
 
UNIVERSITÉ DE STRASBOURG 

 
 

ÉCOLE DOCTORALE MSII 

ICube UMR 7357 
 
 

THÈSE  présentée par : 

Devesh ADLAKHA 
 

soutenue le : 12 décembre 2022 
 

 

 

pour obtenir le grade de : Docteur de l’université de Strasbourg 
Discipline/ Spécialité : Image et Vision 

 

Exploitation de connaissances partielles sur 
le mouvement et la géométrie des caméras 

en vision 3D non calibrée 
 
 

 
THÈSE dirigée par : 

M. DE MATHELIN Michel Professeur, Université de Strasbourg 
      
     CO-ENCADRANTS : 

M. HABED Adlane Maître de Conférences, Université de Strasbourg 
M. MORBIDI Fabio Maître de Conférences, Université de Picardie Jules Verne 
M. DEMONCEAUX Cédric Professeur, Université de Bourgogne Franche-Comté 

 
RAPPORTEURS : 

M. MONASSE Pascal Professeur, Ecole des Ponts Paris Tech 
M. FUSIELLO Andrea Professeur, Université d’Udine 
 

EXAMINATEURS : 
M. STURM Peter Directeur de Recherche, Inria Grenoble Rhône-Alpes 
M. VASSEUR Pascal Professeur, Université de Picardie Jules Verne 

      
    





Acknowledgements

Several people contributed to making this journey a fun and enriching experience.
First and foremost, I was fortunate to have a great group of advisors. Thanks to
Michel and Cédric for creating this opportunity for me. I especially appreciate the
freedom I had in my research and the place of work. I have also received a lot
of advice and support over the years from Cédric, for which I am really grateful.
My research has been in collaboration with Adlane, and his passion and dedication
have been very inspiring. Our discussions on research, writing, presentations, and
everything else, are what I’ll cherish the most from this experience. Finally, thanks
to Fabio for all the time he spent with me discussing my research, among other
things. His feedback and encouragement have been a constant source of motivation.

I am grateful to my thesis committee members: Andrea Fusiello, Pascal Monasse,
Peter Sturm, and Pascal Vasseur, for the discussions and their insightful comments.
Thanks to Andrea and Pascal Monasse for carefully reviewing my manuscript.
Thanks also to Pascal Vasseur and Pascal Monasse for their feedback during my
mid-thesis presentation.

During my stay in Strasbourg and Le Creusot, I received valuable administrative
support from the labs and universities in both places. I especially thank the Euraxess
office for their help. I also gratefully acknowledge the funding support from the
ICube lab, the ANR SUMUM project (grant ANR-17-CE38-0004), and the Interreg
VA France (Channel) England ADAPT project.

Finally, thanks to my friends and family for their positivity and kindness. I have
been fortunate to have some incredible friendships during these years and the con-
stant love and support from my parents and brother.

iii





Abstract

This thesis concerns 3D computer vision, where the fundamental problem is re-
constructing a scene in 3D from multiple images captured from different view-
points. Known as Structure-from-Motion (SfM), this problem has various appli-
cations, such as in cultural heritage and augmented reality. We investigate uncal-
ibrated SfM, where a reconstruction only up to a projective transformation can be
obtained from feature correspondences across images. The goal is to recover a met-
ric representation of the scene from the projective one. This involves locating the
so-called Absolute Conic on the plane at infinity that acts as a virtual calibration
object analogous to a physical calibration pattern used in calibrated SfM.

The main contributions of this thesis are two-fold. The first contribution exploits
partial knowledge of the camera geometry, specifically that the camera has square
pixels. This assumption is satisfied by most modern cameras. We formulate a new
polynomial constraint on the plane at infinity under this assumption and propose a
method for an affine upgrade that relies on polynomial optimization using the so-
called Lasserre’s hierarchy of convex relaxations. The metric reconstruction is then
recovered by solving linear equations. The second contribution exploits a vague
knowledge of the camera motion that the viewpoint is typically changed mildly be-
tween images to ensure sufficient overlap to match features. We show that bounds
on the relative rotation angle between camera pairs can be used to constrain the
plane at infinity to a convex set. Based on this constraint, we show the existence
of a new quasi-affine reconstruction of a scene with respect to the Hodographs of

the Horopter, new geometric objects that we introduce in this thesis. We propose
a semidefinite programming problem to recover such reconstruction from a projec-
tive one and present a constrained Levenberg-Marquardt optimization method to
upgrade it to affine. Experiments with synthetic data and real images validate our
proposed methods.

v





Contents

List of Figures xi

List of Tables xiii

Acronyms xv

Symbols xvii

1 Introduction 1
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Exploiting partial camera geometry knowledge . . . . . . . 8

1.3.2 Exploiting partial camera motion knowledge . . . . . . . . 8

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Uncalibrated 3D Vision 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Multi-view 3D reconstruction . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Perspective projection . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Planar projection . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Projective reconstruction . . . . . . . . . . . . . . . . . . . 18

2.2.5 Reconstruction strata . . . . . . . . . . . . . . . . . . . . . 20

2.2.6 Quasi-affine reconstruction . . . . . . . . . . . . . . . . . . 22

2.3 Camera autocalibration . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 27

vii



Contents

2.3.2 Absolute conic . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Direct autocalibration . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Stratified autocalibration . . . . . . . . . . . . . . . . . . . 34

2.3.5 Motion constraints . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Exploiting camera geometry 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 EIP-based polynomial constraint . . . . . . . . . . . . . . . . . . . 47

3.3 Inequality constraints on infinity . . . . . . . . . . . . . . . . . . . 50

3.3.1 Chirality inequalities . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 ICT-based inequality . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Principal point bounds . . . . . . . . . . . . . . . . . . . . 51

3.4 EIP-based stratified autocalibration . . . . . . . . . . . . . . . . . . 51

3.4.1 Locating infinity . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Autocalibration algorithm . . . . . . . . . . . . . . . . . . 53

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Synthetic data experiments . . . . . . . . . . . . . . . . . . 55

3.5.2 Real image experiments . . . . . . . . . . . . . . . . . . . 59

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Exploiting camera motion 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Orientation-based convex constraints . . . . . . . . . . . . . . . . . 67

4.2.1 Horopters . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Horopters and the modulus constraint . . . . . . . . . . . . 70

4.2.3 Hodographs of the horopter . . . . . . . . . . . . . . . . . 72

4.2.4 Hodographs-based constraints on infinity . . . . . . . . . . 74

4.2.5 QUARCH: A new quasi-affine reconstruction stratum . . . . 83

4.3 Orientation-based non-convex constraints . . . . . . . . . . . . . . 86

4.3.1 Hurwitz stability criterion . . . . . . . . . . . . . . . . . . 87

4.3.2 Stability-based constraints on infinity . . . . . . . . . . . . 88

4.3.3 A more specialized QUARCH . . . . . . . . . . . . . . . . 94

viii



Contents

4.4 Orientation-based stratified autocalibration . . . . . . . . . . . . . . 99
4.4.1 Computing a QUARCH . . . . . . . . . . . . . . . . . . . 100
4.4.2 Locating infinity using LMI-constrained optimization . . . . 101
4.4.3 Autocalibration algorithm . . . . . . . . . . . . . . . . . . 104

4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.1 Synthetic data experiments . . . . . . . . . . . . . . . . . . 106
4.5.2 Real image experiments . . . . . . . . . . . . . . . . . . . 112

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Conclusion 117
5.1 Discussion of contributions . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A Optimization tools 121
A.1 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Semidefinite programming . . . . . . . . . . . . . . . . . . . . . . 122
A.3 Polynomial optimization . . . . . . . . . . . . . . . . . . . . . . . 122

B Line projection matrix 125

C Résumé 127
C.1 Contexte et motivation . . . . . . . . . . . . . . . . . . . . . . . . 127
C.2 Portée de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.3.1 Exploitation de connaissances partielles de la géométrie de
la caméra . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.3.2 Exploitation de la connaissance partielle du mouvement de
la caméra . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.4 Structure du manuscrit . . . . . . . . . . . . . . . . . . . . . . . . 137

References 139

ix





List of Figures

1.1 An application of 3D scene modeling in digital heritage. . . . . . . 2

2.1 The Absolute Conic and its image projection. . . . . . . . . . . . . 29

3.1 Benefits of the EIP polynomial. . . . . . . . . . . . . . . . . . . . . 56
3.2 Effect of refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Comparisons with the state of the art. . . . . . . . . . . . . . . . . 58
3.4 Quantitative assessment using 3 views. . . . . . . . . . . . . . . . . 60
3.5 Qualitative assessment. . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 The horopter of a camera pair. . . . . . . . . . . . . . . . . . . . . 69
4.2 Some applications of hodographs. . . . . . . . . . . . . . . . . . . 72
4.3 A parametric curve and its hodograph. . . . . . . . . . . . . . . . . 73
4.4 The hodographs of the horopter and Π∞. . . . . . . . . . . . . . . . 82
4.5 QUARCH in the 3D reconstruction hierarchy. . . . . . . . . . . . . 84
4.6 Benefits of QUARCH and the LMI-constrained optimization. . . . . 107
4.7 Benefits of QUARCH and the LMI-constrained optimization when

using Nistér’s cost function. . . . . . . . . . . . . . . . . . . . . . 108
4.8 Runtime (seconds) with an increasing number of views. . . . . . . . 109
4.9 Comparisons with the state of the art. . . . . . . . . . . . . . . . . 110
4.10 Benefits of a specialized QUARCH. . . . . . . . . . . . . . . . . . 111
4.11 Qualitative evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 114

xi





List of Tables

2.1 Autocalibration methods exploiting camera motion constraints. . . . 39

3.1 Quantitative assessment . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Quantitative evaluation. . . . . . . . . . . . . . . . . . . . . . . . . 113

xiii





Acronyms

AC Absolute Conic
ALQ Absolute Line Quadric
DAQ Dual Absolute Quadric
DIAC Dual Image of the Absolute Conic
IAC Image of the Absolute Conic
ICT Infinite Cayley Transform
IMU Inertial Measurement Unit
LM Levenberg-Marquardt
LMI Linear Matrix Inequality
LP Linear Programming
RMS Root-Mean-Square
SDP Semidefinite Programming
SfM Structure-from-Motion
SLAM Simultaneous Localization and Mapping

xv





Symbols

sgn(a) the sign of a real number a: sgn(a) = −1 if a < 0, sgn(a) =

0 if a = 0, sgn(a) = 1 if a > 0

(A)hk the element in the hth row and kth column of any matrix A

A∗ the adjugate of a square matrix A

In the n× n identity matrix
0n an n-vector of zeros
' the equality up to scale
Pn the projective n-space
P∗n the dual projective n-space
hp a homogeneous polynomial

xvii





1 Introduction

While we effortlessly perceive the three-dimensional (3D) world around us through
visual stimuli, this task is not trivial for a computer. By relying on a camera for a
visual input, the 3D information is lost in the projection of a 3D scene to a 2D im-
age. Recovering the 3D scene structure from multiple images is a central problem
in computer vision. Research efforts to address this problem have resulted in the
development of the theoretical foundations and computational algorithms to obtain
3D reconstructions from images. In this thesis, we are interested in the uncalibrated
3D reconstruction approach, where the camera calibration is not known. In particu-
lar, we present contributions in addressing the camera autocalibration problem that
forms one component of the uncalibrated 3D reconstruction pipeline.

1.1 Context and motivation

3D scene modeling: 3D models of scenes and objects in the world are now an
integral part of a variety of applications. In Augmented Reality (AR), one’s view
of the physical world is enhanced by digital models that are overlaid virtually in
the scene. For instance, the mobile application Snapchat introduced an AR fea-
ture called Local Lenses1. With this feature, users can engage with virtual content,
such as a shared AR world across Carnaby street in London. Local Lenses relies
on a 3D reconstruction of the street and buildings that was computed using images,
including public snaps, captured around the street. In robotics, building and main-
taining a 3D map of an unknown environment is often crucial for a robot to interact
with and perform tasks in its surroundings. These tasks may include inspection
and monitoring [Maurer et al. 2017], search and rescue operations [Delmerico et al.

1 https://ar.snap.com/lens-studio
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1 Introduction

Figure 1.1: An application of 3D scene modeling in digital heritage. Images of the inter-
active visit of the Villa of Diomedes in Pompeii: a view of the present state
of the site (left) and a rendering of its possible historical state (right). Images
reproduced with permission from the Villa Diomedes Project3.

2019], and autonomous driving [Bresson et al. 2017]. For example, the autonomous
car from Cruise2 uses a 3D laser scan of its surroundings, among other sensor in-
formation, to navigate in its environment. In digital heritage, reconstructing 3D
models of cultural sites and objects is a means to preserve them digitally. These
digital models can further be used for analysis, such as change detection, and in
interactive tours. Figure 1.1 shows screenshots of an interactive visit of the Villa of
Diomedes [Dessales 2020] in Pompeii, where a rendering of the possible historical
state of the site can be superimposed over a 3D model of its present state. This 3D
model was obtained using images and laser scans of the site. There are numerous
other applications of 3D scene modeling, for instance, in gaming [Statham 2020],
forensics [Galanakis et al. 2021], and paleontology [Falkingham et al. 2020].

3D sensing: Non-contact methods to capture the 3D structure of a scene can
be broadly categorized as active or passive [Liu et al. 2020]. Active methods
interfere with the scene by introducing controlled electromagnetic radiation us-
ing, for instance, structured light projectors (e.g. Microsoft Kinect V1, Intel Re-
alSense SR300) or Time-of-Flight scanners (e.g. Microsoft Kinect V2, Intel Re-
alSense L515). In the structured light approach, a pattern is projected on the scene,
and one or more cameras (CCD/CMOS sensors) are used to image the illuminated
scene. As the pattern is known, the correspondences between it and the image pro-
jections can be easily determined, and the 3D structure is recovered through trian-
2 https://www.getcruise.com/
3 http://villadiomede.huma-num.fr/3dproject/
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1.1 Context and motivation

gulation. In the Time-of-Flight approach, light is emitted on the scene, and the 3D
structure is determined more directly by measuring its reflection. Passive methods,
on the other hand, use a camera to capture the scene under ambient conditions in 2D
images. The 3D scene structure is retrieved by processing the images using methods
of photogrammetry/computer vision. The choice of the acquisition method and sen-
sors used for a particular application is influenced by several factors, including the
scene (its size, shape, texture), the acquisition conditions (ambient lighting, acces-
sibility and setup), the required accuracy, and the involved cost. Cameras generally
offer more flexibility than an active system because of their compact size, power
efficiency, and easy setup and acquisition. The ubiquity of digital cameras (e.g. in
smartphones) and the constant improvement in their image quality has led to their
widespread adoption for 3D acquisition.

Image-based 3D reconstruction: The problem of reconstructing a scene in 3D
from multiple images has been studied extensively in computer vision, with its ori-
gins being in photogrammetry [Hartley and Mundy 1993; Sturm 2011]. Known as
Structure-from-Motion (SfM) in computer vision, it involves recovering both the
3D scene structure and the camera motion from the images. The underlying theory
of the geometric relations between multiple views, or multi-view geometry, is now
well established [Faugeras et al. 2001; Hartley and Zisserman 2004]. A typical SfM
approach involves solving several problems that include determining feature points
and their correspondences across the images [Lowe 2004], computing the relative
camera poses [Longuet-Higgins 1981; Nistér 2004a], and retrieving the 3D scene
structure through triangulation [Hartley and Sturm 1997]. A robust estimation of
the camera parameters using methods such as RANSAC [Fischler and Bolles 1981]
and a joint refinement of the estimated parameters and the 3D structure through bun-
dle adjustment [Triggs et al. 1999] form key components of this approach. Progress
in solving these problems led to the development of automated SfM systems, such
as Photo Tourism [Snavely et al. 2008], that take as input a set of images and com-
pute the camera poses and a sparse 3D reconstruction (a point cloud) of the imaged
scene. SfM has since evolved into a mature technology, and there are now sev-
eral SfM packages, including commercial software, such as Agisoft MetaShape4,

4 https://www.agisoft.com/
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3DF Zephyr5, and RealityCapture6, and non-commercial software, such as Visu-
alSfM [C. Wu 2013], OpenMVG [Moulon et al. 2016], and COLMAP [Schönberger
and Frahm 2016]. A sparse 3D reconstruction obtained from SfM can be processed
to obtain a richer representation of the scene, for example, a dense point cloud or
a textured mesh. Some SfM packages have such functionality built-in or they can
be used with other dedicated software [Furukawa et al. 2010]. The availability and
ease of use of SfM packages combined with the high fidelity of the resulting 3D
reconstructions have spurred their use for 3D scene modeling.

Calibrated SfM: SfM implementations generally assume the camera intrinsic pa-
rameters to be known. These parameters correspond to the internal geometry of the
camera, for example, its focal length. Together with the camera pose, i.e. the camera
extrinsic parameters, they describe the perspective projection model used in com-
puter vision to model the mapping of a 3D point in the world to its 2D pixel location
in the image. The intrinsic parameters are obtained by calibrating the camera. The
standard camera calibration method [Zhang 2000] involves taking multiple images
of a known planar pattern, such as a checkerboard. This procedure is rather tedious
and, despite the development of guidance systems [Peng and Sturm 2019], requires
some technical expertise to obtain an accurate calibration. In SfM applications, typ-
ically the camera is calibrated prior to the image acquisition and its zoom and focus
are kept fixed to ensure that the internal camera calibration remains unchanged. If
the internal camera calibration does change, the intrinsic parameters must be rees-
timated, for instance, by recalibrating the camera. SfM pipelines can often benefit
from Exif (Exchangeable image file format) metadata to approximate the intrinsic
parameters and thereby circumvent the cumbersome offline calibration step. Exif
tags are embedded in some image file formats, such as JPEG. They contain infor-
mation about the camera, notably its focal length. The other intrinsic parameters
are usually approximated based on some heuristics. The pipeline then relies on a
nonlinear refinement of the camera parameters and scene structure in bundle ad-
justment to converge to an accurate calibration. However, the Exif metadata is not

5 https://www.3dflow.net/3df-zephyr-photogrammetry-software/
6 https://www.capturingreality.com/
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1.1 Context and motivation

always available. In this case, SfM packages resort to loose heuristics to initialize
the focal length or require the intrinsic parameters as input.

Uncalibrated SfM: Unlike calibrated SfM, the camera intrinsic parameters are
not known in an uncalibrated approach. With feature correspondences across un-
calibrated images alone, only a reconstruction up to a projective ambiguity can be
recovered. Such a reconstruction is related to a metric representation of the imaged
scene by a projective transformation, and it is referred to as a projective reconstruc-
tion. A projective reconstruction does not preserve metric properties, such as angles
and length ratios, but preserves only projective invariants that include collinearity
and coplanarity. It thus appears distorted. For most applications, a more faithful
representation of the observed scene is required. A projective reconstruction can
be upgraded to its metric counterpart by determining the projective transformation
that relates the two reconstructions. This transformation involves the camera in-
trinsic parameters, and recovering them from multiple uncalibrated images is the
camera autocalibration problem in computer vision. Uncalibrated SfM with camera
autocalibration is more flexible than the calibrated approach as it avoids the manual
camera calibration step. Thus, this problem has received significant attention in the
literature [Fusiello 2000].

Camera autocalibration: The process of retrieving the camera intrinsic parame-
ters from multiple uncalibrated images of an unknown scene is known as camera au-
tocalibration. Camera autocalibration does not require a physical calibration pattern
to be observed in the images. Instead, it relies on the omnipresence of a virtual one:
the so-called Absolute Conic (AC). The AC is a particular conic lying on the plane

at infinity that projects on the image plane as an imaginary conic whose matrix rep-
resentation embeds the camera intrinsic parameters. Thus, the intrinsic parameters
can be retrieved by locating the AC or its image (IAC). The flexibility of working
directly with uncalibrated images, however, comes at the cost of autocalibration be-
ing a challenging problem. The equations involved are nonlinear and difficult to
solve reliably and efficiently. In particular, locating the plane at infinity is the main
challenge in camera autocalibration. Once it is identified, the IAC and thus the in-
trinsic parameters can be determined by solving linear equations. For this reason,

5
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some autocalibration methods first estimate the plane at infinity and then retrieve
the intrinsic parameters in a second step. This two-step approach is referred to as
stratified autocalibration. In direct autocalibration, on the other hand, the plane at
infinity and the intrinsic parameters are estimated simultaneously. Direct methods
generally rely on special virtual quadrics, the Dual Absolute Quadric (DAQ) or the
Absolute Line Quadric (ALQ), that encode both the plane at infinity and the IAC
or its dual (DIAC). In either case, all autocalibration methods rely on some prior
knowledge of the camera, its internal geometry or motion, to retrieve the intrinsic
parameters. For instance, several methods consider the case of a moving camera
with constant but unknown intrinsic parameters. Other methods exploit knowledge
of the camera motion, such as planar motion in the case of a ground vehicle. A
general guideline is to use as much information as possible about the camera [Hart-
ley and Zisserman 2004, Sec. 19.11] to deal with the inherent challenges in camera
autocalibration.

1.2 Scope

In this thesis, we consider the problem of 3D reconstruction of a rigid scene from
multiple images captured by an uncalibrated perspective camera. In particular, we
investigate camera knowledge that is generally available in this context but is yet
to be fully exploited in camera autocalibration. Such camera knowledge may arise
from priors on the internal geometry of the camera or its motion in the image ac-
quisition process. We describe these priors in the following.

Sensor geometry priors: While the camera intrinsic parameters are not known
in the uncalibrated SfM approach, reasonable assumptions can usually be made
about some of them. Their physical interpretation allows us to distinguish such
parameters. The focal length corresponds to the distance between the optical center
and the image plane. This parameter varies with a change in zoom or focus and is
unknown in the absence of calibration. The principal point gives the coordinates of
the intersection of the optical axis with the image plane. This point is not necessarily
at the image center due to optical misalignments and other manufacturing defects.
Its location is also known to vary with the focal length. Therefore, the principal

6
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point is also generally not known. The remaining two parameters, the skew and
the aspect ratio, describe the pixel shape. These parameters remain quite stable
despite a change in the zoom or focus. Moreover, most cameras in the market are
manufactured such that the pixels are usually (close to) square, i.e. the skew is zero
and the aspect ratio is one. Thus, these two parameters can safely be assumed to be
known in practice.

Image acquisition priors: When capturing images for 3D reconstruction, the
camera motion is implicitly constrained by the requirement to match feature points;
there must be sufficient overlap between the images to compute feature correspon-
dences. To this end, SfM packages generally recommend capturing images smoothly
in a loop around the scene and changing the viewpoint mildly7. Usually, such cam-
era motion is naturally performed when capturing the scene in a video. Thus, some
knowledge, albeit vague, of the camera motion is implicitly available from the im-
age acquisition process.

Based on the priors described above, partial knowledge of the camera geometry
or motion is generally available in the uncalibrated SfM context. While we were
quite specific about the partial camera geometry knowledge, the motion knowledge
is yet to be made more explicit. In this thesis, we aim to identify and exploit such
partial camera knowledge in camera autocalibration. We detail our contributions in
this regard in the following section.

1.3 Contributions

We describe here the contributions of this thesis in exploiting partial knowledge of
the camera geometry and motion in camera autocalibration.

7 https://www.3dflow.net/technology/documents/
photogrammetry-how-to-acquire-pictures/
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1.3.1 Exploiting partial camera geometry knowledge

From the discussion in Section 1.2, most modern cameras have square pixels. Such
cameras are said to have a Euclidean Image Plane (EIP) [Heyden and Åström 1997].
Hence, a camera can safely be assumed to have an EIP. While this practical assump-
tion has been used in several camera autocalibration methods, it is yet to be fully
exploited in stratified autocalibration. Our main contribution is to formulate a new
quartic polynomial equation in the coordinates of the plane at infinity assuming a
camera with EIP and constant intrinsic parameters. This polynomial, referred to
as the EIP polynomial, is obtained for each image pair. Combined with an existing
pairwise quartic equation, the so-called modulus constraint [Pollefeys and Van Gool
1999], each image pair thus provides two constraints on the location of the plane at
infinity. Two image pairs are then sufficient to obtain a unique solution in general.
We propose a stratified camera autocalibration method that uses the EIP polyno-
mial in conjunction with the modulus constraint to estimate the plane at infinity.
Our experiments with synthetic data and real images show the benefits of the EIP
polynomial in our proposed method and the improved reliability compared to the
state-of-the-art methods, especially with short image sequences. Our work on ex-
ploiting the EIP assumption in stratified camera autocalibration has been published
in the British Machine Vision Conference (BMVC) 2020:

– Devesh Adlakha, Adlane Habed, Fabio Morbidi, Cédric Demonceaux, and
Michel de Mathelin (2020). “Stratified autocalibration of cameras with Eu-
clidean Image Plane". In: British Machine Vision Conference (BMVC).

1.3.2 Exploiting partial camera motion knowledge

As discussed in Section 1.2, there is an implicit knowledge of the camera motion
in the image-based 3D reconstruction context, specifically, that the viewpoint is
changed mildly when capturing images. We formalize this vague camera motion
knowledge and present some contributions in exploiting it in stratified camera au-
tocalibration. We consider the case of a moving camera with constant intrinsic
parameters and assume that a vague knowledge of the relative camera orientation
angle is available. Under these assumptions, we derive two new sets of pairwise
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1.3 Contributions

constraints on the location of the plane at infinity. The constraints in the first set
are convex and formulated as Linear Matrix Inequalities (LMIs). We show that the
plane at infinity belongs to one of two convex sets, defined by the LMIs, depending
on whether the relative orientation angle8 θij between a camera pair (i, j) is either
|θij| ≤ 120◦ or |θij| ≥ 120◦. These two convex sets describe the geometric rela-
tionship between the plane at infinity and new geometric objects, the hodographs

of the horopter. Furthermore, a vague knowledge of the relative orientation angle,
i.e. |θij| ≤ 120◦ or |θij| ≥ 120◦, between a set of a camera pairs can be exploited
with the LMI constraints to recover a new quasi-affine reconstruction of a scene
that we refer to as a QUARCH: QUasi-Affine Reconstruction with respect to Cam-
era centers and the Hodographs of horopters. A QUARCH is a specialization of
the existing QUARC (QUasi-Affine Reconstruction with respect to Camera cen-
ters) [Nistér 2004b]. In the considered scenario of image-based 3D reconstruction,
the assumption of |θij| ≤ 120◦ is typically satisfied between consecutive views, and
we exploit this knowledge to obtain a QUARCH.

The second set of constraints on the plane at infinity are non-convex and for-
mulated as polynomial inequalities. These exploit tighter knowledge of the relative
orientation angle, i.e. |θij| < 90◦/k, where k is a positive integer. Unlike the convex
constraints, these are derived purely algebraically using the Hurwitz stability crite-

rion. The polynomial inequalities are of degree 2k, thus increasingly tighter ori-
entation knowledge leads to higher degree polynomials. When combined with the
convex constraints, these inequalities allow us to recover a specialized QUARCH.
To obtain this reconstruction tighter yet still vague knowledge of |θij| < 90◦/k for
some positive integer k is required for a set of camera pairs.

We propose a stratified camera autocalibration method that exploits a vague cam-
era orientation knowledge to locate the plane at infinity. Our method relies on a
QUARCH as a first step towards recovering the affine and metric reconstructions.
The final main contribution is a constrained Levenberg-Marquardt (LM) method
for nonlinear optimization subject to LMI constraints. This method ensures that
the QUARCH constraints are satisfied during the local optimization used to locate
the plane at infinity. Our experiments confirm the benefits of incorporating the

8 The relative camera orientation angle θij is about an arbitrary axis in the axis-angle representation
and θij ∈ [−180◦, 180◦].
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orientation-based constraints. We present experimental evaluations using both syn-
thetic data and real images.

Part of the contributions described above have been published in the IEEE/CVF
International Conference on Computer Vision (ICCV) 2019:

– Devesh Adlakha, Adlane Habed, Fabio Morbidi, Cédric Demonceaux, and
Michel de Mathelin (2019). “QUARCH: A new quasi-affine reconstruction
stratum from vague relative camera orientation knowledge". In: International

Conference on Computer Vision (ICCV).

These include the convex constraints, their geometric interpretation through the
hodographs, the QUARCH stratum, and the constrained LM method. The non-
convex constraints and the specialized QUARCH extend the published results. A
paper synthesizing these contributions is currently in preparation and planned to be
submitted to either the International Journal of Computer Vision (IJCV) or the IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

1.4 Organization

The rest of this manuscript is organized as follows.

Chapter 2 reviews some background concepts of multi-view geometry and surveys
the relevant camera autocalibration literature.

Chapter 3 presents our work on exploiting a partial knowledge of the camera ge-
ometry in camera autocalibration.

Chapter 4 presents our work on exploiting a partial knowledge of the camera mo-
tion in camera autocalibration.

Chapter 5 discusses the research contributions of this thesis and some future re-
search directions.
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1.4 Organization

Appendix A provides an overview of some optimization tools that we rely on
throughout this thesis.

Appendix B provides the expression of a line projection matrix.
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This chapter reviews some relevant background concepts in 3D computer vision. We de-
scribe the pinhole model of a camera, followed by the geometric relations between two
views of a scene, including a planar one. We then discuss the recovery of a 3D reconstruc-
tion from multiple uncalibrated images of a scene. The different reconstructions that can
be obtained are detailed. Finally, we describe the camera autocalibration problem and the
geometric entities involved and then survey the relevant literature.
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2 Uncalibrated 3D Vision

2.1 Introduction

A central problem in computer vision is to recover the 3D structure and cameras
from multiple images of a scene. With calibrated cameras, a reconstruction up to
some unknown displacement and scale can be obtained. With uncalibrated cam-
eras, a key result is that the 3D points and cameras can be recovered but only up to
a projective ambiguity. With additional information, the ambiguity can be reduced
to a more specialized transformation. These aspects of multi-view geometry are de-
scribed in this chapter. We then detail the camera autocalibration problem that aims
to retrieve the camera calibration from uncalibrated images. The autocalibration
literature is also surveyed.

The theory of multi-view geometry has been studied extensively in computer
vision in the last few decades. This is now a mature subject, and the fundamental
results are documented in several texts [Faugeras et al. 2001; Hartley and Zisserman
2004; Ma et al. 2004]. This chapter aims to review the results from the literature
that are relevant to our contributions (presented in Chapters 3 and 4). We assume a
basic working knowledge of projective geometry. The books mentioned above are
an excellent reference for such background material. The notation and presentation
in this chapter are also inspired by [Hartley and Zisserman 2004].

Organization: The rest of this chapter is divided into two main sections. Sec-
tion 2.2 reviews some notions of multi-view geometry, and Section 2.3 is devoted
to camera autocalibration. Section 2.4 concludes this chapter.

2.2 Multi-view 3D reconstruction

Starting from the perspective projection model, we progress toward the two-view
relationships and, eventually, the multi-view reconstruction problem.

2.2.1 Perspective projection

We follow the pinhole model of a camera. In this model, a camera is given by its
center of projection and an image plane. A scene point X with homogeneous co-
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2.2 Multi-view 3D reconstruction

ordinates X (a 4-vector) projects to a point x in the image plane with homogeneous
coordinates x (a 3-vector). This projection is given by,

x ' PX, (2.1)

where P is a 3 × 4 projection matrix that represents the camera and ' denotes the
equality up to scale. The perspective image projection is thus a linear transforma-
tion. The projection matrix P can be factored as follows,

P = [ KR | − KRt ], (2.2)

where the rotation matrix R and the translation vector t relate the world reference
frame to the camera reference frame. These are known as the camera extrinsic
parameters. The matrix K is upper-triangular and contains the camera intrinsic pa-
rameters,

K =

fx γ u

0 fy v

0 0 1

, (2.3)

that include the focal lengths (fx, fy), the principal point coordinates (u, v), and
the skew γ. These parameters depend only on the internal geometry of the camera.
The ratio τ = fx/fy is known as the aspect ratio. The projection matrix P is of
row rank 3. Any nonzero 4-vector C of its right null space represents the camera
center C (i.e. the center of projection). Writing P = [p1 p2 p3 p4], where pi is the
ith column of P, an algebraic expression of C is given by,

C =


det([p2 p3 p4])

− det([p1 p3 p4])

det([p1 p2 p4])

− det([p1 p2 p3])

. (2.4)

By C we hereafter refer to this exact expression.
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2 Uncalibrated 3D Vision

2.2.2 Planar projection

Points on a scene plane Π map to an image plane via a projective transformation
called a (plane) homography. A homography is represented by a nonsingular 3× 3

matrix H. In the following, we give the exact expressions of homography matrices
that we use throughout.

