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Jean-Romain LUTTRINGER

Calcul de Chemins pour Réseaux
IP : Routage de la patate Chaude

et Froide lors de Pannes &
Chemins Multi-contraints pour

Segment Routing

Résumé

Les travaux présentés dans cette thèse se décomposent en deux parties centrées autour du 
routage. 

Nous nous intéressons d'abord aux calculs de chemins multicritères, notamment utiles pour router 
du trafic exigeant une latence faible. Le problème NP-Difficile étudié, appelé DCLC, devient 
radicalement plus complexe lorsque l'on considère les contraintes opérationnelles rajoutées par la 
technologie utilisée pour déployer ces chemins, Segment Routing. Nous proposons différents 
méthodes et algorithmes afin de résoudre DCLC dans un tel contexte opérationnel, et montrons 
l'efficacité de nos solutions via une évaluation sur des réseaux large-échelle. 

Nous nous concentrons ensuite sur les effets néfastes induits par les interactions inter-
protocolaires. Les interactions entre BGP (le protocole de routage utilisé dans l'Internet) et l'IGP 
(utilisé au sein d'un réseau) provoquent un temps de convergence long lors de changements 
topologiques. Nous retravaillons ces interactions et proposons OPTIC, ramenant ce temps de 
convergence à une durée marginale. Nous montrons la faisabilité d'OPTIC via évaluation théorique
basée sur des données réelles. 

Mot-clés : Routage, Calcul de chemins, DCLC, Segment Routing, BGP, IGP, Qualité de Service, 
Ingénierie de Trafic

Résumé en anglais

The work presented in this thesis is divided into two parts centered around routing. 

First, we focus on multi-criteria path computations, which are particularly useful for routing traffic 
requiring low latency. The NP-hard problem studied, called DCLC, becomes radically more 
complex when we consider the operational constraints added by the technology used to deploy 
these paths, Segment Routing. We propose different methods and algorithms to solve DCLC in 
such an operational context, and show the efficiency of our solutions via an evaluation on large-
scale networks. 

We then focus on the adverse effects induced by inter-protocol interactions. Interactions between 
BGP (the routing protocol used in the Internet) and the IGP (used within a network) cause long 
convergence times during topological changes. We rework these interactions and propose OPTIC, 
reducing this convergence time to a marginal duration. We show the feasibility of OPTIC via 
theoretical evaluation based on real data. 

Keywords: Routing, Path Computation, DCLC, Segment Routing, BGP, IGP, Quality of Service, 
Traffic Engineering
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Résumé

Les réseaux informatiques constituent l’épine dorsale de la plupart des communications mod-
ernes. En tant que tels, ils sont censés acheminer, ou router, les données d’une source vers
toute destination accessible. Le terme "routage" désigne la manière dont les données sont
transférées sur les réseaux et dont les chemins sous-jacents empruntés par ces données sont
calculés. La manière dont le routage doit être effectué est spécifiée par les protocoles de
routage. Par conséquent, les communications au sein d’Internet dépendent fortement des
performances, du comportement et de l’interaction des protocoles de routage en jeu.

Internet étant un ensemble hétérogène de réseaux indépendants (appelés Systèmes Au-
tonomes, ou Autonomous System (AS)), plusieurs protocoles de routage sont nécessaires.
Alors que Border Gateway Protocol (BGP) détermine par quels ASes le trafic doit passer,
les Internal Gateway Protocols (IGPs) détermine le chemin que le trafic doit suivre au sein
de chaque ASes.

À l’origine, le routage était effectué selon la philosophie du best-effort, sans garantie sur
la qualité de la communication. Au fil du temps, le routage qualitatif est devenue de plus
en plus important. En effet, même les communications non critiques sont censées bénéficier
d’une connectivité constante. En outre, les flux plus cruciaux et premium peuvent avoir
des exigences strictes, par exemple en ce qui concerne la latence des communications. Ces
nouveaux défis, centrés autour de la résilience et de la qualité de service, sont au cœur de
cette thèse.

Tout d’abord, nous examinons comment faire en sorte que le trafic transitant par un
AS ne souffre pas d’événements internes à ce dernier, comme une panne. Cette question
est particulièrement difficile car le principal protocole en jeu, BGP, est intrinsèquement très
lent puisqu’il doit maintenir les informations d’accessibilité de toutes les destinations au
sein d’Internet. Néanmoins, nous proposons des algorithmes et des structures de données
qui garantissent que de tels événements deviennent transparents pour le trafic de transit,
qui bénéficie alors immédiatement de la nouvelle route optimale vers sa destination. Nous
montrons que le coût de management de notre solution est gérable, et drastiquement réduit
par rapport à BGP pour la majorité des ASes au sein d’Internet.

Ensuite, nous nous intéresserons au calcul de chemins qui respectent une contrainte
supérieure sur la latence, tout en considérant le coût IGP, une métrique fixée par l’opérateur
sur chaque lien, représentative de la bande passante ou de l’intention de conception des
opérateurs. Si le calcul de ces chemins est complexe en soi (un problème NP-Hard en
théorie), nous considérons une contrainte supplémentaire en nous assurant que ces chemins
peuvent effectivement être déployés (i.e., utilisés par le trafic concerné) avec les technologies
actuellement déployées (Segment Routing (SR) en particulier), une contrainte opérationnelle
souvent négligée. Malgré les particularités de cette nouvelle contrainte, qui nécessite une
attention particulière pour être considérée correctement, nous proposons deux méthodes
efficaces à cet effet et les évaluons dans divers scénarios. En particulier, nous montrons
que le calcul de tels chemins peut être effectué en moins d’une seconde dans des réseaux de
100 000 noeuds.
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Abstract

Computer networks are the backbone of most modern communication. As such, they are
expected to route data from a source to any reachable destination. Routing refers to how data
is transferred across networks, and how the underlying paths should are computed. The way
routing should be performed is specified by routing protocols. Consequently, communications
within the Internet are heavily reliant on the performance, behavior, and interaction of the
routing protocols at play.

The Internet being a heterogenous collection of independent networks (called Autonomous
Systems (ASes)), several routing protocols are required. While Border Gateway Protocol
(BGP) dictates through which ASes the traffic should go, Internal Gateway Protocols (IGPs)
dictate which path the traffic should follow within each ASes.

Originally, routing was performed following the best-effort philosophy, with no guarantee
on the quality of the communication. However, as time went on, offering qualitative routing
become increasingly important. Indeed, even non-critical communications are expected to
benefit from constant connectivity. Furthermore, more crucial, premium flows may have
strict requirements, for example regarding their experience latency. These news challenges,
centered around resiliency and quality of service, are at the core of this thesis.

First, we consider how to ensure that traffic transiting through an AS does not suffer from
internal events within the latter such as failure. This issue is particularly challenging since
the main protocol in play, BGP, is intrinsically very slow as it must maintain the reachability
information of all destinations within the Internet. Nevertheless, we propose algorithms and
data structures that ensure that such events become transparent to transiting traffic, which
immediately benefits from the optimal new route to its destination. We show that the
management cost of our solution is manageable and drastically reduced compared to BGP
for the majority of the ASes within the Internet.

Second, we will delve into the computation of paths that respect an upper constraint on
the latency, while still considering the IGP cost, a metric set by the operator on each link,
representative of the bandwidth or the operators’ design intent. While the computation of
these paths is complex in itself (an NP-Hard problem in theory), we consider an additional
constraint by ensuring that these paths can actually be deployed (i.e., used by the relevant
traffic) with the currently deployed technologies (Segment Routing (SR) in particular), an
operational constraint often overlooked. Despite the peculiarities of this new constraint,
which requires specific care to be considered properly, we propose two efficient methods to
this effect and evaluate them in various scenarios. In particular, we show that computing
such paths can be done in less than 1 second within networks of 100 000 nodes.

List of publications during the Ph.D.

Journals

• Jean-Romain Luttringer, Thomas Alfroy, Pascal Mérindol, Quentin Bramas, François
Clad, Cristel Pelsser. Deploying near-optimal delay-constrained paths with Segment Rout-
ing in massive-scale networks, in Computer Networks, 2022 [Luttringer et al. 2022].



viii

Conferences

• Jean-Romain Luttringer, Quentin Bramas, Cristel Pelsser and Pascal Mérindol, A Fast-
Convergence Routing of the Hot-Potato in IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, 2021 [Luttringer et al. 2021d].

• Jean-Romain Luttringer, Thomas Alfroy, Pascal Mérindol, Quentin Bramas, François Clad
and Cristel Pelsser, Computing Delay-Constrained Least-Cost Paths for Segment Routing is
Easier Than You Think" in IEEE 19th International Symposium on Network Computing
and Applications (NCA), 2020 [Luttringer et al. 2020b].

National Conferences

• Jean-Romain Luttringer, Thomas Alfroy, Pascal Mérindol, François Clad, Cristel Pelsser,
Le Problème à trois Contraintes : Calcul et Déploiement de Segments de Routage in
23èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications
(AlgoTel), 2021 [Luttringer et al. 2021b].
(Best Paper Award)

• Jean-Romain Luttringer, Quentin Bramas, Cristel Pelsser, Pascal Mérindol, L’Art
d’Anticiper les Changements IGP pour Acheminer Optimalement la Patate en Tran-
sit in 6ème Rencontres Francophones sur la Conception de Protocoles, l’Évaluation
de Performance et l’Expérimentation des Réseaux de Communication (CoRes),
2021 [Luttringer et al. 2021c].

Other publications

Journal

• J. Luttringer, Y. Vanaubel, P. Mérindol, J. Pansiot and B. Donnet, Let There Be Light:
Revealing Hidden MPLS Tunnels With TNT, in IEEE Transactions on Network and Service
Management (TNSM), June 2020 [Luttringer et al. 2020c].

Conference

• Y. Vanaubel, J. -R. Luttringer, P. Mérindol, J. -J. Pansiot and B. Donnet, TNT, Watch
me Explode: A Light in the Dark for Revealing MPLS Tunnels, 2019 Network Traffic
Measurement and Analysis Conference (TMA), 2019. [Vanaubel et al. 2019].



ix

Software developed during the Ph.D.

The software and tools we have developed collaboratively during this Ph.D. are available
publicly at the following link.

• BEST2COP and LCA (with SAMCRA)
This repository contains Best Exact Segment Track for 2-Constrained Optimal Paths
(BEST2COP), our algorithm computing Delay-Constrained, Least-Cost (DCLC) paths
deployable with Segment Routing (SR), as well as Live Conversion Algorithm (LCA), our
algorithm encoding path to segment lists on the fly in a fashion allowing to solve DCLC
for SR. In particular, we fitted LCA onto the Self-Adaptive Multiple Constraints Routing
Algorithm (SAMCRA) algorithm, which we re-implemented.
https://github.com/talfroy/BEST2COP

• OPTIC-P4
This repository contains the data-plane implementation of Optimal Protection Technique
for Inter-intra-domain Convergence (OPTIC) in P4. Although this implementation is
merely proof a concept, the latter is usable with a custom, simplified python control-plane
available in the repository.
https://icube-forge.unistra.fr/jr.luttringer/optic-p4

• YARGG
This repository contains Yet Another Realistic Graph Generator (YARGG), a large-scale
multi-metric topology generator which creates topologies following realistic structures
based on geographical data and common network design guidelines. The precise topologies
used to evaluate BEST2COP can be found online [Luttringer et al. 2021a].
https://github.com/JroLuttringer/YARGG

• Evaluation tools
These repositories contain the tools used to evaluate BEST2COP, LCA and OPTIC.
These tools allow to reproduce the experimentation performed to evaluate these contri-
butions, and the associated figures (or perform complementary evaluations).
Simtool (evaluating BEST2COP and LCA): https://git.unistra.fr/bramas/simtool/
OPTIC tool (evaluating OPTIC): https://zenodo.org/record/3972128#.Yxu_Ui8RrFY





Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Graph Theory Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Shortest Path Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Routing & Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Traffic-Engineering Deployment Technologies . . . . . . . . . . . . . . . . . . 47
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Related Work 55
3.1 Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Segment Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Constrained Paths Computation . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Deployable Multi-Constrained Tunnels 95
4.1 Motivation & Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Dealing with 2-Constrained Optimal Paths (2COP) and Delay-Constrained,

Least-Cost (DCLC)-Segment Routing (SR)’s complexity . . . . . . . . . . . . 101
4.3 Using the SR Graph to perform live conversions with LCA . . . . . . . . . . . 107
4.4 Exploring the SR Graph natively and efficiently with BEST2COP . . . . . . . 127
4.5 Evaluating BEST2COP, LCA, and SR . . . . . . . . . . . . . . . . . . . . . . 138
4.6 Conclusion, Limitations & Perspectives . . . . . . . . . . . . . . . . . . . . . . 148

5 Reliable Hot-Potato Routing 153
5.1 Border Gateway Protocol (BGP)/Internal Gateway Protocol (IGP): an Inti-

mate Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2 Optimal Protection Technique for Inter-intra-domain Convergence (OPTIC) . 157
5.3 Theoretical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.4 Conclusion & Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6 Conclusion 177
6.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7 Résumé français 183
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2 Résumé du chapitre 4 : calcul de tunnels multi-contraints . . . . . . . . . . . 187
7.3 Résumé du chapitre 5 : une patate cuite à la perfection . . . . . . . . . . . . 198
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

List of Figures 205



xii Contents

List of Tables 208

Glossary 209

Bibliography 214



Chapter 1

Introduction

Drawing of the Midjourney AI when
prompted "What does the Internet look
like ?"

Over the past decades, the challenges that computer
networks had to tackle evolved substantially. At first,
these challenges mainly revolved around connectivity.
Enabling communication among computers within a
network is indeed a considerable task already, in par-
ticular given the dynamic nature of these entities which
may undergo failures or other topological changes.
As computer networks started to become more and
more prevalent, it became clear that connectivity
should not only be ensured among devices within a
given network but also across independent networks,
which would in turn allow global connectivity across
all devices. This collection of interconnected indepen-
dent networks (also called domains or Autonomous
Systems (ASes)) would later form the modern-day
Internet.

To achieve constant connectivity, routing protocols were designed, such as Open Short-
est Path First (OSPF) [Moy 1998], Intermediate System to Intermediate System (IS-
IS) [rfc 1990], or BGP [Rekhter et al. 2006]. Routing protocols dictate how routing should
be performed, i.e., how topological information should be exchanged across devices in charge
of forwarding data, and how the best forwarding paths should be computed.

Routing protocols referred to as IGPs specify how intra-domain routing should be per-
formed. Usually, intra-domain routing relies on paths that minimize the IGP cost, an additive
metric set on each link by the operator of the network according to its design wishes and
the paths it wants the traffic to take.

While routing across networks (i.e., inter-domain routing) is also specified by routing
protocols, these protocols strongly differ from IGPs, as they evolve in a drastically different
context. Indeed, each AS is governed by distinct administrative entities, with different (or
even conflicting) views regarding what the best paths should be, depending on political or
economical relationships between each domain. Consequently, inter-domain routing is mainly
governed by a different routing protocol, BGP, designed to work in such an environment.

Communications across the Internet thus depend on the interaction between different
routing protocols: while the domains the traffic goes through are decided by BGP, its path
within each domain is decided by the IGP deployed therein.

As stable and global connectivity was achieved, the Internet started to become the
backbone of more and more communications, ranging from trivial, unimportant flows to
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critical and real-time ones with strict requirements regarding the characteristics of the
communications, such as the experienced latency. Consequently, challenges evolved towards
qualitative routing, i.e., ensuring an overall better experience and service quality within
computer networks. In this thesis, we will further investigate two main types of qualitative
routing challenges: resiliency and quality of service.

Resiliency became a fundamental challenge of computer networks. Indeed, the growth
in popularity of real-time services over the Internet means that service availability must
now be almost permanent, despite the numerous unplanned changes that computer networks
undergo. Such resiliency is not trivial to achieve, as topological changes force routing devices
to re-converge, i.e., recompute the best forwarding paths. This reconvergence puts the
network into a transient, inconsistent state during which connectivity may be lost or the
routing performed may be suboptimal. Computer networks must thus be resilient, and
adapt quickly to such events.

Numerous improvements have been proposed and implemented to improve the conver-
gence time of routing protocols. Improvements have been made to IGPs to better deal with
events occurring within one’s domain, or to BGP, to offer better resiliency to remote events
occurring in distant domains. The challenge is arguably even more critical when considering
BGP, as the scale at which the protocol operates leads to long delays, both regarding the
notification of the event and the re-computation of the best paths [Labovitz et al. 2000a].

This challenge becomes even more interesting when considering that both types of
events and protocols are entangled. More precisely, BGP has to re-convergence even after
intra-domain events. Indeed, when several inter-domain routes seem equally attractive,
the one enabling traffic to exit the domain as quickly as possible (following the best
intra-domain paths) is selected. Because of this hot-potato routing, inter-domain routes
must be re-evaluated even upon (frequent) intra-domain events, an intrinsically long process
that may lead to suboptimal routing or long-lasting breaches of service.

Moreover, even perfectly resilient networks may not offer sufficient performance or Quality
of Service (QoS) for some kind of traffic. Indeed, computer networks usually provide best-
effort delivery, meaning that the network does not provide any guarantee regarding the
actual quality of the forwarding paths taken, be it their latency or reliability. While best-
effort delivery is sufficient for most of the traffic, some modern flows demand very strict
requirements regarding their forwarding paths. For example, financial trading flows exchange
time-sensitive data which involves large monetary stakes [Giacalone et al. 2015], compelling
clients to pay a considerable amount for guaranteed low latencies. 5G slicing may also require
the ability to bound the end-to-end latency of some flows [Programme 2020]. Although such
flows rarely have to traverse the Internet, they may rely on Virtual Private Network (VPN)
to communicate. Internet Service Providers (ISPs) providing such VPN services are thus
faced with Service Level Agreements (SLAs) even more stringent than usual, in particular
regarding the end-to-end latency of the forwarding paths.

Ensuring that the relevant traffic does indeed benefit from forwarding paths that provide
such strict SLAs is a complex task, both from a computational and technical standpoint.
These forwarding paths must indeed respect the required latency, but should ideally also aim
to minimize the IGP costs, as the latter reflect the operators’ intent and design. Finding
paths that minimize the IGP cost while respecting an upper constraint on the delay requires
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solving DCLC, an NP-Hard problem.
This problem becomes even more interesting when considering the technical side of the

issue. Indeed, as the computed paths may deviate from the standard, best-effort paths
(still used by the majority of the traffic), additional technologies are required to ensure that
the relevant flows do indeed follow the DCLC paths, i.e., to deploy such paths. Currently,
SR (an implementation of the source routing paradigm) is the most popular technology
providing such capabilities. Within networks deploying SR (sometimes referred to as SR
domains), specific paths can be specified in the form of detours (called segments) added to
the packet itself. These segments are forwarding instructions, which are read and executed
by the routers along the forwarding paths. However, the number of segments is limited by
the underlying hardware. Consequently, paths must not only respect the required latency
but also be deployable in fewer segments than the upper limit of the considered hardware.
This additional metric exhibits a peculiar behavior compared to standard additive metrics.
In particular, it cannot be represented as an additional static weight on the graph and
breaks the fundamental sub-path optimality property, upon which most path computation
algorithms rely. Additional methods are thus required for this metric to be considered
properly, further increasing the practical difficulty of an already complex theoretical problem.

1.1 Contributions

In this thesis, I will present several contributions, revolving around both the resiliency-
and QoS-centric challenges just mentioned. While bound by the common theme of
qualitative routing, both challenges (and so, their associated contributions) are separate
and independent.

First, we provide several schemes enabling the efficient computation of DCLC
paths deployable within SR domains. To devise such schemes, we first propose to rely
on the inaccuracy of the latency measurements to reduce the theoretical complexity of DCLC
while remaining practically exact, or at least within a bounded distance from the optimal
solution.

To correctly consider the number of segments despite the metric peculiarities, we propose
a structure, the SR Graph, which enables us to consider this metric properly by encompassing
all three relevant metrics (number of segments, delay, and cost) and transforming the number
of segments into a more manageable metric (the hop count). We propose two ways to rely
on this construct to compute deployable DCLC paths.

The first one consists in directly exploring the SR Graph to easily keep track of all three
metrics. Indeed, within this augmented graph, the number of segments becomes a standard
metric, allowing the use of traditionnal algorithms and methods. While the SR Graph is
particularly dense, we show that this method is viable by designing an algorithm, Best Exact
Segment Track for 2-Constrained Optimal Paths (BEST2COP) which solves DCLC for SR
domains by exploring the SR Graph. By leveraging the characteristics of the SR Graph and
multi-threading, we show that BEST2COP can compute deployable DCLC paths efficiently
even in large-scale networks. In particular, we also extend BEST2COP to leverage the
structure of large-scale operators’ networks. We design a large-scale multi-metric topology
generator, Yet Another Realistic Graph Generator (YARGG), to evaluate our algorithm, and
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show that this extension of BEST2COP is able to solve DCLC for SR in about 1s within
networks of 100 000 nodes.

As exploring the SR Graph may be costly (because of its density) for some algorithm, we
propose an alternative method to solve DCLC-SR with traditionnal multi-metric shortest
paths algorithms. By relying on the information contained within the SR Graph, it is
possible for such an algorithm to solve DCLC-SR while considering the original graph. It
is however necessary to modify the algorithm by (i) converting paths to segment lists, to
keep track of the number of segments, and (ii) modify the way distances are compared, to
consider the effect of this new metric on the subpaths optimality property. We thus devise
a conversion algorithm, Live Conversion Algorithm (LCA), enabling multi-metric paths
computation algorithms to keep track of the number of segments necessary to encode paths
on the fly, while exploring the original (sparser) graph of the network. As this new metric
behaves differently from standard metrics, we formally describe and prove the necessary
modifications that should be made so that path computation algorithms correctly handle
these peculiarities when relying on LCA, and correctly retrieve all relevant paths. We
implement these modifications on a state-of-the-art multi-metric algorithm and evaluate the
latter in various scenarios.

Second, to ensure better network resiliency upon intra-domain events, we
propose OPTIC, which aims at making intra-domain events transparent for the
transit traffic going through the domain despite the ill effects of hot-potato
routing. OPTIC achieves these results through adequate data structures and algorithms.
By leveraging the way inter-domain routes are selected, OPTIC can efficiently pre-compute
backup sets of routes guaranteed to contain the new best route towards a remote destination
upon any possible internal event. Upon an internal event, the new optimal route can be found
efficiently within these sets instead of relying on the slow BGP convergence. Furthermore,
remote destinations sharing the same sets of backup routes share the same entry in memory,
allowing for efficient grouped updates. We show through a theoretical evaluation that the
number of distinct sets (and so, of entries to manage) is greatly inferior to the number of
vanilla BGP entries for the majority of ASes in the Internet and devise efficient algorithms to
update these backup sets when required (although, for most events, these sets should remain
stable). As OPTIC was designed with programmable hardware in mind, we discuss in detail
how our solution fits within these modern architectures through a clever hardware-software
co-design and the benefits that ensue.

1.2 Overview

This thesis is organized into six chapters. In Chapter 2, we start by providing the necessary
background to discuss our contributions and the associated related work. We first introduce
fundamental graph theory concepts used throughout this thesis. We then discuss path com-
putation, a central aspect of this thesis, and, more generally, routing. We present the most
well-known mono-metric shortest paths computation algorithms, and present the general
concepts required to understand how multiple metrics affect the computation of shortest
paths. We then describe how these algorithms fit within routing protocols to ensure reach-
ability within and across computer networks, before discussing Traffic-Engineering (TE)
technologies, with a focus on SR.
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In Chapter 3, we detail the related work around our contribution. We start by discussing
resiliency and reviewing solutions aiming to improve the convergence time of protocols or
provide fast re-routing capabilities, be it in an intra-domain or inter-domain context. We
then review the work and propositions centered around SR, focused on TE propositions and
the translation of forwarding paths to segment lists. Last but not least, we review constrained
paths computation algorithms, visiting heuristics, approximations, exact schemes, and other
approaches.

In Chapter 4, we present our contributions related to the computation of deployable
multi-metric paths for SR domains. We describe how we deal with the NP-Hardness of
DCLC in a way fitted for operator networks. We describe in detail our construct, the SR
graph, and both algorithms that rely upon it, BEST2COP and LCA. We then evaluate their
performance, before concluding this chapter and discussing the possible short- to mid-term
perspectives.

In Chapter 5, we present OPTIC. We explain how OPTIC constructs and maintains
backup sets of routes, enabling BGP to react almost instantaneously upon intra-domain
events. We then present our theoretical evaluation of OPTIC, exhibiting its manageable
operational cost, before discussing the possible perspectives.

Finally, we conclude this thesis in Chapter 6 by summarizing our results and discussing
long-term perspectives. Note that the code of our contributions and the code enabling us
to easily reproduce our experiments is made available online (the links being listed at the
beginning of this document).

Have a pleasant reading
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In this chapter, we review the background necessary to describe my contributions (and
their surrounding context) in the upcoming chapters. We start by reminding some graph
theory definitions in Section 2.1. We review the basis of mono-metric and multi-metric
path computation in Section 2.2. We then explain the inner workings of both inter and
intra-domain routing protocols in Section 2.3, and how path computation comes into play
within the latter. Finally, we review the latest Traffic-Engineering deployments technologies
in Section 2.4, and how the latter enable subtler routing features within today’s networks.
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notation definition

G = (E, V,w) A MultiGraph G with a set of vertices V , a set of edges E,
and a weight function w : E → Nm

m Number of components of w(u, v)
(u, v) An edge in E between node u and node v

(u, v)i A specific (u, v) edge within MultiGraph G.
E(u, v) The set of all edges between node u and node v

w(u, v) The weight vector of edge (u, v)

wi(u, v) The ith component of w(u, v)

p(s, t) A path between node s and t, defined as a list of edges
(may be referenced as p if context allows).

d(p) The distance vector of path p.
(may be referenced as d if context allows).

di(p) The ith component of d(p), i ≤ m.
P (s, t) All paths between node s and t

p∗(s, t) A shortest path between node s and t (mono-criterion)
P ∗(s, t) All shortest path between node s and t (mono-criterion)
d∗(s, t) The best distance between node s and t (mono-criterion)

p∗i (s, t) A shortest path between nodes s and t

when considering the ith criterion.
P ∗
i (s, t) All shortest path between node s and t

when considering the ith criterion.
d∗i (s, t) The best distance between node s and t

when considering the ith criterion.

P A Pareto-front (or Pareto-set)

Figure 2.1: Notations introduced within this section
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2.1 Graph Theory Concepts

Graphs are an intuitive way to abstract networks, including computer networks. Thus,
network-related problems are often studied using graph theory, which offers a powerful
formal framework. As routing problems are no exception, we will start by describing
formally some graph theory notions that we will be using throughout this thesis. A
summary of the notations used within this chapter can be found in Table 2.1

A Graph G = (V,E) consists of |V | vertices (or nodes) v ∈ V and |E| edges
(u, v) ∈ E ⊆ V × V . Edges can thus be seen as a set of binary relations between nodes.
For example, when modeling cities as nodes, an edge between two nodes u and v generally
represents the existence of a road between the pair of cities represented by u and v. In the
case of wired computer networks, nodes usually represent routers (or hosts) while edges
represent the existence of a fiber-optic link or copper cable between said routers.

The relation represented by each edge may be asymmetrical. For example, one may
consider a one-way road between two cities. In these cases, the graph is said to be
directed, and an edge (u, v) is different from the edge (v, u). The relation may however
also be symmetrical. In this case, the graph is said to be undirected, and (u, v) and
(v, u) represent the same edge. Two nodes u and v are said to be adjacent, or neigh-
bors, if there is an edge between them (i.e., (u, v) ∈ E). Node u may also be referred
to as the predecessor or successor of v (the two terms being equivalent in undirected
graphs). If two given vertices may be connected by more than one edge, G is called
a multigraph. We then use E(u, v) to denote the set of all edges between the nodes u

and v. When necessary, we denote specific links (e.g., the ith edge) between u and v as (u, v)i.

Computer networks are often modeled as undirected graphs, as the existence of a
physical link generally enables two-way communication. Thus, in this thesis, we will
represent networks as undirected graphs for the sake of simplicity. The contributions we
will present in the following chapters do not, however, require the graph to be undirected
and may be used on directed graphs. Note that computer networks often exhibit several
links between two given nodes, mainly for scalability and resiliency purposes. Thus, in the
following chapters, we will consider multigraphs.

While edges represent the same relation, they are often not equivalent. For example,
links between routers may have different bandwidths, loss rates, or latencies. Thus, to
better encompass the underlying network, edges are often weighted, or labeled. A weighted
graph G = (V,E,w) respects the previous definitions, but also possesses a weight function
w which associates with each edge a given weight vector, as an edge may be characterized
by several distinct values (e.g., its latency, distance, or cost). The weight function may thus
be defined as w : E → Nm, where m is the number of components of the weight vector 1.
We denote the components of the weight vector wi, i = 1 . . .m. If m = 1, G is said to
be a monocriterion (or monometric) graph. Otherwise, G is said to be multicriteria (or
multimetric).

1Although some graphs may exhibit negative weights, we will only consider non-negative weight valua-
tions within this thesis.
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A path p is an ordered list of edges that joins a sequence of vertices. When necessary, we
denote p(s, t) a path which starts at s and ends at t with s, t ∈ V . When s = t, the path is
called a cycle. We denote P (s, t) the set of all paths between s and t. We may sometimes use
P when specifying end nodes isn’t necessary. A path is said to be simple if no vertice appears
more than once within the sequence, i.e., if it contains no loop. The distance d(p) of a path
p = (v1, v2), (v2, v3), . . . , (vk−1, vk) is the multidimensional sum vector of the weight vector of
each edge in p. More formally, d(p) = (d1, . . . , dm), with di =

∑
(wi(v1, v2), . . . , wi(vk−1, vk))

and i = 1 . . .m.
It is worth noting that this definition of the distance of a path only holds when the metric

Mi associated with the weight components wi is an additive metric (e.g., representing the
latency). Some metrics, such as the loss probability or bandwidth, exhibit multiplicative or
concave behavior [Wang 1999]. Multiplicative metrics usually consider probabilistic proper-
ties, e.g., the loss probability over a link. Concave metrics usually consider the minimum
weight value along the path and can express the behavior of link characteristics such as
the bandwidth, for which a hard limit on a link affects the entire path. In this thesis, we
will however only consider additive metrics, as some of the most challenging and relevant
problems arise when considering such types of metrics 2.

While using graphs to model computer networks seems very intuitive, it is nevertheless
a powerful abstraction method. Several relevant routing problems may be formally studied
within this formal framework, relying on the notions and theorems made available. One such
problem is the notorious Shortest Path Problem (SPP).

2.2 Shortest Path Computation

While computing multicriteria paths is an interesting topic with numerous applications, in-
teresting use-cases already arise when considering a single criterion (i.e., when m = 1). For
example, most standard routing protocols rely solely on a single additive metric to compute
forwarding paths between routing. In addition, most multicriteria path computation algo-
rithms rely, at their core, on classic monocriteria path algorithms. Thus, in this section,
we will first discuss the SPP in a mono-metric context, before discussing its multi-metric
variant.

2.2.1 Mono-metric Shortest Path Computation

In this subsection, we will present the most well-known and practically relevant mono-metric
path computation problem, and discuss the two main solutions to these problems, Dijkstra’s
algorithm, and the Bellman-Ford-Moore (BFM) algorithm.

As aforementioned, monocriteria path computation is a central topic in routing. Indeed,
standard intra-domain routing protocols only consider a single additive metric, called the
IGP cost, or simply cost. This cost is usually representative of the bandwidth of the link, but
can in practice be set at an arbitrary value by the network’s operator, e.g., to reflect design
choices or operational costs. Data packets then follow the paths whose distance between the
given source and destination is minimal.

2Some authors note that multiplicative metrics may be transformed into additive ones by taking their
logarithm [Goel et al. 2001].
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Since this metric is not necessarily correlated to the links’ physical properties, the
computed paths do not aim to meet specific quality of service requirements. They are
said to provide best effort delivery. Despite their lack of guarantees, these paths are often
sufficient for ordinary traffic and are thus used for the vast majority of the flows transiting
through a network. In addition, because they rely on a single additive metric, these paths
can be computed very efficiently even in fairly large networks, by solving the well-known
single-source shortest path problem.

The SPP is a prominent problem in graph theory [Madkour et al. 2017, Schrijver 2012].
As its name suggests, solving SPP consists in finding a shortest path, i.e., a path with minimal
distance, between two nodes or sets of nodes in a given graph. The SPP usually considers an
additive metric. The most relevant variants of the SPP problem within computer networks
are the all-to-all and one-to-all.

Solving the one-to-all SPP consists in finding the paths with minimal distance from one
source node s to all other nodes t in the graph. The problem is defined more formally in
definition 2.2.1 :

Definition 2.2.1 (SPP). Given a weighted graph G, solving SPP consist in finding a
path p ∈ P (s, t) such that d(p) = min{d(q) : q ∈ P (s, t)},∀t ∈ V . a

aIn the algebraic routing context, this problem is studied by considering a (min, +) weight algebra
(minimizing a sum function) [Sobrinho 2002].

We will denote d∗(s, t) the shortest distance between s and t. While the shortest distance
is unique (recall that m = 1), there may be several shortest paths, which we will denote
P ∗(s, t). The all-to-all SPP (also referred to as All Pair Shortest Path (APSP)) consists in
finding a shortest path between all pairs of nodes in the graph. Note that APSP may be
solved by solving the one-to-all SPP for each node as a source.

Notice that while negative weights do not necessarily impede the computation of shortest
paths, the latter could lead to the presence of negative cycles within the graph, i.e., a cycle
whose distance is negative. Such cycles render the notion of shortest paths meaningless
(or rather, shortest paths are not well-defined), as a shorter path may always be found by
traversing the negative cycle a sufficient amount of times 3.

To compute shortest paths, most standard algorithms solving SPP (which we will call
Shortest Path Algorithmss (SPAs)) maintain the current best distances known towards all
given nodes within the network. The best current distance dist[u] is initialized at ∞ for each
node u, except the source, for which it is set at 0. The graph is then explored, and the best
distances are updated through a process called edge relaxation [Cormen et al. 2009].

The relaxation process is a simple one, but it is the most important aspect of SPAs.
Relaxing an edge (u, v) consists in checking whether the latter improves the current best
distance to v, i.e., if dist[v] > dist[u] + w(u, v). If so, the current best distance to v is
updated accordingly. The distance to u is said to have been extended by the edge (u, v).

3Interestingly, computing the shortest path that avoids negative cycles is an NP-Complete problem, as
solving the latter also solves the well-known longest path problem [Chekuri 2021].
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In order to find a shortest path, edges must have been relaxed in a specific sequence 4.
Thus, the order in which edges are relaxed heavily impacts the overall complexity of the
underlying algorithm, as the latter could be relaxing edges in a pathological ordering before
eventually stumbling upon the correct sequence. For example, a poorly designed SPAs (e.g.,
relaxing edges randomly) may first discover the highest possible distance, and infinitesimally
improve it throughout its execution, which may lead it to consider all existing paths.

The efficiency of SPAs thus mainly resides in the order in which edges are relaxed. SPAs
try to prevent the exploration of edges that are not relevant to the shortest path computation
through clever relaxation orderings. Most of the time, SPAs rely on the sub-path optimality
property to that effect 5. The sub-path optimality property refers to the fact that subpaths
of shortest paths are shortest paths. Property 2.2.1 defines this property more formally.

Property 2.2.1 (Subpath optimality). Let p(v1, vk) = (v1, v2), . . . , (vk−1, vk) be a short-
est path from v1 to vk. Then p(vi, vj) = (vi, vi+1), . . . , (vj−1, vj), with 1 ≤ i ≤ j ≤ k is a
shortest path from vi to vj.

Consequently, there is no need to try to extend paths that are not shortest paths them-
selves. This property may be leveraged, through an adequate graph exploration, to reduce
the number of relaxation operations to be performed. Both of the most well-known SPAs,
the Dijkstra and the Bellman-Ford-Moore algorithms, use these concepts and properties to
compute shortest paths efficiently.

2.2.1.1 Bellman-Ford-Moore

The BFM algorithm [Bellman 1958, Ford 1956, Moore 1959], often called simply Bellman-
Ford and published around 1958, is one of the most well-known SPA and is at the core of
our contribution BEST2COP detailed in Chapter 4. BFM works by relaxing, during each
of its iterations, all edges in the graph (in arbitrary order), discovering shortest paths by
increasing number of hops (or edges). By relaxing all edges, BFM will end up extending,
during iteration k, the shortest paths of k − 1 edges found at the previous iteration, thus
leveraging the subpath optimality property. Notice that since a path of k + 1 edges may
have a shorter distance than a path of k edges, the distance (or label) associated with a
node may be improved (or corrected) at any point during the remaining iterations. Thus,
BFM is said to be a label-correcting algorithm.

An interesting property of the exploration scheme of BFM is that the distance
of a shortest path composed of k edges will be found by the end of the kth itera-
tion [Thulasiraman et al. 2016]. We will refer to this property as the Iteration-Hop
relation or I-HOP relation. This relation has been exploited several times over the
years [Guerin et al. 1997, Cavendish & Gerla 1998]. Considering this, the algorithm stops
(at worst) at the |V | − 1th iteration, as paths composed of more than |V | − 1 edges
necessarily contain cycles and thus cannot be shortest paths when considering strictly

4More precisely, to find a shortest path p = e1, . . . , ek with ei ∈ E, the edge relaxation sequence must
include e1, . . . , ek, although not necessarily consecutively [Cormen et al. 2009].

5Also referred to as isonoticity when considering routing algebras, or substructure optimality.
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Figure 2.2: Illustration of the in-place and not-in-place variant of BFM. Here, the edge relaxation ordering
allows the in-place variant to find the shortest paths in a single iteration, while the not-in-place variant
always requires a number of steps equal to the diameter of the graph.

positive weights 6. Thus, the overall worst-case complexity of the BFM algorithm is
O(|V | × |E|). The algorithm may be terminated before the |V |th iteration if no new best
paths were found.

Note that the I-HOP relation only holds when considering a not-in-place implementation
of BFM, but not the in-place one. The difference between both approaches is illustrated
in Fig. 2.2. The order in which edges are relaxed is shown at the bottom of the figure.
In the not-in-place variant, distances discovered at the current iteration are placed within
a temporary array, and not considered until the following iteration. For example, during
step (1) of Fig. 2.2, although the edges (a, b)1,2 are relaxed after the edge (s, a), the newly
learned distance to a is not considered until the next iteration when following the not-in-place
implementation method. This may lead to extending paths that have already been rendered
obsolete by distances discovered during the current iteration. For example, the path to b

of distance 5 is extended to t, although a better distance to b (2) has already been found.
However, the I-HOP property holds: the path to b of distance 5 discovered during the first
iteration is indeed the shortest path of 1 hop at most. Similarly, the path to t of distance
6 is the shortest path of 2 hops at most. Oftentimes, the I-HOP property is not important
when computing paths. In addition, using the not-in-place variant always requires a number
of iterations equal to the diameter of the graph (i.e., the length of the longest shortest path).
Thus, the in-place implementation, more efficient, is often preferred.

