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Abstract

Current deployments of IoT systems for smart cities and smart grids have a high
density of devices. Which lead networks to encounter issues as deployment space
and network infrastructure are limited. To tackle this, networks open their bound-
aries and share their sensors and services to others, allowing the other networks
to access their internal sensors and services. Data speed meters in a highway, for
example, can be further used for incident response and route recommendation ser-
vices.

The resulting IoT ecosystem is complex due to the multiple operators and data
owners that are involved. These require their networks to operate according to their
own objectives and for their data to be used according to their consent. But result
in datasets with high diversity as it includes data from multiple owners.

The focus of this thesis are the privacy concerns of producers as data is disclosed
to other networks. Which are a consequence of the different consent levels that data
is produced with. Medical data for example has very limiting usage consent from
patients while data measure at public areas is much less restricting.

These restrictions are mainly enforced by dedicated devices among networks
to manage the data disclosed. They employ access control strategies to disclose
information based on the characteristics of consumers, producers and data itself.
They also employ anonymization algorithms to limit the data disclosed and diminish
the effects of data being further disclosed.

In this thesis we investigate how to provide privacy-aware data collection among
different systems while preserving the constraints of each data owner. We focus on
the usage of aggregation, that is, functions that describe groups of data, e.g., average
and minimum. These functions leverage scalability by reducing the network load
and privacy by replacing detailed datasets with information on groups of entries.

For this objective we provide three contributions. We first provide a study of
privacy-aware multi system ecosystem where we formally define data exchanged
among them, and then we study how such a system scales with state-of-the-art
communication technologies. Second, we provide a content-centric architecture for
efficient aggregation of data streams from remote networks. And third, we expand
our architecture to handle scenarios where networks offer data indiscriminately to
each other and must correctly aggregate data. Through these contributions we
offer the means to stream aggregated data in a multi-owner IoT infrastructure
while respecting the restraints of involved producers.
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We live on an island surrounded by a sea of ignorance. As our island of knowledge
grows, so does the shore of our ignorance. (John Archibald Wheeler)
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Chapter 1
Introduction

Internet of Things (IoT) has become part of the life of many people in the past few
years and there is still expectation for the market to grow even further [5]. These
IoT systems permeate modern life, from house appliances to work environments and
public space systems. Generally, IoT devices can manage and be imbued to systems
such as heating, electrical appliances, lighting, and much more. At industrial and
office environments, IoT systems can also monitor work hours of employees with
presence sensors and manage their access to different areas. Smart devices may also
be employed in public areas such as roads and public monuments to monitor their
usage and maintenance. The areas of agriculture, health, logistics, and environment
protection also have their own applications and usages for smart devices [6].

Microsoft performed an interesting survey that further illustrates the scale and
coverage of IoT [7]. It included 3000 large scale companies (1000+ employees) and
stated that around 90% of these have an active IoT project under it, although
only 25% of these are in use (completely finished development and trial). Thus,
most people either already are or will soon be involved in some IoT system as a
monitored subject or as a user. In other words, they will either be actively
feeding data on their daily lives and actions to an IoT system or will be the ones
using such data.

Within this vast and growing market, we expect the deployed IoT systems to
overlap each other both geographically and in functionality as they coexist in the
same infrastructure. In the context of smart cities for example, many systems co-
exist within the same communication and power supply infrastructure in order to
manage and monitor waste, air quality, noise, parking, lighting, etc [8]. The sit-
uation complicates if we consider different networks can sense the same variables
to offer competing services. Indeed, we expect the emergence of a complex in-
frastructure with several coexisting IoT systems offering a wide range of services
(multi-IoT).

These systems spontaneously form commercial relationships as opportunities
emerge to sell and acquire data from each other. This is motivated by reduced
deployment costs and richer datasets due data diversity [9]. Additionally, it also
helps the infrastructure scale as a whole since this should mitigate the occurrence
of redundant deployment of sensors. The collection and processing of data from
smart devices among IoT networks will be a key feature for such scenarios. That

1



2 Chapter 1. Introduction

is, they issue queries for the data of sensors from other networks, and these will
disclose some of their data in order to answer queries.

These require the stream of timestamped data samples from sensors in order to:
(i) always utilize updated information, (ii) reduce the required storage resources at
low-end devices, and (iii) give controllers access to the time variation of monitored
variables [10]. Time series allow systems to model and categorize different states of
monitored variables, such as the intrusion of individuals in a secured area with a
presence sensor or track rush hours in a city road with speed cameras [11]. We de-
note any data generation entity as a producer : mainly sensor devices that measure
variables from the environment. These push their data to consumer entities that
use this information for decision-making. We also denote the set of data chunks
transmitted by one or more streams as a dataset.

These datasets have associated metadata attributes which describe their infor-
mation [12]. Attributes such as measurement location (e.g., GPS coordinates, room,
borough) and data type (e.g., temperature, power usage, speed). These are impor-
tant in order to match consumer’s queries with available data [13]. This matching is
done according to each query’s criteria that describe the data of interest. A power
supplier may issue queries to collect the power usage from households in specific
neighborhoods.

At any rate, collecting raw datasets can be both more verbose than needed and
too costly due to the volume of data that needs to be transmitted and stored. Which
imposes the requirement to preprocess the information to adapt it to the needs of
the consumer [14]. Consumers will include desired operations in issued queries.
We can cite two examples of these operations: filtering (e.g., limiting datasets to
attributes or periods of interest) and aggregation (e.g., averaging measures based
on time windows or common attribute values).

It is also common to only disclose datasets that have been anonymized with
privacy-enabling operations. These operations remove details to boost privacy [15].
They may, for example: remove attributes and entries, replace exact values with
approximations and provide aggregated values instead of individual values. The
level of privacy achieved by these operations is measured with privacy metrics such
as k-anonymity that limit the probability of deanonymization.

Then, in the context of multi-IoT, the data that networks disclose must be con-
trolled to maintain the restrictions of the different producers. Networks will
screen queries in order to avoid the disclosing too much information and ensure
that they comply with the privacy requirements set by data owners and monitored
subjects. For example, queries must not request and access identifiers (e.g., social
security number) or they must request for averaged data instead of individual sam-
ples. If queries are not compliant with such requirements, they are simply dropped,
and the consumer should issue a novel query.

Special attention must be taken to disclosed data since we expect these networks
to act as brokers to each other. That is, after acquiring data from other domains,
they may further disseminate the information to other domains. We expect some
systems to be deployed with this objective, but also expect any other system to use
this as a way to earn back some acquisition cost.

The inclusion of these brokering systems implies that data can be dissemi-
nated in an unrestrained manner. Which means that a producer’s data can be
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disseminated to systems completely without its consent and knowledge. Suppose
a smart home’s power consumption information is collected by its power supplier,
then disseminated to a private company. That private company may be able to
extrapolate more information from that home by merging different datasets with
information from that home. It has been show that it is possible to identify people
from datasets with attributes such as zip code, date of birth, gender and race [16];
and the same can be applied to any kind of dataset. Since the producer has no
knowledge of the destination of their data, it is impossible for it to detect the leak.

In summary, three main issues arise from using data from different IoT networks:
interoperability, scalability and privacy. This thesis focus on the efficiency and
privacy problems as stated by the main research question tackled in this report:

How to provide in-network aggregation of IoT streams from multiple
independent services and owners while respecting each of their privacy
constraints?

Main Research Question

Scalability is key here since we are dealing with large and dense multi-IoT scenar-
ios. Systems are expected to contain hundreds of devices each and the incorporation
of novel systems should be facilitated. Aggregation also plays a central role since
we can apply it as data travels the network to lower network load and bring privacy.
Thus, we investigate the means to apply aggregations as close as possible to data
producers in order to decrease the amount of information forwarded.

Interoperability takes a secondary role in this thesis as we do not focus on it.
However, we maintain the condition that each IoT system operates with different
devices, protocols and semantics [9]. This enforces the need to normalize the means
to communicate among systems to identify and exchange information.

Then, security is greatly affected by dealing with a multi-owner environment due
to differing objectives, creditability and restrictions of each service. For example, a
network may wish to disclose information only to non-competitors, to disclose only
to a specific list of others or to disclose only data from specific time windows. An
inter-IoT infrastructure must account for this diverse set of conditions and enforce
the requirements of each producer network.

We provide three main contributions in this thesis that diverge a bit from usual
approach of security among domains. Our approach provides inter system com-
munication by taking a data centric approach where data is anonymized as it is
disseminated. Anonymization is a powerful tool to:

• enforce each producer’s requirements through existing parameterizable pri-
vacy metrics such as k-anonymity and ε-differential;

• protect data against further dissemination of data after initial disclosure;

• motivate reuse of data streams to answer multiple queries without complex
key management services.
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This thesis is structured in six chapters. In Chapter 2, we provide the neces-
sary background knowledge to understand our research and also insights about the
state of the art of proposals for private-aware inter-IoT communication. Chapter 3
describes our first contribution, an evaluation framework for multi-IoT networks
which both describes data exchanged among privacy-aware IoT services and real-
istic traffic generation for these services. Additionally, we take advantage of this
framework to study how LoRaWAN behaves in multi-IoT networks. In Chapter 4,
we present an architecture for efficient inter-IoT communications while respecting
privacy constraints based on processing functions such as filtering, aggregation,
encryption, and anonymization primitives like generalization and noise addition.
Chapter 5 extends the architecture presented in chapter 4; it introduces a mecha-
nism for IoT networks to discover data from others and correctly collect their data
while applying an aggregation function that complies with privacy requirements.
Lastly, in Chapter 6 we present our conclusions over the research done during this
doctoral program and discuss insights on interesting research paths in the field of
privacy-aware inter-IoT communication.



Chapter 2
State of the Art

Contents
2.1 Large scale data streams . . . . . . . . . . . . . . . . . . . 5

2.1.1 IoT Data Streams . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 IoT Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Aggregated Data Streams . . . . . . . . . . . . . . . . . . 8
2.1.4 Named Data Networking . . . . . . . . . . . . . . . . . . 11

2.2 Secure Streams in Multi-Owner IoT Systems . . . . . . 14
2.2.1 Diverse IoT Systems . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Middleboxes & Access Control . . . . . . . . . . . . . . . 16
2.2.3 Stream Anonymization . . . . . . . . . . . . . . . . . . . . 17

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

In this chapter we discuss the different areas of research that we focused on to
answer the research question of this thesis. We first go through the state of the art
for IoT streams and the subarea of Named Data Networking (NDN) streams for
IoT. Then we introduce multi-owner IoT and the subtleties that it brings for secure
streams.

2.1 Large scale data streams

We investigate continuous transmissions in infrastructures composed of thousands
of producer devices. Scalability is a major issue as the system must account for all
producers in order to correctly and efficiently answer queries.

2.1.1 IoT Data Streams

In IoT ecosystems we find devices with different purposes and sensors are the main
producers of data. We find these in large numbers in order to monitor many of its
characteristics like temperature and air pressure. The report1 provided by Ericsson

1https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2021
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6 Chapter 2. State of the Art

in November 2021 points to nearly 15 billion IoT devices connected in 2021 (with
the forecast doubling that amount by 2027).

These producers push their measurement data into the network in order for con-
trollers, actuators and other entities decision-making entities to utilize (consume)
it for their various objectives [17]. A single sample from a producer provides very re-
stricted information to these consumers. Thus, producers will continuously stream
timestamped measurements to allow consumers to be in possession of constantly
updated data and store full timelines [13]. These timelines also allow consumers
to extract more knowledge due to the time dimension such as the extraction of
behavior patterns and detection of events [18].

Anomaly detection is a common type of application for IoT data streams. From
the acquired timelines, statistical and machine learning models are applied in order
to detect different states of the monitored system. In smart cities, we can cite the
example of this type of application where anomalies in monitored road speeds can
indicate the presence of ice or collisions on roads [11].

Producers will push their data, through the network, to consumers that sub-
scribe to their streams: either in a timely manner or based on the occurrence of
events [19]. The former type pushes novel samples at a given fixed periodicity
while the latter pushes novel data when specific conditions are true. An example
of application with time-based streams is weather monitoring that frequently and
consistently (daily, hourly, or even every minute) updates information like humidity,
temperature and wind speed [20]. On the other hand, an example of event-based
stream application is automated security where sensors push a notification as doors
open and close or when sensors detect the presence of an individual in an environ-
ment [21].

Streams are mainly assumed to remain enabled until the battery of sensors run
out. That is, consumers that subscribe to a stream will receive updates for as long
as a sensor remains in activity. Emphasizing the need to conserve the battery life
of devices to maximize operation time [22]. But is it also possible for streams to be
enabled for limited amounts of time.

When producers are not directly associated to consumers, i.e., they are unknown
to each other and do not always provide/collect data to/from the same entities, the
networks requires a middle entity to mediate communication. We denote these
entities as brokers and producers will publish data to brokers while consumers
subscribe to them [23]. This communication model is known as the publish-
subscribe model (pub/sub) and is widely used in IoT networks [24, 25, 26, 27,
28]. Several market ready solutions are also available for the pub/sub archetype,
e.g., MQTT [29] and CoAP Observe [24].

Message Queuing Telemetry Transport (MQTT) adopts a client/server architec-
ture where the server acts as a broker and the client can both publish and subscribe
to brokers. This application protocol employs small header size and limited pay-
load size to be used by resource restricted devices. It also supports three levels of
delivery guarantee, the first without any guarantee, second guaranteeing delivery
but with possible replication and last with guarantee but without replication [29].

Constrained Application Protocol (CoAP) is another application protocol based
on HTTP that initially only offered a single query / single response. However, it
was extended to allow consumers to subscribe to receive constant updates from
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producers. It also offers proxy functionality that allows broker behavior as the
proxy answers requests for multiple producers [30].

While CoAP has a lower overhead than MQTT, the latter shows lower delays
for low packet loss conditions [31]. Both protocols are very similar, so these are
deployed based on the preference of network operators.

The publish-subscribe paradigm decouples producers and consumers as direct
subscribing does not occur. It brings independence among these and more privacy as
they also have no knowledge of each other. And thus, consumers will issue queries
to brokers that select producers based on descriptions of the data of interest [14].
Indeed, consumers subscribe to a type of data from the pool available at the broker.
We go into further detail on how these queries work in the following section.

2.1.2 IoT Queries

As producers subscribe to brokers, they describe their information in order to be
matched with queries. These descriptions are provided in the form of metadata
attributes and describe information such as the type of data, location of mea-
surement and other descriptions of the monitored subject like patient identifiers,
employee tags and room numbers [13].

The current main language to write IoT queries is SPARQL [32] as several
industry-ready platforms support have support for it. However, this language is
quite complex and difficult to understand due to its syntax and specific semantic.
We even have efforts to create translators to facilitate its use [33, 34, 35]. Instead of
fully introducing it, we employ a SQL-like language later in this thesis to facilitate
understanding.

These queries are issued to known brokers that check the registered producers
metadata and enable streams according to the metadata criteria given. Thus,
the result is the desired disassociated relationship among producers and consumers.
Which allows easy inclusion of producers and consumers in the network [23].

Complex models of metadata description are necessary due to disparities in the
syntax and semantics of data among producers. These may store data in differ-
ent storage formats [36, 37] or different data schemes. Brokers must account for
situations like when different attribute names and values have similar semantics.
For example, values such as “government employee” and “public employee” can be
considered the same value for a “job position” attribute. However, we exclude this
from this thesis and consider that such a method is in place to match queries with
producers descriptions [38, 12].

We rather focus on the processing requirements of such queries. Instead of
consumers demanding the raw data of producers, they will demand the data under
some computation function, e.g.,:

Filtering i.e., limiting results like to a specific time period or to a subset of at-
tributes;

Categorization i.e., classifying measurements into categories like different age
groups or detect abnormal measurements [11];

Aggregation i.e., grouping samples and applying descriptive functions such as
average, minimum and maximum [39].
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These are important to provide consumers with customized (more valuable)
data. Additionally, as consumers may enable several streams with a single query
as networks scale [10], streamed data can quickly become a heavy burden on the
network that has to provide for multiple queries. Consequentially, administrators
introduced different means to handle the large amount of traffic and relieve network
resources. Data aggregation is one of such means [13] and we focus on aggregation
algorithms in the next section.

2.1.3 Aggregated Data Streams

The most basic definition of aggregation functions defines them as functions that
when applied to a set of input, produce only one output with information describing
the input set. These can be lossless or lossy, that is if the original data can be
extracted from the result or not, respectively. We focus on lossy aggregations such
as statistical descriptions that provide a summary of the input data while making
it difficult to extract the original data. These operations can also be duplicate
sensitive or insensitive, which are functions where the final result changes de-
pending on duplicated data or not. Minimum is a duplicate insensitive function
which, but the average function is not [39].

Lossy aggregation functions are commonly used with large datasets due to the
verbosity of data which makes unnecessary the acquisition of the full dataset. By
acquiring aggregated data from producers and brokers, instead of whole datasets,
consumers save network bandwidth and storage while acquiring preprocessed in-
formation [13]. Bandwidth is also saved by aggregating data as devices forward it
from producers. These act as privacy enabling operations that both preserve the
utility of data and veil sensitive information.

The strategies to apply these aggregation functions in IoT networks are classified
in three big groups: centralized, clustered and tree-based [40].

Centralized aggregation is the conventional way where all data is collected at
a sink, gateway or consumer (destination) to be aggregated. It allows maximum
flexibility as raw data can be aggregated in multiple ways to answer multiple queries
while already aggregated data may be impossible for another query. For example,
weekly averaged data can be used to answer a query for monthly averages but not
for daily averages [41].

Centralized aggregation is still used by some systems, specifically those that
push all data to the cloud and use its resources to process it. We however discard
this method as it does not bring the benefits of lowering bandwidth and storage
costs.

For clustered strategies, devices elect a cluster head from surrounding devices
and use it as the node to forward its information. Forming a group (cluster) of
devices with a single cluster head to transmit the data aggregated from that cluster.
That way, each non cluster head only transmits over short distances and the cluster
head aggregates data from its cluster before transmitting further into the network.
This assumes that devices spend more battery to transmit over long distances due to
the higher power necessary for successful reception. Thus, by making most devices
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transmit over short distances and rotating the cluster head that has higher power
consumption, the network as a whole lasts longer. The biggest examples of this
strategy is the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol and
the family of protocols derived from it [42].

In the original version, devices assign a priority between 0 and 1 and nodes with
high priority become cluster heads. The equation that determines the priority of
devices simply gives equal probability of nodes being cluster heads which results
in devices spending equal time being cluster heads and equally consuming their
battery [43]. However, the probabilistic nature of the priority function makes it
possible for devices to be “unlucky” and the distribution of devices in clusters to
be unequal, which results in unequal battery usage among devices.

Then, several other variants were proposed with different priority functions and
methodologies of selecting cluster heads but with the same aggregation strategy. An
exhaustive list of variants is of no interest here since this thesis is not focused on
clustered aggregation (see [42] for an exhaustive list). But we can give the example
of Improved-LEACH [44] as it is one of the main variants and illustrates well all
others. Here, cluster heads are still selected using random numbers but the number
of neighboring devices, the distance to the receiver, and the remaining energy of
the devices alter the probability of being the cluster head. This results in better
average battery life among devices in the network.

The original LEACH results in low height trees where two hops are enough to
collect data from all sensors. Other variants forward messages through other cluster
heads which lower the distances of transmissions to save battery life [45].

Other clustered strategies use similar mechanisms of cluster election and for-
warding to the destination, e.g., changing the metrics of cluster head election or
by routing data among cluster heads [46]. A comprehensive survey of this area of
research can be found in [47].

Clustered aggregation can be seen as trees where the destination device is the
root, cluster heads are intermediate nodes and other devices are the leaves. But
this is not the only way to aggregate using such structures, we move on to discuss
these others.

Trees-based strategies are the major method of local aggregation of IoT data
as they enforce that each producer data is only acquired once and only requires
each vertex to know its parent in the tree [39]. By forming a tree of devices from
the interconnected devices rooted at and directed to the consumer, internal vertices
of the tree can aggregate data hop by hop and only transmit the aggregated result,
instead of individual samples.

Conventionally, devices will create a tree via the broadcast of the query by the
consumer. The query message includes the level of the tree where the parent is
and vertices can use this information to select their parent in the tree [39]. The
Routing Protocol for Low Power and Lossy Networks (RPL) [48] and the TAG [49]
protocols are simple examples of this kind of algorithm.

On the other hand, PEGASIS [50] builds trees in the form of chains. Neighboring
devices elect neighbors in the chain and a leader of the chain. Devices will forward
data to the leader through the chain and data is aggregated at every hop. The leader
forwards the resulting aggregation to the destination and is periodically replaced in
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order to equalize energy consumption.
In order to improve reliability of these protocols, the usage of multipath aggre-

gation has been proposed [51]. This is achieved by maintaining multiple paths to
the destination of aggregation, e.g., picking more than one parent during the con-
struction of an aggregation tree to allow the device to forward data to any active
parent. Then, in case of failure of a device, nodes can use alternative paths to the
root of the tree.

Privacy then becomes a key issue for in-network aggregation as the aggregator
entity needs access to data in order to apply the aggregation operation. Homomor-
phic encryption was then proposed to solve this issue as mathematical functions
can still be applied when this type of cipher is used [52]. Formally, Given a plaintext
space Plain and an encrypted space Enc, an encryption function f : Plain→ Enc
is homomorphic if it maintains the following for two operators ◦ and �:

∀a, b ∈ Plain, f(a ◦ b) = f(a) � f(b) (2.1)
Here, the ◦ is an operation over plaintext space such as addition or multiplica-

tion, and the � operation is an operation that can be applied to the encrypted data
such that, when the result is decrypted, it will be equal to the result of the other
operation (sum, multiplication) [53].

For example, given that the ◦ = +, Plain = R and E, � are such that the ho-
momorphic property is valid (Eq. 2.1), we can use this to calculate sum aggregation
privately. In smart grids, smart homes can encrypt their individual consumption
using f , then the building can apply � to collected values and transmit the result
to the power supplier that can decrypt the result to bill the building.

However, a limited number of sets of such variables has been found to hold this
property [54]. Thus, it cannot be applied in every situation, so we chose not to
consider this type of solution in this thesis.

At any rate, we see a vast amount of work has been done to aggregate data
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from IoT networks, to optimize collection, extend battery life and provide privacy.
And we clearly see that the paradigm shifts to be content oriented instead of
connection oriented. In the content centric paradigm, consumers describe the data
that they want instead of issuing request to producers. This matches well with
semantics of streaming data in IoT networks since we are not any more interested
in individual producers.

Among the proposals for content centric networks, we highlight the Named
Data Networking (NDN) [55] stack as one of the main proposals. In this thesis we
use NDN to more efficiently disseminate information and reuse the content centric
mechanisms that it adopts. We shall go into details of it in the following section.

2.1.4 Named Data Networking

NDN [55] is a clean-slate approach to the current Internet stack, which fits very
well the needs of IoT applications to handle and directly forward pieces of data. It
is one of the main proposals for content based networks due to its adoption by the
academic community and its open source code base with a ready to use daemon.

As per the content centric mentality, consumers will query the network by de-
scribing the data requested. Routers will then forward these queries in the direction
of producers that answer it.

In NDN, routers issue queries via interests packets with the name of the re-
quested data. These names are hierarchical URL-like strings such as: /someproduc-
er/measurements. These names replace numerical addresses and enable semantic
requests, prefix-based routing, and route aggregation. The Forward Information
Base (FIB) of NDN routers associates the prefixes of data and the next hop for
packets for that prefix. This forwarding scheme leverages semantic forwarding. For
example, by adding the prefix /local to the FIB, routers can disseminate information
locally.

Another feature of NDN is the signature of interests and data packets, which
allows for the authentication of consumers and producers of information. These
both may include the signature and the name of the certificate of that issued it.
The certificate is then acquired via the transmission of an interest to its name and
the authenticity can be verified.

As any entity may verify the authenticity of data, every router can cache all
data it forwards in its Content Store (CS). That way, a router can use this cache to
reply directly to any novel interest that matches the same piece of data. A router
cannot forge a chunk of data by its own.

Figure 2.2 describes the forwarding scheme of NDN. Here we see that as interests
arrive, the router checks its CS to answer the requested data if available. Otherwise,
the novel interest is registered in the Pending Interest Table (PIT) and the request
is forwarded using the FIB.

Each entry in the PIT of this table accounts for one or more interest packets
for a given data name. When an entry already exists for a name, the PIT entry
is simply updated to account for the novel interest, instead of forwarding a novel
interest for the data. Then as data packets arrive, routers check the PIT to forward
information to all requesting consumers. Take notice that all data forwarded is also
cached in the CS of the router.
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Figure 2.2: NDN Forwarding Scheme (extracted from [55])

Unfortunately, NDN is not directly applicable in IoT due to missing fea-
tures and IoT’s limitations [56, 57]. For instance, the packet authentication takes
a large toll on the battery life of resource restricted IoT devices due to all ciphers
involved. Caching is another issue as most devices are restricted on their storage
and remain inactive for long periods to save battery [58]. We now focus on some
proposals to provide the necessary IoT features to NDN. Please refer to the citations
in this paragraph for a more complete list.