Inter-image homography: An inter-image homography maps image projections
of co-planar scene points from one image to another. Consider projection matrices
of the form, Pi = [ Ai | ai ] with A1 = I3 and a1 = 03, where Ai is a 3 × 3 matrix,
ai is a 3-vector, I3 is the 3 × 3 identity matrix, and 03 the 3-vector of zeros. It was
shown in [Habed et al. 2012] that given Pi, all inter-image homographies induced
by planes not containing the origin of the reference frame are linear functions of a
real 3-vector π,

Hij = AjA
∗
i − Aj[ π ]× A

ᵀ
i [ ai ]ᵀ× − ajπ

ᵀA∗i for all i 6= j, (2.5)

where A∗ is the adjugate of A (the transpose of the cofactor matrix) and [ π ]×

denotes the skew-symmetric matrix associated with the cross-product of vector π.
The more usual forward, H1i = Ai − aiπ

ᵀ, and inverse, Hi1 = A∗i − [ π ]×A
ᵀ
i [ ai ]ᵀ×,

mappings relating any view i and the reference image can be extracted from (2.5).
Note that,

Hi1 = H∗1i = det(H1i)H
−1
1i , (2.6)

where det(H1i) is the determinant of H1i, and that Hij in (2.5) is obtained through
Hij = H1jHi1.

Infinite homography: For a fixed π, all Hij represent inter-image homographies
induced by the same plane. In particular, for some appropriate π = π∞, the inter-
image homograhies expressed by (2.5) and denoted hereafter by H∞ij , are those
induced by the plane at infinity Π∞. Such a homography H∞ij is referred to as an
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2.2 Multi-view 3D reconstruction

infinite homography. It is distinctively independent of the camera translation. In
particular, when the camera intrinsic parameters are constant,

H∞ij = AjA
∗
i − Aj[ π∞ ]× A

ᵀ
i [ ai ]ᵀ× − ajπ

ᵀ
∞ A∗i , (2.7a)

= λ2
iλj KRij K

−1, (2.7b)

for all i 6= j, where Rij is the rotation matrix between cameras i and j, and K is
the intrinsic parameters matrix. The scalar λi is such that H∞1i = λiKR1i K

−1 with
λ1 = 1.

2.2.3 Epipolar geometry

The epipolar geometry describes the geometric relations between two views of the
same scene. This geometry is encapsulated in the so-called Fundamental and Es-
sential matrices.

Fundamental matrix: Suppose a scene point X projects to a point x1 with co-
ordinates x1 in image 1, and to a point x2 with coordinates x2 in image 2. The
corresponding image projections x1 and x2 satisfy the so-called epipolar constraint,
given by,

x>2 F12x1 = 0, (2.8)

where F12 is a 3 × 3 matrix of rank 2 known as the Fundamental matrix. Geomet-
rically, equation (2.8) imposes the constraint that the corresponding point of x1 in
the second image lies on a line. This line, known as the epipolar line, is given by
F12x1. A similar relationship holds for the corresponding point of x2 in the first
image, given by F21 = F>12. Each image point correspondence provides one linear
equation in the entries of F12 from (2.8). With at least eight such correspondences,
F12 can be estimated linearly. Note that only the image correspondences are used,
i.e. no knowledge of the cameras or the scene is required. The details of this linear
eight-point algorithm are given in [Hartley and Zisserman 2004, Ch. 11]. Finally,
the Fundamental matrix can be expressed as [Hartley and Zisserman 2004, Result
9.1],

F12 ' [e12]×H12, (2.9)
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where e12 is the epipole in the second image, i.e. the projection of the first camera
on the second image plane, and H12 is the inter-image homography induced by any
plane Π , including the plane at infinity Π∞.

Essential matrix: When the cameras are calibrated, the epipolar geometry is de-
scribed by a specialization of the Fundamental matrix known as the Essential ma-
trix. The Essential matrix E12 is related to the Fundamental matrix F12 as,

E12 ' K>2 F12K1, (2.10)

where K1 and K2 are the calibration matrices of the first and second cameras, re-
spectively. The Essential matrix inherits the rank 2 property from the Fundamental
matrix. Its distinguishing property is that its two nonzero singular values are equal.
The Essential matrix verifies the epipolar constraint for image points expressed in
normalized image coordinates, i.e. for K−1

1 x1 and K−1
2 x2.

2.2.4 Projective reconstruction

We are interested here in recovering the camera projection matrices and the scene
structure from multiple uncalibrated images. We describe a factorization approach
to this end.

Factorization-based reconstruction: Consider m scene points Xj imaged by n
cameras with projection matrices Pi. The image projections xij are given by,

λijxij = PiXj, i = 1, . . . , n, j = 1, . . . ,m, (2.11)

where λij are the projective scale factors, referred to as the projective depths. The
goal is to estimate the projection matrices Pi and the coordinates Xj of the scene
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points from the image measurements xij . The projection equations can be written
in matrix form as folllows,

λ11x11 λ12x12 . . . λ1mx1m

λ21x21 λ22x22 . . . λ2mx2m

...
... . . . ...

λn1xn1 λn2xn2 λnmxnm

 =


P1

P2

...
Pn


[
X1 X2 . . . Xm

]
. (2.12)

The matrix on the left-hand side in (2.12) is known as the measurement matrix, and
we denote it by W. Assuming that W is known, it can be factored, as in (2.12),
into the product of a 3n× 4 matrix stacking all Pi and a 4×m matrix stacking the
coordinate vectors Xj of all the scene points. We see then that W is of rank 4. With
noisy measurements, this will usually not be the case, so we can manually set all
but the first four singular values to zero. By the singular value decomposition of this
rank-4 W, we have W = UDV>. The camera projection matrices and scene points
can then be recovered from this decomposition as,[

P>1 P>2 . . . P>n

]>
= UD,

[
X1 X2 . . . Xm

]
= V>. (2.13)

Note that the cameras and the points are reconstructed only up to a projective trans-
formation. This means that a reconstruction comprising PiH and H−1Xj , where H

is a projective transformation, is also a valid factorization of W. In other words,
as the image projections remain the same with projection matrices PH and point
coordinates H−1Xj , this reconstruction is an equally valid factorization of the mea-
surement matrix. Such a reconstruction is related to the actual scene by a projective
transformation, hence it is referred to as a projective reconstruction.

Estimating the projective depths: The projective depths λij are, in fact, not
known and must be estimated. Different strategies have been proposed in the liter-
ature to recover coherent projective depths. In [Sturm and Triggs 1996], they are
estimated using Fundamental matrices. A projective reconstruction can then be ob-
tained through factorization. Conversely, when Pi and Xj are known, the depths
λij can be recovered linearly. This prompted an iterative version of [Sturm and
Triggs 1996] that alternates between computing the projective reconstruction and
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the depths [Triggs 1996]. The projective depths can be initialized using Funda-
mental matrices or by setting them arbitrarily, typically as λij = 1 for all i and
j. Several variants of this iterative algorithm have been proposed [Mahamud and
Hebert 2000; Mahamud et al. 2001]. The convergence of such algorithms was an-
alyzed in [Oliensis and Hartley 2007]. The authors showed that these algorithms
converge to the trivial solution. They also proposed an extension of the original
algorithm, minimizing a regularized cost, that was proven to converge and avoid
trivial solutions.

Practical considerations: Appropriately conditioning the data is essential for
factorization-based methods. Different normalizations have been used in the lit-
erature, and some details can be found in the works cited above. The estimated
projective reconstruction is usually refined through bundle adjustment [Triggs et
al. 1999]. Factorization is an elegant solution to compute an initial projective re-
construction. Its severe limitation, however, is the visibility constraint that all the
points are viewed in all the images. More recent methods [Magerand and Bue 2018;
Kasten et al. 2019] deal with missing data, outliers, and large-scale reconstructions.

2.2.5 Reconstruction strata

The previous section showed a key result in uncalibrated computer vision: from
point correspondences across multiple uncalibrated images alone, a reconstruction
up to a projective transformation can be recovered. This result is for the most gen-
eral case, where only the point matches between images are known. More special-
ized reconstructions can be recovered with additional information. In this section,
we describe the different reconstruction strata, their properties, and the informa-
tion required to compute the reconstructions. We focus, in particular, on the forms
of the projection matrices in the different strata. In the following, we describe the
projective stratum and then progress to the more specialized affine and metric strata.

The projective stratum

A projective reconstruction of a scene differs from a metric and an affine one by a
projective transformation. Therefore, it only preserves properties invariant to pro-
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jective transformations, such as collinearity and coplanarity. The Euclidean notions
of angles and lengths are lost. In a projective reference frame, the canonical form
of projection matrices is,

P1 ' [ I3 | 03 ],

Pi ' [ H1i | e1i ], i = 1, . . . , n,
(2.14)

where H1i is a homography between images 1 and i induced by an arbitrary plane
Π , and e1i is the epipole in the ith image. Projection matrices of the form (2.14)
can be computed from point correspondences across uncalibrated images. Note that
the reference frame is attached to the first camera. We assume this to be the case
throughout the present section.

The affine stratum

Given a projective reconstruction computed from uncalibrated images, an affine
reconstruction can be recovered by locating the plane at infinity Π∞. In an affine
reference frame, Π∞ is at its canonical position given by the coordinates (0>3 , 1)>.
By identifying Π∞ in a projective reconstruction and bringing it to its canonical
position, the projective reconstruction can be transformed to affine. Assuming Π∞

has the coordinates
(
π>∞, 1

)> in a projective reference frame, this transformation is
of the form,

HPA =

[
I3 03

−π>∞ 1

]
. (2.15)

By applying this transformation to the projection matrices (2.14), we obtain the
canonical form of the affine projection matrices,

PA
1 ' [ I3 | 03 ],

PA
i ' [ H∞1i | e1i ], i = 1, . . . , n,

(2.16)

where H∞1i is the inter-image homography induced by Π∞, see (2.7). The scene
points transform via H−1

PA . An affine reconstruction of a scene differs from a metric
one by an affine transformation. It preserves properties invariant to affine transfor-
mations, such as parallelism.
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The metric stratum

A metric reconstruction differs from the actual scene by a metric transformation. It
preserves metric properties, including angles and length ratios. Given affine projec-
tion matrices (2.16), the transformation taking them to a metric reference frame is
of the form,

HAM =

[
K1 03

0>3 1

]
. (2.17)

where K1 is the calibration matrix of the reference camera. The canonical form of
the metric projection matrices is then,

PM
1 ' [ K1 | 03 ],

PM
i ' [ KiR1i | e1i ], i = 1, . . . , n,

(2.18)

where R1i is the rotation matrix between the reference and the ith camera. A further
specialization is the Euclidean stratum, where additional properties such as lengths
are preserved. Without information on the scale of the scene, only a metric recon-
struction can be recovered (with a calibrated camera or via autocalibration).

2.2.6 Quasi-affine reconstruction

The previous section presented the three main reconstruction strata, i.e. projective,
affine, and metric. In this section, we present another one that lies between the pro-
jective and affine strata, the so-called quasi-affine stratum. This stratum is particu-
larly relevant to our contributions in Chapter 4, and so we describe it in more detail
here. Roughly speaking, a quasi-affine reconstruction is a projective reconstruction
that satisfies some affine properties. Hence, it is closer to an affine reconstruction
than an arbitrary projective one. We describe two quasi-affine reconstructions that
have been proposed in the literature. The first one [Hartley and Zisserman 2004]
preserves the convex hull of the camera centers and that of the scene points, while
the second one [Nistér 2004b] preserves the convex hull of the camera centers alone.
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Quasi-affine with respect to cameras and scene points

Visible points in an image originate from scene points lying in front of the camera.
This constraint is not a given in a projective reconstruction. Hartley introduced the
theory of chirality [Hartley and Zisserman 2004, Ch. 21], i.e. the property that dis-
tinguishes the points lying in front of a camera from those lying behind it. By taking
into account the chirality of visible points, he introduced a specialized projective re-
construction, referred to as a quasi-affine reconstruction. Such a reconstruction can
be obtained by solving a linear programming problem. In the following, we provide
an overview of the computation of a quasi-affine reconstruction. We also describe
how the location of Π∞ can be bounded in a quasi-affine reconstruction.

Sign correction: Consider a projective reconstruction with projection matrices
Pi and scene points with coordinates Xj , where i = 1, . . . , n and j = 1, . . . ,m.
The image projections xij are given by, λijxij = PiXj , where λij is the projective
scale factor, as in (2.11). The goal is to upgrade this projective reconstruction to
quasi-affine. To do so, the first step is to correct the signs of the projection matrices
and the points. Assuming all the scene points are visible in all the images1, i.e. all
the points lie in front of all the cameras, λij should have the same sign for all i
and j, say λij > 0. This is not guaranteed to be the case in an arbitrary projective
reconstruction. The signs of each Pi and Xj can be corrected such that λij > 0. This
is only a matter of multiplying some Pi and Xj by−1, as described next. Let P̃i and
X̃j be the sign-corrected projection matrices and point coordinates. These can be
obtained from Pi and Xj as follows. Fixing one camera, say P̃1 = P1, set X̃j = Xj

or X̃j = −Xj such that P̃1X̃j = λ1jx1j with λ1j > 0 for all j. Similarly, a point can
be used to correct the signs of all Pi to obtain P̃i. In the following, we drop the tilde
notation and use Pi and Xj as the sign-corrected quantities.

Chirality inequalities: To transform a (sign-corrected) projective reconstruction
to quasi-affine, a plane not cutting through the set of camera centers and the set
of scene points must be identified. Such a plane Π with coordinates Π acts as a

1 We make this assumption only for convenience in the explanation.
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surrogate for the unknown Π∞, and it satisfies [Hartley and Zisserman 2004, Sec.
21.7],

α
(
Π>Ci

)(
Π>Xj

)
> 0, i = 1, . . . , n, j = 1, . . . ,m, (2.19)

where Ci is the coordinate vector of the ith camera’s center, and α is the sign of
the determinant of the quasi-affine upgrade transformation. There are two possible
realizations as α = ±1. As Π is homogeneous, we can assume α

(
Π>C1

)
> 0.

Thus, the following inequalities are obtained,

αΠ>Ci > 0, i = 1, . . . , n

Π>Xj > 0, j = 1, . . . ,m.
(2.20)

Inequalities (2.20) are known as the chirality inequalities. A plane satisfying these
inequalities preserves the convex hull of the set of camera centers and the set of
scene points, though not necessarily of their union. The value of α is not known,
and so solutions for the two cases α = 1 and α = −1 must be determined.

Quasi-affine upgrade: By identifying a plane satisfying the chirality inequali-
ties (2.20), a quasi-affine reconstruction can be recovered from a projective one. As
the inequalities are linear, a Linear Programming (LP) problem can be formulated
to determine such a plane. Hartley proposed the following LP problem,

max
Π, δ

δ

s.t. αΠ>Ci > δ, i = 1, . . . , n,

Π>Xj > δ, j = 1, . . . ,m,

− 1 ≤ (Π)k ≤ 1, k = 1, . . . , 4,

(2.21)

where δ is a scalar. Problem (2.21) maximizes the extent to which each of the
chirality inequalities is satisfied. This prevents the plane from being arbitrarily close
to the camera centers and the scene points. The last inequality in (2.21) ensures
that the problem is bounded. The LP problem (2.21) is solved for both α = 1
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and α = −1. Provided the last coordinate of the estimated plane is nonzero, the
following transformation,

Hα =

[
±I3 03

Π>

]
, (2.22)

upgrades the scene points to a quasi-affine reference frame, where Hα is such that
the sign of its determinant is α. The projection matrices are transformed using its
inverse. If problem (2.21) provides a solution for both α = 1 and α = −1, then two
realizations are obtained.

Bounding the plane at infinity: In a quasi-affine reconstruction, bounds on the
coordinates of Π∞ can be obtained. To do so, the points and cameras are first
translated such that the origin is inside their convex hull. As a result, Π∞ cannot
pass through the origin. Otherwise, it crosses the convex hull. The last coordinate
of Π∞ is then nonzero and can be fixed to one. Upper and lower bounds on the
other coordinates can be obtained by minimizing and maximizing each one subject
to the chirality inequalities, i.e. by solving six LP problems. For the kth coordinate
of Π∞ (k = 1, 2, 3), the LP problems are,

min /max (Π)k

s.t. Π>Ci > 0, i = 1, . . . , n,

Π>Xj > 0, j = 1, . . . ,m.

(2.23)

The location of Π∞ is thus confined to a bounded volume. Since all the points
and camera centers are on one side with respect to the sought plane, note that the
chirality inequalities (2.20) are written as in (2.23). Details of the recommended
data preprocessing can be found in [Hartley and Zisserman 2004].

Quasi-affine with respect to cameras

Nistér proposed to compute a quasi-affine reconstruction with respect to cameras
alone [Nistér 2004b]. The resulting reconstruction is referred to as a QUARC:
QUasi-Affine Reconstruction with respect to Camera centers. A QUARC preserves
the convex hull of the set of camera centers. The argument for using only the
cameras is that they are more reliable than the scene points. Projection matrices
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2 Uncalibrated 3D Vision

are generally estimated using many feature correspondences and robust algorithms.
Relying on every single scene point when solving the chirality inequalities, on the
other hand, can lead to an infeasible problem due to erroneous or inaccurate points.
In [Nistér 2004b], a robust method for correcting the signs of the cameras was also
introduced. The steps to compute a QUARC from a projective reconstruction are
summarized as follows:

(i) Correct the signs of the projection matrices as P̃i = ζiPi, where ζi ∈ {−1, 1}
and i = 1, . . . , n, such that visible scene points in pairs of images lie on the
same side with respect to the cameras.

(ii) Determine a plane Π that satisfies the chirality inequalities for the camera
centers, i.e. Π>Ci > 0 for i = 1, . . . , n.

(iii) Upgrade the projective reconstruction to a QUARC using the estimated Π .
The scene points are transformed using (2.22) with I3 in the top-left block.
The projection matrices are transformed by the inverse of this transformation.

The robust method for sign correction and the plane computation step, i.e. steps (i)

and (ii) above, are detailed next.

Robust sign correction: Rather than relying on a single point to correct the signs
of the cameras, as was described previously, Nistér proposed a robust method that
corrects them such that a majority of points lie on the same side. Setting ζ1 = 1, the
signs for the remaining cameras are computed as,

ζi = ζi−1 sgn

(
1

2
+

m∑
j=1

sgn
(
(PiXj)3(Pi−1Xj)3

))
, i = 2, . . . , n, (2.24)

where we added the 1/2 term in (2.24) to prevent ζi from being zero. Note that we
assumed, again, that all the points are visible in all images, but this assumption is
not necessary. The sign-corrected projection matrices are then obtained as P̃i = ζiPi

for all i. We again drop the tilde notation in the following.

Computing a QUARC plane: Given sign-corrected projection matrices, a plane
that does not cut through the convex hull of the camera centers can be used to re-
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cover a QUARC. Such a plane is referred to as a QUARC plane. It can be computed
by solving the following LP problem,

max
Π, δ

δ

s.t.
Π>Ci
‖Ci‖

> δ, i = 1, . . . , n,

− 1 ≤ (Π)k ≤ 1, k = 1, . . . , 4,

(2.25)

where the vectors Ci are normalized to unit norm. Note the similarity between
problems (2.25) and (2.21).

2.3 Camera autocalibration

Camera autocalibration entails retrieving the camera intrinsic parameters from mul-
tiple uncalibrated images of an unknown scene. Once the intrinsic parameters are
obtained, a metric reconstruction of the imaged scene can be computed. Alterna-
tively, from image point correspondences across uncalibrated images alone, a pro-
jective reconstruction can first be computed. The task at hand is then to recover
a metric reconstruction from the projective one. Methods have been proposed for
both these approaches. In this section, we review the basics of camera autocalibra-
tion and survey some of the relevant results in the literature. In Section 2.3.1, we
establish the autocalibration problem statement in terms of recovering a metric re-
construction from a projective one. In Section 2.3.2, we describe the key geometric
object in autocalibration, the so-called Absolute Conic, and review some funda-
mental relations. In Sections 2.3.3 and 2.3.4, we discuss two broad categories of
autocalibration methods: direct and stratified methods. Finally, in Section 2.3.5 we
survey autocalibration methods incorporating knowledge of the camera motion.

2.3.1 Problem statement

We consider a projective reconstruction with projection matrices Pi, i = 1, . . . , n

and scene points Xj , j = 1, . . . ,m. Such a reconstruction can be computed from
multiple uncalibrated images, as described in Section 2.2.4. We assume the refer-
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ence frame is attached to the first camera, i.e. P1 = [ I3 | 03 ]. This can be done by
post-multiplying each projection matrix Pi by the inverse of the following matrix,[

P1

0>3 1

]
, (2.26)

To upgrade Pi and Xj to their metric counterparts PM
i and XM

j , respectively, we seek
a projective transformation H such that,

PM
i = PiH

−1, i = 1, . . . , n,

XM
j = HXj, j = 1, . . . ,m.

(2.27)

where H is a nonsingular 4 × 4 matrix. It has the following form [Hartley and
Zisserman 2004, Result 19.1],

H =

[
K−1 03

π>∞ λ

]
, (2.28)

where K is the calibration matrix of the first camera, π∞ contains the first three co-
ordinates of the plane at infinity Π∞, i.e. Π∞ =

(
π>∞, 1

)>, and λ is a nonzero scalar
that fixes the scale of the reconstruction. As the scale of a metric reconstruction
can be fixed arbitrary, we set λ = 1 in the following. Thus, upgrading a projective
reconstruction to metric involves estimating Π∞ and the intrinsic parameters of the
reference camera.

2.3.2 Absolute conic

Geometrically, upgrading a projective reconstruction to metric is equivalent to iden-
tifying a special virtual conic on Π∞ that is referred to as the Absolute Conic (AC)
and denoted by Ω∞. In a metric reference frame, a point X with coordinates
X = (X1,X2,X3, 0)> lying on Ω∞ verifies the equation,

X>Ω∞X = X2
1 + X2

2 + X2
3 = 0, (2.29)
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Figure 2.1: The Absolute Conic (AC) and its image projection. Left: the projection of the
AC on the image plane. Right: A line tangent to the image of the AC (IAC).
The lines tangent to the IAC comprise the dual image of the AC (DIAC).

where Ω∞ is a 3 × 3 symmetric matrix representing the AC locally on Π∞. The
metric representation of the AC is therefore, Ω∞ = I3. Furthermore, X projects on
the image as a point x with coordiantes x that verifies,

x>ωx = 0, (2.30)

where ω is a 3× 3 symmetric matrix given as,

ω = K−>K−1. (2.31)

The matrix ω represents the image of the AC (IAC). The IAC is a virtual image
conic. Crucially, its matrix ω depends solely on the intrinsic parameters of the
imaging camera. Figure 2.1 (left) shows an illustration of the AC and its image
projection. The dual of the IAC (DIAC) is an imaginary line conic formed by the
set of lines tangent to w. Figure 2.1 (right) shows an illustration of one such tangent
line that back-projects to a plane that is tangent to the AC. The DIAC is denoted by
ω∗ and represented by the matrix ω−1, and as such,

ω∗ = KK>. (2.32)
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The matrices ω and ω∗ are symmetric and positive definite. The intrinsic parameters
matrix K can be extracted from ω∗ through its Cholesky factorization. Thus, locat-
ing the IAC or the DIAC is equivalent to recovering the camera intrinsic parameters.

As Ω∞ lies on Π∞, its projections transfer from one image to another via the
inter-image homography induced by Π∞. The IAC ω1 in the first image is mapped
to ωi in image i via the infinite homography H∞1i, and similarly the DIAC ω∗1 in the
first image is mapped to ω∗i in image i. These relations are given as,

H−>∞1i ω1 H
−1
∞1i ' ωi, (2.33a)

H∞1i ω
∗
1 H
>
∞1i ' ω∗i . (2.33b)

Note that (2.33b) is simply the inverse of (2.33a). Given sufficiently many images
and known infinite homographies (i.e. Π∞ is identified), the equations (2.33) can
be used to linearly estimate the IAC or the DIAC and thereby recover the intrinsic
parameters. We give further details of this approach in Section 2.3.4. In general,
the infinite homographies are not known and must be determined by locating Π∞.

2.3.3 Direct autocalibration

There are two main approaches in direct camera autocalibration. In the first ap-
proach, methods require the epipolar geometry between pairs of views to be known,
and they solve directly for the intrinsic parameters. The earliest autocalibration
methods in computer vision belong to this approach. In the second approach, meth-
ods instead require a projective reconstruction to be computed. They then directly
upgrade this reconstruction to a metric one by simultaneously estimating Π∞ and
the camera intrinsic parameters. In this section, we describe the key autocalibration
constraints that have been used in these two approaches and discuss some rele-
vant methods in the literature. We present the so-called Kruppa’s equations and
some methods relying on them. These belong to the first kind of approach. We then
present two geometric objects that have been used in direct autocalibration, the Dual
Absolute Quadric (DAQ) and the Absolute Line Quadric (ALQ). We discuss their
properties and some methods relying on them. These fit into the second approach
discussed above. There are other well-known methods, notably those based on the
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essential matrix [Mendonça and Cipolla 1999; Fusiello 2001; Fusiello et al. 2004],
that we do not discuss here.

Kruppa’s equations

The Kruppa’s equations refer to two-view autocalibration constraints introduced
in [Faugeras et al. 1992; Maybank and Faugeras 1992]. The equations are derived
from the work of Erwin Kruppa2 [Kruppa 1913], and are generally considered the
first autocalibration constraints used in computer vision. For images 1 and 2, the
Kruppa’s equations are,

F12ω
∗
1F
>
12 ' [e12]×ω

∗
2 [e12]×, (2.34)

where F12 is the Fundamental matrix between the two views, and e12 and ω∗2 are
the epipole and DIAC, respectively, in the second image. Equation (2.34) can be
obtained from (2.33b) by multiplying on the left and right by the matrix [e12]×,
noting that F12 = [e12]×H∞12. As such, only the epipolar geometry is required to use
these equations. Roughly speaking, they represent the correspondence of epipolar
lines tangent to ω∗1 and ω∗2 . A more precise description is given in [Hartley and
Zisserman 2004, Sec. 19.4]. Hartley presented a simplified form of (2.34) in terms
of the singular value decomposition of the Fundamental matrix [Hartley 1997a].

To use the Kruppa’s equations or their simplified form for autocalibration, most
methods assume a moving camera with constant intrinsic parameters. Each im-
age pair provides two independent quadratic equations in ω∗. Hence, at least three
images are required to obtain a finite number of solutions for the five unknowns
in ω∗. In [Faugeras et al. 1992], a square system of equations was solved using
homotopy continuation [Verschelde 1999; Sommese et al. 2005]. The overdeter-
mined system of equations was solved using nonlinear least-squares optimization
in [Zeller and Faugeras 1996]. For two views with an unknown and varying fo-
cal length but otherwise known intrinsic parameters, a closed-form solution for the
focal length was derived in [Bougnoux 1998]. The more general varying parame-
ters case was addressed using the simplified Kruppa’s equations in [Lourakis 2000].
With three or more views, a major drawback of using these equations is that there
2 An English translation of his paper is also available [Gallego et al. 2018].
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are degenerate configurations specific to them [Sturm 2000]. The reason is that by
eliminating Π∞ (i.e. H∞1i) from (2.33b), these equations do not enforce a common
support plane for the AC. Hence, the transfer of the DIAC from one image to an-
other via (2.34) is not unique, and so they provide weaker constraints than (2.33b)
and suffer from additional degeneracies.

Dual Absolute Quadric

The Dual Absolute Quadric (DAQ), denoted by Ω∗∞, is the dual of the AC Ω∞.
It is a degenerate quadric in P∗3 consisting of the set of planes tangent to the AC.
Figure 2.1 (right) shows one such tangent plane. The DAQ projects to the DIAC in
the image as,

PiΩ
∗
∞P
>
i ' ω∗i , (2.35)

where Pi is the projection matrix of the ith image and Ω∗∞ is a symmetric 4 × 4

matrix of rank 3 representing the DAQ. In an affine reference frame, the projection
equation (2.35) is equivalent to (2.33b). The matrix Ω∗∞ is of the form,

Ω∗∞ =

[
ω∗1 −ω∗1π∞

−π>∞ω∗1 π>∞ω
∗
1π∞

]
, (2.36)

where ω∗1 is the DIAC in the reference image and the coordinate vector of Π∞ is
Π∞ =

(
π>∞, 1

)>. Depending on its scale, Ω∗∞ is either positive or negative semidef-
inite. The appealing property of Ω∗∞ is that its matrix encodes both Π∞ and the
DIAC ω∗1 . In fact, the coordinate vector of Π∞ is the null space of Ω∗∞. Hence,
determining Ω∗∞ is equivalent to determining both Π∞ and the camera calibration.

The DAQ was first used for camera autocalibration in [Heyden and Åström 1996;
Triggs 1997]. Methods based on the DAQ rely on its projection equation (2.35). To
estimate the DAQ, constraints on the intrinsic parameters, i.e. on ω∗i , are translated
to constraints on Ω∗∞. The case of constant intrinsic parameters has been consid-
ered in [Heyden and Åström 1996; Triggs 1997; Bocquillon et al. 2007; Habed
et al. 2014]. The projection equation (2.35) can also be exploited in the varying
parameters case [Pollefeys et al. 1999; Chandraker et al. 2007]. In [Pollefeys et
al. 1999], the problem is linearized by assuming an image-centered principal point
and neglecting the rank-3 and semidefiniteness constraints in the initial estimation.
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However, linearization leads to artificial degeneracies [Gurdjos et al. 2009]. More
recent works [Bocquillon et al. 2007; Chandraker et al. 2007; Habed et al. 2014]
therefore include the nonlinear rank and semidefiniteness constraints in the opti-
mization. Once Ω∗∞ is estimated, Π∞ and ω∗1 can be recovered and the projective
reconstruction upgraded to a metric one.

Absolute Line Quadric

The set of 3-space lines intersecting the AC form a special object, denoted by Ω̃∞,
that has been referred to as the Absolute Line Quadric (ALQ) [Valdés et al. 2006]
or as the Absolute Quadratic Complex [Ponce et al. 2005]. The lines in the ALQ
intersect an image plane i in ωi. Figure 2.1 (left) shows some of these lines. This
leads to the projection equation,

Mi Ω̃∞M>i ' ωi, (2.37)

where Ω̃∞ is a 6 × 6 symmetric matrix representing Ω̃∞, and Mi is a 3 × 6 line
projection matrix that maps a scene line to its image. A line projection matrix
Mi and the more familiar point projection matrix Pi are conveniently related, and
one can be obtained from the other as, Mi ' [ det(H1i)H

−>
1i | − [e1i]×H1i ], where

Pi = [ H1i | e1i ] and H1i is a 3×3 matrix (see Appendix B for this expression). Line
correspondences are therefore not needed to obtain Mi since Pi can be computed
from point correspondences. The matrix Ω̃∞ has the structure,

Ω̃∞ =

[
ω ω[π∞]×

[π∞]>×ω [π∞]>×ω[π∞]×

]
, (2.38)

where the 4-vector
(
π>∞, 1

)> represents the coordinates of Π∞. It is of rank 3 and
satisfies Ω̃∞ � 0. Furthermore, considering the partitioning of Ω̃∞ into 3×3 matrix
blocks Ω̃11, Ω̃21, and Ω̃22 as,

Ω̃∞ =

[
Ω̃11 Ω̃>21

Ω̃21 Ω̃22

]
, (2.39)
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it was shown in [Ponce et al. 2005] that Ω̃∞ carries the additional property,

tr(Ω̃21) = 0. (2.40)

Further properties and results on the ALQ are given in [Ponce et al. 2005; Valdés
et al. 2006].

