will be used to extend LWE 

from 1948 to 2016, nearly 70 years. 

4.1.3 Verification and improvement of prediction model with four-scenario-selected key 

driving factors 

This chapter will use the key driving factors determined in the four scenarios to set up 

models for LWE prediction in the period of 2002-2017 whereby to verify the precision of 

prediction model. There are many prediction models can be selected, such as back propagation 

neural network (BP network), recurrent neural network (RNN), Feedback neural network, 

multi-layer perception, linear artificial neural network, radial basis function neural network 

(RBF) and so on (Broomhead and Lowe, 1988; Gao and Sun, 2000; Kong et al., 2014; 

Rukonuzzaman et al., 2001; Sharmeela et al., 2003; Wang et al., 2014). Among them, RNN 
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have been widely used in the research fields involving sequence data, such as text, audio, and 

video. The typical feature of the RNN architecture is a cyclic connection, which enables the 

RNN to have the ability to update the current state based on the past state and current input data. 

However, when the input gap is large, RNN composed of sigma cells or tanh cells cannot learn 

the relevant information of the input data. To deal with "long-term dependence", (Hochreiter 

and Schmidhuber, 1997) proposed the method of Long short-term memory (LSTM-N). By 

introducing the gate function into the unit structure, LSTM-N can handle the problem of long-

term dependence well. Generally, the performance of LSTM-N is much better than RNN. 

LSTM-N is a very popular RNN in recent years (Xie et al., 2019; Yu et al., 2019a; Yu et 

al., 2019b). Deep LSTM-N is one of the most important deep learning models. By using gate 

cells, LSTM-N avoids the problem of gradient degradation. Deep LSTM-N has been widely 

used in many fields, especially in time series modeling, including speech recognition, natural 

language processing and sequence prediction. Simplified LSTM-N is very effective for 

modeling time series. In addition to time series modeling, LSTM-N can also be applied to 

modeling nonlinear systems (Yu et al., 2019a; Yu et al., 2019b). This algorithm could avoid the 

interference of the redundant information in the output of the bottom layer to the effective 

information in the upper layer. In the term of speech-based emotion recognition task, the 

weighting on the time dimension reflects the difference of emotion saturation among periods, 

while that on the feature dimension reflects the distinguishability of different features (Xie et 

al., 2019). 

This section uses the LSTM-N neural network model to carry out the verification work. 

The specific prediction processes have two steps. Firstly, data preparation: reading GRACE 

data containing terrestrial water storage and GLDAS data containing all environmental factors. 

Secondly, according to the VIP results (Table 4-2,4-3,4-4,4-5), the key driving factors of the 

corresponding three periods of 2002-2016 selected from the GLDAS dataset (acting as the X 

variable of LSTM-N) and the corresponding GRACE LWE (acting as the Y variable of LSTM-

N) are input into the model for training the LSTM-N model. Then the trained LSTM-N model 

is used to predict the LWE of the unknown month and then calculate the statistical error 

according to the GRACE LWE observations. 

To display the effectiveness of the key driving factors, we randomly selected three pixels 

in the upper, middle, and lower reaches of the Yellow River basin to verify the driving factors 

in every scenario. To begin with, LSTM-N model was set up inclusive of analysis on parameter-

sensitivity and the determination of optimized value of parameters. 

(1) LSTM-N model set up 

(a) Analysis on parameter-sensitivity 
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Fig. 4-11 Effect of function selection on prediction accuracy 
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the LSTM-N model. The optimized values of Unit number and training epoch, as well as the 

optimized function usually leads to the highest R2, NSE yet lowest RMSE. 

⚫ Unit 

The influence of the parameter Unit on the accuracy indices (RMSE, NSE, and R2) is 

shown in Fig. 4-11.It can be seen from the RMSE in Fig. 4-11 that when the Unit number is 

between 0 and 500, the RMSE is between 0.14 and 0.29, and the relationship curve between 

the units and the RMSE is basically level, which shows that the Unit number has little effect on 

the RMSE. NSE in Fig. 4-11 shows that when the Unit number is between 0 and 500, the NSE 

is between -1.6 and -0.34, and the relationship curve between Unit number and NSE is basically 

level, which shows that Unit number has little effect on NSE. R2 in Fig. 4-11 shows that when 

the Unit number is between 0 and 500, the value of R2 is roughly between 0.1 and 0.42. The 

relationship curve between units and R2 rises slightly and then becomes gentle showing the 

Unit number has little effect on the accuracy of LSTM-N model. Overall, the model parameter 

Unit number is not sensitive. 

⚫ ActivationFunction 

In the LSTM-N model, there are three widely used functions: Sigmoid, Relu, and 

Leakyrelu. The influence of the three functions on the accuracy indices (RMSE, NSE, and R2) 

is shown in Fig. 4-12. 

It can be seen from the RMSE in Fig. 4-12 that the range of influence of different activation 

functions on NSE is (0.15, 0.18). When the activation function is set to Sigmoid, the RMSE is 

0.15 cm yet when the activation function is set to Leakyrelu, the RMSE is 0.18 cm, which 

shows that the Sigmoid function performs the best. NSE in Fig. 4-12 shows that the range of 

influence of different activation functions on NSE is (-0.22, 0.31). When the activation function 

is set to Sigmoid, the NSE is 0.31 as when the activation function is set to Leakyrelu, the NSE 

is -0.22, showing the Sigmoid function performs the best. R2 in Fig. 4-12 shows that the range 

of influence of different activation functions on R2 is (0.22, 0.42). When the activation function 

is set to Sigmoid, the R2 is 0.42 but when the activation function is set to Leakyrelu, the R2 is 

0.22. All in all, the Sigmoid function performs the best.  

⚫ Training epoch  

The influence of the parameter training epoch on the accuracy indices (RMSE, NSE, and 

R2) is shown in Fig. 4-13. 

It can be seen from the RMSE in Fig. 4-13 that when training epoch loops in the range of 

1-800, the value of RMSE is 0.007-0.166. There produces a large fluctuation when training 

epoch changes showing training epoch has a great influence on RMSE. NSE in Fig. 4-13 shows 

that when training epoch loops in the range of 1-800, the value of NSE is 0.154-0.999 showing 

training epoch has a great influence on NSE. R2 in Fig. 4-13 shows that when training epoch 

loops in the range of 1-800, the value of R2 is 0.292-0.997. When training epoch reaches 500 

times, R2 is 0.988, the curve tends to be steady. The above analysis shows that showing training 

epoch has a greater impact on the LSTM-N model prediction accuracy.  
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Fig. 4-12 Effect of function selection on prediction accuracy 
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Fig. 4-13 Effect of function selection on prediction accuracy 
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the optimized value for “Unit” (Fig. 4-11). 

The optimized activation function is “Sigmoid” function as among the three functions of 

Sigmoid, Relu and Leakyrelu, the Sigmoid function has the maximum NSE and R2 yet 

minimum RMSE (Fig. 4-12).  

The optimized training epoch is 650. The parameter of “training epoch” has remarkable 

influence on all the three indices of RMSE, NSE, and R2 (Fig. 4-13). When the training epoch 

increases, RMSE decrease yet NSE and R2 increase remarkably. The RMSE decreases to its 

minimum value, yet NSE and R2 increase to their peak values when the training epoch gets 

value of 650.  

(2) verification of scenario prediction accuracy 

This section uses the LSTM-N model set up in the above section to predict LWE in the 

period from 2002 to 2017 based on the sets of key driving factors determined in Scenarios 1-4. 

Then GRACE LWE observations in the period from 2002 to 2017 were coupled to calculate 

the accuracy indices inclusive of RMSE and R2 whereby to verify the accuracy of every 

scenario-based LSTM-N models. To make the results objective and universe, verification was 

made respectively in the upper, middle, and lower reach of the YRB. 

(a) Scenarios No. 1 

The screening of key driving factors in Scenario No. 1 is based on the whole YRB. 

According to the optimal parameters of LSTM-N (Unit”: 460, activation function: “sigmoid”, 

and training epoch: 650) in the above-discussed, a total of 3 LSTM-N models (with optimized 

parameters) are established in the three representative periods in this section. Three models 

were used to predict the upper, middle, and downstream LWE from 2002 to 2016, verified by 

using the GRACE observed LWE values, as shown in Fig. 4-14. 

Fig. 4-14 shows that the Scenario-1-based LSTM-N model has higher R2 in the upper 

(R2>0.6) yet lower in the middle and lower reaches (R2<0.5). Contrary for RMSE, the upper 

reach has a RMSE of 0.66 cm yet the middle and lower both have their RMSE higher than 1.0 

cm. The results imply that prediction accuracy in the upper reach is higher yet in the middle 

and lower reaches is lower. 

Fig. 4-15 shows that the Scenario-2-based LSTM-N model performs poor all in the upper, 

middle and lower reaches of the YRB due to the extraordinary low R2 (<0.1) and much higher 

RSME (>1cm). The maximum R2 of the Scenario-2-based LSTM-N model in the upper, middle 

and low reaches of the YRB is 0.06 as the minimum is 0.0002. The maximum RMSE is 32.23 

cm and the minimum is 3.69 cm. The very low R2 (<0.1) and very high RMSE (>1cm) suggest 

poor performance of the model in the whole YRB. 

 



85 

 

U
p

p
er

 r
ea

ch
 

 

M
id

d
le

 r
ea

ch
 

 

L
o

w
er

 r
ea

ch
 

 
Fig. 4-14 LSTM-N prediction in upper, middle and lower reaches of the YRB by using the set of driving factors 

determined in Scenario No.1. Pred: prediction; obs: observation. 
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 (b) Scenarios No.2 
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Fig. 4-15 LSTM-N prediction in upper, middle and lower reaches of the YRB by using the set of driving factors 

determined in Scenario No.2. Pred: prediction; obs: observation. 
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 (c) Scenarios No. 3 
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Fig. 4-16 LSTM-N prediction in upper, middle and lower reaches of the YRB by using the set of driving factors 

determined in Scenario No.3. Pred: prediction; obs: observation. 
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higher RSME (>1cm), as shown in Fig. 4-16. The maximum R2 of the Scenario-3-based LSTM-

N model in the upper, middle and low reaches of the YRB is 0.12 as the minimum is 0.0012. 

