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UNIVERSITY OF STRASBOURG

Abstract
Astronomical Observatory of Strasbourg

Doctor of Philosophy

Galactic disc dynamics in the Gaia era: perturbed distribution functions in the
presence of non-axisymmetries

by Hussein Al Kazwini

Cette thèse se proposait d’établir des modèles dynamiques de la Voie lactée, en
prenant en compte les perturbations de son disque stellaire. Les données récentes
fournies par la mission Gaia appellent de nouvelles méthodes pour aborder ce prob-
lème: un cadre adéquat pour tester les modèles de la Galaxie, englobant la barre
galactique et les bras spiraux, constitue l’objectif de ce travail théorique.

Je me suis attelé à recalculer l’ensemble des prédictions d’une fonction de distri-
bution perturbées en six-dimensions dans l’espace des phases hors des zones réson-
nantes et en prédisant l’emplacement des zones résonnantes. Nous avons également
considéré la réponse de la fonction de distribution dans le cadre d’une perturbation
dépendante du temps. Mon résultat majeur est que j’ai pu montrer que les emplace-
ments des résonances sont déplacés vers des vitesses azimutales plus faibles lorsque
l’on s’éloigne dans le direction verticale du plan de la Galaxie, ce qu’on n’arrivait pas
à bien prendre en compte dans l’approximation épicyclique. Ainsi, la position des
groupes mobiles dans le plan des vitesses uv en fonction de la hauteur z au-dessus du
plan Galactique peut être un moyen puissant de contraindre la structure 3D du poten-
tiel Galactique ainsi que les résonances à l’origine de ces groupes mobiles observés.
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Chapter 1

Introduction

1.1 Galaxies: Historical overview
Astronomy is one of the oldest natural sciences. Early civilisations (Babylonians,
Egyptians, Greeks, etc.) observed the night sky for diverse purposes such as celestial
navigation, calendar making and divination among others. Until the time of Coperni-
cus, the earth was supposed to be the center of the Universe in what is known as the
Ptolemaic system. According to this view, the planets, the Sun and the moon each
move on its own sphere and the outermost is the sphere of the fixed stars beyond
which nothing exists.

Although some of the ancients speculated about the existence of stellar systems
beyond the sphere of fixed stars, it would not be until the twentieth century that
proof is given of the extent of the Universe. The stars seen at night are only part
of a vast galaxy, the Milky Way, and this galaxy in its turn is just one out of many
scattered throughout space. The total number of galaxies in the observable universe
is estimated to be ∼1011 and a typical galaxy contains ∼1011 stars.

This outstanding breakthrough was made by Edwin Hubble (Hubble, 1926a) who
discovered that the spiral nebula M33 is a stellar system independent from the Milky
Way. Hubble then went on to classify extra-galactic nebulae (Hubble, 1926b) in what
is known as the Hubble sequence or Hubble classification. The Hubble sequence is
a morphological classification system, i.e. galaxies are divided according to their
visual appearance into three classes: ellipticals (E) with a number added after the
letter to indicate the degree of ellipticity (E0 → E7), spirals (S) with a letter desig-
nating how tightly wound the spiral arms are (a, b or c) and a letter B inserted if it is
barred (the bar is an elongated stellar component rotating at the center of the galaxy)
and irregulars (Irr). Hubble then added a fourth class to mark the transition between
ellipticals and spirals. Galaxies pertaining to this class are called lenticulars (S0).

De Vaucouleurs then extended the Hubble sequence arguing that it does not ad-
equately describe the range of observed morphologies. He used the notation SA to
designate spirals without bars and retained the notation SB for barred spirals. He
introduced however the notation SAB to refer to weakly barred spirals. Galaxies
that possess ring-like structures are denoted with the letter (r) and those that don’t
with the letter (s) and he accounted for those in transition with (rs). Three further
denominations were added to account for the variety in the spiral arms shape (Sd
to denote diffuse spiral galaxies, Sm to denote "Magellanic" spiral galaxies after the
Large Magellanic Cloud and Im to denote irregular galaxies). The Large Magellanic
Cloud is of type SBm and the Small Magellanic Cloud of type Im (Vaucouleurs and
Pence, 1978).
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Elliptical galaxies are smooth, featureless stellar systems with an approximately
ellipsoidal shape. They show little to no stellar disk and they possess little to no
interstellar gas. The absence of gas means that star formation has stopped and that
the present stars in these systems are old and their age is comparable to that of the
universe.

Spiral galaxies on the other hands are stellar systems that have a disk containing
spiral arms which are density waves where stars are continually being formed. In
fact, the interstellar gas often extends to much larger radii than the stellar component.
By exploiting this feature, the circular velocity curves could be traced well beyond
the optical edge of the galaxy. We find out that the circular speed curve is nearly flat
out to the largest radii measured and not dropping as one would expect if most of the
mass were in stars. This leads out to the natural conclusion that at these radii, the
largest contributor to the mass in the galaxy is the dark halo. A prominent feature
of spiral galaxies is the bulge which is a concentration of stars at the center with
a smooth or amorphous appearance very much like that of ellipticals. While the
bulge is supposed to be a separate stellar component from the disk, many observed
bulges in barred galaxies are actually "pseudo-bulges" and are actually part of the bar
structure itself.

Lenticular galaxies are a transition link between ellipticals and spirals. They
resemble ellipticals inasmuch as they are smooth, featureless and possessing little
to no gas. On the other hand, they have a disk feature and a bulge albeit without
a spiral structure. It should be noted however that the transition between ellipticals
and spirals is continuous and some of these lenticulars might well be classified as
ellipticals or conversely as spirals.

Finally, irregular galaxies are stellar systems that do not show a well delineated
spiral structure. They are extremely gas-rich. They include ellipticals and spirals that
have been violently distorted as well as galaxies that are undergoing an outburst of
star formation overshadowing the regular denotation of the galaxy.

1.2 Milky Way Galaxy
The Milky Way is the galaxy that contains the Solar system. It is called as such due
to its appearance as a band of light in the night sky. It was Galileo Galilei who first
resolved this band of light into distinct stars in 1610. The Milky Way is a barred
spiral galaxy of type Sb or Sc. It is assigned the symbol SABbc in Vaucouleurs
and Pence, 1978, i.e. it has an intermediate classification between Sb and Sc and
a weak bar. The dynamical effects of this weak bar as well as of the spiral arms
on the disk kinematics will be the main topic of this PhD thesis. Together with the
Andromeda Galaxy and their respective satellites, the Milky Way forms the Local
group of galaxies with a diameter of almost 3 Mpc. There is still much controversy
concerning the structure of the Milky Way. It is estimated to contain ∼ 1011 stars and
have a mass of ∼ 1012M⊙ (Peñarrubia et al., 2014; Deason et al., 2019; McMillan,
2017). These quantities however are quite uncertain (Monari et al., 2018). Figure 1.4
shows the Milky Way rotation curve obtained over the years using different methods.
If the mass of the Milky Way were due only to its stellar and gas components, then
the rotation curve should be decreasing with distance whereas we find out that it is
almost constant at high radii. We therefore conclude that, if General relativity holds
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Figure 1.1: The Hubble Classification scheme for galaxies

Figure 1.2: The Hubble-De Vaucouleurs galaxy morphology diagram
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Figure 1.3: Artistic conception of the spiral structure of the Milky
Way with two major stellar arms and a bar

(Famaey and McGaugh, 2012), the largest contributor to the mass of the Milky Way
is dark matter. Besides the dark halo, the main components of the Milky Way are the
bulge, the stellar halo and the thin and thick stellar disks.

1.2.1 Stellar halo
The Galaxy is surrounded with a spheroidal halo of old stars and globular clusters,
most of which lie within 30 kpc from the Galactic Center. However, some have been
found to lie at a distance of more than 100 kpc from the Galactic Center (Harris,
1996). Active star formation does not take place in the halo since there is little cold
gas to collapse into stars. The halo is metal-poor with [Fe/H] ∼ -1.6 (Laird et al.,
1988; Carollo et al., 2010) and contains of the order of 0.1-1% of the total stellar
mass of the Milky Way (Cooper et al., 2010). Studies have decomposed the halo
into two components: one inner region dominated by stars formed within the galaxy
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Figure 1.4: Model rotation curve from Sofue, Honma, and Omodaka,
2009 compared with the observations. Thin lines represent the bulge,
disk + rings, and dark halo components, and the thick line is the com-
posite rotation curve. Data are as follows. Open triangles: HI tan-
gent velocity method (Burton and Gordon, 1978); Rectangles: CO
tangent (Clemens, 1985); Reverse triangles: HI tangent (Fich, Blitz,
and Stark, 1989); Diamonds: CO and HII regions (Fich, Blitz, and
Stark, 1989; Blitz, Fich, and Stark, 1982); filled triangles: Demers
and Battinelli, 2007; Circles: HI thickness (Honma and Sofue, 1997a;
Honma and Sofue, 1997b); Big circle at 13.1 kpc: VERA-parallax,
proper motion and velocity (Honma et al., 2007). All data have been

converted to (R0 , V0) = (8.0, 200.0 km/s).
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which could form a continuum with the thick disk and an outer region dominated by
stars via accretion (McCarthy et al., 2012; Carollo et al., 2010; Helmi et al., 2018;
Matteo et al., 2019; Naidu et al., 2020; Malhan et al., 2022). In addition to stars,
X-ray observations gave evidence to the existence of a hot gas halo that extends to a
radius over 100 kpc and well beyond the extent of the stellar halo. The mass of this
halo is comparable to the total baryonic mass in the disk of the Galaxy (Gupta et al.,
2012).

1.2.2 Dark halo
Besides the stellar halo, the Galaxy is embedded in a much larger roughly spherical
halo of dark matter that reaches out as far as the halo of the Andromeda M31 galaxy.
As stated before, the Milky Way rotation curve accounts for the existence of this halo
(in case we do not adhere to the alternative theory of modified gravity to account for
this feature). It appears that this dark matter does not interact with matter and energy
in any way except gravity. Needless to say, current observation techniques have failed
to detect dark matter. Monari et al., 2018 give estimations of ∼1012M⊙ in mass of
the dark matter.

1.2.3 Disc
It has been shown that the galactic disc is roughly axisymmetric (which means that
non-axisymmetries can be treated by perturbation theory) with a radius of 15 to 20
kpc and consists of a thin disc with a dominant stellar mass and a second thicker
disc (Gilmore and Reid, 1983). The scale height of the thick disc is between 600 pc
and 1200 pc and contains 2-10% of the total local stellar mass (Pouliasis, Matteo,
and Haywood, 2017). In comparison, the thin disc has a scale height of ∼ 300 pc
(Recio-Blanco et al., 2014). According to Bensby et al., 2011, the scale length of
the thick disc is shorter than that of the thin disc (Lthick = 2kpc, Lthin = 3.8kpc) but
these values are still disputed. Robin et al., 2014 found a shorter scale height for the
thick disc. The mass of the two disks is ∼ 5 ∗ 1010M⊙.

Compared to the halo stars, those in the thin and thick discs have globally higher
rotational velocities, of the order of 220 km/s for the stars in the solar neighbour-
hood. Because of the difference in height and age (Seabroke and Gilmore, 2007),
the vertical velocity dispersion of the thick disc is greater (∼ 40 km/s) than that of
the thin disc (∼ 20 km/s). The two discs are also distinguished by the nature of the
stars that populate them. The stars in the thin disc are rich in metals (-0.5 < [Fe/H] <
0.5) and cover an age range of up to 8 billion years. The youngest stars are found in
the spiral arms. The metallicity of the thick disk stars is lower (-2 < [Fe/H] < -0.3)
for a population older than 10 billion years (Haywood et al., 2013). Furthermore, by
comparing the metallicities of the two discs with their α abundance, it is possible to
differentiate them clearly.

There is still uncertainty regarding the nature of the spiral arms and their number.
Two spiral arms are traced by old stars whereas four spiral arms are traced by young
ones (Drimmel, 2000; Urquhart et al., 2013). The reasons for these discrepancies are
still unknown. There is further offset noted between stellar spiral arms and gas arms
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Figure 1.5: Velocity plane of the stars in the solar neighbourhood. A
2D histogram of the velocity is shown with a bin of 1kms−1, thus, the

colour scale indicates the number of stars per (kms−1)2.

of the Milky Way as obvious displacements of gaseous bump peaks from the density
peaks of old stars are detected (Hou and Han, 2015).

1.2.4 Stellar velocity fields in the disc
The velocity distribution in the disc in the solar neighbourhood appears highly struc-
tured. This could not be the case in a purely axisymmetric disc at equilibrium. Many
nearly horizontal arch-like structures can be clearly observed in Figure 1.5. These
observations courtesy of the Gaia mission provide more precision and shed light on
many new features. The dynamical stream of Hercules for example, while previously
restricted to one arch at negative U velocities and V ≃ 50kms1 (U and V being the
in-plane Cartesian heliocentric radial and azimuthal velocities respectively), now ap-
pears to be split into two of these branches (at V ≃ 38kms1 and V ≃ 50kms1) and
perhaps a third one at V ≃ 70kms1. These arches appear for the whole range of V.
Additionally, there is a clear under-density of stars also with an arched shape that
extends from (U, V) ≃ (100, 25) to (U, V) ≃ (75, 65)kms−1 immediately above the
Hercules stream, which separates the velocity plane in two. Rounded structures at the
center of the distribution correspond to known moving groups and dynamical streams
(Gaia Collaboration et al., 2018a). These substructures are normally associated with
the orbital resonances of the bar and spiral arms or alternatively with phase-mixing
related to external perturbations or the formation of the bar.

This is particularly important in the context of the interpretation of recent data
from the Gaia mission (Gaia Collaboration et al., 2018b; Gaia Collaboration et al.,
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2021), which revealed in exquisite detail the fine structure of stellar action space (e.g.
Trick, Coronado, and Rix, 2019; Monari et al., 2019a; Monari et al., 2019b). While
the existence of moving groups of dynamical origin had been known for a long time
in local velocity space around the Sun (e.g. Dehnen, 1998; Famaey et al., 2005), Gaia
revealed their structure in exquisite detail (Ramos, Antoja, and Figueras, 2018) and
also provided an estimate of their age distribution (Laporte et al., 2020), together
with the shape of the global velocity field away from the Sun within the Galactic
disc (Gaia Collaboration et al., 2018a). One additional major finding of Gaia is the
existence of a local phase-spiral in vertical height versus vertical velocity in the solar
neighbourhood (Antoja et al., 2018), which might be related to a vertical perturbation
of the disc, for example by the Sagittarius dwarf galaxy (e.g. Laporte et al., 2019;
Binney and Schönrich, 2018; Bland-Hawthorn and Tepper-García, 2021). Such an
interaction of the disc with a vertical perturber also has a a global effect on the vertical
dynamics of the disc (e.g. Poggio et al., 2021) and call for the developments of new
methods to derive the vertical acceleration from the disc (Haines et al., 2019).

1.2.5 Bulge/Bar
The Galactic Bulge is an over-density around the center of the Galaxy that swells up
from the plane of the disc. The metallicity distribution of the bulge can be separated
into a metal-poor and a metal-rich components. The metal-rich component (mean
[Fe/H] ∼ 0.3) is composed mostly by old stars but with a fraction of young stars.
This component takes an elongated shape, what is commonly referred to as the bar
with a size of about 3.1 to 3.5 kpc diameter. The metal-poor component (mean [Fe/H]
∼ -0.3) is composed predominantly by old stars and has a more spheroidal, centrally
concentrated shape. While the box/peanut calls for a formation scenario via disc
instabilities, the spheroidal component could account for a formation scenario via
violent collapse. It could well be that the Galactic bulge is a composite bulge after
all (Gonzalez and Gadotti, 2016). Portail et al., 2017 however point out that recent
research has demonstrated that the galactic bulge smoothly segues into the long bar.
Both the bulge and bar appear at a similar angle meaning that both are part of a single
structure that became thick in its inner part.

At a distance of ∼ 8.2 kpc from the sun (Abuter et al., 2019) lies a compact radio
source called Sagittarius A* of about 4 million solar masses (Ghez et al., 2008) which
is conventionally taken to be the Galactic center.

1.3 Kinetic theory of self-gravitating systems

1.3.1 Collisionless Boltzmann equation
The gravitational force acting between the stars in a galaxy is long-range. In a sys-
tem where the density of the stars is roughly uniform, the largest contribution to the
net gravitational force at a point in the system is from the most distant stars. Conse-
quently, each star may be supposed to accelerate smoothly through the force field that
is generated by the galaxy as a whole. Rather than treating the system as a collection
of point masses, we may describe it using a smooth distribution function. In fact, for
a typical galaxy, the number of stars is of the order of 1011 and the relaxation time,
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i.e. the time for a typical star moving in the galaxy to undergo a significant change in
its velocity through gravitational encounters is much larger than the age of the galaxy
(Binney and Tremaine, 2008).

For timescales smaller than the relaxation time, the dynamics of the system are
those of a collisionless one where the gravitational field influencing the particles of
the system is generated by a smooth distribution function. The distribution function f
is defined such that f(x,v, t)d3xd3v is the probability that at time t a randomly chosen
star is present in the six-dimensional phase space volume d3xd3v around the position
x and velocity v.

f is normalized such that the integral over all phase space
∫

d3xd3v f(x,v, t) = 1 (1.1)

The distribution function has the same numerical value at a given phase space
point in any canonical coordinate system. We therefore take w = (q, p) as an arbitrary
system of canonical coordinates.

Just as a fluid mass that is conserved can be described using the equation

∂ρ

∂t
+
∂

∂x
· (ρẋ) = 0 (1.2)

so is the probability in phase space described by the equation

∂ f
∂t

+
∂

∂w
· ( f ẇ) = 0 (1.3)

Using Hamilton’s equations

∂

∂q
· ( f q̇)+

∂

∂p
· ( f ṗ) =

∂

∂q
· ( f
∂H
∂p

)− ∂
∂p
· ( f
∂H
∂q

) =
∂ f
∂q
· ∂H
∂p

)− ∂ f
∂p
· ∂H
∂q

= q̇ · ∂ f
∂q

+ ṗ · ∂ f
∂p

(1.4)
this equation becomes the collisionless Boltzmann equation:

∂ f
∂t

+ q̇ · ∂ f
∂q

+ ṗ · ∂ f
∂p

= 0 (1.5)

By defining the convective derivative in six dimensions

d f
dt
≡ ∂ f
∂t

+ ẇ · ∂ f
∂w

(1.6)

where this quantity represents the rate of change of the local probability density as
seen by an observer moving along with the star, the collisionless Boltzmann equation
simply becomes:

d f
dt

= 0 (1.7)

This means that the flow through phase space of the probability fluid is incom-
pressible and the density f of the fluid around a given star always remains the same
as it moves through phase space.
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1.3.2 Action-angle variables
An integral of motion I(x,v) is any function of the phase space coordinates alone that
is constant along an orbit:

I[x(t1), v(t1)] = I[x(t2), v(t2)] (1.8)

One particular set of canonical coordinates that is of much interest to Galactic dy-
namics and perturbation theory is action-angle variables, where the three momenta
J are called ’actions’ and the conjugate coordinates are called ’angles’.

We denote the action-angle variables by (J, θ) where we have J = (J1, J2, J3)
and θ = (θ1, θ2, θ3). By assuming that the actions are integrals of motion, we get
from Hamilton’s equations:

0 = J̇i = −∂H
∂θi

(1.9)

The Hamiltonian is therefore independent of the coordinates θi and Hamilton’s equa-
tions for the angles become:

θ̇i =
∂H
∂Ji
≡ Ωi(J) (1.10)

Consequently we can express θi as functions of time:

θi(t) = θi(0) + Ωit (1.11)

These canonical coordinates strictly exist only in integrable systems where there are
as many integals of the motions as degrees of freedom, but galactic potentials turn
out to be quasi-integrable which allows us to make use of these coordinates. Action-
angle variables are extremely useful as the orbit of the star can be described by a
triplet of actions in action space which is the space whose Cartesian coordinates are
the actions. Orbits that possess this characteristic are called regular orbits. One
potential for which this formalism is used is the Stäckel potential which is exactly
integrable, meaning that all orbits are regular.

In general, the canonical phase-space action-angle variables (J,θ) of an inte-
grable system are obtained from a canonical transformation implicitly using Hamil-
ton’s characteristic function as a type 2 generating function. The actions J are de-
fined as new generalized momenta corresponding to a closed path integral of the
velocities along their corresponding canonically conjugate position variable, namely
Ji =

∮
vidxi/(2π). Since this does not depend on time, these actions are integrals of

motion, and the Hamiltonian can be expressed purely as a function of these actions.

1.3.3 Jeans theorem
Simple solutions of the collisionless Boltzmann equation can be written if the de-
pendence of the distribution function on the phase space coordinates is only through
integrals of motion.

If a function I(x,v) is an integral of motion then:

dI
dt
[x(t), v(t)] = 0 (1.12)
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Let f be a distribution function generated by n integrals of motion. Consequently,
we get

d f
dt

=
n∑

i=1

∂ f
∂Ii

dIi

dt
= 0 (1.13)

and f therefore satisfies the collisionless Boltzmann equation. This means that any
function that depends on phase space coordinates only through integrals of the mo-
tion is automatically a solution of the collisionless Boltzmann equation. But in an
integrable system, something much stronger can be proven:

Strong Jeans theorem The distribution function of a steady-state stellar system
in which almost all orbits are regular with non-resonant frequencies is a function
only of three independent isolating integrals, which may be taken to be the actions.

Particularly, this implies that in an axisymmetric system in equilibrium, the phase-
space distribution function (DF) of any stellar (or dark matter) component can be
expressed solely as a function of the actions that are labelling the actual orbits (e.g.
Binney and Piffl, 2015; Cole and Binney, 2017). However, the effect of various
perturbers of the potential (e.g. the Galactic bar and spiral arms) must be included
in this process, together with the response of the distribution function. Within the
resonant regions, to fully capture the behaviour of the DF, one needs to construct for
each perturber new orbital tori, complete with a new system of action-angle variables
(e.g. Monari et al., 2017a; Binney, 2020a; Binney, 2020b). Away from resonances,
however, one can simply use the linearized Boltzmann equation. If Φ1(J, θ) is the
potential of a small perturbation to the axisymmetric background potential Φ0 of
the Galaxy, then the total potential is Φ = Φ0 + Φ1 and the distribution function
becomes f = f0(J) + f1(J, θ) which would yield d f1

dt = ∂ f0
∂J · ∂Φ1

∂θ .

1.3.4 Epicyclic approximation
In an axisymmetric potential, the motion of the stars in three dimensions can be re-
duced to the motion of these stars in their meridian plane under the effective potential
Φe f f (R, z).

The equations of motion are

R̈ = −∂Φe f f

∂R
(1.14)

z̈ = −∂Φe f f

∂z
(1.15)

where

Φe f f = Φ(R, z) +
L2

z

2R2 (1.16)

Φe f f reaches its minimum when its derivatives cancel which yields

z = 0 (1.17)

∂Φ
∂R

(Rg, 0) =
L2

z

R3
g
= Rg(ϕ̇)

2 (1.18)
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The described motion is then a circular orbit in the plane z = 0, of radius Rg, angular
velocity ϕ̇ and angular momentum Lz.

Most orbits in spiral galaxies are very close to a circular orbit. By making the
change of variable x = R − Rg, one gets

Φe f f ≈ 1
2
(
∂2Φe f f

∂R2 )(Rg,0)x
2 +

1
2
(
∂2Φe f f

∂z2 )(Rg,0)z
2 (1.19)

We define the epicyclic radial frequency

κ2(Rg) = (
∂2Φe f f

∂R2 )(Rg,0) (1.20)

and the epicyclic vertical frequency

ν2(Rg) = (
∂2Φe f f

∂z2 )(Rg,0) (1.21)

Thus, we get
ẍ = −κ2x (1.22)

z̈ = −ν2z (1.23)

These are the equations of motion of two non-coupled harmonic oscillators, one
at frequency κ, the other at frequency ν. The stars loop around the position they
would occupy if their orbits were strictly circular. Epicycles are ellipses with loops,
whose eccentricity is related to the values of κ. The stars rotate in the direct direction
on the circle, and in the retrograde direction on the epicycle. During this time, they
also perform a periodic motion on either side of the plane of the galaxy related to ν.
Within that approximation, the three actions JR, JϕandJz can be written explicitly.