Should Ω̃∞ be estimated, both ω and π∞ can be extracted from it, making a
metric upgrade possible. Considering camera i with no skew and unit aspect ratio,
ωi exhibits a simple and convenient form, which with adequate scaling, is given by

ωi =

 1 0 −ui
0 1 −vi
−ui −vi β

, (2.41)

where β = f 2
i + u2

i + v2
i . The following constraints enforcing unit aspect ratio and

the absence of skew are then obtained,

(Mi Ω̃∞Mi
>)11 = (Mi Ω̃∞Mi

>)22,

(Mi Ω̃∞Mi
>)12 = 0,

(2.42)

where the focal length and the principal point are unknown and free to vary. A
linear least-squares solution for Ω̃∞ may be obtained from (2.42) and the trace
property (2.40) using at least 10 images. The rank-3 condition can be enforced
subsequently. However, the solution is not guaranteed to satisfy Ω̃∞ � 0.

2.3.4 Stratified autocalibration

Unlike direct autocalibration methods, stratified methods first recover an affine re-
construction from a projective one by locating Π∞. Once an affine reconstruction
is obtained, the camera intrinsic parameters can be retrieved by solving linear equa-
tions for the IAC or the DIAC. Locating Π∞ reliably and accurately, however, has
proven to be challenging in stratified autocalibration. The equations involved are
highly nonlinear and difficult to solve reliably and efficiently. In this section, we
describe some of the constraints that have been used to estimate Π∞ and discuss
some methods in the literature that rely on these constraints. Most stratified meth-
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ods assume constant camera intrinsic parameters, and we focus on such methods
and the involved constraints. Towards the end of this section, we detail how the
intrinsic parameters can be recovered once Π∞ is located. The discussion in this
section is particularly relevant to our contributions presented in Chapters 3 and 4,
where we introduce new constraints on Π∞ and propose stratified methods to ex-
ploit them.

Modulus constraint

When the camera intrinsic parameters are constant, the inter-image infinite homog-
raphy H∞ij is of the form,

H∞ij = λ2
iλjKRijK

−1, (2.43)

where λi and λj are scalars. As such, H∞ij is similar to a scaled rotation matrix,
and its eigenvalues are,

λ2
iλj{1, cos θij + i sin θij, cos θij − i sin θij}, (2.44)

where θij is the relative orientation angle (about an arbitrary axis in the axis-angle
representation) between the two cameras. Since a rotation matrix has eigenvalues
with unit modulus, those of H∞ij necessarily have equal moduli. In [Pollefeys and
Van Gool 1999], the authors derived a necessary condition on Π∞ for H∞ij to carry
this so-called modulus constraint property. For any two views i and j, this condition
involves the coefficients of the equation,

det(λH∞1i − H∞1j) = ci(π∞)λ3 − tij(π∞)λ2 + tji(π∞)λ− cj(π∞) = 0, (2.45)

where ci and tij are affine functions of Π∞. For H∞ij to satisfy the modulus con-
straint, it was shown in [Pollefeys and Van Gool 1999] that Π∞ must satisfy the
following quartic polynomial equation,

mij(π∞) = ci(π∞)t3ji(π∞)− cj(π∞)t3ij(π∞) = 0, for all i 6= j. (2.46)
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This polynomial can also be derived from (2.7a) and (2.7b). From (2.45), note that,

ci(π∞) = det(H∞1i), i = 1, 2, . . . , n, (2.47a)

tij(π∞) = tr(H∞ij), for all i 6= j. (2.47b)

Furthermore, ci and tij are related to the scaling of the infinite homography as,

det(H∞1i) = λ3
i , (2.48a)

tr(H∞ij) = λ2
iλjaij, (2.48b)

where aij = 1 + 2 cos θij . Equation (2.46) is then obtained from (2.47) and (2.48)
by equating the scalars.

Each image pair provides a quartic polynomial equation in Π∞ from the modulus
constraint. A finite number of candidate solutions for Π∞ can be obtained when
three such polynomials, i.e. as many images, are available. In [Pollefeys and Van
Gool 1999], the polynomials from three image pairs were solved using homotopy
continuation. With more images, an initial solution from homotopy continuation
was refined through nonlinear least-squares optimization. While there are as many
as 64 possible solutions for Π∞ in the minimal case of three views, Schaffalitzky
showed that these can be divided into three sets of 21 and one solution that repre-
sents the trifocal plane, where only one of the three sets is feasible [Schaffalitzky
2000]. This work also showed the connection between the modulus constraint and
the horopter of a camera pair. We discuss the horopter curve and its link with the
modulus constraint in detail in Chapter 4. More recently, a globally optimal method
was presented in [Chandraker et al. 2010] that uses a Branch-and-Bound search to
locate Π∞. Chirality constraints were used to confine the search space for Π∞.
This method also solved the metric upgrade step using a Branch-and-Bound search,
where the positive definiteness of the DIAC was enforced.
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Infinite Cayley Transform

For a camera pair (i, j) with constant intrinsic parameters, the matrix defined as

Q∞ij = λjH∞ij − λiH∞ji, (2.49a)

= λ2
iλ

2
j K[rij]×K

−1, (2.49b)

was introduced in [Habed et al. 2012] and [F. Wu et al. 2013] in the context of
stratified camera autocalibration. This matrix, referred to as the Infinite Cayley

Transform (ICT) in [F. Wu et al. 2013], is similar to the skew-symmetric matrix
[rij]×, defined as,

[rij]× = Rij − R>ij. (2.50)

The matrix [rij]× is equal up to a scale to the Cayley transform of the rotation matrix
Rij [F. Wu et al. 2013]. Thus, while the inter-image infinite homography H∞ij is
similar (up to a scale) to Rij , the ICT Q∞ij is similar (up to a scale) to the Cayley
transform of Rij . Hence, it has been termed as the Infinite Cayley Transform.

The ICT carries interesting properties that allow the derivation of constraints on
Π∞ that are complementary to the modulus constraint [Pollefeys and Van Gool
1999]. For instance, the inequality,

tr(Q∗∞ij) > 0, (2.51)

combined with the modulus constraint (2.46) are necessary and sufficient conditions
for Q∞ij to be similar to a skew-symmetric matrix [F. Wu et al. 2013]. Note that,
using (2.7a) and (2.48), inequality (2.51) is a polynomial in Π∞. Furthermore,
in [Habed et al. 2012] the authors showed that for cameras with zero skew, i.e.
γ = 0, the coordinates (u, v) of the principal point can be expressed as follows,

u =
(Q∞ij)11

(Q∞ij)31

, v =
(Q∞ij)22

(Q∞ij)32

. (2.52)

New polynomials in Π∞, enforcing the constancy of (u, v) across images, were
derived from image triplets in [Habed et al. 2012; F. Wu et al. 2013]. These poly-
nomials were solved along with those from the modulus constraint using homotopy
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continuation, and the solution was refined through nonlinear optimization. This is
the same approach as in [Pollefeys and Van Gool 1999] but with additional con-
straints. Further properties of the ICT are given in [F. Wu et al. 2013].

Determining the calibration: Once Π∞ is located, the infinite homographies be-
tween images are known, and the intrinsic parameters can be estimated linearly
using (2.33). In the case of constant intrinsic parameters, the IAC and the DIAC
remain invariant throughout the sequence of images. Considering the DIAC, this
means that ω∗ is the same for all images. Moreover, in this case, the infinite ho-
mography H∞ij , for any two views i and j, is known to exact scale as, with an ap-
propriate normalization, it verifies det(H∞ij) = 1. Thus, from (2.33b) each image
pair provides six linear equations in the ω∗, of which only four are linearly inde-
pendent. Given three or more images, ω∗ can be uniquely estimated so long as the
camera motion is sufficiently general. The intrinsic parameters are obtained through
its Cholesky factorization. In the approach described above, some camera motions
lead to ambiguous solutions for particular intrinsic parameters. Further constraints
are usually required to resolve the ambiguities. Such motions and their ambigui-
ties and resolution are reported in [Demirdjian et al. 1998; Hartley and Zisserman
2004].

2.3.5 Motion constraints

In many applications, the camera motion is either inherently restricted or partially
known. For example, a Pan-Tilt (PT) or Pan-Tilt-Zoom (PTZ) surveillance cam-
era only rotates about its center. Such constraints on the camera motion have been
exploited in camera autocalibration, and they often result in a simpler problem for-
mulation. Methods based on restricted camera motions have also been found to
be more reliable than those based on general motion [Hartley and Zisserman 2004,
Sec. 19.11]. In this section, we describe some constrained camera motions and sur-
vey relevant methods in the literature. The survey includes both direct and stratified
methods, the interest being in the motion constraints and their applicability. While
there are numerous methods that can be included in such a survey, we select a few
that may be considered representative of similar works. Where possible, we also
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Constraint Method Direct/Stratified
Constant/Varying
intrinsic parameters

Pure translation [Armstrong et al. 1994] Stratified Constant

[Pollefeys et al. 1996] Stratified Varying

Pure rotation [Hartley 1997b] Stratified Constant

[Agapito et al. 2001; Li and C. Shen 2006;
Rameau et al. 2012]

Stratified Varying

Planar motion [Armstrong et al. 1996; Faugeras et al.
2000; Espuny 2007]

Stratified Constant

Partially known motion

Known rotation [Frahm and Koch 2003] Direct Varying

Known rotation angle [Martyushev 2018] Direct Constant

Small rotation [F. Shen and Wang 2002] Stratified Constant

Rotation angle ≤ 90◦ [Habed et al. 2014] Direct Constant

Table 2.1: Autocalibration methods exploiting camera motion constraints. Note that only
an affine reconstruction can be recovered from a pure translation. Similarly, with
a purely rotating camera, only the intrinsic parameters can be obtained and a
reconstruction is not possible. Refer to the text for such details.

pick more recent methods. Table 2.1 summarizes the survey. The discussion in this
section is pertinent to our contributions in Chapter 4 on exploiting partial camera
motion knowledge. Towards the end of this section, we very briefly discuss motion
sequences that prevent camera autocalibration.

Pure translation: One of the earlier works exploiting camera motion constraints
considered a translation motion (of the camera or equivalently of an object imaged
by a stationary camera). With this motion, i.e. no rotation, an affine reconstruction
can be recovered from two views [Van Gool et al. 1994]. Upgrading to metric, how-
ever, requires further views where the camera also rotates. This approach was fol-
lowed in [Armstrong et al. 1994] assuming constant intrinsic parameters. The case
of a varying focal length, i.e. a zooming camera, was addressed in [Pollefeys et al.
1996]. The pure translation constraint is suited to robotics applications [Beardsley
et al. 1994] and controlled settings, where such a motion can be easily performed.
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Pure rotation: Several methods deal with the case of a rotating camera, where
the camera rotates about its center but does not translate. This configuration has
received considerable attention as it applies to many applications, such as surveil-
lance and broadcast cameras and panoramic mosaics. Though a reconstruction can-
not be obtained without a translation motion, the recovery of the intrinsic parame-
ters is simplified. For a non-translating camera, the different views are related by
inter-image infinite homographies that can be computed from feature correspon-
dences across the images. Autocalibration then reduces to solving a linear problem
for the DIAC/IAC. To estimate the DIAC, the intrinsic parameters were assumed
to be constant in [Hartley 1994b]. They were allowed to vary in [Agapito et al.
2001], and the IAC was estimated instead using priors on some of the parameters.
In [Li and C. Shen 2006], the authors incorporated the positive definiteness of the
DIAC/IAC as a constraint by reformulating the problem as an LMI optimization
problem. In [Rameau et al. 2012], additional constraints on the intrinsic parame-
ters, such as restricting the principal point to lie within the image, were included in
the LMI formulation of [Li and C. Shen 2006].

Planar motion: A camera undergoing planar motion translates in a plane and ro-
tates about an axis perpendicular to the plane. This motion is typical of a camera
mounted on a ground vehicle. Methods exploiting planar motion [Armstrong et al.
1996; Faugeras et al. 2000; Espuny 2007] usually assume a camera with constant
intrinsic parameters and rely on certain fixed image points, the so-called circular
points, under this constrained motion. The methods differ mainly in the compu-
tation of the circular points. When at least three images are available, Π∞ can be
identified and the intrinsic parameters then recovered linearly. Since the rotations
are all about the same axis, constraints on some of the intrinsic parameters are re-
quired to disambiguate the solutions.

Partially known motion: A partial knowledge of the camera motion is often
available, for instance, from the measurements of an external sensor such as an Iner-
tial Measurement Unit (IMU). A known rotation was exploited in [Frahm and Koch
2003]. Given the Fundamental matrices between view pairs, linear equations in the
unknown and possibly varying intrinsic parameters were derived. The additional
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orientation information reduces the number of images/constraints on the intrinsic
parameters required for autocalibration. The particular case of a non-translating
camera with varying intrinsic parameters and known orientation was also addressed
in this work. The entry in Table 2.1 for this method corresponds to the general mo-
tion case. In [Martyushev 2018], the relative orientation angle (about an arbitrary
axis) was assumed to be known. For two views with square pixels (i.e. zero skew
and unit aspect ratio) and otherwise unknown but constant intrinsic parameters, a
new quartic polynomial constraint was formulated on the Essential matrix based on
the known orientation angle. A minimal solver using Gröbner bases was proposed
to estimate the unknown focal length and principal point. The use case, in particular,
is where a camera and an IMU are rigidly attached. In this case, an extrinsic cal-
ibration between the two sensors is not required, and the relative orientation angle
from the IMU can be used directly. In contrast to the exact motion information de-
scribed above, some methods exploit a more vague motion knowledge. In [F. Shen
and Wang 2002], the authors assumed a small rotation between consecutive views,
i.e. the rotation angle about each axis being within 10◦. This assumption is usually
implicitly satisfied in a video. By approximating the camera rotation and some of
the intrinsic parameters, linear equations were obtained in the coordinates of Π∞.
In [Habed et al. 2014], new LMI constraints on the DAQ were formulated assuming
constant intrinsic parameters and the relative orientation angle between consecutive
views being within 90◦. This assumption applies more broadly to image sequences
captured for 3D reconstruction.

Critical motion sequences: Some camera motions lead to ambiguities in recov-
ering the intrinsic parameters or a metric reconstruction. An example is a camera
undergoing a pure translation (discussed above), where only an affine reconstruc-
tion is possible. In other cases, there is no unique solution for some of the intrinsic
parameters. Such degeneracies are inherent to the motion and require additional
information (e.g. more constraints) for its resolution. The existence of motions
resulting in these degeneracies, referred to as Critical Motion Sequences (CMS),
is one of the main pitfalls of camera autocalibration. Thus, knowledge of these
motions is essential to be able to avoid them when using autocalibration methods,
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especially those based on restricted camera motions. A detailed account of CMS is
given in [Sturm 1997a; Sturm 1997b; Kahl et al. 2000; Sturm 2002].

2.4 Conclusion

In this chapter, we reviewed some key results in computer vision, focusing on re-
covering a 3D reconstruction of a scene from multiple images. We also described
the camera autocalibration problem and surveyed the relevant literature. In the fol-
lowing two chapters, we present the contributions of this thesis. We rely on some
of the results summarized in this chapter, and the literature review lends context to
our contributions.
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This chapter presents our contributions in exploiting a partial knowledge of the camera

geometry in camera autocalibration. We consider the case of a camera with a Euclidean

image plane (EIP), i.e. zero skew and unit aspect ratio. Most cameras in the market today

fit the EIP model. While this assumption has often been exploited in direct autocalibration

methods, stratified methods have yet to fully benefit from it. Assuming a moving camera

with EIP and constant intrinsic parameters, we show that a new quartic polynomial equation

in the unknown plane at infinity is obtained for each image pair in addition to the polynomial

from the modulus constraint. We propose a stratified autocalibration method that relies on

these two polynomials and solves a constrained polynomial optimization problem to locate

the plane at infinity. We report the experiments that we conducted using both synthetic data

and real images to evaluate our proposed algorithm and compare it with existing methods.
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3 Exploiting camera geometry

3.1 Introduction

EIP cameras: Retrieving the camera calibration parameters from feature corre-
spondences across images, i.e. camera autocalibration, is a prerequisite to recover
the metric structure of an unknown scene imaged by uncalibrated perspective cam-
eras. Autocalibration methods rely on some assumptions on the calibration parame-
ters, such as constant [Heyden and Åström 1996; Luong and Faugeras 1997; Triggs
1997; Pollefeys and Van Gool 1999] or partially known intrinsic parameters [Hey-
den and Åström 1999; Pollefeys et al. 1999; Ponce et al. 2005; Valdés et al. 2006;
Gherardi and Fusiello 2010]. When the images are captured by the same moving
camera, its internal geometry remains unchanged in the absence of zooming and
focusing. The sensor’s aspect ratio and skew factor also remain quite stable de-
spite a change in the focus or zoom. Moreover, modern cameras commonly have
square pixels, i.e. zero skew and unit aspect ratio. Such cameras are said to have a
Euclidean Image Plane (EIP) [Heyden and Åström 1997].

EIP constraint in direct autocalibration: The EIP assumption has often been
exploited in direct autocalibration methods, which simultaneously estimate the plane
at infinity (Π∞) and the intrinsic parameters. Direct methods rely mainly on ei-
ther the Dual Absolute Quadric (DAQ) [Heyden and Åström 1996; Triggs 1997]
or the Absolute Line Quadric (ALQ) [Ponce et al. 2005; Valdés et al. 2006] for-
mulations (see Section 2.3.3) that encode both Π∞ and the intrinsic parameters.
These formulations are not equally suited to exploit the EIP constraint. The DAQ-
based autocalibration equations, for instance, involve the Dual Image of the Abso-

lute Conic (DIAC). Due to the coupling of the intrinsic parameters in the DIAC, ex-
ploiting the EIP assumption requires the principal point to be known. The problem
is then linear. To this end, an image-centered principal point is assumed in [Polle-
feys et al. 1999]. However, the location of the principal point can be far from the
image center, and it also varies with zooming or focusing [Sturm 1996]. The ALQ-
based autocalibration equations instead involve the Image of the Absolute Conic

(IAC). These are simpler to use under the EIP constraint as linear equations are
obtained without assuming the principal point to be known. However, a practical
difficulty in using either the DAQ or the ALQ is to enforce the nonlinear rank-3 con-
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straint in their estimation. Linearization, on the other hand, may result in artificial
degeneracies [Gurdjos et al. 2009].

EIP constraint in stratified autocalibration: Unlike direct methods, a stratified
approach first tackles the more challenging problem of estimating Π∞. Once Π∞ is
located, the intrinsic parameters can be retrieved by solving linear equations for the
IAC or the DIAC [Hartley and Zisserman 2004]. The advantages of this approach
over a direct quadric-based one are that the nonlinearity is confined to fewer un-
knowns and a rank condition is not required. Most stratified methods assume con-
stant intrinsic parameters [Pollefeys and Van Gool 1999; Chandraker et al. 2010;
Habed et al. 2012; F. Wu et al. 2013; Adlakha et al. 2019] and rely on the poly-
nomial derived from the modulus constraint [Pollefeys and Van Gool 1999]. Some
methods use properties of the so-called Infinite Cayley Transform (ICT) [Habed et
al. 2012; F. Wu et al. 2013] to further exploit a partial knowledge of the intrinsic pa-
rameters (see Section 2.3.4 for more details on the ICT). For instance, the zero-skew
assumption was exploited in [Habed et al. 2012; F. Wu et al. 2013] to derive quartic
polynomials in Π∞ for image triplets. However, using triplets introduces several
unknown projective scale factors that may lead to numerically ill-conditioned poly-
nomial systems. To the best of our knowledge, the assumption of a camera with EIP
and constant intrinsic parameters has not been exploited so far in stratified camera
autocalibration.

Global optimization: The camera autocalibration problem is inherently nonlin-
ear, and methods have traditionally relied on local optimization to obtain the cali-
bration parameters. While local optimization methods are typically fast and broadly
applicable, they only provide a locally optimal solution with no guarantee of global
optimality. The solution then depends crucially on the initialization used in the op-
timization. Autocalibration methods often solve a simpler, usually linear or convex,
problem and then refine the estimated solution using local optimization of a pre-
ferred nonlinear cost. Such an approach is followed in [Heyden and Åström 1999;
Pollefeys et al. 1999; Nistér 2004b; Adlakha et al. 2019]. Alternatively, some meth-
ods [Pollefeys and Van Gool 1999; Habed et al. 2012; F. Wu et al. 2013; Martyushev
2018] solve a system of polynomial equations using homotopy continuation [Ver-
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schelde 1999] or Gröbner bases [Cox et al. 2005]. These techniques compute all the
solutions of a square polynomial system. However, they do not scale well to overde-
termined systems, and it is difficult to incorporate additional inequality constraints.
More recent works in camera autocalibration have also investigated globally opti-
mal optimization methods, either based on Branch-and-Bound algorithms [Fusiello
et al. 2004; Bocquillon et al. 2007; Chandraker et al. 2010; Habed et al. 2014;
Paudel and Van Gool 2018] or on polynomial optimization [Chandraker et al. 2007]
using Lasserre’s hierarchy of semidefinite relaxations [Lasserre 2001; Henrion et al.
2009]. Lasserre’s method deals with nonlinear and nonconvex optimization prob-
lems where the cost function and constraints are multivariate scalar polynomials. It
does so by constructing a hierarchy of convex Linear Matrix Inequality (LMI) re-
laxations of increasing order that are underestimators of the original problem. This
hierarchy of convex relaxations is provably convergent to the global optimum at a
finite order of relaxation. In [Chandraker et al. 2007], Lasserre’s hierarchy has been
used to estimate the DAQ under rank, semidefiniteness, and chirality [Hartley and
Zisserman 2004] constraints.

Contributions: In this chapter, we present a stratified autocalibration method for
a moving camera with EIP and constant intrinsic parameters. Our key contribution
is in the formulation of a new quartic polynomial in the unknown Π∞ under the as-
sumed camera model. This polynomial is obtained for each image pair in addition
to the polynomial from the modulus constraint. It is derived using a yet unexploited
property of the ICT. For three or more images, estimating Π∞ is stated as a con-
strained polynomial optimization problem that is solved using Lasserre’s hierarchy.
Polynomial inequality constraints on Π∞, such as those derived from the ICT as
well as the chirality inequalities, can be easily incorporated in Lasserre’s method.
We also derive a new pair of inequalities in Π∞ that restrict the principal point to lie
within the image bounds. The estimated Π∞ is refined using local optimization of a
normalized cost, and the intrinsic parameters are subsequently retrieved by estimat-
ing the DIAC. Experiments with synthetic data and real images show that the new
polynomial in our proposed algorithm leads to a more reliable performance than
existing methods, especially for short sequences.
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Organization: The rest of this chapter is organized as follows. In Section 3.2, we
derive the new EIP-based quartic polynomial constraint on Π∞. In Section 3.3, we
describe some existing polynomial inequalities in Π∞ and derive new inequalities
that constrain the location of the principal point. We detail our stratified autocalibra-
tion method in Section 3.4 and report the experiments that we conducted to evaluate
it in Section 3.5. Finally, Section 3.6 concludes this chapter.

3.2 EIP-based polynomial constraint

We consider a camera with a Euclidean image plane, EIP (i.e. zero skew, γ = 0,
and unit aspect ratio, fx/fy = 1) whose focal length and principal point coordinates
are constant but unknown. We show that the ICT carries a yet unexploited property
under these assumptions (Proposition 3.1), and we use it to derive a new quartic
polynomial constraint on Π∞ (Proposition 3.2). The results presented in this section
also apply to a non-EIP camera with fixed intrinsic parameters should the skew and
aspect ratio be known. The projection matrix of such a camera can be transformed to
the EIP model by an appropriate change of coordinates [Heyden and Åström 1997].
We now define a matrix operator that we use to derive the EIP-based constraint.

Definition 3.1. Given a 3× 3 matrix B, we define the matrix operator Φ as,

Φ(B) = (B∗ ◦ B)31 + (B∗ ◦ B)32, (3.1)

where ◦ denotes the Hadamard (elementwise) product, i.e. (B ◦ C)hk = (B)hk(C)hk

for any two matrices B and C of the same dimensions.

The following proposition reveals a yet unexploited property of the ICT under
the EIP assumption.

Proposition 3.1. Consider an image pair (i, j) captured by a moving camera with

EIP and constant intrinsic parameters. The ICT Q∞ij of these images satisfies,

Φ(Q∞ij) = 0. (3.2)
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3 Exploiting camera geometry

Proof. From (2.49b), the ICT Q∞ij is given as Q∞ij ' K[rij]×K
−1. As such, the

matrix K−1Q∞ijK is skew-symmetric. Given a camera with EIP, the 2× 2 matrix,(Q∞ij)11 − u(Q∞ij)31 (Q∞ij)12 − u(Q∞ij)32

(Q∞ij)21 − v(Q∞ij)31 (Q∞ij)22 − v(Q∞ij)32

, (3.3)

obtained by eliminating the third row and column of K−1Q∞ij K is also skew-
symmetric. Enforcing the diagonal entries of (3.3) to be zero leads to the expres-
sions of u and v given in (2.52), as obtained in [Habed et al. 2012] for cameras with
zero skew. Furthermore, the sum of the off-diagonal elements of (3.3) also being
zero yields:

(Q∞ij)12 + (Q∞ij)21 − u(Q∞ij)32 − v(Q∞ij)31 = 0. (3.4)

Substituting the expressions of u and v from (2.52) in (3.4) leads to (3.2). �

Proposition 3.1 allows us to formulate a new constraint on Π∞. We consider
hereafter that the coordinates of Π∞ are Π∞ =

(
π>∞, 1

)>. Using (2.49a) and (2.7a),
we observe that Φ(Q∞ij) expands as:

Φ(Q∞ij) = aij(π∞)λ3
j − bij(π∞)λiλ

2
j + bji(π∞)λ2

iλj − aji(π∞)λ3
i , (3.5)

where the coefficients aij and bij , for any combination of i and j, are cubic poly-
nomials in Π∞. Substituting for λi and λj using (2.48) leads to a polynomial of
degree six at best. Polynomials of such high degree are challenging to solve us-
ing current techniques, be it homotopy continuation, Gröbner bases, or Lasserre’s
hierarchy, as they often lead to numerically ill-conditioned or even intractable sys-
tems of equations. We show, however, that equation (3.2) can be used to derive a
quartic polynomial in Π∞, i.e. a polynomial of the same degree as the modulus con-
straint (2.46). Although aij and bij are fully defined through the expansion in (3.5),
it is interesting to note that:

aij(π∞) = Φ(H∞ij) and aji(π∞) = Φ(H∞ji). (3.6)
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As such, we show that the terms involving aij(π∞) and aji(π∞) can be eliminated
from (3.5) so long as the modulus constraint is satisfied. To show this, we recall
here some properties of the Hadamard product and adjugate matrices.

Property 3.1. Let B and C be two 3× 3 matrices and λ a scalar. We have that:

B ◦ C = C ◦ B, (3.7a)

(λB) ◦ C = B ◦ (λC) = λ(B ◦ C), (3.7b)

(BC)∗ = C∗B∗, (3.7c)

(B∗)∗ = det(B)B. (3.7d)

Using properties of adjugate matrices, we can deduce that,

H∗∞ij = λ3
i H∞ji. (3.8)

To see this, from property (3.7c), we have that H∗∞ij = (H∞1jH∞i1)∗ = H∗∞i1H
∗
∞1j .

In addition, using (2.6), H∗∞ij = (H∗∞1i)
∗H∞j1. Now, property (3.7d) leads to (3.8).

Similarly, we obtain, H∗∞ji = λ3
j H∞ij . We can deduce, using (3.8) and prop-

erty (3.7b), that H∗∞ij ◦ H∞ij = λ3
i (H∞ji ◦ H∞ij) and also that H∗∞ji ◦ H∞ji =

λ3
j(H∞ij ◦H∞ji). It must be clear now, with property (3.7a), that λ3

j(H
∗
∞ij ◦H∞ij) =

λ3
i (H

∗
∞ji ◦ H∞ji). As a consequence, we have that,

λ3
j aij(π∞) = λ3

i aji(π∞). (3.9)

This constitutes the proof to our main result stated in the following proposition.

Proposition 3.2. Consider an image pair (i, j) captured by a moving camera with

EIP and constant intrinsic parameters. The plane at infinity Π∞ satisfies the quartic

polynomial equation:

pij(π∞) = −bij(π∞)tji(π∞) + bji(π∞)tij(π∞) = 0, (3.10)

for all i 6= j. The expressions bij and bji are cubic polynomials in Π∞ defined by

the expansion in (3.5) while tij and tji are linear functions of Π∞ defined by (2.45).
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We refer to the polynomial pij as the EIP polynomial. It is obtained from (3.2)
by substituting for λi and λj in (3.5) using the expressions in (2.48) and eliminating
the aij and aji terms.

3.3 Inequality constraints on infinity

With the assumption of a camera with EIP and constant intrinsic parameters, each
image pair provides two quartic polynomial equations in Π∞, i.e. the modulus con-
straint and the EIP polynomial. In Section 3.4, we present a stratified autocalibra-
tion method, where we estimate Π∞ by minimizing a cost that is constructed using
these two polynomials. In such an approach, multiple solutions for Π∞ may per-
sist, especially when few images are used. It is then useful to incorporate additional
inequality constraints on Π∞ to steer the optimization towards the sought solution.
In this section, we describe some existing inequality constraints on Π∞ and derive
a new pair of inequalities that restrict the location of the principal point.

3.3.1 Chirality inequalities

Hartley’s chirality inequalities [Hartley and Zisserman 2004] can be used to pre-
serve the convex hull of the camera centers. They impose that all ci(π∞) = det(H∞1i),
i = 1, 2, . . . , n, defined in (2.47), carry the same sign, provided that all the projec-
tion matrices are sign-corrected (see Section 2.2.6). Although the same can be done
for scene points, these are generally considered to be less reliable [Nistér 2004b].

3.3.2 ICT-based inequality

The inequality given in (2.51) is a necessary condition for the ICT Q∞ij to be similar
to a skew-symmetric matrix. This inequality can be expressed in terms of Π∞.
There are different ways to do this. For instance, using the expressions in (2.48),
we can consider a scaled ICT matrix, Q̃∞ij ' Q∞ij , given by,

Q̃∞ij = tr(H∞ji)H∞ij − tr(H∞ij)H∞ji, (3.11)
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and thereby obtain the constraint,

qij(π∞) = tr(Q̃∗∞ij) > 0. (3.12)

From (2.7a), H∞ij is linear in Π∞. Therefore, each entry of Q̃∞ij is a quadratic
polynomial in Π∞ and inequality (3.12) is a quartic polynomial constraint on Π∞.
Note that the sign of the unknown scale in (3.11) does not affect the sign of qij(π∞)

since it is squared in the adjugate matrix.

3.3.3 Principal point bounds

We can exploit the expressions in (2.52) to restrict the principal point to lie within
the image bounds. Assuming a 2u × 2v image and an image-centered frame, the
principal point (u, v) is within the image bounds if the following inequalities are
satisfied:

uij(π∞) = u2(Q∞ij)
2
31 − (Q∞ij)

2
11 ≥ 0,

vij(π∞) = v2(Q∞ij)
2
32 − (Q∞ij)

2
22 ≥ 0.