The maximum RMSE is 34.29 cm and the minimum is 1.71 cm. Although the Scenario-3-based 

LSTM-N model performs better than the Scenario-2-based one, the low R2 (<0.2) and very high 

RMSE (>1cm) suggest poor performance. 

(d) Scenarios No. 4 
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Fig. 4-17 LSTM-N prediction in upper, middle and lower reaches of the YRB by using the set of driving factors 

determined in Scenario No.4. Pred: prediction; obs: observation. 

In the above Scenarios 1-3, we make model predictions based on the key driving factors 

y = 1.0022x - 0.0119

R2 = 0.9995

RMSE = 0.0272

-3

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5 6

L
w

e 
p
re

d
(c

m
)

Lwe obs(cm)

y = 0.8712x + 0.4191

R2 = 0.8136

RMSE = 3.7640

-25

-20

-15

-10

-5

0

5

10

15

20

25

-30 -20 -10 0 10 20

L
w

e 
p
re

d
(c

m
)

Lwe obs(cm)

y = 1.013x + 0.1094

R2 = 0.9991

RMSE = 0.2525

-30
-25
-20
-15
-10
-5
0
5

10
15
20

-30 -25 -20 -15 -10 -5 0 5 10 15

L
w

e 
p
re

d
(c

m
)

Lwe obs(cm)



89 

 

obtained through VIP screening. Scenario No. 4 does not select but use all environmental 

factors as the final key driving factors for every pixel. Therefore, this section adopts the 

principle of point-by-point modeling. That is to say, at one point all environmental factors and 

all LWE observations are used inputted into the optimized LSTM-N model to predict and verify 

without spatially clustering and temporally period-division. The predicted and GRACE-

observed LWE values in the upper, middle and lower reaches are shown in Fig. 4-17. 

Greatly differently from the above three scenarios-based model, the Scenario-4-based 

LSTM-N model has the highest R2 in the upper (R2>0.9), middle (R2>0.8) and lower reaches 

(R2>0.9). As to the RMSE, the upper and lower reaches have RMSEs both lower than 1.0 cm. 

The RMSE for the middle is relatively lower (RMSE=3.76 cm) but still smaller than 5 cm, as 

shown in Fig. 4-17. The results imply that prediction accuracy in all the three reaches is high. 

In other words, the Scenario-4-based LSTM-N model performs satisfactory in all the whole 

YRB. Therefore, the Scenario-4-based LSTM-N model will be employed to extend LWE data, 

or underground FWA from 1948 to 2002 when the GRACE LWE monitoring is missed. 

4.2 Extension of data series of underground FWA 

 

 

Fig. 4-18 Predicted LWE (TWSC) from Jan. 1948 to Dec. 2001 (Upper) and the accuracy of prediction model 

(Lower) in the upper reach of the YRB. 
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With the optimized parameter values above, 1271 Scenario-4-based LSTM-N models were 

firstly set up one pixel after another in the whole YRB. Then underground FWA, or LWE values 

in the period of Jan. 1948-Dec.2001 were predicted by using all the environmental factors 

(Scenario 4). Fig.4-18~20 display the results respectively in the upper, middle and lower 

reaches of the YRB. 

Fig. 4-18 (upper) shows the reconstructed TWSC from 1948 in the upper reach which 

fluctuates between -1.5 cm and 1.0 cm. Some peaks (> 1.0 cm) occur in the periods of 1989-

1991 and 1999-2000. Most TWSC values are greater than 0 yet the magnitude of the 

reconstructed TWSC is small. The lower figure shows the uncertainties in the training with a 

R2 of 0.9995 and a RMSE of 0.03 cm which reveals a very high accuracy.  

 

 

Fig. 4-19 Predicted LWE (TWSC) from Jan. 1948 to Dec. 2001 (Upper) and the accuracy of prediction model 

(Lower) in the middle reach of the YRB. 

Fig. 4-19 (upper) shows the reconstructed TWSC from 1948 in the middle reach which 

fluctuates between -20 cm and 5 cm. Some peaks (> 10 cm) occur in the periods of 1959-1974 

and some vallies occur in 1948-1953. The magnitude of the reconstructed TWSC is big. The 

lower figure -- uncertainties in the training has a R2 of 0.81 and a RMSE of 3.76 cm which 

reveals a high accuracy though it lower than in the upper reach.  
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Fig. 4-20 Predicted LWE (TWSC) from Jan. 1948 to Dec. 2001 (Upper) and the accuracy of prediction model 

(Lower) in the lower reach of the YRB. 

Fig. 4-20 (upper) shows the reconstructed TWSC from 1948 in the lower reach which 

fluctuates between -20 cm and 5 cm. Some peaks (> 5.0 cm) occur in the periods of 1951, 1957, 

and 1961-1964 while two very low values occur in 1968, 1990, and 1992. Most TWSC values 

are less than 0 yet the magnitude of is big. The lower figure shows the uncertainties in the 

training with a R2 of 0.9991 and a RMSE of 0.25 cm which reveals a very high accuracy like 

in the upper reach.  

With the predicted TWSC in Figs. 4-18~20 and taking the underground water available in 

the date corresponding to the TWSC (from “Water Resource Bulletin of Xi’an (2013-2017)”, 

“Water Resource Bulletin of Zhengzhou (2013-2017)”, and “Water Resource Bulletin of Ji’nan 

(2013-2017)”) as basis, the underground water available at the base period (i.e., the GRACE-

data-base years (2004-2009)) with which the underground freshwater avialble (FWA) from 

1948 to 2016, or the sum of underground water available at the base period and the TWSC for 

any date of 1948 through 2016, can be calculated, as shown in Fig. 4-21. 

-30

-25

-20

-15

-10

-5

0

5

10

15
1
94

80
1

1
94

90
6

1
95

01
1

1
95

20
4

1
95

30
9

1
95

50
2

1
95

60
7

1
95

71
2

1
95

90
5

1
96

01
0

1
96

20
3

1
96

30
8

1
96

50
1

1
96

60
6

1
96

71
1

1
96

90
4

1
97

00
9

1
97

20
2

1
97

30
7

1
97

41
2

1
97

60
5

1
97

71
0

1
97

90
3

1
98

00
8

1
98

20
1

1
98

30
6

1
98

41
1

1
98

60
4

1
98

70
9

1
98

90
2

1
99

00
7

1
99

11
2

1
99

30
5

1
99

41
0

1
99

60
3

1
99

70
8

1
99

90
1

2
00

00
6

2
00

11
1

TWSC-pred(cm)

y = 1.013x + 0.1094

R2 = 0.9991

RMSE = 0.2525

-30

-25

-20

-15

-10

-5

0

5

10

15

20

-30 -25 -20 -15 -10 -5 0 5 10 15

T
W

S
C

 p
re

d
(c

m
)

TWSC obs(cm)



92 

 

 

Fig. 4-21 Predicted underground FWA for the three representative cities from 1948 to 2016  

Fig. 4-21 shows that the underground FWA from 1948 to 2016 fluctuates inter-annually 

with Xi’an (blue line) having the highest average of 1.92 billion  m3 and Zhengzhou (orange 

line) having the lowest average of 0.46 billion  m3. We validated them in the years (after the 

year 2002) when the bulletin of water resources is available but for the historical predicted 

values (e.g., before the year 2000) we did not validate because of the lack of data. What we did 

is to validate our model during 2002-2016 and use the validated model to predict the historical 

values. 

4.3 Summary 

This chapter estimated underground freshwater available (FWA) from 1948 to 2016 

wherein the data series of GRACE TWSC (terrestrial water storage change) was extended from 

the last two decades to more than seven decades from 1948.  

To begin with, environmental factors driving the variation of TWSC were determined via 

literature analysis and four scenarios. VIP method was used to screen out key driving factors 

with VIP>1.0 means great influence on TWSC. For the Scenario 1, the selected key driving 

factors include 7 (air temperature, glacier melt, soil moisture, terrestrial water storage, 

evapotranspiration, precipitation, transpiration) but varies in different periods; as to the 

Scenario 2, there are 7 factors including glacier melt, air temperature, direct evaporation from 

bare soil, precipitation, soil moisture from 0 to 200 cm in depth, runoff, precipitation minus ET 

which are of higher importance; as for Scenario 3, there are 10 factors including transpiration, 

evapotranspiration, air temperature, root zone soil moisture, terrestrial water storage, soil 

moisture from 0 to 200 cm in depth, precipitation, direct evaporation from bare soil, glacier 

melt, runoff which are of higher importance; for the Scenario 4, all the 11 environmental factors 

were selected.  

Then, the selected factors in the four scenarios were used to verify and improve an artificial 

neural prediction model –LSTM-N (Long short-term memory network) wherein the optimized 

LSTM-N parameters were determined. For the problem of GRACE TWSC prediction, the 

optimized parameter “Unit” is 460, activation function is “Sigmoid” function, training epoch is 

650 for the LSTM-N. Using the LSTM-N with the optimized parameters, the prediction 

performance of driving factor selected in the four scenarios was tested. Results show that the 

Scenario-4-based LSTM-N model has the highest R2 (>0.8) in all the upper, middle and lower 

reaches of the YRB; all values of RMSE in the upper, middle and lower reaches are all smaller 

than 5 cm. Comparison of prediction value with GRACE observation shows that, LSTM-N 
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model in upper reach areas has the highest accuracy with a RMSE less than 0.1 cm, while in 

the middle reach it has a relatively lower accuracy with a RMSE less than 5.0 cm.  

