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STATE OF THE ART 
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The genomic era and associated promises of 

population genomics 

 

The completion of the Human Genome Project in 20031 was a massive achievement 

which marked the beginning of the genomic era. This era is defined by the 

availability not only of the human genome but also of reference sequences for other 

model organisms, namely Saccharomyces cerevisiae2, Arabidopsis thaliana3 and 

Mus musculus4 among many others. The availability of these reference sequences 

was accompanied by the dramatic decrease in sequencing costs which enabled the 

rise of several -omic strategies such as the eponymous genomics, but also 

transcriptomics, epigenomics and associated high-throughput strategies such as 

ChIP-seq and Chromatin Conformation Capture. At that time, sequencing projects 

continued establishing reference sequences for more and more species, bringing the 

genetic diversity of life into focus5 and greatly enriching the field of comparative 

genomics6,7. Sequencing multiple individuals of the same species enabled studies to 

start assessing the genetic diversity within a species, to investigate a population’s 

evolutionary history and to identify commonly shared polymorphisms. Individuals 

of a species present phenotypic variability, part of which is heritable and must be 

driven in part by genetic differences. Uncovering the genetic part of heritability 

became possible with recently established reference sequences and increasing 

amounts of sequenced individuals. The prospect of deciphering the genetic 

information of species stirred interest in larger datasets of genomes, motivated in 

part by the idea that obtaining a wide range of genomes and associated phenotypes 

would help uncover genotype-phenotype relations. The sequencing costs continued 

decreasing until sequencing hundreds, even thousands of individuals was no longer 

prohibitively expensive, prompting the start of large population sequencing projects. 
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Consequently, the limiting factor has strongly shifted from our ability to generate 

biological data to our ability to analyze it. In 2014, the 3,000 rice genomes project 

called upon the international community to analyze their dataset8. In 2015, the 1000 

Genomes Project provided 2504 human genome sequences and their associated 

variants9, including structural variants10 (SVs). Their paper and more importantly, its 

associated data, has been cited over 6000 times as of 2021. The 1001 Genomes 

Consortium published its study of 1,135 genomes of Arabidopsis thaliana in 2016, 

reconstructing its natural history and emphasizing how well the population is adapted 

for statistical association of genotype-phenotype relations11. In 2018, 1,011 strains 

of the model organism Saccharomyces cerevisiae were published in the context of 

the 1002 Yeast Genomes Project, characterizing the diversity of the species, noting 

the phenotypic effects of Copy Number Variants (CNVs) and providing a resource 

for population genomic studies in S. cerevisiae12. 

 

Population genomic studies survey the genetic and phenotypic diversity within a 

species. This variability can then be leveraged to identify genetic elements that are 

statistically associated with phenotypic states. To this end, the Genome-Wide 

Association Studies (GWAS) was developed, typically modelling the genetic 

architecture of phenotypes as consisting of additive effects. GWAS seeks to 

statistically infer genotype-phenotype relations using a phenotyped and genotyped 

population of individuals of the same species. To have sufficient statistical power, a 

large number of individuals is required, typically in the order of hundreds, or 

thousands. A major risk factor for age-related macular degeneration, a cause of 

irreversible loss of vision, was identified by a GWAS study on 226 individuals of 

Chinese descent using 100,000 SNPs13. Another early success for GWAS identified 

a gene associated with elevated risk of myocardial infarctions14. While a highly 

successful strategy for monogenic traits, it soon became apparent that for many 

common, highly heritable and complex traits, the alleles identified by GWAS 
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accounted for far less variability than was previously known to be heritable. The 

genetic part of the heritability of complex diseases such as the highly studied 

Alzheimer’s Disease (AD) had been inferred by sibling and twin studies, setting a 

target of the heritability to explain. Still today, our understanding of the genetic basis 

of AD is incomplete. This progressive neurological disorder comes in two forms: the 

rare Early-Onset Alzheimer’s Disease (EOAD), which comprises 5% of cases of AD, 

and Late-Onset Alzheimer’s Disease (LOAD). LOAD affects individuals over the 

age of 65 and is estimated to be 58-79% heritable, while the heritability of EOAD is 

estimated at >90%15. 58 risk loci are associated with AD, capturing around 50% of 

the heritability of LOAD, with the remaining 50% still unaccounted for as of 202116. 

 

Implementations of the GWAS method initially only considered common variants, 

though the inability to fully capture the genetically heritable part of phenotypic 

variability prompted a continual increase in the level of detail at which these 

genomes are characterized. Population genomic studies provide resources of 

unprecedented scale to the scientific community, with no signs of slowing down. 

The pilot phase of the GenomeAsia 100K project was recently published17 and in 

2019 the Sanger Institute announced it would sequence half a million whole human 

genomes from the UK biobank by 2021. 

 

Missing nuances of population genomic studies 

 

By their nature, large-scale population genomic studies provide more data than can 

be analyzed, and have yet to be fully exploitable. These population genomics efforts, 

and in particular their staple GWAS method have repeatedly exposed the gaps in our 

ability to link genotype and phenotype through such statistical associations. 

Phenotypic variance not explained by the set of significantly associated alleles, such 

as the missing 50% of heritability in LOAD, has been referred to as the missing 
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heritability. Behind the issue of extracting as much information as possible from 

such large datasets is the issue of the approximations used to simplify the problem. 

The typical, basic GWAS implementation does not take rare variants or ploidy into 

account, instead approximating the genome to a series of independent, common, 

biallelic variants. The initial focus on common variants was motivated by the 

prohibitive costs of sequencing enough individuals to have sufficient statistical 

power to identify rare variants associated with phenotypes. This focus lends itself 

well to testing the Common Disease, Common Variant hypothesis, but precludes it 

from testing the Common Disease, Rare Variant hypothesis18. The missing 

heritability can be reduced by analyzing the data with increasingly complex models 

which account for more of the variability observed in the genomes of a population. 

These models are improved by including data that would otherwise be discarded or 

unexplored, such as polyallelic sites, indels, SVs, CNVs and their allelic dosage or 

by increasing the statistical power of the study enough to include rare, high-effect 

variants19. In other words, all of the approximations and omissions leading up to a 

GWAS analysis can contribute to obscuring a non-negligible part of the heritability. 

 

Empowering GWAS studies with more types of genetic variation reduces the 

missing heritability. In the 1,011 S. cerevisiae genomes study, GWAS analysis 

incorporating CNV information was performed for 35 phenotypes. The significantly 

associated CNVs accounted for an order of magnitude more of the phenotypic 

variability than significantly associated SNPs (36.8% and 4.5%, respectively). For 

example, the phenotype of resistance to copper sulfate was significantly associated 

with CNV of the CUP1 locus, explaining 45% of phenotypic variation. 

 

However, some of the genetic variability is omitted due to technical limitations of 

the short read sequencing technology. Most population genomic studies are based on 

high-throughput short read sequencing methods, which are limited by their short read 
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length. Short reads alone are unable to resolve large repetitive regions or complex 

SVs such as translocations or inversions and have limited potential to distinguish 

between alleles in a diploid or polyploid.  

 

Fortunately, much longer reads have recently become available through single 

molecule sequencing technologies such as those provided by Oxford Nanopore and 

Pacific Biosciences, collectively referred to as long-read sequencing methods. While 

more error-prone, these technologies have the potential to overcome all of the 

limitations of short reads in a single sequencing step. These technologies directly 

sequence the native DNA molecule, without resorting to an amplification step like 

high-throughput short read sequencing methods. This allows them to avoid the phase 

error, significantly increasing read length and direct identification of modified bases 

such as cytosine methylation. Using long reads, repetitive regions can be sequenced 

end to end and placed within their genomic context, structural variants can be fully 

captured by individual reads and genomes of low heterozygosity can be phased by 

reads which link together distant heterozygous variants. 

 

Phasing genomes unlocks explanatory potential 

 

When compared to each other, genomes of the same species are very commonly 

reduced to sets of independent variable elements. A Single Nucleotide 

Polymorphism (SNP) is not considered in relation to the other SNPs around it on the 

same molecule, it is considered alone and independent (population structure 

concerns excluded). Long-read sequencing methods are particularly well-suited to 

addressing questions of phasing due to their ability to link many variable elements 

together. Haplotype phase information has not been consistently exploited for 

diploid species, much less for the more complex genomes of polyploids. Yet 
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haplotypes have known biological effects and should be included in models and 

studies which seek to uncover genotype-phenotype relations. 

 

Hybrid organisms sometimes outperform both parents in terms of fitness in a 

phenomenon termed heterosis. The genetic basis of heterosis is dissected in a study 

of maize by phasing generated hybrids, estimating most of the heterosis they observe 

is due to complementation of recessive deleterious alleles, but not all20. The 

grapevine cultivar, Chardonnay, is a cross between Gouais blanc and Pinot noir and 

presents another example of heterosis21. By constructing a diploid-aware de novo 

reference sequence using long reads, it was possible to identify gene families which 

were expanded in one or the other haplotype. These expanded gene families, 

revealed by phasing, improve the fitness of the hybrid through complementary 

synergy. 

 

Allele-Specific Expression (ASE), the preferred transcription of one allele over 

others, has been linked in humans to cancer susceptibility and progression22, and 

complex diseases such as asthma and Parkinson’s, among others23. Such far-ranging 

effects of ASE on phenotype can be identified more precisely if the genomes are 

phased, in particular for more complex polyploid samples in which the exact allele 

being preferentially expressed cannot always be determined from its SNPs. 

 

Compound heterozygosity, an effect observed when harboring different alleles of the 

same gene, typically describes cases where two alleles in a diploid are recessive due 

to different mutations. In these situations it is crucial to know if both deleterious 

mutations are on the same copy of a gene or different ones. In 2011 a Gujarati Indian 

individual’s genome was phased using fosmid libraries and short read sequencing 

methods24. Using unphased data, this individual would present 44 cases of potential 

compound heterozygosity. Upon phasing, only 10 cases of compound heterozygosity 
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were confirmed. This concept can easily be extended to other ploidies, or genes with 

CNVs, such that the effect of compound heterozygosity is increasingly manifest 

based on the proportion of non-functional copies. The compound heterozygosity 

model has been proposed as a way to model complex diseases in GWAS and is 

claimed to significantly reduce the missing heritability25. Use of this model 

motivated the development of a new tool which takes compound heterozygosity into 

account and led to the identification of enrichment in compound heterozygosity for 

genes involved in neuronal development and growth26. 

 

Modifications to the standard GWAS strategy to incorporate haplotype information 

have also been implemented, resulting in increased statistical power in simulated 

datasets27,28 and has been successfully applied to identify agriculturally relevant traits 

in soybean29. 

 

In addition to improving the predictive and explanatory power of statistical analyses, 

phasing a polyploid population can be crucial in understanding its evolutionary 

origins. Polyploids can be autopolyploid, obtaining multiple copies of their genome 

through genome duplication, or allopolyploid, obtaining multiple copies through 

hybridization. Phasing was crucial to uncovering the nature of the polyploidy of two 

tetraploid Mediterranean shrubs, revealing them to be allopolyploids30. Population 

genomic studies can uncover interesting patterns connecting ploidy to specific 

environments, or reveal admixtures or hybrid individuals. The effects and analyses 

discussed here can bring significant value to our understanding of the populations 

we sequence.  
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Saccharomyces cerevisiae, model organism, model population 

 

Yeasts are a good genetic model, these unicellular eukaryotes grow quickly and in 

environments which are easy to control, making it possible to significantly limit the 

role of the environment in phenotypic variability. S. cerevisiae in particular is a 

highly studied model organism. Its small, compact genome of 12.5 Mb split among 

16 chromosomes is well annotated. Genetic modification methods of S. cerevisiae 

are well-established and the laboratory strains are very well characterized. It was not 

only domesticated by scientists to serve as a genetic box to query and through which 

to decipher genetic mechanisms, it was also domesticated in several human 

environments and helps produce dairy, bread, wine, beer and bioethanol. Not all 

isolates of S. cerevisiae are domesticated, however, and wild strains can be isolated 

from environments such as forests or the surfaces of bruised fruits and the insects 

that visit them. Its well-annotated genome, ecological and geographical diversity, 

along with its history of multiple independent domestication events, make the 

population of S. cerevisiae isolates a good model for population genomics studies. 

 

The most complete study of this species to date is the 1,011 S. cerevisiae genome 

population survey which sequenced the entire genomes of geographically and 

ecologically diverse strains of S. cerevisiae, characterizing populations of wild and 

domesticated strains at a fine level12. This analysis established the pangenome of the 

species – the full set of genes found within the species. The reference genome of a 

species is not fully representative of the genomic content of the population. Some 

strains or subpopulations may have genes or other genetic elements not found in the 

rest of the population, and more crucially, not found in the reference. Identifying 

those genes then becomes necessary by assembling them de novo. The full set of 

genes that can be found in a population is the pangenome, which contrasts with the 

minimal set of genes shared within a population, the core genome. In the 1,011 
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dataset, the pangenome is a set of 7800 Open Reading Frames (ORFs), subdivided 

into 5000 ORFs of the core genome and 2800 variable ORFs that complete the 

pangenome. A significant proportion of the variable ORFs was found to correspond 

to introgressions from Saccharomyces paradoxus, a closely related species with 

orthologous genes introgressed into the genomes of S. cerevisiae strains. 

 

The wide sampling of the diversity of the species also made it possible to retrace the 

evolutionary history of the species to a single origin marked by several independent 

domestication events. The evolution of wild isolates is characterized by SNP 

accumulation, while domesticated isolates have evolutionary histories also marked 

by variable ploidy, aneuploidy events and expanded gene families. The expanded 

gene families are probably an adaptation to the human-shaped environments these 

domesticated clades were identified in. Domesticated clades also display 

considerable variation in CNVs, again likely adaptations to these artificial 

environments. Evidently the highly specialized environments associated with human 

domestication, such as brewing, baking or winemaking have necessitated specific 

adaptations. The multiple independent domestication events and the clear differences 

in genomic content between wild and domesticated strains provides a particularly 

interesting view into the effects of domestication on genomic structure. 

 

The untapped potential of polyploid beer isolates of Saccharomyces cerevisiae 

While classically thought of as a diploid species, the 1,011 S. cerevisiae genome 

population survey identified that 11.5% of the isolates were polyploid (>2n). 

Polyploidy was not evenly distributed within the population, instead strongly 

associated with specific domestication environments: all of the ale beer strains and 

the large majority of African beer strains were polyploid (Figure 1). Additionally, 

nearly 20% of isolates presented aneuploidy, again strongly associated with human 

environments, mainly affecting the ale beer and sake clades. The strong link between 
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polyploidy in S. cerevisiae and the brewing environment is particularly interesting 

given that beer-brewing S. cerevisiae strains are a polyphyletic group31 consisting of 

at least three different clades. The polyploid ale beers, polyploid African beer strains 

and partially polyploid mosaic beers suggest that polyploidy is important to S. 

cerevisiae in the brewing environment and developed independently. Raising further 

questions, not all domesticated environments lead to polyploidy, nor do 

domesticated environments which lead to high ethanol concentrations. The wine and 

bioethanol strains are typically diploids. 

 

 

Figure 1 - Distribution and fraction of polyploids in the SNP dendrogram of 1,011 

Saccharomyces cerevisiae isolates 

This dendrogram is based on the genomic SNPs of 1,011 isolates of S. cerevisiae from diverse 

geographical and ecological origins, including human environments. Nearly 12% of these 

1,011 strains are polyploid (>2n), and interestingly these polyploids are not equally 

distributed among the different subpopulations. All ale beer strains, most African beer strains, 

and a large fraction of the mixed origin and mosaic strains are polyploid, while all remaining 

subpopulations are 2n or lower. The grey pie chart represents mosaic region 3. Tree based on 

data from Peter et al. (2018), figure adapted from Krogerus et al. (2019). 
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The ale beer strains have been shown through phasing to be a polyploid admixture 

of Asian and European wine strains32. This answers the historical question of the 

nature of the polyploidy of these strains. Ale beer strains are mainly tetraploid and 

seem to derive from a hybrid of two diploid strains. The origins of the other beer 

groups have not yet been elucidated. The apparent link between beer brewing and 

polyploidy, along with the frequent aneuploidy events make it particularly 

interesting to interrogate these strains through phasing. 

 

Independent hybridization events in Brettanomyces 

bruxellensis 

 

Other, non-model yeasts such as Brettanomyces bruxellensis can also be of 

significant interest due to their complex genomes, population structure and economic 

importance. This yeast species is found in breweries of some specialty Belgian 

beers33 such as Lambic and is one of the species in the symbiotic film associated 

with kombucha production34. B. bruxellensis also gained notoriety in the wine 

industry due to its spoiling effect in wine production35. Its genome was only 

assembled at near-chromosome scale (15 contigs for 8 chromosomes) in 201536 and 

at chromosome scale (8 contigs) in 201737. Both of these attempts to establish a high 

quality de novo reference used long read sequencing to achieve their goal. Its current 

reference genome is 13 Mb large, split unevenly among 8 chromosomes. Due to its 

economic importance, large collections of B. bruxellensis were readily available and 

interest in this species has been high despite not being as well-studied or widely 

adopted for analysis as the model yeast S. cerevisiae. 
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Figure 2 - Distribution of polyploids in dendrogram of 1488 Brettanomyces bruxellensis 

isolates based on 12 microsatellite markers 

This dendrogram, based on 12 microsatellite markers, provides an initial estimate of the 

population structure of 1488 strains of B. bruxellensis representative of the diversity of the 

species. The inferred ploidy of these strains suggests a high degree of polyploidy, particularly 

within certain populations such as beer and AWRI1499-like wine strains. Figure adapted 

from Avramova et al. (2018). 

 

In 2018, a genetic survey based on 12 microsatellites in 1488 isolates of the highly 

diverse population of B. bruxellensis revealed the structure of its genome is closely 

linked to ploidy level, geographical origin and the substrate it was isolated from38. 

In this study approximately 60% of the strains surveyed are estimated to be 

polyploid38 (Figure 2). The majority of these polyploids are triploids, split into two 

major groups: beer strains and wine strains. It had previously been reported that some 
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isolates of B. bruxellensis are polyploid as a result of hybridization39 (Figure 3). This 

study described two different cases of B. bruxellensis triploids, each having 

hybridized with a different still unidentified but related species. These unidentified 

species were named “Brettanomyces x” and “Brettanomyces y”, owing to their 

genetic closeness to Brettanomyces bruxellensis. These triploids are therefore 

allopolyploids, or hybrids, with 2n+1n genomes. The two isolates in which 

Brettanomyces x and Brettanomyces y were identified, AWRI1499 and AWRI1608, 

are the basis for the two major groups of triploids observed. The nature of these 

unidentified species in AWRI1499-like wine strains and the AWRI1608-like beer 

strains presents itself as an interesting genomic mystery to be solved through 

phasing. 

 

In addition to elucidating the nature of the hybridization, a recent survey of 53 strains 

from diverse geographical and ecological origins cemented the notion that B. 

bruxellensis has a complex genomic architecture with frequent aneuploidies, high 

levels of structural variation and significant heterozygosity (up to 3.5% in some 

triploids, significantly higher than the maximum 1.8% divergence between the most 

distant strains of S. cerevisiae)40. This complex genomic architecture undoubtedly 

has phenotypic consequences and must be taken into account for a complete 

understanding of this organism’s biology. 
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Figure 3 - Triploid Brettanomyces bruxellensis strains are suspected of being hybrids 

(2n+1n) 

Previous reports indicate that triploid B. bruxellensis strains appear to be hybrids containing 

a core diploid genome and a more distantly related 1n genomic copy. The nature of this third 

copy is unknown and it in fact appears that some strains harbor an extra genomic copy here 

named Brettanomyces x, while other strains harbor a different extra copy, Brettanomyces y. 

Figure adapted from Borneman et al., (2014). 
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Polyploid genomes and the phasing out of approximations 

 

To better retrace the evolutionary history of a population and to assess the phenotypic 

consequences of genetic sequences more accurately, it is important to take the entire 

genome into account, in all its complexity and detail. In S. cerevisiae, the 

polyphyletic group of beer strains presents higher ploidies, suggesting polyploidy is 

a common adaptation to the brewing environment and raising the question of the 

origins of these different beer groups. For B. bruxellensis the complex genomic 

architecture and the mystery over the other species involved in the apparent multiple 

independent hybridizations encourage a much closer look at the genomes of this 

species. To fully explore both of these examples, as well as any other biological 

system of a higher ploidy, would require phasing sequenced polyploid genomes. The 

current processes to sequence a genome all involve a step which fragments the DNA 

molecules. To obtain phase information, these DNA fragments, also called “reads”, 

must then be pieced back together into the original chromosomes. For heterozygous 

organisms, this fragmentation makes it difficult to know which SNPs co-occur on 

the same chromosome. The phasing problem is the challenge of determining the 

original sequences of the chromosomes, known as haplotypes. 

 

However, phasing has historically been difficult due to the read length of short read 

sequencing methods being shorter than the distance between variants (Figure 4). 

Long reads have led to highly performant methods for diploid phasing, notably 

through the alignment-based method WhatsHap41 and the diploid aware de novo 

assembly tool, Falcon Unzip42. However, polyploid phasing presents significant 

additional complexity which is more difficult to resolve, even with long reads. 

Crucially, for a heterozygous diploid, solutions to the problem can exploit an obvious 

symmetry: finding the sequence of one haplotype necessarily leads to knowing the 

sequence of the other. The polyploid phasing problem, however, does not display 
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this symmetry, which greatly increases its complexity. Knowing the sequence of one 

haplotype still leaves uncertainty over the two or more remaining haplotypes. 

Consequently, the field of polyploid phasing has lagged behind diploid phasing, 

limiting our understanding of polyploid genomes. 

 

 

 

 

Figure 4 - Long reads overcome the inter-variant distance limitations of short reads 

In order to phase a genome, it is necessary to link together variable positions, or SNPs, 

represented here by vertical red bars. Short reads face a serious limitation for phasing when 

the distance between SNPs is greater than the length of the reads or greater than the insert 

size for paired end reads. Long reads, with their significantly higher read length which can 

reach hundreds of kb, are able to link together even very distant SNPs. However long reads 

are also more error-prone, a drawback that must be taken into account. 
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Polyploid phasing methods 

 

Solutions to the polyploid phasing problem can be categorized into three main 

strategies: Physical separation methods, de novo haplotype assembly, and alignment-

based phasing. Briefly, physical separation methods attempt to only sequence one 

chromosome at a time, side-stepping the polyploid phasing problem by sequencing 

individual chromosomes43. De novo haplotype assembly methods ambitiously 

attempt to simultaneously recreate the different haplotypes and resolve the structure 

of the genome, typically relying on long-range sequencing methods such as Hi-C44. 

Alignment-based phasing methods map the sequencing reads to a reference sequence 

and identify variable positions, which are then used as input to a phasing algorithm 

that outputs predicted haplotypes. 

 

Here, we discuss the different paradigms in the field of alignment-based polyploid 

phasing methods and how the performance of these methods is evaluated. We also 

propose that it would greatly benefit the field to standardize the performance metrics 

used to evaluate proposed methods, including the generation of gold standard 

datasets to systematically benchmark against. 

 

Trends in polyploid phasing solutions 

 

All alignment-based phasing methods share the same pre-processing steps. First, a 

reference sequence must be chosen or assembled de novo, to serve as a guide. Then, 

the sequenced reads are mapped to this reference sequence and variable positions are 

identified. Finally, the dataset of reads, reduced to their variable, phase-informative 

positions, is used as input for the phasing method (Figure 5). The methods proposed 

as solutions to the polyploid phasing problem are highly varied in their approaches 
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and mathematical and conceptual underpinnings. To provide a coherent framework 

for this review, we delineate the development and usage of different strategies, 

identifying four major trends: 

 

Population inference methods, which leverage mapped reads of known genotypes 

in related individuals or in a population to infer the haplotypes in a sample. 

Objective function optimization methods, which typically represent the mapped 

reads as a matrix and seek to minimize an objective function which typically 

represents the amount of discrepancy between the predicted haplotypes and the 

observed sequencing data. 

Graph partitioning methods, which convert the mapped reads to a graph and seek 

to split the graph into subgraphs that correspond to the haplotype predictions. 

Cluster building methods, which rely on the similarity between mapped reads to 

group them into clusters that correspond to predicted haplotypes. 

 

We discuss these four paradigms, their implementations and limitations. 

 

Figure 5 - Alignment-based phasing 

Alignment-based phasing methods invariably require the following steps: DNA sequencing 

of the sample, which fragments the DNA into sequenced reads. The reads are then mapped 

to a reference sequence and heterozygous sites are identified by variant calling. The dataset 

of reads associated with their variable positions is then input to a phasing method and 

predicted haplotypes are output. These predicted haplotypes therefore conform to the 

structure of the reference sequence that was aligned to initially. 



20 

 

A - Population inference 

 

To solve the polyploid phasing problem, population inference methods rely on the 

availability of significant amounts of genomic data. Rather than attempt to phase 

each genome individually, these methods leverage the genetic information of several 

individuals to inform the phasing (Figure 6). The choice of population is important 

to the strategy, and can range from large, non-specific populations of individuals of 

the same species45–49, to highly specific, smaller populations such as parents or 

siblings50–52. 

 

 

Figure 6 - Population inference strategy 

Population inference methods typically cast the mapped reads to a matrix and compare them 

to a panel composed of haplotype information obtained from sequencing either a large 

population of individuals, or a smaller group of individuals related to the sample. Haplotypes 

are predicted through statistical inference based on the frequency of jointly observed 

genotypes. 

 

The first such methods, SATlotyper45 and polyHap46, used large populations of 

unrelated individuals, while later methods such as TriPoly50, PopPoly51 and 

mapPoly52 exploit pedigree information to inform their predictions. The methods 

employed to leverage population data for phasing are highly varied: SATlotyper 

casts the polyploid phasing problem as a boolean satisfiability problem45, polyHap46 
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and mapPoly52 both use Hidden Markov Models to leverage the statistical 

information in populations of individuals, superMASSA47 frames it as a graphical 

Bayesian problem, SHEsisPlus48 developed a formulation of the Expectation 

Maximization algorithm to predict the most likely haplotypes, and TriPoly50 and 

PopPoly51 both leverage pedigree information and Mendelian laws of inheritance to 

phase haplotypes. Finally, while Poly-Harsh49 is not fully a population inference 

algorithm, its authors describe a clustering algorithm using population inference to 

connect fragmented phase blocks, improving the contiguity of phasing. 

 

Population inference methods are particularly powerful when it comes to extending 

the reach of short read sequencing using statistical information. This has a very 

positive effect on contiguity without requiring the use of other sequencing methods. 

The public availability of a significant amount of sequencing data for various 

organisms is a very valuable resource for this method, though applying it to less 

studied organisms can prove more costly than other strategies presented here. One 

of the notable limitations inherent to population inference methods is the requirement 

of a sequenced population. For the methods which require large populations, the 

material and labor cost of obtaining and sequencing a large number of individuals 

can be a significant limiting factor. For those which require fewer but related 

individuals, the difficulty can lay in the existence or availability of such individuals. 

This renders these methods inappropriate for situations with limited resources, such 

as any study of a single individual, particularly if it is an individual of a species 

which is not extensively studied and sequenced. 

The choice of the reference sequence against which to map the population is also a 

crucial one for these methods. The mapping and variant calling operations can be 

computationally expensive, and their quality is dependent on the quality of the 

reference sequence in use. Here, a seemingly intractable problem is apparent for 

some applications of population inference methods. Any species with a propensity 
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for structural variation would be difficult to phase with these methods, as the 

architecture of their genomes does not lend itself well to using the same reference 

for all individuals of the population. This makes it impossible to pick a reference 

sequence which accurately represents the population, and difficult to obtain 

sufficiently many distinct individuals with the same genomic architecture. Not all 

organisms have extensive structural variations within their population, however, and 

for populations which maintain highly similar genomic architectures, this strategy 

remains appropriate. 

 

B - Objective function optimization 

 

The objective function optimization strategy seeks to solve the phasing problem for 

single individuals. This method defines an objective function, which it then 

implements an algorithm to minimize (Figure 7). The objective function is typically 

a measurement of how well the predicted haplotypes correspond to the reads in the 

dataset. For example, for MEC (Minimum Error Correction) optimization, the 

objective function counts how many mismatches there are between the predicted 

haplotypes and the set of mapped reads. The intuition is that a low MEC score 

implies a highly accurate phasing. Another variant of this method is the MFR 

(Minimum Fragment Removal) method, in which the objective function is 

minimized when the predicted haplotypes and the set of mapped reads are in perfect 

agreement after the removal of as few reads as possible. Typically, but not always, 

objective function optimization methods cast the dataset of reads as a matrix and 

implement known or novel algorithms and heuristics intended to minimize the 

chosen objective function in the matrix. 
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Figure 7 - Objective function optimization strategy 

Objective function minimization strategies define a function which has a high score when the 

sample is not phased, and an increasingly lower score as the phasing improves. In theory such 

a function should lead to increasingly accurate haplotypes, until finally reaching a good 

haplotype prediction when minimized. In this figure we used the dominant MEC function as 

an example, though other functions can be used in this strategy. The objective function 

minimization strategy treats the polyploid phasing problem as an optimization problem which 

splits the matrix into k submatrices and applies various optimization methods to solve it. Each 

submatrix is then converted to a haplotype prediction through consensus of the reads. 
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Objective function optimization methods showcase a variety of heuristics and 

statistical methods. The first full application of the objective function optimization 

method for higher ploidies is found in HapTree53, which uses a relative likelihood 

function to phase polyploid genomes. However, the most common objective function 

is the MEC49,54–59. The first polyploid application which optimizes the MEC function, 

GTIHR54, uses a genetic algorithm which only applies to triploids. It was followed 

by SDhaP55, whose authors developed a novel convex optimization method to 

minimize the MEC for higher ploidies. SCGDhap56, BFBP57, AltHap58 and Poly-

Harsh49 all also use the MEC function and attempt to optimize it using various 

approaches, such as BFBP’s belief propagation algorithm derived from 

communication theory and Poly-Harsh’s Gibbs sampling method. EHTLD59 extends 

the MEC function by applying additional genetic constraints, naming it the MEC 

with Genotype Information (MEC/GI), but it only applies to triploids. Finally, 

HaplotypeAssembler60 uses the MFR objective function and optimizes it using 

integer linear programming. 

 

The approach of objective function optimization is dominated by the MEC function 

yet remains very varied in the methods implemented to solve it. In contrast with the 

preceding population inference strategy, these methods aim to phase individual 

genomes, relying solely on the mapped reads to inform the reconstruction of the 

haplotypes. This, however, puts the objective function optimization and other 

strategies at a disadvantage when the sequencing data is not sufficiently informative 

to overcome low levels of phasing information. This would be the case of genomes 

with very low levels of heterozygosity or datasets in which the sequencing data 

consists of reads that are shorter than the distance between heterozygous positions, 

inevitably leading to fragmented haplotypes. Long reads are particularly interesting 

for phasing applications due to how phase-informative they are. Each long read can 

contain significantly more heterozygous positions than its short read counterparts. 
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However, none of the objective function optimization methods cited here take long 

reads into account. The intuition behind the optimization of an objective function is 

typically guided by the notion that the predicted haplotypes must conform in some 

way to the information present in the set of mapped reads. This assumption holds 

fairly well only if the read dataset is known to be of high quality and not error-prone. 

These methods are more appropriate for relatively error-free reads. 

 

Objective function minimization strategies do not suffer from the same issues with 

complex genomic architectures as the population inference methods do. However, 

they all coerce the reads into a selectable ploidy k, which is incompatible with the 

biological reality that a polyploid genome of ploidy n does not necessarily have n 

haplotypes throughout its genome. For example, it may have an extra copy of one of 

its chromosomes, with its own unique haplotype. Alternatively, it may have the exact 

same haplotype for a large region of two of its chromosomes, effectively presenting 

only n-1 haplotypes for that region. An algorithm that coerces exactly k haplotypes 

on the entire genome will provide erroneous results if these edge cases are not 

considered and explicitly handled in some way. For polyploid genomes with simpler 

genomic architectures, where the ploidy and number of haplotypes remain stable, 

these methods remain appropriate. 
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C - Graph partitioning 

 

The graph partitioning strategy casts the dataset of mapped reads as a graph. 

Typically, each mapped read is a node and each edge represents how similar two 

nodes are. The goal is then to determine the optimal way to split the graph into 

subgraphs that represent the different predicted haplotypes (Figure 8). It departs from 

the objective function strategy by seeking to group similar mapped reads together, 

away from dissimilar mapped reads, rather than seeking to optimize for coherence 

of the predicted haplotypes with the set of mapped reads. It achieves this through the 

use of the graph model and its associated mathematical tools and algorithms. To this 

end, graph partitioning algorithms are implemented or developed and applied, 

outputting subgraphs which are then converted to haplotype sequences, usually 

through majority voting. 

 

Typical graph partitioning solutions to the polyploid phasing problem cast the 

mapped reads as nodes and give weights to overlapping nodes which penalize 

differences between them. Then a graph partitioning algorithm is applied to the graph 

in order to obtain the subgraphs which correspond to the haplotype predictions. In 

HapColor61, the weight between mapped reads corresponds to the number of 

mismatches between them. It then applies the DSatur (Degree of saturation) 

algorithm, obtaining a high number of subgraphs, which it then iteratively merges 

until only k subgraphs remain. For PolyCluster62, Hap1063, ComHapDet64 and 

WhatsHap Polyphase65, the nodes are also mapped reads, and the weights are 

negative if there are many mismatches between reads, and positive if there are many 

matches. This then encourages their respective graph partitioning algorithm to cut 

the graph along the lines of negatively weighted disagreement. Hap10 and WhatsHap 

Polyphase distinguish themselves through their use of long reads. Hap10 uses 10X 

linked reads and applies a max-k-cut algorithm, while WhatsHap Polyphase uses 
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PacBio and Oxford Nanopore long reads and applies heuristics to solve the cluster 

editing problem. Notably, the initial cluster editing step of WhatsHap Polyphase is 

ploidy agnostic, meaning it is not biased towards a specific ploidy. However, 

WhatsHap Polyphase still coerces a specific ploidy, but it does so while explicitly 

taking into account the edge case of local regions of similarity between haplotypes 

in a process it terms haplotype threading. 