(3.13)

These inequalities have not been used so far in stratified camera autocalibration.
Using the ICT expression in (3.11), they are quartic polynomial constraints on Π∞.
Note that, in this way, the location of the principal point can also be restricted more
stringently to a rectangular region around the image center.

3.4 EIP-based stratified autocalibration

Our stratified camera autocalibration method relies on polynomial optimization us-
ing Lasserre’s hierarchy to estimate Π∞. Lasserre’s method (see Appendix A.3 for
more details) allows us to obtain the global optimum of a least-squares cost and
thereby gracefully handle an overdetermined polynomial system. It also allows us
to easily incorporate additional polynomial (in)equality constraints, such as those
described in Section 3.3. We use the modulus constraint (2.46) and the EIP poly-
nomial (3.10) to define a suitable cost function. Since these two polynomials are
obtained for each image pair, our method can be used with three or more images.
The estimated Π∞ is refined using local optimization to fit a normalized cost. The
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camera intrisic parameters are subsequently recovered by solving a system of linear
equations. The steps of our algorithm are summarized in Section 3.4.2. We first de-
tail the polynomial and local optimization problems to locate Π∞ in Section 3.4.1.

3.4.1 Locating infinity

A normalized cost function is preferred in uncalibrated computer vision problems
to eliminate the effect of projective scale factors. This usually leads to a cost in
the form of a sum of rational functions. The resulting optimization problem is
difficult to solve globally and optimally [Bugarin et al. 2015] and is not handled
well by Lasserre’s method. We deal with this limitation in two steps. First, to reduce
the effect of scaling with an unnormalized cost, we propose to use homogenized
polynomials [Cox et al. 2005]. This allows us to include an additional constraint to
impose some global scaling. Though this problem formulation is not equivalent to
the normalized case, it works well in practice. Second, we refine the estimated Π∞

using local optimization of a normalized cost function. We describe these two steps
in the following.

Polynomial optimization: We use homogeneous polynomials in this step. The
homogeneous counterpart of a polynomial p of degree d in π, denoted hp, is de-
fined by introducing an additional variable π4 such that hp(π, π4) = πd4 p(π/π4).
Note that the degree of hp remains the same as that of p. We then solve the follow-
ing polynomial optimization problem to estimate Π∞,

min
π, π4

n−1∑
i= 1

n∑
j= i+1

hm2
ij(π, π4) + hp2

ij(π, π4) (3.14a)

s.t. hci(π, π4) > 0, i = 1, . . . , n, (3.14b)
hqij(π, π4) > 0, i = 1, . . . , n− 1, (3.14c)
huij(π, π4) ≥ 0, hvij(π, π4) ≥ 0, j = i+ 1, . . . , n, (3.14d)

hc1(π, π4) hcn(π, π4) +
1

n− 1

n−1∑
i= 1

hci(π, π4) hci+1(π, π4) = 1, (3.14e)
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where we use the homogenized polynomials of,

mij: the polynomial derived from the modulus constraint (2.46),

pij: the EIP polynomial (3.10),

ci: the polynomial in (2.47a) that is used in the chirality inequalities,

qij: the polynomial from the ICT-based inequality (3.12),

uij , vij: the polynomials from the principal point-based inequalities (3.13).

Equation (3.14e) is the global scaling constraint that we have found the most appro-
priate. We have observed that this constraint improves the numerical stability and
leads more often to a certified optimal solution with the minimal relaxation order of
four. We suggest using the pairwise constraints (3.14c)-(3.14d) only between con-
secutive views so that their number grows linearly and not quadratically with the
number of views. For short sequences, constraints between all image pairs can be
included. With long sequences, all but (3.14e) are optional and can be dropped.

Nonlinear refinement: We refine the Π∞ estimated from problem (3.14) using
local optimization of the normalized cost,

min
π

n−1∑
i= 1

n∑
j= i+1

m2
ij(π) + p2

ij(π)

(ci(π) cj(π))4 . (3.15)

Though the constraint in (3.14e) scales the polynomials suitably, it is recommended,
particularly with high levels of noise, to refine the solution to fit a normalized
cost. Note that even if the EIP assumption is not fully satisfied, problems (3.14)
and (3.15) are still suitable to obtain, in practice, a satisfactory solution for Π∞. In
such a case, this solution can be further refined, for instance, without using the EIP
constraint.

3.4.2 Autocalibration algorithm

We consider a projective reconstruction with sign-corrected projection matrices Pi,
i = 1, . . . , n, and scene points Xj , j = 1, . . . ,m. The reference frame is attached to
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the first camera, and the projection matrices are normalized such that their associ-
ated images are centered at the origin. Our autocalibration algorithm then proceeds
as follows:

(i) estimate Π∞ by solving problem (3.14) using Lasserre’s hierarchy,

(ii) refine the estimated Π∞ using (3.15) and upgrade the projective reconstruc-
tion to an affine one as PA

i = PiH
−1
A and XA

j = HAXj , where

HA =

[
I3 03

Π>∞

]
,

(iii) compute the camera intrinsic parameters matrix K by solving linear equations
for the DIAC and upgrade the affine reconstruction to a metric one as PM

i =

PA
i H
−1
M and XM

j = HMX
A
j , where

HM =

[
K−1 03

0>3 1

]
.

In the following section, we report the experiments that we conducted to evaluate
our camera autocalibration algorithm.

3.5 Experimental results

We tested our camera autocalibration method using both synthetic data and real
images. We computed the 3D Root-Mean-Square (RMS) error and the following
calibration error metrics to assess our results:

∆f =

√
(fx − f̂x)2 + (fy − f̂y)2

fx
2 + fy

2 , ∆uv =

√
(u− û)2 + (v − v̂)2

u2 + v2
,

∆γ = |γ − γ̂|,
(3.16)

where (f̂x, f̂y), (û, v̂), and γ̂ are the estimated focal lengths, principal point, and
skew, respectively. The 3D RMS error was computed after aligning the estimated
metric point cloud to the ground truth Euclidean point cloud by a best-fit similarity
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transformation in the least-squares sense. Our algorithm was implemented in MAT-
LAB R2018b. We used GloptiPoly [Henrion et al. 2009] to solve problem (3.14)
and set a relaxation order of d = 4 in all the experiments. We used MOSEK1 as
the SDP solver and set MSK_DPAR_INTPNT_CO_TOL_{P|D}FEAS = 10−20. We used
the Levenberg-Marquardt (LM) algorithm implemented in the MATLAB Optimiza-
tion Toolbox to solve problem (3.15). All the experiments were conducted on an i7
3.10 GHz 32 GB RAM computer.

We denote our algorithm (see Section 3.4.2) by EIP*. We denote the same algo-
rithm without the EIP polynomial, which then relies only on the modulus constraint
in (3.14a) and (3.15), by MODULUS*. In addition, the two approaches EIP* and
MODULUS* excluding the inequality constraints in problem (3.14) are denoted by
EIP and MODULUS, respectively. In these experiments, we used the inequalities in
problem (3.14) only between consecutive views. Furthermore, we estimated all five
intrinsic parameters in step (iii) of our algorithm. This ensured a fair comparison
with the selected existing methods, all of which solve for five intrinsic parameters.

3.5.1 Synthetic data experiments

Each synthetic scene consisted of 200 points sampled randomly from the surface of
the unit sphere. The cameras were positioned at a distance of 3.5–4 units from the
sphere center, and oriented such that their optical axes passed close to the sphere
center. All cameras were simulated to have an EIP with focal length fx = fy = 800,
and an image-centered principal point, (u, v) = (256, 256), in pixels. Noise, mod-
eled as a zero-mean Gaussian distribution with standard deviation in the range [0, 2]

pixels, was added to the pixel coordinates in increments of 0.5 pixels. Projective re-
constructions were obtained using the factorization approach in [Oliensis and Hart-
ley 2007] implemented in the VSfM toolbox2, followed by a projective bundle ad-
justment [Lourakis and Argyros 2009]. We report the statistics collected over 100
generated scenes.

1 https://docs.mosek.com/8.1/toolbox/index.html
2 http://github.com/vrabaud/sfm_toolbox
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Figure 3.1: Benefits of the EIP polynomial. Success rate of EIP and EIP* compared with
MODULUS and MODULUS* using 3 views (left) and 4 views (right) with vary-
ing pixel noise levels.

Benefits of the EIP polynomial: We assessed the contribution of the EIP polyno-
mial (see Proposition 3.2) in our algorithm’s performance by comparing the relia-
bility of EIP and EIP* in obtaining a metric reconstruction with that of MODULUS

and MODULUS*. We focused on short sequences and considered a 3D error above
0.25 as a failed metric upgrade. Figure 3.1 shows the success rate using 3 and 4
views for varying noise levels. With 3 views, MODULUS failed most of the time
(result not shown) as multiple solutions exist using the modulus constraint alone.
A higher success rate was obtained using MODULUS* due to the inequality con-
straints, but it declined considerably with an increasing amount of noise. On the
other hand, EIP led to a reliable metric upgrade even with high levels of noise,
and the inequalities in EIP* further improved the success rate. With 4 views, there
are sufficient polynomials from the modulus constraint to obtain a unique solution.
Even so, the success rate of EIP was significantly higher than that of MODULUS

in the presence of noise. With additional views, all the approaches performed reli-
ably. For the successful trials, the estimated plane at infinity and, consequently, the
3D errors were similar using all the approaches. These results show that the EIP
polynomial is especially useful for short sequences.

Effect of refinement: We analyzed the impact of the refinement step, i.e. step
(ii), in our algorithm. Figure 3.2 shows the 3D error distribution using EIP and
EIP* with and without refinement for 4 views. The box plots shown here and
throughout this section follow the convention in MATLAB. We clipped errors above
the 0.25 threshold to the axis limit in Figure 3.2. The errors decreased overall after
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Figure 3.2: Effect of refinement. Distribution of 3D errors with and without refinement
using 4 views and varying pixel noise levels.

refinement, particularly for high levels of noise. Moreover, a few reconstructions
that failed in the metric upgrade without refinement were recovered after refinement.
The observations were similar when varying the number of views. Thus, refinement
using a normalized cost improves the accuracy of our algorithm.

Comparisons with the state of the art: We compared EIP and EIP* with two
stratified methods, GO-Stratified [Chandraker et al. 2010] and QUARCH*M [Ad-
lakha et al. 2019], and a DAQ-based method, GO-DAQ [Chandraker et al. 2007].
GO-Stratified and GO-DAQ are briefly discussed in Section 2.3. QUARCH*M will
be presented in Chapter 4. For GO-Stratified, we computed solutions for both signs
of chirality and retained the one with lower calibration error. We used the authors’
implementation3 of this method. For GO-DAQ, we set a relaxation order of d = 2.
The rotation angle assumption of QUARCH*M is satisfied in our simulations. Fig-
ure 3.3 shows the success rate (left column) of the tested methods. With three views,
the success rate of GO-DAQ was lower than that of EIP* and it dropped consider-
ably with increasing noise. EIP also generally outperformed GO-DAQ in terms
of success rate. Although GO-DAQ uses additional priors on the location of the
principal point, the results are inferior because our simulated cameras are close to
an artificial degenerate configuration for the DAQ estimation (all the optical axes
intersect in one point) [Gurdjos et al. 2009]. GO-DAQ then fails when its rank-3
constraint is not well enforced due to numerical scaling issues, as has also been
reported in [Adlakha et al. 2019]. With four views, EIP and EIP* outperformed

3 https://cseweb.ucsd.edu/~mkchandraker/stratum.html
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Figure 3.3: Comparisons with the state of the art. Left: success rate using 3 views (top) and
4 views (middle) with varying noise levels, and using 3–6 views with 1 pixel
noise level (bottom). Right: distribution of 3D errors (top) and focal length
errors (middle), and runtime results (bottom) using 3–6 views with 1 pixel noise.

GO-Stratified and QUARCH*M as well due to the additional EIP constraint. With
more views, all the methods succeeded most of the time. The 3D and focal length
error distributions as well as the runtime results are shown in Figure 3.3 (right col-
umn). GO-Stratified obtained relatively higher 3D and calibration errors and was
also two orders of magnitude slower (not shown) than the other methods. For our al-
gorithm, we report the computation time excluding the problem modeling overhead
in GloptiPoly. The time complexity of EIP is constant with respect to the number
of images as it does not use the pairwise inequalities. From four views onward, EIP
can thus be used instead of EIP* for a speedup as it achieved a similar success rate
and calibration accuracy in this test.
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Sequence Method ∆f(%) ∆uv(%) ∆γ Time (s)

fountain-P11 MODULUS 62.90 66.39 2172.12 0.91
EIP 0.08 0.25 1.06 0.59

GO-Stratified 0.10 0.19 1.08 302.90
QUARCH*M 0.05 0.23 1.05 2.44

GO-DAQ 0.36 1.26 0.01 1.49

Herz-Jesu-P8 MODULUS 0.89 3.12 2.16 0.82
EIP 0.55 2.84 3.98 0.57

GO-Stratified 43.86 31.13 157.31 243.18
QUARCH*M 0.88 3.11 2.03 1.26

GO-DAQ 1.43 1.27 0.05 1.53

City hall Leuven MODULUS 2.96 6.73 5.90 0.62
EIP 0.78 0.72 2.80 0.56

GO-Stratified 7.09 10.10 25.85 169.21
QUARCH*M 2.94 6.70 5.81 1.02

GO-DAQ 9.93 7.68 9.70 1.38

Table 3.1: Quantitative assessment. Autocalibration results on the real image sequences
from [Strecha et al. 2003; Strecha et al. 2008].

3.5.2 Real image experiments

We used four image sequences, fountain-P11, Herz-Jesu-P8, Herz-Jesu-P25 [Strecha
et al. 2008], and City hall Leuven [Strecha et al. 2003], with known ground truth
calibration to quantitatively compare our algorithm with existing methods. The
ground truth intrinsic parameters come close to satisfying the EIP assumption for
these sequences. We also qualitatively assessed the metric reconstructions obtained
with our algorithm using other image sequences. We used P2SfM [Magerand and
Bue 2018] to compute the projective reconstructions and COLMAP [Schönberger
and Frahm 2016] to obtain the feature matches.

Quantitative assessment: Table 3.1 reports the calibration errors from MODU-
LUS, EIP, and state-of-the-art methods on three tested sequences. With fountain-

P11, MODULUS led to large calibration errors and failed to obtain a metric upgrade.
MODULUS* provided a calibration similar to that from EIP, but it required 10 times
the computation time. MODULUS and EIP otherwise yielded the same calibration
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Figure 3.4: Quantitative assessment using 3 views. Success rate (left) and distribution of
calibration errors (right) over 20 image triplets sampled from Herz-Jesu-P25.

as MODULUS* and EIP*, respectively, in this experiment. With Herz-Jesu-P8,
GO-Stratified failed to obtain a metric upgrade. Moreover, while the results im-
proved with the longer Herz-Jesu-P25 sequence for all the methods (not shown),
GO-Stratified still led to an erroneous calibration. This is due to the method relying
on scene points that prove unreliable with noise and outliers. With City hall Leu-

ven, the reference calibration parameters do not fit the assumptions of GO-DAQ as
closely as those of the previous sequences. The principal point is farther from the
image center and the skew is not zero. As a result, the errors are larger using GO-
DAQ. In contrast, EIP provided an accurate calibration for all the sequences and
required only around half a second of computation time. The errors from MODU-
LUS and QUARCH*M are similar as they rely on the same cost.

Quantitative assessment using 3 views: To test the minimal case of three views,
we sampled image triplets sequentially from the Herz-Jesu-P25 sequence, discard-
ing those with insufficient feature matches, leaving a set of 20 triplets. Figure 3.4
shows the results from MODULUS, EIP, their inequality-constrained counterparts,
and GO-DAQ on this set. We considered a focal length error above 25% as a fail-
ure in this experiment. From our tests, the quality of the metric reconstruction was
mostly influenced by the estimated focal length, and errors above this threshold
corresponded to distorted reconstructions. The results in Figure 3.4 are consistent
with those on the synthetic data as MODULUS failed most of the time and EIP per-
formed reliably. Both EIP* and GO-DAQ succeeded with all the triplets. GO-DAQ
also consistently provided an accurate calibration as its assumptions on the intrinsic
parameters are closely satisfied in this sequence. The skew parameter was also ac-

60



3.5 Experimental results

(a) Golden Statue (b) Eglise du Dome (c) Alcatraz Water Tower

(d) Cherub (e) L’Arbre aux Serpents

Figure 3.5: Qualitative assessment. Sample images and metric 3D reconstructions obtained
using EIP. (e) Image courtesy of Renato Saleri. L’Arbre aux Serpents de Niki
de Saint Phalle c©Musées d’Angers, Niki Charitable Art Foundation.

curately estimated by all the methods (not shown), resulting in less than 1◦ deviation
from a rectangular image plane on average.

Qualitative assessment: We visually assessed the metric 3D reconstructions ob-
tained with our algorithm using several other image sequences. These sequences in-
clude (number of images given in parentheses): Golden Statue (18), Eglise du Dome

(85), and Alcatraz Water Tower (173) from [Olsson and Enqvist 2011], Cherub (65)
from 3DFlow4, as well as one from a digital cultural heritage application, L’Arbre

aux Serpents (154). The last sequence was captured by a camera drone for digital
preservation of the imaged sculpture as part of a French national research project5.
The projective reconstructions contained a maximum of 66 cameras for the tested
sequences. Figure 3.5 shows the metric 3D reconstructions obtained using EIP. The
recovered metric structure faithfully represents the imaged scene. Thus, the EIP as-
sumption was applicable for all these sequences that have been captured using dif-

4 https://www.3dflow.net/3df-zephyr-reconstruction-showcase/
5 https://anr-sumum.fr/
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ferent cameras. These results were obtained in just over one second of computation
time on average.

3.6 Conclusion

In this chapter, we addressed the stratified camera autocalibration problem for a
moving camera with EIP and otherwise constant but unknown intrinsic parameters.
We showed that, with these assumptions, each image pair provides a new quartic
polynomial in Π∞ in addition to the polynomial from the modulus constraint. We
proposed a stratified autocalibration method that uses the new EIP-based polyno-
mial in conjunction with the modulus constraint to estimate Π∞. For three or more
images, we formulated the problem of estimating Π∞ as a constrained polynomial
optimization problem that is solved using Lasserre’s hierarchy of semidefinite re-
laxations. Our experiments with synthetic data and real images show the benefits of
the EIP polynomial in reliably retrieving a metric reconstruction from uncalibrated
images, especially for short sequences. In the future, it may be worth investigat-
ing other ways the EIP polynomial can be exploited. For instance, given the EIP
polynomial and the modulus constraint, autocalibration is possible using only two
images with one additional equation (from a vanishing point, for example). This
is also potentially interesting for the uncalibrated view synthesis problem [Canclini
et al. 2019].
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This chapter presents our contributions in exploiting a partial knowledge of the camera
motion in camera autocalibration. We consider the case of a moving camera with constant
intrinsic parameters where some vague knowledge of its relative orientation is available. We
derive two new sets of constraints on the plane at infinity based on such knowledge. The
constraints in the first set are convex and can be exploited when the orientation angle be-
tween camera pairs is known to be either under or over 120◦. They describe the relationship
between the plane at infinity and new geometric objects, the hodographs of the horopter.
The constraints in the second set are non-convex and exploit a tighter camera orientation
knowledge. Using the orientation-based constraints, we show that a new quasi-affine recon-
struction of a scene can be recovered, referred to as a QUARCH. We propose a stratified
autocalibration method that relies on a QUARCH to recover an affine and a metric recon-
struction from a projective one. We finally report the experiments conducted to evaluate our
method using both synthetic data and real images.
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4.1 Introduction

Camera motion constraints: Camera autocalibration is a highly nonlinear and
challenging problem. To cope with the involved challenges, methods based on
restricted camera motions have been found to be more reliable than those based
on general motion. The camera motion is inherently restricted in some applica-
tions. For instance, a camera mounted on a ground vehicle is constrained to a
planar motion, while a pan-tilt-zoom (PTZ) camera may only rotate about its cen-
ter. Autocalibration methods have been proposed to exploit different constrained
camera motions, including pure translation [Armstrong et al. 1994; Moons et al.
1996; Pollefeys et al. 1996], pure rotation [Hartley 1997b; Agapito et al. 2001; Li
and C. Shen 2006; Rameau et al. 2012], and planar motion [Armstrong et al. 1996;
Faugeras et al. 2000; Espuny 2007]. The camera orientation may also be known, for
example, from the measurements of an external sensor such as an Inertial Measure-
ment Unit (IMU). Methods exploiting a known [Frahm and Koch 2003] or partially
known [Martyushev 2018] camera orientation have been proposed in the literature.
Such prior knowledge of the camera motion often leads to a simpler problem or to
additional constraints that can be exploited in autocalibration (see Section 2.3.5 for
a more detailed discussion).

Vague motion knowledge: In the general context of image-based 3D modeling
(e.g. with a hand-held camera), the camera motion is usually not as restricted as de-
scribed above and exact motion knowledge is also not available. However, there is
some implicit constraint on the camera motion that stems from the way images are
typically captured for 3D reconstruction. The camera is typically moved smoothly
around the scene with a mild change in viewpoint between the images to ensure
a sufficient image overlap for feature matching. Such a motion is also generally
recommended by 3D reconstruction software1. Thus, some vague knowledge of the
camera motion is usually available in applications of image-based 3D modeling.
Efforts have been made to formalize and exploit such vague knowledge in camera
autocalibration. In [F. Shen and Wang 2002], the authors assumed a small rotation

1 https://www.3dflow.net/technology/documents/
photogrammetry-how-to-acquire-pictures/
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between consecutive views, i.e. the rotation angle about each axis being within 10◦,
to obtain linear equations in the coordinates of the plane at infinity (Π∞). These
equations are derived by approximating the rotation matrix and some of the camera
intrinsic parameters. While the small rotation assumption is reasonable for a video,
it is not broadly applicable to image sequences. In [Habed et al. 2014], the authors
introduced Linear Matrix Inequality (LMI) constraints in the entries of the DAQ as-
suming that the relative orientation angle between consecutive views is within 90◦.
This is a mild assumption that is often implicitly satisfied in practice. In fact, from
our inspection of numerous ordered image sequences, the orientation angle between
consecutive views tends to be much smaller than 90◦. It is interesting to note that
the orientation angle is encoded in the eigenvalues of the inter-image homography
induced by Π∞. Therefore, one may wonder if such orientation constraints can be
imposed on Π∞ alone and used in a stratified autocalibration method.

Affine and quasi-affine strata: In stratified camera autocalibration, reliably lo-
cating Π∞ to recover an affine reconstruction has proved to be challenging due to the
nonlinearity of the problem [Hartley and Zisserman 2004]. Once it is located, the
camera intrinsic parameters, and thereby a metric reconstruction, can be obtained
by solving linear equations. For the case of constant intrinsic parameters, stratified
methods usually rely on the so-called modulus constraint [Pollefeys and Van Gool
1999] that is a necessary condition on Π∞ for the eigenvalues of its inter-image ho-
mography matrices to have equal moduli. Further knowledge of the camera geome-
try has been exploited in [Habed et al. 2012; F. Wu et al. 2013; Adlakha et al. 2020].
Other methods [Hartley 1994a; Hartley et al. 1999; Nistér 2004b; Chandraker et al.
2010] locate Π∞ by first upgrading a projective reconstruction to a quasi-affine one
based on Hartley’s chirality theory [Hartley and Zisserman 2004]. In a quasi-affine
reference frame, the chirality inequalities can be used to obtain bounds on the coor-
dinates of Π∞ (see Section 2.2.6). The sought Π∞ can then be located within these
bounds through random sampling followed by a local optimization [Hartley 1994a],
an exhaustive search [Hartley et al. 1999], or a search via a Branch-and-Bound al-
gorithm [Chandraker et al. 2010]. The quasi-affine reconstruction in these methods
is with respect to the set of camera centers and that of scene points: the sets whose
respective convex hulls are preserved. Nistér pointed out that scene points may not
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be reliable and therefore sought a quasi-affine reconstruction with respect to cam-
era centers (QUARC) alone [Nistér 2004b]. A QUARC is then upgraded to a metric
reconstruction through nonlinear optimization of a geometrically meaningful cost
function derived from priors on the intrinsic parameters.

Contributions: In this chapter, we present some contributions in exploiting a
vague knowledge of the camera orientation in stratified camera autocalibration. Our
contributions address the case of a moving camera with constant intrinsic parame-
ters and are stated in the following.

(i) Orientation-based convex constraints: We show that a vague knowledge of
the relative camera orientation can be exploited to constrain the location of
Π∞. For a camera pair with relative orientation angle2 θ, we show that Π∞
belongs to one of two convex sets depending on whether |θ| ≤ 120◦ or |θ| ≥
120◦. These convex sets are defined by new quadratic constraints on Π∞

that we formulate as LMIs. We show that the LMI constraints describe the
relationship between Π∞ and new geometric objects associated to a camera
pair termed the hodographs of the horopter.

(ii) Orientation-based non-convex constraints: We show that a tighter relative
camera orientation knowledge of |θ| < 90◦/k, where k is a positive integer,
can be exploited to further constrain Π∞. We derive a set of constraints for
this case using the Hurwitz stability criterion. These constraints are non-
convex, and they are formulated as polynomial inequalities of degree 2k.

(iii) QUARCH: We show the existence of a new quasi-affine reconstruction of a
scene that can be obtained when a vague knowledge of the relative camera
orientation angle between camera pairs is available. We refer to this recon-
struction as a QUARCH: QUasi-Affine Reconstruction with respect to Cam-
era centers and the Hodographs of horopters. A QUARCH is a QUARC
that additionally preserves affine properties with respect to the hodographs
of horopters. We propose a Semidefinite Programming (SDP) formulation to
efficiently compute a QUARCH.

2 The relative orientation angle θ is about an arbitrary axis in the axis-angle representation, where
θ ∈ [−180◦, 180◦].
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(iv) LMI-constrained optimization method: We propose a constrained Levenberg-
Marquardt method for nonlinear optimization subject to LMI constraints.
We use this method to upgrade a QUARCH to an affine reconstruction.

(v) Stratified autocalibration method: We propose a stratified autocalibration al-
gorithm that recovers a QUARCH as an initial step towards obtaining an affine
and a metric reconstruction from a projective one. Experiments with synthetic
data and real images show that our algorithm performs more reliably than ex-
isting methods, especially for short sequences.

Organization: The rest of this chapter is organized as follows. In Section 4.2,
we introduce the hodographs of the horopter and derive the set of orientation-based
convex constraints on Π∞ using them. We also present the QUARCH stratum based
on these convex constraints. In Section 4.3, we derive the set of orientation-based
non-convex constraints on Π∞ using the Hurwitz stability criterion . We further
present a specialized QUARCH using these constraints. In Section 4.4, we detail the
LMI-constrained optimization method and our proposed stratified autocalibration
algorithm. We report the experimental evaluation of our algorithm in Section 4.5.
Finally, Section 4.6 concludes this chapter.

4.2 Orientation-based convex constraints

In this section, we present a new set of camera orientation-based constraints on
Π∞. These constraints are convex, formulated as LMIs, and they are derived from
the relations between Π∞ and new geometric objects associated to a camera pair,
the hodographs of the horopter. We first review the horopter curve and some of
its properties from the literature in Sections 4.2.1 and 4.2.2. Then, we define the
hodographs of the horopter in Section 4.2.3 and study their geometric relationship
with Π∞ in Section 4.2.4, culminating in the new set of camera orientation-based
constraints on Π∞. Finally, we show the existence of a new quasi-affine reconstruc-
tion stratum, the QUARCH stratum, using these constraints in Section 4.2.5.
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4.2.1 Horopters

In the study of binocular vision, the horopter is the locus of points in space that
project to identical points in both retinas [Von Helmholtz 1867]. In computer vi-
sion, Maybank studied the horopter curves in the context of ambiguous surfaces
for 3D reconstruction [Maybank 1990; Maybank 1993]. Horopters were then used
in camera autocalibration [Armstrong et al. 1996]. Schaffalitzky showed the con-
nection between the horopter curves and the modulus constraint [Pollefeys and Van
Gool 1999] and derived a cubic polynomial constraint on Π∞ for three views based
on some of their properties [Schaffalitzky 2000]. Further properties of horopters
as well as camera autocalibration algorithms based on them have been presented
in [Ronda et al. 2004]. Other works on camera autocalibration have used horopters
for certain constrained camera motions (primarily planar motion) [Armstrong et al.
1996; Faugeras et al. 2000; Espuny 2007; Espuny et al. 2011]. We now formally
define the horopter associated to two cameras. To do so, we rely on an algebraic
expression of the nullspace of a camera projection matrix defined in [Schaffalitzky
2000].

Definition 4.1 (Algebraic nullspace). Given a full row rank camera projection ma-

trix P, the algebraic nullspace N (P) of P is defined by the equation,

det

(
P

Π>

)
= Π>N (P), (4.1)

for any plane Π in P∗3.

The algebraic nullspace is a cubic function of its argument. Its scale is defined by
the scale of the matrix P. This representation is especially useful as we will often
be interested in the exact scale of homogeneous entities in this chapter. The vector
N (P) gives the coordinates of the optical center of the camera represented by the
matrix P. We are now ready to define the horopter associated to a camera pair as
follows.

Definition 4.2 (Horopter). The horopter H of a camera pair (i, j) with identical

intrinsic parameters is the locus of points in P3 that are imaged at the same co-

ordinates by both cameras. Let Pi and Pj be the projection matrices of the two
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4.2 Orientation-based convex constraints

Figure 4.1: The horopter of a camera pair. The horopter (shown in blue) is a twisted cubic
that passes through both camera centers (shown in red).

cameras. A point X lies on H if PiX ' PjX, and the locus of these points is

H(s, t) = N (sPi − tPj) for parameters s and t. The parametric representation of

the horopter is given by the expansion,

H(s, t) = s3 Ci − s2tTij + st2 Tji − t3 Cj, (4.2)

where Ci = N (Pi) and Cj = N (Pj) are the coordinates of the two camera centers,

Tij = T (Pi,Pj), Tji = T (Pj,Pi), and operator T is defined by this expansion.

Note that we represent the horopter in homogeneous form by using two parame-
ters in Definition 4.2. From its parametric representation (4.2), we observe that the
horopter of a camera pair is a twisted cubic in P3 that passes through both camera
centers. Figure 4.1 shows a simulated camera pair and its associated horopter. The
vectors Ci and Cj in (4.2) give the coordinates of the camera centers Ci and Cj , re-
spectively. The points with coordinates Tij and Tji, however, appear less familiar at
this point. These points feature throughout our discussion of the orientation-based
constraints on Π∞, and we define the following term to refer to them.

Definition 4.3 (Control points of the horopter). The virtual points Tij and Tji with

coordinate vectors Tij and Tji, respectively, in the parametric representation of the

horopterH are the control points ofH.

This terminology is inspired from its use in computer graphics and geometric
modeling, and in particular, from the representation of parametric curves through a
set of control points [Agoston 2005]. We will have more to say about the control
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4 Exploiting camera motion

points of the horopter in Section 4.2.4. In the following section, we present the
connection between the horopter curves and the modulus constraint.

4.2.2 Horopters and the modulus constraint

We review here some results on the relationship of Π∞ with the horopter curves.
The following lemma shows the connection between their incidence and the inter-
image infinite homography, as stated in [Schaffalitzky 2000]. For the sake of com-
pleteness, we also provide the proof.

Lemma 4.1. For a camera pair (i, j), let Pi and Pj be the projection matrices,

and let H be the attached horopter such that H(s, t) = N (sPi − tPj). Let Π∞ be

the plane at infinity with coordinates Π∞ =
(
π>∞, 1

)>, and let H∞ij be its induced

inter-image homography, where H∞1i = Pi
[
I3 −π∞

]>
and H∞ij = H∞1jH

∗
∞1i.