When considering the in-place implementation, the new and improved distances are
directly placed within the distance array currently being considered. They may thus be
extended during the same iteration. Note that the behavior of BFM then becomes a bit
more erratic and the I-HOP relation, in particular, is lost. In Fig 2.2, the path of distance

6Note that BFM can use this property to detect negative cycle, by checking whether distances are still
being improved past the |V |th iteration. As such, it is one of the few algorithms that can handle the presence
of negative cycles in the graph.
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6 to t, for example, is never explored. As one can observe in Fig 2.2, there is no relation
between the number of hops in the path and the iteration at which it was found. However,
if the relaxation order is favorable, this implementation method may drastically reduce the
overall number of iterations required. In the example considered, the relaxation order allows
BFM to find all shortest paths in a single iteration when using the in-place variant.

Indeed, it is worth noting that while BFM requires to consider all edges at each itera-
tion, the order in which said edges must be considered is arbitrary. This led to two distinct
interesting schools of thought regarding the optimization of BFM. The first one aimed at
designing a subtler relaxation order to reduce the maximum number of iterations, which was
reduced to |V |/2 with an average of |V |/3 [Bannister & Eppstein 2012, Cormen et al. 2009]
(note that these optimizations require the in-place variant). The other one lever-
aged the fact that no order was required by relaxing edges concurrently using multi-
threaded architectures (although care must still be taken to ensure that no data-race oc-
curs) [Papaefthymiou & Rodrigue 1997].

Finally, a fairly well-known optimization of BFM resides in the observation that there
is no point in even considering an edge (u, v) if the distance towards u was not improved
during the past iteration. Thus, one may maintain, during the iteration, the list of nodes for
which a better distance was found, and only consider these nodes at the following iteration.
For example, in Fig 2.2, when considering the not-in-place variant, only considering edges
originating from b and t during step (3) is sufficient as no better distance to other nodes has
been found.

Even more drastic, each node for which a new distance has been discovered may be
inserted in a FIFO queue and considered one by one until the queue is empty. This opti-
mization, proposed (originally) by Moore, is sometimes also referred to as the Shortest Path
Faster Algorithm [Moore 1959]. However, the use of a priority queue makes the leveraging
of multiple threads less natural and more complex to implement.

We will see that our contribution, BEST2COP, remains close to BFM while still using
a similar optimization technique as the Shortest Path Faster Algorithm to prevent (some)
useless relaxations. We thus also benefit from the highly parallelizable nature of BFM. In
addition, we will see that minor modifications allow us to easily prevent data-races when
relaxing edges concurrently.

It should be noted that we consider here (and in our contribution BEST2COP) a some-
what centralized variant of BFM, where the node running the algorithm possesses a full,
static view of the network as a weighted graph. However, BFM may also be implemented
in a distributed fashion [Bertsekas & Gallager 1992]. When using distributed-BFM, each
node s maintains for each t a vector (d(s, t), u) which contains the currently best-known
distance to t and the neighbor u used to reach it. This vector is sent to the node’s neigh-
bors, which in turn may update their best known distances accordingly, by adopting or not
the received distance. As computed distances are disseminated through the network, the
algorithm constructs the shortest paths.

Although distributed BFM does possess some advantages compared to the standard vari-
ant (in particular, in networks where the capacity of the nodes is limited), distributed BFM
exhibits several well-known issues preventing its use in more complex, large scale networks.
For example, a pathological ordering in the message exchange may lead to a path exploration
that does not leverage subpath optimality and result in an exponential message complexity
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(when the message exchange is asynchronous) [Lambert et al. 2009, Awerbuch et al. 1994].
This effect is usually simply referred to as path exploration within the literature.

2.2.1.2 Dijkstra

The Dijkstra algorithm [Dijkstra 1959], published in 1959, is probably the most well-known
SPA and the one used in most cases. Although Dijkstra’s algorithm relies on the same core
concepts as BFM, its relaxation order is different and overall more effective than BFM, as
it better harnesses the subpath optimality property, by ensuring to only extend paths that
are already known to be shortest. However, it can be noted that Dijkstra’s algorithm does
not support negative weights, even without the presence of negative cycles.

Dijkstra’s algorithm maintains a priority queue composed of the nodes that have been
reached, ranked according to their distance from the root node (initially, only the source
node is put within the queue, with a distance of 0). The algorithm then selects the node
with the lowest distance and relaxes all the (outgoing) edges of this node, updating the queue
if the current known distances are improved upon. The algorithm then repeats this process
until the queue is empty.

An interesting property to note is that once a vertex u is extracted from the queue, it is
settled, i.e., its current distance cannot be improved and is thus the best possible distance
to reach u. Indeed, as all other nodes exhibit a higher distance, the only way to improve the
current best distance to u later on is through an edge exhibiting a negative cost, which is
forbidden by hypothesis. Thus, conversely to BFM, Dijkstra’s algorithm is often referred to
as a label-setting algorithm.

Because Dijkstra’s algorithm always chooses the node with the lowest distance, it is often
said to be a greedy algorithm. Its greedy nature allows it to reach a better overall complexity.
However, this complexity is less straightforward than BFM, as it heavily depends on the data
structures used. Agnostically of implementation choices, all |V | nodes in the graph will be
extracted (and inserted) from the queue. Each time an edge is considered, a distance may
be relaxed. Thus, if we denote x, i, and r the cost of the extraction, insertion (within the
queue) and relaxation respectively, the overall complexity of Dijkstra’s algorithm becomes
O((x+ i)× |V |+ r × |E|).

Choosing adequate data structures is fairly complex, as the resulting performance also
depends on the structure of the graph and the implementation overhead [Chen et al. 2007].
The most commonly used structure is a binary heap, which results in a complexity of O((|E|+
|V |)log(|V |)). This complexity can be improved to O(|E|+ |V |log(|V |)) by using a Fibonacci
heap or similar intricate structures [Fredman & Tarjan 1987, Takaoka 2003]. Note that in
practical cases, the binary heap may outperform the Fibonacci heap [Larkin et al. 2014].

Dijkstra’s algorithm has been extended, most notably through bidirectional search vari-
ants [Dantzig & Thapa 2003, Goldberg et al. 2006] (when only a single target is considered)
or through goal-oriented variants such as the A* algorithm [Hart et al. 1968]. It may be
noted that Dijkstra’s greedy nature does not enable to parallelize it as naturally as BFM,
although some parallelization methods do exist [Crauser et al. 1998a].
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2.2.1.3 Retrieving and representing shortest paths

One may have noticed that both BFM and Dijkstra’s algorithms mostly consider and manip-
ulate distances rather than actual paths: as presented, both algorithms return the optimal
distances to all nodes within the graph, but not the associated paths. Actively listing all
shortest paths may not be tractable in practice. Indeed, while the minimal distance between
two nodes is unique by definition, several shortest paths may possess this distance. In fact,
all (|V | − 2)! paths between two nodes (approximately) may be shortest paths. As such, we
will now often refer to the object manipulated by path computation algorithms as distances
rather than paths, to make this distinction clear.

To retrieve computed paths, SPAs usually remember, when relaxing an edge (u, v), that
u is the predecessor of v in the shortest path. Thanks to the subpaths optimality property,
this information is enough to compute the path from a target t to the source s through a
recursive backtracking reconstruction. Note that when several shortest paths exist, several
predecessors may be remembered7. The lists of the predecessors of all nodes thus form either
a shortest path tree or a shortest path Directed Acyclic Graph (DAG), within which any path
from s to a given node u is a path with minimal distance.

By walking through the shortest path DAG, it is thus theoretically possible to retrieve
and make use of all shortest paths between two pairs of nodes. In computer networks, in par-
ticular, utilizing several if not all shortest paths (a feature known as Equal Cost Multi Paths
(ECMP) [Hopps 2000]) is crucial to allow for better resiliency, scalability, and load balancing.

Dijkstra’s algorithm serves as a basis in several routing protocols [Moy 1998], where it
is performed by each node to compute the shortest paths to its peers. However, despite
the seemingly greater efficiency of Dijkstra’s algorithm, we have seen that BFM possesses
an overall simpler structure and interesting properties. Consequently, both algorithms are
often used as a basis for many other path computation algorithms which iterates upon them,
including multi-criteria path computation algorithms.

2.2.2 Multi-metric Path Computation

Path computation on multi-criteria graphs is a generalization of the mono-criterion variant
presented in the previous section. Computing multicriteria paths also possess numerous
practical applications. Indeed, we have seen that several metrics may be relevant when
computing paths within computer networks, e.g., latency, bandwidth, jitter (delay variation),
or loss rate. These problems may however require vastly different approaches compared to
their mono-criterion counterparts. In this section, we will present the new challenges brought
by multi-criteria paths computation and the associated concepts, as well as quickly present
the various categories of algorithms used to tackle such problems.

2.2.2.1 General concepts

Network metrics may follow different characteristics. They may be concave, additive, or
multiplicative. The relevant problems that consider a concave metric along a multiplicative
or additive one (e.g., the bandwidth and the delay) possess a computational complexity

7Although several shortest paths towards v may thus be remembered, they are not all extended separately.
Solely their unique, common distance is considered and extended.
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close to standard mono-criterion path algorithms. For example, guaranteeing a minimal
bandwidth may be performed by simply pruning inadequate links. Finding paths of low delay
with maximal minimal link bandwidth (i.e., the least detrimental bottleneck) may also be
done efficiently through shortest-widest or widest-shortest path computation [Wang 1999].

However, it may be interesting to consider several additive and/or multiplicative metrics.
For example, some premium flow may require paths that offer strong latency guarantees while
minimizing an additive metric such as the IGP cost.

Perhaps surprisingly, considering such a set of metrics drastically impacts the computa-
tional complexity of the path computation problems.

Let us, for example, consider one of the most traditional multicriteria path computation
problem, Multi Constrained Path (MCP). MCP consists in finding a path p that respects a
set of m constraints. Paths that satisfy all given constraints are called feasible.

Definition 2.2.2 (Multi Constrained Path (MCP)). MCP consists in finding, given a
graph G = (V,E,w) and a set of constraints ci(1 < i ≤ m), a path p that satisfies all the
constraints, i.e., such that di(p) ≤ ci with 1 < i ≤ m.

While MCP is a fairly natural problem when considering multicriteria networks, it is
known to be NP-Complete if at least two of the metrics being considered are additive and/or
multiplicative. This proof was published by (amidst others) Wang and Crowcroft and consists
in a reduction from the partition problem [Wang 1999].

This drastic increase in computational complexity can be explained by the fact that,
conversely to monocriterion path computation, there is no natural way to define a total
ordering among a set of multicriterion paths. Consequently, the notion of optimality becomes
blurry, and choosing which path to extend becomes less straightforward.

For example, let us consider two paths p1(s, v) and p2(s, v) with weight vectors (1, 10)

and (10, 1) respectively. Only extending p1 may lead to violate a constraint c2 on the second
metric, if said constraint is close to 10. The same reasoning holds for p2 and a constraint c1.
Since there is no way to (non-arbitrarily) order these weight vectors, both can be considered
optimal and have thus to be extended. Such paths (or rather, their distance vectors) may
be referred to as pareto-optimal. Pareto-optimal distance vectors are thus non-comparable.
The number of non-comparable distances may grow exponentially with respect to the size
of the network, resulting in the NP-Completeness of the problem.

This behavior can also be observed in Multi Constrained Optimal Path (MCOP), a gen-
eralization of MCP. Solving MCOP consists in finding a path satisfying m − 1 constraints
and, among the feasible paths, finding the one optimizing the remaining criterion.

Definition 2.2.3 (Multi Constrained Optimal Path (MCOP)). MCOP consists in find-
ing, given a graph G, a criterion to optimize j, and a set of constraints ci, 1 < i ≤ m, i ̸=
j, a path p which satisfies the set of constraints, while optimizing dj, i.e., dj(p) = d∗j and
di(p) ≤ ci, 1 < i ≤ m, with d∗i the optimal distance for the ith criterion.
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(a) Example (hypothetical) network spanning
over France, Belgium, and the Netherlands.
Edges are labeled with their delay and cost.
The cost is tuned arbitrarily. The delay is rep-
resentative of the geographical (and here, eu-
clidian) distance between cities.
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(b) The distances of (nearly) all simple paths from Strasbourg
to Rennes plotted in the delay-cost space. Some distances
have been removed for the sake of readability. Distances in
the red zone violate the delay constraints. Distances within
at least one blue zone are dominated. Other distances (shown
in blue) are non-dominated solutions.

Figure 2.3: Example illustrating the notion of Pareto front and dominance.

One of the most practically relevant MCOP problems with regards to computer networks
occurs when m = 2, and is usually referred to as DCLC, where the delay must respect a
given constraint, and the cost must be optimized. This problem is also sometimes called the
Restricted Shortest Path problem or the Constrained Shortest Path problem in the literature.
DCLC is said to be intractable (i.e., requires an exponential number of operations with
respect to the size of the graph) and proved to be NP-Complete [Wang & Crowcroft 1996,
Hansen 1980] 8, but has direct practical applications, as network operators may want to
guarantee a strict upper constraint on the latency of a path while optimizing the IGP cost
to respect their design choices.

Even though MCOP (and, subsequently, DCLC) does possess an optimization objective,
paths reaching a given node v may still be non-comparable. Figure 2.3 illustrates this issue.
For the sake of simplicity, we will consider m = 2 in the following explanations. We will
denote w1 the delay, and w2 the cost.

8The history behind the proof of NP-Completeness of DCLC deserves a little aside. Garey and Johnson,
often cited regarding this matter, attribute the proof to Meggido in 1977 through a reduction from partition,
but the reference is listed as a private communication [Garey & Johnson 1979]. The proof is also often
attributed to Hansen, in 1980. However, Hansen discussed the intractability of a parent problem of DCLC
(although the argument could be adapted to DCLC). Hansen warned that it did not constitute a proof of
NP-Completeness [Hansen 1980]. Finally, Serafini (in 1986) proved the NP-Completeness of the associated
decision problem, i.e., deciding if a path respecting two given constraints exists, through a reduction from
knapsack [Serafini 1987]. The reduction from the decision problem to DCLC being straightforward, this
proved that DCLC is NP-Hard. Wang and Crowcroft (in 1999) would then prove that the decision problem
associated to MCP (with m ≥ 2) is NP-Complete [Wang & Crowcroft 1996] for additive and multiplicative
metrics through a reduction from partition. It should however be noted that a proof of intractability is
stronger than NP-Completeness, as NP-Complete problems could be solved in polynomial time if P = NP

was to be proven true.
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Figure 2.3 shows a hypothetical network comprised of 9 nodes, spanning multiple coun-
tries. Each link is characterized by a weight vector (delay; cost). The cost is tuned arbitrarily
while the delay is representative of the actual distance between the corresponding cities. Let
us consider the DCLC problem, from Strasbourg to Brest with c1 = 150. Several simple
paths to Rennes may be extended to reach Brest, which offer different compromises between
the delay and the cost. An intuitive way to visualize their distance is in the delay-cost space,
shown in Figure 2.3b.

Distance d0, for example, offers the best delay, but at a high cost. Conversely, d4 offers
the best cost, but with a high delay, which nears the constraint. Finally, d1, d2, and d3

offer alternative compromises. Although d4 is the distance whose associated path solves this
instance of DCLC (with c1 = 150) when considering Rennes as the destination, it does not
necessarily solve the same instance of DCLC when considering Brest as the destination9.
This depends on the delay necessary to reach Brest from Rennes. Distance d4, which seems
like the best candidate as of now, may thus very well exceed the constraint c1 if the edge
(Rennes,Brest) is discovered to have a delay w1(Rennes,Brest) ≥ 10. When exploring
the graph, the weights of such further edges yet to be discovered is unknown. Thus, solely
extending the DCLC distances of nodes along the way may not be sufficient, as it could lead
to a path exceeding the constraint for the destination node. To ensure that a solution is
found, additional distances should be explored. Here, distance d3 should also be discovered
and maintained, in case d4 ends up violating the constraint. Following the same reasoning,
distances d2, d1, and d0 should also be discovered and maintained, as any one of them could
become the DCLC distance to Brest (or any further node) depending on the weights of the
remaining links. The number of distances to keep track of and extend may grow quickly,
and is the reason being the intractability of DCLC.

Notice, however, that some distances may be pruned from the exploration. Since only
strictly positive weights are considered, there is no point in extending distances that already
violate a constraint. Furthermore, all orange distances visible in Fig. 2.3b are worse on all
criteria than at least one of the distances shown in blue. They are said to be dominated.
For example, d7 possesses a worst delay and cost than d2 to reach the same node (Rennes).
Since individual criteria normally still follow the substructure optimality principle, d7 cannot
become a better distance than d2 after being extended 10. The distance d7 is said to be
dominated by d2. Fig 2.3b represents this dominance relationship. All distances within a blue
area are dominated by the blue distance from which the blue area originates. This dominance
relationship, central to multicriteria path computation, is formalized in Definition 2.2.4.

Definition 2.2.4 (Dominance). A distance d dominates a distance d′ if di ≤ d′i,∀i. A
distance d for which no distance d′ exist such that d′ dominates d is said to be non-
dominated, pareto-optimal, or efficient. A path p is dominated (resp. non-dominated) if
its distance d(p) is dominated (resp. non-dominated).

9This can be seen as the loss of subpaths optimality (or isotonicity) when considering MCOP. Indeed,
extending the DCLC paths to Rennes does not necessarily enable finding the DCLC path to further node
when considering the same constraint. Consequently, a MCOP path for a given set of constraints is not
necessarily composed of MCOP paths with the same constraints.

10More intuitively, as both distances can be extended by the same edges, there is no possible for the
dominated path to catch up with the non-dominated one.
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The set of non-dominated (also called efficient) distances, shown in blue in Fig. 2.3b,
forms the Pareto front of the solution [Deb 2005]. We denote the Pareto front by P. Dis-
tances lying in the green area form the convex hull of the Pareto front, i.e., the smallest
convex set of distances (or here, points) enclosing the Pareto front. Some path computation
algorithms distinguish between distances lying on this convex set or not, as we will see in
Section 3.3. To solve DCLC, (or MCOP/MCP), it is necessary to remember and extend
all non-dominated distances that form the Pareto front, i.e., all distances shown in blue in
Fig 2.3b. As such, while solving DCLC requires returning a single path per destination,
the entirety of the Pareto-front must still be explored. Dominated distances can however be
pruned from the exploration.

At worst, all distances are non-dominated, leading to an exponentially large Pareto-front
with |P| ≈ (|V | − 2)!, making the problem intractable. In addition, maintaining the actual
Pareto front (i.e., extracting it from all the dominated and non-dominated distances discov-
ered) may be costly (at worst quadratic with respect to the number of distances), although
various techniques exist exhibiting different trade-offs. In particular, when m = 2, sorting
distances according to one metric (e.g., by increasing delay) allows extracting Pareto-front in
linear complexity with respect to the size of the Pareto-front [Kuipers & Van Mieghem 2005].

It should be noted that, while theoretically possible, Pareto fronts of exponential sizes
have a low chance of occurring in practice within computer networks. Indeed, it has
been observed that the number of non-dominated distances is relatively small in prac-
tice [Müller-Hannemann & Weihe 2006, Van Mieghem & Kuipers 2003]. The exponential
nature of this problem is in reality very reliant on both the structure of the graph and
the weights of each link. For example, strongly correlated weights lead to a small Pareto-
front, as a distance with low delay will also possess a low cost and likely dominate all other
distances [Mote et al. 1991].

The cardinal of P can also be reduced depending on the granularity of the metrics. In-
tuitively, continuous metrics offer a wider spectrum for distances to fall into. Conversely,
discrete metrics reduce the number of possible distances, and thus the maximum number of
dominated distances. This is particularly important in computer networks, as weights are
encoded within a router’s memory within a fixed number of bits, holding a fixed number of
values (typically, 216 [Moy 1998]). In this case, one can bound the number of non-dominated
distances to |P| ≤

∏m
i=1 Li

max1≤i≤m Li
, with Li the number of values of the ith metric (or its associ-

ated constraint ci) [Van Mieghem & Kuipers 2003].
Thanks to both aforementioned effects, the number of non-dominated distances is

expected to be fairly low when considering realistic computer networks, for which weights
are often correlated and discrete. In particular, Müller-Hannemann and Weihe found
that, for certain categories of graphs with characteristics that could be found within
operators networks, the growth of the Pareto-front is polynomial with respect to the size
of the graph. Furthermore, their experimental evaluations have shown that the Pareto
front is in practice often small (whatever the graph), and that an explicit search of the
Pareto front may be viable even though the worst-case complexity remains exponen-
tial [Müller-Hannemann & Weihe 2006].

Because of the practical relevance of DCLC (and related multicriteria problems), several
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solutions have been designed, some dating as far back as 1980 [Hansen 1980]. The strange
duality of DCLC (an intractable problem rarely exhibiting exponential complexity in prac-
tice) lead to three main axes of research : Heuristics, Approximation schemes, and Exact
methods [Garroppo et al. 2010].

While a panel of these solutions will be reviewed more extensively in Chapter 3, we
will here present some of the general paradigms the latter adopt when solving multicriteria
problems.

2.2.2.2 Heuristics

Heuristics aim to avoid the exponential nature of this problem. Their main goal is to try to
solve the problem in a reasonable amount of time. While the results are usually shown to be
close to the optimal in most cases, they do not provide any guarantee regarding the distance
to the optimal solution11. Their main advantage usually resides in their very low execution
time.

Many heuristics, for example, try to establish a global order between multicriteria dis-
tances to reduce the problem back to its monocriterion variant. This may be achieved
by replacing the weights vectors by a linear combination of its components, i.e., w =

α1w1 + α2w2 + · · · + αmwm. The main drawback of this method is finding appropriate
α values. In addition, the resulting w may not hold any semantic meaning. While it may
serve as an indicator to guide the search, the loss of information makes it impossible to
assess the multicriteria quality of the underlying path solely through the resulting mixed
metric [Wang 1999]. Other algorithms may choose to only explore part of the Pareto front
or rely on duality theory [De Neve & Van Mieghem 2000, Juttner et al. 2001a].

Heuristics may return distances that either do not optimize the objective or that do not
satisfy the constraints, depending on their designs. As such, while they do offer an efficient
way to find a solution to multicriteria path problems, their lack of guarantees regarding how
far the solution returned is to the optimal value may make them unfit for intricate, strict
traffic engineering purposes.

2.2.2.3 Exact methods

Exact methods aim to provide the optimal solution to the MCOP problem. As a result,
they are expected to be computationally expensive, as they have to explore the entirety of
the Pareto front. However, it should be reminded that even such schemes may prove to
be fairly efficient in practice on realistic instances. Exact schemes often originate from an
extension of Dijkstra’s algorithm or BFM, and thus usually fall within the label-setting or
label-correcting families.

Multicriteria label-setting algorithms use a distance-based priority queue, i.e., where each
individual non-dominated distance is added to the queue. These distances are sorted in a
way that ensures that an extracted (and so, extended) distance is necessarily non-dominated
with respect to the following ones in the queue. By ensuring that the distances extended are
necessarily non-dominated, the label-setting property is enforced.

11Heuristics are sometimes defined as including such type of controlled approximation. In this thesis, we
consider heuristics and approximation mutually exclusive
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Multicriteria label-correcting algorithms do not ensure that elected labels are set-
tled. They may for example work in a BFM-like fashion, or implement a simpler pri-
ority queue than their label-setting peers, for example following a simple FIFO ordering.
Compared to label setting algorithms, this may lead to explore more (and, more impor-
tantly, dominated) distances. However, the simplicity of the queue drastically reduces the
associated management overhead. As such, both design choices offer interesting perfor-
mances [Hribar et al. 1995, Raith & Ehrgott 2009].

Other exact methods exist, such as ranking, which rely on k-shortest paths algo-
rithms [Martins & Santos 1999], and the two-phases method [Mote et al. 1991], which
discovers distances through different means, depending on whether the distances lie on the
convex hull of the Pareto front or not.

Using exact methods allows enforcing strong SLAs. However, although they may be
efficient in most realistic use cases, they are not protected from peculiar or pathological
patterns arising within graph structures or weighting schemes, which may lead to a drastic
increase in computation time. Indeed, some constructions exhibit a Pareto front of expo-
nential size with respect to the number of nodes, even with a bounded degree and only two
criteria [Hansen 1980, Breugem et al. 2017].

2.2.2.4 Approximation methods

Approximation methods offer an interesting compromise between exact methods and heuris-
tics. Approximation methods do not guarantee to return the optimal solution but can bound
the distance between the returned solution and the optimal one. More precisely, (1 + ε)-
approximations guarantee that the solution returned is optimal by a factor of (1+ε), usually
with regards to the optimization objective.

An approximation scheme taking ε as input and finding a (1 + ε)-solution in polynomial
time with respect to the size of the input is referred to as a Polynomial Time Approximation
Scheme (PTAS). However, PTASes allow the complexity to grow exponentially with respect
to 1

ε , meaning that the time complexity grows rapidly as one aims to get closer to the optimal
solution. More restrictive, Efficient Polynomial Time Approximation Schemes (EPTASes)
only allows 1

ε to appear as an exponent of a constant within the time complexity. Finally,
Fully Polynomial Time Approximation Schemes (FPTASes) require the time complexity to
be polynomial in both the input size and in 1

ε .
While not all NP-Hard problems admit FPTASes, it has been shown that DCLC and

MCOP do [Hansen 1980, Tsaggouris & Zaroliagis 2009, Papadimitriou & Yannakakis 2000].
More precisely, strongly NP-Hard problems cannot be approximated efficiently, while weakly
NP-Hard problems 12 can admit FPTASes. As the size of the Pareto front, which dictates
the worst-case complexity of MCOP, can be bounded by the magnitude of the data13, both
DCLC and MCOP are weakly NP-Hard. This result has then been leveraged to show that

12Weakly NP-Hard problems admit algorithms whose time complexity is polynomial in the magnitude of
the input data.

13Recall that the size of the Pareto front |P| is bounded in the number of values the distances can
take, which can be expressed as the largest numbers within the input, once distances are scaled to integers.
Exploring said Pareto front can thus be done in a time complexity depending on the magnitude of said data,
i.e., in pseudo-polynomial time
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FPTASes can be designed 14.
The ability to solve MCOP through FPTASes generated a vast interest within the

research community regarding the design of such solutions, both in operational research and
networking. Indeed, FPTASes allow enforcing strict SLAs (with a bounded error margin),
while offering polynomial time complexity. Consequently, numerous approximation schemes
for MCOP exist. The latter will be reviewed more thoroughly in Section 3. In particular,
our contribution, BEST2COP, falls within the FPTAS category. However, we do not
approximate the optimization objective by a factor 1 + ε, but rather the constraint. The
design choices of BEST2COP are explained more thoroughly in the dedicated chapter,
Chapter 4.

In this section, we have discussed the computation of shortest paths within weighted graphs.
Although such computations can be performed very efficiently when considering a single
metric, the computational complexity becomes exponential with respect to the size of the
graph when considering multiple additive and/or multiplicative metrics. Indeed, considering
multiple metrics breaks the global ordering between distances and requires maintaining and
extending a potentially exponential number of distances when exploring the graph. These
problems are however practically relevant and have generated vast research effort. In partic-
ular, Shortest Path Computations (SPCs) lie at the core of computer networks, which rely
on the latter to route data packets.

Routing, be it best-effort or not, is indeed centered around the computation of shortest
paths, either mono or multicritera. Nevertheless, such computations, by themselves, are not
sufficient. First, the information required may not be known beforehand by routing devices.
Second, computed paths must be encoded and handled in a way suited and optimized to
route the traffic. Consequently, shortest-path algorithms are used in conjunction to routing
protocols.

2.3 Routing & Routing Protocols

Routing consists in selecting the (best) paths onto which traffic must be forwarded for a
given destination. It is a central and crucial aspect of computer networks. Within computer
networks, routing is performed by routers, dedicated devices in charge of both routing and
forwarding data. In this section, we will describe the general architecture of routing devices.
We will detail how routers construct, compute and install forwarding paths to forward data
efficiently. We will see that routers rely on routing protocols to exchange and compute the
necessary routing information. In particular, we will see that routers may depend on several
routing protocols, and discuss the inner working and specificities of the routing protocols
relevant to our contributions.

Routers enable communication to remote devices by computing paths to the IP prefix that
contains the destination IP address. More precisely, routers store relevant path information
in their Routing Information Bases (RIBs), also called routing tables. A RIB is a list of
entries, matching any given destination prefix to its associated path information. Originally,

14In short, these algorithms often rely on ways to reduce |P| by making the metric coarser through
standard techniques [Sahni 1977], until the problem is solvable in polynomial time.
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notation definition

IH(D) IGP Next-Hops for destination D

L(D) Outgoing interfaces for a given destination D

G(D) Gateway (exit point) for an external destination D

Ai An Open Shortest Path First (OSPF) area.
AXi ith Area Border Router (ABR) between the backbone and area X

R Border Gateway Protocol (BGP) route. Individual attributes may be
expressed as a vector α+ β =(local-pref, as-path, med, igp)

β(R) Inter-domain attributes of a BGP route R

α(R) Intra-domain attributes of a BGP route R

≺,=,≻ Comparison operators between BGP routes.

Figure 2.4: Notations introduced within Section 2.3

a router only has knowledge of networks (or prefixes) it is directly connected to, i.e., its
direct links and loopback addresses. Information regarding remote prefixes must however be
learned.

This information can be fed to the router manually. In this case, the routing is said to
be static. While static routing may be viable in very small networks, many networks are
too large for static routing to be an option. In addition, most computer networks are highly
dynamic and undergo frequent unplanned changes [Merindol et al. 2018], meaning that the
RIBs would have to be constantly adjusted.

Consequently, dynamic routing is usually preferred. Dynamic routing allows routing
devices to construct and update their RIBs automatically and compute the best paths to
each prefix through path computation algorithms, such as the one mentioned in Section 2.2.1
or Section 2.2.2. The resulting paths are then used as forwarding paths for the traffic.

Ensuring permanently consistent dynamic routing is challenging. First, as we have seen in
previous sections, path computation algorithms rely on previously acquired information (e.g.,
a static view of a weighted graph). In practice (and, in particular, in computer networks),
such information is not always known beforehand by routers. Furthermore, computer net-
works are (traditionally) distributed. As such, in legacy networks, there is no central entity
aware of the entire topology or controlling all routing devices.

Second, forwarding is usually performed in a hop-by-hop fashion, meaning that each
router along the path taken by a packet forwards it to the next router along the best
path, called the Next-Hop (NH), according to its own, local knowledge and computa-
tions15. Even if a router may have enough information to compute the entire path to
a destination, only the NH (or NHs, if ECMP is supported) towards this destination
is maintained within the routing table. Thus, inconsistent routing information or even
inconsistent routing decisions among routers may lead to anomalies such as forwarding loops.

Consequently, routing protocols have been designed to specify how routing should be

15Or, said otherwise, each router forward the traffic to a given destination as if the traffic originated from
itself.
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performed, from the way routers should exchange the topological information enabling them
to compute forwarding paths, to the way this computation should be performed. Routing
protocols ensure consistency among routing devices and that the RIB remains complete and
up-to-date automatically even upon network events (e.g., failures, maintenance, or reconfig-
urations).

There exist a vast array of routing protocols that follow different paradigms, both re-
garding topology distribution and path selection. These protocols usually consider different
contexts and thus answer different challenges, for example in terms of scalability. A single
router may thus rely on several routing protocols, with each routing protocol maitaining
different information and populating different local RIBs. Note that several local RIBs may
have routes to the same destination. Paths from different RIBs are discriminated through
the administrative distance, a priority assigned to each routing protocol. For each destination
prefix, the path with the best administrative distance is put within the global RIB.

The set of functions in charge of routing, i.e., sharing the required topological informa-
tion, computing the best paths, and populating the RIBs, is called the control-plane of the
router. As the control-plane performs varied complex tasks, it is often software-based. It is
however not in charge of the actual forwarding of the data.

Indeed, although the global RIB does technically possess enough information to forward
traffic, it is not used directly. Rather, the minimal information required to forward data is
extracted from the RIB and put within Forwarding Information Base (FIB) (or forwarding
table), which is optimized for fast lookup.

The FIB usually only contain, for each destination prefix, the best interface (or interfaces,
if techniques such as ECMP are supported) onto which the traffic should be forwarded. When
traffic enters the routers, the FIB finds the most precise prefix covering the destination prefix
by performing a longest prefix match, either performed through adequate data-structures or
specialized hardware components (e.g., Ternary Content-Addressable Memory (TCAM)).
Once found, the packet is switched to the associated outgoing interface (as indicated in the
FIB) through the switching fabric, which allows interfaces to communicate. Usually, there
is one FIB per line-card, a physical entity managing one or several interfaces on a routing
device. By being physically close to the interfaces, the FIB allows to very quickly transfer
incoming data to the outgoing interface according to the information stored therein.

The part of the routers’ architecture in charge of forwarding data through the mechanisms
just described is referred to as the data-plane. The data-plane performs relatively simple
tasks but must perform them fast enough to not degrade the overall throughput. Conse-
quently, the data-plane traditionally relies on dedicated hardware, e.g., Application-Specific
Integrated Circuits (ASICs), which allows it to forward packets at line-rate (or wire-speed),
i.e., without slowing the traffic down.

It is worth noting that the past few years have witnessed the rise of efficient pro-
grammable data-planes, which allow performing subtler operations within the data-plane
while still forwarding packets at line-rate. The data-plane may be programmed through
specific programming languages such as P4 [Bosshart et al. 2014]. By mitigating the
ossification of wired networks, this technology quickly gained traction both within the
industry and academia and has for example been used to perform line-rate in-band telemetry
or fast re-route directly in the data-plane [Kfoury et al. 2021, Hauser et al. 2021]



26 Chapter 2. Background

Once the topological information has been exchanged across all routers and that the
best paths have been computed and installed within the FIB, the protocol is said to have
converged. The convergence speed of a protocol is a critical aspect of the latter, as anomalies
or non-optimal routing may occur while the protocol converges.

This convergence speed highly varies depending on the protocol. Not only does each
protocol require different kinds of computation, but they may also operate at vastly different
scales depending on the destinations they maintain.

In particular, a router within a given domain, or AS (i.e., a network controlled by a
sole, unique administrative entity), should, thanks to routing protocols, gain reachability
knowledge of any internal or intra-domain destinations (e.g., to reach other routers within its
own AS). However, a router should also be able to reach external, or inter-domain destination
(e.g., remote prefixes within the Internet).

Maintaining a full RIB containing all external prefixes throughout the Internet raises
fundamentally different challenges compared to maintaining a full RIB of purely internal
prefixes, most notably regarding (but not limited to) scalability. As such, inter- and
intra-domain connectivity is usually handled by two distinct protocols designed to tackle
these specific challenges.

The contributions in this thesis rely on different aspects of several protocols. BEST2COP
is focused on intra-domain path computation, and thus relies on and leverages intra-domain
protocols and their specificities. OPTIC, on the other hand, lies at the frontier of intra-
and inter-domain routing and requires understanding both types of protocols as well as the
interaction that may occur between them. Consequently, in the remainder of this section,
we will review the standard paradigm used in intra- and inter-domain routing, as well as the
standard routing protocols used in these contexts.

2.3.1 Internal destination reachability

The reachability of internal destinations is handled by an Internal Gateway Protocol (IGP).
An IGP ensures that all routers within a given domain (or AS) possess enough information
to route packets to any intra-domain destination following the optimal paths.

Once the IGP has converged, each router should know the best next-hops to any internal
destination prefix and the associated outgoing interfaces. As such, the routing enabled by
IGPs may be seen as a composition of functions Ports(D) = Int◦IH ◦LPM(D). LPM(D)

returns the most specific prefix (found via longest prefix match) known that covers the
targeted destination D. IH returns the internal next-hop used to reach a given prefix (or
a set of next-hops if several shortest paths exist). Finally, Int returns, for a given set of
internal next-hops, the associated outgoing interfaces. Int may also return a set of interfaces
per next-hop, e.g., in the presence of parallel links16.

Recall that this composition of functions is not computed each time a packet is
forwarded. Rather, it is resolved for each prefix beforehand. Solely the result is pushed
within the FIB. Thus, in steady state, the FIB only has to compute the longest prefix
match LPM(D) for the packet’s destination, before matching it directly to the outgoing

16In practice, a single interface is chosen when forwarding traffic through the use of a hash function applied
on some fields of the packets header.
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interfaces.

As aforementioned, the path a packet will take is not set by the source (in usual
IP routing) but constructed through the independent decision of each intermediary hop
according to their FIBs. Intuitively, this may be cause for concern as conflicting decisions
may lead to anomalies even if the topological information is consistent. However, when
considering intra-domain mono-criterion best paths, this is not an issue as the subpath
optimality principle holds. Thus, the routing decision taken by the next hop should match
the one taken by the current node if the information is consistent across routers.

To enable this routing, an IGP must thus first ensure that all routers are aware of
all internal prefixes before computing the optimal internal paths towards the latter. As
mentioned in Section 2.2.1, optimal paths within the context of intra-domain routing refer
to paths minimizing the IGP cost, an additive metric with (strictly) positive weights assigned
to each link. The IGP costs are usually set at the inversed capacity of each link but may be
tuned arbitrarily by the operators to reflect design choices or operational costs.

The most natural way to fulfill these requirements is to ensure that all routers within the
network possess a full, up-to-date view of the entire network in the form of a weighted graph,
onto which to perform shortest path computations, e.g., through Dijkstra’s algorithm. This
is the approach taken by link-state routing protocols.

2.3.1.1 Link-State Routing Protocols

When relying on a link-state routing protocol, each participating node within the domain
exchanges local connectivity information (i.e., the networks to which it is connected, includ-
ing its directly connected links, and the associated costs) throughout the network. The cost
may be any additive metric. As each node exchanges its local links and the respective costs,
all nodes within the network construct a full map of the network in the form of a weighted
graph, also called a connectivity map.

This map is used by routers to compute the best paths (minimizing the cost) to all
other internal destinations, e.g., through the algorithms presented in Section 2.2.1. Thus,
all routers possess the shortest path tree (or DAG, if a multi-paths feature is supported and
enabled), containing the best paths to all other destinations within the domain. Upon topo-
logical changes (appearance/disappearance of a link, or weight change), the modification is
flooded throughout the network so that each router may update its connectivity map.

Fig. 2.5 showcases the behavior of a link-state IGP, considering the network introduced
in the previous section. Each link is labeled solely with its IGP weight (which were left
unchanged from Section 2.2.2). We consider the point of view of the router within Strasbourg.
Once all topological information is exchanged, each router possesses a connectivity map of
the network, i.e., a graph representation of the network as shown in Fig. 2.5a. A shortest
path algorithm is then run by the router, which results in the shortest path DAG shown in
Fig 2.5b (we consider that the protocol supports the use of multiple paths per destination).
One may see that several shortest paths (of cost 6) exist between Strasbourg and Paris. One
such path goes through the parallel links towards Liège, while others go through the directly
connected link or via Mérindol. Similarly, two shortest paths of cost 4 exist from Strasbourg
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(a) Network shown in Fig. 2.3. The delays have been
removed from the labels for the sake of readability.
Solely the IGP costs are shown. The node located in
Brest has been removed.

(b) Shortest path DAG (rooted at Strasbourg) as
would be computed by a ECMP-compliant link-state
IGP.

Figure 2.5: Figure illustrating the principle of link-state IGP. Through topological information exchange, a
link-state IGP constructs the connectivity map of the network in the form of a graph, as shown in Fig. 2.5a.
The shortest path are then computed through Dijkstra, which results in the shortest path DAG shown in
Fig. 2.5b.

Table 2.1: IGP RIB and FIB resulting from the network shown in Fig. 2.5.