 

 

Figure 8 - Graph partitioning strategy 

Graph partitioning strategies cast the mapped reads to a graph in which typically the reads 

are nodes and the edges between them correspond to a measure of how similar or dissimilar 

the reads are to each other based on the variants they carry. The goal is to identify k subgraphs 

of reads derived from the same haplotype, and to that end various graph partitioning methods 

are applied. Each subgraph is then converted to a haplotype prediction through consensus of 

the reads. 
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There have been two other graph partitioning methods which cast the mapped reads 

to a graph in a different way. The first application of graph partitioning methods to 

the polyploid phasing problem was an extension to HapCompass66 which made it 

applicable to polyploids. Under the HapCompass model, each node is a SNP, and 

the mapped reads are edges. The use of SNPs as nodes is uncommon, but observed 

again recently with HRCH67, another non-standard example of a graph partitioning 

method. HRCH uses a weighted SNP hypergraph, which it then partitions into 

predicted haplotypes using the hypergraph partitioning algorithm hMETIS. 

 

The graph partitioning strategy relies on the notion that reads which derive from the 

same haplotype will be similar to each other, and dissimilar to reads derived from 

other haplotypes. They should then naturally form tightly connected graphs if 

attributed weights which correspond to their similarity (or dissimilarity). This 

strategy leverages well-established algorithms which efficiently split graphs into 

well-connected components. WhatsHap Polyphase’s application of a graph 

partitioning strategy to long read datasets and its handling of part of the complexity 

brought on by the variability in genomic architectures is encouraging for the 

handling of the more complex problems of polyploid phasing. However, most graph 

partitioning algorithms, and all methods presented here, coerce the graph into k 

subgraphs. This leads to the same pitfalls as discussed for the objective function 

strategy, notably with structural variants and aneuploidies. While it may be possible 

to handle all edge cases in post-processing steps, careful consideration should be 

placed upon the sample being studied and the limitations and biases inherent to the 

phasing algorithm being used. There may be an existing or yet to be developed graph 

partitioning method which is intrinsically capable of resolving complex genomes 

containing aneuploidies, structural variants and a variable number of local 

haplotypes, however this has not yet been shown. This strategy may prove to be the 
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model of choice for resolving complex polyploid genomes, particularly when 

combined with long reads. 

 

D - Cluster building 

 

The cluster building strategy groups methods which do not appear to have a favored 

way of representing the data. Instead, these methods iteratively create and extend 

clusters of similar reads using heuristics (Figure 9). These methods are related to the 

graph partitioning methods in that they establish a way to cluster similar reads 

together, and dissimilar reads apart. However, they either do not explicitly cast the 

mapped reads to a graph, or they do not use graph partitioning algorithms. Another 

notable aspect of the methods in this strategy is the interest displayed in leveraging 

long reads to improve phasing quality. 

 

 

Figure 9 - Cluster building strategy 

Cluster building strategies do not appear to have a favored model to which to cast the set of 

mapped reads. These methods typically score the similarity and dissimilarity between 

overlapping reads and iteratively build local clusters from the most similar pairs of reads. 

This strategy has led to ploidy agnostic methods, which cluster reads until the remaining 

clusters are too dissimilar rather than cluster them until the remaining clusters fit k haplotype 

predictions. 
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H-Pop and H-PopG68 represent the read data as a matrix and seek to split the matrix 

into k parts, with each part corresponding to a group of reads with maximal 

similarity. Each group then represents a different haplotype, and it therefore 

introduces a diversity measure, which seeks to maximize the difference between the 

k groups, or predicted haplotypes. Similarly, Ranbow69 uses a seed and extend 

paradigm to locally, iteratively cluster reads together based on similarity and 

dissimilarity measures. While it does coerce k haplotypes, it also handles the edge 

case where the number of haplotypes is less than k. While Ranbow is described only 

for short reads, its authors express interest in extending it to use long reads. 

All of the cluster building methods which do use long reads are ploidy agnostic, 

meaning they do not coerce a specific ploidy. Chaisson et al., 2018 propose a 

correlation clustering method to solve the polyploid phasing problem using long 

reads, however it is designed to only phase parts of the genome, intended to resolve 

multicopy duplications, and no tool was released.70 This is the first ploidy agnostic 

phasing method applied to part of a genome. In an unnamed method32, Fay et al., 

2019 describe a custom phasing algorithm they developed in order to analyze 

admixed polyploid yeasts. Using mapped long reads, they score similar reads 

positively, and dissimilar ones negatively, then proceed to iteratively merge long 

reads together for three rounds. This is the first example of a ploidy agnostic method 

applied to entire genomes, though it is not compared to other methods or released as 

a tool for the community to use. Finally, nPhase71, a method we recently developed, 

solves the polyploid phasing problem by iteratively clustering similar reads together 

until only unique haplotypes remain. It is the first ploidy agnostic phasing method 

applicable to entire genomes to be released as a tool. 

 

The cluster building strategy shares the same intuition that drives the graph 

partitioning strategy. Reads derived from the same haplotype will resemble each 

other and be different from reads derived from another haplotype. However, in 
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contrast with the graph partitioning strategy, these methods do not cast the set of 

mapped reads to a graph. Instead, the cluster building methods are defined by the 

strategy of iteratively growing clusters of reads while maintaining the diversity of 

the clusters. Interestingly, this strategy has led to three ploidy agnostic phasing 

methods, all of which leverage long reads. Ranbow handles the edge case where the 

number of haplotypes is locally lower than the ploidy, and the ploidy agnostic 

methods in theory adapt to the shape of the genomic architecture. While it should be 

expected that ploidy agnostic methods are capable of handling aneuploidies and local 

changes in the number of haplotypes, they do not provide any handling of other 

structural variants such as heterozygous inversions and translocations. This is partly 

a consequence of the nature of all of these strategies as alignment-based phasing 

methods, since they are limited to the genomic architecture imposed by the haploid 

reference sequence. However, long reads can provide a significant amount of 

information about structural variants, notably through split reads. No method of 

polyploid phasing attempts to use split reads to resolve heterozygous structural 

variation. The development of such a method would be a significant step towards 

complete polyploid phasing methods. For complex genomes, cluster building 

methods, and in particular ploidy agnostic phasing methods are appropriate. 

However, one major drawback of ploidy agnostic methods is the interpretability of 

the results. It is less straight-forward to manipulate ploidy agnostic phasing results 

than phasing results which neatly fit an expectation of k haplotypes. 
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Overview 

 

The four strategies we described attempt to solve the same problem, and there are 

large interfaces between them. The way a problem is modeled influences the solution 

space that is intuitive and the mathematical tools which are at our disposal to solve 

it. We find that the field of alignment-based polyploid phasing algorithms has 

evolved to tackle increasingly complex formulations of the problem, using 

increasingly sophisticated strategies and tools, yet still has significant room for 

improvement. In particular, long reads are under-exploited despite representing a 

very significant tool to obtain large amounts of phase information. The polyploid 

phasing problem also needs to explicitly tackle and resolve the problems of 

heterozygous structural variants, aneuploidies and local variations in the number of 

haplotypes. The ploidy agnostic methods tackle some of the complexity of genomic 

architecture, but not all. For brevity, we did not discuss whether or not each method 

phases only biallelic SNPs, or also phases indels and multiallelic SNPs. However, it 

is clear that the majority of methods limit themselves to only phasing biallelic SNPs, 

sometimes also multiallelic SNPs, and indels seem to only be phased by Ranbow. 

We also discussed the importance of the chosen reference sequence, and it may 

become common practice to perform a collapsed de novo assembly to generate an 

appropriate reference for each sample prior to alignment-based phasing. However, 

this also entails having to generate a new genome annotation for downstream 

analyses and can unnecessarily complicate comparisons between samples. Overall, 

there is still room for improvement in the field of polyploid phasing algorithms and 

recommended practices. 
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Validation datasets and performance metrics 

 

Once a polyploid phasing method has been developed, its performance must be 

evaluated. To that end, a validation dataset which corresponds to a set of reads 

obtained from a polyploid must be given as input to the phasing method, and the 

output haplotype predictions must be evaluated by performance metrics. 

 

The validation dataset can be simulated or real. In the case of simulated datasets, it 

is possible to know the optimal phasing result, which allows for the use of detailed 

metrics to better understand the performance of the polyploid phasing algorithm. A 

validation dataset can be fully simulated, such as in Haptree53, which randomly 

generates haplotypes and simulates reads derived from these haplotypes. Validation 

datasets can also be partially simulated, or reconstructed. This is the case for 

WhatsHap Polyphase and nPhase, which both merge real sequencing reads of 

organisms with known haplotypes. WhatsHap Polyphase combines human datasets 

with known haplotypes, while nPhase combines S. cerevisiae datasets of haploid and 

homozygous diploid individuals. Fully simulated datasets have a high degree of 

control over all characteristics of the genome, which allows them to test the effects 

of different ploidy levels, heterozygosity levels, genome architectures, coverage 

levels. However, these methods are highly dependent on the accuracy of their 

simulations of genomes and sequencing results. Partially simulated datasets are more 

faithful simulations of real haplotype phasing scenarios as they use real genomes, 

with real SNPs and real sequencing reads. However, these genomes are still 

artificially produced, typically presenting relatively uniform distance between 

haplotypes, and there is less control over their characteristics, which limits the testing 

space. Some parameters, such as the effects of coverage level and heterozygosity 

rate, can still be queried by downsampling the number of reads or the variable 
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positions input to the phasing algorithm, however this process is less straight-

forward than it is for a fully simulated dataset. 

 

For all simulated datasets, the ground truth is known and can be used to evaluate the 

predicted haplotypes. A variety of metrics have been implemented, here we discuss 

those most commonly used in the field. 

 

The MEC score is not only an objective function used in a number of phasing 

methods, but also a metric which has been routinely used as evidence of good 

phasing. The MEC score, as a performance metric, has received some criticism in 

the context of the polyploid phasing problem. In their paper on Ranbow, Moeinzadeh 

et al. note that the MEC metric is incomplete, only considering sequencing errors69, 

while in their paper for WhatsHap Polyphase, Schrinner et al. point out that low 

MEC scores can be obtained with objective worse phasing result65. Due to the 

significantly higher error rate of long read sequencing, any method relying on these 

reads will necessarily obtain worse MEC scores despite the obvious advantages of 

long reads, further limiting the usefulness of this metric for the evaluation of 

polyploid phasing methods. 
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Figure 10 - Behavior of the SWER and contiguity performance metrics 

A We illustrate the unpredictable nature of the SWitch Error Rate (SWER) metric with two 

examples. In both cases we suppose we have a haplotype prediction of 100 variants. In the 

first, top case, two consecutive switch errors lead to a 2% SWER, but due to being 

consecutive the accuracy is at a very high 99%. In the second, lower case, there is only one 

switch error, giving a better SWER score of 1%, however the accuracy is reduced by half to 

50% due to it occurring in the middle of the prediction. This behavior of the SWER metric 

makes it unpredictable and unreliable. B We illustrate the importance of contiguity to the 

interpretation of accuracy results with two examples. In both cases we show haplotype 

predictions for a diploid sequence. In the first, low contiguity example, we illustrate how it 

can be trivial to obtain extremely accurate predictions if they are sufficiently fragmented. 

Through the second, high contiguity example, we show how the accuracy of the previous 

example could dramatically decrease by increasing contiguity. 
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The Switch Error Rate (SWER), also described as the Vector Error Rate (VER), 

measures how frequently the predicted haplotype switches between true phases 

(Figure 10A). Optimization of this metric does not necessarily lead to improved 

phasing accuracy, as a single vector can reduce the accuracy by half. In a real use 

case, the presence of a switch error has a much more significant consequence than 

the presence of a few point errors. As we argued in our paper on nPhase71, the 

interpretability of the SWER is further complicated by the fact that the presence of 

more switch errors can result in significantly better phasing results, rendering the 

metric fundamentally unpredictable. The use of this metric is no doubt motivated by 

the observation that it is possible to phase several SNPs very well, yet a single switch 

error can reduce the accuracy by up to 50%. Hence methods which produce longer 

phase blocks, more susceptible to switch errors, may appear to have worse accuracy 

despite having large stretches of correctly phased blocks. However, this metric 

remains flawed and does not behave predictably. Some possible replacement metrics 

would be to report the mean length of unbroken phase blocks, or the minimal 

unbroken phased block length to cover 90% of the SNPs. 

 

The accuracy, also described as the Reconstruction Rate or Hamming distance 

measures how accurate the phasing is globally. Accuracy can be defined in two 

forms. The first is the prediction accuracy, which at 99% can state that for every 100 

SNP predictions it makes, on average 1 SNP will be in the wrong phase. The second 

is the reconstruction accuracy, which at 99% states that for every 100 SNPs in the 

genome, on average 1 SNP will be in the wrong phase or not phased. The latter is 

more stringent by taking the missing rate into account. In both cases, the accuracy 

metric gives an important notion of how accurate the predictions are, making it a 

crucial performance metric to evaluate. 
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Accuracy on its own, however, is not a sufficient marker of how informative a 

phasing result is. Without an indication of how contiguous the results are, the 

accuracy metric can be highly misleading (Figure 10B). A good haplotype prediction 

must be accurate and contiguous. However, the definition of contiguity is not 

straight-forward. Definitions based on the number of phased blocks per chromosome 

can be used to compare methods to each other, but due to the variability of genome 

sizes they do not provide an intuitive understanding of how good the phasing is. 

Taking inspiration from the metrics used to assess the contiguity of genome 

assemblies, contiguity can be defined as the minimum number or length of haplotype 

blocks to cover 50% or 90% of the SNPs. This is done by some methods, such as 

Hap10 which determined the N50 haplotype block length63. Highly different 

standards of what constitutes a good contiguity should be expected when comparing 

short and long read methods due to the ability of long reads to phase very distant 

SNPs. 

 

These metrics are all applicable when the ground truth is known, which is the case 

for simulated datasets. However, it is less straight-forward to evaluate the 

performance of these methods with real polyploid data due the absence of a ground 

truth. A few proxies have been developed to tackle this problem. We have already 

discussed the MEC metric, which is one of the main metrics used to evaluate 

performance on real polyploids. Ranbow69 phases the sweet potato, Ipomoea batatas, 

and uses long, accurate Roche 454 reads to validate its haplotype predictions. 

WhatsHap Polyphase and nPhase both phase the autotetraploid potato plant, 

Solanum tuberosum, and show qualitatively that its genes appear well-phased65,71. 

 

In their paper72, Motazedi et al. develop haplosim, a simulation pipeline which can 

generate simulated haplotypes and associated reads. This tool has been used by 

several polyploid phasing methods for their validation steps, such as Hap1063 and 
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Ranbow69. However, there is no widely used benchmarking dataset which can 

systematically be compared against, and haplosim does not appear to have been 

updated in the past three years to reflect the significant improvements in quality 

achieved in long read sequencing methods. A well-maintained gold standard 

benchmark would be of benefit to the field of polyploid phasing. It would be 

interesting for such a resource to carefully consider the performance metrics to 

evaluate, the diversity of read sequencing methods and the effects of variable ploidy, 

genome architecture, heterozygosity level, genome size, structural variation, indels, 

polyallelic sites and local variations in the number of haplotypes. 
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Project summary 

 

Phasing, and in particular polyploid phasing, have been challenging problems held 

back by the limited read length of high-throughput short read sequencing methods 

which can’t overcome the distance between heterozygous sites and the financial and 

labor high cost of alternative methods such as the physical separation of 

chromosomes or use of fosmid libraries. Recently developed single molecule long-

read sequencing methods provide much longer reads which overcome this previous 

limitation at reasonable costs. However, the accuracy of these methods has been 

lower than that of the previous short read methods, despite rapid and frequent 

improvements. Significant strides in the diploid phasing problem were achieved by 

leveraging the long read length of long-read sequencing methods. For diploid 

phasing, each variable position can only have one of two states, to place in one of 

two haplotypes. This simplifies the task by making it possible to deduce one phase 

by knowing the other. Tools such as the alignment-based WhatsHap1 and the de novo 

assembly tool Falcon-Unzip2 exploit this inherent symmetry to provide good phasing 

results for diploids. Efforts to solve polyploid phasing, where the absence of 

symmetry greatly complexifies the problem, still need to resolve significant 

technical roadblocks. A large proportion of polyploid phasing methods designed for 

short read data relied on the high accuracy of these reads and cannot be directly 

applied or easily modified to accommodate the error profiles of long read methods. 

The complex genomic architectures of polyploids such as the presence of 

aneuploidies and regions of variable numbers of haplotypes also still need to be 

addressed in order to obtain an accurate view of the structure of their genomes. The 

absence of a reliable polyploid phasing strategy also translates to a dearth in 

applications of polyploid phasing methods to populations of individuals. 

 



 

45 

 

In this context, we decided to develop a polyploid phasing algorithm which we 

describe in Chapter I. Our tool, named nPhase, is a pipeline which takes as input a 

reference sequence, a set of short reads and a set of long reads. The pipeline will 

align the long and short read sequences to the reference, and it will variant call the 

mapped short reads. Then this dataset is phased by our ploidy agnostic cluster 

building method which adapts to the ploidy of the dataset and natively handles 

aneuploidy and variations in the number of distinct haplotypes. Our method has a 

few adjustable parameters and we describe how we selected the default parameters 

through extensive testing on a simulated validation dataset. We also describe the 

heuristics we developed to clean up raw phasing results obtained with nPhase. 

Finally, we apply our algorithm to a triploid strain of the yeast species Brettanomyces 

bruxellensis and to chromosome two of the autotetraploid plant Solanum tuberosum. 

We also describe our observations regarding ways to validate results obtained on real 

datasets, notably by introducing a new way to evaluate the quality of a phased cluster 

based on the allelic frequencies observed within. 

  

Having developed this ploidy agnostic phasing method, we then set out to apply it to 

two real datasets. First, a large collection of 1,011 isolates of the yeast species 

Saccharomyces cerevisiae were recently sequenced3. It was found that 11.5% of the 

strains are polyploids. These polyploid isolates were not uniformly distributed 

throughout the population, only affecting a few subpopulations. In particular we note 

that the polyphyletic group of beers, mainly distributed across three main clades 

(Beer 1, Beer 2 and African Beer), all were composed of a significant proportion of 

polyploid strains. In Chapter II, we therefore sequenced 35 beer strains of S. 

cerevisiae with Oxford Nanopore technology, obtaining long reads which we used 

to phase this population with nPhase. We found that the three main beer yeast 

subpopulations appear to derive from different admixtures of other populations. As 

previously reported, strains of the Beer 1 clade were an admixture of Asian and 
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European wine strains. We found that strains of the Beer 2 clade were also composed 

of a similar admixture, only with a higher proportion of European wine alleles. We 

therefore renamed the Beer 1 and Beer 2 clades to the more evocative Asian 

dominant and European dominant, respectively. Finally, the African Beer strains 

mainly exhibited European wine alleles, with a background of French dairy alleles. 

The phased data made it possible for us to estimate the genetic divergence of 

haplotypes within and between strains. By comparing all haplotypes of genes and 

selecting those with the highest levels of divergence (>4%), we identified significant 

GO term enrichment for carbon metabolism, dehydrogenase activity, cell wall 

remodeling and transporter activity. A deeper look at individual phased genes also 

revealed different evolutionary trajectories of individual genes across 

subpopulations, showing that the inactivation of the beer off-flavor forming gene 

FDC1 was independently inactivated in the Asian dominant and African Beer 

groups. We also found that the ADH2 and SFA1 genes which participate in the 

formation of fusel alcohols, another source of off-flavors in beer, are inactivated in 

Asian dominant strains. 

 

Another species with an interesting polyploidization history is Brettanomyces 

bruxellensis. This yeast species is used to brew some specialty Belgian beers and 

participates in the microbial community that makes kombucha, but is also notorious 

for contaminating bioethanol plants and wine. A very large collection of 1,500 

isolates of B. bruxellensis was recently surveyed using microsatellite data and it was 

identified that nearly 60% of isolates are polyploid4. It was previously known that 

some triploid strains of B. bruxellensis genomes exhibit an interesting profile, their 

genomes being composed of a core diploid genome and a distant third set of 

chromosomes, likely obtained through hybridization with a sister species5. We 

therefore sequenced 71 diverse strains of B. bruxellensis using short- and long-read 

sequencing to phase these strains in Chapter III. In this chapter, we developed 
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another phasing strategy intended to separate reads from polyploid hybrids in which 

some of the genomic copies are obtained from hybridization with a different species. 

We found that each of the four triploid subpopulations (wine 2, wine 3, beer and 

tequila/bioethanol) has a unique polyploidization history with a distinct trajectory. 

Based on genetic distance, we determined that the wine 2 group likely underwent 

autopolyploidization and that allopolyploidization occurred independently for the 

wine 3, beer and the tequila/bioethanol subpopulations. We also identified that 

hybridization of the allopolyploids occurred with a different species each time. We 

ruled out known sister species of B. bruxellensis such as Brettanomyces anomala 

and Brettanomyces nanus by sequencing them and assembling their genomes de 

novo, finding that they were too distant to the genetic material we observe in our 

allopolyploids. Finally, we also detail extensive loss of heterozygosity events which 

shape the genomic architecture of these subpopulations. 

  

Overall, in this project we first sought to develop a novel polyploid phasing 

algorithm, opting for a ploidy agnostic method which adapts to the shape of the data. 

Then, once the method was established, its application was explored in the contexts 

of two different populations with contrasting polyploidization histories: on one hand 

the S. cerevisiae beer strains, a polyphyletic group of strains which cluster into three 

main clades, all of which have adapted to the brewing environment and on the other 

hand the B. bruxellensis subpopulations which have adapted to different 

environments and for the most part been derive from independent hybridization 

events with different, still unknown species. 
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Chapter I – nPhase: an accurate and contiguous 

phasing method for polyploids 
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Abstract 

 

While genome sequencing and assembly are now routine, we do not have a full, 

precise picture of polyploid genomes. No existing polyploid phasing method 

provides accurate and contiguous haplotype predictions. We developed nPhase, a 

ploidy agnostic tool that leverages long reads and accurate short reads to solve 

alignment-based phasing for samples of unspecified ploidy 

(https://github.com/OmarOakheart/nPhase). nPhase is validated by tests on 

simulated and real polyploids. nPhase obtains on average over 95% accuracy and a 

contiguous 1.25 haplotigs per haplotype to cover more than >90% of each 

chromosome (heterozygosity rate ≥0.5%). nPhase opens the door to 

population genomics and hybrid studies of polyploids. 

 

  

https://github.com/OmarOakheart/nPhase
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Background 

 

Studying genotype-phenotype relations is contingent on having an accurate view of 

the genetic variants. To that end, various sequencing strategies and ways to analyze 

them have been developed. The ultimate goal is to faithfully determine the precise 

sequence of the DNA molecules contained within the cell. In practice this level of 

precision is rarely necessary and approximations are routinely used when they can 

be afforded. Aligning the sequencing data to a reference genome is a good 

approximation to identify genetic variants such as Single Nucleotide Polymorphisms 

(SNPs) but a poor one to identify Structural Variants (SVs)1. By contrast, the 

generation of de novo assemblies using the sequencing data is a good approximation 

to identify SVs1 but, without significant polishing work2, usually leads to a lower 

quality sequence. One enduring approximation is the reduction of the genome to a 

single sequence, even if the organism does not have a haploid or rigorously 

homozygous genome. A diploid or higher ploidy genome can be heterozygous. 

Identifying the heterozygous positions, or variants, is known as genotyping. Linking 

these variants together to establish which variants co-occur on the same strand of 

DNA is known as haplotyping or phasing. There is increasing interest in phasing 

genomes for diverse reasons, such as to obtain more accurate reference genomes3, 

better study population genomics4, improve the accuracy of GWAS studies5, study 

the effects of compound heterozygosity6, investigate Allele-Specific Expression 

patterns7, gain insight into polyploid evolution8,9, better understand the mechanisms 

of heterosis10 and dissect the origins of hybrid species11. 

Phased genomes can be obtained either by physically separating entire 

chromosomes12 (or significantly large portions of chromosomes) prior to 

sequencing13 or by separating them bioinformatically after sequencing the whole 

genome14. The length of reads is a significant limiting factor in the ability to 

bioinformatically separate reads into their corresponding haplotypes. One very 
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successful method that overcame that limitation was trio binning15, which 

circumvented the importance of long reads by leveraging information from parental 

whole genome sequencing. Other methods have been explored but cannot overcome 

the short read length limitation particularly well16. One solution has been to resort to 

imputing haplotypes through reference panels17. Despite a higher error rate, diploid 

phasing of long reads has been solved by existing methods such as WhatsHap18, an 

alignment-based phasing tool and Falcon-Unzip19, an assembly-based phasing tool. 

Assembly-based phasing attempts to generate a de novo assembly for each haplotype 

directly, without relying on a reference sequence. Alignment-based phasing uses a 

reference genome as support to identify heterozygous positions and then attempts to 

link positions together based on the co-occurrence of heterozygous SNPs on 

overlapping reads. For diploids each variable position can only be one of two 

possible bases. Knowing one haplotype allows to deduce the other. This allows 

diploid phasing methods to be relatively simple and straight-forward. For polyploids, 

however, a variable position can be one of two or up to six possible states (all four 

bases, a deletion or an insertion) and this deduction is no longer possible, rendering 

the task of phasing significantly more complex. Some methods currently exist to 

phase polyploids but mainly using short read sequencing and leading to a low 

accuracy and contiguity phasing20,21,22,23. 

Here, we developed nPhase to address the lack of a polyploid phasing method that 

outputs accurate, contiguous results and does not require prior knowledge of the 

ploidy of the sequenced genome. The required inputs are a reference sequence as 

well as long and short read sequencing data. The pipeline performs the mapping, 

variant calling, phasing and outputs the phased variants and a fastQ file for each 

predicted phased haplotype, or haplotig. The nPhase algorithm is ploidy agnostic, 

meaning it does not require any prior knowledge of ploidy and will not attempt to 

guess the ploidy of the sample. Instead, it will separate the reads into as few distinct 

haplotigs as possible. The nPhase algorithm has three modifiable parameters, we 
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have evaluated the effects of these parameters on the results and provide a default 

set of parameters, which we predict to be appropriate for all cases, along with some 

recommendations on how to modify these parameters for genomes that are more 

difficult to phase, i.e. low heterozygosity and high ploidy genomes. 

Using yeast as an in silico model, we validated the performance of nPhase on 

simulated Saccharomyces cerevisiae genomes (2n, 3n and 4n) of varying 

heterozygosity levels (0.01%, 0.05%, 0.1% and 0.5% of the genome) as well as on a 

triploid Brettanomyces bruxellensis sample and chromosome 2 of the autotetraploid 

potato plant, Solanum tuberosum. Based on our simulated tests we found that nPhase 

performs very well in terms of accuracy and contiguity. We obtained an average of 

93.9% accuracy for all diploids, 92.3% for all triploids, and 94.5% for tetraploids 

with a heterozygosity level of at least 0.5%, or 87.3% accuracy when we include the 

lowest heterozygosity level tetraploids. All results are very contiguous, with an 

average of between 2.4 and 4.1 haplotigs per haplotype, bringing us very close to the 

ideal result of one haplotig per haplotype. 
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Results 

 

Phasing pipeline and strategy  

We developed the nPhase pipeline, an alignment-based phasing method and 

associated algorithm that run using three inputs: highly accurate short reads, 

informative long reads and a reference sequence. The pipeline takes the raw inputs 

and processes them into data usable by the nPhase algorithm. Unlike other existing 

methods, our algorithm is designed for ploidy agnostic phasing. It does not require 

the user to input a ploidy level and it does not contain any logic that attempts to 

estimate the ploidy of the input data. The idea at the core of the algorithm is that if 

you iteratively cluster the most similar long reads and groups of long reads together 

you will naturally recreate the original haplotypes. 

For the first step of the pipeline, the long and short reads are aligned to the reference, 

then the aligned short reads are variant called to identify heterozygous positions and 

generate a high quality dataset of variable positions (Figure 1). Each long read is 

then reduced to its set of heterozygous SNPs according to the previously identified 

variable positions. We also collect long read coverage information to allow the level 

of representation of a haplotype in the data to influence its likelihood of being 

properly phased (see Methods). 

 

The reduced long reads and the coverage information are then passed onto the nPhase 

algorithm, an iterative clustering method. On the first iteration, nPhase clusters 

together the two most similar long reads, then it checks that the cluster identities are 

maintained, i.e. it checks that merging these two long reads together does not 

significantly change the information they each contain individually, and finally it 

generates a consensus sequence representative of the group of these two reads. The 

next iteration will be exactly the same with N-1 reads. nPhase will run until all 
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remaining clusters are sufficiently different from each other to fail the cluster identity 

maintenance check. These remaining clusters represent the different haplotypes 

within the original dataset. 

 

 

 

Figure 1 - nPhase pipeline and verification process. (a) The nPhase pipeline requires three 

inputs: a long read dataset, a short read dataset and a reference genome sequence. Both 

sequencing datasets are mapped to this reference genome, then the short reads are variant 

called in order to identify heterozygous positions. The long reads are reduced to only their 

heterozygous positions, and this set of linked heterozygous positions is phased by the nPhase 

algorithm and outputs phased haplotypes. (b) In parallel with running the virtual polyploids 

through the nPhase pipeline, we map the original strains to the same reference and variant 

call them to identify their haplotypes. This generates the true positive dataset against which 

we will compare the haplotypes predicted by nPhase in order to assess the accuracy of our 

algorithm. 
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Figure 2 - nPhase algorithm. Here we represent how a triploid's reads could align to a 

reference sequence. Each read is one of three colors, one for each haplotype. The clustering, 

consensus and cluster identity maintenance steps are iteratively repeated until all remaining 

clusters are forbidden to merge. Clustering: Each vertical line represents a SNP; different 

colors signify different haplotypic origins. Only two reads are clustered at a time, here we 

show three clusters, so this is the result of the third step of nPhase's iterative clustering. 

Consensus: A consensus sequence is generated by allowing every read in the cluster to vote 

for a specific base for a given position. Votes are weighted by the pre-calculated context 

coverage number to discourage sequencing errors. The consensus sequences that represent 

clusters are treated just like aligned long reads and continue to be clustered. Cluster identity 

maintenance: When all remaining clusters are very different from each other, they are not 

allowed to merge, this is to prevent the algorithm from always outputting only one cluster 

per region. The remaining clusters and their consensus sequences should correspond to the 

haplotypes present in the original dataset. 
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nPhase, a ploidy agnostic phasing algorithm 

As described earlier, nPhase is an iterative clustering algorithm. It is composed of 

three main ideas: (i) clustering, which ensures that similar reads are clustered 

together, (ii) cluster identity maintenance, which ensures that only similar clusters 

are merged into larger ones and finally (iii) consensus, a way to reduce a cluster to a 

consensus sequence in order to easily compare it to other clusters (Figure 2). 

Each step of the clustering algorithm starts by calculating the similarity between 

every overlapping pair of reads (Figure 2a). By default, the minimal overlap is 10 

heterozygous positions. Similarity is defined as S = Nshared variants/Nshared positions. The 

pair of reads with the highest similarity is clustered together. If there is a tie, then we 

cluster together the pair of reads with the most variable positions in common. If there 

is again a tie, then we select a pair randomly. By default, the algorithm will not 

attempt to merge two sequences with less than 1% similarity. 

The pair that was selected now forms a cluster of two reads (Figure 2b). In order to 

continue this iterative algorithm, we need to define a way to calculate the similarity 

between a read and a cluster of reads, and the similarity between two clusters of 

reads. We do so by computing a consensus sequence for each cluster of reads and 

we use the consensus sequence to calculate the similarity as defined above. For each 

position, the consensus is defined as the base which has the most support from the 

reads in the cluster. Each read gets a vote equal to the context coverage of the base 

it supports. If there is a tie then all tied bases are included in the consensus sequence. 

As defined, the clustering algorithm will continue to iterate, merging clusters 

together until all available options are exhausted and output only one cluster per 

region (Figure 2c). The solution is to set restrictions on which clusters are allowed 

to be merged in the clustering step. We consider that each cluster has its own 

“identity” defined by the population of reads that comprise it. If merging two clusters 

has a significant effect on the identity of both clusters then the merge is not allowed. 
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We calculate how much merging of two clusters would change them. The amount of 

change allowed is limited by the ID parameter. In order to quantify the amount of 

change to a cluster’s identity we keep track of the “demographics” of each position, 

i.e. how strongly represented each base is for that position in that cluster. We 

differentiate positive identity changes from negative identity changes: (i) if a merge 

of two clusters results in increased support for their consensus sequence bases then 

that change is considered positive, (ii) if the merge results in decreased support for a 

consensus sequence base then that change is considered negative and we calculate 

how many votes the base lost, even if it remains the consensus base after the merge. 

The number of votes lost is divided by the total number of votes in the region that 

both clusters have in common to obtain the cluster identity change percentage. By 

default, if it is higher than 5% we do not allow the two clusters to merge. Once all 

remaining clusters fail this test, the algorithm stops. The resulting clusters represent 

the different haplotypes that nPhase found and are output as different sets of reads, 

heterozygous SNPs, and consensus sequences. 