All these results imply that the Scenario-4-based LSTM-N model performs satisfactory in 

all the whole YRB, which was then employed to extend GRACE TWSC (or LWE) data series 

from 1948 to 2002 when the GRACE LWE monitoring is missed. Based on the long series of 

GRACE LWE data the corresponding underground freshwater available (FWA) were produced, 

with which the underground freshwater avialble (FWA) from 1948 to 2016 was calculated with 

Xi’an having the highest average of 1.92 billion  m3 and Zhengzhou (orange line) having the 

lowest average of 0.46 billion  m3. All these results can well serve for the prediction of 

underground FWA in future 2030 and 2050 in Chapter 6. 
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Chapter 5 Calculation of water consumption 

Aiming at the third specific objective this chapter calculated the water consumption of 

three-sectors of household, industry and ecosystem. Household water consumption includes 

those in urban areas and rural areas. Industrial water consumption consists of water 

consumption in sectors making products for use in national development and routine daily life. 

Ecosystem water consumption includes evapotranspiration from urban green lands, from bare 

soil and from croplands. All these calculations lay solid basis for water consumption analysis 

in future 2030 and 2050 in Chapter 6. 

In addition, water withdrawn consists of those from surface waters (river, lake, reservoir 

etc.), from underground and from other sources (sewage treated water, collected rainfall etc.). 

The water withdrawn from rivers and consumed by sectors is shown in Table. 5-1 taking the 

year 2016 as an example.  

Table 5-1 Constitution of water withdrawn and consumed in the three cities in 2016 (data source: Water 

Resources Bulletin of Xi’an, Zhengzhou and Ji’nan) 
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 Table 5-1 shows that the three cities have similar structure of water withdrawn. Water from 

surface waters occupies 30-50% as that from underground 40-60%. From upstream (Xi’an) to 

downstream (Ji’nan) the percentages of surface water gradually lower (from 48.52% to 36.03%) 

but those of underground water increase slowly (from 44.43% to 58.96%). Contrary to water 

withdrawn, water consumed by sectors of household, industry and ecosystem varies but has no 

clear trend from upstream to downstream. In all the three cities, the percent of water consumed 

by industry is the highest (41.63%-73.94%) and that by ecosystem is the lowest (10.73%-

21.83%) which suggests that most water resources in the YRB are consumed by industry.  

5.1 Estimation of water quantity sustaining household 

5.1.1 Population change in the study area and representative cities 

This section uses LandScan global population data to analyze the change in representative 

cities of Xi’an, Zhengzhou, and Jinan, and uses local statistical data to verify them. The 

correlation between the statistical data and Landscan data is about 0.8, e.g., we collected the 

statistical pop data of zhengzhou from 2001 to 2015 and compared the data with those from 

landscan as shown in Fig. 5-1 (a). As Landscan has longer time series of pop data, we selected 

landscan pop for this study. To keep consistent with GRACE TWS dataset, population dataset 

of 2003 through 2016 in the study area were used, as shown in the following Fig. 5-1 (b). 

Fig. 5-1 shows that there are abrupt-increased points from 2011 to 2012 in the three cities. 

The essential reason is that with the development of rurual areas in the YRB, the agricultural 

activities need less and less labourers and therefore the surplus labourers in rurual areas flow 

into urban areas in big cities, results of which is the population increase in urban areas (Yang 

et al., 2012). To revegetate degraded ecosystems, the semi-arid Loess Plateau in China started 

the ‘Grain to Green’ large-scale revegetation programme since 1999 (Feng et al., 2016). This 

to some extent resulted in fewer crop land and therefore much more surplus labourers flowing 

into urban areas. In other words, the abrupt increase of population from 2011 to 2012 in the 

three cities is the result of rurual areas development in the YRB and large-scale revegetation 

programme since 1999. 

5.1.2 Assessment of water quantity sustaining household for representative cities 

 We use the formula Pop*(water use per person) to estimate water quantity sustaining 

household for the three representative cities, as shown in Fig. 5-2. 

Fig. 5-2 shows slightly increasing trend in water quantity sustaining household for the 

three representative cities along with the increase of population (Fig. 5-1). What is worthing 

noticing is that the water consumption for household takes on abrupt increase from the year 

2011 to 2012 due to the change in the population (Fig.33) in the corresponding period. 

Generally, Xi’an has the highest amount of water consumption for household as Ji’nan has the 

lowest one. Compared Fig. 5-2 and Fig. 5-1 shows the water consumption for household is 

essentially affected by the population.  
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Fig. 5-1 Population trend in the three cities. 

At the same time, the variable water use per person also affects the change of water 

consumption for household. Polcies for water saving decreases the water quantity, e.g., 2004 

and after 2010 in Zhengzhou, and after 2014 in the rest cities, as shown in Fig. 5-2. 

5.2 Estimation of water quantity for industry 

5.2.1 Industrial Gross Domestic Product (GDP) in representative cities 

 From local statistic book in the three representative cities, industrial GDP can be obtained. 

This chapter is to analyze the temporal change in the three cities. Industrial GDP in 2003 throuth 

2016 was plotted in Fig. 5-3. 
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Fig. 5-2 Water quantity sustaining household for the three representative cities 

 

Fig. 5-3 Industrial GDP for the three representative cities 

 Fig. 5-3 shows a generally increase trend for the three cities. Especially, Zhengzhou has 

the higest as Xi’an has the lowest increase velocity in this period. The GDP of Zhengzhou was 

multiplicated by 8 in 16 years whereas in the same period the increase GDP of Xian and Jinan 

is only by 3. The reason is that the new economic zone of Zhengzhou was established in the 

year 2009 which was given preferential policies on tax by the local government. The new 

economic zone attracted a lot of manufactural industries as well as great amount of population 

(Li and Xu, 2015). The manufactural industries created precedentedly high GDP which made 

the GDP of Zhengzhou increased by 8 times in 16 years. 

5.2.2 Estimation of water quantity for industry in representative cities 

 Using Eq. 5-1 to estimate water quantity for industry for the three representative cities. 
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Water consumption per GDP was shown in Fig. 5-4 which continuely decreasing in the period 

of 2003 through 2016. Meanwhile, it has the reverse order compared with GDP in the three 

cities (Fig. 5-3), i.e., Zhengzhou has the lowest while Xi’an has the highest one (Fig. 5-4). The 

revserse orders of GDP and water consumption per GDP resulted in fluctuated water quantity 

for industry, as shown in Fig. 5-5.  

Water quantity for industry= GDP * (water consumption per GDP)    (5-1) 

 

Fig. 5-4 Water use per industrial GDP  

 

Fig. 5-5 Industrial water consumption for the three representative cities 

  Zhengzhou had a fabulous increase of industrial GDP since the establishment of the 
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new economic zone in  2009. But with the gradually decrese of water use per GDP (Fig. 5-4) 

the water use efficiency in Zhengzhou is higher and higher. In other words, the water is 

exploited better and better because the adoption of much more new water-saving, reusing, and 

treating techniques. 

Fig. 5-5 shows fluctuated processes of industrial water consumption for the three 

representative cities due to the reversed order of GDP and water consumption per GDP. 

Generally, the three cities have almost the same process and quantity of industrial water 

consumption fluctuated around 1.6 billlion  m3. On average, Zhengzhou has the higest (1.73 

billlion  m3) while Ji’nan has the lowest one (1.66 billlion  m3). Generally, the variation 

processes of industrial water consumption in the three cities are generally stable except for the 

Zhengzhou City. The variation of Zhengzhou is fluctuated year after year although the water 

use per industrial GDP (Fig. 5-4) had been decresing gradually because the adoption of much 

more new water-saving, reusing, and treating techniques since the establishment of the new 

economic zone in 2009. After three years development, the new economic zone performed 

better and better leading to an abrupt in 2012 and afterward stable increase of the industrial 

GDP, which resulted in a peak in 2012 and stable increase in the water consumption. 

5.3 Estimation of water quantity consumed by ecosystems 

5.3.1 Assimilation of evapotranspiration results from GLDAS data with MODIS 

imageries 

To use MODIS retrieved ET value to rectify GLDAS ET modelling to make them able to 

represent the whole study area over the period of 2002 through 2016. 

 

Fig. 5-6 Comparesion of GLASS ET with GLDAS ET in three cities 

MODIS retrieved ET has been collected by a Chinese dataset (GLASS) 

(http://www.geodata.cn) produced by Yang’s team from Beijing Normal University. Here, the 

MODIS retrieved ET values from GLASS dataset (Yao et al., 2014) in the three cities were 
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compared with the corresponding GLDAS ET, whereby correlations were established, as shown 

in Fig. 5-6 and 5-7. 

 

 

 
Fig. 5-7 Monthly GLASS ET vs monthly GLDAS ET in three cities with gray dash line being 1:1 line. 

 Fig. 5-6 shows the annual GLASS ET values are greater than the GLDAS ET values in the 

three representative cities. Differences between the annual GLASS and GLDAS ET values are 

the biggest in Jinan (average: 129 mm) while the least in Xi’an (average: 46 mm). The research 

of Chang et al. (2017) shows that the precipitation in 2002 is exceptionally low which resulted 

in abnormal low ET in GLDAS data in 2002 (Fig. 5-6) as the climate of Jinan is very arid and 

its ET is largely limited by water available. Likely, much lower precipitation in 2014 (Chang et 
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al., 2017) resulted in abnormally low ET in 2014. Results suggest that there are certain 

uncertainties in both of the GLASS and GLDAS data. If somebody want to analyse the bias 

between the two datasets, he has to firstly collect the ground-observed ET data in Ji’nan during 

2001-2015. But as all know that ground-observed ET data are not publicly available in China. 

Though it is difficult, we looked through literatures and found that the precipitation in 2002 is 

exceptionally low which resulted in abnormal ET in GLDAS data in 2002 as the climate of 

Jinan is very arid and its ET is largely limited by water available. 

Fig. 5-7 shows that the monthly GLASS ET is slightly greater than monthly GLDAS ET 

in all the three cities, Xi’an, Zhengzhou, and Ji’nan. They have significantly linear relationship 

(R2=0.81-0.91, as shown in Fig. 5-7 a-c). Hence, using these linear relationships for the three 

cities in Fig. 5-7, one can improve the GLDAS ET accuracy from 1948-2016 in the three cities. 