We have that,

det(sH∞1i − tH∞1j) = Π>∞H(s, t). (4.3)

Proof. The proof is along the lines of that given in [Schaffalitzky 2000]. Assume
that the cameras are embedded in an affine reference frame, where the projection
matrices are of the form PA

i = [ H∞1i | e1i ], e1i being the epipole, and Π∞ is at its
canonical position with coordinates

[
0>, 1

]>. Now, the left-hand side of (4.3) can
be written as,

det(sH∞1i − tH∞1j) = det

(
sH∞1i − tH∞1j se1i − te1j

0>3 1

)
(4.4a)

= det

(
sPA

i − tPA
j

0>3 1

)
(4.4b)

= det

(
sPi − tPj
π>∞ 1

)
det

(
I3 03

−π>∞ 1

)
(4.4c)

= Π>∞N (sPi − tPj), (4.4d)

thus leading to (4.3). �

Lemma 4.1 links the characteristic polynomial of the inter-image infinite homog-
raphy with the vanishing polynomial representing the intersection of Π∞ and the
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4.2 Orientation-based convex constraints

horopter of the considered camera pair. Note that in [Schaffalitzky 2000], this result
is stated more generally for any plane Π and its induced inter-image homography.
The following properties [Schaffalitzky 2000; Ronda et al. 2004] of the intersection
of Π∞ with the horopter curves follow from Lemma 4.1.

Property 4.1. The plane at infinity Π∞ meets the horopter H of a camera pair at

three points whose parameter values are related to the eigenvalues of its induced

inter-image homography matrix.

Property 4.2. Consider a camera pair (i, j) with projection matrices Pi and Pj , and

attached horopter H with parametric representation H(s, t) = s3 Ci − s2tTij +

st2 Tji − t3 Cj . The plane at infinity Π∞, with coordinates Π∞ =
(
π>∞, 1

)>, in-

duces an inter-image homography H∞ij , where H∞1i = Pi
[
I3 −π∞

]>
and H∞ij =

H∞1jH
∗
∞1i. The coefficients of the polynomial Π>∞H(s, t) satisfy:

Π>∞Ci = det(H∞1i) = λ3
i , Π>∞Cj = det(H∞1j) = λ3

j , (4.5a)

Π>∞Tij = tr(H∞ij) = λ2
iλjaij, Π>∞Tji = tr(H∞ji) = λiλ

2
jaij, (4.5b)

where aij = 1 + 2 cos θij , with θij the relative orientation angle between the two

cameras, and λi and λj are two scalars.

As the horopter curve is a twisted cubic, it intersects any plane, including Π∞,
at three points. From Property 4.1, the points of intersection with Π∞ are related
to the eigenvalues of the inter-image infinite homography matrix. These eigenval-
ues have equal moduli and a necessary condition for this so-called modulus con-
straint [Pollefeys and Van Gool 1999] is that a quartic polynomial equation in the
coordinates of Π∞ is satisfied (see Section 2.3.4). Schaffalitzky showed that this
polynomial constraint can be expressed in terms of the coefficients in Property 4.2
as follows [Schaffalitzky 2000].

Proposition 4.2 (Modulus constraint). For a camera pair (i, j), let H be the at-

tached horopter with parametric representationH(s, t) = s3 Ci−s2tTij+st
2 Tji−

t3 Cj . A necessary condition for a plane Π in P∗3 to be the plane at infinity Π∞ is

that it satisfies the following quartic equation,

Mij(Π) = Π>Ci(Π
>Tji)

3 − Π>Cj(Π
>Tij)

3 = 0. (4.6)
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Hodographs for Kepler Orbits
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Kepler orbits are conic sections, most notably ellipses for stable periodic motion of a planet 
around the Sun. A lesser-known property is the motion of the associated tangential velocity 
vector, which traces out a circular orbit in velocity space. Hamilton (1864) first introduced the 
term hodograph to denote this motion.

A Kepler orbit in plane polar coordinates is described by

r = p
1-e cos θ

.

Here the semi-latus rectum is given by

p = L2

GM m2
, 

where L is the orbital angular momentum, M is the solar mass, m is the planetary mass and G 
is the gravitational constant. It is assumed that M ≫m . The eccentricity of the orbit is given by

(a) Classical mechanics (b) Meteorology

Figure 4.2: Some applications of hodographs. (a) The elliptical orbit of a body and its
instantaneous velocity vectors (left). The velocity vectors are translated to a
common origin and the traced hodograph is a circle for this trajectory (right).
Hodographs serve as a geometric tool in classical mechanics. Figure from the
Wolfram Demonstrations Project3 (S. M. Blinder, “Hodographs for Kepler Or-
bits"). (b) The hodograph (red) traced by the wind velocity vectors (green) is
plotted on a polar diagram. Such diagrams are used in meteorology to ana-
lyze the behaviour of wind. Figure courtesy of the National Weather Service
Louisville, Kentucky4.

The polynomial constraint in Proposition 4.2 is obtained from the coefficients
in Property 4.2 by equating the scalars. This completes our review of horopters and
their relevant properties. In the next section, we introduce new geometric objects
derived from the horopter, the hodographs of the horopter.

4.2.3 Hodographs of the horopter

The hodograph refers to the curve traced by the velocity vectors of a moving body.
The term was coined by William R. Hamilton, who used this curve to study or-
bital motion [Hamilton 1847]. Hodographs have been used since then as a geo-
metric tool in classical mechanics [Derbes 2001; Apostolatos 2003]. The applica-
tion of hodographs is perhaps better known though from meteorology, where the
hodograph traced by the wind velocity vectors is used to analyze the behavior of
wind [Pucik et al. 2021]. Figure 4.2 shows these two applications of hodographs.

3 https://demonstrations.wolfram.com/HodographsForKeplerOrbits/
4 https://www.weather.gov/lmk/
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4.2 Orientation-based convex constraints

(a) A planar curve (blue) and its tangent vectors. (b) The hodograph (red) of the curve.

Figure 4.3: A parametric curve and its hodograph. In (b), the tangent vectors of the curve
in (a) are translated to a common origin (and scaled for visualization), and the
hodograph is traced out by joining their tips. Figure adapted from [Agoston
2005, p. 460].

More formally, the hodograph of a parametric curve is the locus defined by its
derivative [Perwass et al. 2009, Sec. 9.2]. Figure 4.3 shows an example of a para-
metric curve and its hodograph. The curve in Figure 4.3(a) can be interpreted as
the trajectory of a moving point, where the tangent vectors represent its instanta-
neous velocity at different instants. Hodographs are used in geometric modeling
to characterize the properties of various curves [Agoston 2005]. Typically, in such
a context, the considered curve is embedded in a Cartesian space and represented
using a single parameter. As such, it admits a single hodograph. However, in the
context of the present work, we are interested in the horopter curve as an object
embedded in a projective space and defined using two parameters. It hence admits
two hodographs that are defined as follows.

Definition 4.4 (Hodographs of the horopter). For a camera pair (i, j) with attached

horopter H, the hodographs Hs and Ht of H are the curves defined by the partial

derivatives of the parametric horopter. Let Hs(s, t) = ∂
∂s
H(s, t) and Ht(s, t) =

∂
∂ t
H(s, t). The parametric forms of these curves are:

Hs(s, t) = 3s2Ci − 2stTij + t2Tji,

Ht(s, t) = −3t2Cj + 2stTji − s2Tij.
(4.7)

The hodographs of the horopter are two conics in P3. Observe that Hs passes
through the points Ci and Tji, while Ht passes through Cj and Tij . Hereafter, we
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4 Exploiting camera motion

refer to the hodographs of the horopter simply as the hodographs. In the following
section, we study the geometric relationship between Π∞ and these curves, and we
show that their incidence is described by a new set of convex constraints on Π∞.

4.2.4 Hodographs-based constraints on infinity

Our interest in this section is to characterize the geometric relationship between
Π∞ and the hodograph curves. We will show that the hodographs act as positioning
objects to locate Π∞ when a vague knowledge of the relative camera orientation is
available. In particular, their positioning with respect to Π∞ is described by new
quadratic convex inequalities in Π∞ that are formulated as LMIs. Our main result
then in this section is that Π∞ is constrained to one of two convex sets, defined
by the new LMI constraints, depending on whether |θij| ≤ 120◦ or |θij| ≥ 120◦,
where θij is the orientation angle between the two cameras. The results for these
two cases are stated in Propositions 4.6 and 4.7. To meaningfully describe the
relative positioning of Π∞ and the hodographs in projective space, we consider a
fixed representation of the horopter (and thereby its associated hodographs) that we
define as the oriented horopter.

Definition 4.5 (Oriented horopter). The oriented horopter of a camera pair is the

horopterH that is obtained using sign-corrected projection matrices.

It follows from Definition 4.5 that for an oriented horopter, both the camera cen-
ters lie on one side with respect to Π∞. Using this representation, we first charac-
terize the geometric relationship between Π∞ and the control points of an oriented
horopter. In the following lemma, we show that the positioning of these points
with respect to Π∞ depends on the relative camera orientation angle and that this
relationship is described by a new set of linear constraints on Π∞.

Lemma 4.3. For a camera pair (i, j), let θij be the relative camera orientation

angle and H the attached oriented horopter. With respect to the plane at infinity

Π∞, the control points of H lie: (i) on the same side as the camera centers if

|θij| < 120◦, and (ii) on the opposite side as the camera centers if |θij| > 120◦.

If |θij| = 120◦, they lie on Π∞.
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4.2 Orientation-based convex constraints

Proof. From Property 4.2, the incidence of Π∞ with the control points Tij and Tji
ofH is given as Π>∞Tij = λ2

iλj aij and Π>∞Tji = λiλ
2
j aij , where aij = 1+2 cos θij .

Thus, Π>∞Tij and Π>∞Tji depend on the angle θij . For an oriented horopter, the
camera centers Ci and Cj lie on the same side with respect to Π∞, their incidence
arbitrarily being, Π>∞Ci > 0 and Π>∞Cj > 0. From Property 4.2, we also have
that Π>∞Ci = λ3

i and Π>∞Cj = λ3
j , hence λi and λj are positive. As a result,

sgn(Π>∞Tij) = sgn(Π>∞Tji) = sgn(aij), where sgn(·) is the sign function and aij

lies in the interval:

0 ≤ aij ≤ 3 if |θij| ≤ 120◦, (4.8a)

−1 ≤ aij ≤ 0 if |θij| ≥ 120◦, (4.8b)

and aij = 0 if |θij| = 120◦. Thus, Π∞ satisfies the following inequalities:

Π>∞Tij ≥ 0 and Π>∞Tji ≥ 0 if |θij| ≤ 120◦, (4.9a)

Π>∞Tij ≤ 0 and Π>∞Tji ≤ 0 if |θij| ≥ 120◦, (4.9b)

where equality holds if |θij| = 120◦. Hence, the control points and the camera
centers are on the same side with respect to Π∞ when |θij| < 120◦, whereas they
lie on opposite sides with respect to Π∞ when |θij| > 120◦. When |θij| = 120◦, the
control points lie on Π∞. �

Lemma 4.3 introduces a new camera orientation-based constraint on Π∞. The
linear inequalities (4.9) can be used to constrain the location of Π∞ when a vague
knowledge of the relative orientation angle between camera pairs, i.e. |θij| ≤ 120◦

or |θij| ≥ 120◦, is available. Note that when |θij| = 120◦, Π∞ passes through
the control points of the horopter and we obtain two linear equations in the co-
ordinates of Π∞. Such precise camera rotation may be performed in a controlled
setting, where these equations can be used to estimate Π∞. However, this case is
quite restrictive. We are interested here in the more general context of image-based
3D reconstruction, where such exact camera orientation information is typically not
available. On the other hand, we often have a vague knowledge of the camera ori-
entation in this context, and exploiting such knowledge is the main focus of this
chapter. Lemma 4.3 provides a glimpse of how the location of Π∞ is constrained
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4 Exploiting camera motion

depending on the relative camera orientation. Propositions 4.6 and 4.7 present the
complete picture. To reach there, we rely on a couple of intermediate results, in-
cluding the following lemma.

Lemma 4.4. For a camera pair (i, j), let H be the attached (not necessarily ori-

ented) horopter with parametric representationH(s, t) = s3 Ci−s2tTij+st2 Tji−
t3 Cj , and letHs andHt be the hodographs ofH. Let Π be a plane in P∗3 not con-

taining the camera centers Ci and Cj , and consider:

– Π>Hs(s, t) is a quadratic polynomial in s whose coefficients depend on t and

Π. Let ∆s(Π) be its associated discriminant.

– Π>Ht(s, t) is a quadratic polynomial in t whose coefficients depend on s and

Π. Let ∆t(Π) be its associated discriminant.

– Sij(Π) and Sji(Π) are the Schur complements (see Appendix A.1) of Π>Ci

and Π>Cj , respectively, in the two matrices[
Π>Ci Π>Tij

Π>Tij 3Π>Tji

]
and

[
Π>Cj Π>Tji

Π>Tji 3Π>Tij

]
. (4.10)

Then, the signs of ∆s(Π) and ∆t(Π) are given by:

sgn(∆s(Π)) = − sgn
(
Π>Ci

)
sgn(Sij(Π)),

sgn(∆t(Π)) = − sgn
(
Π>Cj

)
sgn(Sji(Π)).

(4.11)

Proof. The polynomials Π>Hs(s, t) and Π>Ht(s, t) are expressed as:

Π>Hs(s, t) = 3s2 Π>Ci − 2stΠ>Tij + t2 Π>Tji,

Π>Ht(s, t) = −3t2 Π>Cj + 2stΠ>Tji − s2 Π>Tij.
(4.12)

These polynomials are quadratic in s and t, respectively. The associated discrimi-
nants ∆s(Π) and ∆t(Π) correspond to:

∆s(Π) = −4t2
(
3(Π>Tji)(Π

>Ci)− (Π>Tij)
2
)
,

∆t(Π) = −4s2
(
3(Π>Tij)(Π

>Cj)− (Π>Tji)
2
)
.

(4.13)
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4.2 Orientation-based convex constraints

As Π does not contain the camera centers Ci and Cj , we have that Π>Ci 6= 0 and
Π>Cj 6= 0, and therefore the Schur complements Sij(Π) and Sji(Π) are defined
as (see Lemma A.1):

Sij(Π) = 3Π>Tji − (Π>Tij)
2(Π>Ci)

−1,

Sji(Π) = 3Π>Tij − (Π>Tji)
2(Π>Cj)

−1.
(4.14)

From (4.13) and (4.14), it can be observed that:

∆s(Π) = −4t2 Π>Ci Sij(Π),

∆t(Π) = −4s2 Π>Cj Sji(Π).
(4.15)

Thus, the signs of these discriminants can be expressed as in (4.11). �

The intersection of the considered plane Π with the hodographs Hs and Ht

is defined by the vanishing polynomials Π>Hs(s, t) and Π>Ht(s, t), respectively.
To meaningfully characterize this intersection, we consider hereafter the hodographs
associated to an oriented horopter (see Definition 4.5). With this representation, we
consider that the discriminants ∆s(Π) and ∆t(Π) in Lemma 4.4 are negative for no
real points of intersection, positive for two distinct real points of intersection, and
zero for one repeated real point of intersection with each of the hodographs. Before
focusing our attention on Π∞ and its geometric relationship with the hodographs,
we first characterize more generally the set of QUARC planes that either do not in-
tersect the hodographs or are, at most, tangent to each hodograph. In the following
proposition, we show that this is a convex set defined by a pair of LMIs.

Proposition 4.5. For a camera pair (i, j), let H be the attached oriented horopter

with parametric representation H(s, t) = s3 Ci − s2tTij + st2 Tji − t3 Cj , and let

Hs and Ht be the hodographs of H. Let Π be a plane in P∗3 such that Π>Ci > 0

and Π>Cj > 0. The following statements are equivalent:

(i) The hodograph Hs, with respect to Π , lies on the same side as the camera

center Ci, while the hodograph Ht lies on the opposite side, with each hodo-

graph intersecting Π in at most one real point.

(ii) Π belongs to a convex set Aij that is defined as,
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Aij =

{
Π ∈ P∗3 :

[
Π>Ci Π>Tij

Π>Tij 3Π>Tji

]
� 0,

[
Π>Cj Π>Tji

Π>Tji 3Π>Tij

]
� 0

}
. (4.16)

Proof. The proof relies on the Schur complement lemma (Lemma A.1). We first
prove the assertion (i)⇒ (ii). From statement (i), we have that, with respect to Π ,
the hodographHs lies on the same side as the camera center Ci, whileHt lies on the
opposite side, with each hodograph intersecting Π in at most one real point. Since
Hs and Ht each intersect Π in at most one real point, the discriminants ∆s(Π) and
∆t(Π) given in Lemma 4.4 are nonpositive. As Π>Ci > 0 and Π>Cj > 0, we can
deduce from Lemma 4.4 that Sij(Π) ≥ 0 and Sji(Π) ≥ 0 for ∆s(Π) and ∆t(Π)

to be nonpositive. From Lemma A.1, since Π>Ci > 0 and Π>Cj > 0, the LMIs
in (4.16) hold if and only if Sij(Π) and Sji(Π) are nonnegative. Thus, Π satisfies
the LMIs in (4.16) and thereby belongs to the set Aij . This proves the forward
implication (i)⇒ (ii).

We now prove the reverse implication. From statement (ii), we have that Π
belongs to the set Aij defined by the two LMIs in (4.16). From Lemma A.1, these
LMIs imply that Sij(Π) ≥ 0 and Sji(Π) ≥ 0 since Π>Ci > 0 and Π>Cj > 0.
We can deduce from Lemma 4.4 that ∆s(Π) and ∆t(Π) are nonpositive. Thus,
Π intersects each of the hodographs Hs and Ht in at most one real point. Now,
from (4.7), we observe that the camera center Ci (with coordinates Ci) lies on Hs,
whereas the point with coordinates −Cj lies on Ht. As Π>Ci > 0 and Π>Cj > 0,
and Π is at most tangent to each hodograph, it can be deduced that Hs is on the
same side as Ci with respect to Π , whileHt is on the opposite side. This proves the
reverse implication (ii)⇒ (i). �

We observe from Lemma 4.4 that the discriminants ∆s(Π) and ∆t(Π) being non-
positive, i.e. Π meeting the hodographs in at most one real point, implies a pair of
quadratic constraints on Π . Proposition 4.5 shows that these constraints are, in fact,
convex as they can be formulated as LMIs (see Appendix A.1). Now, within the
set of QUARC planes, our main interest is in Π∞, and we aim to characterize its
geometric relationship with the hodographs. In the following proposition, we show
that the intersection of Π∞ with the hodographs depends on the relative camera
orientation angle and that Π∞ is constrained to the set Aij when |θij| ≤ 120◦.
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4.2 Orientation-based convex constraints

Proposition 4.6. For a camera pair (i, j), let θij be the relative camera orientation

angle. Let H be the oriented horopter attached to the camera pair, and let Hs and

Ht be the hodographs ofH. If |θij| ≤ 120◦, the plane at infinity Π∞ ∈ Aij .

Proof. We prove here that Π∞ satisfies the first statement in Proposition 4.5 when
|θij| ≤ 120◦. The result that Π∞ ∈ Aij then follows from the equivalence of the two
statements. For an oriented horopter, recall that the camera centers Ci and Cj lie on
the same side with respect to Π∞. To be consistent with Proposition 4.5, we consider
a homogeneous representation of Π∞ such that Π>∞Ci > 0 and Π>∞Cj > 0. The
intersection of Π∞ with the hodographs Hs and Ht is represented by the vanishing
polynomials Π>∞Hs(s, t) and Π>∞Ht(s, t), respectively, and characterized by the
signs of their associated discriminants ∆s(Π∞) and ∆t(Π∞). In particular, ∆s(Π∞)

and ∆t(Π∞) ought to be nonpositive if the intersection with each hodograph is in
at most one real point. To prove that these discriminants are so when |θij| ≤ 120◦,
consider the expressions in (4.11). By substituting the values from Property 4.2 in
these expressions, we have that:

sgn(∆s(Π∞)) = − sgn(aij(3− aij)),

sgn(∆t(Π∞)) = − sgn(aij(3− aij)),
(4.17)

where aij = 1 + 2 cos θij . The signs of ∆s(Π∞) and ∆t(Π∞) depend on aij and
thus on θij . From the values that aij can take in (4.8), we can deduce that:

∆s(Π∞) ≤ 0 and ∆t(Π∞) ≤ 0 if |θij| ≤ 120◦, (4.18a)

∆s(Π∞) ≥ 0 and ∆t(Π∞) ≥ 0 if |θij| ≥ 120◦, (4.18b)

where ∆s(Π∞) = 0 and ∆t(Π∞) = 0 for |θij| ∈ {0◦, 120◦} since aij = 0 if
|θij| = 120◦ and aij = 3 if θij = 0◦. Thus, Π∞ intersects each of the hodographs
Hs and Ht in at most one real point when |θij| ≤ 120◦. This proves one part of
statement (i) in Proposition 4.5. The other part is that Hs is on the same side as Ci
with respect to Π∞, while Ht is on the opposite side. From (4.7), we observe that
Hs contains Ci andHt contains the point with coordinates −Cj . As Π>∞Ci > 0 and
Π>∞Cj > 0, and Π∞ is at most tangent to each hodograph, it can be deduced that the
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4 Exploiting camera motion

first statement in Proposition 4.5 is satisfied. Hence, it follows that Π∞ ∈ Aij when
|θij| ≤ 120◦. �

From the proof of Proposition 4.6, we observe that when |θij| ≤ 120◦, Π∞ ei-
ther does not intersect the hodographs in real points or it is simultaneously tangent
to both of them. Note that the tangency occurs when |θij| ∈ {0◦, 120◦}, the points of
tangency being the control points of the horopter when |θij| = 120◦ (see Lemma 4.3).
Thus, Proposition 4.6 extends the result in Lemma 4.3 on the incidence of Π∞ with
the control points to the hodographs for the case of |θij| ≤ 120◦. The corresponding
constraints so imposed on Π∞ are formulated as linear inequalities in Lemma 4.3,
whereas they are formulated as LMIs in Proposition 4.6. We consider now the case
of |θij| ≥ 120◦. In the following proposition, we show that Π∞ is constrained in
this case to a convex set A′

ij that is a counterpart of Aij .

Proposition 4.7. For a camera pair (i, j), let θij be the relative camera orientation

angle. Let H be the attached oriented horopter with parametric representation

H(s, t) = s3 Ci− s2tTij + st2 Tji− t3 Cj , and letHs andHt be the hodographs of

H. Let Π be a plane in P∗3 such that Π>Ci > 0 and Π>Cj > 0, and consider the

convex set A′
ij defined as:

A′

ij =

{
Π ∈ P∗3 :

[
Π>Ci Π>Tij

Π>Tij −Π>Tji

]
� 0,

[
Π>Cj Π>Tji

Π>Tji −Π>Tij

]
� 0

}
. (4.19)

If |θij| ≥ 120◦, the plane at infinity Π∞ intersects each of the hodographs Hs and

Ht in at least one real point and Π∞ ∈ A′
ij .

Proof. First we prove that Π∞ intersects each of the hodographs Hs and Ht in at
least one real point when |θij| ≥ 120◦. Note that the proof of Proposition 4.6 al-
ready showed this result in (4.18b). We provide an alternative reasoning here that
adds to the subsequent discussion on the geometric constraint imposed by the LMIs
in (4.19). As usual, we consider the homogeneous representation of Π∞ such that
its incidence with the camera centers Ci and Cj is Π>∞Ci > 0 and Π>∞Cj > 0.
From Lemma 4.3, we have that the camera centers Ci and Cj and the control
points Tij and Tji of the horopter H lie on opposite sides with respect to Π∞ when
|θij| > 120◦. As a result, Π∞ does not satisfy the LMIs in Proposition 4.5 in this
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4.2 Orientation-based convex constraints

case and thereby does not belong to the set Aij . From the equivalent statements
in Proposition 4.5, we thus have that Π∞ intersects each of the hodographs Hs and
Ht in two real points when |θij| > 120◦. It can also be easily verified from Lem-
mas 4.3 and 4.4 that Π∞ is simultaneously tangent to both the hodographs when
|θij| = 120◦. Hence, Π∞ intersects each of the hodographs in at least one real point
when |θij| ≥ 120◦.

We now prove that Π∞ is constrained more stringently to the set A′
ij . As Π∞

intersects each of the hodographs in at least one real point when |θij| ≥ 120◦, the
discriminants ∆s(Π∞) and ∆t(Π∞) in Lemma 4.4 are nonnegative. Since we con-
sidered the sign of Π∞ such that Π>∞Ci > 0 and Π>∞Cj > 0, the functions Sij(Π∞)

and Sji(Π∞) are nonpositive. Recall that Sij(Π∞) and Sji(Π∞), defined in (4.14),
are the Schur complements of Π>∞Ci and Π>∞Cj , respectively, in the first and second
matrix in (4.10). Also, these two matrices appear in the LMIs in Proposition 4.5.
Substituting the values from Property 4.2 in (4.14), Sij(Π∞) and Sji(Π∞) can be
expressed as:

Sij(Π∞) = Π>∞Tji(3− aij),

Sji(Π∞) = Π>∞Tij(3− aij),
(4.20)

where aij = 1+2 cos θij . From Lemma 4.3, we have that Π>∞Tij ≤ 0 and Π>∞Tji ≤
0 when |θij| ≥ 120◦. Moreover, from (4.8b), aij is in the interval −1 ≤ aij ≤ 0

when |θij| ≥ 120◦. Since Sij(Π∞) and Sji(Π∞) are nonpositive and aij is bounded,
we observe that Sij(Π∞) and Sji(Π∞) are bounded from below as:

Sij(Π∞)− 4Π>∞Tji ≥ 0,

Sji(Π∞)− 4Π>∞Tij ≥ 0.
(4.21)

Note that the left-hand sides of the two inequalities in (4.21) are the Schur com-
plements of Π>∞Ci and Π>∞Cj , respectively, in the first and second matrix in (4.19).
From the Schur complement lemma, since Π>∞Ci > 0 and Π>∞Cj > 0, the LMIs
in (4.19) hold for Π∞ if and only if these Schur complements are nonnegative, i.e.
the inequalities in (4.21) are satisfied. Thus, Π∞ satisfies the LMIs in (4.19) and
thereby belongs to the set A′

ij when |θij| ≥ 120◦. �
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4 Exploiting camera motion

(a) 0◦ < |θij | < 120◦ (b) |θij | > 120◦

Figure 4.4: The hodographs of the horopter and Π∞. The horopter curve is shown in blue
and its hodographs in yellow and purple. (a) When 0◦ < |θij | < 120◦, Π∞
does not intersect the hodographs in real points. They are therefore ellipses in
this case. (b) When |θij | > 120◦, Π∞ cuts through each of the hodographs in
a defined region. They are therefore hyperbolas in this case. (Not shown: when
θij ∈ {0◦, 120◦}, Π∞ is simultaneously tangent to both hodographs, which are
therefore parabolas in this case.)

From the reasoning in the proof of Proposition 4.7, the linear inequalities in (4.9b)
alone ensure that Π∞ intersects each of the hodographs in at least one real point
when |θij| ≥ 120◦. The LMIs in Proposition 4.7 further characterize the region of
this intersection. To see this, first note that the region of the intersection depends
on the discriminants ∆s(Π∞) and ∆s(Π∞) and thereby on the functions Sij(Π∞)

and Sji(Π∞) in Lemma 4.4. These functions, and thereby the discriminants, are
constrained by the inequalities in (4.21) and hence by the LMIs in (4.19). Thus,
the convex set A′

ij delineates a region where Π∞ intersects each of the hodographs
when |θij| ≥ 120◦. Proposition 4.7 then extends the result in Lemma 4.3 for |θij| ≥
120◦. This completes the set of orientation-based LMI constraints on Π∞.

To summarize our findings in this section, we showed that the relative position-
ing of Π∞ and the hodographs Hs and Ht is characterized by the relative camera
orientation angle. In particular, Π∞ is constrained to one of two convex sets de-
pending on whether |θij| ≤ 120◦ or |θij| ≥ 120◦. When |θij| ≤ 120◦, Π∞ partitions
the hodographs such that Hs lies on the same side as the camera centers with re-

82
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spect to Π∞ while Ht lies on the opposite side, with Π∞ intersecting each of the
hodographs in at most one real point. This implies that it belongs to the set Aij .
When |θij| ≥ 120◦, on the other hand, Π∞ intersects each of the hodographs in
at least one real point and its location is constrained to a region defined by the set
A′
ij . Each of these convex sets, Aij and A′

ij , is defined by a pair of LMI con-
straints on Π∞. Finally, Π∞ is simultaneously tangent to both the hodographs when
|θij| ∈ {0◦, 120◦}. The hodographs thus act as virtual positioning objects for Π∞.
Figure 4.4 shows a simulated camera pair and its associated hodographs to illustrate
this incidence relationship.

The orientation-based LMIs are new necessary conditions for a given plane to
be Π∞. They are complementary to existing constraints on Π∞, such as the modu-
lus constraint [Pollefeys and Van Gool 1999] and the chirality conditions [Hartley
and Zisserman 2004]. It is worth delving a little deeper into the algebraic con-
straint imposed by these LMIs to appreciate their role. We delay this discussion
till Section 4.3.3, where we consider the constraint imposed by these LMIs on the
inter-image homography. From a computational viewpoint, the appeal of these new
constraints is that they are convex and formulated as LMIs. LMI problems in con-
vex optimization can be solved reliably and efficiently using interior-point meth-
ods [Boyd et al. 1994; Boyd and Vandenberghe 2004]. In the following section,
we show how a vague knowledge of the relative orientation angle between camera
pairs, i.e. |θij| ≤ 120◦ or |θij| ≥ 120◦, can be exploited with these LMI constraints
to obtain a new quasi-affine reconstruction of a scene: a QUARCH.

4.2.5 QUARCH: A new quasi-affine reconstruction stratum

The orientation-based LMI constraints on Π∞ presented in the previous section
allow us to define a new quasi-affine reconstruction of a scene that we refer to as
QUARCH: QUasi-Affine Reconstruction with respect to Camera centers and the
Hodographs of horopters. A QUARCH is a specialization of a QUARC that is
additionally quasi-affine with respect to the hodographs of a set of camera pairs. It
is thus one step closer to the sought affine and metric reconstructions, as illustrated
in Figure 4.5. A QUARCH can be recovered from a projective reconstruction when
the camera intrinsic parameters are constant and a vague knowledge of the relative
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Metric

Affine

QUARCH

QUARC + Scene points

Projective

QUARC

Figure 4.5: QUARCH in the 3D reconstruction hierarchy. QUARCH is a specialization of
the QUARC stratum and is therefore one step closer to the affine stratum.

camera orientation angle, i.e. either |θij| ≤ 120◦ or |θij| ≥ 120◦, is available for a set
of camera pairs. Upgrading a projective reconstruction to a QUARCH involves the
same steps outlined for a QUARC in Section 2.2.6 except for locating a QUARCH
plane instead in the second step. For ease of presentation, we split the definition of
a QUARCH plane for the two cases of |θij| ≤ 120◦ and |θij| ≥ 120◦.

Definition 4.6 (QUARCH plane, |θij| ≤ 120◦). For a camera pair (i, j) with rela-

tive orientation angle |θij| ≤ 120◦ and attached oriented horopter H, a QUARCH

plane ΠQ with respect to the camera pair is a QUARC plane that partitions the

hodographs Hs and Ht of H such that Hs lies on the same side as the camera

centers while Ht lies on the opposite side, with ΠQ being at most tangent to each

hodograph. Equivalently, it is a QUARC plane such that ΠQ ∈ Aij .