 

Validation of the nPhase algorithm by combining reads of non-heterozygous 

individuals 

To test and validate the performance of nPhase, we decided to combine sequencing 

datasets of haploid and homozygous diploid organisms into virtual polyploid 

datasets. We selected four natural S. cerevisiae isolates as the basis for our virtual 

genomes: ACA, a haploid strain, and three homozygous diploid strains: CCN, BMB 

and CRL (Additional File 1: Table S1). These four strains have different ecological 

and geographical origins and are sufficiently distinct from each other to allow us to 

evaluate the performance of nPhase at heterozygosity levels of up to 1% of the 

genome24. 

We sequenced these strains using an Oxford Nanopore long-read sequencing 

strategy and obtained Illumina short-read data from our 1,011 yeast genomes 
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project24. Since these strains do not have any heterozygosity, we could map their 

short reads to the Saccharomyces cerevisiae reference genome and variant call them 

to obtain their haplotypes (Figure 1). We then used these haplotypes as a truth set to 

assess the performance of nPhase. With this truth set, we tested the influence of 

dataset characteristics: coverage, ploidy, heterozygosity level and the inclusion or 

exclusion of reads that map to distant regions of the genome, hereafter described as 

split reads. We also investigated the influence of parameters that modulate the 

behavior of the nPhase algorithm: minimum similarity, minimum overlap and 

maximum ID change (for a description of them see Available Parameters in 

Methods). 

To assess the influence of ploidy, we used the three constructions of the different 

virtual genomes previously mentioned. We also randomly sampled 6250, 12500, 

62500 and 125000 heterozygous SNPs from each virtual genome to simulate datasets 

where 0.05%, 0.1%, 0.5% and 1% of the positions in the genome are heterozygous. 

This equates to three different ploidies and four heterozygosity levels, or 12 

polyploid genomes to test. 

By running a total of 6000 validation tests on varying ploidy, heterozygosity, and 

coverage levels exploring the parameter space, we determined default parameters of 

nPhase (see Methods). According to these tests, the parameters that result in optimal 

results in terms of accuracy and contiguity are the following: 1% minimum 

similarity, 10% minimum overlap and 5% maximum ID (see Identifying optimal 

parameters in Methods). We then ran nPhase with these default parameters on our 

previously described optimal datasets of varying ploidy (2n, 3n and 4n) and 

heterozygosity levels (0.05%, 0.1%, 0.5% and 1%) of 20X long reads per haplotype 

with split read information (Additional File 1: Table S2). 

As an example, we phased the tetraploid genome showing a heterozygosity level of 

0.5% using nPhase (Figure 3). Since we know the ground truth, we can assign each 
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haplotig to the strain whose haplotype it most closely represents and we can calculate 

our accuracy metrics.  

 

Figure 3 - Predicted haplotypes for the tetraploid genome with a 0.5% heterozygosity 

level. The result of this test was an accuracy of 93.7%, an error rate of 4.0%, and a missing 

rate of 2.2% with an average of 2.4 haplotigs per haplotype. Each subgraph displays the 

predicted haplotigs for a different chromosome, each predicted haplotig is on a different row 

on the Y axis, and the X axis displays the position along the chromosome. All predicted 

haplotigs are color coded according to the haplotype they are the closest to. 

 

In order to measure accuracy we distinguish between two forms of errors: standard 

errors, i.e. heterozygous SNPs erroneously attributed to the wrong haplotype, and 

missing errors, i.e. heterozygous SNPs which we know are present but which were 

erroneously not represented in the predictions. The accuracy is the percentage of all 

SNPs which were correctly attributed to their haplotype. The error rate is the 

percentage of all predictions which were incorrect. The missing rate is the percentage 
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of all heterozygous SNPs which were never attributed to their haplotype. We use the 

following formula:  

 

Accuracy=TP/(TP+FP+FN) 

 

TP=True Positive; the SNP was attributed to the correct haplotype 

FP=False Positive; the SNP does not belong in this haplotype 

FN=False Negative; the SNP is not represented in the results. 

 

The result of this test was an accuracy of 93.7%, an error rate of 4.0%, and a missing 

rate of 2.2% with an average of 2.4 haplotigs per haplotype. Seven of the sixteen 

chromosomes have an L90 of 1, meaning that for all four haplotypes, more than 90% 

of the heterozygous SNPs were assigned to one haplotig. For the nine remaining 

chromosomes, seven have at least two chromosome-length haplotigs. In all cases, 

the chromosomes are nearly fully covered by haplotigs that represent the four 

different haplotypes, as confirmed by the low missing haplotype prediction rate 

(2.2%). As a ploidy agnostic tool, nPhase was not given any information about the 

ploidy of this sample and does not attempt to estimate its ploidy. Despite that, nPhase 

reached a high accuracy (93.7%) and contiguity (2.4 haplotigs per haplotype), 

demonstrating its ability to reliably phase a tetraploid of that heterozygosity level. 

The same representation is available for the other datasets of different ploidy and 

heterozygosity levels (Additional File 2: Fig S1). 

Across the 12 phased genomes with variable ploidy and heterozygosity levels, we 

noted little variation in terms of contiguity as we obtained between 2.4 and 4.3 

haplotigs per haplotype (Figure 4a). At a heterozygosity level of 0.05%, the least 

contiguous genomes are observed with around 4 haplotigs per haplotype (Figure 4a). 

The triploid genomes decrease to around 3 haplotigs per haplotype for 

heterozygosity levels greater than 0.1% (Figure 4a). The tetraploid tests continue the 
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trend of higher ploidies becoming more stable and contiguous as the heterozygosity 

level increases, dropping to 3.1 haplotigs per haplotype at the 0.1% heterozygosity 

level and then stabilizing at 2.4 haplotigs per haplotype at the 0.5% and 1% 

heterozygosity levels (Figure 4a). This could be explained by the availability of more 

haplotigs to potentially merge with each other as ploidy increases. 

Regarding the accuracy, we observed that for heterozygosity levels greater than 

0.5%, the accuracy appears stable and high across ploidies with a minimum of 

93.56% for the diploid (2n) at a 0.5% heterozygosity level, and a maximum of 

96.70% accuracy for the triploid (3n) at a 1% heterozygosity level (Figure 4b). For 

lower heterozygosity levels (≤ 0.1%), we have results that are more variable between 

ploidies (Figure 4b). Diploid tests retain a high 95.32% accuracy for the 0.1% 

heterozygosity level but drop to 90.34% accuracy for the 0.05% heterozygosity level. 

For triploid genomes, the results drop to 90.70% accuracy for the 0.1% 

heterozygosity level, then down to 87.00% at 0.05% heterozygosity level. 

Continuing the trend of higher ploidies performing worse with lower heterozygosity 

levels, the accuracies for the 0.1% and 0.05% heterozygosity levels for the tetraploid 

tests output 81.65% and 78.62% accuracy, respectively. 
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Figure 4 - Effects of ploidy and heterozygosity levels on accuracy and contiguity. 

Through these graphs we show the effects of sample properties (heterozygosity level and 

ploidy) on nPhase’s accuracy metrics when run with default parameters. (a) Each bar displays 

the contiguity of a different test result. The least contiguous heterozygosity level is 0.05%, 

likely related to its also yielding the least accurate results. Overall, we note little absolute 

variation in the contiguity. Interestingly, contiguity at higher heterozygosity levels appears 

to be a function of ploidy. Higher ploidies seem less likely to become less contiguous as a 

result of increasing the heterozygosity level, while the diploid tests are more affected. We 

also note that tetraploids of high heterozygosity level are the most contiguous. (b) Each bar 

displays the accuracy of a different test result. As ploidy increases, the accuracy tends to 
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decrease. It also appears to decrease faster for tests on low heterozygosity level constructions. 

(c and d) Each bar displays our evaluation of the effects of ploidy and heterozygosity level 

on the error and missing rates, respectively, for our 12 tests using optimal parameters. 

Overall, we see that the error rate is always higher than the missing rate across these 

conditions. As the heterozygosity level increases, the error and missing rates decrease along 

with the gap between ploidies. We also find that more difficult phasing problems (high ploidy 

and low heterozygosity level) yield much higher error and missing rates, and that the low 

heterozygosity tetraploids seem to be particularly sensitive to missing calls. 

 

In addition, we observed that errors are more frequent in all tests than missing calls 

(Figures 4c and 4d). For higher heterozygosity levels (≥ 0.5%), these two forms of 

error are stable and very low. The error rate is set between a minimum of 2.53% for 

the 1% heterozygosity level triploid and a maximum of 4.51% for the 0.5% 

heterozygosity level diploid. And the missing rate is set between a minimum of 

0.31% for the 1% heterozygosity level diploid and a maximum of 2.21% for the 0.5% 

heterozygosity level tetraploid. For lower heterozygosity levels (≤ 0.1%), both the 

error and missing rates increase with ploidy, suggesting both types of errors may be 

linked. If we set aside the 0.1% heterozygosity level diploid which has an error and 

missing rates of 3.82% and 0.86%, respectively, the error rates have a wide range 

with a minimum error of 6.49% for the 0.1% heterozygosity level triploid and a 

maximum error of 12.91% for the 0.05% heterozygosity level tetraploid. Similarly, 

the missing rates range from a minimum of 2.97% for the 0.05% heterozygosity level 

diploid to a maximum of 8.46% for the 0.05% heterozygosity level tetraploid, again 

adding to the trend of lower heterozygosity levels coupled with higher ploidies 

yielding worse results. 
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Benchmarking nPhase against other polyploid phasing tools 

Some methods currently exist to phase polyploids using long read data such as 

WhatsHap polyphase20, as well as other methods which were mostly designed to 

work with short read sequencing data but can sometimes use long reads as 

input21,22,23. Because nPhase is a phasing tool that leverages the linking power of long 

reads to achieve its high accuracy and contiguity metrics, we did not benchmark it 

against tools that rely exclusively on short reads for phasing, since these are 

inherently limited by the size of their reads. We also did not benchmark nPhase 

against tools that can only phase diploid genomes as this is not the intended use case 

for our algorithm. We therefore compare nPhase to the recently released WhatsHap 

polyphase, to our knowledge the only other polyploid phasing algorithm that handles 

long reads. 

We compared the results nPhase (default parameters) with WhatsHap polyphase on 

the same samples (Figure 5). Since WhatsHap polyphase has a parameter named “--

block-cut-sensitivity” that can be set to determine the tradeoff between accuracy and 

contiguity, we tested WhatsHap polyphase using all possible values for this 

parameter (integers from 0 to 5) to compare all possible results to nPhase’s default 

results. A value of 0 for this parameter means that WhatsHap polyphase will generate 

the most contiguous results possible, and 5 means that it will generate the most 

accurate results possible. 

The performance of WhatsHap polyphase was measured in terms of switch error rate 

and N50 block lengths. Instead we will talk about accuracy and average number of 

haplotigs per haplotype, two metrics that are more direct representations of the 

performance of the algorithms and answer two important questions: “How reliable 

are the results?”, i.e. what are the proportions of accurate, erroneous and missing 

calls? And “How informative are they?”, i.e. by how many haplotigs is each 

haplotype represented? nPhase and WhatsHap polyphase were both applied to our 

20X test datasets of different ploidy and heterozygosity levels. nPhase was tested 
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using its default parameters and WhatsHap polyphase was tested with all six possible 

values of its adjustable sensitivity parameter. We report here the average accuracy, 

error and missing rates, as well as the average number of haplotigs obtained for the 

genome, normalized by the ploidy. 

 

Figure 5 - Error types and number of haplotigs for nPhase and WhatsHap polyphase. 

nPhase and WhatsHap polyphase were both applied to our 20X test datasets of different 

ploidy and heterozygosity levels. nPhase was tested using its default parameters and 

WhatsHap polyphase was tested with all six possible values of its adjustable sensitivity 

parameter. This graph compares both tools using the following metrics: average number of 

haplotigs obtained for the genome, normalized by the ploidy, average accuracy, average error 

rate and average missing rate. (a) Average accuracy, error and missing rates for all tests using 

nPhase and WhatsHap polyphase on different sensitivity levels. The error rate for WhatsHap 

polyphase increases dramatically as the sensitivity level decreases, illustrating the tool’s 

tradeoff between accuracy and contiguity. (b) Average number of haplotigs per chromosome 

per haplotype for all tests using nPhase and WhatsHap polyphase on different sensitivity 

levels. The very high number of haplotigs per chromosome per haplotype for the highest 

sensitivity levels (5 and 4) shows that despite being highly accurate, they are not contiguous 

enough to be informative. Based on our results, nPhase outperforms WhatsHap polyphase in 

all of our tests. The tradeoff between accuracy and contiguity is extreme in WhatsHap 

polyphase, either the results are very accurate but so fragmented as to be uninformative, or 

they are about as contiguous as nPhase but less than 65% accurate. 
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In our tests nPhase has an average accuracy of 91.2%, slightly outperforming 

WhatsHap polyphase’s most sensitive setting (5), which yields an average accuracy 

of 90.1%, and its second most sensitive setting (4) which yields an average accuracy 

of 88.9% (Figure 5a). Lower sensitivity levels for WhatsHap polyphase quickly lose 

accuracy, with the next lowest setting yielding only 81.1% accuracy on average, and 

its least sensitive setting only reaching 59% accuracy. 

In addition to its high accuracy, nPhase is highly contiguous, outputting these 

accurate results, on average, in 3.4 haplotigs per chromosome per haplotype (Figure 

5b). The highly accurate WhatsHap polyphase sensitivity levels (5 and 4) output 

their results in a highly discontiguous 258.7 and 88.9 haplotigs per haplotype, 

respectively. In order to output results of similar contiguity to nPhase, WhatsHap 

polyphase must sacrifice accuracy and drop to a sensitivity level of 1 or 0, which 

output 2.5 and 0.9 haplotigs per chromosome per haplotype, respectively. This 

tradeoff between accuracy and contiguity performed by WhatsHap polyphase does 

not appear to have a useful middle ground and nPhase demonstrates that it is not 

necessary to make a choice given that it simultaneously achieves both. 

 

Validation of the nPhase algorithm on a real Brettanomyces bruxellensis triploid 

strain 

We further tested nPhase by running it on a real triploid organism. We selected 

GB54, a triploid strain of the yeast species Brettanomyces bruxellensis with a 0.7% 

heterozygosity level. GB54 was sequenced by Oxford Nanopore long-read 

sequencing and Illumina short-read sequencing, then processed through the nPhase 

pipeline. Since we know that this strain is a triploid strain, we should expect a 

successful phasing to reflect that triploid nature by outputting three haplotypes per 

region. In our results we observe that most regions have been phased into two or 

three haplotypes, with few small exceptions (Figure 6). 
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Figure 6 - Predicted haplotypes for the Brettanomyces bruxellensis strain. Each subgraph 

displays the predicted haplotigs for a different chromosome of this 0.7% heterozygosity level 

triploid, each predicted haplotig is on a different row on the Y axis, and the X axis displays 

the position along the chromosome. All predicted haplotigs are color coded randomly as the 

ground truth is not known. We observe that while the strain is a known triploid, nPhase did 

not exclusively predict three haplotypes per region. We also note that some regions such as 

the end of chromosome 2 or center of chromosome 6 have a very low level of heterozygosity. 

 

The regions that output more or less than three haplotypes are unexpected and 

potentially represent a phasing failure. For example, the highlighted region in Figure 

6, on chromosome 4 transitions from three haplotypes to only two haplotypes. By 

remapping each haplotig’s reads back to the reference and viewing the coverage, we 

note that regions phased into only two haplotigs have a coverage distribution 

consistent with the presence of only two haplotypes but three genomic copies (Figure 

7). One haplotig accounts for 2/3 of the coverage and the other haplotig accounts for 

the remaining 1/3 of the coverage. In Figure 7, we highlighted the previously 

described region of chromosome 4, showing us that the three haplotigs in the first 
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triploid region have roughly equal coverage, and in the region with only two 

haplotigs one of them is twice as covered as the other. 

 

Figure 7 - Coverage level of predicted haplotigs for the Brettanomyces bruxellensis 

strain. Each subgraph displays the coverage level of predicted haplotigs for a different 

chromosome of this 0.7% heterozygosity level triploid, the Y axis is the coverage level and 

the X axis displays the position along the chromosome. All predicted haplotigs are color 

coded randomly as the ground truth is not known. We observe that in regions covered by 

only two haplotigs, one will be covered roughly twice as much as the other, whereas regions 

covered by three haplotigs tend to be equally covered. 

 

The haplotigs that represent 2/3 of the reads in the region they cover either represent 

one single haplotype which is present in two copies, or they represent two very 

similar haplotypes that were erroneously clustered into one by nPhase. By looking 

at the distribution of the heterozygous allele frequency within each haplotig’s 

corresponding cluster of reads, we show that few clusters are clearly enriched in 
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allele frequencies around 50% (Figure 8). Two of these clusters correspond to 

regions erroneously predicted to contain only one haplotig (Additional File 2: Fig 

S2), confirming that the allele frequency within a haplotig cluster can reveal chimeric 

clusters. The absence of a noticeable enrichment in the allele frequencies of other 

clusters is further evidence that the predictions made by nPhase are highly accurate. 

 

 

 

 

 

 

 

 

Figure 8 - Allele frequency distribution of 

predicted haplotigs for the Brettanomyces 

bruxellensis strain. Each line displays the 

allele frequency distribution of predicted 

haplotig clusters. the height of each bar is the 

relative proportion of all heterozygous SNPs in 

that cluster and the X axis displays the allele 

frequency. All predicted haplotig clusters are 

color coded randomly as the ground truth is not 

known. We identify two clusters as having a 

heterozygous SNPs with a slightly high 

proportion of allele frequencies around 50%, 

one in green and one in orange towards the 

bottom of the figure. 
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Implementing automated cleaning steps 

We observed in our initial in silico results that nPhase outputs many shorter haplotigs 

which consequently do not contain much phasing information. With our test on the 

Brettanomyces bruxellensis strain we identified that we can use haplotig cluster 

allele frequency as a proxy for phasing quality. We also noted that, by design, nPhase 

will only output unique haplotypes which sometimes means that a region will be 

phased into fewer copies than might be naively expected based on ploidy. Finally, 

we also find that raw nPhase results can sometimes appear to be too fragmented. 

To provide a method that begins addressing these issues, we developed a series of 

three steps intended to automatically clean nPhase’s raw results without significantly 

affecting accuracy: 

1. Merging as many remaining haplotigs as possible together 

2. Filtering out haplotigs that account for less than 1% of all coverage 

3. Redistributing the reads of highly covered haplotigs 

These steps are further described in the Automated Cleaning section in Methods. 

We checked the effect of these steps on accuracy and number of haplotigs by 

applying them to the results of running nPhase with default parameters on all our 

virtual polyploids (10X and 20X coverage). Overall, our raw results had an average 

of 4.03 haplotigs per haplotype (Figure 9A) and an average accuracy of 88.6% 

(Figure 9B). After cleaning we observed an average of 2.37 haplotigs per haplotype 

and an average accuracy of 87.4%. If we only consider our tests at 0.5% 

heterozygosity or higher, then our raw results had an average of 3.81 haplotigs per 

haplotype and an accuracy of 91.49%. After cleaning we had an average of 1.87 

haplotigs per haplotype with an accuracy of 91.44%. 
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Figure 9 - Contiguity and accuracy of nPhase results on virtual polyploids before and 

after automated cleaning. Each subgraph compares performance metrics for raw nPhase 

results with their automatically cleaned counterparts. Each point corresponds to a virtual 

genome of a given ploidy (n), coverage (X) and heterozygosity level (a) We compare here 

the number of haplotigs per haplotype in all these conditions. We find a significant reduction 

in the number of haplotigs per haplotype for our cleaned results in all cases. (b) We compare 

here the accuracy (%) in all conditions. We find that the automated cleaning process has a 

small, negligible negative effect on accuracy in most cases, though not all.  
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We tested this method on our results with GB54 and observe a significantly more 

contiguous phasing (Figure 10). The cleaning process successfully redistributed the 

reads in the previously highlighted region of chromosome 4 (Additional File 2: Fig 

S3) and merged haplotigs together in a way that renders the results much easier to 

interpret. The number of haplotigs has been reduced from 93 to 33, greatly reducing 

noise. We expect the accuracy not to have been negatively affected by this step based 

on the way the read coverage of cleaned haplotig clusters is distributed (1/3, 1/3, 1/3 

coverage or 2/3, 1/3 coverage) and the allele frequency distributions of the cleaned 

haplotigs (Additional File 2: Fig S4). 

 

Figure 10.  Automatically cleaned predicted haplotypes for the Brettanomyces 

bruxellensis strain. This figure represents an automatically cleaned version of Figure 6. We 

note the presence of significantly fewer haplotigs, a higher contiguity and the filling of the 

gap observed in the chromosome DEBR0S4. One notable change observed with the cleaned 

step is that chromosome 8 is predicted to have only two different haplotypes, which was not 

evident based on the raw results. For any sensitive application it would be necessary to further 

scrutinize this prediction since the automated cleaning process is less rigorously validated. 
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Running the nPhase algorithm on chromosome 2 of the potato plant species 

Solanum tuberosum 

We also tested nPhase on one chromosome of a larger, more repetitive plant genome. 

We used the autotetraploid Solanum tuberosum (potato) dataset generated for the 

WhatsHap polyphase paper20. We used the latest version of the DM1–3 516 R44 

assembly as a reference (v6.1)25. We chose to limit this section to phasing 

chromosome 2. At 46 Mb it is the shortest chromosome in the reference assembly 

(chromosome 1 is the largest with an 88 Mb chromosome) and is 30x larger than the 

longest chromosome in S. cerevisiae (chromosome 4, 1.5 Mb). We observe a 2.4% 

heterozygosity level for chromosome 2 based on Illumina data, more than twice as 

high as our most heterozygous test case (1%). 

 

Figure 11.  Automatically cleaned predicted haplotypes for the Solanum tuberosum 

strain. This figure represents automatically cleaned phasing results for chromosome 2 of 

Solanum tuberosum. 99% of phasing predictions are contained within the 12 largest haplotigs 

displayed here (the 12th is so sparse it isn’t visualized here). The cleaned result is significantly 

more contiguous than the raw 1129 haplotigs obtained directly from nPhase. Only around 

16% of positions are covered by more than 4 haplotigs, likely in large part where one haplotig 

drops off in coverage while another starts increasing. 
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To reduce computation time, we used a randomly sampled subset of heterozygous 

variants, effectively phasing at a 0.5% heterozygosity level. The raw results of 

nPhase yielded 1129 haplotigs, which were reduced to 25 haplotigs by a modified 

version of the automated cleaning steps; the final gap filling step was disabled in 

light of the fragmented nature of our raw results (Figure 11). Of the 25 cleaned 

haplotigs output, we find 90% of predicted variants in the 9 largest cleaned haplotigs, 

and 99% of predicted variants in the 12 largest cleaned haplotigs. The remaining 13 

cleaned haplotigs account for less than 0.6% of predictions made and could 

reasonably be filtered out. 

We note that the haplotigs obtained skip around the chromosome, which may either 

be due to structural variation or to long reads being mapped in error to the wrong 

repetitive regions, thereby giving the illusion of widespread structural variation. We 

also checked the phasing predictions for the 5 longest genes of chromosome 2 

(Additional File 2: Fig S5) and found that they are coherent with our expectations 

for an autotetraploid. 
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Discussion 

 

We developed nPhase, an algorithm that relies on a few intuitive rules to process an 

input dataset of long reads, reduced to heterozygous positions, outputting as few 

clusters as possible which we have shown correspond to the true haplotypes with 

>90% accuracy. By not specifying the ploidy of the sample in any step, we allow 

nPhase to adapt to the particularities of the dataset and do not run the risk of forcing 

an incorrect result to fit such an arbitrary algorithmic constraint. We provide nPhase 

as part of a pipeline that enables anyone to use their short and long read sequences 

of the same sample as inputs and obtain a list of SNPs and a fastQ file for each 

predicted haplotig. 

Through our validation tests, we determined that there is a set of parameters for 

nPhase that performs optimally in nearly all of our test cases and that the algorithm 

performs well even with very low levels of genetic distance between haplotypes. We 

found that as little as 10X coverage can yield satisfying results. More complex cases, 

such as when there is a high ploidy coupled with a low heterozygosity, should benefit 

from higher coverage and a more stringent parameter for the minimum overlap (0.25 

for example). Further investigation would be needed in order to more adequately 

define how these difficult samples should be treated. We also demonstrated with our 

benchmarking tests that nPhase outputs far more accurate and contiguous haplotigs 

than alternative polyploid phasing methods, and that this contiguity can be greatly 

improved at a very small cost to accuracy by using our simple automated cleaning 

process. 

By testing nPhase on a triploid strain of the yeast species Brettanomyces bruxellensis 

we were able to demonstrate that our method can be used on a real polyploid sample 

and provides a previously inaccessible insight into its haplotypic composition. We 

were able to show through the chosen sample the usefulness of a ploidy agnostic 
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method which can adapt to a genome with a variable number of haplotypes. In the 

process of validating this real test case, we established two ways of qualitatively 

assessing phasing quality: checking the coverage plots of re-mapped haplotig reads 

and checking the allele frequency of reads that comprise a cluster. Our automated 

cleaning process yielded satisfying results, visibly improving the contiguity of the 

phasing, reducing noise, and filling some of the gaps observed in the raw phasing 

results. 

We also tested nPhase on a much larger example, the 44 Mb long chromosome 2 of 

the potato plant species Solanum tuberosum, 30 times longer than the longest 

chromosome of Saccharomyces cerevisiae. This is a highly heterozygous 

autotetraploid with a highly repetitive genome and represents an important test case 

for nPhase. Despite the significantly increased complexity, we found that by using 

nPhase coupled with our cleaning steps we were able to produce a remarkably 

contiguous phasing prediction using only a fraction of the available data. The genes 

in particular we expect to be correctly phased, while we did not test the effects of 

nPhase on a highly repetitive test case with a known ground truth, limiting our 

certainty that the phasing was equally accurate in repetitive regions of the genome. 

In our analysis we did not take any extra steps to address the repetitive nature of the 

potato genome: we used a reference in which the repeats were not masked, we used 

all mapped reads, including those with low mapQ scores, and we did not check if 

variants called by short reads were reflected in the long reads. These are a few areas 

in which steps can be taken to improve the quality of the phasing. We also only used 

a fraction of all available heterozygous positions, and devoting more computing 

power and time to exploit more of that very relevant phasing information would 

presumably yield even better results. 

As an alignment-based phasing algorithm, the performance of nPhase is going to be 

highly dependent on read length and the quality of the reference genome being 

mapped against. Consequently, structural variants between the sample and the 
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reference, or even structural variants within the sample are presently not explicitly 

identified and phased by the algorithm. In order to resolve structural variants 

between the sample and the reference or even between haplotypes in the sample, we 

need to rely on the information in split reads. Here, we used a simple strategy to 

stitch together some of the haplotigs we obtain without using all of the information 

contained within split reads. Leveraging the full potential of split reads is a crucial 

next step to improve the contiguity of phased blocks. The main difficulty in using 

split reads appears to be that these alignments are significantly less reliable and will 

need to be processed differently to account for that. 

We made the choice not to base our phased blocks on insertion or deletion 

information. This information can still be obtained in the phased blocks by 

generating a de novo assembly using nPhase’s fastQ output for the relevant haplotig 

and could be integrated in future developments. 

The rarity of raw accuracy numbers in the polyploid phasing literature derives from 

the observation that a single well-placed haplotype switching error has the potential 

to reduce the accuracy of a phased block by half. This led to the widespread adoption 

of using the SWitch Error Rate (SWER) or Vector Error Rate (VER) as the 

performance metric by which to compare polyploid phasing methods. This metric is 

only relevant to methods that accept the inevitability of switch errors, for which the 

raw measurement of the accuracy of predictions will not speak by itself. nPhase has 

achieved a very high level of accuracy (>95%) and contiguity (1.25 haplotigs per 

haplotype) across most of our validation tests (in particular where the heterozygosity 

rate is of 0.5% of higher). The principal interest of providing performance metrics is 

to make it easy to assess the trustworthiness of a method’s results. For these reasons, 

we did not include the SWER in our performance metrics. 

With the nPhase algorithm we believe that the problem of switch errors in polyploid 

phasing is largely solved, the next important hurdle for polyploid phasing is finding 
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an appropriate way to handle split reads to solve the remaining problems of 

contiguity and structural variants both within a sample and between the sample and 

the reference we align to. nPhase can still be used as a preprocessing step for any 

study of phased polyploid SVs and indels since that information is partially held 

within its output of fastQ files of phased reads. 

Overall, nPhase provides, for the first time, an accurate and contiguous picture of 

polyploid genomes using only a reference genome and short and long reads. It paves 

the way for a better understanding of the origins of hybrid polyploid organisms, the 

true diversity of polyploid populations with potential hints on their origins and their 

relation to other diploid or haploid strains, and provides a clearer picture to 

investigate phenotypic effects tied to alleles which were previously inaccessible.
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Methods 

 

Total DNA extraction 

Single colonies of each natural isolate were isolated by streaking on YPD media, 

containing ampicillin (50 μg/mL). Cells from one colony of each isolate were grown 

in 60 mL of YPD at 30°C for 24 hours. We extracted the total DNA of each isolate 

using the QIAGEN Genomic-tip 100/G kit, according to manufacturer’s instructions. 

 

Library preparation and sequencing 

The kit NEBNext Ultra™ II DNA Library Prep Kit (Ipswich, USA) for Illumina 

(San Diego, USA) was used for short read library preparation of the GB54 

Brettanomyces bruxellensis isolate. The sample was sequenced on a single lane of 

NextSeq (Illumina) at the European Molecular Laboratory (EMBL) in Heidelberg, 

Germany. The strategy of sequencing was 75 paired-end (75PE). 

For long read sequencing, we used the EXP-NBD104 native barcoding kit (Oxford 

Nanopore) and the protocol provided by the manufacturer to barcode the total DNA 

of each of the isolates. The barcoded DNA was then quantified with a Qubit®️ 1.0 

fluorometer (Thermo Fisher) and pooled together with an equal amount of DNA 

coming from each isolate. We then used the SQK-LSK109 ligation sequencing kit 

(Oxford Nanopore) to finish the library preparation. Finally, the library was loaded 

to a R9.3 flow cell for a 72 hour run. 

 

Data pre-processing 

The short reads are mapped to a reference genome using bwa26 with the command 

bwa mem -M. We ran GATK27 MarkDuplicates then variant called with GATK 4.0’s 

HaplotypeCaller --ploidy 2 to identify heterozygous positions. Long reads are 

basecalled, adapter trimmed and demultiplexed by Guppy. They are then mapped to 
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the same reference using NGMLR28. We keep only primary alignments and split 

reads with the samtools29 flag 260.   

We determine the positions of heterozygous SNPs from the VCF obtained by GATK 

by looking for positions where AF=1.00 in the file. We reduced each long read to 

the set of variable positions it overlaps (Additional File 2: Fig S6a). To simplify later 

computational steps, we remove long reads that are subsets of other long reads. 

nPhase is only capable of phasing SNPs if they are identified by the variant calling 

step. This is not necessarily always the case, and the accuracy metrics are based on 

the total number of SNPs identified in the polyploid sample by the variant calling 

step. However, unidentified SNPs will still exist in the reads, so if the algorithm 

performs a proper clustering of the reads the information will still be available and 

readily extracted by a closer view of the results. 

 

Context coverage 

Long reads are error-prone but it is important not to perform any form of error 

correction to ensure that the heterozygosity is not incorrectly flattened or mis-

assigned. The nPhase pipeline works with raw long reads. In order to minimize the 

influence of these errors we consider that SNP coverage is a useful indicator of 

quality. We count the number of times each heterozygous SNP is present in a specific 

context in our dataset. We define context as being the closest flanking heterozygous 

SNPs (two heterozygous SNPs upstream and two heterozygous SNPs downstream). 

The context information will be used to better inform the nPhase algorithm and allow 

it to escape the situation where a sequencing error randomly converts a well-

supported SNP to another SNP that is well-supported in another haplotype 

(Additional File 2: Fig S6b). 
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Output results 

Once nPhase is done running it outputs several files: 

(i) A fastQ file for each haplotig containing all of the reads that have been clustered 

together for this haplotig, this file can then be used with a de novo assembly or 

alignment tool for further analysis. 

(ii) A tab separated file listing the consensus base for each heterozygous position 

contained within each haplotig. There are three columns: chromosome, position and 

consensus base. If two different bases are equally represented for a given position 

and equally well supported within the cluster they will both be represented in this 

file on separate lines. This file is sorted by position. 

(iii) A plot representing the different haplotigs along the reference genome, similar 

to the one displayed in Figure 3 but lacking the haplotype color code since the ground 

truth is not known in a typical use case of nPhase. 

 

nPhase parameter description 

nPhase has a total of 4 parameters which can be adjusted to better fit the sample. 

These parameters are the following (Additional File 2: Fig S7): 

S, the minimum fraction of similarity between two reads. When two reads 

overlap with each other we calculate their similarity by dividing the number of 

heterozygous SNPs they share by the number of heterozygous positions they both 

cover. If that fraction is smaller than the parameter S, then we will consider that these 

two reads cannot be part of the same haplotype. This parameter can be set to any 

fraction between 0 and 1, by default it is set at 0.01, or 1% similarity. 

O, the minimum fraction of overlap between two reads. When two reads overlap 

with each other we can count the number of heterozygous positions they both cover. 

If they both cover more than 100 heterozygous positions, this parameter is ignored. 
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If they cover fewer than 100 heterozygous positions then we calculate the overlap 

by dividing the number of heterozygous positions the two reads have in common by 

the total number of heterozygous positions covered by the smaller of the two reads. 