Subscription to streams are one of such mechanisms that are not supported as
per default there is a 1-to-1 association between interests and data messages due to
the forwarding behavior of deleting PIT entries as they are answered. Which leads
consumers to constantly transmit interests packets for novel samples under a given
name, instead of the producer pushing novel data as it is available. Such behavior
enforces congestion control since a congested network will also drop interest packets
that would further congest the network [59].

Mechanisms to make PIT entries persistent allow for data streams in NDN [60].
That is, instead of discarding entries when data is forwarded upstream, the entry
remains until a given number of packets is forwarded or a duration expires. This
allows the association of multiple data packets of a given stream to the same interest
since the reverse paths are kept and producers can push data as needed.

Other solutions to insert data entries in interest packets in order for it to be
pushed or to utilize the FIB to also forward data packets [61]. The first takes
advantage of the fact that NDN packets do not have a size limit and add data
in the parameter section of interest messages. The other changes the downstream
routing scheme (see figure 2.2) to also route data packets using the FIB in addition
to the PIT. However, these two last proposals break the semantics and allow for
malicious routers to flood the network by inserting phoney data.

the publish-subscribe communication paradigm is also not natively supported
by routers. In other words, NDN does not have a mechanism for consumers to be
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notified on novel data. Its scheme is considered a pull scheme since consumers must
issue an interest packet to acquire data.

COPSS [62] was one of the first to introduce broker like entities called rendezvous
nodes. Producers publish data to these nodes by issuing publish packets (a novel
data packet type) with /rendezvous/ prefix added to its data name. That prefix
takes data to the rendezvous node that strips the prefix and forwards the data to
subscribers.

A name convention is also adopted to select data in a rendezvous node where
the hierarchy of a data name can be used to describe the desired granularity. For
example the data name /temperature/public/courtyard to denote measurements of
a public courtyard can be selected through a interest for /temperature to select any
temperature measurement /temperature/public to select temperature measurements
for any public area.

Mobility support can also be employed pub-sub for vehicular NDN where vehi-
cles that subscribe to remote rendezvous nodes via road side infrastructure. Here,
the covering roadside base station changes as vehicles move, which make PIT entries
obsolete, thus making vehicles resubscribe as they change base station. [59].

Distancing from the method of using a broker to forward data, we may also
introduce a subscription manager that receives interests and answer with an au-
thorization that can be used to directly subscribe to producers [63]. On the other
hand, Psync [64] periodically notifies the consumer with novel names for a stream.
The consumer will issue a query to a Psync enabled router that will periodically
answer with the data names of data packets to answer that query and the consumer
will directly request these names.

Caching with restricted devices is challenging due to limited available stor-
age and due to the devices alternating between active and sleep modes to save
battery [57]. The default policy of caching everything provides high redundancy on
data that improves cache hits but storage fills quickly and can be ineffective due to
constant rotation of data in the CS.

Thus, several cache policies have been proposed for restricted devices [65]. These
are based on:

content type where nodes decide to cache based on predefined data of interest,
for example when networks have stricter quality of service for specific data
types;

content popularity where nodes keep track of data popularity based on the
amount of requests for data names [66];

node characteristics data is stored based on characteristics such as distance to
producers and remaining battery [67]; and

In-network computation is introduced to the NDN paradigm by Named Func-
tion Networking (NFN) [68] that proposes to integrate lambda-calculus in interests,
where each NDN router may process the data before sending the reply. Similarly,
[69] proposes to use named unikernel functions that run on top of a virtualiza-
tion layer and may be moved between routers to improve delay or bandwidth. An
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extension has also been proposed to cope with edge computing architectures to
preferentially select resources which are closer to producers [70]. [71] builds on
the concept of named functions by providing another service allocation strategy
that consider the available resources of devices in addition to the proximity to data
sources.

NDN brings several benefits to IoT networks and several extensions have been
created to accommodate its requirements. However, NDN is not applicable through-
out the whole IoT ecosystem due to its limited resources. Namely, packet authen-
tication requires considerable processing that reduces battery life and caching is
restricted due the reduced available storage and to devices being frequently inac-
tive to save battery [57].

2.2 Secure Streams in Multi-Owner IoT Systems

IoT networks are naturally segmented as each service deploys its own set of devices
and infrastructure for their objectives. These monolithic type of deployments are
known as IoT silos (Fig. 2.3) [38]. It allows each network to operate using the set
of protocols, hardware and behaviors to match the expertise of its operator and its
objectives. However, multiple advantages appear by breaking down these silos in
order for them to interconnect and cooperate [9].

However, as the density of networks increases in scenarios like smart cities and
smart grid, redundant deployments cause scalability problems. And the deployment
of multiple IoT silos naturally bring about this occurrence [9].
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Thus, networks have begun to break apart their silos and expose internal re-
sources to other networks. Allowing other networks to query their sensors and/or
utilize their transportation network. Aside from reducing redundant deployments,
services improve data diversity by querying multiple data owners and lower deploy-
ment costs by using existing resources [72, 73].

Unfortunately, security issues and interoperability issues arise from intercon-
necting IoT structures.

2.2.1 Diverse IoT Systems

Heterogeneity is a key characteristic of IoT networks due to all the different devices
that compose them. One has to consider heterogeneous infrastructures that support
multiple protocol stacks. We can exemplify this with the CoAP [30] and MQTT [74]
protocols that offer similar features to IoT applications.

To facilitate integration, a proxy may help to interconnect producers and con-
sumers [75]. A network will place this at its edge to answer remote requests for
local data. However, existing solutions propose to rely on access control strategies to
control the dissemination of sensitive information [76]. Alternatively, we may apply
an approach based on middleboxes, to interconnect different services. Such as the
concept of semantic gateways, in charge of relaying annotated data [38]. However,
middleboxes do not address the privacy concerns of a multiservice scenario since
their purpose is to enable interoperability, not enforce a set of privacy constraints.

An overlay of CoAP servers is able to build a federation of sensor networks [77].
However, their focus is rather on wrapping sensors, actuators and other entities,
instead of the privacy concerns raised by such multiservice architectures. Simi-
larly, content proxies serve as a central, stable entity to connect publishers and
subscribers, but still, a multiservice environment is not considered [78].

Heterogeneity can also be found in the communication protocol. Among the
main communication technologies for IoT, Low Power Wide Area Networks (LP-
WAN) allow very scalable connectivity to low-end devices due to long ranges and
capacity to handle thousands of devices per base station. NarrowBand IoT, Sigfox
and LoRaWAN are the three leading technologies for LPWAN [79].

Sigfox [80] is a proprietary technology of UNB technologies and operates in the
unlicensed bad at a maximum of data rate of 100bps. NarrowBand IoT [81] is a
standard defined by 3GPP, it reuses some of LTE technology and may be deployed
within or outside existing LTE deployments. Finally, LoRaWAN [82] is a standard
created by LoRa-Alliance and, due to its signal design, it can achieve high ranges
and channel multiplexing. We use LoRaWAN in our first contribution to exemplify
how much infrastructure a scenario of coexisting IoT networks requires. In the
following section we explore the details of such networks.

But the diversity of IoT ecosystems goes beyond heterogeneous devices
and protocols [9]. Services will have different objectives, owners, semantics and
requirements. They can be deployed for data collection, distribution, decision-
making or actuation.

Then, privacy turns into a specially sensitive requirement as data is streamed
among services with different owners, e.g., from a data collecting one to a decision-
making one. Maintaining privacy is not trivial since data is collected under different
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levels of consent from monitored subjects. It is necessary to maintain mechanisms
that stream and compute data while complying with the privacy requirements of
each producer involved. We focus next on the security mechanisms that are used
in such scenarios.

2.2.2 Middleboxes & Access Control

Security solutions must be aware of the limited resources of IoT devices since costly
operations jeopardize battery life due to longer processing and extra network ex-
changes. Essential operations such as encryption and radio transmissions are spe-
cially costly [83, 22].

Thus, IoT networks deploy dedicated devices at their edge in order to manage
secure channels and access to internal resources [84]. These take charge of costly
security operations since they have access to more resources when compared to
sensors and actuators [85]. Operations such as authorization checking and granting
in addition to key management are examples of these operations.

They verify queries and distribute necessary credentials (i.e., encryption keys)
to the issuers of these queries. This verification can be performed based on different
access criteria [86]:

Discretionary allows data owners to directly specify the consumers that can ac-
cess data;

Mandatory is based on clearance level where data owners give a specify the min-
imum level that consumers must have to access data;

Role-based group access permissions under several pre-defined roles and con-
sumers must have the correct role to access data;

Attribute-based assumes that data, consumers and producers have metadata
that describe them. Then, data owners give access depending on these at-
tributes.

Attribute-based access control provides the most granularity and is the closer to
the metadata-based queries. Access consents are mapped from the consent agree-
ments between the monitored subjects and the network of sensors. For example,
patients will disclose their information to their doctors but not to other users of a
healthcare institution [87]. Then, a trusted third party will distribute credentials
(access keys) if a query and its issuer comply with policies. This approach requires
several exchanges with a middle entity in order to acquire the access keys to enable
streams [88]. After credentials are given, these resources may be queried directly
by external entities.

The presence of a trusted third party is a strong assumption for multi-owner
infrastructures. Recent works have introduced blockchains as a means to remove the
necessity of a third party that manages validates queries and manages credentials
due to the strong trust requirement [89, 90]. Blockchains are distributed databases
used to store transactions among unreliable entities. All entities in the system have
access to this database and transactions in the chain are immutable This allows
anyone to verify the history of transactions to validate the state of the system.
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Additionally, recent blockchains provide the feature of smart contracts, where
entities place code that may be run by any entity upon request. These are called
smart contracts and allow for anonymous and unrelated entities to request, execute
and collect data in the blockchain in a verifiable manner.

The basic behavior of blockchain based access control is:

1. Consumers will publish their attributes on the chain;

2. Producers will publish their data and policies on the chain;

3. When a consumer decides to query data, it will invoke smart contracts to
acquire credentials;

4. Smart contract will check published policies to publish a response transaction
with compliant data names and credentials;

5. With the credentials, the consumer can collect data directly from consumers
(not through the blockchain);

This scheme of access control is a good way to remove the trusted entity and
offload the computational cost of key management and distribution. However, the
privacy of all entities is hindered since all attributes, policies and queries become
public. Malicious entities can use the attributes of consumers to identify entities
even if these are anonymous and profile their interests from their queries.

Dual blockchain schemes can be used to lower available data by keeping one
chain public and one chain private [91]. In this case, encrypted attributes are
stored in the private chain and all else is recorded in the public chain. The only
ones with access to the private chain are attribute managing entities, but these can
only decrypt the attributes of a subset of producers that share their keys. When a
query is introduced in the public chain, these attribute managers check attributes
and distribute credentials as previously described. This secures the privacy of the
attributes of producers and consumers.

At any rate, the access control schemes discussed above can correctly provide
access, however data can still be leaked by the destination. Thus, data must still
be “protected” to prepare for further dissemination. Which is the objective of
anonymization operations, it removes unnecessary information from data to protect
the producer while maintaining its utility to the consumer [92].

This is specially important in our multi-owner infrastructure where maintaining
consent policies as streams occur among different data owners and operators is a
major requirement. Data can be redistributed between systems after acquisition
from the original producers without the intervention of these. Indeed, we consider
anonymization a requirement in this infrastructure, and we discuss the details of it
in the following section.

2.2.3 Stream Anonymization

Anonymization provides privacy by decreasing the precision of data. Aggregating
data from multiple sensors hides the specific values of each sensor while providing
information on the global population [93]. We may also filter and mask sensitive
information from data until privacy requirements are reached.
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Normally, datasets attributes are classified in three categories [92]:

Identifiers attributes uniquely identify some entity like social security number or
employee number;

Quasi-Identifiers attributes can identify some entity when used together. For
example, if the age, gender, height and weight of someone is known, and the
same values are found in entries of a dataset, it is likely that those entries are
of that person;

Sensitive Information these are the measurements and metrics that are listed
with the other attributes. These are highly sensitive since they disclose infor-
mation on the subjects behavior and condition.

During anonymization, the identifiable attributes are suppressed or replaced
with random identifiers to remove direct association. Quasi-Identifiers are then
altered in order to decrease the probability of associating subjects with their sensi-
tive information. Sensitive information may be left as is, categorized (e.g., changing
exact age into age group) or added controlled noise to occlude exact values.

This process is done until privacy metrics such as k-anonymity [94] and ε-
differential [95] are reached. They quantify levels of privacy in terms of the
probability of deanonymizing information. They measure how similar data entries
are from each other and how whole datasets are similar to each other.

A k-anonymity dataset mandates that at each entry is indistinguishable from
k-1 other entries. In other words, every combination of quasi-identifiers values has
at least k entries in the dataset. Even if a subjects’ information is known to be in
a dataset and the identifiable attributes are known, the probability of identifying it
is 1/k. Several algorithms have been proposed to reach the k-anonymity [96, 97, 98]
that focus on clustering data entries in order to minimally change quasi-identifiers
to maximize utility of data.

A ε-differential dataset denotes that a dataset does not change significantly
from adding or removing any single entry. For a given function K that produces
ε-differential datasets from any dataset, ∀S ⊆ Range(K) ∧ ∀ datasets D1, D2 that
differs on at most 1 entry:

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (2.2)

For every possible result of the K function, i.e., for every ε-differential query
answer, the addition or removal of a single entry will not significantly change
deanonymization probability. Several algorithms have also been proposed for ε-
differential [99, 100, 101]. These algorithms focus on adding enough noise to make
entries similar enough. Distributed noise addition is also possible within limita-
tions [102, 103]

In a multi-owner IoT infrastructure, producers are likely to have different levels
of consent for collecting data. For example, patients data will have very strict
anonymization requirements while data collected in public areas will have laxer
restrictions. Imposing the same privacy level to every producer would mean that
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the most strict level must be applied, which would result in increased difficulty of
acquiring data. Thus, complying with the requirement of each producer as closely
as possible is necessary.

In [104], authors have considered a privacy model based on ε-differential. Privacy
requirements are modeled based on the parameter ε, and each producer has its own
privacy requirement. The group of devices of a producer applies a stochastic model
to anonymize and disclose information. This model is frequently updated gradient
descent algorithm in order to limit information loss.

2.3 Summary
Streaming data from different data owners in a large IoT infrastructure allows net-
works to both enrich their services with diverse data and to lower deployment costs
by reusing existing resources. However, it exposes scalability issues as thousands
of devices are involved in the enabled streams and security issues as ownership
boundaries are crossed.

The problem of inter-system communication is still an open subject. Translators
are able to translate protocols and data formats but are limited when dealing with
conflicting semantics. And security middleboxes proposals focus on blocking specific
connections and providing attribute based access control. Concerning privacy, the
larger portion of the literature on data streams focus on access control instead
of anonymization. However, this is necessary for inter-system communication to
limit the leaks when data is further disseminated. Additionally, little has been
done in scenarios where data is acquired and aggregated from heterogeneous and
untrustworthy sources. The problem is specifically complicated due to different
levels of trust among services.

The consent from monitored subjects must be respected while data is forwarded
and aggregated via untrusted networks. The different levels of privacy of these
subjects must also be closely observed in order to make the most data available to
others.

Our work investigates all these areas to provide privacy aware disclose of infor-
mation among services. We focus on providing privacy by anonymization so that
it can be disclosed among domains without complex encryption and access control
mechanisms. That way we maximize the utility of data and facilitate dissemination
and reuse of information. Through NDN we leverage semantic requests and efficient
forwarding then extend it to reuse data streamed among services to answer multiple
queries.
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The plethora of smart city services highlight the various benefits that IoT can
bring to the population, companies and local authorities [105]. A collection of
sensors is typically disseminated in a smart city, and monitors a large set of envi-
ronmental parameters such as traffic speed, air quality, weather, noise, etc.

Smart cities also expect that the different systems cohabit with each other and
exchange data while protecting sensitive data. Isolation has a cost [106]: the same
radio resources have to be shared among a larger number of flows, which is partic-
ularly prejudicial in the ISM band.

In this chapter we investigate a scenario of Intelligent Transport System (ITS)
where distinct services share data to offer a globally efficient and privacy aware
transportation system for smart cities. We seek insight on a realistic scenario where
multiple IoT systems cooperate for their objectives. More specifically, we want

21
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to better understand the data streams among services, what kind of processing
operations are applied to data and how privacy is maintained.

Existing system models for IoT focus on a single application or service and
the infrastructure necessary for it [107]. While our scheme is a formally defined
ecosystem of services that may both provide and consume data to and from other
services. Our ecosystem is also defined in a way that privacy is provided by design by
disassociating producer and consumers and by carefully selecting the data collected.

We take advantage of datasets of two real services from large cities to propose
a system model that generates packets mimicking a realistic scenario, with all the
heterogeneity (e.g., downtown vs. suburbs) and temporality of large scale ITS. The
traffic model we derive from these datasets is useful to realistically assess the com-
munication needs in smart cities.

Finally, we exploit our construct to answer a secondary question: can LPWAN
be used as the means of communication for multi-IoT services? How should these
services be deployed in order to handle this traffic? We rely on a LoRa model
capable of inferring the Packet Error Ratio (PER) of an arbitrary deployment of
LoRa gateways to estimate the scalability of such LPWAN solutions in realistic
deployments.

3.1 Proposed Multi-Service Model for Intelligent Trans-
portation

We limited the services in our model to those that have considerable network com-
plexity and actors in common. That way we have considerable interest for network
applications and data dependency among services. The services which compose our
multiservice model are:

Ride hailing where platforms connect passengers with vehicle drivers (aka. on-
demand taxi). Passengers will subscribe to multiple platforms to search
through several price options. These options are updated in real time to
mirror changes on availability and other conditions. On the other side, vehi-
cle drivers subscribe to platforms in order to receive available rides that best
fit their preferences and schedule. Thus, allowing drivers to make the decision
on which would be their next ride. These rides would also be constantly up-
dated as several drivers concurrently pick rides. In a smart city, this service
could be provided instead of a global platform.

Smart parking where sensors monitor occupied parking spots, registering when
vehicles arrive and leave spots. Vehicles in transit query these sensors to
find available parking. Consequentially, drivers spend less time randomly
looking for parking spots which decreases road congestion. The system will
additionally bill vehicles with the information sensors send to the company
that owns each area.
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Figure 3.1: Overview of services

Traffic monitoring where the ITS measures the average speed for each road seg-
ment by capturing snapshots of the speed of vehicles. Snapshots are a key
aspect here since full traces of vehicles would generate too much information
on the habits of drivers. Simple snapshots of several (private and public) vehi-
cles already provide enough information on road segments. This information
is then also used by other systems for traffic regulation (e.g., vehicle routing
problem). We decided to exclude these other systems from this since we could
not realistically model them.

Figure 3.1 illustrates our scenario, where the different applications and entities
share information with each other. There you can see the different information
exchanged among each component of these services. We formally define these com-
ponents by listing the queries used to enable streams. In the following sections we
define the query language used and then the queries themselves.

3.1.1 Query Language

We rely on a slightly extended version of SQL to explicitly define the queries (i.e.,
the arrows in Fig. 3.1) that trigger the streams of data between entities (in the
inverse direction of the queries). While other languages exist for IoT queries are
available, like SPARQL [108] and CQELS [109], we chose to slightly extend SQL to
be more didactic. These other languages have specific syntaxes and semantics that
will needlessly complicate our explanations. Furthermore, we map IoT data to the
relational database paradigm by considering data sources, samples and attributes
acting as tables, rows and columns, respectively. We then simply add the following
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keywords in our query language extending SQL to describe the IoT streams:

COMPUTE indicates a list of computations to apply to the data in sequence.
That way, data may be transformed with in-network processing [110]. This
requirement is necessary to adjust the verbosity of data and enrich data before
it is accessed by consumers.

EVENT describes one or more conditions that may activate/deactivate a stream
(e.g., local sensors measurements and remote messages).

EVERY indicates when to generate new data to stream. This clause describes
an activation condition via events (as defined just above) or constant time
intervals.

UNTIL indicates the condition to stop the stream. Analogous to EVERY, events
or specific durations describe this clause. Without this keyword, the query is
assumed to hold indefinitely.

In the following sections we use our extended SQL language to describe each
of the queries listed in figure 3.1 in order to formally describe the information
exchanged among services.

3.1.2 Ride Hailing

Mobility services that aim to provide passengers with on-demand rides from private
vehicles already exist for years [111]. In terms of traffic management, this service
provides a way for passengers to share vehicles, decreasing their numbers on the
streets.

Recently, the portion of taxi trips handled by private cars has steadily increased.
A common platform serves as broker between passengers and drivers, so that all
passenger requests can be fulfilled. We detail here streams 1 and 2 illustrated in
Fig. 3.1.

Query 1 – Ride selection for passengers

Passengers request multiple platforms (i.e., brokers) for the best quotes to perform a
ride by specifying the time of departure, and the geographical location of departure
and arrival. The reply data stream includes the name of the platform and the cost
to the destination (here represented by the cost_to function and the $destination
parameter). The query remains active until the passenger has made a decision on
one of the proposed quotes. These quotes change depending on real time availability
of drivers and demand of passengers.
1 SELECT ride_platform , cost_to ( $destination ) as ride_cost
2 FROM ride_platforms
3 ORDER BY ride_cost DESC
4 LIMIT 5
5 EVERY minute
6 UNTIL EVENT client_decision

Query 1: Passenger request sent to a set of brokers.
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Query 2 – Ride selection for drivers

For the other part of the service, drivers must select their next ride. More precisely,
drivers register with platforms to receive unsatisfied rides when they are about to
complete their current fare. We assume here that platform implement a scoring
function (ride_score) which ranks rides according to driver preferences, proximity,
and expected payment. According to this function, the list of the best rides is
constantly updated with the response stream that stops when a driver decides
which quote to take.
1 SELECT ride_begin , ride_end , estimated_price
2 FROM ride_platforms
3 ORDER BY ride_score (*) DESC
4 LIMIT 10
5 EVERY 5 minutes
6 UNTIL EVENT driver_decision

Query 2: A driver asks for the available passengers.

3.1.3 Smart Parking Service

Searching for a parking spot is particularly expensive in terms of time and fuel [112].
Thus, smart parking solutions help drivers find an available parking spot, and reduce
their wasted time and fuel searching for one. We can also make the system more
efficient and convenient with automatic billing by having parking areas forward
information on the usage of the spots to the company in charge of billing.

Query 3 – Smart Billing

Here, A vehicle is automatically billed when exiting its parking spot. We consider
that a sensor is capable of detecting the occupation of one or multiple parking spots
and then sends notifications whenever a vehicle enters or departs of a spot. This
notification is sent to the company in charge so that the vehicle can be charged
accordingly. These notifications include what event occurred (arrival or departure),
timestamp of the event, and identifications of vehicle and spot.
1 SELECT event_type , time_stamp , car_plate , parking_spot_id
2 FROM parking_parking
3 EVERY EVENT park_begin , park_end

Query 3: Tracking vehicles entrances.

Query 4 – Guidance of cars to available parking

Drivers ask for the availability of nearby parking areas to find available parking. A
filter selects areas with a sufficient number of available spots (THRESHOLD_VALUE), else
the available spots may be occupied by the time the driver arrives to the location.
Then, results are ordered by proximity and limited to prevent verbose responses.
The continuous query 4 holds from the time of departure to the time of arrival (end
of trip), and the list is updated every minute to account for changing availability.
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1 SELECT parking_area_id , available_count , distance ( arrival_location
, parking_location ) as geo_distance

2 FROM parking_areas
3 WHERE available_count > THRESHOLD_VALUE
4 ORDER BY geo_distance DESC
5 LIMIT 10
6 EVERY minute
7 UNTIL EVENT end_of_trip

Query 4: Parking availability.

3.1.4 Smart Road Traffic Routing Service

Traffic jams induce increasing costs in most major cities, both in terms of time,
money and pollution 2. Not to mention the frustration caused to drivers and con-
sumers and thus the ensuing damages it may lead to.

Vehicle routing solutions help drivers to find better routes [113] to mitigate these
effects. It requires road surveillance in order to identify the level of congestion of
each road segment.

Query 5 – Real-time Road Speeds

A smart mobility service may collect the location and speed measurements from a
large collection of vehicles (e.g., bus, private cars, taxis) to profile congestion in real
time. Smart cities may exploit this information to interpolate and infer congestion
in each road segment. The real identity of each vehicle should be hidden (e.g., with
a hash) for obvious privacy concerns.
1 SELECT hash( car_plate ), latitude , longitude , current_speed
2 FROM consenting_vehicles
3 EVERY 3 minutes

Query 5: Road congestion information.

3.2 Open Mobility Datasets

Several datasets for IoT applications are available [107], they include traces of mes-
sages and other information regarding these applications. These traces vary depend-
ing from a dataset to another, while some may include raw network traffic [114],
others will only provide sensor samples [115]. These provide insight on real life
applications and may be used as a starting point when designing novel systems.

In this section, we detail how we exploit two public datasets to model the global
smart mobility service we envision. We rely on this data for our evaluation of how
an ITS in these realistic conditions can scale while relying on LoRa gateways.