JR ≃ 1
π

∫ Rmax

Rmin

dR
√

2(ER −Φ0,R) =
ER

κ
(1.24)

Jphi =
1

2π

∫ 2π

0
dϕLz = Lz (1.25)

Jz ≃ 1
π

∫ zmax

zmin

dz
√

2(Ez −Φ0,z) =
Ez

ν
(1.26)

1.3.5 Torus Mapping and Stäckel fudge
Galactic potentials are close enough to integrable systems that actions can be es-
timated for them. For quasi-circular orbits close to the Galactic plane, with sepa-
rable motion in the vertical and horizontal directions, one can locally approximate
the radial and vertical motions of an orbit with harmonic motions, which is known
as the epicyclic approximation. The radial and vertical actions then simply corre-
spond to the radial and vertical energies divided by their respective (radial and verti-
cal) epicyclic frequency as seen above. However, the epicyclic approximation is no
longer valid when considering orbits with higher eccentricity, or with a large vertical
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Figure 1.6: Representation of epicyclic motion.
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amplitude. More precise ways of determining the action and angle coordinates have
been devised. They typically differ depending on whether one wishes to transform
angles and actions to positions and velocities or instead to make the reverse transfor-
mation from positions and velocities to actions and angles. In the first case a very
efficient method is the torus mapping method first introduced by McGill and Binney,
1990 (see also Binney and McMillan 2016 for a recent overview), while in the second
case a Stäckel fudge is generally used (Binney, 2012; Sanders and Binney, 2016).

The general idea of torus mapping is to first express the Hamiltonian in the action-
angle coordinates (JT , θT ) of a toy potential, for which the transformation to posi-
tions and velocities is fully known analytically. The algorithm then searches for a
type 2 generating function G(θT , J) expressed as a Fourier series expansion on the
toy angles θT , for which the Fourier coefficients are such that the Hamiltonian re-
mains constant at constant J. This generating function fully defines the canonical
transformation from actions and angles to positions and velocities. For the inverse
transformation, an estimate based on separable potentials can be used. These poten-
tials are known as Stäckel potentials (e.g. Famaey and Dejonghe, 2003), for which
each generalized momentum depends on its conjugated position through three isolat-
ing integrals of the motion. These potentials are expressed in spheroidal coordinates
defined by a focal distance. For a Stäckel potential, this focal distance of the coor-
dinate system is related to the first and second derivatives of the potential. One can
thus use the true potential at any configuration space point to compute the equivalent
focal distance as if the potential were of Stäckel form, and from there compute the
corresponding isolating integrals of the motion and the actions.

1.4 Outline of the thesis
My thesis has used more accurately calculated ’angle-action’ phase space coordinates
than before to refine our dynamical models of the Milky Way, and in particular the
effects of the bar and spiral arms of the Galaxy. I first set out, in the continuity of the
work of Monari, Famaey, and Siebert, 2016 to recalculate the set of predictions of a
perturbed six-dimensional distribution function in phase space outside the resonant
zones and predicting the location of the resonant zones. We also considered the
response of the distribution function under a time-dependent perturbation. This is
presented in Chapters 2,3 and 4. This linearized treatment however diverges in the
resonant zones. I then adapted the method of Monari et al., 2017b to compute the
response in space of trapped orbits to a resonance of the bar. This is presented in
Chapter 5. My results were used in a recent paper by Bernet et al.(2022) based on
Gaia data, of which I am co-author. A small delineation of the paper is presented
in Chapter 6. Lastly, we were able to predict radial velocity maps of stars in the
disc of the Galaxy in the presence of a bar using Backwards orbit integrations, to
be compared to the Gaia data. This is described in Chapter 7. Finally, Chapter 8
will present my two published papers as first author and co-author, and Chapter 9
summarizes the results and perspective of the present work.
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Chapter 2

Perturbing potential and perturbed
distribution function

We let H0(J) be the Hamiltonian of the axisymmetric and time-independent zeroth
order gravitational potential Φ0 of the Galaxy. The equations of motion connecting
actions J and the canonically conjugate angles θ are then simply

θ̇ =
∂H0

∂J
= ω(J), J̇ = −∂H0

∂θ
= 0, (2.1)

with ω being the fundamental orbital frequencies. Thus, for a given orbit, the actions
J are constant in time, defining an orbital torus on which the angles θ evolve linearly
with time, according to θ(t) = θ0 + ωt. The Jeans theorem then tells us that the
phase-space distribution function (DF) of an axisymmetric potential f = f0(J) is in
equilibrium. In other words, f0 is a solution of the collisionless Boltzmann equation:

d f
dt

= 0. (2.2)

2.1 Perturbed distribution functions
We now let Φ1 be the potential of a small perturbation to the axisymmetric back-
ground potential Φ0 of the Galaxy, with an amplitude relative to this axisymmetric
background ϵ ≪ 1. Then the total potential is Φ = Φ0 + Φ1 and the DF becomes, to
first order in ϵ, f = f0 + f1, which is still a solution of the collisionless Boltzmann
equation. Inserting f = f0 + f1 in Eq. (2.2), and keeping only the terms of order ϵ,
leads to the linearized collisionless Boltzmann equation

d f1
dt

+ [ f0, Φ1] = 0, (2.3)

where [,] is the Poisson bracket. Integrating Eq. (2.3) over time, from −∞ to the time
t, leads to

f1(J, θ, t) =
∫ t

−∞
dt′
∂ f0
∂J′

(J′) · ∂Φ1

∂θ′
(J′, θ′, t′), (2.4)

where J′ and θ′ correspond to the actions and angles in the unperturbed case as a
function of time (i.e. constant actions J′ and angles evolving linearly). Since any
function of the angles is 2π-periodic in the angles, the perturbing potential Φ1 can be
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expanded in a Fourier series as

Φ1(J, θ, t) = Re
{∑

n
ϕn(J, t) ein·θ

}
. (2.5)

Hereafter we consider in-plane perturbations such as spiral arms, meaning that we
can write the time-varying Fourier coefficients in a non-rotating frame as ϕn(J, t) =
g(t) h(t) ϕn(J), where g(t) controls the amplitude of the perturbation and h(t) con-
trols its pattern speed, with h(t) = e−imΩpt, where Ωp is the pattern speed of the
perturbation and m its azimuthal wave number (i.e. its multiplicity). Hereafter we
mainly consider m = 2 perturbations. The vector index n is a triplet of scalar integer
indices ( j, k, l) running in principle from −∞ to∞, but in practice limited to a given
range sufficient to approximate the perturbing potential. In the case of an m-fold
in-plane perturbation, it is sufficient to take k = m. The main goal of this section
is to express typical non-axisymmetric perturbing potentials originally expressed in
configuration space as such a Fourier series in action-angle space. The algorithm that
we present in Sect. 2.3 can be applied to any perturbing potential, however, includ-
ing non-plane symmetric vertical perturbations. Once the potential is expressed as a
function of angles and actions as in Eq. (2.5), then Eq. (2.4) becomes

f1(J, θ, t) = Re
{

i
∂ f0
∂J

(J) ·
∑

n
n
∫ t

−∞
dt′ϕn(J′, t′) ein·θ′(t′)

}
. (2.6)

In M16, assuming ϕn(J′, t′) = g(t′) h(t′) ϕn(J), with h(t′) = e−imΩpt′ , and the
amplitude of the perturbing potential constant in time at present time (g(t) = 1), and
zero and constant in time at −∞, led to the following explicit solution for f1(J, θ, t),

f1(J, θ, t) = Re
{
∂ f0
∂J

(J) ·
∑

n
nϕn(J)

eiθs,n

ωs,n

}
, (2.7)

where we defined
θs,n = n · θ −mΩpt, (2.8)

ωs,n = n ·ω −mΩp. (2.9)

The subscript ‘s’ stands for slow, because in the proximity of a resonance of the
type ωs,n = 0, the angle θs,n evolves very slowly. One can also immediately see
that the linearized solution above is valid only away from such resonances since it
diverges for these orbits. Orbits near these resonances are actually trapped, and for
them the determination of the linearly perturbed DF becomes inappropriate. Specific
treatment for these resonant regions is required, which was addressed in Monari et al.
(2017a) within the epicyclic approximation, and by Binney (2020a) in a more general
context.

Using the epicyclic approximation the Fourier coefficients of a spiral potential
have been computed analytically in M16 with indices n = ( j, k, l) running over the
values j = {−1, 0, 1}, k = m = 2, and l = {−2, 0, 2}, and the perturbed distribution
function away from resonances was then computed. In the following we extend the
results of M16 to a more general estimate of the action-angle variables through the
torus mapping method. The resulting DF is plotted in velocity space by making
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use of the Stäckel fudge. For both transformations we use the Action-based Galaxy
Modelling Architecture (AGAMA; Vasiliev, 2019; Vasiliev, 2018).

2.2 Perturbing potential in actions and angles
In previous work, M16 worked in the epicyclic approximation as it provides an ana-
lytical expression for evaluating actions and angles from cylindrical coordinates. The
Fourier coefficients of the Fourier series expansion of the perturbing potentials were
then also determined analytically within this approximation. Approximating the ver-
tical component of the perturbing potential by a harmonic oscillator, the nine Fourier
coefficients ϕ jml were then limited to the range j = {−1, 0, 1}, corresponding to the
θR oscillations of the potential, and l = {−2, 0, 2}, corresponding to the θz oscillations
of the potential close to the Galactic plane.

However, the epicyclic approximation is only valid for nearly circular orbits, but
not when considering eccentric orbits. Hereafter the transformations from angles
and actions to positions and velocities (and reciprocally) are instead evaluated nu-
merically with AGAMA (Vasiliev, 2018). The code makes use of torus mapping to
go from action-angle to position-velocity, and uses the Stäckel fudge for the inverse
transformation. Our goal now is to obtain the Fourier coefficients of a known per-
turbing potential using these numerically computed actions (instead of epicyclic).

We proceed in the following way to evaluate Fourier coefficients of the perturb-
ing potential in Eq. (2.5). The first step is to choose a set of actions within a range
representing all the orbits of interest in the axisymmetric background configuration,
each triplet of actions representing one of the orbits. For instance, in the solar neigh-
bourhood we consider radial actions ranging from 0 to 220 kpc km s−1, azimuthal
actions ranging from 1200 to 2160 kpc km s−1, and vertical actions ranging from 0
to 26 kpc km s−1 depending on the height above the Galactic plane. For each orbit,
we then define an array of angles (θR, θφ, θz). These actions and angles can then all
be converted to positions thanks to the torus machinery in AGAMA. For each triplet
of actions, a range of positions (R,φ, z) is covered by the angles, and we look for
the best-fitting coefficients ϕ jml(JR, Jz, Jφ), satisfying the following equation (setting
t = 0 for the time being):

Φ1(R,φ, z) = Re
{∑

j,l

ϕ jml(JR, Jz, Jφ)ei( jθR+mθφ+lθz)
}

. (2.10)

This is performed with the method of linear least squares using singular value decom-
position, as proposed in chapter 15.4 of Press et al. (1992). We then interpolate the
value of the coefficient ϕ jml with cubic splines, also proposed in Press et al. (1992),
chapter 3.3. The number of Fourier coefficients is chosen to be high enough to ensure
that all orbits passing through a given configuration space point yield the same value
of the potential at this point within a relative accuracy of less than 1%.

Concretely, we apply this hereafter to the potential of a central bar and of a two-
armed spiral pattern. The background axisymmetric potential is chosen to be Model
I from Binney and Tremaine (2008). This potential has a bulge described by a trun-
cated oblate spheroidal power law; a gaseous disc with a hole at the centre; a stellar
thin disc and a stellar thick disc, both with a scale-length of 2 kpc; and a dark halo
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with an oblate two-power-law profile. The galactocentric radius of the Sun is set at
R0 = 8 kpc, and the local circular velocity is v0 = 220 km s−1.

2.3 Bar potential
The potential we choose for the bar is a simple quadrupole potential (Weinberg, 1994;
Dehnen, 2000) with

Φ1,b(R, z,φ, t) = Re
{

Φa,b(R, z)eim(φ−φb−Ωbt)
}

, (2.11)

where m = 2, Ωb is the pattern speed of the bar (expressed hereafter in multiples of
the angular frequency at the Sun Ω0 = v0/R0, where v0 is the local circular velocity
at the galactocentric radius of the Sun R0), and the azimuth is defined with respect to
a line corresponding to the Galactic centre-Sun direction in the Milky Way, φb thus
being the angle between the Sun and the long axis of the bar. We also choose

Φa,b(R, z) = −αb
v2

0

3

(
R0

Rb

)3 (R
r

)2



(
r

Rb

)−3

R ≥ Rb,

2 −
(

r
Rb

)3

R < Rb,
(2.12)

where r2 = R2 + z2 is the spherical radius, Rb is the length of the bar, and αb repre-
sents the maximum ratio between the bar and axisymmetric background radial forces
at the Sun’s galactocentric radius R = R0. We use hereafter, as a representative ex-
ample, Rb = 0.625 R0, φb = 25o, and αb = 0.01. We also consider two typical
pattern speeds: Ωb = 1.89 Ω0 and Ωb = 1.16 Ω0.

The bar potential is quite easy to reproduce using Fourier coefficients since it
varies smoothly on orbits. Thus, for a study in the Galactic plane, 41 complex Fourier
coefficients for each triplet of actions are sufficient to approximate the value of the
potential with an accuracy much better than 1%. Here it should be noted that the
potential of the bar oscillates along the azimuth at a given radius and that the relative
accuracy can be ill-defined when the potential passes through zero. Therefore, we
define here the relative accuracy with respect to the amplitude (i.e. the maximum
value) of the bar potential at a given radius. The Fourier coefficients themselves vary
smoothly, as illustrated in Fig. 2.1, which shows the variations of a few Fourier coeffi-
cients as JR and Jφ increase separately, justifying the use of cubic-spline interpolation
to get the value of the potential at a specific position. Figure 2.2 demonstrates the
accuracy of our method in reproducing the bar potential in the solar neighbourhood
for different values of the local velocities. The potential is estimated at the same
configuration space location for the whole range of relevant velocities, with a typical
accuracy at the per cent level both in the plane and at z = 0.3 kpc. The accuracy
remains very good above the plane, although with a slight bias towards lower am-
plitudes than the true value. More complex Fourier coefficients are needed outside
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Figure 2.1: Variations in a few Fourier coefficients ϕ jml(J) of the bar
potential from Sect. 2.4 as JR or Jφ increase separately at Jz = 0.
The actions on the abscissa axis are in kpc km s−1. The curves are
very smooth, which justifies our use of the cubic splines method to

interpolate.
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Figure 2.2: Accuracy of the reconstruction of the bar potential . Left
panel (top): Estimate of the bar potential from Sect. 2.4 at the Sun’s
position in the plane with 41 complex Fourier coefficients in Eq. 2.10
and the reconstruction using cubic splines. The vertical line denotes
the true value. The value in the top right inset denotes the true value in
physical units. The potential is always estimated at the same config-
uration space location (within the plane, at the Sun’s position) but for
different velocities. Left panel (bottom): Relative accuracy compared
to the maximum value of the bar potential at the Sun’s radius denoted
in the top right inset. Right panel: Same, but at z = 0.3 kpc with 231
complex Fourier coefficients. The typical accuracy is well below the
per cent level, although with a slight bias towards lower amplitudes

(i.e. |Φb estimated| < |Φb input|) above the plane.
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Figure 2.3: Accuracy of the reconstruction of the spiral arms po-
tential. Left panel (top): Estimate of the spiral arms potential from
Sect. 2.5 at the Sun’s position in the plane with 41 complex Fourier
coefficients in Eq. 2.10 and the reconstruction using cubic splines.
The vertical line denotes the true value. The value in the top right
inset denotes the true value in physical units. The potential is always
estimated at the same configuration space location (within the plane,
at the Sun’s position) but for different velocities. Left panel (bottom):
Relative accuracy compared to the maximum value of the spiral arms
potential at the Sun’s radius denoted in the top right inset. Right panel:
Same, but at z = 0.3 kpc with 231 complex Fourier coefficients. The
typical accuracy is again well below the per cent level in the plane,

while it is around the per cent level above the plane.

of the plane. This tool is of course not limited to any specific form of the perturb-
ing potential, the only adjustable parameter being the number of Fourier coefficients
necessary to recover a given perturbing potential with a per cent-level accuracy.

2.4 Spiral potential
The potential we use for the spiral arms is the following (Cox and Gómez, 2002;
Monari, Famaey, and Siebert, 2016)

Φ1,sp(R, z,φ, t) = Re
{
Φa,sp(R, z) eim(φ−φsp−Ωspt)

}
, (2.13)



22 Chapter 2. Perturbing potential and perturbed distribution function

where m = 2, Ωsp is the pattern speed of the spiral arms, and

Φa,sp(R, z) = − A
RspKD

eim
ln(R/Rsp)

tan(p)

[
sech

(
Kz
β

)]β
, (2.14)

where

K(R) =
2

R sin(p)
, β(R) = K(R)hsp[1 + 0.4K(R)hsp],

D(R) =
1 + K(R)hsp + 0.3[K(R)hsp]2

1 + 0.3K(R)hsp
. (2.15)

Here Rsp = 1 kpc is the length parameter of the logarithmic spiral potential, hsp =
0.1 kpc the height parameter, p = −9.9o the pitch angle, φsp = −26o the phase,
and A = 683.4 km2 s−2 the amplitude. Hereafter, we adopt a pattern speed Ωsp =
0.84 Ω0, placing the main resonances away from (or at high azimuthal velocities in)
the solar neighbourhood.

Within the Galactic plane, the top panel of Fig. 2.3 shows our reconstruction of
the spiral potential at the Sun’s position, again with 41 complex Fourier coefficients.
The accuracy is again below the per cent level as in the bar case, although in the
spiral case there is a slight bias towards higher amplitudes with respect to the input
spiral potential. This bias is very small, however, and does not affect our results. At
z = 0.3 kpc, more complex Fourier coefficients are again needed (Fig. 2.3, bottom
panel), and the accuracy reaches the per cent level, this time without bias.
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Chapter 3

Linear perturbations with accurate
action estimates

3.1 Background equilibrium
From here on we work with a background axisymmetric DF f0 as a sum of two
quasi-isothermal DFs (Binney and McMillan, 2011) for the thin and thick disc:

f0(JR, Jz, Jφ) = fthin + 0.075 fthick. (3.1)

The form of each DF is

f (JR, Jz, Jφ) =
Ω exp(−Rg/hR)

2 (2π)3/2 κ σ̃2
R σ̃z z0

exp

−
JRκ

σ̃2
R

− Jzν

σ̃2
z

 , (3.2)

where Rg, Ω, κ, and ν are all functions of Jφ, and

σ̃R(Rg) = σ̃R(R0) exp
(
−Rg − R0

hσR

)
,

σ̃z(Rg) = σ̃z(R0) exp
(
−Rg − R0

hσz

)
. (3.3)

For the thin disc DF fthin, we choose hR = 2 kpc, z0 = 0.3 kpc, hσR = hσz =
10 kpc, σ̃R(R0) = 35 km s−1, and σ̃z(R0) = 15 km s−1. For the thick disc
DF fthick, we choose hR = 2 kpc, z0 = 1 kpc, hσR = 10 kpc, hσz = 5 kpc,
σ̃R(R0) = 50 km s−1, and σ̃z(R0) = 50 km s−1. Since we normalize the central
surface densities of the thin and thick disc to 1, our densities can be multiplied by
the appropriate surface density of the relevant stellar population to obtain physical
units. The background axisymmetric potential is chosen to be Model I from Binney
and Tremaine (2008), in which the above equilibrium DF f0 is a good representa-
tion of the thin and thick disc components. In this model one has R0 = 8 kpc and
v0 = 220 km s−1.

The top panels of Fig. 3.1 display the (u, v)-plane in the solar neighbourhood
within the z = 0 plane (and for w = −vz = 0) for this f0 axisymmetric background,
where u = −vR and v = vφ − v0, obtained by converting velocity-space into action-
space through the epicyclic approximation and the Stäckel fudge from AGAMA. The
velocity distributions are quite similar. However, as can be seen in the bottom panels
of Fig. 3.1, the epicyclic approximation quickly becomes imprecise outside of the
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Figure 3.1: Local uv-plane stellar velocity distribution at axisymmet-
ric equilibrium and for w = 0, from Eq. 3.1 at (R, z, φ) = (R0, 0,
0). Left panel: Epicyclic approximation in the plane (top) and at
z = 0.3 kpc (bottom). Right panel: Stäckel fudge with AGAMA in

the plane (top) and at z = 0.3 kpc (bottom).
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Figure 3.2: Values of log(ωs, jml) in the (JR, Jφ) plane with fixed
Jz = 10 kpc km s−1, for a few combinations of ( j, l) indices giv-
ing rise to resonant zones in action space (recalling that m = 2). The
pattern speed Ωp here is 1.89 Ω0. The two actions are renormalized by
the radial velocity dispersion of the thin disc and the circular velocity
at the Sun, respectively. The deep blue lines correspond to resonant
zones. For instance, the (1, 0) case corresponds to the traditional OLR
(for a non-zero Jz). Most other low-order combinations of indices did

not give rise to any relevant resonant zone in the region of interest.

plane as it implies a sharper falloff of the density compared to the better Stäckel
action estimates.

3.2 Resonant zones
In the case of a perturbation with quasi-static amplitude that has reached its plateau,
once the Fourier coefficients representing the perturbing potential have been com-
puted (from the epicyclic approximation or from Eq. 2.10) the expression for the
perturbed DF can be simply expressed away from resonances with Eq. 2.7 as

f1(J, θ, t) = Re
{ n∑

j,l=−n

f jml ei[ jθR+m(θφ−Ωpt)+lθz]
}

, (3.4)

with n the order of the Fourier series (in this paper, m = 2 in both the bar and spiral
cases), and

f jml = ϕ jml ×
j ∂ f0
∂JR

+ m ∂ f0
∂Jφ

+ l∂ f0
∂Jz

jωR + m(ωφ −Ωp) + lωz
, (3.5)

where ωR, ωφ, and ωz can be approximated as epicyclic frequencies in the epicyclic
case or can be determined with AGAMA. The denominator of f jml may lead to a diver-
gence in the DF when it approaches zero. Following our notation in Eq. 2.9, it can
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Figure 3.3: Values of log(ωs, jml) in the (JR,Jz) plane with fixed Jφ =
1759 kpc km s−1 for different ( j, l) resonances. The pattern speed Ωp
is that of our fiducial central bar fixed at 1.89 Ω0. The two actions are
renormalized by the radial velocity dispersion and the vertical velocity
dispersion of the thin disc at the Sun, respectively. The deep blue
lines correspond to resonance zones. Most combinations of indices
explored did not give rise to any relevant resonant zone in the region

of interest.

Figure 3.4: Values of log(ωs, jml) in the uw-plane and vw-plane. Top
row: Values of log(ωs, jml) at z = 0 in the uw-plane with fixed Jφ =
1759 kpc km s−1, for the various vertical resonances relevant in
the solar neighbourhood (the l = 0 resonances are treated in detail
in Sect. 3.3). They all appear at relatively large values of w and are
very concentrated in w, varying very quickly in u as a function of w.
Bottom row: Values of log(ωs, jml) in the vw-plane with fixed u = 0
km s−1. The pattern speed Ωp is that of our fiducial central bar fixed

at 1.89 Ω0.
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Figure 3.5: Same as Fig. 3.2, but with some combinations of indices
giving rise to resonant zones for Ωp = 0.84 Ω0.

