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Abstract

The work presented in this thesis tackles the problem of video analysis for laparoscopic
interventions, in the case of very scarcely annotated datasets. During laparoscopic
surgery, the live video feed from inside the abdominal cavity of the patient is the key-
stone of the entire procedure, providing all the visual feedback required by the surgeon
and the staff to carry out the intervention. Our objective is to develop methods ca-
pable of leveraging this source of information and understand it; thus providing the
foundation for context-aware, vision-based systems to be developed in the future for
decision support in the operating room. Recent breakthroughs in computer vision,
spearheaded by deep learning methods brought major advances to surgical video anal-
ysis. However the current default approach of full supervision is an obstacle for future
developments. Laparoscopic procedures generate vast amounts of video data which,
even if stored, will for the most part almost certainly remain unannotated.

This thesis investigates the use of unannotated data across multiple visual tasks. In
our first approach, we propose an automatic annotation method relying on a very small
ratio of manually annotated data, and demonstrate the usability of the automatically
annotated data for training real-time CNN-LSTM predictors. Our second approach
then shows how this unannotated data can be leveraged and explored in a scalable,
OR-compatible manner and without any annotations using video hashing. By learning,
in a self-supervised manner, searchable binary representations of surgical videos, we
are able to retrieve video content matching a given scene, represented by a video clip,
in terms of surgical phase or surgical critical event.
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CHAPTER 1

Introduction

”“Even this must have a preface - that is, a literary
preface,” laughed Ivan, “and I am a poor hand at
making one.””

- Fyodor Dostoevsky, The Brothers Karamazov
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1.1. CLINICAL & TECHNOLOGICAL CONTEXT

1.1 Clinical & technological context

1.1.1 The OR in the minimally invasive surgery era

Among all the options available to healthcare providers for treatment, surgery often
stands out as the most heavy-handed, and is only prescribed to a patient after careful
diagnosis and deliberation. The surgeon is given the ”authority to cure by means of
bodily invasion” [Gaw12] and is therefore able to intervene directly on the area of
interest; however it is well understood that this can be a double-edged sword, and
carries risks of major collateral damage. For this reason the history of technological
advances in surgery is defined by an increasing amount of concern and respect for the
patient’s integrity: from the discovery of anesthesia in the XIXth century, passing by
the discovery of antiseptics, to medical imaging and finally the advent of minimally
invasive surgery in the XXth century.

Minimally invasive surgery (Figure 1.1) decreases adverse outcomes and patient
discomfort by restricting the size of the incisions employed for accessing a body cavity.
The resulting loss in direct visibility in those procedures is generally compensated by
the use of intraoperative imaging devices: in the case of laparoscopy, which is the
modality featured in the work presented here, the instruments are inserted through
very small incisions, along with an optical camera called a laparoscope (Figure 1.1).
The surgeon is fully reliant on the picture from its video feed, displayed on a separate
monitor in the operating room.

Figure 1.1: Left: trocar inserted into the patient’s abdomen, as preparation for the la-
paroscopic procedure. Right: Surgeon performing a suture, with instruments inserted
through trocars. The image on the right is the feed from the laparoscope used for
visual feedback.

1.1.2 The OR as a high-stakes, timing-sensitive environment

While minimally invasive surgery has overall been a major step forward in the devel-
opment of surgery, the introduction of any new technology to the OR comes at an
expense, both in terms of time and material resources. According to a 2012 review
by Ramsay et al. [RPR+12], total costs for a laparoscopic setup exceed 161K $: this
includes the laparoscope as well as the display unit, surgical instruments, and the
generator powering energy-based instruments. Yet, this number is dwarfed by the 2M
$ cost of Intuitive Surgical’s Da Vinci robot, used in many gastrointestinal surgeries.
In addition to these already high upfront costs, complex medical devices often require
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long, specialized training: the IRCAD’s course for laparoscopic general surgery takes
place over a week full-time, for a total of 2780 euros per participant. Finally each new
item entering the OR generates supplementary costs and delays due to sanitization
requirements and maintenance.

Accumulating those technological expenses contributes to surgery’s colossal foot-
print on total healthcare costs, which was evaluated at 1/3 in the United States in a
2014 study [CMG18]. Within expenses related to surgical care, the operating room
ranks second: in 2014, it was established that a single minute of OR usage in Cali-
fornia costs between 36 and 37 $ [CMG18]. Considering the average duration of 110
minutes for a Roux-en-Y gastric bypass in our dataset, a crude estimation for only
one of these procedures puts its OR costs in the 4000 $ range. More importantly, the
standard deviation in duration is considerable: 30 minutes, which translates to a 1100
$ swing. By cumulating over a year for the 43000 [EDH+20] Roux-en-Y gastric bypass
surgeries performed in the US, OR expenses would range between 129 and 215 M$,
and are therefore largely impacted by in-OR workflow and efficiency. Beyond financial
considerations, the impact on patient outcomes and quality of treatment - which are
obvious top priorities - is critical as well. Tighter and more accurate timings enable
treating more patients, keeping them under anesthesia for shorter periods of time and
decreasing odds of adverse events. For instance, a study conducted by Peng et al.
[fPZY+09] shows how prolonged insufflation of the abdominal cavity in laparoscopy
can lead to hypothermia. CO2 is also known to cause acidosis in the exposed tissues
of the abdominal cavity [Bon17].

Yet, OR time management is often up to the surgeon. It is common practice for
the surgeon to have the next patient brought in 15 minutes before the end of their cur-
rent intervention. This requires taking a guess on a complex procedure, accounting for
intraoperative conditions, surgical skill and critical events. ”Active bleeding” critical
events during laparoscopic interventions, for example, can severely disrupt the inter-
vention; they require the surgeon to stop their course of action and switch to cleanup,
using a dedicated irrigation & suction device. According to Travis et al. [TTW+14],
surgeons underestimate procedure duration by 31 minutes on average.

1.1.3 The proliferation of signals in the OR & the challenge
of data

Under such high-pressure conditions, one would think the technological resources given
to surgeons would help counterbalance the difficulty and make the workflow of surgery
easier to navigate. In many aspects the opposite is true: while the proliferation of
devices and signals in the operating room provides many benefits both in terms of
comfort for the surgeon and patient outcomes, its current burden on the surgical
staff is not to be neglected. Each device in the OR increases pre and post operative
workload, due to sanitization and setup. Intraoperatively, many systems failure events
need to be accounted for: loss of video feed, loss of power, loss of visibility are issues
sometimes found in recordings from our Endocorpus dataset. Each device may also
be a source of disruptions during the procedure: through visuals such as blinking
lights and monitor displays, but also sounds. A study by Wung et al. [WMS18] lists
alarms as the number one technological hazard in the emergency room, while the
complexity of surgeries themselves can be a heavy burden [BML+20]. This cognitive
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Figure 1.2: Aftermath of iatrogenic bile duct injury. The common bile duct is some-
times mistaken for the cystic duct and cut as a result. Courtesy of Websurg.

workload may manifest in increased stress, burnout and ultimately surgical errors.
Cholecystectomy provides an eloquent example supporting this: for the most part
the surgical community has switched from open surgery to the laparoscopic approach,
which has improved outcomes in all areas except one, bile duct injury (BDI) rate.
Having increased from 0.5 to 1.5% [MVA+20], this incident exposes the discomfort
and cognitive burden of indirect vision on a separate monitor, which occasionally
results in involuntarily damage to certain anatomical structures (figure 1.2).

In recent years, the surgeon has been given highly advanced technology to extend
their perception and manipulation capabilities; on the other hand, little effort has
been made to provide them with adequate tools to process information that is ever-
increasingly rich and difficult to process. This very information, however, may be the
key to a solution: surgical data, if systematically collected on a large enough scale, can
be used to develop powerful support tools for surgeons. This is the core premise behind
Surgical Data Science [MHVS+17, HMHV20]; according to its originators [MHVS+17],
this emerging discipline ”focuses on the acquisition, modeling and analysis of data to
improve the quality of interventional healthcare”. Three key clinical applications are
targeted:

• Decision support: by using comprehensive data to expand the information avail-
able to the surgeon, otherwise limited to their own experience

• Surgical training and skill evaluation: by using objective analytics to provide
automated feedback to trainees

• Context-aware assistance: by building AI models capable of under-
standing clinical situations relevant previous cases - in real time and
responding accordingly with properly timed support

This last item is the focal point of the work presented here: knowing how and when
to interact with the surgeon based on the real-time context ultimately determines
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Figure 1.3: Overview of Surgical Data Science concepts. Image credits: Maier-Hein et
al. [MHVS+17]

whether a system is an asset or a liability in the OR. For instance, to guarantee a
safe procedure, sending safety check alarms is a straightforward task. However doing
so at the correct time is not: too often and the alarm system turns into a distraction
at best, a hazard at worst [WMS18]; too sporadically and the enforcement of safety
checks loosens, allowing for more surgical errors. Both are characterized by a lack of
awareness with regards to context: for example not knowing the overall progress of
the surgery [TYM+19], or the current surgical phase [Twi17], or the surgical actions
[NGY+20] taking place. In all of these areas, the improvement AI support is capable
of bringing is considerable.

1.2 Models of AI-enhanced support

1.2.1 The AI-enhanced control unit

1.2.1.1 Context-awareness in non-clinical domains

Surgical Data Science is a critical first step before the actual deployment of new
context-aware applications in the OR. Surgery, however, is far from the only domain
regimented by tight timings and low margins for error - and yet several of these do-
mains are far closer to the deployment stage, or even reached it years ago with AI
or vision-enhanced support infrastructures already heavily in place. Examples from
those other fields may serve as models for what future developments for an ”OR control
tower”, as envisioned by Mascagni et al. [MP21], could ultimately look like.

In the automotive industry, one of the major motivations for self-driving vehicles
besides limiting accidents is the ability to drastically cut down traffic congestion, and
thereby CO2 emissions and fuel costs. Replacing human drivers with a context-aware
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Figure 1.4: AI-powered control tower concept by Searidge. Image credits: NVIDIA.

system that integrates vision from onboard cameras but also nearby traffic data enables
quick and optimal decision making, thus removing traffic jam causes such as human
driver reaction time accumulation [Fri16].

In 2015, the Canadian company Searidge released AIMEE (Figure 1.4), an AI
framework that can process up to 200 simultaneous video feeds in order to track
aircrafts in airports. This information can be used to provide AR overlays to the
airport security staff and report anomalies. The end goal is to enable fully remote,
vision-based control towers, to replace current ones that are pinned down by radar
infrastructure requirements.

Live sporting events are particularly ahead of the curve in terms of vision-enhanced
support. Tennis tournaments have employed ball tracking technologies since the 2000s;
this information is transmitted to TV production trucks, which use it to generate
overlays for the audience. The ”1st and 10 line” (Figure 1.5) in American football has
been implemented by SportsMEDIA [Spo21] for the 2013 Super Bowl, as a visual cue
for the audience. Hawk-Eye’s vision-based goal line technology has become critical in
soccer for supporting referree decisions.

1.2.1.2 Potential clinical applications

The key takeaway from the other domains mentioned before is the control tower
concept: a unit equipped with ample computing resources, continuously collecting
signals from the center of activity, determining its context and returning feedback to
it. Similar to production trucks for sporting events or next-generation flight control
towers, an infrastructure should collect video feeds from the various operating rooms
in one or even several clinical facilities, interpret them using artificial intelligence and
provide appropriately timed support to surgeons. The ABITO project [MVA+20] is
an example of context awareness driving in-OR support: during laparoscopic cholecys-
tectomy, a control unit reads the endoscopic video feed from an operating room 1.6,
and orders an intra-operative timeout when it determines the surgeon is about to cut
the cystic duct.

However while future approaches to context awareness in the OR should draw
inspiration from other domains, it is important to recognize challenges that are specific
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Figure 1.5: Left: diagram from the original patent by Honey et al. for the 1st down
line overlay, using multiple cameras in the stadium for registration. Right: Image
from Super Bowl LV, with the 1st down line as a dynamic, real-time overlay. It leaves
players unoccluded, behaving like a physical line. Image credits: NFL.

to surgery. Aircrafts, road infrastructure, football fields and player uniforms can all
be standardized to a fairly advanced degree. Patient anatomy, for obvious reasons,
currently cannot; which logically translates to extremely high variability in surgical
workflow - for example the presence of adhesions in the abdominal cavity varies a
large amount from one patient to another. This in turn induces variability in the
workflow, forcing the surgeon to dedicate more or less time to adhesiolysis (Figure 1.7).
Even in a highly standardized procedure such as cholecystectomy, actions may look
drastically different between surgeries due to changing teams and habits of clinicians:
this manifests, for instance, in non-standard usage of surgical tools; e.g, pulling apart
tissue with graspers instead of using the laparoscopic hook, or electrifying a grasper
with an energy-based tool to perform cauterization.

Ultimately, with this variability in mind, the current understanding of context
awareness needs to be challenged. From a computer vision algorithm’s perspective
”understanding the context” in an endoscopic video can mean ”recognizing one of
seven standardized surgical phases”, ”recognizing one of seven standardized surgical
tools” or even ”recognizing one of a hundred standardized surgical actions”. However
when standardized categories fail to capture the full understanding of an endoscopic
video, the best way a system can describe it may very well be another endoscopic video
from a large enough database.

1.2.2 Harnessing large databases with search

A common approach for navigating unknown pieces of data is to search for similar
items in a large and diverse database. Despite its simplicity this is a well-accepted
principle; most notably, even state-of-the-art AI assistants such as Google Assistant
(Google) or Siri (Apple) may defer to a popular search engine upon failure to process
an instruction or question.
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Figure 1.6: AI-controlled safety check: critical view of safety in cholecystectomy. Based
on its reading of the anatomy and the instruments, the system determines all three
criteria for safely cutting the cystic duct are met. Image credits: Mascagni et al.
[MVA+20]

(a) (b)

Figure 1.7: (a): Abdominal cavity presenting low amounts of adhesions. (b): Abdom-
inal cavity with higher amounts of adhesions. Not only does this anatomical variation
increase the visual difficulty of recognition problems, it also alters the workflow, re-
quiring the surgeon to perform adhesiolysis prior to the actual intervention.
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Figure 1.8: Excerpt from the original autocomplete patent; relevant items appear
beneath the search bar before the query is even spelled out.

1.2.2.1 From static to dynamic queries

Queries used to be considered static objects by search engines - everything happening
before submission by the user would be invisible to the algorithm. With technologies
such as AJAX in the early 2000s enabling dynamic behavior for web pages, one of
the most important advances for text-based search engines in recent years is the emer-
gence of dynamic and automatic completion - commonly referred to as ”autocomplete”
[REO03]. Based on several factors such as popularity or location, a scrolling menu
below the search bar displays several options ranked by relevance (Figure 1.8), and
incrementally updates the ranking at every character entry or deletion. Even if the
user does not have a clear sense of what to look for or how to spell it, autocomplete
will most likely provide them with the necessary help. Recent developments for auto-
completion include the display of rich information along the queries, as well as direct
access to web pages.

According to Google, this feature reduced typing by 25 %, which amounts to 200
hours of typing saved each day [Sul18]; to mobile device users this is particularly
beneficial. Search started as a task the user would perform all the way to completion,
thinking ahead before before submitting; it has now become a rapid-fire tool that can
be pulled out at any given moment, to assist the user on the fly in tight situations.

1.2.2.2 From tags to content queries

The other exciting development for search in recent years is the emergence of content-
based querying. Text is still by far the most dominant search modality; for text
retrieval, but also across all types of media, notably images or videos. This relies for
the most part on keywords, or text data pertaining to the piece of media - but not
the content itself. This severely limits retrieval capabilities in those situations; even if
a database is well tagged, which can be prohibitively time-consuming, visual or audio
data can never truly be captured by a few keywords or a text description.

This limitation is the motivation behind content-based retrieval methods. Shazam,
launched in 2002, is a popular example of service built around such a method: the
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Figure 1.9: Examples from Bing Visual Search. A picture of a kitchen island and a
wallaby (left) serve as queries; for the wallaby the species is correct on every search
result. Image credits: Hu et al.

users directly use their mobile devices’ audio input to search, in real time, for a song
heard in the background (e.g. in public spaces or during commercials). Google Image
Search, TinEye and Bing [HWY+18] provide powerful reverse image search features
that allow the user to submit their own pictures and find ones that are visually similar.
The versatility of this tool is quite overlooked: by retrieving, this can identify objects,
places, people, fraudulent postings - often down to very fine-grained details (Figure
1.9).

Outside of publicly available tools, content-based retrieval is already deployed in
a multitude of scenarios. Youtube, the largest video content platform, systematically
reviews the audio in user-submitted content (Figure 1.10), searching for unauthorized
use of copyrighted songs - this is referred to as ContentID. Twitch currently uses a
similar procedure for recordings of livestreams, automatically cutting out the audio
in parts featuring DMCA-protected songs in the background. Uber uses a technique
called Locality-Sensitive Hashing [IM98] in order to retrieve fraudulent trips. Digi-
marc, Ivitec are other lesser known actors in the content control space. Although the
inner workings of these techniques were never made public, monitoring and recogniz-
ing content on this scale inevitably requires quickly sifting through very large video
databases in an automatic manner.

1.2.2.3 Potential clinical applications

Dynamic behavior and rich content understanding are two pillars of modern search,
making it a highly versatile and expressive tool for investigating content. The surgeon,
the surgical staff or the personnel in charge of the OR control tower mentioned in
1.2.1.2 could greatly benefit from the ability to rapidly access and explore a large
database of surgical recordings. For reasons mentioned in 1.1.3, this process should
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Figure 1.10: Patent from Google for automatic melody identification from user-
submitted audio for copyright management purposes.

Search

Watch next

? "Similar bleeding
scenarios to show

my class?"

Enhanced surgery monitoring,
rapid event recognition &

anticipation

Interventional
Coursework reference,

video recommender for online
learning platform

Educational

Figure 1.11: The place of video search in the clinical space. Besides logistical aspects
such as indexing, two main branches of applications can be envisioned: educational
and interventional, with the latter requiring real-time operability.
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interfere as little as possible with the actual surgical task at hand. One way to achieve
this is to directly plug live video feeds from the OR into a content-based retrieval
algorithm, thus removing the need for the surgeon to interrupt their course of action to
formulate queries. This ”surgical video recommender system” would act as a dynamic
and responsive reference tool, fit not only for surgical education or indexing, but
even for intraoperative decision support (Figure 1.11). As it is the case for current
reverse image search services, this tool may be used as an always accessible, all-purpose
recognition utility, presenting all the information attached to the retrieved videos.
Depending on the system’s performance, this information could range from broad -
e.g. surgical phase - to very fine-grained, such as critical events or surgical actions.

1.3 Data

Clinical application ideas suggested in the previous section require powerful surgical
activity understanding algorithms; the data at our disposal for developing those is
presented in the following section.

1.3.1 Laparoscopic video data collection

In conventional or open surgery, the tissue covering the surgical site is cut open with an
incision large enough to provide the surgeon full unobstructed view, as well as direct
access for the hands and surgical instruments. For instance, the incision for open
cholecystectomy is usually at least 20cm long [BMS+11]. In contrast, laparoscopic
surgery relies on one or several very small (less than 3 cm) incisions of the abdominal
wall called ports, fitted with trocars. After general anesthesia, a preliminary phase
establishes the pneumoperitoneum: the abdominal cavity is insufflated with carbon
dioxyde in order to create space for the instruments, which are then inserted through
the trocars. Two main types of instruments are employed: mechanical (graspers,
staplers, scissors ...) and energy-based (hook, bipolar grasper, monopolar cautery
devices), with the latter requiring a dedicated power generator in order to deliver the
heat necessary for dissection and cauterization.

A laparoscope - an optical fiber imaging device - is inserted as well, showing the
anatomy and the instruments to the surgeon via a separate monitor. While a wide
variety of signals can be collected from those procedures - such as RFID tracking data
or energy-based tool usage [PSMB12, MLCH16], the laparoscopic video feed stands
out as the richest and most comprehensive by far. For this reason we chose it as our
source of data for studying surgical workflow.

Data collection has been made possible for this research by a joint effort from
the Image-Guided Surgery Institute of Strasbourg (IHU Strasbourg), the Research
Institute against Cancers of the Digestive Tract (IRCAD) and the Nouvel Hôpital
Civil de Strasbourg (NHC). Surgeries were conducted at the NHC; the IRCAD, an
international research and training institute for minimally invasive surgery, collected
video recordings of those between 2015 and 2020 for research purposes. Researchers
from team CAMMA and hepato-biliary surgeons affiliated with IHU Strasbourg se-
lected videos and applied various types of annotations to generate several anonymized
datasets for surgical workflow understanding.
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Figure 1.12: Left: Cutting of the cystic duct in cholecystectomy, to release the gall-
bladder. Right: Jejunojejunal anastomosis in bypass. The intestine is stapled to itself,
closing the digestive path coming from the stomach.

1.3.2 Cholec120

Phase Duration (min)
Preparation 1.8 ± 1.7

Calot triangle dissection 15.6 ± 11.1
Clipping and cutting 2.9 ± 2.1

Gallbladder dissection 12.2 ± 8.9
Gallbladder packaging 1.6 ± 0.8

Cleaning and coagulation 3.0 ± 2.6
Gallbladder retraction 1.4 ± 1.2

Table 1.1: Phases in cholecystectomy

Cholecystectomy (Figure 1.12) is a procedure prescribed in cases of chronic or acute
cholecystitis. Out of all surgical procedures performed laparoscopically, this one is the
most common with over 700000 interventions annually in the United States [cho93],
and has now established itself as the gold standard over open cholecystectomy. It
consists in removing the patient’s gallbladder, the organ reponsible for storing bile
produced by the liver. To study its workflow, a dataset of 120 cholecystectomy videos
annotated with phases named cholec120 was previously built by team CAMMA; a
subset of it named cholec80 is publicly available [Twi17], carrying surgical instrument
presence annotations as well. A smaller subset of 40 videos, cholec-T40 also comes
with fine-grained action triplet annotations [NGY+20]. Table 1.1 gives a breakdown
of the seven phases of the surgery in cholec120, which obey a simple and mostly linear
workflow.