3.2.1 Datasets Description

We exploited the two following datasets (cf. Table 3.1). These were chosen due to
being from the same time period, having significant volume of data and the good

2https://inrix.com/press-releases/2019-traffic-scorecard-us/
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Table 3.1: Datasets used in this study.

Service Parking usage Private-driver hailing
Location of sampling Melbourne, Australia New York City, USA

Number of samples 37.7 million samples 234 million samples
Sampled Period Jan 2019 to Dec 2019 Feb 2019 to Dec 2019

Data available Parking occupations Taxi rides by private cars

match with the services being defined.

Ride hailing: we use a dataset of rides performed by the companies Uber, Juno,
Lyft and Via in New York City (NYC)3. The city provides data since 2009 on
trips provided by yellow taxis, green taxis and vehicles for hire. We only use
data of the latter type of vehicle as to mirror our system that accounts for
private vehicles (those with more privacy concerns). Each entry describes the
pickup and dropoff information (i.e., timestamp and geographical location)
of a trip, in addition to payment information and company identification.
To respect privacy concerns, the city employs pre-defined zones and zone
identifiers instead of exact geographical coordinates. We model the vehicles
here as mobile devices that transmit and receive information;

Parking usage: the city of Melbourne provides measurements of its large deploy-
ment of parking sensors4. Each sample of this dataset describes individual
occupations of parking spots in the city and include timestamps of arrival and
departures in addition to multiple identifiers of the parking spot. We have
here static sensors with event-based traffic.

Some adjustments are necessary for these two dataset to be compatible with each
other and our model. We see in the following section the pre-processing performed.

3.2.2 Dataset Preparation

The first necessary change is to adapt geographical locations since the service de-
scribed by these two datasets are deployed in different cities. Unfortunately we
could not find equivalent datasets of systems deployed in the same geographical
area. Thus, we need to merge both to mimic a global service running in the same
city. We map Melbourne’s dataset locations to NYC locations since more informa-
tion is openly available for the latter which would allow our system to be further
expanded later5.

We gather a list of parking lots in NYC with the aid of the TomTom API6.
Our search unfortunately did not gather enough parking lots in NYC to perform
one-to-one mapping between those in Melbourne and NYC. Consequentially, we

3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-

2019/7pgd-bdf2
5examples are further explained in the conclusion of this chapter
6https://developer.tomtom.com/
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first cluster the 4,876 parking lots in Melbourne that we have from the dataset into
1,212 clusters (the number of parking lots we found in NYC) using the k-means
algorithm according to geographical location.

With this, each cluster represents a virtual parking lot with the data from its
members, and we can look for a mapping of these clusters in Melbourne to parking
lots in NYC. This mapping must be made based on geographical and network traffic
to realistically model the network load generated. However, this information is not
available in the information gathered from NYC. Thus, we assume that parking lots
closer to Manhattan (commercial center of NYC) are likely to have more demand.
Which allows us to map our virtual parking lots of Melbourne with most traffic into
the parking lots of NYC which are closer to Manhattan.

Then, to mimic vehicle displacement from query 5, we expand the NYC dataset
by computing the trajectory between pickup and dropoff locations for each trip.
For the sake of simplicity, we consider here straight line trajectories under constant
speeds. In our case, an approximated geographical location is sufficient to model
the traffic since pick up and dropoff are already non-exact.

3.2.3 Dataset-based Network Traffic Model

We describe here how we model the network traffic from the datasets. Table 3.2
summarizes the variables used in our models in addition to the origin of the value
used for that variable.

Observe that a fair amount of the variables listed here are not defined via
datasets as we could not find this information in any of available datasets. However,
we argue that these variables may be empirically defined without loss of generality
as future users of this framework can adjust these as needed.

Ride Hailing

We model queries 1 and 2 based on the fact that passengers request price options
right a trip and drivers request new rides right as they finish one. We use the time
and location information of taxi pickups and dropoffs in NYC, respectively for these
queries. Thus, each trip record triggers these queries at time and location of pickup
and dropoff.

We have in figure 3.2 the distributions used to generate messages for the two
queries mentioned above. Since the dataset do not identify vehicles in its entries,
we measure time between events for each pickup and dropoff location to understand
the message periodicity of each area. We see here that the streams of these queries
have considerably frequent updates.

The other variables of these queries are not available in any dataset we have
found and may be defined empirically without much loss of generality for our model.
We define the duration of the query with a normal distribution and define the update
periodicity (interval between updates) as constant values (see Table 3.2).

Smart Parking

Here, arrivals and departures in parking spots trigger messages. Thus, we model
the park_begin and park_end events of query 3 with the arrival and departure data
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Figure 3.2: Distributions used from NYC taxi dataset

observed in the Melbourne dataset. More specifically, for each record, at time of
arrival and time of departure, one message is sent from the parking lot location.
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Figure 3.3: Distributions used for parking message generation

Figure 3.3 shows us these distributions as they appear in Melbourne’s parking
dataset. We also see that the resulting periodicity of sensors can scale up to hours
which shows the sporadicity of this stream.

Then, we model the inter-query time of query 4 by assuming that there was a
search for available parking every time a parking spot is taken (see figure 3.3a).
Since available parking can change constantly, one message is sent every minute
until the car parks. Similarly to the queries in the previous section, we again rely
on a normal distribution to model the time to find a parking spot and the update
periodicity (see Table 3.2).
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Figure 3.4: Distribution of duration of trips in NYC dataset

Smart Road Traffic Routing

In query 5, we consider that a subset of vehicles sends its speed information (e.g.,
a subset of vehicles is equipped for it or that consents to have its data used). More
precisely, we consider that only 10% of the dataset of taxi trips is considered by
this sub-service. Messages are sent periodically along the trajectory we generated
for each trip.

From figure 3.4 shows us that most trips are between 10 and 20 minutes which
makes so that most streams transmit less than 6 measurements with the chosen
periodicity (3 minutes).

3.3 Scalability Analysis with a LoRa deployment

We discuss here whether a LPWAN technology like LoRa could be used for such
Smart Mobility services. LoRa was chosen for this study as it is one of the leading
technologies and a simple simulation model was available through [116]. We assume
that LoRa will be the only means of communication for queries the defined queries
and their answers. We have considered including NB-IoT or Sigfox, but we decided
not to extend it too much since the evaluation is not correlated with objective of
the thesis. The next section provides a quick primer on LoRa and details how we
simulate them.

3.3.1 LoRa Analysis Methodology

LoRa is a cellular network where devices connect to base stations (aka. LoRa
gateways). Traffic is assumed to be mainly uplink as low-end devices push data to
the base station in order for it to be forwarded to its destination. Its signal design is
based on Chirp Spread-Spectrum modulation technique, that uses pulses to encode
information in order to improve the robustness and resilience of the signal. The
spreading of the signal is a key feature in this technique. Transmissions on different
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Table 3.2: Query variables.

Query Variable Value Source dataset
1 Location of query Trip pickup locations NYC

Time of query Trip dataset pickup
times

NYC (Figure 3.2a)

Update periodicity 1 minute –
Passenger decision Normal (µ=1, σ=1) min –

2 Location of query Trip dropoff locations NYC
Time of query Trip dropoff times NYC (Figure 3.2b)
Update periodicity 5 minutes –
Driver decision Normal (µ=5, σ=3) min –

3 Location of query Parking locations Mapped NYC park-
ing (Section 3.2.2)

Update periodicity Parking arrival and de-
parture times

Melbourne
(Figs. 3.3a and 3.3b)

Time of query Beginning of times –

4 Time of query Parking arrival times Melbourne
(Figure 3.3a)

Update periodicity 1 minute –
Limit 10 –
Trip duration Normal (µ=8, σ=3) min –

5 Vehicle Trajectory Straight line between
trip pickup and dropoff
locations

NYC

Trip durations Taxi trip duration NYC (Figure 3.4)
Periodicity 3 minutes –
Vehicles subset 10% of available cars –

Spreading Factor (SF) have different characteristics such as air time, bit rate and
reception range. Pairs of transmitters/receivers have to select a spreading code,
also designated as a SF in LoRA in order to communicate.

As displayed in figure 3.5, devices may be able to transmit to base stations up
to a dozen kilometers away from it and take advantage of bit rates in the order of
kilobits per second. By selecting the right SFs, devices can use the highest bit rate
adapted to the necessary signal strength. More importantly, the SFs are mutually
orthogonal, that is, transmissions on different SFs never collide. However, handling
a very large number of devices (even generating only a few packets each) with few
antennas is challenging [118]. Collisions are frequent, and network capacity may be
rapidly reached.

To conduct our scalability analysis, we consider the LoRa analytical model de-
scribed in [116]: for a given amount of network traffic, it predicts the PER of each
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Figure 3.5: Lora spread factor characteristics [117]

device associated with a LoRa gateway. It measures it by calculating the chance
of two devices overlapping transmissions while also accounting for the possibility of
retransmitting the packet in case of collision7. In our calculations we use the EU
863880 MHz ISM band, with the receiver sensitivity of the Semtech SX1276 LoRa
receiver8.

Since the services we study consist of dense urban deployments, devices need to
be close to their LoRa gateways (else, the network capacity is reached too fast). In
other words, if gateways serve an area too large, they will not be able to adequately
serve devices. The question we want to address is: if feasible, how and how many,
Lora gateways should be deployed such that the link quality between devices and
gateways does not turn into a limitation after a certain degree of density.

We employ two different methods of SF allocation:

Distance-based: some devices are too far from the LoRa gateway, and we must
consider their signal strength when selecting a SF. Thus, we allocate to each
device the lowest SF with respect to its signal strength. A lower SF means less
signal robustness and higher bit rate and shorter airtime, thus this method
greedily chooses the SF with higher data rate available for the perceived signal
strength.

Airtime-based: with very dense deployments, devices are very close to gateways
and signal strength is not a constraint anymore. In that case, we balance the
load for each SF with respect to airtime and equally distribute the probability
of collisions among SF. More precisely, we assign the data rates so that all the
data rates have the same cumulative air time. The devices with the largest SF
consume more energy to stay awake longer, but we reduce the overall number
of collisions.

We use the density of base stations deployed 5 kilometers apart as the threshold
to use the airtime-based allocation, i.e., if devices are closer than 5 kilometers from
the base station, they use it, otherwise it will use the other method. We indeed

7All formal details are given in [116].
8https://www.semtech.com/products/wireless-rf/lora-core/sx1276
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Figure 3.6: Message density per neighborhood.

observed that at this point, devices are close enough to the base station to use
airtime-based allocation.

To further simplify our study, we also assume that any message can be sent
within a single LoRa transmission. The payload of LoRa packets may go up to
256 bytes which is plenty for the messages in question. Furthermore, compression
techniques can be applied to ensure that messages fit in this limited space [119].

We can now rely on the ITS we design along with the real datasets introduced
in sections 3.1 and 3.2. To account for time fluctuations in network traffic, we pick
200 random time intervals of one hour, and use the average number of messages per
second during each of these intervals. More specifically, for each randomly picked
interval, we count the number of messages sent by each device and infer the average
number of messages sent per second by each device. By considering independent
enough time samples, we are able to investigate the scalability of LoRa for these
smart mobility services.

Then, we position our base stations in a grid format. Machine learning models
have also been proposed in order to discover optimal base station positions [120,
121, 122, 123], which are interesting for scenarios with non-uniform traffic. But for
this work we consider uniform grid deployments for LoRa gateways for a simpler
deployment that maximizes coverage. To assess the scalability of such LoRa de-
ployments, we investigated several grid sizes by varying the density of base stations.

Overall, we consider each borough separately since each area generates different
amounts of traffic, which allows us to focus on the geodistribution of traffic.

3.3.2 Results: Sufficient Adaptation of Deployment Density

We measured the intensity of traffic per mobility service and per borough in fig-
ure 3.6. The graph presents the distribution of the average number of messages per
second for all 200 time intervals. The violin plots are stretched out as the number
of messages obviously varies a lot between peak hours and off hours. Besides, if we
count the sum of messages, we can see that Manhattan (only 7.5% of NYC area)
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Figure 3.7: PER of streams under different base station densities.

concentrates most of the traffic (notice the different scale on the vertical axis) while
others have much less variation among them. For instance, 65% of ride haling mes-
sages are generated in Manhattan while the other boroughs only stretch over 7.5%
of NYC.

Relying on this data, we can now compute the distribution of the PER indepen-
dently for each borough (Figure 3.7). While each gateway is theoretically capable
of serving nodes that are up to 9 km away, the traffic is too high and the resulting
network becomes congested. We must place more base stations in the same area to
provide a reliable service.

For instance, we can see that two base stations are not enough to efficiently
cover Staten Island. However, 4 base stations prove enough to cover the whole
area, and to also decently limit the number of collisions. Similar patterns can be
seen for other boroughs, except for Manhattan.

For Manhattan, the volume of packets being specially large, many collisions
occur. We see that only very dense deployments of LoRa gateways are capable of
providing an acceptable PER. As a direct result, devices are very close to the LoRa
gateways, and the lowest SF may be used by all devices, creating congestion if all
devices are configured to use it. Thus, we need a more balanced allocation among
the different SFs, which motivates a further evaluation of the two SF allocation
schemes.
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Figure 3.8: Impact of the SF allocation strategy in Manhattan.

Figure 3.8 shows how our two allocation strategies behave under various network
densities. For very dense deployments (i.e., one gateway every kilometer), the
number of devices associated with a given gateway is quite low and collisions seldom
occur: the PER is minimum. For all the other densities, the airtime-based strategy
is more efficient: devices are well balanced among SFs, and the system minimizes
the number of messages lost (i.e., PER).

Finally, we look at the geographical distribution of the PER value (Fig. 3.9).
More precisely, for each borough, we select a grid size to obtain for each device
an acceptable reliability. Thus, we consider 5 km spacing for Manhattan, 13 km
spacing for Staten Island and 9 km spacing for all other boroughs to achieve the
PER displayed in figure 3.7 for each area. We represent the results with a quad tree
where the size of each square is selected so that each square has the same number
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Figure 3.9: PER under mixed deployment.
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of devices. Then, each square is colored according to the average PER obtained by
the corresponding devices. As we can see, the resulting PER reaches a maximum
of 4% in the center of the map: squares are smaller, denoting a huge number of
devices that generate traffic. On the contrary, sparse grids are enough for Staten
Island, since the traffic is very small in regard to Manhattan. If the PER has to be
decreased even further, a localized optimization scheme should be used to deploy
extra base stations in the congested hot spot areas (red ones).

3.4 Conclusion & Perspectives

We defined here a global smart mobility scenario, where several services cohabit.
We then emulated the traffic generated by such scenario by using publicly available
datasets, collected respectively in NYC and Melbourne. In particular, we consider
both event-based traffic from static devices and periodical traffic from mobile ones.
Finally, we analyze how a LPWAN deployment (LoRa in practice) can be provi-
sioned to support these mobility services. While our scalability analysis tends to
indicate that relying only on LoRa is enough and so conceivable for a unified ITS
deployment, we note that the number of LoRa gateways should be carefully tuned
according to the traffic. Overall, the network capacity is reached fast, and can
create scalability issues for large-scale scenarios.

It is interesting to explain that we initially experimented with a non-uniform
(non-grid) method of base station allocation to account for message generation
hotspots. Let us use the following notation to explain this other method:

• PER(L) as the predicted packet error ratio of a LoRa gateway with load L

• ci as the coordinates of LoRa gateway i

• Ld as the network load of device d

• Di as the set of devices which LoRa gateway i is the closest

Then, we try to acquire the best LoRa gateway positions for each of the picked
periods and a given number of gateways n using:

argmin
c1,...,cn

n∑
i

PER

 ∑
d∈Di

Ld

 (3.1)

We obtain consequently the n optimal positions for each time window. We input
this into the BFGS minimization algorithm [124] by using the concatenation of the
list of coordinates c1, . . . , cn as the parameters input vector. Then, since each time
window may result in different positions, we have to find n positions that would be
good for all time windows. For this purpose, we use k-means to find the patterns in
the placement of LoRa gateways for each number of LoRa gateways. The centroids
of each cluster of base stations found by k-means provide us with a position that
should work well even with the variation traffic.

Unfortunately, this method is not working well due to our minimization not
converging properly. Even after a very large amount of iterations and hours of
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processing, the overall PER observed at each base station was very large, which
makes the problem untractable. Thus, we decided to abandon this non-uniform
deployment method and use simpler grid deployments as the objective for this
thesis is not to investigate deployment strategies.

In a future work, it would be interesting to investigate how to refine the place-
ment of the LoRa gateways. We propose here a simple heuristic, using a grid density
adaptive to each borough, but we should go further by identifying more accurate
and favorable positions for base stations, depending on the location of hotspots.
Unfortunately, the location of gateways being a continuous 2D variable, the global
optimization becomes almost intractable. It is worth to investigate if it would be
enough to simply discretize the deployment space and create a specific algorithm to
minimize overall PER by iteratively move base stations in the direction of hotspots.
Perhaps a genetic algorithm would adapt well here, similarly to the one proposed
in [123]. One would also do well to include collisions among base stations in the
LoRa model used to evaluate placements, at the time, we have not included it do
to limitations in the time allocated for this contribution.

We may also explore how different technologies (medium vs. long range) may be
complementary in such situations, handling differently static and mobile devices.
Typically, smart parking concentrate many devices in restricted areas that can
result in congested hotspots and a localized short range technology would perform
better here.

The insight from this work exposes the needs of multiservice and multi-owner
scenarios. We have to pay attention to:

• the requirement of decoupling producers and consumers of data in order to
enforce privacy;

• the need to process data as it is disclosed to enforce that it is private enough;
and

• the necessity for efficient transmission protocols to handle the large volume
of data.

Regrettably, we do not use this framework in the evaluations of our following
proposals. We rather focus on larger scale infrastructures and this is too limited to
stress our proposals. Thus, we chose to take more generic and random topologies of
connections among services, so that we are able to scale and tackle more complex
structures.

Our next proposal is an architecture that enforces privacy enabling computa-
tions as data is disseminated among services. While the queries among services
include transformations by design, our architecture enforce the anonymization of
data and offer in-network processing.
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As complex IoT systems rely on services from several owners, these may accept
to share some data to other trusted systems. While networks with different owners
can cohabit in the same shared infrastructure (multi-owner infrastructure) they
must select the data they want to share [125].

Enabling solutions rely on complex access control mechanisms to ensure to ex-
port data and prevent leaks [126]. Unfortunately, maintaining credentials for con-
sistent access control rules is very challenging in multi-owner applications [127].

Additionally, since these IoT streams shared among different services can ac-
count for a large volume of data, there exists an opportunity to filter and pre-process
it directly in the network to mitigate the overall network load while still offering
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the same application benefits to consumers. Such as when customers desire simple
operations like applying an average function, we may apply these operations inside
the network rather than letting customers perform them on their own [39].

In this chapter we tackle the problem of finding a method to bring scalable and
privacy-aware communication to large scale IoT infrastructure composed of devices
from multiple owners deployed for different objectives. We propose a virtual inter-
connection (overlay) of multiple IoT networks based on provider/client relationships
where NDN routers take charge of handling communication among networks. These
exchange anonymized datasets on the basis of a simple policy-based inter-system
communication protocol.

Such policies define control plane rules that describe which data stream can be
exported and how it has to processed first. We define how to implement in-network
transformations in the data plane which we assume to make data private enough to
disseminate it. These transformations are expected to be functions such as filtering
of sensitive information, averaging of samples and noise addition.

Our method provides privacy without the complex ciphering mechanisms usually
employed in such scenarios. Privacy is rather enforced by the imposition of owner-
defined transformations that make data anonymous enough to be disclosed.

We implement our transformation based NDN overlay in NS3 to evaluate its
benefits and performance. In particular, we show how the opportunity to trans-
form, aggregate and reuse popular data allows improving scalability while enforcing
privacy by design.

In the following section we more formally define concepts that aid us in the
definitions of the problems and solutions we discuss in the remainder of this thesis.

4.1 Domains, Queries & Aggregation
IoT networks can naturally be delimited by virtual boundaries defined by criteria
such as ownership, application, and deployment objective. For instance, we may
delimit velocity meters of a smart city by the company in charge of its management
and/or by road segments. We denote these groups of devices as domains.

4.1.1 IoT Domains

The following properties illustrate well how networks can be delimited in practice:

Geographic: devices located within the same room / building / neighborhood;

Application: devices in charge of a given system. For instance, it can be a parking
lot grouping a set of presence sensors, lights, security locks and the controller;

Owner: devices that share the same owner and thus are managed by the same
entity which has complete access.

According to this definition, any device may freely exchange data since data is
of the same owner, or it was given consent to be used by that application. Indeed,
data can be exploited by any application part of a domain. Thus, we do not have
any privacy issues with data transiting within a domain.

Two main benefits are brought by an infrastructure partitioned in domains:
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Figure 4.1: Smart city transport example

Reuse of infrastructure sensors can supply multiple applications, resulting in
less redundant deployments;

Data diversity applications can take advantage of data from multiple owners to
answer make decisions with a much broader view.

Moreover, the emergence of broker domains that can distribute data they col-
lected (locally or from others) leads to the detachment of consumers and producers.
We expect that large trees of brokers may form as these collect data from each other
to answer queries.

Take for instance the logical topology illustrated in Figure 4.1 derived from our
model in Chapter 3. Domain 4 (velocity monitor) is a subscriber for the data
streamed from the three domains on the left, and publishes an aggregated stream
for the three domains on the right. Here, data can be gathered from available
velocity meters, but in areas where they lack, vehicles such as taxis and private
vehicles (upon agreement) can be used to produce information on current road
speed. Taxi companies are known to keep location traces of their vehicles in order
to keep track of their usage [128] and private vehicles may agree to offer sporadic
location and velocity samples.

Different taxi companies can be seen as different domains and private vehicles
can also be seen as individual domains. Once collected, this data can be further
shared to other domains such as road planning, vehicle routing and incident response
in order to, respectively, plan road modifications, direct traffic to areas with faster
flow and detect collisions and other incidents.

While some information need to be exchanged among the different domains, it
is critical to respect the privacy concerns of each domain. In our example, private
vehicles provide individual velocity and location information instead of complete
GPS traces like taxis provide.

To define how information is exchanged among domains, the following subsection
explains the type of queries issued among them.
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4.1.2 Query Model for Inter-Domain Data-Streams

In our model, a consumer is not interested in the data of specific producers, instead,
it is interested in a type of data. Thus, a query describes the desired data based
on information such as type (e.g., temperature, velocity, wattage), cardinality (the
number of samples and sensors), frequency and location. For example, a query may
consist in asking for the humidity of soil in farms of a specific region, or in the
power consumption from at least 100 households every day. Such a description is
referred as the metadata criteria of a query.

When a domain receives a query, it has to find data that match its criteria.
That may involve the data from multiple producer devices, and in our case, it may
include the data from producers in different domains.

Additionally, consumers normally require preprocessed data instead of the raw
sensor samples. The desired computations normally include some form of aggrega-
tion function, i.e., a function that summarizes information on a group of values, as
a means to lower the verbosity of datasets. Descriptive statistics such as average,
minimum, histograms and density functions are examples of common aggregations
that strength privacy [39]. Queries might also include other operations such as
encryption, noise addiction, and filtering. We will use the generic term transfor-
mation to denote these computations.

As a typical query demands aggregated values (both spatially and in time), the
domain handling it is both in charge of retrieving the data and applying such trans-
formation to provide the desired granularity to consumers. For instance, the energy
consumption may be averaged monthly, and this simple transformation should be
applied as close as possible from the producer to save bandwidth.

Indeed, it is not only about scalability (by transmitting the resulting value,
the network load decreases), aggregations also enable privacy by masking specific
samples. When possible, a domain may apply such operations by itself or trust
others to do it.

We now take some time to discuss more formally the datasets and aggregation
functions that we consider in this thesis.

4.1.3 Datasets and Aggregation Functions

Aggregations are operations that provide us information on the population of a
random variable through multiple samples. We model these datasets as multisets
denoted M = (A,m) where A is the set of distinct data values observed and the
multiplicity function m : A→ N+ denotes the number of times the multiset contains
each value in A. We also define the sum operator to represent the merging of two
datasets as Mi +Mj = (Ai,mi) + (Aj ,mj) = (A′,m′) = M ′ such that A′ = Ai ∪Aj

and ∀x ∈ A′,m′(x) = mi(x) + mj(x). Notice that merging two datasets is an
anonymous operation since values in M ′ have no indication whether it originally is
from Mi or Mj .

We assume here that all datasets have a set of descriptive attributes. Take for
example the dataset of parking sensors deployed in Melbourne to monitor available
parking spots (see section 3.2.1). This dataset includes geographical location of
more than a thousand sensors that monitor bays of multiple parking lots. We
denote as metap the set of metadata of the dataset offered by producer p.
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Table 4.1: Example of aggregations functions (minimum, average, and histogram
functions)

D1 D2 D1 +D2
x ∈ A m(x) x ∈ A m(x) x ∈ A m(x)

3 2 7 3 3 9
4 1 8 5 7 6
7 3 3 7 4 1
8 4 1 2 8 9

1 2

min(D1 +D2) avg(D1 +D2) hist(D1 +D2)
x ∈ A m(x) x ∈ A m(x) x ∈ A m(x)

1 27 5.4 27 1 12
5 12
10 0

We say that a function f :M → M preserves the sum operation of multisets
iif f(f(Mi) + f(Mj)) = f(Mi +Mj). Commutative and associative functions
satisfy such a preservation of the result. Thus, applying such a function to merged
or unmerged inputs (and whatever their ordering) does not change the final value.