In this case, smaller does not necessarily mean a shorter read, it means a read that 

covers fewer heterozygous positions. If this overlap is smaller than the parameter O, 

then we consider that these two reads do not overlap enough for us to conclusively 

determine if they’re part of the same haplotype. This parameter can be set to any 

fraction between 0 and 1, by default it is set at 0.1, or 10% overlap. 

L, the minimum number of reads supporting a haplotig. Once nPhase has 

clustered all of the reads into different haplotigs, the user may want to filter out all 

haplotigs that are supported by fewer than N reads. This parameter can be set to any 

integer N ≥ 0, by default it is set at 0. If set to N, it will not output any cluster 

supported by fewer than N reads. 

ID, the maximum amount of change when merging clusters. When nPhase 

considers merging two clusters of reads into one new cluster it must determine if 

these two clusters are similar enough to warrant merging them together or if they 

should remain unique clusters, representative of unique haplotypes. Since these are 

clusters, every heterozygous position is potentially covered multiple times, 

sometimes with different reads in the same cluster indicating conflicting bases for 

the same position. We can calculate the number of reads voting for each base in a 

given cluster and determine the “demographics” for that position. We can take this 

further and have an overview of every heterozygous position in the cluster and how 

well-supported each base is. The base that has the majority of support is considered 

to be the “true” base for that cluster. When we merge two clusters together, we 

potentially change these “demographics”. These changes either further strengthen 

the position of the majority base for a given position, in which case there is no 

negative change in the cluster’s “identity” or they weaken the majority base’s 

position and cause a negative change to the cluster’s “identity”. When there are 
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negative changes to the cluster’s “identity” we can calculate the amount of change 

that has occurred and if that amount is too high the clusters are not allowed to merge. 

This parameter can be set to any fraction between 0 and 1, by default it is set at 0.05, 

or a 5% ID change tolerance. 

These parameters are set by default, though they can be modified if needed. The 

nPhase algorithm will use these parameters as limitations to determine which reads 

it is allowed to cluster together into haplotigs and which clusters of reads it can merge 

together into longer haplotigs. Ideally, only the ID parameter needs to be modified, 

keeping all other parameters very low and forcing the algorithm to merge clusters as 

aggressively as allowed by the ID parameter. 

 

Identifying optimal parameters 

In order to determine which parameters nPhase should use by default, it is important 

to understand how these parameters affect the results. Ideally, we will find that there 

is a set of parameters which is optimal for all possible combinations of ploidy and 

heterozygosity level, such a set would then become the default recommended 

parameters for nPhase. If no such set of parameters appears to exist, the next best 

case is to minimize the impact of as many of the available parameters as possible in 

order to reduce the parameter a user would need to explore when using nPhase to 

phase their dataset. 

Through our tests, we find that there is a narrow range in the parameter space that 

results in the optimal performance of nPhase. Intuitively, the optimal strategy 

appears to be to set the minimum similarity and minimum overlap parameters down 

to a low value so that all of the reads in the dataset are allowed to merge into a cluster, 

and to only worry about finding an appropriate threshold for the ID change 

parameter. Since the ID change parameter controls how dissimilar two clusters need 

to be in order to be considered two different haplotypes, it is fitting for this parameter 
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alone to have the most pronounced impact on the quality of results. If set too low 

nPhase will consider small sequencing errors to be evidence of alternate haplotypes, 

and if set too high it will allow different haplotypes to merge into chimeric and wrong 

results. 

To demonstrate this, we ran nPhase 125 times on 24 different samples of varying 

coverage, ploidy and number of heterozygous SNPs for a total of 3000 tests. These 

125 tests represent every possible combination of the minimum similarity S, 

minimum overlap O, and maximum identity change ID parameters for the following 

values: 0.01, 0.05, 0.1, 0.15, 0.25. 

The L parameter was set to 0 for these tests since it’s intended for use to clean up 

results by removing small, lowly supported haplotigs and we wanted to determine 

how nPhase performs without throwing away any of the data. 

We found that S, the minimum similarity parameter, had no influence on the results 

at these levels (Additional File 2: Fig S8a). O, the minimum overlap parameter, 

needs to be at least at 0.1 and seems to show very minor improvements in accuracy 

at higher levels (Additional File 2: Fig S8b). The ID parameter has the most influence 

on the accuracy of the results, with values of 0.05 and 0.1 yielding the best results 

(Additional File 2: Fig S8c). 

We then looked at the effects of O and ID on the average number of haplotigs per 

chromosome per parent. We found that the number of haplotigs slightly increases 

with O (Additional File 2: Fig S9a), while ID has a strong effect on the contiguity of 

the results (Additional File 2: Fig S9b). A higher value for ID leads to a more 

contiguous assembly, though this comes at the cost of accuracy (Additional File 2: 

Fig S9c). We again find that values held between 0.05 and 0.1 provide good results. 

If we separate our tests by ploidy we can see that, as the ploidy increases the optimal 

choice for the ID parameter narrows down around 0.05 (Additional File 2: Fig S10). 



 

87 

 

Based on our tests, we find that the following set of parameters is the best adapted 

to handle any sample: S=0.01, O=0.1, L=0, ID=0.05. We use these as our default 

parameters. 

 

Influence of coverage 

We sought to establish the effects of coverage on the quality metrics of nPhase's 

predictions. To do so we performed our tests on a 10X per haplotype dataset and a 

20X per haplotype dataset. We found that both accuracy and contiguity are improved 

by the higher coverage level of 20X per haplotype (Additional File 2: Fig S11). This 

effect is observed across ploidy and heterozygosity levels, though the accuracy 

effects are more pronounced for higher ploidy, lower heterozygosity level samples. 

A low number of haplotigs per haplotype is not always a good sign of high contiguity 

as it can be compatible with a high rate of chimeric haplotigs. Therefore, we looked 

at the contiguity effects of coverage for our tests using default parameters, which we 

have previously determined output accurate results. Based on these tests we were 

able to confirm that the 20X dataset is more contiguous than the 10X dataset 

(Additional File 2: Fig S11b). We therefore used the 20X datasets as part of our 

default analysis. 

 

Split read stitching step 

Some reads align to two or more very distant sequences in the reference genome. 

These reads can represent a structural variation between the sample and the reference 

being mapped to. We split them into the different segments that align to the reference 

and refer to them to as split reads. 

Split reads can be very misleading and trusting them blindly would result in chimeric 

haplotigs. We developed a simple pre-processing strategy to integrate part of the 

information contained by these split reads. 
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We run nPhase a first time to obtain our initial haplotigs. We expect some of the 

edges of haplotigs to correspond to structural variants such as inversions or large 

indels so we identify the SNPs at the edges of these clusters. These are the SNPs 

which we expect to be included in the split reads that can connect two haplotigs 

separated by a structural variant, so they are the most trustworthy SNPs in our split 

read dataset. We reduce each split read to only the heterozygous SNPs that overlap 

with these regions and re-run the nPhase algorithm with these reads included. 

Clusters are currently not allowed to combine reads from different reference 

chromosomes, so split reads can only be used to improve the contiguity of haplotigs 

on the same reference chromosome. 

As described, nPhase does not exploit the information contained in split reads to the 

fullest extent, only attempting to improve contiguity by stitching together haplotigs 

on the same chromosome. Once there are only a few remaining haplotigs, further 

improving contiguity necessarily means stitching longer haplotigs together. This 

presents a very real danger of creating chimeric haplotigs that have very strong 

negative effects on accuracy. To validate the usefulness of these steps and this 

method of using the split read data we ran 3000 tests of nPhase both with split read 

information and 3000 tests without in order to determine the effects of our split read 

stitching strategy on both contiguity and accuracy. We found that the contiguity did 

significantly improve across all of our tests that included split read information, 

compared to those that did not (Additional File 2: Fig S12a). Encouragingly, when 

comparing the accuracy distributions of the two sets of tests they are virtually 

identical (Additional File 2: Fig S12b). The tests that used split reads were very 

slightly less accurate than their counterparts but much more contiguous, motivating 

our decision to integrate the use of split read information in nPhase. 
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Automated Cleaning  

We established a three step automated cleaning procedure to quickly reduce noise 

and improve the contiguity of raw nPhase results. These steps have a negligible 

negative effect on accuracy in our in silico tests while greatly reducing the number 

of haplotigs per haplotype. 

The first step of the automated cleaning process is the merging step. We first 

calculate, for every raw cluster output by nPhase, the proportion of bases that 

disagree with the consensus base. We call this the discordance level of the cluster, 

and it is equivalent to the summed minor allele frequencies represented in this 

cluster. We calculate the mean level of discordance across all clusters output by 

nPhase and we use this number as our stopping point. Our goal is to find pairs of 

clusters that merge together without increasing our risk of merging two different 

haplotypes into one. For each pair of clusters, we calculate the discordance level that 

we would obtain if we merged them together. If that discordance level is lower than 

the average discordance level calculated previously, then we can allow the merge to 

occur. If it is higher then we do not allow the merge. Once there are no pairs of 

clusters left that are allowed to merge, we end this step. 

The second step is a filtering step. We sort all remaining clusters by the total 

coverage they represent, and we only remove clusters that account for the smallest 

1% of coverage. This allows us to get rid of the small noisy clusters we have 

observed in our results. 

The third and final step is the filling of gaps. We calculate, for each chromosome, 

the average coverage level of all the haplotigs (each haplotig counts as 1X, we are 

not looking at the coverage level of the reads contained within the clusters that define 

the haplotigs). We round this coverage level, and if it is rounded up to n (from 2.6 to 

3 for example), then we identify the regions of the chromosome that are covered less 

than n times. For each such region we identify the most covered cluster, split its reads 
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in half, and redistribute them such that we have effectively filled the gap. This step 

presumes that the gap is due to a large region of the chromosome having the same 

haplotype in at least two copies of the genome (as evidenced by the coverage level 

being twice as high, for example). 

We validated these steps by running them on our virtual polyploids and comparing 

the accuracy and contiguity results to the raw nPhase results. 

 

Performance limits 

With default parameters the nPhase algorithm took between 1 minute and nearly 5 

hours of runtime on a single CPU (the nPhase algorithm has not been parallelized), 

and between 0.6 GB and 31.8 GB of memory (Additional File 1: Table S3). The 

runtime and memory usage are clearly tied to the ploidy and heterozygosity level. A 

higher ploidy and higher heterozygosity level translates to a significant increase in 

runtime and memory usage. Each diploid test, up to 1% heterozygosity, ran in less 

than an hour and ten minutes and used less than 8 GB of memory. Triploid tests took 

a minimum of 3.5 minutes of CPU time and 0.9 GB of memory to run for the 0.05% 

heterozygosity level example, and a maximum of three hours and ten minutes of 

CPU time and 19 GB of memory for the 1% heterozygosity level test. The tetraploid 

examples were the most resource intensive, using up a minimum of 6 minutes of 

CPU time and 1.25 GB of memory for the 0.05% heterozygosity level, and a 

maximum of four hours and fifty minutes of CPU time and 31.8 GB of memory to 

run. nPhase can output results in a reasonable time using moderate memory 

resources. If run on a particularly large genome in a time-sensitive context, nPhase 

could be applied to individual chromosomes in parallel. It's also reasonable to 

consider down-sampling the number of SNPs to a heterozygosity level of around 

0.5% given the results obtained are comparable and run in less than half the time as 

the 1% heterozygosity level tests. All of the heterozygous SNPs would still be 
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present in the long reads and could be recovered from the fastQ files associated to 

the predicted haplotypes. 

 

Assessing the quality of the Brettanomyces bruxellensis phasing 

We used the nPhase pipeline to phase a triploid Brettanomyces bruxellensis strain. 

nPhase predicted that a number of regions had three haplotypes, and that others had 

only two. In order to verify the accuracy of these predictions we visualized our data 

in two complementary ways. 

First we checked the coverage levels of the predicted haplotigs. We mapped the 

fastQ files generated by nPhase back to the same reference genome, then generated 

coverage plots using a 5kb window (the genome is 13 Mb long). In order to minimize 

the visual noise in Figure 7, we only displayed the longest haplotigs that account for 

90% of all coverage. 

Second we checked the allele frequency distribution within each cluster. We cross-

referenced the file generated by nPhase in the VariantCalls/LongReads folder 

containing a list of reads and the identity of every base at each heterozygous position 

with the file generated in the Phased folder containing a list of the final haplotig 

clusters and the list of reads that comprise them. Using both files we were able to 

determine the allele frequency for each position within every haplotig cluster. We 

selected only the positions covered by at least 20 reads to generate Figure 8. 

 

Phasing an autotetraploid strain of Solanum tuberosum with nPhase 

We obtained whole genome Oxford nanopore and Illumina read data for an 

autotetraploid strain of Solanum tuberosum from the WhatsHap polyphase paper 

under accession number PRJEB39456. We used v6.1 of the DM1–3 516 R44 

assembly as a reference, selecting the version without any repeat masking. We 

mapped all the reads to the full genome, but we then extracted all of the reads which 

https://www.ebi.ac.uk/ena/data/view/PRJEB39456
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mapped to chromosome 2 to run the phasing algorithm on. Of the 2.4% of 

heterozygous positions observed in chromosome 2 according to variant calling on 

Illumina data, we only kept a randomly sampled 0.5% for the phasing in order to 

save calculation time. 

Once we obtained raw nPhase results, we ran our automated cleaning steps in order 

to improve contiguity and reduce the complexity of our results. 
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Supplementary Material 

 

Fig S1 - Graphical representations of nPhase output results for every genome analyzed. 

For each of the 16 chromosomes of S. cerevisiae, every predicted haplotig is on a different y 

axis. 
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(a) 

 

(b) 

 

Fig S2 - Coverage of chimeric haplotigs. Through our allele frequency analysis, we 

identified two haplotigs which had clearly been badly phased by our method. We show in red 

the coverage of the chimeric haplotig and in black the coverage of other haplotigs in the 

chromosome. 
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Fig S3 - Coverage level of GB54 haplotigs after automated cleaning. After automatically 

cleaning the raw output of nPhase, we observed much fewer haplotigs. We observe here the 

coverage level of these haplotigs and can confirm we kept the 2/3, 1/3 coverage distribution 

of chromosomes which were predicted to have only two haplotypes, and a 1/3, 1/3, 1/3 

coverage distribution for chromosomes predicted to have three haplotypes.  
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Fig S4 - Allele frequency distribution of GB54 haplotigs after automated cleaning. After 

automatically cleaning the raw output of nPhase, we observed much fewer haplotigs. We 

observe here the allele frequency distributions of these haplotigs and do not observe any 

significant enrichment in allele frequencies around 50%, supporting the hypothesis that these 

clusters each represent only one haplotype. 
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Fig S5 - Five longest genes in chromosome 2 of Solanum tuberosum phased by nPhase. 

The cleaned phasing results of the five longest genes of chromosome 2 of Solanum tuberosum 

are shown here in order from longest to shortest. On the left we have the phased heterozygous 

positions, with the haplotig as the Y axis and the position along the genome as the X axis. 

On the right we have the corresponding coverage of the haplotigs shown, with the Y axis 

displaying the coverage level (X). We note that we do not always obtain 4 unique haplotypes, 

though we can observe that, for example in the fifth gene, we have only three haplotigs but 

one is twice as covered as the other two, thereby account for four genomic copies. We also 

note that some predicted haplotigs are very lowly covered, and may not represent true 

haplotypes, such as the shorter cluster in the longest gene. 

 

 

     

                                

             

 
  
 
  
 

     

                        

 

  

  

  

             

 
 
 
 
  
 
 
  
 
 



 

104 

 

 

 

     

                                   

             

 
  
 
  
 

     

                            

 

  

  

  

             

 
 
 
 
  
 
 
  
 
 

     

                                

             

 
  
 
  
 

     

                                        

 

  

  

  

             

 
 
 
 
  
 
 
  
 
 



 

105 

 

 

 

 

  

     

                                

             

 
  
 
  
 

     

                                        

 

  

  

  

             

 
 
 
 
  
 
 
  
 
 

     

                                

             

 
  
 
  
 

     

                                        

 

  

  

  

             

 
 
 
 
  
 
 
  
 
 



 

106 

 

(a) 

 

 

 

(b) 

                  

 

 

 

 

Fig S6 - Long read pre-processing steps. (a) Simplifying long reads. Each long read is 

reduced to the set of variable positions it overlaps. Hence the first sequence becomes ATC, 

the second becomes CGA and the third becomes AGC. We keep track of the position and 

chromosome on which each SNP is found. (b) Context coverage. T and G are equally covered 

without context, but with context we see that AGC and CTA are not as highly covered as 

ATC and CGA. 

 

 

 

 

Fig S7 - nPhase parameters. The parameters S, O, L and ID are the only parameters that 

can be user-set in the nPhase algorithm. 
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(a)                                                                                    (b) 

               

 

 

 

 

 

(c) 

 

 

 

 

 

 

Fig S8 - Effects of parameters on prediction accuracy. We ran a total of 3000 tests using 

different nPhase parameters in order to evaluate their effects on the accuracy of the results. 

We found that the minimum overlap and minimum similarity parameters had minimal effects 

as shown by these violin plots of the accuracy for different values of each parameter, whereas 

the maximum ID parameter was much more influential. (a) The violin plots display an 

optimal performance for minimum overlap values of at least 0.1 , which corresponds to the 

presence of at least 10% of heterozygous SNPs in common between two clusters. This 

parameter only has an effect concerning clusters that have fewer than 100 heterozygous SNPs 

in common. (b) The violin plots for the different possible values attributed to the minimum 

similarity parameter are all the same, suggesting that at these values the parameter has no 

effect. (c) Based on these violin plots we found that, overall, the most reliable value for this 

parameter is 0.05, i.e. two clusters can only merge if it does not change their demographics 

by more than 5%. A value of 0.01 led to overall worse results, and higher values seem to split 

into two groups, with one that maintains a high accuracy and another that further falls as the 

ID parameter is set to higher and more lenient values. 
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(a)                                                                                (b) 

  

 

 

 

        

(c) 

 

 

 

 

 

 

Fig S9 - Effects of parameters on contiguity. We ran a total of 3000 tests using different 

nPhase parameters in order to evaluate their effects on the contiguity of the results. We found 

that the minimum had a small effect, whereas the maximum ID parameter was much more 

influential. (a) These violin plots show how different values for the minimum overlap 

parameter affect the number of haplotigs. The Y axis displays the number of haplotigs per 

chromosome normalized by the number of haplotypes. We see a weak but predictable 

increase in the number of haplotigs as we increase this value and make it more stringent, 

though all parameter values shown here result in very comparable distributions. (b) These 

violin plots show how different values for the maximum ID parameter affect the number of 

haplotigs. The Y axis displays the number of haplotigs per chromosome normalized by the 

number of haplotypes. We observe here that the 0.01 value for this parameter, previously 

shown to lead to inaccurate results, also displays a significantly higher number of haplotigs 

than other values tested. As we increase the value of the ID parameter, rendering it less 

stringent, we also lower the number of haplotigs obtained. (c) This graph is similar to the one 

shown in (a), showing the normalized number of haplotigs per chromosome on the Y axis 

and the different values for the ID parameter in the X axis. We also color coded the individual 

tests, a lighter color denotes a more accurate result, whereas a darker color denotes a less 

accurate result. As the maximum ID parameter increases and becomes more lenient, we see 

that the most contiguous results are significantly less accurate. 
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Fig S10 - Interaction between ploidy and ID parameter. This graph recalls the one in 

figure 1 in which we show how different values for the ID parameter lead to differences in 

accuracy. Her we display these same graphs separated by ploidy, showing that the three 

ploidies we tested (2n, 3n and 4n) are differently affected by the ID parameter value. As the 

ploidy increases, the range of values for the ID parameter that lead to accurate results narrows 

to around 0.05.  



 

110 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

  



 

111 

 

Fig S11 - Effects of coverage on accuracy and contiguity. We compared the results of all 

3000 tests performed on 10X datasets to the 3000 tests performed on their 20X counterparts 

and found that the 20X datasets had consistently more potential, reaching higher accuracy 

values and better contiguity across ploidy and heterozygosity levels. (a) Here we compare 

the accuracy distributions for tests of different ploidies and heterozygosity levels at the 10X 

and 20X coverage levels. We see that the 20X dataset is consistently able to reach higher 

accuracy levels, an effect which appears to be stronger when the ploidy is higher. (b) Since 

we are only interested in a high contiguity when it is coupled with a high accuracy, we will 

not look at a distribution of the number of haplotigs per haplotype across ploidy and 

heterozygosity levels at the 10X and 20X coverage levels, instead we're focusing on that 

contiguity metric for the tests using default parameters. We can clearly see a higher number 

of haplotigs per haplotype for the 10X dataset, with the gap between the 10X and 20X 

datasets deepening for lower heterozygosity level tests. 
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

Fig S12 - Effects of including split reads. We ran 3000 tests on all parameter combinations 

without including split read information and 3000 tests with split read information. These 

violin plots show the impact of split read information on accuracy and contiguity. (a) Based 

on the violin plots, the results of tests that included split read information display significantly 

fewer haplotigs, indicative of a higher contiguity. (b) The accuracy of results for tests that 

included split reads is virtually identical to the accuracy of results without split reads.  
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Table S1: Origins and accessions of strains selected for validation testing 

These strains, selected from the 1011 S. cerevisiae genome paper1, were sequenced by MinION and their Illumina data was retrieved from the SRA 

data associated with the 1011 paper. 

Isolate 

name 

Standardized 

name 

Isolation Ecological 

origin 

Geographical 

origin 

Ploidy Aneuploidy Zygosity Total number 

of SNPs 

SRA Accession 

(Illumina reads) 

VKM_Y-

504:S 

CCN Berries of 

Viburnum 

Burejanum 

Fruit Russian Far 

East 

2 Euploid Homozygous 77912 ERR1308732 

EM93_3 ACA Rotting fig Fruit California, USA 1 Euploid Homozygous 25551 ERR1309429 

C-6 CRL Wine conserved 

in amphora 

Wine Georgia 2 Euploid Homozygous 38217 ERR1308952 

UWOPS03

-433.3 

BMB Nectar, bertam 

palm 

Tree Malaysia 2 Euploid Homozygous 7822 ERR1308675 

 

[1] Peter, J., De Chiara, M., Friedrich, A. et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018). 

https://doi.org/10.1038/s41586-018-0030-5 

 

  

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1308732
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1309429
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1308952
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1308675
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Table S2: nPhase accuracy and contiguity metrics 

Accuracy and contiguity metrics for nPhase run on all tests using optimal parameters 
 

Sample Name Ploidy 
Number of 

heterozygous 
positions 

Accuracy 
(%) 

Error 
(%) 

Missing 
(%) 

Average 
number of 

clusters per 
chromosome 

per parent 

CCN_BMB 2 125000 96.44 3.25 0.31 4 

CCN_BMB 2 62500 93.57 4.51 1.92 4 

CCN_BMB 2 12500 95.32 3.82 0.86 3 

CCN_BMB 2 6250 90.34 6.69 2.97 4 

CCN_ACA_BMB 3 125000 96.7 2.53 0.76 3 

CCN_ACA_BMB 3 62500 95.02 3.26 1.72 3 

CCN_ACA_BMB 3 12500 90.7 6.49 2.81 3 

CCN_ACA_BMB 3 6250 87 9.69 3.31 4 

CCN_ACA_BMB_CRL 4 125000 95.34 2.88 1.78 3 

CCN_ACA_BMB_CRL 4 62500 93.72 4.07 2.21 3 

CCN_ACA_BMB_CRL 4 12500 81.65 10.49 7.87 3 

CCN_ACA_BMB_CRL 4 6250 78.62 12.91 8.46 4 
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Table S3: nPhase computational performance metrics 

CPU time and memory resources used by the nPhase algorithm for different tests using optimal 

parameters 
 

Construction Ploidy 
Heterozygosity 

level 
CPU Used 

(HH:MM:SS) 

CPU 
Used 

(Hours) 

Memory 
used 
(GB) 

CCN_BMB 2 0.05% 0:01:09 0.02 0.6 

CCN_BMB 2 0.10% 0:04:11 0.07 1.34 

CCN_BMB 2 0.50% 0:34:58 0.58 6.16 

CCN_BMB 2 1% 1:07:27 1.12 7.91 

CCN_ACA_BMB 3 0.05% 0:03:22 0.05 0.9 

CCN_ACA_BMB 3 0.10% 0:13:38 0.22 2.04 

CCN_ACA_BMB 3 0.50% 1:31:10 1.52 8.92 

CCN_ACA_BMB 3 1% 3:08:38 3.14 18.9 

CCN_ACA_BMB_CRL 4 0.05% 0:06:02 0.1 1.25 

CCN_ACA_BMB_CRL 4 0.10% 0:27:28 0.45 2.83 

CCN_ACA_BMB_CRL 4 0.50% 2:37:11 2.61 12.18 

CCN_ACA_BMB_CRL 4 1% 4:50:15 4.83 31.78 
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Availability of data and materials 

 

The nPhase algorithm and the nPhase pipeline are both available under the open 

source GNU General Public License v3.0 at: 

https://github.com/OmarOakheart/nPhase30 

Oxford Nanopore sequencing data is available under the study accession number 

PRJEB39456 

Illumina short read data for the Saccharomyces cerevisiae strains are taken from the 

1,011 yeast genomes project24 and their SRA accessions are the following: 

ERR130873231, ERR130942931, ERR130895231, ERR130867531. 

Illumina and Oxford Nanopore data for the Brettanomyces bruxellensis GB54 strain 

is available under the study accession number PRJEB40511. 

Illumina and Oxford Nanopore data for the Solanum tuberosum strain used is 

available under the study accession number PRJNA58739732. 

  

https://github.com/OmarOakheart/nPhase
https://www.ebi.ac.uk/ena/data/view/PRJEB39456
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1308732
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1309429
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1308952
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1308675
https://www.ebi.ac.uk/ena/data/view/PRJEB40511
https://www.ebi.ac.uk/ena/browser/view/PRJNA587397
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Chapter II – Phased polyploid genomes provide 

deeper insights into the different evolutionary 

trajectories of the Saccharomyces cerevisiae beer 

yeasts 
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Abstract 

 

Yeasts and in particular Saccharomyces cerevisiae have been used for brewing beer 

for thousands of years. Population genomic surveys highlighted that beer yeasts are 

polyphyletic with the emergence of different domesticated subpopulations 

characterized by high genetic diversity and ploidy level. However, the different 

origins of these subpopulations are still unclear as reconstruction of polyploid 

genomes is required. To have a better insight into the differential evolutionary 

trajectories, we sequenced the genomes of 35 Saccharomyces cerevisiae isolates 

coming from different beer-brewing clades using a long-read sequencing strategy. 

By phasing the genomes and using a windowed approach, we identified three main 

beer subpopulations based on allelic content (European dominant, Asian dominant, 

and African beer). They were derived from different admixtures between populations 

and are characterized by distinctive genomic patterns. By comparing the fully phased 

genes, the most diverse in our dataset are enriched for functions relevant to the 

brewing environment such as carbon metabolism, oxidoreduction and cell wall 

organization activity. Finally, independent domestication, evolution and adaptation 

events across subpopulations were also highlighted by investigating specific genes 

previously linked to the brewing process. Altogether, our analysis based on phased 

polyploid genomes has led to a new insight into the contrasting evolutionary history 

of beer isolates. 
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Background 

 

The yeast Saccharomyces cerevisiae is a well-studied model organism with a long 

history of human domestication due to its fermentation ability. It has unknowingly 

been leveraged by early humans to ferment foods and has been domesticated in 

various ecological niches. Notably, there is evidence of the domestication of S. 

cerevisiae in the cheese, wine, bread, sake, cacao, coffee bean and beer industries 1–

8. The domestication process began long before Louis Pasteur’s identification of the 

brewer’s yeast S. cerevisiae and Emil Hansen’s isolation of pure cultures for use in 

the Carlsberg brewery in 18839, likely accelerated through backslopping: the practice 

of collecting a part of the fermentation product which still contains living cells and 

using it to inoculate the next fermentation, thereby improving its efficiency. 

Backslopping is a driver of domestication which can accelerate the adaptation of 

yeasts to human preferences10. It is particularly illustrated through the widespread 

inactivation of two genes, PAD1 and FDC1, whose product 4-Vinyl Guaiacol (4VG) 

produces an undesirable off-flavor in beer4. This adaptation is a striking example of 

domestication given that the yeasts used in beer brewing are a polyphyletic group, 

with some strains more closely related to European wine or sake isolates than to 

other beer strains5. Two main industrial beer subpopulations4, named Beer 1 and 

Beer 2, were identified4,5,8. The Beer 1 group, mostly composed of polyploid ale 

strains, has been shown to derive from admixture between close relatives of 

European and Asian wine strains8. 

Industrialized beer brewing strains have had to adapt only to the brewing 

environment, which typically has high alcohol concentrations, high osmotic pressure 

and low pH. Adaptations can mean remodeling the cell wall11,12, degrading protein 

aggregates13 caused by ethanol denaturation, controlling pH by vacuolar 

acidification14, controlling osmotic pressure via the inactivation of aquaporins5. 
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However the life cycle of these industrialized strains also shields them from the wild, 

in which they have reduced fitness4. African beers, however, did not undergo the 

same industrialization processes. Similar to wine yeasts which cannot grow in grape 

must year-round and must maintain their ability to survive in vineyard environments, 

African beer yeasts must remain adapted to their local environments as traditional 

African fermentation methods offer far less stable environments than industrial 

methods. Traditional African beer-making methods rely on the presence of native S. 

cerevisiae (and other yeasts) on the brewing ingredients. The fermentation processes 

for African beers typically start with an initial spontaneous fermentation usually 

driven by lactic acid bacteria (LAB)15,16. An alcoholic fermentation follows, either 

spontaneously16,17, by explicit back-slopping methods18, or indirect back-slopping 

methods such as the reuse of tools or containers that allow well-adapted 

microorganisms from successful previous fermentations to drive the fermentation 

process15,16. The life cycle of African beer yeasts contrasts with the industrialized, 

highly specialized beer brewing yeasts grown as pure cultures19,20. Backslopping, a 

known driver of domestication4, has certainly shaped the genomes of industrialized 

beer brewing yeasts, and very plausibly that of African beer yeasts as well, though 

less extensively. Comparing the two groups may reveal genes relevant to adaptations 

to brewing environments and uncover convergent evolution processes. 

In this study we further characterize the origins of modern industrial ale-brewing 

strains, finding that the previously described Beer 1 and Beer 2 groups differ in the 

proportion of European/Asian alleles, renaming the groups to Asian dominant and 

European dominant, and show that the alleles of the African beer strains are closest 

to European wine and French dairy. We also phase the genomes of all 35 strains and 

determined the genetic distances between strains and between groups, finding that 

the mean divergence between African beer strains and modern ale-brewing strains is 

under 0.35%. Using phased genome data, we calculated the intra-strain divergence 

and found that the Asian dominant strains have the highest mean intra-strain 
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divergence at 0.21%, followed closely by European dominant and African beer 

strains at 0.20% and 0.16% divergence, respectively. By comparing the fully phased 

genes in our dataset, we determined the level of divergence between gene haplotypes 

and identified those that reach the highest level of pairwise diversity. We detected 

genes of interest such as ROQ1, required for denatured protein degradation, YPS 

genes, involved in cell wall remodeling and several IMA genes, which are involved 

in isomaltose utilisation13,12,21. Finally, we also investigated genes that present 

evidence of domestication (MAL11, PAD1, FDC1, GAL2, ADH2 and SFA1) and 

provided evidence of convergent evolution in the loss of function of the FDC1 gene 

in African beer and Asian dominant groups. We also found that the ADH2 and SFA1 

genes appear to be undergoing the same human selection as the PAD1 and FDC1 

genes to suit human preferences of beer flavor by reducing fusel alcohol formation22, 

a source of off-flavors in beer when present in high concentrations23. 
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Results 

 

Selection of beer isolates, sequencing and genome phasing 

To dissect the genetic diversity and genomic architecture of beer-brewing yeasts, we 

selected 35 strains from diverse clades based either on their known use in fermenting 

beers or on their high genetic similarity to beer-brewing strains (Supplementary 

Table S1). Beer-brewing strains of S. cerevisiae are polyphyletic, forming at least 

three distinct clades: one clade of African beer strains and two clades of modern ale 

strains named Beer 1 and Beer 2, which are believed to have different origins4. It has 

been shown that Beer 1 strains are a polyploid admixture of European and Asian 

wine strains8. The African beer and Beer 1 groups typically have higher ploidies, 

between 3n and 5n for the African beer group and typically 4n for the Beer 1 group. 

Strains from the Beer 2 group are not typically polyploid. Adding to the diversity 

and complexity of the population of beer yeasts, some isolates used in breweries 

have genomes consistent with European wine strains, and others have genomes that 

cluster with other strains of mixed origins. For our study, we selected 8 African beer 

strains, 16 Beer 1 strains, and 5 Beer 2 strains. We also selected 6 beer-brewing 

strains from outside of these three clades, including 2 European wine strains isolated 

from breweries, 3 strains from the Mixed origin clade and 1 from the Mosaic Region 

1 clade6. 

Given the polyploid nature of a majority of the strains selected, we sequenced all 35 

strains with Oxford Nanopore long reads in order to phase their genomes. We used 

publicly available short read data for nearly all of the strains selected6,8 

(Supplementary Table S2). Only strain YMD4285 was sequenced by Illumina for 

this study. We aimed to obtain at least 80X theoretical coverage with our long reads 

for most strains in order to obtain accurate and contiguous phasing results. We 

reached the target of 80X coverage in 26 out of 35 strains, with the remaining 9 
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ranging from 14.4X theoretical coverage to 77.6X (Supplementary Table S2). 