5.3.2 Estimating water consumed by ecosystems based on evapotranspiration data 

 This section estimates ET in the three representative cities based on the above rectified 

GLDAS ET data, as shown in Fig. 5-8.  

 

 

Fig. 5-8 Annual rectified GLDA ET in three cities with upper being the water consumption and lower the 

evapotranspiration rate (ET) in the unit of mm. 
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 For the ecosystem water consumption (Fig. 5-8 upper), Xi’an and Ji’nan have similar 

values (average: 7.13 and 7.11 billion  m3) while the zhengzhou has the least one (average: 5.05 

billion  m3). The difference is because of the different area of the three cities (Xi’an, Ji’nan and 

Zhengzhou: 10752, 10244 and 7446 km2). In other words, the three cities have similar 

evapotranspiration rate (averaged ET: 709, 702 and 723 mm, lower figure in Fig. 5-8), but the 

larger size of Xi’an and Ji’nan resulted in higher ecosystem water consumption, and vice versa 

in Zhengzhou. 

5.4 Estimation of total water consumption  

 By summing up the above three water consumption for household, industry and ecosystem, 

one can get the total water consumption from 2003 to 2016, as shown in Fig. 5-9. 

 

Fig. 5-9 Total water consumption in the three cities. 

 Fig. 5-9 shows that the total water consumption in the three cities fluctuated in the period. 

Xi’an and Ji’nan have similar processes with average values of 9.17 and 8.99 billion  m3 as 

Zhengzhou has the lowest value of 7.07 billion  m3. The process of total water consumption is 

similar with that of ecosystem water consumption (Fig. 5-8) with ratios of ecosystem to total 

water consumption ranging from 71.45% to 79.06%. Ratios of household to total water 

consumption are the lowest ranging from 2.35% to 4.66%.  

The abnormality of total water consumption in 2014 is caused by the abnormal ET in the 

three cities as shown in Fig. 5-6 where the GLDAS ET in the three cities had an abnormal 

decrease in 2014. As ET or ecosystem water consumption occupies more than 70% of total 

water consumption, the variation process of total water consumption is dominated by the ET 

instead of population change which is obvious when we compare Fig. 5-9 with Fig. 5-8.  

5.5 Summary  

 This chapter calculated water consumption of household, industry and ecosystem. During 

the same period with GRACE data from 2003 to 2016, household water consumption in the 
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three representative cities of Xi’an, Zhengzhou and Ji’nan takes on slightly increasing trend 

along with the increase of population. It is essentially affected by the variation of population. 

Xi’an has the highest amount of water consumption for household (0.35 billion  m3 on average) 

as Ji’nan has the lowest one (0.21 billion  m3 on average).  

Industrial water consumption during 2003-2016 in the three cities fluctuates around 1.60 

billlion  m3 showing no obvious increase or decrease trend. On average, Zhengzhou has the 

higest (1.73 billlion  m3) while Ji’nan has the lowest one (1.66 billlion  m3). For the ecosystem 

water consumption, Xi’an and Ji’nan have similar values (average: 7.13 and 7.11 billion  m3) 

while the zhengzhou has the least one (average: 5.05 billion  m3). The different area of the three 

cities (Xi’an, Ji’nan and Zhengzhou: 10752, 10244 and 7446 km2) resulted in the difference of 

ecosystem water consumption among them. 

All in all, the total water consumption in the three cities fluctuated in the period as Xi’an 

and Ji’nan have similar processes with average values of 9.17 and 8.99 billion  m3 as Zhengzhou 

has the lowest value of 7.07 billion  m3. The ecosystem water consumption dominates the total 

water consumption with ratios of ecosystem to total water consumption ranging from 71.45% 

to 79.06%.  
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Chapter 6 Prediction of urban drought in 2030 and 2050 

This chapter aims to predict urban drought in the two future years of 2030 and 2050 

including prediction of freshwater available and water consumption. The former was achieved 

by setting up ANN (Artificial Neural Network) with surface freshwater available estimated in 

Chapter 3 and environmental factors, presented in CMIP5 (Coupled Model Intercomparison 

Project Phase 5) scenarios, influencing the variation of surface freshwater. CMIP5 IPCC 

scenarios of RCP 2.6, RCP 4.5 and RCP 8.5 were used where principal environmental factors 

in 2030 and 2050 are presented. The latter, or future water consumption, for 

household/industrial/ecosystem, was predicted based on models established in Chapter 5 and 

predicted basis data presented in published literatures.  

 

Fig. 6-1 CMIP5 website http://www.psl.noaa.gov/ipcc/ 

RCP2.6, RCP4.5 and RCP8.5 are respectively representative concentration pathways, 

which approximately result in a radiative forcing of 2.6, 4.5 and 8.5 W m-2 at year 2100, relative 

to pre-industrial conditions. RCPs are time-dependent, consistent projections of emissions and 

concentrations of radiatively active gases and particles. We selected four variables highly 

related to drought (Precipitation, Near-Surface Air Temperature, Evaporation, Evaporation 

from Canopy) from CMIP 5. Details can be found in Table 6-1.  

  

http://www.psl.noaa.gov/ipcc/
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Table 6-1 Four variables highly related to drought selected from CMIP 5 

Long name Units Comment 
Variable 

name 
Standard name 

Precipitation kg m-2 s-1 

At surface; includes both liquid 

and solid phases from all types 

of clouds (both large-scale and 

convective) 

pr precipitation_flux 

Near-Surface 

Air 

Temperature 

K 

Normally, the temperature 

should be reported at the 2 

meter height 

tas air_temperature 

Evaporation kg m-2 s-1 

At surface; flux of water into 

the atmosphere due to 

conversion of both liquid and 

solid phases to vapor (from 

underlying surface and 

vegetation) 

evspsbl 
water_evaporatio

n_flux 

Evaporation 

from Canopy 
kg m-2 s-1  evspsblveg 

water_evaporatio

n_flux_from_can

opy 

Source: https://esgf-node.llnl.gov/search/cmip5/ 

6.1 Prediction of freshwater available 

6.1.1 Establishment of relationship between environmental factors and surface FWA to 

predct future surface FWA 

Envrionmental factors directly related to the variation of surface FWA, which are 

accessible in IPCC CMIP5 model and scenarios, include precipitation, evapotranspiration, 

near-surface air temperature. In addition, when making time slice the CMIP5 selected the year 

2030 as the representative year to simulate a future decade covering the years 2026-2035, which 

implies the year 2030 is an important point in the CMIP5 simulations. Besides, the three 

secnarios all take the year 2100 as the simulation base year. Half of the the current century 

(2050) is the focus in many fields when studying climate change (Marks, 2019; Mastini et al., 

2021; Polli et al., 2021; Robertson et al., 2021). Therefore, this study selected the year 2030 

and 2050 as the base year to predict future urban drought. 

To predict future urban drought, future freshwater quantity needs to be predicted. Via the 

way of establishing ANN (LSTM-N) model taking environmental factors as input and surface 

FWA as output, this section used envirionmental factors in 2030 and 2050 in three CMIP5 IPCC 

scenarios of RCP 2.6, RCP 4.5 and RCP 8.5 to estimate freshwater available, as shown in Fig. 

6-2, Fig. 6-3 and Fig. 6-4.  

LSTM-N is one of the most important deep learning models. By using gate cells, LSTM-

N avoids the problem of gradient degradation. It has been widely used in many fields, especially 

in time series modeling, including speech recognition, natural language processing and 

sequence prediction. Simplified LSTM-N is very effective for modeling time series. In addition 

to time series modeling, LSTM-N can also be applied to modeling nonlinear systems (Yu et al., 

2019a; Yu et al., 2019b). This algorithm could avoid the interference of the redundant 

information in the output of the bottom layer to the effective information in the upper layer. In 

https://esgf-node.llnl.gov/search/cmip5/
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the term of speech-based emotion recognition task, the weighting on the time dimension reflects 

the difference of emotion saturation among periods, while that on the feature dimension reflects 

the distinguishability of different features (Xie et al., 2019). 

A LSTM-N model with the optimal parameters (Unit”: 460, activation function: “sigmoid”, 

and training epoch: 650) are established to forcast future streamflow, or surface FWA, under 

the three climate scenarios by taking the environment factors of precipitation, 

evapotranspiration, near-surface air temperature as input. Historical data of the environment 

factors in CMIP5 and historical surface FWA from 1948 to 2016 predicted in the Chapter 3 are 

used to train the LSTM-N model. 

 

Fig. 6-2 Surface runoff in 2030 (Left) and 2050 (Right) under Scenario RCP 2.6  

 Fig. 6-2 shows the monthly surface runoff predicted by using the LSTM-N model under 

scenario RCP 2.6. The variation process of surface runoff within 2030 and 2050 is similar. 

Surface runoff in Xi’an in both 2030 and 2050 changes steadily among the 12 months, that in 

Ji’nan fluctuates a little in the first half year but becomes steady in the second half, while that 

in Zhengzhou fluctuates intensively especially in the wet season (June through September). The 

peak appears in Septermber in both 2030 and 2050 as there appears a valley in May of 2050.  

 

Fig. 6-3 Surface runoff in 2030 (Left) and 2050 (Right) under Scenario RCP 4.5  

Fig. 6-3 shows the predicted monthly surface runoff processes in 2030 and 2050 under 

scenario RCP 4.5 are similar. The surface runoff in both Xi’an and Ji’nan in the two years 
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changes steadily, while that in Zhengzhou fluctuates a little in June of 2030 and changes steady 

throughout the whole year 2050.  

 

Fig. 6-4 Surface runoff in 2030 (Left) and 2050 (Right) under Scenario RCP 8.5  

Fig. 6-4 shows the predicted monthly surface runoff processes in 2030 and 2050 under 

scenario RCP 8.5 are a little different. The surface runoff in both Xi’an and Zhengzhou in the 

two years changes steadily, while that in Ji’nan changes steady in 2030 but fluctuates a little in 

2050 especially in the first half of the year.  