(a) IGP RIB

Dest. D d∗(D) Next-hops Interfaces
IH(D) L(IH(D))

Bordeaux 2 Mérindol (Str,M)

Delft 3 Liège (Str, L)1
(Str, L)2

...

Mérindol 1 Mérindol (Str,M)

Paris 6 Paris,Liège,Mérindol (Str, P )

(Str, L)1
(Str, L)2
(Str,M)

(b) FIB

Dest. D Interfaces
L(IH(D))

Bordeaux (Str,M)

Delft (Str, L)1
(Str, L)2

...

Mérindol (Str,M)

Paris (Str, P )

(Str, L)1
(Str, L)2
(Str,M)
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to Saint-Quentin, through Mérindol or Liège.
Extracts of the resulting RIB and FIB are shown in Table 2.1. The RIB, shown

in Fig 2.1a, contains all best-path related information, i.e., the best distance d∗ to all
destination D, the associated next-hops IH(D) and the respective interfaces Int(IH(D)).
The interfaces are here denoted by the corresponding link (the name of each city has been
reduced to the letters shown in bold in Fig. 2.5b). In particular, one can see the four
interfaces corresponding to the shortest paths to Paris, going towards Liège, Mérindol, and
Paris itself, which is directly connected. The correspondence between a destination and the
outgoing interfaces is pushed in the FIB (shown in Fig. 2.1b) used for forwarding.

Link-state protocols have been used as far back as 1979, when the link-state protocol
Shortest Path First (SPF) was deployed within ARPANET. Interestingly, SPF used the
measured delay of the links as a cost [McQuillan et al. 1979]. This metric would later be
replaced by the IGP cost, which considers the bandwidth by default but (more importantly)
offers operators more control over their network. The IGP cost is the default metric used in
both Open Shortest Path First (OSPF) and IS-IS.

Open Shortest Path First

Generalities OSPF [Moy 1998] and IS-IS [rfc 1990] are the most well-known link-state
routing protocols. In this thesis, we will consider OSPF, although our contributions may be
used with both protocols as they share numerous common concepts, albeit named differently.
The first version of OSPF was first standardized in 1989 (similar to IS-IS), about a decade
after SPF was deployed in ARPANET. It was quickly replaced by the second version of
OSPF a few years later. OSPF was tested in several networks in the 1990s, including the
NASA Science Internet network [rfc 1991]. The success of these test deployments showed
that OSPF, and link-state protocols in general, were promising. It thus quickly became
the recommended IGP for the Internet [Gross 1992]. Although it has undergone several
revisions, the second version of OSPF is still the one used today.

OSPF enable routers to establish sessions with their neighbors and advertise the list of
networks to which they are directly connected (i.e., directly connected links and loopbacks)
through a specific type of message, called Link-State Advertisement (LSA), which are prop-
agated throughout the network. The LSA not only contains the network prefix, but also
the associated IGP cost (i.e., the weight of the link) as tuned by the network operator. The
received LSA are put within the Link-State Database (LSDB), which should be identical
among all routers if the network is stable and connected, and which forms the connectivity
map. Dijkstra’s algorithm is then used to compute the shortest path DAG.

Dijkstra’s algorithm used by OSPF is indeed extended to leverage the existence of multi-
ple shortest paths through ECMP as described in Section 2.2.1. By allowing to route traffic
over multiple paths sharing the same optimal distance, ECMP leads to better resiliency and
network performance, by natively offering alternative paths and by enabling to load-balance
traffic across the multiple best paths.

It should be noted that although the shortest paths considered through ECMP share
the best IGP distance, they may differ on other metrics, such as the latency. Consequently,
leveraging multipath routing may prove challenging when aiming to provide QoS, as it is
possible that only some paths among a set of ECMP paths actually provide the necessary
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Figure 2.6: Illustration of a multi-area network structure. Stub areas (in blue dotted lines) are connected
through the backbone area (in orange dashed lines) through Area Border Routers. In practice, the backbone
area would span a large geographical area (e.g.,, a country). The routers located within a given city in the
backbone would serve as ABRs for a stub area that would cover said city.

guarantees. Thus, when computing and deploying multi-criteria paths, one has to be aware
of this path diversity that may be natively enforced by intermediary hops. Ideally, this path
diversity must however still be leveraged when possible.

Although OSPF relies on the (efficient) Dijkstra’s algorithm for path computation,
its computation time may still be too high when the network grows in size. Indeed,
networks are growing rapidly (already reaching several thousand nodes in some deploy-
ment [Matsushima et al. 2022]). More importantly, maintaining a complete connectivity
map of such large-scale networks through message exchange may not be viable, in partic-
ular if changes are frequent. Consequently, using OSPF, networks may be divided into
areas [Moy 1998].

Multi-area topologies Areas were designed to allow OSPF to scale by allowing to
partition the network into several opaque subnetworks called areas. Routers maintain a full
connectivity map of their own area only, and only share a summary of their area with other
areas. Area Border Routers (ABRs), i.e., routers at the border of two areas, are in charge
of exchanging the corresponding summaries between the two areas they are connected
to. Usually, this division is both physical and logical, which allows reducing the size of
the instance onto which Dijkstra’s algorithm must be performed, limits the flooding of
updates as both can be limited to a single area, and reduce the overall memory consumption.

A simplified example of a multi-area OSPF network is illustrated in Fig 2.6. OSPF areas,
denoted Ax are centered around the backbone area, or area 0 (A0, in orange dashed line).
Non-backbone areas are referred to as stub areas 17. In Fig 2.6, three stub areas are shown
in blue dotted lines (A1,A2,A3). ABRs possess an interface in both the backbone area A0

17In practice, several other types of areas exist. However, we here consider solely stub and backbone areas
for the sake of simplicity.
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and a stub area Ax, x ̸= 0. An ABR linking A0 and Ax is denoted Axi, with i the id of
the ABR. Indeed, there are usually two ABRs at such a junction, to prevent single points of
failure.

As they are at the intersection of two areas, these routers are in charge of sending
reachability information from one area to the other. For scalability purposes, ABRs do not
share the whole connectivity map of one area to the other, but rather a distance summary.
More precisely, an ABR Ax may only send to the routers within Ax the distances towards
routers within Ay, y ̸= x, and vice versa. In practice, these distance summaries are sent
through a specific type of LSA which may only be originated by ABRs. As such, non-ABRs
routers are aware of the distance to reach routers within other areas, but not of the complete
topology of said areas.

This partitioning reduces the size of the graph onto Dijkstra’s algorithm must be run.
Indeed, a router only needs to compute the shortest path to intra-area routers (including
the ABR), as the distances from the ABR to networks in remote areas are already known
through the distance summary. This design also limits message exchange, as update messages
remain within the area they originate from. Note that an ABR Ax does however maintain
the topological information of both the backbone area A0 and the stub area Ax.

Choosing to rely on OSPF areas may have a significant impact on the overall physical
structure of the networks. We will see in Chapter 4 that the presence of such obvious
separators within the network (i.e., the ABRs) may also be leveraged when computing
multi-criteria paths to reach interesting performance even on large-scale networks.

Despite the ability to divide the network into distinct, smaller instances, the convergence
time of OSPF may still be too high for modern-day requirements upon unplanned events.
Indeed, a router must first detect the change, send LSAs to its peers, re-compute the
shortest paths, and (eventually) update its FIB accordingly. This operation may take
several hundreds of milliseconds [Francois et al. 2005a, Filsfils et al. 2017], during which
some destinations may become unreachable. Several techniques have been designed to
reduce this unreachability period [Chiesa et al. 2021, Raj & Ibe 2007]. These Fast ReRoute
(FRR) schemes usually rely on pre-computations to enable a quick failover once a failure
has been detected while maintaining a coherent (i.e., loop-free) routing of the data packets.
Most notable schemes of this kind will be reviewed in Section 3.1.

Although the link-state paradigm is probably the most popular one when performing
intra-domain routing, it is not the only one. The first routing protocols actually followed
a different paradigm, called distance-vector routing. Although these intra-domain protocols
were admittedly abandoned due to their technical limitations, the distance-vector routing
paradigm is still used (in some form) within some central modern routing protocols.

2.3.1.2 Distance-vector Routing Protocols

Implemented as early as 1970 [6net 2008], distance-vector protocols were one of the first
routing protocols used. In fact, ARPANET relied on a distance-vector protocol before de-
ploying the link-state protocol SPF [McQuillan & Walden 1977]. Conversely to link-state
protocols, distance-vector protocols do not construct a full graph of the network. Rather,
each router simply knows how far a destination is.
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Distance-vector protocols usually rely on the distributed Bellman-Ford algorithm men-
tioned in Section 2.2.1 and thus follow the same general principle. Routers advertise their
best distances towards each known destination (i.e., their distance-vectors). The distance
may be the number of hops or any given cost. For example, ARPANET used an estimate
of the delay as the distance. Upon receiving a distance-vector for a given destination, a
router updates its RIB accordingly. If the new distance is better, it updates its FIB and
sets the next-hop to the originator of the distance vector. If the new distance is higher,
the latter could still need to be considered, as it may be more up-to-date than the current
known distance. In this case, the router typically waits during a hold-down period before
adopting the new distance, to ensure that other updates reflect this increased distance as
well [Malkin 1998]. An updated distance is sent to the router’s neighbors. All routers thus
iteratively improve (or, at least, update) their best distances. As mentioned in Section 2.2.1,
the number of messages required to compute the shortest distances may be exponential
with respect to the size of the network when considering asynchronous communications,
because of path exploration (such a message ordering is however unlikely to occur in practice).

The most well-known implementation of the distance-vector paradigm is the Routing
Information Protocol (RIP), which was standardized around 1988 [Malkin 1998] but had
been already deployed before the standard was published [Doyle & Carroll 2005]. RIP is
the successor of Gateway Information Protocol (GWINFO), originally designed by Xerox’s
Palo Alto Research Center. The latter was then adapted for use in the Berkeley Standard
Distribution (BSD) distribution of the UNIX operating system in 1982. The popularity of
BSD echoed on RIP, which became the standard of routing protocols for TCP/IP at the
time [Kozierok 2005] (even though SPF was already deployed in ARPANET).

However, RIP suffered from several technical issues. First, RIP was designed to consider
the number of hops as a metric. Second, RIP was slow to converge on large networks,
which exacerbated the path exploration effect. To mitigate the increase of convergence
time, the maximum number of hops RIB supports was set to 16, which also prevented its
usage on larger networks. Finally, as routers only exchange distances, they are not aware
of the underlying path behind the distances received. Upon a failure, it is then possible for
two distinct routers to consider each other as the best next-hop to a given destination and
iteratively increase their distance towards said destination as they chase the induced loop.
This issue was however eventually mitigated through the split-horizon mechanism, which
forbids a router to send a newly learned distance through the interface onto which it was
received.

For all these reasons, it seemed clear that RIP and distance-vectors protocol were
not suited for large-scale dynamic routing. This sparked the standardization effort for a
standard link-state protocol, following and building upon the experience learned through
the deployment of SPF within ARPANET. This effort lead to OSPF which was then quickly
recommended as the standard IGP for the Internet [Gross 1992].

Due to the way paths are built, distance-vector protocols are sometimes referred to as
incremental protocols within the literature [Lambert et al. 2009]. Indeed, paths are built
incrementally by each router depending on the information received by its neighbor. De-
spite their limitations, incremental protocols do have some benefits. For example, there are
considered to be less CPU and memory intensive.
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Perhaps more interestingly, incremental protocols can also be seen as following a more
distributed paradigm. The complete topological information is indeed unknown to routers,
which base their routing decision solely according to the reachability information their neigh-
bors were inclined to share, which could deliberately filter information. In fact, this type of
filtering was at the core of the split-horizon technique.

In the intra-domain context, this is hardly relevant, as all nodes share the same global
objective and should not (most of the time) benefit from hiding information from their
neighbors. However, should nodes behave as independent entities with different preferences,
the latter could easily share different distances to different neighbors, or even not share any
distances at all following an egocentric behavior.

This feature proves quite useful when performing inter-domain routing. Within the
Internet, there is no global objective anymore: ASes have different preferences, according
to economical or political considerations. For these reasons, a variant of the distance-vector
paradigm is used to exchange routes between domains when performing inter-domain routing.

2.3.2 External destinations reachability through BGP

An IGP only ensures connectivity within an AS, or domain. However, it does not enable
inter-domain connectivity. The latter is ensured with the support of an Exterior Gateway
Protocols (EGPs) 18.

Originally (around 1980), the Internet had a different structure, quite similar to multi-
area OSPF topologies. ARPANET acted as a backbone between other stub networks.
Routers within the ARPANET, called core routers, exchanged information with non-core
routers (in other networks) through EGP [rfc 1982b], a distance-vector protocol. The infor-
mation was then shared among the core routers within the ARPANET through the Gateway
to Gateway Protocol (GGP) [rfc 1982a], a distance-vector protocol similar to RIP.

Interestingly, the original EGP RFC predicted that over time, the Internet would consist
of co-equal autonomous systems, and relying on a strictly centralized core would thus be-
come inappropriate. This new Internet architecture eventually came into being. GGP was
abandoned and EGP was generalized to allow the exchange of routing information between
any two ASes. However, EGP required the underlying graph to be a tree, a restriction that
would soon become too strict as the Internet grew.

Consequently, a new protocol was designed to achieve inter-AS connectivity which is,
as of now, the de-facto EGP used throughout the Internet: the Border Gateway Protocol
(BGP) [Rekhter et al. 2006].

2.3.2.1 BGP’s design peculiarities

Originally designed on cafeteria napkins during an Internet Engineering Task Force (IETF)
meeting 19 around 1989 [Rekhter et al. 2006, Jabloner 2016], BGP grew to become the back-
bone of the modern day Internet. In short, BGP enables ASes to exchange reachability
information (or simply routes) towards local or remote destination prefixes to neighboring
ASes in a fashion akin to distance-vector protocols.

18Note that the term EGP is both the name of a family of protocols and the name of one of the protocols
within this family. While the naming is confusing, the distinction should be clear from context in the text.

19The IETF is the organization in charge of standardizing the various protocols and concepts that comprise
the Internet.
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At the time BGP was designed, the main concerns were scalability and flexibil-
ity [Gross & Rekhter 1995, Rekhter 1991]. Scalability seems like a natural requirement, as
BGP had to be able to manage connectivity information towards all destinations within
the Internet. The flexibility requirement, on the other hand, is because BGP operates in
a drastically different ecosystem compared to IGPs. Conversely to IGPs, BGP deals with
different autonomous entity with different economical incentives and preferences. Thus,
BGP had to enable operators to express heterogeneous political or economical preferences,
which may drastically differ across ASes.

Indeed, at the AS scale, the Internet may be seen as a vast hierarchical graph. There
are 15 Tier-1 ASes at the top of the hierarchy, which are all interconnected to one another
through peering agreements: being of similar sizes, the latter agree to exchange traffic with-
out paying any fees. A Tier-1 AS may thus reach any remote network within the Internet
through this peering clique. These (usually) cost-free relations are referred to as peer-to-peer
relations. Tier-2 networks may buy transit service to one or several Tier-1 networks to reach
remote networks within the Internet, establishing a customer-to-provider relationship with
the latter. Tier-2 networks may themselves provide transit services to Tier-3 (or lower tier)
ASes. ASes at the bottom of the hierarchy, which do not have any clients, are called Stub
ASes.

ASes may receive several routes towards the same remote prefix from several neighboring
ASes. Different ASes may prefer different routes, depending on their own economical
relationships with the AS advertising them. Typically, an AS will prefer to use a route
advertised by a client or a peer rather than a provider, as going through their networks is free.

To answer both these requirements (scalability and flexibility), it seemed more natural
to design BGP as a vector-based protocol 20. However, distance-vectors did not seem
like a viable choice, given their technical limitations mentioned in Section 2.3.1.2, such as
fairly long-lasting transient routing loops during convergence. BGP was thus conceived as
neither a link-state protocol nor a distance-vector one, but rather as a path-vector routing
protocol, an extension of the distance-vector routing paradigm. Furthermore, BGP was also
designed in a way that allows operators to apply their own policies and preferences within
the protocol. As such, BGP is often said to be policy-based.

At high-level, BGP operates similarly to other vector-based protocols. BGP speakers
originate reachability information called routes over BGP sessions to other BGP routers,
which may be within the same AS or within a neighboring AS. If two interconnected BGP
routers lie in two different ASes, they are referred to as border routers. A route that is elected
as the best route by a router may be re-advertised iteratively to subsequent BGP routers,
allowing the reachability information to propagate within the Internet.

20As mentioned previously, vector-based protocols were seen as less memory and CPU intensive. In
addition, link-state routing seems like a less natural option for inter-domain routing. Indeed, the definition
of a global routing metric (as traditionally done in link-state protocols) hardly makes sense here, as the
attractiveness of a route may change across ASes. However, one could argue that the choice of paradigm
behind BGP is mainly historical. Indeed, BGP’s ancestors, GGP and EGP, were designed during the peak
popularity of RIP, and thus conceived as distance-vector protocols. This design choice probably echoed on
BGP. One could theorize that should BGP have been designed from scratch a decade later, it may have been
a link-state protocol.
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However, BGP exhibits key differences from other protocols. Being a path-vector proto-
cols, BGP maintains the ASes a route goes through. This list of ASes is attached to the route
and referred to as the as-path. The as-path allows to easily prevent route advertisements
from looping by discarding the ones whose as-path contains a repetition.

Furthermore, conversely to other protocols, all received routes are stored within the
BGP RIB (if there is enough memory) to allow for faster re-convergence, as back-up routes
may then already be present within the RIB. Still, only the best selected route should (by
default) be pushed within the global RIB (and FIB) and, most importantly, advertised to
other BGP routers. If the preferred route change, a withdrawal message is sent to get rid of
(or withdraw) the obsolete route.

This route selection and advertisement mechanisms are where BGP differs most from
standard protocols, due to its policy-centric approach. Indeed, BGP offers various ways for
an operator to alter the outcome of the best path selection process through the modification
of the attributes, and how routes are exchanged through the use of filters.

Routes exchanged through BGP are not characterized by a scalar distance, but rather
by a vector of attributes used to select the routes by ranking them lexicographically. This
ranking process is referred to as the BGP decision process, which will be further detailed in
Section 2.3.2.2. For example, the length of the as-path attached to the route is one of these
attributes and thus acts as a form of inter-domain hop-count.

However, not all attributes follow standard arithmetic metrics. Some of them (in par-
ticular, the local-pref, which has the highest priority) may be set arbitrarily when the
route is imported, to change the outcome of the decision process and prefer certain routes
over others, e.g., by preferring cheaper paths advertised by customers or peers over the ones
advertised by providers.

Moreover, once a BGP router elects its best route to a given destination, the route is
advertised or not, depending on the export policy implemented by the operator. Indeed,
operators can configure routers to explicitly filter the routes they receive and the ones they
send. For example, a BGP speaker can choose not to advertise routes towards remote
prefixes to neighbors that do not pay them for transit services towards said prefix (i.e.,
to not offer free lunch to these neighbors). Thus, interestingly (and conversely to IGPs),
reachability may not be assured even if the graph is connected.

Fig 2.7 shows a simplified illustration of how BGP operates. This inter-domain gadget
shown is composed of four ASes. The border routers of each AS are respectively denoted
ia,b,c. AS 1 advertises a route to its own local prefix D with the associated attributes and
as-path to its provider AS 2 via a BGP session between their border routers. The route is
selected by 2a and re-advertised to the other BGP routers within AS 2, which in turn share
it with the remote ASes 3 and 4 after having updating the as-path and other attributes
accordingly. Notice that AS 3 has no interest in advertising this route to AS 4. Indeed,
AS 4 does not pay AS 3 for transit services (in fact, quite the contrary). Thus, AS 3
does not want AS 4 to use it as a transit AS to the prefix D (i.e., to provide free lunch).
Consequently, AS 3 chooses not to advertise the route received to AS 4 thanks to export
filters.

As routers can choose to elect and/or advertise whatever paths they desire regard-
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Figure 2.7: Simplified illustration of how BGP operates. AS 1 shares its route to its local prefix D to the
neighboring AS 2, which in turn advertise the route to ASes 3 and 4.

less of the preferences of their neighbors or any global objective, the subpath opti-
mality property does not hold anymore. This drastic difference compared to IGPs
gives rise to various issues. Indeed, such increased expressiveness may cause data-plane
loops, generate non-deterministic outcomes, or event prevent BGP from converging at
all [Griffin & Wilfong 2002b, Griffin & Wilfong 2002a], i.e., generate control-plane loops.

Guidelines have however been proposed to ensure that the protocol converges across
ASes. As these guidelines do not require coordination between ASes and make economic
sense, they tend to be widely adopted [Gao & Rexford 2001], although more complex
policies are sometimes deployed [Gill et al. 2014].

In practice, BGP routers may establish two kinds of BGP sessions. The exchange of
routes between BGP routers lying in different ASes is done through External BGP (eBGP).
As such, eBGP is the submodule of BGP allowing the dissemination of routes within the
Internet. The advertisement of routes between routers within the same AS is done through
iBGP, which thus allows the dissemination of reachability information within the AS. Using
Fig 2.7 as an example, lines shown in blue represent eBGP sessions, while lines shown in
orange represent iBGP sessions.

While the dynamics of eBGP at the AS-scale are interesting objects of study in them-
selves, our contribution, OPTIC, is focused on the way BGP operates within an AS and
its interactions with the underlying IGP. Consequently, we will now focus on the intra-AS
behavior of BGP, more precisely, on the way routes are elected and exchanged within iBGP.
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Figure 2.8: Illustration of the exchange of BGP routes
through eBGP and iBGP, whose session are shown in blue
dotted line and orange dashed line respectively. The physi-
cal topology is the same one used throughout this chapter,
greyed out to focus on the BGP sessions. Notice that not all
routers within the topology are BGP speakers. Clients, peers
and providers are denoted c, pe and pr respectively.

Dest. D Interfaces
L(IH(G(D)))

Bordeaux (Str,M)

Delft (Str, L)1
(Str, L)2

.

.

.

St-Quentin (Str, L)1
(Str, L)2

NY C (Str,M)

Table 2.2: FIB of the Strasbourg Node
shown throughout this section, now with
BGP information.

Table 2.3: BGP RIB resulting from the network and route advertisements shown in Fig. 2.8. The informa-
tion at the right of the vertical bar is computed through recursive look-ups before pushing the information
within the FIB.

Dest. D R(D) BGP NH IGP NH Interface
(LP,AS,MED, IGP ) G(D) IH(G(D)) L(IH(G(D)))

NY C (10, 1,−, 3) Delft Liège (Str, L)1
(Str, L)2

NY C (5, 2,−, 0) self self (Str, pe1)

NY C (1, 3, 1, 1) Mérindol Mérindol (Str,M)

NY C (1, 3, 2, 1) Mérindol Mérindol (Str,M)

NY C (1, 3,−, 2) Bordeaux Mérindol (Str,M)

BGP RIB rec. look-up

Best sent to FIB

2.3.2.2 The internal behavior of BGP

As mentioned, initially, ASes learn reachability information towards remote prefixes via
eBGP sessions with the border routers of a neighboring AS. A route learned by a border
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router can then be shared with the other BGP speakers of the AS through iBGP sessions.
Despite spanning a single AS, iBGP is a complex sub-protocol. While the latter offers the

same tools as eBGP (e.g., route filtering), it also brings forward well-known additional chal-
lenges, most notably regarding the proper dissemination of routes within the AS, and detri-
mental interactions with the underlying IGP [Griffin & Wilfong 2002b, Teixeira et al. 2004].

Sharing routes through iBGP Among other concepts, the way eBGP and iBGP
interact is shown in more detail in Fig 2.8. The border routers of an AS (also called
Autonomous System Border Routers (ASBRs)) connect to other ASes (which may be
customers, peers, or providers) through eBGP sessions, shown in dotted blue lines. Here,
routers learn routes denoted Rn to the remote destination prefix NY C through these
sessions. This information is then shared to the other BGP speakers of the AS, through
the iBGP sessions shown in dashed orange lines. Notice that not all intermediary routers
are required to be BGP speakers, as border routers may rely on tunneling mechanisms to
alleviate the load on core routers 21.

While eBGP sessions are usually set up between directly connected routers, iBGP may
be set up across distant routers, and do not necessarily follow the physical topology. The way
iBGP sessions are organized is referred to as the iBGP topology. By default, iBGP messages
are not transitive : a message received over an iBGP session is not forwarded across another
iBGP session. This prevents control messages from looping 22. Hence, to ensure that routes
are disseminated to all other BGP speakers within the AS, the iBGP topology is supposed
to be a full-mesh between all said BGP speakers.

A full-mesh of iBGP sessions presents some advantages. As a BGP speaker receives the
best route of all its iBGP peers, it may have access to several routes per external destinations,
which may offer faster re-convergence or at least backup routes. It is also conceptually simple
and should exhibit predictable behavior, as iBGP routers should have access to all required
information.

However, such a naive iBGP topology design does not scale well and is quite verbose,
which, in turn, negatively impacts network resources. Alternative solutions to the iBGP full-
mesh were thus proposed, the most popular one being route reflection [Chen et al. 2006].

Route reflection allows setting up some BGP speakers as route reflectors, which are
allowed to share (or reflect) routes learned through iBGP to their clients, a subset of the
other BGP speakers within the AS. A route reflector can thus be seen as an iBGP router
which centralizes BGP routes, before selecting the best one through the BGP decision process
and advertising it to its clients. Several route reflectors may be set up within an AS, following
more or less intricate iBGP topologies. These topologies may even exhibit a hierarchy of
route reflectors [Chen et al. 2006]. Within such topologies, the propagation of the routes

21By default, all routers within an AS are supposed to be BGP speakers, to know the next-hop associated
with the remote destination prefix. However, this induces a heavy load on all routing devices. Consequently,
packets may be tunneled by the BGP-aware border router at the edge of the network. Core routers then
forward traffic solely according to the tunnel information, and do not require actual reachability knowledge of
the remote prefix. Several technologies may be used to deploy BGP-free cores while allowing the traffic to fol-
low the optimal IGP paths, e.g., IP-in-IP, Multi-Protocol Label Switching (MPLS) [Viswanathan et al. 2001]
or SR [Filsfils et al. 2017].

22Recall that the messages here remain within the same AS, so the as-path can here not be used to that
effect
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Table 2.4: An example of the set of attributes taken into consideration by BGP.

Step Criterion

1 Highest local-pref LP (economical relationships)
2 Shortest as-path
3 Lowest origin IGP over EGP
4 Lowest MED (cold-potato routing)
5 eBGP over iBGP
6 Lowest IGP distance (hot-potato routing)
7 Lowest router-id rid (arbitrary tie-break)

β

α

follows specific rules: the route advertisement may go up several stages within the route
reflection hierarchy, then one hop across (staying at the same level), before going back down
to the clients.

When relying on route reflection, clients are (by default) only aware of their own routes,
and the route advertised by their route reflector. In addition, the route chosen by the route
reflector is not necessarily the route its client would have elected, had it access to the same
information as its route reflector.

The fact that different BGP speakers may elect different routes is due to the way the
BGP decision process is designed. While the latter considers preferences that should not
vary within the AS (e.g., economical relationships), it is also deeply intertwined with the
IGP, resulting in heterogeneous choices among routers depending on their position within
the internal topology.

The BGP decision process BGP speakers may know several routes towards the same
prefixes received through different eBGP or iBGP sessions. For example, within Fig. 2.8,
the Strasbourg router learns several routes Rn to the remote prefixes NYC, either through
Delft, Mérindol, Bordeaux, or a directly connected external peer.

BGP speakers must then decide the best exit point (also called gateway or BGP
NH) within the AS to reach a given external destination. A BGP speaker may con-
sider itself as the best exit point to reach a remote prefix, but may very well prefer to
use another gateway within the AS depending on preferences that have been manually set up.

To select the best route and associated gateway, routers rely on the BGP decision pro-
cess, which consists of ranking routes lexicographically according to their attributes. The
attributes of a BGP routes are given in Table. 2.4 in decreasing importance.

• As aforementioned, the local-pref (LP) is traditionally used to express economical
preferences (i.e., prefers routes learned from clients over peers over providers).

• The as-path (AS) length refers to the number of ASes the route goes through.

• The Multi-Exit Discriminator (MED) is a peculiar attribute, which should only be used to
discriminate routes originating from the same AS, i.e., to discriminate between different
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entry points into the neighboring AS. The MED is usually set by the neighboring AS to
indicate a preference regarding how traffic should enter its domain. This attribute is said
to enforce cold-potato routing. As it breaks the total ordering between routes, the MED is
well-known to be the cause of convergence issues within BGP [Griffin & Wilfong 2002a].

These attributes (local-pref, as path length, med), which we will sometimes ab-
breviate (LP, AS, MED) are inter-domain related and should, by default, be equal among
all BGP speakers within an AS for a given route. We group these attributes and refer to
them as β, or β(R) when considering a specific route R.

Several routes may still be contending at this point of the decision process. These
routes, that share the same β attributes, are sometimes referred to as AS-dominant
routes [Vissicchio et al. 2012], as all routers should prefer these routes over others23. To
discriminate the remaining routes, other attributes come into play.

Essentially, among all AS-dominant routes, a router will prefer the route which allows
the traffic to exit the AS as soon as possible, according to the IGP weights (in other words,
a router will prefer sending the traffic towards the closest gateway in term of IGP distance).
This is referred to as hot-potato routing, conversely to cold-potato routing, where routers may
not eject traffic out of the network as fast as possible to respect the neighboring AS’ desire.

The remaining attributes thus enforce this hot-potato routing principle, before reaching
an arbitrary tie-break.

• Routes learned over eBGP are preferred to the ones learned through iBGP (as the IGP
distance to the gateway is here 0)

• A router will first prefer the closest gateway in terms of IGP distance (Line 6 in Table 2.4).

These attributes may change across routers within the same AS for a given route,
depending on their location within the internal topology. We group these attributes and
refer to them as α, or α(R) when considering a specific route R.

The route returned at the end of the decision process is the route chosen for the given
prefix. In the following, we state that Rx ≺ Ry if Rx is better than Ry according to the
decision process. The chosen route is then advertised to eBGP and iBGP peers, if not filtered
out. Finally, it is pushed within the global RIB before being possibly pushed within the FIB.
Note that, by default, only the best route is advertised. If the best route changes, the new
one is advertised and the previous one is withdrawn.

Before installing the selected route within the FIB, the outgoing interface must be
resolved. Indeed, the next-hop attached to a BGP route is the gateway (or BGP NH) that
has advertised it. The best internal next-hop used to reach the chosen gateway and the
associated interface must be computed. This step is referred to as recursive look-up.

There is thus a significant interplay between BGP and the IGP. First, the IGP distances
between BGP speakers influence the outcome of the decision process. Second, the path used
to reach the selected BGP next-hop is decided by the IGP.

23The term quasi-evalent can also be found in the literature [Buob et al. 2007].



2.3. Routing & Routing Protocols 41

The routing performed through BGP can then be seen as an extension to the composition
of functions Ports(D) = Int ◦ IH ◦LMP (D), defined previously, to Ports(D) = Int ◦ IH ◦
G ◦ LPM(D) when external destinations are considered. G returns, for a given external
prefix, the best exit point (or gateway) as elected through the decision process 24. The
Int and IH functions have the same definition as previously and are used to perform the
recursive look-up mentioned previously.

Once again, the entirety of the composition of functions is not computed each time a
packet is forwarded. Only the resolved result is pushed to the FIB for all known prefixes,
allowing the FIB to only compute the longest prefix match for the destination before
checking the associated outgoing interface. Note that when relying on traditional router
architectures, once a route is pushed within the FIB, only the outgoing interface remains:
information regarding the BGP next-hop and IGP next-hop of the route is lost.

The decision process and recursive look-up are illustrated with Table 2.2 and Table 2.3,
which show the BGP RIB and the FIB associated with the network shown in Fig. 2.8. Routes
exchanged are denoted by their attributes as a vector (local-pref, as-path length,
med). All routes Rn to NYC shown are learned by Strasbourg (either through iBGP or
eBGP) which adds them all to its RIB. Note that, in addition to the attributes, only the
associated gateway (or BGP next-hop) of the route is maintained.

The best route is then selected. Due to the local-pref, customers, reachable through
Bordeaux and Mérindol, are preferred. In other words, we have β(R3,4,5) < β(R2) < β(R1).
However, the routes R3, R4, R5 announced by Bordeaux and Mérindol share the same β

(med excluded, as the latter should not be considered between different ASes). Thus, the
internal distance from Strasbourg to these gateways is considered (i.e., the α attributes).
Because of hot-potato routing, Mérindol is preferred. Finally, the med can be considered.
Here, the med dictates that R5 ≺ R4, resulting in the election of route R5 = (1, 3, 1). Once
the best route is selected, it is advertised to relevant BGP peers. The interface used to
reach the corresponding gateway is then resolved and pushed in the FIB.

We have seen that iBGP is quite intricate. The design of scalable iBGP topologies is
challenging. The way routes are selected is more complex and less intuitive than within IGPs,
in particular when considering the MED. In addition, its interactions with the underlying
IGP may cause detrimental effects, e.g., frequent re-convergence or sub-optimal routing. The
iBGP sub-protocol thus leaves room for several kinds of issues to arise, which we will now
further discuss.

2.3.2.3 The issues of iBGP

The iBGP protocol may suffer from various issues. In this section, we will talk in further
detail about the issues directly related to our contributions: the lack of route diversity within
one’s AS, and the high convergence time.

Insufficient route diversity While an AS may learn several routes towards a remote
prefix, routers within the AS may only be aware of a few routes. According to a study by

24While using several gateways for a given destination is possible [Balon & Leduc 2007,
Cisco-Systems 2022], the BGP decision process ensures, by default, that a single gateway is elected.



42 Chapter 2. Background

Uhlig and Tandel modeling a Tier-1 AS, the majority of routers only know a single route
besides their own [Uhlig & Tandel 2006]. Indeed, routes learned by border routers are not
necessary all disseminated throughout the AS.

The fact that BGP speakers only advertise their preferred route is one of the main causes
of reduced route diversity. For example, while a border router may be connected to several
remote border routers and learn different routes from each one of them, it will only advertise
one (the best) route. Furthermore, by default, routes learned via eBGP may not even be
advertised if a better one has already been learned through iBGP.

This issue is drastically exacerbated by route reflection. Just like other BGP speakers,
a route reflector will elect its best route according to the BGP decision process, and only
advertise said route to its clients. When relying on a hierarchy of route reflectors, even said
route reflector may thus only possess a partial knowledge of BGP routes, depending on the
choice of its peers. Repeated decision processes thus stop the propagation of most BGP
routes, allowing only the current most popular one to spread.

This lack of route diversity gives rise to several issues. First, it may impact the correctness
of the protocol [Vissicchio et al. 2012, Griffin & Wilfong 2002b, Griffin & Wilfong 2002a]. In
other words, forwarding anomalies may appear (e.g., suboptimal routing or data-plane loops),
or the protocol may even fail to converge 25.

Suboptimal routing may occur when using route reflection, as the choice performed by the
route reflector does not necessarily match its clients’. Indeed, recall that the IGP distance to
the advertising gateway is an attribute within the decision process. Due to this hot-potato
routing, the route chosen by the decision process depends on the position of the router within
the IGP topology. Thus, the route chosen by a route reflector for its clients may not be the
one the clients would have chosen if they had access to all BGP routes 26.

The fact that iBGP may diverge is perhaps unsurprising, as it offers the same type of
expressiveness as eBGP. However, iBGP may diverge even without relying on complex filter
policies, but solely because of lack of route visibility coupled to hot-potato routing and/or
the MED attribute.

As aforementioned, the MED is a peculiar attribute, and source of several problems
within BGP. For example, due to the way routes are compared (in a pairwise fashion), the
lack of total ordering may result in a non-deterministic route election 27. This can however
be mitigated through the use of the bgp deterministic med option 28.

More importantly, the med may cause routing oscillations and prevent BGP from con-

25Note that these problems are in fact due to both iBGP and eBGP. In fact, iBGP includes all the
problems of eBGP and more.

26It should be noted that Optimal Route Reflection has been proposed, which required the route reflector
to compute the best route from the point of view of each of its clients, or a set of them [Raszuk et al. 2021].
However, this solution is either too expensive (when considering each client individually) or does not solve
the issue (when considering sets of clients).

27More precisely, depending on the order in which the routes are compared, the outcome of the route
selection may change, depending on whether routes originated from the same AS are compared to one
another through the MED, or eliminated prior by comparisons with other routes.

28deterministic med consists in first electing the best route sent by each neighboring AS, considering
the med, and then selecting the best route among this set.



2.3. Routing & Routing Protocols 43

a b c

1 1

1

AS 0

AS 1

5 5 5

(a) Gadget as proposed
by Griffin and Wil-
fong [Griffin & Wilfong 2002b]
illustrated routing oscillation
within iBGP induced by route
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(b) med-evil gadget extracted as proposed by Griffin and Wil-
fong [Griffin & Wilfong 2002a], showcasing how the med may cause iBGP
oscillation. The right side of the figure details an oscillation scenario occuring
without Add-Path. The route known by a given router are shown in parentheses.
The route elected is shown underlined, and the routes advertised are shown in
bold.

Figure 2.9: Gadgets illustrating iBGP oscillations induced by hot-potato routing, the med, and lack of
visibility. Route reflectors are shown as diamonds, while other BGP speakers (which here are gateways) are
shown as circles. The boundaries of the local AS, AS 1, are shown in dotted lines. IGP costs are shown on
each link, while the MED is shown in parentheses. The iBGP topology is shown in orange dashed lines when
it differs from the physical topology.

verging. By only being used to compare route originating from the same AS the med
breaks the total ordering of BGP routes. This may create a preference cycle between
routes for a given router, giving rise to several issues, including routing oscillations that
may span several ASes (as exhibited in the baked potato gadget of Griffin and Wil-
fong [Griffin & Wilfong 2002a]).

An example of internal MED-oscillation can be seen in Figure 2.9b, which shows a gadget
extracted from the paper by Griffin and Wilfond [Griffin & Wilfong 2002a]. We consider
routes to AS 0. The iBGP topology follows the physical one. Note that a is always aware of
the route advertised by n1 and n2 as it shares a direct iBGP session with the latter. Router
a prefers (and advertises) n1 when all routes are known (as n3 is preferred over n2 due to
the MED, and n1 preferred to n3 because of hot-potato routing). However, it prefers n2

when only n1 and n2 are known. Thus, we have n1 ≺ n3 ≺ n2 ≺ n1. Once router a elects
its preferred route, only the latter is advertised (and previously advertised routes to AS 0
are withdrawn). The lack of visibility induced by this behavior can make router a chase
the preference cycle induced by the MED. This behavior of both a and b is showcased more
precisely on the right side of the figure.

It should be noted that MED-related oscillation can be prevent by the always-compare
BGP option 29, but this option does not respect the MED semantics. Note that the
deterministic-med option, however, does not prevent these oscillations.