Whenever possible, we downsampled our long-read data to 80X of the best reads, 

obtaining mean read lengths up to 37.7 kb (mean 21.2 kb) and mean read quality 

scores up to 15.9 (mean 14.4). In cases where we could not downsample to 80X, we 

used all of the sequencing reads for our analyses. The Illumina short read data we 

used ranges from 144X to 368X (mean 281X), with mean quality scores ranging 

from 28.8 to 34.8 (mean 32.9). 

We recently developed a phasing algorithm and pipeline, nPhase24, which phases a 

genome using short reads, long reads and a reference sequence. The short reads are 

mapped to the reference sequence and variant called, which serves as a list of high-

confidence SNP positions. The long reads are also mapped to the same reference 

sequence and iteratively clustered together according to the similarity between reads 

at these previously defined SNP positions. The iterative clustering ends when only 

distinct clusters remain, which are different from each other. nPhase is a ploidy 

agnostic phasing method, it makes no attempt to coerce the results to a given or 

estimated ploidy, it only detects when the existing clusters should not be merged 

together. nPhase also provides a cleaning algorithm which removes small clusters 

and attempts to improve the contiguity of phasing results and reduce noise at little 

cost to accuracy by applying simple heuristics24.  We used our dataset of accurate 

short reads and phase-informative long reads to phase all 35 strains using nPhase24 

and used the nPhase cleaning algorithm to improve the contiguity of our results 

(Supplementary Figures S1 and S2). 

Without a ground truth, we cannot assess the accuracy of our phasing results, 

however we can assess their contiguity. We use the L90 metric which we define here 

as the minimal number of haplotigs to cover at least 90% of all reads, and the L90 

per chromosome, which is simply the L90 divided by the number of chromosomes 

times the ploidy. The L90 per chromosome for the phasing of a triploid strain of S. 
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cerevisiae is therefore the L90 divided by 3*16. If the value is close to 1, we have 

close to a contiguous phasing, if it is much higher, the phasing is increasingly 

fragmented, and if much lower, increasingly likely not to have correctly 

distinguished between haplotypes. We report in our raw results an L90 per 

chromosome that ranges from 1 to 2.6 (with an outlier at 4.3 due to low long read 

coverage), with a mean L90 per chromosome of 1.6 (Supplementary Table S3). After 

applying the cleaning pipeline available for nPhase we improved the contiguity, 

reducing the range of L90 per chromosome to between 0.8 and 2.3 (with the same 

outlier at 3.6). The cleaning step also substantially reduced the average total number 

of haplotigs from 198 to 100. 

Aneuploidy information for most strains was obtained from Peter et al. 2018. For 

the 7 remaining strains aneuploidy was determined based on allele frequency plots 

(Supplementary Figure S3). The phasing correctly predicted a number of suspected 

and known aneuploidies such as the 6 different chromosome losses of the tetraploid 

strain BBG and the extra copy of chromosome 3 in the diploid strain CPB, though 

not all, with aneuploidies in strains such as CFM remaining unclear after phasing, 

potentially due to lower read lengths (Supplementary Table S4). 

Inter-strain divergence reveals three groups of strains 

The standard way of estimating the divergence between two strains uses unphased 

genomes to calculate their distance based on allelic differences. Using this method, 

we obtain a mean inter-strain divergence of 0.58% across all strains, with a 

maximum divergence of 1% when comparing AVS and YMD4285 (Supplementary 

Table S5). This method is not well adapted to polyploidy, as it does not take into 

account the complexity of these genomes, leading to inaccurate representations of 

the differences in genetic content between strains. It does not, for example, reveal if 

two strains may have a subgenome or haplotype in common. There are two main 

barriers to obtaining this type of information: it requires access to phased haplotypes, 
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and the question is complicated by recombination events and Loss of Heterozygosity 

(LOH) events. Using our dataset of phased haplotypes, we propose a more accurate 

metric of inter-strain divergence for polyploids that takes their haplotypes into 

account. For each pair of strains, A and B for example, we calculate the distance 

between 10 kb regions of all haplotypes, keeping only the match with the lowest 

divergence. We allow a 10 kb region of a haplotype in strain B to match with several 

10 kb regions in strain A’s haplotypes. This allows us to estimate divergence based 

on the allelic content of each strain (Figure 1). Using this method, we updated our 

mean inter-strain genetic divergence numbers from 0.58% to 0.36% and the highest 

level of inter-strain divergence drops to 0.56%, obtained when comparing strains 

ANL and YMD4285 (Supplementary Table S6). The previously most divergent 

strains AVS and YMD4285 are 0.55% divergent using this calculation method.  

This inter-strain divergence based on haplotypes reveals three main groups of strains 

in our dataset defined by a higher similarity to each other than to other strains: the 

African beer group (s8 strains), the Beer 2 group to which we can add two European 

wine strains and the Mosaic Region 1 strains (8 strains), and finally the Beer 1 group 

to which we can add the 3 mixed origin strains (19 strains). Two of the three mixed 

origin strains, CFP and CFN, could arguably be assigned to either group though the 

third, BDL, resembles the Beer 1 group more closely. Despite the polyphyletic nature 

of the population, we can reorganize the strains in our dataset into three major 

groups. 
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Figure 1 - Inter-strain divergence levels using 10 kb haplotype windows 

This heatmap represents the mean inter-strain divergence between each pair of the 35 strains 

used in this study. The values were calculated by comparing all 10 kb haplotype windows 

between strains and range from 0% divergence for strains compared to themselves to 0.56% 

between the most different strains. Hierarchical clustering was performed and suggests the 

strains can be divided into three main groups, with strains CFP and CFN attributed to the 

right-most group despite an ambiguous profile suggesting close similarity to the group at the 

center of the heatmap. 

 

Three main groups differ by proportions and origin of allele content 

In order to elucidate the difference between the Beer 1 and Beer 2 groups, and to 

start characterizing the allele content of African beers, we used a windowed approach 

to compare each strain’s haplotypes to their closest match in the clades described in 

the 1,011 S. cerevisiae genomes survey6. For each of these previously described 

clades, we identified the polymorphisms that are specific to it according to the 

sequencing data of the population6. Then, for each strain, we divided each of its 

haplotypes into 20 kb windows and identified all of the clade-specific 
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polymorphisms in the window. We assigned each 20 kb region of each haplotype to 

the clade which had the highest signal. We did not use all of the clades described in 

the 1,011 yeast genomes survey6. We excluded clades known to derive from older 

populations, such as Brazilian bioethanol, which shares a close relationship with 

European wine25, and West African cocoa which is an admixture of European wine, 

Asian fermentation and North American oak3. We also excluded clades for which 

our dataset had too few strains to contribute much data, this excludes clades such as 

Ecuadorean and Far East Russian for which we have fewer than 10 strains each. 

Finally, we obviously excluded the clades we are trying to study. We did not include 

the beer clades we are investigating as well as the mosaic or mixed origin clades. We 

therefore limited our allele content comparison to the six following clades: European 

wine (for which we merged all wine clades), North American oak, Asian 

fermentation (we merged sake and Asian fermentation), French dairy, African palm 

wine and the French Guiana subpopulations. 

Through this windowed approach we can confirm the reorganization of our strains 

into three groups based on their similar origin profiles (Figure 2A). British and 

Belgian/German ales and mixed origin strains (i.e., the Beer 1 group) have the same 

origin profile (Supplementary Figure S4), mainly composed of European wine and 

Asian fermentation alleles, with the largest signal of Asian fermentation markers out 

of all three groups, forming the Asian dominant group. This method of estimating 

the origin of the allele content of these strains corroborates the admixed origin 

previously described8 (Supplemental Figure S5). African beers have a large signal 

of European wine alleles, and differ from the other two groups by their higher signal 

of French dairy alleles. The final group, containing all of the mosaic beers and two 

European wine strains (i.e., the Beer 2 group), is characterized by its high level of 

European wine and low but still significant Asian fermentation signal, and resembles 

the profile of Asian dominant strains where the balance between Asian fermentation 

and European wine alleles has been inverted. 
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Figure 2 - Three groups of beer strains differ by allelic origin 

We phased the genomes of all 35 strains and for each haplotype we identified SNPs that are 

markers of known clades such as French Dairy or European Wine. We then attributed each 

haplotype to the clade with the highest signal, in blocks of 20 kb, finding 3 different profiles: 

African Beer, European dominant, and Asian dominant. A In this figure we show that all 

three groups have a high European Wine signal. Strains attributed to the African Beer also 

have a high French Dairy signal, while the difference between the Asian dominant and 

European dominant strains is their level of Asian Fermentation alleles. The Asian dominant 

group has a higher signal for Asian Fermentation then the European dominant group. B This 

dendrogram, generated from a SNP matrix using Illumina data, has been colored to represent 

the origin group attributed to each strain, and shows the European dominant group is between 

the Asian dominant and African beer groups.  
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We then generated a dendrogram based on all genomic SNPs to place the strains in 

relation to each other (Figure 2B). We find that the European dominant group is in 

between the African beer group and the Asian dominant group. Consistent with 

previous reports we also distinguish two ale groups that correspond to geographical 

origin, British ales (CFG, CFH, YMD1864, YMD1870 and YMD1981) which 

cluster together on one branch of the dendrogram along with USA strain CFM, and 

Belgian/German ales which cluster on the adjacent branch (BRP, YMD1950, BSI, 

AQT and YMD1871), alongside CGC, a USA strain isolated from an olive fly and 

BBG, a strain isolated from the water of the Morava river in Slovakia. The 

Belgian/German strains YMD1873, CFC and CFF are also found along the main 

branch of the Asian dominant group on this dendrogram, alongside YMD4285, BDL 

and CFN. We will hereafter refer to the 5 British strains and the USA strain that 

clusters with them as the British ales, and all other Asian dominant strains as the 

Belgian/German Ales. 

We can modify the previously described method of calculating inter-strain 

divergence to calculate intra-strain divergence, comparing haplotypes within a strain 

to each other. Using this method, we found that overall African beers are the least 

self-diverse, with 0.16% mean self-divergence, likely owing to their highly 

polyploid nature. The most self-diverse are Asian dominant strains with 0.21% self-

divergence and the European dominant strains are not far behind with 0.20% mean 

self-divergence. The Asian dominant and European dominant strains reach slightly 

higher self-divergence levels than African beers. The lower extremes of African beer 

strains are likely due to its higher ploidy, and therefore higher likelihood for each 10 

kb region not to be too distant from one of the several other haplotypes. 

Intra-strain divergence of African beers varies from 0.12% in the least self-divergent 

strain to 0.17% in the most self-divergent strain. In European dominant it varies from 

0.05% to 0.27%. The two least self-divergent European dominant strains are at 
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0.05% and 0.09%, with the third least at a much higher 0.21%. In Asian dominant 

strains the self-divergence levels vary from 0.09% to 0.35%, though the minimum 

and maximum are slightly extreme outliers, with the next least self-divergent and 

next most self-divergent strains at 0.16% and 0.28%, respectively (Supplementary 

Table S7). 

Genes with highest divergence enriched in functions relevant to brewing 

environment 

We phased the genomes of 35 strains of S. cerevisiae associated with beer brewing, 

selected from a diverse set of isolates comprising three main clades and three 

associated clades. All of these isolates have had to adapt to the brewing environment 

or are very closely genetically related to beer brewing strains. The main groups have 

adapted independently to the brewing environment, and we expect that a survey of 

the genes with the most diverse haplotypes in our dataset will reveal genes which 

have undergone rapid deterioration due to being redundant, pseudogenes which are 

under no selective pressure, and genes of interest for adaptation to the brewing 

environment which were put under selective pressure. 

To investigate this, we extracted all of the fully phased genes in our dataset and 

calculated the pairwise divergence between all phased copies (Figure 3). Phased 

African beer genes are on average 0.23% divergent from each other, slightly lower 

than the average 0.24% of European dominant strains and 0.32% of Asian dominant 

strains. In all groups, a minority of genes show significant divergence levels within 

their group, reaching over 4% divergence levels. When all phased copies are 

compared to each other, the average divergence level rises to 0.36%, and a few more 

gene alleles are found with a pairwise divergence level over 4%, pointing to genes 

which have very divergent haplotypes across different groups but not necessarily 

within them. 
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Figure 3 - Distribution of divergence levels for fully phased genes using all strains 

We identified all of the fully phased genes in our dataset and compared them to each other in 

a pairwise manner, then plotted the divergence levels and their distribution along the genome 

as a heatmap. The y axis represents the divergence level as a percentage, and the x axis is the 

position along the chromosome. The color represents the number of supporting pairwise 

comparisons, implemented here using a log scale for visual clarity. We observe that more 

highly divergent genes tend to be less frequent and rarely reach above 4% divergence. The 

subtelomeric appear to have more highly divergent genes, however we also observe many 

other regions within the chromosomes with high levels of divergence so they are not limited 

to the telomeres. 

 

We then identified the 144 genes which have a pairwise divergence level of 4% or 

higher (Supplementary Table S8). Of these 144 genes, 57 had a verified annotation, 

54 were uncharacterized and the remaining 33 were dubious genes. We subjected 

our list of 57 verified genes to a GO term finder analysis to identify enrichment in 

processes, function and cellular component localization. We found that our list of 57 

highly divergent genes is enriched for carbon metabolic processes for various carbon 

sources (e.g., maltose, galactose, sucrose), galactose transport and cell wall 

organization. These genes are also enriched in cell wall structural constituents, 

dehydrogenase activity and transmembrane sugar transporters and enriched in genes 
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whose products localize to the cell periphery, cell wall and vacuoles (Supplementary 

Table S9). 

Notable genes of interest include ROQ1, which directs the SHRED pathway to 

degrade proteins denatured by high alcohol concentrations10, YPS genes involved in 

cell wall remodeling to resist oxidative and osmotic stress12,26, and CTT1, a catalase 

expressed in response to oxidative stress27. Deeper investigation into the genes 

highlighted and the diverse haplotypes observed and their potential functional 

consequences would be of significant interest for further understanding the changes 

required for wild yeast to adapt to the brewing environment, examples of convergent 

and/or divergent evolutionary trajectories. 

Industrial domestication markers: the MAL11, PAD1 and FDC1 genes 

Our dataset corroborates and expands on previously reported findings for the 

MAL11, PAD1 and FDC1 genes4. These genes, highlighted in Gallone et al. 2016, 

are evidence of the domestication of beer yeasts to suit industrial needs and human 

flavor preferences. We describe here our observations for these genes in our dataset 

(Supplementary Table S10). 

Maltose utilization is an industrially relevant phenotype in beer brewing, due to the 

high maltose content obtained after malting grain. Maltose is typically the main 

fermentable carbon source in wort, the brewing solution to undergo fermentation. 

The MAL11 gene codes for an effective maltose transporter, shown to be present in 

the Asian dominant strains but inactivated in the European dominant group by 

frameshift-inducing indels4. There are two reported frameshift-inducing indels, 

1772CA➞C and 1175A➞AT. We report that MAL11 is present and intact in half of 

the African beer strains and absent in the others (Supplemental Figure S6). In our 

dataset, MAL11 suffered inactivation by homozygous frameshift-inducing indels in 

all European dominant strains, except for ARE, which displays both known 
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frameshift-inducing indels heterozygously, and ASD which is intact. Similarly, all 

of the Belgian ale strains have at least a heterozygous indel except for BBG which 

is intact. Finally, we find that none of the British ale strains in our dataset display 

any frameshift-inducing indels. 

The PAD1 and FDC1 genes code for proteins which participate in the formation of 

4VG, a compound that yields a potent off-flavor in beer4, and their function therefore 

leads to an inferior product by human standards. The inactivation of these genes has 

previously been identified as evidence of human domestication of beer yeasts due to 

their effects on beer flavor4. In our dataset we make corroborating observations. In 

fact, the PAD1 gene presents no frameshift-inducing indels, and appears intact in all 

European dominant and African Beer strains, however it is fully inactivated by 

nonsense mutations in all haplotypes of British ale strains and in over half of the 

Belgian ale strains. In addition, the FDC1 gene appears to be intact in European 

dominant strains. In Asian dominant strains it is inactivated through the frameshift-

inducing indel 495T➞TA. This indel is present homozygously in all haplotypes of 

British ale strains, and in the majority of Belgian ale strains. Only three Belgian ale 

strains appear to have intact copies of FDC1. African beers also present a frameshift-

inducing indel which inactivates their copy of FDC1, however it’s a different indel 

than the one observed in Asian dominant strains. In African beers we have the indel 

35AC➞A which is present at least heterozygously in half of the strains in our 

dataset. The other African beer strains have an intact copy of FDC1. 

Overall, we find that the African beer strains bear previously reported markers of 

domestication through the presence of MAL11 and the independent inactivating indel 

observed in FDC1 for some of the strains. In contrast, the industrialized Beer 2 

strains do not present the industrially favorable genotypes, consistent with the 

previously reported observation that they exhibit fewer signs of domestication than 
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Beer 1 strains4. These results further support the notion that traditional beer brewing 

methods such as those used in African beer brewing are a driver of domestication. 

Phasing diverse populations reveals distinct evolutionary trajectories 

To leverage the diversity of our dataset and explore some of the highly divergent 

genes described above, we calculated, for each full gene haplotype, the mean 

distance to all of the haplotypes of each group. This gave us insight into the 

conservation and divergence of genes among all strains. We describe our 

observations for GAL2, ADH2 and an associated gene, SFA1 (Supplementary Table 

S10). 

Haplotypes of the GAL2 gene are highly diverse in African beer strains 

The fermentation environment of African Beer strains is known to typically harbor 

a variety of Lactic Acid Bacteria (LAB) strains which proliferate during the initial 

spontaneous fermentation. French dairy strains, which also share their environment 

with LAB strains, compete with them by consuming all of the available sugars faster. 

However, the typical GAL pathway in S. cerevisiae is repressed by the presence of 

glucose, a more efficient sugar which the yeast will metabolize first. Once the 

environment is depleted of glucose, growth stalls as the yeast cells switch to 

galactose utilization. Adaptations to the GAL pathway which address this 

competitive disadvantage have been shown in French dairy strains. The high affinity 

glucose/galactose transporter GAL2 has been shown not to undergo glucose 

repression and allow for the simultaneous assimilation of both glucose and galactose. 

These modifications permit them to avoid the shift that occurs when switching from 

glucose to galactose, thereby improving their competitive fitness28,29. 

In our dataset, copies of GAL2 are very similar to each other and present no 

frameshifts in European dominant and Asian dominant strains, however, we observe 

a spectrum of copies of GAL2 in African strains ranging from 1.56% genetic 
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divergence to the closest non-African versions of GAL2 to 4.05% genetic divergence 

with the most distant versions (Supplementary Table S11, Supplementary figure S7). 

Four African beer strains harbor haplotypes at divergence levels with non-African 

strains between 1.5% and 4.0% (Supplementary figure S8). The remaining four 

African beer strains all have a narrower range of haplotype divergence, around 2.5% 

for one and over 3.0% for the other three. The four strains with the higher range of 

diversity between their own haplotypes are the same ones harboring frameshift-

inducing indels, homozygously for one strain and heterozygously for the other three 

(Supplementary Table S10). 

This diversity in copies and the inactivation of certain alleles of GAL2 exclusively 

found in African beer strains may represent adaptations to sharing their environment 

with LAB strains which would parallel but remain independent with the adaptations 

observed in French dairy strains. 

The ADH2 and SFA1 genes present further evidence of domestication in Asian 

dominant and European dominant strains 

At high concentrations, fusel alcohols are considered a potent off-flavor in beer. S. 

cerevisiae has six genes involved in the final step of the Ehrlich pathway for fusel 

alcohol formation22, the ADH alcohol dehydrogenase family ADH1 to ADH5, and 

SFA1, an alcohol dehydrogenase and glutathione-dependent formaldehyde 

dehydrogenase. ADH1, ADH3, ADH4 and ADH5 convert acetaldehyde to ethanol, 

however ADH2 performs the inverse reaction and oxidizes ethanol into 

acetaldehyde. 

In our dataset, all African beer strains and British ale strains have at least one intact 

copy of ADH2. Half of the European dominant strains and the majority of Belgian 

ale strains suffer from homozygous deletions. And 9 Belgian ale strains and one 

European dominant strain all present a homozygous deletion of approximately 26 bp 
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in the middle of ADH2, which is much larger in strains CFN and YMD1873 (Figure 

4). A different deletion of about 25 bp at the beginning of the gene is observed in 

three European dominant strains. The ADH2 gene has previously been a target for 

inactivation for industrial beer brewing purposes owing to its role in forming the off-

flavors acetaldehyde and diacetyl and reducing alcohol content30. These observed 

deletions and high genetic diversity may reflect evidence of domestication. 

 

Figure 4 - Coverage levels of the ADH2 gene reveal homozygous internal deletions 

We extracted the coverage levels of Illumina reads in the region corresponding to the gene 

ADH2 (chromosome XIII: 873291-874337). This graph shows the coverage level of ADH2 

for each strain, using a log scale on the Y axis to represent coverage for ease of interpretation. 

The X axis represents the position along the gene, starting at 0 for the first position of the 

CDS. The strains are colored according to the group, except for the Asian dominant group 

which is subdivided into British ales and Belgian ales. We observe a shared homozygous 

deletion in the middle of ADH2 among 9 of the 13 Belgian ale strains and one of the European 

dominant strains. We also note the presence of a shared homozygous deletion in the 

beginning of ADH2 in 3 of the 8 European dominant strains. 
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This potential domestication event does not affect British ale strains. However, we 

make complementary in our dataset, as all strains appear to have intact copies of the 

SFA1 gene except for 4 of 6 British ale strains. These strains present either a deletion 

leading to a frameshift and a subsequent premature stop or have at least one 

haplotype with a nonsense mutation. This inactivation of several alleles of SFA1 only 

in British ale strains may be evidence of a domestication event that runs parallels 

and complements the disruption of ADH2 in Belgian ale and European dominant 

strains, likely in connection to their role in fusel alcohol production23. 
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Discussion 

 

We phased 35 strains of S. cerevisiae which are either used in beer brewing, or are 

in clades that have a large proportion of beer brewing strains according to the 1,011 

Saccharomyces cerevisiae genomes survey6. A little under a quarter strains are 

diploids (n=8), all others being polyploids that range from 3n to 5n. We phased all 

35 strains using nPhase, obtaining contiguous results with an average of 1.2 haplotigs 

per chromosome to phase 90% of reads. 

We used a windowed approach on these phased haplotypes to estimate their pairwise 

divergence levels based on phased genetic content, revealing that our dataset seems 

to comprise three large groups of strains that are more similar to each other than to 

other strains. Using a different windowed approach, we then estimated the allelic 

origins of these beer strains by assigning their haplotypes to different clades6. We 

found that they all contain an important proportion of European wine alleles, and 

that we can categorize them into the same three distinct groups, this time based on 

their allelic origin profiles: Asian dominant strains, European dominant strains, and 

African beer strains. The Asian dominant strains correspond to the previously 

defined Beer 1 group4 and whose origin as a polyploid admixture of Asian and 

European wine alleles has previously been described8. The European dominant 

group corresponds to the previously defined Beer 2 group4, and is again an admixture 

of Asian and European wine, however it differs from the Asian dominant group by 

its lower proportion of Asian fermentation alleles. Finally, we characterize the allele 

content of the African Beers as having a strong European wine signal, and a higher 

French dairy signal than the other groups. 

African beer brewing methods are significantly less industrialized and typically 

follow traditional means15, which for S. cerevisiae translates to a mode of life that 

must remain adapted to the wild and to environments with other microorganisms, 
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notably the LAB which proliferate during the initial spontaneous fermentation step 

that typically precedes S. cerevisiae’s alcoholic fermentation15,16. French dairy 

strains of S. cerevisiae which share an environment with LAB have been shown to 

adapt their GAL pathway to disable its glucose repression and more rapidly drain the 

environment of sugar to outcompete other organisms 28,29. We find possible evidence 

of a similar adaptation to sharing an environment with LAB in the extensive changes 

to GAL2 we observe in African Beer strains, and the presence of multiple different 

haplotypes of GAL2 within each strain. We propose that these modifications may 

disable or attenuate glucose repression, or confer some other advantage to S. 

cerevisiae strains sharing an environment with LAB. 

We also found that despite less obvious domestication pressures, some African beer 

strains show known signs of domestication. It has been shown that the FDC1 gene 

is inactivated in a large number of industrialized beer strains, and not in wild strains, 

due to its role in forming the undesirable off-flavor compound 4VG4. In half of the 

African beer strains in our dataset, we observed that FDC1 was inactivated by a 

frameshift mutation different from the one that affects Asian dominant strains, 

suggesting an independent domestication event for this gene. 

Finally, we propose that two complementary domestication events occurred in 

European dominant strains and British and Belgian ale strains. The alcohol 

dehydrogenases SFA1 and ADH2 can both contribute to the last step of the formation 

of fusel alcohol22, which in high concentrations are undesirable23 (in fact, fusel is a 

German word for bad or cheap liquor). A deletion in the middle of ADH2 is widely 

present in Belgian Ale strains and at the beginning of ADH2 in half of the European 

dominant strains in our dataset, while premature stops in SFA1 are observed in 

British Ale strains, suggesting independent and complementary domestication 

events which should have a similar effect of lowering the overall concentration of 

fusel alcohol in the final brew.  
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Methods 

 

Selection of strains, DNA extraction and sequencing 

For this study, we focused on a subset of 35 of Saccharomyces cerevisiae isolates 

from diverse clades based either on their known use in fermenting beers or on their 

high genetic similarity to beer-brewing strains (Supplementary Table S1). 

The DNA of 35 strains was extracted from 30 mL cultures (single colony, 48h 

growth at 30°C) using the QIAGEN Genomic-tip 100/G kit with the recommended 

manufacture’s genomic DNA buffer set. The manufacture’s protocol was followed 

as recommended and final DNA was eluded in 100-200 µl water. DNA was 

quantified with the broad-range DNA quantification kit from Qubit. Genomic DNA 

was migrated on a 1.5% agarose gel to check for degradation. 

For the long-read sequencing we used the Oxford Nanopore Technology (Oxford, 

UK). Libraries for sequencing using the MinION and were prepared as described in 

Istace et al.31 using the Ligation Sequencing Kit SQK-LSK109. We barcoded strains 

with the Native Barcoding Expansion 1-12 (EXP-NBD104) to multiplex up to 12 

samples per sequencing reaction. 

 

Phasing and cleaning using nPhase 

We used filtlong v0.2.0 (https://github.com/rrwick/Filtlong) to subset our nanopore 

long reads to 80X (estimated as 12 500 000 * 80 bases), then used the nPhase 

pipeline24 v1.1.3 with default parameters to phase each strain using its long and short 

reads and the R64 reference sequence of S. cerevisiae. Once we obtained raw results 

using the nPhase pipeline command, we ran the nPhase cleaning command using 

default parameters to improve contiguity and eliminate short, uninformative 

haplotigs. 

 

 

https://github.com/rrwick/Filtlong
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Calculating pairwise haplotype divergence between strains within strains 

nPhase outputs a file with the suffix “.variants.tsv” which indicates, for each 

predicted haplotig, the SNPs that were phased. We use this file along with the 

reference sequence of S. cerevisiae to infer the full sequences of our haplotypes and 

split them into 10kb windows. Then, for each pair of strains, we compared every full 

10 kb haplotype window to all of the haplotypes fully covering the same window in 

the opposite strain and only kept the lowest divergence value. 

This method extends to the calculation of internal divergence levels, with the 

difference that instead of comparing the haplotypes of one strain to the haplotypes 

of another, we compared the haplotypes of one strain to each other. We again keep 

the lowest value, but we do not allow a 10 kb haplotype block to compare to itself. 

Being ploidy agnostic, nPhase tends to group homozygous regions together so there 

may be an over-estimation of divergence, however nPhase also doesn’t take indels 

into account so there may be an under-estimation of divergence. It’s unclear which 

bias has the stronger effect, or the extent of the effect of these limitations. 

 

Dendrogram creation 

A genotyping matrix was constructed with the GenotypeGVCFs function of GATK32 

that was run on individual gvcf files generated by GATK’s HaplotypeCaller method. 

This matrix was used to build a neighbor-joining tree with the R packages ape33 and 

SNPrelate34. To that end, the gvcf matrix was converted into a gds file and individual 

dissimilarities were estimated for each pair of isolates with the snpgdsDiss function. 

The bionj algorithm was then run on the obtained distance matrix. 

Pairwise differences between the studied strains was estimated from the non-shared 

SNPs positions obtained with bcftool35 isec with -n -1 -c all options run on individual 

gvcf files. 
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Allele content origin attribution 

In order to investigate the origins of these beer strains we used a windowed approach 

to split the haplotypes predicted by nPhase into 20 kb windows and compared them 

to 6 of the clades described in Peter et al. 2018: European wine (we merged all of 

the European wine subclades), the clinical French Guiana human, African palm 

wine, North American Oak, Asian fermentation (we merged the Sake and Asian 

fermentation clades) and French Dairy. 

For each clade, we consider that a position is a marker of this clade if it has a Minor 

Allele Frequency (MAF) ≥ 25% within the clade and is not present in more than one 

of the other 5 clades at a MAF ≥ 25%. Then for each 20kb window of each haplotype 

we attributed the clade with the highest number of markers. 

 

Calculating divergence between gene haplotypes 

To calculate the pairwise divergence between genes we used the latest annotation of 

S. cerevisiae available on SGD (Release 64-2-1 of the S288C reference genome36) 

and extracted the positions of genes. We then extracted each gene’s sequence in the 

reference genome and for each strain we used the strainName.variant.tsv file 

generated by nPhase to extract all predicted haplotypes, only keeping the variants 

that fall within each gene’s sequence and inferring them into the reference sequence. 

We only kept gene haplotypes which had full predictions, we did not keep any 

incompletely inferred genes. We then proceeded to a pairwise comparison of every 

gene haplotype in our dataset, calculating the divergence as the number of 

mismatching positions divided by the length of the gene. 

 

Gene Ontology Term Finder calculations on SGD 

Based on the divergence calculations described above, we then identified all genes 

for which at least one pairwise comparison led to a divergence level ≥ 4%. We only 

keep genes whose ORF classification is listed as “Verified” in the annotation, not 
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“Uncharacterized” or “Dubious”. Then we input that list with default parameters into 

the Gene Ontology Term Finder37 available on the Saccharomyces Genome Database 

(SGD) website at the following url: https://www.yeastgenome.org/goTermFinder 

 

Identifying frameshifts & premature stops 

We identified indels that cause frameshift mutations by manual inspection of the 

Illumina VCF files generated by the nPhase pipeline using bwa-mem38 for mapping 

and GATK 4.032 for variant calling. Premature stops were identified by identifying 

stop codons in the previously generated inferred gene haplotypes. 

 

Coverage plots for the MAL11, and ADH2 genes 

We generated the data for our gene coverage plots of MAL11 and ADH2 using 

bamCoverage39 v3.5.0 with a window size of 1. 

 

Data visualization tools 

The heatmap with clustering (Figure 1) was generated using pheatmap v1.0.12 

(https://cran.r-project.org/web/packages/pheatmap/index.html), the dendrogram is 

viewed in FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) and other figures 

were generated using ggplot2 v3.3.3 (https://ggplot2.tidyverse.org) on the R 

programming language v4.0.2 (https://www.r-project.org/about.html). We used a 

color palette intended for interpretability by people with colorblindness40. 

 

  

https://www.yeastgenome.org/goTermFinder
https://cran.r-project.org/web/packages/pheatmap/index.html
http://tree.bio.ed.ac.uk/software/figtree/
https://ggplot2.tidyverse.org/
https://www.r-project.org/about.html
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Supplementary Material 

Supplementary figure S1: Raw phasing results for all 35 strains 
We present the three plots generated for each strain’s raw nPhase phasing 

predictions. For each strain, the first plot shows the coverage of each predicted 

haplotig, the second plot shows the discordance level of each predicted haplotig, and 

the final plot shows an overview of where the haplotigs are along the genome. 

Only strain AQH is shown here, the file containing figures for all strains can be found 

in the companion document accessible from the appendices. 
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Supplementary figure S2: Cleaned phasing results for all 35 strains 
We present the three plots generated for each strain’s cleaned nPhase phasing 

predictions, generated from the raw predictions. For each strain, the first plot shows 

the coverage of each predicted haplotig, the second plot shows the discordance level 

of each predicted haplotig, and the final plot shows an overview of where the 

haplotigs are along the genome. 

Only strain AQH is shown here, the file containing figures for all strains can be found 

in the companion document accessible from the appendices. 
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Supplementary figure S3: Allele frequency plots 
These allele frequency plots were generated for the 7 strains not included in the 1,011 

paper by Peter et al. and were used to identify clear aneuploidies by manual visual 

inspection. For each plot we specify the aneuploidies called. 