Figure 3.6: Same as Fig. 3.3, but with some combinations of indices
giving rise to resonant zones for Ωp = 0.84 Ω0.

be expressed as

ωs, jml(JR, Jφ, Jz) = jωR + m(ωφ −Ωp) + lωz. (3.6)

The amount of the resonances is limited in the epicyclic case because, by construc-
tion, indices run only over the values j = {−1, 0, 1} and l = {−2, 0, 2}, but they can
be much more numerous in the more accurate AGAMA case. For the bar potential of
Eq. 2.11 and Eq. 2.12, and choosing a pattern speed Ωp = 1.89Ω0 as for our fidu-
cial bar model, we explore in Fig. 3.2 and Fig. 3.3, the values of ωs, jml(JR, Jφ, Jz) in
action space when varying the pair of integer indices ( j, l). The actions are renormal-
ized by the radial velocity dispersion of the thin disc, circular velocity, and vertical
velocity dispersion of the thin disc at the Sun, respectively, to only display a rele-
vant range of actions. Exploring indices in the range [−4,+4], it is clear that most
combinations do not induce a resonance that is relevant to the dynamics of the solar
neighbourhood. We only display in Fig. 3.2 and Fig. 3.3 the combination of indices
(in addition to the corotation) for which a resonant zone appears in the plotted region
of action space. It is clear that very few low-order resonances are indeed present in
the range of actions that are truly relevant for the solar neighbourhood.

To date our method has not been adapted to the projection of the DF on a plane
in action space or local velocity space, and therefore works best in 3D. Therefore,
we show in Fig. 3.4 some slices in velocity space at z = 0, denoting the location of
the vertical resonances (i.e. resonances involving a non-zero l, hence involving the
vertical frequency) either for a fixed value of the azimuthal velocity (and action) or
for a fixed value of the radial velocity. Identifying such resonances in the vw-plane
and uw-plane should allow new types of constraints to be put on the pattern speed of
internal perturbers and the vertical shape of the potential of the Galaxy.
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Interestingly, most of these resonances are very concentrated in w and vary quickly
both in u and v as a function of w, making them elusive to find when stacking tracer
stars in any 2D plane of velocity space, but in principle they stand out in thin slices
of velocity space. Concretely, when considering a change of 10 km s−1 in vertical
velocity from 5 to 15 km s−1, the corresponding change in the location of the verti-
cal resonance in v within the uv-plane is always larger than 10 km s−1 and typically
larger (sometimes much larger) than 30 km s−1.

Moreover, the signature of these vertical resonances in the uv-plane is rather thin,
typically of the order of the km s−1, hence much thinner than the displacement of
the resonance with w. This means that, when investigating the uv-plane, vertical
resonances should mostly be washed out as soon as the investigated slice is thick
enough. Therefore, when investigating the DF in the uv-plane in the next subsection,
we limit ourselves to the effect of l = 0 resonances.

As displayed in Fig. 3.5 and Fig. 3.6, for a lower pattern speed Ωp = 0.84 Ω0,
corresponding to the pattern speed of our fiducial spiral potential, a smaller number
of vertical resonances are prominent in the solar neighbourhood.

While a specific treatment is needed in these resonant zones (e.g. Monari et al.,
2017a), the signature of the resonances (and thus their location in velocity space) can
clearly be identified with our linear perturbation method, and the linear perturbation
treatment hereafter should accurately describe the deformations of velocity space
outside of these resonant zones.

3.3 Comparing the perturbed DF for different action
estimates

We are now in a position to compare the linear deformation of local velocity space
for different action estimates, namely the epicyclic case used in previous works and
the more accurate AGAMA action estimates. Since our method works best for now in
3D velocity space, we limit ourselves to slices of zero vertical velocity at different
heights and to l = 0 resonances.

Figure 3.7 displays the f0 + f1 linearly perturbed distribution function at the posi-
tion of the Sun in the Galactic plane for the bar potential of Sect. 2.4 and two different
pattern speeds, and for the spiral potential of Sect. 2.5. As in Monari et al. (2017b),
whenever f1 > f0, we cap f1 at the value of f0 to roughly represent the resonant zone.
The more rigorous approach, which we leave to further work in the context of AGAMA
actions (Al Kazwini et al., in prep.), is to treat the DF with the method of Monari et
al. (2017a) in these regions. However, while the DF within the resonant zone is not
well modelled by the present method, the location and global shape of resonances
should be well reproduced. We indeed highlight in Fig. 3.7 the zone occupied by
trapped orbits at the corotation (Ωb = 1.16 Ω0) and OLR (Ωb = 1.89Ω0) of the
bar, as determined with the method of Monari et al. (2017a) both in the epicyclic and
AGAMA cases (Al Kazwini et al. in prep.). While the quantitative enhancement of the
DF will be slightly different from our linear treatment in these trapping zones, it is
clear that the location of the resonant deformation is well captured by the method,
as expected. The linear deformation outside of the resonant zones should be well
described by our method as well. Interestingly enough, the linear deformation due to
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Figure 3.7: Distribution function from Fig. 3.1 in velocity space at
the solar position within the Galactic plane, now perturbed to lin-
ear order by a bar (perturbing potential from Sect. 2.4) with pattern
speeds Ωb = 1.16 Ω0 (left) and Ωb = 1.89Ω0 (middle), or by a
spiral pattern (perturbing potential from Sect. 2.5) with pattern speed
Ωsp = 0.84 Ω0 (right). The black dashed contours represent the
zones where k is equal to or less than 1, k being a quantity computed
in Monari et al. (2017a) that designates the region where the orbits
are trapped at the main resonance (the computation used here in the
Stäckel case will be presented in detail in Al Kazwini et al., in prepara-
tion). Top row: Epicyclic approximation. Bottom row: Stäckel fudge.

Figure 3.8: Local stellar velocity distribution perturbed to linear or-
der at the solar galactocentric radius and azimuth at three different
heights (left: z = 0 kpc, middle: z = 0.3 kpc, right: z = 1 kpc),
when perturbed by a bar (perturbing potential of Sect. 2.4) with pat-
tern speed Ωb = 1.89Ω0. Top row: Epicyclic approximation. Bottom
row: Stäckel fudge. The scale of the colour bar is different in the up-

per and lower panels for z = 1 kpc.
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Figure 3.9: Same as Fig. 3.8, in the Stäckel fudge case, but now for
joint perturbation by a bar (perturbing potential of Sect. 2.4) with pat-
tern speed Ωb = 1.89Ω0 and a spiral pattern (perturbing potential of

Sect. 2.5) with pattern speed Ωsp = 0.84 Ω0.

the bar is generally stronger in the AGAMA case, and that due to the spiral is weaker
in the AGAMA case. This means that reproducing the effect of spiral arms on the local
velocity distribution might require a higher amplitude when considering an accurate
estimate of the action-angle variables rather than the epicyclic approximation. We
speculate that this is related to the inaccuracy of the reconstruction of the potential in
the epicyclic case, which causes different biases in the spiral and bar cases.

The case of the pattern speed of the bar being 1.89 Ω0 would correspond to a con-
figuration where the Hercules stream at negative u and negative v corresponds to the
2 : 1 outer Lindblad resonance of the bar (e.g. Dehnen, 2000; Minchev, Nordhaus,
and Quillen, 2007; Monari et al., 2017b; Fragkoudi et al., 2019). Although this hap-
pens in the resonant zone, it is interesting to note that this feature is less squashed in
the more realistic AGAMA case. Moreover, a resonance unnoticed within the epicyclic
approximation appears at high azimuthal velocities: we can identify this resonance
as the outer 1 : 1 resonance of the bar (Dehnen, 2000). In the spiral case, the reso-
nant ridge at large azimuthal velocities can be identified as the corotation of the spiral
pattern.

Figure 3.8 displays the linear deformation due to the bar, for the case of pattern
speed of 1.89 Ω0, at different heights above the Galactic plane, both in the epicyclic
and AGAMA cases. We again restrict ourselves to a zero vertical velocity slice and
l = 0 resonances. As can be seen in this figure, the epicyclic approximation quickly
becomes imprecise at large heights because it implies a stronger falloff of the density
with height (as already noted in Fig. 3.1) while not changing the azimuthal velocity
distribution (and the location of resonances in v) due to the hypothesis of complete
decoupling of vertical motions.

In the AGAMA case the azimuthal velocity distribution is affected by a larger asym-
metric drift at large heights, and the location of the outer Lindblad resonance of the
bar in the uv-plane is also displaced to lower azimuthal v at larger heights. This oc-
curs because at fixed Jφ the azimuthal and radial frequencies computed with AGAMA
are lower at higher z, meaning that one needs to reach lower Jφ (corresponding to
orbits whose guiding radii are in the inner Galaxy) to reach the resonance.

This trend is most clearly visible at z = 1 kpc, where the epicyclic approximation
does not accurately represent the location of the Hercules feature compared to the
AGAMA case. Interestingly, comparing the displacement with height of the OLR in
the case of a bar with pattern speed 1.89 Ω0 with that of the corotation in the case
of a 1.16 Ω0 pattern speed, we noted that the corotation location in the uv-plane is
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more displaced than the OLR. This is because the corotation only depends on the
azimuthal frequency, while the OLR depends on a combination of the azimuthal
and radial frequencies. On the other hand, with the presently assumed background
potential, we found that the displacement with height was rather independent of the
pattern speed and therefore of the location of the resonance in local velocity space.
We found a gradient in v of 8 kms−1kpc−1 for the corotation, 6 kms−1kpc−1 for the
OLR, and 4 kms−1kpc−1 for the 1 : 1 resonance. This different displacement can also
be seen when linearly adding the effect of the bar and spiral in Fig. 3.9, where the
spacing between the 1 : 1 resonance of the bar and that of the corotation of the spiral
increases with height.

Quantitatively, these displacements depend strongly on the background Galactic
potential. This means that once the resonances potentially responsible for moving
groups in the solar neighbourhood have been identified, studying their position in
the uv-plane as a function of z can in principle be a powerful new way to constrain
the 3D structure of the Galactic potential. This cannot be done within the epicyclic
approximation. We note that marginalizing over vertical velocities instead of taking
a zero-velocity slice would not compensate for these variations of the location of res-
onances with height but would only enhance the effect. In practice, we investigated
the displacement of the location of the in-plane OLR with vertical velocities. For
w = 50 km s−1 the displacement compared to w = 0 km s−1 in terms of the v-
location of the resonance at z = 1 kpc is 8 km s−1 , always towards lower azimuthal
velocities; however, the signal will always be dominated by the lowest w values due
to the vertical orbital structure of the disc.
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Chapter 4

Temporal evolution of the perturber

Previously, we always considered a constant amplitude for the perturbing potential
in order to determine an analytical expression for the perturbed DF. Here, we inves-
tigate the time dependence of the DF by choosing a time-varying amplitude for the
perturbing potential.

4.1 Time-varying amplitude function
The expression we use for the time-dependent function g controlling the amplitude
of the perturbation during its growth is

g(t) =
1 − cos (πt/tf)

2
, (4.1)

where tf is the time at which the perturbation is completely formed, expressed in Gyr.
We consider tf = 0.5 Gyr.

The motivation for this choice of growth function is its analytic simplicity, hav-
ing a function starting from exactly zero at the origin, and smooth over the whole
considered range. The first derivative, [π/(2tf)] sin(πt/tf), assures the continuity at
0 and tf with both stages, fixed at 0 for t ≤ 0 and at 1 for t ≥ tf (the first derivative is
thus equal to 0 at 0 and tf).

4.2 Time-dependent perturbed distribution function
We now take the integral of Eq. (2.6), restricted to [0, t] (because the g function is
equal to 0 on ]−∞, 0]) and integrate by parts. We take ϕn(J′, t′) = g(t′) h(t′) ϕn(J),
with h(t′) = e−imΩpt′ , and we define

η(t) ≡ eiθs,n(t)

iωs,n
→ dη = eiθs,n(t)dt, (4.2)

allowing us to rewrite Eq. (2.6) as

f1(J, θ, t) = Re
{

i
∂ f0
∂J

(J) ·
∑

n
nϕn(J)

∫ t

0
g(t′)

dη
dt′

(t′) dt′
}

. (4.3)
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We can now integrate by parts
∫ t

0
g(t′)

dη
dt′

(t′) dt′ = [g(t′)η(t′)]t0 −
∫ t

0

dg
dt′

(t′) η(t′) dt′, (4.4)

and since g(0) = 0,
[g(t′)η(t′)]t0 = g(t)η(t). (4.5)

To calculate the second part of the integral, since dg(t)/dt = π/(2tf) sin(πt/tf),
we write, ∫ t

0

dg
dt′

(t′)η(t′)dt′ =
π

2tf

1
iωs,n

∫ t

0
sin

(
πt′

tf

)
eiθs,n(t′)dt′. (4.6)

We look for a primitive G of sin(πt/tf)eiθs,n(t) of the form

G(t) =
[
A cos

(
πt
tf

)
+ B sin

(
πt
tf

)]
eiθs,n(t). (4.7)

Deriving G(t) with respect to t, and equating it to the integrand in Eq. 4.6 we get

B
π

tf
+ A iωs,n = 0 and B iωs,n − A

π

tf
= 1, (4.8)

which leads to

A =
π/tf

ω2
s,n − (π/tf)2

and B =
−iωs,n

ω2
s,n − (π/tf)2

. (4.9)

Substituting the Eqs. (4.5) and (4.7) into Eq. (4.4) results in the following expression
for the perturbed DF

f1 (J, θ, t) = Re


∂ f0
∂J

(J) ·
∑

n
nϕn(J)×


1
2

(
1 − cos

(
πt
tf

))
eiθs,n

ωs,n
− π

2tf

1
ωs,n

1
ω2

s,n − (π/tf)2
×

((
π

tf
cos

(
πt
tf

)
− iωs,n sin

(
πt
tf

))
eiθs,n − π

tf
ei(θs,n−ωs,nt)

) 

.

(4.10)

It should be noted that we do not exactly recover the static case at t = t f because
not all derivatives of g(t) are strictly zero at the initial and final time, as assumed in
M16. If a true plateau is reached after t f in an analytic fashion, the function would
nevertheless converge towards the static case. How quickly this would happen is not
trivial to compute. We can however compute an upper limit based on the formalism
of Monari et al. (2017a). Considering that the most trapped orbits have their slow
variables following the behaviour of a harmonic oscillator, and taking 2π over the
frequency of this harmonic oscillator as a characteristic time for phase-mixing, we
obtain a characteristic time of the order of 2 Gyr.

Now we can study analytically how the linear response to a fiducial bar with



4.2. Time-dependent perturbed distribution function 35

Figure 4.1: Local stellar velocity distribution perturbed to linear order
in the Galactic plane by the bar of Sect. 2.4 with Ωb = 1.89Ω0 with
the Stäckel fudge, and an amplitude of the bar growing as described
in Sect. 4.1. The first 11 panels display the temporal evolution of
the perturbation. The last panel displays the stationary case. The
amplitude of the bar goes from 0 at t = 0 to its plateau (g(t) = 1) at

t = 0.5 Gyr.

Ωb = 1.89Ω0 evolves with time. As before the method is not strictly valid at reso-
nances, where a treatment like that used in Monari et al. (2017a) must be applied (see
also Binney, 2020a; Binney, 2020b). It is nevertheless interesting to see in Fig. 4.1
how the linear deformation of the velocity plane evolves with time near resonances
(in a patch co-moving with the bar, hence at a constant azimuthal angle to the bar),
while the amplitude of the perturbation grows. The effect of the OLR appears as soon
as the perturbation starts to grow. As it progressively grows, the two linear modes
in the DF separate and lead to a velocity plane already very much resembling the
stationary form of the perturbed DF after 0.25 Gyr, that is when g(t) = 0.5 and the
perturbation is half-formed. In the absence of a pattern speed variation, it is therefore
not necessarily obvious to disentangle the effect of a bar whose amplitude is growing
from that of a fully formed bar with larger and constant amplitude.
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Chapter 5

Trapping at resonances with accurate
action estimates

In the previous chapters, we treated explicit distribution functions for the disc as a
function of the actions and angles of the unperturbed axisymmetric system. An Eu-
lerian approach was assumed which allowed us to probe the effect of the bar and
stationary spiral arms away from the main resonances. Although this ’Eulerian’ ap-
proach (keeping the actions and angles of the unperturbed systems) allowed us to gain
qualitative insights on the effects of non-axisymmetries near resonances, no quanti-
tative assessments within resonant zones can be made because the linear treatment
diverges at resonances.

To go further, we adopt now the ’Lagrangian’ formalism presented in Monari et
al., 2017b (deforming the tori to define a new system of angles and actions coordi-
nates in the resonant zones). However, the results in Monari et al., 2017b were ob-
tained using the epicyclic approximation whereas here we use the Stäckel approach
using Agama.

This problem is tackled here by adjusting the Lagrangian approach to the impact
of non-axisymmetries at resonances. The deformation of the orbital tori is modeled
outside of the trapping region, and new tori are constructed, with an adequate system
of angle-action variables, within the trapping region. The unperturbed distribution
function is then phase-averaged over the new tori.

The background axisymmetric potential is again chosen to be Model I from
Binney and Tremaine (2008). The potential for the bar is again the same simple
quadrupole potential (Weinberg, 1994; Dehnen, 2000) with

Φ1,b(R, z,φ, t) = Re
{

Φa,b(R, z)eim(φ−φb−Ωbt)
}

, (5.1)

where m = 2, Ωb is the pattern speed of the bar, and the azimuth is defined with
respect to a line corresponding to the Galactic centre-Sun direction in the Milky
Way, φb thus being the angle between the Sun and the long axis of the bar. We also
choose

Φa,b(R, z) = −αb
v2

0

3

(
R0

Rb

)3 (R
r

)2



(
r

Rb

)−3

R ≥ Rb,

2 −
(

r
Rb

)3

R < Rb,
(5.2)

where r2 = R2 + z2 is the spherical radius, Rb is the length of the bar, and αb
represents the maximum ratio between the bar and axisymmetric background radial
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forces at the Sun’s galactocentric radius R = R0. We use hereafter, as a representative
example, Rb = 0.625 R0, φb = 25o, and αb = 0.01.

We rewrite the perturbing potential as a Fourier series in terms of actions and
angles

Φ1(JR, Jφ, θR, θφ) = Re
{∑

j

c jmei( jθR+m(θφ−Ωbt
}

. (5.3)

In the epicyclic case as is presented in Monari et al., 2017b, the Fourier coeffi-
cients are restricted to j = −1, 0, 1 by construction. In contrast, in this thesis, the
coefficients are numerically evaluated using AGAMA. This procedure is described
in detail in section 2.2 . A new set of coordinates dubbed "slow" and "fast" are
introduced via the equations

θs = lθR + m(θϕ −Ωbt), Jϕ = mJs (5.4)

θ f = θR, JR = lJs + J f (5.5)

where l denotes the resonance, l = 0 for the corotation resonance, l = −1 for the
inner Lindblad resonance and l = 1 for the outer Lindblad resonance. By taking the
time derivative of θs, we can see that this angle evolves slowly near a resonance since
at a resonance

lΩR + m(Ωϕ −Ωb) = 0 (5.6)

In the new coordinate system, the motion is described by the Hamiltonian

H = H0 + Re
{∑

j

c jmei[( j−l)θ f +θs]

}
−mΩbJs (5.7)

where H0 is the Hamiltonian of the unperturbed axisymmetric potential and the c jm
are the Fourier coefficients from Eq. 5.3. We then average H along θ f to obtain

H̄ = H0(J f , Js) −mΩbJs + Re {
∑

j

clmeiθs } (5.8)

In this formalism, J f is an integral of motion. For each value of J f , we define Js,res
as the value of Js where

Ωs(J f , Js,res) = 0 (5.9)

We can then obtain the approximate Hamiltonian near the resonances

Ĥ =
1
2

G(Js − Js,res)
2 − Fcos(θs + g) (5.10)

where
F = −|clm(J f , Js,res)|, G =

∂Ωs

∂Js
(J f , Js,res) (5.11)

and g = arg(clm(J f , Js,res)). The Hamiltonian in Eq. 5.10 is the Hamiltonian of a
pendulum. The corresponding equations of motion are

θ̇s = G(Js − Js,res) (5.12)
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J̇s = −Fsin(θs + g) (5.13)

We then obtain
θ̈s = −ω2

0cos(θs + g) (5.14)

where ω2
0 = FG. The energy of the pendulum is

Ep =
θ̇2s
2
+ Vp(θs) (5.15)

where
Vp(θs) = −ω2

0cos(θs + g) (5.16)

We can then define the quantity

k =

√
1
2
(1 +

Ep

ω2
0

) (5.17)

When k < 1, the orbit is trapped and librates around θs = −g.
The action and the angle associated to the pendulum are

Jp =
4
pi

Ja

k
[E(k2) − (1 − k2)K(k2)] (5.18)

θp =
pi

2K(k2)
cn−1(

Js − Js,res

Ja
, k2) (5.19)

where Ja = 2
√

F/Gk , the elliptic functions E and K are defined as

E(m) =

∫ π/2

0
dθ

√
1 −msin2θ (5.20)

K(m) =

∫ π/2

0

dθ√
1 −msin2θ

(5.21)

and cn(u, m) = cos(ϕ) where

u =

∫ ϕ

0

dθ√
1 −msin2θ

(5.22)

Finally, we get the perturbed distribution function in the trapping region with the
equation

ftr(J f , Js, θs) =
1

2π

∫ 2π

0
f0(J f , Js,res + ∆Js(θp))dθp (5.23)

where
∆Js = Jacn(

2
π

K(k2)θp, k2) (5.24)



40 Chapter 5. Trapping at resonances with accurate action estimates

80 60 40 20 0 20 40 60 80
Vr (km/s)

140

160

180

200

220

240

260

280

Vp
hi

 (k
m

/s
)

1.
00

0
1.000

0.000

0.
00

0

0.
00

0

0.000

0.000

0.000

0.000

0.0
00

0.000

1

2

3

4

5

6

7

8

Figure 5.1: Constant distribution function contours at R = 8 kpc and
at ϕ = 30◦ for the Outer Lindblad resonance (l = 1) in the epicyclic

approximation.

and f0 is the unperturbed distribution function. The perturbed function in the trapping
region can be computed numerically using the equation

ftr(J f , Js, θs) =
1
N

∑

i

f0(J f , Js,res + ∆Js(θ
i
p)) (5.25)

where θip sample the orbit between 0 and 2π and N is the number of sampling points.
In the zone of circulation (k > 1), the distribution function takes the form

fcirc(J f , Js, θs) = f0(J f , J̄s) (5.26)

where
J̄s = Js,res +

π

2
Ja

K(1/k2)
(5.27)

Using the same background distribution function introduced in Sect. 3.1, we can
then compute the perturbed distribution function in both the epicyclic and AGAMA
cases.
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Figure 5.2: The same as above in the AGAMA case.
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Chapter 6

A first application: locating moving
groups with Gaia EDR3

This Chapter is based on the paper led by Marcel Bernet "From ridges to manifolds:
3D characterization of the moving groups in the Milky Way disc", to which I con-
tributed as a co-author.

Moving groups, which are overdensities in the stellar velocity distribution, are
a very important tool to understand the structure of the Milky Way. They can be
connected to the orbital resonances of the bar and the spiral arms (Dehnen, 2000;
Monari et al., 2019b) or to phase mixing related to external perturbations (Minchev et
al., 2009). These moving groups have been more precisely delineated with the latest
releases of the Gaia mission. Dehnen, 2000 showed that the velocity distribution in
the solar neighborhood can be attributed to the effect of the Outer Lindblad resonance
in the case of a short/fast bar. Conversely, Monari et al., 2019b and D’Onghia and
Aguerri, 2020 showed that the same features can be attributed to the effect of the
co-rotation resonance in the case of a long/slow bar.

Ramos, Antoja, and Figueras, 2018 used the wavelet transform to study the kine-
matics of the moving groups. They claimed that some features may be connected to
phase mixing while others to resonance effects. In particular, they claimed that the
observed traits related to the Hercules moving group can be produced by the Outer
Lindblad resonance of a short/fast bar. On the other hand, Monari et al., 2019b found
that the changes in angular momentum with respect to azimuth for the Hercules group
are consistent with what is predicted for the co-rotation resonance of a long/slow bar.