Definition 4.7 (QUARCH plane, |θij| ≥ 120◦). For a camera pair (i, j) with rela-

tive orientation angle |θij| ≥ 120◦ and attached oriented horopter H, a QUARCH

plane ΠQ with respect to the camera pair is a QUARC plane that either intersects

the hodographs Hs and Ht of H in a region defined by A′
ij or is tangent to each

hodograph.

We also define a strict QUARCH plane as follows.

Definition 4.8 (Strict QUARCH plane). A strict QUARCH plane is a QUARCH

plane that satisfies the strict form of the LMIs in Propositions 4.5 and 4.7.

Compared to a QUARC plane, locating a QUARCH plane additionally requires
the camera intrinsic parameters to be constant as well as a knowledge of either
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|θij| ≤ 120◦ or |θij| ≥ 120◦ for a set of camera pairs. Mapping this plane to the
canonical position with coordinates (0>3 , 1)> upgrades the projective reconstruction
to a QUARCH, which we formally define as follows.

Definition 4.9 (QUARCH). A QUARCH is a projective reconstruction with sign-

corrected projection matrices where the canonical plane is a QUARCH plane with

respect to a set of camera pairs.

The remaining detail is the computation of a QUARCH plane. As the involved
constraints are convex and formulated as LMIs, it can be computed by solving
an SDP problem. The benefit of an SDP formulation is that it can be efficiently
solved using interior-point methods that are conveniently implemented in off-the-
shelf solvers (see Appendix A.2). Assuming that a vague knowledge of the relative
orientation angle, i.e. either |θij| ≤ 120◦ or |θij| ≥ 120◦, is available for all camera
pairs, the following SDP problem can be solved to obtain a QUARCH plane:

max
Π, δ

δ

s.t.
Π>Cl
‖Cl‖

> δ, l = 1, . . . , n,

− 1 ≤ (Π)k ≤ 1, k = 1, . . . , 4,

Π ∈ Aij, ∀(i, j) : |θij| ≤ 120◦,

Π ∈ A′

ij, ∀(i, j) : |θij| ≥ 120◦,

i = 1, . . . , n− 1,

j = i+ 1, . . . , n.

(4.22)

Note that without the orientation-based constraints, the SDP problem (4.22) reduces
to the QUARC LP problem (2.25). A QUARCH may be extended to preserve the
convex hull of the set of scene points by simply augmenting problem (4.22) with
the corresponding linear inequalities for the scene points.

We use a QUARCH in a camera autocalibration algorithm as an initial step to-
wards recovering a metric reconstruction from a projective one. To compute a
QUARCH, the SDP problem in (4.22) assumes that a vague knowledge of the rel-
ative orientation angle is available for all camera pairs. Such knowledge may be
available, for instance, using an external sensor (e.g. a gyroscope). While the mea-
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surements provided by such a sensor may be too noisy to be used as exact orienta-
tion information, they can instead be exploited to automatically assign the appropri-
ate LMI constraints for each camera pair. However, such knowledge is not always
available in the image-based 3D reconstruction scenario. In the proposed algorithm,
we instead assume that |θij| ≤ 120◦ between consecutive views of an ordered im-
age sequence. As discussed earlier, this mild assumption is often implicitly satisfied
when capturing images for 3D reconstruction. We propose a dedicated SDP prob-
lem to compute a QUARCH under this assumption. We present this SDP problem
and our autocalibration algorithm in Section 4.4. In the following section, we inves-
tigate if a tighter yet still vague knowledge of the relative camera orientation angle
allows us to further constrain the location of Π∞.

4.3 Orientation-based non-convex constraints

In the previous section, we derived a new set of camera orientation-based constraints
on Π∞ from its geometric relationship with the hodographs. These constraints are
convex, formulated as LMIs, and can be exploited when a vague knowledge of the
relative camera orientation angle, i.e. either |θij| ≤ 120◦ or |θij| ≥ 120◦, is available
for a set of camera pairs. Using these constraints, we defined the QUARCH stratum
and indicated that we can safely assume |θij| ≤ 120◦ between consecutive views of
an ordered sequence to obtain a QUARCH in practice. A natural question to ask
now is if a tighter knowledge of the orientation angle, though still vague, can be
exploited to further constrain the location of Π∞. Besides the theoretical interest,
this question stems from practice. Images for 3D reconstruction are typically cap-
tured such that the relative orientation angle is considerably smaller than 120◦, at
least between consecutive views, to ensure sufficient overlap between them for an
effective feature matching.

In this section, we show that a tighter knowledge of the relative camera orien-
tation angle can indeed be exploited to constrain Π∞. Specifically, we derive new
inequality constraints on Π∞ from a vague knowledge of the relative camera orien-
tation angle being |θij| < 90◦/k, where k is a positive integer. These constraints
are non-convex and formulated as polynomials of degree 2k. Hence, polynomial
inequalities of an increasingly higher degree are obtained with tighter orientation
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knowledge. We derive these constraints using the Hurwitz stability criterion, a
standard tool in control theory for stability analysis. Unlike the LMI constraints,
which have a geometric interpretation through the hodographs, the development of
the non-convex constraints is purely algebraic and relies on inter-image homogra-
phies alone. We further show that the LMI constraints for |θij| ≤ 120◦ can also be
derived by using the Hurwitz stability criterion. Finally, we show that the LMIs and
the non-convex inequalities can be used together to recover a specialized QUARCH.

In Section 4.3.1, we state the Hurwitz stability criterion. In Section 4.3.2, we
show how this criterion can be used to derive a new set of orientation-based con-
straints on Π∞ for |θij| < 90◦/k (where k is a positive integer). In Section 4.3.3,
we then show the link with the LMIs for |θij| ≤ 120◦ and present a specialized
QUARCH leveraging the LMIs and the non-convex polynomial constraints.

4.3.1 Hurwitz stability criterion

In control system theory, the stability of a linear time-invariant dynamical system
can be determined by analyzing the roots of its characteristic polynomial. In partic-
ular, all the roots of the characteristic polynomial of a stable system have negative
real parts [Golnaraghi and Kuo 2009, Sec. 2.10]. In this context, a stable polynomial
is defined as follows.

Definition 4.10 (Stable polynomial). A real polynomial (i.e. a polynomial with real

coefficients) p(λ) =
∑n

k=0 akλ
k is stable if all of its roots have negative real parts.

Several algebraic tests have been devised in the control literature to determine if
the characteristic polynomial of a given system is stable without explicitly comput-
ing its roots. One such test was proposed by Hurwitz, now referred to as the Hurwitz
stability criterion, that gives a necessary and sufficient condition for a real polyno-
mial p of degree n to be stable [Hurwitz 1895]. This condition involves the leading
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principal minors of the so-called Hurwitz matrix M of p, where M is a square matrix
of size n that is constructed using the coefficients of p as:

M =



an−1 an−3 an−5 · · ·
an an−2 an−4 · · ·
0 an−1 an−3 · · ·
0 an an−2 · · ·
0 0 an−1 · · ·
0 0 an · · ·
...

...
... . . .


, (4.23)

with an−k = 0 if k > n. The leading principal minors of M,

∆1 = an−1, ∆2 = det

(
an−1 an−3

an an−2

)
, . . . , ∆n = det(M), (4.24)

are referred to as the Hurwitz determinants. We are now ready to state the Hurwitz
stability criterion.

Proposition 4.8 (Hurwitz stability criterion [Lancaster and Tismenetsky 1985, Sec.
13.9]). A real polynomial p(λ) =

∑n
k=0 akλ

k of degree n with an > 0 is stable if

and only if the leading principal minors of the Hurwitz matrix of p are positive.

Determining if a given real polynomial is stable thereby reduces to verifying if
the inequalities given by the criterion in Proposition 4.8 are satisfied. We conclude
this overview of the Hurwitz stability criterion by defining the notion of stability for
square matrices.

Definition 4.11 (Stable matrix). A square matrix is stable if its characteristic poly-

nomial is stable. Equivalently, it is stable if the real parts of all of its eigenvalues

are negative.

4.3.2 Stability-based constraints on infinity

We use the Hurwitz stability criterion to derive a new set of orientation-based con-
straints on Π∞. These constraints exploit a vague knowledge of the relative camera
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orientation angle being |θij| < 90◦/k, where k is a positive integer. As with the
LMI constraints presented in Section 4.2.4, they are derived under the assumption
of a moving camera with constant intrinsic parameters. Unlike those LMIs, how-
ever, the stability-based constraints are non-convex and formulated as polynomial
inequalities of degree 2k. We thus obtain polynomials of an increasingly higher
degree with tighter orientation knowledge.

To formulate the new constraints, we analyze the stability of the inter-image ho-
mography matrix H∞ij induced by Π∞. In particular, we show that when |θij| <
90◦/k, the matrix −Hk∞ij is stable. Using the Hurwitz criterion, we can derive nec-
essary and sufficient conditions for this matrix to be stable. The resulting inequal-
ities form the new set of orientation-based constraints on Π∞ for |θij| < 90◦/k.
For clarity and ease of presentation, we first state the result for k = 1, i.e. us-
ing H∞ij (Proposition 4.11) and then generalize it to higher powers, i.e. using
Hk∞ij (Proposition 4.12). In the following proposition, we use the Hurwitz criterion
to derive necessary and sufficient conditions for an arbitrary inter-image homogra-
phy matrix to be stable. We then generalize this result to its kth power in Proposi-
tion 4.10.

Proposition 4.9. For a camera pair (i, j), let Pi and Pj be the sign-corrected pro-

jection matrices. Let Π be a plane in P∗3 with coordinates Π =
(
π>, 1

)> and Hij be

its induced inter-image homography, where H1i = Pi
[
I −π

]>
and Hij = H1jH

∗
1i.

Provided that det(H1i) > 0, the matrix −Hij is stable if and only if:

det(H1j) > 0, tr(Hij) > 0,

tr(Hij) tr(Hji)− det(H1i) det(H1j) > 0.
(4.25)

Proof. From Definition 4.11, the matrix −Hij is stable if its characteristic polyno-
mial is stable. Its characteristic equation,

det(λI + Hij) = 0, (4.26)

is cubic in λ. Multiplying both sides of (4.26) by det(H1i), we obtain,

det(λH1i + H1j det(H1i)) = 0. (4.27)
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Provided that det(H1i) is positive, the stability of the characteristic polynomial
in (4.26) is not affected by this multiplication. The Hurwitz stability criterion gives
necessary and sufficient conditions for a real polynomial to be stable. By applying
this criterion to the polynomial in (4.27), we obtain the inequalities (4.25). �

Recall from (2.5) that Hij is linear in the coordinates of Π for any i and j, and so
are det(H1i) and tr(Hij). Hence, Proposition 4.9 provides one quadratic and a set of
linear inequalities in Π as necessary and sufficient conditions for −Hij to be stable.
Note that tr(Hji) > 0 is implied by these inequalities. In the following proposition,
we consider the stability of the powers of Hij .

Proposition 4.10. For a camera pair (i, j), let Pi and Pj be the sign-corrected

projection matrices. Let Π be a plane in P∗3 with coordinates Π =
(
π>, 1

)> and

Hij be its induced inter-image homography, where H1i = Pi
[
I −π

]>
and Hij =

H1jH
∗
1i. Provided that det(H1i) > 0, for a positive integer k, the matrix −Hkij is

stable if and only if:

tr
(
Hkij
)
> 0,

tr
(
Hkij
)

tr
(
Hkji
)
− (det(H1i) det(H1j))

k > 0,

and det(H1j) > 0 if k is odd.

(4.28)

Proof. The proof is similar to the one of Proposition 4.9. The matrix −Hkij is stable
if its characteristic polynomial is stable. Its characteristic equation,

det
(
λI + Hkij

)
= 0, (4.29)

is cubic in λ. Multiplying both sides of (4.29) by det(H1i), we obtain,

det
(
λH1i + Hk−1

ij H1j det(H1i)
)

= 0. (4.30)
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The stability of the characteristic polynomial in (4.29) is unaffected by this mul-
tiplication, provided that det(H1i) is positive. Compared with the standard form,
p(λ) = a3λ

3 + a2λ
2 + a1λ+ a0, the coefficients of the polynomial in (4.30) are:

a3 = det(H1i),

a2 = det(H1i) tr
(
Hkij
)
,

a1 = (det(H1i))
k+1 tr

(
Hkji
)
,

a0 = (det(H1i))
2k+1(det(H1j))

k.

(4.31)

We then obtain the inequalities (4.28) by applying the Hurwitz stability criterion to
this polynomial. �

Proposition 4.10 generalizes the result given in Proposition 4.9 to (positive in-
teger) powers of Hij . For a given power k, we obtain polynomial inequalities of
maximum degree 2k as necessary and sufficient conditions for −Hkij to be stable.
Note that tr

(
Hkji
)
> 0 is implied by these inequalities. We now show how these

stability conditions can be used to constrain Π∞ when a vague knowledge of the
relative camera orientation angle is available. Similar to the presentation of the sta-
bility conditions, we first state the constraints for |θij| < 90◦, followed by the more
general result for |θij| < 90◦/k.

Proposition 4.11. For a camera pair (i, j) with constant intrinsic parameters, let

θij be the relative camera orientation angle, and Pi and Pj be the sign-corrected

projection matrices. Let Π be a plane in P∗3 with coordinates Π =
(
π>, 1

)>,

and let Hij be its induced inter-image homography, where H1i = Pi
[
I −π

]>
and

Hij = H1jH
∗
1i. If |θij| < 90◦, a necessary condition for Π to be the plane at infinity

Π∞, and hence for Hij to be the infinite homography H∞ij , is that −Hij is stable.

Proof. When Π = Π∞, the homography Hij is the inter-image infinite homography
H∞ij in (2.7). For constant intrinsic parameters, recall from (2.44) that the eigen-
values of H∞ij are a scaled version of those of the rotation matrix between the two
cameras. The real parts of the eigenvalues of −H∞ij are,

{
−λ2

iλj, −λ2
iλj cos θij, −λ2

iλj cos θij
}
, (4.32)
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where det(H∞1i) = λ3
i (see Property 4.2). For sign-corrected projection matrices,

we have that λi > 0 and λj > 0. When |θij| < 90◦, cos θij > 0, and hence the real
parts of all the eigenvalues are negative, i.e. −H∞ij is stable (see Definition 4.11).
Thus, a necessary condition for Π to be Π∞, and thereby for its induced homogra-
phy Hij to be the infinite homography H∞ij , is that −Hij is stable. �

The polynomial inequalities in Proposition 4.9 are necessary and sufficient con-
ditions for a homography matrix to be stable. From Proposition 4.11, they are, in
turn, necessary conditions for it to be the infinite homography, i.e. for the reference
plane Π to be Π∞, when |θij| < 90◦. Hence, these inequalities form a new set of
orientation-based constraints on Π∞ that can be exploited when the relative orienta-
tion angle is known to satisfy |θij| < 90◦ for a set of camera pairs. In the following
proposition, we state the more general result for |θij| < 90◦/k.

Proposition 4.12. For a camera pair (i, j) with constant intrinsic parameters, let

θij be the relative camera orientation angle, and Pi and Pj be the sign-corrected

projection matrices. Let Π be a plane in P∗3 with coordinates Π =
(
π>, 1

)>,

and let Hij be its induced inter-image homography, where H1i = Pi
[
I −π

]>
and

Hij = H1jH
∗
1i. If |θij| < 90◦/k, where k is a positive integer, a necessary condition

for Π to be the plane at infinity Π∞ is that −Hkij is stable.

Proof. The proof is along the lines of the one in Proposition 4.11. It relies, in
addition, on the De Moivre’s theorem [Abramowitz and Stegun 1964], which states
that the following identity holds,

(cos θ + i sin θ)k = cos kθ + i sin kθ, (4.33)

for any positive integer k, where i2 = −1. Now, when Π = Π∞, Hij is the inter-
image infinite homography H∞ij in (2.7). The kth power of H∞ij , given by,

Hk∞ij = λ2k
i λ

k
j KR

k
ijK
−1, (4.34)
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is similar, up to scale, to Rkij , where Rij is the rotation matrix between the two cam-
eras. In (4.34), K is the intrinsic parameters matrix and det(H∞1i) = λ3

i (see Prop-
erty 4.2). As such, the eigenvalues of −Hk∞ij are,{
−λ2k

i λ
k
j , −λ2k

i λ
k
j (cos θij + i sin θij)

k, −λ2k
i λ

k
j (cos θij − i sin θij)

k
}
. (4.35)

Using De Moivre’s theorem, the real parts of these eigenvalues are,

{
−λ2k

i λ
k
j , −λ2k

i λ
k
j cos kθij, −λ2k

i λ
k
j cos kθij

}
. (4.36)

For sign-corrected projection matrices, we have that λi > 0 and λj > 0. When
|θij| < 90◦/k, we have cos kθij > 0 and hence −Hk∞ij is stable. Thus, a necessary
condition for Π to be the plane at infinity Π∞ is that the matrix −Hkij is stable. �

The polynomial inequalities in Proposition 4.10 are necessary and sufficient con-
ditions for the matrix −Hkij to be stable. From Proposition 4.12, these form neces-
sary conditions for the reference plane Π to be Π∞ when |θij| < 90◦/k. Hence,
we obtain a set of polynomial constraints on Π∞ that can be exploited when the
relative orientation angle is known to be |θij| < 90◦/k for a set of a camera pairs.
These constraints are non-convex and complementary to the LMIs for |θij| ≤ 120◦.
We elaborate on this latter point in the next section. For a given k, we propose to
simultaneously use the constraints corresponding to k, k − 1, . . . , 1. We explain
the rationale behind doing so with the help of some examples.

– Case of k = 2: this case corresponds to the constraints for |θij| < 45◦.
The matrix −H2

∞ij is stable in this interval as cos 2θij is positive (see the
proof of Proposition 4.12). Note, however, that cos 2θij is also positive when
|θij| > 135◦. Therefore, −H2

∞ij is stable in this interval as well. To restrict
ourselves to |θij| < 45◦, we can additionally consider the stability conditions
for −H∞ij , corresponding to |θij| < 90◦ and cos θij > 0.

– Case of k = 3: following the same reasoning as for k = 2, we observe that
besides the considered interval |θij| < 30◦, cos 3θij is also positive when
90◦ < |θij| < 150◦. Thus, −H3

∞ij is stable in this interval as well. To restrict
ourselves to |θij| < 30◦, we can consider, in addition, the stability conditions
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4 Exploiting camera motion

for −H∞ij , corresponding to |θij| < 90◦ and cos θij > 0. Note that we do not
simultaneously require the conditions for −H2

∞ij in this case. Conversely, the
conditions for −H2

∞ij , without those for −H∞ij , are not sufficient to restrict
the considered interval to |θij| < 30◦.

We can continue this reasoning for higher powers. From these examples, we con-
clude that for a given k, a subset of the inequalities for k, k − 1, . . . , 1 ought to be
used simultaneously for the orientation constraint |θij| < 90◦/k. We propose to
simultaneously use all the inequalities. While this may introduce some redundant
constraints, the redundancy can, in fact, be beneficial in numerical optimization.
This is notably the case with polynomial optimization problems.

4.3.3 A more specialized QUARCH

The stability-based constraints presented in the previous section exploit a knowl-
edge of |θij| < 90◦/k for a positive integer k. It may seem, at first sight, that
they replace the QUARCH LMIs for |θij| ≤ 120◦. In this section, we show that
these constraints are, in fact, complementary and can be used together to recover a
specialized QUARCH. This section is divided into two parts. In the first part, we
establish the complementary roles played by the non-convex polynomial constraints
and the QUARCH LMIs. To do so, we discuss the algebraic constraint imposed by
the LMIs on the inter-image homography. This discussion complements their pre-
sentation in Section 4.2.4. In the second part, we focus on recovering a specialized
QUARCH using the LMIs and the non-convex constraints together. This involves
estimating bounds on the coordinates of Π∞ using the orientation-based constraints
in conjunction with the chirality inequalities.
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4.3 Orientation-based non-convex constraints

Complementary orientation-based constraints

Before diving into the details, we illustrate the independence of the stability-based
polynomial constraints and the QUARCH LMIs through a simple numerical exam-
ple. Consider the following diagonal matrix,

H =

1 0 0

0 0.5 0

0 0 2

.
The eigenvalues of H are all real and positive. Hence,−H is stable, and the inequal-
ities in Proposition 4.9 are satisfied for this matrix. Furthermore, as det(H) = 1

and tr(H∗)/ tr(H) = 1, H satisfies the modulus constraint (2.46). Now, consider
the QUARCH LMIs in Proposition 4.5. Using Property 4.2, we have that the two
matrices, [

det(I) tr(H)

tr(H) 3 tr(H∗)

]
=

[
1 3.5

3.5 10.5

]
,[

det(H) tr(H∗)

tr(H∗) 3 tr(H)

]
=

[
1 3.5

3.5 10.5

]
,

(4.37)

ought to be positive semidefinite for H to satisfy these LMIs. These two matrices are
identical, and their eigenvalues are −0.15 and 11.65. Hence, they are not positive
semidefinite, and H does not satisfy the QUARCH LMIs. If H is a homography be-
tween two images, then it satisfies the stability-based inequalities for |θij| < 90◦ and
the modulus constraint, yet it does not satisfy the QUARCH LMIs for |θij| ≤ 120◦.
Thus, these LMIs are not implied by the stability-based inequalities or by the mod-
ulus constraint polynomial (or their combination). The following proposition and
the ensuing discussion shed more light on the complementary constraint imposed
by the LMIs.

Proposition 4.13. For a camera pair (i, j) with constant intrinsic parameters, let

θij be the relative camera orientation angle, and Pi and Pj be the sign-corrected

projection matrices. Let Π be a plane in P∗3 with coordinates Π =
(
π>, 1

)>,

and let Hij be its induced inter-image homography, where H1i = Pi
[
I −π

]>
and
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Hij = H1jH
∗
1i. Consider the shifted matrix Dij = Hij − αij I, where αij is a real

eigenvalue of Hij . If |θij| < 120◦ and the modulus constraint is satisfied, the fol-

lowing statements are equivalent:

(i) The two nonzero eigenvalues of Dij have negative real parts and tr(Hij) > 0.

(ii) Π is a strict QUARCH plane (see Definition 4.8).

Proof. For simplicity and without loss of generality, we consider a homography
H1j relating image j and the reference view. Its shifted matrix is D1j = H1j − α1j I,
where α1j is a real eigenvalue of H1j . We now prove the assertion (i) ⇒ (ii).
Consider the characteristic equation of D1j ,

det(λI + α1j I− H1j) = 0, (4.38)

which expands as p(λ) = a3λ
3 + a2λ

2 + a1λ + a0 = 0, where a0, . . . , a3 are
real coefficients. The tail coefficient, a0 = det(α1j I− H1j), is zero as α1j is an
eigenvalue of H1j . The roots of the quadratic polynomial a3λ

2+a2λ+a1 correspond
to the two nonzero eigenvalues of D1j . The coefficients of this polynomial are,

a1 = tr((α1j I− H1j)
∗) = 3α2

1j − 2α1j tr(H1j) + tr(Hj1),

a2 = tr(α1j I− H1j) = 3α1j − tr(H1j),

a3 = det(I) = 1.

(4.39)

The expression of a1 can be obtained using a symbolic software, such as Maple5.
From statement (i), we have that the real parts of the two nonzero eigenvalues
of D1j are negative. Thus, the polynomial a3λ

2 + a2λ + a1 is stable. From the
Hurwitz stability criterion, a necessary and sufficient condition for this polynomial
to be stable is that a1 > 0 and a2 > 0, provided that a3 > 0. Since the modulus
constraint (2.46) is satisfied, we also have α1j = tr(Hj1)/ tr(H1j). By substituting
for α1j in a1 and a2, we obtain the following inequalities,

tr(H1j)
(
3 tr(Hj1)− tr2(H1j)

)
> 0,

tr(Hj1)
(
3 tr(Hj1)− tr2(H1j)

)
> 0.

(4.40)

5 https://www.maplesoft.com/products/Maple/
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4.3 Orientation-based non-convex constraints

From statement (i), we also have that tr(H1j) > 0. Thus, we obtain the following
quadratic inequality from (4.40),

3 tr(Hj1)− tr2(H1j) > 0. (4.41)

Using the Schur complement lemma (Lemma A.1), inequality (4.41) can be refor-
mulated into the following LMI,[

det(I) tr(H1j)

tr(H1j) 3 tr(Hj1)

]
� 0. (4.42)

It can be seen using Property 4.2, that the LMI (4.42) is the strict form of the first
LMI in (4.16), i.e. the strict version of the first QUARCH LMI for |θij| ≤ 120◦. To
obtain the second LMI, we observe that the following inequality is implied by (4.41)
and the modulus constraint (2.46),

3 tr(H1j) det(H1j)− tr2(Hj1) > 0. (4.43)

Using Lemma A.1, this inequality can be reformulated into the strict form of the
second QUARCH LMI for |θij| ≤ 120◦. Note that det(H1j) > 0, required to
apply Lemma A.1, is ensured by the modulus constraint, tr(H1j) > 0, and inequal-
ity (4.41) being satisfied simultaneously. Hence, Π satisfies the strict form of the
QUARCH LMIs for |θij| ≤ 120◦ and is therefore a strict QUARCH plane. This
proves (i) ⇒ (ii). The reverse implication follows from Lemma A.1, and we omit
here the detailed steps. �

Proposition 4.13 shows that the (strict) QUARCH LMIs for |θij| ≤ 120◦ can be
derived using the Hurwitz stability criterion. While the geometric interpretation of
these LMIs was described in Section 4.2.4, we now discuss the algebraic constraint
imposed by them. In Proposition 4.13, we showed that the strict QUARCH LMIs
are necessary and sufficient conditions for the nonzero eigenvalues of the shifted
matrix Dij = Hij − αij I to have negative real parts. In turn, these are conditions
for the real parts of the eigenvalues of Hij to be bounded from above by αij , where
αij = tr(Hji)/ tr(Hij). The inequalities in Proposition 4.9, on the other hand, are
necessary and sufficient conditions for −Hij to be stable, i.e. for the real parts of
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the eigenvalues of Hij to be positive. Hence, we conclude that the stability-based
inequalities for |θij| < 90◦ and the QUARCH LMIs for |θij| ≤ 120◦ play comple-
mentary roles in constraining the eigenvalues of Hij . As illustrated by the example
at the beginning of this section, these constraints thus ought to be used together.

Orientation-based bounds on the plane at infinity

We now turn our attention to recovering a specialized QUARCH using the polyno-
mial constraints for |θij| < 90◦/k together with the QUARCH LMIs. By a spe-
cialized QUARCH, we mean a QUARCH that is closer to the affine reconstruction
than the one defined in Section 4.2.5. In other words, we identify a stratum that
is a specialization of the QUARCH shown in Figure 4.5. We proceed by deriving
bounds on the coordinates of Π∞ using the orientation-based constraints and the
chirality inequalities [Hartley and Zisserman 2004]. These bounds are expressed
as linear inequalities in the coordinates of Π∞, and they define a convex set. The
intersection of QUARCH and this set defines a specialized QUARCH. A projective
reconstruction can be upgraded to a specialized QUARCH by identifying a plane
within this subset. We describe next the computation of the bounds on Π∞ using
the orientation-based constraints.

In a centered quasi-affine reference frame, bounds on the first three coordinates
of Π∞ (the fourth being one) can be obtained by minimizing/maximizing each co-
ordinate subject to the chirality inequalities, i.e. by solving six linear programming
problems. The location of Π∞ is thereby restricted to a bounded volume, see Sec-
tion 2.2.6 for further details. We can additionally use the orientation-based con-
straints to compute such bounds by including the corresponding polynomial in-
equalities in the optimization problem. The linear programs are then turned into
polynomial optimization problems that can be solved, for instance, using Lasserre’s
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4.4 Orientation-based stratified autocalibration

hierarchy [Lasserre 2001]. To estimate the bounds on the lth coordinate of Π∞

(where l = 1, 2, 3), the following polynomial optimization problem can be solved,

min /max (Π)l

s.t. Π ∈ B,
Π is a QUARCH plane with respect to camera pairs (i, j),

− Hkij,−Hk−1
ij , . . . ,−Hij are stable, i = 1, . . . , n− 1,

j = i+ 1,

(4.44)

where B is the set of chirality inequalities (2.20), and the orientation knowledge
|θij| < 90◦/k, for a particular k, is assumed between consecutive views. Prob-
lem (4.44) optimizes a linear objective subject to linear (chirality) and polynomial
(orientation-based) inequalities. Note that the QUARCH constraints are given by
quadratic inequalities, as expressed in (4.41) and (4.43). By solving problem (4.44)
for l = 1, 2, 3, we obtain lower and upper bounds b and b

′ , respectively, on the first
three coordinates of Π∞. These bounds define the following convex set,

B′
=
{
Π ∈ P∗3 : (b)l ≤ (Π)l ≤ (b

′
)l, (Π)4 = 1, l = 1, 2, 3

}
. (4.45)

The intersection of B′ with QUARCH gives rise to a specialized QUARCH. In prac-
tice, the chirality inequalities for the scene points usually far outnumber the other
constraints. A large number of constraints can significantly burden polynomial op-
timization methods. Therefore, rather than using the chirality inequalities directly,
we propose to instead incorporate bounds computed using them in (4.44). In other
words, we define the set B in (4.44) by the bounds on Π∞ computed using the chi-
rality constraints alone (see Section 2.2.6). While this is not as strict as using all
the constraints simultaneously, it is a practical workaround to solve the polynomial
optimization problems efficiently.

4.4 Orientation-based stratified autocalibration

In this section, we present a stratified camera autocalibration method that relies on
the orientation-based constraints introduced in Sections 4.2 and 4.3 to estimate Π∞.
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4 Exploiting camera motion

We use these constraints to compute a QUARCH that serves as an initial step to-
wards recovering the affine and metric reconstructions from a projective one. To es-
timate Π∞, we rely on a QUARCH plane as an initialization for local optimization
of a suitable cost function. We also propose a constrained Levenberg-Marquardt
method for nonlinear optimization subject to LMI constraints. This method ensures
that the iterating plane during the optimization remains in the subset of QUARCH
planes defined by the orientation constraints. Once Π∞ is estimated using local
optimization, the camera intrinsic parameters are retrieved by solving linear equa-
tions for the DIAC. In the rest of this section, we fill in the details of our stratified
method. In Section 4.4.1, we describe the QUARCH computation. In Section 4.4.2,
we present the constrained optimization method used to locate Π∞. Finally, in Sec-
tion 4.4.3 we summarize the steps of our autocalibration algorithm.

4.4.1 Computing a QUARCH

To compute a QUARCH, we assume that the orientation angle θij between consec-
utive views satisfies, |θij| ≤ 120◦. As already discussed, this is a mild assumption
that is often implicitly satisfied in ordered image sequences captured for 3D recon-
struction. Further knowledge of the relative orientation angle being |θij| < 90◦/k,
where k is a positive integer, can be used to obtain a specialized QUARCH (see Sec-
tion 4.3.3). We solve the following SDP problem to obtain a QUARCH plane,

max
Π,Z

log detZ

s.t. Z � 0,

(b)l(Π)4 ≤ (Π)l ≤ (b
′
)l(Π)4, l = 1, . . . , 3,

(Π)4 ≤ 1,[
Π>Ci Π>Tij

Π>Tij 3Π>Tji

]
� Z, i = 1, . . . , n− 1,[

Π>Cj Π>Tji

Π>Tji 3Π>Tij

]
� Z, j = i+ 1,

(4.46)
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where the values for (b)l and (b
′
)l depend on whether the orientation constraints for

|θij| < 90◦/k are used. If so, (b)l and (b
′
)l are the bounds in (4.45) for l = 1, 2, 3.