While the peculiar semantics of the MED seem likely to generate issues, iBGP oscilla-
tions may also occur without the use of the MED. For example, Fig 2.9a shows an example

29The always-compare option allows to consider the MED even when comparing routes originating from
different ASes
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of oscillation induced by route reflection and hot-potato routing, once again extracted from
a paper by Griffin and Wilfond [Griffin & Wilfong 2002b]. On this figure, three routes
reflectors a, b and c learn routes towards AS 0 through their respective client gateways
n1, n2, n3. The routes are exchanged through the iBGP sessions shown in orange. Note
that the latter does not follow the physical topology. Intuitively, this gadget is designed
so that each route reflector having nx as a client prefers the gateway n(x+1)%3. However,
once a router chooses this preferred exit point, it withdraws the route advertised by its
client and thus deprives another router of its preferred route. This effect causes iBGP to
diverge. Here, oscillations are mainly caused by the fact that routers deprive their peers
of their preferred route because of their own local preferences (i.e., α attributes). Said
otherwise, the root cause of these oscillations is the lack of congruence between the IGP and
the iBGP topologies, as route-reflectors prefer the routes advertised by the clients of other
route-reflectors (due to the IGP topology), rather than their own, direct iBGP clients.

In addition to correctness issues, lack of route diversity prevents iBGP load balanc-
ing [Cisco-Systems 2022] and increases convergence time and connectivity loss in the event
of a failure or topological change. Indeed, because of reduced route visibility, routers are
unlikely to possess the new post-convergence path a priori. Re-convergence to the new opti-
mal path thus necessarily requires message exchange, in order for the new post-convergence
route to be advertised. More importantly, routers may not even have a non-optimal route
to fall back to should their preferred route become unavailable, preventing the use of FRR
mechanisms. The impact of lack of route diversity on BGP’s convergence is non-negligible.
Pei and Van der Merwe have estimated that "route invisibility" is a significant factor in BGP
convergence delay [Pei & Van der Merwe 2006].

This second ill-effect of reduced route diversity is particularly problematic, as iBGP’s
convergence time can be quite high even when considering enough visibility.

High convergence time Vanilla BGP may exhibit a very high convergence
time [Filsfils et al. 2011, Labovitz et al. 2000a]. While we have seen that OSPF con-
vergence time may already be too long for modern-day requirements, the convergence time
of BGP is orders of magnitude higher.

The convergence time of eBGP is perhaps unsurprising, if only because of the sheer size of
the Internet. The scale at which eBGP operates may indeed lead to slow message exchange
and exacerbated path exploration [Labovitz et al. 2000b, Bremler-Barr et al. 2009] 30.
This convergence time is also increased by timers which aim to mitigate routing instabil-
ities [Rekhter et al. 2006]. In addition, as BGP is not link-state, the latter cannot infer
the total impact of a failure. Rather, it must wait to receive and process the updated
information for each remote prefix.

However, and perhaps more surprisingly, even iBGP may be slow to con-
verge [Filsfils et al. 2011, Teixeira et al. 2004]. Indeed, recall that network events induce
the lexicographical re-ordering of BGP routes, to select the new best route. This re-ordering

30BGP being a form of vector-based protocol, it is also subject to path exploration, as defined in Sec-
tion 2.2.1
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may not seem particularly tedious when considering a single prefix, e.g., if a gateway with-
drew a route to a prefix. Indeed, in this case, a BGP speaker must simply re-rank and
re-install within its FIB the routes for the (unique) impacted remote prefix. Thus, only a
few route entries have to be considered. However, this process may also be triggered by
internal events, which potentially impact all prefixes.

Indeed, because of the interplay of BGP and the IGP during the decision process (i.e.,
hot potato routing), even an internal change may alter the order of BGP routes. Thus, while
a BGP update affects a single prefix, an internal event may affect several BGP routes (i.e.,
all routes that were selected due to the hot-potato routing rule). While it may be unlikely
that the ranking of all routes is affected, it has been shown that the majority of the routes
may be impacted [Filsfils et al. 2011, Teixeira et al. 2004].

Once the impact of the IGP event has been noticed by BGP 31, the latter must re-rank
the routes and update the FIB, a computationally expensive process. The RIB, containing
the routes to rank, contains around 2 700 000 entries, while the FIB contains around 920 000

entries, which must afterward be updated one by one on legacy architectures. By itself, this
last process was measured to take several minutes (and averaged at around 500µs per route)
[Holterbach 2021, Filsfils et al. 2011].

Recall that such internal events are frequent. Even on fairly small networks and with
conservative assumptions (e.g., removing link flapping), there may be more than dozens of
internal events on a bad day [Merindol et al. 2018]. Thus, the BGP re-convergence process
may be triggered just as often, which may result in several connectivity losses towards
remote prefixes.

Several works aimed at tackling the issues aforementioned. Some solutions focus solely
on guaranteeing correctness (e.g., by ensuring that all routers have access to their preferred
route). Others aim to increase route diversity, allowing to improve the convergence of
BGP and, in some cases, also guaranteeing correctness. The increased path diversity can
be leveraged to design FRR mechanisms. These works will be reviewed in Section 3.1. In
particular, our contribution, OPTIC, leverages increased path-diversity through adequate
data-structure to improve the convergence time of BGP upon internal events.

This section presented the general concept of routing and routing protocols. The concepts
we have discussed are summarized in Fig. 2.10. We have seen that routing protocols specify
how topological information is exchanged and how forwarding paths should be computed.
We have seen that OSPF, which ensures intra-domain connectivity, operates differently from
BGP, which ensures inter-domain connectivity.

Dealing with drastically different contexts, these protocols follow different approaches
both in terms of information exchange and path selection and populate different RIBs.

OSPF draws a complete map of the network onto which it performs shortest path com-
putation. To improve convergence time and reduce the number of messages to be exchanged,
OSPF allows separating the network into distinct subnetworks called areas.

BGP allows ASes to exchange routes across eBGP session, which are then disseminated
within the AS through iBGP sessions. Routes are selected through a policy-based flexible

31In practice, BGP notices such events either through a periodic check, or through a direct notification
from the IGP control-plane.
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notation definition

(Node, u, v) Node segment read by u instructing to forward data to v

(Adj, u, v, x) Adjacency segment enforcing the (u, v)x link. x may be omitted.
S1 | S2 | . . . | Sn A segment list composed of n segments.

Figure 2.11: Notations introduced within Section 2.4

decision process considering the routes attributes. The decision process creates an entangle-
ment between BGP and the IGP, as the IGP distance to the advertising gateway is considered
when ranking routes (hot-potato routing). Intricate iBGP topologies may lead to a lack of
route visibility, which in turn also exacerbates BGP convergence time. This convergence is
by itself quite long and occurs after each internal event due to hot-potato routing.

The routing of transiting traffic going through an AS thus results from an interaction
between BGP and the underlying IGP. Not only does the BGP decision process considers
the IGP distance, but the IGP is relied upon to resolve the chosen gateway before pushing
the routing information within the FIB.

All protocols described until now follow the best-effort routing paradigm. Using such for-
warding paths does however exhibit limits, which may not be tolerated by some clients. In
some cases, one may thus require to forward traffic along different, specific paths. Performing
such fine-grained routing is usually referred to as TE.

While there has been research about performing end-to-end TE across multiple
ASes [Pelsser 2006], this task is quite arduous as cooperation between different ASes is
not always possible. In this thesis, we focus on intra-domain TE 32. In particular, our con-
tributions described in Chapter 4 aim to provide DCLC intra-domain path while considering
technical constraints induced by the current technologies. Consequently, we will now review
the goals and ways to deploy TE within one’s network.

2.4 Traffic-Engineering Deployment Technologies

There are several limitations to using solely shortest IGP paths within one’s domain. First
and foremost, best-effort forwarding paths do not aim to provide any strict guarantees.
However, some types of traffic may require specific paths which enforce such guarantees,
especially regarding their latency. Examples include high-stake communications such as
financial trade flows, or 5G slicing [Programme 2020], which also requires the ability to
guarantee end-to-end delay for the services it aims to provide. Metrics such as the delay may
thus become as critical as the IGP cost (which should still be considered, as representative of
the bandwidth and operational costs). Such specific flows should then be routed along multi-
criterion paths that may deviate from the standard best-effort ones. This is the problem we
consider in our contributions.

Second, while networks are usually designed to have enough capacity to route traffic
through IGP paths without congestion, unexpectedly high traffic volumes or multiple in-
dependent failures may still result in congestion. Such congestion is not always tolerated.

32Intra-domain TE is still useful and widely deployed. In particular, intra-domain TE may still allow
providing strong, meaningful end-to-end guarantees, for example when the AS is used as a VPN provider.
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While IGP costs are oftentimes tuned to balance the traffic load, such configuration is quite
complex [Hou et al. 2018, Fortz & Thorup 2000], and changing them dynamically without
creating instabilities is an arduous task [Leduc et al. 2006, Clad 2014, Balon & Leduc 2008].
In addition, tuning IGP cost to this effect may prevent operators to use the latter for other
means, e.g., to express general design choices.

For both reasons evoked above, solely relying on shortest IGP paths may not be suitable.
Tuning IGP costs may not always be viable or doable, especially if several distinct objectives
must be expressed and fulfilled. It is thus often more appropriate to separate connectivity
tasks and overall network design (handled by the IGP) from the more intricate aforemen-
tioned TE tasks, which require finer routing capabilities and thus additional technologies,
which will be reviewed in this section.

2.4.1 Legacy Technologies and Models

The idea of differentiated service is not new. In 1994, the IntServ [Braden et al. 1994] model
was imagined to allow flows to be routed over paths whose resources have been reserved
beforehand, preventing for example unexpected delays. The resources could be reserved
through an additional protocol, Resource Reservation Protocol (RSVP) [Braden et al. 1997].
For various reasons, IntServ had scalability issues, which lead to the conception of DiffServ.
The DiffServ [Baker et al. 1998] model, standardized in 1998, allows differentiated handling
of data packets through different per hop behaviors, depending on information added within
the packet at the edge of the network. Being hop-by-hop, DiffServ was more in accordance
with the overall routing philosophy used throughout the Internet. However, the latter could
not enforce guarantees as strict as IntServ.

In practice, one of the most popular tools to perform traffic-engineering is
MPLS [Viswanathan et al. 2001, Leduc et al. 2006] 33. MPLS was designed during the 1990s
and deployed at the very end of the same decade. The general idea behind MPLS is to es-
tablish (or deploy) tunnels over which data packets are forwarded. More precisely, within
the data-plane, a header containing a label is added on top of data packets when the packet
enters the network (i.e., at the edge). This label indicates the tunnels (and so, path) the
packet should take. Routers along the path forward the packet solely according to the value
of said label, allowing them to forward data packets even if the ultimate IP destination is
unknown to them. Conversely to standard hop-by-hop routing, MPLS can thus be seen as a
way to implement source-routing : the path of the packet is decided upstream by the source
(or the router closest to it) which prepends the associated label.

Routers must however synchronize the mapping of tunnels and label values to set up
tunnels properly. This task is performed by the control-plane of MPLS through an addi-
tional protocol. The control-plane associated with MPLS is known to be quite complex and
convoluted. The two main protocols used at this effect are Label Distribution Protocol (LDP)
and RSVP - Traffic Engineering (RSVP-TE).

The LDP protocol allows deploying best-effort tunnels which follow the standard IGP
paths. The main purpose of LDP is to allow core routers not to maintain a full RIB, as the

33Note that the description of MPLS and the associated protocols given in this section is drastically
simplified. For a more in-depth, digestible explanation of these protocols, we refer the interested reader to
[Luttringer et al. 2020c].
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latter may forward packets according only to the label pre-prepended by the source. Thus,
only the edge of the network has to maintain a full RIB with all destinations. LDP is for
example often used to deploy BGP-free cores.

RSVP-TE allows deploying more intricate tunnels. RSVP-TE is an extension of RSVP.
RSVP was indeed seen as suitable to distribute labels within the network: while reserving the
required resources along the path, the latter could also be used to distribute the associated
labels. As RSVP, RSVP-TE can be used to deploy specific paths with reserved resources
which can be explicitly configured by the operator to perform fine-grained source routing.

Nevertheless, RSVP-TE suffered from significant drawbacks. Regarding bandwidth op-
timization, RSVP-TE required all traffic to go through tunnels to correctly assess the re-
maining resources. Thus, tunnels were set up between all pairs of nodes within the network.
In addition, RSVP-TE did not allow to natively use ECMP paths. Thus, several tunnels
(one for each ECMP path) had to be created between each source and destination, requiring
setting up more than |V |2 tunnels. Regarding the deployment of paths respecting latency
constraints, the protocol suffered from similar scalability issues. Consequently, while RSVP-
TE has been used for other purposes such as Fast Re-Route, the latter was rarely deployed
for TE purposes [Filsfils et al. 2017].

However, during the last decade, a new technology was designed, allowing to easily
perform large-scale, flexible fine-grained TE.

2.4.2 Segment Routing

SR [Filsfils et al. 2017, Filsfils et al. 2015] is a recent technology that enables network oper-
ators to perform various TE tasks, such as bandwidth optimization or explicit routing, while
remaining more scalable and easier to configure than its predecessors.

SR is an implementation of the source routing paradigm: the source (or the node closest
to it) computes and chooses how the incoming traffic should be steered through the network.
Conversely to hop-by-hop routing, the path is thus completely decided by the upstream
router and not by a sequence of independent routing decisions.

SR is, as of now, one of the most widely deployed and popular TE technology. In
addition, source-routing is particularly suited to deploy multi-criterion paths 34. As such,
SR is at the core of our contributions.

SR implements source-routing by adding instructions within the packet header itself as
a list of segments. Downstream routers solely consider the instructions within the packet to
take forwarding decisions. Segments may be forwarding instructions but can be more general.
Segments may for example be used to instruct to forward a packet to a given destination,
but also to instruct to deliver the packet to a given application at a given node. SR can
thus be used for a variety of purposes, including network programmability and service chain-
ing [Halpern & Pignataro 2015, Filsfils 2020]. Furthermore, ressources specification (such as
bandwidth) can be attached to each segment, in order to indicate the priority of the traffic
being steered and perform resource reservation [Dong et al. 2022]. In this thesis, we will

34Recall that relying on hop-by-hop distributed routing may be challenging, as the subpath optimality
does not hold per se when considering multi-criterion paths
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consider SR to build multi-criterion forwarding paths, and thus mainly focus on forwarding
instructions.

Regarding forwarding instructions, the segments used are usually IGP segments. IGP
segments are routing instructions linked to the information relative to the IGP. Numerous
type of IGP segments exist. In this thesis, we will focus on prefix segment (in particular,
node segments) and adjacency segments, as they provide a sufficient framework to deploy
multi-criteria paths.

2.4.2.1 Building paths using segments

An IGP prefix segment can be used to instruct routers to forward the packet to a specific
IGP prefix, using the shortest paths to said prefix. As IGP segments are constructed upon
IGP information, the shortest paths used are the shortest ECMP-aware IGP paths.

Node Segments are a particular type of prefix segments that identify a node within the
network (typically, through the loopback interface of the corresponding node). In other
words, using a node segment allows instructing a router to forward the packet to a specific
node within the network via the shortest paths, in an ECMP-aware fashion. We denote a
node segment s instructing to forward a packet to v and read by node u as s = (Node, u, v).

Adjacency segments allow instructing routers to forward the packet through a specific
interface. It can thus be used to enforce the use of a specific link along the path. We denote
an adjacency segment s enforcing a link (u, v)x as s = (Adj, u, v, x) where x denotes the
specific interface when necessary.

These segments, pre-pended (or pushed) to the packet by the source, act as building
blocks to construct the desired forwarding paths. They can thus be combined in a segment
list, which may encode any desired path.

Note that SR does not require specifying the entirety of the forwarding paths. Rather,
only the necessary deviations from the shortest paths have to be specified. SR is said
to implement loose source routing. A segment list thus describes forwarding paths as a
concatenation of links and shortest paths. We denote a segment list S comprised of n

segments as S = S1 | S2 | . . . | Sn.

2.4.2.2 The data-plane and control-plane of Segment Routing

Routers along the path forward a packet according to its topmost segment, which is called
the active segment. If the active segment is completed, e.g., the packet has reached the
intermediate destination specified by the latter, it is removed from the list, and the following
segment within the list becomes active.

These mechanisms can be deployed by relying on the MPLS or IPv6 data-
plane [Bashandy et al. 2019, Filsfils et al. 2021a]. In this thesis, we will focus on SR-MPLS,
although most of the discussions, as well as our contribution, remain valid for both ap-
proaches.

By encoding segments as labels, the standard MPLS data-plane provides all the necessary
operations to manage the segment lists. However, SR-MPLS does not rely on the MPLS
control-plane to distribute labels or (segments). Rather, the IGP segments are directly
advertised through the IGP itself, simplifying the process.
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(a) Encoding of an arbitrary path using SR. The segment
list necessary to encode the path shown in blue is shown
in black boxes. Its evolution is shown at each intermediate
hop. Segments removed are shown outside the black box.
The segment being interpreted (i.e., the active segment)
is shown in dashed lines.

(b) Encoding of multi-criterion paths (as illustrated in
Fig 2.3) through SR. A path of a given color can be en-
coded by the segment list shown in the respective colored
box. Paths bear the same names as they did in Fig 2.3.
The effect of ECMP must not be neglected in order to re-
spect strict constraints.

Figure 2.12: Figures illustrating the translation of paths to segment lists.

The advertised segments may be global or local. Global segments are supported by all
SR-aware nodes within the network and have a global meaning. Conversely, local segments
have local meaning. More precisely, local segments advertised by different nodes may share
the same value but correspond to different instructions. To ensure that a local segment is
interpreted properly, the packet must therefore first be steered to the node that advertised
said segments (e.g., through the use of a node segment). Note that all local segments
must still be advertised throughout the network, in order to be known and used by the
source to construct the path. The main point of local segments is the ability to re-use the
same label value, as the number of global segments one may define is limited to around
9000 [Filsfils et al. 2017] 35.

When using SR-MPLS, node segments are by default global. The instruction "forward
packet to v through ECMP paths" associated to these labels is thus understood in the same
fashion by all SR-aware nodes. In other words, (Node, u, v) share the same meaning for any
node u 36. However, adjacency segments, which could be translated as "forward packet over
interface X " have local meaning: one must ensure the packet is first steered to the correct
node.

Fig 2.12a illustrates an example of SR within the topology used throughout this chapter.
Let us consider the segment list shown on the right side of the figure, which encodes the

35With SRv6 (using IPv6 instead of MPLS), the possible number of values for segments is larger, allowing
to consider adjacency segments as global segments. However, such technologies are often used with segment
compression techniques [Tulumello et al. 2020], which once again limit the total number of segment values
and require to use local segments.

36Given this information, our choice of notation may seem unnecessarily heavy. However, we require this
level of precision for further proofs and formalization found within Chapter 4 of this document.
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path shown on the topology.
The first active segment is a node segment instructing the packet to reach Liège first.

As it is a node segment, the packet is forwarded to Liège following the ECMP paths, i.e.,
the two parallel links. Arriving at Liège, the segment is completed and removed. The
next segment is an adjacency segment that requires forwarding the packet through the
i1 interface. The instruction is executed, and the segment can be removed immediately
as it only has local meaning. Note that using a node segment to reach Saint-Quentin
would have made the packet go through Delft as the shortest IGP path is not the direct
link. Arriving at Saint-Quentin, the packet is forwarded towards Paris through the
best IGP path, which here is the direct link (hence a node segment is sufficient). Paris
removes the completed segment, and executes the last instruction, sending the packet to
Rennes through interface i1 and removing the last segment (which has now been completed).

Fig 2.12b illustrates how SR may be used to encode several paths whose distances were
seen in Fig 2.3. Note that this time, we use the formal notations defined within this section.
The distance d4, for example, was the shortest IGP distance to Rennes. As such, a single
node segment is enough to encode a path exhibiting these distances.

The distance d0 was particularly interesting, as it was the distance minimizing the latency
by going through Paris. Note, however, that solely relying on node segments to steer the
packet through Paris (see the orange segment list in Fig. 2.12b) is not sufficient to guarantee
that the distance d0 will be respected. Indeed, packets may take any ECMP paths from
Strasbourg to Paris (shown in orange in Fig 2.12b). Thus, packets may either take the
direct link or go through Liège. Interestingly, once the packet reaches Paris, the use of a
node segment to steer the packet to Rennes will result in Paris sending the packet to Saint-
Quentin, which could cause a forwarding loop. Indeed, one of the possible paths used to
reach Paris is Strasbourg;Liège;Saint-Quentin (one of the two ECMP paths available). By
sending the packet to Rennes through its shortest IGP path, Paris sends the traffic back to
Saint-Quentin. Consequently, when using two node segments, the traffic may follow any of
the paths shown in dashed orange lines, and the only latency that may be guaranteed is the
worst latency among all these possible paths, here 136.

To enforce the path with the best delay (70), the link between Strasbourg and Paris as
well as the link between Paris and Rennes must be explicitly enforced through the use of
adjacency segments. Therefore, the required segment list is (Adj, Str, P ) | (Adj, P,R).

2.4.2.3 Considerations on the number of segments

In practice, the insertion of segments in data packets necessarily implies an extra overhead.
Thus, the number of segments one may prepend to a packet at line-rate is limited. This
limitation is highly dependent on the underlying hardware. High-end routers may allow
segment lists of up to ≈ 10 segments. Less performant equipment, however, may allow
only between 3 and 5 segments [Guedrez et al. 2016a]. This limit, referred to as Maximum
Segment Depth (MSD) must thus be taken into consideration when encoding paths.

Indeed, although most standard applications relying on SR (e.g., Fast ReRoute mecha-
nisms) do not require a lot of segments [Filsfils 2020, Aubry 2020], the deployment of more
intricate multi-criterion paths may require a higher number of segments. Such technical con-
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(a) Paths encodable in an single IGP node segments (i.e.,
paths on the shortest path DAG as computed by the IGP).

(b) Paths encodable on a single node segments when con-
sidering an additional flex-algo on the delay metric. Paths
resulting from the IGP are shown in orange, while the ones
considering the delay are shown in blue.

Figure 2.13: Comparison of path encodable in a single segment with and without the use of a custom
flex-algo.

straint, often ignored in path computation algorithms, does have an impact on how paths
should be computed and on the complexity of related algorithms. In Chapter 4, we will
detail two of our contributions which allow considering the number of segments necessary
to encode multi-criterion paths, and thus ensure that the paths computed may actually be
deployed in practice.

It should however be noted that several mechanisms exist to mitigate the MSD limit.
Binding Segments (BSIDs) [Filsfils et al. 2018], in particular, were designed to such effect.

BSIDs are (usually) local labels bound to a segment list S. When the active segment is a
BSID, it is removed and replaced by the associated segment list S. This mechanism, when
configured correctly, allows to both reduce the segment list size and the churn. The latter
may also allow for network opacity by exchanging only BSIDs with another area or domain
rather than explicit segment lists. However, they require additional states to maintain and
induce additional complexity regarding the configuration of SR routers.

Flexible Algorithm [Psenak et al. 2020], or Flex-Algo, may also be used to reduce the
number of segments necessary by enriching the segment set available through the use of
multi-topologies. As explained earlier in this section, prefix segments are usually built upon
the IGP costs. Node segments thus allow routing traffic to a given node through the path
minimizing the IGP costs. In other words, paths whose edges follow the shortest path IGP
DAG, as shown in Fig 2.13a, can be encoded in a single segment. Flex-Algo allows considering
other metrics (e.g., the delay), even with topological constraints (e.g., excluding sets of links
or nodes). Node segments may thus enable to steer packets either following the shortest path
according to the IGP cost or according to the delay, depending on the algorithm associated
with said node segments. Consequently, when using an additional Flex-Algo considering
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the delay, paths whose edges follow the shortest path DAG delay-wise, as illustrated in
blue in Fig 2.13b, may also be encoded in a single segment. Delay-specific or IGP-specific
segments may be used in conjunction. However, similarly to BSID, Flex-Algo adds numerous
additional states within routers. In any case, note that a DCLC path may still require several
segments, even when using a Flex-Algo on the delay metric in addition to the standard IGP
segments.

We will not delve further on these technologies in the remainder of this thesis. However,
our contribution, BEST2COP, may benefit from (and is compatible with) both technologies.

In this section, we discussed technologies allowing to deploy non-best-effort paths. SR is an
implementation of loose source routing which allows deploying paths by pre-pending routing
instructions within the packet. For various reasons, such as scalability and simplicity of
configuration, SR is, as of now, the most popular technology to perform TE. However,
algorithms relying on SR must consider the technical constraints of the latter, in particular
regarding the maximum number of segments that may be prepended to each packet.

2.5 Conclusion

In this chapter, we have reviewed the necessary background for the remainder of this thesis.
We have seen that graphs offer an ideal formal framework to study network-related problems.
Although computer networks exhibit several relevant metrics, best-effort paths, used by most
of the traffic, usually follow paths that minimize a single metric, the IGP cost, representative
of the bandwidth and the operational costs. We have reviewed the most relevant algorithm
used to compute such paths, Dijkstra’s algorithm and BFM. We have seen that computing
multi-criterion path is more complex and often results in NP-Complete problems, leading to
a large array of attempts to solve the problem.

We have seen that within networks, the information required to compute such paths is
exchanged through routing protocols, whose paradigms may differ. These routing proto-
cols also dictate how the traffic is forwarded. Most of the time, routing is performed in
a hop-by-hop fashion, enabled by the subpath optimality property. Inter-domain routing
(in particular, BGP) relies however on different path computation techniques, which allows
greater flexibility to account for the economical relationships between ASes. While both
intra and inter-domain protocols may take a long time to converge, the convergence time is
orders of magnitude higher with BGP due to the scale at which the protocol operator, and
its sensibility to intra-domain events.

Finally, we have discussed that best-effort paths may not be sufficient for some specific
premium flows, which require more elaborated paths. While several technologies enable to
deploy of these paths, SR is currently the most popular TE technology. However, the latter
exhibits some technical limitations (in particular, the number of segments that one may
prepend). The limitation on the number of segments should be considered when computing
paths, to ensure that the latter are deployable, and thus adds a constraint to the shortest
path problem.

The concepts described in this Chapter will enable us to review the relevant literature in
the following chapter in order to better position the contributions of this thesis, which will
be explained afterward in Chapter 4 and 5.
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In the previous chapter, we have detailed the concepts necessary to understand and
describe not only our contributions but also the associated related work. Although both
contributions in this thesis are related to routing, they tackle different objectives and lie
within different contexts.

OPTIC aims at mitigating the effect of hot-potato routing. As we’ve seen, even an
internal event may re-trigger the slow BGP decision process. OPTIC aims at better
organizing the BGP routes to enable a fast re-route of the transiting BGP traffic through
the new optimal route after an internal event. As such, OPTIC closely relates to schemes
improving the convergence of protocols, and to Fast ReRoute (FRR) schemes. FRR schemes
are a key feature of computer networks, as most routing protocols may take too much time
to converge after a network event. These schemes will be reviewed first within this chapter.

On the other hand, BEST2COP aims at computing DCLC paths deployable with SR. As
such, the latter must solve a multi-criteria path computation problem, but also consider the
associated segment lists. We will thus first review SR-TE contributions. While most SR-TE
contributions focus on different challenges than BEST2COP, they sometimes share similar
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intent. Existing works also often rely on or propose schemes to translate paths into segment
lists that share similar insights to the ones we propose.

Since most SR-TE solutions do not aim to solve DCLC, we will review the less specific
literature focusing on the computation of multi-criteria paths. The computation of multi-
criterion paths is a fairly old and rich subject, with numerous interesting contributions both
in the field of operational research and computer networks. The third and final part of
this chapter will then review some of these path computations algorithms and help position
BEST2COP within this vast ecosystem.

3.1 Resiliency

The convergence time of routing protocols is a critical aspect of computer networks. The
faster a protocol can re-converge, the faster traffic can benefit from coherent optimal routing.
As we have seen, the actual convergence time may be quite long, ranging from up to a few
seconds for intra-domain protocols to several minutes for inter-domain protocols.

Several causes impact the overall convergence time of a protocol. Not only must the
failure be detected (which may take a long time for remote routers), but paths must be
recomputed, and the FIB updated.

The challenges involved are thus varied and stimulating, as they often require graph
theory notions while also considering the inner operations of routing devices. Thus, a lot of
research effort went into trying to solve the issues caused by long convergence times.

Low-level improvements usually benefit all protocols. For example, routers may de-
tect connected failures directly through their linecard, e.g., by detecting loss of signal,
in less than 50ms [Katz & Ward 2010] (instead of relying on periodic control messages).
The FIB being (traditionally) protocol-agnostic, improving its update time also positively
impacts all routing protocols. This update time, which was originally measured in mil-
liseconds in the very early 2000s, was reduced to several microseconds over the course of
several years [Filsfils et al. 2017]1. Mitigating the FIB update time by prioritizing the up-
dates of the most popular prefixes is also a common technique applied for different proto-
cols [Francois 2007, Brenes et al. 2020].

However, we have seen that protocols often rely on drastically different paradigms and
computation methods. Thus, most convergence improvements and Fast ReRoute (FRR)
schemes are designed for a specific protocol (be it intra-domain or inter-domain), to encom-
pass its specificities.

Some try to improve the actual convergence time of said protocols (e.g., through new
ways to detect failures or improved path computation), while others try to mitigate the
detrimental effects that may occur during the convergence time (e.g., by offering emergency
fail-over paths while the protocol re-converges).

Our contribution, OPTIC, aims at improving the convergence of BGP upon internal
events. While it is specific to BGP, it thus lies at the border of intra- and inter-domain
protocols. Numerous other schemes exist. While some (albeit few) also focus on iBGP and

1In 2005, the update time of one FIB entry was measured to take around 140 microsec-
onds [Francois 2007]. Interestingly, these measurements seem to have remained fairly stable over the
years [Boucadair 2005, Filsfils et al. 2011, Holterbach 2021].



3.1. Resiliency 57

aim to solve the same problem as OPTIC, others focus on purely intra- or inter-domain
protocols and may interact with or be used in conjunction with our solution. Thus, in this
section, we will review intra- and inter-domain FRR and re-convergence schemes, before
reviewing in detail the solutions more closely related to OPTIC.

As it is not my goal to list all contributions here, we refer the interested reader to the
extensive survey by Chiesa et al. [Chiesa et al. 2020] which describes several fast re-route
schemes and offers interesting historical insight. The thesis of Pierre François reviews in-
depth the various improvements that enabled faster re-convergence [Francois 2007].

3.1.1 Intra-Domain Fast Reroute

Several works focused on improving the convergence of intra-domain routing protocols.
For example, some proposed ways to ensure that no loop arises during the re-convergence
of these protocols, through ordered FIB updates or careful incremental IGP cost modifi-
cations [Clad et al. 2014, Francois & Bonaventure 2007]. These works however focused on
coherent convergence upon non-urgent or planned changes.

Other works focus on the convergence speed of intra-domain routing protocols. The
cumulation of these improvements had a drastic impact on said convergence time, which was
reduced from up to ten seconds to less than one second in the past decades [Filsfils et al. 2017,
Francois et al. 2005b].

Some contributions enable to reduce the path exploration of vector-based protocols (both
path-vector and distance-vector). For example, the DUAL protocol is an enhanced distance-
vector protocol imposing conditions regarding the update of a router’s distance-vector to limit
path exploration [D’Angelo et al. 2014]. Somewhat similarly, Metrics and Routing Policies
Compliant (mRPC) delays route updates (or FIB updates) according to path metric and
associated policies, so that routers learn the best route first [Lambert et al. 2009].

The re-computation of shortest paths has also been improved, mainly through the use
of incremental shortest path algorithms [McQuillan et al. 1979] which allow routers to only
recompute obsolete parts of the shortest path DAG upon changes.

In addition, intra-domain Fast ReRoute (FRR) schemes have also been designed to further
reduce the unreachability period during convergence time. FRR schemes exist for numerous
types of intra-domain protocols.

For example, MPLS FRR allows protecting tunnels deployed through MPLS from
disruptions, for example by pre-computing backup tunnels to protect primary tun-
nels [Taillon et al. 2020].

IP FRR, on the other hand, offers fast rerouting capabilities compatible with the standard
prevailing paradigm of hop-by-hop IP routing. IP FRR also often relies on path protection,
e.g., by pre-computing backup next-hops ensuring a coherent routing for a given destination
upon failure. The destinations for which such next-hops have been computed are said to be
protected. The backup next-hops are installed within the data-plane in the FIB, and used
when a failure is detected. Note that while ECMP may by itself suffice to protect against
some failures, additional mechanisms are required to ensure that a destination is protected
for any topology or configuration.
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Figure 3.1: Example of LFA FRR through Topology Independent LFA (TI-LFA). Mérindol does not have
any direct LFA, and thus uses a remote node as a repair node through the use of SR.

Loop Free Alternates (LFAs) are the most well-known intra-domain
FRR [Atlas & Zinin 2008]. LFAs leverage the knowledge that comes with link-state
protocols. Upon a failure, LFAs allow routing traffic to a pre-computed router whose
(pre-convergence) shortest path 2 does not go through the failed component. Since the
protection is local, this is equivalent to ensuring that the packet does not loop back to the
local router. Traffic is then routed to this router, called the repair node, which forwards
it towards the destination using its standard IGP shortest paths. The repair node may
be directly connected or remote, depending on the topology. Remote repair nodes may
be reached safely by setting up tunnels to the latter [Bryant et al. 2015], which results in
additional control-plane overhead.

The first versions of LFA suffered from limited failure coverage on certain topolo-
gies [Francois et al. 2013]. In addition, the backup path taken from the local router to
the destination may not be the post-convergence path. Traffic would then be re-routed first
to the backup path, then to the post-convergence one, which may result in desequencing.

The most recent LFA method, TI-LFA, implements the LFA principle through the use
of the SR technology [Litkowski et al. 2022]. Thanks to SR, TI-LFA has complete control
over the backup path for no additional control-plane overhead (if all routers implement
SR). Thus, not only does it offer complete coverage against any kind of failure, but the
backup path used to the destination can be the post-convergence one (from the point of
view of the local router). An example of LFA FRR can be seen in Fig 3.1. When trying
to reach Rennes, the traffic from Strasbourg goes through Mérindol. Mérindol detects a
directly connected failure on his link to Bordeaux. Note that no direct neighbor can be used
as an LFA: using its best path, Strasbourg would forward the packets through the failed
component. Thus, Mérindol must forward the packet to Liège, where it can be released and
forwarded through the best IGP paths to Rennes without going through the failed link.

2Recall that said router is not necessarily yet aware of the failure
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This backup path can be deployed through the use of a single node segment.

Other notable FRR solutions exist, which take different interesting stances. For
example, overlay-based FRR pre-computes backup overlays (i.e., virtual topologies) that are
unaffected by a given set of failures, and route packets on the latter according to the state
of the network [Kvalbein et al. 2009, Theiss & Lysne 2003]. Failure Insensitive Routing
(FIR) relies on the assumption that most failures are transient. Thus, only routers directly
connected to the failure recomputes their shortest path, but remote routers do not. Rather,
upon receiving traffic through an unusual interface for a given destination, the latter infers
the location of the failure and route around it. The outgoing interface thus both depends
on the destination and the ingoing interface [Nelakuditi et al. 2003]. As FIR does not fit
standard hardware, it was never deployed (although new programmable data-planes seem
like a good fit for the latter).

Some solutions are purely data-plane related, such as Data Drive Con-
nectivity (DDC) [Liu et al. 2013] (which implements the link-reversal algo-
rithm [Gafni & Bertsekas 1981]), and may be implemented fully within programmable
data-planes, e.g., with P4. On a similar note, Chiesa et al. proposed a P4 primitive,
PURR, allowing to implement the data-plane of most FRR schemes very efficiently,
notably through the use of optimized TCAM entries to find the first available outgoing
port [Chiesa et al. 2019]. Interestingly, this idea of leveraging TCAM can be also found
in Plinko [Stephens et al. 2013], a FRR scheme consisting in rerouting packets to backup
routes upon local failures, "bouncing" the packet around until it reaches its destination.

Intra-domain fast-reroute may have a positive impact even on BGP traffic. Indeed, the latter
may enable to quickly restore the connectivity towards the BGP gateway used by transit
traffic. Note however that said gateway may not be optimal anymore due to hot-potato
routing.

In any case, these schemes do not manage the failure of BGP gateways and do not improve
the convergence time of BGP. Thus, while intra-domain FRR may be deployed on top of
BGP-related schemes (including our own), these BGP-related schemes remain necessary to
handle convergence challenges specific to this protocol.

3.1.2 Inter-Domain Fast Reroute

BGP’s convergence time relies on the same key factors as IGPs, i.e., the detection of the
failure, information dissemination, the computation of the new paths, and the update of the
FIB. However, the time taken by each of these tasks is exacerbated by the scale at which
BGP operates. Failure notifications may have to travel across the Internet and undergo
timers [Villamizar et al. 1998]. Path computation has to consider nearly three million entries.
Finally, nearly a million entries must be distributed to each FIB. Overall, the convergence
of BGP may be measured in minutes [Labovitz et al. 2000a]. Consequently, several schemes
have been designed to improve the convergence time of BGP or provide FRR capabilities.
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3.1.2.1 Reducing convergence time at the inter-domain scale

One of the philosophies followed to improve the convergence time at the inter-domain scale
is to build upon the current protocols and architectures. These solutions can be deployed
quite easily, as they do not aim to completely re-design the Internet, which, despite its highly
dynamic nature, is fairly immutable from the protocol perspective.

For example, an option to reduce BGP’s convergence time is to limit path exploration.
Indeed, as a vector-based protocol, it has been shown that BGP may require to process up
to (n − 1)! updates, with n the number of nodes [Labovitz et al. 2000a]. Schemes such as
mRPC (presented above) which aimed at reducing path exploration for incremental pro-
tocols can thus also be used with BGP to this effect. Since pathological cases of path
exploration only occur when considering asynchronous communications, Bremler-Barr et
al. [Bremler-Barr et al. 2009] proposed to enforce a relaxed form of ordering in the message
exchange through the use of timers considering the length of the route to advertise (through
the as-path). EPIC 3 is an enhanced path-vector protocol aiming specifically at reducing
path exploration through the use of additional information carried within the messages.

Other solutions proposed to enhance BGP’s convergence time relied on adding infor-
mation regarding the origin of the event generating the update messages [Luo et al. 2002,
Pei et al. 2005], allowing ASes to immediately deduce other routes invalidated by the update
and removing the latter from its RIB.

Finally, other works focus on better tuning the BGP parameters to enhance
its convergence time. In most of the cases, this improvement concerns the sev-
eral timers in place to prevent BGP from overreacting to transient changes and
noise [Pelsser et al. 2011, Sahoo et al. 2006]. For example, Bremler-Barr et al. pro-
pose to let withdrawals propagate with no delay throughout the Internet (while route
advertisements still go through timers) and show that this scheme reduces both the
convergence time and message complexity of BGP [Bremler-Barr et al. 2003].

Another philosophy is to consider that enhancements patching the current Internet, while
easier to deploy, do not offer enough flexibility to tackle its main issues. Consequently, the
following solutions propose a more drastic redesign of today’s architecture and protocols.
While these solutions may indeed propose an improved basis onto which the Internet could
be (re)built, actually deploying them is far more challenging than the solutions previously
described.

For example, Scalability, Control, and Isolation On Next-Generation Networks
(SCION) proposes to redesign the Internet architecture to improve security and scalabil-
ity [Barrera et al. 2017]. SCION relies on logical grouping of ASes into trusted domains,
among which a few core ASes are in charge of connecting to other core ASes within other
domains. SCION also rely on a drastically different control-plane, with finer path informa-
tion and which leverage the proposed architecture to improve scalability and path selection.