Finally, we denote an aggregation function as such if it preserves the sum
operation and also conserves the cardinality of the resulting dataset while de-
creasing its level of detail. More specifically, for a given aggregation function
f and a set of n input datasets M1,M2, . . . ,Mn such that, for easier notation,∑n

i Mi =M = (A,m) and f(M) = (A′,m′).∑
x∈A

m(x) =
∑
y∈A′

m′(y) and |A| ≥ |A′| (4.1)

Average, maximum and minimum are simple statistical functions that match
this definition of aggregation functions with |A′| = 1. Such operations result in a
multiset with a single value, i.e., f(M) = (A′,m′) such that |A′| = 1 and m′(y ∈
A′) =

∑
x∈Am(x).

Table 4.1 shows examples with two datasets D1 and D2. Observe that both
multiplicity functions resulting from the minimum (min) and average (avg) func-
tions indicate the number of input samples used as required in equation 4.1. This
displays the number of samples initially used and hints to the statistical signifi-
cance of the result. In the case of the average function, it is also necessary in order
to correctly average two already aggregated datasets by using the cardinality as
weights.

Such functions may however have different granularities as data can be ag-
gregated according to available attributes. A monthly average (timestamp-based
aggregation) would, for example, result in |A′| ≤ 12, i.e., at least one value for ob-
served months. With this method, one can indeed extract controllable approxima-
tions describing the most basic statistical indicators such as the standard deviation,
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median, quartiles or any of such descriptive information. We present the histogram
(hist) function in table 4.1 as an example of such a function. Here, we implement
this function with the value in the resulting set is the lower bound of the bins of
the histogram and the value of the multiplicity function is the number of samples
in the given bin.

Our objective here is just to exemplify the implementation of such functions.
It also serves to illustrate the need to maintain the sum of cardinalities as defined
in equation 4.1. In addition to the need to quantify the statistical significance of
an aggregation, we see that the implementation of these functions require it. For
the average function instance, applying the average function must account for the
values in m in order to correctly weight the number of samples in an aggregated
dataset.

The explanations of this section are the basic building blocks that we use for
future definitions of the problems we tackle in the remainder of this thesis and also
the solutions to these problems.

4.2 Problem Statement: Privacy Aware Inter-Domain
Streams

We assume that domains are curious but honest, i.e., they may read and take
advantage of all information they have access but will not stray from the protocol.
We consider this model as adversaries that modify or falsify data can be handled
by the NDN authentication and integrity verification that we use in our proposal.
Additionally, domains that stray from the protocol by leaking data indiscriminately
can be identified by watermarking operations [129].

Encryption would be the direct mean to hold back these curious domains. First
an access control system would have to be put in place to grant access to data. That
in itself would be a burden as this would have to be implemented through a trusted
third party [130, 131] or through a distributed database [89] which would respec-
tively grant power and information to an entity or would result in excessive public
information. Then, in-network aggregation would force domains to decipher, apply
transformations and finally recipher the result. Homomorphic encryption would
solve this issue, but we disregard it since it is limited to some transformations [54].

Thus, we seek to provide privacy without relying necessarily on encryption.
Domains apply transformations instead in order to make data private enough for
neighbors to access. And then, additional transformations are required to dissemi-
nate further the data to untrusted domains.

Transformations akin to aggregations and filtering can be exploited in order to
provide levels of privacy similar to that of anonymous datasets. Anonymous data
strategies rely on a tradeoff between utility and risk: aggregation decreases the level
of information but also makes de-anonymization harder [132].

We assume that peering domains trust each other, i.e., one domain can expect
its peers (neighbors) to respect the privacy policies they agree on. This trust can
be enforced with tools like watermarking [129] to verify that their peers correctly
respect defined policies. When a leak is detected, watermarking indeed allows
identifying the faulty peer in the chain. That is why we expect that watermarking
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may typically be part of the critical and minimal set of pre-transformations applied
before sharing any data stream.

In the following sections we detail our proposal for an architecture based on NDN
to provide multi-domain communication while respecting transformation require-
ments among domains. This structure both provides interoperability via border
routers that work on the same protocol and provide privacy by enforcing transfor-
mations in streams among domains.

4.3 Proposal: A NDN Multi-domain Architecture

To enable the exchange of datasets between multiple domains, we propose to con-
struct an overlay of border routers. These routers are in charge of defining what
data can be exported to respect a set of privacy requirements (defined by the owner
or administrator of the domain). The overlay connecting them is a logical topology,
built on the top of the trust relations between domains. Typically, a border router
defines which data it accepts to share with its peers: it defines the exporting poli-
cies attached to each of the dataset it exports. We model privacy requirements
(aka. exporting policy) as a collection of (anonymization) transformations that
must be applied to the exported dataset. For instance, a border router may filter
and aggregate a dataset before it exits the domain. It consists, respectively, in re-
moving personal data that may can lead to some kind of identification and sending
only the aggregated value to obfuscate precise data. We also make a distinction
between direct peers, that trust each other, and the rest of the network, reached
transitively, where additional transformations may be enforced.

Note that transformations are at the core of our multi-domain architecture.
Aggregations specifically not only hide individual data streams to respect privacy

domain1

border router

domain2

domain3

domain4

device

peers in the overlay
= dataset exported 
from X to Y

domain

physical link
corresponding
router in the 
overlay

R2 R1

R3
R4

dataset(R2)
dataset(R1)

dataset(R1+R2)

Figure 4.2: Overlay on top of multiple domains. This overlay forms a logical tree
for a given dataset (here customers in domain4 can directly access the entire set of
producers).
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but also allows for scalability. Let us consider Figure 4.2: each domain has a
border router in charge of exporting and importing data from/to other domains.
The overlay takes shape after the relationships among domains as they provide data
to each other, e.g., domain 4 is a consumer for domain 2, and a producer for domain
3. Here R4 aggregates the data from two domains (domain 1 and domain 2 being
here leaves of the tree).

In this chapter we assume that domains form trees in the overlay. A
tree structure prevents by design the occurrence of loops in the acquisition and
transformation of data. Indeed, a mesh topology may result in inconsistencies such
as averaging the same data multiple times. We tackle mesh topologies in the next
chapter.

A tree is enough to capture well existing commercial relationship among do-
mains. Indeed, domains will acquire data from other domains which likely bough
data from other domains, thus forming tress as this repeats. For example, smart
homes send their electricity consumption to their electricity provider, that re-sells
the anonymized dataset to a broker. Finally, the broker aggregates the data from
different electricity providers to sell a large and diverse dataset to R&D / marketing
/ commercial entities.

We choose to implement this overlay while relying on the Named Data Net-
working (NDN) paradigm. This clean-slate network stack is particularly relevant
for IoT applications as a NDN router manipulates chunks of data and not any more
opaque packets (see Section 2.1.4). Data can be cached in the network to reduce
the volume of packets to transmit when multiple consumers are interested in the
same popular data [60]. Typically, two or more consumers subscribing to the same
dataset exported by a domain, will receive the same continuous flow of data in a
multicast fashion. We also expand NDN cache mechanisms to detect overlapping
dataset. Indeed, the sequence of transformations for two exiting data streams may
be partially overlapping. For example, if one query requests the monthly average
of the year and another requests for the monthly average of the first trimester, the
data used to answer the first query can simply be filtered in order to answer the
latter. In that case, the border router detects the overlaps and uses its Content
Store to save transmissions.

Our overlay defines the underlying control plane of our NDN routing scheme.
When a query (NDN interest) arrives at a broker, this broker is likely to request
more data to answer it, and thus a fork occurs as the broker issues queries to
acquire this data. For example, when the necessary number of samples (the dataset
cardinality) cannot be achieved considering only local data. We let the definition
of more flexible and sophisticated routing schemes, using graph construct less strict
than a single directed tree per dataset, for our next chapter. The main challenge
being about avoiding data duplication without directly identifying the producers.

Next, we detail how the different building blocks of our solution interact. In
particular, we explain how the data is transformed during the forwarding process
to preserve the privacy constraints while improving the network performance.
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4.3.1 Border Routers

In each domain, at least one border router is in charge of defining what data may
be exported, where and how. In other words, each border router is a door for any
data stream to/from the outside. It represents the key location to control privacy
but also to enable re-usability. To fulfill its functions, each border router maintains
peering (point-to-point) connections with a selected set of other border routers,
which are part of different domains, i.e., its overlay peers.

To favor flexibility and enable the incremental deployment of relations between
domains, border routers form an overlay on top of the physical network, as illus-
trated in Figure 4.2. This NDN overlay is a logical topology deployed on top of the
physical one. Border Routers can use any secure tunneling mechanisms for domain
inter-connection.

First, a domain decides whether it aims to expose a portion of its data to its
peering border routers based on it’s service needs, commercial contracts, etc. In
other words, it accepts (or not) to reply to NDN interests that it receives from its
peers. A peering border router can aggregate several datasets to create a novel
one, exported to its peering domains. Globally, this overlay forms a directed tree
that may not match the physical topology. In Figure 4.2, an arrow (A → B) in
the overlay represents the dataset exported between domains A and B. The direc-
tion of a link describes the relationship between domains: A provides a (possibly
aggregated) dataset with a given semantic, granularity, and cardinality to domain
B. For instance, let us assume that R2 and R4 are peers: while they are connected
with a tunnel which consists in the physical path (R2, R3, R4) (one of the two best
shortest path between them), R2 provides its dataset to R4 that can then share it
with R3 (along with the dataset of R1 – having the same semantic).

To summarize, a border router executes the following tasks:

1. it collects data from its domain, according to internal protocols, and only
externally exposes parts of streams that the owner of the data desires to
export;

2. it verifies that the interests it receives are compliant with the defined policies.
Else, they are silently dropped;

3. it constructs a reply, possibly aggregating and transforming data before it
exits the domain. It uses directly its content store if the data is present,
otherwise relaying the sub-interest(s) to its peers.

In the next section we discuss how to illustrate how this overlay can be used to
aggregate and transform data.

4.3.2 Illustrating the Capacity of Aggregation

Let us consider a simple scenario to compare a flat approach (Fig. 4.3a) to our
inter-domain aggregation model (Fig. 4.3b). The figures here show the content
store (cache storage) of NDN that records all data that is passes through routers.
From it we can see the data that is forwarded and that is
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In a flat NDN approach, each producer sends its raw stream directly to the con-
sumers. This strategy is efficient only if several consumers (here C1 and C2) are
interested in the same data, e.g., if several consumers are monitoring the same sen-
sors. An intermediary NDN router (e.g., R1) may have already the popular chunk
of data (measurements) in its cache to reduce bandwidth consumption. However,
consumers need to apply by themselves the aggregation function relevant for each
of their applications. It also disseminates raw data throughout the infrastructure,
which is prejudicial to privacy if not ciphered since intermediate routers may take
advantage of their contents.

On the other hand, our aggregation-based strategy processes the datasets di-
rectly inside the network. For instance, R2 is both a consumer and a router as it
consumes the streams from its domain, and generates the average value (2) over
two samples; this dataset is then re-exported to R1. R3 behaves similarly, only
exporting aggregated data. As with the flat approach, the data can also be cached
efficiently, but here Content Stores contain only the aggregated values, not each
sample individually. While less flexible (data cannot be reused for queries with
other transformations) it not only brings scalability but also privacy. Final con-
sumers never access and process the individual raw data and cache sizes are much
smaller.

Figure 4.4 provides an overview of our solution. It shows the different engines
that our border router uses to process a query. Here, a consumer in domain 4 creates
an interest to a dataset offered by domain 3 that is the result of the aggregation
of the data from domains 1 and 2. The NDN routing engine (see section 2.1.4) is
responsible to find the dataset given its name. Then, the policy engine enforces
the transformations that are applied by the transformation engine. In the following
sections e detail this figure and the engines of our architecture.
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Figure 4.4: An overall illustration of our multi-domain overlay solution with all its
components.

4.3.3 Policy engine

Each domain selects what data it accepts to export, and with which (trusted)
peer domain(s). The data that exits a domain may have been generated locally
or received from another domain, indistinctly. In particular, a border router may
aggregate several data streams for anonymization purposes.

Each border router relays the interests of consumers. Inversely, at the other end
of the chain, interests received by border routers are forwarded up to the concerned
producers (border routers do it only if the data is not already present in their
content store). Then, the data stream flows in the reverse direction of the interests,
from producers to consumers, populating content stores of relaying border routers
in the meanwhile. This way, the same transformed and aggregated streams may be
re-used for similar interests of other consumers.

The policy engine is in charge of defining policies and exporting them to peering
domains. More precisely, each border router associates a set of transformations to
each of its datasets (e.g., all temperature measurements). Then, border routers
push each policy to its peers, denoting characteristics of the datasets that can be
shared, e.g., their size, the nature of their content, and the applied and requested



50 Chapter 4. NDN Overlay for Privacy and Reusability in Multi-Domain IoT

transformations. This exchange between border routers of adjacent domains is the
basis of the control plane. It is indeed enough to install the required export rules
in each policy engine of the overlay (see peering links in Fig. 4.4 with the requested
transformations). When a border router later receives an interest, it has just to
parse the policies it received from its peers to verify if it can send a reply or not.
Thus, an interest is typically forwarded by the different border routers, so that the
corresponding domains form finally a logical (sub)tree, rooted at the consumer, and
where the leaves correspond to the producers.

The policy engine maintains a peer-to-peer connection with one border router
for each domain with which it accepts to exchange data (export or import). The
policy engine is in charge of constructing the exporting policies. These are composed
of:

Peers list: list of domains with whom to maintain a connection to export/import
data.

List of usages: usages that are authorized by the owner (commercial, market,
research, etc). Nowadays, most data owners consent to only some specific
usages of their data [15]. Usages correspond typically to keywords (see [133]),
appended in the metadata.

Blacklist: for the same reason, a list of domains may be prohibited. These domains
cannot access concerned data as long as the trust between peers is not violated.

Transformations: how the data should be transformed before being exported (i.e.,
which mathematical transformation with which parameters). The applied
sequence of transformations provides privacy guarantees.

Typically, the policy engine associates an exporting policy to each available
dataset (see Figure 4.4), and the border routers enforce the policies. In other words,
a peer receives an interest only if its dataset complies with the policies defined in
the interest.

When the border router manipulates a chunk of data, it enforces the associated
exporting policy. We consider here two types of enforcement:

Source transformations are applied when the data exits its producer domain;

Sticky transformations are applied by the peer receiving the data before it re-
exposes the data in its turn (forwarding).

Indeed, we consider that the privacy concerns increase for an indirect peer, and
a domain may force the insertion of additional transformations. We assume that a
border router trusts its peers: they will respect the privacy constraints it defined
(sticky transformations, usage, etc.)

4.3.4 Routing engine

The overlay of border routers is used when external data is required to be exchanged
with other domains. For example, when an application needs a large volume of data,
e.g., information from numerous producers aggregated in a large stream, multiple
domains will be solicited.
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4.3.4.1 Interest and subscription through the overlay

The routing engine (which is implemented in the border router) is in charge of re-
ceiving and handling interests (Fig. 4.4). In our proposal, each interest is composed
of the dataset description with the desired chain of transformations. In addition, the
usage and the consumer domain are appended to the interests’ parameters to check
compliance with privacy policies. We also append transformations and parameters
natively to the name of the interests so that (transformed) data-streams can be dis-
tinguished from each other. We encode this by embedding each transformation into
a name component, e.g., /ProducerName/DataSet/$average?every=5min-
utes. The exact naming for datasets, transformations and parameters are left as
an open issue, but some form of unified semantics has to be used.

If the data to answer a given interest is not available in its content store, the
routing engine has to ask a peering border routers. First, it asks the policy engine
all the datasets it knows (characteristics and imported policies). Then, it selects a
sufficient collection of datasets to answer the interest (that maps to a collection of
peers). Interests are issued to this collection of datasets in order to enable streams
to answer the original interest.

In Figure 4.4, the consumer (in Domain4) asks its policy engine for the list of
datasets it knows. Here, the border router forwards the interest to Domain3, which
has exported the policy corresponding to the requested data. The border router
of Domain3 receives the interest, and solicits its policy engine: the two datasets
from Domain1 and Domain2 are required to form an aggregated data stream (to
respect for instance a minimum number of measurements). Thus, in such a case, it
forwards the initial interest to its two peers via their border routers. Note that it
generates two novel interest packets to subscribe to the data from domains 1 and
2.

4.3.4.2 Policy enforcement

When the routing engine receives an interest, it has to verify that it is authorized to
answer. In other words, it has to verify that the resulting data stream respects the
exporting policy. Thus, it asks the policy engine the list of policies in its domain
and verifies that a dataset is compliant with the interest.

Formally speaking, an interest is accepted if the requested transformation policy
is at least as restrictive as the exported one, and if the usage is authorized:

∃t ∈ Fsrc | t ⊆ Fint ∧ Uint ∈ Upol

Pfnint /∈ BLpol ∧ ∃t ∈ Fstik | t ⊆ Fint ∧ Uint ∈ Upol

(4.2)

Where Pfnint denotes the prefix name of the interest’s issuer, BLpol the blacklisted
domain prefixes for this policy, Fsrc and Fstik respectively the sequences of trans-
formations of the source and sticky policies, Fint the sequence of transformations
of the interest, Uint the usage specified in the interest, and Upol the set of usages
allowed by the policy.
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4.3.5 Transformation engine

The border router has to apply transformations to the data-streams that exit its
domain. To both improve the privacy and performance in terms of network load,
transformations, and aggregations, in particular, should be applied as close as pos-
sible to producers. The transformation engine is in charge of executing these trans-
formations. More precisely, the routing engine sends chunk(s) of data to the trans-
formation engine, so that it can execute a specific piece of code, and send back the
result to the routing engine. To be generic, we may rely on unikernel functions [69],
which are functions retrievable by name (like NDN data packets) and run on top
of lightweight virtualization. We let the exact definition of a global naming scheme
of these transformations to future works.

4.3.6 Cache management and re-usability (routing engine)

Different interests issued by different consumers may re-use the same streams, at
least partially. Thus, our solution identifies this overlap, to avoid forwarding the
same data twice. If partial computations can be re-used as they are cached, we can
rely on the NDN cache without any further actions. A border router has just to
cache additional transformations (if required).

If an interest requires a chain of transformations which is a superset of the chain
of an interest already being answered, the cached content is directly re-used. For
instance, an interest may specify a set of transformations {T1 T2 T3} that is more
specific than an existing cache entry (e.g., {T1 T2}). Formally, the routing engine
can re-use data in cache if the associated set of transformations matches exactly
the first transformations of the interest:

∀i ∈ [0, kc],Fcached(i) = Fint(i) (4.3)

With {Fcached(i)}i∈[0,kc] the sequence of transformations for the cached data, and
{Fint(i)}i∈[0,kq ],kq≥kc the sequence of transformations specified in the interest (kc
and kq respectively denoting the number of transformations, applied on the same
prefix name, for cached data and the interest). Basically, the routing engine relies
on longest prefix lookup for IoT interests such as enforced in Eq. 4.3 but only if
Eq. 4.2 is verified. Then, it applies the transformations that are not present in the
cached data (i.e., {Fint(i)}i∈]kc,kq ] if kq > kc).

To improve caching efficiency, we force each border router to cache systemat-
ically all the chunks after the minimal set of transformations as specified in the
exporting policy. This sub-chain corresponds to the smallest sequence in common
for all the interests that match the dataset. Optionally, the border router may also
cache the data which has undergone a subset of the transformations defined for
popular interests. This extension may help to save computational resources in the
border router if many interests overlap homogeneously.

Let us consider the example illustrated in Fig. 4.4. Domain3 is in charge of trans-
forming the data between Domain4 and Domain1/Domain2. It collects the data,
which has already been transformed with operation T1, and stores it automatically
in its cache. That is, Domain3 stores the raw data received from Domain1/Do-
main2, T1(data x). Since its exporting policy specifies that the transformation T3
has also to be applied before the data exits the domain, Domain3 can also put this
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additional transformed data in the content store to save computational resources
(if another interest asks later for the same data).

4.4 Performance Evaluation

In order to evaluate the benefits of our solution, we assess its performance with
simulations. We consider queries where consumers are interested in the average
value of a collection of measurements. This transformation helps to preserve privacy
by hiding the individual values. Let us denote Si =< ci, vi > a sampled value Si

that consists of a number of measurements ci and its value vi. Transformation
function tf takes as input a collection of samples Si∈[1,k] and returns:

Stf =

〈 ∑
i∈[1,k]

ci,

∑
i∈[1,k] vi · ci∑

i∈[1,k] ci

〉
(4.4)

We may implement similar transformations such as Min(), Max(), or more complex
series transformations based on wavelets [134].

4.4.1 Simulation setup

We implement and compare the two following approaches:

Conventional NDN subscriptions: consumers directly subscribe to multiple data-
streams to reach the desired sample size. Thus, all computations are executed
by the consumer. This is the best comparison we can muster since non NDN
approaches do not directly handle pieces of data, and transformations would
not be so straightforward to implement;

Transformation overlay: our solution that exploits an overlay of border routers.
These border routers implement the transformations, so that only aggregated
data is forwarded across the network (cf. section 4.3).

At the time of this writing, this was the best comparison we could provide
since privacy by enforcing anonymization and aggregation is not largely studied by
the research community. While we could define a middleware entity that collects
streams and employs NFN [68] or NFaaS [69] to provide in-network aggregation, it
would be a contribution in of itself, and we chose not to go into that direction.

We extended the ndnSIM simulator (https://ndnsim.net/) to support all bor-
der router features and stream-based subscriptions. Our implementation is freely
available9.

To display our results we plot violin plots in the following figures. They allow
us to display the distribution of data instead of simple average values. Observe that
some of the vertical axis are not continuous. These are needed due to the large
difference in scale among distributions. Our axis display the following metrics to
evaluate our solution into multiple dimensions:

9https://icube-forge.unistra.fr/rcaminha/nanoas-proof-of-work

https://ndnsim.net/


54 Chapter 4. NDN Overlay for Privacy and Reusability in Multi-Domain IoT

Table 4.2: Simulation parameters for the random topology

Parameter Value
Simulation time 2 hours
Repetitions 30
Interests sampling period uniform ∈ {1, 2, 4, 8} min
Physical Network Topology
Number of domains 20
Additional Edges 10
Network links 10Mbps, 10ms delay
Logical Topology
Number of Producers 250
Logical trees branching factor uniform distribution, ∈ [2, 5]

Size of content stores measures the amount of data in the content store of each
node (aka. the cache size). We rely on unlimited content stores to analyze
the total amount of data required for ideal re-usability conditions;

Network load measures the sum of data transmitted by all devices, to quantify
both bandwidth requirements and battery consumption utilized by streams;

Normalized setup delay measures the time between the transmission of the con-
sumer interest and the arrival of the first data packet for the corresponding
stream. The value is normalized by the sampling interval of each consumer;

Hop count is the average number of hops in the physical network topology be-
tween a consumer and the producers which have provided the data for its
interest;

Data spread counts the number of NDN routers that store each chunk of data. A
large data spread means that a private chunk may be largely disseminated.

Our topology generation proceeds as following (see table 4.2 for parameter values
used in our topology generation):

1. We generate random physical topology of domains (i.e., network topology).
To control the density and ensure connectivity, we first construct a random
tree of domains. The 20 domains are put into an ordered array and each is
connected to a random one from those after it in the array (uniformly). Then,
we add a fixed number of edges between random pairs of domains;

2. we construct an overlay of domains (i.e., which border routers are logical
peers). A random root is selected, and we recursively expand the tree, by
connecting its current leaves to a random number of non-connected domains
until all domains have been picked. We control the random number of children
with a branching factor parameter (see table 4.2);

3. producers are evenly distributed in the leaf domains;
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4. we place the consumers uniformly in all domains. Each consumer generates
an interest where the number of requested values is chosen uniformly between
the minimum size of a domain (i.e., its number of producers), and the size of
the whole sub-tree.

It is worth noting that, the overlay uses longer routes since physical routes must
follow the links of the overlay. Paths in the conventional NDN approach are shorter
since data is disseminated via shortest path in the physical topology.

4.4.2 Simulation results
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Figure 4.5: Content store usage of Border routers: our transformation overlay does
not require to collect and spread all the raw data.

We first measure the size of the content store for both solutions (Figure 4.5).
The re-usability provided by the conventional NDN cache engine is remarkable,
many consumers re-use the same data, and the size of the content store does not
increase drastically with the number of consumers. However, retrieving all the raw
data is expensive. In other words, although the same chunk of data may be re-used,
requesting a large volume of raw data increases the need for large content stores.
On the contrary, our transformation overlay based solution allows each NDN router
to store the transformed chunks of data. Thus, the volume of data to store in caches
is at least 4 times lower in our simulations.