We obtain a specialized QUARCH in this case. Otherwise, we set all (b)l = −1 and
(b

′
)l = 1, as in problem (4.22). The problem is then bounded. Note that maximizing

log detZ (Z here is a symmetric 2×2 matrix) is a convex optimization problem. We
use this cost function rather than the one in (4.22) as maximizing log detZ prevents
the determinants of the two matrices in the LMIs in (4.46) from being arbitrarily
close to zero. This is the case for Π∞ as |θij| approaches 0◦ or 120◦. We assume
that the camera motion between consecutive views is not close to either of these
configurations, i.e. a pure translation or a large rotation. Through empirical tests, we
have found that when using our algorithm, a QUARCH plane computed via (4.46)
converges more reliably to the sought Π∞ than the one determined via (4.22).

4.4.2 Locating infinity using LMI-constrained optimization

To estimate Π∞, we use the QUARCH plane from problem (4.46) as an initialization
for local optimization of a suitable cost function. We require the constraints used
in (4.46) to be enforced during the optimization so that the iterating plane remains
in the QUARCH set. We propose solving the following problem to locate Π∞,

min
Π

n−1∑
i= 1

n∑
j= i+1

M2
ij(Π)

(Π>Ci)
4 (Π>Cj)

4

s.t. (b)l ≤ (Π)l ≤ (b
′
)l, l = 1, . . . , 3,[

Π>Ci Π>Tij

Π>Tij 3Π>Tji

]
� 0, i = 1, . . . , n− 1,[

Π>Cj Π>Tji

Π>Tji 3Π>Tij

]
� 0, j = i+ 1,

(4.47)

whereMij is the polynomial from the modulus constraint in (4.6), and the normal-
ization eliminates the projective scale factors from the cost. The vectors b and b

′

are, again, the bounds in (4.45). The bound inequalities are used if they were also
used in the QUARCH plane computation in (4.46), i.e. depending on the relative
orientation knowledge. Note that we optimize for the first three coordinates of Π∞,
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Algorithm 1 Constrained Levenberg-Marquardt Method [Kanzow et al. 2004]
1: Choose x0 ∈ C, µ > 0, and set k = 0.

2: If F(xk) = 0, stop.

3: Choose Jk, set µk = µ‖F(xk)‖2, and compute dk as the solution of (4.49).

4: Set xk+1 = xk + dk, k ←− k + 1, and go to step 2.

fixing the fourth to one. Problem (4.47) is a nonlinear optimization problem subject
to LMI constraints (linear inequalities can also be written as an LMI). Unfortu-
nately, there do not seem to be tailored methods for this problem in current solvers.
While implementations of unconstrained optimization methods are ubiquitous, an
unconstrained optimization of problem (4.47) may converge to a solution that is
not a QUARCH plane. Such a solution is therefore not the sought Π∞. To solve
problem (4.47), we propose a constrained Levenberg-Marquardt (LM) method for
nonlinear optimization subject to LMI constraints. The rest of this section details
this constrained optimization method.

Our method builds upon previous work on LM optimization subject to convex
constraints [Kanzow et al. 2004]. The general optimization problem is stated as,

min
x
f(x)

s.t. x ∈ C,
(4.48)

where f(x) = ‖F(x)‖2 is the natural merit function corresponding to the mapping
F(x) and C is a nonempty closed convex set. In [Kanzow et al. 2004], the authors
solved the following regularized form of problem (4.48),

min
d
‖F(xk) + Jk d‖2 + µk‖d‖2

s.t. xk + d ∈ C,
(4.49)

that involves iteratively computing a step d such that the iterate xk+d is in the set C.
In problem (4.49), Jk is the Jacobian of F(xk) and µk is a positive parameter at iter-
ation k. Note that the quadratic objective function in (4.49) is strictly convex. Thus,
a convex minimization problem is solved at each iteration. The steps of the opti-
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mization algorithm are summarized in Algorithm 1. This constrained LM method
was shown to converge locally quadratically under a local error bound condition.
While the authors considered box constraints in their work, efficiently dealing with
general convex constraints was left as an open question.

Our contribution is to formulate the step computation in (4.49) as an SDP prob-
lem, where the QUARCH LMIs and bound inequalities can be easily incorporated.
To do so, we first observe that the objective function in (4.49) expands as follows,

‖Fk + Jkd‖2 + µk‖d‖2 = F>k Fk + 2F>k Jkd + d>(J>k Jk + µkI)d, (4.50)

where Fk is a shorthand for F(xk). Hence, problem (4.49) is equivalent to,

min
d, δ

δ

s.t. xk + d ∈ C,
δ − F>k Fk − 2F>k Jkd− d>

(
J>k Jk + µkI

)
d ≥ 0.

(4.51)

The inequality (4.51) is quadratic in d and can be reformulated into an LMI by
applying the Schur complement lemma. The step d can then be computed by solving
the following SDP problem,

min
d, δ

δ

s.t.

[
J>k Jk + µkI (J>k Jk + µkI)d

d>(J>k Jk + µkI) δ − F>k Fk − 2F>k Jkd

]
� 0,

xk + d ∈ C.

(4.52)

Note that the term J>k Jk + µkI in the LMI (4.52) is positive definite by construction.
Our LMI-constrained method thus solves the SDP problem (4.52) in the third step
of Algorithm 1. In our case, x0 is the QUARCH plane from the SDP problem (4.46),
C is the subset of QUARCH planes defined by the QUARCH LMIs and optionally
the bound inequalities, and f(x) is the cost function used to locate Π∞ in (4.47).
We optimize for the first three coordinates of Π∞, fixing the fourth to 1. Thus, we
compute the first three coordinates of the step d, the fourth being 0. Our constrained
LM method ensures that the iterating plane remains in the subset of QUARCH
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planes to which Π∞ belongs. This constraint also prevents the iterating plane from
crossing the camera centers, which could be fatal for the cost function in (4.47). As
a local optimization method, it remains susceptible to converge to a local minimum
of the cost function, albeit one that is also a QUARCH plane.

We conclude this section by discussing the choice of the parameter µk in Algo-
rithm 1. This parameter influences the optimization, and some authors have pointed
out that the choice µk = µ‖F(xk)‖2 is not the most appropriate [Yu 2004; Fan and
Yuan 2005]. When xk is far from the solution set, µk may be quite large, leading to a
small step d and hindering the optimization progress. Conversely, as xk approaches
the solution set, µk may be quite small and thereby no longer play a part in the cost.
We set µk = µ‖F(xk)‖, rather than using the squared norm, following [Yu 2004].
As shown in [Fan 2013], the same quadratic convergence rate is obtained with this
choice. In the following section, we summarize the steps of our stratified camera
autocalibration algorithm.

4.4.3 Autocalibration algorithm

We consider a projective reconstruction with sign-corrected projection matrices Pi,
i = 1, . . . , n, where the reference frame is attached to the first camera, and scene
points Xj , j = 1, . . . ,m. Our autocalibration algorithm then proceeds as follows:

(i) QUARCH: compute a QUARCH plane ΠQ by solving the SDP problem (4.46),
and upgrade the projective reconstruction to a QUARCH as PQ

i = PiH
−1
Q and

XQ
j = HQXj , where,

HQ =

[
I3 03

Π>Q

]
.

(ii) Affine: locate Π∞ by solving problem (4.47) using the LMI-constrained op-
timization method with ΠQ as the initialization. Upgrade the QUARCH to
affine as PA

i = PQ
i H
−1
A and XA

j = HAX
Q
j , where,

HA =

[
I3 03

Π>∞

]
.
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(iii) Metric: compute the camera calibration matrix K by solving linear equations
for the DIAC. Upgrade the affine reconstruction to a metric one as PM

i =

PA
i H
−1
M and XM

j = HMX
A
j , where,

HM =

[
K−1 03

0>3 1

]
.

In the following section, we report the experiments that we conducted to evaluate
our autocalibration algorithm and the benefits of the orientation-based constraints.

4.5 Experimental results

We tested our camera autocalibration method using both synthetic data and real im-
ages. In the experiments, we primarily evaluated our algorithm using the QUARCH
LMIs. In one experiment with synthetic data, we evaluated the benefits of addition-
ally using the non-convex polynomial constraints. For a quantitative evaluation, we
computed the 3D RMS error and the following calibration error metrics:

∆f =
∣∣∣fx − f̂x∣∣∣+

∣∣∣fy − f̂y∣∣∣, ∆uv = |u− û|+ |v − v̂|,

∆γ = |γ − γ̂|,
(4.53)

where (f̂x, f̂y), (û, v̂), and γ̂ are the estimated focal lengths, principal point, and
skew, respectively. We computed the 3D RMS error after aligning the recovered
metric point cloud to the ground truth Euclidean one by a best-fit similarity trans-
formation in the least-squares sense. Each point cloud was first scaled such that
the mean distance of all the points from the center was one unit. We set µ = 0.5,
µ0 = µ‖F(xk)‖ and used the update µk+1 = min{µk, µk‖F(xk+1)‖} in the LMI-
constrained optimization. Our algorithm was implemented in MATLAB R2017b.
We used YALMIP [Löfberg 2004] to model the SDP problems, with MOSEK6

as the solver. GloptiPoly [Henrion et al. 2009] was used to solve the polynomial
optimization problems. All the experiments were conducted on an Intel Core i7
3.10 GHz 32GB RAM computer.

6 https://docs.mosek.com/8.1/toolbox/index.html
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4.5.1 Synthetic data experiments

Each synthetic scene in our tests consisted of 500 points scattered randomly within
the unit sphere. The cameras were placed at a distance of 2.75–3.45 units from
the sphere center and facing towards it. Their positions were then perturbed by a
small random translation. The rotation angle θij between consecutive views was
sampled randomly from the range [20◦, 60◦] to satisfy the assumption |θij| ≤ 120◦.
All cameras had (in pixels) focal length fx = fy = 300, zero skew, i.e. γ = 0,
and an image-centered principal point, (u0, v0) = (128, 128). Zero-mean Gaussian
noise with standard deviation in the [0, 2] pixel range was added to pixel coordinates
in increments of 0.5 pixels. The length of the sequence was varied from 4 to 16
views, and 100 trials were run for each sequence length and image noise level.
Projective reconstructions were computed using a factorization method [Oliensis
and Hartley 2007] implemented in the VSfM toolbox7, followed by a projective
bundle adjustment [Lourakis and Argyros 2009].

In the first couple of experiments described in the following, we assess the ben-
efits of the orientation-based constraints in our algorithm. We then compare the
results obtained from our algorithm with those from existing methods. In these ex-
periments, we used only the QUARCH LMIs as the orientation-based constraints in
the first two steps of our algorithm. In the final experiment reported in this section,
we evaluate the benefits of incorporating further orientation knowledge using the
non-convex polynomial constraints.

Benefits of QUARCH: We compared a QUARCH plane initialization with a
QUARC by solving an unconstrained version of problem (4.47) in step (ii) of
our algorithm. We denote these two unconstrained variants of our algorithm by
QUARCH-M and QUARC-M, respectively. We compared their reliability in re-
covering a metric reconstruction from a projective one and focused on short se-
quences. We considered a 3D error of 0.02 as a threshold for a successful metric
upgrade. Figure 4.6 shows the success rate of QUARC-M and QUARCH-M for a
varying number of views and pixel noise levels. For 4 and 5 views in Figures 4.6(a)
and 4.6(b), respectively, QUARCH-M obtained a significantly higher success rate

7 http://github.com/vrabaud/sfm_toolbox
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Figure 4.6: Benefits of QUARCH and the LMI-constrained optimization. QUARCH*M
denotes our algorithm. QUARCH-M and QUARC-M are its variants using an
unconstrained optimization. QUARC-M uses a QUARC plane as initialization.

across the different pixel noise levels. These results show that the unconstrained
optimization converged more reliably to Π∞ when starting from a QUARCH plane,
thereby leading to a successful metric upgrade more often. As the sequence length
increased to 6 and 7 views in Figure 4.6(c), both approaches succeeded most of
the time, though QUARCH-M still outperformed QUARC-M. We also compared
the reliability using the cost function in [Nistér 2004b]. The corresponding variants
of our algorithm are similarly denoted as QUARCH-N and QUARC-N. Figure 4.7
shows the results using this cost function. Here as well, a QUARCH plane led
to a more reliable metric upgrade, though the difference is less pronounced. This
is because Nistér’s cost function is based on strong priors on the camera intrinsic
parameters, such as zero skew, unit aspect ratio, and an image-centered principal
point, that are fully satisfied by our simulated cameras. Thus, both plane initializa-
tions converged to Π∞ most of the time, the QUARCH plane being slightly more
reliable. We also performed some tests using a randomly selected plane as an ini-
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Figure 4.7: Benefits of QUARCH and the LMI-constrained optimization when using
Nistér’s cost function. QUARCH*N is a variant of our algorithm using Nistér’s
cost function. QUARCH-N and QUARC-N are unconstrained versions of it,
with QUARC-N using a QUARC plane as initialization.

tialization. For 4–5 views, this approach very often failed to obtain a metric upgrade
(not shown), confirming that it is imperative to start such an optimization from at
least a QUARC plane or preferably a QUARCH.

Benefits of the LMI-constrained optimization: We assessed the contribution of
the LMI-constrained optimization in our algorithm’s performance. We compared
the reliability of our algorithm, denoted by QUARCH*M, with that of its uncon-
strained variant, QUARCH-M. From the results in Figure 4.6, QUARCH*M suc-
cessfully upgraded several projective reconstructions that had otherwise failed us-
ing the unconstrained optimization in QUARCH-M. This shows that enforcing the
QUARCH LMIs during the optimization led the QUARCH plane to reliably con-
verge to Π∞ while avoiding succumbing to a non-QUARCH local minimum of the
cost function. In Figure 4.7, using Nistér’s cost function, we observed that only
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Figure 4.8: Runtime (seconds) with an increasing number of views. The error bars show
the mean ± the standard deviation. The noise level is 1 pixel.

one additional projective reconstruction (for 6 views) was successfully upgraded to
metric using the constrained optimization approach, denoted as QUARCH*N. The
improvement is less striking, again, due to the strong camera priors used in this cost
function that are fully satisfied by our simulated cameras, thus curbing the impact
of the LMIs in the optimization. These results show the benefits of enforcing the
QUARCH LMIs during the local optimization, particularly for short sequences and
when using the modulus constraint polynomials. In terms of the computation cost,
the constrained optimization is, of course, more expensive than the unconstrained
optimization as it solves an SDP problem at each iteration. Figure 4.8 shows the
runtime of QUARCH*M, QUARCH-M, as well as of the QUARCH SDP problem
for an increasing number of views and a fixed 1 pixel noise level. Since we use
the LMIs only for consecutive views, their number grows linearly with the number
of views. This is reflected in Figure 4.8 where the runtime also increases linearly.
The constrained optimization generally converged in a few iterations, and it is par-
ticularly suited to short sequences. Beyond six views, QUARCH-M sufficed for a
successful metric upgrade, and it can be used instead for a speedup.

Comparisons with the state of the art: We compared the results obtained from
QUARCH*M and QUARCH*N with those from two globally optimal methods,
GO-Stratified [Chandraker et al. 2010] and GO-DAQ [Chandraker et al. 2007].
QUARCH*M and GO-Stratified rely on the modulus constraint, whereas QUARCH*N
and GO-DAQ use strong priors on the intrinsic parameters to formulate their cost
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Figure 4.9: Comparisons with the state of the art. GO-Stratified and GO-DAQ are globally
optimal methods. GO-Stratified and QUARCH*M rely on the modulus con-
straint. GO-DAQ and QUARCH*N use priors on the intrinsic parameters.

functions. For GO-Stratified, we computed the solutions for both signs of chirality
and picked the one with lower calibration error. We used the authors’ implementa-
tion8 of this method. For GO-DAQ, we fixed the relaxation order to 2. Figure 4.9
shows the success rate obtained with these methods. With 4 and 5 views in Fig-
ures 4.9(a) and 4.9(b), respectively, QUARCH*M significantly outperformed GO-
Stratified, especially for high levels of pixel noise. With such short sequences, the
modulus constraint polynomials are likely to admit multiple global solutions for
Π∞. The additional constraints in QUARCH*M then help to isolate the sought
solution. GO-Stratified also relies on scene points that may prove unreliable in the
presence of noise. QUARCH*N and GO-DAQ fared better than the other two meth-
ods for low levels of pixel noise. However, GO-DAQ suffered a drastic decline in
the success rate as the noise level increased to 1 pixel or more. The explanation

8 https://cseweb.ucsd.edu/~mkchandraker/stratum.html
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Figure 4.10: Benefits of a specialized QUARCH. Left: volume of the search space for Π∞
using progressively tighter orientation knowledge. The reference volume (one
unit) is computed using the chirality constraints alone. Right: the time taken
(seconds) to compute the volume.

for this result is that our simulated cameras approach a known artificial degenerate
configuration for estimating the DAQ. This degenerate configuration occurs when
all the optical axes pass through a common point and the rank of the DAQ is not
enforced [Gurdjos et al. 2009]. Our cameras approach this configuration in the pres-
ence of noise. GO-DAQ is then likely to fail as the rank-3 constraint is not earnestly
enforced due to numerical scaling issues (the cost function and constraints are un-
normalized). QUARCH*N, on the other hand, performed reliably with high levels
of noise as well. As the sequence length increased to seven, all the methods barring
GO-DAQ succeeded most of the time.

Benefits of a specialized QUARCH: We assessed the benefits of incorporating a
tighter orientation knowledge using the non-convex polynomial constraints on Π∞

to recover a specialized QUARCH. We compared the bounds on Π∞ obtained using
the constraints for |θij| < 90◦/k, with k = 1, . . . , 4. Recall that for a given k, we
use the QUARCH LMIs and the constraints for all k = 1, . . . , k− 1 to compute the
bounds on Π∞ (see Section 4.3.3). We solved the involved polynomial optimization
problems using the minimum relaxation order, i.e. k. For this experiment, we gen-
erated synthetic data where the rotation angle between consecutive views was sam-
pled randomly from the range [10◦, 20◦] to satisfy the assumption |θij| < 22.5◦ (for
k = 4). Figure 4.10 (left) shows the resulting volume of the search space for Π∞
computed from the obtained bounds (the box plots follow the convention in MAT-
LAB). This result is for four views and no noise was added to the pixel coordinates.
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The volume is relative to the one obtained with the chirality constraints alone (that
corresponds to a unit volume). Figure 4.10 also shows the result obtained by using
only the QUARCH LMIs, i.e. by exploiting only |θij| ≤ 120◦ between consecutive
views. The results show the QUARCH LMIs reduced the search space by as much
as 40% compared to the chirality constraints alone, while the median decrease is
just over 10%. Using the quadratic inequalities for |θij| < 90◦ did not result in any
noticeable difference. The constraints for |θij| < 45◦ led to a smaller volume, and
the constraints for |θij| < 30◦ further restricted it. A substantially reduced search
space was obtained with the constraints for |θij| < 22.5◦. The resulting volume is
around 20%, in median terms, of the one obtained with chirality constraints alone.
Hence, these results show that incorporating a tighter orientation knowledge can
significantly narrow the location of Π∞. The price to pay of using the higher de-
gree polynomial constraints is a longer computation time, as shown in Figure 4.10
(right). The reported results refer to the time required for solving one polynomial
optimization problem, i.e. each box plot corresponds to 600 measurements as six
polynomial optimization problems are solved for each trial. The results in this ex-
periment indicate that the higher degree polynomial constraints are useful to restrict
the location of Π∞. Their behaviour in the presence of noise and impact in our
autocalibration algorithm remains to be evaluated through further experiments.

4.5.2 Real image experiments

In this section, we present results on some real image sequences: fountain-P11,
Herz-Jesu-P8, and Herz-Jesu-P25 from [Strecha et al. 2008], Vercingetorix and Al-

catraz water tower from [Olsson and Enqvist 2011], Cherub from 3DFlow9, and
L’Arbre aux Serpents from a cultural heritage application. The first three provide
the ground truth calibration with focal lengths fx = 2759.48 and fy = 2764.16,
principal point (u, v) = (1520.69, 1006.81), and skew γ = 0, all in pixels. We quan-
titatively compared our algorithm with existing methods using these sequences. For
the remaining sequences, we analyzed the recovered metric reconstructions qual-
itatively. Our experiments also served to verify the practical applicability of our
assumption that |θij| ≤ 120◦ for consecutive views. For all the sequences, we com-

9 https://www.3dflow.net/3df-zephyr-reconstruction-showcase/
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Sequence Method ∆f ∆uv ∆γ Time (s)

fountain-P11 QUARCH*M 1.91 4.01 0.99 2.71
QUARC-M 2.44 4.30 0.99 0.09

QUARCH*N 42.92 28.29 0.71 1.47
QUARC-N 43.73 28.61 0.69 0.10

GO-DAQ 76.15 31.92 0.10 1.27

GO-Stratified 12.64 9.75 1.17 449.47

Herz-Jesu-P8 QUARCH*M 53.49 78.68 1.56 1.32
QUARC-M 4114.66 101.16 586.29 0.07

QUARCH*N 83.61 33.93 1.24 1.90
QUARC-N 76.81 34.22 1.21 0.09

GO-DAQ 66.10 33.84 0.27 1.85

GO-Stratified 2552.62 1006.05 132.85 154.74

Herz-Jesu-P25 QUARCH*M 34.89 23.71 2.52 2.04
QUARC-M 34.75 23.70 2.55 0.45

QUARCH*N 59.04 31.44 1.40 2.08
QUARC-N 2812.61 185.73 21.86 0.46

GO-DAQ 4.40 33.90 0.60 1.60

GO-Stratified 52.94 32.16 1.69 893.76

Table 4.1: Quantitative evaluation. Autocalibration results on the real image sequences
from [Strecha et al. 2008].

puted the projective reconstructions using P2SfM [Magerand and Bue 2018] with
feature matches obtained using COLMAP [Schönberger and Frahm 2016].

Quantitative evaluation: Table 4.1 reports the calibration errors from the tested
methods on the three sequences with known ground truth calibration. From these re-
sults, we observe that an erroneous calibration was obtained using QUARC-M and
GO-Stratified on the Herz-Jesu-P8 sequence, and using QUARC-N on the Herz-

Jesu-P25 sequence. Upon inspection, the corresponding reconstructions failed to
achieve a metric upgrade and remained projectively distorted. Except for these
failures, all the methods otherwise led to a calibration close to the ground truth
and thereby to a successful metric upgrade. From our observations, the recon-
struction quality was primarily affected by the focal length and skew errors. Note
that QUARCH*M succeeded on the Herz-Jesu-P8 sequence, whereas the other two
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(a) Cherub (b) Alcatraz water tower (c) Vercingetorix

(d) L’Arbre aux Serpents

Figure 4.11: Qualitative evaluation. Sample images and metric 3D reconstructions obtained
using QUARCH*M. (d) Image courtesy of Renato Saleri. L’Arbre aux Ser-
pents de Niki de Saint Phalle c©Musées d’Angers, Niki Charitable Art Foun-
dation.

methods that also rely on the modulus constraint, i.e. QUARC-M and GO-Stratified,
failed. This corroborates our results with the synthetic data, that the QUARCH
LMIs aid in reliably locating Π∞ and that GO-Stratified often fails for short se-
quences. From the computation time reported in Table 4.1, the methods based on
unconstrained local optimization were considerably faster than the others. The con-
strained optimization-based methods solve an SDP problem at each iteration and
are therefore slower than their unconstrained counterparts. While GO-DAQ took a
similar amount of time as QUARCH*M and QUARCH*N, GO-Stratified was sig-
nificantly slower for all the sequences.

Qualitative evaluation: We visually evaluated the 3D reconstructions obtained
with our method using four image sequences: Cherub, Vercingetorix, Alcatraz wa-

ter tower, and Arbre aux Serpents. These sequences have 65, 69, 173, and 154
images, respectively. Their corresponding projective reconstructions contained a
maximum of 66 cameras. The last sequence, Arbre aux Serpents, was captured us-
ing a camera drone for the purpose of digital preservation of the imaged sculpture.
The drone operator did not have any knowledge of the present work and the involved
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orientation constraints. Figure 4.11 shows the metric 3D reconstructions obtained
using QUARCH*M. The recovered reconstructions closely resemble the captured
scenes. Similar metric reconstructions were obtained using QUARCH*N. We ob-
served that several points were poorly estimated in these reconstructions. These led
to failures with GO-Stratified, as it relies on the scene points. These results also
confirm the applicability of the assumption of |θij| ≤ 120◦ for consecutive views.
In fact, this assumption might as well be extended to every other view in these
sequences.

4.6 Conclusion

In this chapter, we showed how a vague knowledge of the camera orientation can
be exploited in stratified autocalibration. Assuming a moving camera with constant
intrinsic parameters, we introduced new pairwise constraints on Π∞ based on a
vague knowledge of the relative camera orientation angle. We showed that Π∞ be-
longs to one of two convex sets depending on whether |θij| ≤ 120◦ or |θij| ≥ 120◦,
with θij the orientation angle between a camera pair. These two convex sets are
defined by LMIs, and they describe the relations between Π∞ and new geometric
objects, the hodographs of the horopter. We then showed that a tighter orientation
knowledge of |θij| < 90◦/k, for a positive integer k, can be exploited to further
constrain Π∞. The resulting constraints are non-convex polynomial inequalities of
degree 2k. They were derived algebraically using the Hurwitz stability criterion.
Unlike the convex constraints, their geometric interpretation remains to be uncov-
ered. Based on the new orientation-based constraints, we showed the existence of
a new quasi-affine reconstruction of a scene that we called a QUARCH. We used a
QUARCH in a stratified camera autocalibration algorithm as an intermediate step
towards recovering an affine reconstruction from a projective one. We also proposed
an LMI-constrained Levenberg-Marquardt method that ensures that the QUARCH
constraints are satisfied during the local optimization used to locate Π∞ in our al-
gorithm.

Our experiments showed the benefits of a QUARCH and the orientation-based
constraints in reliably recovering a metric reconstruction from a projective one.
These experiments primarily evaluated the convex constraints in our algorithm. A
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preliminary test using the non-convex constraints indicated the potential benefits of
incorporating tighter orientation knowledge. Further experiments are necessary to
evaluate the impact of these constraints in our algorithm, and this forms the near-
term future work. The orientation-based constraints can also be useful in other auto-
calibration methods. Search-based methods [Hartley et al. 1999; Chandraker et al.
2010], in particular, can benefit from tighter bounds on Π∞. Our contributions can
also be potentially beneficial in other problems. For instance, similar to previous
work on exploiting oriented constraints [Werner and Pajdla 2001], the QUARCH
constraints could be useful in the feature matching phase to eliminate infeasible
realizations of a scene. Finally, the LMI-constrained optimization method can be
applied more broadly as LMIs appear in numerous computer vision problems [Spe-
ciale et al. 2017; Speciale et al. 2018].
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In this final chapter, we discuss the main contributions of this thesis and some per-
spectives for future research.

5.1 Discussion of contributions

In this thesis, we presented some contributions in uncalibrated 3D computed vision.
In particular, we investigated camera knowledge available in the image-based 3D
reconstruction scenario that has not been fully exploited in camera autocalibration.
Our contributions address stratified autocalibration, where reliably and accurately
locating the plane at infinity is challenging. We derived new constraints on this
plane by exploiting priors on the camera geometry and motion. First, we exploited
partial knowledge of the camera geometry, specifically that it has square pixels.
We derived a new quartic equation in the plane at infinity assuming such a camera
with constant intrinsic parameters. Compared to existing constraints under similar
assumptions, this polynomial has the advantages of being concentrated to only three
unknowns, a reasonably low degree polynomial, and a pairwise constraint. Our
experiments showed the benefits of using the new polynomial in reliably estimating
the plane at infinity.

Second, we exploited a vague knowledge of the relative camera orientation. We
thoroughly studied the constraints that can be derived when a vague knowledge of
the relative camera orientation angle between camera pairs is available. One set
of constraints is convex and can be exploited when the relative orientation angle
between camera pairs is known to be either under or over 120◦. These constraints
have a geometric interpretation through the hodographs of the horopter. They also
define the QUARCH stratum. The non-convex constraints exploit tighter orienta-
tion knowledge and can be used in addition to obtain a specialized QUARCH. We
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proposed a Levenberg-Marquardt method subject to Linear Matrix Inequality con-
straints that is tailored to these constraints. Our experiments showed an improve-
ment in reliably obtaining a metric reconstruction when using the orientation-based
constraints, and incorporating tighter knowledge could further improve it.

We devised autocalibration methods dedicated to the different constraints and
evaluated the benefits of incorporating the additional camera knowledge. Our con-
tributions, however, are complementary and can be used together. For instance, the
quartic equation can be used in the cost of the QUARCH method. Similarly, the
orientation-based constraints can be introduced (as polynomial inequalities) in the
camera geometry-based method. The LMI-constrained optimization can be used in
both cases for local refinement. These constraints may be used in other autocalibra-
tion methods and potentially in other computer vision problems as well. We briefly
discussed such potential applications in Section 4.6.

5.2 Perspectives

Finally, we discuss some potential directions for future research.

Exploiting external sensor information: Images are increasingly captured us-
ing a smartphone/tablet or a camera mounted on a robot (e.g. a drone), where other
sensors, such as an IMU, are also available. An IMU combines a gyroscope and
an accelerometer and provides partial motion information in the sensor reference
frame. In particular, the gyroscope measures the angular velocity, whereas the ac-
celerometer measures the gravity direction. The measurements from the gyroscope
are known to be noisy, and integrating them to obtain the relative orientation in-
duces a drift. The measurements from the accelerometer, on the other hand, are
generally more reliable. To use the accelerometer readings as camera motion in-
formation, the rigid transformation between the camera and IMU must be known.
Fortunately, for smartphones/tablets, the relative transformation is standard across
devices and can thus be assumed to be known. Knowledge of the gravity direction
has been exploited before in some computer vision problems [Kukelova et al. 2010;
Ding et al. 2020]. However, it is yet to be fully exploited in camera autocalibration.
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We have studied this problem and obtained some promising preliminary results that
we plan to develop further.

Exploiting semantic priors: Thanks to recent advances in machine learning, par-
ticularly deep learning [LeCun et al. 2015], higher-level features, such as objects,
regions, and their semantic labels, can now be efficiently obtained across different
modalities, including images, videos, RGB-D, and 3D data. Exploring the use of
such semantic information in camera autocalibration and other geometric computer
vision problems is an interesting direction for future research. Semantic priors may
be especially useful when low-level features cannot be easily obtained, for instance,
due to a lack of texture or severe appearance changes in the scene, or when deal-
ing with different modalities. Pursuing research in this direction entails several
potential challenges, including identifying useful semantic priors, mathematically
modeling the optimization problem to account for such priors, and dealing with er-
roneous semantic information. Some relevant recent works in computer vision and
robotics address registration [Paudel et al. 2017; Speciale et al. 2018], visual local-
ization [Toft et al. 2018], visual odometry [Lianos et al. 2018], and SLAM [Rosinol
et al. 2020].

119
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This appendix provides an overview of some optimization tools that are widely
used in this thesis. The aim is to summarize the relevant results. In Appendices A.1
and A.2, we provide the basics of Linear Matrix Inequalities and semidefinite pro-
gramming, respectively. In Appendix A.3, we give an overview of Lasserre’s poly-
nomial optimization method.

A.1 Linear Matrix Inequalities

A Linear Matrix Inequality (LMI) is a constraint on a real vector x = (x1, . . . , xn)>

such that F(x) � 0, where

F(x) = F0 +
n∑
i=1

xi Fi (A.1)

is an affine function of x involving symmetric matrices F0,F1, . . . ,Fn. The LMI
F(x) � 0 means that F(x) is positive semidefinite. The LMI may also be strict,
i.e. F(x) � 0, in which case F(x) is positive definite. The LMI (A.1) is a convex
constraint on x, i.e. the set {x : F(x) � 0} is convex. Convex quadratic inequali-
ties can be reformulated into LMIs using the Schur complement lemma [Boyd and
Vandenberghe 2004, Sec. A.5.5].