In Ramos, Antoja, and Figueras, 2018, the analysis was restricted to three vari-
ables, the radial and azimuthal velocities and one variable in space. Meanwhile, in
the work to which this thesis contributed, the position of the moving groups is sam-
pled in 3D position space coupled to the radial and azimuthal velocities. They are
detected by using the wavelet transform in small independent volumes and an al-
gorithm based on the Breadth-first search algorithm from Graph Theory. The test
particle simulations are done with a fast (Ωb = 50kms( − 1)kpc( − 1)) and a slow
(Ωb = 30kms( − 1)kpc( − 1)) bar and then compared to the data.

The manifolds tracing the main moving groups in the solar neighbourhood along
the (R, ϕ, Z, VR, Vϕ) space, are sampled in an automatic way with Gaia EDR3 6D
data. The skeleton of the velocity distribution is revealed in a multidimensional space
that we can then be explored along the radial direction, and characterized in the
azimuth and vertical submanifolds. This methodology has been successfully tested
with two simulations of the effects of a (dynamically young) bar. It was possible to
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Figure 6.1: Moving group detection in different neighbourhoods
along the radial direction. For each moving group, we include a
parabolic fitting of the substructures associated with each group in
a thick grey line. Each moving group contains several structures, cor-
responding to different VR bins. The largest structure in each group
is used as its representative (dots with larger black contours and the

moving group name on top).
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Figure 6.2: Moving group detection in different neighbourhoods
along the radial direction in the simulations, analog to Fig. 6.1. Top

row: fast bar model. Bottom row: slow bar model.

observe and quantify the spatial evolution of the observed moving groups in a large
range of about 3 kpc around the sun. The main results and conclusions are:

• The azimuthal velocity of the moving groups in the radial direction does not
follow lines of constant angular momentum, deviating from the naive first order
prediction for resonances. In the simulations, resonant structures also deviate
from this simple prediction, demanding more complex analytic predictions.

• The spatial evolution of the moving groups is complex. The moving groups
configuration observed in the SN is not maintained throughout the disc. The
relative position between the arches and their curvature changes across space,
and the different moving groups split and merge several times. This is ex-
pected in a context of bifurcating orbital families, for example in the case of
resonances.

• In our slow bar simulation, we observe a bi-modality created by the OLR in
the outer parts of the disc. This bi-modality is also observed in the Arch/Hat
moving group in the data. This intriguing agreement could favour the slow bar
scenario, and opens the possibility of a test with future data.

• The Acturus, Bobylev, and Hercules moving groups present a positive slope
of their Vϕ location with the azimuth. We measure this slope to be −0.50 at
R = 8 kpc for Hercules.
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Figure 6.3: Azimuthal velocity of the kinematic substructures in the
radial direction, ϕ = 0, Z = 0 kpc, as a function of the radius, and
coloured by their radial velocity. The dashed grey lines correspond
to constant angular momentum lines, crossing the moving groups at
solar radius. Top: Structures corresponding to the main peak of a
moving group, tagged with the name in literature. Bottom: Secondary
peaks of the moving groups. The usual way to observe this projection
is using the number of stars or the mean VR in each bin. Using our
methodology we can observe the skeleton of the distribution and its
complexity. For instance, the slope of the moving groups at different
VR can be very different and the groups cross each other or share close
regions in the diagram. In addition, the extension of the range of
exploration shows that the moving group deviate from the constant
vertical angular momentum predicted for small epicyclic amplitudes.
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Figure 6.4: Azimuthal velocity of the kinematic substructures in the
radial direction (ϕ = 0, Z = 0 kpc) for the test particle simulations,
as a function of the radius, and coloured by their radial velocity. We
include dashed grey lines corresponding to constant angular momen-
tum lines as a guide. Top: Structures for the fast bar model. Bottom:
Structures for the slow bar model. In the fast bar model, we are able
to detect substructures related to the OLR and the 1 : 1 resonance,
in the slow bar we only detect structures related with the OLR. With
our methodology, we are able to show the complex morphology of the

arches in a single image.
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• The azimuthal velocity of the Horn, Sirius and Arch/Hat moving groups presents
an axisymmetrical behaviour. In both our simulations, we observed a small az-
imuthal gradient in Vϕ in the Arch/Hat-like structures, although it approches 0
as R increases. This could be related to the young bar model we are using.

• The vertical curvature of the moving groups is similar at the same R. These
curvatures are dominated by the gravitational potential to first order, indepen-
dently of the observed resonance. However, we notice that the Coma Berenices
group deviates from this behaviour, which points to a different dynamical ori-
gin that deserves further investigation.

• In the fast bar simulation, a correlation between ∂Vϕ/∂ϕ and VR is observed
for the OLR trapping region. The region where this correlation is observed in
the simulation (R > 9 kpc, Vϕ < −170 ) is poorly sampled in Gaia EDR3, but
this could potentially be used to give information on the pattern speed of the
bar with better data.

Spiral arms, resonances with the bar, accretion events, and possibly other effects
can contribute to the present phase space distribution from which we obtain our ob-
servables. Disentangling all the contributions of these dynamical processes is hard
to address. We have shown the complexity of the phase-space structure that even a
single mechanism (namely the bar) can produce. Our methodology allows to extract
a quantitative and robust measurement of the observed phase space substructure that
can be then compared and/or fit to different models. A similar methodology has been
developed in parallel by Lucchini et al., 2022.
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Chapter 7

Bar-disc perturbations in backward
integration simulation for
comparisons with Gaia DR3

As the axisymmetric potential of the Galaxy is perturbed by both a bar and a spiral
and the method already described previously is not suitable for dealing with areas
where the resonances overlap, the method of backward orbit integrations is used.
First, a more appropriate background potential is chosen to describe the Milky Way.
The potential used is that obtained by a fitting process applied to the circular velocity
curve to match the potential used by Portail et al., 2016.

The basic idea of backwards orbit integrations is to make use of the collisionless
Boltzmann equation to calculate the value of the distribution function along an orbit.
As such, one can integrate backwards along an orbit to a time where there is no
perturbation. Then, one can find the value of the perturbed distribution function
at the present time for a certain point to simply equal the value of the unperturbed
distribution function for the point reached after performing the integration. One can
then directly calculate mean or median velocity maps which are compared to the ones
obtained by the Gaia mission.

The bar which is the same one used by Portail et al., 2016 is taken in our case as
the perturber and the variables are the amplitudes of the different modes of the bar as
well as the pattern speed of the bar.
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comparisons with Gaia DR3

Figure 7.1: Rotation curve of the best model and range of model vari-
ations for evaluation of systematics on top of the composite rotation
curve measurements from Sofue, Honma, and Omodaka, 2009. Blue,
yellow and red curves represent respectively the baryonic, dark matter
and total rotation curve, assuming that the totality of the additional

central mass is baryonic.
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Figure 7.2: Rotation curve of our fitted model. Yellow, green and
blue curves represent respectively the baryonic, dark matter and total

rotation curve.
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comparisons with Gaia DR3

Figure 7.3: Median radial velocity map generated from the Gaia data.
The iso-velocity contours VR = 0 kms−1 are pointed out as black

lines.
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Figure 7.4: Median radial velocity map generated from our simulation
with contours of constant radial velocity.
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ABSTRACT

In the Gaia era, understanding the effects of the perturbations of the Galactic disc is of major importance in the context of dynamical
modelling. In this theoretical paper we extend previous work in which, making use of the epicyclic approximation, the linearized
Boltzmann equation had been used to explicitly compute, away from resonances, the perturbed distribution function of a Galactic
thin-disc population in the presence of a non-axisymmetric perturbation of constant amplitude. Here we improve this theoretical
framework in two distinct ways in the new code that we present. First, we use better estimates for the action-angle variables away
from quasi-circular orbits, computed from the AGAMA software, and we present an efficient routine to numerically re-express any
perturbing potential in these coordinates with a typical accuracy at the per cent level. The use of more accurate action estimates
allows us to identify resonances such as the outer 1:1 bar resonance at higher azimuthal velocities than the outer Lindblad resonance
(OLR), and to extend our previous theoretical results well above the Galactic plane, where we explicitly show how they differ from
the epicyclic approximation. In particular, the displacement of resonances in velocity space as a function of height can in principle
constrain the 3D structure of the Galactic potential. Second, we allow the perturbation to be time dependent, thereby allowing us to
model the effect of transient spiral arms or a growing bar. The theoretical framework and tools presented here will be useful for a
thorough analytical dynamical modelling of the complex velocity distribution of disc stars as measured by past and upcoming Gaia
data releases.

Key words. Galaxy: kinematics and dynamics – Galaxy: disc – Galaxy: solar neighborhood – Galaxy: structure – Galaxy: evolution
– galaxies: spiral

1. Introduction

The natural canonical coordinate system of phase-space for
Galactic dynamics and perturbation theory is the system of
action-angle variables (Binney & Tremaine 2008). In an axisym-
metric system in equilibrium, the Jeans theorem implies that the
phase-space distribution function (DF) of any stellar (or dark
matter) component can be expressed solely as a function of the
actions that are labelling the actual orbits (e.g. Binney & Piffl
2015; Cole & Binney 2017). However, the effect of various per-
turbers of the potential (e.g. the Galactic bar and spiral arms)
must be included in this process, together with the response of
the distribution function. Within the resonant regions, to fully
capture the behaviour of the DF, one needs to construct for each
perturber new orbital tori, complete with a new system of action-
angle variables (e.g. Monari et al. 2017a; Binney 2020a,b). Away
from resonances, however, one can simply use the linearized
Boltzmann equation. This also allows us to accurately identify
the location of resonances.

This is particularly important in the context of the interpre-
tation of recent data from the Gaia mission (Gaia Collaboration
et al. 2018a, 2021), which revealed in exquisite detail the fine
structure of stellar action space (e.g. Trick et al. 2019; Monari

et al. 2019b,a). While the existence of moving groups of dynam-
ical origin had been known for a long time in local velocity space
around the Sun (e.g. Dehnen 1998; Famaey et al. 2005), Gaia re-
vealed their structure in exquisite detail (Ramos et al. 2018) and
also provided an estimate of their age distribution (Laporte et al.
2020), together with the shape of the global velocity field away
from the Sun within the Galactic disc (Gaia Collaboration et al.
2018b). One additional major finding of Gaia is the existence
of a local phase-spiral in vertical height versus vertical veloc-
ity in the solar neighbourhood (Antoja et al. 2018), which might
be related to a vertical perturbation of the disc, for example by
the Sagittarius dwarf galaxy (e.g. Laporte et al. 2019; Binney &
Schönrich 2018; Bland-Hawthorn & Tepper-García 2021).

In previous theoretical work, Monari et al. (2016) (hereafter
M16) explicitly computed the response of an axisymmetric DF
in action space, representing a Milky Way thin-disc stellar pop-
ulation, to a quasi-stationary three-dimensional spiral potential,
using the epicyclic approximation to model the actions, which is
only a valid approximation for quasi-circular orbits in the thin
disc. It was notably shown that the first-order moments of the
perturbed DF then give rise to non-zero radial and vertical bulk
flows (breathing modes). However, to treat perturbations away
from the mid-plane, which is particularly important in the Gaia
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context, one cannot make use of the epicyclic approximation to
compute action-angle variables. Moreover, it is well known that
spiral modes in simulations can be transient, remaining station-
ary for only a few rotations (Sellwood & Carlberg 2014), and
the response of the disc should be different during the period of
rising or declining amplitude. The same can be true for the bar,
whose amplitude and pattern speed can also grow or vary with
time (e.g. Chiba et al. 2021; Hilmi et al. 2020).

Here we improve on this previous modelling of M16 in two
ways. First, we use a better estimate than the epicyclic approxi-
mation for the action-angle variables, relying on the torus map-
ping method of McGill & Binney (1990) to convert from actions
and angles to positions and velocities, and on the Stäckel fudge
(Binney 2012; Sanders & Binney 2016) for the reverse transfor-
mation. This will allow us to extend previous results to eccen-
tric orbits and orbits wandering well above the Galactic plane.
The routines developed and presented in this paper will also be
of fundamental importance to study the vertical perturbations of
the Galactic disc in further works. Second, we let the perturba-
tion evolve with time, thereby allowing us to model the effect of
a growing bar.

The paper is organized as follows. In Sect. 2, after a short
reminder of the theoretical framework of perturbed DF, already
given in detail in M16, we present the method used to expand
in Fourier series the perturbing potential within the new action-
angle coordinate system. Then a comparison with the results in
the epicyclic case is made in Sect. 3. In Sect. 4 we explore the
temporal treatment of the DF for an analytic growth of the am-
plitude of the perturber. Finally, we conclude and discuss the
possible future applications of these theoretical tools in Sect. 5.
The Appendix is dedicated to the presentation of the code.

2. Perturbing potential and perturbed DF

2.1. Action-angle variables

The canonical phase-space action-angle variables (J,θ) of an in-
tegrable system are obtained from a canonical transformation
implicitly using Hamilton’s characteristic function as a type 2
generating function. The actions J are defined as new general-
ized momenta corresponding to a closed path integral of the ve-
locities along their corresponding canonically conjugate position
variable, namely Ji =

∮
vidxi/(2π). Since this does not depend

on time, these actions are integrals of motion, and the Hamilto-
nian can be expressed purely as a function of these actions.

It turns out that Galactic potentials are close enough to inte-
grable systems that actions can be estimated for them. For quasi-
circular orbits close to the Galactic plane, with separable motion
in the vertical and horizontal directions, one can locally approx-
imate the radial and vertical motions of an orbit with harmonic
motions, which is known as the epicyclic approximation. The
radial and vertical actions then simply correspond to the radial
and vertical energies divided by their respective (radial and ver-
tical) epicyclic frequency. However, the epicyclic approximation
is no longer valid when considering orbits with higher eccen-
tricity, or with a large vertical amplitude. More precise ways
of determining the action and angle coordinates have been de-
vised. They typically differ depending on whether one wishes
to transform angles and actions to positions and velocities or
instead to make the reverse transformation from positions and
velocities to actions and angles. In the first case a very efficient
method is the torus mapping method first introduced by McGill
& Binney (1990) (see also Binney & McMillan 2016 for a recent

overview), while in the second case a Stäckel fudge is generally
used (Binney 2012; Sanders & Binney 2016).

The general idea of torus mapping is to first express the
Hamiltonian in the action-angle coordinates (JT , θT ) of a toy
potential, for which the transformation to positions and veloc-
ities is fully known analytically. The algorithm then searches for
a type 2 generating function G(θT , J) expressed as a Fourier se-
ries expansion on the toy angles θT , for which the Fourier coeffi-
cients are such that the Hamiltonian remains constant at constant
J. This generating function fully defines the canonical transfor-
mation from actions and angles to positions and velocities. For
the inverse transformation, an estimate based on separable po-
tentials can be used. These potentials are known as Stäckel po-
tentials (e.g. Famaey & Dejonghe 2003), for which each gen-
eralized momentum depends on its conjugated position through
three isolating integrals of the motion. These potentials are ex-
pressed in spheroidal coordinates defined by a focal distance. For
a Stäckel potential, this focal distance of the coordinate system
is related to the first and second derivatives of the potential. One
can thus use the true potential at any configuration space point
to compute the equivalent focal distance as if the potential were
of Stäckel form, and from there compute the corresponding iso-
lating integrals of the motion and the actions. In the following
we make use of both types of transformations, namely the torus
mapping to express the potential in action-angle coordinates and
the Stäckel fudge to represent distribution functions in velocity
space at a given configuration space point.

We now let H0(J) be the Hamiltonian of the axisymmetric
and time-independent zeroth order gravitational potential Φ0 of
the Galaxy. The equations of motion connecting actions J and
the canonically conjugate angles θ are then simply

θ̇ =
∂H0

∂J
= ω(J), J̇ = −∂H0

∂θ
= 0, (1)

with ω being the fundamental orbital frequencies. Thus, for a
given orbit, the actions J are constant in time, defining an orbital
torus on which the angles θ evolve linearly with time, according
to θ(t) = θ0 +ωt. The Jeans theorem then tells us that the phase-
space distribution function (DF) of an axisymmetric potential
f = f0(J) is in equilibrium. In other words, f0 is a solution of
the collisionless Boltzmann equation:

d f
dt

= 0. (2)

2.2. Perturbed distribution functions

We now let Φ1 be the potential of a small perturbation to the
axisymmetric background potential Φ0 of the Galaxy, with an
amplitude relative to this axisymmetric background ε � 1. Then
the total potential is Φ = Φ0 + Φ1 and the DF becomes, to first
order in ε, f = f0 + f1, which is still a solution of the collisionless
Boltzmann equation. Inserting f = f0+ f1 in Eq. (2), and keeping
only the terms of order ε, leads to the linearized collisionless
Boltzmann equation

d f1
dt

+ [ f0,Φ1] = 0, (3)

where [,] is the Poisson bracket. Integrating Eq. (3) over time,
from −∞ to the time t, leads to

f1(J, θ, t) =

∫ t

−∞
dt′

∂ f0
∂J ′

(J ′) · ∂Φ1

∂θ′
(J ′, θ′, t′), (4)
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Fig. 1. Variations in a few Fourier coefficients φ jml(J) of the bar potential from Sect. 2.4 as JR or Jϕ increase separately at Jz = 0. The actions on
the abscissa axis are in kpc km s−1. The curves are very smooth, which justifies our use of the cubic splines method to interpolate.

where J ′ and θ′ correspond to the actions and angles in the un-
perturbed case as a function of time (i.e. constant actions J ′ and
angles evolving linearly). Since any function of the angles is 2π-
periodic in the angles, the perturbing potential Φ1 can be ex-
panded in a Fourier series as

Φ1(J, θ, t) = Re
{∑

n
φn(J, t) ein·θ

}
. (5)

Hereafter we consider in-plane perturbations such as spiral arms,
meaning that we can write the time-varying Fourier coefficients
in a non-rotating frame as φn(J, t) = g(t) h(t) φn(J), where g(t)
controls the amplitude of the perturbation and h(t) controls its
pattern speed, with h(t) = e−imΩpt, where Ωp is the pattern speed
of the perturbation and m its azimuthal wave number (i.e. its mul-
tiplicity). Hereafter we mainly consider m = 2 perturbations.
The vector index n is a triplet of scalar integer indices ( j, k, l)
running in principle from −∞ to ∞, but in practice limited to
a given range sufficient to approximate the perturbing potential.
In the case of an m-fold in-plane perturbation, it is sufficient to
take k = m. The main goal of this section is to express typi-
cal non-axisymmetric perturbing potentials originally expressed
in configuration space as such a Fourier series in action-angle
space. The algorithm that we present in Sect. 2.3 can be applied
to any perturbing potential, however, including non-plane sym-
metric vertical perturbations. Once the potential is expressed as a
function of angles and actions as in Eq. (5), then Eq. (4) becomes

f1(J, θ, t) = Re
{

i
∂ f0
∂J

(J) ·
∑

n
n
∫ t

−∞
dt′φn(J ′, t′) ein·θ′(t′)

}
. (6)

In M16, assuming φn(J ′, t′) = g(t′) h(t′) φn(J), with h(t′) =
e−imΩpt′ , and the amplitude of the perturbing potential constant
in time at present time (g(t) = 1), and zero and constant in time

at −∞, led to the following explicit solution for f1(J, θ, t),

f1(J, θ, t) = Re
{
∂ f0
∂J

(J) ·
∑

n
nφn(J)

eiθs,n

ωs,n

}
, (7)

where we defined

θs,n = n · θ − mΩpt, (8)

ωs,n = n · ω − mΩp. (9)

The subscript ‘s’ stands for slow, because in the proximity of
a resonance of the type ωs,n = 0, the angle θs,n evolves very
slowly. One can also immediately see that the linearized solu-
tion above is valid only away from such resonances since it di-
verges for these orbits. Orbits near these resonances are actually
trapped, and for them the determination of the linearly perturbed
DF becomes inappropriate. Specific treatment for these resonant
regions is required, which was addressed in Monari et al. (2017a)
within the epicyclic approximation, and by Binney (2020a) in a
more general context.

Using the epicyclic approximation the Fourier coefficients
of a spiral potential have been computed analytically in M16
with indices n = ( j, k, l) running over the values j = {−1, 0, 1},
k = m = 2, and l = {−2, 0, 2}, and the perturbed distribution
function away from resonances was then computed. In the fol-
lowing we extend the results of M16 to a more general estimate
of the action-angle variables through the torus mapping method.
The resulting DF is plotted in velocity space by making use of
the Stäckel fudge. For both transformations we use the Action-
based Galaxy Modelling Architecture (AGAMA; Vasiliev 2019,
2018).

2.3. Perturbing potential in actions and angles

In previous work, M16 worked in the epicyclic approximation
as it provides an analytical expression for evaluating actions and
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Fig. 2. Accuracy of the reconstruction of the bar potential . Left panel (top): Estimate of the bar potential from Sect. 2.4 at the Sun’s position in the
plane with 41 complex Fourier coefficients in Eq. 10 and the reconstruction using cubic splines. The vertical line denotes the true value. The value
in the top right inset denotes the true value in physical units. The potential is always estimated at the same configuration space location (within
the plane, at the Sun’s position) but for different velocities. Left panel (bottom): Relative accuracy compared to the maximum value of the bar
potential at the Sun’s radius denoted in the top right inset. Right panel: Same, but at z = 0.3 kpc with 231 complex Fourier coefficients. The typical
accuracy is well below the per cent level, although with a slight bias towards lower amplitudes (i.e. |Φb estimated| < |Φb input|) above the plane.

Fig. 3. Accuracy of the reconstruction of the spiral arms potential. Left panel (top): Estimate of the spiral arms potential from Sect. 2.5 at the Sun’s
position in the plane with 41 complex Fourier coefficients in Eq. 10 and the reconstruction using cubic splines. The vertical line denotes the true
value. The value in the top right inset denotes the true value in physical units. The potential is always estimated at the same configuration space
location (within the plane, at the Sun’s position) but for different velocities. Left panel (bottom): Relative accuracy compared to the maximum
value of the spiral arms potential at the Sun’s radius denoted in the top right inset. Right panel: Same, but at z = 0.3 kpc with 231 complex Fourier
coefficients. The typical accuracy is again well below the per cent level in the plane, while it is around the per cent level above the plane.
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Fig. 4. Local uv-plane stellar velocity distribution at axisymmetric equilibrium and for w = 0, from Eq. 16 at (R, z, ϕ) = (R0, 0, 0). Left panel:
Epicyclic approximation in the plane (top) and at z = 0.3 kpc (bottom). Right panel: Stäckel fudge with AGAMA in the plane (top) and at z = 0.3 kpc
(bottom).

angles from cylindrical coordinates. The Fourier coefficients of
the Fourier series expansion of the perturbing potentials were
then also determined analytically within this approximation. Ap-
proximating the vertical component of the perturbing potential
by a harmonic oscillator, the nine Fourier coefficients φ jml were
then limited to the range j = {−1, 0, 1}, corresponding to the θR
oscillations of the potential, and l = {−2, 0, 2}, corresponding to
the θz oscillations of the potential close to the Galactic plane.

However, the epicyclic approximation is only valid for nearly
circular orbits, but not when considering eccentric orbits. Here-
after the transformations from angles and actions to positions
and velocities (and reciprocally) are instead evaluated numeri-
cally with AGAMA (Vasiliev 2018). The code makes use of torus
mapping to go from action-angle to position-velocity, and uses
the Stäckel fudge for the inverse transformation. Our goal now is
to obtain the Fourier coefficients of a known perturbing potential
using these numerically computed actions (instead of epicyclic).