1.3.3 Bypass40

Among bariatric surgical procedures, i.e. weight loss surgeries, Roux-en-Y gastric
bypass (Figure 1.12) or simply gastric bypass is the most common. It is sometimes
prescribed in cases of morbid obesity, in order to facilitate weight loss by reducing the
patient’s stomach. It does so by creating a gastric pouch and connecting it to the small
intestine in a way that, as the name suggests, bypasses the rest of the stomach, which
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Phase Duration (min)
Preparation 7.1 ± 2.9

Gastric pouch creation 25.6± 8.1
Omentum division 23.1± 5.5

Gastrojejunal anastomosis 3.3 ± 0.6
Anastomosis test 2.8 ± 0.8
Jejunal separation 3.1 ± 0.6

Closure of Petersen space 7.4 ± 2.2
Jejunojejunal anastomosis 23.9± 7.6

Closure of mesenteric defect 9.2 ± 2.1
Cleaning and coagulation 4.2 ± 1.0

Disassembling 5.9 ± 1.4

Table 1.2: Phases in gastric bypass

is then discarded. This connection process is called anastomosis, and is reported as one
of the critical events mentioned in Section 1.3.4. Compared to cholecystectomy, the
workflow of this procedure is more complex, and less linear. In order to study it, the
Bypass40 dataset [RDG+21] was created, with in it 40 complete recordings of gastric
bypass. We provide a breakdown of Bypass40 ’s surgical phase statistics in Table 1.2.

1.3.4 CEV64

Event type Count Duration (s)
Abdominal access 185 71 ± 22
Mesh placement 98 228± 45
Approximating 102 371± 59

Sealing 34 63 ± 10
Out of body 516 177± 41

Anastomosing 73 602± 142
Dividing 96 72 ± 23
Incising 69 149± 28
Bleeding 116 68 ± 19

Idle 87 164± 45

Table 1.3: Overview of surgical critical events

Laparoscopic surgeries are highly diverse; just the two examples listed above are
characterized by vastly different workflows, surgical instruments and anatomical sites.
However, certain crucial traits are shared across workflows of many surgeries. Two GI
surgeons from IHU Strasbourg collaborated to define a common set of surgical situa-
tions called critical events (Figure 1.13), found in 6 different types of laparoscopic
procedures: cholecystectomy and gastric bypass, as well as eventration, hernia, nissen
and sigmoidectomy. This led to the CEV64 dataset, generated during this thesis.
Beginning and end for each event were marked in 64 videos, which helped generate a
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Figure 1.13: Examples of critical events in surgery, from the CEV64 dataset.

database of 20000 surgical video clips of approximately 30 seconds each. Annotations
were applied using MOSaiC, an internally developed tool with dedicated features for
temporal annotation. The 11 reported events are detailed in table 1.3.

1.3.5 The gap with large-scale video datasets

Video datasets employed within the rest of the computer vision community present
major differences with the ones just mentioned. This is often a concern when adapt-
ing methods trained on those sources to surgical content. A comparison with a few
prominent datasets is shown in table 1.4.

Event Average video duration Number of videos
cholec120 2280 ± 841 120
bypass40 6600 ± 1802 40

cev64 6911 ± 2008 64

ActivityNet 117 ± 67 18000
FCVID 134 ± 92 91000

Kinetics400 10 ± 0 240618

Table 1.4: Comparison of surgical video datasets against generic activity datasets

The first major difference is duration; generic activity videos tend to be a lot
shorter, sometimes lasting only a few seconds. This adds convenience for training; the
content is a lot simpler and visually distinct as well. Surgeries often exceed feature-
length films in terms of length, with many phases, events and actions taking place over
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ActivityNet

Endocorpus

Sailing Playing guitar Making salad Tennis serve

Cutting cystic duct Cutting cystic ductCleaningAnastomosis

Figure 1.14: Frames from Endocorpus and ActivityNet. Note the difference in visual
diversity and complexity.

their 140-minute average span. Processing them in a way that accounts for the entire
workflow is a difficult challenge.

Accurately annotating this type of data requires highly specific clinical knowledge;
which is why in our case this was done by experienced gastrointestinal or hepato-biliary
surgeons and surgical fellows. As a result the number of available annotated videos is
quite low, only reaching 204 for cholec80, bypass40 and CEV64 combined.

Finally, the appearance of laparoscopic video feeds is challenging in itself, as evi-
denced by Figure 1.14. Scenes from inside the abdominal cavity tend to have a high
degree of similarity with each other. The field of view of 62◦ [WKK+20] is quite nar-
row; oftentimes relevant anatomy or instruments exit the frame. Visual landmarks
for specific phases or events can be very sparse: for example cutting the cystic duct
in cholecystectomy is often brief, with scissors appearing in the frame only for a few
seconds. Recording quality is routinely affected by smoke, blood splatters and jittery
motion as well as inconsistent lighting.

1.3.6 The big picture: Endocorpus

Endocorpus is the CAMMA team’s first very-large-scale video dataset, containing
the previously mentioned surgical datasets as well. In total, 1558 full-length recordings
of surgeries are present, for a combined runtime of 3700 hours. 12 types of surgical
procedure are featured; two of those, robotic sleeve gastrectomy and robotic bypass,
involve Intuitive Surgical’s Da Vinci. As such, this dataset therefore covers most
of abdominal endoscopy, containing an amount of experience equivalent to several
surgeon lifespans. Videos last on average 140 min, with major discrepancies between
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Surgery Description Count Duration (h)
Cholecystectomy Removal of gallbladder 518 1.4 ± 0.4

Bypass Stomach reduction 388 1.8 ± 0.5
Hernia Inguinal hernia repair 341 2.1 ± 0.3

Eventration Diaphragmatic eventration repair 133 1.9 ± 0.5
Bypass robot Robot-assisted stomach reduction 125 2.0 ± 0.5

Sigmoidectomy Colon removal 118 1.2 ± 0.4
Sleeve gastrectomy Stomach reduction 90 1.7 ± 0.4

Nissen Esophageal sphincter reinforcement 87 1.9 ± 0.3
Adrenalectomy Adrenal glad removal 25 1.9 ± 0.4
Hepatic surgery Liver-related interventions 17 2.4 ± 0.6

Pancreatic surgery Pancreas-related interventions 12 5.3 ± 1.1
Sleeve robot Robot assisted stomach reduction 11 2.4 ± 0.8

Table 1.5: Overview of Endocorpus

the various types of surgery. We provide a detailed breakdown in Table 1.5.
Unless the videos belong to one of the previously mentioned subsets, no annotations

other than the surgery types are available. The work presented in this thesis is the
first attempt to exploit it and explore its contents; even without annotations, the scale
of Endocorpus makes it an appropriate target for unsupervised video retrieval.

1.9%
3.9%

7.7%
3.1%

83.4%

phases + instruments + actions
phases + instruments
phases
critical events
unannotated

Figure 1.15: Current state of the Endocorpus dataset. Annotations are only available
for a small fraction of it - barely over 15%.

1.4 Contributions

Figure 1.15 sets the stage for the work of this thesis, overwhelmingly dominated
by unannotated data. Collecting, selecting and storing endoscopic video data into
datasets is relatively easy compared to having human experts annotate it, which ex-
plains the disproportionate 83.4 % of unlabelled videos. This situation suggests that
in future developments of Surgical Data Science, overreliance on full supervision with
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?

Reference

Similar events in database

Possible futures

Endoscopic video database

OR CONTROL TOWER

OPERATING ROOM

Video retrieval engine

Current phase: 
cutting

Predictor

CONTROL TOWER BACKEND

WORKFLOW NAVIGATION DISPLAY

!

Figure 1.16: OR control tower concept, exploiting surgical video retrieval. An unfamil-
iar situation prompts the surgeon to request assistance. Control room staff is shown,
in real time, the surgical phase and a collection of visually similar clips as reference,
with corresponding future outcomes - one of which being a case of bile duct injury. In
addition to the control room, the workflow navigation display may be redirected for
other purposes: for example, an online classroom for surgical training.

expert-annotated data might be ill-advised: assuming surgical video data collection is
to expand and become more systematic, ramping up manual annotations accordingly
would come at an excessive cost, while leaving large swaths of data underused and
underexplored would be a waste.

Our goal is precisely to overturn this situation: we aim for semi- or self-supervised
methods in order to avoid the dependency on manual labels, while providing the means
to take advantage of the unannotated data and navigate it in a way that serves real-
time, context-aware support in the OR. We propose two main paths for achieving this:
the first is automatic annotation, an obvious alternative to expert-generated labels that
is far more scalable; this is done for surgical phases, to provide a broad and standard-
ized understanding of the context. The second is search, in the form of unsupervised
video retrieval, capable of instantly delivering a richer and more expressive description
of a captured surgical scene. The final vision for the innovations we propose in terms
of context awareness is summed up in Figure 1.16, in the form of a control tower for
the OR powered by large amounts of unlabelled data.

Listing them in detail, our first contribution is a method that leverages the unan-
notated data through automatic annotation of surgical phases, with a combination of
strong offline predictor and weak real time predictor. This new semi-supervised ap-
proach is a breakaway not only from traditional phase recognition [TSM+16, JDC+18,
JLD+19] with full supervision, but also from the other semi-supervised methods in
this space [YMMP18, FJM+18] since it enriches the unannotated data instead of only
using it for pretraining.

Our second contribution is a new method for a problem never tackled before: con-
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tinuous video retrieval in real time. As opposed to previous video retrieval approaches
[ZWHC16, SZL+18, WLG+17, WHG+19, LCL+19], ours is the very first tailored for
live video sources; as such, we evaluate it with a new protocol reflecting livestream-
ing conditions. In the absence, at the time, of an adequate very-large-scale surgical
dataset, and also in the absence of a method built for this specific task in the general
vision community, we first demonstrated our approach on two generic activity datasets.

Our third contribution is the application of continuous video retrieval to a large,
more complex video dataset of surgical recordings. This is the first study of its kind in
terms of scale, surpassing the few works on surgical video retrieval [DQL+14, PS18] by
a large margin in that regard. We show that content relevant to an ongoing surgical
procedure from a massive database can be retrieved in real time. We also demonstrate
the all-purpose ability of video retrieval, by using the same unsupervised model to
return search results relevant for critical events in six types of procedures, as well as
for phases in both cholecystectomy and bypass.

Our fourth contribution extends the previous retrieval method by introducing un-
certainty awareness for video hashes: by adding compressed uncertain bit patterns to
the database, the relevance of retrieval results is improved, while keeping additional
space and time expenses to a minimum.

Finally, our last contribution is the generation of large-scale and very-large-scale
datasets for activity recognition in surgery. In particular, our critical event dataset
CEV64 is the very first of its kind.

1.5 Outline

The work presented in this thesis is organized according to the following outline:

• Chapter 2 provides a structured overview of previous publications relevant to
our work.

• Chapter 3 demonstrates a semi-supervised method for surgical phase recognition
relying on automatic annotation, using unlabeled surgery videos.

• Chapter 4 lays down the theoretical foundations for learning hash functions for
content-based retrieval.

• Chapter 5 presents a methods for content-based video retrieval in real time, on
generic activity large datasets from the general computer vision community.

• Chapter 6 brings the content-based video retrieval task to a very-large-scale
surgical dataset and extends the previous methods by managing the uncertainty
of database entries in a lightweight fashion.
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2.1 Video Activity Understanding

2.1.1 Model architectures & general activity recognition

Video as a data format is particularly challenging to process in recognition tasks.
High dimensionality already is a concern when it comes to static images; for a typical
[224, 224, 3] RGB image used in CNN models the number of dimensions is 150528. For
a single second of video at 25 frames per second with the same frame size, this number
goes up to 3763200. This is without even considering the presence of an audio track;
multimodal data is a rich and active research area of its own, which we will not go
into here.

In addition to the high dimensionality of videos, the temporal information is a
major source of difficulty as well. Just like the words in a sentence, the succession
between frames matters, and determines motion and event logic in the video. An
adequate video model should ideally learn those temporal dependencies in order to
correctly make predictions.

2.1.1.1 Extraction - aggregation approaches

Early approaches have attempted to aggregate 2D static convolutional neural networks
for video data, applying them to each frame separately. Karpathy et al. [KTS+14]
presented a few elementary aggregation possibilities through pooling. A two-stream
approach was proposed by [SZ14], with, in parallel, one CNN processing RGB pixel
data and another procesing the optical flow. [WXW+16] reuses the two-stream ar-
chitecture with snippets sparsely sampled across the video. In the examples above,
there is no sequence modeling; the aggregation is not sensitive to the order between
the frames.

Recurrent Neural Networks (RNN) are a type of DNN dedicated to sequential
inputs. A function commonly referred to as the recurrent cell or recurrent unit is called
at each timestep of the input, forwarding a state value taken into account during the
next call. This enables sharing parameters across timesteps, as well as receiving inputs
of arbitrary length. The recurrent unit from the original RNN, proposed in [RHW86],
was prone to issues, namely vanishing and exploding gradients. To counteract those,
[HS97] introduced the Long Short-Term Memory unit, which made RNNs viable for
training on longer sequences. [GS05] later proposed the bidirectional LSTM recurrent
neural network. With two LSTM-RNNs processing the input sequence in opposite
orders, both types of temporal dependencies can be captured: present to past and
present to future.

The idea of combining this architecture with CNNs for video tasks was introduced
by [DHG+15]. The CNN maps video frames to visual feature vectors, which the LSTM
then processes as a sequence, learning the temporal dependencies within it. End-to-
end [YMMP18] training of the two components is possible, however with only a very
limited small number of frames at each training iteration due to hardware constraints.
Very long videos can be downsampled and have their frames extracted separately to
facilitate training [TSM+16].

The TCN [LVRH16], or Temporal Convolutional Network, is a faster alternative
to the LSTM. Its architecture featuring stacked convolutions is inspired by 2D CNNs,
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except with 1D temporal convolution kernels.

2.1.1.2 3D CNN

[TBF+15] first introduced the concept of 3D Convnets. The architecture, stacking
convolutions, ReLu activations and max pooling operations, is similar to ordinary 2D
CNNs. The convolution operations, however, are performed using 3D 3x3x3 kernels
over height, width and time. As such, it is capable of learning 3D features from
video clips. [QYM17] brought the idea of residual connections first found in ResNet
[HZRS16] to 3D CNNs. [CZ17] used a pretrained Inception model, and expanded its
convolution kernels in the time dimension to make them video-capable. The authors
also offered a two-stream version of their model, with optical flow and RGB data. In
[WGGH18], a non-local 3D Resnet is presented; it is capable of learning long-range
dependencies that would be overlooked by ordinary 3D CNNs due to their limited
recptive field. [Fei20] refined the process for expanding a Convnet from 2D to 3D. The
authors of [CZ17] explored options for mixing 2D and 3D convolutions within the same
model, resulting in a more efficient and accurate model called S3D. Using a feature ag-
gregation approach, similarly to the ones previously mentioned, [GCDZ19] used I3D as
a feature extractor; the aggregation layer employed is a Transformer model [VSP+17].
This recently developed sequence model relies on a scaled dot product attention mech-
anism to inspect relationships between any two items in the input sequence. The main
benchmarks used for publications with 3D CNNs were Kinetics [CZ17] and UCF-101
[SZS12], with action recognition as the task.

2.1.2 Early activity recognition

In ordinary action recognition, only the output of the model from a complete video
observed all the way to the end is considered. This ensures the model takes all the
visual information available into account; however this may not be a realistic use case,
especially if it is meant to be used in real time. The task of early action recognition
(EAR) works with this constraint in mind; the model is asked for a prediction at
various stages of progress throughout the video. This far increases the task’s difficulty,
especially at the very beginning of the video since the available visual information is
very minimal.

Several methods [ASS+17, HZM+19, MSS16] proceed by incorporating elapsed time
or progression to inform the training process. [ASS+17] trains an LSTM model with
a temporally weighted loss enhancing the importance of predictions made early on in
the video. [HZM+19] proposes a method for early recognition based on soft labels at
different levels of video progress.

A different type of approach for early recognition tasks is to synthesize the con-
tent in the video’s future: [RFL19] attempts to generate future video frames using a
DCGAN [RMC16] model. [GDSF19] employs video representations fed to generator
models trained to synthesize future frame embeddings.

Teacher-student distillation methods train a student model that has not seen future
frames to replicate representations learnt by a teacher model that has. [KTF17] applies
a similar principle to representations from a 3D CNN. A different method introduced in
[WHL+19] uses another distillation approach: it involves training a forward-directional
LSTM to match at each timestep the hidden states of a trained bidirectional LSTM.
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Figure 2.1: Endonet CNN-LSTM model for surgical phase recognition on videos. Cour-
tesy of Twinanda et al.

An approach incorporating reinforcement learning is presented in [WJZY20]. Here
an agent applies a mask to the output probabilities, allowing or forbidding classes
depending on the time.

2.1.3 Methods in surgical video analysis

The problems studied in the field of Surgical Activity Understanding include recog-
nizing surgical phases, tool usage, events, actions and timings in surgical procedures.

Before the introduction of deep learning to the field, methods mostly relied on tra-
ditional ML models processing handcrafted features, sometimes combined with sensor
data indicating, for instance, surgical tool usage [BFN10]. However, DNN-based mod-
els have taken center stage for the most part, replacing former video analysis methods
as it did in many other domains.

Surgical phases form the foundation for analyzing workflows in surgery. Lalys et al.
[LJ13] define them as the first level of granularity for decomposing surgical workflows.
Deep vision models trained to recognize them were first introduced by Dergachyova
et al. [DBH+16] as well as Twinanda et al. in 2016 [TSM+16]. Twinanda et al.’s
EndoNet incorporated a Resnet18 CNN used as a feature extractor followed by a high-
level classifier, either a Support Vector Machine or a Hidden Markov Model. Training
was performed in a multi-task manner, with both surgical instrument and phase recog-
nition as learning objectives. Results were shown on the cholec80 dataset, which was
introduced in this work as well. Its successor EndoLSTM [TMM+16, YMMP18] re-
placed the previous high-level classifier layer with an LSTM. SVRCNet [JDC+18] uses
a similar architecture combining Resnet and LSTM, with an added Prior Knowledge

31



2.2. ALTERNATIVES TO FULL LABEL SUPERVISION

Inference to post-process predictions. Al Hajj et al. [HLC+18] improved on the CNN-
RNN combination using a boosting strategy. MTRCNet-CL [JLD+19] exploits the
correlation between tool usage and surgical phase; for instance the specimen bag only
appears in later phases, as the gallbladder is placed there only after it is dissected. The
correlation loss term attempts to teach the model this type of relationship. Czempiel
et al.’s TeCNO [CPK+20] were the first to introduce temporal convolutional networks
to surgical phase recognition. All the works mentioned so far using deep neural net-
works for phase recognition did so on cholecystectomy videos, which has a fairly simple
workflow. Ramesh et al.’s MTMS-TCN [RDG+21] was the first to bring phase recog-
nition to gastric bypass; a much more complex and non-linear type of surgery with
many phases themselves composed of multiple smaller steps.

2.2 Alternatives to full label supervision

The canonical setup for training deep neural networks involves a large, fully annotated
dataset, with the full ground truth available for the task to train the model for. This
section presents alternatives to this fully supervised setup.

2.2.1 Weak and semi supervision

Weakly supervised learning relies on supervision signals containing less information
than actual labels corresponding to the actual task to perform; when those signals
are much easier to procure than fully fleshed out annotations, this type of method is
particularly adequate.

In videos, a common weakly supervised learning task is action localization. In
contrast to video-level action recognition done on benchmarks such as Kinetics, where
the model assigns a prediction to an entire video clip, action localization involves
finding, within a video, frames where the action actually takes place. Achieving this
without any frame-level annotations, with only video-level tags as the weak supervision
source, is a challenging task attempted in several works [RKG17, WXLG17, PRRC18,
NRF19, ASNS20, MGVY21, BLG+15].

Outside of videos, another form of weak supervision involves noisy labels. Misla-
beled data, while non-existent in major computer vision benchmarks such as ImageNet,
can be a threat in real-life situations, with annotations from unreliable public sources.
Patrini et al. [PNNC16] performed a theoretical study of label noise effect on common
loss functions. [XXY+15, NLX15] both leverage large amounts of web-sourced images
for image classification. Cheng et al. [CZZ+20] used an auxiliary model called Side
Information Network to estimate the correctness of images with label noise.

In semi-supervised learning methods, a small amount of annotated training data is
available, as well as a certain amount of completely unannotated data. Those methods
are appropriate in contexts where data is abundant, but annotations are scarce due to
time constraints or costs.

Rosenberg et al. [RHS05] presented a self-training method for object detection.
Dai et al.’s [DG13] method builds prototype sets from the annotated data points,
trains classifiers on each set then uses them as an ensemble. Sajjadi et al. [SJT16]
introduced a loss function enforcing robustness to random transformations on the
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unlabeled data. Radosavovic et al. [RDG+18] labeled the unannotated images with
ensembled predictions on transformed duplicates. Iscen et al. [ITAC19] used graph
methods to propagate labels to the unannotated part of the dataset.