Comparison of Fig. 6-2- Fig. 6-4 shows that different radiative forcing of 2.6, 4.5 and 8.5 

W m-2 under scenario RCP 2.6, RCP 4.5 and RCP 8.5 change the future runoff pattern in 2030 

and 2050. With the increase of radiative forcing from 2.6 to 8.5 W m-2, the surface runoff 

flunctuation frequency is gradually lessened (e.g., Zhengzhou). At the same time, there appears 

a trend of regional drought with the increasing of the radiative forcing, e.g., Ji’nan in 2050 

under RCP 8.5. In other words, with the increase of radiative forcing, the three cities have a 

possibility of changing from wet to dry climate, especially in the low reaches of the Yellow 

River (Zhengzhou and Ji’nan). The lowest radiative forcing (2.6 w m-2) resulted in the highest 

fluctuation frequency in surface runoff in 2030 and 2050. In other words, a higher radiative 

forcing reduces the frequency of floods and makes runoff steady throughout a year.  

Analysis also shows that with the increase of radiative forcing, the three cities have a 

possibility of changing from wet to dry climate, especially in the low reaches of the Yellow 

River (Zhengzhou and Ji’nan). This resulted in the near opposite results, especially in lower-

reach cities, Zhengzhou and Ji’nan while the upper-reach Xi’an has a little change. 

Overall, monthly surface runoff predicted was similar, fluctuating around average value of 

0.036, 0.042 and 0.034 kg m-2 per 3-hour respectively in 2030 and in 2050 in Xi’an, Zhengzhou 

and Ji’nan, as shown in Table 6-2. In other words, Xi’an, Zhengzhou and Ji’nan will have up to 

1.14, 0.91 and 2.03 billion  m3 surface freshwater for consumption in 2030 and 2050.  
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Table 6-2 predicted LWE and runoff in 2030 and 2050 (LWE in cm and runoff in kg m-2 per 3 hour) 

IPCC Scenario Year 

Averaged 

LWE (cm) 

Averaged Runoff 

(kg m-2 per 3-h) 

Xi'an Zhengzhou Ji'nan Xi'an Zhengzhou Ji'nan 

RCP 2.6 
2030 -0.225 -0.828 -2.185 0.036 0.042 0.034 

2050 -0.277 0.023 -1.465 0.036 0.042 0.034 

RCP 4.5 
2030 -0.121 -0.218 -2.132 0.036 0.041 0.034 

2050 -0.295 -0.216 -2.137 0.036 0.042 0.034 

RCP 8.5 
2030 -0.257 -0.206 -1.646 0.036 0.042 0.034 

2050 -0.616 -0.519 -1.649 0.036 0.042 0.034 

6.1.2 Establishment of relationship between environmental factors and underground 

FWA to predict future underground FWA 

This section predicted future LWE variation via the way of establishing ANN model taking 

environmental factors as input and LWE as output. It used envirionmental factors in 2030 and 

2050 in the three CMIP5 IPCC scenarios to estimate monthly LWE variation in 2030 and 2050, 

based on which underground FWA was estimated. The predicted monthly LWE is shown in Fig. 

6-5, Fig. 6-6 and Fig. 6-7. 

 

Fig. 6-5 LWE in 2030 (Left) and 2050 (Right) under Scenario RCP 2.6  

Fig. 6-5 shows the monthly LWE predicted by using the LSTM-N model under scenario 

RCP 2.6. The variation process of LWE within 2030 and 2050 is similar. Difference of 2030 

and 2050 in Zhengzhou is a little large during the wet season of June, July and August. LWE in 

all the three cities in both of the two future year fluctuates intensively especially in lower 

reaches (Zhengzhou and Ji’nan). LWEs of 2030 and 2050 in the three individual cities change 

similarly except for Zhengzhou which LWE appears a valley during the period of June, July 

and August of 2050.  



109 

 

 

Fig. 6-6 LWE in 2030 (Left) and 2050 (Right) under Scenario RCP 4.5  

Fig. 6-6 shows the predicted monthly LWE under scenario RCP 4.5 for both 2030 and 

2050 changes steadily instead of fluctuates intensively uner RCP 2.6. The variation process 

between 2030 and 2050 is similar. Both in lower reaches of  Zhengzhou and Ji’an, the LWE for 

the two future years changes very little. LWE in Xi’an fluctuates but with a smaller magnitude 

than that under RCP 2.6.  

 

Fig. 6-7 LWE in 2030 (Left) and 2050 (Right) under Scenario RCP 8.5  

Fig. 6-7 shows the predicted monthly LWE under scenario RCP 8.5 for both 2030 and 

2050 fluctuates intensively, especially in the upper reaches of Xi’an and Zhengzhou. As for 

Zhengzhou, the fluctuating magnitude of LWE in 2030 is lager than that in 2050. What is worth 

noticing is that LWE in the low reach of Ji’nan has no change during the whole year of both 

2030 and 2050. 

Comparison of Fig. 6-5- Fig. 6-7 shows that with the increase of radiative forcing under 

scenario RCP 2.6, RCP 4.5 and RCP 8.5, the LWE firstly changes smaller and then fluctuates 

inversely in most of the three cities, which is more evident in the upper reaches (Xi’an and 

Zhengzhou). In the down reach Ji’nan, the LWE changes from frequently fluctuating to without 

any change during both 2030 and 2050. Generally, the fluctuating magnitude in the three cities 

in 2030 is larger than in 2050.   
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Overall, monthly LWEs predicted under scenario RCP 2.6, RCP 4.5 and RCP 8.5 vary 

greatly, with RCP 2.6 having the biggest variation range from -5 to 2 cm monthly and RCP 4.5 

the smallest range from -2 to 1.5 cm monthly. Generally, LWE in all the three cities in both 

2030 and 2050 decreases fluctuating below 0 in most months. In other words, underground 

water available in the three cities in 2030 and 2050 will continuously decrease. LWEs in the 

three cities will respectively decrease at a rate of 0.20, 0.42 and 1.99 cm on average in 2030. 

Similarly, in 2050 they will decrease 0.40, 0.24 and 1.75 cm. Ji’nan has the greatest decrease 

rate. All the three RCPs predicted similar LWE decrase rate (~0.8 cm on average).  

By using data of underground water available (UFWA) in the three cities from “Water 

Resource Bulletin” (2002-2016), the averaged UFWA in the GRACE-data-base years (2004-

2009) was acquired with the equation 𝑈𝐹𝑊𝐴𝑏𝑎𝑠𝑒 = ∑ (𝑈𝐹𝑊𝐴𝑖 + 𝐿𝑊𝐸𝑖)/142016
𝑘=2002 . With the 

averaged UFWA for the base year and based on the LWE variation in 2030 and 2050, 

underground water available was estimated. Results show that Xi’an, Zhengzhou and Ji’nan 

will have 0.87-0.90, 1.04-1.06 and 0.33-0.40 billion  m3 underground freshwater for 

consumption in 2030, and 0.91-1.00, 1.04-1.05 and 0.30-0.40 billion  m3 in 2050.  

In summary, Xi’an, Zhengzhou and Ji’nan will have 2.01-2.04, ~1.95 and 2.36-2.43 billion  

m3 freshwater for consumption in 2030, and 2.05-2.14, 1.95-1.96 and 2.33-2.43 billion  m3 in 

2050. According to data from “Water Resource Bulletin” (2002-2016) of Xi’an, Zhengzhou and 

Ji’nan, the average values of freshwater available including surface and undergournd water 

resources are respectively 1.89-4.46, 0.75-2.50 and 0.79-2.57 billion  m3 which justified the 

reasonableness of caculated freshwater available above.  

6.2 Prediction of water consumption 

6.2.1 Future water consumption by household 

This section uses population projections to predict population in the three cities and uses 

prediction data from published lieteratures to estimate water consumption for household in 

2030 and 2050. 

Population projections are attempts to show how the human population living today will 

change in the future. These projections are an important input to forecasts of the population's 

impact on this planet and humanity's future well-being. Models of population growth take 

trends in human development, and apply projections into the future. These models use trend-

based-assumptions about how populations will respond to economic, social and technological 

forces to understand how they will affect fertility and mortality, and thus population growth 

(Wikipedia, 2021a). 

The UN Population Division has calculated the future population of the world's countries, 

based on current demographic trends. Current (2020) world population is 7.8 billion. The 2019 

report projects world population in 2050 to be 9.7 billion people, and possibly as high as 11 

billion by the next century, with the following estimates for the top 14 countries in 2020, 2050, 

and 2100 (Wikipedia, 2021a). Population prediction for China can be plotted in Fig. 6-8 with 

data from UN. 
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Fig. 6-8 Future population in China  

(Source: https://baijiahao.baidu.com/s?id=1663031362737011917&wfr=spider&for=pc) 

 

Fig. 6-9 Trends of China’s total water use from 2015 to 2030 under the shared socioeconomic pathways (SSPs) 

(From Guo et al. 2021). 

Fig. 6-8 shows than population in China will decrease to ~136,500 million. With this rate, 

population in 2050 will decrese to ~121,000 million. For Xi’an, Zhengzhou and Ji’nan, 

population will inevitably decrease in future. Assuming the three cities have the same rate with 

China, their population in 2030 will be ~8.7, 7.9, 6.8 million and in 2050 will be 5.7, 4.5 and 

3.9 million. 

With the change of population, the water use per captia will also change. Guo et al. (2021) 
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investigated the water use efficiency of China revealing that by 2030 China water use efficiency 

will increase by 0.88-0.93 times compared with 2015. In other words, water use in China will 

be 0.88-0.93 times of that in 2015, as shown in Fig. 6-9.  

Assuming household water consumption in the three has the same increase rate with that 

in China water use, household water consumption in Xi’an, Zhengzhou and Ji’nan will be 0.88-

0.93 times of that in 2015. In other words, household water consumption will be 0.37-0.40, 

0.37-0.39 and 0.20-0.22 billion  m3 respectively in Xi’an, Zhengzhou and Ji’nan, as shown in 

Table 6-3. 