Only strains YMD1864 and YMD1870 are shown here, the file containing figures 

for all strains can be found in the companion document accessible from the 

appendices. 
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Supplementary figure S4 - Origin profiles per strain per group 
For each strain, we attributed 20kb regions of its haplotypes to the clade with the 

highest similarity. This figure shows, for each strain, the proportion of regions 

attributed to each clade. Each page corresponds to one of the three groups we 

identified based on these profiles: European dominant strains, Asian dominant 

strains, and African beer strains. Strains within the same group have very similar 

profiles. 
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Supplementary figure S5 - Allele similarity across the genome for different groups 
Once each strain’s different haplotypes have been assigned to a clade, we can generate a graph that shows, for each 20kb window along the genome, 

what proportion of haplotypes support each allelic origin. This representation reveals which parts of the genome are mostly similar to one or the other 

clade, and gives a general overview of the allele content of each group, showing them to have very different profiles. The Asian dominant group and 

European dominant group look similar, though with almost inverted proportions of European Wine alleles and Asian Fermentation alleles, and the 

African Beer group has the highest proportion of French dairy, but also appears to have less contested origins. 
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Supplementary figure S6 - MAL11 coverage plots 
We extracted the coverage levels of Illumina reads in the region corresponding to 

the gene MAL11 (ChromosomeVII:1073963-1075813). This graph shows the 

coverage level of MAL11 for each strain, using a log scale on the Y axis to 

represent coverage for ease of interpretation. The X axis represents the position 

along the gene, starting at 0 for the first position of the CDS. We note the 

extremely low coverage for strains ANL, ASC and AVN, and the total absence of 

coverage for strain BEM.  
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Supplementary figure S7 - Divergence levels of GAL2 between haplotypes of 

different groups 
This graph represents the divergence levels of GAL2 obtained via pairwise 

comparisons of all fully phased haplotypes for this gene in our dataset. We note that 

the divergence level (y Axis, given as a percentage) is high when comparing African 

beer haplotypes of GAL2 to other African beer haplotypes of GAL2, and even higher 

when compared to European dominant or Asian dominant copies of GAL2. The 

European dominant and Asian dominant haplotypes of GAL2 are not very divergent 

from each other, with a maximum of 0.5% divergence. However the African beer 

haplotypes of GAL2 are at minimum 1.5% divergent from European dominant and 

Asian dominant strains, and at most 4% divergent from them. 
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Supplementary figure S8 - GAL2 haplotype divergence levels within African 

beer strains 
This graph represents, for each African beer strain, the divergence levels of all of its 

haplotypes with the European dominant and Asian dominant haplotypes of GAL2. 

The Y axis represents the divergence level and each point represents a different 

pairwise comparison, the points are jittered for ease of interpretation. We observe 

that some strains, such as ANL, AVQ, AVS and AVT have multiple haplotypes of 

GAL2, with varying levels of divergence from the European dominant and Asian 

dominant haplotypes. 
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Supplementary Table S1: Descriptions of strains         

Background information on the strains used in our analysis. The "Group" column refers to the assigned origin according to our 

observations of the allele content using a windowed method, described further in the results section. 

 

Strain 
Name 

Isolate name Group 
Ploidy 

(n) 
Aneuploidy Isolation 

Ecological 
origins 

Geographical 
origins 

Clade 

AFP CBS6505 
European 
Dominant 

2 euploid Cachaça Beer UK Mosaic beer 

ANL A-6 
African 
Beer 

4 euploid Sorghum beer Beer Ghana African beer 

AQH CBS7957 
European 
Dominant 

3 aneu;+1*3; 
Factory producing 

cassava flour 
Industrial 

Sao Paulo, 
Brazil 

Mosaic beer 

AQT CBS1230 
Asian 

Dominant 
3 aneu;+1*6; Beer Beer Belgium Ale beer 

ARE CBS1398 
European 
Dominant 

2 
aneu;+1*2; +1*3; 

+1*6; +4*9; +1*12; 
+1*14; +1*15; 

Leaf of Eucalyptus 
sp. 

Tree NA Mosaic beer 

ASB CBS4255 
European 
Dominant 

2 euploid Sputum 
Human, 
clinical 

NA Mosaic beer 

ASC CBS4455 
African 
Beer 

3 aneu;+1*1; Kaffir beer Beer South Africa African beer 
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ASD CBS4507 
European 
Dominant 

2 euploid 
Brewer's yeast, 

English top yeast 
Beer NA Wine/European 

AVN CH02 
African 
Beer 

4 euploid Pearl millet beer Beer 
Abengourou, 
Ivory Coast 

African beer 

AVQ CH10 
African 
Beer 

5 aneu;+1*4; Pearl millet beer Beer 
Abengourou, 
Ivory Coast 

African beer 

AVS CH14 
African 
Beer 

5 aneu;+1*12; +1*13; Pearl millet beer Beer 
Abengourou, 
Ivory Coast 

African beer 

AVT CH13 
African 
Beer 

5 aneu;+1*2; +1*5; Pearl millet beer Beer 
Abengourou, 
Ivory Coast 

African beer 

BBG CCY_21-4-106 
Asian 

Dominant 
4 

aneu;-1*1; -1*6; -1*8; 
-1*10; -1*14; -1*16; 

River water 
(Morava) 

Water 
Devinska 
Nova Ves, 
Slovakia 

Ale beer 

BDL CLQCA_10-386 
Asian 

Dominant 
2 euploid Beer Beer Ecuador Mixed origin 

BEM CLIB653 
African 
Beer 

4 euploid 
Beer leaven for Bili 
Bili beer, brewery 

Beer Chad African beer 

BHA CLIB655 
African 
Beer 

3 euploid 
Beer leaven for Bili 
Bili beer, brewery 

Beer Chad African beer 

BRP DBVPG6694 
Asian 

Dominant 
4 aneu;+1*1; -1*3; 

Artois Peterman 
beer 

Beer Belgium Ale beer 
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BSI DBVPG6693 
Asian 

Dominant 
4 

aneu;+1*1; +1*9; -
1*14; 

Beer Beer Belgium Ale beer 

CFC 4.5_WLP530 
Asian 

Dominant 
4 aneu;-1*12; 

Carlsberg Beer, 
Abbey ale yeast 

(Westmalle 
brewery) 

Beer 
Westmalle, 

Belgium 
Ale beer 

CFE 4.9_WLP099 
European 
Dominant 

2 euploid 
Carlsberg Beer, 

super high gravity 
Beer 

United 
Kingdom 

Wine/European 

CFF 6.2_WLP570 
European 
Dominant 

2 euploid Carlsberg Beer Beer Belgium Mosaic beer 

CFG 1.6_Safale_S40 
Asian 

Dominant 
4 aneu;-1*6; Carlsberg Beer Beer UK Ale beer 

CFH 
Nottingham_ale 
1.8_Lallemand 

Asian 
Dominant 

4 aneu;-1*1; -1*7; Carlsberg Beer Beer UK Ale beer 

CFM 5.5_WLP090 
Asian 

Dominant 
4 aneu;-1*1; -1*5; -1*9; 

Carlsberg Beer, 
"San Diego Super 

Yeast" 
Beer 

San Diego, 
USA 

Ale beer 

CFN 
3.3_Safale_S-

33 
Asian 

Dominant 
4 aneu;+1*2; +1*9; Carlsberg Beer Beer NA Mixed origin 

CFP 
3.4_Safbrew_T-

58 
Asian 

Dominant 
4 euploid Carlsberg Beer Beer NA Mixed origin 

CGC UCD_06-645 
Asian 

Dominant 
4 euploid Female olive fly Fruit 

Davis, CA, 
UCD 

Ale beer 
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CPB 995 
European 
Dominant 

2 aneu;+1*3; 
Fermented 

beverage from 
raisins and sugar 

Beer Hungary 
Mosaic region 

1 

YMD1864 Wyeast1275 
Asian 

Dominant 
4 aneu +1*9; Commercial Ale Beer England Ale Beer 

YMD1870 Wyeast1028 
Asian 

Dominant 
4 aneu -1*1; Commercial Ale Beer Britain Ale Beer 

YMD1871 Wyeast2565 
Asian 

Dominant 
4 euploid Commercial Ale Beer Germany Ale Beer 

YMD1873 Wyeast3068 
Asian 

Dominant 
4 aneu -1*10; Commercial Wheat 

Wheat 
Beer 

Germany Ale Beer 

YMD1950 
Wyeast 3463 

Forbidden Fruit 
(Belgian wheat) 

Asian 
Dominant 

4 euploid Commercial Wheat 
Wheat 
Beer 

Belgium Ale Beer 

YMD1981 Wyeast1968 
Asian 

Dominant 
4 

aneu -1*5; -1*10; -
1*12; -1*14; 

Commercial Ale Beer England Ale Beer 

YMD4285 Stalljen 
Asian 

Dominant 
4 euploid Beer 

Farmhouse 
Beer 

Norway Ale Beer 
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Supplementary Table S2: Sequencing statistics 

Sequencing data statistics for the MinION and Illumina sequencing runs of this study. 

 

Strain 

MinION sequencing 

Mean read 
length (kb) 

Mean read 
quality 

Median read 
length (kb) 

Median read 
quality 

Number of 
reads 

Read 
length 

N50 (kb) 

Total 

bases 

(Gb) 

Theoretical 

Coverage 

(X) 

AFP 29.8 15.3 25.8 15.4 33607 37.3 1 80 

ANL 23.8 15.2 19.8 15.2 42030 28.5 1 80 

AQH 7.5 13.8 3.3 14 85081 18.9 0.64 51.2 

AQT 28.1 15.5 24.5 15.5 35573 33.5 1 80 

ARE 35.5 15.9 32 15.9 28148 40.4 1 80 

ASB 29.7 14.8 24.5 14.9 33678 38 1 80 

ASC 8.9 13.7 3.4 13.9 92824 24.7 0.82 65.6 

ASD 17 14.8 12.5 15 58737 26.4 1 80 

AVN 11.3 14.1 4.9 14.6 15854 27.1 0.18 14.4 

AVQ 14.2 14.1 6.5 14.4 70327 30.5 1 80 

AVS 14 14.6 10.7 14.8 71270 19.2 1 80 

AVT 26.1 14.6 19.9 14.8 38297 37.7 1 80 

BBG 37.7 15.4 35.4 15.4 26501 42.7 1 80 

BDL 35.7 15.4 31.9 15.4 28023 40.9 1 80 

BEM 10.4 14.1 6.8 14.3 95921 16.4 1 80 

BHA 30.1 15.7 26.7 15.7 33272 35 1 80 
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BRP 22.9 14.5 19.1 14.6 43589 30.5 1 80 

BSI 10.5 13.3 4 13.5 77702 27.8 0.82 65.6 

CFC 33.7 14.8 28.9 15 29653 39.8 1 80 

CFE 13.4 14.1 8.3 14.5 72588 25.9 0.97 77.6 

CFF 24.4 15.3 20.4 15.4 41037 31.2 1 80 

CFG 24.4 14.1 19.1 14.5 40928 32.8 1 80 

CFH 33.1 15.3 30.1 15.3 30249 37.9 1 80 

CFM 8.8 10.1 6.3 10.3 114245 12.2 1 80 

CFN 22 13.2 18.2 13.3 45439 27.2 1 80 

CFP 25.7 15.4 21.8 15.4 38944 29.4 1 80 

CGC 29.2 14.6 25.6 14.7 34288 37.7 1 80 

CPB 23.8 14.9 20.6 14.9 42100 29.7 1 80 

YMD1864 9.8 13.3 5.2 13.7 84880 20.1 0.83 66.4 

YMD1870 29.3 15.6 25.2 15.5 34180 32.9 1 80 

YMD1871 12.8 13.4 6.2 13.8 54736 28.1 0.7 56 

YMD1873 21.3 15.1 18.1 15.2 46951 25.8 1 80 

YMD1950 11.8 13.4 5.8 13.8 66483 25.2 0.78 62.4 

YMD1981 14.2 14.2 9.6 14.4 70280 23.7 1 80 

YMD4285 12.3 13.4 6.1 13.8 71969 26.2 0.89 71.2 

Total 21.2 14.4         0.9 74.6 
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Strain 

Illumina sequencing 

Mean read 
quality 

Number of reads 
Total bases 

(Gb) 
Theoretical 

Coverage (X) 

AFP 34.8 38302000 3.8 304 

ANL 34.2 31573592 3.2 256 

AQH 33.6 38258278 3.8 304 

AQT 34.4 35911684 3.5 280 

ARE 34.1 37465530 3.6 288 

ASB 33.5 36669880 3.6 288 

ASC 34.6 39670940 3.8 304 

ASD 33.3 36915614 3.6 288 

AVN 33.2 44874148 4.4 352 

AVQ 33 33041378 3.2 256 

AVS 32.9 38331296 3.8 304 

AVT 33 35650262 3.6 288 

BBG 34.3 41281728 4.2 336 

BDL 35.2 36189032 3.6 288 

BEM 35.2 33166312 3.4 272 

BHA 33.9 35372210 3.6 288 

BRP 33.2 46614138 4.6 368 

BSI 31.8 40242854 4 320 

CFC 33.8 32205534 3.2 256 

CFE 32.8 42084090 4.2 336 
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CFF 32.4 39921422 4 320 

CFG 34 42302044 4.2 336 

CFH 33.5 45909668 4.6 368 

CFM 33.8 40044236 4 320 

CFN 33.7 45620516 4.5 360 

CFP 32 35190058 3.5 280 

CGC 34 46002610 4.6 368 

CPB 32.1 27472676 2.7 216 

YMD1864 30.9 23398040 2.4 192 

YMD1870 30.9 25578302 2.6 208 

YMD1871 29.7 19192418 2 160 

YMD1873 30.8 24423424 2.4 192 

YMD1950 29 27143926 2.8 224 

YMD1981 29.9 20361912 2 160 

YMD4285 28.8 12168130 1.8 144 

Total 32.9   3.5 280.7 
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Supplementary Table S3: Phasing statistics 

Summary statistics for all 35 phased strains. We provide them for the raw phasing results as well as the cleaned phasing results. L90 is 

the minimum number of haplotigs to phase 90% of the phase informative reads. This excludes reads which only cover homozygous 

positions or are subsets of other reads. The L90 per chromosome value is an estimate of phasing quality and is equal to the L90 divided 

by 16*ploidy, we do not take known aneuploidy into account for this value. A value close to 1 indicates a likely contiguous phasing. 

 

Strain 
Ploidy 

(n) 
Number of 

heterozygous SNPs 

Raw phasing results Cleaned phasing results 

L90 
L90 per 

chromosome 
Number of 
haplotigs 

L90 
L90 per 

chromosome 
Number of 
haplotigs 

AFP 2 5114 63 2 133 52 1.6 79 

ANL 4 47229 66 1 172 55 0.9 83 

AQH 3 53973 76 1.6 173 60 1.3 83 

AQT 3 35315 84 1.8 199 57 1.2 87 

ARE 2 20405 39 1.2 100 26 0.8 43 

ASB 2 36576 46 1.4 146 31 1 54 

ASC 3 38035 71 1.5 201 64 1.3 102 

ASD 2 4132 81 2.5 142 71 2.2 106 

AVN 4 44206 272 4.3 591 232 3.6 371 

AVQ 5 49626 78 1 168 67 0.8 96 

AVS 5 51635 99 1.2 211 77 1 112 

AVT 5 49440 78 1 189 66 0.8 90 

BBG 4 38434 75 1.2 184 59 0.9 81 
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BDL 2 45792 51 1.6 160 35 1.1 55 

BEM 4 30249 98 1.5 208 76 1.2 114 

BHA 3 22945 57 1.2 127 43 0.9 66 

BRP 4 49642 98 1.5 214 76 1.2 106 

BSI 4 43317 91 1.4 231 78 1.2 112 

CFC 4 63692 83 1.3 181 67 1 93 

CFE 2 9207 82 2.6 161 72 2.3 108 

CFF 2 32544 57 1.8 148 37 1.2 57 

CFG 4 58215 81 1.3 191 66 1 98 

CFH 4 58666 79 1.2 190 57 0.9 80 

CFM 4 42367 102 1.6 244 92 1.4 138 

CFN 4 79737 83 1.3 233 70 1.1 100 

CFP 4 79944 90 1.4 218 63 1 87 

CGC 4 50930 86 1.3 210 68 1.1 91 

CPB 2 21492 73 2.3 159 49 1.5 77 

YMD1864 4 46430 104 1.6 230 82 1.3 121 

YMD1870 4 55977 74 1.2 160 59 0.9 82 

YMD1871 4 47434 84 1.3 230 76 1.2 111 

YMD1873 4 40325 105 1.6 207 76 1.2 114 

YMD1950 4 47256 82 1.3 180 69 1.1 98 

YMD1981 4 54566 94 1.5 218 70 1.1 105 

YMD4285 4 71777 77 1.2 217 71 1.1 103 

Total 85 1.6 198 68 1.2 100 
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Supplementary Table S4: Aneuploidies 

Aneuploidies were determined by manual inspection of the output plots given by 

nPhase for the raw phasing results as well as the cleaned phasing results. Presence 

of an additional haplotig or absence of a haplotig was observed in the phasing plot 

in corroboration with the coverage plot. For example a triploid with three haplotigs 

on a given chromosome for which one of the haplotigs is twice as covered as the 

others has a +1 aneuploidy. 

Strain Ploidy 
Known 

aneuploidy 

Aneuploidy 
observed in 
raw phasing 

Aneuploidy 
observed in 

cleaned phasing 

AFP 2 euploid N/A N/A 

ANL 4 euploid N/A N/A 

AQH 3 aneu;+1*3; No aneu;+1*3; 

AQT 3 aneu;+1*6; aneu;+1*6; aneu;+1*6; 

ARE 2 

aneu;+1*2; +1*3; 
+1*6; +4*9; 

+1*12; +1*14; 
+1*15; 

aneu;+1*3; No 

ASB 2 euploid N/A N/A 

ASC 3 aneu;+1*1; No aneu;+1*1; 

ASD 2 euploid N/A N/A 

AVN 4 euploid N/A N/A 

AVQ 5 aneu;+1*4; No No 

AVS 5 
aneu;+1*12; 

+1*13; 
No aneu;+1*13; 

AVT 5 aneu;+1*2; +1*5; aneu;+1*2; +1*5; aneu;+1*2; +1*5; 

BBG 4 
aneu;-1*1; -1*6; -
1*8; -1*10; -1*14; 

-1*16; 

aneu;-1*1 ;-1*6; 
-1*8; -1*10; -
1*14; -1*16; 

aneu;-1*1; -1*6; -
1*8; -1*10; -1*14; -

1*16; 

BDL 2 euploid N/A N/A 

BEM 4 euploid N/A N/A 

BHA 3 euploid N/A N/A 

BRP 4 aneu;+1*1; -1*3; aneu;-1*3 aneu;-1*3 

BSI 4 
aneu;+1*1; +1*9; 

-1*14; 
No No 

CFC 4 aneu;-1*12; aneu;-1*12; aneu;-1*12; 

CFE 2 euploid N/A N/A 
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CFF 2 euploid N/A N/A 

CFG 4 aneu;-1*6; aneu;-1*6; aneu;-1*6; 

CFH 4 aneu;-1*1; -1*7; aneu;-1*7; aneu;-1*7; 

CFM 4 
aneu;-1*1; -1*5; -

1*9; 
No No 

CFN 4 aneu;+1*2; +1*9; No No 

CFP 4 euploid N/A N/A 

CGC 4 euploid N/A N/A 

CPB 2 aneu;+1*3; aneu;+1*3; aneu;+1*3; 

YMD1864 4 
From AF plots: 

aneu;+1*9; 
No No 

YMD1870 4 
From AF plots: 

aneu;-1*1; 
No No 

YMD1871 4 
From AF plots: 

euploid 
N/A N/A 

YMD1873 4 
From AF plots: 

aneu;-1*10; 
aneu;-1*10; No 

YMD1950 4 
From AF plots: 

euploid 
N/A N/A 

YMD1981 4 

From AF plots: 
aneu; -1*5; -
1*10; -1*12; -

1*14; 

aneu;-1*5; -1*10; 
-1*14; 

aneu;-1*5; -1*10; -
1*12; -1*14; 

YMD4285 4 
From AF plots: 

euploid 
N/A N/A 

 

Supplementary Table S5: Inter-strain divergence levels for all 35 strains based on SNP 

matrix 

This table shows the inter-strain divergence between every pair of strains. Inter-strain 

divergence was calculated based on SNP content, without taking haplotypes into account. 

Indels were not included in our estimation of divergence. 

This table can be found in the companion document accessible from the appendices. 

 

Supplementary Table S6: Inter-strain divergence levels for all 35 strains based on 

haplotypes 

This table shows the inter-strain divergence between every pair of strains. Inter-strain 

divergence was calculated based on a 10 kb window and is presented here as a percentage. 

Homozygous positions were used in the calculations, so the divergence between two strains 

with homozygous variants in the same 10kb window takes these variants into account for our 

calculation. Indels were not included in our estimation of divergence. 

This table can be found in the companion document accessible from the appendices. 
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Supplementary Table S7: Mean intra-strain divergence levels for all 35 strains 

This table shows the intra-strain divergence between the haplotypes of each strain. 

Intra-strain divergence was calculated based on the closest 10 kb pairs of haplotypes 

and is presented here as a percentage. 

 

Group Strain 
Mean intra-strain 
divergence (%) 

African Beer 

BEM 0.12 

BHA 0.12 

ANL 0.17 

AVN 0.17 

AVQ 0.17 

AVS 0.16 

AVT 0.17 

ASC 0.17 

Total 0.16 

European 
dominant 

CFE 0.09 

ASD 0.05 

CPB 0.21 

CFF 0.26 

AFP 0.25 

AQH 0.22 

ARE 0.27 

ASB 0.23 

Total 0.2 

 
 

 
Asian 

dominant 

CFN 0.24 

CFP 0.28 

BDL 0.35 

CFC 0.24 

YMD1873 0.19 

 
 
 
 
 

BBG 0.19 

YMD1871 0.21 

CGC 0.2 

AQT 0.17 

BSI 0.16 
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Asian 
dominant 

YMD1950 0.2 

YMD4285 0.26 

BRP 0.21 

CFG 0.21 

CFH 0.23 

CFM 0.09 

YMD1864 0.21 

YMD1870 0.22 

YMD1981 0.21 

Total 0.21 

All Total (All) 0.2 
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Supplementary Table S8: Highly divergent genes 

Genes presenting >4% divergence in at least one pairwise comparison of haplotypes, either across all three groups, only exhibiting 

>4% divergence when comparing haplotypes of different groups ("All"), or within one of the groups (other three columns). We 

observe here well-known genes such as GAL2 and ADH2. Predictably, a significant number of these highly divergent genes are 

uncharacterized or dubious genes as these sequences are typically very short and annotated as possible genes despite presumably being 

under little to no selective pressure. 

The full table can be found in the companion document accessible from the appendices. 

Common 
name 

Systematic 
name Status 

All 
(18) 

European dominant 
(70) 

Asian dominant 
(71) 

African beer 
(46) 

Unnamed YAL067W-A 
Uncharacterize

d No Yes Yes Yes 

Unnamed YAL068W-A Dubious No No Yes Yes 

PAU7 YAR020C Verified No No No Yes 

Unnamed YAR029W 
Uncharacterize

d No No Yes No 

PRM9 YAR031W Verified No Yes Yes No 

Unnamed YAR070C Dubious No Yes Yes No 

PHO11 YAR071W Verified No Yes Yes No 

PAU9 YBL108C-A Verified No Yes No No 
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Supplementary Table S9: GO Term Finder results on verified highly divergent genes 

These three tables are the result of GO Term Finder analysis on the 57 verified genes in our list of 144 highly divergent genes (>4% 

divergence). This excludes the genes listed as uncharacterized or dubious. Each table relates a different set of GO terms: Those related 

to processes, those related to function, and those related to the cellular components where the gene's protein localizes. We observe 

significant enrichment in various forms of carbon metabolism processes and in cell wall organization, dehydrogenase functions, 

carbon transport and oxidoreductases, and localization to the cell wall and vacuoles. 

GOID TERM 
CORRECTED 

PVALUE 
FDR 

RATE 
EXPECTED FALSE 

POSITIVES 
ANNOTATED GENES 

GO:0000023 
maltose metabolic 

process 
8.13E-06 0.00% 0 

YGR287C, YOL157C, YBR297W, YJL216C, 
YBR298C 

GO:0005984 
disaccharide 

metabolic process 
1.25E-05 0.00% 0 

YIL162W, YBR298C, YGR287C, YOL157C, 
YBR297W, YJL216C 

GO:0009311 
oligosaccharide 

metabolic process 
2.47E-05 0.00% 0 

YBR298C, YIL162W, YOL157C, YJL216C, 
YBR297W, YGR287C 

GO:0005987 
sucrose catabolic 

process 
6.12E-05 0.00% 0 YGR287C, YOL157C, YJL216C, YIL162W 

GO:0005985 
sucrose metabolic 

process 
0.000109586 0.00% 0 YIL162W, YOL157C, YJL216C, YGR287C 

GO:0046352 
disaccharide 

catabolic process 
0.000607275 0.00% 0 YJL216C, YOL157C, YGR287C, YIL162W 

GO:0009313 
oligosaccharide 

catabolic process 
0.000845157 0.00% 0 YOL157C, YJL216C, YGR287C, YIL162W 

GO:0015757 galactose transport 0.002336796 0.00% 0 YJL219W, YLR081W, YOL156W 
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GO:0000025 
maltose catabolic 

process 
0.00406629 0.89% 0.08 YJL216C, YOL157C, YGR287C 

GO:0031505 
fungal-type cell wall 

organization 
0.006022812 0.80% 0.08 

YOL161C, YOL155C, YFL020C, YIR039C, 
YBL108C-A, YLR461W, YDR542W, 

YAR020C, YKL224C 

 

Function 

GOID TERM 
CORRECTED 

PVALUE 
FDR 

RATE 

EXPECTE
D FALSE 

POSITIVES 
ANNOTATED GENES 

GO:0047681 
aryl-alcohol dehydrogenase 

(NADP+) activity 
1.43E-07 0.00% 0 

YDL243C, YJR155W, YCR107W, YOL165C, 
YNL331C 

GO:0005199 structural constituent of cell wall 4.12E-06 0.00% 0 
YAR020C, YDR542W, YOL161C, YLR461W, 

YFL020C, YBL108C-A, YKL224C 

GO:0047834 
D-threo-aldose 1-

dehydrogenase activity 
1.07E-05 0.00% 0 

YNL331C, YOL165C, YDL243C, YJR155W, 
YCR107W 

GO:0004564 beta-fructofuranosidase activity 2.41E-05 0.00% 0 YIL162W, YJL216C, YOL157C, YGR287C 

GO:0004575 
sucrose alpha-glucosidase 

activity 
2.41E-05 0.00% 0 YIL162W, YJL216C, YOL157C, YGR287C 

GO:0090599 alpha-glucosidase activity 0.000111628 0.00% 0 YOL157C, YGR287C, YJL216C, YIL162W 

GO:0015926 glucosidase activity 0.000319537 0.00% 0 
YOL157C, YGR287C, YOL155C, YJL216C, 

YIL162W 

GO:0005354 
galactose transmembrane 

transporter activity 
0.000919703 0.00% 0 YOL156W, YLR081W, YJL219W 
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GO:0004556 alpha-amylase activity 0.001600387 0.00% 0 YGR287C, YOL157C, YJL216C 

GO:0004574 oligo-1,6-glucosidase activity 0.001600387 0.00% 0 YJL216C, YGR287C, YOL157C 

GO:0016160 amylase activity 0.001600387 0.00% 0 YOL157C, YGR287C, YJL216C 

GO:0032450 
maltose alpha-glucosidase 

activity 
0.001600387 0.00% 0 YOL157C, YGR287C, YJL216C 

GO:0033934 
glucan 1,4-alpha-

maltotriohydrolase activity 
0.001600387 0.00% 0 YJL216C, YGR287C, YOL157C 

GO:0004553 
hydrolase activity, hydrolyzing 

O-glycosyl compounds 
0.003810912 0.00% 0 

YOL155C, YJL216C, YIL162W, YOL157C, 
YGR287C 

GO:0005351 sugar:proton symporter activity 0.003938333 0.00% 0 YJL219W, YBR298C, YLR081W, YOL156W 

GO:0005402 cation:sugar symporter activity 0.003938333 0.00% 0 YLR081W, YJL219W, YBR298C, YOL156W 

GO:0051119 
sugar transmembrane 

transporter activity 
0.00539954 0.00% 0 YLR081W, YBR298C, YJL219W, YOL156W 

GO:0016616 
oxidoreductase activity, acting 

on the CH-OH group of donors, 
NAD or NADP as acceptor 

0.005459304 0.00% 0 
YNL331C, YOL165C, YMR303C, YJR155W, 

YCR107W, YDL243C 

GO:0015144 
carbohydrate transmembrane 

transporter activity 
0.007221389 0.00% 0 YBR298C, YJL219W, YLR081W, YOL156W 

GO:0016614 
oxidoreductase activity, acting 

on CH-OH group of donors 
0.00750681 0.00% 0 

YOL165C, YNL331C, YDL243C, YCR107W, 
YJR155W, YMR303C 

 

  



 

178 

 

Component 

GOID TERM 
CORRECTED 

PVALUE 
FDR 

RATE 

EXPECTED 
FALSE 

POSITIVES 
ANNOTATED GENES 

GO:0071944 cell periphery 2.20E-10 0.00% 0 

YAR020C, YIL162W, YCR010C, YOL161C, YBR298C, YFL020C, 
YGL255W, YGL053W, YAR071W, YML125C, YIL169C, YOL155C, 
YCR002C, YLR461W, YCL008C, YDR542W, YOL156W, YKL224C, 
YLR081W, YAR031W, YJL219W, YIR039C, YCR009C, YOL159C, 

YBL108C-A, YIL166C, YCR004C, YOL158C 

GO:0009277 
fungal-type cell 

wall 
6.09E-06 0.00% 0 

YLR461W, YDR542W, YAR020C, YAR071W, YOL161C, YBL108C-A, 
YOL155C, YFL020C, YKL224C, YIR039C 

GO:0005618 cell wall 9.30E-06 0.00% 0 
YFL020C, YBL108C-A, YOL155C, YOL161C, YIR039C, YKL224C, 

YDR542W, YLR461W, YAR071W, YAR020C 

GO:0030312 
external 

encapsulating 
structure 

9.30E-06 0.00% 0 
YAR071W, YAR020C, YDR542W, YLR461W, YIR039C, YKL224C, 

YFL020C, YOL161C, YOL155C, YBL108C-A 

GO:0005773 vacuole 0.003474722 0.00% 0 
YCR010C, YKL224C, YFL020C, YOL161C, YIL162W, YDR542W, 
YLR461W, YOL158C, YIL166C, YCL001W, YHL048W, YGR295C, 

YJL219W, YCL005W-A 

GO:0000322 
storage 
vacuole 

0.004817282 0.33% 0.02 
YIL162W, YDR542W, YLR461W, YKL224C, YFL020C, YOL161C, 

YCL001W, YGR295C, YHL048W, YJL219W, YCL005W-A, YOL158C, 
YIL166C 

GO:0000323 lytic vacuole 0.004817282 0.29% 0.02 
YIL162W, YLR461W, YDR542W, YKL224C, YOL161C, YFL020C, 

YHL048W, YGR295C, YCL001W, YCL005W-A, YJL219W, YOL158C, 
YIL166C 

GO:0000324 
fungal-type 

vacuole 
0.004817282 0.25% 0.02 

YIL162W, YLR461W, YDR542W, YKL224C, YOL161C, YFL020C, 
YGR295C, YHL048W, YCL001W, YCL005W-A, YJL219W, YOL158C, 

YIL166C 
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Supplementary Table S10: Gene Status   

Haplotype information for the 6 genes MAL11, PAD1, FDC1, GAL2, ADH2 and 

SFA1 for all 35 strains. The positions given are relative to reference sequence of 

the gene, starting with the first base of the CDS as base number 1. 

Only MAL11 is shown here. The full table can be found in the companion 

document accessible from the appendices. 

Gene MAL11 

Group Strain 
Intact 

Inactivating 
Indel 

Nonsense 
mutation 

SV 

African 
Beer 

BEM NA NA NA 
Gene is 
absent 

BHA Yes None None None 

ANL NA NA NA 
Gene is 
absent 

AVN NA NA NA 
Gene is 
absent 

AVQ Yes None None None 

AVS Yes None None None 

AVT Yes None None None 

ASC NA NA NA 
Gene is 
absent 

European 
dominant 

CFE No hom 1772CA ➞ C None None 

ASD Yes None None None 

CPB No hom 1772CA ➞ C None None 

CFF No hom 1175A ➞ AT None None 

AFP No hom 1772CA ➞ C None None 

AQH No hom 1772CA ➞ C None None 

ARE No 
het 1175A ➞ AT; 

het 1772CA ➞ C 
None None 

ASB No hom 1175A ➞ AT None None 

 
 

Asian 
dominant 
(Belgian) 

 
 

CFN No het 1772CA ➞ C None None 

CFP No het 1772CA ➞ C None None 

BDL No hom 1772CA ➞ C None None 

CFC No hom 1175A ➞ AT None None 

YMD1873 No het 1175A ➞ AT None None 
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Asian 
dominant 
(Belgian) 

BBG Yes None None None 

YMD1871 No het 1175A ➞ AT None None 

CGC No hom 1175A ➞ AT None None 

AQT No het 1175A ➞ AT None None 

BSI No het 1175A ➞ AT None None 

YMD1950 No het 1175A ➞ AT None None 

YMD4285 No het 1175A ➞ AT None None 

BRP No het 1175A ➞ AT None None 

Asian 
dominant 
(British) 

CFG Yes None None None 

CFH Yes None None None 

CFM Yes None None None 

YMD1864 Yes None None None 

YMD1870 Yes None None None 

YMD1981 Yes None None None 
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Supplementary Table S11: GAL2 Diversity 

Mean, minimum and maximum divergence levels observed within groups for the 

various haplotypes of GAL2 (%).       

 

Group African Beer European dominant Asian dominant 

African Beer 1.46 2.84 2.84 

European 
dominant 

2.84 0.28 0.27 

Asian dominant 2.83 0.27 0.20 

 

Minimum divergence levels observed within groups for the various haplotypes of 

GAL2 (%). 

 

Group African Beer European dominant Asian dominant 

African Beer 0.00 1.56 1.5 

European 
dominant 

1.56 0.00 0.00 

Asian dominant 1.50 0.00 0.00 

 

Maximum divergence levels observed within groups for the various haplotypes of 

GAL2 (%). 

 

Group African Beer European dominant Asian dominant 

African Beer 3.47 4.05 4.05 

European 
dominant 

4.05 0.52 0.57 

Asian dominant 4.05 0.57 0.57 
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Availability of data 

 

Oxford Nanopore and Illumina sequencing data are available under the study 

accession number PRJEB46384. 