Then, we also measure the network load for all the routers (Fig. 4.6). Again,
while each chunk of data may be efficiently disseminated in conventional NDN, it
is not enough to limit the network overhead. On the contrary, the transformation
overlay, which is first designed for a privacy purpose, is also able to reduce signifi-
cantly the network load. Our proposal can greatly improve scalability. Note that
both approaches reach a plateau: with the number of consumers increasing, the
interests start to necessarily present a strong overlap, and the cached data becomes
sufficient for any novel interest (i.e., the content stores already have all the data).
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Figure 4.6: Data transmissions on Border routers: our transformation overlay scales
well regarding the network load for large number of consumers (and requests).
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Figure 4.7: Spread of content in the network

Figure 4.7 focuses on the privacy characteristics. The data spread measures, for
each dataset, the number of nodes whose content store has at least one raw sample
of the given dataset. Basically, a chunk of data is produced and forwarded inside
the domain, but the spread is limited by our transformation based overlay that
transforms it before sending it to the consumer or the next level of the tree. The
conventional NDN approach spreads the raw data in all the networks, the spreading
being significant even if shortest routes are used. While data may be ciphered, it
results in the need for complex access control schemes, which can become very
challenging in complex multi-domain situations. Besides, the consumer still knows
the identity of the producers since they get directly their data. We argue that it
leads to a possible privacy leak if no further mechanism is here implemented to
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anonymize the data.
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Figure 4.8: Path size between consumers and producers

Finally, figure 4.8 illustrates the average physical hop count from the producers
to the consumers. Indeed, our transformation overlay has a cost: domains have
to forward data through the overlay, leading to suboptimal, longer paths. We
can see that our transformation based overlay constructs physical paths twice as
long as with the conventional NDN solution. It is the price to pay for enabling
transformation based privacy: a domain does not trust blindly any other domain,
and data has to be forwarded through detoured paths in our transformation based
overlay. This increase is highly dependent on the number and locations of producers;
if domains collect data from far away domains, this increase will be much larger,
but if data is collected from directly connected peering domains, this increase may
be much lower.

4.5 Conclusion and Future Works

We have presented a novel privacy-aware solution to safely exchange streams of pri-
vate data in multi-domain IoT networks. We proposed an overlay of NDN border
routers which forward the anonymized data that producers accept to export. More
precisely, the control plane we propose leads to a tree structure that exploits ex-
porting policies describing which data can be exported, at which extent, for which
usage, and after which transformations. Data is transformed and cached before ex-
iting the domain so that privacy concerns are respected while enabling re-usability
using smart content stores looking at overlaps between interests among transformed
datasets. Our simulations highlight the scalability of our solution. It is both able to
enable fine-grained privacy rules along with efficient large scale multi-domain data
exchanges. In particular, applications interested in aggregated data acquisition can
strongly benefit from our proposal.

It would be interesting to incorporate NFN in our architecture as a way to
define transformations or a way to enforce sticky policies. The named functions
could be implemented as containers that both apply transformations and sign data.
If data can only be signed through containers defined in the sticky policy, it would
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be necessary to apply it in order to prove authenticity to other domains.
In the next chapter we relax the assumption that our overlay naturally forms

a tree. We provide a publish-subscribe scheme to correctly aggregate data from
arbitrary graphs of domains while respecting aggregation requirements.
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In situations with high density of devices, e.g., smart cities, we envision that an
infrastructure of interconnected systems (domains) will naturally emerge. We also
expect domains to share resources such as sensors and communication infrastructure
with each other in order to remain scalable.
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Such partitioned architecture enables the aggregation of data from multiple own-
ers through a shared infrastructure [135]. Consumers issue queries to other domains
describing which data should be collected in terms of its descriptive metadata, e.g.,
location, data type, and ownership. The data that matches the criteria is then
collected and aggregated to answer the given query.

This implies interoperability and creates security issues: a domain needs to be
able to acquire and correctly aggregate data from multiple domains, while respect-
ing privacy constraints. In particular, we need to avoid data leaks, and let other
domains decide their own privacy constraints.

In this chapter, we go further in the direction of the previous chapter by dropping
the pre-existing tree-like topology (Figure 4.2). Domains then may peer with any
other domain as they please. The overlay then turns into a mesh as domains provide
data to each other.

This represents a challenging routing problem: the same anonymous data should
not be aggregated several times as domains forward and aggregate it. Indeed,
data may be forwarded through cycles or data may arrive to the same destination
through alternative routes. Then, as domain collect, aggregate and disseminate
data anonymously, it is possible for the same data sample to be aggregated multiple
times and the result of the aggregation to become biased.

Aggregating data requires exploring non-intersecting datasets (see Sec. 4.1.3)
while verifying minimal privacy requirements, here based on k-anonymity. A bor-
der router needs to identify datasets to publish, i.e., set of producers (with their
metadata) from which an aggregated stream may be constructed.

Instead of conventional aggregation methods of creating trees of domains to
avoid repeated aggregation, we propose here to explore more flexible aggregations
where data may transit until aggregations comply with privacy requirements. We
tackle the problem by having producer domains publish their datasets and then all
domains incrementally create aggregations from sets of non-overlapping datasets,
and then, domains use the published aggregations to subscribe to queries based
on metadata criteria. We will see here that we achieve greater aggregations by
having data loop around in the overlay (without overlapping datasets) in order
to acquire enough producers to reach minimum aggregation requirements and be
further disseminated into the network.

The following section provides a better definition of the challenge tackled. It
is important to remind that here we also are discussing a problem using concepts
discussed in the previous chapter (see Section 4.1).

5.1 Problem Statement: Correct and privacy-compliant
aggregation

To provide a global interconnection, peering domains may exchange locally pro-
duced data. Some domains act as publishers while the others may be subscribers
to them. A domain may also forward data that was generated elsewhere if it is able
to respect privacy concerns (based here on k-anonymity). In that case, a domain
may be both subscriber and publisher.
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5.1.1 Meshed overlay structure

We model the relationships among domains as a directed graph G(V,E) where each
vertex is an IoT network and an edge u→ v exists if network u is a provider of data
to its peer v. In real systems, an edge represents a commercial relationship among
domains. These relationships bind receivers to respect the restrictions of providers
(privacy, metadata, etc.). In particular, a receiver can forward a data stream only
if it respects the k-anonymity property as defined by each of the producers. These
entities are able to act as brokers between other entities by disseminating infor-
mation acquired from others. Indeed, as a broker disseminates data acquired from
its own data providers, it provides data to entities without any relationship with
the data’s producer. Due to the lack of guarantees between the producer and the
consumers of a broker, the broker is the last entity capable of protecting the data.

5.1.2 Privacy requirements: minimum aggregation

We consider that data is private enough to be disseminated into the network when,
according to the requirements of its producer, it is sufficiently aggregated. More
specifically, direct peers may acquire data without aggregation, because of mutual
agreement. However, these peers are not authorized to forward the data until it
meets the privacy requirements of the producers.

Our privacy requirements are based on k-anonymity which determines that data
cannot be distinguished from k-1 other samples. Producers reach privacy guarantees
similar to k-anonymity by aggregating data with at least k-1 other producers.

When a dataset is composed of several producers, a border router must respect
the highest privacy requirement among all of them. Let P be the set of producers
part of a dataset and req(p) be the minimum aggregation requirement of each
producer p ∈ P . The border router must respect the following minimum aggregation
requirement:

req(P ) = Maxp∈P (req(p)) (5.1)

While other privacy metrics may be implemented such as l-diversity, t-closeness
and ε-differential [93] we chose to model our privacy settings over k-anonymity
due to its simplicity. A producer can immediately understand the level of privacy
acquired by k-anonymity and adjust the k parameter accordingly. Other metrics
such as ε-differential require elevated levels of knowledge on statistics that make
the choice of producers more obscure.

It is worth noting that respecting the minimum aggregation requirements creates
constraints on the forwarding scheme. In particular, a producer may specify a
very high minimum aggregation requirement, that prevents any peering domain to
aggregate it. For example, in figure 4.1, if any producer has a requirement larger
than three, the domain in the middle is not able to aggregate the data streams. In
conclusion the topology of domains must be sufficiently dense, and/or the minimum
aggregation requirement sufficiently low to enable a global dissemination. However,
we are convinced that’s the cost to pay to respect privacy.
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5.1.3 Properties of Valid Aggregations

We target to create valid aggregations in a multi-domain environment. We propose
the following three properties must be preserved when computing aggregated data.

P1 Only data of interest must be involved: Subscribers describe their data
of interest in their query. Our subscription scheme must identify the relevant
set of Matching Producers (MP), i.e., the producers whose metadata match
the query.

P2 Enforce non-intersecting anonymous datasets: the aggregation is ap-
plied recursively to form a stream. Obviously, the same producer must not
appear several times in this aggregation: we need an aggregation tree. Else,
considering the same sample value multiple times leads to bias.

P3 Aggregation requirements must be preserved: the aggregation must
respect the minimum privacy requirement of each producer. This way, we
enforce k-anonymity datasets [136]. We assume here that we trust peering
domains, i.e., they will respect our privacy requirements defined in our con-
tract.

In the following section we describe our proposal to discover datasets and valid
combinations of datasets that may be collected from other domains.

5.2 Proposal: Anonymous pub-sub of unbiased aggre-
gated data

Our proposal builds on top of our NDN-based architecture (Chapter 4) by adding
the mechanisms for domains to correctly aggregate data. Now considering a mesh
of interconnected domains in the overlay, we propose here a publication and sub-
scription mechanism to enable the detection of overlap and to construct globally
consistent streams. Our publish/subscribe scheme behaves in two phases:

1. Publication: routers disseminate the valid combinations of producers. Each
combination forms a dataset that respects the properties defined in Sec-
tion 5.1.3;

2. Subscription: the consumer is able to identify the producers that match a
query, and to construct a valid set of streams with the combinations discovered
during the publication stage. Possibly, the union of combinations found may
be a subset of the matching producers, when some producers have e.g., privacy
requirements impossible to respect.

5.2.1 Producer IDs and metadata

Our method maintains correct aggregation through the use of producer IDs that
identify the data used in aggregations. These IDs are locally created by each pro-
ducer via e.g., the use of the hash of the network address and the metadata. Thus,
other domains, apart from peers, cannot associate producers with their data but are
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still able to identify overlapping datasets. Through their use we provide both prop-
erties P1 and P2. If the hash function is sufficiently well-chosen, we can neglect
the probability of collisions. If a collision occurs, it means that, unfortunately, the
two corresponding producers cannot be merged in the same stream, which doesn’t
seem such a stringent drawback.

A producer associates its producer ID and descriptive attributes (i.e., metadata)
to the data it generates. In particular, the subscriber exploits the metadata to
identify the data of interest of each query, forming the MP set. The descriptive
metadata of producers forms a descriptive space, where each dimension of this
space consists of all possible values of the attributes of producers. Similarly, the
metadata criteria of queries identify areas of this descriptive space. Thus, matching
metadata to criteria is simply checking whether a given producer is inside the area
of the criteria.

Highly descriptive metadata may turn possible the association of producers and
IDs. Thus, we assume that some level of anonymization is applied, such that real
entities cannot be associated with IDs. For example, even if the ID is anonymous,
a precise address will give away the identity of a producer.

5.2.2 Metadata similarities

When a border router has to construct the lists of datasets to publish, it must
merge some datasets. Else, the number of offers would increase exponentially. We
propose to merge datasets that contain similar producers. More precisely, we define
the metadata similarities as the distance in the descriptive space. Such distances
are easy to measure for continuous attributes (e.g., geolocation). For categorical
attributes (e.g., device types), we need another quantification function [137]. We
assume here a similarity function ∆f exists. It quantifies the similarity between
two datasets.

In our example from Figure 4.1, domains 1, 2, and 3 produce data with meta-
data containing their geolocation, as well as the measurement and sensor type, its
accuracy, etc. Domains 1 and 2 have very similar metadata: a border router will
merge preferentially domains 1 and 2. Domain 3 will likely be merged with more
similar domains.

Figure 5.1 illustrates this similarity. We see the overlapping areas of interest of
two queries, one selects the space of any speed measurements and the other selects
vehicles speedometers. Observe that the datasets 1 and 2 are identical on this
descriptive space and any query for one will also select the other. This serves to
show that an offer created with similar producers will be frequently used. We detail
the creation of offers in the next section.

5.2.3 Publication phase

Each border router has to identify the datasets it can publish, i.e., share with its
peers. An aggregation offer is a pair o = (AS, r) where AS denotes the set of
producer IDs that are being offered in offer o and r denotes the minimum require-
ment of these producers in offer o. Such an offer denotes that any combination of
producers C ⊆ AS may be enabled as long as it is compliant with the minimum
requirement, i.e., |C| ≥ r.
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Figure 5.1: Illustration of vertex location in the descriptive space of our smart city
transportation example of figure 4.1

On a high level, publication consists in filtering and/or transforming aggre-
gation offers from incoming neighbors (input offers) and exporting aggregation
offers to outgoing neighbors (output offers). Let us consider in Figure 5.2 the
use case described in Figure 4.1 (page 41) with a focus on offers. This figure de-
scribes the output offers of domains at different rounds. For example, at round 1
(Fig. 5.2a), the domain 1 exports an offer ({1}, 2), meaning that it exports data
from the producer ID 1, that has to be merged with at least 1 other producer before
being exported (to respect a minimum aggregation requirement of 2).

The minimum requirement is implemented as a sticky policy in our multi-domain
architecture. Domains collect data directly with any source transformation defined
by producers but here we impose that an aggregation is also added as sticky pol-
icy. Any aggregation may be applied here: for example average, minimum, and
histogram.

We assume, for simplicity, that the publication happens in a synchronized man-
ner, i.e., messages are exchanged at the same time and instantaneously. Thus, we
consider a discretized time, counting rounds. In figure 5.2, we specify the first
round for which a given offer starts to be published. At the beginning of each
round, a border router receives offers, process them, and publishes them at the
beginning of the next round.

5.2.3.1 Completing offers to respect privacy requirements

Producers initially disclose their dataset as an offer with AS containing only their
local ID and r being its own requirement (see round 1 of figure 5.2). Such offers
naturally have a requirement larger than the available number of producers, i.e.,
|AS| < r, which we denote as incomplete offers. Analogously, we denote offers
which already have enough producers to comply with the requirement, i.e., |AS| ≥
r, as complete offers.

Complete input offers are directly disseminated (published) as output offers.
They already are compliant with the minimum requirement of all producers, and
thus must be Oppositely, incomplete offers cannot be disseminated as they do not
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Figure 5.2: Extended smart city transport example and offers published

respect the privacy constraints of producers. The border router must extend these
incomplete offers before publishing them.

We extend these offers by using producer IDs from other offers. Border routers
find non-intersecting sets of producers IDs that can be acquired from different of-
fers, i.e., compliant with producers requirements. Then, the union of these sets of
producers IDs can be merged into a novel offer. Essentially discovering data that
can be aggregated together to fulfill privacy requirements.

The minimum aggregation requirement of the novel offer must be equal to the
exact cardinality of the union of the sets found to enforce that each set is collected
in full to ensure compliance with requirements. By this we also enforce that the new
offer’s requirement is larger than each producer requirement, as each set respects the
minimum of each of their producers. As this is done several times among the border
routers, the aggregation requirement of offers will be way above the requirements
of producers.

In conclusion, we guarantee properties P2 and P3. When offers are merged,
the peer cannot extract where data has been aggregated. In particular, it hides
the logical topology used to construct the aggregated set. We also hide the privacy
requirements of each producers. This anonymity represents one of the strengths of
our solution.

In figure 5.2 the broker 4 receives 3 incomplete offers during the first round.
Thus it creates the novel offer ({1, 2}, 2) to be published during the second round
(Fig. 5.2b). Similarly, the broker 6 can combine two incomplete offers into ({10, 11}, 2).
The broker 4 cannot construct, during the first round, a valid complete offer with
the producer 3: its minimum aggregation requirement is too high. It needs to wait
for the round 4 (Fig. 5.2d), to combine it with the (complete) offers ({10, 11}, 2),
({1}, 1), and ({2}, 1).
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5.2.3.2 Avoid duplicated aggregated sets

Classical routing protocols use the concept of loop: a cycle exists in the routing
topology that prevents the packet to be delivered. Concretely, the same router must
not forward twice the same packet. In our architecture, a loop exists only when the
data of the same producer is aggregated several times in the same stream. Thus,
each router has to aggregate streams that don’t overlap, to guarantee property P2.

Besides, a router considers only offers that can complete existing offers in a
better way. More precisely, a router considers only the first peer that announces
a specific offer. If the same offer is received from another peer later, it is just
discarded since it may be a forwarding loop for this offer. The combination of these
two mechanisms (i.e., non overlapping aggregated set and first received offer) avoid
the creation of any loop in the routing topology.

Let us still consider figure 5.2. In round 3 (Fig. 5.2c), domain 5 receives the
offers ({1, 2}, 2) from domains 4 and 6. Then, at round 4, it could generate the
invalid offer ({1, 2, 1, 2}, 4) but it would be invalid due to repeated producer IDs.
The same will happen at round 5 (not illustrated here) by round 6 since domain
6 could generate the invalid offer ({1, 2, 3, 10, 11, 10, 11}, 7) In our algorithm, we
enforce empty intersections when merging offers.

Authorizing cycles in the physical topology allows us to increase the number of
possible offers. Let us focus on the producer 3 which has a large privacy requirement
in figure 5.2:

1. Broker 6 can aggregate the stream from producers 10 and 11, and publishes
this offer to its peers (step b);

2. Node 3 receives this offer, that it can forward to 4 (step c);

3. Broker 4 can then aggregate the data from individual producers 1, 2, and 3
with the stream ({10, 11}, 2). This novel offer (({1, 2, 3, 10, 11}, 2)) is sent to
its peers 6 and 5 (step d).

It is worth noting that a cycle exists in the physical topology: node 6 first publishes
the offer with only 10 and 11, which is augmented by node 4 with producers 1, 2
and 3. However, the data of the same producer is not aggregated several times in
the offer: we guarantee property P2. A loop can be easily identified by any broker:
two different offers cannot be merged if their aggregated sets overlap.

5.2.3.3 Algorithm to construct complete offers

Let us define the conflict graph CG(V ′, E′) where the vertices V ′ are the avail-
able combinations of all valid combinations of producers (V ′ = C∗). An edge
exists in the conflict graph between two vertices if the corresponding sets intersect
(E′ = {(C,C ′)|∀C,C ′ ∈ V ′, C ∩ C ′ 6= ∅}). Figure 5.3 illustrates the conflict graph
for border router 4. Creating novel offers from incomplete offers consists in explor-
ing the complement of CG to find maximal cliques: all the offers in a clique are
pairwise disjoint. Thus, creating offers is thus a NP-Hard problem as an exponential
number combinations of offers is possible, and each offer can potentially possess an
exponential number of combinations of producers [138].



5.2. Proposal: Anonymous pub-sub of unbiased aggregated data 67

{1} {2}

{3} {10,11}
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Figure 5.3: Conflict graph (CG) of the border router 4

An exhaustive exploration is too expensive for large instances of the problem.
Thus, we rather propose a heuristic based on two criteria:

• We stop the completion as soon as we construct a given number of valid output
offers nOmax;

• We also stop after exploring the conflict graph a given number of times nCmax

as the requirement may be too high to create a complete offer.

We propose to add as many IDs as possible to complete an offer. This greedy
approach prevents easy de-aggregation of data due to similar combinations of pro-
ducers being offered. Consider the offers for round 4 in fig. 5.2, in addition to
({1, 2, 3, 10, 11}, 5), it is also possible to create ({1, 3, 10, 11}, 4) and ({2, 3, 10, 11}, 4).
If these offers are published, a consumer may construct one stream for ({1, 2, 3, 10, 11}, 5)
and another one for ({1, 3, 10, 11}, 4). In that case, the consumer may de-aggregate
the two streams to infer the data produced individually by the producer id 2, which
is clearly not suitable.

As already discussed in section 5.2.2, a border router should merge offers with
similar metadata. Combinations of producers IDs also describe an area of the
descriptive space. To use a given combination to answer a query, the combination
should be fully within the area of interest of a query (Property P1). Thus, data
is more likely to be selected by the same query if they are similar, i.e., close in
the descriptive space. During publication, we limit the creation of offers where the
similarity among producers in AS are above a certain minimum threshold value,
∆min, i.e., ∆f(AS) ≥ ∆min.

Algorithm 1 details the actions taken at publication time:

1. We must first identify all producers IDs which are part of incomplete offers.
In lines 1 to 5, we find the list of such IDs and their requirement. These
incomplete offers are identified to be completed by other existing offers.

2. We initialize in line 6 the counters used to enforce the limit on offer creation
and combination exploration. This way, we enforce the nOmax and nCmax

limits: when these counters exceed their respective limit, we stop the offer
creation for that round (lines 24 and 26).
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Table 5.1: Table of notations

Variable Meaning
O− Set of input offers of local node
O+ Output offers of local node
O+

n Output offers of local node to node n
u Local node
N+ Outgoing neighbors of local node
∆f Similarity function
∆min Minimum similarity required for offer creation and query

matching
nOcounter Counter of offer creation
nOmax Limit of offers that may be created per incomplete offer
nCmax Maximum number of combinations explored during sub-

scription
C∗ Set of all valid combinations from offers available to local

node
Cval(o) Set of valid combinations from a given offer o
AS Aggregated set of given offer
r Minimum requirement of given offer

req(p) Minimum requirement of producer p
I(nPmin, criteria) A query for at least nPmin producers that match given

metadata criteria
metap Set of metadata from data shared by producer p
MP Set of matching producers to a given query criteria
BS Set of bootstrapper producers (r = 1)
kmax Maximum aggregation requirement among producers

3. The main loop of our algorithm (lines 7 to 27) expands offers one by one. We
first copy the initial set of IDs into variable AS∗ and expand it by adding
producers from incomplete offers one by one as the set complies with their
minimum requirement. We also verify that for each producer p, there is no
intersection, and it is similar enough to the others (line 11). After expanding
the set AS∗ as much as possible, we create an offer if any novel producer was
inserted (lines 19 to 22). The novel offer must have requirement equal to the
size of the set in order to prevent invalid combinations of producers.

4. The algorithm ends by returning an updated set of outgoing offers (line 28).
These are the complete offers from O+ in addition to the offer created with
the domains local data. The set returned is expected to be used as input for
the next execution of the algorithm on the next round of message exchange.

5.2.4 Subscription phase

A consumer needs to exploit the available aggregation offers received during the
publication to answer a query. Our subscription algorithm takes a query, and the
set of offers available as input. Then, it needs to explore the combination of offers



5.2. Proposal: Anonymous pub-sub of unbiased aggregated data 69

Algorithm 1: Generating output streams from input streams
Data: Input offers store O−, Previous output offers O+, Similarity

function ∆f , Minimum similarity for offer creation ∆min, Limit of
combination exploration nOmax, and Limit of offer creation nOmax.

Result: Updated output offers O+.
1 iAS ← ∅ // Find producer IDs in incomplete single offers from neighbors

and their requirements

2 foreach (AS, r) ∈ O− | r > 1 ∧ |AS| = 1 do
3 iAS ← iAS ∪AS
4 p ∈ AS, rp = r // Store individual requirements

5 end
6 nOcounter ← 0 ∧ nCcounter ← 0 // Initialize counters of offer creation and

combination exploration

7 foreach (AS, r) ∈ O+ do // Begin expanding offers

8 AS∗ ← AS // Copy starting set of producers to expand on

9 foreach p ∈ iAS in increasing order of requirements do
10 if |AS∗|+ 1 ≥ rp then // If set is large enough for next producer

ID,

11 if p 6∈ AS∗ ∧∆f(AS∗, {p}) ≥ ∆min then // datasets are

disjoints, and similar enough

12 AS∗ ← AS∗ ∪ {p}
13 end
14 end
15 else
16 break // Stop adding producers if set has not grown enough

17 end
18 end
19 if AS∗ 6= AS then
20 O+ ← O+ ∪ {(AS∗, |AS∗|)} // New offer from extended set of

producers

21 nOcounter ← nOcounter + 1

22 end
23 nCcounter ← nCcounter + 1
24 if nOcounter > nOmax ∨ nCcounter > nCmax then // Stop iteration if

any limit is reached

25 break
26 end
27 end
28 return {(AS, r) ∈ O+ | r ≤ |AS| ∨ is local data} // Only announce

complete offers

that maximizes the number of producers it can collect data from.
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5.2.4.1 Filtering offers of interest (matching producers)

A consumer can create a list of all known producers, which is the union of all the
input offers. From this list, a border router extracts a set of MP that match the
criteria of a query, and then the consumer needs to select a set of offers to be used
to acquire the aggregation of producers in MP. The query specifies a minimum
number of producers nPmin that have to be present in the answer. The objective of
our subscription algorithm is to maximize the number of matching producers part
of this aggregation to make the resulting dataset richer.

We first need to filter the offers of interest. Formally, the consumer needs to
identify all offers o = (AS, r) such that:

∃C | C ⊆ AS ∧ C ⊆MP ∧ |C| ≥ r (5.2)

For example, if we have the matching producers, 1 and 2 (Fig. 5.2), the offer
({10, 11}, 2) cannot be used as {10, 11} 6⊆MP .