Table 6-3 Household water consumption in 2030 (billion  m3) 

City 2015-base 2030-min 2030-max 

Xi'an 0.42 0.37 0.40 

Zhengzhou 0.42 0.37 0.39 

Ji'nan 0.23 0.20 0.22 

 

Table 6-4 Percentage change of the WF of consumption relative to 2000. ‘A’: WF of agricultural products, ‘D’: 

WF of domestic water supply, ‘I’: WF of industrial products and ‘T’ : WF of totoal WF; ‘CHI’: 

China (Ercin et al., 2012). 

 

As to future water use in 2050, Ercin and Hoekstra (2012) conducted the first global water 

footprint scenario study in 2050. It explores how the water footprint of humanity will change 

towards 2050 under four alternative scenarios, which differ from each other in terms of specific 

trajectories for the main drivers of change. The four scenarios they constructed, along two axes, 

represent two key dimensions of uncertainty: globalisation versus regional self-sufficiency, and 

economy-driven development versus development driven by social and environmental 

objectives. The two axes create four quadrants, each of which represents a scenario: global 

markets (S1), regional markets (S2), global sustainability (S3) and regional sustainability (S4).  
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Fig. 6-10 Percentage change of the WF of consumption per capita relative to 2000 (Ercin et al., 2012) 
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Climate change effects are partially addressed in their study. They implicitly included the 

impact of climate change on production and trade patterns, but they excluded CO2 fertilization 

effects in yields and climate change effects on crop water use. In addition, they assumed a 

homogeneous and single industrial sector in estimating the water footprint of industrial 

production and consumption. Their analysis shows that water footprints can radically change 

from one scenario to another and are very sensitive to the drivers of change, as shown in Table 

6-4 and Fig. 6-10.  Results show that the largest component of the total Water Footprint (WF) 

of consumption is green (67-81% per scenario), followed by grey (10- 20%) and blue (7-13%). 

Consumption of agricultural products has the largest share in the WF of consumption, namely 

85-93% for all scenarios. The share of domestic water supply is 2-3% and of industrial products 

4-13%.  

A water footprint shows the extent of water use in relation to consumption by people. The 

water footprint of an individual, community or business is defined as the total volume of fresh 

water used to produce the goods and services consumed by the individual or community or 

produced by the business. Water use is measured in water volume consumed (evaporated) 

and/or polluted per unit of time. A water footprint can be calculated for any well-defined group 

of consumers (e.g., an individual, family, village, city, province, state or nation) or producers 

(e.g., a public organization, private enterprise or economic sector), for a single process (such as 

growing rice) or for any product or service (Wikipedia, 2021b). 

For domestic water supply, or household water consumption in China (CHI), the four 

scenarios show variant percentage change of -12%, 16%, -29%, -19% in 2050 (Table 6-4). On 

average, household water consumption in 2050 will be decrased by 11% relative to 2000. With 

this rate, one can estimate that household water consumption in 2050 will be 0.20-0.32, 0.22-

0.35 and 0.12-0.20 billion  m3 in Xi’an, Zhengzhou and Ji’nan with the base in 2000 being 0.28, 

0.31 and 0.17 billion  m3 (Table 6-5). 

 

Table 6-5 Household water consumption in 2050 in the four scenarios (billion  m3) 

City S1 S2 S3 S4 

Xi'an 0.24 0.32 0.20 0.22 

Zhengzhou 0.27 0.35 0.22 0.25 

Ji'nan 0.15 0.20 0.12 0.14 

6.2.2 Future water consumption by industry 

 Industrial water consumption can be calculated by using the formula (industrial GDP) * 

(water consumption per GDP). This section estimates future water consumption by industry by 

using published literatures where GDP and water consumption per GDP in 2030 and 2050 was 

forecasted or calculated.  

As for future GDP, the Organization for Economic Co-operation and Development (OECD) 

is an international organisation that works to build better policies for better lives. Recently years 

OECD predicted GDP trend for all countries across over the world. GDP data in 2020, 2030 

and 2050 in China are from OECD, as shown in Fig. 6-11 and Fig. 6-12. 
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Fig. 6-11 Gross domestic product (GDP)Total, Million US dollars, 2020 or latest available Source: 

https://data.oecd.org/gdp/gross-domestic-product-gdp.htm#indicator-chart 

Data in Fig. 6-11 shows that Chinese GDP is US$ 23 547 026 Million in 2020. Generally, 

GDP is the standard measure of the value added created through the production of goods and 

services in a country during a certain period. This indicator is based on nominal GDP (also 

called GDP at current prices or GDP in value) and is less suited for comparisons over time, as 

developments are not only caused by real growth, but also by changes in prices and PPPs 

(Purchasing Power Parities) (OECD, 2021). China Real GDP long-term forecast are shown in 

Fig. 6-12 where real GDP in 2030 and 2050 are acquired. 

 
Fig. 6-12 China Real GDP long-term forecast Total, Million US dollars, 2020-2058. Source: 

https://data.oecd.org/gdp/real-gdp-long-term-forecast.htm#indicator-chart 

As to OECD (2021), real GDP is GDP given in constant prices and refers to the volume 

level of GDP. Forecast in Fig. 6-12 is based on an assessment of the economic climate in 

individual countries and the world economy, using a combination of model-based analyses and 

expert judgement. This indicator is measured in growth rates compared to previous year. Trend 

https://data.oecd.org/gdp/gross-domestic-product-gdp.htm#indicator-chart
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gross domestic product (GDP), including long-term baseline projections (up to 2060), in real 

terms. Forecast is based on an assessment of the economic climate in individual countries and 

the world economy, using a combination of model-based analyses and expert judgement. This 

indicator is measured in USD at constant prices and PPPs of 2010 (OECD, 2021). From data 

of Fig. 6-12, one can get real GDP in China: US$ 24896 for 2020, 36693 for 2030, and 54357 

billion for 2050. In other words, GDP in 2030 and 2050 will be 1.47 and 2.18 times of that in 

2020. With this rate, GDP in the three reprensentative cities of Xi’an, Zhengzhou and Ji’nan 

will be 1018.73, 2643.06 and 978.96 billion RMB in 2030, and will be 1510.76, 3919.64 and 

1451.79 billion RMB in 2050. 

 

Table 6-6 GDP in 2030 and 2050 in the three cities (billion RMB) 

City 2020-base 2030 2050 

Xi'an 693.01 1018.73 1510.76 

Zhengzhou 1798.00 2643.06 3919.64 

Ji'nan 665.96 978.96 1451.79 

  

As to the water consumption in 2030, Meng et al. (2021) forecasted annual water 

consumption in 31 regions of China with future increase scenario of GDP which can be used in 

this study to estimate future water consumption per GDP. They estimated futute water 

consumption combined the economic development with the relevant data of regional GDP if 

the growth rates of regional GDP in the middle and lower reaches of the Yellow River, e.g., 

Henan, Shaanxi and Shandong, are all 5% and 10%, as shown in Table 6-7. 

Table 6-7 water consumption under different GDP increase scenarios of 5% and 10% (From Meng et al., 2021) 

in billion  m3. 

Region 
GDP  

growth rate 
2019 2020 2021 2022 2023 2024 2025 

City  

name 

Shaanxi 
5% 9.12 9.21 9.3 9.38 9.47 9.56 9.65 

Xi’an 
10% 9.15 9.3 9.46 9.63 9.83 10.04 10.27 

He’nan 
5% 24.17 25.01 25.94 26.97 28.08 29.29 30.59 

Zhengzhou 
10% 24.26 25.38 26.8 28.51 30.52 32.85 35.52 

Shandong 
5% 21.21 21.17 21.13 21.08 21.04 21.01 20.97 

Ji’nan 
10% 21.21 21.17 21.13 21.09 21.05 21.01 20.98 

 

Table 6-6 indicates that in 2030 GDP will increase by 47% of that in 2020. In other words, 

GDP in Xi’an, Zhengzhou and Ji’nan will increase in a rate of 4.7% every year which 

approximately equals to 5%. Based on Table 6-7, water consumption in 2030 under 5% GDP 

growth rate can be derived as 10.18, 35.70 and 20.68 billion  m3 in Shaanxi, He’nan and 

Shandong where Xi’an, Zhengzhou and Ji’nan locate. In other words, water consumption in 

2030 under 5% GDP growth rate will be 1.10, 1.43 and 0.98 times of that in 2020 in three 

regions. Assuming Xi’an, Zhengzhou and Ji’nan have the same increase rate of industrial water 

consumption with their located region, industrial water consumption per GDP in 2030 should 

be 0.75, 0.97 and 0.66 times of that in 2020. Based on water consumption per GDP in Fig. 5-4, 

water consumption per GDP in 2030 can be estimated as 0.0017, 0.0008 and 0.0012  m3/RMB. 



117 

 

Thus based on Table 6-6, industrial water consumption in 2030 should be 1.73, 2.11 and 1.17 

billion  m3.  

Likely, water consumption in 2050 should be calculated based on the scenario of 5% GDP 

growth rate since GDP in 2050 will be 2.18 times of that in 2020 or will have 3.9% increase 

rate per year. In the same way as in 2030, industrial water consumption per GDP in 2050 should 

be 0.59, 1.05 and 0.43 times of that in 2020. Based on water consumption per GDP in Fig. 5-4, 

water consumption per GDP in 2050 can be estimated as 0.0013, 0.00084 and 0.00077  

m3/RMB. Thus, based on Table 6-6, industrial water consumption in 2050 should be 1.96, 3.29 

and 1.12 billion  m3. 

6.2.3 Future water consumption by ecosystem 

Future water consumpiton by ecosystem in Xi’an, Zhengzhou and Ji’nan in 2030 and 2050 

was estimated by using the evaporation from soil and transpiration (ET) under three IPCC 

scenarios of RCP 2.6, RCP 4.5 and RCP 8.5. The monthly ET processes in 2030 and 2050 under 

the three IPCC scenarios are shown respectively in Fig. 6-13, Fig. 6-14 and Fig. 6-15. 