We proceed in the following way to evaluate Fourier coeffi-
cients of the perturbing potential in Eq. (5). The first step is to
choose a set of actions within a range representing all the orbits
of interest in the axisymmetric background configuration, each
triplet of actions representing one of the orbits. For instance,
in the solar neighbourhood we consider radial actions rang-
ing from 0 to 220 kpc km s−1, azimuthal actions ranging from
1200 to 2160 kpc km s−1, and vertical actions ranging from 0 to
26 kpc km s−1 depending on the height above the Galactic plane.
For each orbit, we then define an array of angles (θR, θϕ, θz).
These actions and angles can then all be converted to positions
thanks to the torus machinery in AGAMA. For each triplet of ac-
tions, a range of positions (R, ϕ, z) is covered by the angles, and
we look for the best-fitting coefficients φ jml(JR, Jz, Jϕ), satisfying

the following equation (setting t = 0 for the time being):

Φ1(R, ϕ, z) = Re
{∑

j,l

φ jml(JR, Jz, Jϕ)ei( jθR+mθϕ+lθz)
}
. (10)

This is performed with the method of linear least squares us-
ing singular value decomposition, as proposed in chapter 15.4
of Press et al. (1992). We then interpolate the value of the coeffi-
cient φ jml with cubic splines, also proposed in Press et al. (1992),
chapter 3.3. The number of Fourier coefficients is chosen to be
high enough to ensure that all orbits passing through a given con-
figuration space point yield the same value of the potential at this
point within a relative accuracy of less than 1%.

Concretely, we apply this hereafter to the potential of a cen-
tral bar and of a two-armed spiral pattern. The background ax-
isymmetric potential is chosen to be Model I from Binney &
Tremaine (2008). This potential has a bulge described by a trun-
cated oblate spheroidal power law; a gaseous disc with a hole
at the centre; a stellar thin disc and a stellar thick disc, both
with a scale-length of 2 kpc; and a dark halo with an oblate two-
power-law profile. The galactocentric radius of the Sun is set at
R0 = 8 kpc, and the local circular velocity is v0 = 220 km s−1.

2.4. Bar potential

The potential we choose for the bar is a simple quadrupole po-
tential (Weinberg 1994; Dehnen 2000) with

Φ1,b(R, z, ϕ, t) = Re
{
Φa,b(R, z)eim(ϕ−ϕb−Ωbt)

}
, (11)

where m = 2, Ωb is the pattern speed of the bar (expressed
hereafter in multiples of the angular frequency at the Sun Ω0 =
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v0/R0, where v0 is the local circular velocity at the galactocentric
radius of the Sun R0), and the azimuth is defined with respect to
a line corresponding to the Galactic centre-Sun direction in the
Milky Way, ϕb thus being the angle between the Sun and the long
axis of the bar. We also choose

Φa,b(R, z) = −αb
v2

0

3

(
R0

Rb

)3 (R
r

)2



(
r

Rb

)−3

R ≥ Rb,

2 −
(

r
Rb

)3

R < Rb,

(12)

where r2 = R2 + z2 is the spherical radius, Rb is the length
of the bar, and αb represents the maximum ratio between the
bar and axisymmetric background radial forces at the Sun’s
galactocentric radius R = R0. We use hereafter, as a represen-
tative example, Rb = 0.625 R0, ϕb = 25o, and αb = 0.01. We
also consider two typical pattern speeds: Ωb = 1.89 Ω0 and
Ωb = 1.16 Ω0.

The bar potential is quite easy to reproduce using Fourier
coefficients since it varies smoothly on orbits. Thus, for a study
in the Galactic plane, 41 complex Fourier coefficients for each
triplet of actions are sufficient to approximate the value of the
potential with an accuracy much better than 1%. Here it should
be noted that the potential of the bar oscillates along the az-
imuth at a given radius and that the relative accuracy can be ill-
defined when the potential passes through zero. Therefore, we
define here the relative accuracy with respect to the amplitude
(i.e. the maximum value) of the bar potential at a given radius.
The Fourier coefficients themselves vary smoothly, as illustrated
in Fig. 1, which shows the variations of a few Fourier coefficients
as JR and Jϕ increase separately, justifying the use of cubic-
spline interpolation to get the value of the potential at a specific
position. Figure 2 demonstrates the accuracy of our method in
reproducing the bar potential in the solar neighbourhood for dif-
ferent values of the local velocities. The potential is estimated at
the same configuration space location for the whole range of rel-
evant velocities, with a typical accuracy at the per cent level both
in the plane and at z = 0.3 kpc. The accuracy remains very good
above the plane, although with a slight bias towards lower ampli-
tudes than the true value. More complex Fourier coefficients are
needed outside of the plane. This tool is of course not limited to
any specific form of the perturbing potential, the only adjustable
parameter being the number of Fourier coefficients necessary to
recover a given perturbing potential with a per cent-level accu-
racy.

2.5. Spiral potential

The potential we use for the spiral arms is the following (Cox &
Gómez 2002; Monari et al. 2016)

Φ1,sp(R, z, ϕ, t) = Re
{
Φa,sp(R, z) eim(ϕ−ϕsp−Ωspt)

}
, (13)

where m = 2, Ωsp is the pattern speed of the spiral arms, and

Φa,sp(R, z) = − A
RspKD

eim
ln(R/Rsp)

tan(p)

[
sech

(
Kz
β

)]β
, (14)

where

K(R) =
2

R sin(p)
, β(R) = K(R)hsp[1 + 0.4K(R)hsp],

D(R) =
1 + K(R)hsp + 0.3[K(R)hsp]2

1 + 0.3K(R)hsp
. (15)

Here Rsp = 1 kpc is the length parameter of the logarithmic spiral
potential, hsp = 0.1 kpc the height parameter, p = −9.9o the
pitch angle, ϕsp = −26o the phase, and A = 683.4 km2 s−2 the
amplitude. Hereafter, we adopt a pattern speed Ωsp = 0.84 Ω0,
placing the main resonances away from (or at high azimuthal
velocities in) the solar neighbourhood.

Within the Galactic plane, the top panel of Fig. 3 shows our
reconstruction of the spiral potential at the Sun’s position, again
with 41 complex Fourier coefficients. The accuracy is again be-
low the per cent level as in the bar case, although in the spiral
case there is a slight bias towards higher amplitudes with respect
to the input spiral potential. This bias is very small, however,
and does not affect our results. At z = 0.3 kpc, more complex
Fourier coefficients are again needed (Fig. 3, bottom panel), and
the accuracy reaches the per cent level, this time without bias.

3. Results and comparison with the epicyclic
approximation

3.1. Background equilibrium

From here on we work with a background axisymmetric DF f0 as
a sum of two quasi-isothermal DFs (Binney & McMillan 2011)
for the thin and thick disc:

f0(JR, Jz, Jϕ) = fthin + 0.075 fthick. (16)

The form of each DF is

f (JR, Jz, Jϕ) =
Ω exp(−Rg/hR)

2 (2π)3/2 κ σ̃2
R σ̃z z0

exp
− JRκ

σ̃2
R

− Jzν

σ̃2
z

 , (17)

where Rg, Ω, κ, and ν are all functions of Jϕ, and

σ̃R(Rg) = σ̃R(R0) exp
(
−Rg − R0

hσR

)
,

σ̃z(Rg) = σ̃z(R0) exp
(
−Rg − R0

hσz

)
. (18)

For the thin disc DF fthin, we choose hR = 2 kpc, z0 =
0.3 kpc, hσR = hσz = 10 kpc, σ̃R(R0) = 35 km s−1, and
σ̃z(R0) = 15 km s−1. For the thick disc DF fthick, we choose
hR = 2 kpc, z0 = 1 kpc, hσR = 10 kpc, hσz = 5 kpc,
σ̃R(R0) = 50 km s−1, and σ̃z(R0) = 50 km s−1. Since we nor-
malize the central surface densities of the thin and thick disc
to 1, our densities can be multiplied by the appropriate surface
density of the relevant stellar population to obtain physical units.
The background axisymmetric potential is chosen to be Model I
from Binney & Tremaine (2008), in which the above equilibrium
DF f0 is a good representation of the thin and thick disc compo-
nents. In this model one has R0 = 8 kpc and v0 = 220 km s−1.

The top panels of Fig. 4 display the (u, v)-plane in the solar
neighbourhood within the z = 0 plane (and for w = −vz = 0) for
this f0 axisymmetric background, where u = −vR and v = vϕ−v0,
obtained by converting velocity-space into action-space through
the epicyclic approximation and the Stäckel fudge from AGAMA.
The velocity distributions are quite similar. However, as can be
seen in the bottom panels of Fig. 4, the epicyclic approximation
quickly becomes imprecise outside of the plane as it implies a
sharper falloff of the density compared to the better Stäckel ac-
tion estimates.
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Fig. 5. Values of log(ωs, jml) in the (JR, Jϕ) plane with fixed Jz = 10 kpc km s−1, for a few combinations of ( j, l) indices giving rise to resonant zones
in action space (recalling that m = 2). The pattern speed Ωp here is 1.89 Ω0. The two actions are renormalized by the radial velocity dispersion
of the thin disc and the circular velocity at the Sun, respectively. The deep blue lines correspond to resonant zones. For instance, the (1, 0) case
corresponds to the traditional OLR (for a non-zero Jz). Most other low-order combinations of indices did not give rise to any relevant resonant
zone in the region of interest.

Fig. 6. Values of log(ωs, jml) in the (JR,Jz) plane with fixed Jϕ = 1759 kpc km s−1 for different ( j, l) resonances. The pattern speed Ωp is that of our
fiducial central bar fixed at 1.89 Ω0. The two actions are renormalized by the radial velocity dispersion and the vertical velocity dispersion of the
thin disc at the Sun, respectively. The deep blue lines correspond to resonance zones. Most combinations of indices explored did not give rise to
any relevant resonant zone in the region of interest.

3.2. Resonant zones

In the case of a perturbation with quasi-static amplitude that has
reached its plateau, once the Fourier coefficients representing the
perturbing potential have been computed (from the epicyclic ap-
proximation or from Eq. 10) the expression for the perturbed DF
can be simply expressed away from resonances with Eq. 7 as

f1(J, θ, t) = Re
{ n∑

j,l=−n

f jml ei[ jθR+m(θϕ−Ωpt)+lθz]
}
, (19)

with n the order of the Fourier series (in this paper, m = 2 in both
the bar and spiral cases), and

f jml = φ jml ×
j ∂ f0
∂JR

+ m ∂ f0
∂Jϕ

+ l ∂ f0
∂Jz

jωR + m(ωϕ −Ωp) + lωz
, (20)

where ωR, ωϕ, and ωz can be approximated as epicyclic frequen-
cies in the epicyclic case or can be determined with AGAMA. The
denominator of f jml may lead to a divergence in the DF when
it approaches zero. Following our notation in Eq. 9, it can be
expressed as

ωs, jml(JR, Jϕ, Jz) = jωR + m(ωϕ −Ωp) + lωz. (21)

The amount of the resonances is limited in the epicyclic case
because, by construction, indices run only over the values j =
{−1, 0, 1} and l = {−2, 0, 2}, but they can be much more numer-
ous in the more accurate AGAMA case. For the bar potential of
Eq. 11 and Eq. 12, and choosing a pattern speed Ωp = 1.89Ω0
as for our fiducial bar model, we explore in Fig. 5 and Fig. 6,
the values of ωs, jml(JR, Jϕ, Jz) in action space when varying the
pair of integer indices ( j, l). The actions are renormalized by
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Fig. 7. Values of log(ωs, jml) in the uw-plane and vw-plane. Top row: Values of log(ωs, jml) at z = 0 in the uw-plane with fixed Jϕ = 1759 kpc km s−1,
for the various vertical resonances relevant in the solar neighbourhood (the l = 0 resonances are treated in detail in Sect. 3.3). They all appear at
relatively large values of w and are very concentrated in w, varying very quickly in u as a function of w. Bottom row: Values of log(ωs, jml) in the
vw-plane with fixed u = 0 km s−1. The pattern speed Ωp is that of our fiducial central bar fixed at 1.89 Ω0.

Fig. 8. Same as Fig. 5, but with some combinations of indices giving rise to resonant zones for Ωp = 0.84 Ω0.

the radial velocity dispersion of the thin disc, circular velocity,
and vertical velocity dispersion of the thin disc at the Sun, re-
spectively, to only display a relevant range of actions. Exploring
indices in the range [−4,+4], it is clear that most combinations
do not induce a resonance that is relevant to the dynamics of the
solar neighbourhood. We only display in Fig. 5 and Fig. 6 the
combination of indices (in addition to the corotation) for which
a resonant zone appears in the plotted region of action space. It
is clear that very few low-order resonances are indeed present in
the range of actions that are truly relevant for the solar neigh-
bourhood.

To date our method has not been adapted to the projection
of the DF on a plane in action space or local velocity space,
and therefore works best in 3D. Therefore, we show in Fig. 7
some slices in velocity space at z = 0, denoting the location of
the vertical resonances (i.e. resonances involving a non-zero l,
hence involving the vertical frequency) either for a fixed value
of the azimuthal velocity (and action) or for a fixed value of the

radial velocity. Identifying such resonances in the vw-plane and
uw-plane should allow new types of constraints to be put on the
pattern speed of internal perturbers and the vertical shape of the
potential of the Galaxy.

Interestingly, most of these resonances are very concentrated
in w and vary quickly both in u and v as a function of w, mak-
ing them elusive to find when stacking tracer stars in any 2D
plane of velocity space, but in principle they stand out in thin
slices of velocity space. Concretely, when considering a change
of 10 km s−1 in vertical velocity from 5 to 15 km s−1, the cor-
responding change in the location of the vertical resonance in v
within the uv-plane is always larger than 10 km s−1 and typically
larger (sometimes much larger) than 30 km s−1.

Moreover, the signature of these vertical resonances in the
uv-plane is rather thin, typically of the order of the km s−1,
hence much thinner than the displacement of the resonance with
w. This means that, when investigating the uv-plane, vertical res-
onances should mostly be washed out as soon as the investigated
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Fig. 9. Same as Fig. 6, but with some combinations of indices giving rise to resonant zones for Ωp = 0.84 Ω0.

Fig. 10. Distribution function from Fig. 4 in velocity space at the solar position within the Galactic plane, now perturbed to linear order by a bar
(perturbing potential from Sect. 2.4) with pattern speeds Ωb = 1.16 Ω0 (left) and Ωb = 1.89Ω0 (middle), or by a spiral pattern (perturbing potential
from Sect. 2.5) with pattern speed Ωsp = 0.84 Ω0 (right). The black dashed contours represent the zones where k is equal to or less than 1, k being
a quantity computed in Monari et al. (2017a) that designates the region where the orbits are trapped at the main resonance (the computation used
here in the Stäckel case will be presented in detail in Al Kazwini et al., in preparation). Top row: Epicyclic approximation. Bottom row: Stäckel
fudge.

slice is thick enough. Therefore, when investigating the DF in the
uv-plane in the next subsection, we limit ourselves to the effect
of l = 0 resonances.

As displayed in Fig. 8 and Fig. 9, for a lower pattern speed
Ωp = 0.84 Ω0, corresponding to the pattern speed of our fidu-
cial spiral potential, a smaller number of vertical resonances are
prominent in the solar neighbourhood.

While a specific treatment is needed in these resonant zones
(e.g. Monari et al. 2017a), the signature of the resonances (and
thus their location in velocity space) can clearly be identified
with our linear perturbation method, and the linear perturbation
treatment hereafter should accurately describe the deformations
of velocity space outside of these resonant zones.

3.3. Comparing the perturbed DF for different action
estimates

We are now in a position to compare the linear deformation of
local velocity space for different action estimates, namely the
epicyclic case used in previous works and the more accurate
AGAMA action estimates. Since our method works best for now
in 3D velocity space, we limit ourselves to slices of zero vertical
velocity at different heights and to l = 0 resonances.

Figure 10 displays the f0 + f1 linearly perturbed distribution
function at the position of the Sun in the Galactic plane for the
bar potential of Sect. 2.4 and two different pattern speeds, and
for the spiral potential of Sect. 2.5. As in Monari et al. (2017b),
whenever f1 > f0, we cap f1 at the value of f0 to roughly rep-
resent the resonant zone. The more rigorous approach, which
we leave to further work in the context of AGAMA actions (Al
Kazwini et al., in prep.), is to treat the DF with the method of
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Fig. 11. Local stellar velocity distribution perturbed to linear order at the solar galactocentric radius and azimuth at three different heights (left:
z = 0 kpc, middle: z = 0.3 kpc, right: z = 1 kpc), when perturbed by a bar (perturbing potential of Sect. 2.4) with pattern speed Ωb = 1.89Ω0. Top
row: Epicyclic approximation. Bottom row: Stäckel fudge. The scale of the colour bar is different in the upper and lower panels for z = 1 kpc.

Fig. 12. Same as Fig. 11, in the Stäckel fudge case, but now for joint perturbation by a bar (perturbing potential of Sect. 2.4) with pattern speed
Ωb = 1.89Ω0 and a spiral pattern (perturbing potential of Sect. 2.5) with pattern speed Ωsp = 0.84 Ω0.

Monari et al. (2017a) in these regions. However, while the DF
within the resonant zone is not well modelled by the present
method, the location and global shape of resonances should be
well reproduced. We indeed highlight in Fig. 10 the zone oc-
cupied by trapped orbits at the corotation (Ωb = 1.16 Ω0) and
OLR (Ωb = 1.89Ω0) of the bar, as determined with the method
of Monari et al. (2017a) both in the epicyclic and AGAMA cases
(Al Kazwini et al. in prep.). While the quantitative enhancement
of the DF will be slightly different from our linear treatment in
these trapping zones, it is clear that the location of the resonant
deformation is well captured by the method, as expected. The
linear deformation outside of the resonant zones should be well
described by our method as well. Interestingly enough, the lin-
ear deformation due to the bar is generally stronger in the AGAMA
case, and that due to the spiral is weaker in the AGAMA case. This
means that reproducing the effect of spiral arms on the local ve-
locity distribution might require a higher amplitude when con-
sidering an accurate estimate of the action-angle variables rather
than the epicyclic approximation. We speculate that this is re-
lated to the inaccuracy of the reconstruction of the potential in
the epicyclic case, which causes different biases in the spiral and
bar cases.

The case of the pattern speed of the bar being 1.89 Ω0 would
correspond to a configuration where the Hercules stream at neg-
ative u and negative v corresponds to the 2 : 1 outer Lindblad
resonance of the bar (e.g. Dehnen 2000; Minchev et al. 2007;
Monari et al. 2017b; Fragkoudi et al. 2019). Although this hap-
pens in the resonant zone, it is interesting to note that this feature
is less squashed in the more realistic AGAMA case. Moreover, a
resonance unnoticed within the epicyclic approximation appears
at high azimuthal velocities: we can identify this resonance as
the outer 1 : 1 resonance of the bar (Dehnen 2000). In the spi-
ral case, the resonant ridge at large azimuthal velocities can be
identified as the corotation of the spiral pattern.

Figure 11 displays the linear deformation due to the bar, for
the case of pattern speed of 1.89 Ω0, at different heights above
the Galactic plane, both in the epicyclic and AGAMA cases. We
again restrict ourselves to a zero vertical velocity slice and l = 0
resonances. As can be seen in this figure, the epicyclic approx-
imation quickly becomes imprecise at large heights because it
implies a stronger falloff of the density with height (as already
noted in Fig. 4) while not changing the azimuthal velocity distri-
bution (and the location of resonances in v) due to the hypothesis
of complete decoupling of vertical motions.
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In the AGAMA case the azimuthal velocity distribution is af-
fected by a larger asymmetric drift at large heights, and the loca-
tion of the outer Lindblad resonance of the bar in the uv-plane is
also displaced to lower azimuthal v at larger heights. This occurs
because at fixed Jϕ the azimuthal and radial frequencies com-
puted with AGAMA are lower at higher z, meaning that one needs
to reach lower Jϕ (corresponding to orbits whose guiding radii
are in the inner Galaxy) to reach the resonance.

This trend is most clearly visible at z = 1 kpc, where the
epicyclic approximation does not accurately represent the loca-
tion of the Hercules feature compared to the AGAMA case. Inter-
estingly, comparing the displacement with height of the OLR
in the case of a bar with pattern speed 1.89 Ω0 with that of the
corotation in the case of a 1.16 Ω0 pattern speed, we noted that
the corotation location in the uv-plane is more displaced than
the OLR. This is because the corotation only depends on the az-
imuthal frequency, while the OLR depends on a combination of
the azimuthal and radial frequencies. On the other hand, with
the presently assumed background potential, we found that the
displacement with height was rather independent of the pattern
speed and therefore of the location of the resonance in local ve-
locity space. We found a gradient in v of 8 kms−1kpc−1 for the
corotation, 6 kms−1kpc−1 for the OLR, and 4 kms−1kpc−1 for the
1 : 1 resonance. This different displacement can also be seen
when linearly adding the effect of the bar and spiral in Fig. 12,
where the spacing between the 1 : 1 resonance of the bar and
that of the corotation of the spiral increases with height.

Quantitatively, these displacements depend strongly on the
background Galactic potential. This means that once the reso-
nances potentially responsible for moving groups in the solar
neighbourhood have been identified, studying their position in
the uv-plane as a function of z can in principle be a powerful
new way to constrain the 3D structure of the Galactic poten-
tial. This cannot be done within the epicyclic approximation. We
note that marginalizing over vertical velocities instead of tak-
ing a zero-velocity slice would not compensate for these varia-
tions of the location of resonances with height but would only
enhance the effect. In practice, we investigated the displacement
of the location of the in-plane OLR with vertical velocities. For
w = 50 km s−1 the displacement compared to w = 0 km s−1 in
terms of the v-location of the resonance at z = 1 kpc is 8 km s−1

, always towards lower azimuthal velocities; however, the sig-
nal will always be dominated by the lowest w values due to the
vertical orbital structure of the disc.

4. Adding the temporal evolution

In the previous sections we always consider a constant amplitude
for the perturbing potential in order to determine an analytical
expression for the perturbed DF. In this section we investigate
the time dependence of the DF by choosing a time-varying am-
plitude for the perturbing potential.

4.1. Time-varying amplitude function

The expression we use for the time-dependent function g con-
trolling the amplitude of the perturbation during its growth is

g(t) =
1 − cos (πt/tf)

2
, (22)

where tf is the time at which the perturbation is completely
formed, expressed in Gyr. We consider tf = 0.5 Gyr.

The motivation for this choice of growth function is its an-
alytic simplicity, having a function starting from exactly zero at

the origin, and smooth over the whole considered range. The first
derivative, [π/(2tf)] sin(πt/tf), assures the continuity at 0 and tf
with both stages, fixed at 0 for t ≤ 0 and at 1 for t ≥ tf (the first
derivative is thus equal to 0 at 0 and tf).

4.2. Time-dependent perturbed distribution function

We now take the integral of Eq. (6), restricted to [0, t] (because
the g function is equal to 0 on ]−∞, 0]) and integrate by parts.
We take φn(J ′, t′) = g(t′) h(t′) φn(J), with h(t′) = e−imΩpt′ , and
we define

η(t) ≡ eiθs,n(t)

iωs,n
→ dη = eiθs,n(t)dt, (23)

allowing us to rewrite Eq. (6) as

f1(J, θ, t) = Re
{

i
∂ f0
∂J

(J) ·
∑

n
nφn(J)

∫ t

0
g(t′)

dη
dt′

(t′) dt′
}
. (24)

We can now integrate by parts
∫ t

0
g(t′)

dη
dt′

(t′) dt′ =
[
g(t′)η(t′)

]t
0 −

∫ t

0

dg
dt′

(t′) η(t′) dt′, (25)

and since g(0) = 0,
[
g(t′)η(t′)

]t
0 = g(t)η(t). (26)

To calculate the second part of the integral, since dg(t)/dt =
π/(2tf) sin(πt/tf), we write,
∫ t

0

dg
dt′

(t′)η(t′)dt′ =
π

2tf

1
iωs,n

∫ t

0
sin

(
πt′

tf

)
eiθs,n(t′)dt′. (27)

We look for a primitive G of sin(πt/tf)eiθs,n(t) of the form

G(t) =

[
A cos

(
πt
tf

)
+ B sin

(
πt
tf

)]
eiθs,n(t). (28)

Deriving G(t) with respect to t, and equating it to the integrand
in Eq. 27 we get

B
π

tf
+ A iωs,n = 0 and B iωs,n − A

π

tf
= 1, (29)

which leads to

A =
π/tf

ω2
s,n − (π/tf)2

and B =
−iωs,n

ω2
s,n − (π/tf)2

. (30)

Substituting the Eqs. (26) and (28) into Eq. (25) results in the
following expression for the perturbed DF

f1 (J, θ, t) = Re
{
∂ f0
∂J

(J) ·
∑

n
nφn(J)×

[
1
2

(
1 − cos

(
πt
tf

))
eiθs,n

ωs,n
− π

2tf

1
ωs,n

1
ω2

s,n − (π/tf)2
×

((
π

tf
cos

(
πt
tf

)
− iωs,n sin

(
πt
tf

))
eiθs,n − π

tf
ei(θs,n−ωs,nt)

) ] }
.