5.2.4.2 Identification of non-intersecting offers

The challenge is then to identify offers that don’t intersect, and such that their
union maximizes the number of producers. Indeed, we cannot have intersecting
offers in the combination, else, the data from the same producer may be aggregated
several times, creating statistical bias (property P2). Similarly, maximizing the
number of producers in this combination allows the consumer to collect a richer
dataset. Similarly to the publication problem, we must find maximal cliques in the
conflict graph in order to maximize the number of producers offered to the consumer.
Thus, this is also an NP-Hard problem as several combinations of producers may
be possible.

Here we propose two stopping rules for our heuristic:

1. We stop when we reach the minimum number of producers required (nPmin)
instead of continuing searching for the maximal number of producers;

2. We also impose a limit nCmax on the conflict graph at subscription in order
to avoid excessive computation.

5.2.4.3 Exploration algorithm for subscription

Algorithm 2 details the actions taken at subscription time. It proceeds in the
following way:

1. First, the consumer identifies the set MP that match the metadata criteria
defined in the query I (lines 1 and 2). If the number of matching producers
is too low, we must discard the query (line 3) as we are certain that no reply
can be generated;

2. We identify the set of useful ID combinations (line 6). These are the ones that
offer combinations of producers which are contained in MP (property P3).
To simplify our pseudocode, we use the Cval function to denote all valid
combinations from offer o = (AS, r), i.e., Cval(o) = {C ⊆ AS | |C| ≥ r}.
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Algorithm 2: Enabling streams to answer a consumer request
Data: Output offers O+, Request I(nPmin, criteria), Similarity function

∆f , Minimum similarity ∆min, and Exploration limit nCmax

Result: Matching producer IDs and set of corresponding combinations to
satisfy the interest I, or two empty sets if the interest cannot be
satisfied

1 Pavail ←
⋃

o∈O+ AS(o)
2 MP ← {p ∈ Pavail | metap matches criteria} // Producers that match

requested metadata

3 if |MP | < nPmin then
4 return (∅, ∅) // Not enough producers for I
5 end
6 C∗ ←

⋃
o∈O+ {C ∈ Cval(o) | C ⊆MP} // All usable producer combinations

7 nCcounter ← 0 // Initialize combination exploration limit

8 foreach C ′ ⊆ C∗ do // Extract disjoint combinations of producers that

match the requirement nProd

9 if nCmax < nCcounter then // Verify limit of combination exploration

10 return (∅, ∅) // Stop if limit has been reached

11 end
12 else
13 nCcounter ← nCcounter + 1
14 end
15 Ans←

⋃
C ′ // Compute possible answer aggregated set and intersection

16 if
⋂
C ′ = ∅ ∧Ans ⊆MP ∧ |Ans| ≥ nPmin then // Make sure answer is

of interest, disjoint and large enough

17 return (Ans,C ′)

18 end
19 end
20 return (∅, ∅) // No matching was found

3. Similarly to algorithm 1, we limit the exploration of combinations via a
counter per query (line 7). This counter is incremented for each failed at-
tempt to find a valid answer to the query. The query is rejected if the limit
is exceeded (line 9).

4. We search for a combination that respects the following conditions (lines 8 to 19):

(a) it only combines offers with producers that match the metadata criteria
of I (property P1);

(b) it results in a valid aggregation by having an empty intersection (prop-
erty P2);

(c) the number of producers is enough to satisfy the query I.

If such a combination cannot be found, we reject the query (line 20).
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5.3 Performance Evaluation

To assess the performance of our proposal, we evaluate it on dense topologies com-
posed of numerous producers attached to several broker domains. Producers provide
their information to multiple brokers that acquire the data and, in turn, disseminate
the resulting aggregated information to other brokers (and their customers). This
setup is challenging as the same piece of data can be provided multiple times via the
meshed overlay. Resulting in artificially generate biased information (intersecting
producer sets). We indeed aim to evaluate our proposal in a difficult scenario for
performing the aggregation correctly.

For each new offer, our method selects the incomplete offers to merge based
on similarities (see section 5.2.3.3). In practice for this evaluation, we use the geo-
graphical distance as a similarity metric. We assume here that the descriptive space
of producers is simply the normalized physical coordinates (a square space with side
equal to 1). Similarity among metadata is assumed to be the complement of the
distance among producers (regarding their physical 2D locations) with respect to
the eccentricity of the two-dimensional Euclidean space (i.e., the maximal distance
in our square in practice). Thus, the similarity between two sets of producers P1

and P2 can be described as follows:

∆f(P1, P2) =

∑
∀p1∈P1∧p2∈P2

(Dmax − d(p1, p2))

|{(p1, p2)|p1 ∈ P1 ∧ p2 ∈ P2}|
(5.3)

where d(x, y) is the euclidean distance between producers x and y and Dmax is
the eccentricity of the considered Euclidean space (

√
2 in our example). With such

a valuation, brokers aim to aggregate and offer data from producers that are similar
to each other, i.e., datasets which are sufficiently close in space to each other.

Besides, it is worth to notice that the minimum aggregation requirement of
each producer may have a significant impact on the convergence of our scheme.
Indeed, a large minimum aggregation value implies an increase in the number of
incomplete offers, such that it becomes more and more challenging to complete
them. To analyze the impact of such a requirement on the efficiency of our scheme,
we simply rely on an uniform distribution to explore its effects: each producer selects
uniformly its minimum aggregation requirement in the interval [2, kmax] where kmax

is a tunable parameter (limited to 10 in our simulations). We also model a given
subset of permissive producers, i.e. having a minimum requirement of 1, so that
the system can bootstrap. We denote BS this set of bootstrappers.

For each simulation, we generate 30 random graphs composed of two parts
having the following characteristics:

1. 30 brokers belonging to a strongly connected graph. We first use the Erdös-
Rényi method [139] such that each edge has a probability of 0.15% to exist
and then check whether the resulting is indeed strongly connected (otherwise
we generate a new one and so on).

2. 170 producers are attached to the graph of brokers. More precisely, we connect
each producer to its 3 closest brokers (in space). This way, brokers offer data
of similar producers according to the metadata considered.
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Table 5.2: Evaluation parameters

Simulation parameter Value unless specified
Number of graphs generated 30
Broker vertices 30
Producer vertices 170
Edge probability between brokers 15%
Producers metadata model Location in 2D square with side

equal to 1
Brokers connected to each pro-
ducer

3 closest brokers in 2D square

Queries issued in each graph 50 to random brokers (uniformly
picked)

Minimum similarity ∆min 0.7
Offer creation limit nOmax 10
Combination exploration limit
nCmax

100

Size of matching producer set
|MP |

50

Number of bootstrappers |BS| 20
Maximum aggregation require-
ment kmax

10

Finally, we generate 50 queries randomly while we set the combination explo-
ration limit nCmax of our scheme to 100 (we limit to 100 the number of combinations
of offers to explore, cf. algo 2). Each query is generated by a broker randomly se-
lected in the graph, and corresponds to picking collecting the data of producers from
a given area in the 2D space. In practice for the evaluation, the selection criteria10

(line 2 of alg. 2) of a query matches with the |MP | = 50 closest producers related
to a randomly picked location. Note that, at the end of our analysis, we modify this
static |MP | value into a range to better understand its impact. Generally speaking,
all the parameters used in our simulations are listed in table 5.2: we provide default
values in use when we are not varying them.

5.3.1 Aggregation Upper Bound: Unlimited Walk

To analyze the efficiency and the limits of our pubsub mechanism, we construct
here an upper bound as some queries may be with an optimal solution. Obviously,
such an optimal approach is inapplicable in realistic situations since it requires a
complete central knowledge of the topology, and potentially a complete exploration
of each offer combination. Intuitively, an aggregation that respects the minimum
requirements of each associated producer can be forwarded to any broker to be
completed: the aggregation grows iteratively. Through an unlimited walk, we can

10While we try to remain generic in the pseudo-code, the matching criteria needs to be actually
specified in the implementation, potentially according to the kind of criteria but it is left for future
works.
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Algorithm 3: Unlimited walk. Aggregation upper bound achievable for
a given request in a given topology.

Data: Set of brokers B, Set of matching producers MP , Requirement rp of
each producer p ∈MP .

Result: Set of producers that are collectable UW .
1 UW ← ∅ // Begin considering empty aggregation

2 ∀b ∈ B,Pb ←MP ∩N−(b) // Find producers which are one hop away from

each broker

3 while ∃b ∈ B ∧ ∃p ∈ (Pb \ UW ) | rp ≤ |UW |+ 1 do // While there are

brokers that can still aggregate

4 while ∃p ∈ (Pb \ UW ) | rp ≤ |UW |+ 1 do // Aggregate data from novel

producers

5 UW ← UW ∪ {p ∈ (Pb \ UW ) | rp ≤ |UW |+ 1}
6 end
7 end
8 return UW

feed an aggregation as long as we identify at least one remaining broker that can
complete it with some locally connected producers. It is worth noting that we
have to run this algorithm for each topology, query and distribution of minimum
requirements.

Our upper bound (Algorithm 3) maintains the list of producers that have al-
ready been aggregated. Recursively, we identify a broker that can complete this
aggregation with a set of local producers such that, (i), each minimum aggregation
requirement is respected, and (ii), all these local producers are part of the match-
ing producers (i.e., they match the query’s metadata). Initially, the aggregation is
build considering a single broker having a set of locally connected matching pro-
ducers that can be aggregated together while respecting the minimum aggregation
requirement.

5.3.2 Metrics

We compute the following metrics for each combination of parameters:

Normalized answer dataset size: the number of matching producers that can
be constructed in response to a specific query by using available aggregation
offers. Larger is better: the subscriber can acquire larger datasets than ex-
pected as long as the set of producers match the query (it may be included in
a larger compliant set). This value is normalized by the number of produc-
ers matching the query issued (|MP |). We plot distributions in the form of
violin plots with our publish-subscribe algorithm. With our unlimited walk
algorithm we only need to plot lines as it does not exhibit a large variability
as observed with our heuristic.

Offer table size: the number of IDs in the offers available at each broker. Assum-
ing that each ID is stored as a hash, we calculate how many bytes would be
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Figure 5.4: Limits of aggregation for very restrictive queries

required to store all available offers. We compute this sum using hash sizes
for the md5 functions.

Processing time: amount of time taken by our algorithm. For the publication
stage, we measure how long each message exchanging round takes. For the
subscription stage, we measure how long it takes to find the set of offers to
use to answer the query.

Our figures display these metrics through the use of violin plots. These plots
show the distribution of values in the vertical axis. Additionally, our plots include a
mini box plot in the middle of each violin to indicate the mean, quantiles and whisker
intervals. These graphs should allow the reader to get insight of our population of
samples.

5.3.3 Completeness of the subscription

We measure the size of the normalized dataset according to the minimum aggre-
gation requirement (Figure 5.4). Using a small minimum aggregation requirement
mitigates how the system is constrained: the consumers can then easily construct a
subscription that collects the data from all the matching producers especially when
the number of matching producers is high enough (e.g. 25).

With a large set of matching producers, we maximize the chances to combine
the data generated by different producers. For instance, when we have 25 matching
producers (i.e., 15% of the producers), the subscriber can construct an aggregation
with all the concerned producers, whatever the minimum aggregation requirement
of each of them is.

With a few matching producers (e.g., 10, 5% of the producers), the minimum
aggregation requirement starts to be a constraint. Since the minimum aggregation
requirement is probabilistically chosen between 0 and Kmax, the subscriber may
start to collect a suboptimal set of matching producers only when Kmax exceeds
15. In these conditions, the subscriber can only construct a subset of the matching
producers that may be acquired with the ideal, upper bound algorithm. In practice,
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(a) Aggregation capacity at different rounds
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(b) Duration of each publication round
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at different rounds

Figure 5.5: Convergence of the publication step

when such extreme situations do not occur (the ideal method is then successful),
we will see that our method is able to perform pretty well.

5.3.4 Convergence of the publication step

We first study the convergence of the publication phase, by measuring the average
size of the dataset at the end of each round (Fig. 5.5a). Our system looks to converge
quickly: each broker is able to complete the incomplete offers. After only 4 rounds,
the subscriber is able to construct a dataset that respects the privacy constraints
by selecting a compliant set of offers. The number of rounds depends both on
the eccentricity of the space (its maximal distance) and the minimum aggregation
requirement, that may generate a larger set of incomplete offers.

Then, we measured the computation time per round for the publication step
(Fig. 5.5b). The computation time increases with the number of rounds: each
broker has more offers to filter and to complete. Mechanically, the computation
time increases. However, it converges after only 6 rounds. The computation time
even decreases slightly for more than 7 rounds: the incomplete offers are easier to
complete thanks to the offers diversity. In any condition, a broker spends less than
2 seconds to compute the combination of offers. Since such dissemination is done
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Figure 5.6: Impact of kmax

once (it is independent of the number of queries), this seems reasonable.
Finally, we measured also the computation time for the subscription (Fig. 5.5c).

While it increases at the beginning since the subscriber has more offers to filter, it
converges fast and the computation time even decreases. More offers are available,
and the subscriber can efficiently the whole dataset by parsing the most promising
set of offers. Thus, our subscription algorithm is efficient to construct a privacy-
aware set of producers matching the query. A few dozens of milliseconds are at
most required to identify which offers to combine to construct a valid dataset.

5.3.5 Impact of the privacy requirements

We now measure the impact of the privacy requirement defined by the producers
(Fig. 5.6). We only report the metrics at the end of the last round, after the sys-
tem has converged. We first focus on the dataset size (Fig. 5.6a). With a larger
average kmax, the normalized answer dataset decreases. Indeed, we create proba-
bilistically more privacy constraints, and we restrict the number of producers from
which the subscriber can collect data. However, even with very strict constraints,
the consumer can subscribe to a significant set of producers, that have probabilis-
tically a smaller requirement. Thus, our system is robust to heterogeneous privacy
constraints.

Let us focus now on the size of the offers’ table for each broker (Fig. 5.6b).
The number of offers is very small when privacy is straightforward (kmax = 2):
any broker is able to combine one or two local producers. Thus, no incomplete
offer exists, brokers do not need to explore and construct complex sets of offers.
A few offers for each couple of attached producers is sufficient to cover the whole
dataset. More privacy means a larger number of offers to mutually combine at first.
Inversely, a very high privacy implies that incomplete offers at some point cannot
be combined, and are not announced. The number of offers present in the table
decreases.
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Figure 5.7: Effects of ∆min on metrics
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Figure 5.8: Effects of bootstrapper producers on metrics

5.3.6 Impact of similarity

Let us now focus in Figure 5.7 on the impact of the similarity metric, and in
particular the similarity threshold value in algo. 2.

When the broker does not consider similarity when merging different offers
(∆min = 0), the number of offers in the table is maximum (Fig. 5.7a). Indeed,
a broker tries to maximize the number of combinations to not restrict the possibil-
ities for subscription. Interestingly, the number of offers may significantly decrease
(by 85%) when considering a very large similarity threshold value when merging
offers. What is really interesting is that merging together similar offers (in our
case from geographically close producers) has negligible impact on the subscription
phase (Fig. 5.7b). The subscriber is able to construct a dataset of at least the same
size with matching producers, whatever the ∆min value is. Our method merging the
data according to its similarities is efficient to reduce the number of offers without
significant concession on the accuracy. It is worth noting that multi-dimensional
similarities may be more challenging as it may limit this effect in more complex and
large scale scenarios.
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Figure 5.9: Effects of nOmax on metrics

5.3.7 Impact of bootstrapping producers

Let us now focus on the impact of presence of bootstrapping producers, i.e., pro-
ducers without any privacy requirement (req(p) = 1). They can be used by any
broker to complete their incomplete offers, to allow later the subscriber to select a
larger dataset. In particular, they allow a broker to reduce the number of offers to
explore (Fig. 5.7a). Indeed, a broker does not need to generate a very large set of
offers: combining one incomplete offer with a bootstrapping producer is sufficient.
Mechanically, it reduces also the computation time (Fig. 5.8b), by almost 50% with
60 bootstrapping producers (one third of the producers). It is worth noting that
this complexity reduction doesn’t impact the accuracy. Indeed, the normalized an-
swer dataset size remains unchanged (and thus not plotted): the subscriber can still
use the same dataset for the answer, which is less restrictive than those without
bootstrapping producers.

5.3.8 Offers limit creation

We now verify the impact of the parameter limiting the number of offers to construct
in algo. 1. As soon as a broker has constructed nOmax offers, it stops the exploration.
Our scheme is scalable since the nOmax has a limited impact on the computation
time (Fig. 5.9a). In the extreme case (nOmax = 0), the exploration stops very soon,
and the computation time is drastically reduced. The impact on the normalized
answer data size is limited: the broker is still able to complete most of the offers.
The minimum value is slightly slower since the most sensitive queries are more
complicated to be fulfilled.

5.3.9 Selectivity of the query

Finally, we measure the impact of the query’s selectivity, i.e., the number of pro-
ducers that match the query (Fig. 5.10). With a small number of producers (e.g.,
|MP | = 10), the graph of producers is very sparse. Thus, it is very challenging
to complete the incomplete offers (i.e., the matching producers that have a high
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Figure 5.10: Impact of the number of producers that match the query (|MP |)

minimum aggregation requirement). Finally, the subscriber is able to construct a
dataset of only 60% of the dataset which may be obtained with our centralized
upper bound. Even if a solution exists to aggregate data, the brokers are so distant
that they cannot combine their offers (they are distributively filtered before). How-
ever, as soon as the number of matching producers becomes reasonable, our scheme
is efficient to construct an accurate set of offers.

We see a slight decrease in our aggregation metric as we increase the number
of producers selected (fig.5.10a). This is bound to happen with two factors that
impede finding a combination of offers to collect these producers. First, finding
the set of offers that are non-overlapping becomes increasingly harder as the set
increases. Second, The limit of combinations will not allow for finding a perfect set,
which limits our subscription even if there exists a set of offers to answer the query
perfectly.

Obviously, it impacts the computation time (Fig. 5.10b). This is due to the
larger set of possible aggregations to answer the query (see line 6 of algorithm 2).
Intuitively, a broker is directly attached to a larger set of matching producers. Thus,
the number of incomplete offers decreases, as well as the number of offers at all.
Even in the worst case, the subscription phase needs a few seconds to compute the
largest set of matching producers while still respecting the privacy requirement of
each of them.

5.4 Conclusion and Perspectives

We presented a publish-subscript method to share aggregated information among
anonymous groups of IoT devices (domains). Our method protects the privacy
by enforcing a minimum number of producers that must be aggregated together
in order to have their information disclosed. The details of each producer are
significantly reduced while maintaining information of the population.

We propose an algorithm to construct offers, that can be published, i.e., dis-
seminated in the network. Each offer specifies the level of privacy that must be
respected. Inversely, we also propose a subscription algorithm able to combine all
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these offers to answer to a query. It takes care of not using several times the same
data in the aggregation tree which is implicitly constructed at subscription.

Our performance evaluations highlights the efficiency of our algorithms to iden-
tify correctly the offers to publish and to combine. We show that our method
quickly reaches acceptable levels of aggregation within the possibilities allowed by
the network. We also show that our method can be executed by resource con-
strained IoT gateways in order to disseminate and collect data in a multi-domain
infrastructure.

While we solve the issue of correctly aggregating data among domains, our
scheme still has the major flaw of stream deanonymization by comparing streams
with similar aggregation sets. Consider that a single consumer or broker is able to
enable streams {1, 2, 3} and {2, 3} to acquire the average values of the producers,
and we denote mults and vals as the resulting multiplicy and average value of the
answer dataset of stream s. From the equation of unweighted average, we can derive
the value of stream {1} by using equation 5.4.

mult{1} = mult{1,2,3} −mult{2,3}

val{1} =
(
mult{1,2,3} · val{1,2,3} −mult{2,3} · val{2,3}

)
÷mult{1}

(5.4)

With some adjustment we can make this equation generic to obtain subsets of
streams that use the average function, other functions require different mathemat-
ical formulas. Moreover, the issue is that domains may enable streams that do not
comply with minimum requirement of producers (Property P3) to acquire subsets
of streams that do not comply with the minimum requirement of producers

Indeed, a broker should be able to detect enabled streams that allow for this and
disable them. This filtering may be applied both during publication (not dissemi-
nating partially overlapping offers), and during subscription (active streams must
concern non overlapping producers). If filtering is applied during the publication
step, the opportunities of aggregation may be greatly reduced, so filtering only ac-
tive streams would be more interesting. Additionally, domains can choose which
streams to filter depending on criteria such as:

pricing more expensive streams replace existing cheaper streams if these novel are
more rewarding;

privacy level streams of more domains replace streams with fewer domains, which
result in more privacy since data is more aggregated

However, this is a local decision and streams may be collected through non-
intersecting paths that would make detection impossible in this manner. A global
means of enforcing minimum differences among domains is necessary.
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Chapter 6
Conclusion and Future Research
Directions

This thesis has explored the privacy issues of querying data from multi-owner IoT
environments. We base our privacy model on domains: groups of IoT devices within
the same scope of ownership, objective, and/or location. Privacy boundaries take
shape after the frontiers of these domains as we assume that data is allowed to
freely transit within a domain due to ownership or consent.

Our first contribution (Chapter 3) defines a multi-domain model where do-
mains exchange data with each other through a scalable approach to provide pri-
vacy by design. Our model includes formally defined queries issued among do-
mains. These queries are formed in such a way that private data is secured through
anonymization. We then take advantage of our model and two freely available
datasets to define a network framework to evaluate the feasibility of our approach.
In particular, we show that LoRa networks can be used for dense multi-domain
networks if deployed with enough density.

Our multi-domain framework serves as a concrete case study of multi-domain
scenarios which are not yet widely deployed. It shows the characteristics of private
data exchanged among these domains, i.e., network flow, attributes and processing.

We initially developed this model in order to use it for our own simulations.
However, this model proved to be limited in terms scalability in the number of
domains. We could not stress our proposals to show the full benefits of reuse and
complex aggregation paths. As you read, we rather used more generic and random
evaluation scenarios. They allowed us to highlight the scalability of our proposals
in the number of domains and the paths of aggregations used by domains to respect
privacy constraints.

Nevertheless, our model can be re-used by others to study their proposals for
multi-domain networks. It shows realistic traffic generation and chains of services
with formally defined data streams. Proposals on base station deployment, service
chaining and query handling can directly use this model. Either to exemplify the
implementation of a real world application in their proposal or to simulate their
proposal using the data found in the datasets.

83
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Our second contribution (Chapter 4) is about an architecture for inter-domain
communication which we have based on the Named Data Networking (NDN) net-
work stack. By using NDN, we leverage producer and consumer authentication,
semantic queries, and efficient dissemination of information via its cache mechanism
and detection of redundant transmissions. Our architecture enforces transforma-
tions, i.e., preprocessing operations, to data that transits among domains, which
might be used for privacy or enrichment of data, e.g., filtering, aggregation and
masking. By imposing the NDN protocol, we also provide interoperability among
domains that use different internal protocols.

The proposed architecture dissociates from other proposals for privacy among
independent IoT networks that primarily employ complex encryption systems to
lock data under different levels of security. We investigate the use of anonymization
to both maximize reuse of data to answer multiple queries and ensure privacy. Our
performance evaluation shows that we acquire great gains of performance with the
reuse of anonymized data even if we do not provide full opaqueness.

Our third contribution (Chapter 5) improves our previous contribution by al-
lowing domains to self organize in a more complex overlay topology. We indeed
drop the strong assumption of our second contribution: domains are not any more
organized as a tree to correctly aggregate data. We expect domains to provide data
to each other simply based on commercial relationships which would likely result
in the same data being sold to several domains. This might result in repeated data
collection and aggregation if data is anonymous and indistinguishable. Thus, we
provide a publication scheme to disseminate datasets and incrementally create com-
binations of producers that are compliant with the privacy restrictions of producers
and without repeated data entries. We also provide a subscription scheme that uses
information acquired during publication to answer metadata-based queries.

Our results show that we quickly reach the upper bound of aggregation possible
while respecting minimum aggregation requirements. They also show that our
scheme hardware requirements are well within the capabilities of resource restricted
devices.

The contributions of this thesis provide us insights on the problem of privacy
via anonymization for inter-domain communication. In the next section we discuss
what contributions we can envision to expand the work of this thesis and also discuss
what other directions may be taken to study the overall research question of privacy
aware inter-domain communication.

6.1 Short Term Research Directions
We begin with short to medium term directions that can be directly taken from the
work in this thesis.

6.1.1 Evaluation framework and LPWAN for multi-domain

We first discuss our multi-domain scenario and LPWAN evaluation (Chapter 3)
where some clear paths can be taken to expand the model and improve our evalu-
ation to give more insight on LPWAN evaluations.
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Regarding the model, the part of the contribution that most relates to this thesis,
it can be expanded with more domains and queries if we use available datasets. We
picked NYC as the real-life location of our model due to the amount of data available
though official datasets11 or APIs such as Google Maps12 and TomTom13.

For example, the traffic volume for various years and time windows is publicly
available and can be used to model a domain that monitors road incidents and
alerts vehicles in the area. This domain would broadcast messages to the area
around incidents to notify drivers and prevent further accidents. Messages would be
dispatched at moments of unusual traffic found through anomaly detection [11] with
the dataset. Extending the framework would allow it to be used for more complete
simulations and possibly turn it into a benchmark for multi-domain proposals.