2.2.2 Unsupervised representation learning

Unsupervised learning or self-supervised learning methods work from a completely
unannotated training set. The condition for such a method’s success is to have the
model understand the underlying organization of the data purely based on its content,
learning a representation that accounts for this organization. The training task chosen
to teach this representation is referred to in the literature as the proxy or pretext task.

We present a few methods for static image data first. Noroozi et al. [NF16]
introduced the jigsaw pretext task, consisting in identifying a permutation applied
to the tiles of an image. Another work [NPF17] from the same authors trained a
model to count visual primitives in images without labels, using a visual consistency
rule enforced across tiles in the image. Zhang et al. [ZIE16] trained an autoencoder
on images converted to grayscale, to reconstruct the original color images. BYOL or
Bootstrap Your Own Latent was developed by Grill et al. [GSA+20]; in this method the
model has to predict its own representation of a transformed image using the original.
SimCLR introduced by Chen et al. [CKNH20] combined multiple data augmentation
methods with a contrastive cross-entropy.

For video data, Srivastava et al. [SMS15] trained an LSTM autoencoder to learn
video representations. Wang et al. [uns] used a handcrafted method to define image
patches for the network to track across video frames. In Misra et al.’s work [MZH16],
the model is trained to validate the temporal order of a sequence of frames. Vondrick
et al. [VSF+18] introduced a video colorization task; unlike the original image col-
orization task [ZIE16], the image to colorize is not the input but a further frame in
the video.

2.2.3 Distillation by teacher supervision

Distillation approaches, for the most part, are not conceived with data scarcity issues
in mind like the approaches mentioned previously. The objective for most of those
methods is model compression, i.e. transferring the behavior of a large-capacity model
to another one, with fewer parameters and lower hardware requirements. The large
model in this framework is referred to as the teacher, while the smaller one is called
the student. Wang [WY21] as well as Gou et al [GYMT21].

Outside of model compression, a few publications have used similar distillation
concepts for other purposes; for example as a form of weakly supervised learning,
or to condition specific behaviors from the student model. In Radosavovic et al’s
work [RDG+18], distillation is used in a semi-supervised setup, performed from the
ensemble to the student on the unlabeled data. The role of distillation in Wang’s work
[WHL+19] on early action recognition is to enforce anticipation for the student.
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Figure 2.2: Distillation for early action recognition. The student model, handling
partial videos, is trained to copy the representation of the teacher that has knowledge
of the full videos. Image credits: Wang et al.
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2.2.4 Uses in medical context

A common obstacle in the fully supervised training of DNNs is the limited amount of
annotated data available. This is especially true for surgical videos, which are difficult
to acquire, and require expert medical knowledge for annotations. For surgical phase
recognition under semi supervision, Bodenstedt et al. [BWK+17] used a frame sorting
task on unannotated videos. Funke et al. [FJM+18] employed a method called sec-
ond order temporal coherence to pretrain the visual feature extractor in their model,
enforcing distance constraints in embedding space that reflect the temporal distance
between frames of the same video. Their experiments used the cholec80 dataset for
cholecystectomy phase recognition; with 60 total videos available for training, anno-
tations were limited to 60, 40 and 20 videos. In Yengera et al.’s [YMMP18] work,
remaining time and progress regression were used as unsupervised pretraining tasks.
From the cholec120 dataset, 8 to 80 annotated videos were used for phase recognition
training.

Weak supervision has been employed for surgical instrument detection on cholec80,
using binary presence annotations only [NMMP19, VMMP18]. A form of distillation
was shown in Kannan et al.’s work [KYM+20], to encourage anticipation in real-time
surgery type recognition tasks.

2.3 Retrieval

The task of retrieval is, at its core, the task of learning representations that are ade-
quate for searching. We break down the corresponding methods into two main types
based on the representations used; then we examine a few uses of hashing in the
medical community.

2.3.1 Embeddings

Embeddings are a byproduct of any DNN training process (see 4.2). Those compact
vector representations are trained to incorporate rich content and to have good geo-
metrical properties; it is therefore natural to use them for retrieval.

2.3.1.1 Image retrieval

For image retrieval, Hoang et al. [HDTC17] proposed a scheme for generating embed-
dings for retrieval, by selecting and aggregating convolutional features from a VGG
model. Jimenez et al. [JAiN17] used class activation maps to add weight to more
discriminative features in their embedding construction process. Liu et al. [LYV+19]
used Graph Convolutional Networks to compute a similarity score between images,
serving as their basis for learning seachable embeddings. In Revaud et al.’s work
[RARS19], mAP, the metric generally used for retrieval evaluation, is approximated
by a differentiable function and learnt by their model.

2.3.1.2 Video retrieval

Content-based video retrieval was performed by [XYH15] with features extracted from
a VGG CNN pretrained on ILSVRC 2014. The features were pooled using either
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Fisher vectors or VLAD. Experiments using CNN embeddings were also performed by
Kletz et al. [KLS18], and showed that those yielded higher retrieval performance than
handcrafted features.

2.3.2 Hashing

The previous principle of looking for compact and discriminative representations of
large data is taken by hashing to an extreme level: instead of floating-point vectors
with a few thousand components, hashing looks for representations in the form of
binary arrays with only a few hundred entries. We present a few methods for static
images first, followed by methods for video content.

2.3.2.1 Image hashing

2.3.2.1.1 Approaches outside of deep learning

A number of methods were originally developed without deep neural networks, al-
though the hash functions described can be applied to features extracted by DNNs.

Locality-Sensitive Hashing [AI08] is a highly popular algorithm used in a wide
variety of application scenarios, including genome sequencing [BKC+14] and fraud
detection [NCB17]. This method however is completely data- independent, using
random projections to build the hash function. Since then, a number of methods
have attempted to tailor this function to the data to hash. Weiss et al. intro-
duced Spectral Hashing [WTF08], a method based on a PCA of the data. Iterative
Quantization[GLGP13], discovered by Gong et al., relies on a rotation of the data
that minimizes the quantization error. Spherical Hashing[HLH+12] uses binarization
functions with spherical separation surfaces instead of hyperplanes, and optimizes the
position of the sphere centers, referred to as pivots.

2.3.2.1.2 Hashing with deep neural networks

Liong et al. [LLW+15] first introduced two hash functions built around a multilayer
perceptron on top of GIST [OT01] features, one supervised and another unsupervised.
HashNet [CLWY17] used AlexNet and ResNet CNNs with a continuous relaxation
method, increasing the sharpness of a sign function approximator over the course of
training. Deep Cauchy Hashing is a contrastive method [CLLW18b] relying on a modi-
fied AlexNet and a pairwise loss based on a Cauchy distribution. DistillHash uses noisy
similarity labels [YLD+19] based on embedding distance between data pairs to learn
bitcode assignments. HashGAN [CLLW18a] incorporates synthetic images generated
by a GAN to augment the training data. K-Nearest-Neighbors Hashing [HWC19] takes
advantage of the neighborhood structure in embedding space to binarize based on an
optimal space partition. Wu et al. [WDL+19] introduced a method for incremental
hashing, in the sense that expanding the database does not require complete retraining
of the hash function on the full dataset.

2.3.2.2 Video hashing

A number of methods [LLTZ17, WLG+17, WHG+19] for video hashing are pooling-
based: a fixed number of frame representations is generated, then combined with
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Figure 2.3: Self-supervised temporal hashing method. The binary keys or bitcodes used
for retrieval are generated by an encoder trained on a self-supervised reconstruction
task. Courtesy of Zhang et al.

temporal averaging to generate one feature to binarize. Even when temporal models
are involved in generating the frame representations [WLG+17, WHG+19], averaging
features over the course of an entire video inevitably restrains the bitcode’s expres-
siveness with respect to temporal dynamics[ZWHC16]. Other works have proposed
methods with a higher degree of temporal awareness. Zhang et al.’s SSTH [ZWHC16]
trained an encoder based on a differentiable binary LSTM recurrent unit, using the
bitcode itself as a hidden state. Subsequent methods are similar: Song et al.’s SSVH
[SZL+18] incorporated some temporal hierarchy modeling; Li et al. [LCL+19] added
neighborhood structure preservation as a learning constraint.

2.3.3 Retrieval in medical computer vision

In medical computer vision, most works on content-based retrieval focus on diagnos-
tic medical imaging [CCL+18, PBW+19, SPCR20, GVYY17]. One from Chen et al.
[GVYY17] involves hashing, on a database of chest X-ray images.

A few works have used intraoperative video data: Droueche et al.[DQL+14]’s video
retrieval method is based on MPEG-compressed video representations and handcrafted
features. Amanat et al’s [AIK+18] performed retrieval based on PCA applied to SIFT
features. Funke et al. retrieved still frames from cholec80, however this only was
a qualitative evaluation of their features trained with temporal coherence[FJM+18].
Petscharnig et al. [PS18] tackled the problem of image-to-video linking, i.e. retrieving
the video source of a still frame. Their study was done on a dataset of gynecologic
endoscopies.

2.4 Thesis Positioning

Our objective is to introduce new uses for the unannotated data which will directly or
indirectly assist the surgeon in navigating the surgery in the operating room, and do
so in real time.

An overview of the previous work using unannotated videos for surgical activity
understanding tasks shows that the role of these videos was fairly limited. For the most
part, they were used as pretraining fodder for visual feature extractors: frame sort-
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ing [BWK+17], temporal distance comparisons [FJM+18], remaining time [YMMP18].
While those methods proved to be efficient for enhancing the downstream task of
surgical phase recognition, the vast pool of unannotated videos they used served no
further purpose beyond a self-supervised pretext task. No attempt was made to un-
derstand this data, navigate it and turn it into more valuable information for future
use. Self-training [RHS05, RDG+18] is a semi-supervision modality addressing those
shortcomings, since it generates synthetic labels for the unannotated data - however
to the best of our knowledge, no application to surgical activity recognition or even
general video activity recognition existed at the time. The real-time usability / recog-
nition performance has also never been adequately addressed either. Pointed out by
[Twi17] when observing a performance increase upon replacing the standard LSTM
by one that is bidirectional, no attempt has been made in order to reduce this perfor-
mance gap for real-time use. The method we propose [YMMP19] in the next section
addresses all those issues , by introducing a semi-supervised self-training scheme using
both LSTM and bidirectional LSTM in a complimentary manner.

Enriching the unannotated data is one way of using it; providing the tools to ex-
plore it and efficiently search through it is another, which can be done with video hash-
ing. Literature on this topic is quite limited [LLTZ17, ZWHC16, SZL+18, WLG+17,
WHG+19, LCL+19]. The main shortcoming of all presented approaches is to con-
sider video retrieval from a purely static standpoint. Meanwhile text-based search has
evolved into a dynamic tool, capable of adapting to the anticipated course of events in
order to be used out of the pocket in the middle of any task. One key concern is the
sampling scheme employed: out of all the frames in a video, a small predetermined
number of evenly spaced frames is considered, independently of the video’s duration.
The extracted information is therefore very sparse, and in the case of a real-time video
source, needs to be constantly regenerated from the beginning of the video. Lack of
anticipation is another concern: all those methods assume the entire video from be-
ginning to end is available as the search query, and therefore no content is missing. In
the case of livestreams, this working hypothesis is false. Our method [YP20] addresses
both these concerns, making video hashing both incremental and predictive.

The existing work on video retrieval for surgical videos is minimal; Droueche et
al.’s [DQL+14] work on retrieval for cataract surgery videos relied on handcrafted
features from compressed videos instead of DNNs operating on the actual pixel data.
The scale of the experiments conducted was fairly small, using datasets of 23, 250
and 69 videos. The training set was used as the database, which deviates from the
stricter protocol enforced in video hashing publications [LLTZ17, ZWHC16, SZL+18,
WLG+17, WHG+19, LCL+19]. No hashing was involved either; retrieval was based
on floating-point values. Retrieval times of 9 minutes were mentioned, which limits
real-time usage. Our work, on the other hand, brings DNN-based hashing to a very-
large-scale surgical video database, ensuring real-time video retrieval efficiency with
delays of a few seconds at most.
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CHAPTER 3

Semi-supervision for real-time surgical phase recognition

”It is much more rewarding to do more with less.”

- Donald Knuth
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Figure 3.1: Surgical phases in the workflow of laparoscopic cholecystectomy

Between the standard approach of full supervision, and self-supervision where no
annotations are available for training, semi-supervision occupies the middle ground,
with methods relying on partially annotated datasets. With phase annotations being
currently scarce, it is natural to consider methods that facilitate their production.
Assisted annotation, explored by research efforts simultaneous to ours in a study
on two cholecystectomy videos, is an option [LRM+19]. Automatic annotation is
another which we study here, allowing both increased phase recognition performance
and exploration of the unannotated data.

3.1 Objectives

The work presented in this chapter is a first attempt at answering the question ”what
can be achieved in the OR with the unannotated endoscopic video data?”. Here we
tackle the problem of surgical phase recognition in cholecystectomy, a staple in surgical
activity understanding. As shown in Chapter 1, a fraction of the cholecystectomies
registered in our database come with phase annotations: 120 videos are currently
annotated with phases, while over 500 are registered in Endocorpus. This situation is
therefore an excellent fit for a semi-supervised method. In the following experiments
we recreate those conditions of annotation scarcity on a smaller scale: assuming 80
videos are at our disposal, how do our methods perform when only 20 out of those are
annotated? How do they perform when this number drops down to 10, 5, 3, all the
way down to a single video?

3.2 Methods

3.2.1 Data preparation

The chosen dataset for this task is cholec120, containing 120 recordings of laparoscopic
cholecystectomy performed at Strasbourg’s Nouvel Hôpital Civil. We reserve 30 for
testing and 10 for validation, leaving N = 80 videos to choose from for training.

As shown in Figure 3.1, the workflow is mostly linear. A few videos do not feature a
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preparation phase, starting directly with the Calot triangle dissection phase. The order
between phases 5 (gallbladder packaging) and 6 (cleaning coagulation) is occasionally
reversed. However, despite the dataset’s uniformity with respect to phase ordering,
workflow greatly varies within the dataset: video duration considerably changes from
one case to another, with 956s of standard deviation around the 2287s average. The
shortest video only lasts 741 s -barely over 10 min- while the longest lasts 5987s or over
an hour and a half. When selecting small numbers of annotated videos for training,
it is therefore important that the selection has similar duration statistics. Even then,
the selection process should be repeated in order to mitigate the effect of potential
outliers.

In the following lines, we will refer to:

E = {(V0,A(V0)), (V1,A(V1)), ..., (VN−1,A(VN−1))} , (3.1)

as the initial set of 80 manually annotated videos to choose from, Vk and A(Vk)
being a video and its ground truth annotations respectively. Considering the volun-
tarily low number of annotated videos selected for training (from 20 down to 1), we
sample 3 non-overlapping mini-training sets of every size in order to prevent biased
results coming from the selection process, and ran our series of experiments indepen-
dently for each mini-training set. In an effort to match the original training set in
terms of video duration statistics, we divide the 80 videos into duration quartiles Q1
to Q4, then randomly sample videos from Q1, Q2

⋃
Q3, and Q4 with a 20/60/20 ratio

respectively. For mini-training sets of only one video the single choice is limited to
Q2
⋃
Q3 in order to avoid outliers. The mini-training sets are referred to as:

Ei,j = {(Vk,A(Vk)), ...} , (3.2)

where the first index i ∈ {1, 3, 5, 10, 20} indicates the size of the set of ground truth
labeled videos employed, and the second index j ∈ {0, 1, 2} denotes the first, second
or third repeat of the experiment for that particular size.

3.2.2 Teacher & student models

We present two model architectures for surgical phase recognition: the CNN-LSTM
and the one newly introduced in our work, the CNN-biLSTM-CRF. The choice between
the two is subject to a tradeoff between real-time usability for the first, and enhanced
recognition performance for the second; those characteristics are directly tied to their
distinct architectures, which we discuss in the following subsections. Using them in our
setting as teacher (CNN-biLSTM-CRF) and student (CNN-LSTM) ultimately solves
this tradeoff.

3.2.2.1 DNN components

Both architectures rely on a combination of spatial and temporal artificial neural
networks. The spatial component in both is a ResNet-50 V2 CNN [HZRS16], serving
as the visual feature extractor on RGB frames: for one 256 × 256 × 3 input, a 2048-
dimensional vector representation is generated.

The sequence of feature vectors extracted from a video is then aggregated by a
recurrent neural network (RNN). In the case of the student, the chosen RNN is built
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Figure 3.2: Overview of the teacher-student method.

around a forward-directional LSTM. At any given timestep, all the student needs
for inference is the feature vector from the current frame as well as the previously
computed cell state and hidden state. Functioning in real time is therefore entirely
within its capabilities.

The teacher, however, feeds the feature vector sequence to a RNN based on a bidi-
rectional LSTM [GS05], i.e. a pair of LSTMs, one chronological and one reverse.
Its output at any given timestep depends on the current feature vector for the current
frame and the chronological LSTM’s previous states, computed using all past instants.
It also depends on the reverse chronological LSTM’s previous state, which requires
input features for all future instants. This property of the biLSTM is a double-edged
sword; because of it the teacher cannot be used intraoperatively, i.e. before the ac-
tual end of the surgery. On the flipside its predictions factor in much more useful
information than the student, and are more likely to be correct.

3.2.2.2 Transition logic

A single fully connected layer projects the sequence of outputs from the temporal
model to a sequence of per-class log-probabilities or logits. This is the case for both
the teacher and the student. However, the student has its predictions decoded with a
simple argmax, independently from timestep to timestep. Since the teacher is forced
to see the entire sequence, we take advantage of this by incorporating an additional
layer, enabling it to learn the transition logic between phases. This is the role played by
the linear chain conditional random field or CRF in the model, the inner workings
of which we describe here.

Given a sequence of logits S = (s0, ..., sT ), for any given timestep t and class index
k we note the kth entry of st as st[k]. Let Θ be an Nc × Nc real-valued matrix, with
entries noted as Θ[i, j] for class indices i, j.

The score of any sequence of tags (i.e. predicted classes) Y = (y0, ..., yT ) can then
be defined as:

42



CHAPTER 3. SEMI-SUPERVISION FOR REAL-TIME SURGICAL PHASE
RECOGNITION

C(S, Y,Θ) =
T∑
t=0

st[yt] +
T−1∑
t=0

Θ[yt, yt+1]. (3.3)

The first sum collects unary potentials, i.e. terms associated with single sequence
elements, while the second one collects binary potentials resulting from transitions.

The trainable parameter of the model is Θ, called the transition matrix. Using the
definition of the score C, we are able to define the likelihood of a tag sequence as:

p(Y |S) =
eC(S,Y,Θ)∑

U∈J1,NcKT+1

eC(S,U,Θ)
, (3.4)

which can be seen as a softmax value for Y over all possible tag sequences U . The
scaling factor Z =

∑
U∈J1,NcKT+1

eC(S,U,Θ) is also called the partition function. Brute-

force computation of Z is O(NT+1), and generally intractable. A more adequate way
to carry out this computation uses dynamic programming, via the forward algorithm.
We can observe:

Z =
∑

U∈J1,NcKT+1

e
∑T
t=0 st[yt]+

∑T−1
t=0 Θ[yt,yt+1] (3.5)

=
∑

k,n∈J1,NcK2
e
∑T
t=0 st[k]+

∑T−1
t=0 Θ[k,n]

∑
U∈J1,NcKT

e
∑T
t=1 st[yt]+

∑T−1
t=0 Θ[yt,yt+1] (3.6)

This simply factors Z by the contribution of the first item in the sequence. The
left-hand term of the product costs O(N2

c ) operations, and the same factorization can
be applied to the right-hand term. Recursive computation of Z in this manner is
therefore O((T + 1)N2

c ).

We then employ L = −log(p(Ytrue|S)) as our training loss, Ytrue being the tag
sequence corresponding to the ground truth.

At inference time, the CRF returns the best scoring sequence Yopt. This is also
computed using dynamic programming, with the Viterbi algorithm. We define:

δτ (k) = max
U∈J1,NcKτ+1,uτ=k

(
T∑
t=0

st[ut] +
T−1∑
t=0

Θ[ut, ut+1]) (3.7)

This is the maximum scoring sequence up to timestep τ ending with tag k. Then:

δτ (k) = sτ (k) +
Nc∑
n=1

δtau−1(n) + Θ[n, k] (3.8)

Recursive computation of all the δ values costs, again, O((T + 1)N2
c ). The best

path can be found by recording the tags corresponding to each δ in a separate array
to backtrack from.
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Figure 3.3: Data splitting and sampling process.

3.2.2.3 Training

In all of the following experiments, the Resnet-50 CNN is initialized with ImageNet
pretrained weights. Test accuracy on ImageNet for those weights reaches 75.6%. The
teacher model’s CNN is first pretrained with only one fully connected layer on top, on
Ei,j, directly for phase recognition. Weights from the first and second blocks of Resnet
are frozen. Data augmentation is applied using random isometries. Visual feature
vectors are then extracted from Ei,j using the pretrained CNN.

The biLSTM - CRF is then trained end-to-end on the extracted features with
untruncated backpropagation through time across the entire video, with binary cross-
entropy as the loss function.

Using the trained biLSTM - CRF, we generate new annotations for videos in E\Ei,j.
This leads to a set of videos with synthetic annotations:

Fi,j =
{

(Vk, Âi,j(Vk)), ...
}
. (3.9)

We then define Gi,j = Ei,j
⋃
Fi,j, which contains all videos from the original training

set, and combines a small set of manual annotations with a majority of synthetic labels.
The student CNN-LSTM model is trained in the same two-step manner, this time on
Gi,j. Hyperparameters used for training are detailed in table 3.1. All experiments are
performed using Tensorflow with the Adam optimizer [KB15], on servers fitted with
Nvidia 1080Ti GPUs.