Under IPCC scenarios RCP 2.6, the annal ecosystem water consumption (EWC) in three 

cities in 2030 is 2-15% higher than that in 2050. In other words, ecosystem will consume more 

water in 2030 than in 2050 in all the three representative cities. Under IPCC scenario RCP 4.5, 

annal EWCs in three cities in 2030 are 0.3-13% higher than those in 2050. Under IPCC scenario 

RCP 8.5, annal EWCs in the two cities in 2030 are 2-4% higher than those in 2050. Annal 

EWCs in Zhengzhou in 2030 are 1.4% lower than those in 2050, as shown in Table 6-8. In other 

words, ecosystem will consume more water in 2030 than in 2050 in Xi’an and Ji’nan but 

consume less water in Zhengzhou in 2030. 

 

Table 6-8 Annual EWC under IPCC scenraios in 2030 and 2050 (billion  m3) 

IPCC Scenario City 2030 2050 

RCP 2.6 

Xi'an 15.45 15.19 

Zhengzhou 12.72 11.08 

Ji'nan 13.21 12.59 

RCP 4.5 

Xi'an 15.00 14.05 

Zhengzhou 11.87 10.47 

Ji'nan 12.15 12.11 

RCP 8.5 

Xi'an 14.78 14.25 

Zhengzhou 10.91 11.06 

Ji'nan 12.27 12.09 

 

To summary, under IPCC scenarios of RCP 2.6, RCP 4.5 and RCP 8.5, ecosystem in most 

of the three cities will consume more water in 2030 than in 2050 in all the three representative 

cities. In 2030, ecosystem will consume water quantity ranging from 14.78-15.45, 10.91-12.72 

and 12.15-13.21 billion m3 respectivley in Xi’an, Zhengzhou and Ji’nan. In 2050, EWC will be 

14.05-15.19, 10.47-11.08 and 12.09-12.59 billion m3 respectively in the three cities. Abroadly, 

EWC in 2030 is slightly higher than in 2050. Compared EWC under the three scenarios (RCP 



118 

 

2.6, RCP 4.5 and RCP 8.5), future EWC under RCP 2.6 is the highest (15.32, 11.90 and 12.90 

billion m3 for Xi’an, Zhengzhou and Ji’nan) as that under RCP 8.5 is the lowest (14.52, 10.98 

and 12.18 billion  m3).  

All in all, total quantity of water consumed by household, industry and ecosystems in Xi’an, 

Zhengzhou and Ji’nan in 2030 will be 17.23, 14.31, 14.06 billion m3 on average, and in 2050 

will be 16.84, 14.35, 13.62 billion m3 on average, as shown in Table 6-9. 

 

Table 6-9 Water consumption in 2030 and 2050 (billion  m3) 

Water user City 2030 2050 

Household 

Xi'an 0.37-0.40  0.20-0.32 

Zhengzhou 0.37-0.39 0.22-0.35 

Ji'nan 0.20-0.22 0.12-0.20 

Industry 

Xi'an 1.73 1.96 

Zhengzhou 2.11 3.29 

Ji'nan 1.17 1.12 

Ecosystem 

Xi'an 14.78-15.45 14.05-15.19 

Zhengzhou 10.91-12.72 10.47-11.08 

Ji'nan 12.15-13.21 12.09-12.59 

Total 

Xi'an 16.88-17.58 16.21-17.47 

Zhengzhou 13.39-15.22 13.98-14.72 

Ji'nan 13.52-14.60 13.33-13.91 

 

According to data from “Water Resource Bulletin” (2002-2016) of Xi’an, Zhengzhou and 

Ji’nan, the average values of water consumption including that of household, industry, 

ecosystem and other are respectively 1.61-1.96, 0.70-2.02 and 1.01-1.83 billion  m3. The values 

are far less than what is predicted in 2030 and 2050. Among them, the maximal water 

consumption for household is 0.43, 0.57 and 0.42 billion  m3 respectively; and that for industry 

is 1.31, 1.53, 1.43 billion  m3; for ecosystem is 0.27, 0.51 and 0.25 billion  m3. Compared these 

data with those in Table 6-9, one can find that in future household water consumption decreases, 

and industrial one increases or changes little; but ecosystem water consumption in Table 6-9 is 

~30-60 times of values from “Water Resource Bulletin” (2002-2016) the reason for that the 

latter takes account of only water quantity irrigating vegetation disregarding the ecosystem 

health stuatus. In fact, vegetation maintaining stable evapotranspiration suggest they are alive 

or maintain health to some extent. Evaporation from bare land or soil and transpiration from 

vegetation add up to total evapotranpiration used in this study. Though “Water Resource 

Bulletin” does not estimate or not fully considered the water quantity evapotranspirated by 

ecosystem, the ecosystem evaportranspiration does not stop. Therefore, the evapotranspirated 

water should be fully considered as it comes from the freshwater available or unavailable. The 

truth is freshwater available will decrease if freshwater unavailable is consumed greatly. In this 

sense, this study uses evaportranspiration to estimate ecosystem water consumption is feasible. 

6.3 Future urban drought in the year 2030 and 2050 

With predictions of freshwater available and water consumption in 2030 and 2050, one 
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can estimate urban drought in the three representative cities with the urban drought formula 

(the ratio of water consumption to water available). Following this, urban drought in 2030 and 

2050 was estimated, as shown in Table 6-10, which shows that urban drought is the severest in 

Xi’an (greater than 8.0 on average) and less severe in Ji’nan (less than 6.0 on average) in both 

2030 and 2050. Urban drought severity in 2030 is a little higher than in 2050. Using real 

ecosystem evapotranspiration as ecosystem water consumption in this study raises the urban 

drought ratio more than 6 times of that disregarding ecosystem evapotranspiration. If only 

consider water irrigating vegetation as ecosystem water consumption, the ratio in 2030 and 

2050 will be ~1.2 which can be solved by adopting water-saving techniques along with 

diverting and transferring water from other water-abundant areas in southern, such as the 

Yangtze River. 

 

Table 6-10 Urban drought in 2030 and 2050 

City 2030 2050 

Xi'an 8.27-8.75 7.57-8.52 

Zhengzhou 6.87-7.81 7.13-7.55 

Ji'nan 5.56-6.19 5.49-5.97 

 

6.4 Summary 

This chapter predicted urban drought in 2030 and 2050 via estimation of freshwater 

available and water consumption. ANN (Artificial Neural Network) prediting future freshwater 

available was set up by combining surface freshwater available estimated in Chapter 3 and 

environmental factors presented in CMIP5 IPCC scenarios: RCP 2.6, RCP 4.5 and RCP 8.5. 

Future water consumptionwas predicted based on models established in Chapter 5 and 

published literatures. 

As for future freshwater available, Xi’an, Zhengzhou and Ji’nan will have 2.01-2.04, ~1.95 

and 2.36-2.43 billion  m3 freshwater for consumption in 2030, and 2.05-2.14, 1.95-1.96 and 

2.33-2.43 billion  m3 in 2050. In details, there will have up to 1.14, 0.91 and 2.03 billion  m3 

surface freshwater, and 0.87-0.90, 1.04-1.06 and 0.33-0.40 billion  m3 underground freshwater 

for consumption in 2030, and 0.91-1.00, 1.04-1.05 and 0.30-0.40 billion  m3 in 2050 in the three 

cities. For the underground water (evaluated using LWE), Ji’nan has the greatest decrease rate. 

All the three RCPs predicted similar LWE decrase rate (~0.8 cm on average).  

As to future water consumption in 2030 and 2050, total quantity of water consumed by 

household, industry and ecosystems in Xi’an, Zhengzhou and Ji’nan in 2030 will be 17.23, 

14.31, 14.06 billion  m3 on average, and in 2050 will be 16.84, 14.35, 13.62 billion  m3 on 

average. Ecosystem water consumption (EWC) dominates the total water consumption (81-90% 

in 2030 and 75-91% in 2050). Under CMIP5 IPCC scenarios of RCP 2.6, RCP 4.5 and RCP 

8.5, ecosystem in most of the three cities will consume more water in 2030 than in 2050 in all 

the three representative cities. In 2030, ecosystem will consume water quantity ranging from 

14.78-15.45, 10.91-12.72 and 12.15-13.21 billion  m3 respectivley in Xi’an, Zhengzhou and 

Ji’nan, as in 2050, ecosystem will consume 14.05-15.19, 10.47-11.08 and 12.09-12.59 billion  
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m3 Respectively. Future EWC under RCP 2.6 is the highest (15.32, 11.90 and 12.90 billion  m3 

for Xi’an, Zhengzhou and Ji’nan) as that under RCP 8.5 is the lowest (14.52, 10.98 and 12.18 

billion  m3). The ratios of household water consumption to total are the smallest, being 1.0-3.0% 

in 2030 and 1.0-2.0% in 2050. 

The magnitude of the ratio of water consumption to freshwater available suggests the 

degree of urban drought. In both 2030 and 2050, urban drought is the severest in Xi’an (with 

the ratio greater than 8.0 on average) and less severe in Ji’nan (less than 6.0 on average). Urban 

drought severity in 2030 is a little higher than in 2050. Adaption of real ecosystem 

evapotranspiration as ecosystem water consumption raises the ratio up to ~6 times of that 

disregarding ecosystem evapotranspiration. In other words, if ecosystem evapotranspiration is 

not taken into account in estimation of total water consumption, the ratio of urban drought in 

2030 and 2050 will be ~1.2 which can be easily solved by combing water-saving techniques 

and water diversion from water-abundant areas such as the Yangtze River.  
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Chapter 7 Conclusions and perspectives 

Urban drought threats the welfare of human beings and the sustainability of the socio-

economic development of cities. To reduce risks induced by urban drought, future risk of 

freshwater available and water consumption is urgently necessitated to be studied at urban 

scales. When assessing urban drought in previous researches many scholars took precipitation, 

soil moisture, evapotranspiration etc. as basis to calculate urban drought, yet less consideration 

is put on runoff concentration process (or streamflow) flowing by cities within a watershed. 