Our LPWAN evaluation can be easily expanded with different technologies.
Narrowband IoT is a good candidate as it is another leader in the field of LPWAN
in addition to LoRa [79]. While we use the mathematical model to simulate LoRa,
Narrowband IoT simulation models are available for NS314 and Matlab15. It would
illustrate the difference between the two technologies as Narrowband IoT is able to
reach higher data rates but may not be able to handle as many devices as LoRa
per base station.

Tackling the problem of base station deployment is also an interesting research
path. With our framework we can simulate network traffic while observing spacial
and temporal variation with great granularity. However, this is not true for all real
life datasets, missing data limiting the utility of these datasets [140]. Thus, it would
be interesting to gather different deployment methodologies [141] and study how
they behave under different levels of details and missing data on expected network
traffic. In other words, by simulating aspects of real datasets such as missing
data and different levels of granularity (data collected daily/monthly/weekly) we
investigate how resilient these are to imperfect data.

6.1.2 Multidomain architecture

Our architecture allows for domains to enable streams that on their own are valid
(i.e., respect privacy requirements and aggregated without overlap). However, the
enabled streams may be deanonymizable if they partially overlap and the aggre-
gation function allows for it. We show in Section 5.4 that we are able to acquire
unaggregated data of a single domain with equation 5.4. The problem can be gen-
eralized as: given two streams S1 and S2, it may be possible to acquire S1 \ S2 or
S2 \S1. Consequentially, the size of these differences must be larger than the mini-
mum requirements of the individual producers that compose them. More formally,
given that rp is the minimum requirement of a producer p, if producer p ∈ S1 \ S2

then |S1 \ S2| ≥ rp or if p ∈ S2 \ S1 then |S2 \ S1| ≥ rp.
This is quite challenging because it implies the choice of active streams and

the optimization of some metric, e.g., privacy level, acquisition cost or monetary
reward. Any novel streams enabled must verify this property with all existing

11http://opendata.cityofnewyork.us/
12https://developers.google.com/maps
13https://developer.tomtom.com/
14https://www.nsnam.org/wiki/NB-IOT
15https://fr.mathworks.com/help/lte/nb-iot-channels.html
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Figure 6.1: Example of deanonymizable streams

streams. This can be enforced by each domain checking novel streams only against
those locally enabled or also include all streams enabled by other domains. While
local verification ensures privacy with the scope of a domain, domains may not
detect some situations where a malicious domain acquires deanonymizable streams
through two or more different domains.

Let us consider the scenario in Figure 6.1. Here, domain 4 acts as a broker for
domains 5 and 6 and supplies their aggregation to 2 and 3 but while 3 simply for-
wards this data, 2 will forward it after further aggregating the data of 7. Assuming
all minimum requirements equal to 2, all enabled streams are valid according to
properties described in Section 5.1.3. Observe that domains 2 and 3 cannot locally
detect the two deanonymizable streams {5, 6, 7} and {5, 6} that are being supplied
to 1.

We visualize two ways to implement global validation. The first would be to
employ a trusted third party that keeps tracks of available streams: domains request
to enable streams and this would allow it. This is not viable in our multi-owner
scenario as it would centralize too much control and turn it into a single point of
failure and give it all the information. The second mean of implementation would
be to employ a distributed database such as a blockchain. While we remove the
“all seeing” trusted third party, now all domains see all streams, which in of itself
is too much public information, and we also include a lot of overhead to maintain
the blockchain. Indeed, both options have their own drawbacks.

At publishing time, domains advertise their dataset and incrementally offer valid
aggregations to others. We idealize a simple heuristic that could be used to minimize
the problem by increasing the size of datasets (|AS|) in offers. It would enforce
large aggregations by replacing smaller aggregation offers with larger ones. By
enforcing larger aggregations we increase the probability of enabled streams resisting
deanonymization. The exact changes to algorithm 1 is left to be formulated.

This however would make answering streams much more difficult since we would
make available offers larger and more difficult to comply with line 16 of algorithm 2
where that verify that all data being aggregated matches the criteria of the query.
Thus, analyzing the effects of this onto the aggregation capabilities is necessary.

Now, we change the discussion to more long term research directions that could
be taken for inter-domain communication.
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6.2 Long Term Research Direction

I have two directions for long term research. The first continues the work but by
taking differential privacy as the base for the privacy model. The second diverges
with the use of federated learning techniques.

6.2.1 Inter-domain privacy model based on differential privacy

A more endearing endeavor would be to replace k-anonymity as the base of inter-IoT
privacy restrictions. A good candidate to replace k-anonymity would be differen-
tial privacy that dictates that query answers do not significantly change (based
on a given ε parameter) depending on database entries (more formally defined in
page 18). By creating a distributed privacy model based on the ε-differential met-
ric, we could prevent the extrapolation of information from different query answers.
Thus, solving the biggest problem in our last contribution.

It is already possible to reach approximated ε-differential datasets in a dis-
tributed manner [102, 103]. But it would be interesting to investigate this in multi-
domain infrastructures.

By aggregating data from two or more datasets independently ε-differential
datasets, the property (Eq. 2.2) is likely to be broken. The intuition is based on the
diversity among the data of domains: different data subjects and locations. This
means that entries from one set can be very different from the other and resulting
queries are more affected by individual entries.

The different requirements of producers also translate to multiple ε parame-
ters. Then, as datasets anonymized with different parameters are aggregated with
each other, the resulting dataset must be anonymized to reach the more restricting
(lower) value of ε.

Indeed, we need to adjust the privacy restrictions of merged datasets in order
to make it compliant with producer’s restrictions. This operation would be applied
to anonymize the aggregated dataset after every aggregation. However, since the
method to turn data ε-differential is through the addition of noise, the utility of
data may be quickly lost due to the constant addition of noise. Making it necessary
to investigate if such an approach is actually practical.

6.2.2 Federated learning approach

On the other hand, federated learning has taken increased attention from the lit-
erature to aggregate data. While this solution is not to aggregate information, it
can be used to privately acquire information on the population. We go into further
detail in the following section.

In federated learning, the system aims at training given machine learning model
with the data of several users. However, each user data can only be accessed by
that user and a global model cannot be trained by the merged dataset of all users.
This makes each user locally train a model and transmit it to a concentrator entity
that will train a global model from all the local models. Finally, the global model
is distributed to all users[142].

For example, if each user is a building and the objective is to model the power
consumption in each household based on the number of inhabitants. One could
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apply linear regression in this case, i.e., find a linear function y = a ·x+ b that best
approximates to the data points of a dataset. Each building would find a pair a, b
which models their household’s data and submit this to an aggregator, that would
merge all local models by finding a global linear model.

While this hides the individual entries of users, the parameters of a local model
can be too detailed depending on the machine learning technique used. Thus, the
addition of noise to or encryption of parameters using homomorphic encryption (see
page 10) is employed. Another problem is the higher error in the resulting global
model when compared to trainings performed using the global dataset[143].

This is similar to what we do in our last contribution but focused on machine
learning. Our contribution can be extended to reuse techniques to protect local
model parameters to in turn protect the intermediary aggregation results. Then,
our k-anonymous based offer publication can be used to minimize the addition of
noise and encryption when collecting and merging intermediary models.

More specifically, consider my example of smart buildings and modeling house-
hold consumption. The local parameters of each building would either require the
addition of noise or the application of Homomorphic encryption. Let us consider
only noise addition here. If we employ our offer publication scheme instead and
merging models as they are forwarded, the resulting parameters would not need to
be protected since they model data from multiple domains. This would result in less
noise in the final global model since there would be less noise added to parameters.

At any rate, a federated aggregation scheme where data is modeled locally, and
a global model is created from local models seems to be the direction that the
community is moving to. It allows for the distributed and private modelling of data
in a multi-domain architecture for artificial intelligence applications.
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Agrégation de Flux de Données IoT
Confidentiels Dans des Réseaux
Multi-Propriétaires

L’Internet des Objets (IdO) est devenu une partie de la vie de nombreuses personnes
au cours des dernières années et on s’attend toujours à ce que le marché se développe
encore plus [5]. En général, les dispositifs IdO peuvent gérer et être imprégnés de
systèmes tels que le chauffage, les appareils électriques, l’éclairage, et bien plus
encore. Ces systèmes IdO imprègnent la vie moderne, des appareils ménagers aux
environnements de travail et aux systèmes des espaces publics.

Microsoft a réalisé une enquête intéressante qui illustre encore mieux l’ampleur
et la couverture de l’IdO [7]. Elle a ainsi conclus que la plupart des gens sont déjà
ou seront bientôt impliqués dans un système IdO en tant que sujet surveillé ou en
tant qu’utilisateur.

Au sein de ce vaste marché en pleine croissance, nous nous attendons à ce que
les systèmes IdO déployés se chevauchent à la fois géographiquement et en termes
de fonctionnalités, car ils coexistent dans la même infrastructure [8]. En effet, nous
nous attendons à l’émergence d’une infrastructure complexe avec plusieurs systèmes
IdO coexistants offrant une large gamme de services (multi-IdO).

La collecte et le traitement des données provenant d’appareils intelligents parmi
les réseaux IdO seront une caractéristique essentielle de ces scénarios. La collecte
d’ensembles de données brutes peut être à la fois plus verbeuse que nécessaire et trop
coûteuse en raison du volume de données à transmettre et à stocker. Ce qui impose
de prétraiter l’information pour l’adapter aux besoins du consommateur [14]. Il
est également courant de ne divulguer que les ensembles de données qui ont été
anonymisés avec des opérations permettant de préserver la vie privée.

Ensuite, dans le contexte du multi-IdO, les données que les réseaux divulguent
doivent être contrôlées pour maintenir les restrictions des différents producteurs.
Par exemple, les requêtes ne doivent pas demander et accéder aux identifiants (par
exemple, le numéro de sécurité sociale) ou elles doivent demander des données
moyennées au lieu d’échantillons individuels. Les données divulguées doivent faire
l’objet d’une attention particulière, car nous nous attendons à ce que les réseaux
s’échangent des données entre eux.

En résumé, trois problèmes principaux découlent de l’utilisation de données
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provenant de différents réseaux IdO : l’interopérabilité, l’évolutivité et la confiden-
tialité. Cette thèse se concentre sur les problèmes d’efficacité et de confidentialité
tels qu’énoncés par la principale question de recherche abordée dans ce rapport:

Comment assurer l’agrégation dans le réseau de flux IdO provenant de
multiples services et propriétaires indépendants tout en respectant chacune
de leurs contraintes de confidentialité ?

Défi Scientifique

L’évolutivité est la clé ici puisque nous avons affaire à des scénarios multi-IdO
vastes et denses. L’interopérabilité prend un rôle secondaire dans cette thèse car
nous ne nous y intéressons pas, mais nous maintenons la condition que chaque
système IdO fonctionne avec des dispositifs, des protocoles et une sémantique dif-
férents [9]. Ensuite, la sécurité est grandement affectée par le traitement d’un
environnement multi-propriétaire en raison des objectifs, de la crédibilité et des
restrictions différentes de chaque service.

Nous fournissons trois contributions principales dans cette thèse qui divergent
un peu de l’approche habituelle de la sécurité entre les domaines. Notre approche
permet la communication inter-système en adoptant une approche centrée sur les
données où celles-ci sont anonymisées au fur et à mesure de leur diffusion.

État de l’art
Nous discutons des différents domaines de recherche sur lesquels nous nous sommes
concentrés pour répondre à la question de recherche de cette thèse.

Flux de données IdO

Dans les écosystèmes de l’IdO, nous trouvons des dispositifs ayant des objectifs
différents et les capteurs sont les principaux producteurs de données. Nous trou-
vons ces derniers en grand nombre afin de surveiller de nombreuses caractéristiques
comme la température et la pression atmosphérique. Ces producteurs envoient
leurs données de mesure dans le réseau afin que les contrôleurs, les actionneurs et
d’autres entités décisionnelles les utilisent (consomment) pour leurs divers objec-
tifs [17]. Ainsi, les producteurs diffuseront en continu des mesures horodatées pour
permettre aux consommateurs d’être en possession de données constamment mises
à jour et de stocker des chronologies complètes [13]. Les producteurs pousseront
leurs données, à travers le réseau, vers les consommateurs abonnés à leurs flux :
soit de manière ponctuelle, soit en fonction de l’occurrence des événements [19].

Lorsque les producteurs ne sont pas directement associés aux consommateurs,
les réseaux nécessitent une entité intermédiaire pour arbitrer la communication,
c’est-à-dire des courtiers [23]. Plusieurs solutions prêtes pour le marché sont égale-
ment disponibles pour ce type d’archétype, par exemple, MQTT [29] et CoAP
Observe [24].
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Les producteurs décrivent leurs informations afin d’être mis en correspondance
avec les requêtes. Ces descriptions sont fournies sous la forme d’attributs de mé-
tadonnées et décrivent des informations telles que le type de données et le lieu de
la mesure [13]. Des modèles complexes de description des métadonnées sont néces-
saires en raison des disparités dans la syntaxe et la sémantique des données entre
les producteurs [38, 12].

Nous nous concentrons plutôt sur les exigences de traitement de ces requêtes.
Les consommateurs demanderont les données sous une certaine fonction de calcul,
par exemple, le filtrage, la catégorisation, l’agrégation. Ces fonctions sont impor-
tantes pour fournir aux consommateurs des données personnalisées (ayant plus de
valeur). nous nous concentrons sur les algorithmes d’agrégation.

Flux de données agrégées

La définition la plus élémentaire des fonctions d’agrégation les définit comme des
fonctions qui, lorsqu’elles sont appliquées à un ensemble d’entrées, produisent une
sortie contenant des informations décrivant l’ensemble des entrées. Par exemple,
des descriptions statistiques qui fournissent un résumé des données d’entrée tout en
rendant difficile l’extraction des données d’origine. Ces fonctions agissent comme
des opérations de protection de la vie privée qui permettent à la fois de préserver
l’utilité des données et de masquer les informations sensibles.

Les stratégies d’application de ces fonctions d’agrégation dans les réseaux IdO
sont classées en trois grands groupes : centralisée, en grappe et arborescente [40].
L’agrégation centralisée est la méthode classique où toutes les données sont col-
lectées à un puits, une passerelle ou un consommateur (destination) pour être
agrégées [41]. Pour les stratégies en grappe, les dispositifs élisent une tête de
grappe parmi les dispositifs environnants pour transmettre ses informations [42].
Les stratégies basées sur les arbres sont la principale méthode d’agrégation locale
de l’IdO : en raison de la connaissance minimale de la topologie et de l’agrégation
correcte [39].

La confidentialité devient alors un problème clé pour l’agrégation en réseau,
car l’entité agrégatrice doit avoir accès aux données afin d’appliquer l’opération
d’agrégation. Le chiffrement homomorphique a alors été proposé pour résoudre ce
problème car les fonctions mathématiques peuvent toujours être appliquées lorsque
ce type de chiffrement est utilisé [52]. Cependant, un nombre limité d’ensembles
d’opérations s’est avéré être valable pour ce type de chiffrement [54]. Ainsi, nous
avons choisi de ne pas considérer ce type de solution dans cette thèse.

Réseau de Données Nommé

Le Réseau de Données Nommé (RDN) [55] est une approche propre à la pile Internet
actuelle, qui répond très bien aux besoins des applications IoT. Conformément à
la mentalité centrée sur le contenu, les consommateurs interrogeront le réseau en
décrivant les données demandées. Les routeurs transmettront ensuite ces requêtes
aux producteurs qui y répondent. In inclut des fonctionnalités telles que le transfert
sémantique, la signature des paquets et la mise en cache distribuée.

Malheureusement, le RDN n’est pas directement applicable à l’IdO en raison
des fonctionnalités manquantes et des limitations de l’IdO [56, 57]. L’abonnement
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aux flux est l’un de ces mécanismes qui ne sont pas pris en charge car, par défaut,
il existe une association 1 à 1 entre les intérêts et les messages de données. La
communication basée sur les courtiers n’est pas non plus prise en charge de manière
native par les routeurs. La mise en cache avec des dispositifs restreints est un défi
en raison de l’espace de stockage limité disponible et de l’alternance des dispositifs
entre les modes actif et veille pour économiser la batterie [57]. Le calcul en réseau
est introduit dans le paradigme RDN par Réseau de Fonctions Nommées [68] qui
propose d’intégrer le lambda-calcul dans les intérêts, où chaque routeur RDN peut
traiter les données avant d’envoyer la réponse.

Anonymisation des flux

L’anonymisation assure la confidentialité en diminuant la précision des données. Au
cours de l’anonymisation, les attributs de l’identifiant sont supprimés ou remplacés.
Les quasi-identifiants sont ensuite modifiés afin de diminuer la probabilité d’associer
les sujets à leurs informations sensibles. D’autres attributs peuvent être laissés tels
quels, catégorisés (par exemple, en changeant l’âge exact en groupe d’âge) ou en
ajoutant un bruit contrôlé pour masquer les valeurs exactes.

Ce processus est effectué jusqu’à ce que des mesures de confidentialité telles que
k-anonymous [94] et e-differential [95] soient atteintes. Elles quantifient les niveaux
de confidentialité en termes de probabilité de désanonymisation des informations.
Ils mesurent la similarité des entrées de données entre elles et la similarité entre des
ensembles de données entiers.

Un ensemble de données k-anonymes exige que chaque entrée soit indiscernable
de k-1 autres entrées. En d’autres termes, chaque combinaison de valeurs de quasi-
identifiants a au moins k entrées dans l’ensemble de données. Même si l’on sait
que les informations d’un sujet se trouvent dans un ensemble de données et que les
attributs identifiables sont connus, la probabilité de l’identifier est de 1/k. Plusieurs
algorithmes ont été proposés pour atteindre le l-anonyme [96, 97, 98] qui se concen-
trent sur le regroupement des entrées de données afin de modifier au minimum les
quasi-identifiants pour maximiser l’utilité des données.

Étude de cas des services Multi-IoT sous LPWAN

La pléthore de services de la ville intelligente met en évidence les divers avantages
que IdO peut apporter à la population, aux entreprises et aux autorités locales [105].
Une collection de capteurs est généralement disséminée dans une ville intelligente,
et surveille un large ensemble de paramètres environnementaux tels que la vitesse
du trafic, la qualité de l’air, la météo, le bruit, etc.

Les villes intelligentes attendent également que les différents systèmes cohab-
itent entre eux et échangent des données tout en protégeant les données sensibles.
L’isolement a un coût [106] : les mêmes ressources radio doivent être partagées
entre un plus grand nombre de flux, ce qui est particulièrement préjudiciable dans
la bande ISM.

Nous étudions un scénario de Système de transport intelligent (STI) où des
services distincts partagent des données pour offrir un système de transport glob-
alement efficace et respectueux de la vie privée pour les villes intelligentes. Les



97

Zones de
stationnement

Q4. Parking
disponibilité

Véhicules privés
Q5. Congestion 

Information

Platform VTC

Q3. Billing 
information

Autorité de
régulation du trafic

Q1. Options de prix Passengers

Q2. Les meilleures trajet

Entité A Entité B

Q#. Requête de A à B

Société de
stationnement

flux de données de B vers A (en réponse à la requête)

Surveillance
du trafic

Stationnement
intelligent

VTC

Service de
mobilité

Figure 2: Aperçu des services

modèles de systèmes existants pour les IdO se concentrent sur une seule applica-
tion ou un seul service et sur l’infrastructure qui lui est nécessaire [107]. Alors que
notre système est un écosystème formellement défini de services qui peuvent à la
fois fournir et consommer des données vers et depuis d’autres services.

Nous exploitons également notre construction pour répondre à une question
secondaire : le Réseaux Longue Distance à Faible Consommation peut-il être utilisé
comme moyen de communication pour les services multi-services ? Comment ces
services doivent-ils être déployés afin de gérer ce trafic ?

Proposition de modèle multiservice pour le transport intelligent

Les services qui composent notre modèle multiservice sont les suivants :

Voiture de Transport avec Chauffeur (VTC) où des plateformes mettent en
relation des passagers avec des conducteurs de véhicules (dit: au taxi à la
demande).

Stationnement intelligent où des capteurs surveillent les places de stationnement
occupées, enregistrant le moment où les véhicules arrivent et quittent les
places.

Surveillance du trafic où le ITS mesure la vitesse moyenne pour chaque segment
de route en capturant des instantanés de la vitesse des véhicules.

La figure 3.1 illustre notre scénario, où les différentes applications et entités
partagent des informations entre elles.



98 List of Tables

Nous nous appuyons sur une version légèrement étendue de SQL pour définir ex-
plicitement les requêtes (c.-à-d., les flèches sur la Fig. 3.1) qui déclenchent les flux de
données entre les entités (dans le sens inverse des requêtes). En outre, nous faisons
correspondre les données IdO au paradigme de la base de données relationnelle en
considérant les sources de données, les échantillons et les attributs comme des ta-
bles, des lignes et des colonnes, respectivement. Nous ajoutons ensuite simplement
les mots-clés suivants dans notre langage de requête étendant SQL pour décrire les
flux d’IdO : COMPUTE indique une liste de calculs à appliquer aux données en
séquence ; EVENT décrit une ou plusieurs conditions qui peuvent activer/désac-
tiver un flux (mesures de capteurs locaux et messages distants) ; EVERY indique
quand générer de nouvelles données pour le flux ; UNTIL : indique la condition
pour arrêter le flux.

Services VTC

Requête 1 Les passagers demandent à plusieurs plateformes (c.-à-d., intermé-
diaire) les meilleures cotations pour effectuer une course en spécifiant l’heure de
départ, et le lieu géographique de départ et d’arrivée.
1 SELECT ride_platform , cost_to ( $destination ) as ride_cost
2 FROM ride_platforms
3 ORDER BY ride_cost DESC
4 LIMIT 5
5 EVERY minute
6 UNTIL EVENT client_decision

Query 1: Demande du passager envoyée à un ensemble de courtiers.

Requête 2 Les chauffeurs s’inscrivent sur les plateformes pour recevoir les courses
non satisfaites lorsqu’ils sont sur le point de terminer leur course en cours.
1 SELECT ride_begin , ride_end , estimated_price
2 FROM ride_platforms
3 ORDER BY ride_score (*) DESC
4 LIMIT 10
5 EVERY 5 minutes
6 UNTIL EVENT driver_decision

Query 2: Un conducteur demande les passagers disponibles.

Service de stationnement intelligent

Requête 3 Surveillance de l’occupation d’une ou plusieurs places de station-
nement et envoi de notifications lorsqu’un véhicule entre ou sort d’une place.
1 SELECT event_type , time_stamp , car_plate , parking_spot_id
2 FROM parking_parking
3 EVERY EVENT park_begin , park_end

Query 3: Suivi des entrées de véhicules.

Requête 4 Les conducteurs demandent la disponibilité des aires de stationnement
à proximité pour trouver un parking disponible.
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1 SELECT parking_area_id , available_count , distance ( arrival_location
, parking_location ) as geo_distance

2 FROM parking_areas
3 WHERE available_count > THRESHOLD_VALUE
4 ORDER BY geo_distance DESC
5 LIMIT 10
6 EVERY minute
7 UNTIL EVENT end_of_trip

Query 4: Disponibilité du parking.

Service intelligent d’acheminement du trafic routier

Requête 5 service collectant les mesures de localisation et de vitesse d’un grand
nombre de véhicules (p.ex., bus, voitures privées, taxis) pour dresser un profil de la
congestion en temps réel.
1 SELECT hash( car_plate ), latitude , longitude , current_speed
2 FROM consenting_vehicles
3 EVERY 3 minutes

Query 5: Informations sur la congestion routière.

Modélisation des services avec des ensembles de données ouvertes sur la
mobilité

Nous avons exploité les deux ensembles de données suivants :

VTC: nous utilisons un ensemble de données sur les trajets effectués par les sociétés
Uber, Juno, Lyft et Via à New York City (NYC).

Parking usage: la ville de Melbourne fournit des mesures de son large déploiement
de capteurs de stationnement.

Quelques ajustements sont nécessaires pour que ces deux ensembles de données
soient compatibles entre eux et avec notre modèle. Tout d’abord, adapter les lo-
calisations géographiques puisque le service décrit par ces deux jeux de données est
déployé dans des villes différentes. Nous rassemblons une liste de parkings à NYC
pour cartographier les parkings à Melbourne. Nous les cartographions en fonction
du volume de trafic et de leur proximité avec Manhattan (le centre commercial de
NYC). Ensuite, pour imiter le déplacement des véhicules pour la requête 5, nous
étendons l’ensemble de données NYC en calculant les trajectoires directes entre les
lieux de ramassage et de dépôt pour chaque trajet.

Nous modélisons les requêtes 1 et 2 en supposant que les passagers demandent
des options de prix au cours d’un trajet et que les conducteurs demandent de nou-
veaux trajets dès qu’ils en ont terminé un. Nous modélisons les événements de
la requête 3 avec les données d’arrivée et de départ observées dans l’ensemble de
données de Melbourne. Nous modélisons le temps inter-requêtes de la requête 4 en
supposant qu’il y a eu une recherche de parking disponible à chaque fois qu’une place
de parking a été prise. Dans la requête 5, nous considérons qu’un sous-ensemble de
véhicules envoie ses informations de vitesse (p.ex., un sous-ensemble de véhicules
est équipé pour cela ou qui consent à ce que ses données soient utilisées).