(31)

It should be noted that we do not exactly recover the static
case at t = t f because not all derivatives of g(t) are strictly zero at
the initial and final time, as assumed in M16. If a true plateau is
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reached after t f in an analytic fashion, the function would never-
theless converge towards the static case. How quickly this would
happen is not trivial to compute. We can however compute an up-
per limit based on the formalism of Monari et al. (2017a). Con-
sidering that the most trapped orbits have their slow variables
following the behaviour of a harmonic oscillator, and taking 2π
over the frequency of this harmonic oscillator as a characteris-
tic time for phase-mixing, we obtain a characteristic time of the
order of 2 Gyr.

Now we can study analytically how the linear response to
a fiducial bar with Ωb = 1.89Ω0 evolves with time. As before
the method is not strictly valid at resonances, where a treatment
like that used in Monari et al. (2017a) must be applied (see also
Binney 2020a,b). It is nevertheless interesting to see in Fig. 13
how the linear deformation of the velocity plane evolves with
time near resonances (in a patch co-moving with the bar, hence
at a constant azimuthal angle to the bar), while the amplitude of
the perturbation grows. The effect of the OLR appears as soon as
the perturbation starts to grow. As it progressively grows, the two
linear modes in the DF separate and lead to a velocity plane al-
ready very much resembling the stationary form of the perturbed
DF after 0.25 Gyr, that is when g(t) = 0.5 and the perturbation
is half-formed. In the absence of a pattern speed variation, it is
therefore not necessarily obvious to disentangle the effect of a
bar whose amplitude is growing from that of a fully formed bar
with larger and constant amplitude.

5. Conclusion

Starting from the formalism exposed in M16, we proposed a
more accurate way to determine the DF of the Galactic disc per-
turbed to linear order by a non-axisymmetric perturbation, using
a more accurate action-angle coordinate system. First, we used
the torus mapping from AGAMA to numerically compute the per-
turbing potential in action-angle coordinates as a Fourier series
expansion over the angles. We showed that we could estimate
typical non-axisymmetric perturbing potentials with an accuracy
at the per cent level. The algorithm can be applied to any perturb-
ing potential, including non-plane symmetric vertical perturba-
tions, which will be particularly important when studying the
vertical perturbations of the disc with similar methods (Rozier et
al., in prep.).

We then computed the DF perturbed to linear order by a
typical bar or spiral potential (or a linear combination of both),
and computed the local stellar velocity distribution by convert-
ing velocities to actions and angles through the Stäckel fudge
implemented in AGAMA. The results were compared to those ob-
tained by using the epicyclic approximation. The linear deforma-
tion due to the bar is generally stronger in the AGAMA case, and
that due to the spiral is weaker in the AGAMA case. This means
that reproducing the effect of spiral arms on the local velocity
distribution might require a higher amplitude when consider-
ing an accurate estimate of the action-angle variables rather than
the epicyclic approximation. Most importantly, the epicyclic ap-
proximation is inadequate at large heights and does not change
the azimuthal velocity location of the resonances due to the
hypothesis of complete decoupling of vertical motions. In the
AGAMA case instead, the locations of resonances are displaced
to lower azimuthal v at larger heights. With the background
potential used in this paper, we found a displacement in v of
8 kms−1kpc−1 for the corotation, 6 kms−1kpc−1 for the OLR and
4 kms−1kpc−1 for the 1 : 1 resonance. Thus, the position of mov-
ing groups in the uv-plane as a function of z can be a powerful
way to constrain the 3D structure of the Galactic potential. The

key to exploring this will be the DR3 of Gaia (Brown 2019) with
its ∼ 35 million radial velocities allowing us to better probe the
z-axis above and below the Milky Way plane.

Finally, the temporal treatment is also an improvement over
M16. We applied it to the case of a bar of growing amplitude,
with an analytic evolution of the amplitude. As the bar progres-
sively grows, the two linear modes in the DF separate, and lead
to a velocity plane already very much resembling the stationary
form of the perturbed DF once the perturbation is half-formed. In
the absence of a pattern speed variation, it is therefore not neces-
sarily obvious to disentangle the effect of a bar whose amplitude
is growing from that of a fully formed bar with larger and con-
stant amplitude. We explored here a peculiar form of the growth
function motivated by its analytic simplicity. If the perturbation
grows by linear instability, exponential growth will be more real-
istic. Numerical experiments are usually well fitted by a logistic
function (exponential growth at the beginning and saturation to
the plateau). One problem for our treatment is that the logistic
function is never strictly equal to 0. In addition, there is hope
that similar analytical simplifications such as those for the am-
plitude growth studied here can also be made with this function,
which we will investigate in the future.

While the form of the DF is not well estimated in the res-
onant zones with the linear perturbations presented in this pa-
per, the signature of the resonances (and thus their location in
velocity space) can clearly be identified with this linear pertur-
bation method. The more rigorous approach, which we leave to
further works in the context of AGAMA actions (Al Kazwini et
al., in prep.), is to treat the DF with a method like that of Monari
et al. (2017a) in these regions, patching these results over the lin-
ear deformation computed here. Another caveat is that the torus
mapping was used to express the perturbing potential in actions
and angles, but for the estimate of the local stellar velocity field,
we made use of the less precise Stäckel fudge method. Therefore,
another promising way for improvement would be to use the new
ACTIONFINDER deep-learning algorithm (Ibata et al. 2021) to
make the reverse transformation. Finally, the results presented in
this paper were obtained in 3D action and velocity spaces, and
were mostly presented in 2D slices: it would therefore be partic-
ularly useful to improve our algorithm by including a marginal-
ization over any axis, for instance marginalizing over vertical ve-
locities. This is computationally more intensive but should not,
a priori, pose any conceptual problem.

The tools presented in this paper will be useful for a thor-
ough analytical dynamical modelling of the complex velocity
distribution of Milky Way disc stars as measured by past and
upcoming Gaia data releases. These tools will also be useful for
fully self-consistent treatments of the response of the disc to ex-
ternal perturbations. The ultimate goal is to adjust models to the
exquisite data from Gaia, which cannot be done properly with
N-body simulations due to the vast parameter space to explore.
The theoretical tools and the new code presented in this paper
consequently represent a useful step in this direction.
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Appendix A: PERDIGAL code presentation

All the results shown in this article were obtained with a single
code, written in C++ and Python, that calculates both the per-
turbing potential in action-angle coordinates and the perturbed
DF. The code is named the PERturbed DIstribution functions
for the GALactic disc (PERDIGAL) and will be made available
on request, although it may eventually be embedded in a larger
Galactic dynamics toolkit. Launching the code without argument
gives the explanations shown in Fig. A.1.

The calculation of the perturbed DF consists of five steps: the
creation of a file storing the positions of the DF (DFpos), the
creation (via AGAMA) of several files containing positions from
the many orbits (FCorb) required for the following step, the
determination of Fourier coefficients for the perturbing poten-
tial to create the grid (FCgrid), the determination of the Fourier
coefficients for each position which the DF will be calculated
at (FCforDF), and finally the calculation of the perturbed DF
(PertDF).The mode ALL processes the three steps (FCgrid, FC-
forDF, and PertDF) at one time, without saving Fourier coeff-
cients from FCgrid and FCforDF in files. However, ALL should
not be used without certainty about the decomposition of the po-
tential. This process strongly depends on the initial conditions
fed to the code, and a check after each part of the calculation is
recommended. Finally, PDFdisp displays the perturbed DF using
Matplotlib.

All useful parameters are stored in two particular files and can
be modified without compiling the code. They contain parame-
ters for the calculation of Fourier coefficients, parameters for the
perturbing potentials, and others depending on whether the DF
is determined at first or second order, or with a time-dependent
amplitude for the perturbing potential. Figure A.2 is a logigram
recalling the procedure of the calculation of the perturbed DF.
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Fig. A.1. Guide for the use of the code. The first three modes deal with the determination of the Fourier coefficients when expanding in series
the perturbing potential (FCgrid and FCforDF), and the calculation of the perturbed distribution function (PertDF). PDFdisp allows this function
to be displayed as a distribution of velocities. ALL regroups these modes into one, but it is not recommended because of the need to check
the Fourier decomposition. EPI directly calculates the perturbed distribution function under the epicyclic approximation, as explained in M16.
The FUNCTIONs correspond to different operations required before using the MODEs. DFpos creates the file storing the positions at which the
distribution function will be determined. FCorb creates several files containing positions from the many orbits needed to calculate the Fourier
coefficients in the FCgrid step.

Fig. A.2. Logigram recalling the procedure of the calculation of the perturbed DF. The different steps 1-5 correspond respectively to the modes
DFpos, FCorb, FCgrid, FCforDF, and PertDF. There are two cases where the result of the code needs to be verified: after the third step (to check
that the decomposition is correct) and after the fourth step (to check that the perturbing potential is well reproduced).

Article number, page 15 of 15



Astronomy & Astrophysics manuscript no. output ©ESO 2022
May 31, 2022

From ridges to manifolds: 3D characterization of the moving
groups in the Milky Way disc

M. Bernet1, 2, 3, P. Ramos1, 2, 3, 4, T. Antoja1, 2, 3, B. Famaey4, G. Monari4,
H. Al Kazwini4, and M. Romero-Gómez1, 2, 3

1 Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), C Martí i Franquès, 1, 08028 Barcelona, Spain
e-mail: mbernet@fqa.ub.edu

2 Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), C Martí i Franquès, 1, 08028 Barcelona, Spain
3 Institut d’Estudis Espacials de Catalunya (IEEC), C Gran Capità, 2-4, 08034 Barcelona, Spain
4 Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, 11 rue de l’Université, 67000 Strasbourg, France

Received September 15, 1996; accepted March 16, 1997

ABSTRACT

Context. The details of the effect of the bar and spiral arms on the disc dynamics of the Milky Way are still unknown. The stellar
velocity distribution in the Solar Neighbourhood displays kinematic substructures, which are possibly signatures of these processes
and of previous accretion events. With the Gaia mission, more detail of these signatures, such as ridges in the Vφ-R plane and thin
arches in the Vφ-VR plane, has been revealed. The positions of these kinematic substructures –moving groups– can be thought of as
continuous manifolds in the 6D phase space, and the ridges and arches as specific projections of these manifolds.
Aims. We aim to detect and characterize the moving groups along the Milky Way disc, obtaining a sampling of the velocities and
positions of the manifolds in a 5D space (Galactocentric radial and azimuthal velocities and 3D configuration space).
Methods. We develop and apply a novel methodology to perform a blind search for substructure in the Gaia EDR3 6D data, which
consists in the execution of the Wavelet Transform in independent small volumes of the Milky Way disc, and the grouping of these
local solutions into global structures with a method based on the Breadth-first search algorithm from Graph Theory. We apply the
same methodology to simulations of barred galaxies to validate the method and to compare with the data.
Results. We reveal the skeleton of the velocity distribution, uncovering projections that were not possible before. We sample nine
main moving groups along a large region of the disc in configuration space, covering up to 6 kpc, 60 deg, and 2 kpc in the radial,
azimuthal, and vertical directions respectively, extending significantly the range of previous analysis. In the radial direction, we find
that the groups deviate from the lines of constant angular momentum that one would naively expect from an epicyclic approximation
analysis of the first order effects of resonances. In fact, we reveal that the spatial evolution of the moving groups is complex and that the
configuration of moving groups in the Solar Neighbourhood is not maintained along the disc. We also find that the azimuthal velocity
of the moving groups that are mostly detected in the inner parts of the disc (Acturus, Bobylev, and Hercules) is non-axisymmetric.
For Hercules, we measure an azimuthal gradient of −0.50 kms−1deg−1 at R = 8 kpc. We detect a vertical asymmetry in the azimuthal
velocity for the Coma Berenices moving group which is not expected for structures originating from a resonance of the bar, supporting
the previous hypothesis of the incomplete vertical phase-mixing of the group. In our simulations, we extract substructures correspond-
ing to the Outer Linbdlad Resonance and the 1:1 resonances and observe the same deviation from constant angular momentum lines
and the non-axisymmetry of the azimuthal velocities of the moving groups in the inner part of the disc.
Conclusions. This data-driven characterization is a starting point for a holistic understanding of the moving groups. It also allows for
a quantitative comparison with models, providing a key tool to comprehend the dynamics of the Milky Way.

Key words. Galaxy: disc – Galaxy: kinematics and dynamics – Galaxy: structure – Galaxy: evolution – Methods: data analysis

1. Introduction

The stellar velocity distribution in the solar neighbourhood (SN)
has been for a long time a key element in our understanding of
the structure of the Milky Way (MW) (Dehnen & Binney 1998;
Skuljan et al. 1999; Famaey et al. 2005; Antoja et al. 2008). His-
torically, several overdensities in this velocity distribution have
been identified and discussed (Pleiades, Hyades, Sirius). These
moving groups, as they are usually referred to, can be related to
the orbital resonances of the bar and spiral arms of the Galaxy
(Kalnajs 1991; Dehnen 2000; Antoja et al. 2011; Fragkoudi et al.
2019; Monari et al. 2019b) and/or attributed to ongoing phase
mixing related to external perturbations (Minchev et al. 2009;

Gómez et al. 2012; Antoja et al. 2018; Ramos et al. 2018; Hunt
et al. 2018b; Khanna et al. 2019; Laporte et al. 2019, 2020).

The latest releases of the Gaia mission (Gaia Collaboration
et al. 2018a, 2021b) have provided a full 6D phase-space cata-
logue of 7.2 million stars, increasing the size and precision of
any previous survey by several orders of magnitude. This has
been a game-changer in many fields of astrophysics. In the SN,
the new high resolution velocity distribution has revealed a com-
plex substructure, with several thin arches never observed before
(Gaia Collaboration et al. 2018b). When extending the study to
the entire disc, large ridges appeared in the R-Vφ (respectively,
Galactocentric radius and azimuthal velocity) diagram cover-
ing several kiloparsecs (Antoja et al. 2018; Kawata et al. 2018;
Fragkoudi et al. 2019).
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Orbits in a barred potential can be trapped into resonances
(Weinberg 1994). Dehnen (2000) showed that in a short/fast bar
scenario (i.e. Ωb = 50 kms−1kpc−1) the transition between two
types of non-axisymmetric orbital families across the bar’s Outer
Lindblad resonance (OLR) can explain the bi-modality formed
by Hercules and the rest of the velocity distribution in the so-
lar neighbourhood if the Sun is placed just outside the OLR of
the bar (ROLR ≈ 7.2 kpc). This scenario was consistent with the
gas dynamics measurements of the inner MW at the time. Later
on, studies of star counts and kinematics of the inner MW sug-
gested that the the bar might be longer and slower than previ-
ously thought (Portail et al. 2017). In this case, the OLR would
be placed further out (ROLR ≈ 10.5 kpc, maybe matching other
groups such as the Arch/Hat instead of Hercules) and co-rotation
(CR) would be closer to the SN (RCR ≈ 6 kpc). Pérez-Villegas
et al. (2017) and Monari et al. (2019b) then explained Hercules
as the overdensity formed by the orbits trapped at the CR, li-
brating around the Lagrangian points of a long/slow bar. This
moving group created by CR seems to be less pronounced than
the one produced by the OLR (Binney 2018; Hunt et al. 2018a).
However, Hunt et al. (2018b) showed that the addition of spiral
structure in combination with the CR might create a strong dis-
tinct Hercules, and Chiba et al. (2021) showed that a decelerating
Galactic bar could enhance the occupation on resonances, be-
ing able to reproduce Hercules thorugh the CR resonance. This
shows that the value of the pattern speed (Ωb) of the MW bar
as well as the exact link between substructures and resonances
are still a matter of debate, and more observables are needed to
obtain a final answer.

In this direction, Ramos et al. (2018, hereafter R18), used
the wavelet transform (WT, Starck & Murtagh 2002; Chereul
et al. 1999) to detect and characterize the kinematics of the mov-
ing groups along the disc. They matched the spatial evolution
of the groups with the ridges in the R-Vφ plane. They claimed
that some of the arches follow lines of constant energy at a
given volume –which could be related to phase mixing processes
(Minchev et al. 2009; Gómez et al. 2012)– and others follow
lines of common angular momentum in the radial direction, as
expected approximately in the case of resonant kinematic sub-
structures (e.g., Quillen et al. 2018a). They also claimed that
the observed changes in the azimuthal direction for the Hercules
moving group are consistent with being produced by the OLR
of a short/fast bar (Dehnen 2000; Fux 2001; Antoja et al. 2014).
The long/slow paradigm is relatively recent and there have been
few analyses on the azimuthal variations of a substructure caused
by CR. Monari et al. (2019a) found that the Hercules angular
momentum changes significantly with azimuth as they predicted
analytically for the co-rotation resonance of an old long/slow
bar. They showed that the only way to obtain a similar change
in azimuth for an OLR origin of Hercules would be if orbits are
still far from phase-mixed in the bar potential (bar perturbation
younger than 2 Gyr; see also Trick et al. 2021).

The link between the moving groups across the neighbour-
hoods in R18 was made visually, using a scatter plot of two vari-
ables and a third one as colour. Therefore, the analysis of the
moving groups link was restricted to three variables. Since VR
and Vφ are compulsory to select the moving groups, this limi-
tation restricted the analysis to one dimension in space (either
radial or azimuthal). The vertical direction was not explored.

The correlation between the position of the moving groups
(overdensities in VR−Vφ) and the ridges (overdensities in R−Vφ)
indicate that both are projections of the same substructure in
the 6D phase-space onto different planes. The positions of these
kinematic substructures –moving groups– can be described as

continuous manifolds in the 6D phase space, and the ridges and
arches as specific projections of these manifolds. Our goal in this
article is to extend the idea introduced in R18 by automatising
the n-dimensional link of the moving groups to avoid the limi-
tation of projecting the data. With this, we intend to move from
a ridge-moving group paradigm to a manifold paradigm, were
we sample the position of these manifolds in the (R, φ,Z,VR,Vφ)
space for each moving group.

We present a novel methodology to detect these manifolds in
a dataset. It is based on the execution of the WT in independent
small volumes, and the relation of these local solutions in global
substructures with an algorithm based on the Breadth-first search
(BFS) algorithm from Graph Theory. With this methodology, we
process the Gaia EDR3 6D data and detect the positions of the
groups across the MW disc. We also sample the manifolds of two
test particle simulations with a fast (Ωb = 50 kms−1kpc−1) and
a slow (Ωb = 30 kms−1kpc−1) bar, both to test our methodology
and to compare it to the data.

The Gaia DR3 (Brown 2019) catalogue will include a larger
and updated sample of radial velocities (33 M of stars, https:
//www.cosmos.esa.int/web/gaia/dr3), which will cover a
larger region of the MW disc and increase the resolution (num-
ber of stars and precision) in the already sampled part. This will
provide finer observables to untangle the different contributions
in the complex dynamics of the Galaxy. To exploit these data in
its totality, new strategies must be developed (e.g. Contardo et al.
2022) to avoid the current limitations in the analysis, which the
present article contributes to.

This paper is organized as follows. In Section 2, we describe
the observational data that we used. In Section 3, we introduce
the methodology we developed. In Section 4, we show the re-
sults of the application of the method to Gaia EDR3 data. In
Section 5, we present and analyse the simulations. In Section 6,
we compare the results from the data and the simulations, and
with previous results in the literature. Finally, in Section 7 we
list the main conclusions of this work.

2. Data and sample preprocessing

The Early release of Gaia DR3 consists of an updated and en-
larged source list, with improved astrometry and photometry.
Besides proper motions, about 7.2 million stars have radial ve-
locity (RV) measurements in the Gaia DR2, most of which are
transferred to EDR3 (Seabroke et al. 2021; Torra et al. 2021). For
this section, we use a subset of these stars with photo-geometric
distances from Bailer-Jones et al. (2021), derived from a proba-
bilistic approach including colour and apparent magnitude infor-
mation.

Distance is a critical parameter in the computation of the mo-
tion and position of the star in the 6D study of the MW, and a
major source of uncertainty. This is why, in order to improve
the quality of the sample, we additionally apply a cut in relative
parallax error:
∣∣∣∣∣
$

σ$

∣∣∣∣∣ > 5. (1)

The resulting sample contains 6 059 648 sources.
We use a Cylindrical Galactocentric coordinate system, fix-

ing the reference at the Galactic Centre (GC) with the radial di-
rection (R) pointing outwards from it, the azimuthal (φ) negative
in the direction of rotation, and the vertical component (Z) posi-
tive towards the North Galactic Pole. To transform Gaia observ-
ables to positions and velocities in this reference frame, we take
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the Sun to be at R� = 8.178 kpc (Gravity Collaboration et al.
2019), φ� = 0 and Z� = 0.0208 kpc (Bennett & Bovy 2019). For
the solar motion, we use U� = 11.1, vcirc + V� = 248.5,W� =
7.25 km s−1 (Schönrich et al. 2010; Reid & Brunthaler 2020).

3. Method

The data described in the previous section contains the 6D vari-
ables of position (R, φ,Z) and velocity (VR,Vφ,VZ) of the stars.
Inside small volumes –cuts in (R, φ,Z)–, the moving groups ap-
pear as well defined overdensities in the velocity distribution VR-
Vφ (R18), which are easy to detect. However, we know that at
large spatial scales the position of the overdensities in the veloc-
ity space changes (ridges in R-Vφ). Therefore, if we use larger
volumes to construct the velocity distribution the overdensities
will blur and become undetectable.

In this section, we present the novel method that we de-
veloped to extract these large kinematic substructures from a
dataset. It is divided into two steps; the execution of the WT in
independent small volumes of the MW disc, and the relation of
these local solutions in global substructures, with an algorithm
based on the Breadth-first search (BFS) algorithm from Graph
Theory (Moore 1959, descrived in Section 3.2).

3.1. Local Wavelet Transform

We partition the data in a dense grid of small volumes (from now,
pixels) in the spatial coordinates. We construct it as follows:

– Radial direction (Ri): [5, 14] kpc in steps of 0.04 kpc,
Rbin = ±0.24 kpc around each centre

– Azimuthal direction (φ j): [−34, 34] deg in steps of 0.8 deg,
φbin = ±2.4 deg around each centre

– Vertical direction (Zk): [−1, 1] kpc in steps of 0.08 kpc,
Zbin = ±0.24 kpc around each centre

which produce a dense grid of 2 700 000 pixels, with a maximum
volume overlap between consecutive pixels of 83.3%.

For each pixel, we construct the velocity distribution (VR,Vφ)
diagram of the stars in it as a 2D histogram with bins of 1 kms−1

(see background histogram in Fig. 1). R18 showed that the over-
densities form thin arches elongated around large ranges of VR,
with a small variation in Vφ. The use of 2D peak detection algo-
rithms (as the one in R18) is sub-optimal for arch-like structure
detection. When analysing regions with few observations, the
search for peaks is translated into a very noisy determination of
VR, and uncontrollable correlations between VR and Vφ (move-
ment along the arch).