In order to justify every component in the teacher model, we conduct a series of
ablation studies 3.4 by training and evaluating the following models:

• (M1) CNN (obtained from the pretraining step)
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Table 3.1: Hyperparameter table

CNN pretraining
Learning rate 5 · 10−5

# of epochs 27
Minibatch size 32
Weight decay 5 · 10−4

LSTM
Learning rate 5 · 10−5

# of epochs 350
State size 128
Dropout 0.3
Weight decay 5 · 10−4

CRF
Learning rate 5 · 10−5

# of epochs 350
Weight decay 5 · 10−3

BiLSTM/BiLSTM-CRF
Learning rate (biLSTM) 1 · 10−3

Learning rate (biLSTM-CRF) 1 · 10−4

# of epochs 350
State size 2 · 64
Dropout 0.4
Weight decay 5 · 10−4

Weight decay 5 · 10−4

45



3.2. METHODS

CNN
phase

CNN
phase

CNN LSTM
phase

CNN biLSTM
phase

M4

FC

FC

FC

FC

CRF

M1

M2

M3

Figure 3.4: Ablation studies conducted for the teacher model. Left to right, top to
bottom: M1, M2, M3, M4.

• (M2) CNN-CRF

• (M3) CNN-unidirectional LSTM

• (M4) CNN-biLSTM

Temporal models M2 to M4 are trained in the same two-step manner as the pro-
posed CNN-biLSTM-CRF model, referred to as M5.

In order to provide comparison points with the fully supervised approach, the
teacher model along with every model featured in the ablation studies are also trained
on the original set of 80 manually annotated videos. The only student model mentioned
so far is the CNN-unidirectional LSTM, due to its real-time inference capabilities.
Another interesting possibility is to also use a CNN-biLSTM-CRF as the student, in
order to obtain a stronger offline predictor.
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3.3 Results

3.3.1 Teacher model ablation studies
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Figure 3.5: Accuracy (left) and F1 (right) for the ablation models, for all mini-training
set sizes

To demonstrate the benefits of our approach, we have conducted a total number
of 125 experiments, counting all mini-training set sizes and all the models featured
in the complementary studies. To test our models, we reported their accuracy (Acc).
This metric is valuable in the sense that it measures the amount of time spent making
correct predictions. However, it lacks responsiveness to potential deficiencies in less
populated classes. For this reason we also reported their precision (Pre), recall (Rec)
and F1 score during inference on the test set. Unless otherwise specified, precision,
recall and F1 are averaged over the 7 classes. For every metric at a given mini-
training set size, we provide the mean and standard deviation over the 3 repeats of
the corresponding experiment.

Results for every mini-training set size, the proposed teacher model (M5) and
models from the ablation study (M1 to M4) are shown in Table 3.2. Directly applying
the CRF after the CNN (M2) yields poor results, likely due to temporal noise affecting
the logits emitted by the CNN. Temporal models trained on a single video are severely
affected by overfitting, and therefore also exhibit subpar performance. With 3 or more
manually annotated videos, however, the biLSTM and the CRF deliver significant
performance improvements.

The CNN-biLSTM (M4) achieves stronger performance than the CNN-LSTM (M2),
although not as much as the full CNN-biLSTM-CRF model (M5), which is consistently
the best performer (Figure 3.5). This is observed on all mini-training set sizes except
for single videos. As expected, increasing the number of videos improves all global
metrics - accuracy, average F1, average precision, average recall - although per-phase
precision and recall may fluctuate (Table 3.3). This establishes the CNN-biLSTM-
CRF model as the strongest predictor, and therefore the best suited for the role of
teacher.

To qualitatively appreciate improvements from the new model, the predictions on
six videos from the test set are presented in Figure 3.6: the top three and bottom
three of the CNN-biLSTM-CRF ranked by accuracy. The CNN-biLSTM-CRF makes
the most sensible predictions with respect to the chronological order between the
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Table 3.2: Ablation study for the teacher model, accuracy and average F1

1 3 5 10 20 80

M1
Acc 40.8± 2.6 57.3± 1.5 62.2± 1.2 67.4± 1.5 71± 1.9 75.3
F1 23± 4.3 39.9± 4.1 48.8± 2.6 56± 1.9 59.1± 1.6 63.8

M2
Acc 41± 3.5 58± 1.2 63± 0.6 65± 0.3 72.5± 1.9 80.5
F1 22.1± 5.2 40.7± 4.6 48.5± 3.3 54.3± 1.3 59.9± 1.8 69.7

M3
Acc 40.1± 4.7 65.4± 5.7 72.3± 0.9 74.7± 2.6 80.5± 0.7 86.3
F1 5± 2.9 47.4± 9.9 57.9± 1.8 62.7± 3 70.2± 1.3 78.2

M4
Acc 36.5± 4.7 66.3± 3.7 73.7± 1.6 76.6± 3 82.6± 0.6 88.4
F1 2.9± 3 47.9± 8.5 60.1± 5 67± 3.8 74.5± 1.3 81.7

M5
Acc 40.1± 3.1 71.1± 4.6 76.2± 0.3 78.5± 2.6 84.1± 1 89.5
F1 21.1± 11 55.3± 9 65.8± 1.2 69.7± 1.3 75.8± 1.5 82.5

Table 3.3: Per-phase precision and recall, CNN-biLSTM-CRF model

1 3 5 10 20 80

P1
Pre 5.5± 8.4 59.6± 0.8 52± 14.3 56.9± 14.7 68.4± 8.3 86.6
Rec 56.6± 26.7 77.4± 14.8 51.7± 4.8 54.4± 14.1 92.6± 4.5 96.4

P2
Pre 48.3± 42.3 48.1± 10.5 80.1± 3.7 77.1± 0.9 58.8± 10 68.9
Rec 24.8± 23.7 83.5± 10.7 84.7± 3.1 90.6± 5 87.2± 2.2 83.4

P3
Pre 36.7± 25 76.9± 12.6 62.6± 17 80.4± 11.5 93.4± 3.9 96.5
Rec 50.5± 44.9 64.3± 15.8 39.4± 26.1 31.6± 10.9 75.9± 2.9 79.9

P4
Pre 61.3± 10.4 75.4± 3.2 81.1± 5.2 86.3± 6.7 83.1± 3.3 89.4
Rec 45.9± 45.2 50.1± 29 84.4± 4.8 80.4± 1.8 70.3± 8.8 72.7

P5
Pre 0± 0 10.9± 15.5 74.4± 3.1 77.7± 0.8 42.6± 5.1 53.5
Rec 12.9± 11.6 71.8± 16.2 83.3± 1.7 84± 3.1 83.2± 1.4 88.2

P6
Pre 3.7± 6.4 38.7± 29.5 80.4± 2.1 76.2± 4.2 85.1± 2.8 91.5
Rec 11.3± 16.6 71± 11.9 46.7± 7.6 61.5± 5.4 81.2± 3.6 91.5

P7
Pre 60.3± 44.7 82.1± 8.5 64.1± 7.9 70.8± 1.6 87.1± 3.6 94.1
Rec 50.3± 38.9 64.6± 8.3 77.7± 10.1 77.8± 9.5 80± 4.1 77.3

Avg
Pre 26.4± 4.5 62± 6.1 70.4± 4.2 75.1± 1.6 75.8± 1.4 82.6
Rec 40.5± 18.5 62.9± 7.5 66.8± 4.7 68.6± 0.5 79.8± 1.3 84.5

phases; it more specifically avoids inferring incorrect phases in short isolated bursts as
the biLSTM sometimes does.

In order to confirm the quality of the material the student model learns from, we
ran our metrics on the annotations from Gi,j, which mix ground truth annotations and
teacher-generated annotations. Results are shown in Table 3.4.

As expected, teachers trained on more manually annotated videos produce better
annotations. The presence of more manually annotated videos in the Gi,j sets also
contributes to greater overall label quality, e.g. 83.5 % F1 score for G20,j on average.
Per-phase results indicate stronger performance on phases P2 (90.3% precision, 91.6
% recall for 20 manually annotated videos) and P4 (87.4% precision, 92.5 % recall),
which are usually the most prevalent. Despite uneven results across phases, Gi,j sets
obtained from 3 or more manually annotated videos appear to be overall serviceable
for training a student model.
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Figure 3.6: Qualitative results for the teacher, compared to ablation models - top 3
best and worst. Note the suppression of error bursts.

3.3.2 Student performance

To appreciate the benefits of using our synthetic labels, we compare in the first two
groups of rows of Table 3.5 the CNN-LSTM only trained with few manually annotated
videos against the CNN-LSTM trained with these same videos and annotations plus
the videos annotated by the teacher. Results for a single ground truth-annotated video,
as one can expect from the results of the corresponding teacher models, are quite poor.
Even though the G1,j sets contain 80 times as many videos as the E1,j used for the
teachers, the quality of the annotations, as shown in Table 3.4, is extremely low.
CNN-LSTM models trained on those all exhibit sub-50% performance on every global
metric, despite showing some improvement compared to the CNN-LSTM trained on
E1,j. Decent results are observed starting from 3 videos, with a 2.9 to 8.8 point increase
in accuracy when adding synthetic annotations, and similar increase in F1 score.

With 80 ground truth-annotated videos, accuracy and F1 reach 86.3% and 78.2%
respectively (Table 3.5). Therefore, the use of synthetic annotations roughly cuts down
the performance gap between using 20 and 80 ground truth-annotated videos by half.

3.3.3 Self-learning of the teacher model

3.3.4 Teacher self-learning

By using theGi,j sets to train a new CNN-biLSTM-CRF model, the offline performance
increases even further (Table 3.5, last 2 groups of rows) - except for the 1-video case,
where performance actually degrades. Results with 20 ground truth-annotated videos
are particularly notable, as they match those obtained with 80 ground truth-annotated
videos from the CNN-LSTM model (86.3% accuracy, 78.2% F1).

3.4 Conclusion

The work presented in this section shows the superior performance of the new CNN-
biLSTM-CRF teacher architecture compared to the previous CNN-LSTM used for
surgical phase recognition. Although this model is restricted to offline inference, we
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Table 3.4: Teacher-completed annotation set metrics

1 3 5 10 20

P1
Pre 44.4± 33.4 63.5± 10.5 68.8± 10.3 78.2± 5.3 85.9± 5.5
Rec 4.6± 5 55.2± 3.4 47.9± 2.8 52.4± 12.7 73.5± 4.3

P2
Pre 60.9± 4.7 81.1± 1.9 86± 2.5 83.1± 2.3 90.3± 1.6
Rec 35.4± 17.2 77.4± 5.7 79.1± 6.6 88.9± 0.3 91.6± 3

P3
Pre 79.7± 28.8 67.9± 9.4 66.2± 18.7 76.3± 5.4 84.3± 2.5
Rec 0.6± 0.2 19.5± 12.3 47± 23.2 40.9± 7 60± 5.8

P4
Pre 53.6± 18.6 72.7± 10.5 74.5± 4 83.2± 0.6 87.4± 3.6
Rec 60.8± 36.9 84.6± 5.2 89.2± 2.9 86.4± 4.4 92.5± 1.5

P5
Pre 87.2± 11.4 66.6± 14.9 77.6± 1.9 82.8± 3.1 83.9± 2.9
Rec 23.2± 16.5 78.6± 9.1 81.7± 1 81.1± 4.2 88.3± 2.1

P6
Pre 43.4± 39.5 70.1± 9.1 71.8± 7.5 76.9± 4.2 87.3± 1.2
Rec 43.9± 38.9 52.2± 24.1 51.2± 10.1 71.2± 10.1 82± 4

P7
Pre 58.1± 31.3 62.4± 5 63.3± 9.2 71.8± 5.9 84.4± 4.3
Rec 13.4± 14.8 72.3± 8.1 77.6± 7.9 81.2± 1.8 84.2± 2.6

Avg
Pre 61.3± 3.8 69.2± 2 72.6± 5.3 78.9± 0.8 86.2± 1.3
Rec 26± 15.7 62.8± 5.3 67.7± 4.7 71.7± 2.3 81.7± 0.6

Acc 39.2 ± 4.7 73.1 ± 3.1 76.6 ± 1.2 81.6 ± 1 88 ± 1.2

F1 23.5 ± 3.2 62 ± 4.7 67.6 ± 0.8 73.7 ± 2.1 83.5 ± 1.1

also propose a teacher/student strategy that leverages the new model for real-time
prediction, by exploiting it as a source of synthetic annotations for a CNN-LSTM
student model.

Experimental results, obtained using manual annotations for 25% or less of all
available training data, show serious potential for scaling surgical phase recognition to
a large number of videos while alleviating the burden of collecting manual annotations.
The performance deficit between scenarios with 25% and 100% ground truth annota-
tion availability is halved for a CNN-LSTM online prediction model when adding syn-
thetic labels from the teacher. When swapping the student for a CNN-biLSTM-CRF
offline prediction model, the gap is fully closed.

Many other types of surgical procedures than cholecystectomy for which large
amounts of annotated data are not yet available, such as gastric bypass might be
able to benefit from this method as well.
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Table 3.5: Performance with and without teacher-generated annotations.

1 3 5 10 20

CNN-LSTM,
no teacher

Acc 40.1± 4.7 65.4± 5.7 72.3± 0.9 74.7± 2.6 80.5± 0.7
Pre 20.7± 1.9 51.7± 7.1 60.4± 2.9 64.1± 1.5 71.1± 0.7
Rec 17.5± 7.5 58.6± 8.2 64± 5.5 68± 3.1 64.1± 2.7
F1 5± 2.9 47.4± 9.9 57.9± 1.8 62.7± 3 70.2± 1.3

CNN-LSTM,
with teacher

Acc 42.1± 6.3 74.6± 3.6 77.7± 0.8 79.1± 0.9 83.4± 0.3
Pre 24.6± 5.6 63± 5 65.8± 5.1 66.6± 1.7 73.5± 1.2
Rec 38.9± 19.4 65.1± 7.3 72.3± 5.2 74.7± 1.7 76.8± 0.7
F1 14.5± 13.5 56.1± 8.6 64.5± 2.9 66.9± 3.1 73.2± 0.8

CNN-
biLSTM-
CRF, no
teacher

Acc 40.1± 3.1 71.1± 4.6 76.2± 0.3 78.5± 2.6 84.1± 1
Pre 26.4± 4.5 62± 6.1 70.4± 4.2 75.1± 1.6 75.8± 1.4
Rec 40.5± 18.5 62.9± 7.5 66.8± 4.7 68.6± 0.5 79.8± 1.3
F1 21.1± 11 55.3± 9 65.8± 1.2 69.7± 1.3 75.8± 1.5

CNN-
biLSTM-
CRF, with
teacher

Acc 43.1± 7.5 74.9± 4.6 78.7± 1 80.8± 0.8 86.3± 1
Pre 26.3± 4.1 64.2± 5.8 67.4± 5.9 70.2± 2.7 78± 1.4
Rec 38.8± 16.5 65± 7.3 73.8± 5 76.9± 1.9 81.7± 0.5
F1 18.2± 10.9 55.7± 9.7 66.8± 2.7 69.9± 4 78.1± 1

tr
ai
n

Teacher

CRFFCCNN biLSTM

V

V
phase

V

X

CNN biLSTM
phase

Teacher

CRFFC

TR
AI
N

Figure 3.7: Single loop of self-learning for the teacher.
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CHAPTER 4

Learning efficient video representations for retrieval

”In the afterlife you relive all your experiences, but
this time with the events reshuffled into a new order:
all the moments that share a quality are grouped
together.”

- David Eagleman, Sum
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This chapter lays down theoretical foundations for video retrieval with hashing,
which is at the core of the following chapters. After formalizing the problem of re-
trieval and search with the concept of nearest neighbors, our objective is to find a
representation for videos that fit this concept: first, with combinations of deep neural
networks that extract and aggregate information over the various time scales involved
in video data; then, by compressing this information to an extreme degree via hashing
to fit real-time requirements.

4.1 Nearest Neighbor Search

4.1.1 Definition

The problem of retrieving relevant entries from a database is a problem of abstract
semantics (in our case, visual similarity with respect to surgical workflow). Nearest
neighbors search attempts to solve it by turning it into a geometry problem; more
specifically, a distance optimization problem. We assume we have at our disposal a
set of data entries represented by data points E = x1, ... xN in a metric space Ω with
a distance function D. The goal is to find a function φ verifying, for any query point
u ∈ Ω,

φ :

Ω→ E

u 7→ argmin
x∈E

D(u, x)
(4.1)

φ retrieves the closest data point, with the underlying assumption that similar entries
semantically are close geometrically. Geometrically speaking, if Ω = Rd and D is the
Euclidean distance, then φ partitions Ω into N convex polyhedrons (Y1, ... YN). The
face separating two adjacent polyhedrons Yi, Yj belongs to the plane passing through
1
2
(xi + xj) orthogonal to xj − xi. This set of polyhedrons, or cells, is known as the

Voronöı tesselation (Figure 4.1) for E.
The Nearest Neighbor problem can be generalized as such: given the same query

x, we look for Ψ verifying

Ψ :

{
Ω→ σ(E)

u 7→ π | π(x0) ≤ π(x1) ≤ ... ≤ π(xN)
(4.2)

where σ is the set of permutations over E. In other words, Ψ returns a ranking of
E’s items from closest to furthest to x. One can also only consider the top k items;
formally:

ξ :

{
Ω→ Ek

u 7→ (Ψ(u)(x0), ... Ψ(u)(xk))
(4.3)

This is the k-NN search problem, which serves as the foundation for the k-NN
classifier in machine learning; this method simply outputs the majority class among
the top k closest retrieved entries.

4.1.2 Challenges & complexity

A straightforward approach for computing k nearest neighbors consists in computing
the distance of every data point from the query before sorting. Known as linear search,
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Figure 4.1: Voronöı tessellation of a set of data points (blue). Any point in a given
convex polygon has the corresponding blue data point as its nearest neighbor.

this method has time complexity O(dN) in floating point operations, where d is the
dimension of the data points and N the size of the database.

With this complexity in mind, we can immediately point out two major challenges
for retrieval in our case:

• Typical values for N , in our datasets, fall into the 103 ∼ 104 range - for instance
FCVID contains 91000 videos. Real-life video databases, however, can exceed
this quantity by several orders of magnitude. With approximately 700000 chole-
cystectomies and 200000 bariatric surgeries per year in the United States alone,
a database obtained by recording all procedures over a 10-year period would
likely fall into the 106 ∼ 107 range. For public video platforms such as Youtube,
with 500 hours of content uploaded every minute [Woj20], upwards of 109 would
be a safe estimate.

• The working assumption for nearest neighbor search is that similar entries se-
mantically are close geometrically. Finding an appropriate space for data points,
with reasonably low d, where the distance function D presents this property is a
difficult task in the case of videos. The original dimension of video data in pixel
space, assuming 224 · 224 resolution, 25 fps -our preprocessing for the FCVID
dataset- and 134s duration, almost reaches 1.7 · 108

We can therefore conclude that the larger the database, the stronger the incen-
tive to find low-dimensional, semantically rich representations of the data
considered.
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Figure 4.2: Temporal scales involved in surgical video processing.

4.2 Video representation learning with CNN-RNNs

4.2.1 General concepts

Learning rich and compact representations of its training data is the core task of a
deep neural network (DNN). Assuming a single-class classification task with M classes
and a perfect classifier f of the data:

f :

{
Ω→ [0, 1]M

x 7→ 1i∈J1,MK(x ∈ ci)
(4.4)

We look for an approximation f̂ in the form of a DNN that verifies, for some loss
function L:

f̂ = argmin
g

∫
x∈Ω

L(f(x), g(x))dx (4.5)

Generally speaking, f̂ can be separated into a deep feature extractor f̂F and a
linear classifier f̂L, such that f̂ = f̂L ◦ f̂F . While learning f̂L is trivial, the bulk of
the difficulty (non-linearity of f , high input dimensionality) is carried by f̂F , which
has to learn a semantically rich, compact representation of the input data for
the classifier.

In the case of surgical videos this is a particularly challenging task, due to multiple
levels of modeling (Figure 4.2) to account for. To our knowledge, no single model type
is capable of adequately covering them all, which is why we resort to DNN combinations
described below.

4.2.2 CNN

In its simplest form (ignoring maximum pooling layers or residual connections), a
Convolutional Neural Network or CNN applies a succession of convolutional layers,
followed by the final linear classifier: we have f̂(x) = f̂L ◦ f̂C,J ◦ f̂C,J−1... ◦ f̂C,1(x)
where J is the number of layers and x is an H ×W × C input image.

Each convolutional layer f̂C,j : RHj × RWj × RDj → RHj+1 × RWj+1 × RDj+1 is
a mapping between two stacks of 2D feature slices. Each slice in the output is
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layer 2 layer 5layer 1

Figure 4.3: Features from a trained AlexNet-like CNN. Lower layers capture lower-level
information such as color, texture and edges, while higher layers refer to recognizable
objects. Image credits: Zeiler et al.

obtained by passing the input slices through linear 2D filters then summing
before applying a bias:

f̂C,j(x)�,�,r = ReLu(

Dj∑
r′=1

x�,�,r ~K�,�,r′ + β�,�,r) (4.6)

withK ∈ RRH×RRW×RDj+1 the convolutional kernel, β the bias and~ the convolution
operation (adequate padding of the input is implied). This use of convolutions ensures
the representations learnt in the CNN preserve the spatial structure found
in the input: each feature vector in the output f̂C,j(x)p,q,� is a function of a 2D
patch from the input around the same location, the size of the patch being the size
of K’s receptive field RRH × RRW . Additionally, features learnt by convolutional
layers have appealing visual properties: invariance to small translations is built-in,
while other forms of invariance can be enforced using data augmentation [Bai93].