Hybrid Link-state Path-vector (HLP) proposes to leverage the hierarchical nature of the
Internet [Subramanian et al. 2005a]. Seeing Tier-1 ASes as the root of a given hierarchy,
HLP uses a link-state approach within a hierarchy, and a path-vector approach between
the root of each hierarchy. Leaving aside some peculiarities, this approach is reminiscent of
the approach taken by multi-area OSPF topologies (with Tier-1 ASes here assuming a role

3Funnily enough, EPIC was also the first name of our contribution, OPTIC.
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similar to ABRs in the backbone area).

Because of the scale of the Internet, there seems to be a limit to how much BGP’s
convergence time can be reduced. For example, even detecting the remote failure may take a
long time, as updates have to travel across several ASes. Similarly to intra-domain protocols,
FRR schemes have thus been designed to mitigate the effect of the convergence time of BGP
upon remote events outside the local domain.

3.1.2.2 Providing inter-domain FRR

Among inter-domain FRR proposals, R-BGP [Kushman et al. 2007] aims to provide ASes
with backup routes for remote failures. Before the failure, R-BGP allows an AS to announce
a route for a given destination to the downstream AS currently used to reach said destination.
Ideally, the path advertised to the downstream neighbor is as disjoint as possible from the
current path being used. Upon failure, ASes should thus have a disjoint path available,
advertised by the upstream AS. The authors however note that the interaction between R-
BGP and the BGP convergence may create loops. These forwarding loops may be prevented
by exchanging root-cause information within BGP messages.

SWIFT [Holterbach et al. 2017] specializes in providing predictive FRR for remote fail-
ures. In short, Swift uses the initial bursts of BGP control messages received after a remote
failure to infer the location of the latter, through an intricate inference algorithm. Thus,
routers do not have to wait for all updates before re-routing traffic. Traffic is re-routed
through backup routes which have been pre-computed continuously for all routes and rele-
vant possible inter-AS link failures (i.e., lying on the AS-path of the original route). Note
that the associated time and memory complexity may thus be quite high.

Blink [Holterbach et al. 2019] shares the same general goal as SWIFT. However, the
latter tries to provide even faster failure detection by completely bypassing control-plane
messages. As control-plane messages take a while to be disseminated throughout the internet,
Blink tries to predict a failure purely through data-plane information. More precisely, Blink
detect failures by monitoring TCP flows, which exhibit predictable behavior upon remote
disruptions. Once the failure is detected, routers may switch to backup paths which were
pre-configured by network operators. Interestingly, Blink was implemented fully in P4, and
thus offloads these tasks to the data-plane of the router. However, this forces Blink to remain
quite simple and thus limited.

Blink and SWIFT have been combined into Snap [Holterbach 2021]. Like Blink, Snap
monitors data-plane signals. However, the monitoring is performed in software to provide the
smart inference capabilities of SWIFT. The sampling of the flow is however still performed
through P4. Interestingly, this change of design seems to be quite common. With the
arrival of programmable data-planes, several solutions aim at being fully implemented in P4
even if their design did not really fit P4 capabilities. However, other solutions tend to aim
for a co-design where intricate tasks are delegated to the control-plane, argumenting that
communicating with the latter should not be too expensive. These two points of view lead
to interesting (and sometimes contradictory) arguments within the P4 literature.
Similarly to the intra-domain schemes described in Section 3.1.1, these inter-domain schemes
aim to tackle different objectives as OPTIC. The latter do not consider the behavior of BGP
within a given AS, but rather examine and improve the behavior of inter-domain routing at
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a larger scale. OPTIC, on the other hand, aims to improve the BGP convergence within the
AS, and reduce the ill-effects of the interaction between BGP and the IGP. Nevertheless,
both types of schemes may be deployed concurrently.

3.1.3 Intra/Inter-Domain Convergence

As mentioned in Section 2.3.2.2, several BGP-related issues may arise even within a single
AS. The number of entries BGP has to manage leads to time-consuming re-ranking and FIB
updates. Because of hot-potato routing, this process is triggered at each IGP event. Finally,
reduced route visibility and complex iBGP topologies may prevent the protocol to converge
and routers from being aware of backup routes in the event of a failure. Consequently, many
solutions have been proposed to tackle these issues.

3.1.3.1 Guaranteeing correctness

Some work focus on guaranteeing correctness, i.e., ensuring that iBGP converges and that
the ensuing forwarding does not exhibit anomalies. An iBGP topology that allows iBGP to
converge is said to ensure signaling correctness. If no forwarding anomalies arise, forwarding
correctness is ensured.

Guidelines were proposed to ensure both signaling and forwarding correct-
ness [Griffin & Wilfong 2002b]. However, these guidelines may be too strict to be applied eas-
ily within an operator’s network. Other works only focus on signaling correctness. Buob et al.
define fm-optimality to model the problem that may arise when iBGP routers disagree on the
route that should be used. They propose a way to check if an iBGP topology is fm-optimal,
i.e., that a valid signaling path (where no intermediary routers disagree on the preferred exit
point) exists between all routers and exit points [Buob et al. 2007]. In particular, the authors
show that standard routing issues (oscillation, non-optimality, and non-determinism) cannot
occur "if each BGP speaker learns its best possible exit point". They subsequently proposed
a way to design iBGP topologies achieving such results [Buob et al. 2008]. A few years later,
the authors proposed another interesting way to guarantee fm-optimality, by redesigning the
route distribution protocol itself. This new protocol, iBGP2, ensures that all routers have
access to their preferred exit point while remaining scalable [Buob et al. 2016]. In short, a
BGP speaker v advertises an exit point n to its neighbor only if v lies on the shortest path
between u and n. If n is the preferred exit point for u, then it is necessarily the preferred
exit point for v, meaning that BGP speakers will indeed be advertised (at least) their pre-
ferred exit point. This approach is somewhat similar to the one proposed by Gvozdiev et al.
through the Simple Ordered Update Protocol (SOUP) protocol, which ensures that a BGP
speaker only selects a route if the associated IGP next-hop has chosen the same route. SOUP
was also optimized to Link-Ordered Update Protocol (LOUP) to speed up the convergence
[Gvozdiev et al. 2013].

Vissicchio et al. showed however the limitations of some of these works, by noting that an
iBGP topology may allow the protocol to converge correctly (i.e., ensuring signaling correct-
ness), but may still have some route dissemination issues (i.e., some routers may not be aware
of routes to remote prefixes) caused by iBGP route propagation rules [Vissicchio et al. 2012].
These dissemination issues may cause forwarding anomalies by themselves. This new require-
ment for forwarding correctness, called dissemination correctness, is then studied.
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On a side note, some works also propose incremental re-configuration of BGP to migrate
between two network states while preventing traffic disruptions [Vissicchio et al. 2013]

Most of these works do not however focus on improving the actual convergence process
of BGP.

3.1.3.2 Increasing route diversity

Works that aim at increasing the route diversity not only bring correctness guarantees (as
each router may learn its best possible exit point) but also benefit the BGP convergence
process by limiting the required message exchanges upon an event (as more information is
already locally available).

Improving route diversity may be done through clever iBGP topology design. For
example, Pelsser et al. propose an algorithm that augments an iBGP topology with
additional iBGP sessions to ensure that any BGP speaker is aware of at least two routes
to remote destinations [Pelsser et al. 2008]. However, Vissicchio et al. showed that adding
such iBGP sessions, while increasing the visibility of the local router, may lead to a
loss of visibility to the other routers within the AS due to iBGP routes propagation
routes [Vissicchio et al. 2012].

Most schemes improving route diversity thus rather rely on slight extensions to the
protocol itself, allowing BGP speakers to share more than a single route to their peers.

BGP best-external [Marques et al. 2012], for example, allow routers to advertise their
best route and its best external route, i.e., the best route learned by an eBGP peer.

More flexible, Add-Path [Walton et al. 2016] allows routers to exchange a set of routes,
depending on different paradigms. As OPTIC shares similar concepts as Add-Path and fits
very well upon the latter, we will now describe Add-Path in further detail.

Several Add-path modes exist, which allow routers to exchange specific sets of routes en-
suring different guarantees. Add-Path can for example allow routers to exchange all known
routes, which solves any internal correctness issues and allows routers to converge immedi-
ately to the new post-convergence paths. However, this mode does not scale well for obvious
reasons.

More intricate modes are available, allowing to prevent MED or hot-potato routing os-
cillations. Indeed, recall from Section 2.3.2.2 that both kinds of oscillations occur because of
information hiding. Hot-potato routing anomalies arise since routers may hide the preferred
route of their peers because of local preferences, and MED-induced oscillation arose when a
router was not aware of the best MED for a given destination.

MED-oscillations can be prevented using the group-best mode. Here, each router shares
its best route for all neighboring ASes, ensuring that all routers have access to the route with
the best MED. Thus, as shown in Fig. 3.2b, upon electing route n1, b still advertises n3 as
both routes originate from different ASes. This effectively prevents the oscillation described
previously as all routers now have access to the route with the best MED.

The AS-wide mode allow to prevent both MED and hot-potato oscillations. Advertising
an AS-wide set consists in advertising all routes with the same (best) attributes up to (and
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Figure 3.2: Reminder of the gadgets shown in Section 2.3.2.2

including, when routes originate from the same AS) the MED, i.e., all routes towards a
given destination sharing the same best β attributes (or, said otherwise, all AS-dominant
routes) 4. By doing so, no routers may deprive a neighbor of its best route because of
purely local attributes and routes with the best MED attribute are known to all BGP
speakers, preventing both MED and hot-potato iBGP oscillations and enabling optimal
routing. For example, considering Fig 3.2a, routers will keep advertising the route of their
client gateway nx even once having elected nx+1%3 as their best route. Consequently, all
routers are consistently aware of the BGP routes going through n1, n2 and n3, preventing
oscillations.

The AS-wide possesses an interesting property when considering internal events. As β-
attributes are not related to the IGP, they remain stable upon IGP events. Thus, the best
route after an IGP event lies within the routes with the best β-attributes pre-event. However,
this does not imply that an AS-wide set necessarily contains the post-convergence route upon
an internal event. For example, only a single route may possess the best β-attributes, and
thus be alone within the AS-wide set.

The double AS-wide mode of Add-Path was thus proposed, which consists in sharing the
AS-wide set, and the next best AS-wide set (i.e., all routes with the best and second best β
attributes.). Intuitively, this seems to provide enough information for each router to possess
the post-convergence path, as stated in the RFC: "the post-convergence paths will be known
by each BGP node in an AS supporting this mode".

However, knowledge of the post-convergence path is not guaranteed in all cases. First, all
routes within the double AS-wide set may be advertised by the same gateway, whose failure
would render the entire set obsolete. This first point is however arguable, as it depends on the

4There are actually two definitions of AS-wide sets. Besides the one described here, the
latter are also sometimes defined as all routes with the best β attributes for each neighboring
AS [Van den Schrieck et al. 2010]. We here consider the definition given in the main body of this manuscript,
as it is the one given by the Add-Path RFC which is more recent [Uttaro et al. 2016a].
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AS 0

(1)(0)

AS 2

AS 1

Figure 3.3: doom-med gadget : an example of limitations of the double AS-wide set. Router n2 only has
known of the route using the blue entry point. Having a worse MED, the route using the green entry point
is not advertised, following the definitions of AS-wide sets given in the RFC.

way Add-Path is actually implemented, and whether the next-hop-self option is configured 5.
Second, only the route with the best MED per neighboring AS is advertised. However, the
best route after an internal may very well be the route with the second best MED.

Such a scenario is illustrated by the doom-med gadget illustrated in Fig. 3.3. We
consider routes towards AS 0. Following the AS-wide set definition (which should provide
the best FRR capabilities), n1 only advertises the route using the blue entry point to n2.
If the outgoing blue interface of n1 fails, n2 does not know the post-convergence route, i.e.,
using the green entry point.

Consequently, the only Add-Path mode currently ensuring that routers know the post-
convergence route is the Add-Path All mode which is not scalable enough.

3.1.3.3 Improving convergence time

Few works focus solely on directly improving BGP’s convergence time or mitigating its
effects. Increased route diversity has a positive impact, but it is, in a way, indirect. While
fallback routes (or even, post-convergence ones) may be readily available, the actual decision
process must still be run, and the FIB must still be updated for these routes to become
active. Recall that the BGP decision process has to be run even after an internal event, due
to hot-potato routing. Thus, increased visibility may not result in a sufficient improvement
to the overall convergence time, given the frequency of such events.

Among the solutions aiming to improve the behavior of BGP upon internal events,
one may cite the next-hop tracking feature, implemented on nearly all routers. Essentially,
this allows the IGP to notify the BGP control plane upon an IGP event. Historically,
BGP simply performed a periodic scan every 60s to check whether BGP routes had been
impacted or not. Next-hop tracking thus also enables BGP to benefit from the improvement
made to reduce the failure detection time within IGPs.

Besides this feature, the main solution directly tackling this issue is Prefix Independent

5Next-hop-self allows an ASBRs to advertise a route to a remote prefixe with itself as the next-hop
(rather than the ASBR of the remote AS). If next-hop-self is set, several routes of an AS-wide set may
originate from the same next-hop (i.e., a local ASBR connected to multiple remote ASBRs). If it is not set,
each route should, by default, originate from a different next-hop, as remote ASBRs should advertise only
one route.
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Figure 3.4: An example of a flat FIB architecture compared to a hierarchical one. We consider the point
of view of s. Routers n1 and n2 advertise k prefixes to s through iBGP sessions. Unlabelled edges have an
IGP cost of 1. We assume that n1 is prefered to n2 because of hot-potato routing.

Convergence (PIC) [Filsfils et al. 2011]. Despite its name, I believe that PIC is best de-
scribed as an FRR mechanism. PIC builds upon increased route diversity (offered by the
aforementioned solutions) to drastically reduce the traffic loss induced by BGP’s conver-
gence time. However, it does not guarantee that the new path taken by the traffic is the
post-convergence one.

To mitigate the ill-effects of BGP’s convergence, PIC relies mainly on (i) an improved,
hierarchical FIB design and (ii) maintaining a set of BGP NH per prefix. The way PIC
re-designs the FIB is shown in Fig. 3.4.

The historical FIB architecture, known as flat FIBs, drastically slowed the update time
after an internal event. As described in Section 2.3.2.2, detailed NH information is lost once
an entry is pushed within the FIB. More precisely, once a BGP route (and the associated
BGP NH) is elected, the internal NH (IGP NH) and the associated outgoing interface are
resolved through a recursive lookup. Solely the direct correspondence between the remote
prefix and the outgoing interface is maintained.

If this correspondance changes, flat FIBs require updating each one of the entries,
resulting in a high update time. Fig. 3.4 illustrated a standard flat FIB architecture. Router
s is advertising the same k prefixes by n1 and n2 through iBGP sessions. For the sake of
the argument, we assume that n1 and n2 advertised routes with the same β attribute, and
that n1 was thus elected as BGP NH due to hot-potato routing. The associated interface to
reach these remote prefixes, i1, is pushed within the FIB. If the link between n1 and s fails,
BGP must re-converge, and all k entries must be updated one by one. During this process
(i.e., the BGP reconvergence and the update of the FIB), connectivity may be lost.

A Hierarchical FIB (HFIB) maintains the relation between BGP NH and IGP NH.
Destination prefixes point towards their BGP NH, which themselves point towards their
IGP NHs. Thus, modifying the IGP information, lying at the end of the relation chain,
impacts all the prefixes pointing towards it. Consequently, if the IGP information used to
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reach a BGP NH is modified (e.g.,, because a new path should be used due to an internal
event), the update may benefit and reroute several (or even all) prefixes at once.

An example of an HFIB is shown in Fig. 3.4. Upon the failure of the link between s and
n1, n1 becomes unreachable. The IGP will converge to find that the new best route to n1,
used as a gateway for all prefixes, is now through i2. This unique update, performed after
the IGP, impacts all the k destinations that were pointing to this entry. Effectively, this
quickly restores the connectivity to the n1 gateway for all prefixes and prevents long-lasting
connectivity. HFIBs have been implemented and deployed in actual hardware. Furthermore,
Chang et al. proposed a way to provide an HFIB through the use of an additional SDN
switch connected to the router [Chang et al. 2015].

An HFIB allows to drastically reduce the connectivity loss time upon an internal event.
When relying on a flat FIB, the number of entries to consider impacts the time during
which a connectivity loss occurs. When considering 350 000 entries, this time may reach
30s. Conversely, when relying on an HFIB, connectivity loss lasted 134ms regardless of the
number of entries. These times have been confirmed by other studies [Holterbach 2021].

However, an HFIB by itself does not protect against the failure of the gateway itself. If
there is no gateway towards which to restore the connectivity, one must rely on the BGP
convergence to provide a new, available gateway and update the BGP NHs for all prefixes.

To better manage these events, PIC does not only maintain the best BGP NH to a
given remote prefix, but the two best BGP NH 6. These NHs are grouped together in a list.
Prefixes sharing the same list of two BGP NHs point towards the same entry in memory.
This is illustrated by Fig. 3.4, where all prefixes point towards a list composed of n1 and n2.
Thus, if n1 fails, the backup BGP NH, n2, is immediately activated. All prefixes pointing
towards the list benefit from this "grouped" update. Note that, when considering B border
routers, there may be up to

(
B
2

)
lists (i.e., entries). Thus, updating each list may be far more

efficient than updating all prefix entries individually.
The authors show that when relying on these mechanisms, the failure of a gateway only

induces a connectivity loss of 80ms when 250 000 routes failed. Conversely, solely relying on
the BGP convergence may lead to a connectivity loss lasting several minutes.

Nevertheless, PIC suffers from some limitations, both considering core and edge failures.
First, only maintaining two gateways per prefixes may not be sufficient to protect against
any failure. For example, if the network is not bi-connected, a single event may render
both gateways unreachable. Thus, even if PIC possesses total route visibility (e.g., through
Add-Path All), it does not leverage the latter to its full extent. Second, the HFIB possesses
the same drawbacks as most FRR schemes: the path through which the traffic is rerouted
is not guaranteed to be optimal. Consider Fig. 3.4: while the HFIB restores connectivity
quickly to n1, the internal event modified the ranking of the routes, due to hot-potato
routing. Consequently, the optimal gateway is now n2. The traffic will benefit from the new
optimal path only once the traditional BGP convergence has taken place. Furthermore, as
traffic goes through a transient fallback path before settling to the post-convergence one,

6This is obtained by re-running the BGP decision process after having removed all routes advertised by
the first elected BGP NH
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Figure 3.5: Connectivity and optimal forwarding state restoration timelines according to different tech-
nologies after internal events, depending on the number of prefixes |D| and the number of BGP entries (Ko

when using OPTIC and Ka when using Add-path).

the latter may suffer from de-sequencing.

While OPTIC tackles the same problem as PIC, we follow a different approach by re-
placing the traditional BGP convergence. Fig. 3.5 is a pedagogical illustration that does not
provide a comprehensive comparison but shows typical cases to position OPTIC’s objectives
compared to current solutions.

Since BGP routers only exchange their best route towards a given prefix, finding the
new optimal forwarding state with vanilla BGP often requires message exchange if the route
becomes unusable. In any case, the router is required to perform a lexicographical comparison
on all known routes (K) for each prefix (D).

PIC is designed to restore connectivity quickly by going through each of its sets of two
gateways and falling back to the backup route of the set, or by benefiting from the IGP
convergence through its hierarchical FIB. However, afterward, finding the new optimal
gateway may still require message exchanges and a lexicographical comparison for all
prefixes. In worst cases, the set of two gateways is not sufficient to protect the prefix
(both gateways are unreachable after the event). In such cases, the connectivity cannot be
restored immediately: tc can be as long as to.

Add-path allows exchanging subsets of routes through iBGP. With the double AS-wide
option in particular, the subsets of routes are likely to contain the new optimal gateway
after any IGP event. Through adequate configuration, a BGP router can locally find the
new optimal forwarding state by running the BGP decision process on the subset of routes
sent through Add-path (Ka) for all prefixes |D|. This is however not fully guaranteed,
depending on network connectivity and the effect of cold-potato routing (as explained with
the doom-med gadget). To ensure the protection of the prefixes upon any failure, all routes
should be exchanged which scales poorly.
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By combining PIC and Add-path, one can benefit from the enhanced connectivity restora-
tion time of PIC and the advantages of Add-path. However, PIC and Add-path are not
designed as a single entity and their union does not allow reaching the full potential of the
available gateways 7. While PIC can restore connectivity quickly by walking through its

(
B
2

)
sets, the time taken to restore the optimal forwarding state is ultimately the same as the
one of Add-path alone.

OPTIC is designed to fully harness the potential of increased iBGP route visibility.
Through adequate data-structures, OPTIC efficiently pre-computes sets of gateways guar-
anteed to possess the optimal path whatever the network configuration and internal event,
taking into account both hot and cold potato routing. OPTIC guarantees a fast switch to
the new optimal path (thus, tc = to) after a single walk-through of said pre-computed sets
of gateways. The number (|O|) and size (Ko) of these sets are both limited, as will be shown
in our evaluation. Similarly to PIC, the sets may be shared in memory by several prefixes.
Restoring connectivity optimally does thus not require working at the prefix granularity but
at the set granularity instead. Once each set has been walked through, connectivity is re-
stored optimally for all prefixes. In some degraded cases, the sets of gateways may need to
be re-computed to handle any future IGP events (while the transit traffic already benefits
from the new current optimal route). With OPTIC, this process does not rely on the slow
lexicographical full BGP comparison anymore but rather on efficient updates of gateway
structures.

Note while PIC is an FRR mechanism that does not guarantee the optimality of the new
route the packet will follow, OPTIC goes one step beyond, and guarantees that the new
route is the one that would be obtained by relying on the BGP convergence.

3.2 Segment Routing

With its ability to deploy specific paths and even actions to be taken along the latter,
Segment Routing (SR) quickly gained a lot of traction. SR has been used for a variety of
purposes. We have seen in the previous section that SR can be used within FRR schemes.
It has also been used to improve network resiliency by steering and duplicating traffic over
disjoint paths [Aubry et al. 2018] or even to monitor networks [Aubry et al. 2016a].

However, one of the main reasons SR is deployed is to perform TE [Adams 2020]. In-
deed, because of the complexity of previous protocols, TE is performed by tuning the IGP
costs [Filsfils et al. 2017, Balon & Leduc 2008]. The expressiveness offered by the IGP was
thus sacrificed to the benefit of TE, which should have been ideally performed through
other, more adapted protocols 8. While specific TE needs and explicit routing may have
been deployed through RSVP-TE, the protocol is quite cumbersome, and even sometimes
abandoned [Filsfils et al. 2017]. SR thus re-invigorated the flame of TE through an operator-
friendly, scalable and lightweight implementation of source-routing.

Seeing the potential of this technology, operators started to issue more intricate demands
and requirements regarding TE capabilities [Filsfils 2019], such as the ability to deploy DCLC

7In addition, recall that Add-Path may not provide enough path diversity or remain scalable.
8In addition, it should be noted that using IGP costs to that effect also impacts BGP through

hot-potato routing, although solutions exist to tune IGP cost for TE while considering its effects on
BGP [Balon & Leduc 2008]
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paths. This, coupled with the opportunities (and technical challenges) brought by SR,
sparked the interest of the research community and the industry alike.

A very complete and interesting meta-analysis on SR-related research and standardiza-
tion efforts has been done by Ventre et al. [Ventre et al. 2020]. Out of nearly a hundred
SR-related contributions, using the source-routing capability of SR to perform TE is the
most popular subject with 22 references (the second and third most popular subject being
centralized control and resiliency with 16 and 9 references respectively).

Our contributions are no exception. Thus, in the following section, we will first detail
several SR-TE contributions, and position our contributions among the related work.

We propose several contributions related to SR. First, a construct which efficiently en-
compass cost, delay, and number of segments necessary to encode paths: the SR Graph.
Second, we propose two ways to utilize this construct. BEST2COP explores the SR Graph
to compute DCLC path for SR, while LCA allows to use the information within the SR
Graph to compute segment lists encoding paths on the fly.

We will thus first focus on SR contributions which compute TE paths, and position
BEST2COP with respect to these contributions. Then we will focus on contributions tackling
the path encoding problem, i.e., the translation of paths to segment lists, and position the
SR Graph and LCA with respect to these schemes.

3.2.1 Traffic-Engineering

SR has been widely used to perform TE with various objectives. An extensive survey
has recently been written by Wu and Cui [Wu & Cui 2022]. Most of these works aim to
perform bandwidth optimization, i.e., steer numerous flows along paths that better utilize
the network resources compared to shortest IGP paths. They usually rely on well-known
optimization techniques extended to support SR. Note that all of the SR-related contribu-
tions mentioned here (including our own) consider a centralized computation element that
possesses all required information.

Jadin et al. [Jadin et al. 2019] aim to minimize the Maximum Link Utilization (MLU) (a
popular objective) using column generation, a linear programming technique. While most
related works only allow up to 2 or 3 segments of specific types, their work considers an
arbitrary number of segments and allows adjacency segments.

Perhaps surprisingly, Brundiers et al. [Brundiers et al. 2021] have shown that when aim-
ing to minimize the MLU, allowing the creation and deployment of permanent forwarding
loops with SR may allow achieving better solutions.

Gang et al. aim to maximize the overall throughput by re-directing flows on non-
congested links, considering a partial deployment of SR [Gang et al. 2018].

Gay et al. focus on quick re-optimization of the network load after unexpected network
events [Gay et al. 2017], as other SR-TE schemes may be too slow to react. Segment lists
are constructed and improved iteratively through local search and guiding heuristics in less
than a second.

Lee et al. [Lee & Sheu 2016] aim to increase the overall throughput through SR.
They consider the betweenness of the nodes to predict the load of each link and trans-
late this as an additive metric. Interestingly, and similar to our contribution, they use
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BFM to compute forwarding paths. The author state that forwarding paths with fewer
hops require fewer segments to encode, and thus use the I-HOP property to compute
hop-constrained paths which then result in lower SR-related overhead. This statement is
however not completely true, as the number of segments necessary to encode a path is re-
lated to its deviations from the shortest IGP paths and not necessarily to its number of hops.

Closer to the objectives of BEST2COP, Davoli et al. propose a TE scheme that as-
signs paths to flows according to bandwidth requirements, while trying to minimize the
average latency through previously known techniques. A heuristic then re-assigns flows to
further enhance the average delay. The computed paths are translated to segment lists and
deployed [Davoli et al. 2015]. Similar to other works [Dugeon et al. 2017, Hou et al. 2018],
while the delay is considered, the IGP cost is not considered simultaneously, resulting in
vastly different problems and objectives compared to our contribution.

Hartert et al. [Hartert et al. 2015] propose DEFO, a flexible framework that computes
segment lists for numerous varied objectives that may be expressed as high-level goals. For
example, one may ask to route flows over paths under a certain delay while minimizing
the MLU and using a given number of detours. The paths are then computed by using
the middle-point routing model. This model considers paths as a sequence of so-called
middle points, which are linked by partial forwarding graphs representing all shortest paths
between two middle-points. Intuitively, a partial graph between two middle points u and v

contains all paths encoded by the node segment (Node, u, v). These Middle-points are then
iteratively and incrementally set to values (nodes) to build paths that respect the constraints
and optimize the objectives, thanks to well-known optimization frameworks (in particular,
local-search and constraint programming). Solutions improve as the algorithm runs. Paths
computations last during a period specified by the user (e.g., 1 minute).

While DEFO proposes an interesting generic framework to perform TE for different
general objectives in an operator-friendly fashion, the problem we aim to tackle (DCLC) is
not expressible in their framework.

Similarly to our contribution, BEST2COP, all aforementioned SR-TE contributions aim
to compute specific paths that enhance the routing performed through vanilla IGPs. How-
ever, they solve drastically different problems compared to the ones we focus on.

Indeed (and interestingly), most SR-TE contributions rarely consider explicitly the delay
but rather focus on the bandwidth and load distribution when considering numerous flows.
While the delay may be considered (at least as a secondary or indirect objective), the IGP
cost (which may behave differently from the bandwidth) is rarely considered directly. The
IGP is indeed often seen as enabling basic connectivity tasks. The associated costs are thus
ignored when performing TE.

Our path computation algorithm, BEST2COP, aims at considering two additive met-
rics simultaneously. It can thus be used, amidst other possible use-cases, to compute SR-
compliant paths respecting a constraint on the delay and minimizing the IGP cost (although
any other pair of additive metrics may be considered). As we have seen in Section 2.2.1,
solving this issue requires path computation algorithms tackling very different challenges
than the schemes seen above.

This use-case is also practically relevant. The delay is indeed becoming more and more
critical with modern applications. In addition, the IGP cost remains an important metric
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within a network as it is one of the main tools an operator possesses to express general
design choices. Operators have consequently explicitly expressed their desire for the ability
to compute delay-constrained paths of minimal IGP cost with SR [Filsfils 2019]. To the best
of our knowledge, no SR contribution currently aims at tackling our specific problem, i.e.,
computing DCLC paths deployable with SR in an efficient manner.

Note that the DCLC paths we aim to compute are likely to be used by small premium
flows which are far less numerous than their best effort counterparts, and which are less likely
to affect the overall load distribution of the network. We thus consider a non-congested net-
work onto which some premium flows must be routed through DCLC paths. Consequently,
we do not require the traffic matrices of the network, nor do we consider the effect of nu-
merous DCLC demands on said network.

This fundamental difference between other TE schemes also includes the evaluation
method. Most of the solutions described previously are evaluated on fairly small networks,
sometimes composed of less than 100 nodes. Their performance is rather examined with
respect to the number of flows (or demands) to steer according to realistic traffic matrices.
As explained, in our case, the number of demands is not as critical. Rather, we examine the
performance of our contribution of large to very large scale networks of up to 100 000 nodes
when considering multiple areas, and several thousand nodes when considering a flat OSPF
deployment (i.e., with a single area). We consider an arbitrary number of segments (up to
MSD) and consider both main types of routing segments (node and adjacency).

3.2.2 Path Encoding

Most SR-related solutions require, at some point, a way to translate paths to segment lists.
Some of them directly work with segments. For example, DEFO, presented above, directly
constructs segment lists by concatenating ECMP DAGs through linear programming, which
in practice may be encoded by node segments. Others first compute forwarding paths before
translating them into segment lists.

Converting a path to segment lists (or, at least, computing the number of required
segments) is challenging in itself, and requires specific algorithms. For reasons that we will
detail later on, the number of segments may behave differently for any given path, and thus
cannot be expressed as an additional weight on the original graph, bur rather requires specific
schemes to be considered. As such, some works focus solely on this matter, known as the
path encoding problem in the literature. While these solutions may differ in some aspects,
they usually share a similar core concept. The path to encode, taken as input, is compared
to the shortest IGP paths to find out the deviations (if any). These deviations are translated
to either nodes or adjacency segments.

As we aim to compute SR-compliant DCLC forwarding paths (encodable in less than
MSD segments), we also propose ways to translate paths to segment lists. We propose two
different approaches. The SR graph is a graph transformation that transforms the number
of segment into a standard metric: the hop-count. Standard multi-metric path computation
algorithms may thus explore the SR graph to consider the segments as another standard
constraint. Since directly exploring the SR graph may be costly, we propose LCA, which
relies on the SR graph indirectly to translate multi-criterion forwarding paths as input into
a minimal segment lists, following an encoding paradigm leveraging the presence of multiple
paths with equal distances. LCA allows algorithms to explore the original graph of the
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network rather than the SR graph but requires some modification to the underlying algorithm
due to the peculiarities of this new metric.

In this subsection, we will review existing path encoding schemes and position both of
our approaches.

Guedrez et al. propose an algorithm that translates a given path into a minimal segment
list [Guedrez et al. 2016b], by first decomposing the given path into a series of shortest IGP
subpaths through sequential Dijkstra’s algorithms. A shortest subpath from u to v is encoded
by a single node segment (Node, u, v). A subpath composed of only two nodes (i.e., an edge)
is encoded by an adjacency segment (Adj, u, v). The behavior of the algorithm described to
decompose the path into subpaths is however unclear when considering the effect of ECMP
or when considering multi-graphs. In addition, note that some subpaths composed of two
nodes u, v could be encoded by a node segment without issue, if the direct link (u, v) is the
shortest path between u and v. Always using adjacency segments in this case may prevent
the use of parallel ECMP links between two neighboring nodes 9. Another algorithm is
proposed which supposes the advertisement of adjacency segments with global meaning.

Davoli et al., whose contribution was already mentioned in the previous subsection,
rely on a scheme to translate forwarding paths to SR list. Given a path p from s to d,
the algorithm considers the set of ECMP paths from s to d. If only one shortest path
exists which equals the path to encode, a single node segment is used. Otherwise, the
algorithm considers the direct links (s, d) to check if the path may be encoded through a
single adjacency segment. If this is not possible, the procedure is repeated but consider the
predecessor v of d within p, before re-running the procedure considering the path from v to d.

Aubry discusses the path encoding problem through a greedy algorithm [Aubry 2020].
The algorithm proposed follows a given path p edge by edge on the shortest path DAG rooted
at the source node s as far as possible. If an edge (u, v) is not within the current shortest
path DAG, or if several shortest paths exist to v, a node segment (Node, s, u) and, if needed,
an adjacency segment (Adj, u, v) are added. Adding such segments allows to now continue to
follow path p on the shortest path DAG rooted at u or v respectively. The resulting segment
list is proven to be minimal by showing that any minimal segment list encoding p can be
transformed to the output of their algorithm.

An illustration of the idea behind Aubry’s proposition can be seen in Fig 3.6. The
(arbitrary) path to encode, from Strasbourg to Bordeaux, is shown in the top figure. We
first consider the shortest path DAG rooted at the source, Strasbourg. The first edge
to encode, (Str, L)i1 lies within the DAG and is thus included within the node segment
(Node, Str, L). However, to enforce this specific edge and prevent the traffic from using
(Str, L)i2, the adjacency segment (Adj, Str, L, i1) must be used. Once this adjacency
segment is interpreted, traffic is routed along the shortest path DAG rooted in Liège,
which is now considered as the new source. The next edge, (L, StQ), does not appear
on any shortest path DAG, and thus can only be encoded through an adjacency segment
(Adj, L, StQ). The shortest path DAG rooted in Saint-Quentin is then considered. As all
remaining edges to encode lie within this DAG, and ECMP does not enforce unwanted
path diversity in this case, the remainder of the path can be encoded through a single node

9Although it should be noted that parallel links are likely to be aggregated and seen as a single link by
SR.
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Figure 3.6: Illustration of the general principle used by path encoding algorithms. As long as edges remain
on the shortest path DAG, a single node segment is required. An adjacency segment is required to encode a
link that does not appear in any shortest path DAG, or to circumvent to avoid ECMP paths.
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segment (Node, StQ,B).

While the general design of Aubry’s algorithm is close to ours, it only considers a single
metric. LCA considers both costs and delays when translating paths. Considering two
metrics induces further considerations and requires some modifications when computing the
shortest path DAG used to guide the conversion.

In addition, the algorithms mentioned above perform what we refer to as strict encoding,
meaning that the segment list encodes exactly and only the path provided as input. While
this approach is valid and interesting, LCA performs a looser form of encoding. While the
segment lists contain the input path, it may include other paths that share the same cost and
delay. This method is not only more suited for the problem we aim to solve, but also enable
further load-balacing. We prove that LCA returns the minimal segment list respecting such
characteristics.

Furthermore, we consider that, for the number of segments to be taken into account
properly, this conversion should be performed during the exploration of the paths (if possible
and adequate). Indeed, this allows knowing if the paths are worthy of being explored, or
if they violate the MSD constraint. Otherwise, if paths are translated to segment list only
at the end of the execution, one may discover that no computed path is deployable. While
the algorithms described above could be used to translate paths on the fly, they usually
tend to consider the translation of end paths only. Conversely, we optimize our conversion
scheme to compute segment lists on the fly (slightly updating them each time a new edge
is considered), and more importantly, we discuss how this new metric should be taken into
account when considering it during the exploration.

Indeed, correctly considering the number of segments transforms the problem into a
multi-criterion one (e.g., if one originally aimed at computing shortest 10 or multi-criterion
paths). Thus, only MCOP algorithms are, by default, fitted to consider this additional
metric.

Even so, the number of segments is a peculiar metric and requires revisiting the definition
of dominance, which we also specify and detail. Indeed, most MCOP algorithms consider
metrics that can be expressed as weights on an edge. However, this is not the case for the
number of segments. Whether extending a distance by an edge (u, v) requires an additional
segment depends on the path taken to reach u. Furthermore, the number of segments is
non-strictly monotonous. While a path p(s, u)⊕ (u, v) may not require fewer segments than
p(s, u), it may also not require more segments. For example, let us consider d1 = (5, 1, 1)

and d2 = (5, 10, 10), with (#segments, delay, cost). Although d2 seems dominated, we will
show that it may end up requiring fewer segments than d1. Thus, both paths should be
explored.

We propose an implementation of LCA which can be performed live (i.e., during the
path exploration) for a very low computational cost, relying on information that is already
available to the router. Furthermore, we formalize and detail the new conditions that should
be followed in order to properly consider this new metric and its peculiarities.

We implement LCA and these modifications within an existing multi-criterion path
computation algorithm (Self-Adaptive Multiple Constraints Routing Algorithm (SAM-
CRA)/Tunable Accuracy Multiple Constraints Routing algorithm (TAMCRA)), and show

10Indeed, one should maintain, per node, the non-dominated paths considering both cost and number of
segments
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that it remains competitive.

Lazzeri et al. propose a construct and scheme close to the SR graph [Lazzeri et al. 2015].
Given a multi-criterion path with both cost and delay, a new graph G′ = (V,E) is created,
where V contains the nodes of the computed path. An edge (u, v) represents all ECMP paths
P ∗(u, v) between u and v. The edges are characterized by three metrics: the IGP cost, the
delay (set to the worst delay among all ECMP paths represented by said edge), and the
number of underlying ECMP paths. Consequently, an edge (u, v) represents the paths and
distances encoded by a node segment (Node, u, v). The physical links between the nodes are
then added with their respective metrics. An edge (u, v) representing a physical link may be
encoded by an adjacency segment (Adj, u, v). The path computation is then re-run on this
new graph, in which an edge is equal to a segment. Paths with more than MSD edges are
not explored further.

The segment lists found are then discriminated according to their number of segments
(the lower the better) and, during a second step, according to the number of underlying
ECMP paths (the higher the better). An interesting feature of their computation method
is that it may perform strict encoding, by only allowing edges/segments encoding a single
path, or looser encoding by allowing any edge to be considered. They evaluated their
solution regarding the number of segments required. The authors state that an APSP must
first be computed, but do not discuss how the latter should be modified to encompass the
latency and ECMP information required.

The structure proposed by Lazzeri et al. is close to our SR graph. However, it must
be re-run each time a path must be translated, and the actual path computation is not
discussed. Similarly to previous arguments, if the conversion needs to be performed during
the exploration, using this scheme each time a distance is extended becomes costly.

As mentioned, our SR graph does not aim at translating one path. It is a graph transfor-
mation encompassing the whole network. When choosing to explore the SR graph directly,
the number of segments necessary to encode a path is equal to the number of edges of said
path. As the number of segments thus becomes a standard, strictly monotonous metric (the
hop-count), any MCOP algorithm able to handle 3 metrics can explore this structure to com-
pute DCLC paths for SR. However, the SR graph is a complete graph. Directly exploring
the latter may be detrimental to most algorithms due to its high density. While we devise
an algorithm able to leverage such structure to offer competitive performance, BEST2COP,
we also show that using the SR graph indirectly through LCA may be preferable for some
algorithms.

Furthermore, we detail how the prior APSP required should be augmented to contain
the necessary multi-criteria information, and formally describe the resulting structure. We
also remove unnecessary edges if they’re dominated to reduce the size of the graph.