Illumina short read data for the Saccharomyces cerevisiae strains is taken from the 

1,011 yeast genomes project and their SRA accession numbers are given in 

Supplemental Table 1. 
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Abstract 

 

Polyploidization events are observed across the tree of life and occurred in many 

fungi, plant and animal species. During evolution, polyploidy is thought to be an 

important source of speciation and tumorigenesis. However, the origin of polyploid 

populations is not always clear and little is known about the precise nature and 

structure of their complex genomes. Using a long-read sequencing strategy, we 

sequenced 71 strains of the Brettanomyces bruxellensis yeast species, which is found 

in anthropized environments (e.g. beer, kombucha, ethanol production and 

contaminant of wine) and characterized by several distinct polyploid subpopulations. 

To reconstruct the polyploid genomes, we phased them by using different strategies 

and we found that each subpopulation had a unique polyploidization history with 

distinct trajectories. The polyploid genomes contain either genetically closely related 

copies (genetic divergence < 1%) or diverged copies (> 3%), indicating auto- as well 

as allopolyploidization events. Allopolyploidization has occurred independently for 

each polyploid subpopulation, involving a specific and unique donor each time. Our 

analysis rules out known Brettanomyces sister species as possible donors. Finally, 

loss of heterozygosity events have shaped the structure of these polyploid genomes 

and underline their dynamics. Overall, our study highlighted the multiplicity of the 

trajectories leading to polyploidy within the same species. 
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Introduction 

 

Polyploidy, a state in which organisms carry more than two sets of chromosomes, is 

a phenomenon that can be observed throughout plant, animal and fungal species. 

Interest in polyploidization has increased due to its tremendous effects on the 

evolution of species or its involvement in cancerogenesis1–3. The most obvious and 

probably well studied polyploidization events in the tree of life are Whole Genome 

Duplication (WGD) events, which are usually followed by subsequent and massive 

diversification. One example is the series of two ancient WGD events that occurred 

in the lineage leading to the ancestor of all vertebrates ~450 million years ago, and 

have significantly contributed to the subsequent evolution of 60,000 extant species4,5. 

 

There are different mechanisms to become polyploid6,7. The doubling of one’s own 

genome or the generation of a hybrid from individuals of the same species would 

both lead to multiple genomic copies of identical or similar descent, which defines 

the mechanisms of autopolyplodization. Alternatively, interspecific hybridization 

would cause the acquisition of additional chromosomal sets harboring higher genetic 

variation, which defines allopolyploidization. While it is well established that a 

polyploid state causes genomic conflicts, leads to genome instability, or reduces 

gamete formation, on the contrary, genomic reorganization can ultimately promote 

diversification through the additional genomic information8–10. Therefore, 

polyploidy can play a predominant role in bursts of adaptive divergence and 

speciation11,12. Polyploidy can be beneficial under certain environmental 

circumstances and increases the potential for adaptability, taking advantage of 

evolutionary innovations from neo- and sub-functionalization of duplicated 

genes13,14. Environmental changes that require a fast adaptation for example can 

trigger the prevalence of polyploids, which at least for short-term timescales may 
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provide an adaptive advantage through genomic flexibility rather than simply being 

the “dead-end”.  

 

Some taxa are believed to be more stable in polyploid states than others. These are 

known to be found frequently among plants, which in contrast to animals are 

characterized by a development that seems to be more robust to genomic 

perturbations15. Studies suggest that up to 70% of flowering plants originate from 

polyploid ancestors, putting it as a major contributor in the evolution of species16,17. 

But it is also suspected in animals that polyploidization plays an even more prevalent 

role than currently shown, limited by the analytic tools and effort detecting them. 

While animals are characterized by less stability in polyploids, it is well established 

that most of the vertebrate species originate from ancient polyploidization events 

too2,18. At the same time, polyploidy is also increasingly observed in single-cell 

organisms such as yeasts19–21, suggesting that this state can serve as a rapid response 

to ecological or human-made changes in artificial environments, coevolution or 

enable invasions by the acquisition or maintenance of additional full sets of 

chromosomes10,22–24. In the lineage leading to Saccharomyces cerevisiae, a 

hybridization event between two ancestral species has been followed by subsequent 

WGD, a means by which, in the subsequent process of extensive genome 

reorganization, high fertility could be retained25–28. Moreover, the prevalence of 

polyploidy, currently observed in S. cerevisiae is approximately 11.5%, as shown in 

a recent study of 1,011 whole-genome sequenced isolates21. Polyploids are 

particularly enriched in subpopulations associated with the production of beer or 

bread, highlighting that its domestication most likely triggered the appearance of 

polyploids to fulfil the desired requirements in industrial settings. 

 

With polyploidization being recognized as a ubiquitous mechanism in nature with 

almost unpredictable consequences in terms of genomic conflicts or adaptability, we 
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are still starting to fully resolve and understand the genomic architecture of natural 

polyploid populations, their prevalence, and trajectories especially within the same 

species. Access to long-read sequencing data has accelerated research on polyploid 

and hybrid genomes. However, the biggest challenge is still the correct phasing of 

haplotypes, to separate the different sets of chromosomes without any prior 

knowledge of ploidy and levels of genetic variation between genomic copies 

(sometimes referred to as subgenomes). Here, we focused on the Brettanomyces 

bruxellensis yeast species, a genetically diverse species with different 

subpopulations of various levels of ploidy which allows us to shed light into several 

questions related to polyploidization. As seen for other yeasts of the 

Saccharomycotina subphylum, the link between ecological origin and genetic 

differentiation for the different B. bruxellensis clades is primarily supposed to be 

driven by its anthropogenic influences29,30. Multiple genetically distinct 

subpopulations (clusters) correspond to different ecological niches: wine, beer, 

tequila/bioethanol, kombucha and soft drinks31. 

 

To study their genomic complexity and allow a detailed view of their genomic 

architecture for the first time, we sequenced a subset of 71 B. bruxellensis strains 

from different subpopulations with long and short read sequencing strategies. By 

using two complex phasing strategies, we studied different trajectories of 

polyploidization in an ecological diverse population. 
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Results 

 

Conserved clusters of polyploid isolates 

Brettanomyces bruxellensis is known as a diverse species with genetically and 

ecologically distinct clusters, and various levels of ploidy31–33. To dissect the 

genomic architecture and further understand the origin as well as the trajectories of 

recently described polyploid groups, we selected 71 strains with 51 coming from 

subpopulations defined as polyploids31 (Figure 1A; Supplementary Table S1). Most 

of the strains were isolated in Europe and stem from different ecological origins: 

beer (n=25), wine (n=36), tequila/bioethanol (n=7) and kombucha (n=3). 

To have a deep insight into the population structure and ploidy levels, we first 

sequenced the 71 genomes using a whole genome Illumina short-read sequencing 

strategy with a 16.9-fold mean coverage. Using this dataset, we sampled 24,313 

genetic variants evenly distributed across the genome and performed a phylogenetic 

analysis (Figure 1B). All 71 strains were clustered into six well-defined lineages 

which correlate with environmental niches, corroborating previous reports31–33. We 

then assigned a ploidy to each of the strains using SNP frequency distributions within 

the sequence reads. We categorized their level of ploidy as either being diploid (with 

SNPs at allele frequencies of 0.5 and 1), triploid (with SNPs at allele frequencies of 

0.33 and 0.67) or tetraploid (with SNPs at allele frequencies of 0.25, 0.5, 0.75 and 

1) (Supplementary Figure S1A). We found that the level of ploidy is conserved 

within, but varies across subpopulations (Figure 1B). The wine 1, wine 2 and beer 

subpopulations are triploid while the wine 3 and kombucha subpopulations are 

diploid. The exception is a single tetraploid kombucha strain (Supplementary Figure 

S1A). The teq/EtOH clade harbors one diploid and three triploid strains while the 

ploidy could not be assigned to three of the four other isolates (Supplementary Figure 

S1A). For one strain (I_H06_YJS78889), we could neither identify its ploidy, nor 

assign it to one of the six subpopulations. To exclude the possibility that aneuploidies 
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are causing the non-assignment of ploidy levels for the four strains, we looked at 

read coverage across their genome to identify regions that are absent or present in 

multiple copies (Supplementary Figure S1B-C). We showed that the coverage is 

stable and that these strains do not contain regions with varying coverage explaining 

our results. 

 

Overall, we highlight that the level of ploidy is conserved within genetically diverged 

subpopulations, but not across them. We  showed that  the teq/EtOH  strains are the 

most diverse subpopulation and confirmed previous data that additionally suggested 

this subpopulation as the oldest of the different B. bruxellensis clades33. The 

teq/EtOH strains stand in contrast to other subpopulations like wine 3, which shows 

the lowest degree of genetic variation, suggesting a single ancestral origin with a 

recent expansion. 
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Figure 1 - Ploidy and intra-genomic variation 

A. Strain collection. The 71 sequenced strains come from the collection of 1,500 isolates31 

and were isolated in different regions worldwide, where they are associated with anthropized 

environments such as tequila/bioethanol, beer, wine and kombucha production. 

B. Genetic relationship and ploidy level. The sequenced strains, here clustered based on 

Illumina short read sequencing data (75PE), segregate into six genetically distinct 

subpopulations, namely tequila/bioethanol (teq/EtOH), beer, wine (1-3) and kombucha 

(based on 24,313 genome-wide distributed variants). Forty-eight strains were detected as 

triploids (69%) coming from five of the six subpopulations: teq/EtOH, beer, wine (1,2) and 

kombucha (inferred from genome-wide allele frequencies). 

C. Genetic diversity within clades inferred from long-read sequencing data. The three 

subpopulations teq/EtOH (n=5), beer (n=22) and wine 1 (n=7) harbor strains with two 

clusters of reads bearing low and high genetic variation (underlaid in grey) compared to the 

reference genome Brettanomyces bruxellensis36. The subpopulation wine 2 (n=9), although 

being polyploid (B), lacks genomic regions with high genetic variation to the reference 

genome. The three lines within each distribution show the 25%, 50 and 75% quartiles. 

  



 

194 

 

Strategies used to phase the B. bruxellensis polyploid genomes  

In order to resolve the genomic structure of polyploid isolates, we sequenced the 

genomes of the 71 strains using the Oxford Nanopore sequencing strategy. Long-

read sequencing has become the strategy of choice to best resolve structural variation 

and build high quality de novo reference assemblies. The difficulty of resolving 

polyploid genomes, however, lies especially in the attempt to distinguish between 

the different haplotypes, which are present as independent genomic copies within 

the same genomes. We will hereafter refer to distinct genomic entities of different 

descendants within the same genome as genomic copies. While de novo assemblers 

are not capable of fully differentiating between different haplotypes in polyploids, 

seeking instead to provide collapsed haplotypes, several alignment-based algorithms 

have been developed recently to cope with the genomic architecture of polyploid 

genomes34,35. They all aim to phase haplotypes into independent entities, but they 

vary in performance based on factors such as ploidy, coverage, and the level of 

genetic divergence between genomic copies of the polyploid genomes. 

 

To properly phase our polyploid genomes, we sought to apply different strategies 

depending on the level of divergence of the copies constituting these genomes to the 

B. bruxellensis reference genome36. Reasons to expect that there are different levels 

of variation relative to the reference have been identified by previous studies, which 

indicated that at least two individual polyploid isolates from the wine 1 and beer 

subpopulations have likely experienced polyploidization events by acquiring an 

additional genomic copy of high genetic variation37. 

 

To estimate the genetic divergence, we aligned the long reads of each strain to the 

B. bruxellensis reference genome (Supplementary Figure S2A). We identified three 

subpopulations (teq/EtOH, beer and wine 1) for which the genetic variation results 

in a bimodal distribution with a cluster of reads that have a low level of genetic 
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variation relative to the reference and a second cluster of reads that have a high 

genetic variation level relative to the reference (Figure 1C). These subpopulations 

stand in contrast to the other three subpopulations (wine 2, wine 3 and kombucha), 

which solely consist of low genetic divergence reads. Strikingly, wine 2 is the only 

polyploid subpopulation which bears reads with only low genetic diversity. It is 

hereafter assumed that “low genetic diversity/genomic variation” and “high genetic 

diversity/genomic variation” are understood to refer to the distance to the B. 

bruxellensis reference genome. 

 

Given two types of polyploid subpopulations exhibiting either low or high genomic 

variation, we applied two different phasing strategies to study their genomic 

architecture. 

 

(1) To resolve the origin of the genetic diversity, and to determine if the cluster with 

reads of high genetic variation corresponds to an additional genomic copy, we 

separated the long reads into distinct clusters based on their diversity level. We 

clustered reads with peaks of low genetic variation at 2 SNPs per kb and high genetic 

variation exhibiting 24.4 SNPs per kb, yielding a set of lowly divergent reads and 

one of highly divergent reads (Supplementary Figure S2A-B). Reads between the 

two distributions (i.e. with a variation between 10 and 14 SNPs per kb) were 

conservatively ignored due to the ambiguity of which cluster they should be assigned 

to (Supplementary Figure S2B). Using these two sets of reads, we generated de novo 

assemblies to recreate phased copies of these polyploid genomes. 

 

(2)  The low genetic variation observed in the polyploid wine 2 subpopulation did 

not allow us to separate reads based on their genetic divergence (Figure 1C). 

Consequently, we used nPhase, a phasing algorithm that we recently developed35. 

Briefly, nPhase resolves the genome into distinct haplotypes and provides accurate 
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and contiguous haplotype predictions using short and long read sequencing data 

without any prior information of the true ploidy. It accurately identifies heterozygous 

positions using highly accurate short reads and clusters long reads into haplotypes 

based on the presence of similar heterozygous SNP profiles35. 

 

Genomic architecture of the polyploid wine 2 subpopulation 

We applied the nPhase phasing algorithm to the sequenced genomes of the wine 2 

subpopulation which exhibit exclusively low intra-genomic variation. We focused 

on six of the ten strains for which we had high quality long and short read sequencing 

data, allowing us to phase their genome properly into independent haplotigs (Figure 

2; Supplementary Figure S3A). 

 

We observed that the chromosomes are phased into regions underlying in most cases 

two or three haplotigs (Supplementary Figure S3A). Some regions bear multiple and 

often small haplotigs, and underline the difficulty in phasing polyploid genomes with 

haplotypes that reflect high genetic similarity. In addition, the level of genetic 

divergence varies along the genomes of the six strains. Whenever nPhase resolves a 

region into two haplotigs, the genetic variation in these regions is lower compared 

to regions where it distinguishes between three haplotigs (Figure 2A). Here, the 

highest genetic variation in the presence of two haplotigs is 0.93%, while on average 

it is as low as 0.09% (Figure 2B, Supplementary Figure S3B). In the presence of a 

third phased haplotig, the genetic variation can be as high as 1.79% with an average 

genetic variation of 0.54% (Figure 2B, Supplementary Figure S3C). Consistent 

coverage levels support the hypothesis that the prediction of only two haplotypes is 

not due to the absence of a third copy for part of the chromosome (Figure 2A). 

Therefore, while the differentiation of three haplotigs underlines the existence of 

three genetically different genomic copies at that site, the phasing resolving into two 
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haplotigs represent a region with two identical haplotypes plus the existence of 

genetically different copy. 

 

 

Figure 2 - Autopolyploidization for the wine 2 subpopulation 

A Separation of haplotypes. Phasing the genomes of strains from the polyploid wine 2 

subpopulation resolves the generally low intra-genomic variation into haplotigs along the 

genome. The presence of two haplotypes results in lower genetic variation as it does when 

three haplotigs are present at a given position. Maximal genetic variation between haplotypes 

increases from 0.93 % to 1.79 % with the presence of a third phased haplotype. To control 

that the variations in genetic difference are not artefacts caused by variable coverage along 

these regions, the genome-wide coverage was calculated. The coverage is consistent across 

regions that harbor either two or three phased haplotypes. 

B. Conserved patterns of phased haplotypes along the genomes of six strains of the wine 2 

subpopulation. Having either two or three phased haplotypes at a site is conserved among 

different strains from the same subpopulation. 

 

Further, we can show the presence of conserved regions in all six strains that are 

characterized by the presence/absence of a third phased haplotype (Figure 2B; 

Supplementary Figure S3B-C). Some regions, for example the first 1 Mb on 

chromosome 1, are characterised by two identical copies and a non-identical copy, 

resolving into two phased haplotypes. This region is followed by another 1 Mb 

region, which is resolved into three haplotypes in all six strains. An explanation for 

the alternation of such regions phased into two or three haplotypes is the occurrence 



 

198 

 

of loss of heterozygosity (LOH) events. LOH events are characterized by the absence 

of polymorphic markers that distinguish different genomic copies in otherwise 

heterozygous diploid or polyploid individuals and consequently reduce the genetic 

variation. nPhase outputs only unique haplotypes present in the data, even if one 

haplotype contains twice the number of reads as the other, directly showing how 

LOH events shape the haplotypes found in a genome. 

 

Moreover, the existence of the conserved regions of LOH events among the six 

strains could suggest hotspots for LOH events. Such hotspots have been shown in 

other species like S. cerevisiae21 where they frequently reduce genetic variation. 

Alternatively, this conserved pattern could also hint at a recent common ancestor. 

However these strains were isolated from two countries on different continents 

(Supplementary Table S1), making this explanation less likely. 

 

Overall, the utilization of long and short read sequences in combination with 

complex phasing strategies enables us to decipher the genomic structure of polyploid 

genomes of low genetic variation and allows us to study its dynamics. In the wine 2 

subpopulation, the only polyploid clade with a low intra-genomic variation, the 

genomes of six strains revealed conserved regions having undergone LOH events. 
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Three polyploid clades contain a genetically diverged genomic copy 

Next, we focused on the triploid genomes of the teq/EtOH, beer and wine 1 

subpopulations, which exhibit genetically very heterogeneous genomes. To enable 

comparative analyses, we first separated long reads based on their genetic divergence 

compared to the reference genome (Supplementary Figure S2A). We clustered long 

reads from the bimodal distribution with reads bearing low genetic variation (peak 

at 2 SNPs per kb) and reads with high genetic variation (peak at 24.4 SNPs per kb) 

(Supplementary Figure S2B). As previously mentioned, reads with a variation 

between 10 and 14 SNPs per kb were ignored to avoid assigning reads to the wrong 

cluster. The determination of the ratio between the number of reads with a low 

genetic variation and the total coverage (all reads) within 10 kb windows across the 

genome allowed us to determine the average genomic ploidy level of each strain at 

a given genomic position (Supplementary Figure S4A). We identified that the three 

groups (teq/EtOH, beer and wine 1) contained two genomic copies with low genetic 

variation and a single genomic copy that exhibits a high genetic divergence (or vice 

versa), which on average complemented to 3n genome-wide (Supplementary Figure 

S4B). 

 

The fact that the beer and wine 1 subpopulations contain isolates with higher genetic 

variation compared to the reference genome was already shown previously for a 

single strain from each subpopulation37. The authors claimed the possibility of 

interspecific hybridization events having taken place. We can, for the first time, 

highlight that this phenomenon of having a genetically different genomic copy 

within these subpopulations is frequent and conserved. Additionally, while previous 

analyses have underpinned the prevalence of polyploid strains in the teq/EtOH 

subpopulation, we can also show that teq/EtOH strains contain a genomic copy as 

genetically different to the reference genome of B. bruxellensis as in beer and wine 

1 isolates.  
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To ultimately allow comparative studies between the different genomic copies 

among these genomes as well as with genomes from the other subpopulations, we 

first performed de novo genome assemblies using SMARTdenovo38. First, we used 

only the long reads that contained low genetic variation for all strains from the three 

subpopulations (teq/EtOH, beer and wine 1). We repeated this step independently 

for the long reads that were exclusively bearing high genetic variation to the 

reference genome to prepare de novo assemblies (Supplementary Figure S5; 

Supplementary Table S2). Then, we created group-specific reference genomes by 

concatenating the de novo assemblies generated from low and high genomic 

variation reads (See Material and Methods). This was done for a representative strain 

from each group. By performing a competitive mapping approach using these group-

specific reference genomes with scaffolds made from low and high genetic variation, 

we separated the short reads for each strain from the three groups into two groups: 

short reads with low genetic variation and short reads with high genetic variation 

(teq/EtOH, beer and wine 1) (Supplementary Figure S5). Then, we aligned the short 

reads independently back to the B. bruxellensis reference genome. For strains that 

were either diploid, or polyploid with exclusively low genetic variation, we aligned 

short read sequences directly to the reference genome (wine 2, wine 3 and kombucha 

subpopulations). 

 

First, we determined if there was any bias in the mapping rates of short reads to the 

reference genome/assemblies, comparing the high diversity strains aligned to the de 

novo assemblies and the low diversity strains aligned to the B. bruxellensis reference 

genome. Both showed similar alignment rates, respectively 94% and 92.5% 

indicating no bias in the alignment due to the applied phasing strategy. Then, we 

determined the genetic diversity of the 71 strains by performing a principal 

component analysis (Figure 3A). By looking at the first two principal components 

explaining 53.7% of the variation from 24,110 sampled genome-wide distributed 
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SNPs, we can show that the genomic copies with high genetic variation (‘High’) of 

40 strains from the teq/EtOH, beer and wine 1 subpopulations are clearly distinct 

from the genomic copies with low genetic variation (‘Low’), and cluster in a group-

specific way. 

 

We then checked the genetic relationships of the genomic copies with only low 

genomic variation, since such genomic copies were present in all 71 strains (Figure 

3B). We can show that the strains cluster in the six subpopulations as previously 

observed using raw Illumina data (Figure 1B). The strain I_H06_YJS7889, initially 

unable to be associated with a subpopulation, now clusters with other teq/EtOH 

strains. 
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Figure 3 - Three independent interspecific hybridization events 

A. Three distinct clusters of genomic copies with high genetic variation. A principal 

component analysis shows that the genomic copies with high genetic variation to the 

reference genome of strains in the subpopulations teq/EtOH, beer and wine 1 are not only 

different to the genomic copy with low genetic variation, but are also genetically distinct 

between subpopulations (based on 24,110 genome-wide distributed SNPs).  

B. Phylogenetic relationship from reads with low genetic variation to the reference genome. 

The genomic copies with low genetic variation are different between the six subpopulations 

teq/EtOH, beer, wine 1-3 and kombucha, which group according to their ecological origin 

(based on 24,110 genome-wide distributed SNPs).  

C-E. Pairwise genetic diversity between genomic copies from imputed whole-genome 

sequences. C Left (High*High): Pairwise comparison of the genomic copies with high levels 

of intra-genomic variation between strains of the same subpopulations (single-colored dots) 

show a genetic diversity of less than 1% (average of 0.13%). Between strains from different 

subpopulations (two colored dots indicate the subpopulation dependency of the compared 

strains), this diversity varies between 1.76% and 3.05%. Middle (High*Low): The genetic 

distance between the genomic copies with low and high levels of variation, irrespective if it 

is within the same or between strains, is on average 2.92% (two colored dots indicate the 

subpopulation dependency of the compared strains). The strain III_F09_YJS8068 is an 

outlier (black triangle) as it appears to be an admixed diploid with only 1.1% divergence 

between the highly and lowly diverged parts of its genome. Right (Low*Low): Genetic 

distances between genomic copies of low intra-genomic variation is generally below (0.9%) 

between strains of the same or different subpopulations. The admixed strain 

III_F09_YJS8068 is the exception, since it also has the highest variation between the low 

intra-genomic of its genome and the low intra-genomic copies of other strains (>2%).    

D. Heatmap showing the genetic distance between genomic copies of 40 polyploid 

individuals. The only strains whose genomic sequences (low intra-genomic variation and 

high intra-genomic variation) are similar is the admixed III_F09_YJS8068 (black triangle). 

Here, both genomic copies cluster together with all other genomic copies of high intra-

genomic variation.  

E. Acquired genomic copy of unknown origin. The genomic copies with low genetic 

variation were assigned as the primary genomic copies present in all individuals (2n-4n), 

while the genomic copies with high genetic variation were assigned as acquired genomic 

copies, only present in 40 polyploids of the subpopulations teq/EtOH, beer and wine 1. 

Pairwise genetic analysis with the primary genome of the beer subpopulation as a reference 

shows a clear gap between the genetic variation that defines the primary and the acquired 

genome. The primary genome of the beer subpopulation is similarly distant to its own 

acquired genomic copy as well as to the acquired genomic copies of the other two polyploid 

groups wine 1 and teq/EtOH. The two genetic clusters beyond the 0.9% for the teq/EtOH do 

not only comprise the pairwise comparison with the acquired genomic copies. The dotted 

rectangle corresponds to comparisons with the admixed diploid strain III_F09_YJS8068 

(black triangle), for which both copies are equally distinct. Genetic distances were calculated 

pairwise per chromosome and then average per genome (JC69). 
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Acquired divergent copies highlight clade specific allopolyploidy events 

To study the origin of the genetically divergent copies present in the three 

subpopulations, we imputed whole-genome fasta-alignment files for every 

individual. First, we compared the genomic copies with high genetic variation 

(High*High) within and between groups. We calculated pairwise genetic distances 

and found that the divergence between these copies within the subpopulations was 

0.13% on average (Figure 3C, single-colored dots). By contrast, the genetic 

divergence of these copies across the subpopulations was 2.59% on average, ranging 

from 1.76% to 3.05% (two-colored dots). 

 

When comparing the genetic distance between the lowly and highly (High*Low) 

diverged genomic copies across all the genomes, we observed that the genetic 

distance is 2.92% on average (Figure 3C, High*Low). The largest genetic distance 

is observed between the wine 1 and kombucha subpopulations, reaching 3.16%. The 

only outlier is the III_F09_YJS8068 strain (teq/EtOH) and has the closest genetic 

distance between its two genomic copies, at about 1.1% (Figure 3C, black triangle). 

With more than 2% distance, III_F09_YJS8068’s low variation genome is also the 

most distant to all other low variation genomes (Figure 3C, Low*Low). This paints 

III_F09_YJS8068 as an admixed diploid whose two genomic copies are mixtures of 

lowly and highly diverged sequences, placing it between the highly diverged and 

lowly diverged genomes. The other genomes bearing low genetic variation are less 

than 1% diverged with each other (Low*Low). In fact, using the representation of 

pairwise distances in the heatmap format reasserts the three genetically distinct 

entities of the genomic copies with high genetic variation (Figure 3D, High*High), 

while the genomic copies with low genetic variation appear more similar (Figure 3D, 

Low*Low). Pairwise comparison using the lowly variable genomic copies of the 

beer clade as a reference confirm that inter-clade transfer of genomic copies can be 

excluded as a potential cause in the acquisition of additional genomic copies with 
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high genetic variation between the three polyploid subpopulations (Figure 3E). 

These three groups each have their own additional copy, and each group’s additional 

copy is unrelated to the additional copies of other groups. 

 

Since a closely related diploid genome is conserved across the isolates of the species, 

we define this part as the primary genome of B. bruxellensis (Figure 3E). It is present 

in all of the strains and harbors a genetic variation of less than 1% to the reference 

genome. The exception is the admixed strain III_F09_YJS8068 which groups within 

the teq/EtOH subpopulation and which is the only strain with a minimum genetic 

distance of 2.01% and maximum genetic distance of 2.53% to the other primary 

genomes. In addition to these primary genomic copies, a highly divergent copy is 

present in three groups (teq/EtOH, beer and wine 1 subpopulations) and was defined 

as a new or ‘acquired’ genomic copy (Figure 3E). The acquired genomic copies 

clearly exceed the genetic variation of the primary genome, raising the question of 

their origin and a possible acquisition by interspecies hybridization. 

 

To test whether the additional copies have been acquired from sister species in the 

genus Brettanomyces, we sequenced and generated de novo genome assemblies for 

four of the sister species: B. anomala, B. nanus, B. custerianus and B. acidodurans 

(Supplementary Table S3, Supplementary Figure S6A-D). While we were able to 

show collinearity between the acquired copies and the reference genome of B. 

bruxellensis (Supplementary Figure S6E-F), the genomes of the sister species of B. 

bruxellensis were too dissimilar to retain any correlation using the same parameters. 

We were only able to show a correlation by lowering the parameters, which suggests 

less synteny paired with high genetic differentiation (Supplementary Figure S6G), 

as already shown by Roach and Bornemann (2020). With a genetic divergence of 

2.5-3% between the acquired to the primary genomic copies, however, it seems 
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unlikely that sister species with a genetic similarity under 77% have been involved 

in the acquisition of the additional genomic copies39. 

 

Overall, we have shown that the triploid genomes of the wine 1, teq/EtOH, and beer 

subpopulation are composed of a part which is common to every B. bruxellensis 

isolates as well as a newly acquired divergent copy. These results strongly suggest 

that these events must have occurred independently with closer, so far unknown and 

far related isolates that we would, according to the genetic distance of ~3%, define 

as different species from B. bruxellensis. 

 

LOH events shaping the genomic landscape of interspecific hybrids 

Hybrid genomes are dynamic entities with LOH events playing an important role in 

their evolution40,41. As already seen for the triploid genomes of the wine 2 

subpopulation, these events can cause the removal of genetic variation along the 

genomes in a conserved manner (Figure 2B). Moreover, these events would result in 

a difference of genomic content from the parental genomes. When preparing de novo 

assemblies from reads with either high or low intra-genomic variation, we observed 

significantly shorter assemblies (median 9.1 Mb) for the genomic copies harboring 

high intra-genomic variation, in comparison to de novo assemblies from reads with 

low intra-genomic variation and compared to the size of the reference genome of B. 

bruxellensis36 (Supplementary Figure S7A, p-value = 1.3e-10). In fact, strains from 

different subpopulations showed a trend in which even assembly size seemed to be 

not only different but also conserved between subpopulations (Supplementary 

Figure S7B). Therefore, given the significantly shorter de novo assemblies of the 

acquired genomic copies, we hypothesized that these polyploid genomes with 

heterogeneous levels of genetic variation have undergone LOH events as well. 
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To check for LOH events along the polyploid genomes, we looked at the coverage 

from reads belonging to the primary and acquired genome, determined if they are 

complementary to the total coverage, and analyzed their proportion relative to the 

total coverage. Here, we used the coverage from the short reads, aligned to the 

reference genome of B. bruxellensis and previously separated using competitive 

mapping (Supplementary Figure S5) along the chromosomes to check for reciprocal 

shifts in coverage (Supplementary Figure S8A-B). We can show that regions that 

lack reads aligned to the acquired genomic copy display an increase in coverage at 

the primary genome complementing the total coverage. On the other hand, this also 

appears to be the case of several regions of the primary genome, where aligned reads 

represent only a single genomic copy (1/3 of the total coverage), while the acquired 

genomic copy appears to be represented by two genomic copies (2/3 of the total 

coverage). These results confirm the reorganization of polyploid genomes through 

LOH events in the subpopulations teq/EtOH, beer and wine 1. 

 

Then, we used the primary genome as a reference and determined how many copies 

are present throughout the genome within the polyploid strains. We calculated its 

ratio per 10 kb non-sliding windows to the total coverage to assess its distribution. 

Our results show that the polyploids have undergone massive LOH events (Figure 

4). Most regions appear to have been lost/gained within a subpopulation-specific 

pattern. On chromosome 1 for example, the beer and wine 1 subpopulations lack a 

significant part of the acquired genomic copy (1.7 Mb for beer strains and 1.2 Mb 

for wine 1 strains). Other, typically small events are private to individual strains. 

Next, we checked if the parts absent from the acquired genomic copy in the three 

subpopulations complete the smaller de novo genome assemblies (Supplementary 

Figure S7). For the beer strains, we calculated that LOH events have caused the loss 

of 26.6% of regions on average from the acquired copy (Supplementary Figure S8A). 

This leaves 9.54 Mb of the acquired genomic copy intact, which is similar in size to 
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the de novo assembly of 8.9 Mb (Supplementary Figure S7B). For the wine 1 

subpopulation, 22.3% of the acquired genomic copy is lost on average, leaving 10.1 

Mb still present (Supplementary Figure S8B). Here, the de novo assembly size (10.1 

Mb) matches exactly the size of retained regions in our analysis (Supplementary 

Figure S7B). 

 

 

Figure 4 - Dynamic genomic landscape of polyploid strains  

The polyploid genomes of the three subpopulations beer, wine 1 and teq/EtOH contain 

massive modifications through LOH events. The primary genome (low genetic variation) was 

used as a reference. Conserved patterns of modified regions for the primary genome were 

identified by determining the gain or loss of its copies in each strain, here varying between 

three (3×) and zero (0×). Only a few modified regions are unique to single or few strains. 

There are no common regions which show the same patterns across subpopulations. The 

teq/EtOH subpopulation shows a division into two clusters, each consisting of three 

individuals. The ploidy level was estimated in 10 kb windows. 

 

The teq/EtOH strains display a pattern of loss/gain of genomic regions from the 

primary genome that enables the distinction of two subgroups, denoted as teq/EtOH 

1 and teq/EtOH 2. The teq/EtOH 2 has almost entirely lost the second copy of the 

primary genome, replaced by a second copy of the acquired genome (Figure 4). Both 

subclades have lost 10.5% of the acquired genomic copy on average (12.1% for 

teq/EtOH 1 and 8.8% for teq/EtOH 2). The average of both (11.64 Mb) is comparable 

to the average de novo assembly size of 10.7 Mb. 
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The conserved patterns of LOH within each subpopulation raises the question of 

whether these patterns are the consequence of adaptation, random processes, or point 

at a recent shared ancestry. In the evolution of species, polyploidy has been shown 

to potentially play an important role in the acquisition of new traits or the 

amplification of already existing traits in the context of the acquisition of 

resistances42,43, interactions44,45, coping with changing environments46, or the 

occupation of novel ecological niches47. The different environments B. bruxellensis’ 

polyploid subpopulations are associated with such as bioethanol production, wine or 

beer fermentation, are harsh environments and require different adaptations such as 

a high tolerance to alcohol and acidity. As already seen for the polyploid wine 2 

subpopulation, LOH events are shared among strains and, with LOH events at 

similar positions (e.g. DEBR0S1), hotspots for LOH might be involved. 