The nature of the learnt representations gradually evolves as they move up the
CNN’s layers, from low-level local properties related to color and texture and edges,
to the high-level semantic properties useful for classification according to Zeiler et al.
[ZF14]. A example of visualization of those features is given in Figure 4.3

4.2.3 3D CNN

The principles for learning visual representations from images with CNNs can be ex-
tended to short video clips as well. 3D CNN architectures, introduced in [TBF+15],
rely on stacked convolutional layers as well:

f̂C,j(x)�,�,�,r = ReLu(

Dj∑
r′=1

x�,�,�,r �K�,�,�,r′ + β�,�,�,r) (4.7)

The added dimension is of course time. The 2D convolution operator ~ is therefore
replaced with the 3D convolution �. K, as a set of spatio-temporal filters, can capture
temporal variations between frames such as object motion. In practice however, the
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train transfer

Figure 4.4: Principle of transfer learning.

number of timesteps is subject to memory limitations, since all frames in the video clip
are simultaneously processed. Typical inputs [CZ17] contain up to 64 frames sampled
at 25 fps, making up barely over 2 seconds of footage.

4.2.4 Transfer learning

Parameter counts for CNNs typically fall into the 107 range [HZRS16], often making
them difficult to train from scratch (i.e. starting from randomly initialized weights) to
perform a task T1 for which low amounts of annotated data are available. Transfer
learning attempts to circumvent this issue by repurposing a model already trained
on a different task T2. Taking for example a CNN f̂2 trained on T2, in the general case
the decomposition f̂2 = f̂L,2 ◦ f̂F,2 applies, with f̂L,2 as the linear classifier and f̂F,2 as

the feature extractor or backbone. The linear classifier f̂L,2 is mostly task-specific;
however one can take advantage of the representation learnt by the linear classifier
f̂F,2 in order to obtain a well-initialized model for T1, by only grafting a head h to it
as shown in Figure 4.4:

f̂1 = h ◦ f̂F,2 (4.8)

Training the entirety of this model on T1 is a lightweight process, since f̂F,2’s weights
are already considered close to optimal. Generally performed with low learning rate
values for a relatively small number of epochs, this is commonly referred to as fine-
tuning. If the dataset involved in T1 is particularly small, the common practice is to
freeze f̂F,2 in part or in its entirety, in order to prevent overfitting.

The key assumption in this approach is that T2 is visually generic, so that features
learnt by f̂F,2 generalize well to other tasks. In large-scale image or video benchmarks
it is generally assumed to be the case; therefore in our work, we used a Resnet-50
CNN [HZRS16] pretrained on the ImageNet [DDS+09] dataset, as well as an I3D
backbone pretrained on Kinetics [CZ17] in later chapters.

An important observation is that the head h is not necessarily another linear
classifier, as evidenced by the next section.
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Cell RNN

Figure 4.5: Recurrent cell function, and its deployment into an RNN.

4.2.5 RNN

In our approaches to video processing, CNN backbones handle the scale of frames or
short clips; when moving to larger time scales, we add Recurrent Neural Network
models, which we explain here.

Considering a 2-to-2 vector function:

f :

{
(I,H)→ (O,H)

(a, b) 7→ (f1(a, b), f2(a, b))
(4.9)

and an initial state h0, the Recurrent Neural Network (Figure 4.5) corresponding
to f is defined as:

F :

{
I∗ → O∗

(x0, ... xT ) 7→ (y0, ... yT )
(4.10)

with, for any t ∈ J0, T K:
(yt, ht+1) = f(xt, ht) (4.11)

This recurrent equation updates the internal temporal representation or state ht
to ht+1, from one timestep to the next. The length of the sequence T is arbitrary;
therefore inputs of any length in time can be processed. Since ht depends on all
previous inputs x0... xt, the state functions as the RNN’s memory or internal
summary of past events; this is a temporal representation learnt by the RNN.

f ’s parameters - noted W - are learnt via backpropagation through time. We con-
sider an error E(yt) to minimize, computed from f’s last output. ∂E

∂W
depends on ∂ht

∂W
,

which itself depends on recurrent gradients
∂hj+1

∂hj
for j ∈ J0, T −1K; each of these terms

can be computed using the next one via the chain rule, which facilitates training.
Similar to stacked layers in CNNs or multilayer perceptrons, multiple recurrent

neural networks F1... FL can form a single stacked RNN F with function compo-
sition (Figure 4.6), as F = FL ◦ FL−1... ◦ F1. This means, for a given timestep,
the external output from a layer is forwarded to the external input of the next one.
According to Graves et al. [GMH13] this provides ”depth in space” for the RNN’s
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Stacked RNN Bidirectional RNN

Figure 4.6: RNN variants. Left: stacked RNN. Right: bidirectional RNN.

learnt representations, in addition to ”depth in time”, which is naturally obtained by
forwarding the state.

Another classic enhancement comes in the form of the bidirectional RNN (Figure
4.6). Two RNNs FI, FJ process the input sequence in opposite orders; at any given
timestep j, their outputs yI,j and yJ,j are concatenated together into a single output
yj, which is a function of both states hI,j and hI,j, accounting for past and future
events respectively. The entire temporal context is therefore available throughout the
sequence - the downside, as previously stated in Chapter 3, is the inability to use this
model in real time.

4.2.6 LSTM

A commonly used model for f is the LSTM (Figure 4.7) [HS97], defined by the following
set of equations: 

ft = σ(Wx,f · xt +Wh,f · ht + bf )

it = σ(Wx,i · xt +Wh,i · ht + bi)

gt = tanh(Wx,g · xt +Wh,g · ht + bg)

ot = σ(Wx,o · xt +Wh,o · ht + bo)

ct+1 = ct ∗ ft + it ∗ gt
ht+1 = ot ∗ tanh(ct+1)

yt = ht+1

”·” is the dot product, while ”∗” is the element-wise multiplication. The internal
state is composed of two vectors (ct, ht), named respectively cell state and hidden
state; the hidden state is also used as the output yt. Optionally, the state ht can be
treated with Ioffe et al’s batch normalization [IS15] in order to improve the model’s
convergence and generalizability. While most common in CNNs, its use has previously
been seen in LSTM models as well [CBL+17, ZWHC16].

The total number of parameters is:

Nprm = 4 · dim(x) · dim(h) + 4 · dim(h)2 + 4 · dim(h) (4.12)

while the number of floating-point operations for one iteration is:

Nop = 4 · dim(x) · dim(h) + 4 · dim(h)2 + 17 · dim(h) (4.13)
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Figure 4.7: LSTM computation.

While, to our knowledge, no formal constraints exist for dimensions dim(x) and
dim(h), values for those overwhelmingly tend to fall into the 101 ∼ 103 order of
magnitude. Direct usage on video frames (105 ∼ 106) is generally ruled out.

It has been shown [HS97] that, during the training process, the LSTM learns to
write into the state the information needed for predictions at much later timesteps;
hence ”long term”. According to Tallec et al. [TO18], the gate values ft and it
act as ”time contraction or time dilation coefficients”, rendering the LSTM’s learnt
representations ”quasi-invariant” to time warping.

4.2.7 Seq2Seq architectures

A sequence-to-sequence mapping is a function f : A∗ → B∗, with A and B vector
spaces of finite dimension and A∗, B∗ the corresponding spaces of sequences. The
key consideration here is that the input and output sequence lengths are arbi-
trary; approximating f therefore requires a high degree of flexibility in the model’s
architecture.

Some of that flexibility can be provided by a Recurrent Neural Network, which,
on its own, naturally maps a sequence to another sequence. However in this approach
outputs and inputs are matched timestep for timestep, which constrains input and
output sequence lengths to be identical. Limited input visibility is also an issue: for
machine translation tasks, the information required by the target language in the
middle of a sentence found at a further location in the source language sentence.

Sequence-to-sequence learning [SVL14] or Seq2seq refers to a family of models
designed to solve those issues (Figure 4.8). They consist in a pair of RNNs, one
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Figure 4.8: Seq2Seq architecture.

encoder and one decoder: the encoder reads the input sequence from beginning to
end. The final state hT is then forwarded to the decoder, which sets it as its own
initial state. From there, the decoder generates the target sequence, without any
external inputs - for example the original Seq2seq publication connects the external
input of the previous timestep to the output of the previous one.

Here hT acts as a representational bottleneck. All the information required by the
decoder to generate the target sequence needs to be written into hT by the encoder,
regardless of input or output sequence length.

Combined with a pretrained CNN used as a feature extractor, this re-
sults in a model capable of generating compact video representations, ac-
counting for all temporal scales involved in surgical videos.

4.3 Hashing

The video representation obtained with ordinary CNN-RNNs is the RNN’s memory,
i.e. a floating-point vector of a few hundred coordinates in general. Hashing enables
compressing this representation to an extreme degree, resulting in binary arrays that
are convenient for indexing.

4.3.1 Hash functions: definitions, basic properties

The term ”hashing” refers to a family of methods employed for computing a fixed-size
value called a hash from a given data input, which the hash will then identify - similar
to a signature or a fingerprint. Formally speaking, a hash function is a mapping

h : E∗ → Σn (4.14)
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Figure 4.9: Collision probability for hashes of size 32. Collision odds quickly exceed
50%.

with n being the hash length. From this point onwards we will consider Σ = {−1, 1}
i.e. binary hashes, or bitcodes. For example:

h : 0, 1∗ → 0, 1 (4.15)

: (b1... bT ) 7→ b1 ⊗ b2... ⊗ bT (4.16)

⊗ denotes the logical XOR operator.h is a basic single-bit hash function. We can
already point out h(1, 0, 1) = h(1, 1, 0); in general, any hash function is redundant. As
a mapping from a set to a smaller one it indeed falls under the pigeonhole principle.
Redundencies, i.e. pairs (a, b) such that a 6= b, h(a) = h(b) are called collisions. Under
uniformity assumptions, the probability of finding at least one collision in a set of k
random data inputs is given by

PC = 1−
k−1∏
j=1

2n − j
2j

(4.17)

= 1− 2n!

2kn(2n − k)!
(4.18)

Stirling’s factorial approximation gives an asymptotic equivalent for PC :

PC = 1− e−
k2

2n+1 (4.19)

Notably, when k >
√

2n+1ln(2) ∼ 1.18 · 2n/2, then the collision probability exceeds
1
2
; this is commonly known as the Birthday Paradox. This is an important principle

in hashing: although many distinct bitcodes (2n) are available, collisions are more likely
than one might first expect. For instance 32-bit hashes offer 4 ·109 possible values, but
collisions are more likely to occur than not in a set of only 80000 32-bit hashes (Figure
4.9). Along with computation speed, collision behavior is one of the main factors
determining the choice of h. This heavily depends on h’s purpose: for encryption,
accidental collisions should be avoided at all costs, which is why the chosen hash
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functions for this use case exhibit extremely high sensitivity to input perturbations.
This property is known the Avalanche Effect ; formally, the Strict Avalanche Criterion
dictates that one flipped bit in the input causes every bit in the output to flip with a
50% probability for each one, independently.

An example of a situation where this property is useful is file verification upon
transfer - this is routinely performed using a hash function called md5sum. Instead of
examining a file f for errors bit by bit, the file’s receiver computes h(f) and compares
it against the original signature h(foriginal). While a collision between a corrupted
file and the original is possible (f 6= foriginal, h(f) = h(foriginal)), it is so exceedingly
improbable for reasonably large n that the received file is considered clean if the hashes
match.

4.3.2 Retrieving data with hashing

The term hashing covers several families of tasks, with vastly different methods and
applications. Retrieval with hashing is most commonly understood in the context of
hash tables, which we will explain here in order to clear potential confusions with
similarity-preserving hashing. Hash tables are data structures storing values to be
retrieved with a corresponding key. Unlike ordinary arrays, which are indexed by
integer indices, the data type for the key is arbitrary. Well-known implementations of
this data structure include C++’s std::unordered map or Python’s dict.

During storage, a hash function hashes the key - the resulting code is the address in
an array where the corresponding value is stored. Retrieving can then be done using
the same key, which, evaluated by the hash function, immediately gives the exact
location to retrieve from in the array. This makes retrieval O(1). This is much faster
than retrieving from an ordinary array with n (key, value) pairs, which takes at best
O(ln(n)) comparisons if sorted by keys, O(n) otherwise.

Once again collisions are to be avoided; if two keys share the same hash, the
value to retrieve is ambiguous. In those cases an ad hoc collision resolution routine is
performed; querying with unseen keys is also forbidden.

In content-based data retrieval, the requirement for hash functions is radically
different (Figure 4.10). Similarity preservation is crucial here; data entries that are
very distinct from one another should produce many conflicting bits. Conversely, data
entries with a high degree of similarity should produce similar bitcodes or even collide,
a property considered unacceptable in cryptographic hashing or exact retrieval. This
is formalized by the locality-sensitive property [AI08], as stated in [IM98]:

d(a, b) ≤ r1 ⇒ P (h(a) = h(b)) ≥ p1 (4.20)

d(a, b) > r2 ⇒ P (h(a) = h(b)) ≤ p2 (4.21)

The choice of distance d in input space is of course crucial and to be discussed later
on. In bitcode space we use the hamming distance, defined as

d(a, b) =
n∑
j=0

1(aj 6= bj) (4.22)

This is simply the number of conflicting bits between the two codes.
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Figure 4.10: Cryptographic and locality-sensitive hash function purposes. The two
types of hash functions have opposite priorities.

Assuming h exhibits decent locality-sensitive properties, one can use it to perform
Approximate Nearest Neighbors Search [IM98], as a substitute for the costly exact
nearest neighbors previously mentioned. While exact retrieval is O(1) (no compar-
isons), approximate nearest neighbors retrieval requires O(n) distance computations
just like the exact version. However depending on the implementation the corre-
sponding computation can be extremely quick; using true bits, a single bitwise XOR
operation leads to the result, instead of 1 floating-point operation for every vector
component. This solution is much more storage-efficient as well.

4.3.3 Challenges of learning hash functions

Finding a good candidate for h is a difficult task. Assuming a set of data points to
hash x1... xN

Finding h with the best similarity-preserving properties can be formulated as the
following discrete optimization problem:

argmin
b1... bN

∑
i,j∈J1,NK

d(xi, xj)|bi − bj|2 (4.23)

under:

bi ∈ {−1, 1}n (binary constraint) (4.24)
n∑
i=1

bi = (0, ... 0) (even bit distribution) (4.25)

1

n

n∑
i=0

bib
T
i = 0 (decorrelated bits) (4.26)
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This is known to be NP-hard [IM98]; with a large database of inputs, solving it
quickly becomes impractical.

As mentioned earlier, h(x) should, for any x, contain rich discriminative informa-
tion extracted from x. It is therefore natural to turn to learning-based approaches,
considering their success extracting information from complex and high-dimensional
input data. We now assume h is a function with parameters W - noted hW from now
on.

The immediate issue we encounter is that, strictly speaking, hW is not differentiable.
Indeed, it is not even continuous.

While h can be differentiated outside of its discontinuity points, it is locally constant
there, and the result will therefore always be a zero derivative. When backpropagating
to the parameters W this is an issue; as an effect of the chain rule, ~∇WL(hW (x)) = 0.
Workarounds, however, do exist. First, we can look for a relaxation in the form of

hW (x) = sgn(A · gV (x)) (4.27)

with sgn mapping < 0 inputs to -1, and the rest to +1. gV is a differentiable
function with learnable parameters V , A is a projection matrix. We will refer to the
argument of sgn as the prebitcode b̂.

It is now clear how learning hash functions can be posed as a representation learn-
ing problem, i.e. mapping the data to a feature vector space that can be linearly
partitioned by N affine hyperplanes Pi. Each column Ai of A is a normal vector of
one of the Pi hyperplanes, and the position of the input in feature space relative to
the hyperplane determines the corresponding bit value.

Training g is a real-valued optimization problem instead of a discrete one, and can
be solved using gradient descent. Using conventional approaches for training deep
neural networks, we can learn a function that will incorporate rich, discriminative
information into b̂. This does, however, result in a certain amount of quantization
error which can be measured by [GLGP13]:

Q(h, x1... xN) =
N∑
i=1

||bi − A · g(xi)||2 (4.28)

Prebitcode positioning with respect to the zero line in each component is crucial in
managing this error. Methods such as ITQ [GLGP13] or UDVH [WLG+17, WHG+19]
try to enforce this with geometric transformations. However this can be handled by the
training process itself in an elegant and end-to-end manner. First, batch normalization
[IS15], by centering activations around zero, achieves this effect. Second, although sgn
is not differentiable, a workaround is given in [HCS+16].

We can introduce:

f :


x ∈]− 1,−∞] 7→ −1

x ∈ [−1, 1] 7→ x

x ∈ [1,+∞[ 7→ 1

(4.29)

This is sometimes referred to as hardtanh, due to similar behavior near −∞, 0 and
∞. Then:

~∇∗W (h(x)) = 1[−1,1](A · gv(x)) · A · ~∇V (gV (x)) (4.30)
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Figure 4.11: Workaround for training a network with binary outputs.

Forward pass is done with a true sgn, while backpropagation replaces the gradient
with ~∇∗W (h(x)) (Figure 4.11).Experimentally, Zhang et al. [ZWHC16] observed that
this training method, along with batch normalization, improved prebitcode spread
around zero in their modified LSTM.
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CHAPTER 5

Real-time retrieval by hashing live video sources

”Real generosity towards the future lies in giving all to
the present.”

- Albert Camus, Notebooks, 1935 - 1942
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Figure 5.1: Real-time video retrieval concept. An archery event is being streamed.
Simultaneously, a search engine scans a large video database for similar content.

5.1 Objectives

As established in the previous chapter, learning video representations for large-scale
retrieval is a challenging problem: information from a wide range of temporal scales
needs to be accounted for, and undergo extreme levels of compression. Here we intro-
duce an additional technical difficulty, by examining the case of live video sources.
Obvious examples include TV event broadcasts, livestreams from platforms such as
Youtube Live or Twitch. However, those also encapsulate a wide variety of settings
and devices: from surveillance cameras and dashcams to personal smartphones, and
medical video capture devices such as endoscopes.

The difficulty of this task comes from two major challenges:

1. Search needs to be fast enough for real-time use. If too slow to compute, search
results risk becoming irrelevant to the content currently displayed. This con-
straint is extremely harsh: large-scale video databases can consist of tens of
thousands if not millions of items, each one the size of many static images.

2. When streaming in real time, the video content is de facto incomplete. At
the beginning of a video especially, only a fraction of the total information is
available.

As stated in Chapter 2 the previous literature on video retrieval does not fit the
requirements of real-time usage. The few recent works involving deep computer vision
models [ZWHC16, SZL+18, WLG+17, WHG+19, LCL+19] only retain a fixed, very
small (Nframes = 20or25) number of evenly spaced frames out of the entire video. In
addition to destroying most of the visual content, this process is also impossible to
exactly replicate live, since the sampling rate of Total duration

Nframes
would be unknown.
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5.2 Methods

5.2.1 Setup and data preparation

5.2.2 Overview

The problem can be formally stated as follows: given a level of observation α ∈ (0, 1],
a video Q with duration T (Q), a query Qα consisting of Q truncated mid-stream at
time αT (Q), and a database of videos B = {V0...VN}, use only Qα to find the K videos
from B most similar to Q.

Since hashing is the method employed here, B and Q are represented by binary
codes during search operations. The overall protocol is therefore composed of the
following steps:

• video-level feature extraction

• self-supervised hash function training

• codebook, query encoding

• search operations

5.2.2.1 Datasets

Experiments shown in this chapter involve two very large scale, public datasets of
generic human activities. The first is FCVID [JWW+18], a public video dataset used
for research on video retrieval [ZWHC16, SZL+18, WLG+17, WHG+19, LCL+19] and
activity understanding depicting various activities, objects, sports and events. 234
video classes are present. The average video duration is 134 ± 92 seconds. Data
was split as follows: 45K for training, 45K for testing. Within the test videos, 42.5K
constitute the database while the remaining 2.5k (about 10 videos per class on average)
are used for querying. The second dataset we employed is ActivityNet [HEGN15].
We used the 18K videos available for download. 200 activity classes are featured.
A number of videos had their labels concealed by the organizers of the ActivityNet
challenge; those videos were put in the training set. The average duration is 117± 67
seconds. Data was split as follows: 9K for training, 9K for testing, and within the
testing videos 8K for the codebook, 1K (about 5 per class on average) for the query.
In both datasets, the videos are untrimmed, which implies that the content reflecting
a given video’s class may not be shown for its entire duration. All videos have been
resampled at 30 fps and a few excessively long videos have been cropped to 4 min 30s;
we then sort them into 12 duration buckets of 22s in diameter each.

5.2.3 Sampling & feature extraction

As mentioned in the related work section, previous approaches have chosen sparse,
fixed-length video-level representations which can result in the loss of large amounts
of visual information in long videos. More importantly, such sampling and feature
extraction schemes are inadequate for real-time usage: the sampling rate in that case
is dependent on the length of the full video, which would be unknown mid-stream. An
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Figure 5.2: Comparison of video sampling approaches for two videos of distinct du-
rations. The previous video sampling paradigm (orange) outputs a constant number
of features per video, but the rate is variable and determined with knowledge of the
entire video length. Our real time-compatible sampling approach (purple) outputs a
variable number of features at a constant rate.

70



CHAPTER 5. REAL-TIME RETRIEVAL BY HASHING LIVE VIDEO SOURCES

BLSTM LSTM

BLSTM

BLSTM

LSTM

LSTM

LSTM

LSTM

LSTM

FORWARD

ENCODER DECODER

REVERSE

fe
a
tu
r
e
s

Forward
loss

Reverse
loss

TOTAL
LOSS

bitcode

Figure 5.3: Binary autoencoder training process.

early retrieval algorithm should be capable of delivering search results at a fast and
steady pace.