To avoid this, we slice each VR − Vφ diagram in vertical
columns (bins in VR), and run a 1D WT in the Vφ histogram
of each column:

– Radial velocity (VR): −100 – 100 kms−1 in steps of 10 kms−1,
VR bin = ±15 kms−1 around each centre

Since we are detecting each part of the arch separately, we
avoid the movement along the arch of the overdensities, break-
ing the degeneracy between VR and Vφ in the detection. To detect
the peaks, we use the algorithm developed in Du et al. (2006) im-
plemented in scipy (Virtanen et al. 2020) as find_peaks_cwt.
This method performs the 1D WT in a range of length scales.
A peak is then selected if it is present in enough scales consecu-
tively. In our execution, we use a range of scales of [5, 10] kms−1,
with steps of 1 kms−1. We keep the peak if it is present in more
than two scales consecutively. With this configuration of scales,

we loose the thin resolution that we could extract in regions with
a large number of sources, but we gain robustness in the detec-
tion of the large structures in poorly sampled regions. Since the
scope of this work is the large-scale behaviour of the groups, we
consider this approach to be better.

At the end of the execution, the peak p inherits the spatial
position from the pixel, VR from the position of the radial veloc-
ity bin, and Vφ from the result of the WT detection. Therefore, a
peak has the coordinates

p = (R, φ,Z,VR,Vφ)p. (2)

3.2. Breadth-first search (BFS) resolution with online
interpolator

We have defined the pixels to have a large overlap among them
(two adjacent pixels will share 83.3% of their volume). There-
fore, a given substructure in consecutive pixels will have an al-
most identical shape.

For a pair of peaks from consecutive pixels, we consider
them to be adjacent if they are in the same VR bin and their
distance in Vφ is smaller than 4 kms−1. In R18, the maximum
slope found in a moving group is 33 kms−1kpc−1. In our grid
the step is 0.04 kpc, which translates in a maximum change of
≈ 1 kms−1 between adjacent pixels. This 4 kms−1 limit in the ad-
jacency is a compromise between including very steep groups
(about 4 times the one detected in R18) and reducing the num-
ber of adjacencies, which will determine the computational cost
of the next step.

In some occasions, especially in poorly sampled regions, a
peak from one pixel can be exactly in the middle of two peaks in
the other pixel. In these cases, we do not consider any of them
adjacent. With this consideration, two adjacent peaks are always
strong candidates to belong to the same substructure.

This adjacency information constructs an enormous net of
linked peaks. Ideally, substructures will be isolated subsets of
peaks in this net. These are groups of peaks with no adjacencies
to any peak outside their group.

In Graph Theory, these nets of linked points are called
Graphs and the isolated groups are the connected components of
a Graph. A very common algorithm to extract these connected
components is the Breadth-first search (BFS) algorithm, which
proceeds as follows:

1. Add (enqueue) the initial peak p to the queue1 Q.
2. Select (dequeue) the top peak ptop of the queue Q.
3. Visit all the peaks pad j adjacent to ptop. For each adjacent

peak, if we have already visited it, ignore the peak. If it is the
first time we see the peak, enqueue it.

4. If there are still peaks in the queue, return to step 2.
5. If the queue is empty, our connected component is the list of

visited peaks.

Given an initial peak p0, Algorithm 1 (see below) returns the
entire substructure to whom it belongs. By repeating the process
for all the non-matched peaks we can extract all the substruc-
tures.

This solution would be enough in an ideal case, but in prac-
tice undersampling and Poisson noise especially in regions far
from the Sun produce confusion and jumps between structures
that a straightforward BFS implementation can not filter out.
1 A queue is a data structure similar to an array with limited access to
the positions. One end is always used to insert data (enqueue) and the
other is used to remove data (dequeue). Queue follows First-In-First-
Out methodology, i.e., the data item stored first will be accessed first.
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Algorithm 1 – Breadth-first search
1: queue Q
2: list V
3: add p0 to V and enqueue in Q
4: while Q not empty do
5: pit ← dequeue Q (remove and assign)
6: for all pad j adjacent to pit do
7: if pad j not in V then
8: add pad j to V , enqueue in Q
9: end if

10: end for
11: end while
12: return V

In order to avoid these jumps between structures, we include
an extra step in the algorithm. While the BFS is running, the
peaks already matched give us information about the structure.
Therefore, in order to accept a new peak, we will require it to be
consistent with the current structure.

Let us suppose we have a group V of already visited peaks
(the current substructure we are extracting). To see if a peak p is
consistent with this substructure we will select all the peaks in V
in a small subset S ⊂ V around p. With this local sample we can
compute a linear fit

Vφ ≈ a0 + a1R + a2φ + a3Z (3)

of the subset S around p and predict the expected Vφ of the sub-
structure in a given position. This works under the assumption
that the manifold that follows the substructure is derivable and
we can compute its first order approximation locally.

This prediction is already absorbing the offset in the structure
position produced by its slope in a certain direction. Therefore,
the criteria in the acceptance of a new peak should be more strict
than the one in the first adjacency step. Our limit in the resolu-
tion is the 1 kms−1 bin in the Vφ histogram, and we include an
extra tolerance of 0.5 kms−1. If the distance between the peak
azimuthal velocity Vφ,p (Eq. 2) and the prediction is smaller than
1.5 kms−1, we consider the peak to be consistent with the struc-
ture. We encapsulate this in the is_consistent_with function (Al-
gorithm 2). We provide a summary of the final algorithm in pseu-
docode (Algorithm 3).

Algorithm 2 – is_consistent_with(pad j,V)
1: S = V

(|Rpad j − RV | < R f it &
|φpad j − φV | < φ f it &
|Zpad j − ZV | < Z f it

)
2: f (R, φ,Z) = Vφ ← linear_ f it(S |pad j )
3: if | f ((R, φ,Z)pad j ) − Vφ,pad j | < d then
4: return True
5: else
6: return False
7: end if
8: R f it = 1 kpc, φ f it = 4 deg, Z f it = 0.2 kpc, and d = 1.5 kms−1.

4. Results

Within the 3D grid the method extracted hundreds of structures,
covering 2.5 to 6 kpc in R and 30 to 60 deg in φ. In R18 the
arches in the solar neighbourhood and the radial direction were
carefully characterized, and matched to the groups previously

Algorithm 3 – Breadth-first search with online interpolator
1: queue Q
2: list V
3: add p0 to V and enqueue in Q
4: while Q not empty do
5: pit ← dequeue Q (remove and assign)
6: for all pad j adjacent to pit do
7: if pad j not in V and is_consistent_with(pad j,V) then
8: add pad j to V , enqueue in Q
9: end if

10: end for
11: end while
12: return V

studied in the literature. We rely on this matching to associate the
results of our methodology with the different groups and arches.

We end up with a sample of 99 structures, each one associ-
ated with one of the nine main moving groups: Acturus, Bobylev,
Hercules, Horn, Hyades, Sirius, Coma Berenices, Arch/Hat
(R18, references therein), and AC (see Anti-Centre newridge 1
in Gaia Collaboration et al. 2021a). Each structure traces the po-
sition of the moving group along the space at a given VR. There-
fore, each group of structures traces the manifold of the posi-
tion of the moving groups in the (R, φ,Z,VR,Vφ) space. For each
moving group, we select its largest structure as its representa-
tive. These representatives will be used in the following sections
to study the behaviour of the groups in R − φ and R − Z projec-
tions.

In Fig. 1, we show the selected groups in several neighbour-
hoods in the radial direction. In each arch we highlight its repre-
sentative with a larger black border. As explained in Section 3.1,
our goal in this work is to be able to perform this analysis in a
large extent of the disc, so we tuned the detection parameters to
obtain a robust detection of the main structures in noisy regions
(see R > 10 kpc in Fig. 1), and this required to use larger spa-
tial bins. Because of this, the thin arches observed in the Gaia
velocity distribution in the SN are slightly washed out.

The methodology links the structures in a given VR, but does
not provide the link of the arches in VR-Vφ. The complex nature
of the arches formed by the moving groups at different positions
in the disc and the high level of noise result in a sub-optimal
global link of the arches in the velocity distribution. Therefore,
we only provide a tentative manual linking of the structures,
based on the study of R18. In the rest of the paper we use this
arch link as a qualitative tool in the analysis, but the main con-
clusions are based on the properties of the individual parts of the
arches, which are determined by the described methodology.

This linking provides interesting results, different than in
previous studies. For instance, the evident link of the Arch/Hat at
R = 9.4 kpc creates an asymmetric arch shape for this structure
at the SN. This could be an artifact of the detection of Arch/Hat at
VR > 60 kms−1 or a physical evidence of an unknown behaviour
related to its origin. Notice that tagging the groups in the the SN
and assuming that they keep united across the disc is a clear over-
simplification. In the data, we have seen that Sirius is formed by
two arches at SN but these arches merge in a single one at the
outer parts of the disc (pannels R = 8.16, 9.4 kpc in Fig. 1). The
same happens for Arch/Hat at R = 10.4 kpc. In the simulation
(Sect. 5), we observe the same behaviour for overdensities re-
lated to the Outer Linblad Resonance. So far, this simplification
is useful for the discussion and comparison to the state of the art.
Moreover, the lack of data far away from the SN does not allow
a robust arch characterization. In future releases, an automatized

Article number, page 4 of 15



M. Bernet et al.: From ridges to manifolds: 3D characterization of the moving groups in the Milky Way disc

Fig. 1. Moving group detection in different neighbourhoods along the radial direction. For each moving group, we include a parabolic fitting of the
substructures associated with each group in a thick grey line. Each moving group contains several structures, corresponding to different VR bins.
The largest structure in each group is used as its representative (dots with larger black contours and the moving group name on top). We can see
two examples of bimodalities, which serve as evidences of the complex evolution of the arch morphology (Sirius at R = 8.16 kpc and Arch/Hat at
R = 10.4 kpc).

arch detection will be needed to disentangle the complex orbit
distribution.

4.1. Radial direction

The first evidence of large-scale substructure in the dynamics of
the disc was the presence of ridges in the R-Vφ plane, directly
related to the moving groups observed in the SN. Therefore, a
first exercise we can do with the manifolds is to extract their
subsets in the radial direction (i.e. φ = 0 deg, Z = 0 kpc) and plot
them in R-Vφ plane, colored by VR (Fig. 2). In the top panel, we
show the representative groups, tagged by their literature name.
In the bottom panel, we show the rest of structures as beams of
lines that define the morphology of the corresponding moving
groups. As expected, when tracing the different moving groups
along R we observe diagonal lines in R-Vφ, matching the already
known ridges.

Comparing with R18, we detect the same moving groups but
we manage to extend their detection several kiloparsecs. The re-
sults in the inner and outer part of the disc (R < 6.5 kpc and
R > 10 kpc) are noisy due to Poisson noise. The Gaia DR3 re-
lease will improve the detection of groups in these regions, but
even if we exclude this part the groups extend far beyond the
range seen in other studies (see Fig. 6 in R18). This extension of
the structures is due to both a major improvement of the method-
ology and the use of the updated astrometric Gaia EDR3 data.

The lower error in proper motion and parallax increases the con-
centration of the moving groups in the undersampled regions.

In Fig. 2, we can observe how the slope of the lines in ra-
dius is not constant across the different groups. In the top plot,
groups like Acturus, Hercules, and Arch/Hat present slopes sig-
nificantly steeper than Sirius and AC. However, this slope is not a
common characteristic in all the parts of the arch of a group. For
instance, in the bottom plot we can see that Acturus is very steep
at VR = 30−40 kms−1 (orange lines) and flattens for the negative
part of the arch (VR = −20 kms−1, blue lines). We observe that
secondary peaks have very different azimuthal and radial veloci-
ties when they start to show up at inner radius, but end up having
very similar azimuthal velocity at larger radius. This corresponds
to a flattening of the arches in the velocity distribution as R in-
creases. This is not observed in the simulations (Sect. 5), and
could be an effect of the centroid of the distribution dominating
in case of undersampling in these regions.

As for the global shape of the lines, the resonant effects of
the bar and spiral arms are expected to create kinematic sub-
structures that, from epicyclic approximation analysis of the first
order effects, have an almost constant vertical angular momen-
tum LZ = RVφ (Sellwood 2010; Quillen et al. 2018b). Thus, if the
moving groups have a bar resonance origin, their azimuthal ve-
locities would naively be expected to follow lines ∝ R−1 (dashed
grey lines in Fig. 2 top panel). In Ramos et al. (2018) (their
Fig. 6), this trend is observed for Hercules and Hyades. When
extending the analysis to a larger region, we find that the groups
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Fig. 2. Azimuthal velocity of the kinematic substructures in the radial direction, φ = 0º, Z = 0 kpc, as a function of the radius, and coloured
by their radial velocity. The dashed grey lines correspond to constant angular momentum lines, crossing the moving groups at solar radius. Top:
Structures corresponding to the main peak of a moving group, tagged with the name in literature. Bottom: Secondary peaks of the moving groups.
The usual way to observe this projection is using the number of stars or the mean VR in each bin (see Fig. 1 in Fragkoudi et al. 2019). Using our
methodology we can observe the skeleton of the distribution and its complexity. For instance, the slope of the moving groups at different VR can
be very different and the groups cross each other or share close regions in the diagram. In addition, the extension of the range of exploration shows
that the moving group deviate from the constant vertical angular momentum predicted for small epicyclic amplitudes.

deviate from the lines of constant angular momentum. Not even
Hercules and Hyades are well approximated globally by this
Vφ ∝ R−1 trend. We come back to this in Sect. 6.

The ridges are usually studied in R-Vφ diagrams colored by
density or mean VR (see Fig. 1 in Fragkoudi et al. 2019). By
doing these projections, the complexity of the moving groups

(arch curvature, bi-modalities, arch disruption, etc) is lost, offer-
ing only a partial understanding of the sample. With our method-
ology we can now visualize this complexity in a single plot. For
instance, we can observe how the VR-Vφ arch corresponding to
the Acturus moving group is a horizontal arch at R = 8 kpc
(structures with different VR and common Vφ) but it curves as

Article number, page 6 of 15



M. Bernet et al.: From ridges to manifolds: 3D characterization of the moving groups in the Milky Way disc

we move to inner radius (the different structures fan out). This
spreading clearly depends on the VR, which is a sign of a curved
arch. Mixed with Acturus, we are able to observe the morphol-
ogy of Bobylev at VR > 50 kms−1. In the previously mentioned
projections, the visualization of both structures is not possible,
since the mean VR blends both contributions.

Beyond the detection and characterization of ridges in the ra-
dial direction, the main contribution of our method is the blind
search of these kinematic structures in the three spatial dimen-
sions at the same time. Next we focus on the representative of
each moving groups and study their kinematics in the 3D space,
azimuth submanifold (Z = 0 kpc) in Sect. 4.2, and vertical sub-
manifold (φ = 0 deg) in Sect. 4.3.

4.2. Azimuth submanifold

We first do a cut in the structures around Z = 0 kpc (|Z| <
0.2 kpc) to observe the behaviour of the different moving groups
as a function of R and φ. We obtain surfaces covering up to ±25
deg (≈ 3.5 kpc at Solar Radius). This is the first time that the
moving groups are traced along the Z = 0 kpc plane with this
completeness.

In Figure 3, apart from the already studied decrease of Vφ

with R, we can see how Acturus, Bobylev, and Hercules moving
groups present a slope in the azimuthal velocity along azimuth,
whereas Horn, Sirius and Arch/Hat moving groups present an ax-
isymmetrical behaviour of the azimuthal velocity along azimuth,
as expected in an axisymmetric potential.

It is interesting to quantify the variation of Vφ with φ for the
structures. We evaluate this slope2 ∂Vφ/∂φ at a given R by re-
stricting the structure to this R value and doing a linear fitting
of the surfaces in φ − Vφ. We compute the slope in the radius
that minimizes the error in the fitting. The resulting values are:
−0.40 kms−1deg−1 at R = 7 kpc for Acturus, −0.63 kms−1deg−1

at R = 7 kpc for Bobylev, −0.50 kms−1deg−1 at R = 8 kpc
for Hercules, −0.04 kms−1deg−1 at R = 10 kpc for Sirius, and
−0.01 kms−1deg−1 at R = 10 kpc for Arch.

In Monari et al. (2019a) they study the mean angular mo-
mentum evolution in φ for Hercules in an analytical model. They
predict that, in case of a co-rotation origin, the angular momen-
tum Jφ of Hercules at the solar radius must significantly de-
crease with increasing azimuth. Their model predicts the slope to
be around −8 kms−1kpc deg−1, and they observe a similar trend
in Gaia DR2 data. Our equivalent value in angular momentum
would be −4 kms−1kpc deg−1, which is smaller than the pre-
dicted value.

In some parts of the disc, the mean azimuthal velocity in
the plane for the total 6D sample decreases with increasing az-
imuth at a constant radius (see Fig. 10 in Gaia Collaboration
et al. 2018b, R = 8 − 10 kpc). This is the behaviour that we
observe for Acturus, Bobylev, and Hercules. It would be worth
investigating the relative contribution of each moving group to
the total sample to understand the relation between these indi-
vidual groups and the total average motion but we refer this to a
future study.

4.3. Vertical submanifold

We also study the projection in the R − Z plane (|φ| < 10 deg,
see Fig. 4). In all the structures but Coma Berenices (see be-

2 Note that in our reference system a negative ∂Vφ/∂φ slope corre-
sponds to an increase of |Vφ| with φ (a moving group with negative
∂Vφ/∂φ moves upwards in the velocity distribution with φ).

Fig. 3. Mean azimuthal velocity of the representative groups in the R−φ
projection, for |Z| < 0.2 kpc. In white, the contours of regions with
the same velocity are shown for clarity. Acturus, Bobylev, and Hercules
moving groups present a constant slope in the variation of azimuthal ve-
locity along azimuth, whereas Horn, Sirius and Arch/Hat moving groups
present an axisymmetrical behaviour of the azimuthal velocity along az-
imuth.

low), we observe decreasing |Vφ| values for increasing |Z|. In
addition, Acturus, Bobylev, and Hercules –the same structures
that show steeper slope in azimuth– present a clear symmetry
around Z = 0 kpc. Arch is also very simmetric in Z. In oppo-
sition, Horn, Hyades, and Sirius present an steeper decrease in
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Fig. 4. Mean azimuthal velocity of the groups in the R−Z projection, for
|φ| < 10 deg. In white, the contours of regions with the same velocity
are shown for clarity. Coma Berenices clearly presents an increasing
|Vφ| with Z, and thus, strong vertical asymmetry. We measure a constant
vertical slope of ∂Vφ/∂Z = −15 kms−1kpc−1. The rest of structures show
vertical symmetry.

|Vφ| for Z > 0 kpc with respect to the other moving groups, and
a more constant value for Z < 0 kpc. Finally, AC has not enough
signal at this point to analyse it properly.

Coma Berenices clearly presents an increasing |Vφ| with Z,
and thus, strong vertical asymmetry. We note that outside the
range of R = [7, 10] kpc, this moving group shows a change of

behaviour in all the spatial projections (Figs. 2, 3, 4) possibly
because our methodology is linking it to other close structures.
Therefore, focusing only on the [7, 10] kpc, range, we measure
a constant vertical slope of ∂Vφ/∂Z = −15 kms−1kpc−1, clearly
different to the other groups and predictions from models with
vertical symmetry.

It would be interesting to obtain a measurement of the verti-
cal curvature of the moving groups at each radius, as done in the
previous section with the slope in azimuth and with the vertical
slope in Coma Berenices. With noisy data, each order of deriva-
tives increases its uncertainty and the measurements we obtained
were not significant enough. In the future, with better data and/or
a robust analytical model to fit the curvature at all radius in the
same time, this measurement could be produced.

5. Simulations

In this section we apply the same methodology to simulations.
This has two main goals: evaluating the performance of our
method in a case where there are no selection effects, and al-
lowing a comparison of the data to a model where a particular
and known perturbation is present. In our case, we used a se-
ries of test particle simulations with 60M particles. The initial
conditions and the Galactic potential are described in Romero-
Gómez et al. (2015). In particular, the disc has a local radial ve-
locity dispersion of σVR = 30.3 kms−1 at the radius of 8.5 kpc.
We integrate the initial conditions, first, in the axisymemtric po-
tential of Allen & Santillan (1991) for 10 Gyr, and, secondly,
we introduce the Galactic bar potential adiabatically during 4
bar rotations (2.46 Gyr for the slow bar and 1.47 Gyr for the fast
bar), to finally integrate another 4 bar rotations. The Galactic bar
consists of the superposition of two aligned Ferrers ellipsoids
(Ferrers 1877), one modelling the triaxial bulge with semi-major
axis of 3.13 kpc and the second modelling the long thin bar with
semi-major axis of 4.5 kpc. We use two simulations, where the
bar rotates as a rigid body with a constant pattern speed of 30 and
50 kms kpc−1. For the slow bar, the CR is located at 7.3 kpc and
the OLR at 12.2 kpc. For the fast bar, the CR is located at 4.3 kpc
and the OLR at 7.6 kpc. We use the final snapshot of the simula-
tions, and assume that the bar is 30 deg in azimuth with respect
to the Sun in the direction of rotation, close to the estimations for
the MW (Bland-Hawthorn & Gerhard 2016, references therein).

In these final snapshots, we execute the methodology de-
scribed in Section 3 and obtain an optimal detection of the mov-
ing groups in a large range of the sample. These robust results,
matching the predictions from previous works, validate the per-
formance of our methodology in a known dataset. However, we
find some substructures related to the centroid of the velocity
distribution whose changes with azimuth, radius and height are
mostly related to the rotation curve of the model. In this section
we only show the substructure related with bar resonances and
ignore the rest of groups extracted by the methodology.

The selected moving groups are shown in the VR-Vφ projec-
tion in Fig. 5 (same as done in Fig. 1 for the real data). In the
simulation, the moving groups also show arches in this projec-
tion, which we are able to detect at several radii. Again, we can
show the groups projected in the radial direction, (Fig. 6, analog
to Fig. 2). In Figs. 5 and 6, the top panels show the structures
of the fast bar model (depicting the effects of the OLR and 1:1
resonance). The bottom panels of the figures show the structures
of the slow bar model (only the effects of the OLR appear). In
the following sections, we analyse the fast bar model (Sect. 5.1)
and the slow bar model (Sect. 5.2) in detail.
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Fig. 5. Moving group detection in different neighbourhoods along the radial direction in the simulations, analog to Fig. 1. Top row: fast bar model.
Bottom row: slow bar model.

Fig. 6. Azimuthal velocity of the kinematic substructures in the radial direction (φ = 0º, Z = 0 kpc) for the test particle simulations, as a function
of the radius, and coloured by their radial velocity. We include dashed grey lines corresponding to constant angular momentum lines as a guide.
Top: Structures for the fast bar model. Bottom: Structures for the slow bar model. In the fast bar model, we are able to detect substructures related
to the OLR and the 1 : 1 resonance, in the slow bar we only detect structures related with the OLR. See also Fig. B.1 for the mean radial velocity
histogram. With our methodology, we are able to show the complex morphology of the arches in a single image.

As explained in the introduction, a fast bar model places Her-
cules near the OLR of the bar. In this model, Arch/Hat could
be explained as the 1:1 resonance. Instead, the slow bar model
places Hercules in the CR of the bar and Arch/Hat in the OLR.
Therefore, in this article we refer as Hercules-like to structures

in the simulation which can be related to Hercules in the data
(i.e. generated by OLR for the fast bar model and by CR for the
slow bar model), and Arch/Hat-like as the structures which can
be related to the Arch/hat (i.e. induced by the 1:1 for the fast bar
model and by the OLR for the slow bar model).
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In Fig. 6, it is clear that the global position of the overden-
sities is not following exactly the lines of constant angular mo-
mentum predicted for small epicyclic amplitudes (Vφ ∝ R−1). In
the radial direction, the curvature of the OLR_bott structures is
opposite in the two models. In addition, the fact that the struc-
tures merge at some radius is a clear evidence that they follow
a trend different from ∝ R−1. The first order prediction for reso-
nances is suboptimal for Vφ values far from the circular velocity.
In Fig. 6, we observe how the radial slope of the structures differs
more from the prediction at small and large Vφ values.