100 List of Tables

4 stations de base
13km  espacement

7 stations de base
9km  espacement

15 stations de base
5km  espacement

39 stations de base
2km  espacement

0.0

0.2

0.4

0.6

0.8

1.0
T

E
P

Manhattan

1 station de base
18km  espacement

4 stations de base
13km  espacement

6 stations de base
9km  espacement

16 stations de base
5km  espacement

Bronx

2 stations de base
18km  espacement

4 stations de base
13km  espacement

9 stacions de base
9km  espacement

21 stacions de base
5km  espacement

0.0

0.2

0.4

0.6

0.8

1.0

T
E

P

Brooklyn

4 stations de base
18km  espacement

6 stations de base
13km  espacement

12 stations de base
9km  espacement

32 stations de base
5km  espacement

Queens

2 stations de base
18km  espacement

4 stations de base
13km  espacement

8 stacions de base
9km  espacement

18 stacions de base
5km  espacement

0.0

0.2

0.4

0.6

0.8

1.0

T
E

P

Staten Island

Figure 3: PER des flux sous différentes densités de stations de base.

Analyse de l’évolutivité avec un déploiement LoRa

LoRa est un réseau cellulaire où les appareils se connectent à des stations de base
(dit LoRa gateways). Les dispositifs sont capables de transmettre aux stations
de base jusqu’à une douzaine de kilomètres de distance et de profiter de débits
binaires de l’ordre du kilobit par seconde. Pour mener notre analyse d’évolutivité,
nous considérons le modèle analytique LoRa décrit dans [116] : pour une quantité
donnée de trafic réseau, il prédit le RAP de chaque appareil associé à une passerelle
LoRa.

Nous pouvons maintenant nous appuyer sur notre modèle avec les ensembles de
données réelles présentés précédemment. Pour tenir compte des fluctuations tem-
porelles du trafic réseau, nous choisissons 200 intervalles de temps aléatoires d’une
heure, et utilisons le nombre moyen de messages par seconde pendant chacun de ces
intervalles. En considérant des échantillons de temps suffisamment indépendants,
nous sommes en mesure d’étudier l’évolutivité de LoRa pour ces services de mobil-
ité intelligents. Ensuite, nous positionnons nos stations de base dans un format de
grille.

Nous étudions la densité de stations de base requise par nos services. Bien que
chaque passerelle soit théoriquement capable de desservir des nuds situés jusqu’à 9
km de distance, le trafic est trop élevé et le réseau qui en résulte devient encombré.
Ainsi, nous considérons un espacement de 5 km pour Manhattan, de 13 km pour
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Staten Island et de 9 km pour tous les autres arrondissements afin d’atteindre le
Taux d’Erreur de Paquets (TEP) affiché dans la figure 3 pour chaque zone. S’il est
nécessaire de réduire encore plus le TEP, un schéma d’optimisation localisé doit être
utilisé pour déployer des stations de base supplémentaires dans les zones encombrées
(zones rouges).

Conclusions

Nous avons défini ici un scénario de mobilité intelligente globale, où plusieurs ser-
vices cohabitent tout en étant supportés par des passerelles LoRa. Nous avons
défini un scénario de mobilité intelligente globale dans lequel plusieurs services co-
habitent en étant supportés par des passerelles LoRa. Nous avons ensuite émulé
le trafic généré par un tel scénario en utilisant des jeux de données disponibles
publiquement, collectés respectivement à NYC et Melbourne. Bien que notre anal-
yse d’évolutivité tende à indiquer que le fait de s’appuyer uniquement sur LoRa est
suffisant et donc envisageable pour un déploiement ITS unifié, nous notons que le
nombre de passerelles LoRa doit être soigneusement ajusté en fonction du trafic.
Dans l’ensemble, la capacité du réseau est atteinte rapidement, ce qui peut créer
des problèmes d’évolutivité pour les scénarios à grande échelle.

Les résultats de ce travail mettent en évidence les besoins des scénarios mul-
tiservices et multi-propriétaires. Malheureusement, nous n’utilisons pas ce cadre
dans les évaluations de nos propositions suivantes. Nous nous concentrons plutôt
sur les infrastructures à plus grande échelle, ce qui est trop limité pour mettre nos
propositions à l’épreuve. Notre proposition suivante est une architecture qui met
en uvre des calculs permettant la confidentialité lorsque les données sont diffusées
entre les services.

Superposition RDN pour la confidentialité et la réutili-
sation dans l’IdO multi-domaine

Dans ce chapitre, nous abordons le problème de la recherche d’une méthode per-
mettant d’apporter une communication évolutive et respectueuse de la vie privée
à une infrastructure d’IdO à grande échelle composée de dispositifs de plusieurs
propriétaires déployés pour différents objectifs. Nous proposons une interconnexion
virtuelle (overlay) de plusieurs réseaux d’IdO basée sur des relations fournisseur/-
client où les routeurs d’RDN prennent en charge la communication entre les réseaux.
Ces politiques définissent les règles du plan de contrôle qui décrivent quel flux de
données peut être exporté et comment il doit être traité en premier. Notre méthode
assure la confidentialité sans les mécanismes de chiffrement complexes habituelle-
ment employés dans de tels scénarios.

Domaines, Requêtes & Agrégation

IdO réseaux informatiques peuvent naturellement être délimités par des frontières
virtuelles définies par des critères tels que la propriété, l’application et l’objec-
tif de déploiement. Nous désignons ces groupes de dispositifs par le terme do-
maines. Selon cette définition, tout dispositif peut échanger librement des données
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Figure 4: Exemple de transport dans une ville intelligente

puisqu’elles appartiennent au même propriétaire ou qu’elles ont été consenties pour
être utilisées par cette application.

Prenons par exemple la topologie logique illustrée dans la Figure 4 dérivée de
notre modèle du chapitre 3. Le domaine 4 (moniteur de vélocité) est un subscriber
pour les données diffusées par les trois domaines de gauche, et publishes un flux
agrégé pour les trois domaines de droite.

Dans notre modèle, un consommateur n’est pas intéressé par les données de
producteurs spécifiques, il est plutôt intéressé par un type de données. Ainsi, une
requête décrit les données souhaitées sur la base d’informations telles que le type
(p.ex., température, vitesse, puissance), la cardinalité (le nombre d’échantillons et
de capteurs), la fréquence et la localisation. En outre, les consommateurs deman-
dent normalement des données prétraitées au lieu des échantillons bruts des cap-
teurs. Les calculs souhaités incluent normalement une certaine forme de fonction
d’agrégation, c.-à-d., une fonction qui résume les informations sur un groupe de
valeurs, afin de réduire la verbosité des ensembles de données.

Énoncé du problème : Flux inter-domaines respectueux de la vie
privée

Nous supposons que les domaines sont curieux mais honnêtes, c.-à-d., qu’ils peu-
vent lire et profiter de toutes les informations auxquelles ils ont accès mais ne
s’écarteront pas du protocole. Le cryptage serait le moyen direct de retenir ces do-
maines curieux. Ensuite, l’agrégation en réseau obligerait les domaines à déchiffrer,
à appliquer des transformations et enfin à déchiffrer le résultat. Le cryptage homo-
morphique résoudrait ce problème, mais nous l’ignorons car il est limité à certaines
transformations [54]. Ainsi, nous cherchons à assurer la confidentialité sans nous
appuyer nécessairement sur le chiffrement.

Des transformations telles que l’agrégation et le filtrage peuvent être exploitées
afin de fournir des niveaux de confidentialité similaires à ceux des ensembles de
données anonymes. Nous supposons que les domaines de peering se font confiance,
c.-à-d., qu’un domaine peut s’attendre à ce que ses pairs (voisins) respectent les
politiques de confidentialité sur lesquelles ils se sont mis d’accord.
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Proposition : Une architecture multi-domaine RDN

Pour permettre l’échange de jeux de données entre plusieurs domaines, nous pro-
posons de construire une superposition de border routers. Ces routeurs sont
chargés de toutes les communications inter-domaines en gérant les flux et en appli-
quant les exigences de confidentialité. La superposition qui les relie est une topologie
logique, construite sur la base des relations de confiance entre les domaines. Dans
ce chapitre, nous supposons que les domaines forment des arbres dans
l’overlay.

Notez que les transformations sont au cur de notre architecture multi-domaine.
Nous modélisons les exigences de confidentialité (politique d’exportation des don-
nées) comme une collection de transformations (d’anonymisation) qui doivent être
appliquées à l’ensemble de données exporté. Nous faisons également une distinc-
tion entre les pairs directs, qui se font mutuellement confiance, et le reste du réseau,
atteint de manière transitive, où des transformations supplémentaires peuvent être
appliquées.

Dans notre proposition, chaque requête est composée de la description du jeu
de données avec la chaîne de transformations souhaitée. En outre, l’usage et le
domaine de consommation sont ajoutés aux paramètres des intérêts pour vérifier
la conformité aux politiques de confidentialité. Lorsqu’un routeur frontalier reçoit
une requête, il doit vérifier que le flux de données résultant respecte la politique
d’exportation. Une requête est acceptée si la chaîne de transformation demandée est
au moins aussi restrictive que la chaîne définie dans la politique. Si elle est acceptée,
les données sont traitées selon la chaîne demandée et transmises au consommateur.

Nous choisissons d’implémenter cette superposition tout en nous appuyant sur
le paradigme RDN en raison de ses avantages pour l’IdO. Nous nous appuyons sur
les fonctions unikernel [69], qui sont des fonctions récupérables par nom (comme les
paquets de données RDN) et s’exécutent au-dessus d’une virtualisation légère. Nous
étendons également les mécanismes de cache de l’RDN pour détecter les ensembles
de données qui se chevauchent afin d’utiliser les données partiellement traitées.
Différents intérêts émis par différents consommateurs peuvent réutiliser les mêmes
flux, au moins partiellement. Si un intérêt nécessite une chaîne de transformations
qui est un sur-ensemble de la chaîne d’un intérêt auquel on a déjà répondu, le
contenu du cache est directement réutilisé.

Évaluation des performances

Afin d’évaluer les avantages de notre solution, nous évaluons ses performances à
l’aide de simulations. Nous considérons des requêtes où les consommateurs sont
intéressés par la valeur moyenne d’une collection de mesures. Nous implémentons et
comparons notre approche avec le RDN conventionnel. Au moment de la rédaction
de cet article, il s’agissait de la meilleure comparaison que nous pouvions fournir
puisque la protection de la vie privée par l’application de l’anonymisation et de
l’agrégation n’est pas largement étudiée par la communauté des chercheurs.

Nos figures affichent les métriques suivantes pour évaluer notre solution en
plusieurs dimensions : Taille des magasins de contenu mesure la quantité de
données dans le magasin de contenu de chaque nud (dit la taille du cache). Charge
du réseau mesure la somme des données transmises par tous les dispositifs, afin
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de quantifier à la fois les besoins en bande passante et la consommation de batterie
utilisés par les flux ; Délai d’installation normalisé mesure le temps entre la
transmission de l’intérêt du consommateur et l’arrivée du premier paquet de don-
nées pour le flux correspondant. Data spread compte le nombre de routeurs RDN
qui stockent chaque morceau de données.

Ensuite, nous mesurons la charge réseau pour tous les routeurs (Fig. 5). Bien
que chaque fragment de données puisse être diffusé efficacement dans le réseau con-
ventionnel RDN, cela ne suffit pas à limiter la surcharge du réseau. Notre superpo-
sition de transformation est également capable de réduire de manière significative
la charge du réseau.
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Figure 5: Transmissions de données sur les routeurs frontaliers : notre superposition
de transformation s’adapte bien à la charge du réseau pour un grand nombre de
consommateurs (et de demandes).

Figure 6 se concentre sur les caractéristiques de confidentialité. L’approche
RDN conventionnelle diffuse les données brutes dans tous les réseaux, la diffusion
étant significative même si les routes les plus courtes sont utilisées. La propagation
est limitée par notre superposition basée sur la transformation qui transforme les
données avant de les envoyer au consommateur ou au niveau suivant de l’arbre.

Conclusion

Nous avons présenté une nouvelle solution respectueuse de la vie privée pour échanger
en toute sécurité des flux de données privées dans des réseaux IdO multi-domaines.
Les données sont transformées et mises en cache avant de quitter le domaine afin
que les préoccupations en matière de confidentialité soient respectées tout en per-
mettant la réutilisation à l’aide de magasins de contenu intelligents qui examinent
les chevauchements entre les intérêts parmi les ensembles de données transformés.
Nos simulations mettent en évidence l’évolutivité de notre solution.



105

50

100

150

D
iff

us
io

n 
de

s 
do

nn
ée

s

Overlay de Transformation RDN Conventionnel

100 175 250 325
Nombre de consommateurs

2.5

3.0
=

Figure 6: Diffusion du contenu dans le réseau.

Routage conforme à la confidentialité pour l’agrégation
interdomaine

Dans ce chapitre, nous allons plus loin dans la direction du chapitre précédent en
abandonnant la topologie arborescente préexistante. Les domaines peuvent alors
échanger avec n’importe quel autre domaine comme ils le souhaitent. La superpo-
sition se transforme alors en un maillage, les domaines se fournissant mutuellement
des données. En effet, les données peuvent être transmises par cycles ou arriver à
la même destination par des routes alternatives. L’agrégation des données néces-
site d’explorer des ensembles de données qui ne se croisent pas tout en vérifiant les
exigences minimales de confidentialité, ici basées sur le k-anonymat. Nous verrons
ici que nous obtenons de plus grandes agrégations en faisant tourner les données
en boucle dans la superposition (sans chevauchement des ensembles de données)
afin d’acquérir suffisamment de producteurs pour atteindre les exigences minimales
d’agrégation et être ensuite diffusées dans le réseau.

Structure et exigences de la superposition maillée

Nous modélisons les relations entre les domaines sous la forme d’un graphe orienté
G(V,E) où chaque sommet est un réseau IdO et une arête u→ v existe si le réseau u
est un fournisseur de données à son pair v. Ces entités sont capables d’agir comme
des courtiers entre d’autres entités en diffusant des informations acquises auprès
d’autres entités.

Nous considérons que les données sont suffisamment privées pour être diffusées
dans le réseau lorsque, selon les exigences de leur producteur, elles sont suffisam-
ment agrégées. Nos exigences de confidentialité sont basées sur la k-anonyme qui
détermine que les données ne peuvent pas être distinguées de k-1 autres données.
Plus précisément, les pairs directs peuvent acquérir des données sans agrégation, en
raison d’un accord mutuel. Cependant, ces pairs ne sont pas autorisés à transmet-
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tre les données tant qu’elles ne répondent pas aux exigences de confidentialité des
producteurs.

Notre objectif est de créer des agrégations valides dans un environnement multi-
domaines. Nous proposons que les trois propriétés suivantes soient préservées lors du
calcul des données agrégées : Seules les données d’intérêt doivent être impliquées
; Appliquer des ensembles de données anonymes non intersectés ; Les exigences
d’agrégation doivent être préservées.

Notre proposition s’appuie sur notre architecture basée sur le RDN en ajoutant
les mécanismes permettant aux domaines d’agréger correctement les données. Notre
système se comporte comme un système de publication/abonnement. Pendant la
publication, les routeurs diffusent les combinaisons valides de producteurs. Ensuite,
lors de l’abonnement, le consommateur est capable d’identifier les producteurs qui
correspondent à une requête, et de construire un ensemble valide de flux avec les
combinaisons découvertes lors de l’étape de publication.

Notre méthode maintient une agrégation correcte grâce à l’utilisation d’ID de
producteurs qui identifient les données utilisées dans les agrégations tout en étant
dissociés des producteurs spécifiques. Un producteur associe son ID de producteur
et des attributs descriptifs (c.-à-d., métadonnées) aux données qu’il génère. Nous
proposons de fusionner les ensembles de données qui contiennent des producteurs
similaires.

Phase de publication

Chaque routeur frontalier doit identifier les ensembles de données qu’il peut publier.
La publication consiste à filtrer et/ou transformer les offres d’agrégation provenant
des voisins entrants (offres d’entrée) et à exporter les offres d’agrégation vers les
voisins sortants (offres de sortie).

Une offre d’agrégation est une paire o = (AS, r) où AS désigne l’ensemble des
ID des producteurs qui sont proposés dans l’offre o et r désigne l’exigence minimale
de ces producteurs dans l’offre o. Une telle offre indique que toute combinaison
de producteurs C ⊆ AS peut être activée tant qu’elle est conforme à l’exigence
minimale, c.-à-d., |C| ≥ r.

Les producteurs divulguent initialement leur jeu de données sous la forme d’une
offre dont AS ne contient que leur identifiant local et r est une exigence propre. Ces
offres ne peuvent pas être diffusées car elles ne respectent pas les contraintes de con-
fidentialité des producteurs. Nous étendons ces offres en utilisant les identifiants des
producteurs d’autres offres. Le routeur doit s’assurer que ces ID ne se superposent
pas afin d’éviter les répétitions. De plus, les données sont plus susceptibles d’être
sélectionnées par la même requête si elles sont similaires. Lors de la publication,
nous limitons la création d’offres dont la similarité entre les producteurs de AS est
supérieure à une certaine valeur seuil minimale.

Phase d’abonnement

Un consommateur doit exploiter les offres d’agrégation disponibles reçues pendant
la publication pour répondre à une requête. Un routeur frontalier extrait l’ensemble
des producteurs qui correspondent aux critères de la requête, puis le consommateur
doit sélectionner un ensemble d’offres à utiliser pour acquérir l’agrégation souhaitée.
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Figure 7: Capacité d’agrégation à différents tours.

La maximisation du nombre de producteurs dans cette combinaison permet au
consommateur de collecter un ensemble de données plus riche. Le défi est alors
d’identifier des offres qui ne se croisent pas, et telles que leur union maximise le
nombre de producteurs. De la même manière que pour le problème de publica-
tion, nous devons trouver des cliques maximales dans le graphe de conflit afin de
maximiser le nombre de producteurs proposés au consommateur. Il s’agit donc
également d’un problème NP-Hard car plusieurs combinaisons de producteurs peu-
vent être possibles.

Nous proposons ici deux règles d’arrêt pour notre heuristique : s’arrêter lorsque
nous atteignons le nombre minimum de producteurs requis (nPmin) ; et imposer
également une limite nCmax de combinaisons de producteurs explorées.

Évaluation des performances

Pour évaluer la performance de notre proposition, nous l’évaluons sur des topolo-
gies denses composées de nombreux producteurs attachés à plusieurs domaines de
courtiers. Les producteurs fournissent leurs informations à plusieurs courtiers qui
acquièrent les données et, à leur tour, diffusent les informations agrégées résul-
tantes à d’autres courtiers (et à leurs clients). Il en résulte des informations biaisées
générées artificiellement (ensembles de producteurs qui se croisent).

Nous supposons ici que l’espace descriptif des producteurs est simplement les
coordonnées physiques normalisées (un espace carré dont le côté est égal à 1). La
similarité entre les métadonnées est supposée être le complément de la distance
entre les producteurs (en ce qui concerne leurs emplacements physiques en 2D)
par rapport à l’excentricité de l’espace euclidien bidimensionnel (c.-à-d., la distance
maximale dans notre carré en pratique).

6.2.3 Convergence de l’étape de publication

Nous étudions d’abord la convergence de la phase de publication, en mesurant la
taille moyenne du jeu de données à la fin de chaque tour (Fig. 7). Notre système
semble converger rapidement : chaque courtier est capable de compléter les offres
non conformes. Le nombre de tours dépend à la fois de l’excentricité de l’espace
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Figure 8: Effets de ∆min sur les métriques

Figure 9: Effects of ∆min on metrics

(sa distance maximale) et de l’exigence d’agrégation minimale, qui peut générer un
ensemble plus important d’offres incomplètes.

Concentrons-nous maintenant dans la Figure 9 sur l’impact de la métrique de
similarité, et en particulier du seuil de similarité. Lorsque le courtier ne tient
pas compte de la similarité lors de la fusion de différentes offres (∆min = 0), le
nombre d’offres dans la table est maximal. Il est intéressant de noter que le nombre
d’offres peut diminuer de manière significative (de 85Ce qui est vraiment intéressant,
c’est que la fusion d’offres similaires (dans notre cas, provenant de producteurs
géographiquement proches) a un impact négligeable sur la phase d’abonnement
(Fig. 8b).

Conclusions

Cette thèse a exploré les problèmes de confidentialité liés à l’interrogation de don-
nées provenant d’environnements IoT multi-propriétaires. Nous basons notre mod-
èle de confidentialité sur des domaines : des groupes de dispositifs IoT dans le même
périmètre de propriété, d’objectif, et/ou de localisation. Les limites de la vie privée
prennent forme après les frontières de ces domaines, car nous supposons que les
données sont autorisées à transiter librement au sein d’un domaine en raison de la
propriété ou du consentement.

Notre première contribution (Chapitre 3) définit un modèle multi-domaine dans
lequel les domaines échangent des données entre eux par le biais d’une approche évo-
lutive afin de garantir la confidentialité dès la conception. Notre deuxième contribu-
tion (Chapitre 4) concerne une architecture pour la communication inter-domaines
que nous avons basée sur la pile réseau Named Data Networking.

L’architecture proposée se distingue des autres propositions de protection de
la vie privée au sein de réseaux IoT indépendants qui utilisent principalement des
systèmes de cryptage complexes pour verrouiller les données sous différents niveaux
de sécurité. Nous étudions l’utilisation de l’anonymisation pour maximiser la réu-
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tilisation des données afin de répondre à de multiples requêtes et garantir la confi-
dentialité. Notre évaluation des performances montre que nous obtenons de grands
gains de performance avec la réutilisation de données anonymes, même si nous ne
fournissons pas une opacité totale.

Notre troisième contribution (Chapitre 5) améliore notre contribution précé-
dente en permettant aux domaines de s’auto-organiser dans une topologie de su-
perposition plus complexe. Nous nous attendons à ce que les domaines se fournissent
mutuellement des données simplement sur la base de relations commerciales, ce qui
entraînerait probablement la vente des mêmes données à plusieurs domaines. Cela
pourrait entraîner une collecte et une agrégation répétées des données si celles-ci
sont anonymes et indiscernables. Ainsi, nous fournissons un schéma de publica-
tion pour diffuser des ensembles de données et créer de manière incrémentielle des
combinaisons de producteurs qui sont conformes aux restrictions de confidentialité
des producteurs et sans entrées de données répétées. Nous proposons également un
système d’abonnement qui utilise les informations acquises lors de la publication
pour répondre aux requêtes basées sur les métadonnées.

Nos résultats montrent que nous atteignons rapidement la limite supérieure
d’agrégation possible tout en respectant les exigences minimales d’agrégation. Ils
montrent également que les exigences matérielles de notre schéma sont bien en deçà
des capacités des dispositifs à ressources limitées.

Les contributions de cette thèse nous donnent un aperçu du problème de la
confidentialité via l’anonymisation pour les communications inter-domaines.
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Résumé 
Les déploiements actuels de systèmes IoT pour les villes intelligentes et les réseaux intelligents ont 
une forte densité d'appareils. Ce qui conduit les réseaux à rencontrer des problèmes car l'espace de 
déploiement et l'infrastructure réseau sont limités. Pour résoudre ce problème, les réseaux ouvrent 
leurs frontières et partagent leurs capteurs et services avec d'autres, permettant aux autres réseaux 
d'accéder à leurs capteurs et services internes. Cette thèse se concentre sur les préoccupations des 
producteurs en matière de confidentialité lorsque les données sont divulguées à d'autres réseaux. Ce 
qui est une conséquence des différents niveaux de consentement avec lesquels les données sont 
produites. Dans cette thèse, nous étudions comment fournir une collecte de données respectueuse 
de la vie privée entre différents systèmes tout en préservant les contraintes de chaque propriétaire de 
données. Nous nous concentrons sur l'utilisation de l'agrégation, c'est-à-dire les fonctions qui 
décrivent des groupes de données, par exemple la moyenne et le minimum. Pour cet objectif, nous 
fournissons trois contributions qui offrent un aperçu des moyens de diffuser des données agrégées 
dans une infrastructure IoT multi-propriétaires tout en respectant les contraintes des producteurs 
impliqués. 
 

 
 

Résumé en anglaise 
Current deployments of IoT systems for smart cities and smart grids have a high density of devices. 
Which lead networks to encounter issues as deployment space and network infrastructure are limited. 
To tackle this, networks open their boundaries and share their sensors and services to others, allowing 
the other networks to access their internal sensors and services. The focus of this thesis are the privacy 
concerns of producers as data is disclosed to other networks. Which is a consequence of the different 
consent levels that data is produced with. In this thesis we investigate how to provide privacy-aware 
data collection among different systems while preserving the constraints of each data owner. We focus 
on the usage of aggregation, that is, functions that describe groups of data, \eg average and minimum. 
For this objective we provide three contributions that offer insight on the means to stream aggregated 
data in a multi-owner IoT infrastructure while respecting the restraints of involved producers. 
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