To solve this issue, we have chosen a dense, fixed-rate sampling and feature extrac-
tion scheme that leverages a 3D CNN to aggregate visual information over short time
windows. The chosen architecture is I3D [CZ17], pretrained on the Kinetics dataset
for action recognition. Input frames from the videos are center-cropped to 224× 224.
Clip input length is 64 frames (roughly 2 seconds at 30 fps). This yields a feature
tensor with dimensions 8× 7× 7× 1024, which we average pool into a feature vector
of size Nf = 1 × 2 × 2 × 1024 = 4096. The entire video is processed in consecutive
clips, resulting in a 30 / 64 = 0.47 Hz constant feature output rate.

5.2.4 Binary RNN encoder

An RNN (Figure 5.3) takes the feature vectors f0, f1, ..., ft, ..., fT (V ) from I3D in chrono-
logical order and maps each one to a bitcode of size Nbits. This RNN is built on two
stacked LSTMs, with a binary LSTM as introduced in [ZWHC16]. The hidden state
circulating from one RNN timestep t to the next is the above mentioned bitcode
noted b(V, t) for a video V . Batch normalization is applied to the cell state as done
in [ZWHC16]. This RNN is trained as the encoder part of an autoencoder model.
The final hidden state of the decoder - the video’s bitcode - is passed to two decoder
RNNs tasked with reconstructing the sequence of input feature vectors in opposite or-
ders. This training process encourages the encoder to incorporate rich, discriminative
information into the bitcodes.

Formally, the autoencoder is trained to minimize the following unsupervised loss
function:
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Figure 5.4: Training approaches compared for real-time video retrieval.

Ldecoder(V ) =

T (V )∑
j=0

‖fj −
←−
f j‖2 + ‖fj −

−→
f j‖2. (5.1)

←−
f ,
−→
f are the reverse and forward reconstructed sequences, respectively.

Backpropagation relies on the gradient substitution method shown in [ZWHC16].
Trained as such with full videos, we call this configuration SSTH-RT (Figure 5.4, top
left) for real-time, as each new increment of the video playing in real-time is incorpo-
rated into the bitcode. This is, in the form presented here, our first baseline approach.

5.2.5 Data-augmentated encoder via truncated training du-
plicates

Since the training process for the baseline setting always involves complete videos, a
straightforward data augmentation method for training the autoencoder is to simply
give the autoencoder videos truncated at various levels of observation to reconstruct
(Figure 5.4, left). This approach provides some training exposure to videos that are
incomplete. This is referred to as SSTH-RT+ in the later sections.

5.2.6 Augmented codebook with truncated database dupli-
cates

Another idea to improve early retrieval results is to incorporate trimmed videos, both
during training - as in SSTH-RT+ - and codebook construction (Figure 5.4, center).
We refer to this later on as SSTH-RT++. While this idea might seem appealing at a
first glance, it causes the search protocol to slow down due to the insertion of bitcodes
from trimmed duplicates. This requires inserting as many duplicates per video as
levels of observation employed - in our case: 10 from 0.1 to 1.0 - which is also a
source of scalability issues. Assuming Nα levels of observation are employed, search
time and storage space requirements both get multiplied by Nα. Duplicates in the
search results, namely, videos truncated at different levels of observations from the
same original video, would also need to be purged, the cost of which has Ncb × Nα
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complexity, Ncb being the size of the codebook without duplicates. Correctly retrieved
results that are duplicates may improve retrieval metrics, but do not suit general
application cases: a search operation returning truncated versions of the same video
would be unhelpful to the user. The approaches proposed in the next section are faster
as they employ codebooks with the exact same population size as the original video
database.

5.2.7 Look-ahead distillation for encoders

We propose two forms of distillation in order to train predictive encoders that can
anticipate the future content when presented with incomplete videos, and therefore
generate richer, more discriminative bitcodes that are more likely to yield better search
results.

5.2.7.1 Indirect distillation: look-ahead reconstruction (LA-RECO) loss

An encoder, which will from now on be referred to as the primary encoder (P in
Figure 5.4), is trained following the same process as SSTH-RT+ jointly with a decoder.
Once this training is done, the main encoder is set aside and a secondary encoder
(S in Figure 5.4, top right) is introduced. Only incomplete videos are fed into it -
i.e. videos truncated to αT (V ) with randomized alpha for each training step. The
resulting bitcode is passed to the trained decoder with frozen parameters. The output
of the decoder is compared to the full sequence in the loss, not just the truncated
part fed to the secondary. This forces the secondary encoder to guess a representation
accounting for future video frames.

Ldecoder(V ) =

T (V )∑
j=0

‖fj −
←−
f j‖2 + ‖fj −

−→
f j‖2 (5.2)

5.2.7.2 Direct distillation: look-ahead bitcode (LA-CODE) loss

A secondary encoder is introduced as in the previous section, however this time the
primary is put to use and the decoder is set aside (Figure 5.4, bottom right). During
training, the primary encoder receives the entire video while the secondary encoder is
only fed the αT first frames, again with randomized alpha. From the secondary, we
extract the real-valued input β to the sgn function that leads to the last bitcode - we
refer to this as the prebitcode - and compare that to the bitcode b given by the primary
using an L2 loss function:

73



5.2. METHODS

LLA−CODE = ‖β(V, αT )− b(V )‖2. (5.3)

This conditions two behaviors:

• the secondary, despite being only fed part of a video, mimics the full video’s
bitcode

• the primary adapts the bitcode of the full video, making it more robust to tem-
poral crops

5.2.8 Training

Video-level features are extracted separately by I3D and loaded from binary files.
Training is done in batches, which involves certain technical difficulties linked to se-
quence duration. Unlike in other video hashing approaches presented earlier, for which
videos were downsampled to a fixed sequence length and evenly-sized batches could
always be built, in our case the feature sequence length varies from one video to an-
other due to the fixed sampling rate. Batching would require either zero padding,
which is not an option here due to the use of batch normalization, or cropping to the
shortest sequence; which, if performed carelessly, might discard significant portions
of training videos due to length discrepancies within a batch. As a countermeasure,
batching is based on the buckets defined in 5.2.2.1. We dynamically pick randomized
batches from a single bucket at a time, guaranteeing a maximum length difference of
about 22s inside a batch. Those batches are then trimmed to the shortest duration
present in each of them; at most 22s of video are lost through this process.

Gradient descent is performed using the RMSProp algorithm. We introduce a new
method named recurrent gradient clipping, as detailed in Appendix B; applied to
hidden states and cell states, this entirely prevents gradient explosion, a long-standing
issue of RNNs [PMB13]. Encoder/decoder pairs are trained for 60 epochs with a
learning rate of 5.10−3 and a batch size of 40. The encoder is a 2-layer RNN with
2 ·Nbits in the first layer and Nbits units in the second. The decoder also has two layers,
with Nbits in the first layer and 2 · Nbits units in the second. Secondary encoders in
LA-RECO or LA-CODE are trained for 15 epochs with a learning rate of 5.10−4. Their
weights are initialized from the values of the trained primary encoder’s weights.

5.2.8.1 Evaluation

Once the primary and secondary encoders are trained, we use the primary to generate
the codebook from the 9.7K videos picked from the test set. The remaining 1K form
the query set. Evaluation is based on the video classes: for a given query video,
a retrieved video is considered correct if its class matches the query’s. The query
encoder (i.e. the secondary encoder in LA-RECO or LA-CODE) generates a bitcode for
each query video, truncated at αT frames. The code is compared to codebook entries,
which are then ranked by Hamming distance to the query bitcode starting from the
closest. Query videos are truncated using 10 different values for α ranging from 0.1 to
1.0.
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As in [ZWHC16] we use the following definition for average precision at K - or
AP@K - for a single video:

AP@K =
1

K

K∑
j=0

Ncorrect(j)

j
(5.4)

where Ncorrect(j) is the number of matching results among the top j.
The mean over all query videos is the Mean Average Precision at K - or mAP@K.

We report this metric by level of observation for all methods and all bitcode sizes for
K = 20. Lower values of K are more relevant in a real-time use case, where one can
only handle a small number of search results; nonetheless we provide mAP@K curves
for K up to 100 for our best model. We also provide qualitative retrieval results in two
cases.

All experiments are repeated for four different bitcode sizes: 64, 96, 128, 192 bits.
The compared approaches are: SSTH-RT (binary autoencoder trained to reconstruct
full sequences from full sequences) SSTH-RT+ (binary autoencoder trained to recon-
struct full sequences from full sequences, as well as partial sequences from partial
sequences) SSTH-RT++ (SSTH-RT+ with truncated duplicates hashed into the code-
book) LA-RECO (SSTH-RT+ as primary encoder, secondary trained to reconstruct full
sequences from partial sequences) LA-CODE (SSTH-RT+ as primary encoder, secondary
trained to predict the primary’s full-sequence-bitcodes from partial sequences)

5.2.9 Implementation & optimization details

Deep models are implemented in Tensorflow 1.13, and training is performed on servers
fitted with either NVIDIA Tesla P100, K40m, K40c, K80 or GTX1080Ti GPUs. On a
Tesla P100, training is done in under two hours for an encoder-decoder pair, and under
30 minutes for a secondary encoder. As stated in Chapter 4, distance computation
consumes O(Nbits ·Ncb) operations; ranking costs O(Ncb ·log(Ncb)) using Python’s built-
in sort function. It is worth noting that for convenience reasons the search protocol
is implemented in Numpy, with bitcodes represented as 8-bit Numpy booleans. An
implementation with actual bits via a dedicated bit manipulation library would likely
yield higher speeds than what we were able to achieve.

5.3 Results

5.3.1 Method comparison

mAP@20 is compared by level of observation for each method in Figures 5.6 5.7
with separate graphs for each size of bitcode. SSTH-RT serves as reference baseline.
SSTH-RT+ is a much more competitive model to compare to, SSTH-RT++ even more so
but at the cost of 10 times the space requirements and search time.

Both LA-RECO and LA-CODE outperform the SSTH-RT baseline by a substantial
margin: 4 to 8%. LA-RECO outperforms SSTH-RT+ by a small amount for 128 bits (less
than 1%), but usually reaches similar or slightly worse mAP at other bitcode sizes.
LA-CODE on the other hand outperforms both SSTH-RT+ and SSTH-RT++ significantly
at most observation levels. For 128 bits, LA-CODE is superior to SSTH-RT+ by 4 to 5% on
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Figure 5.6: mAP@20 for all methods, all levels of observation, on FCVID.
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Figure 5.7: mAP@20 for all methods, all levels of observation, on ActivityNet.

96 bits 128 bits 192 bits 256 bits

FCVID VE E O VE E O VE E O VE E O

SSTH-RT 17.8 23.5 27.6 20.2 25.9 29.9 20.9 27.4 31.8 11.5 20.6 27.9

SSTH-RT+ 20.3 24.2 26.6 22.9 27.6 30.6 24.2 29.4 32.6 18.5 25.6 31.0
SSTH-RT++ 22.5 26.2 28.2 25.5 29.7 32.1 26.2 30.9 33.6 25.4 31.6 35.6

LA-RECO 21.5 24.6 26.2 25.7 28.8 30.5 28.4 31.5 33.0 28.6 31.2 32.6
LA-CODE 24.8 27.5 28.8 27.4 30.2 31.4 30.3 33.5 35.0 32.0 34.9 36.3

ActivityNet VE E O VE E O VE E O VE E O

SSTH-RT 7.8 12.2 14.9 8.3 13.4 16.5 7.8 14.0 17.9 8.0 15.7 20.6

SSTH-RT+ 9.7 12.1 13.7 10.4 14.2 16.5 12.1 16.4 18.5 13.3 17.3 19.6
SSTH-RT++ 10.9 13.6 15.0 12.2 15.8 17.8 14.2 18.4 20.3 15.4 19.5 21.4

LA-RECO 11.3 13.2 14.0 12.7 14.8 15.6 14.5 17.2 18.1 16.8 19.3 19.9
LA-CODE 12.9 14.6 15.0 14.7 17.9 19.4 16.8 19.1 19.8 17.0 19.2 19.9

Table 5.1: Results breakdown by α range. For each bitcode size: left column shows
very early results (VE, average mAP@20 for α from 0.1 to 0.2); Middle column shows
early results (E, average for α from 0.1 to 0.5); Right column shows overall results (O,
average over all α).
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most observation levels. Compared to SSTH-RT++ the improvement is smaller: around
2% on most observation levels. Outdoing this approach, even by a small margin, is
however significant since this came at no extra storage and search time cost compared
to the baseline, while SSTH-RT++ requires a codebook 10 times larger, takes 10 times
as long to search (plus extra time to remove duplicate results).

Compared to LA-CODE, LA-RECO enforces a softer constraint: the bitcode-to-sequence
mapping performed by the decoder may not be one-to-one. A learnt representation
may therefore reconstruct well without approaching the bitcodes of relevant complete
videos.

In terms of bitcode size, the general tendency observed in Figure 5.6 5.7 is that
performance increases with size, as more bits provide more capacity for encoding in-
formation from the video. Looking at one method, peak mAP@20 for LA-CODE starts
at 48% for 64 bits, then moves up to 51% for 96, 54% for 128, 55% for 192.

To highlight the compared methods’ behavior in very early and early parts in a
video, we consider the average of mAP@20 over three ranges of observation levels in
Table 5.1.

Even though the focus of this work is early retrieval (50% of the video or less), in
real-time the current level of observation would be unknown. Sustaining acceptable
performance at higher levels of observation would therefore still be valuable.

The performance increase in the very low α range is generally accentuated com-
pared to the whole range of α. This makes sense since the losses employed emphasize
anticipation. For 128 bits, LA-RECO surpasses SSTH-RT+ by 1% on average. However
for α specifically in [0.1, 0.2] the performance increase is 1.9%. This also holds true
for LA-CODE, which beats SSTH-RT+ by 2.8% overall and 4% in the very early α range,
and SSTH-RT++ as well by a 1.9% margin overall and 2.7% for very low α.
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Figure 5.8: mAP@K for LA-CODE on FCVID

We display mAP@K for LA-CODE for all bitcode sizes for increasing observation
levels, compared with SSTH-RT++’s mAP@K on full queries (SSTH-RT++

1.0 ) in Figures
5.8, 5.9. With 20% of video observed at 128 bits, LA-RECO loses to SSTH-RT++

1.0 by
5%, which is expected due to the amount of missing information compared to the full
video. However the gap is almost nullified with 40% of video observed. At 60% then
80% of video observed LA-RECO surpasses SSTH-RT++

1.0 by up to 1 then 2%.

MAP@K plots for other bitcode sizes and methods are provided separately in
Appendix C.

77



5.3. RESULTS

20 40 60 80 100
Top K

0.100

0.125

0.150

0.175

0.200

0.225

0.250

m
AP

@
K

96 b
SSTH RT+ + ( = 1)
LA CODE( = 0.1)
LA CODE( = 0.3)
LA CODE( = 0.8)

20 40 60 80 100
Top K

128 b

20 40 60 80 100
Top K

192 b

20 40 60 80 100
Top K

256 b

Figure 5.9: mAP@20 for LA-CODE on ActivityNet

5.3.2 Qualitative results
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1

2

3

4

5

Figure 5.10: Example of retrieval over time from FCVID, showing the top 5 results
for the beginning, middle and end. Red borders indicate class mismatches.

We selected two queries from the query set on which LA-RECO returned successful
results (all results correct in top 10) at the end of the video, and followed the evolution
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Figure 5.11: Successful example of retrieval over time from FCVID.

of the top 5 search results at different points in time. Both of them depict the action
”decorating a christmas tree”. Retrieval might be subpar early on in the video but the
model should ideally adapt and return increasingly more relevant database entries as
the video plays.

Figure 5.11 is an example of a successful case. A mistake is made early on at
20%, but top 5 search results improve to a perfect 5/5 after 50% of the video is
seen. On the other hand, in Figure 5.10 the model starts with 3/5 correct results,
then drops to 1/5 in the middle. Retrieval eventually improves towards the end with
4/5 correct results at 81%. In-depth qualitative results are available in the video at
https://www.youtube.com/watch?v=Eq-lIUipd4E.

5.4 Conclusion

In this chapter, we presented an unsupervised video hashing approach designed for
retrieval from incomplete video queries. We proposed to optimize the bitcode rep-
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5.4. CONCLUSION

resentation of incomplete queries by distilling knowledge from an encoder trained on
complete videos into a secondary encoder used only for the queries. For this purpose,
we introduced two losses that are used to train the secondary encoder to match the
encoding performance of the first encoder while using only truncated data as input.
The secondary encoder thereby learns to produce informative bitcodes that can antic-
ipate the future video content. The approach yields a large performance improvement
over the baseline. It also outperforms a naive approach that inflates the codebook
by adding codes generated from truncated copies of the videos in the database, while
being at the same time much faster and more scalable for live hashing and retrieval
on video streams.
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CHAPTER 6

Real-time surgical video retrieval with uncertainty

”Man can only be certain about the present moment.
But is that quite true either?”

- Milan Kundera, Ignorance
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6.1. OBJECTIVES

In our binary representations of videos, every bit contributes equally when perform-
ing retrieval. Not all bits, however are equally reliable. When moving from generic
human activity to endoscopic video data, we address this concern by proposing a
new, lightweight method relying on compressed uncertain bit patterns corresponding
to each database entry. As an extension of the previous work published in [YP20],
the work presented here is the subject of a separate manuscript titled Real-time La-
paroscopic Video Retrieval with Compressed Uncertainty, in preparation for Medical
Image Analysis.

6.1 Objectives

The endoscopic video data in our dataset is vastly unused and unexplored, due to a
lack of annotations for nearly 90 % of it. Available exploitation possibilities from the
preexisting literature are scarce:

• Supervised learning using surgery type as the label [KYM+20]. This is the lowest
possible resolution for describing surgical activity.

• Self-supervised or semi-supervised learning, which for the most part [FJM+18,
YMMP18] uses the unannotated data without providing information about it.
Even our previous method [YMMP19] has its limitations, since it is specific to
the task of phase recognition in cholecystectomy.

An adequate content-based video retrieval method would be a considerable break-
through for the exploitation of this dataset, essentially turning a passive video archive
into a surgical video index that can be browsed visually, without requiring any tags.
This opens up opportunities for various applications: post-operatively for indexing
or reporting, or during surgical training as an educational tool. Intra-operative use
would be valuable as well, but requires the ability to function in real time. Real-time
retrieval, as shown in the previous chapter, brings its own set of challenges. With
Endocorpus at our disposal, the first very-large-scale surgical video dataset, we study
the problem of surgical video hashing in real time. What we verify here is retrieval’s
versatility, i.e. its ability to capture a wide variety of semantics in surgery. Therefore,
the same model trained on one large collection of unlabelled videos is evaluated under
three protocols: one based on cholecystectomy phases, one based on bypass phases,
and one based on surgical critical events.

6.2 Methods

6.2.1 Data preparation

Out of the 1558 videos, we pick 81000 clips of 32s each for unsupervised training, and
16000 for validation. The training set incorporates all 12 available types of surgery,
including the 6 not appearing in any of the test protocols.

Three types of labels are available for retrieval test:

• 7 cholecystectomy phase labels on Cholec80
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ADRENALECTOMY BYPASS ROBOT
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Bypass40 Cholec80

Database Query setTrain / validation

Figure 6.1: Endocorpus splitting for retrieval experiments (the size of graphical ele-
ments in the diagram does not reflect data quantities).

Bypass40 Cholec80 CEV64
Query 284 307 580

Codebook 1409 928 1659
Training 81000

Validation 16000

Table 6.1: Data splitting for all three test protocols. Note that the training set and
validation set are common to all three.

• 11 gastric bypass phase labels on Bypass40 (Chapter 1, Section 1.3.3)

• 11 critical event labels on CEV64 1.3.4 (Chapter 1, Section 1.3.4)

Data splitting is done according to Table 6.1. Due to high imbalances in CEV64,
both the query set and codebook set for this dataset were built by evenly collecting
clips from the 11 event classes.

6.2.2 Uncertainty

When hashing live video sources dynamically using the approaches proposed in Chap-
ter 5, the expected behavior is that the hash function updates the bit representation of
the video content it has seen so far at regular time intervals (approximately 2 seconds
in our case). Over the course of a given video, any given bit in the representation may
flip several times. While this behavior is what makes our approach dynamic and fit for
real-time use, excessive fluctuations for a particular bit make its value uncertain. So
far, this uncertainty has been left unaccounted for in the codebook: the final bitcode,
obtained after the primary encoder reads a video from the database from beginning
to end, is taken at face value and stored as is, regardless of previous bit fluctuations.

In the case of LA-CODE, introduced in Chapter 5, another source of uncertainty is at
play: the secondary encoder is trained to copy the primary encoder’s representations of
full videos, and is then used for querying. For a given clip, any bit where the primary
and the secondary often enter in conflict should therefore be considered untrustworthy.
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Figure 6.2: Primary and secondary uncertainty on the bitcode stored in the codebook.

From now on, we will refer to those as primary uncertainty and secondary
uncertainty respectively.

Formally, let us consider a sequence of features representing a video clip V =
V1, ...VT . We write the t−th subclip as Ut = (V1, ...Vt). Assuming we use d bits, let π
and σ be LA-CODE´s primary and secondary encoders. Then throughout the course of
the video V , π outputs the bitcode sequence:

π(U1), π(U2), ...π(Ut), ...π(UT ). (6.1)

π(UT ) in particular is the one stored in the codebook. For any timestep t, the i−th
bit in the primary´s bitcode is written as πi(Ut). σ for the secondary follows the same
notation.