In this section, we reviewed the SR contribution of the existing literature close to our
contribution BEST2COP. First, regarding the translation of forwarding paths to segment
lists, solutions close to LCA do not consider multiple metrics and do not follow the same
translation goals. Solutions similar to the SR graph consider multiple metrics, but are
presented independently of the path computation scheme and are required to be re-run for
each path to encode. Furthermore, they do not leverage the dominance property and do not
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describe the required pre-computations. Second, we have seen that while SR is often used
to perform TE, the usual goals differ from what BEST2COP solves.

While SR-TE contributions do not aim to solve DCLC, there exist numerous algorithm
tackling this problem within the literature. These algorithms are often found in the field of
operational research and thus do not consider the specificity of computer networks. However,
even relatively recent algorithms which do consider computer networks often do not take into
account the underlying deployment technologies and their constraints. Thus, most MCOP
computation schemes is not found in SR-related literature.

Consequently, to better understand how BEST2COP relates to other MCOP computa-
tion schemes, we will review the corresponding literature in the following section.

3.3 Constrained Paths Computation

Constrained path computation is a popular and extensively studied research topic. The
resulting problems and applications are indeed quite appealing. Being NP-Hard 11, designing
efficient heuristics or approximation schemes for the problem offers both interesting theoret-
ical and practical challenges. Moreover, their tendency to behave polynomially on realistic
instances also motivated research efforts toward the design of exact methods efficient in
practice.

As such, multi-constrained path computation has been studied by several research
communities, either from a more theoretical standpoint (usually focused on exact schemes
or approximation) or focused on practical applications (usually focused on exact schemes or
heuristics). The resulting literature is consequently not only vast but also very interesting
and comprised of numerous algorithms adopting sometimes drastically different approaches.

Again, I will not review the entirety of the literature as it is far too vast. However, sev-
eral interesting surveys have been written over the years [Skriver 2000, Kuipers et al. 2002,
Garroppo et al. 2010, Guck et al. 2018], showing the evolution of MCOP and MCP algo-
rithms. In particular, the recent survey of Guck et al. not only describes several algorithms
but also implements and evaluates the latter on different types of topologies. The results
can be examined through an interactive webpage and offer insights into the behavior of the
algorithms presented. While multi-constrained path computation is still an active subject,
most solutions now build upon older results and algorithms, dating at least as far back as
the seventies.

In this section, we will review the most well-known constrained path computation algo-
rithms. Notice that several types of problems exists : DCLC, MCOP, MCP to name a few.
While we will focus on solutions tackling MCOP and DCLC, we will also review some MCP
solutions, as the latter propose similar and interesting concepts that may be leveraged to
solve MCOP 12.

11We focus here strictly on additive metrics
12In fact, some solutions presented as MCP schemes may even be used as-is to solve MCOP
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3.3.1 Heuristics

Because DCLC is NP-Hard [Wang & Crowcroft 1996], several polynomial-time heuristics
have been designed, which aim to limit the worst-case computing time to the detriment of
theoretical guarantees regarding the quality of the computed path. Such schemes usually
focus on practical applications where instances may either be very large and/or where
computing time is a critical element (e.g., itinerary planning or routing). Note that in some
cases, even if a feasible path exists (i.e., a path respecting the constraint), heuristics may
still fail to return it.

Before dwelling further into heuristics, let me first introduce some concepts used by most
heuristics (and some other schemes as well). Several heuristics subsequently run Dijkstra’s
algorithm on a single metric prior to their execution. For DCLC, this may be used to compute
the Least-Delay (LD) and Least-Cost (LC) paths, to check if a solution exists before running
the algorithm : if the LD path is unfeasible no solution exists. If the LC path is feasible, it
is the optimal solution.

Furthermore, this knowledge is sometimes used to predict if the distance being explored
will lead to constraint violations. More precisely, let us consider the delay d1(s, u) from
source node s to node u. Let us consider p = p∗1(u, d)

13, i.e., a LD path from u to the
destination d. If d1(s, v) + d1(p) violates the delay constraint c1, there is no point in
relaxing the outgoing edges of u. We will refer to such checks as projected-distance tests, or
projected-delay/cost tests when considering a particular metric.

Some heuristics aim to compute paths in a distributed fashion. Most notably, Delay Con-
strained Unicast Routing (DCUR) [Reeves & Salama 2000], Distributed Delay Constrained
Routing (DCR) [Zhou 1998] and the algorithm proposed by Ishida et al. [Ishida et al. 1998]
aim to compute DCLC paths in a distributed environment. Aside from some subtleties,
these algorithms rely on the same core concept: nodes either extend the LC or LD path
depending on the projected-delay tests. Loops are corrected through backtracking. Sriram
et al. [Sriram et al. 1998] proposed an enhancement by extending the set of paths a node can
choose from, according to one or several heuristics. While this may increase the occurrences
of loops, Selection Function Based DCLC (SF-DCLC) [Liu et al. 2005] improves upon this
idea through a selection function proven to avoid loops and lead to a feasible solution.

While computing DCLC paths in a distributed fashion is an interesting challenge, in this
work we will consider that these paths are usually deployed through source-routing (Segment
Routing (SR) in particular), which is naturally suited for a centralized computation of these
paths.

Other heuristics follow the same principle, i.e., alternating between LD and LC paths,
but in a centralized fashion. Fallback routing [Lee et al. 1995], for example, simply consists
in computing the shortest path for each given metric (e.g., the LD and LC path for DCLC):
if one of them is feasible (i.e., respects the constraint), it is returned; otherwise, nothing
is returned. Although Fallback is very simple, it may lead to surprisingly good results on
instances where costs and delay are positively correlated.

13As previously in this manuscript, we will denote d1 the delay and d2 the cost when dealing with these
two metrics.
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(a) Search direction induced when running a mono-
metric SPA algorithm considering w1 + w2 as a metric.
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(b) Distances lying within the triangular shaped part of
the feasible space defined by two distances on the convex-
hull (and the area they dominated) can not be found by
running a SPA consider a linear composite metric.

Figure 3.7: Figures illustrating how linear composite metrics allow to search the solution space.

A similar approach is taken by Dual Extended Bellman-Ford
(DEB) [Cheng & Ansari 2003]. DEB runs a shortest path algorithm on the delay
metric to find a feasible path if any, and on the cost metric to try and find the optimal
solution. It then returns the former or the latter, depending on the results. However,
instead of relying on a standard shortest path algorithm, DEB uses a modification of BFM
to compute the shortest paths for all possible numbers of hops, increasing the chance of
finding feasible paths with a larger exploration.

Delay-Constrained Bellman-Ford (DCBF) [Jia & Varaiya 2006] starts by computing the
shortest delay tree, to perform the projected-delay test later on. BFM is then used to
compute the shortest paths, except that the relaxation procedure is modified: an edge is
relaxed if it allows reaching a lower cost and if it passes the projected delay test. However,
always greedily choosing paths of lower costs may result in settling on a non-optimal solution.

While some of these solutions also follow the BFM exploration scheme, they do not offer
guarantees, do not consider the Pareto front, and overall greatly differ from the design of
our own algorithm.

The algorithms presented until now consider the original cost or delay to guide the
search. However, many heuristics prefer to rely on aggregated (or composite) weights. Jaffe’s
algorithm [Jaffe 1984] is a notorious example of such a scheme. The weight vector of each
link is replaced by a scalar consisting in a linear combination of each weight’s components
(i.e., w(u, v) = α1w1 + · · · + αmwm, α being coefficients). The shortest path considering
this new metric, which now encompasses both cost and delay (or any other metric), is then
computed.

While Jaffe’s algorithm was originally designed for MCP and not MCOP (and, in
addition, considered only two metrics), the idea of composite metrics is used throughout
the literature and so worthy of discussion.

The way composite metrics operate can be visualized in the delay-cost space, already used
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in Section 2.2.2, and represented again in Fig 5.5. In this space, the least-cost (resp. least-
delay) distance can easily be deducted by "scanning" the space vertically (resp. horizontally).
The first distance encountered is the least-cost (rest. least-delay) distance. These are the
distances that would be found by running Dijkstra’s algorithm or BFM on the corresponding
metric. When considering a linearly aggregated metric, however, the scanning direction is
neither vertical nor horizontal, but rather more or less oblique, depending on the coefficients
(i.e., on the importance attached to each component).

This concept is illustrated in Fig 3.7a. The black lines show the "scanning" direction when
considering a linear composite metric in which both cost and delay are of equal importance,
i.e., w = w1 +w2. In this case, the lowest distance is d0. Note that the lowest distance with
respect to this composite metric is not necessarily the optimal solution (or even a feasible
one). This significant loss of information is at the core of the performance of the associated
schemes (which can thus fallback to using standard, efficient SPAs), but also one of their
main limits.

Several techniques can be used to work around or mitigate this effect. One possible
approach consists in only using composite metrics as a way to guide the search, but
still consider metrics individually during edge relaxation. Another approach is to not
stop at the shortest path, but pursue the exploration, e.g., by computing k (or all)
shortest paths with respect to the aggregated metric (i.e., by letting the scanning line
pursue its course until k paths have been found). Both of these approaches may be
costly (as the number of paths may be large) and thus seems to be somewhat contradic-
tory to the use of linear aggregated metrics. They are however sometimes used by exact
schemes, which will be reviewed in the next section. Finally, one may also dynamically adapt
the coefficients within the composite metric to scan the solution space at just the right angle.

The latter technique is used by Lagrangian-based approaches but does not allow capturing
all paths within the Pareto front. In short, Lagrangian-based approaches aim to iteratively
adjust the coefficient of the aggregated cost to orient the scanning line towards the optimal
solution. When considering DCLC, this process is usually bootstrapped by considering the
least-cost and least-delay distance as the points defining the new scanning line. These anchor
points are then changed iteratively depending on the newly found distances through SPA
runs. It can be proven that a finite number of SPA runs is sufficient [Juttner et al. 2001b].

Notice, however, that only paths within the convex-hull of the Pareto front (also called
supported paths) may be obtained. For example, the distances d1 and d2 cannot be obtained
by running a mono-metric SPA with a linear metric. Intuitively, any linear scanning line
would first meet either d0 or d3, as shown in Fig. 3.7b. Thus, unsupported non-dominated
paths, lying within the triangular-shaped feasible spaces defined by the supported path,
cannot be obtained in this fashion. In this context of Lagrange relaxation, these paths are
said to lie within the duality gap [Guck et al. 2018].

This procedure, often referred to as LAgrange Relaxation-based Aggregated Cost
(LARAC), has been proposed multiple times in the literature by different au-
thors [Aneja & Nair 1978, Handler & Zang 1980, Juttner et al. 2001b]. Interestingly,
the first authors didn’t realize that some paths may lie within the duality gap, and
proposed the algorithm as an exact scheme. The basic idea behind the algorithm was
enhanced by several propositions, e.g., by performing k-shortest path computation at
each iteration to speed up the search [Jia & Varaiya 2006], closing the gap to the optimal
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Figure 3.8: Figures illustrating how non-linear distance allow to search the feasible space.

solution through an additional k-shortest path computation (using the final aggregated
metric) [Handler & Zang 1980] 14 or improved stop conditions [Juttner et al. 2001b].

In addition to missing unsupported paths, working with linear composite metrics has
another shortcoming: feasible and non-feasible distances may possess the same cost. There-
fore, minimizing such metric not only offers no guarantee with regards to the optimality of
the path but, depending on the metric, may also offer no guarantee regarding its feasibility.
This can be seen in Fig 3.7b. Depending on the metric used, d0 and d3 may possess the same
aggregated cost (they lie on the same line) even though d3 is not feasible. Depending on the
implementation of the underlying algorithm relying on this aggregated metric, d3 may even
be the optimal path returned.

To circumvent the limitations of purely linearly aggregated costs, some solutions instead
rely on non-linear aggregated costs that allow to better search the feasible space. Several
MCOP schemes use non-linear aggregated costs. However, the benefit of using such compos-
ite metrics is better explained when considering MCP. For MCP (with m = 2), the feasible
space is defined by a square, as shown in Fig 3.8. Using linear composite metrics, half of the
feasible space can be explored before the SPA may return unfeasible distances as well (at
best). When relying on non-linear composite metrics, the scanning line can take non-linear
shapes and better fit the solution space, as shown in Fig 3.8b and 3.8c, which allows the
underlying algorithm to scan a more important part (or the entirety) of the feasible space
before also considering unfeasible distances.

Note that finding the distance minimizing the non-linear metric used in Fig 3.8c solves
MCP. Indeed, if the distance minimizing this metric is not feasible, then no solution exists.
Otherwise, it is a solution to MCP.

However, minimizing such a metric can not be achieved through standard SPAs. Inter-
estingly, when considering non-linear composite metrics, the subpath optimality property
does not hold anymore. Thus, standard SPA cannot be used as-is to find the optimal path.
Consequently, schemes relying on non-linear aggregated metrics must rely on heuristics
(such as maintaining not only the optimal but several distances per node, in the hopes that
the one ending up minimizing the non-linear metric is among them) or other ways to use

14Note that in this case, the proposed algorithm is an exact method.
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such a metric.

Heuristic for Multi-Constrained Optimal Path (H_MCOP) [Korkmaz & Krunz 2001] of-
fers an interesting way to use non-linear metrics. Depending on projected-distance tests,
the algorithm either focuses on optimality (by minimizing the cost), or on feasibility (by
trying to minimize a non-linear composite metric, which should lead to a feasible path).
More precisely, the shortest paths from every node u to the destination d are first computed,
according to a linear aggregated metric. These paths, which we will call foreseen paths, are
used in the second step. In the second step, the graph is explored starting at the source. To
choose whether an edge (u, v) should be relaxed, H_MCOP relies on the foreseen paths. If
the foreseen paths going to the target t through v seem feasible (recall that since the foreseen
paths are computed through a linearly aggregated metric, the feasibility is not guaranteed),
H_MCOP chooses to focus on the optimization objective and chooses the path with the
lowest cost. If no path seems feasible, the algorithm chooses the path which minimizes
the composite metric instead. Recall that distances minimizing this metric are necessarily
feasible, thus, this is a way to re-orient the exploration towards feasible distances 15.

H_MCOP has been slightly modified by Feng et al. to Heuristic for Delay-Cost Con-
straint (H_DCC) [Feng et al. 2002], which solves MCP for m = 2 specifically, considering a
cost and a delay. H_DCC is used as a subroutine in Non-Linear Relaxation for DCLC (NR-
DCLC), a heuristic aiming to solve DCLC. Basically, H_DCC is run iteratively, using the
cost of the previously found path as the new cost constraint. The algorithm thus finds paths
satisfying increasingly stringent cost constraints until the path of optimal cost is found. The
optimality of NR-DCLC depends on the underlying MCP algorithm, which may not return
a feasible path even if one exists.

Delay-Cost Constrained Routing (DCCR) [Guo & Matta 1999] converts the DCLC prob-
lem into MCP by setting a cost constraint equal to the cost of the LD path. The feasible
space is then explored by trying to minimize a non-linear aggregated metric that prioritizes
the cost of the paths (as the cost should be optimized). Since the distance minimizing such a
non-linear metric cannot be found by solely extending the best distance at each node, DCCR
maintains and extends up to k paths per node. Since this cost constraint may be too loose,
the authors propose a variant, named Search Space Reduction + DCCR (SSR+DCCR),
which instead uses the cost of the path returned by a Lagrangian-based scheme run prior as
a bound to further reduce the search space.

Finally, TAMCRA [De Neve & Van Mieghem 2000] is an MCP scheme which may also
be used to solve MCOP. TAMCRA is a Dijkstra-like algorithm that relies on a priority queue
to explore the graph. TAMCRA orients the search according to a non-linear aggregated
metric, referred to as length and defined as max0≤i≤m

(
wi(p)
ci

)
, which, in short, represents

how close a path is to violating the constraints. The scanning line resulting from such a
function is the one shown in Fig 3.8c, which perfectly fits the feasible space. To try to find
the distance minimizing this non-linear metric, TAMCRA maintains and extends up to k

paths per node (recall that this does not guarantee to find the path minimizing the metric).
However, to reduce the number of paths to extend without compromising the quality of the
solution, TAMCRA only maintains non-dominated paths within said queue, and as such,
is one of the few heuristics leveraging the concept of dominance. Finally, the metric used

15This way of exploring the graph is somewhat similar to the exploration method of SF-DCLC
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by TAMCRA has another advantage. When extracting the minimum length from the
queue, the associated distance is necessarily non-dominated, and may not be dominated
by distances lying further down the queue. Thus, TAMCRA does not explore dominated
distances, which improves its performance in practice 16.

The algorithms described offer interesting takes and approaches on the DCLC or MCOP
problem. However (and conversely to our algorithm), they lack guarantees on the quality
of the path returned. While it is true that the returned path may oftentimes be close (if
not equal) to the optimal solution, this lack of concrete guarantees makes heuristics risky to
deploy within computer networks, where strict and precise SLAs that were agreed upon by
the client and the provider should be respected and enforced.

On the opposite, other solutions tackle the NP-Hardness of the multi-constrained path
computation problem head-on, and aim to solve the problem exactly.

3.3.2 Exact Methods

A lot of exact methods to solve DCLC and MCOP have been designed, dated at least as far
back as 1974. These schemes are often classified as either ranking, two-phases, or labelling
schemes.

Out of these schemes, labeling ones follow the most traditional approach. The latter are
usually designed by extending common monometric SPAs. Indeed, recall that usual SPAs
cannot be used as-is to solve MCOP exactly. As mentioned in Section 2.2.2, extending a
single distance per node is not sufficient to guarantee an exact solution to MCOP. Several
distances (or labels), offering different compromises among metrics, must be extended.

To reduce the number of distances to consider, exact labeling methods usually heavily rely
on the dominance relation. Indeed, as dominated distances are worse on all metrics than an
other existing distance, finding dominated distances is irrelevant. However, a non-dominated
path is necessarily composed of non-dominated subpaths [Hansen 1980]. Thus, during the
exploration, dominated distances can be ignored without compromising the quality of the
solution and the exactitude of the algorithm.

A standard multicriteria labeling scheme design (which our contribution, BEST2COP
follows), is thus to extend a mono-criterion SPA by allowing the latter to maintain and
extend all non-dominated distances per node.

This design raises challenges akin to the one faced by mono-metric SPAs, i.e., finding
the most efficient order into which these distances should be explored. Similarly to mono-
criterion SPA, these algorithms can be classified as:

• label-setting: a distance being extended is necessarily non-dominated, and may not be
dominated by a future distance.

• label-correcting: explored distances may be discovered to be dominated later on.

One of the oldest exact labeling schemes for solving DCLC was a label-correcting scheme

16We will see later on that other exploration orderings share the same property, which is often leveraged
when designing exact schemes.
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proposed by Vincke in 1974 [Vincke 1974]17. Another label-correcting algorithm was pro-
posed by Brumbaugh-Smith and Shier [Brumbaugh-Smith & Shier 1989]. The algorithm
puts nodes within a queue (which may follow any given strategy, although several possibili-
ties are investigated). At each iteration, a node u is selected. Its distances are extended by
each edge (u, v) which results in new, potentially non-dominated paths to v. The currently
known and newly discovered distances to v are merged into a new set of non-dominated
distances. Brumbaugh-Smith and Shier discuss several ways to merge the current and new
distances, as well as ways to choose which node to extract from the queue. Being a label-
correcting algorithm, the latter methods that were investigated were simple schemes, such
as First In First Out (FIFO) or Last In First Out (LIFO) orderings. Since the merging
of two Pareto fronts may be fairly expensive, this algorithm was improved upon by Skriver
and Andersen [Skriver & Andersen 2000], which essentially consists of additional checks al-
lowing to reduce the number of distances to be merged by relying on previously computed
information.

Corlay and Moon [Corley & Moon 1985] also propose a label-correcting algorithm
that follows a different design approach by generalizing the BFM algorithm. At each
iteration, the algorithm considers each node v. New distances to v are found by extending
the currently known distances for all nodes u for which edges (u, v) exist. The new
distances found to v are merged with the ones that were already known. From this set, the
non-dominated distances are extracted to be considered at the next iterations. Following
the description given by Corlay and Moon, the algorithm seems to follow the not-in-place
BFM paradigm, meaning that non-dominated distances of k hops are found during the kth

iterations. Similarly to BFM, the algorithm can detect negative cycles. This algorithm
is perhaps the scheme closest to BEST2COP. However, they do not consider deployment
constraints or parallelization. The algorithm is purely theoretical and not implemented
in practice. Furthermore, and conversely to BEST2COP, they do not leverage network
characteristics (neither their structure nor the peculiarities of their metrics) to reduce
the complexity of the algorithm. Finally, they do not fall within the approximation category.

These algorithms give rise to an interesting observation regarding the granularity at which
multi-metric path computations should operate. When considering mono-metric SPCs, there
is a single best distance per node. It thus seems natural to work at the node granularity,
i.e., adding and extracting nodes from the priority queue.

However, when dealing with multi-metric SPCs, there may be several non-dominated
distances per node 18. Some of them may be promising, and others uninteresting. Selecting
nodes may thus lead to extending several uninteresting distances and impact the performance
of the algorithm. Consequently, working at the distance granularity 19 is often preferred and
more efficient [Guerriero & Musmanno 2001, Paixão & Santos 2007] (although recent exper-
iments seem to show that the actual difference is more nuanced [Bökler & Mutzel 2017]).

Schemes working at the distance granularity are often not label-correcting schemes, but
rather label-setting ones. Indeed, through an adequate exploration of the distances, one

17According to the literature, Vincke’s algorithm extended BFM. However, the article is sadly unavailable
online.

18Recall that we consider the distance of a path as the complete vector comprised of all the considered
metrics. When considering DCLC, a distance is thus equal to a vector (delay, cost)

19Recall that a distance implicitly corresponds to a path.
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can ensure that extended distances are necessarily non-dominated. Thus, conversely to
label-correcting schemes, label-setting schemes do not explore paths that may be rendered
obsolete later on. However, this relies on more intricate ordering compared to label-correcting
schemes. Consequently, no type of algorithm dominates the other, and both offer interesting
performances depending on the problem instance [Guerriero & Musmanno 2001].

Label-setting algorithms usually rely on a distance-based Priority Queue (PQ) (i.e.,
distances rather than nodes are stored within it) following a total ordering that reflects
part of the dominance relationship (i.e., a path on top of the PQ is necessarily non-
dominated). Several such orderings exist, such as ordering the paths lexicographically,
according to the sum of their weights, or by considering the lowest maximum weight
component [Martins et al. 2007] (note that the TAMCRA heuristic followed a similar
composite metric to the same effect).

In the literature, the first label-setting algorithm is usually attributed to
Hansen [Hansen 1980] in 198020. This algorithm was further improved by Mar-
tins [Martins 1984b]. The algorithm operates similarly to Dijkstra’s but uses a distance-based
PQs, in which distances are ordered lexicographically, leveraging the relationship between
dominance and lexicographical order aforementioned. Among other contributions, this lexi-
cographical ordering is also leveraged by Martins and Santos [Martins & Santos 1999]. Iori et
al. follow a similar design, but rely on a linear aggregated sum to orient the search, and show
that this approach may lead to better results than a lexicographical ordering [Iori et al. 2010].

Constrained Bellman-Ford (CBF) (cited as a private communication [Widyono 1994])
maintains an ordered list of distances for each node with increasing cost and decreasing
delay. Since the ith distance thus has a better delay but worse cost than the i−1th distance,
distances within this list are all non-dominated. Distances are discovered by increasing delay
thanks to a delay-based PQ. Since newly discovered distances necessarily have a worse delay
than previous ones, CBF simply checks if it improves the current best cost known. Since
CBF lists all the non-dominated paths to all nodes within the network, it may be used to
solve DCLC for several destinations with independent constraints.

A* Prune [Liu & Ramakrishnan 2001] follows an approach similar to
A* [E. Hart et al. 1968]. It assumes that a guess function is available for each met-
ric. Dijkstra’s algorithm is run on each metric mi from the source node s to all nodes
and from the destination d to all nodes. These pre-computations are used to perform
projected-distance checks when exploring a path. Paths to explore are put within a PQ and
ranked according to the sum of the weight components of their projected distances. Thanks
to the aforementioned pre-computation, A* Prune prunes paths that lead to constraint
violations.

Finally SAMCRA [Van Mieghem & Kuipers 2003] is the exact version of TAMCRA.
SAMCRA relies on the same non-linear composite metric (referred to as length) to
guide its search and stores all non-dominated distances within its PQ. As TAMCRA, the
composite metric allows to perfectly match the dominated distances and naturally ignore
the latter. Conversely to TAMCRA however, SAMCRA dynamically adjusts the number of
distances to maintain at a given node to ensure that the algorithm remains exact. SAM-

20Although its algorithm does not seem to be label-setting in all scenarios. Hansen’s algorithm focuses on
DCLC and ranks distances within a PQ according to their cost. When considering distances of equal costs,
the tie seems to be broken arbitrarily, which would not lead to a label-setting design.
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CRA was improved upon to include a look-ahead procedure [VanMieghem & Kuipers 2004]
(similarly to a projected cost/delay test, the remaining LD and LC path is considered
when computing the length of the path) and to perform the path search in both
direction [Kuipers & Van Mieghem 2003].

While labeling schemes are the closest to our contribution, two other schemes are quite
interesting and worthy of mention, ranking and two-phases methods.

Ranking methods usually discover paths by increasing costs through a monometric k-
shortest path subroutine until the entire Pareto front is discovered. Their performance thus
heavily depends on the underlying k-shortest path algorithm used.

Climaco and Martins [Namorado Climaco & Queirós Vieira Martins 1982] rely on com-
puting the k-shortest paths cost-wise, until reaching the cost of the LD path (essentially,
finding the two extrema of the Pareto front and gradually filling in between). They
rely on a deletion-based k-shortest path 21 proposed by Martins and published after-
wards [Martins 1984a]. This approach may however discover a lot of dominated solutions
during the exploration.

Martin et al. also proposed a ranking algorithm [Martins et al. 2007], which
uses a deviation-based k-shortest path algorithm initially proposed by Martins et
al. [De Queirós Vieira Martins et al. 1999]. To avoid exploring many dominated distances,
this algorithm explores distances in lexicographical order.

The two-phases approach shares a few concepts with the Lagrangian-based heuristics.
In the first phase, all paths lying on the convex-hull of the Pareto front, called sup-
ported paths are computed. These paths may be computed efficiently through the use of
simplex-like algorithms [Mote et al. 1991], or, as explained in the previous section, through
consecutive SPA runs following different linear composite metrics [Raith & Ehrgott 2009,
Kergosien et al. 2022] 22. In the second phase, the remaining non-dominated paths are
discovered. Several ways to implement the second phase have been proposed, includ-
ing labelling [Mote et al. 1991, Raith & Ehrgott 2009, Kergosien et al. 2022] (such as the
ones proposed by Martins), branch-and-bound [Ulungu & Teghem 1995], or k-shortest path
schemes [Handler & Zang 1980]. During the second phase, the search space is reduced to the
feasible spaces that may still contain a non-dominated path, as they may be deducted from
the results of the first phase. More precisely, these spaces are the triangular, non-dominated
parts of the feasible space defined by the distances on the convex-hull, as shown in Fig 3.7b
(i.e., the duality gaps).

While the two-phases approach is generally seen as less competi-
tive [Skriver & Andersen 2000], it is an interesting paradigm that may be fit for
multi-threaded architectures. Indeed, both the first and second phases could be im-
plemented in a parallel fashion. This was investigated fairly recently by Medrano and
Church [Medrano & Church 2015].

21Once the best path is computed, a new graph is designed which contains all paths within the original
graph, except the best path that was computed.

22These schemes usually build upon the results of Cohon et al. [Cohon et al. 1979] which essentially pro-
posed the idea of approximating the Pareto-front by finding unsupported solutions through linear aggregated
metrics. However, the context considered was not path computation, but water storage.
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Being exact schemes, all algorithms mentioned in this section possess a high worst-case
complexity. Thus, while they always find the optimal path to deploy (if it exists), they
may suffer from pathological topologies or weighting schemes that generate an exponential
number of non-dominated distances. Conversely, while BEST2COP is close to some exact
schemes presented here (e.g., Corlay and Moon), we leverage the nature and limitation of
the metrics of computer networks to prevent pathological cases.

While high, the complexity of such exact schemes is often not exponential. Indeed,
recall that the size |P| of the Pareto front, which such algorithms have to explore, may be
bounded by the granularity of the metrics and the maximum values of the weights. Thus,
their complexity is pseudo-polynomial in practice, i.e., polynomial in the magnitude of the
data involved (e.g., the number of distinct distances a path may take). Being solvable
exactly by pseudo-polynomial algorithm, MCOP is said to be weakly NP-Hard. This can be
leveraged to design approximation schemes.

Approximation schemes do not guarantee finding the optimal path but can enforce strong
guarantees regarding the paths they find. Thus, conversely to heuristics, the latter may still
be used to define strict SLAs and, while benefiting from a reduced theoretical complexity.

3.3.3 Approximation Schemes

Approximation schemes often rely on a loose dominance relation. Such algorithms do not
return a precise view of the Pareto front, but rather a coarse approximation of the latter.
Usually, such algorithms only ensure that a path considered non-dominated is non-dominated
by a factor of ε. More formally, they consider that a path p dominates a path q if di(p) <
(1 + ε)di(q), ∀i ∈ {1 . . .m}. In the following, we will denote an approximated Pareto front
as Pε.

Although not all weakly NP-Hard problems admit FPTASes, it has been shown that an
approximated Pareto front Pε can be computed through FPTAS for problems such as DCLC
and MCOP [Hansen 1980, Papadimitriou & Yannakakis 2000]. Several FPTASes have been
designed over the years. In general, they rely on the same core techniques, which leverage
the weakly NP-Hard nature of the considered problems.

As the complexity of MCOP depends on the size of the Pareto front, which itself depends
on the granularity of the metrics (and their bounds), one may sacrifice the precision of the
data until the size of the Pareto front is polynomially bounded. Running pseudo-polynomial
algorithms on this modified data thus solves MCOP in polynomial time.

Several general techniques, proposed and classified by Sahni, can be used to reduce
the magnitude of the data and arrive at approximation algorithms for MCOP when tuned
properly [Sahni 1977]. The first one, called scaling and rounding, simply consists (in short)
in rounding each weight to an integer value. If the weights are bounded, the number of
non-dominated paths becomes polynomially bounded. The second one, called interval par-
titioning, consists in dividing the space of the metrics into intervals and only keeping one
value per interval. In practice, interval partitioning behaves very similarly to scaling and
rounding. The main difference between the two is that scaling and rounding modify the
actual problem data by reducing its precision, while interval partitioning keeps the actual
data, but fits it into bins during the execution. Finally, separation consists in only keeping
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Figure 3.9: Reducing the precision of the delay only (while remaining exact on the cost) still allows to
bound the number of non-dominated paths

distances that are far enough apart.
Note that in practice, not all metrics have to be transformed in such a fashion: only

m − 1 metrics are required to take bounded integer values for the problem to be solvable
in polynomial time. This allows remaining exact for one metric of the considered problem.
Fig. 3.9 shows this in the delay-cost space. Here, the delay has been discretized. Distances
that fall within the same delay interval are considered to have the same delay. Thus, d2 and
d3 are considered equal: they have the same delay and the same cost. It is thus possible that
d3, while being dominated, is considered non-dominated by the approximation algorithm.
However, as the cost is not discretized, distances d0 and d1 can be discriminated correctly.
Despite the cost being left unmodified, the maximum number of non-dominated distances
in this approximated Pareto front Pε is still bounded. At worst, there may exist a single
non-dominated distance per delay interval. Consequently, only m − 1 metrics have to be
discretized to create polynomial time approximations.

Oftentimes, the optimization objective is approximated (i.e., in our case, the cost), while
the other metric is kept at its original granularity, to strictly enforce the constraint.

The techniques just described are at the core of most approximation algorithms,
including our own. We will now describe the most well-known approximation algorithms,
before positioning our work compared to the solutions described in this section.

Hansen noted that the exact label-setting scheme he described can be used to design
an approximation scheme relying on scaling and rounding and consecutive runs of the orig-
inal algorithm [Hansen 1980]. However, Warburton was the first to formalize the notion
of approximated dominance, and to show that rounding could be used to solve MCOP in
polynomial time [Warburton 1987]. One of the most well-known approximation schemes
to solve DCLC is the one proposed by Hassin [Hassin 1992], which built upon Waburton’s
work. In short, Hassin’s algorithm relies on the knowledge of an upper and lower bound
on the optimal cost of the solution. These bounds are obtained through an algorithm that
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refines these bounds through a test subroutine able to tell, for a given value x, if d∗2 ≥ x or
if d∗2 < x × (1 + ε). Once the two bounds are apart by a constant factor, the lower bound
value obtained is used to scale down the costs in a fashion allowing for a pseudo-polynomial
time algorithm run on said new costs to find an ε-approximation of the solution. This
method was then improved, mainly through quicker ways to compute the upper and lower
bounds [Lorenz & Raz 2001, Ergun et al. 2002]. Hassin also proposed an algorithm relying
on interval partitioning, following an approach somewhat similar to BFM.

Chen and Nahrstedt proposed an algorithm to solve MCP that first scales down one
metric to integers [Chen & Nahrstedt 1998]. The authors note that only the cost or the
delay has to be scaled. The weights of the chosen metric, e.g., the cost c, is changed to
⌈c× x

c2
⌉, c2 being the cost constraint and x a chosen factor value. Note that this induces an

error of c2
x per edge. They then solve MCP considering these scaled-down integer costs and

x as the new constraint through an extended Dijkstra’s algorithm or extended BFM. They
prove that this is equivalent to solving the original MCP instance. However, depending on
the value of x, the algorithm may not find a solution. It should be noted that their Dijkstra
and BFM-like subroutine return a distance minimizing the first weight and respecting the
m− 1 remaining constraint, meaning that this scheme could be used to solve MCOP.

Goel et al. propose an approximation scheme to solve DCLC very similar to the one
proposed by Chen and Nahrstedt [Goel et al. 2001]. However, the algorithm shares some
core design choices with our contribution, BEST2COP. In particular, Goel et al. observe
that it might be acceptable to violate the delay threshold by a constant fraction ε, and thus
prefer the delay constraint instead of the costs. Second, the authors note that hop-by-hop
routing may not be suitable to deploy DCLC paths (due to the loss of subpath optimality)
and that source-routing is a more appropriate paradigm. However, they do not consider
the technical constraints that ensue. The algorithm uses a standard dynamic programming
algorithm to find distances by order of increasing delays, thus showcasing a complexity of
O(|E|×c1), c1 being the delay constraint. Delays in the graph are scaled down very similarly
to the Chen and Nahrstedt proposal, by multiplying them by x/c1. Paths are then computed
on the new graph, using x as an upper bound on the delay. The induced error of c1

x stacks at
each edge, leading to an error of H × c1

x at most, with H the diameter of the graph. Thus,
a feasible path will have a real delay of at most c1 +H × c1/x = c1(1 +

H
x ). If x = H

ε , then
c1(1 + H/H/ε) = c1(1 + ε). The algorithm thus yields a path whose cost is at most the
shortest path cost, and whose delay is at most the constraint times 1+ ε for all destinations.
These guarantees are very close to one of our own solution, BEST2COP.

Yuan and Liu proposed the Limited Granularity Heuristic (LGH) and Interval Partition-
ing Heuristic (LPH) [Yuan & Liu 2001]. Both are based around an Extended Bellman-Ford
Algorithm, which maintains the set of non-dominated distances to each node. LGH leverages
the same concepts as the algorithms described previously by approximating m− 1 metrics.
Within each discretized interval, only the distance with the best remaining non-discretized
weight is kept (similarly to what is shown in Fig 3.9). Non-dominated distances are extracted
and extended. LPH bounds the number of non-dominated distances one may maintain, sim-
ilarly to TAMCRA. Note that while LPH is often seen as similar to LGH, the former does
not offer any guarantee on the quality of the solution, and is thus a heuristic. Its success
hinges on the fact that the first non-dominated paths found are the most promising. As LPH
is based on BFM, this may be likely, as paths of fewer edges are likely to be more interesting.
Similarly to previous solutions, LPH and LGH can also be used to solve MCOP.
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Song and Sahni proposed several algorithms based on interval partitioning and
a multi-metric variant of BFM considering all non-dominated distances at each
node [Song & Sahni 2006]. The first algorithm, Internal Partitioning Heuristic (IPH), works
similarly to previous schemes, by dividing m − 1 metrics into intervals. The second algo-
rithm, Generalized LPH (GLPH), is a generalization of LPH. Simply put, while LPH limits
the number of non-dominated paths to be maintained per node, GLPH imposes a global
limit of non-dominated paths to maintain, which may be shared unevenly across all nodes.
Finally, hybrid approaches are proposed (Hybrid Interval Partitioning Heuristic (HIPH)),
which maintain up to k non-dominated paths per destination, and switch to interval par-
titioning if more than k paths need to be stored. Essentially, this design allows remaining
exact on simple instances while ensuring a bounded complexity on more complex cases.
The authors note that all the proposed heuristics (except GLPH) become ε-approximation
schemes when the interval size is chosen correctly.

Finally, Tsaggouris and Zaroliagis propose a scheme that shares some design choices with
BEST2COP [Tsaggouris & Zaroliagis 2009]. Their algorithm is a ε-approximation that relies
on BFM and interval partitioning. Once again, m − 1 metrics are approximated. At each
iteration, each node v is considered, and new distances towards the latter are discovered
by relaxing all existing edges (u, v). The intervals are set up so that weights close by a
factor (1 + ε)|V |−1 fall within the same interval (only one distance is kept per interval, as
usual), which, using their schemes, leads to a 1 + ε approximation of the Pareto front. The
contribution proposed by Tsaggouris and Zaroliagis remains mainly a theoretical result. It
is thus not evaluated and does not consider any deployment constraint, be it the underlying
technology or practical relevant features.

More recently, Hanusse et al. proposed a new algorithm to compute an approximated
Pareto front Pε [Hanusse et al. 2020]. Their algorithm assigns a rank to each distance,
defined as the sum of their weight components. Recall that, following this definition,
distances may not be dominated by distances with a higher rank. Distances are then
explored by increasing rank. When several distances possess the same rank, only a subset
is explored. If the subset is chosen properly, this algorithm becomes an ε-approximation.
The authors then further improve their design to ensure that every path returned is
non-dominated, i.e., that Pε ∈ P.

Interestingly, ε-approximations do not necessarily rely on the concept of dominance. In-
deed, they often solely rely on the implicit reduction of the Pareto front brought by the
discretization of the m − 1 metrics and assume that the overhead implied by dominance
checks is not profitable. Thus, in practice, such schemes may often extend and explore dom-
inated distances. Finally, such schemes are often purely theoretical and may lack concrete
evaluations.

3.3.4 Other approaches

Some other approaches may sometimes be used. Most notably, implicit enumeration aims
at enumerating solutions (e.g., following a breadth-first or recursive search approach) but
pruning distances during the exploration when possible. Upon realizing that the LARAC-
scheme they proposed was not exact Aneja et al. proposed an implicit enumeration scheme
to solve DCLC, which this time was exact [Aneja et al. 1983]. More recently, an enumeration



3.3. Constrained Paths Computation 91

scheme called pulse was proposed, also to solve DCLC [Duque et al. 2015]. Pulse explores
the graph recursively. In short, the starting node sends a pulse through its outgoing edges.
The distances discovered are pruned when possible. The remaining, non-pruned distances
propagates through a new pulse until the end node is reached. Pulse is thus similar to a
breadth-first search, coupled with aggressive pruning. To prune distances, Pulse removes
distances containing cycles, distances exceeding the Nadir point 23, and distances that are
already known to be dominated. Note that non-pruned distances may however still be
discovered to be dominated at the end of the execution, due to the exploration order used.
These approaches may thus fail to be competitive.