However, streamflow is significantly important for accurately estimate TWSC (terrestrial water 

storage change) –the most important partition for estimation of freshwater available. In addition, 

lack of long series of monitoring on freshwater available (streamflow and groundwater storage) 

hinders accurately predicting future freshwater available. Therefore, it is urgently necessitated 

to produce long series data of freshwater available to predict future urban drought with water 

consumption and freshwater availability. Therefore, this thesis developed a framework for the 

assessment and prediction of urban drought in the year 2030 and 2050. To begin with, surface 

freshwater available was estimated by developing two new method to retrieve streamflows via 

satellite imageries for dry and wet seasons; secondly, underground freshwater available was 

estimated via key driving factors identification and model prediction; finally, water 

consumption at urban scale was calculated and urban drought in 2030 and 2050 was analyzed. 

The study was conducted taking as the study area the Yellow River Basin, China, taking as 

examples big cities with population great than 5 million-- Jinan, Zhengzhou, Xi’an. 

7.1 Main conclusions 

(i) Two new methods for estimation of surface freshwater available (SFWA) in data-scarce areas 

were developed. The first one was named VHR-AMHG (Virtual Hydraulic Radius at-many-

stations hydraulic geometry), and the second one was named transcaled spatial C/M method. 

The first one has a higher accuracy in dry season yet the second one is more accurate in wet 

season. The first one uses only river water width while the second one relies solely on the 

reflectance of soil and water to retrieve streamflow. Results showed that the relative error 

calculated from VHR-AMHG was 16.80%. Comparison of application in dry and wet seasons 

suggests that the VHR-AMHG method has a higher accuracy in dry season yet lower in wet 

season. Relative error from transcaled spatial C/M method is 19.00% for the whole year, 14.56% 

in flood seasons and 20.88% in non-flood seasons, suggesting the performance of the transcaled 

spatial C/M method has higher precision in flood seasons. Using the two methods coupled with 

NASA GLDAS runoff dataset, long-termed streamflow (1948-2018) for the three 

representative cities (Xi’an, Zhengzhou and Ji’nan) was estimated, laying foundation for SFWA 

prediction in future 2030 and 2050. Xi’an and Zhengzhou have almost the same averaged 

streamflow value (~1000  m3/s) from 1948 to 2018, and Jinan has a lower averaged streamflow 

value (~600  m3/s). 

(ii) A new framework for estimating long series of underground freshwater available (UFWA) 

was developed. UFWAs in the three representative cities were estimated and their data series 

were extended from the last two decades to nearly 70 yrs long. Meanwhile, environmental 

factors driving the variation of underground water, where VIP method was used. From the scale 
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of the whole study area—the Yellow River basin, or in the Scenario 3, four factors inclusive of 

air temperature, precipitation, evapotranspiration, and transpiration are responsible for the 

variation of underground water variation; under Scenario 2, there produced 7 key driving 

factors ncluding glacier melt: air temperature, direct evaporation from bare soil, precipitation, 

soil moisture from 0 to 200 cm in depth, runoff, precipitation minus ET; for Scenario 3, there 

are 10 factors including transpiration, evapotranspiration, air temperature, root zone soil 

moisture, terrestrial water storage, soil moisture from 0 to 200 cm in depth, precipitation, direct 

evaporation from bare soil, glacier melt, runoff are of higher importance; for the Scenario 4, all 

the 11 environmental factors were selected. The selected factors in the four scenarios were then 

used to verify and improve an artificial neural prediction model –LSTM-N (Long short-term 

memory network) wherein the optimized LSTM-N parameters were determined. For the 

problem of GRACE TWSC prediction, the optimized parameter “Unit” is 460, activation 

function is “Sigmoid” function, training epoch is 650 for the LSTM-N. The LSTM-N with the 

optimized parameters was used to predict the variation of underground water variation in data-

absent area and data-absent period (1948-2002). Comparison of prediction value with GRACE 

observation shows that, LSTM-N model in upper reach areas has the highest accuracy with a 

RMSE less than 0.1 cm, while in the middle reach it has a relatively lower accuracy with a 

RMSE less than 5.0 cm. With the Scenario-4-based LSTM-N model GRACE TWSC (or LWE) 

data series from 1948 to 2002 were predicted, based on which the underground freshwater 

avialble (FWA) from 1948 to 2016 was calculated: Xi’an has the highest average of 1.92 billion  

m3 and Zhengzhou (orange line) has the lowest average of 0.46 billion  m3. All these results can 

well serve for the prediction of underground FWA in future 2030 and 2050. 

(iii) Water consumption of household, industry and ecosystem was calculated by using the three 

newly-developed models. For the household water consumption, LandScan global population 

data was used to analyze the change in representative cities of Xi’an, Zhengzhou, and Jinan, 

and using local statistical data to verify them. Comparison of the three cities shows that Xi’an 

has the highest household water consumption (0.35 billion  m3 on average) while Ji’nan has the 

lowest one (0.21 billion  m3 on average). As to industrial water consumption, GDP (Gross 

Domestic Product) in the three cities continued increasing from 2003 to 2016 yet water use per 

GDP gradually decreasing from 0.010-0.018  m3/RMB (or Chinese Yuan) to 0.001-0.004  

m3/RMB during the same period, results of which is fluctuation of industry water consumption 

(1.60 billion  m3 on average). For the ecosystem water consumption, MODIS derived ET 

(evapotranspiration) was used to rectify GLDAS modeled ET to make the latter able to 

represent the whole study area. Results show that, Zhengzhou has the lowest water consumption 

for ecosystem (average: 5.05 billion  m3) yet Xi’an has the highest value (average: 7.13 billion  

m3). Larger size of Xi’an resulted in higher ecosystem water consumption and vice versa for 

Zhengzhou. 

(iv) Drought situation of the three representative cities in 2030 and 2050 was predicted based 

on CMIP5 (Coupled Model Intercomparison Project Phase 5) scenarios. Generally, drought 

severity in 2030 for the three cities is a little higher than in 2050 among which, drought in Xi’an 

in 2030 is the most severe (with the ratio greater than 8.0 on average) in the three representative 

cities since it has the highest ecosystem water consumption yet relatively lower water supply 

in 2030. Freshwater available plus water consumption makes urban drought ratio. As for future 
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freshwater available, Xi’an, Zhengzhou and Ji’nan will have 2.01-2.04, ~1.95 and 2.36-2.43 

billion  m3 freshwater for consumption in 2030, and 2.05-2.14, 1.95-1.96 and 2.33-2.43 billion  

m3 in 2050. As to future water consumption in 2030 and 2050, total quantity of water consumed 

by household, industry and ecosystems in Xi’an, Zhengzhou and Ji’nan in 2030 will be 17.23, 

14.31, 14.06 billion  m3 on average, and in 2050 will be 16.84, 14.35, 13.62 billion  m3 on 

average. Real ecosystem evapotranspiration being taken as ecosystem water consumption raises 

up the ratio. If it is not adopted, the ratio of urban drought in 2030 and 2050 will be ~1.2 which 

can be easily solved by combing water-saving techniques and water diversion from water-

abundant areas such as the Yangtze River. 

7.2 Perspectives 

This study estimated surface and underground freshwater available by coupling NASA 

GLDAS dataset, GRACE satellite imageries, and TM / MODIS as well as Sentinel satellite 

imageries. Meanwhile two new methods were developed for streamflow retrieval; a framework 

was presented for estimation of underground freshwater available. When retrieving streamflow, 

the coarser spatial resolution of satellite imageries used in this study (spatial resolution ranging 

from 10 m to 30 m) reduced the accuracy of streamflow estimation. The reason is because for 

small rivers e.g. with water width less than 40 m, even an error of 10 m in river water width 

(25% error) plus much more error in water height could result in large bias in flow area and 

then larger in streamflow estimation. In future, more satellite imageries with higher spatial 

resolution and ground monitoring on streamflow corresponding to satellite-passby time should 

be introduced to improve the estimation precision, e.g., very high-resolution imageries such as 

Chinese Gaofen (spatial resolution: 1m) or Erupean Astrium Pleiades NEO (spatial resolution: 

0.3 m) etc. Similarly, short-term series of GRACE monitored LWE (less than 200 months) 

limited training effect of LSTM-N model. In future, more LWE data other than GRACE 

monitoring should be collected to improve the model training effect. When extending the 

GRACE data series, only 11 environmental factors were considered, much more environmental 

factors should be considered to further improve prediction accuracy. 

In addition, with drought seemingly more commonplace, entrepreneurs are using 

information on soil moisture from SMOS and data from other satellites to generate commercial 

data products for the insurance market, ultimately bringing benefits to farmers. But the 

omission of surface runoff in their estimation of drought makes the methods have difficulties 

in application into urban areas. In future, combining SMOS data and methods developed in this 

study to make SMOS estimated drought applicable to urban areas is a promising research field 

which will be of great help for urban development. Moreover, estimation of streamflow from 

SWOT water surface observations is difficult because of the correlated influence of flow 

controls on the observable water surface signatures, which may be solved when in situ 

depth/discharge data are available. Howerever, the fusion of Landsat/Sentinel-2 and CubeSats 

holds great promise for future hydrologic application, even with the advent of SWOT because 

the relatively low temporal/spatial resolutions (for Landsat and Sentinel-2) or low radiometric 

data quality (for Planet) limit the applications of these data sets used alone. Their fusioncan be 

an approach to enhance their ability to estimate discharge (Feng et al., 2019). In future, using 

the streamflow estimation methods in this study with the SWOT monitorings could be 

attempted to improve the accuracy of streamflow estimation by using SWOT.  
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Water consumption of household, industry and ecosystem at urban scale was estimated in 

this study. But only simple statistical method relying on statistical data were designed. Actually, 

in many areas across the world, statistical data were hard to collected. In future, the method 

should be improved to keep applicable in data-scarce regions. More important, all methods 

developed in this study should be applied to other regions than the Yellow River basin across 

the world, such as France and other European contries so as to make the methods be further 

tested and improved. what should be noticed is that uncertainties in CMIP5 dataset undoubtedly 

resulted in uncertainties in results of this project and in future in-depth analysis on CMIP5 

dataset should be conducted to reduce the uncertainties in the current results.  
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