Lemma A.1 (Schur complement lemma). Consider a real symmetric matrix D that

is partitioned into matrix blocks as:

D =

[
A B

B> C

]
, (A.2)
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where A is a symmetric matrix. If A is nonsingular, the matrix,

S = C− B>A−1B, (A.3)

is defined as the Schur complement of A in D. The positive (semi)definiteness of D

is characterized by the following conditions:

(i) D � 0 if and only if A � 0 and S � 0.

(ii) If A � 0, then D � 0 if and only if S � 0.

Further details on LMIs can be found in [Boyd et al. 1994].

A.2 Semidefinite programming

A Semidefinite Programming (SDP) problem is a convex optimization problem of
the form,

min
x

c>x

s.t. F(x) � 0,
(A.4)

where x is the sought vector of variables, c and x are both real vectors, and the
matrix F(x) is defined in (A.1). In other words, an SDP problem minimizes (or
maximizes) a linear objective function subject to LMI constraints. SDPs general-
ize Linear Programming (LP) problems. An important property of SDP problems
is that they can be solved efficiently in polynomial time using interior-point meth-
ods [Boyd and Vandenberghe 2004; Wright 2005]. These methods are conveniently
implemented in several off-the-shelf solvers, such as MOSEK1 and CVXOPT2.

A.3 Polynomial optimization

Consider the, generally nonconvex, polynomial optimization problem of the form,

min
x

f(x)

s.t. gi(x) ≥ 0, i = 1, 2, . . . ,m,
(A.5)

1 https://docs.mosek.com/latest/intro/index.html
2 http://cvxopt.org/userguide/intro.html
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where f(x) and g1(x), . . . , gm(x) are all multivariate scalar polynomials in x, an
n-vector. In [Lasserre 2001], it has been shown that problem (A.5) can be solved
through a hierarchy of convex LMI relaxations of increasing order d = 1, 2, . . . ,

yielding monotonically non-decreasing lower bounds on the original problem and
converging to its global minimum. At each order d, the problem is linearized and
the following surrogate SDP is solved,

min
y

f(y)

s.t. Md−1(gi(y)) � 0, i = 1, 2, . . . ,m,

Md(y) � 0.

(A.6)

Denoting by vd(x) the vector containing all monomials up to degree d, the lineariza-
tion (A.6) is obtained from (A.5) by:

(i) replacing the scalar polynomial constraints gi(x) ≥ 0 by matrix constraints
gi(x)vd−1(x)vd−1(x)> � 0,

(ii) introducing the constraint vd(x)vd(x)> � 0,

(iii) substituting the monomials xk11 xk22 . . . xknn up to degree 2d by new variables
yk1k2...kn in the objective and the resulting constraints. In (A.6), the linearized
matrices gi(x)vd−1(x)vd−1(x)> and vd(x)vd(x)

> are respectively denoted by
Md−1(gi(y)) and Md(y), and they are known as the moment matrices.

Note that linearization is possible at a starting relaxation order d, in which no
monomial in the problem is of a degree higher than 2d. At a given relaxation order,
the global optimality of the solution(s) can be certified by a rank condition on the
moment matrices. Though the relaxation order at which global optima are obtained
is not known in advance, it has been observed that this occurs at a relatively small
order of relaxation for many problems [Henrion and Lasserre 2005]. In practice,
even if the global optimality is not certified at the first order of relaxation, the corre-
sponding solution can be used as an approximation to save the computational effort
of solving the problem at higher orders of relaxation. Lasserre’s method, often re-
ferred to as Lasserre’s hierarchy, is conveniently implemented in GloptiPoly [Hen-
rion and Lasserre 2003; Henrion et al. 2009]. It has been used to solve several poly-
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nomial optimization problems in computer vision [Chandraker et al. 2007; Kahl
and Henrion 2007; Magerand et al. 2012; Bugarin et al. 2016; Parashar et al. 2017;
Trutman et al. 2022]. The interested reader may refer to [Lasserre 2001; Lasserre
2015] for more details on this method.
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B Line projection matrix

This appendix provides the expression of a line projection matrix in terms of its
point projection counterpart. This expression is given in (B.3).

A line L in 3-space is represented by its Plücker coordinates encapsulated in a
6-vector L. The coordinates of L may be obtained from those of two points, say
Y and Z, on this line. Suppose Y and Z have the coordinates, Y ' (y>, y4)>

and Z ' (z>, z4)>, respectively. L is constructed by stacking two 3-vectors, the
so-called moment vector y × z and displacement vector y4z − z4y. Arranged as
in [Bartoli and Sturm 2004], L> is given by,

L> ' (y> × z>, y4z
> − z4y

>). (B.1)

A camera is generally described by its point projection matrix P, where P is a 3× 4

matrix, that maps a scene point Y to its pixel projection PY. A similar relationship,
governed by a 3× 6 matrix M, was shown in [Ponce et al. 2005] to exist between a
scene line L and its image,

l ' ML, (B.2)

where L and l are the coordinates of L and its image, respectively. A line projec-
tion matrix M is related to its point projection counterpart P, and each one can be
obtained from the other. Indeed, if P is partitioned as P = [ H | e ], with H a 3 × 3

matrix, then,
M ' [ det(H)H−> | − [e]×H ]. (B.3)

This expression of M can be obtained by using the fact that the image of a scene
line L is a line containing the image projections of two points Y and Z on L, i.e.
ML ' PY × PZ. Since P can be computed from point correspondences and it is
related to M via (B.3), line correspondences are not needed to estimate M.
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Alors que l’œil humain perçoit le monde en trois dimensions (3D) sans effort, no-
tamment grâce à des stimuli visuels, cette capacité est loin d’être triviale pour un
ordinateur. En utilisant une caméra pour les données visuelles, l’information 3D est
perdue lors de la projection d’une scène 3D sur une image 2D. Retrouver la struc-
ture 3D de la scène à partir de plusieurs images est un problème majeur dans le
domaine de la vision par ordinateur. Les nombreux travaux de recherche sur ce pro-
blème ont conduit au développement d’une base et d’un cadre théoriques mais aussi
d’algorithmes pour le calcul de structures 3D à partir d’images bidimensionnelles
calibrées et non calibrées. Dans cette thèse, nous nous intéressons au problème de
reconstruction 3D non calibrée, où aussi bien les géométries interne qu’externe de
la caméra sont inconnues. Nous présentons des contributions au problème dit d’au-
tocalibrage des caméras qui constitue une étape aussi cruciale que difficile dans le
processus de reconstruction 3D à partir d’images non calibrées.

C.1 Contexte et motivation

Modélisation de scènes en 3D : Les modèles 3D de scènes et d’objets dans le
monde font désormais partie intégrante de diverses applications. En réalité aug-
mentée (RA), notre vue du monde physique est enrichie par des modèles virtuels
qui se superposent à la scène. Par exemple, l’application mobile Snapchat1 intègre
une fonction de réalité augmentée appelée “Local Lenses". Grâce à cette fonction-
nalité, les utilisateurs peuvent s’engager dans un contenu virtuel, tel qu’un monde
en RA partagé à travers la rue Carnaby à Londres. Local Lenses dépend d’une re-
construction 3D de la rue et des bâtiments qui a été réalisée à partir d’images, y

1 https://ar.snap.com/lens-studio
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compris des photos publiques, capturées autour de la rue. En robotique, construire
et maintenir une carte 3D d’un environnement inconnu est souvent cruciale pour un
robot afin d’interagir et d’effectuer des tâches dans son environnement. Ces tâches
peuvent inclure l’inspection et la surveillance [MAURER et al. 2017], les opéra-
tions de recherche et de sauvetage [DELMERICO et al. 2019], et les véhicules auto-
nomes [BRESSON et al. 2017]. Par exemple, la voiture autonome de Cruise2 utilise
un scan laser 3D de son environnement, entre autres informations de capteurs, pour
naviguer dans son environnement. Dans le patrimoine numérique, les modèles 3D
de sites et d’objets culturels offrent un moyen de les conserver numériquement. Ces
modèles numériques peuvent ensuite être utilisés pour l’analyse, tel que la détection
des changements, et pour des visites virtuelles interactives. Par exemple, dans une
visite interactive de la Villa de Diomède [DESSALES 2020] à Pompéi, un rendu de
l’état historique du site peut être superposé sur un modèle 3D de son état actuel. Le
modèle 3D a été obtenu à partir d’images et de scans laser du site. Il existe de nom-
breuses autres applications de la modélisation 3D : dans les jeux [STATHAM 2020],
la police scientifique [GALANAKIS et al. 2021] et la paléontologie [FALKINGHAM

et al. 2020].

Détection 3D : Les méthodes d’acquisition 3D sans contact sont généralement
classées comme actives ou passives [LIU et al. 2020]. Les méthodes actives inter-
fèrent avec la scène par un rayonnement électromagnétique contrôlé au moyen de
projecteurs de lumière structurée (Microsoft Kinect V1, Intel RealSense SR300) ou
de scanners à temps de vol (Microsoft Kinect V2, Intel RealSense L515). Dans l’ap-
proche par lumière structurée, un motif est projeté sur la scène, et une ou plusieurs
caméras (capteurs CCD/CMOS) sont employées pour imager la scène éclairée. Le
motif projeté étant connu, les correspondances entre celui-ci et les projections sur
l’image peuvent être établies aisément, et la structure 3D est obtenue par triangu-
lation. Dans l’approche par temps de vol, la lumière est émise sur la scène, et la
structure 3D est déterminée plus directement en mesurant sa réflexion. Contraire-
ment aux approches actives, les méthodes passives reposent uniquement sur l’usage
d’une caméra pour imager la scène en 2D dans des conditions ambiantes. La struc-
ture 3D est déterminée en traitant les images obtenues par des méthodes de photo-

2 https://www.getcruise.com/
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grammétrie/vision par ordinateur. Le choix de la méthode d’acquisition et des cap-
teurs utilisés pour une application spécifique dépend de plusieurs critères, comme
la scène (sa taille, sa forme, sa texture), les conditions d’acquisition (éclairage am-
biant, accessibilité), la qualité des modèles et le coût d’acquisition. En général, les
caméras sont plus flexibles qu’un système actif grâce à leur taille compacte, leur ef-
ficacité énergétique et leur simplicité d’installation et d’utilisation. L’omniprésence
des appareils photo (par exemple dans les smartphones) et les progrès réguliers de
leur qualité d’image ont favorisé leur adoption pour l’acquisition de données 3D.

Reconstruction 3D à partir d’images : Le problème de la reconstruction d’une
scène en 3D à partir de plusieurs images a été largement étudié dans le domaine de
la vision par ordinateur, et trouve son origine dans la photogrammétrie [HARTLEY

et MUNDY 1993 ; STURM 2011]. Appelé Structure-from-Motion (SfM) en vision
par ordinateur, il s’agit de récupérer la structure de la scène en 3D et le mouvement
de la caméra à partir de plusieurs images. Les relations géométriques entre plusieurs
vues, ou géométrie multi-vues, est désormais bien établie [FAUGERAS et al. 2001 ;
HARTLEY et ZISSERMAN 2004]. Une approche SfM implique la résolution de plu-
sieurs problèmes, y compris la détermination des points caractéristiques et de leurs
correspondances dans les images [LOWE 2004], le calcul des poses relatives de ca-
méra [LONGUET-HIGGINS 1981 ; NISTÉR 2004a], et l’extraction de la structure
de la scène en 3D par triangulation [HARTLEY et STURM 1997]. Une estimation
robuste des paramètres de la caméra à l’aide de méthodes telles que RANSAC [FI-
SCHLER et BOLLES 1981] et un raffinement conjoint des paramètres estimés et
de la structure 3D par ajustement de faisceaux [TRIGGS et al. 1999] sont très im-
portants dans cette approche. Grâce aux progrès réalisés dans ces problèmes, des
systèmes automatisés de SfM ont été développés, tels que Photo Tourism [SNA-
VELY et al. 2008], qui, à partir d’un ensemble d’images, calculent les poses de
l’appareil photo et une reconstruction 3D éparse (un nuage de points) de la scène
imagée. L’approche SfM est devenue une technologie mature et il existe aujourd’hui
plusieurs progiciels de SfM, y compris des logiciels commerciaux (Agisoft Meta-
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Shape3, 3DF Zephyr4, RealityCapture5) et non commerciaux (VisualSfM [C. WU

2013], OpenMVG [MOULON et al. 2016], COLMAP [SCHÖNBERGER et FRAHM

2016]). Une reconstruction 3D éparse obtenue par SfM peut être traitée pour obtenir
une représentation plus riche de la scène, comme par exemple un nuage de points
dense ou un maillage texturé. Certains logiciels SfM intègrent cette fonctionnalité
ou peuvent être utilisés avec d’autres logiciels dédiés [FURUKAWA et al. 2010]. La
disponibilité et la simplicité d’utilisation des logiciels SfM, ainsi que la qualité des
reconstructions 3D obtenues, justifient leur utilisation pour la modélisation 3D.

SfM calibré : Les logiciels de reconstruction 3D à partir d’images (SfM) font gé-
néralement l’hypothèse que les paramètres intrinsèques de la caméra sont connus.
Ces paramètres sont ceux du modèle décrivant la géométrie interne de la caméra
(longueur focale, centre optique, etc.). Avec la pose de la caméra, c’est-à-dire les
paramètres extrinsèques de la caméra, ils définissent le modèle de projection pers-
pective considéré généralement en vision par ordinateur pour décrire les caméras
conventionnelles. Les paramètres intrinsèques peuvent être obtenus en calibrant la
caméra. La méthode classique de calibrage [ZHANG 2000] est la plus répandue.
Elle consiste à prendre plusieurs images d’un motif planaire connu. Malgré le déve-
loppement de systèmes guidés [PENG et STURM 2019], cette procédure est plutôt
laborieuse et suppose une certaine expertise technique pour obtenir un calibrage
précis. Dans les applications SfM, la caméra est typiquement calibrée avant l’ac-
quisition des images et son zoom et sa mise au point sont maintenus fixes pour
s’assurer que la calibration interne de la caméra reste inchangée. Si la calibration
interne de la caméra change, les paramètres intrinsèques doivent être réestimés, par
exemple en calibrant la caméra à nouveau. Les approches SfM peuvent souvent
bénéficier des métadonnées Exif (Exchangeable image file format) pour approxi-
mer les paramètres intrinsèques de la caméra et ainsi éviter l’étape laborieuse de
la calibration hors ligne. Les étiquettes Exif sont intégrées dans certains formats de
fichiers d’images, comme JPEG. Ils contiennent des informations sur la caméra, no-
tamment sa longueur focale. Les autres paramètres intrinsèques sont généralement

3 https://www.agisoft.com/
4 https://www.3dflow.net/3df-zephyr-photogrammetry-software/
5 https://www.capturingreality.com/
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approximés sur la base d’une heuristique. L’approche SfM s’appuie ensuite sur un
ajustement de faisceaux : une optimisation non linéaire impliquant les paramètres
de la caméra et la structure de la scène pour converger vers un calibrage précis.
Cependant, les métadonnées Exif ne sont pas toujours disponibles. Dans ce cas, les
logiciels de SfM ont recours à des heuristiques peu rigoureuses pour initialiser la
longueur focale ou demandent les paramètres intrinsèques à l’utilisateur.

SfM non calibré : Contrairement au SfM calibré, les paramètres intrinsèques de
la caméra ne sont pas connus dans une approche non calibrée. Cependant, avec des
correspondances entre images non calibrées, seule une structure à une ambiguïté
projective près peut être obtenue. Cette reconstruction, dite projective, diffère de
la vraie représentation métrique de la scène par une transformation projective. Une
reconstruction projective ne préserve pas les caractéristiques métriques, comme les
angles et les proportions de longueur, mais préserve des invariants projectifs, y com-
pris la colinéarité et la coplanarité. La scène semble donc distordue. Dans la plupart
des applications, une représentation plus fiable de la scène observée est souhaitée.
Une reconstruction projective peut être transformée en sa contrepartie métrique en
déterminant la transformation projective entre les deux reconstructions. Cette trans-
formation comprend les paramètres intrinsèques de la caméra et leur détermination
à partir de plusieurs images non calibrées constitue le problème de l’autocalibrage
de la caméra en vision par ordinateur. L’approche SfM non calibrée avec autocali-
brage est plus flexible que l’approche calibrée puisque l’étape de calibrage manuel
de la caméra n’est pas effectuée. Par conséquent, ce problème a été largement étudié
dans la littérature [FUSIELLO 2000].

L’autocalibrage des caméras : L’autocalibrage est le processus d’estimation des
paramètres intrinsèques d’une caméra à partir de plusieurs images non calibrées
d’une scène inconnue. Ce processus ne nécessite pas la présence d’un objet phy-
sique de calibrage. En revanche, il se base sur l’omniprésence d’un objet virtuel : la
conique absolue (AC). L’AC est une conique particulière située sur le plan à l’infini
et qui se projette sur le plan image sous la forme d’une conique imaginaire dont
la représentation matricielle intègre les paramètres intrinsèques de la caméra. Les
paramètres intrinsèques peuvent donc être déduits en localisant l’AC ou son image
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(IAC). Cependant, la flexibilité de travailler directement avec des images non ca-
librées entraîne la nécessité de résoudre le problème difficile d’autocalibrage. En
effet, les équations d’autocalibrage sont non linéaires et difficiles à résoudre de ma-
nière fiable et efficace. En particulier, cette difficulté est d’autant plus importante
lorsqu’il s’agit, en préalable, de localiser le plan à l’infini. Une fois que ce dernier
est localisé, l’IAC, et donc les paramètres intrinsèques, peuvent être déterminés par
la résolution d’équations linéaires. Pour cette raison, certaines méthodes d’autoca-
librage estiment d’abord le plan à l’infini, puis estiment les paramètres intrinsèques
dans une seconde étape. Cette approche en deux étapes est appelée l’autocalibrage
stratifié. Contrairement à une approche stratifiée, l’autocalibrage direct consiste à
estimer simultanément le plan à l’infini et les paramètres intrinsèques. Les méthodes
directes se basent en général sur des quadriques virtuelles spéciales, la quadrique ab-
solue duale (DAQ) ou encore le complexe quadratique absolu (ALQ), qui encodent
le plan à l’infini ainsi que l’IAC ou son image duale (DIAC). Dans les deux cas,
toutes les méthodes d’autocalibrage se basent sur une connaissance a priori de la
caméra, de sa géométrie interne ou de son mouvement, pour estimer les paramètres
intrinsèques. Par exemple, plusieurs méthodes traitent le cas d’une caméra en mou-
vement dont les paramètres intrinsèques sont constants mais inconnus. D’autres mé-
thodes utilisent la connaissance du mouvement de la caméra, comme le mouvement
planaire dans le cas d’un véhicule terrestre. En général, il est conseillé d’utiliser
autant d’informations que possible sur la caméra [HARTLEY et ZISSERMAN 2004,
Sec. 19.11] afin de relever les difficultés intrinsèques à l’autocalibrage.

C.2 Portée de la thèse

Dans cette thèse, nous nous intéressons au problème de reconstruction 3D d’une
scène rigide à partir de plusieurs images prises par une caméra perspective non cali-
brée. En particulier, nous examinons l’utilisation de connaissances a priori, souvent
disponibles dans ce contexte, mais qui n’ont pas encore été entièrement exploitées
pour résoudre le problème d’autocalibrage des caméras. Ces connaissances, présen-
tées dans ce qui suit, sont issues de la géométrie interne de la caméra ou de son
mouvement lors d’acquisition d’images.
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A priori sur la géométrie interne du capteur : Même si les paramètres intrin-
sèques de la caméra ne sont pas connus dans l’approche SfM non calibrée, nous
pouvons généralement faire des hypothèses raisonnables sur certains d’entre eux.
Leurs notions physiques nous permettent de distinguer ces paramètres. La longueur
focale est la distance entre le centre optique et le plan de l’image. Elle varie en
fonction du zoom ou de la mise au point et n’est pas connue en l’absence de cali-
bration. Le point principal donne les coordonnées de l’intersection de l’axe optique
avec le plan de l’image. Ce point n’est pas toujours au centre de l’image en raison
de défauts d’alignement optique et d’autres défauts de fabrication. Sa position varie
également avec la longueur focale. Ainsi, le point principal n’est pas non plus connu
en général. Les deux autres paramètres, le facteur de décentrage (skew factor) et le
rapport d’aspect d’un pixel, définissent la forme du pixel. Ces paramètres sont as-
sez stables même si le zoom ou la mise au point changent. De plus, la plupart des
caméras modernes ont généralement des pixels carrés (ou presque), c’est-à-dire que
le facteur de décentrage est nul et que le rapport d’aspect est unitaire. Nous pouvons
donc supposer que ces deux paramètres sont connus en pratique.

A priori sur l’acquisition d’images : Quand on capture des images pour la re-
construction 3D, le déplacement de la caméra est contraint implicitement par le
besoin de déterminer les correspondances. En effet, les images doivent suffisam-
ment se chevaucher pour établir les correspondances. Dans ce but, les logiciels SfM
conseillent typiquement de capturer des images dans une boucle autour de la scène,
en changeant légèrement le point de vue6. En général, ce type de mouvement de
caméra est réalisé par défaut dans une vidéo. Une sorte de connaissance, bien que
vague, du mouvement de la caméra est donc implicitement disponible dans la pro-
cédure d’acquisition de l’image.

Une connaissance partielle de la géométrie ou du mouvement de la caméra est
en principe disponible dans le contexte SfM non calibré, au vu de la description
ci-dessus. Nous avons été assez précis sur la connaissance partielle de la géométrie
de la caméra, mais la connaissance du mouvement n’a pas encore été explicitée.

6 https://www.3dflow.net/technology/documents/
photogrammetry-how-to-acquire-pictures/
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Dans cette thèse, notre but est d’identifier et d’exploiter cette connaissance partielle
de la caméra pour l’autocalibrage de la caméra. Nous présentons ici en détail notre
contribution à ce sujet dans la section suivante.

C.3 Contributions

Nous présentons ci-après les contributions de cette thèse concernant l’exploitation
des connaissances partielles de la géométrie et du mouvement de la caméra dans
l’autocalibrage de la caméra.

C.3.1 Exploitation de connaissances partielles de la géométrie de
la caméra

Suite à la discussion dans la Section C.2, la majorité des caméras modernes ont des
pixels carrés. Ces caméras sont communément appelées caméras à plan d’image eu-
clidien (EIP) [HEYDEN et ÅSTRÖM 1997]. Nous pouvons donc supposer en toute
confiance que la caméra a un plan d’image euclidien (EIP). Cette hypothèse pra-
tique a déjà été utilisée par plusieurs méthodes d’autocalibrage, mais il reste encore
à l’exploiter dans l’autocalibrage stratifié. Notre contribution principale est de for-
muler une nouvelle équation polynomiale quartique en les coordonnées du plan
à l’infini pour une caméra EIP et des paramètres intrinsèques constants. Ce poly-
nôme, qu’on dénomme polynôme EIP, est obtenu pour chaque paire d’images. En
combinaison avec une équation quartique classique pour chaque paire, la contrainte
de module [POLLEFEYS et VAN GOOL 1999], chaque paire d’images donne donc
deux contraintes sur la localisation du plan à l’infini. Deux paires d’images sont
par conséquent suffisantes en général pour obtenir une solution unique. En consé-
quence, nous proposons une méthode d’autocalibrage stratifiée qui utilise le poly-
nôme EIP en combinaison avec la contrainte de module pour estimer le plan à l’in-
fini. Les expérimentations réalisées avec des données synthétiques et des images
réelles montrent les avantages qu’apporte le polynôme EIP dans la méthode propo-
sée, notamment sur de courtes séquences d’images. Ce travail sur l’exploitation de
l’hypothèse EIP dans l’autocalibrage de caméra stratifiée a été publié dans la British
Machine Vision Conference (BMVC) 2020 :
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– Devesh Adlakha, Adlane Habed, Fabio Morbidi, Cédric Demonceaux, and
Michel de Mathelin (2020). “Stratified autocalibration of cameras with Eucli-
dean Image Plane". In : British Machine Vision Conference (BMVC).

C.3.2 Exploitation de la connaissance partielle du mouvement
de la caméra

Comme indiqué dans la Section C.2, une connaissance implicite du mouvement de
la caméra est disponible dans le contexte de la reconstruction 3D basée sur l’image,
en particulier que le point de vue change légèrement lors de la capture d’images.
Nous formalisons cette connaissance vague du mouvement de la caméra et pré-
sentons quelques contributions pour l’exploiter dans l’autocalibrage stratifié. Nous
considérons le cas d’une caméra en mouvement dont les paramètres intrinsèques
sont constants et nous supposons qu’une connaissance vague de l’angle d’orienta-
tion relatif de la caméra est disponible. Sous ces hypothèses, nous dérivons deux
nouveaux groupes de contraintes entre des paires de caméras sur la localisation du
plan à l’infini. Les contraintes du premier groupe sont convexes et formulées sous
forme d’inégalités matricielles linéaires (LMI). Nous prouvons que le plan à l’in-
fini fait partie de l’un des deux groupes convexes définis par les LMI, selon que
l’angle d’orientation relatif7 entre la paire de caméras (i, j) est soit |θij| ≤ 120◦

soit |θij| ≥ 120◦. Ces deux groupes convexes définissent la relation géométrique
entre le plan à l’infini et de nouveaux objets géométriques, les hodographes de

l’horoptère. De plus, une vague connaissance de l’angle d’orientation relatif, c’est-
à-dire |θij| ≤ 120◦ ou |θij| ≥ 120◦, entre un ensemble de paires de caméras peut
être exploitée avec les contraintes LMI pour obtenir une nouvelle reconstruction
quasi-affine d’une scène que nous appelons QUARCH : “QUasi Affine Reconstruc-
tion with respect to Camera centers and the Hodographs of horopters”. Une recons-
truction QUARCH est une spécialisation du QUARC (QUasi-Affine Reconstruction
with respect to Camera centers) [NISTÉR 2004b]. Dans le scénario de reconstruc-
tion 3D basée sur l’image, l’hypothèse de |θij| ≤ 120◦ est typiquement satisfaite

7 L’angle d’orientation relatif de la caméra θij est autour d’un axe arbitraire dans la représentation
axe-angle et θij ∈ [−180◦, 180◦].
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entre des vues consécutives, et nous exploitons cette connaissance pour obtenir une
reconstruction QUARCH.

La seconde série de contraintes sur le plan à l’infini n’est pas convexe et est
formulée sous forme d’inégalités polynomiales. Elles exploitent une connaissance
plus fine de l’angle d’orientation relatif, c’est-à-dire |θij| < 90◦/k, où k est un
entier positif. Ces contraintes, contrairement aux contraintes convexes, sont dérivées
de manière purement algébrique à l’aide du critère de stabilité de Hurwitz. Les
inégalités polynomiales sont de degré 2k, donc une connaissance de l’orientation de
plus en plus fine se traduit en des polynômes de degré plus élevé. Quand elles sont
combinées avec les contraintes convexes, ces inégalités nous permettent de calculer
une QUARCH spécialisée. Pour obtenir cette reconstruction, une connaissance plus
fine mais toujours vague de |θij| < 90◦/k pour un entier positif k est nécessaire
pour un ensemble de paires de caméras.

Enfin, nous proposons une méthode d’autocalibrage de caméra stratifiée qui ex-
ploite une connaissance vague de l’orientation de la caméra pour localiser le plan
à l’infini. Notre méthode se base sur une QUARCH comme première étape vers le
calcul des reconstructions affines et métriques. Notre dernière contribution majeure
est une méthode contrainte de Levenberg-Marquardt (LM) pour l’optimisation non
linéaire soumise à des contraintes LMI. Cette méthode garantit que les contraintes
QUARCH sont satisfaites pendant l’optimisation locale utilisée pour localiser le
plan à l’infini. Nos expérimentations montrent les avantages de l’incorporation des
contraintes basées sur l’orientation. Nous présentons les résultats d’expérimenta-
tions conduites aussi bien sur des données synthétiques que sur des images réelles.

Une partie des contributions mentionnées ci-dessus a été publiée dans l’IEEE/CVF
International Conference on Computer Vision (ICCV) 2019 :

– Devesh Adlakha, Adlane Habed, Fabio Morbidi, Cédric Demonceaux, and
Michel de Mathelin (2019). “QUARCH : A new quasi-affine reconstruction
stratum from vague relative camera orientation knowledge". In : International

Conference on Computer Vision (ICCV).

Elles comprennent des contraintes convexes, leur interprétation géométrique par les
hodographes, la strate QUARCH et la méthode LM avec contraintes. Les contraintes
non convexes et le QUARCH spécialisé complètent les résultats publiés. Un article
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synthétisant ces contributions est actuellement en préparation et devrait être soumis
à l’International Journal of Computer Vision (IJCV) ou à l’IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI).

C.4 Structure du manuscrit

Le manuscrit de thèse est organisé comme suit.

Le chapitre 2 passe en revue certains concepts de base de la géométrie multi-vues
et rassemble la littérature pertinente sur l’autocalibrage des caméras.

Le chapitre 3 présente nos travaux sur l’exploitation d’une connaissance partielle
de la géométrie de la caméra pour l’autocalibrage.

Le chapitre 4 présente nos travaux sur l’exploitation de connaissances partielles du
mouvement de la caméra pour l’autocalibrage.

Le chapitre 5 revient sur les contributions de cette thèse et sur les pistes de re-
cherche pour l’avenir.

L’annexe A présente quelques outils d’optimisation utilisés dans cette thèse.

L’annexe B donne l’expression de la matrice de projection de ligne.
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Devesh ADLAKHA 
Exploitation de connaissances partielles sur le 

mouvement et la géométrie des caméras en vision 
3D non calibrée 

Résumé 
Reconstruire la structure 3D de la scène à partir de plusieurs images est un problème fondamental de la 

vision par ordinateur, appelé Structure-from-Motion (SfM). Nous nous intéressons au problème de SfM 

non calibrée, où seule une structure à une ambiguïté projective peut être obtenue. Le but est de transformer 

la reconstruction projective en une reconstruction métrique, ce qui consiste à localiser la conique absolue 

sur le plan à l'infini. Cette thèse présente deux contributions principales. La première exploite une 

connaissance partielle de la géométrie de la caméra, en particulier que la caméra a des pixels carrés. La 

plupart des caméras modernes satisfont cette hypothèse. Nous formulons une nouvelle contrainte 

polynomiale sur le plan à l'infini sous cette hypothèse. La deuxième contribution exploite une vague 

connaissance du mouvement de la caméra, que le point de vue change légèrement lors de la capture 

d'images pour établir des correspondances entre les images. Nous prouvons que le plan à l'infini est 

confiné à un groupe convexe en exploitant les limites de l'angle de rotation relatif entre les paires de 

caméras. Nous proposons des méthodes dédiées à chaque contribution et présentons les résultats 

d'expérimentations conduites aussi bien sur des données synthétiques que sur des images réelles. 

Mots-clés: vision par ordinateur, Structure-from-Motion, autocalibrage de la caméra 

 

Summary 
Reconstructing a scene in 3D from multiple images is a fundamental problem in computer vision known as 

Structure-from-Motion (SfM). We investigate uncalibrated SfM, where a reconstruction only up to a 

projective transformation can be obtained. The goal is to recover a metric reconstruction from the projective 

one that involves locating the so-called Absolute Conic on the plane at infinity. The main contributions of 

this thesis are twofold. The first contribution exploits partial knowledge of the camera geometry, specifically 

that the camera has square pixels. This assumption is satisfied by most modern cameras. We formulate a 

new polynomial constraint on the plane at infinity under this assumption. The second contribution exploits 

a vague knowledge of the camera motion that the viewpoint is typically changed mildly between images to 

ensure sufficient overlap to match features. We show that bounds on the relative rotation angle between 

camera pairs can be used to constrain the plane at infinity to a convex set. We propose dedicated methods 

for each contribution and report the experimental evaluation conducted using synthetic and real data. 

Keywords: computer vision, Structure-from-Motion, camera autocalibration 
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