Finally, evolutionary algorithms offer an interesting framework to solve multiobjec-
tive problems [Coello & Veldhuizen 2007]. Some genetic algorithms have been designed
to solve MCOP, e.g., by combining different feasible paths to form the next genera-
tion of distances [Anh Quang et al. 2018], or by using ant-colony algorithms: ants, or
probes, explore the graph pseudo-randomly according to a heuristic and retro-actively
make efficient paths more attractive for the next generation of ants through the use of
pheromones [Ghoseiri & Nadjari 2010]. Note that each probe could explore the graph
in parallel. While interesting, the implementation complexity and unreliable nature of
evolutionary algorithms may not be suitable for real-life deployments.

As we have seen so far, while many solutions exist, most possess certain drawbacks or lack
certain features to reconcile both the practice and the theory. Heuristics do not always allow
retrieving the existing paths enforcing strict SLAs, while exact solutions are not able to
guarantee a reasonable maximum running time when difficult instances arise, although both
features are essential for real-life deployment.

On the other hand, FPTASes can provide both strong guarantees and a polynomial
execution time. However, they are often found in the field of operational research where,
at best, possible networking applications and assumptions are discussed, but are not always
thoroughly investigated. Because of this, the deployment of the computed paths, with SR
and the MSD constraint in particular are not taken into consideration.

Our contribution, BEST2COP, is a labeling scheme aiming to close this gap by mixing the
best existing features (such as providing both a limited execution time and strong guarantees
in terms of precision in any cases) and adapting them for practical modern usage in IP
networks deploying SR.

Table 3.1 summarizes some key features of a representative subset of the related work.
Similarly to other FPTASes (for DCLC in particular), BEST2COP rounds one of the metrics
of the graph (and leaves the other one untouched). However, conversely to most algorithms,
BEST2COP does not sacrifice the accuracy of the cost metric, but rather of the measured
delay. Because of the native inaccuracy of delay measurements (and the arbitrary nature
of its constraint), this does not prevent BEST2COP from being technically exact in most
practical cases. In addition, (and akin to HIPH), BEST2COP can easily be tuned to remain
exact on all simple instances with a bounded Pareto front regardless of the accuracy of the
metrics. Thus, BEST2COP can claim to return exact solutions in most scenarios and, at
worst, ensure strict guarantees in others (for theoretical exponential instances). Finally,

23The Nadir point is defined as a theoretical distance composed of the cost of the LD path, and the delay
of the LC path (the opposite of the ideal point). It is thus a very loose upper bound on the weights of
efficient paths.
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Table 3.1: Qualitative summary of a representative subset of DCLC-compatible algorithms showcasing their
practicality, exactitude, and performance. In the Practical Features column, the green checkmark indicates
whether the algorithm supports the corresponding feature (while the red cross denotes the opposite). In
the Exactitude vs Performance column, the two subcolumns associated which each three scenarios show
how the latter impact (i) the exactitude (exact, strong guarantees, no guarantees) and (ii) the performance
of the algorithm (polynomial time or not). While the orange tilde denotes strong guarantees in terms of
exactitude, green checkmarks (and red crosses respectively) either indicate exact results (no guarantees resp.)
or polynomial-time execution (exponential at worst resp.) for performance. For both subcolumns Bounded
Pareto Front and Coarse Metric, we consider the case where their spreading is polynomial with respect to the
number of vertices in the input graph (and as such predictable in the design/calibration of the algorithm).

Algorithms Practical Features Exactitude vs Performance

Multi-Dest SR Multi-thread Bounded Coarse All
Single Run Ready Ready Pareto Front Metric Cases

LARAC × × × × � × � × �
LPH � × × � � ∼ � × �

H_MCOP × × × × � × � × �

HIPH � × × � � � � ∼ �
Hassin × × × ∼ � � � ∼ �

Tsaggouris et al. � × × ∼ � � � ∼ �

Raith et al. × × × � � � � � ×
A* Prune × × × � � � � � ×

Corlay and Moon � × × � � � � � ×
SAMCRA � × × � � � � � ×

BEST2COP � � � � � � � ∼ �

BEST2COP relies on the dominance property to reduce the number of paths to consider.
In addition, and conversely to several algorithms presented, BEST2COP exhibits several

practical features. BEST2COP computes path (or rather, segment lists) to all destinations
within the network. BEST2COP also leverages multi-threaded architectures, a feature
rarely discussed, but increasingly important as such computations now tend to be performed
by dedicated Path Computation Elements or even in the cloud. BEST2COP also leverages
standard network architectures to deal with massive-scale networks of up to 100 000.
Finally, BEST2COP was designed to efficiently consider the constraint brought by SR by
encompassing the MSD constraint within thanks to the SR graph, despite the high density
of the latter. Indeed, BEST2COP does not rely on our path encoding scheme LCA : rather,
we designed BEST2COP to fully leverage the SR graph construct discussed in the previous
section. Thanks to this graph transformation, BEST2COP can leverage the I-HOP property
of BFM to take into account the number of segments for free (following a scheme close to
the one proposed by Corlay and Moon). As a result, paths requiring more than MSD seg-
ments are naturally excluded from the exploration space by leveraging the I-HOP property 24.

24While we investigated using LCA on a bellman-ford like exploration schemes performed on the original
graph (rather than the SR graph, the results were not as promising, are yet to be studied more extensively
on different classes of graphs.)
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3.3.5 Conclusion

In this chapter, we have reviewed the literature related to both OPTIC and BEST2COP.
OPTIC falls within the vast domain of FRR and improved convergence schemes. How-

ever, few solutions focus on the specific problem OPTIC tackles, i.e., improving the con-
vergence of BGP upon an internal event. OPTIC leverages the increased visibility brought
by schemes such as Add-Path (which provides numerous other benefits) to allow routers
to immediately fall back to the post-convergence route upon an event. Conversely, current
solutions offer non-optimal fast reroute, and may not be able to deal with any internal event
(even with increased visibility).

BEST2COP falls in the even vaster domain of TE and multi-constrained path compu-
tation. While numerous solutions exist, BEST2COP is, to the best of our knowledge, the
first DCLC scheme to fully consider and leverage technical constraints and characteristics,
both regarding path deployment, delay measurement, and topology design. Furthermore,
few works discuss the benefit of parallelization. Finally, we test our algorithm on much
larger topologies than usually considered in the literature and on various scenarios.

To consider the number of segments when computing paths, we propose two schemes,
LCA and the SR graph. Other works in the literature propose similar approaches.
However, they either (i) do not consider multiple metrics, (ii) do not follow the same
conversion paradigm as ours (which leverages ECMP paths), or (iii) are not created to
work hand-in-hand with the path computation algorithm, and may thus be inefficient
when having to translate numerous paths. Finally, we also fit our conversion algorithm
LCA on top of a MCOP algorithm, SAMCRA, and show that the latter remains competitive.

As both the background and context have been set, the following chapters of this thesis
will describe my contributions. The next chapter will focus on BEST2COP, before moving
on to describe OPTIC in Chapter 5.
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In this chapter, we describe in detail our contributions related to the deployment of multi-
constrained paths. These contributions aim to bridge the gap between multi-constrained path
computation algorithms, a heavily researched topic, and real-life deployment. Our solutions
propose various ways to efficiently compute multi-constrained paths for SR domains, an
important feature considering the strict latency requirements of emerging technologies.

To achieve our goal, we solve several challenges: (i) reducing the complexity of DCLC
in a fashion suitable for operators networks, allowing to provide near-exact algorithms
with bounded error margin and strong guarantees, (ii) efficiently considering the number of
segments to take into account the packet manipulation overhead supported by routers, and
(iii) scale with very large modern networks, despite the difficulty induced by considering
three metrics (delay, cost, and number of segments).

Guarantees and practical concerns. While there exist several ways to solve DCLC,
they usually do not consider the underlying deployment technologies and real-life deployment
constraints, which often increases the complexity of the problem and limits the available data.

We keep such considerations at the core of our design. The nature of the paths we
compute relies on a stable latency metric, the measured propagation delay (as recommended
by [Giacalone et al. 2015, Ginsberg et al. 2019]), which is representative in our case dealing
with few premium flows. Second, because of the inherent imprecision of these measurements
and the arbitrary nature of the latency constraint, a small error margin regarding the delay
of the computed path may be acceptable. We argue that the delay metric of the network
may thus be discretized without loss of relevant information, or at least with a controlled
loss of relevant information. As the number of non-dominated paths becomes bounded,
exact DCLC/MCOP algorithms benefit from a reduced complexity while offering strong
guarantees regarding the latency of the computed paths. Our structures and algorithms
used to consider the number of segments may then be used in conjunction with this
technique to efficiently solve DCLC in an SR domain.

Efficiently encompassing the Maximum Segment Depth constraint (MSD).
An SR router can only prepend up to MSD routing instructions to a packet at line-rate, i.e.,
≈ 10 with the best current hardware. Although we find that this limit does not prevent
deploying most DCLC paths in practice, this constraint must still be taken into account. If
ignored, the computed paths have no guarantees to be deployable, as they may exceed MSD.

To efficiently (and correctly) consider this new peculiar additive metric (the number
of segments) when computing paths 1, we propose a new construct, the multi-metric SR
Graph, which results from a transformation of the original graph, in which the number of
segments necessary to encode a path is equal to the number of edges of the latter. As this
construct encompasses all metrics, it can be relied upon to consider the number of segments
when computing paths. We propose two ways to use this structure. First, as the SR Graph
transforms the segment metric into an easily manageable metric (the hop count), it may be
directly explored by any MCOP algorithm to solve DCLC in SR domain, by considering an

1Recall that one may not simply convert DCLC paths to segment list after their computation, as the
computed paths may require more than MSD segment. As such, the number of segment required must be
tracked while computing the paths.
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additional constraint of MSD hops. Despite the high density of the SR Graph, we show that it
is a viable option by designing an algorithm, BEST2COP, which explores the SR Graph and
leverages its structure to natively remove non-deployable paths from the exploration space.
BEST2COP offers competitive performances and has been designed for real-life deployment.

Second, for algorithms particularly sensitive to the density of the explored graph,
we propose a way to keep exploring the original graph of the network but rely on the
information within the SR Graph to perform on-the-fly conversions of paths to segment
lists. This method, called LCA, does not only consist of an efficient multi-metric path
encoding algorithm but also of a formally defined new kind of dominance relation which
allows to correctly consider the segment metric and retrieve the 3D Pareto front.

Dealing with massive-scale networks efficiently. Current networks may be quite
large, and growing. As such, modern computation schemes should maintain good perfor-
mance even on large instances.

We thus extend BEST2COP to BEST2COP-Extended (BEST2COP-E), which leverages
both multi-threaded architectures and the inherent structure of massive-scale networks (in
particular, the logical and physical area-partitioning usually observed) to solve DCLC-SR
in ≈ 1 second for ≈ 100 000 nodes. To evaluate our contributions, we create a topology gen-
erator, YARGG, able to construct massive-scale, multi-valuated, and multi-area topologies
based on geographical data.

In the following, we will explain the motivation behind this work, before further detail-
ing our solutions and discussing their performance. This work was published in Network
Computing and Applications (NCA) [Luttringer et al. 2020b], in the French conference Al-
gotel [Luttringer et al. 2021b] and extended in a journal version published in Computer
Networks [Luttringer et al. 2022].

Note that while preliminary work on LCA was published in the Appendix of a prior
publication, its in-depth description, formalization, and proofs are exclusive to this thesis.

4.1 Motivation & Context

Latency is critical in modern networks for various applications. The constraints on the
delay are indeed increasingly stringent. For example, in financial networks, vast amounts of
money depend on the ability to receive information in real-time. Likewise, technologies such
as 5G slicing, in addition to requiring significant bandwidth availability, demand strong
end-to-end delay guarantees depending on the service they aim to provide, e.g., less than
15ms for low latency applications such as motion control for industry 4.0, VR, or video
games [Programme 2020]. For such interactive applications, the latency is as critical as the
IGP cost.

As mentioned in Section 2.3, the IGP cost is defined as an additive metric that usually
reflects both the link’s bandwidth and the operator’s load distribution choices on the
topology. Paths within an IGP are computed by minimizing this cost. Thus, although delay
constraints are increasingly important, they should not be enforced to the detriment of the
IGP cost. With minimal IGP distances, the traffic benefits from high-bandwidth links and
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follows the operator’s intent in managing the network and its load. With bounded delays,
the traffic can benefit from paths allowing for sufficient interactivity. It is thus relevant to
minimize the IGP cost while enforcing an upper constraint on the latency. Computing such
paths requires solving DCLC.
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Figure 4.1: Practical relevance of DCLC in the GEANT network. IGP costs are deduced from the band-
width of each link. Depending on their needs (in terms of delay and bandwidth), applications can opt for
three non-comparable paths between Frankfurt and Vienna.

4.1.1 The DCLC problem in Segment Routing (SR) domains

In real networks, one may expect the two metrics to be strongly and positively correlated,
and, as such, that computing the shortest path on any of the two metrics is sufficient. How-
ever, there are various cases where the delay and the IGP cost may be drastically different.
For example, the IGP cost may have been tuned arbitrarily by the operator. Heterogeneous
infrastructures between countries or geographical constraints may also create this effect.
This can be illustrated on real networks, as displayed by Fig. 4.1. This map is a sample of
the GEANT transit network [Nordic Gateway for Research and Education 2014]. As optic
fibers often follow major roads, we rely on real road distances to infer the propagation delay
of each link while the bandwidth, and so the estimated IGP cost, matches the indications
provided by GEANT. A green link has an IGP cost of 1 while the IGP cost is 2 and 10
respectively for the yellow and pink ones.

Note that the two metrics are not correlated, hence all three distances shown between
Frankfurt and Vienna offer diverse interesting options. In other words, all three distances
are non-dominated and thus lie within the Pareto front of the distances between the two
cities. Either solely the delay matters and the direct link (in pink) should be preferred,
or the ISP prefers to favor high capacity links, and the green path, minimizing the IGP
cost, should be used. The yellow path, however, offers an interesting compromise. Out
of all paths offering a latency well-below 10ms, it is the one minimizing the IGP cost.
Thus, it allows providing strict Service-Level Agreement (< 9ms), while considering the



4.1. Motivation & Context 99

IGP cost. These kinds of paths, retrieved by solving DCLC, provide more options by
enabling trade offs between the two most important networking metrics. Applications such
as videoconferences, for example, can then benefit both from real-time interactive voice
exchange (delay) and high video quality (bandwidth). In addition, IGP costs are also
tuned to represent the operational costs. Any deviation from the shortest IGP paths thus
results in additional costs for the operator. For all these reasons, there exist a clear interest
for algorithms able to solve and deploy DCLC paths [Filsfils 2019]. However and so far,
while this problem has received a lot of attention in the last decades from the network
research community, no technologies were available for an efficient deployment of such paths.

Segment Routing (SR) is a vibrant technology gathering traction from router vendors,
network operators and academic communities [Matsushima et al. 2022, Ventre et al. 2020].
Relying on a combination of strict and loose source routing, SR enables deviating the traffic
from the shortest IGP paths through a selected set of nodes and/or links by prepending
routing instructions to the packet itself. Such deviations may for example allow routing
traffic through a path with lower latency. These deviations are encoded in the form of seg-
ments within the packet itself. To prevent any packet forwarding degradation, the number of
deviations (i.e., instructions) one can encode is limited to MSD, whose exact value depends
on the hardware. While this technology is adequate to support a variety of services, opera-
tors mainly deploy SR in the hopes of performing fine-grained and ECMP-friendly tactical
TE [Adams 2020], due to its reduced overhead compared to RSVP-TE [Filsfils et al. 2017].
Our discussion with network vendors further revealed a clear desire from operators to ef-
ficiently compute DCLC paths deployable with Segment Routing [Filsfils 2019]. Such a
solution should thus not only encompass Segment Routing but also fare well on large-
sized networks of several thousands of nodes, as already observable in current SR deploy-
ments [Matsushima et al. 2022].

Segment Routing implements source routing by prepending packets with a stack of up to
MSD segments. In a nutshell, segments are checkpoints the packet has to go through. There
are two main types of segments:

• Node segments. A node segment v indicates that the packet should (first) be forwarded
to v with ECMP (instead of its final IP destination). Flows are then load-balanced among
the best IGP next hops for destination v.

• Adjacency segments. Adjacency segments indicate that the packet should be forwarded
through a specific interface and its link.

Once computed, the stack of segments encoding the desired path is added to the packet.
Routers forward packets according to the topmost segment, which is removed from the stack
when the packet reaches the associated intermediate destination.

Adjacency segments may be globally advertised, and thus be used the same way as node
segments, or they may only have a local scope and, as such, can only be interpreted by
the router possessing said interface. In this case, the packet should first be guided to the
corresponding router, by prepending the associated node segment. In the following, as a
worst operational case, we consider the latter scenario, as it always requires the highest
number of segments.

As aforementioned, while operators seem to mainly deploy SR to perform fine-grained
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TE, to the best of our knowledge, no DCLC variant exists for specifically tackling SR char-
acteristics and constraints (except for our contribution). Using segments to steer particular
flows allows however to deviate some TE traffic from the best IGP paths in order to achieve,
for example, a lower latency (and by extension solve DCLC). A realistic example is shown
in Fig. 4.1 where the node segment Vienna, as well as considering Vienna as the destination
itself, would result in the packets following the best IGP path from Frankfurt to Vienna, i.e.,
the green dashed path. To use the direct link instead (in plain pink) and so minimize the
delay between the two nodes of this example, the associated adjacency segment would have
to be used as it enforces a single link path having a smaller delay than the best IGP one (in-
cluding here two intermediary routers). Finally, the yellow path, offering a non-dominated
compromise between both metrics (and being the best option if considering a delay con-
straint of 8ms), requires the use of the node segment Budapest to force the traffic to deviate
from its best IGP path in green. Before converting the paths to segment lists (and actually
deploying them with SR), such non-dominated paths need first to be explored. Computing
these paths while ensuring that the number of segments necessary to encode them remains
under MSD is at least as difficult as solving the standard DCLC problem since an additional
constraint now applies.

4.1.2 Problem statement : DCLC-SR and 2COP

In this section, we introduce and define preliminary notations and concepts, before describing
the data structures used by our algorithms. We aim to solve DCLC in the context of an ISP
deploying SR, leading to the DCLC-SR problem that considers the IGP cost, the propagation
delay, and the number of segments.

For readability purposes, we denote:

• M0 the metric referring to the number of segments, with the constraint c0 = MSD applied
to it;

• M1 the delay metric, with a constraint c1;

• M2 the IGP metric being optimized.

With these notations, we can now formally define the first problem we aim to solve,
DCLC-SR.

Definition 4.1.1 (DCLC-SR). Given a source s, solving DCLC-SR consists in finding,
for all destinations, a segment list verifying two constraints, c0 and c1, respectively on the
number of segments (M0) and the delay (M1), while optimizing the IGP distance (M2).

On Fig. 4.1, we would have DCLC-SR(Frankfurt , 3, 8) ⊃ Frankfurt−Budapest−Vienna.
This DCLC path (shown in yellow in Fig 4.1), is indeed the best option to reach Vienna
when considering an arbitrary delay constraint of 8ms. Since the best IGP path from
Frankfurt to Vienna (the green one) does not go through Budapest, encoding this DCLC
path requires at least one detour, i.e. one segment (here, a node segment instructing the
packet to go through Budapest first).
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Solving DCLC-SR exactly requires, by definition, to visit the entirety of the Pareto
front for all destinations. However, although only some of these paths are DCLC-SR
solutions for a given delay constraint, all paths visited during this exploration may be of
some practical interest. In particular, some of them solve problems similar to DCLC but
with different optimization strategies and constraints. By simply memorizing the explored
paths (i.e., storing the whole Pareto front within an efficient structure), one can solve
a collection of practically relevant problems. For instance, one may want to obtain a
segment path that minimizes the delay, another the IGP cost, or the number of segments.
Solving 2COP consists in finding, for all destinations, paths optimizing all three metrics
independently, and respecting the given constraints (i.e., returning the entire Pareto front) 2.

We formalize this collection of problems as 2COP. Solving 2COP enables more versatil-
ity in terms of optimization strategies and handles heterogeneous constraints for different
destinations. Simply put, while DCLC-SR is a one-to-many DCLC variant taking MSD into
account, 2COP is more general as it includes all optimization variants.

With initial constraints c0, c1, c2, Best Exact Segment Track for 2-Constrained Optimal
Paths (BEST2COP) solves 2COP, i.e., returns in a single run paths that satisfy smaller
constraints c′0, c′1, c′2 for any c′i < ci, i = 0, 1, 2, offering more flexibility than simply returning
the DCLC-SR solution. More precisely, the problem can be formulated as follows.

Definition 4.1.2 (2-Constrained Optimal Paths (2COP)). Let f(Mj , c0, c1, c2, s, d) be
a function that returns a feasible segment path from s to d (if it exists), verifying all
constraints ci, 0 ≤ i ≤ 2 and optimizing Mj , j ∈ {0, 1, 2}. For a given source s and given
upper constraints c0, c1, c2, we have

2COP (s, c0, c1, c2) =
⋃

∀d∈V,
∀j∈{0,1,2},

∀c′j≤cj

f(Mj , c
′
0, c

′
1, c

′
2, s, d)

Solving 2COP and DCLC-SR requires returning (or, at least, visit) the entire Pareto
front. As we have discussed in Section 2.2.2, this problem is weakly NP-Hard due to the
size of the Pareto front. The added metric, the number of segments, further increases this
complexity. In the following section, we discuss how we deal with this complexity to solve
these problems efficiently.

4.2 Dealing with 2COP and DCLC-SR’s complexity

In order to solve the problems described in the previous section efficiently, we rely on two
main concepts. First (and similarly to the FPTASes presented in Section 3.3), we sacrifice
the precision of one metric in order to bound the size of the Pareto front in a predictable

2The problem consisting in returning the entirety of the Pareto front is sometimes referred to as the
Bicriterion Shortest Paths (BSP) problem in the literature. Thus, 2COP can be seen as an SR-variant of
BSP
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fashion. Second, we proposed schemes to efficiently consider the number of segments when
computing paths, despite the peculiarities of the metric.

4.2.1 DCLC and true measured delays

DCLC is weakly NP-Hard and can be solved exactly in pseudo-polynomial time. In other
words, as long as either the cost or the delay possesses only a limited number of distinct values
(i.e., only a limited number of distinct distances exist), the Pareto front of the paths’ dis-
tances is naturally bounded in size as well, making DCLC tractable and efficiently solvable 3.
Such a metric thus has to be bounded and possess a coarse accuracy (i.e., be discrete). Al-
though this has little impact when solving DCLC in a theoretical context, it can be strongly
leveraged to solve DCLC efficiently thanks to the characteristics of real ISP networks.

4.2.1.1 Discretizing the delay

We argue that the metrics of real ISP networks do indeed possess a limited number of distinct
values. Intuitively, the IGP costs already bound the size of the Pareto front. Indeed, such
costs are integers that do not exceed 216, leading to a maximum of |V |×216 distinct distances
(if there are no loops). However, this bound remains quite loose. Furthermore, further
discretizing the IGP costs is not adequate when considering computing networks. Indeed,
while some operators may rely on few spaced weights, others may possess intricate weight
systems where small differences in weight may have a large impact. Thus, even a small error
induced on the IGP costs may result in paths vastly different from the ones wished by the
operators.

Rather, we argue that the delay can be leveraged to further bound the size of the Pareto
front in a more predictable, tunable, and suitable fashion. The delay (i) is likely strongly
bounded by the problem itself, and (ii) can be handled as if having a coarse accuracy in
practice. Indeed, for TE paths, the delay constraint is likely to be very strict (10ms or less).
Second, while the delay of a path is generally represented by a precise number in memory, the
actual accuracy, i.e., the trueness t of the measured delay is much coarser due to technical
challenges [Almes et al. 2016, Almes et al. 1999]. In addition, delay constraints are usually
formulated at the millisecond granularity with a tolerance margin, meaning that some loss
of information is acceptable.

Thus, we argue that the loss of information resulting from sacrificing the precision of the
delay metric does not prevent the algorithm from being technically exact, as the information
lost is either not representative of the actual delay (due to the inaccuracy of the measurement)
or irrelevant (due to the arbitrary nature of the constraint).

Consequently, floating numbers representing the delays can be truncated to integers, e.g.,,
taking 0.1ms as unit. This allows to easily bound the number of possible non-dominated
distances to c1 × γ, with γ being the desired level of accuracy of M1 (the inverse of the unit
of the delay grain, here 0.1ms). For example, with c1 = 100ms and a delay grain of 0.1ms
(γ = 1

0.1 = 10), we have only 1000 distinct (truncated) non-dominated pairs of distances to
track at worst. This leads to a predictable and bounded Pareto front. One can then store

3Metric M0 is omitted for now as this trivial distance is only required for SR and discussed in details
later. While dealing with a three-dimensional Pareto front seems more complex at first glance, we will show
that SR eventually reduces the exploration space because its operational constraint is very tight in practice
and easy to handle efficiently.
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non-dominated distances within a static array, indexed on the M1-distance (as there can
only be one non-dominated couple of distances (M1,M2) for a given M1-distance).

The variable Γ denotes the size allocated in memory for this Pareto front array (i.e.,
Γ = c1×γ). When t, i.e., the real level of accuracy, is lower (or equal) than γ, the stored delay
can be considered to be exact. More precisely, it is discretized but with no loss of relevant
information. When t is too high, one can choose γ such that γ < t, to keep Γ at a manageable
value. In this case, some relevant information can be lost, as the discretization is too coarse.
While this sacrifices the exactitude of the solution (to the advantage of computation time),
our algorithm is still able to provide predictable guarantees in such cases (i.e., a bounded
error margin on the delay constraint).

4.2.1.2 A note on the considered delay

Referring to a path’s delay may be ambiguous. Indeed, this characteristic is not monolithic.
The total delay is mainly composed of the propagation delay and the queuing delay. Both
delays may play an important part in the overall latency, though none can be stated to be
the main factor [Savage et al. 1999]. Although the propagation delay is stable, the queuing
delay may vary depending on the traffic load. However, in order to compute TE paths,
the delay metric must be advertised (usually within the IGP itself). For this reason, it is
strongly recommended to use a stable estimate of the delay, as varying delay estimations may
lead to frequent re-computations, control-plane message exchanges, and fluctuating traffic
distribution [Giacalone et al. 2015, Ginsberg et al. 2019].

For this reason, we use the propagation delay, as recommended in [Giacalone et al. 2015,
Ginsberg et al. 2019]. The latter is usually measured through the use of a priority queue,
ignoring so the queuing delay. Its value is deduced as a minimum from a sampling window,
increasing so its stability [Cisco Networks 2020]. Using this delay not only makes our solution
practical (as we rely on existing measurements and respect protocol-related constraints), but
is actually pertinent in our case. In practice, flows benefitting from DCLC paths benefit
from a queue with high priority and experience negligible queueing delays. In addition, the
amount of traffic generated by such premium interactive flows can be controlled to remain
small enough if it is not limited by design. Consequently, not only is there no competition
between premium flows and best-effort traffic, but these flows do not generate enough traffic
to lead to significant competition between themselves. Thus, the experienced delay is actually
agnostic of the traffic load for our use case, making the propagation delay a relevant estimate.
Consequently, we use the discretized propagation delay, enabling both practical deployment
and the limitation of the number of non-dominated distances, within our structure used to
encompass Segment Routing natively, the SR graph.

4.2.2 A structure to efficiently consider the number of segments

To solve DCLC-SR efficiently, as well as its comprehensive generalization, 2COP, we rely on
a specific construct used to encompass SR, the delay, and the IGP cost: the multi-metric
SR graph.

This construct represents the segments as edges to natively deal with the M0 metric and
its constraint, c0 = MSD. The valuation of each edge depends on the distance of the path
encoded by each segment. While the weights of an adjacency segment are the weights of its
associated local link, the weights of a node segment are the distances of the ECMP paths



104 Chapter 4. Deployable Multi-Constrained Tunnels

it encodes: the (equal) IGP cost (i.e., M2-distance), and the lowest guaranteed delay (i.e.,
the M1-distance), i.e., the worst delay among all ECMP paths. Hence, computing paths on
the SR graph is equivalent to combining stacks of segments (and the physical paths they
encode), as stacks requiring x segments are represented as paths of x edges in the SR graph
(agnostically to its actual length in the raw graph). The SR graph can be built for all
sources and destinations thanks to an All Pair Shortest Path (APSP) algorithm. Note that
this transformation is inherent to SR and leads to a complexity of O(|V |(|V | log(|V |)+ |E|)),
for a raw graph having |V | nodes and |E| edges, with the best-known algorithms and
data structures. This transformation (or rather, the underlying APSP computation) being
required for any network deploying TE with SR (the complexity added by our multi-metric
extension being negligible), we do not consider it as part of our algorithm presented later.

This transformation is shown in Fig. 4.2b, which shows the SR counterpart of the raw
graph provided in Fig. 4.1 (which is shown again in Fig. 4.2a for readability purposes). To
describe this transformation more formally, we use the notations introduced in Section 2.1.
We denote G = (V,E) the original graph, where V and E respectively refer to the set of
vertices and edges. As G can have multiple parallel links between a pair of nodes (u, v), we
use E(u, v) to denote all the direct links between nodes u and v. Each link (u, v) possesses
two weights, its delay wG

1 (u, v) and its IGP cost wG
2 (u, v). The delay and the IGP cost

being additive metrics, the M1 and M2 distances of a path p (denoted dG1 (p) and dG2 (p)

respectively) are the sums of the weights of its edges.
From G, we create a transformed multigraph, the SR graph denoted G′ = (V,E′). While

the set of nodes in G′ is the same as in G, the set of edges differs because E′ encodes segments
as edges representing either adjacency or node segments encoding respectively local physical
link or sets of best IGP paths (with ECMP). The Mi-weight of an edge in G′ is denoted
wG′
i (u, v). Note that if G is connected, then G′ is a complete graph thanks to node segments.

A node segment (Node, u, v), encoding the whole set PG∗
2 (u, v) of ECMP best paths

between two nodes u and v, is represented by exactly one edge in E′(u, v). The M2-weight
wG′
2 (u, v) of a node segment is the (equal) M2-distance of PG∗

2 (u, v), i.e., d∗2(u, v). Since,
when using a node segment, packets may follow any of the ECMP paths, we can only
guarantee that the delay of the path will not exceed the maximal delay out of all ECMP
paths. Consequently, its M1-weight wG′

1 (u, v) is defined as the maximum M1-distance among
all the paths in PG∗

2 (u, v), i.e., dmax
1 (PG∗

2 (u, v)) 4. Links representing node segments in G′

thus verify the following:
wG′
1 (u, v) = dmax

1 (PG∗
2 (u, v))

wG′
2 (u, v) = d∗2(u, v)

An adjacency segment (Adj, u, v, x) corresponds to a link in the graph G and is
represented by an edge (u, v)x in E′(u, v), whose weights are the ones of its correspond-
ing link in G, only if it is not dominated by the node segment (Node, u, v), i.e., if
wG′
1 (u, v) > wG

1 ((u, v)x), or by any other non-dominated adjacency segments (u, v)y, i.e., if
wG
1 ((u, v)y) > wG

1 ((u, v)x) or wG
2 ((u, v)y) > wG

2 ((u, v)x), where (u, v)x and (u, v)y are two
different outgoing links of u in E(u, v)5.

4In practice, this can be computed by first computing the shortest path DAG from u to v, and then
finding the highest delay within this DAG, which can be done in polynomial time.

5If two links have exactly the same weights, we only add one adjacency segment in G′



4.2. Dealing with 2COP and DCLC-SR’s complexity 105

9.72ms ; 3

6.79ms ; 4

3.97ms ; 10

971km ; 100Gbps
714km ; 10Gbps

250km ; 100Gbps

854km ; 2
00Gbps57

6k
m

 ; 
20

0G
bp

s

317km ; 200Gbps

FRANKFURT

VIENNA

MILAN

BUDAPEST

GENEVA

(a) Extract of the Geant network.

Frankfurt

Geneva Vienna

Milan Budapest

32 ; 1

39 ; 10

17 ; 1

60 ; 3

13 ; 2

54 ; 2

47 ; 1

64 ; 2

49 ; 2

86 ; 3

96 ; 3

Delay ; Cost

Node Segment

Adjacency Segment

17 ; 1

(b) This figure shows the network from Fig. 4.2a trans-
lated into an SR Graph. The SR Graph encodes seg-
ments as edges. Plain edges represent node segments,
i.e., sets of ECMP paths. Double lines are adjacency
segments, here only (Frankfurt, V ienna), and are vis-
ible only if they are not dominated by other segments.
Colored edges refer to the paths highlighted in Fig 4.2a.

Figure 4.2: Figures illustrating the translation of a network into an SR Graph.

We can now more precisely describe Fig. 4.2b, which illustrates the result of such a
transformation: one can easily identify the three non-dominated paths between Frankfurt
and Vienna, bearing the same colors as in Fig. 4.1. The green path (i.e., the best
M2 path) is encoded by a single node segment. The pink, direct path (i.e., the best
M1 path) is encoded by an adjacency segment (the double line in Fig. 4.2b). The
yellow paths (the solution of DCLC-SR(Frankfurt, 3, 8) and an interesting tradeoff
between M1 and M2) requires an additional segment, in order to be routed through
Budapest. Note that in practice, the last segment is unnecessary if it is a node segment, as
the packet will be routed towards its final IP destination through the best M2 paths natively.

Using the SR Graph, we can now describe more intuitively the relevant subproblems that
may be addressed when solving 2COP. As defined in Def. 4.1.2, solving 2COP (s, c0, c1, c2)

requires to retrieve the entirety of the constrained Pareto front, which not only contains
solutions to DCLC-SR, but to other relevant problems considering the original, as well as
tighter constraints.

Considering Fig. 4.2, solving 2COP (Frankfurt, 3, 100, 10) enables one to solve, for ex-
ample, DCLC-SR considering c0 = 3 and c1 = 100 from Frankfurt to Vienna. Solving this
problem is equivalent to retrieving the following output of 2COP (we rely on the first capital
letter of the cities):

f(M2, 3, 80,∞, F, V ) = (Node, F,B)|(Node,B, V ) (67; 4)

One may also find solutions to Constrained Cost Lowest Delay (CCLD), i.e., optimizing
M1 while respecting a constraint on M0 and M2. For example,
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f(M1, 3,∞, 10, F,B) = (Node, F,B) (54, 2)

Finally, solutions to Delay-Cost Constrained with the Lowest #Segment (DCCLS) are
also available i.e., optimizing M0 while respecting constraints on M1 and M2. For example,
we have

f(M0, 10, 50, 50, F, V ) = (Adj, F, V ) (39, 10)

These solutions may all be retrieved by solving 2COP considering Frankfurt as a source,
which can be achieved efficiently thanks to our SR graph.

Indeed, our multi-metric SR graph (or equivalent constructs gathering the multi-metric
all-pair shortest path data) is mandatory to easily consider the number of segments necessary
to encode the paths being explored. However, its usage can differ in practice. We envision
two modes that allow considering this additional "off the graph" metric, using our SR Graph.

One of the two options is to run the path computation algorithm on the original
topology and convert the paths being explored to segment lists during the exploration.
Performing this conversion is however not trivial. One must return the minimal encoding
of the given path (with respect to the number of segments) while correctly managing
the (forced) path diversity brought by ECMP, which may exhibit heterogeneous delays.
However, one can efficiently perform such conversion when relying on our SR graph. By
summarizing the relevant information (i.e., the worst-case delay within ECMP paths), the
SR Graph allows to easily consider the ECMP nature of SR within a multi-metric context.
However, the segment metric M0 is peculiar. Extending a path does not always imply
an increase in the number of necessary segments. We will see that because the way the
number of segments evolve is not trivial to predict, pruning paths from the exploration
requires further consideration. Because of these properties, the way to check paths for
dominance must be revised. Indeed, we will show that distances that appear dominated
may become non-dominated later on, if their number of segments evolve favorably. This
extended dominance check may lead to an increased number of paths to extend, and thus
to a higher worst-case complexity.

Another method, perhaps easier to implement, is to run the path computation algorithm
directly on the SR graph we described. Note that this forces the algorithm to run on a
complete graph, which may significantly increase the overall complexity. However, the
segment metric M0, originally an "off the graph" metric with singular properties, becomes
a standard graph metric, as it is now expressed by the number of edges that compose the
paths (a path encoded by x segments has x edges within the SR Graph). This method also
allows using standard, known algorithms as-is to solve the DCLC-SR problem. However,
the SR Graph possess (at least) |V |2/2 edges. This high density may greatly increase the
computation time of algorithms not designed to work hand-in-hand with the SR Graph. In
some cases, the cost of relying on the SR Graph may thus outweigh the benefits.

In the following, we will describe schemes enabling to use the SR Graph in both fashions.
First, we describe Live Conversion Algorithm (LCA), our algorithm which relies on the
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SR Graph to perform live conversions of the paths being explored, and detail the revisited
dominance property. Then, we will describe BEST2COP, which directly explores the SR
Graph and leverages its characteristics to propose competitive performance.

4.3 Using the SR Graph to perform live conversions with LCA

When using the SR Graph to perform conversions, the algorithm can explore the original
graph, which should be sparser and thus less computationally expensive to explore than the
SR graph 6.

Using the SR graph in this fashion requires designing an efficient conversion algorithm,
able to, given a path as input, output a minimal segment list encoding said path (or, at
least, paths sharing the same distances). This conversion is not trivial, as one must take into
account the (forced) path diversity brought by ECMP. Indeed, using a node segment implies
that the packet may follow any of the ECMP paths, which may possess heterogeneous delays.
On the other hand, relying too much on adjacency segments will not lead to the minimal
segment encoding of the considered paths and limit load-balancing.

Furthermore, the number of segments, being an "off the graph" metric, exhibits peculiar
behavior and requires to slightly extend the way paths are checked for dominancy and pruned
from the exploration.

In this subsection, we will formally describe and detail both LCA, our conversion algo-
rithm, and the notion of strong dominance, which allows to correctly consider the number
of segments as a new metric of the Pareto front when performing on-the-fly conversions. We
will show that LCA allows retrieving the minimal segment list of all non-dominated segment
lists, and thus the 3D Pareto front.

While some preliminary work about LCA has been published in the Appendix of a
previous publication [Luttringer et al. 2022], most of the work detailed in this section (such
as the proofs, gadgets, and formalization) has not yet been published.

4.3.1 Live Conversion Algorithm (LCA)

The common goal of path encoding schemes is to find, given an input path, a segment list
encoding said path with the minimum number of segments. However, there exist several
paradigms one may follow to compute segment lists.

Most path encoding schemes aim to encode a single, specific path (as described in Sec-
tion 3.2.2). In other words, the (usually minimal) segment list computed solely encodes the
input path. We refer to this as strict encoding. When considering a single metric, strict
encoding makes sense. Indeed, in this case, SR is usually used for goals such as path moni-
toring, failure resiliency, or function chaining. It is thus important that traffic follows exactly
the desired path.