The primary uncertainty for video V at bit i is defined as follows:

pi(V ) =
1

N − 1

N−1∑
t=1

πi(VT )⊗ πi(Vt). (6.2)

⊗ is the bitwise XOR operation. Concretely speaking, this is the fraction of the
time the primary spends in disagreement with the bitcode stored in the codebook.
The secondary uncertainty, on the other hand, is defined as:

si(V ) =
1

T

N∑
t=1

πi(VT )⊗ σi(Vt). (6.3)

Or, more simply, the fraction of the time the secondary spends disagreeing with the
bitcode stored in the codebook. p and s can then be blended into a single uncertainty
score, using a balance factor θ:

µ(V, θ) = θ · p(V ) + (1− θ) · s(V ). (6.4)

Storing µ itself along with π(UT ), however, would be an extremely disproportionate
way of communicating uncertainty (d floating-point values for d bits; with 32-bit floats
that would be a factor 32). A much more space-efficient way to proceed is, for a given
bit skepticism level Kbs (i.e. presumed number of untrustworthy bits in a bitcode), to
flag the position of the Kbs most uncertain bits:
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F(V, θ,Kbs) = ΦKbs(µ(V, θ)). (6.5)

The i-th coordinate of ΦKbs(X) is 1 if Xi is in X’s top Kbs values, 0 otherwise.
This is simply a binary mask suppressing non-top K entries.

With this information at our disposal, the querying mechanism can be readjusted
to account for uncertainty: consider a query video Q at time t, and a database entry
R to compare it to. In LA-CODE, the hamming distance would be computed as the
number of conflicting bits between the query and the database entry’s representations:

d(Qt, R) =
d∑
i=1

πi(R)⊗ σi(Qt), (6.6)

Using the binary uncertainty F and a discounting factor γ, we can modulate the
contribution of each bit in the sum:

∆(Qt, R, γ) =
d∑
i=1

[πi(R)⊗ σi(Qt)] · (1− γ · Fi(V, θ,Kbs)). (6.7)

In summary, our new method, which we will refer to as ULA-CODE, performs the
following steps:

• compute primary and secondary uncertainty values π, σ

• blend the two using a balance factor θ

• flag the position of the top Kbs uncertain bits

• when querying, discount uncertain bits in the hamming distance computation
by a factor γ

The 3 free hyperparameters of the method are the discounting factor γ, the balance
factor θ, and the bit skepticism level Kbs.

6.2.3 Computational footprint of uncertainty awareness

Accounting for bit uncertainty during retrieval comes at a certain cost, both in terms of
time and space. With execution speed and compactness both being key selling points
of hashing, it is crucial that the impact of our additions on the overall computational
footprint is kept at a minimum.

Formally, we would like the following two constraints to be respected:

1. Redundancy limit: the additional space consumed remains strictly under dN
bits(i.e. the size of the original codebook)

2. Speed conservation: the number of additional bit operations required per
query is small compared to dN (the number of xor operations for hamming
distance computations required in the original algorithm)
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96 12 50 24 75 36 89 48 93

128 16 67 32 101 48 119 64 125
192 24 101 48 152 72 180 96 188
256 32 136 64 204 96 241 128 252

Table 6.2: Selected examples for log2

(
d
k

)
; d indexes rows, k as a ratio of d indexes

columns. In each cell, left is k and right is log2

(
d
k

)
.

SSTH-RT++, in the previous Chapter 5, egregiously contradicted both; with ndupl
truncated duplicates, both the space consumption and the number of operations were
multiplied by ndupl. This shows how careless tampering with the codebook purely for
the sake of retrieval performance can severely undercut computational performance,
which should not happen with ULA-CODE.

We first examine the redundancy limit constraint. Communicating the position of
Kbs uncertain bits in an array of d bits can trivially be done with another d-bit array
acting as a binary mask, i.e. set at 1 at uncertain bit positions. Doing so for each of
the N codebook therefore requires d · N additional bits - exactly the limit. However
keeping the space consumption strictly underneath is possible by compressing the
uncertainty pattern.

The number of possible binary masks of d bits is of course 2d. Yet, among those, we
only need to account for the ones with a predetermined number k of bits set to 1. This
drops the number of possibilities to the number of k-combinations of d elements, also
known as the binomial coefficient

(
d
k

)
= d!

k!(d−k)!
. Encoding an uncertainty pattern

for k bits therefore only requires du = dlog2

(
d
k

)
e bits instead of d. Evaluating the

difference is not straightforward - we provide examples in Table 6.2. However we are
able to provide a lower bound for the number of bits we are able to save:

d− log2

(
d

k

)
>

1

2
log2(

π · d
2

). (6.8)

A proof for this result is given in the corresponding Appendix F.
Practically speaking, any of the 2du binary masks of k uncertain bits can be indexed

by a binary array of size du; for example, by using the lexicographic order position
written in base 2 (Figure 6.3).

Storing this compressed mask instead of the mask itself preserves space - however
restoring the mask using its index is not trivial: this is referred to as the combination
unranking problem.

For very low values of k, one can maintain a look-up table during retrieval. Looking
up a mask costs O(1); space complexity, however, is Cs = d ·

(
k
d

)
bits. In the worst

case of k = d
2
, we can use Stirling’s approximation to gauge this quantity:

Cs ∼ 4d
√
d

π
. (6.9)

This is roughly exponential; to provide one example, a look-up table for uncertainty
patterns of 48 bits in arrays of 96 bits would approximately consume 3.5 · 1058 bits
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Figure 6.3: Uncertainty pattern compression. Each 7-bit pattern of two uncertain bits
can be assigned a rank from 0 to

(
7
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)
= 5; for example by using the lexicographic order.

This rank is then written in base 2. In this case this saves two bits over the original
pattern.

of memory (4.3 · 1045 TB). For this reason, algorithms for unranking combinations on
the fly have been developed. Notably, Donnot et al. [GP21] proposed a fast algorithm
named unranking factoradic with O(d2 · log2(d)) complexity in bit operations. Even
then, unranking for all N codebook entries would raise the overall time complexity
from O(d ·N) to O(d2 · log2(d) ·N), clearly violating the second constraint.

Fortunately, we can use partial sorting to drastically cut down the overall number
of operations. In practice, N is extremely large - applications to extremely large
databases is indeed a key motivation of hashing. On the other hand the number K of
top items to retrieve should be quite small. Even though we show results for mAP@K
for K going up to 100, in practice going through a list of 100 search results every two
seconds does not make much sense for the end user or user application.

It is therefore safe to assume we can find K ′ such that N � K ′ � K. Using
partial sorting, N − K ′ irrelevant items can then be filtered out based on the raw
Hamming distance, without accounting for uncertainty. This costs the same d · N
XOR operations as previously. Within the remaining K ′ items, using uncertainty only
requires an additional O(d2 ·K ′), which can be considered small next to d ·N .

The overall encoding and retrieval pipeline for ULA-CODE, including the use of
compressed uncertainty, is shown in Figure 6.4

6.2.4 Encoder training & codebook preparation & evaluation

Bitcodes of size 96, 128, 192, 256 are employed. Independently of the test protocol,
the same model trained on the 81000 training set clips is used, in order to assess the
versatility of the retrieval system. As previously done, we first train SSTH-RT+ as the
teacher for LA-CODE. This time, LA-CODE is trained for a maximum of 30 epochs, with
early stopping based on bitwise accuracy measured on the validation set.

ULA-CODE reuses LA-CODE’s pair of encoders; the difference is in the way the code-
book is built, since we incorporate the uncertainty defined above. ULA-CODE’s hyper-
parameter space, which is fairly small, is explored with all 80 combinations shown in
Figure 6.5.

The metric employed is still top K Mean Average Precision (mAP@K), with mAP@10
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as the main reference. Even though we constrained the problem by dividing videos
into units of uniform duration, the incremental nature of our methods enable effi-
cient retrieval, in real time, at any point inside the clip; which was impractical and
not attempted with video hashing methods from the rest of the literature [ZWHC16,
SZL+18, WLG+17, WHG+19, LCL+19]. By doing so during testing, we essentially
try to examine the retrieval system’s responsiveness to the context, or very short-term
anticipation; after only watching a portion of a clip, can the system quickly return
relevant videos? We therefore report mAP@10 for one third and two thirds of a clip,
in addition to the full clip (roughly 10, 20 and 30s respectively).

6.3 Results

6.3.1 Influence of hyperparameters

We start by examining the influence of each of the three hyperparameters in ULA-CODE

separately. We report two quantities: first, the maximum mAP@10 obtained by fixing
the value of one hyperparameter. We refer to this as max ULA-CODE. Second, the
average mAP@10 obtained by fixing the value of a parameter and averaging over all
combinations containing that value. This is referred to as avg ULA-CODE. LA-CODE
sets our baseline. Results are displayed in Figures 6.6, 6.7, 6.8. In those figures a
performance data point is obtained at every combination of:

• protocol (Bypass40, Cholec80, CEV64 ) - plot grid column

• bitcode size - plot grid row

• hyperparameter value - x-axis

• observation level α - line color

• mode or method (LA-CODE, avg ULA-CODE or max ULA-CODE) - line texture

Across all hyperparameters, max ULA-CODE is obviously superior to avg ULA-CODE,
which is itself in the vast majority of cases above LA-CODE. For 256 bits on Bypass40
at full observation, LA-CODE achieves 38%, which is beaten by avg ULA-CODE with a
1.2% minimum margin, and by max ULA-CODE by 2 to 3%. For the same code size and
observation level on Cholec80, LA-CODE sets the baseline at 39%, again surpassed by
avg ULA-CODE (41.5%) and max ULA-CODE (41.3 to 42%). Similar observations can be
made for critical events, with LA-CODE at 38.8%, avg ULA-CODE ranging from 39.5 to
41% and max ULA-CODE ranging from 40.2% to 42.2%.

This means even with a random choice of hyperparameters, the odds of achieving
higher performance than LA-CODE are favorable.

For the γ parameter (Figure 6.6), we can see a slight trend favoring higher values:
for instance, for 256 bits on critical events at 2/3 observation, max ULA-CODE goes
from 41.2% at γ = 0 to 41.5% at γ = 1. In general, this suggests stricter suppression
of uncertain bits improves retrieval performance.

For θ (Figure 6.7), it appears that lower values generally lead to higher mAP@10;
such as for critical events with 256 bits at 2/3 observation, the dropoff from θ = 0 to
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Figure 6.6: Influence of γ on mean average precision.
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θ = 1 is over 2%. We can therefore assume that, generally speaking, the secondary
uncertainty is more informative, and has higher odds of pointing towards faulty bits
in the bitcode.

The trend for Kbs is more difficult to identify (Figure 6.8), although the results seem
to slightly lean towards higher values. This would mean the number of untrustworthy
bits is generally close to half the size of the bitcode. However this comes with a caveat:
the compression rate of the uncertainty pattern decreases as the number of uncertain
bits to report gets close to d/2.

For every code size and protocol, we are able to obtain an optimal value based on
the highest mAP@10 achieved by ULA-CODE, averaged over all levels of observation.
These optimal hyperparameters are reported in 6.3. The combinations found seem to
confirm the trend observed: higher values of γ and Kbs, lower values for θ.

Bypass40 Cholec80 CEV64
γ θ Kbs γ θ Kbs γ θ Kbs

96 1 0 2 0.5 0 3 0.75 0.25 3
128 0.75 0 3 0.75 0.25 4 0.75 0 3
192 0.75 0.5 2 0.5 0.25 3 0.75 0 4
256 1 0 2 1 0 3 1 0 2

Table 6.3: ULA-CODE optimal parameter combinations for each bitcode size and test
protocol.

6.3.2 Comparison against baselines

The max ULA-CODE reported here uses the hyperparameter combinations found in Ta-
ble 6.3. This time, avg ULA-CODE uses the average performance over the entire hyper-
parameter space. Additionally, we report the performance of SSTH-RT+. mAP@10 is
plotted for all three levels of observation: 10s, 20s and the complete clip of 30s.

On average, ULA-CODE outperforms our previous approach LA-CODE by 1 to 2 %.
An optimized choice of parameters doubles this gain, surpassing LA-CODE by a 3 to
4 % margin. Exceptions to the order between the approaches - SSTH-RT+ followed
by LA-CODE, then average ULA-CODE and best ULA-CODE - in terms of performance
are rare. For critical events, across all bitcode sizes and levels of observation, avg

ULA-CODE exceeds the baseline LA-CODE by a mostly consistent 2% margin, Generally
speaking, overall performance is higher for Cholec80 (especially for 128 and 192 bits),
which makes sense as it has a simpler workflow than Bypass40 and is visually simpler
than CEV64.

6.3.3 Qualitative results

Here we provide qualitative results in Figure 6.10 for surgical video retrieval, comparing
search results returned by LA-CODE and ULA-CODE for a surgical clip used as the query.
We display the bitcode corresponding to a video beneath its thumbnail, as well as
the corresponding uncertainty pattern. The code size used is 128; for ULA-CODE, the
parameters used were γ = 0.75, θ = 0, Kbs = 64.
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Figure 6.9: Mean average precision over time.

The query is from CEV64, a clip showing incising. By discounting uncertain bits, ir-
relevant results originally returned by LA-CODE (abdominal access and idle) are pushed
down ULA-CODE’s ranking, while more accurate results appear higher.

94



CHAPTER 6. REAL-TIME SURGICAL VIDEO RETRIEVAL WITH
UNCERTAINTY

6.4 Conclusion

In this chapter, we achieved the task of real-time video retrieval on a very-large-scale
surgical dataset for the first time. Our proposed method ULA-CODE builds upon its
predecessor LA-CODE, and addressed the problem of uncertain bits used in the codebook
by measuring their degree of uncertainty, then reporting it in the codebook in a highly
compressed manner: by doing so, ULA-CODE provides up to 4 % improvement in terms
of retrieval mAP@10, measured using three semantic contexts in surgery: phases for
cholecystectomy, phases for bypass and surgical critical events, introduced for the first
time in our work. Usability on this wide range of semantics is encouraging for the
generalizability of our method.
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Figure 6.10: Qualitative results, with and without using uncertainty. Left: query clip.
Center: LA-CODE search results, green highlight if correct and red otherwise. Right:
ULA-CODE. Under thumbnails: black is the bitcode, red is the uncertainty pattern.
Several correct videos overlooked by the first approach are ranked higher by the second.
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7.1. SUMMARY

This final chapter recapitulates the contributions presented throughout this work,
and how they respond to our original problem of providing real-time support in the
operating room with vast amounts of unannotated data. Application possibilities, as
well as current limitations and paths for further developments are discussed next.

7.1 Summary

The primary goal in the work presented here is the development of methods for surgical
activity understanding with endoscopic videos, under two key constraints:

1. Extensive use of unlabelled video data

2. Real-time capability

These constraints fit our overarching vision of an OR control tower (Figure 1.16)
with minimal reliance on human-annotated video data, providing well-timed support
to surgeons during interventions. The methods we proposed successfully addressed
those.

7.1.1 Addressing unlabelled data domination

As mentioned in Figure 1.15, the state of the Endocorpus dataset reflects the general
state of endoscopic video data: generated in massive amounts by operating rooms, yet
unannotated and unexplored for its vast majority. Since systematic human-generated
annotations are not a scalable option, we turned to semi- and self-supervision in order
to make efficient use of unlabelled videos.

The semi-supervised approach presented in Chapter 3 used automatic annotation
to turn large quantities of unannotated videos into usable training material for other
models: labels generated by a CNN-biLSTM-CRF, while not perfect with respect to
ground truth, are sufficient to enhance a CNN-LSTM’s performance.

In Chapters 5 and 6, the hash function generating compact binary representations
of videos was trained in a self-supervised manner. Since no labels were used, training
data was abundantly available - especially in the case of Endocorpus. Additionally,
the resulting encoder was label-agnostic: distance between codes was based on visual
similarity. Not only retrieval gives the unlabelled data a purpose, it also enables
exploring it, functioning as a visual index.

7.1.2 Addressing real-time conditions

While surgical activity understanding from endoscopic videos certainly has potential
outside of the operating room - for example in surgical education, skill evaluation or
video indexing - our primary target for applications has been in-OR context-aware
support from the start. Since this requires the ability to function in real time, the
level of difficulty is raised by a considerable amount. In particular, a certain degree
of anticipation is needed, which is challenging to achieve due to the variability and
unpredictability of surgical workflows.

In Chapter 3, our method took advantage of a model that is not real-time com-
patible, the CNN-biLSTM-CRF, to annotate data with anticipation of the future, by
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reading the video frame sequence in both directions. This artificially annotated data
was then fed to the real-time compatible CNN-LSTM.

In Chapter 5, we transformed the previously established approach to video retrieval,
by sampling video data in a way that makes retrieval usable in real time with live
sources. We also incorporated anticipation in our LA-CODE model, in order to account
for missing future frames in real-time conditions.

Chapter 6 introduced a method to cut down the contribution of noisy bits dur-
ing retrieval. Computational burden is kept at a minimum, in order to preserve the
efficiency of hashing for real-time use.

7.2 Discussion and future work

Discussion points opened by the work from this thesis can be grouped in three key
areas. The first one is methodology, concerning technical details of our approaches.
The second is scale, with questions on expanding the data used for our methods.
Finally, we discuss the more practical aspects of applications and deployment.

7.2.1 Methods

Evaluating video retrieval in a satisfying manner is a delicate question - to determine
whether a returned entry is relevant or not, all video retrieval protocols in the literature
rely on class labels provided by the dataset employed. To a certain degree, we mitigated
this issue in Chapter 6 by evaluating the same model on multiple sub-datasets, each
with its own label type, showing the method can capture visual similarity in a way
that is generic across multiple surgical contexts. Still, a protocol that is less reliant on
labels would be a major step forward. Indeed, the power of content-based retrieval lies
not in its ability to recognize queries based on predetermined classes, but rather in its
expressiveness and ability to find information users did not know they were looking
for, as it is often the case for popular services such as Bing [HWY+18] or Google Image
Search.

Another pending question is retrieval granularity; even though we are able to
retrieve relevant videos from a query, our methods - as well as all video retrieval
methods from the literature - do not expose which parts inside of the retrieved videos
are relevant. The leeway for achieving this is razor thin: incorporating uncertainty
without severely cutting down performance was already a challenging problem. Adding
intra-video retrieval on top of ordinary retrieval is likely even more difficult.

7.2.2 Scale

Within the literature on endoscopic video processing, the body of work presented here
sits at the top in terms of scale, with 12 types of surgery and over 1.5K recordings of
surgical procedures in Endocorpus. Still, this amount is negligible compared to what
an actual full-scale database could be: as stated in Chapter 1, Subsection 4.1.2, an
ideal case scenario where all procedures are systematically collected would likely lead
to databases in the 106 − 107 range. In addition to the issue of raw size, Endocorpus
only features a single location and a relatively small number of surgeons. Other clin-
ical institutions and other teams might largely deviate from our dataset in terms of

99



7.2. DISCUSSION AND FUTURE WORK

workflow and appearance, due to, among other factors, different surgical tool brands
and different habits when performing surgery. A larger study spanning multiple clini-
cal facilities would be necessary in the future, potentially with the help of federated
learning.

In addition to data sourcing and quantity, using our methods with a wider variety
of annotation types would be an appropriate next step. For retrieval, we introduced
the first dataset of surgical critical events, which could be expanded with more event
types in the future. The automatic annotation method from Chapter 3 has so far only
been used on cholecystectomy; other more complex surgery types may be interesting
targets as well, such as gastric bypass with Bypass40.

7.2.3 Applications & deployment

The efficiency of visual search in other domains leaves no doubt on the potential
of video retrieval in surgery. However, a number of questions surrounding in-OR
implementation would need to be addressed. Assuming we are able to achieve context
awareness as presented in our work and implement it within a system, how would
it interact with the surgeon and the clinical staff inside the OR? Video retrieval, in
particular, is unprecedented in this kind of context. For publicly available tools such
as Google Image Search, the user prompts the search by manually uploading the query,
or taking a picture. In the tightly controlled environment of the OR, however, this
interaction needs to be carefully designed in order to be as unobtrusive as possible. A
vocal command, or a separate display automatically refreshing search results at regular
time intervals are possible options. Another one is to delegate the review of retrieved
videos to the OR control tower staff, as suggested in Figure 1.16.

Querying, however, is only half of the user experience; careful attention should
be given to the presentation of search results. Showing the retrieved raw video data
itself may not be the best option - reviewing it takes time, and paying attention to
multiple videos simultaneously is nearly guaranteed to result in cognitive overload.
An adequate preview system, as found on popular video platforms, would need to be
designed; for instance with animated thumbnails giving a brief and compact overview
of a video’s content. Showing any relevant video metadata would also be a valuable
feature; although in our experiments this metadata was limited to class labels and links
to future clips (Chapter 7), content-based retrieval can collect far more descriptive
information, as shown by current reverse search engines.
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APPENDIX B

Recurrent gradient clipping

B.1 Motivation: gradient explosion

Gradient explosion is a major obstacle in the training process for Recurrent Neural
Networks, which were used throughout the work presented in this thesis. If any value
involved suring training, such as a gradient or a model parameter, exceeds the max-
imum value tolerated by the system (e.g. 3.4e38 in Tensorflow), a not-a-number or
NaN is raised and propagates to all model parameters within one cycle of forward and
backward computation; thereby undermining the entire training process.

B.2 Solution

B.2.1 An incomplete answer: standard gradient clipping

To prevent model parameters from being updated to exceedingly large values over
training iterations, Pascanu et al. [PMB13] proposed gradient clipping. After comput-

ing the gradient ~∇WL of the loss L with respect to model parameters W ∈ Rd, the
following function is applied:

φk :

{
u 7→ u if ||u|| ≤ k

u 7→ k u
||u|| if ||u|| > k

(B.1)

This method of scaling back gradients above a certain magnitude threshold is
called norm clipping ; using this, Pascanu et al. were able to successfully train RNNs
to generate longer sequences than with unclipped gradients.