 

Overall, the three subpopulations with polyploid genomes derived from interspecific 

hybridization events are highly dynamic, while LOH events have caused conserved 

patterns of low genetic diversity within each subpopulation. Further insight into how 

these variations at the gene level are expressed at a phenotypic level will have to be 

queried in future studies investigating the phenotypic landscape of the different 

subpopulations. 
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Discussion 

 

The Brettanomyces bruxellensis yeast species is known to harbor subpopulations 

with various levels of ploidy31–33. For the first time, we provide a detailed insight 

into the complex genomic architecture of these polyploid subpopulations. 

Interestingly, we noticed that there is a high conservation of ploidy in each 

subpopulation and four of them, associated with three different ecological 

environments (tequila/ethanol production, wine making and beer brewing) are 

exclusively characterized by triploids. 

 

Because polyploidy can be achieved in different ways (allopolyploidization or 

autopolyploidization), the final genomic composition might vary by distinct levels 

of intra-genomic information. At the same time, the intra-genomic variation will 

define the boundaries of genomic flexibility, and therefore drive evolution in almost 

unpredictable and different ways46,48. 

 

By using two different phasing strategies, we elucidated the genomic architecture of 

polyploid subpopulations of B. bruxellensis with various levels of intra-genomic 

variation. We highlighted that all six populations harbor a primary genome 

irrespective of their ploidy, which is defined as the genetic variation that does not go 

beyond 1% when compared to the reference genome of B. bruxellensis36. This is 

lower but in accordance with previous papers characterizing the genetic variation of 

B. bruxellensis, since they did not phase the genomes into distinct haplotypes 

(1.2%32). Furthermore, we show the existence of three allopolyploid subpopulations 

(teq/EtOH, beer, and wine 1) with an acquired genomic copy with a genetic 

divergence of about 3% compared to the reference genome. They clearly exceed the 

average intra-genomic variation of the primary genome, demonstrating the 

occurrence of interspecific hybridization events in these subpopulations. The known 
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sister species within the same genus are rejected as donors for the interspecific 

hybrids due to high genetic divergence of at least 23%39. 

 

We further highlight the fact that to our knowledge, the B. bruxellensis species is 

one (or the) rare case, in which these different scenarios, respectively allo- and 

autopolyploidy, can be observed in closely related subpopulations. We identified 

different trajectories for strains not only associated with different environments 

(teq/EtOH, beer and wine) but also associated with the same environment, while 

being part of a genetically distinct cluster. The “wine”-associated strains fall in three 

genetically diverged subpopulations. With the two subpopulations wine 1 and wine 

2 being triploid and wine 3 being diploid, only wine 1 has acquired a third genomic 

copy from interspecific hybridization, while wine 2 has solely genetically similar 

haplotypes.  

 

Different trajectories of polyploidization in nature were mostly studied (and 

observed) in plants, which yields no clues as to the importance or prevalence of 

polyploidization and its trajectories in animal or fungal systems2,49,50. These 

mechanisms, when observed and studied in extant polyploids, have mostly (when 

not exclusively) been determined between species, rather than within species. We 

highlight that future studies which screen individuals on a large scale to study 

prevalence and trajectories of polyploids across ecologically diverged, naturally 

occurring subpopulations are required, especially in the animal and fungi kingdom, 

Indications that polyploidy could be a more common state were shown by two recent 

studies, which genotyped more than 1,000 individuals from the S. cerevisiae and B. 

bruxellensis yeast species, with a prevalence of polyploids of 11.4%21 and 54%31, 

respectively.  
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Finally, we speculate that the different trajectories of polyploids in the 

subpopulations of B. bruxellensis are linked to the adaptation to the different 

anthropized environments. Polyploids in general have received a lot of attention in 

the context of adaptivity and diversification, in which many extant species originate 

from ancient polyploid states25–28. While a polyploid state itself can allow 

adaptability, it is often seen as a transient state which is followed by massive 

modifications to cope with genetic incompatibilities and to regain fertility in the long 

term. Evidence for this process has been gained through the detection of paralogous 

gene sets with different historical trajectories in many naturally diploid taxa, 

establishing the process of genomic modifications after polyploidization. With a 

prevalence of 54% polyploids, plus evidence for three independent interspecific 

hybridization events, polyploidy is abundant and most likely has significant effects 

for B. bruxellensis. The genomes of the allo- and autopolyploid subpopulations are 

characterized by massive genomic modifications, which have established a 

conserved pattern of rearranged blocks. These underline on the one hand the 

independent acquisition of genetically diverse genomic copies for the allopolyploid 

subpopulations, but most likely also reflect the recovery of fitness and overcoming 

of genomic incompatibilities. These acquired copies likely play a role in the 

adaptation of these subpopulations to the harsh and changing conditions of their 

anthropized environments. For example, sulfur dioxide is used to protect wine 

fermentation from spoilage by B. bruxellensis. The high tolerance against sulfur 

dioxide, mostly observed for the wine 1 subpopulation30, could be the adaptation of 

this yeast to the recently increased usage of this agent in the industry. 

Our study clearly highlights for the first time the coexistence of a large repertoire of 

evolution punctuated by various independent polyploidization events within a 

species and addresses the need to further resolve the genomic architecture of 

polyploid species complexes from diverse ecological settings. 
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Methods 

 

Strain selection and DNA extraction 

For this study, we focused on a subset of 71 strains of Brettanomyces bruxellensis. 

These strains are part of the collection of 1,500 strains31 which was previously 

analyzed using microsatellites and partially with whole genome sequencing data32. 

The 71 strains were selected to represent the different clades of B. bruxellensis in 

terms of genetic diversity, ecological origin (origin of isolation) and variation in 

ploidy (Supplementary Table S1). Additional to 71 B. bruxellensis strains, four sister 

species (B. anomala, B. custersianus, B. nanus, B. acidodurans) including the 

reference strain of B. bruxellensis were selected for this study (Supplementary Table 

S3).  

 

The DNA of 71 strains was extracted from 20ml cultures (single colony, 48h growth 

at 25°C) using the QIAGEN Genomic-tip 100/G kit (Hilden, Germany) with the 

recommended manufacturer’s genomic DNA buffer set. The manufacturer's protocol 

was followed as recommended and final DNA was eluted in 100-200µl water. DNA 

was quantified with the broad-range or high-sensitivity DNA quantification kit from 

Qubit (Thermo Fisher Scientific, Waltham, USA) with the use of the automated plate 

reading platform from TECAN (Männedorf, Switzerland). Genomic DNA was 

migrated on a 1.5% agarose gel to check for degradation. 

 

Library preparation and sequencing 

The kit NEBNext® Ultra™ II DNA Library Prep Kit (Ipswich, USA) for Illumina®️ 

(San Diego, USA) was used for library preparation. The dual-barcoding strategy was 

applied and samples were sequenced on two lanes of NextSeq (Illumina®) at the 

European Molecular Laboratory (EMBL) in Heidelberg, Germany. The strategy of 
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sequencing was 75 paired-end (75PE) and sequences from two independent 

sequencing lanes were concatenated prior to any analysis.  

For the long-read sequencing we used the Oxford Nanopore Technology (Oxford, 

UK). Libraries for sequencing using the MinION and were prepared as described in 

Istace et al. (2017)51 using the Ligation Sequencing Kit SQK-LSK109. We barcoded 

strains with the Native Barcoding Expansion 1-12 (EXP-NBD104) to multiplex up 

to 12 samples per sequencing reaction. 

 

Data analyses: long reads (Oxford Nanopore) 

 

Base-calling, de-multiplexing and adapter trimming 

Raw sequencing reads were processed as described in Fournier et al. (2017)36. 

Briefly, the base-calling and de-multiplexing steps were performed with guppy 

(https://nanoporetech.com/). Adapters were trimmed with Porechop (Porechop 

GitHub Repository https://github.com/rrwick/Porechop). 

 

Separating reads with different degrees of genetic variation to the reference 

genome 

We distinguish reads depending on their genetic distance to the reference genome 

Brettanomyces bruxellensis. For this, long reads of each sample were first aligned to 

the reference genome of B. bruxellensis36 using NGM-LR52 (v0.2.7). We separated 

reads into two groups based on their number of SNPs/kb. Here, reads comprising 

less than 10 variants per kb were assigned to the low intra-genomic variation cluster 

and reads with more than 14 variants per kb to the high intra-genomic variation 

cluster. Reads containing between 10 to 14 variants per kb were considered 

ambiguous and ignored to avoid misassignment which could strongly impact de novo 

genome assemblies. 

 

https://nanoporetech.com/
https://github.com/rrwick/Porechop
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Calculation of coverage for the low and high intra-genomic variation cluster 

sand their ploidy 

The contribution to the total coverage was calculated for the reads that clustered in 

the low intra-genomic variation cluster and the high intra-genomic variation cluster. 

This was performed on 10kb windows and used as an approximate measurement of 

the average ploidy per strain (median coverage across strains and scaffolds: 68×). As 

an example, if the overall coverage for a certain region was calculated to be 60× 

(from reads with low and high intra-genomic variation), then a coverage of 40× for 

the reads with low intra-genomic variation and 20× for the reads with high intra-

genomic variation would assume a triploid state at this locus, with a ratio of genomic 

copies of 2:1. This method was adapted to estimate different potential levels of 

ploidy (2n-5n). 

 

Phasing the polyploid genomes of the wine 2 subpopulation 

We phased six polyploid genomes of the wine 2 subpopulation with the nPhase 

pipeline as described in Abou Saada et al. (2021)35. For this, short and long reads 

were aligned to the Brettanomyces bruxellensis reference sequence and the mapped 

short reads were variant called. This data was then phased by the nPhase algorithm 

using default parameters. 

 

To generate pairwise divergence plots, we cross-referenced two of the files output 

by nPhase in the Phased folder: (1) the *.clusterReadNames.tsv file, which contains 

the list of reads that comprise each cluster and (2) the *.variants.tsv file, which 

contains the list of heterozygous SNPs associated with each predicted haplotig. By 

combining the information in both files we were able to calculate the similarity 

between predicted haplotypes in 10kb windows. 

In regions that have only two predicted haplotypes we have only one value, but in 

regions that have more than three predicted haplotypes we only kept the three longest 
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clusters and generated three similarity values through pairwise comparison (used for 

plotting maximal genetic distances between haplotypes). 

 

De novo assemblies 

Prior to the de novo assemblies, fastQ files containing the raw reads (respectively 

with low or high intragenomic variation to the reference genome) were corrected and 

cleaned using Canu -correct v.1.753. De novo assemblies were performed with 

SMARTdenovo38 and the parameters -J 1000 -c 1. 

 

Collinearity and pairwise genetic identity of de novo assemblies 

Collinearity between de novo assemblies of B. bruxellensis strains was checked 

using Mummer v.3 (https://doi.org/10.1093/nar/27.11.2369) and the following 

parameters nucmer --mum -l 200. To check for collinearity between different 

species, we lowered the values and stringency to --mum -l 20 -c 30 -b 100. 

 

Data analyses: short reads (Illumina) 

 

Genome-wide phylogeny and estimation of ploidy 

Raw sequencing reads (not separated short reads) were aligned to the reference 

genome of B. bruxellensis36 using BWA54 v0.7.17 with the default settings (mem 

algorithm). File format conversions, the sorting and indexing of samples were 

performed using Samtools55 v.1.9. Variant calling was done using the Genome 

Analysis Toolkit GATK56 v4.1. The data from the variant calling in GATK was 

filtered and processed with VCFtools57 and BCFtools55 v1.9. We filtered out indels, 

kept only variants with a minimum coverage of 11 reads/site, removed individuals 

with more than 50% of missing data. The information of the Allele Balance for the 

Heterozygous sites (ABHet) was used to calculate the average allele frequencies in 

10kb windows (non-sliding) in R v.3.3.3 (R Core Team 2019). Phylogenetic 

https://doi.org/10.1093/nar/27.11.2369
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Neighbor-Joining trees were performed with the R packages seqinr58 and phangorn59 

using the substitution model JC69. The final trees were plotted with Figtree60 v.1.4.3. 

 

Genomic-copy specific alignments 

A competitive mapping approach was used to distinguish short reads that represent 

the low and high intra-genomic variation. For this, the short reads of the 40 strains 

from the three polyploid subpopulations with low and high intra-genomic variation 

(teq/EtOH, beer, wine 1) were aligned to clade-specific reference genomes. These 

reference genomes were concatenated de novo assemblies, prepared from low and 

high intra-genomic variation (using long-read data) to the reference genome B. 

bruxellensis. These clade-specific reference genomes came from the polyploid 

strains YJS7895 (beer), YJS8039 (wine 1) and YJS7890 (teq/EtOH). Finally, to align 

all reads to the same reference genome and to perform comparative genomic 

analyses, the reads separated by the competitive mapping approach, which either 

mapped to the scaffolds from the low or the high intra-genomic de novo assemblies, 

were mapped back to the reference genome of B. bruxellensis36. The 31 strains, 

which did not show any signals of polyploidy (wine 3, kombucha) or high intra-

genomic variation (wine 2) were mapped directly to the B. bruxellensis reference 

genome. In this way, all strains were ultimately aligned to the same reference 

facilitating the direct comparison of genetic variation. Alignments, file conversions, 

file sorting, file indexing and the calculation of coverage in 10kb windows were 

performed as described above.  

 

Principal Component Analysis and phylogenetic analysis 

Variant calling and filtering were done as described above. The program Adegenet61 

v2.1.0 was used to perform the Principal Component Analysis (PCA). Phylogenetic 

trees were generated and plotted as described above. 
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Pairwise distances 

Samtools v1.9 and Bcftools55 v1.9 were used to calculate the genotype likelihood 

from the bam-formatted alignment files, to call variants and to create single fasta 

files for each individual strain. Genetic distances were calculated in 50 kb windows 

in R with the package phangorn59 (substitution model “JC69”) and then averaged per 

individual. 

 

Detection of regions underlying the variation in copy numbers 

Variation in copies of the low intra-genetic variation along the polyploid genomes 

of the 40 allopolyploid strains was calculated in 10 kb windows from the ratio of the 

coverage of the primary genome to the total coverage. Ploidy levels were categorized 

as described above. Plots were generated with the R package ggbio62. 
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Supplementary Material 

 
 
Figure S1: Allele frequencies and genome-wide coverage. 
A Estimation of ploidy in 71 strains using short read sequencing data. Shown are 

examples of strains from each subpopulation. The level of ploidy varies between 2n 

(diploid) and 4n (tetraploid). For three individuals, ploidy could not be estimated 

based on 24,313 genome-wide distributed variants (framed in black). B-C Genome-

wide coverage to detect potential aneuploidies. Coverage-based analysis did not 

show aneuploidies (segmental, chromosomal) that would explain the patterns of the 

three strains in (A), for which ploidy level failed to be determined by allele 

frequency. Shown are the strains I_A06_YJS7805 (B), for which ploidy could be 

determined (see Panel A), and II_E07_YJS7954 (C), where the usage of allele-

frequencies was not sufficient to determine its ploidy. 
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Figure S2: Separating sequencing reads based on intra-genomic variation to the 

reference genome. 
A Long reads were first aligned to the reference genome of B. bruxellensis (Fournier 

et al., 2017) and separated based on their density of variation (SNPs/kb). 

Respectively, reads with low genetic variation to the reference genome were 

clustered and defined as low intra-genomic variation, reads with high genetic 

variation to the reference genome were clustered and defined as high intra-genomic 

variation. 
B Three subpopulations with high intra-genomic variation. Shown is the intra-

genomic variation from strains of the subpopulations teq/EtOH, beer and wine 1. 

These strains harbor, besides low intra-genomic variation with an average of 2.0 

SNPs/kb, a cluster of reads with high intra-genomic variation (average 24.4 

SNPs/kb) to the reference genome. 
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Figure S3: Phasing the polyploid wine 2 subpopulation with low intra-genomic 

variation. 
A Separation of haplotypes. The program nPhase (Abou Saada et al., 2021) separated 

the chromosomes into haplotypes, which in most cases, resolves the chromosomes 

into two or more haplotigs at a given region. 
B-C Intra-genomic variation. The separation of regions underlying two (B) or three 

(or more; C) haplotypes corresponds to different levels of intra-genomic variation. 

Regions with two haplotypes have on average intra-genomic variation of 0.09%, 

while this increases to 0.54% regions with three haplotypes. 
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Figure S4: Coverage analysis and ploidy determination using long read 

sequencing data. 
A Example of chromosome 1 (DEBR0S1) of a beer strain where long reads were 

aligned to the reference genome of B. bruxellensis (Fournier et al., 2017). First, reads 

have been separated based on the number of SNPs/kb, respectively into clusters of 

low or high intra-genomic variation to the reference genome (see Material & 

Methods), and then compared to the total coverage at a given site. 
B With the coverage of the reads bearing low or high intra-genomic variation to the 

reference genome (A), the ploidy was estimated for strains from the three 

subpopulations teq/EtOH, beer and wine 1. The reads containing high intra-genomic 

variation contributed on average to a third of the total coverage at each site, reflecting 

a triploid state (3n) for these strains. Ploidy was converted from ratios (see Material 

& Methods). 
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Figure S5: Competitive mapping for comparative genomic analysis (see also 

Figure S2). 
In order to perform a comparative analysis on the different genomic copies, first 

independent de novo assemblies were constructed from reads with low or high intra-

genomic variation to the reference genome (Fournier et al., 2017). The low and high 

variation de novo assemblies were then concatenated for three strains, one of each 

different subpopulation, and used as reference sequences for the other strains of the 

same subpopulation (see: Material & Methods). Short sequencing reads were 

separated based on a comparative mapping approach using the concatenated de novo 

genome assemblies. Finally, the separated short sequencing reads were aligned back 

to the reference genome of B. bruxellensis to perform comparative analyses. 
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Figure S6: De novo genome assembly statistics for B. bruxellensis and four of 

its sister species. 
The assembly statistics (A-D) are in accordance with those from Roach & Borneman 

(2020). 
E-F Collinearity plots comparing synteny between de novo assemblies. Both 

assemblies, respectively performed using reads with high or low intra-genomic 

variation, reveal a good synteny albeit rearrangements with the reference genome B. 

bruxellensis (Fournier et al., 2017) can be seen (Mummer parameters: --mum -l 200). 
G Collinearity plot comparing synteny between the de novo assembly from reads 

with high intra-genomic variation and B. anomala. Collinearity is disrupted by many 

small syntenic elements, which only appear using less stringent parameters 

(Mummer parameters: -- mum -l20 -c 30 -b 100). 
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Figure S7: De novo genome assemblies. 
A Genome assemblies were prepared for the reads harboring either low or high intra-

genomic variation to the reference. The median total assembly size for the de novo 

assemblies of the high intra-genomic variation is 9.08 Mb, significantly different 

from the median of assemblies based on low intra-genomic variation at 12.92 Mb 

(median; p value = 1.3e-10). 
B The total assembly sizes of strains from different subpopulations (only high intra-

genomic variation). Lowest total assembly length was determined for the 

subpopulation beer (8.84 Mb), followed by wine 1 (10.18 Mb), and teq/ EtOH (10.34 

Mb). The red dotted line represents the assembly length of the B. bruxellensis 

reference genome assembly (Fournier et al., 2017; 13 Mb). 
 



 

226 

 

 
 
  



 

227 

 

Figure S8: Reciprocal shifts in coverage underlying LOH events. 
A-B Example of coverage plots, calculated using 10 kb windows along the scaffolds 

for two strains from the subpopulations beer and wine 1. Plotted are the strains 

IH12_YJS7895 (A; beer) and III_D04_YJS8039 (B; wine 1), which were initially 

aligned to subpopulation-specific reference genomes (concatenated de novo 

assemblies) to separate reads with low or high intra-genomic variation, and then 

aligned back to the reference genome B. bruxellensis (Fournier et al., 2017). In red 

(High), the reads from the high intra-genomic copy are shown, in blue (Low), the 

reads from the low intra-genomic copy. Example (A): The average coverage of the 

High genomic copy is 10x (=haploid), while the Low genomic copy is 20x 

(=diploid). The total coverage (sum of High + Low) is 30x. This coverage of Low 

vs. High is not consistent across the genome, where shifts in coverage show that 

additional regions of a genomic copy have been acquired or were lost. 
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Table S1 - Set of 71 strains sequenced with Illumina and MinION technology  

Library Name 
Readcount 
Illumina 75 

PE 

Genome-
wide 

coverage (X) 

Genetic 
Group 

ID 
Region of 

Origin 

Polyploid 
with acquired 

Copy 

I_A01_YJS7800 3698954 19.8 
teq/EtO

H 
CBS 5512 South Africa Yes 

I_A02_YJS7801 6392370 34.2 wine 2 CBS_74 Belgium No 

I_A03_YJS7802 7364180 39.5 wine 3 12_LT_VGC3_c_10 France No 

I_A05_YJS7804 5083294 27.2 wine 2 L1710 South Africa No 

I_A06_YJS7805 7156204 38.3 
teq/EtO

H 
CBS_6055 USA Yes 

I_A07_YJS7806 7575208 40.6 wine 3 SJ12_4 France No 

I_A08_YJS7807 7100406 38 wine 2 L1733 France No 

I_A10_YJS7809 5899958 31.6 wine 2 ISA2211 Portugal No 

I_A11_YJS7810 5208832 27.9 beer ISA2397 Portugal Yes 

I_A12_YJS7811 10180660 54.5 wine 2 L1739 Italy No 

I_B01_YJS7812 5555190 29.8 wine 2 VP1544 Italy No 

I_B02_YJS7813 7729348 41.4 beer LB15110g France Yes 

I_B03_YJS7814 10613154 56.9 beer LB15107g France Yes 

 

The full table can be found in the companion document accessible from the appendices.  
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Table S2: Statistics of de novo genome assemblies. 

YJS 
Number 

Genetic 
Group 

Genome 
Copy 

Total Assembly 
Size (Mb) 

Scaffold 
Count 

Average Length 
Scaffold (kb) 

Median Length 
Scaffold (kb) 

N50 
(kb) 

YJS7800 teq/EtOH Acquired 10.9 46 237 166 395 

YJS7800 teq/EtOH Primary 13 32 406 300 570 

YJS7801 wine 2 Primary 13.1 72 182 122 293 

YJS7802 wine 3 Primary 0.7 24 31 27 38 

YJS7804 wine 2 Primary 13.1 13 1004 1194 1395 

YJS7805 teq/EtOH Acquired 2.2 109 20 17 25 

YJS7805 teq/EtOH Primary 7.7 274 28 23 37 

YJS7806 wine 3 Primary 0 2 11 5 17 

YJS7807 wine 2 Primary 6.5 127 51 41 66 

YJS7809 wine 2 Primary 12.9 11 1177 1142 1453 

YJS7810 beer Acquired NA NA NA NA NA 

YJS7810 beer Primary 6.3 131 48 41 60 

 

The full table can be found in the companion document accessible from the appendices.  
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Table S3: De novo assembly statistics for the sister species of Brettanomyces bruxellensis. 

 

Species 
Strain 
name 

Strain ID Other ID Origin Substrate 

Brettanomyces 
bruxellensis 

NRRL Y-
12961 T 

ATCC 36234=CBS 
74=CCRC 21414=CCY 

59-2-1=DBVPG 
6706=IFO 1590=NCYC 

823 

Belgium 

Belgium, beer Belgique, 
Biere, 1938 Type of 

Dekkera bruxellensis Van 
der Walt, isolated by M.T.J. 

Custers, LcIII, Sep 1938 

Beer 

Brettanomyces 
anomala 

NRRL Y-
17522 T 

ATCC 58985=CBS 
8139=JCM 31686=van 

Grinsven 10300 

The 
Netherlands 

Spoiled soft drink, The 
Netherlands  

Soft drinks 

Brettanomyces 
nanus 

NRRL Y-
17527 T 

ATCC 48014=CBS 
1945=CCRC 21335 

Sweden 
Bottled beer, Kalmar 

brewery, Sweden 
Beer 

Brettanomyces 
custersianus 

NRRL Y-
6653 T 

ATCC 34446=CBS 
4805=CCRC 

21516=DBVPG 
6709=IFO 1585=VKM Y-

1419 

South Africa 
Bantu beer brewery, South 

Africa 
Beer 

Brettanomyces 
acidodurans 

NCAIM 
Y.02178 

T 

CBS 14519T = NRRL Y-
63865T = ZIM 2626T 

Spain 
Isolated from olive oil 

originating from Lucena, 
Cordoba, Spain, in 2016 

Olive oil 
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Availability of data 

 

Illumina and Oxford Nanopore data for the 71 Brettanomyces bruxellensis isolates 

are available under the study accession number PRJEB41126. 

Oxford Nanopore sequencing data for the B. anomala, B. nanus, B. custerianus and 

B. acidodurans species is available under the study accession number PRJEB41125. 
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Conclusion and perspectives 

 

Towards accurate, contiguous and complete polyploid phasing 

algorithms 

 
Despite extensive efforts, polyploid phasing algorithms have been held back by the 

limited read length of short read sequencing methods. The arrival of long-read 

sequencing methods has led to very efficient diploid phasing methods, such as 

WhatsHap1 and Falcon-Unzip2. However, the problem of polyploid phasing 

remained. In part due to the non-negligible error rate of these new sequencing 

technologies, but also due to a euploid bias which presumes that a polyploid with n 

copies of its genome has n haplotypes throughout its genome. We are now in the 

midst of a paradigm shift, with the short read polyploid phasing methods being 

phased out in favor of long read methods and an increasing acknowledgement of the 

complexity of the genomic structures being phased. The recently published 

polyploid phasing tool Ranbow handles the edge case of having fewer distinct 

haplotypes than genomic copies in a region3, and the long-read polyploid phasing 

method WhatsHap polyphase explicitly tackles this problem through its solution of 

“haplotype threading” which uses coverage information to determine which 

haplotype is present multiple times4. With our phasing algorithm, nPhase, we 

explicitly consider that ploidy is uncertain and present a ploidy agnostic method 

which allows for variation in the number of haplotypes, making it possible to handle 

aneuploidy, large LOH events and relieving the user from the task of estimating and 

selecting a ploidy5. We also question the usefulness of the SWitch Error Rate metric, 

which we argue is fundamentally unpredictable, and consider that more attention 

should be given to the inseparable notions of accuracy and contiguity in this field. 

 

In the future, solutions to the polyploid phasing problem need to go beyond the 
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innovations of nPhase and tackle remaining issues and improvements. Since nPhase 

is a reference alignment phasing method, it does not natively resolve structural 

variants. Currently, the phasing results of nPhase can only be used to heterozygous 

structural variation by performing additional analysis, such as de novo assembly of 

the phased reads followed by comparison of the assembled sequences. Phasing indels 

is crucial to identifying frameshift events in polyploids to determine if there is a 

functional copy of a given gene, however nPhase doesn’t phase these events. Further 

analysis is required to determine the impact of including indels in the phaseable 

genetic markers, particularly given the propensity of long-read sequencing methods 

to suffer from homopolymer errors. Finally, future methods would greatly benefit 

from incorporating metadata that aids in the interpretation of results such as 

confidence metrics or phasing quality scores. Taking base-calling quality and 

mapping quality into account can also serve to improve the accuracy of these 

methods. Finally, we also find it would be highly beneficial to generate simulated 

and real validation datasets against which to systematically benchmark all polyploid 

phasing tools with carefully selected performance metrics. This practice would not 

only allow for a standardization of the highly diverse methods used in the 

benchmarking step, it would also highlight the strengths and weaknesses of 

polyploid phasing tools, providing deeper insight into their differences and helping 

users select the most appropriate method. 

 

Applications of polyploid phasing to population genomics 

 
Due to the lack of effective polyploid phasing methods, there has been very little 

application of polyploid phasing to populations. In a paper on S. cerevisiae beer 

strains, Fay et al. (2019)6 developed what is arguably the first polyploid phasing 

method in order to show that one of the three main clades of beer strains is composed 

of a polyploid admixture of Asian and European wine strains. Using nPhase and a 
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population of 35 beer strains of S. cerevisiae stemming from different clades, we 

were able to characterize two other groups of beer strains. The European dominant 

group was shown to be a similar admixture to the Asian dominant clade, but with 

different proportions, and the African Beer group was shown to mostly have 

European wine and French dairy alleles. Both French dairy strains and African Beer 

strains of S. cerevisiae share their environment with lactic acid bacteria, which we 

hypothesize is a driver of the allelic similarities between them. We developed the 

notion of intra-strain divergence, where we calculate the divergence between the 

different haplotypes within a strain, and the notion of estimating the divergence 

between the haplotypes of strains, showing that the distance between strains is 

typically lower than would be estimated with unphased data. Having phased genes 

in this polyphyletic group of strains exposed to similar environments allowed us to 

identify the genes with the highest levels of divergence (>4%), which we found to 

be enriched for GO terms relevant for adaptations to the brewing environment. 

Polyploid strains of S. cerevisiae are only found in a few clades, including all of the 

clades containing beer strains. Our study did not uncover any further connection 

between beer brewing strains and polyploidy, though this dataset may provide 

important insight into the mechanisms which seem to pressure S. cerevisiae beer-

brewing strains into polyploidy. 

 

We also studied a population of 71 diverse strains of B. bruxellensis, in which many 

triploid strains were suspected of being composed of a core diploid genome 

hybridized with a set of chromosomes from a different species7. We found that the 

long reads of such hybrid strains were easily identified by calculating the density of 

SNPs that don’t match with the B. bruxellensis reference genome and plotting their 

distribution. Hybrid strains output a bimodal distribution, with a set of reads which 

have few mismatches relative to the reference (<10 SNPs/kb) and a set of reads, 

belonging to the extra set of chromosomes, which has many mismatches to the 
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reference (>14 SNPs/kb). We could then simply phase these strains by separating 

reads based on their SNP density. This phasing method could not apply to strains of 

another specific polyploid subpopulation (wine 3 triploids) which do not exhibit this 

bimodal distribution, prompting us to phase them using nPhase. This allowed us to 

show that while the core genomes were always very similar, even across 

subpopulations, the diverged set of chromosomes is not the same in any two 

subpopulations, and therefore was acquired independently from different species by 

each subpopulation of B. bruxellensis, potentially as adaptations to their respective 

environments. We ruled out known sister species of B. bruxellensis such as 

Brettanomyces anomala and Brettanomyces nanus as the hybridization candidates, 

prompting the need for a search to identify them. 

 

Performing these studies highlighted the need for accessory tools and analytical 

methods which leverage polyploid phasing data to improve insight into the data. The 

tools which need to be developed range from simple ones, such as a tool which 

performs comparisons between haplotypes within a strain which expose simple 

statistics such as the similarity between haplotypes or the basecall quality and 

mapping quality scores throughout the genome, to more complex tools such as a tool 

which identifies missense, nonsense and frameshift states in genes of phased 

haplotypes. The latter would require a tool which handles indels at minimum, and 

structural variants at best. We now have the possibility to perform population 

genomic studies with polyploid genomes which exploit phased data, and there is 

significant room for the development and application of novel tools and methods to 

analyze this data. 

 

In a future project, our dataset of high-quality real phased genomes could be 

leveraged to develop a ploidy agnostic polyploid de novo assembly algorithm. These 

real genomes, containing aneuploidies, large LOH events and highly likely to contain 
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structural variants, can serve as a crucial validation dataset to direct the development 

of such an algorithm. Our high confidence in the phasing provided by nPhase allows 

us to reasonably expect that improvement in the de novo assembly’s similarity to the 

predictions of nPhase will translate to improvement in de novo assembly quality. A 

ploidy agnostic de novo assembly algorithm loses the guide of a reference genome, 

complexifying the problem, but also gains the freedom to faithfully reconstruct 

structural variants, sequences not present in the reference and duplication events. 

The core idea of nPhase is to allow like reads to cluster based on similarity, with an 

emphasis on the weight of variable positions as identified by Illumina. A first step in 

an endeavor to develop a novel de novo assembly algorithm could be to identify 

variable positions within similar blocks through mapping and variant calling reads, 

and then subsequently perform de novo assembly with an additional constraint based 

on the same rules as nPhase. If results are promising, the next phase would seek to 

make the identification of variable positions not require lengthy mapping and variant 

calling steps. Such a tool would take us closer to an accurate picture of polyploid 

genomes, permitting deeper insights into genotype-phenotype relationships. 

 

The phasing out of approximations 

 
Earlier this year, the Telomere-To-Telomere (T2T) consortium pre-published the 

complete human genome8, analysis of segmental duplications9, epigenetic patterns 

of the complete genome10, the centromeres11 and repeat elements12. If the genomic 

era is in part defined by the sequencing boom afforded by short read high-throughput 

sequencing methods and the promises of population genomic studies and GWAS 

methods, the next era may be in part defined by the unprecedented detail afforded 

by long-read sequencing methods. Individual molecules will be sequenced directly, 

obtaining high-quality de novo assemblies will be considered a pre-processing step, 

reference sequences will be replaced by genome graphs, multi-omics will routinely 
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be integrated in population genomics projects and approximations will become 

increasingly rare. 

 

We need highly modular, integrated toolkits, analysis platforms and standardized 

analysis and benchmarking protocols to catch up with the immense quantity of data 

we routinely generate and tip the scale towards analyzing data faster than we can 

generate it. 
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Companion document 

 

Some supplemental figures and tables from chapters II and III take too much space 

and have been added to a companion document available online at 

https://doi.org/10.5281/zenodo.5207333 
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