5.1. Fast bar model

In the fast rotating bar simulation (Ωb = 50 kms−1kpc−1), we
are able to detect substructures related to the OLR and the 1:1
resonance with our methodology. As expected, both structures
present an arch shape in the VR-Vφ diagram (Fig. 5, top). The
complete sampling and the simplicity of the simulation allows us
to trace these arches unequivocally and observe their morphol-
ogy in ranges up to 6 kpc in the radial and azimuthal directions,
characterizing with strong robustness not only their position in
the velocity space but the trend of the central and outer part of
the arch separately. Note that the simulation has been integrated
for 4 bar rotations, which places this model in the regime of a
young fast bar, as defined in Monari et al. (2019a).

In the top part of Fig. 6, the bi-modality of the OLR and the
1:1 resonance are clearly observed. For the OLR, at R < 7 kpc
we observe an Hercules-like arch (OLR_bott), extending to a
maximum VR of 40 kms−1 (orange line on top). In this same re-
gion, we also observe a symmetric arch on top of the distribution
tagged as OLR_top, with a maximum in VR = 0 kms−1 (green
line on top). At R between 7 and 8 kpc, the VR-negative part of
the bottom arch (VR around −10 kms−1) continues to decrease in
|Vφ| and the positive part of the arch (VR > 20 kms−1) merges
with the top arch (OLT_top) to form a unique structure covering
the whole radial velocity range. This unique arch, OLR_comm,
has its maximum at VR = −40 kms−1 (blue line on top). This
arch configurations at R = 7, 9, and 11 kpc can also be seen in
the top row of Fig. 5.

The signature of the 1:1 resonance (Arch/Hat-like structure)
is less prominent than in the case of the OLR. In Fig. 5 (top row,
R = 11 kpc), we observe a bi-modality in the histogram, with the
upper part of the distribution being more prominent at negative
VR values and the lower part more prominent in the positive VR
range. In the R-Vφ diagram (Fig. 6, top panel) we see that at
inner radius we mostly detect negative VR and, at the outer parts,
mostly positive VR, giving more evidences of this bi-modality.
Due to the small prominence of the resonance, we are not able
to detect it when it is located in the centre of the distribution.

As we did with the real data, we exploit the 3D extent of the
structures and show their trends in the azimuth submanifold. In
Fig. 7 we show the R−φ projection of the azimuthal velocity for
different parts of the arches (analog to Fig. 3). The black lines in
these panels show the azimuthal slope of Vφ in each radius (right
vertical axes).

The OLR_comm structures present a discontinuity around
R = 8 kpc. In Fig. 6, this can be seen as the sudden drop
in Vφ in the green-turquoise lines at R ∼ 8 kpc (VR =

−20,−10, 0 km s−1). A similar discontinuity is present in two
panels of the OLR_bott structure in Fig. 7. The peak detection
algorithm guarantees a minimum distance between peaks for ro-
bustness. Therefore, when two arches merge, it stops detecting
one of them a while before the merge. Even with this, a few

Fig. 7. Fast bar model. Mean azimuthal velocity of a selection of groups
in the R − φ projection, for |Z| < 0.5 kpc. In white, the contours of
regions with the same velocity are shown for clarity. In black, the slope
of the linear fitting (φ,Vφ) is shown for every R column, in units of
[kms−1deg−1]. The 3σ error of the slope is shown in a translucent region
around the line.

spurious detection can act as a bridge for the algorithm and and
make it join both structures. Since the arches are merging, the
algorithm described in Sect. 3.2 (Alg. 3) detects a continuity and
the structures are detected together.

When looking at Fig. 7, it is important to remember that we
are studying a young fast bar, which is known to introduce az-
imuth correlations, specially around the OLR (see Fig. A1 in
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Trick et al. 2021). For most of the structures, we see an azimuth
slope of Vφ that depends on radius. Interestingly, some structures
have negative ∂Vφ/∂φ, such as Hercules in the real data, and oth-
ers have a positive slope. We observe three main structures with
different patterns:

– Rows 1-4, and 7. Upper part of the OLR bimodality. Before
crossing the rotation curve (R ≈ 8 kpc), the ∂Vφ/∂φ slope
of the structure is constant along all the VR values. For R >
8 kpc, a correlation appears between ∂Vφ/∂φ and VR. This is
a sign that the OLR_comm arch shown in Fig. 5 (top row,
R = 9 kpc) is moving to negative VR values in the VR-Vφ

diagram as φ increases (when VR is more positive, its |Vφ|
decreases faster with φ).

– Rows 5, 6, and 7 (R < 8 kpc). Hercules-like part of the dis-
tribution. The slope in azimuth decreases as R increases. The
contour lines merge when approaching the bar’s long axis
(φb = −30 deg).

– Rows 8 and 9. Arch/Hat-like part of the distribution. The
slope in azimuth is constant along the different detected parts
of the arch, and tends to flatten for increasing R values.

5.2. Slow bar model

In the slow rotating bar simulation (Ωb = 30 kms−1kpc−1), we
are able to detect the Arch/Hat-like overdensity caused by the
OLR along a large range of radius, covering up to 6 kpc (Figs. 5
and 6, bottom panels). In the radial direction, we observe three
different structures related with the OLR. Two of them have neg-
ative VR and the other in the positive VR. The negative VR struc-
tures (OLR_top and OLR_bott) present a clear bi-modality in
Vφ. In the VR-Vφ diagram (Fig. 5, bottom), the OLR_top forms
a flat arch and the OLR_bott forms a curved arch. In the posi-
tive VR regime (orange-red lines), we observe one single struc-
ture (OLR_comm) compatible with OLR_top at R = 10 to 11 kpc
which continues to decrease its azimuthal velocity with R in a
constant slope and merges OLR_bott from R = 12 kpc to the
outer parts of the disc.

Again, we can exploit the 3D extension of the manifolds to
study how these groups are evolving in the R − φ projection.
In Fig. 8 (analog to Fig. 7, but for the slow bar model) we ob-
serve two main structures, corresponding to the different parts of
the OLR bi-modality (whose upper part corresponds now to the
Arch-like group):

– Rows 1-3. Top part of the OLR bi-modality. It presents a con-
stant slope in azimuth (∂Vφ/∂φ = −0.1 kms−1deg−1 at R =
12 kpc), flattening as R increases, similar to the Arch/Hat-
like observed in Fig. 7 for the fast bar.

– Rows 4-7. Bottom part of the bi-modality. The slope is less
constant, and we observe the same decrease in R as in the
Hercules-like part of the fast bar model.

We do not detect overdensities caused by CR. In general,
the expected Hercules-like moving group caused by CR is less
prominent than when formed by the OLR (Binney 2018; Hunt
et al. 2018a), especially if higher order modes are missing from
the bar model. Also, if the velocity dispersion of the disc is too
large in this region we could have less trapping and less resolu-
tion. Another explanation could be that the length of the bar in
our models does not favour CR trapping. In the future, we aim
to perform the same analysis with other models to analyse this
effect (e.g. Sormani et al. 2022).

In Fig. B.1, we show the Vφ-R projection colored by mean
VR. In that figure we observe a very faint red overdensity in the

Fig. 8. Slow bar model. Mean azimuthal velocity of a selection of
groups in the R − φ projection, for |Z| < 0.5 kpc, analog to Fig. 7.
In this simulation, the shape of the arches is maintained along φ (same
slope for all VR values), with a constant displacement to bigger |Vφ| as φ
increases.

CR region, but much weaker compared to the rest of the detected
resonances in the fast and the slow bar models.

6. Discussion

Simulations which contain only a bar perturber offer us the pos-
sibility to characterize its effects in a robust way. With it, we
can then compare the manifolds extracted from the simulation
with the ones seen in the data. As explained in the introduction,
one of our goals with the characterization of the manifolds is
to search for kinematic observables that distinguish resonances
from short/fast or long/slow bars.

Radial direction. First, we focus on the slope, shape, and evo-
lution of the moving groups in the data and the simulation along
the radial direction (Figs. 2 and 6).
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The global gradient of the structures in the radial direction
deviates from the naive first order prediction for resonances
(curves following Vφ ∝ R−1) in the data and the simulations, as
expected in more realistic cases, even if they have a resonance
origin. In the simulations, we see that the lines are less curved
than the simple prediction and some parts of the OLR_bott have
even the opposite curvature. This is also observed in the data,
where all the moving groups are less steep in the inner parts of
the disc than the prediction, and Hercules and Acturus present
the same opposite curvature pattern as the OLR_bott.

We see that, in the Vφ-R projection colored by mean VR
of the slow bar scenario of our simulations (Fig. B.1) the co-
rotation overdensity is not significant enough. This has been al-
ready discussed in the introduction and in the previous section,
and could be related to the specificities of the model considered
here. In the fast bar scenario an Hercules-like structure is formed
at R = [6, 8] kpc, which shows an arch shape with a maximum
in VR = 40 kms−1 (Fig. 5, top left panel), coherent with the Her-
cules moving group in the data. In this same radial region the
top part of the OLR forms an arch in negative VR, which can
be related to Horn. Finally, from R = 8 kpc towards the outer
parts of the disc, the OLR forms a single arch with a maximum
in VR = −20 kms−1. A similar arch, present at all the radial ve-
locities, was already observed in the models by Bovy (2010). In
the data this region (R > 9 kpc, Vφ < −170 kms−1) contains very
few stars and we did not detect any group there.

The other feature commonly associated with bar resonances
is the Arch/Hat moving group. For a fast bar, it can be ex-
plained by the 1:1 resonance trapping region, and for a slow bar
it matches the position of the OLR. In the data, the number of
stars with R > 10 kpc is low. Therefore, the quality of the shape
characterization of Arch/Hat moving group is poor. Even so, in
the panel R = 10.4 kpc of Fig. 1 our method finds a tentative
arch split around VR = 10 kms−1. This would match the split we
detect between the OLR_comm and OLR_top structures in the
slow bar model (Fig. 6, bottom panel at R = 11 kpc). In the fast
bar simulation, the prominence of the 1:1 resonance is low and
we can only detect it in regions far from the centroid of the dis-
tribution. Even with this limited detection, we do not observe a
bi-modality in the negative VR region, which would be a way to
discriminate between resonances.

Azimuth submanifold. In both simulation models, for the
Arch/Hat-like moving groups we observe a constant positive
slope of |Vφ| in azimuth which tends to flatten (get closer to
0 kms−1deg−1) as R increases. In these Arch/Hat-like groups, the
slope of the azimuthal velocity in azimuth does not depend on VR
(Figs. 7 and 8). In the data (Fig. 3), the Arch/Hat group is very
noisy. Therefore, as discussed in the previous paragraph it is still
complicated to use the Arch/Hat velocities for a final relation to
a specific resonance.

In Fig. 7, we can observe the different parts of the OLR
resonance in the fast bar. The Hercules-like overdensity (R =
[6, 8] kpc) shows a constant positive slope of |Vφ| in azimuth
common along all VR. In opposition, the trapping region of the
resonance OLR_comm has a slope which depends on the VR.
This can be interpreted as the arch moving along VR in the VR-
Vφ diagram when moving in azimuth, which is observed at the
OLR in other simulations of a young bar far from phase-mixed
(Dehnen 2000; Bovy 2010; Trick et al. 2021). Since we have the
complete information of the moving groups in the data, we can
reproduce the same analysis of the moving group slope at dif-
ferent VR for some moving groups in the data. In Figures A.1

and A.2, we show this slope for Hercules and Hyades, respec-
tively. We do not observe this dependence in VR for any of the
groups. In the velocity distribution, this can be observed as the
moving group arches increasing their |Vφ| along azimuth, but no
displacement along VR.

Vertical submanifold. For the resonces of the bar, the vertical
displacement of Vφ should be dominated to first order by the
vertical potential of the Galaxy (Al Kazwini et al. 2022). In our
results, the vertical curvature of all the moving groups (except
for Coma Berenices) at a common radius is very similar, thus
matching the analytical prediction. This means that this data is
a good candidate to constrain the 3D structure of the potential.
To second order, we could try to distinguish different curvatures
of different resonances. In Al Kazwini et al. (2022), the dis-
placement of the resonances at Z = 1 kpc with respect to the
galactic plane is measured to be 8 kms−1kpc−1 for the corota-
tion, 6 kms−1kpc−1 for the OLR, and 4 kms−1kpc−1 for the 1:1
resonance. Our maximum resolution, given by the Vφ histogram
at each pixel, is 1 kms−1kpc−1. Therefore, disentangling which
resonances create each moving group with the vertical informa-
tion is beyond our current capabilities.

In the vertical behaviour of the moving groups, a clear out-
lier is Coma Berenices. In Quillen et al. (2018b) (also Monari
et al. 2018; Laporte et al. 2019), the Coma Berenices moving
group is observed to be present only at negative galactic lati-
tudes, showing evidence for incomplete vertical phase-mixing.
With the new EDR3 data and our methodology, we are able to
detect the group in a larger extension and at positive and negative
galactic latitudes but it does show a clear vertical asymmetry in
its azimuthal velocity. We measure a constant vertical slope of
∂Vφ/∂Z = −15 kms−1kpc−1. In the plots of a phase spiral col-
ored by Vφ (Antoja et al. 2018), it is seen that there must be a
correlation between Z and Vφ (higher |Vφ| values at positive Z).
This slope in Coma Berenices could be a projection of this cor-
relation.

7. Conclusions

We have sampled, with Gaia EDR3 6D data, the manifolds trac-
ing the main moving groups in the solar neighbourhood along the
(R, φ,Z,VR,Vφ) space, in an automatic way. We have revealed the
skeleton of the velocity distribution in a multidimensional space
that we can then explore along the radial direction, and character-
ize in the azimuth and vertical submanifolds. This methodology
has been successfully tested with two simulations of the effects
of a (dynamically young) bar. We have been able to observe and
quantify the spatial evolution of the observed moving groups in
a large range of about 3 kpc around the sun. Our main results and
conclusions are:

– The azimuthal velocity of the moving groups in the radial di-
rection does not follow lines of constant angular momentum,
deviating from the naive first order prediction for resonances.
In the simulations, resonant structures also deviate from this
simple prediction, demanding more complex analytic predic-
tions.

– The spatial evolution of the moving groups is complex. The
moving groups configuration observed in the SN is not main-
tained throughout the disc. The relative position between the
arches and their curvature changes across space, and the dif-
ferent moving groups split and merge several times. This is
expected in a context of bifurcating orbital families, for ex-
ample in the case of resonances.
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– In our slow bar simulation, we observe a bi-modality created
by the OLR in the outer parts of the disc. This bi-modality is
also observed in the Arch/Hat moving group in the data. This
intriguing agreement could favour the slow bar scenario, and
opens the possibility of a test with future data.

– The Acturus, Bobylev, and Hercules moving groups present
a positive slope of their Vφ location with the azimuth. We
measure this slope to be −0.50 kms−1deg−1 at R = 8 kpc for
Hercules.

– The azimuthal velocity of the Horn, Sirius and Arch/Hat
moving groups presents an axisymmetrical behaviour. In
both our simulations, we observed a small azimuthal gradient
in Vφ in the Arch/Hat-like structures, although it approches 0
as R increases. This could be related to the young bar model
we are using.

– The vertical curvature of the moving groups is similar at the
same R. These curvatures are dominated by the gravitational
potential to first order, independently of the observed reso-
nance. However, we notice that the Coma Berenices group
deviates from this behaviour, which points to a different dy-
namical origin that deserves further investigation.

– In the fast bar simulation, a correlation between ∂Vφ/∂φ
and VR is observed for the OLR trapping region. The re-
gion where this correlation is observed in the simulation
(R > 9 kpc, Vφ < −170 kms−1) is poorly sampled in Gaia
EDR3, but this could potentially be used to give information
on the pattern speed of the bar with better data.

Spiral arms, resonances with the bar, accretion events, and
possibly other effects can contribute to the present phase space
distribution from which we obtain our observables. Disentan-
gling all the contributions of these dynamical processes is hard
to address. In this work, we have shown the complexity of the
phase-space structure that even a single mechanism (namely the
bar) can produce. Our methodology allows to extract a quanti-
tative and robust measurement of the observed phase space sub-
structure that can be then compared and/or fit to different models.

In this paper, we have developed the methodology for the
study of the disc with Gaia data, and its formulation is easily gen-
eralizable. The same approach can be exported to other substruc-
tures in astrophysics (e.g. blind search for streams and shells in
the halo) and even datasets outside this field.

In the following months, Gaia DR3 will revolutionize once
again our field of research. The new 6D sample will contain
about 33M stars, covering a significantly larger region of the
disc. With this work, we are ready to process this new data and
extract its full potential.
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Fig. A.1. Mean azimuthal velocity of the groups in Hercules in the R−φ
projection, for |Z| < 0.2 kpc. In white, the contours of regions with the
same velocity are shown for clarity. In black, the slope of the linear fit-
ting (φ,Vφ) is shown for every R column, in units of [kms−1deg−1]. The
3σ error of the slope is shown in a translucent region around the line.
The group has the same slope at all VR. This corresponds to a vertical
displacement of the moving group in the VR-Vφ diagram.

Appendix A: Azimuth submanifold along a group

In Figure 3 we show the azimuth submanifold of a representa-
tive for each group. In this appendix, we extend this analysis and
show how each part of Hercules and Hyades arches is evolving.
In addition, since we have already shown these plots we include
the extra information on the slope of Vφ in azimuth at each ra-
dius. With it, we can compare this groups to the resonances stud-
ied in the simulations (Figs. 7 and 8).

Fig. A.2. Mean azimuthal velocity of the groups in Hyades in the R − φ
projection, for |Z| < 0.2 kpc. Analogus to Fig. A.1.

The Hercules moving group (Fig. A.1) presents a stable and
constant slope of Vφ in azimuth at the centre of the sample (R =
[6.5, 8] kpc). In the limits of the sample, where the significance
of the group is smaller compared to the sample, this slope tends
to flatten for the regions with VR ≈ 0 and to become more steep
in the large VR parts of the arch.

The Hyades moving group (Fig. A.2) also presents a stable
behaviour at all VR. In the negative VR end of the arch (top two
rows in the figure) the group has a very low significance, thus
leading to a noisy detection.

Appendix B: Extra projections of the simulations

It is the first time that a simulation is studied using the projection
shown in Fig. 6. In general, these studies are done in projections
of 〈VR〉. In order to compare both results, in Fig. B.1 we show
this projection for the simulation.
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Fig. B.1. Mean radial velocity of the kinematic substructures in the radial direction (φ = 0º, Z = 0 kpc) for the test particle simulations, as a
function of the radius, and the azimuthal velocity. Top: Fast bar simulation. Bottom: Slow bar simulation.

In the top panel of Fig. B.1, in red, we see the Hercules-like
overdensity, which steeply decreases in Vφ around R = 8 kpc.
The upper part of the OLR bi-modality continues to decrease in
a less steep trend, with negative 〈VR〉 values on top and negatives
in the bottom of the resonance. Finally, in the outer part of the
disc we observe the effect of the 1:1 resonance, which shows a
swap in 〈VR〉 sign when crossing the rotation curve.

As for the bottom panel of Fig. B.1, co-rotation should ap-
pear at R = 7.3 kpc, but we can not see any significant structure
in this region. In the outer parts of the disc we do observe the
OLR placed at 12.2 kpc. Bottom: Fast bar simulation. We ob-
serve a lot more substructure. CR (RCR = 4.3 kpc) can be seen as
a stripe at inner radius, although not significant enough to be de-
tected by our methodology. At solar radius, we observe the effect
of the OLR (ROLR = 7.6 kpc).
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Chapter 9

Conclusions

In this thesis, we proposed an accurate way to determine the DF of the Galactic disc
perturbed to linear order by a non-axisymmetric perturbation, using a more accurate
action-angle coordinate system than in previous similar works.

First, we used the torus mapping from AGAMA to numerically compute the per-
turbing potential in action-angle coordinates as a Fourier series expansion over the
angles. We showed that we could estimate typical non-axisymmetric perturbing po-
tentials with an accuracy at the per cent level. The algorithm can be applied to any
perturbing potential, including non-plane symmetric vertical perturbations, which
will be particularly important when studying the vertical perturbations of the disc
with similar methods (Rozier et al., in prep.).

We then computed the DF perturbed to linear order by a typical bar or spiral
potential (or a linear combination of both), and computed the local stellar velocity
distribution by converting velocities to actions and angles through the Stäckel fudge
implemented in AGAMA. The results were compared to those obtained by using the
epicyclic approximation. The linear deformation due to the bar is generally stronger
in the AGAMA case, and that due to the spiral is weaker in the AGAMA case. This means
that reproducing the effect of spiral arms on the local velocity distribution might re-
quire a higher amplitude when considering an accurate estimate of the action-angle
variables rather than the epicyclic approximation. Most importantly, the epicyclic ap-
proximation is inadequate at large heights and does not change the azimuthal velocity
location of the resonances due to the hypothesis of complete decoupling of vertical
motions. In the AGAMA case instead, the locations of resonances are displaced to
lower azimuthal v at larger heights. With the background potential used in this paper,
we found a displacement in v of 8 kms−1kpc−1 for the corotation, 6 kms−1kpc−1 for
the OLR and 4 kms−1kpc−1 for the 1 : 1 resonance. Thus, the position of moving
groups in the uv-plane as a function of z can be a powerful way to constrain the 3D
structure of the Galactic potential. The key to exploring this will be the DR3 of Gaia
(Brown, 2019) with its ∼ 35 million radial velocities allowing us to better probe the
z-axis above and below the Milky Way plane.

The temporal treatment is also an improvement over M16. We applied it to the
case of a bar of growing amplitude, with an analytic evolution of the amplitude. As
the bar progressively grows, the two linear modes in the DF separate, and lead to a
velocity plane already very much resembling the stationary form of the perturbed DF
once the perturbation is half-formed. In the absence of a pattern speed variation, it
is therefore not necessarily obvious to disentangle the effect of a bar whose ampli-
tude is growing from that of a fully formed bar with larger and constant amplitude.
We explored here a peculiar form of the growth function motivated by its analytic
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simplicity. If the perturbation grows by linear instability, exponential growth will be
more realistic. Numerical experiments are usually well fitted by a logistic function
(exponential growth at the beginning and saturation to the plateau). One problem
for our treatment is that the logistic function is never strictly equal to 0. In addition,
there is hope that similar analytical simplifications such as those for the amplitude
growth studied here can also be made with this function, which we will investigate
in the future.

While the form of the DF is not well estimated in the resonant zones with the lin-
ear perturbations presented above, the signature of the resonances (and thus their
location in velocity space) can clearly be identified with this linear perturbation
method. The more rigorous approach is to treat the DF with a method like that
of Monari et al. (2017a) in these regions, patching these results over the linear de-
formation computed here. As a first step, by adapting that method to compute the
response in space of trapped orbital velocities to a resonance of the bar and replacing
the epicyclic approximation with the Stäckel method using AGAMA, we were able
in principle to obtain a more accurate outline of the deformation of the distribution
function in the resonant zones.

Another caveat is that the torus mapping was used to express the perturbing po-
tential in actions and angles, but for the estimate of the local stellar velocity field,
we made use of the less precise Stäckel fudge method. Therefore, another promis-
ing way for improvement would be to use the new ACTIONFINDER deep-learning
algorithm (Ibata et al., 2021) to make the reverse transformation. Finally, these re-
sults were obtained in 3D action and velocity spaces, and were mostly presented
in 2D slices: it would therefore be particularly useful to improve our algorithm by
including a marginalization over any axis, for instance marginalizing over vertical
velocities. This is computationally more intensive but should not, a priori, pose any
conceptual problem.

Finally, we were able to predict radial velocity maps of stars in the disc of the
Galaxy in the presence of a bar using backwards orbit integrations, to be compared
to the Gaia data. Even if the median radial velocity maps are not a priori consistent
with the data, it should be noted that only the perturbation caused by the bar is taken
into account. By adding a spiral, in principle the results can be improved, which will
be the topic of further works.
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