In practice however, extreme cases can cause this workaround to fail. Those are
cases where explosion occurs in a single training iteration, i.e. if ~∇WL yields NaN in the
first place. In that case attempting to scale the result back still yields NaN, returning
to the original issue.
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B.2.2 Clipping between RNN iterations

Drawing inspiration from artificial gradient methods featured in [ZWHC16, HCS+16],
we define the following computation node:

{
Z(v) = v
~∇v · U(Z(v)) = φ(~∇v · U(v)) for any differentiable function U

(B.2)

Those gradient clipping nodes are placed after the computation of the cell state
and the hidden state (Figure B.1).

LSTM LSTM LSTM ...

Figure B.1: Recurrent gradient clipping.

Experiments first performed in Chapter 5 were prone to NaN errors, which persisted
after implementing standard gradient clipping. After implementing recurrent gradient
clipping, no NaN errors were reported again.
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APPENDIX C

Detailed mAP@K results for retrieval on generic activity datasets

This appendix expands on mAP@K retrieval results shown in Chapter 5. Each group
of four sets of curves corresponds to a method, with each set of curves accounting for a
particular code size and each curve showing mAP@K for a certain level of observation.
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Figure C.1: FCVID: results for SSTH-RT
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Figure C.2: FCVID: results for SSTH-RT+

108



APPENDIX C. DETAILED MAP@K RESULTS FOR RETRIEVAL ON GENERIC
ACTIVITY DATASETS

Figure C.3: FCVID: results for SSTH-RT++
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Figure C.4: FCVID: results for LA-RECO
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Figure C.5: FCVID: results for LA-CODE
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Figure C.6: ActivityNet: results for SSTH-RT
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Figure C.7: ActivityNet: results for SSTH-RT+
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Figure C.8: ActivityNet: results for SSTH-RT++
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Figure C.9: ActivityNet: results for LA-RECO
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Figure C.10: ActivityNet: results for LA-CODE
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APPENDIX D

EndoVis 2019 Surgical Workflow challenge

The EndoVis 2019 Surgical Workflow Challenge was organized as a side event for the
2019 edition of MICCAI. Participants were given a dataset of 24 annotated recordings
of laparoscopic cholecystectomy from Heidelberg University Hospital, named HeiChole,
to be used as training material for three recognition tasks: surgical phase recognition,
instrument recognition and action recognition.

After the competition, submissions remained open, inviting non-competing teams
such as ours to contribute solutions for the final publication. Our submission as Team
CAMMA 1 took on the surgical phase recognition task.

D.1 Methods

D.1.1 Overview

Two visual feature extractors are employed in our approach: Inception-Resnet (IRN)
[SIVA17] and Inflated-3D (I3D) [CZ17]. Features extracted by each of them serve as
input for separate LSTM models. A third LSTM trained on the combined features is
also added. Predictions from the three temporal models are ensembled with majority
voting to obtain the final predicted surgical phase class (Figure D.1).

D.1.2 Data preparation

We used 4-fold cross-validation for our experiments, splitting the dataset in a training
set of 18 and a validation set of 6 in each fold. Frames were resized to (256, 455)
pixels.

D.1.3 IRN-LSTM

IRN was initialized using Imagenet-pretrained parameters. We finetuned it on simul-
taneous phase & tool recognition on the training set downsampled at 5 fps. Layers up
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IRN

I3D

I3D-LSTM1

DUAL-LSTM
(w

distillation)

IRN-LSTM2

Ensemble

Input video

Prediction

Figure D.1: Overview of the proposed model for the Endovis phase recognition chal-
lenge.

to ”Mixed 7a” were frozen during this process. The 1536-d output from ”Conv2d 7b”
was sent to two separate fully connected layers - one for tools and one for phases.

We then used the trained IRN model to extract 1536-d feature vectors from videos
at 1 fps. A 1-layer LSTM with 192 units was trained on the feature vector sequences,
again on simultaneous phase & tool recognition.

D.1.4 I3D-LSTM

I3D was initialized using Kinetics-pretrained parameters. To finetune it, we supplied
it with 25-frame clips from training videos at 25 fps. Layers up to ”Mixed 5b” were
kept frozen. The (4, 8, 15, 1024) output feature was average pooled into a (1, 1, 2,
1024) = 2048-d vector, which served as input for two separate fully connected layers
for instrument and phase prediction.

2048-d feature vectors were extracted from videos at 1 fps, then fed to a 1-layer
LSTM with 512 units.

D.1.5 DUAL-LSTM

In this setup both IRN and I3D are employed. We pretrained them as described in the
previous sections, then concatenated features corresponding to the same timestep into
a single 3584-d vector, which goes into a 1-layer LSTM with 512 units. For this LSTM
we found that employing the distillation method presented in [?] slightly improves
phase recognition performance: a bidirectional LSTM is first trained on phase & tool
recognition, then the (monodirectional) LSTM is trained on the same task plus an L2
loss term forcing its hidden states to be similar to those of the bidirectional model.
This is meant to incorporate anticipation into the LSTM, which does not have access
to future frames in the video but must learn to mimic the behavior of a model that
does.
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D.1.6 Ensembling

The final phase prediction model is an ensemble of the three architectures presented
above. We used majority voting as a way to aggregate the predictions from each of
the networks. The contribution of each network is weighted equally.

In the dataset some phases are more common and last across more frames than oth-
ers. Because of this imbalance, the networks may perform worse for the less prevalent
classes. To mitigate this tendency, we double the votes for the gallbladder packaging
and retraction phases during the ensembling process.

D.1.7 Model selection

Hyperparameters were selected based on average validation performance over all 4
folds. We submit two different models; the first one trained on one fold’s training set,
with the corresponding validation set used for early stopping. The other one is trained
on all 24 videos, with training stopped on the average stopping epoch over 4 folds.

D.1.8 Experimental setup

Tensorflow 1.14 was used for all experiments. Models were trained on servers fitted
with NVIDIA GTX1080Ti or P100 GPUs.

D.2 Conclusion

Several methods were incorporated into our approach in order to capture as much in-
formation as possible from a limited dataset of videos: multitask phase and instrument
training, two sets of visual features from a 2D and a 3D CNN, three separate LSTMs
- one of them having been trained with distillation from a bidirectional model. With
an average F1 score of 68.78%, our team placed first out of 9 contributing
teams.
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APPENDIX E

Critical events in CEV64

The CEV64 dataset was built from 64 complete recordings of surgical interventions
taken from Endocorpus : its objective was to study moments in surgery with a high
degree of clinical importance, for reasons detailed in Table E.1. The value in terms of
clinical application is substantial: documentation, surgical reports, education, training
and skill assessment are a few examples that can be envisioned outside of the OR. Intra-
operatively, critical event lookup may serve as a powerful monitoring reference tool as
mentioned many times throughout this work.

Unlike the most prominent datasets for surgical activity understanding - such as
Cholec80 - which focus on a single type of procedure, here a wide range of abdominal
procedures is covered with 6 distinct types featured:

• Bypass

• Cholecystectomy

• Eventration

• Hernia

• Nissen

• Sigmoidectomy

Events tend to be well-spread across videos in the dataset as shown in Figure E.1,
suggesting their high potential for generalizability. Most events can be found in nearly
half the videos.

Annotations were defined then performed by two hepato-biliary surgeons from IHU
Strasbourg, Dr. P. Mascagni & Dr. J. Verde, using the MOSaiC video annotation
platform. For each instance of an event, the start and the end were set by the anno-
tator. Annotated videos were then broken into clips of 30 seconds each for retrieval;
each clip was marked with a given event if said event overlapped with it for over 50%
of the clip duration. Statistics for collected clips are presented in Figure E.2.

Event classes are noticeably imbalanced; ”Out of body” is particularly predominant
with over 3200 clips while ”sealing” tends to be quite rare, with under 100 clips. The
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Figure E.1: Critical event spread in CEV64 videos.
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Figure E.2: Number of clips collected per event type.

rest tends to be mostly balanced with a few hundred clips each. In Chapter 6’s retrieval
experiments, query and codebook sets were therefore sampled evenly across all classes.
To the 10 reported event classes, a final background class was added with clips sampled
outside of any marked critical event, thus completing the 11 classes found in CEV64.
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Description Motivation Example

Abdominal access

Trocar insertion or removal Perforation injury risk 
(insertion), abdominal wall 

hemostasis (removal)

Anastomosing

Hollow organ approximation Injury risk, leaks

Approximating

Sutures for leaks, hernia defects Injury risk, leaks

Bleeding

Active bleeding that requires 
cauterization and / or cleanup

Factor in recovery and overall 
clinical outcome

Dividing

Transection of tissue Injury risk

Idle

Prolonged inactivity or waiting 
period

Workflow interruption

Incising

Cuts made without full 
transection

Injury risk

Mesh placement

Placement of mesh for damaged 
tissue support

Primary goal in abdominal wall 
procedures

Out of body

Laparoscope exiting the 
abdominal cavity

Privacy threat

Sealing

Application of clips or sutures for 
vessel ligation

Injury risk, leaks

Table E.1: Description of critical events reported in CEV64
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APPENDIX F

Uncertain bit flagging

As stated in Chapter 6, the position of exactly k uncertain bits in a 2n-bit array can
be flagged using strictly fewer than 2n bits, with the following upper bound:

d− log2

(
d

k

)
>

1

2
log2(

π · d
2

) (F.1)

The number of possible configurations for the position of k uncertain bits in an
array of size 2n is given by the binomial coefficient:(
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k

)
=
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(2n− k)!(k!)
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The maximum is reached for the central binomial coefficient
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configurations to map to an m-bit array, requiring

log2
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)
≤ m. On the other hand, we set for ourselves m < 2n as our limit.

A useful result published by Dutton [DB86] states:
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Or, equivalently: (
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Note that it also is an asymptotic equivalent for
(

2n
n

)
(easily derived from Stirling’s

approximation n! ∼
√

2πn
(
n
e

)n
), making it a tight upper bound.

A draft for an unpublished but more accessible proof for this inequality than Dut-
ton’s [DB86] can be found at https://mathoverflow.net/a/133752 (credits: Noam
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D. Elkies). Its author observes:(
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=
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Taking log2 of the last term yields the following upper bound:

log2

(
2n

n

)
< 2n− 1

2
log2(π · n) (F.6)

Meaning in the worst case scenario of n bits to flag out of 2n, we can still use
m = d2n− 1

2
log2(π · n)e and strictly remain under the 2n bit limit, for n > 1 (n = 1

trivially requires 1 bit).
The compression rate log2(πn)/4n tends to 0 as n tends towards +∞; however it

should be noted that this is in the one worst case of k = n. Values closer to 0 or 2n
lead to much more favorable compression rates.
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APPENDIX G

Résumé en français

G.1 Introduction

En l’espace de quelques années, les techniques de vision par ordinateur ont progressé
de manière considérable grâce aux récents développements réalisés dans le domaine de
l’apprentissage profond. Ces techniques, désormais capables de rivaliser avec la vision
humaine sur un grand nombre de tâches visuelles, permettent d’offrir une assistance
en temps réel dans de nombreux domaines d’application où les enjeux sont importants,
la marge d’erreur est faible et la cadence de travail est soutenue.

Un tel système d’assistance, construit à partir d’algorithmes de vision performants,
serait donc particulièrement adéquat au sein d’un bloc opératoire pour venir en aide
au chirurgien et au personnel clinique. En particulier, le flux vidéo intra-abdominal
utilisé en chirurgie minimalement invasive est une source d’information extrêmement
riche, dont le contenu peut être analysé pour fournir au praticien en temps réel des in-
formations pertinentes sur l’action ou l’événement en cours de réalisation. Cependant,
un obstacle majeur au développement de ces algorithmes est la rareté des données
annotées; entrâıner un réseau de neurones de manière complètement supervisée en
requiert une quantité considérable.

La base de données dont nous disposons est vaste: plus de 4800 heures de procédures
chirurgicales complètes, réparties sur 12 types de procédures mini-invasives en chirurgie
abdominale. Les annotations sont cependant fortement limitées: sur les 518 chole-
cystectomies et 318 pontages gastriques disponibles, respectivement 120 et 40 sont
annotées avec leur décomposition en phases. En l’absence d’annotations, cette base
de donnée est pour l’essentiel inexploitée et inexplorée. Collecter plus d’annotations
semble être une solution évidente; à grande échelle cependant celle-ci entrâınerait des
coûts et des délais prohibitifs, d’où la nécessité de solutions alternatives.

Ce constat est le point de départ des travaux présentés dans cette thèse, où nous
cherchons à utiliser et explorer cette immense réserve de données brutes pour obtenir
des modèles temps réel performants sur des tâches d’analyse vidéo en chirurgie mini-
malement invasive.
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Figure G.1: Le modèle CNN-biLSTM-CRF (mâıtre) annote des données pour le CNN-
LSTM (élève), améliorant ainsi ses performances en reconnaissance de phase chirurgi-
cale.

G.2 Méthodes

G.2.1 Annotations automatiques pour l’identification temps
réel des phases

Une première approche pour naviguer au sein d’une base de données brutes, en l’absence
d’annotateurs experts humains, consiste à remplacer ces derniers par un modèle en-
trâıné sur un jeu de données réduit. Nous nous intéressons ici à l’un des problèmes
fondamentaux de l’analyse de vidéo chirurgicales, à savoir la reconnaissance des phases.
Conformément à notre hypothèse de données annotées rares, nous procèdons de manière
semi-supervisée: sur 80 vidéos, nous nous autorisons à utiliser les annotations manuelles
sur seulement 1 à 20 vidéos. Les modèles utilisés dans ce problème sont sujets à un
compromis: temps réel avec performances limitées (CNN-LSTM), ou a posteriori avec
performances maximales (CNN-biLSTM-CRF introduit dans nos travaux).

Nous parvenons à dépasser ce compromis en utilisant les deux types de modèle
de manière complémentaire G.1: le modèle a posteriori, dans le rôle du mâıtre, est
entrâıné sur les 1 à 20 vidéos manuellement annotées, puis annote automatiquement
le reste des 80 enregistrements. L’ensemble sert à entrâıner le modèle temps réel, qui
tient le rôle d’élève. Le F1-score ainsi obtenu est de 78.2 %, contre 70.2 % avec les 20
vidéos manuellement annotées sans annotations automatiques supplémentaires.

G.2.2 Fouille temps réel de vastes bases de données vidéo
génériques

Obtenir des informations sur du contenu vidéo à partir d’un classifieur entrâıné à re-
connâıtre un nombre prédéterminé de classes est l’approche canoniquement préconisée
en vision par ordinateur, qui pourrait être qualifiée de directe et explicite. À l’inverse,
se renseigner sur un contenu en l’utilisant pour rechercher les éléments pertinents d’une
vaste base de donnée est une approche indirecte et implicite, qui propose davantage
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Video database

R
e
tr

ie
v
a
l e

n
g

in
e

QueryS
tr

e
a
m

in
g

 v
id

e
o

Videos retrieved on the fly

Query

Query

time

Figure G.2: Notre technique de hachage permet de fouiller à l’intérieur de bases de données
vidéo de manière incrémentale, au fur et à mesure du déroulement en direct de la vidéo
utilisée comme requête. Un archer est filmé; le flux vidéo est soumis au moteur de recherche,
qui retrouve deux résultats corrects sur trois

de flexibilité et de polyvalence.
Les fonctions de hachage profondes constituent une méthode efficace pour la fouille

de bases de données; celles-ci calculent des clés binaires de taille réduite à partir
de contenus de très grandes dimensions. Ces clés étant optimisées pour préserver
les similarités et différences entre contenus, il est alors possible de rapidement ef-
fectuer des requêtes par simples comparaisons binaires. Les fonctions de hachage sont
souvent entrâınées de manière auto-supervisée; leur fonctionnement est dans ce cas
complètement indépendant des annotations, qui servent uniquement à leur évaluation
quantitative. Le hachage présente donc un double intérêt dans notre situation, en
permettant d’utiliser les données non annotées et de les explorer via des requêtes.

La vidéo est cependant fortement en retard par rapport aux autres modalités de
recherche telles que les images statiques concernant le hachage. Les quelques travaux
traitant de ce problème pour les vidéos ne considèrent de plus que la recherche a
posteriori, proposant des méthodes incompatibles avec des recherches temps réel à
partir de flux vidéo instantanés.

Le cas temps réel G.2 est justement celui que nous choisissons de traiter: con-
sidérant une vidéo de durée totale T , nous souhaitons rechercher au sein d’une base
de données les vidéos les plus similaires, en observant uniquement les αT premières
secondes pour α ∈]0, 1] - cette situation correspond au cas d’une diffusion en direct,
ou du streaming. Pour cela nous proposons un encodeur vidéo binaire incrémental et
prédictif: un modèle LSTM met à jour la clé binaire toutes les deux secondes environ
afin que celle-ci tienne compte du contenu visuel en temps réel. Ce modèle est de plus
entrâıné à anticiper le futur contenu vidéo, afin de compenser le manque d’information
visuelle dû à la diffusion en direct.

Nous présentons notre méthode sur deux jeux de données vidéo génériques de très
grande taille: FCVID et ActivityNet. L’évaluation s’effectue à partir des étiquettes
d’activité fournis par ces jeux de données: dans le classement des meilleurs résultats de
recherche, un résultat est considéré correct si sa classe correspond à celle de la requête.
Notre méthode, LA-CODE, surpasse les méthodes non prédictives avec notamment 27.4
% de mAP@20 sur FCVID, 14.7 % sur ActivityNet avec moins de 30% de la vidéo
observés, pour des clés binaires de 128 bits.
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G.2.3 Fouille temps réel de vastes bases de données vidéo
chirurgicales

Pour mettre à l’épreuve nos méthodes de fouilles de données vidéo sur du contenu
chirurgical, nous introduisons le jeu de données Endocorpus, contenant 1558 enreg-
istrements complets de 12 types de procédures minimalement invasives. Ces enreg-
istrements sont divisés en clips de 30 secondes environ, formant une base de données
de plus de 500000 clips.

Nous montrons qu’un même modèle, entrâıné sur un vaste ensemble de clips non
annotés, permet de rechercher du contenu au sein de trois bases de données: chole-
cystectomie, pontage gastrique et événements chirurgicaux critiques. L’évaluation
s’effectue à partir des phases pour les deux premières; pour la dernière, à partir du
type d’événement critique.

À cela, nous ajoutons une nouvelle méthode de fouille tenant compte de l’incertitude
sur les bits des clés binaires représentant les vidéos. Nommée ULA-CODE, cette méthode
consiste à comprimer un masque signalant les bits incertains puis à stocker ce masque
avec les clés binaires. En décompressant ce masque et en l’utilisant au moment d’une
requête pour réduire la contribution des bits incertains, la pertinence des résultats
retrouvés augmente de 2 à 4%..

G.3 Conclusion

Les méthodes proposées permettent de tirer parti avec succès des données vidéo en-
doscopiques non annotées, permettant ainsi de les annoter automatiquement pour
l’entrâınement de classifieurs temps réel, de les utiliser pour l’entrâınement auto-
supervisé de modèles pour la fouille de bases de données vidéo, et d’explorer ces
dernières par le biais de requêtes vidéo instantanées. Ce succès est encourageant pour
un passage à l’échelle à partir d’annotations raréfiées, ainsi que le déploiement dans le
bloc opératoire de ces méthodes temps réel pour assister le chirurgien.
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Résumé 

Les flux vidéos endoscopiques, riches en informations sur le site opératoire, ont un fort potentiel 
pour alimenter des algorithmes de vision fondés sur l’apprentissage profond. Ces algorithmes 
peuvent en effet opérer au sein de systèmes de chirurgie assistée par ordinateur, capables 
d’améliorer la qualité de vie des patients. Cependant, dans les conditions classiques de supervision 
complète, cette approche nécessiterait de vastes quantités de vidéos annotées. Or les annotations, 
contrairement aux vidéos elles-mêmes, sont rares, incitant ainsi à des méthodes utilisant des vidéos 
non-annotées. Nous proposons d’abord une méthode semi-supervisée de reconnaissance de phase, 
générant des annotations automatiques pour un modèle opérant en temps réel. Nous passons 
ensuite de la reconnaissance à la fouille de vidéos, avec des méthodes auto-supervisées 
recherchant en direct du contenu similaire à un flux vidéo au sein d’une grande base de données. 

 

Mots-clés : Apprentissage profond – Vision par ordinateur – Fouille – Hachage – Apprentissage 
auto-supervisé – Apprentissage semi-supervisé – Endoscopie 

 

 

 

Résumé en anglais 

Endoscopic video streams, as rich sources of information on the operating field, show great potential 
for exploitation by deep learning-based computer vision algorithms. Such algorithms can indeed 
serve as the foundation for context-aware surgery systems, capable of improving clinical outcomes 
by assisting surgeons during interventions. However this approach would require, under ordinary 
circumstances of full supervision, vast quantities of annotated recordings. While video data is 
abundant in endoscopy, annotations are highly scarce, which calls for alternative solutions using 
unannotated videos. We first propose a semi-supervised surgical phase recognition method, where 
an offline teacher model automatically labels data for a real-time model. We then move from 
recognition to video retrieval tasks, with self-supervised methods capable of continuously scanning 
large video databases for content visually matching a video live stream.  

 

Keywords: Deep learning – Computer vision – Retrieval – Hashing – Self-supervised learning – 
Semi-supervised learning - Endoscopy 
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