In our case, we argue that while the input path should be considered, its distance is what
matters most. Load-balancing should thus be leveraged, as long as the delay constraint
is respected. In this case, two main paradigms can be followed. The first one consists in
providing a distance as input and returning a segment list encoding any path(s) with said

6Note that the information within the SR Graph may be stored in different fashions. For example, one
may keep the DAGs computed by the APSP separated by source, rather than merging it in a single SR
Graph. However, the multi-metric APSP computation itself is mandatory
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Figure 4.3: Figure illustrating the different type of encodings

distance (at most). We refer to this approach as weak encoding. The second approach
consists in returning a segment list that does encode a path given as input, but may also
encode other paths sharing the same or better distances. We refer to this approach as strong
encoding.

The different types of encodings are illustrated in Fig. 4.3. Given the path to encode p,
the segment lists S resulting from each type of encoding are shown. The paths encoded by
S are shown in their respective color on the left side of the Figure.

We consider the path p = (s, a), (a, b), (b, d). When relying on strict encoding, three
segments are necessary to circumvent the effect of ECMP. Several segment lists weakly
encode p, i.e., encode path with distance d = (10, 10). Within these lists, the minimal
one is composed of a single segment, encoding a direct edge between s and d. Note that
the original path p is not contained within this segment list. Finally, the segment list that
strongly encodes p does indeed encode p, as well as another path of equal distance.

While weak encoding may seem like the most natural option, it has several caveats.
First, from a technical standpoint, its outcome is far less predictable, as it solely depends
on distance with no paths acting as general anchor points. Second, weakly encoding a
given distance d(p = (s, t)) may induce a high computational complexity. Intuitively, the
lack of anchor points around which building the segment list requires finding all paths with
said distance to find the associated minimal segment lists. In addition, note that relying
on strong encoding does not necessarily prevent finding minimal encoding segment lists,
as long as the proper path is considered. For example, considering Fig. 4.3, the encoding
S = (Adj, s2, d) may also be found by strongly encoding the non-dominated path p = (s2, d).
We leverage this when designing our conversion algorithm, in order to benefit from the
more efficient strong encoding paradigm, while still ensuring that the minimal segment list
is retrieved.

We thus design LCA as a conversion algorithm following the strong encoding paradigm.
We first devise an offline conversion algorithm returning the minimal strongly encoding
segment lists for a given path. We then adapt this algorithm for it to be usable online,
i.e., to encode paths while exploring the graph. We show that the peculiarities of the
segment metric require particular care when maintaining and extending the distances. In
particular, we show that some dominated distances must now be extended, as their number
of segments may evolve differently despite being extended by the same edge. From there,
we formally define how distances should be maintained (in particular when following the
strong encoding paradigm), in order to ensure retrieving the actual 3D Pareto front, with
the minimal encoding segment list of each non-dominated distance.
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As the descriptions of LCA and strong encoding rely heavily on the notations introduced
previously, we start by introducing (or reminding of) the following notations. We consider
a network G = (V,E). Let p = ((x0, x1), (x1, x2), . . . , (xl−1, xl)) be a path within G, with
xi ∈ V . Let p[xi,xj ] = ((xi, xi+1), . . . , (xj−1, xj)). We here consider the distance d(p) as
d(p) = (d1(p), d2(p)), as d0 is unknown.

We denote P ∗
2 (u, v) all the shortest paths between u and v in G with respect to the M2

metric (i.e., all ECMP paths between u and v). The edges of the paths P ∗
2 (u, v) form a

subgraph of the shortest path DAG rooted at u (considering M2). We denote Dag [u,v] this
set of edges.

A segment is characterized by a tuple (t, u, v), which encodes all ECMP paths from u to
v when t = Node, or a specific link when t = Adj. We denote dSR(t, u, v) the best distances
guaranteed when following the paths encoded by the segment (t, u, v). When t = Node, we
have dSR(t, u, v) = (dmax

1 (P ∗
2 (u, v)), d

∗
2(u, v)). When t = Adj, we have dSR(t, u, v) = w(u, v).

Notice that the distance dSR of a segment is thus exactly equal to the weight of the edge
associated with this segment in the SR Graph.

Finally, we denote a list of segments S = (Si)0≤i≤l−1. A segment Si ∈ S is thus defined
as a tuple (ti, si, si+1), with si ∈ V and ti ∈ {Adj ,Node}. We defined the distance of a
segment list dSR(S) =

∑l−1
n=0 d

SR(Si).

Table 4.3.1 offers a summary and reminders of the notations used within this subsection

We now define formally the strong encoding of a path p.

Definition 4.3.1 (Strong Encoding). Let p = ((x0, x1), . . . , (xk−1, xk)) be a path. Let
S = (Si)0≤i≤l−1 be a segment list. S strongly encodes the path p if both conditions are
verified:

• ∀i, ∃j such that si = xj

• ∀i, either

(i) p[si,si+1] ∈ P ∗
2 (si, si+1) and d(p[si,si+1]) is dominated by dSR(Si), or

(ii) ti = Adj ∧ (si, si+1) ∈ p.

Less formally, Def. 4.3.1 ensures that each segment within a segment list S either (i)
does indeed encode a subpath of p, and that the paths encoded by the segment have equal
or better distances than said subpath or (ii) encodes a specific link within p.
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notation definition

(u, v) An edge in E between node u and node v

w(u, v) The weight vector of edge (u, v)

wi(u, v) The ith component of w(u, v)

p(s, t) A path between node s and t, defined as a list of edges
p[xi,xj ] A subpath of p, defined as (xi, xi+1) . . . (xj−1, xj).
d(p) The distance vector of path p.
di(p) The ith component of d(p), i ≤ m.
Dag[u] Set of edges forming the shortest path

DAG rooted at u considering the IGP cost
Dag[u,v] Edges of the paths from u to v within Dag[u]

P ∗
i (s, t) All shortest path between node s and t

when considering the ith criterion.
d∗i (s, t) The best distance between node s and t

when considering the ith criterion.
dmax
i (P (s, t)) The maximum distance among all paths p ∈ P

considering the ith criterion

S A segment list
Si = (t, si, si+1) A segment encoding a path between u and v

with t = Adj,Node

S[i,j] Sublist of S consisting in Si, . . . , Sj

dSR(t, si, si+1) The best distances guaranteed by a segment
dSR(S) Distances of a segment list, defined as

the sum of the distances of each segment within S.

Figure 4.4: Notations introduced within this section
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Remark 4.3.1. When considering condition (i) of Def. 4.3.1, p[si,si+1] and dSR(S[i,i+1])

necessarily share the same cost d1 (the cost of the ECMP paths from si to si+1,
d∗2(si, si+1)).

Furthermore, by definition, the delay of S[i,i+1] is equal to the maximum delay
among all ECMP paths within P ∗

2 (si, si+1). Thus, stating that d(p[si,si+1]) is dom-
inated by dSR(S[i,i+1]), is equivalent to stating that d1(p[si,si+1]) = dSR1 (S[i,i+1]) =

dmax
1 (P ∗

2 (si, si+1)).
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Consequently, (i) can be alternatively expressed as :

d(p[si,si+1]) = dSR(S[i,i+1])

.

We then define the delay-cost path encoding problem, which we aim to solve with our
encoding scheme.

Definition 4.3.2 (Delay-cost path encoding problem). Given a path p, the delay-cost
path encoding problem consists in finding a segment list S that strongly encodes p with
the minimal number of segments.

Before describing how we solve the Delay-cost path encoding problem in an online
fashion (i.e., while exploring the graph), we first describe how to solve this problem when
the complete path is already known and provided as input.

We solve the delay-cost path encoding problem through a greedy algorithm. In short,
this algorithm repeatedly finds, for a given path p, the longest prefix of p encodable by a
single segment. This algorithm is presented in Alg. 1.

Algorithm 1: encode(p)

1 s := x0

2 S := [ ]

3 do
4 Si = (t, s, v) = 1SegLongestPrefix(p[s,xl])
5 S.push(Si)
6 s := v

7 while s ̸= xl;
8 return S

Considering a path to encode p and a source s (the first node of the path), Alg. 1 starts
by finding the longest prefix of p encodable in a single segment. Suppose that Si encodes
such a prefix p[s,v]. The algorithm then adds the segment to the segment list S and repeats
the procedure, considering the remainder of the path p[v,xl] and v as the new source. This
is repeated until the node considered as source is equal to the last node in p, i.e., xl.

Algorithm 2: 1SegLongestPrefix(p = (x0, x1), . . . (xl−1, xl))

1 if (x0, x1) /∈ Dag [x0,x1]
or w1(x0, x1) ≤ dSR

1 (Node, x0, x1) then
2 return (Adj , x0, x1)

3 for i = 2 . . . l do
4 if (xi−1, xi) /∈ Dag [x0,xi]

or d1(p[x0,xi]) < dSR
1 (Node, x0, xi) then

5 return (Node, x0, xi−1)

6 return (Node, x0, xl)
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To find the longest prefix encodable in one segment (and the associated segment), Alg 1
relies on another algorithm, 1SegLongestPrefix, described in Alg. 2. Intuitively, Alg. 2
tries to encode as many edges of p as possible in a single segment. Once the algorithm
detects that a new segment would be required to properly encode an additional edge (e.g.,
because it deviates from the ECMP paths), the algorithm returns.

More precisely, 1SegLongestPrefix starts by checking whether the first edge of p

requires an adjacency segment (Line 1). Recall that a node segment may only encode
ECMP paths, i.e., paths within P ∗

2 . Consequently, a node segment (interpreted by x0) may
not encode an edge (x0, x1) which does not lie within Dag [x0,x1]. In this case, the edge
(x0, x1) must be encoded by an adjacency segment 7. Note that since an adjacency segment
only encodes a single link, encoding additional edges will necessarily require new segments.
Hence, the algorithm returns immediately.

Otherwise, the algorithms checks, for each i = 2 . . . l, whether the subpath p[x0,xi] remains
encodable in a single node segment when considering an additional edge (xi−1, xi). To remain
encodable in a single node segment, the subpath must respect two conditions.

First, it must remain an ECMP path. This can be checked by verifying whether the
new edge (xi−1, xi) remains within the shortest path DAG rooted at Dagx0

, i.e., if the edge
belongs to Dagx0,xi

. Otherwise, the subpath induced by the added edge deviates from the
shortest paths rooted at x0 and thus cannot be encoded through a node segment interpreted
by x0. Second, if it is an ECMP path from x0 to xi, it must not possess a better delay than
the one guaranteed by the node segment, i.e., dmax

1 (P ∗
2 (x0, xi)). Otherwise, the subpath

exhibits a better delay than some ECMP path and must thus be encoded more precisely
through additional segments.

Once one of these conditions is not met anymore, the longest prefix of p encodable by a
single segment is found, and the algorithm returns. By following these steps, Alg. 1 returns
a segment list that strongly encodes the path p given as input, as shown in Lemma 4.3.1.

Lemma 4.3.1. Let S = encode(p). Then, S strongly encodes p.

Proof. Any segment Si respects the conditions of strong encoding, as defined in Def. 4.3.1.

• Notice from Alg. 2 that all segments Si ∈ S are necessarily equal to (t, si, si+1) with
si ∈ p and si+1 ∈ p (Line 2, 5, 6).

• If Si = (Adj, si, si+1), then (si, si+1) ∈ p following Alg. 1,Line 2.

• Finally, if Si = (Node, si, si+1), then each edge e ∈ p[si,si+1] belongs to Dag[si,si+1]

meaning that p[si,si+1] ∈ P ∗
2 (si, si+1) (following Alg. 1, Line 4). Thus, by definition,

d2(p[si,si+1]) = dSR2 (Node, si, si+1).

In addition, d1(p[si,si+1]) ≥ dSR1 (Node, si, si+1) (Line 4). Consequently, d(p[si,si+1]) is
dominated by dSR(Si), following the definition of dSR.

7If several adjacency segments exist between x0 and x1, the one that matches the weight of the considered
edge should be used.
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Consequently, S strongly encodes p, as per Def. 4.3.1.

Furthermore, we can show that the segment list returned by encode encodes strongly
the path given as input in the minimal number of segments.

Lemma 4.3.2. Let S be a segment list that strongly encodes p. Then, |S| ≥ |encode(p)|,
i.e., encode finds the minimal strong encoding of p.

Proof. Let us consider two segment lists S = ((Si)0≤i≤l−1) and S′ = ((S′
i)0≤i≤l′−1), both

encoding p. Let S′ = encode(p) (i.e., S′ is the result of Alg. 1).

For the sake of contradiction, let us assume that l < l′. Then, at some point, a segment
Sk encoded more of p than S′k.

Recall that, per definition of strong encoding, si ∈ p.Then, there must exist k, 0 ≤
k ≤ l − 1, such that

1. sk appears before, or at the same place as s′k in path p

2. sk+1 appears strictly after s′k+1 in path p.

Let us start by considering that sk = s′k. Then, 2. contradicts with the fact that S′
k

is a path encoding the longest prefix of p (recall that S′
k is the output of procedure

1SegLongestPrefix on s′k).

Otherwise, sk appears strictly before s′k in path p. Notice that Sk is then necessarily
a node segment, as it encodes more than an edge. Following the definition of strong
encoding, p[sk,sk+1] ∈ P ∗

2 (sk, sk+1). Furthermore, as p[s′k,sk+1] is a subpath of p[sk,sk+1],
p[s′k,sk+1] is a shortest path, following the subpath optimality property. Thus, we have

(i) p[s′k,sk+1] ∈ P ∗
2 (s

′
k, sk+1)

When then have to prove that

(ii) d(p[s′k,sk+1]) is dominated by dSR(s′k, sk+1).

Recall from Remark 4.3.1 that (ii) is equivalent to showing that d(p[s′k,sk+1]) =

dSR(Node, s′k, sk+1). We show that this equality does indeed both for both M1 and
M2.

1. It follows naturally from (i) and the definition of dSR that d2(p[s′k,sk+1]) =

dSR2 (Node, s′k, sk+1).

2. By definition of dSR, d1(p[s′k,sk+1]) ≤ dSR1 (Node, s′k, sk+1).
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Let us suppose, for the sake of contradiction, that d1(p[s′k,sk+1]) < dSR1 (Node, s′k, sk+1).
Then, there exists p′ ∈ P ∗

2 (s
′
k, sk+1) such that d1(p

′) > d1(p[s′k,sk+1]). Then, the
path p[sk,s′k]

⊕ p′ is a shortest path from sk to sk+1 (as d2(p
′) = d2(p[s′k,sk+1]) =

dSR2 (Node, s′k, sk+1)) and d1(p[sk,s′k]
⊕ p′) > d1(p[sk,sk+1]). Consequently, we have

dSR1 (Node, sk, sk+1) ≥ d1(p
′) > d1(p[sk,sk+1]) (by definition of dSR). Thus, as

dSR(Node, sk, sk+1) does not dominate d(p[sk,sk+1]), (Node, sk, sk+1) does not encode
p[sk,sk+1], which contradicts the definition of S.

We can then deduce that d1(p[s′k,sk+1]) = dSR1 (Node, s′k, sk+1).

Given that (i) and (ii) must be true, (Node, s′k, sk+1) encodes p[s′k,sk+1], which con-
tradicts the fact that S′

k = (t, s′k, s
′
k+1) encodes a longest prefix, as sk+1 appears after

s′k+1 in p.

Such a conversion algorithm must be called repeatedly when exploring the graph. Indeed,
simply solving DCLC and then converting the non-dominated path to a segment list is not
sufficient. For example, the DCLC path returned may require more than MSD segments
to encode. Consequently, the number of segments necessary to encode a path must be
maintained at each extension, to maintain the entire 3D Pareto front (considering segments,
delay, and cost) and ensure finding the solution to DCLC-SR.

Considering this, we further optimize our encoding scheme. Note that the checks at
Line 1 and 4 can be performed efficiently through the SR graph when keeping only the edges
representing node segments. Indeed, the weight of an edge within this SR graph corresponds
to the distance of the associated segment. Thus, checking whether a path p(u, v) can be
encoded through a node segment can be done by matching its distance with the weight of
the edge w(u, v) with the SR Graph, i.e., dSR(Node, u, v).

More precisely, one may check if a path p(u, v) is an ECMP path by checking whether
it possesses the best cost from u to v, i.e., if its cost is equal to dSR2 (Node, u, v) (i.e.,
w2(u, v) in the SR Graph). Furthermore, checking whether a path p(u, v) does not possess
a better delay than other ECMP paths can be done by checking whether its delay is equal
to dSR1 (Node, u, v).

Furthermore, while Alg. 1 and 2 assume that the whole path is given as input, the
latter can be easily modified to consider paths edges by edges and correctly update the
corresponding segment lists to encompass each new edge, instead of re-considering the entire
path.

From these observations, we derive a new algorithm able to strongly encode paths in
segment lists during the exploration of said path while relying on efficient tests performed
via the SR Graph.

LCA (Alg. 3) takes as input a segment list strongly encoding a path p, and an edge e.
It then returns a new segment list, strongly encoding p ⊕ e. LCA follows the same general
idea as Alg. 1 and 2, i.e., encoding the longest possible prefix through a single segment.

More precisely, LCA starts by retrieving the last segment of the segment list Sl−1 =

(t, s, u). It then checks if this segment can be updated to (t, s, v) to encompass the new edge
e. Since an adjacency segment may only encode one segment, updating (t, s, u) to (t, s, v)
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Algorithm 3: LCA(S, e = (u, v))

1 (t, s, u) = Sl−1

2 if S = [ ] then
3 t = None

4 s = u

5 if t = Node and dSR(Sl−1) + w(e) = dSR(Node, s, v) then
6 Sl−1 = (t, s, v)

7 return S

8 if w(e) ̸= dSR(Node, s, v) then
9 S.push((Adj, u, v))

10 return S

11 S.push((Node, u, v))
12 return S

is only possible if t = Node. To ensure that the new, extended path is strongly encoded by
(Node, s, v), the distance of the path is matched against the distance of said node segment
(see Line 5). The last segment is then modified accordingly.

Otherwise, a new segment is necessarily required. Line 8 checks whether this new seg-
ment should be an adjacency (i.e., by matching the weight of e against the node segment
(Node, u, v)) or a node segment. The new segment is then pushed onto S, which is returned.
We now show that relying on LCA allows computing the same segment lists as encode.

To do so, we will consider a simple wrapper to the LCA function, which calls LCA
iteratively on each edge of a path and returns the resulting segment list.

Algorithm 4: lca_wrapper(p = (x0, x1) . . . (xl−1, xl))

1 S = (Node, x0, x0)

2 for e ∈ p do
3 S = LCA(S, e)

4 return S



4.3. Using the SR Graph to perform live conversions with LCA 117

Lemma 4.3.3. Let p be a path. Then, lca_wrapper(p) = encode(p).

Proof. Let Slca be the segment list obtained when calling lca_wrapper with a given
path p as argument, and Senc the segment list obtained when calling encode p as
argument.

We will prove by induction that, when encoding a path p of n edges, Slca = Senc.

Base case (n = 1)

When n = 1, the path is composed of a single edge e = (u, v). Any encoding segment
will thus necessarily be equal to S = (t, u, v). Consequently, it suffices to show that
tlca0 = tenc0 .

Suppose that tlca0 = Adj. By following Alg. 3, this implies w(e) ̸= wG′
(u, v), i.e.,

w(e) ̸= dSR(Node, u, v), by definition of the SR graph and dSR. If w(e) ̸= wG′
(u, v),
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either

1. w1(e) < dSR1 (Node, u, v), i.e., w1(e) < dmax
1 (P ∗

2 (u, v))

2. w2(e) > dSR2 (Node, u, v) i.e., w2(e) > d∗2(u, v) and so e /∈ Dag[u,v], by definition of
dSR.

Consequently, given Line 1 of Alg. 2, tenc0 = Adj. Thus, tlca0 = Adj implies that
tenc0 = Adj.

If tlca = Node, then w(e) = dSR(Node, u, v). Thus, w2(e) = d∗2(u, v), meaning that
(u, v) ∈ Dag[u,v], and w1(e) = dmax

1 (P ∗
2 (u, v)). Consequently, according to Line 1 of

Alg. 2, tenc0 = Node. Thus, tlca0 = Node implies that tenc0 = Node. The property then
holds for n = 1.

Inductive hypothesis

Let k be given and suppose that the property remains true for n = k, i.e., that
encode(p)=lca_wrapper(p) for any p of n edge. We show that this remains true
when considering a path p′ = p⊕ e.

Inductive step

When encoding p + e, both segment lists may gain one or zero additional
segment.

Let p = (x0, x1) . . . (xn−1, xn) be a path of n edge. By hypothesis, Senc =encode(p)
is equal to Slca =lca_wrapper(p) and both segment lists possess the same number of
segments, i.e., lenc = llca = l. Consequently, Senc

[0,l−2] = Slca
[0,l−2].

Let us consider the path p′ = p ⊕ e of n + 1 edges, with e = (xn, xn+1). Let
Senc′ =encode(p′) and Slca′ =lca_wrapper(p′). Note that both Senc′ and Slca′

have at most l + 1 segment. Indeed, if lenc
′
> l + 1, then there exists a segment lists

S = Senc⊕ (Adj, xn, xn+1) which strongly encodes p′ in l+1 segments, which contradicts
Lemma 4.3.2. Furthermore, following Alg. 3, a new edge e may either add a single
segment (Line 10 and 12) or leave the number of segments unchanged (Line 7). Thus,
we have l ≤ lenc

′ ≤ l + 1 and l ≤ llca
′ ≤ l + 1.

As e may only impact the last segment, showing that both algorithms
choose the same last(s) segment(s) is sufficient.

Clearly from the pseudo-code of the algorithm, the edge e can only impact the last
segment of Senc′ and Slca′ (i.e., the lth or l + 1th segment).

More precisely, considering e may either add a new segment to the list, or change the
last segment. Previous segment are not impacted.

Thus, we have at least Senc′

[0,l−2] = Senc
[0,l−2] and Slca′

[0,l−2] = Slca
[0,l−2]. Recall that Senc

[0,l−2] =

Slca
[0,l−2].

Consequently, Slca′

[0,l−2] = Senc′

[0,l−2]. It is thus sufficient to show that the last(s)



4.3. Using the SR Graph to perform live conversions with LCA 119

segment(s) of Slca′ and Senc′ are identical.

When lenc
′
= l, then both encode(p⊕ e) and lca_wrapper(p⊕ e) output

the same segment list.

Since we already know that Slca′

[0,l−2] = Senc′

[0,l−2], it is sufficient to show that Slca′
l−1 = Senc′

l−1

to prove that Senc′ = Slca′ , as both will then encode the entirety of p′ and be of size l. By
hypothesis, we know that Slca

l−1 = (Node, xi, xn) (recall that Slca
l−1 = Senc

l−1 =encode(p)).
There is thus only one possibility : encode chose to update its last (node) segment to
encompass the new edge e. We will now show that in this case, LCA would follow the
same behavior.

Let us suppose that lenc
′
= l. Following Alg. 1, that means that the ultimate call

to 1SegLongestPrefix reached Line 6, meaning that Senc
l−1 = (Node, sl−1, xn) and

Senc′
l−1 = (Node, sl−1, xn+1). We then know that e ∈ Dag[sl−1,xn+1] and d1(p[sl−1,xn+1]) ≥

dSR1 (Node, xi, xn+1). Given that e ∈ Dag[xi,xn+1], then dSR2 (Slca
l−1) + w2(e) =

d∗2(xi, xn+1) = dSR(xi, xn+1).
Furthermore, as d1(p[xi,xn+1]) ≥ dSR1 (Node, xi, xn+1), we know that

d1(p[xi,xn]) + w1(e) = dSR1 (Node, xi, xn+1). Since (Node, xi, xn) encodes p[xi,xn], it
follows that dSR1 (p[xi,xn]) + w1(e) = dSR1 (Node, xi, xn+1). Consequently, from both
equalities, we know that Line 5 is verified and that LCA also changes the last segment
to (Node, xi, xn+1). No edges are left to consider.

When lenc
′
= l + 1, then both encode(p ⊕ e) and lca_wrapper(p ⊕ e)

output the same segment list.

Let us now suppose that lenc
′
= l + 1. Since the last segment results from the

addition of e to the path, said segment necessarily encodes e. Thus, Senc′
l may take only

two values : either Senc′
l = (Node, xn, xn+1) or Senc′

l = (Adj, xn, xn+1). Consequently,
the penultimate segment of Senc′ may also only take two values : (i) (Node, sl−1, xn) or
(ii) (Adj, xn−1, xn).

(i) If the penultimate segment of Senc′, i.e., Senc′
l−1 is a node segment, both

encode(p⊕ e) and lca_wrapper(p⊕ e) output the same segment list

Here, we have Senc′
l−1 = (Node, sl−1, xn). Since e only added a new segment to

the list, we know that Senc′
l−1 = Senc

l−1, and so that Senc′
l−1 = Senc

l−1 = Slca
l−1. Thus,

Slca
l−1 = (Node, sl−1, xn).

While both segment lists end with the same node segment, this does not mean that
they remain the same after considering e, i.e., it does not ensure that Senc′

l−1 = Slca′
l−1 .

Indeed, while we know that encode chose to add a new segment to the segment
list (since lenc

′
= l + 1) and leave Senc′

l−1 unchanged, LCA could have chosen to
update the node segment Slca

l−1 to encompass e, and not add any new segment
after that. Thus, we have to prove that if encode chose to add a new node or
adjacency segment after Senc′

l−1 = Slca
l−1, so did LCA.
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If Senc′
l = (Node, xn, xn+1), then two possible conditions could have been verified

for encode to add this segment.

Either, (xn, xn+1) /∈ Dag
[senc′

l−1 ,xn+1]
, in which case p[senc

l−1,xn−1] ⊕ (xn−1, xn) is not

a shortest path. Since dSR(Sl−1) = p[senc
l−1,xn] by definition, then dSR(Sl−1) +

(xn, xn+1) ̸= dSRNode,senc
l−1,xn+1

, meaning that Line 5 of LCA is not verified.

Or, d1(p[senc
l−1,xn+1]) < dSR1 (Node, sencl−1, xn+1). In this case, d1(p[senc

l−1,xn]) +

w1(e) < dSR1 (Node, sencl−1, xn+1), meaning that dSR1 (Node, sencl−1, xn) + w1(e) <

dSR1 (Node, sencl−1, xn+1), i.e., that dSR(Sl−1)+w1(e) < dSR1 (Node, sencl−1, xn+1). Line 5
of LCA is consequently still not verified.

Finally, we know that (xn, xn+1) ∈ Dag[xn,xn+1] and w1(xn, xn+1) <

dSR1 (Node, xn, xn+1) (else 1SegLongestPrefix would have returned
an adjacency segment). Thus, clearly, we have w2(xn, xn+1) =

d∗2(xn, xn+1) = dSR2 (Node, xn, xn+1). Furthermore, we know that
w1(xn, xn+1) ≥ dSR1 (Node, xn, xn+1) for the same reason. Thus,
w1(xn, xn+1) = dSR1 (Node, xn, xn+1), per definition of dSR. Consequently,
w(xn1, xn+1) = dSR(Node, xn, xn+1), meaning that Line 8 is not verified.

Consequently, if Senc′
l = (Node, xn, xn+1), then Slca′

l = (Node, xn, xn+1).

If Senc′
l = (Adj, xn, xn+1), then two conditions had to be verified for encode to

add this segment. First, (xn, xn+1) /∈ Dag[xn,xn+1] and second, w1(xn, xn+1) <

dSR1 (Node, xn, xn+1).

Since (xn, xn+1) /∈ Dag[xn,xn+1], it follows than p[xl−1,xn] ⊕ (xn, xn+1) is not
a shortest path from xl−1 to xn, and so that d2(p[xl−1,xn]) + w2(xn, xn+1) ̸=
dSR(Node, xl−1, xn) by definition of dSR. Since Slca

l−1 encodes p[xl−1,xn] (recall that
Senc′
l−1 = (Node, xl−1, xn) = Slca

l−1), then d(p[xl−1,xn]) = dSR(Slca
l−1), meaning that

dSR(Slca
l−1) + w2(xn, xn+1) ̸= dSR(Node, xl−1, xn). Thus, Line 5 of LCA is not

verified.

Since w1(xn, xn+1) < dSR1 (Node, xn, xn+1), then w(xn, xn+1) ̸=
dSR(Node, xn, xn+1), meaning that Line 8 of LCA is verified, and that LCA
also adds (Adj, xn, xn+1) to its segment list.

(ii) If the penultimate segment is an adjacency segment, both encode(p ⊕ e) and
lca_wrapper(p⊕ e) output the same segment list

Similarly to the previous case, we necessarily have Senc′

[0,l−1] = Slca′

[0,l−1] =

(Adj, xn−1, xn). However, in this case, both algorithms have to add another seg-
ment to the list during the next step, as an adjacency segment can only encompass
one edge.

Furthermore, note that when encoding the last edge e = (xn, xn+1), LCA will thus
consider s = xn, t = Adj and thus behave exactly as if encoding a path of a
single edge p = (xn, xn+1). Similarly, the last call of 1SegLongestPrefix, by
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design, will behave exactly like if encoding a path p = (xn, xn+1). Consequently,
the argument used for the case n = 1 is identical and holds.

Thus, we have encode(p + e) = lca_wrapper(p + e), meaning that en-
code(p) = lca_wrapper(p) for all p.

Lemma 4.3.4 follows naturally from Lemma 4.3.3.

Lemma 4.3.4. LCA allows computing the minimal strong encoding of any given path p.

As long as the segment lists encoding the paths being explored are maintained, LCA
may be fitted onto any shortest path computation algorithm to encode paths into segment
lists that ensure that their distance is respected. The associated overhead is negligible,
as the required checks can be performed very efficiently if the SR graph was computed
beforehand.

However, simply relying on LCA to track the size of the segment lists is not sufficient by
itself to solve DCLC-SR. Because of the peculiarities of the segment metric, some dominated
paths must be maintained and extended to retrieve the entirety of the three-dimensional
Pareto front.

4.3.2 Keeping (some) dominated paths

Although the algorithms presented in the previous section allow finding the minimal number
of segments to strongly encode a path, other modifications are required to correctly consider
the number of segments as a new dimension when computing paths.

The notion of dominance is central to most DCLC schemes to limit the number of dis-
tances to extend. The standard definition of dominance is straightforward: a distance toward
a node u is dominated if all the components of its weight vector are worse than or equal
to another distance towards the same node (see Section 2.2.2). Dominated distances can
usually be ignored, as they cannot lead to better distances overall. Indeed, as both distances
may benefit from the same edges onwards, there is no way for the dominated distance to
improve upon the non-dominated one.

This simple property does not behave in the same fashion when considering the number
of segments as a new dimension of the paths’ distance. Indeed, extending a distance by
an edge (u, v) may or may not cost an additional segment, depending on the actual path
used to reach u. As distances may be extended with no impact on the number of segments,
distances that seem dominated may become non-dominated later on, or may even be the
only feasible distances at the end of the exploration.

These peculiarities are illustrated in Fig. 4.5. Let us consider the comeback gadget.
Two delay-cost vectors (d1; d2) exist to reach u from s : (1; 1) and (100; 1). Both can
be encoded with a single segment ((Adj, s, u) and (Node, s, u) respectively), leading to the
distances d(s, u) = (1; 1; 1) and d′(s, u) = (1; 100; 1), where the first component d0 is the
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(a) comeback gadget. (b) underdag gadget.

Figure 4.5: Figures illustrating the peculiarities of the number of segment metric.

number of segments. Note that following the standard definition of dominance, d′(s, u) is
dominated.

Both d′ and d can be extended by (u, v), leading to the delay-cost vector (2; 2) and
(101; 2). However, while the vector (2; 2) requires an additional node segment to be encoded
(following the adjacency segment), the vector (101; 2) remains encodable through a single
node segment (Node, s, v). Thus, upon extension, the obtained distances are d(s, v) =

(2; 2; 2) and d′(s, v) = (1; 101; 2).
While resulting from the extension of a dominated distance, d′(s, v) is non-dominated

(and the only feasible distance when considering a strict c0 constraint of 1).
In the comeback gadget, this effect results from the fact that an adjacency segment

may only encode a single link. Hence, the following edges to encode will necessarily require
additional segments. On the opposite, a node segment may encode any path lying within
the shortest path DAG of the current source. Thus, as long as the next edges remain within
said DAG, additional segments may not be required (depending on the weight of said
edges). Rather, the current node segment may simply be updated to encode the following
edges.

However, this effect may also occur even if both segment lists end with a node seg-
ment. This is illustrated by the underdag gadget. Let us consider the delay-cost vec-
tors from s to u (2; 2) and (2; 3), from the paths p(s, u) = (s1, a), (a, u) and p′(s, u) =

(s2, b), (b, u) respectively. These distances and paths can be encoded by the segments lists
S = (Adj, s1, a)|(Node, a, u) and S′ = (Adj, s2, b)|(Node, b, u) respectively. Thus, their dis-
tances are d = (2; 2; 2) and d′ = (2; 2; 3). Note that d′ is dominated by d, and that both S

and S′ are composed of segments of the same type.
However, notice that the edge (u, v) lies within the shortest path DAG of b. Hence,

the last segment of S′, (Node, b, u), may simply be updated to (Node, b, v) to encompass
(u, v). On the contrary, the edge (u, v) does not lie within the shortest path DAG of a.
Thus, the last segment of S, (Node, a, u) may not be updated to encompass (u, v), and a
new segment is required. Consequently, once updated, the distances to v are d = (3; 4; 3)

and d′ = (2; 4; 4). Once again, the non-dominated distance d′ results from the extension of
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a dominated distance.

From these observations, we derive and formally define the strong dominance relation.
Strong dominance encompasses the peculiarities of the new metric when considering strong
encoding, and should thus be followed when relying on LCA to correctly solve DCLC-SR.

Definition 4.3.3 (Strong dominance). Let d and d′ be two distances encoding two
paths p and p′ from x0 to xk, composed of three components d0, d1, d2, representing
their number of segments, delay and cost respectively. Let S = (ti, si, si+1)0≤i≤l−1 and
S′ = (t′i, s

′
i, s

′
i+1)0≤i≤l′−1 be their respective (encoding) segment lists.

The segment list S is strongly dominated by S′ if d is dominated by d′ (as per Def. 2.2.4),
and if either :

1. d0 > d′0, or

2. tl−1 = t′l′−1 ∧ dSR(Node, sl−1, s
′
l′−1) + dSR(Node, s′l′−1, xk) = dSR(Node, sl−1, xk)

While the importance of the conditions within Def. 4.3.3 are thoroughly detailed and
leveraged within the following proofs, we will first describe their impact informally. Intu-
itively, if S is dominated by S′, it will necessarily (by definition) remain dominated regarding
its cost and delay, as both distances may be extended by the same edges, which have the
same impact on both metrics. The additional conditions thus focus on the number of seg-
ment, which may evolve differently despite being extended by the same edge (as seen in
Fig 4.5), and ensures that S remains dominated when considering this metric as well despite
its odd behavior.

Less formally, we state that a segment list S is strongly dominated by S′ if it is dominated
by S′, and if one of two conditions is verified.

The first condition is that the number of segments of S is strictly superior to that of S′.
Otherwise, as the number of segments does not necessarily increase in a strictly monotonous
fashion, it is possible for d0 to become smaller than d′0 (as we have seen in Fig. 4.5). However,
we will prove that such a case (where S does not require an additional segment while S′ does)
may only happen once in a row. Hence, ensuring that d0 > d′0 is sufficient.

The second condition is perhaps less intuitive. Intuitively, the condition ensures that if
S does not require another segment to encode an additional edge, neither does S′, meaning
that S is bound to remain dominated by S′.

Maintaining and extending only distances that are not strongly dominated allows pruning
some distances from further exploration without compromising the integrity of the returned
Pareto front, as stated and proved in Lemma 4.3.5.

Lemma 4.3.5. A segment list that is strongly dominated remains strongly dominated
after being extended.

Proof. Let S be a segment list, and d the associated distance. Let S be strongly domi-
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nated.
Since S is strongly dominated, there exists a segment list S′ (having a distance d′)

such that S is dominated by S′, and either (i) tl−1 = t′l−1 ∧ dSR(Node, sl−1, s
′
l′−1) +

dSR(Node, s′l′−1, xn) = dSR(Node, sl−1, xn) or (ii) d0 > d′0. Let us denote S+1 the
segment list S once extended by an additional edge (u, v), and d+1 the associated distance.

If d is dominated by d′ and tl−1 = t′l−1 ∧ dSR(Node, sl−1, s
′
l′−1) +

dSR(Node, s′l′−1, xn) = dSR(Node, sl−1, xn), S+1 is strongly dominated when
extended by an edge (u, v).

Clearly, when extending by the same edge e = (u, v), the cost and the delay of d and
d′ evolves in the same fashion. We thus need to ensure that d+1

0 ≥ d′+1
0 , and that (i) or

(ii) is still verified.

d remains dominated

Note that when extending a distance and relying on the conversions schemes afore-
mentioned, the number of segments may either stay the same or increase by one. The
distances d0 and d′0 may thus evolve in four different fashion: either both increase by one,
none increase by one, or one of them increases by one. We will refer to these cases as
+1/+1 (both gain one segment), +0/+0 (both remain identical), +1/+0 (only d0 gains
a segment when extended) and +0/+1 (only d′0 gains a segment when extended).

Note that in all cases but one, the dominance relationship remains unchanged. Solely
the +0/+1 case may render d+1

0 non-dominated. However, recall that we mentioned
earlier in this section that condition (i) ensures that if S does not require an additional
segment, neither does S′, meaning that this case may not occur if (i) is verified, as we
will now show.

If S did not require an additional segment, then Sl−1 is a node segment, meaning
that S′

l′−1 is a node segment as well (since (i) holds).
Furthermore, this means that dSR2 (Sl−1) + w2(u, v) = dSR2 (Node, snl−1, v). Thus, a

shortest path from sl−1 to v goes through u. Since a shortest path is necessarily composed
of shortest subpaths, we have dSR2 (sl−1, v) = dSR2 (snl−1, u) + w(u, v). Since (i) hold, we
have dSR2 (sl−1, u) = dSR2 (sl−1, s

′
l′−1) + dSR2 (s′l′−1, u). It follows than

dSR2 (sl−1, v) = dSR2 (sl−1, s
′
l′−1) + dSR2 (s′l′−1, u) + w(u, v). (4.1)

Notice that the triangle inequality hold for d2. Consequently, we have dSR2 (s′l′−1, u) ≤
dSR2 (s′l′−1, u) + w2(u, v). Similarly, we know that dSR2 (sl−1, s

′
l′−1) + dSR2 (s′l′−1, v) ≥

dSR2 (sl−1, v), i.e., that

dSR2 (s′l′−1, v) ≥ dSR2 (snl−1, v)− dSR2 (sl−1, s
′
l′−1)

. Coupled with Eq. 4.1, we can deduce that

dSR2 (s′l′−1, v) ≥ dSR2 (snl−1, s
′
l′−1) + dSR2 (s′l′−1, u) + w2(u, v)− dSR2 (snl−1, s

′
l′−1)
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And so that dSR2 (s′l′−1, v) ≥ dSR2 (s′l′−1, u) + w2(u, v). Consequently, we know that

dSR2 (s′l′−1, v) = dSR2 (s′l′−1, u) + w2(u, v)

.
Furthermore, we know that dSR1 (s′l′−1, v) = dSR1 (s′l′−1, u) + w1(u, v). Let us

suppose, for the sake of contradiction that dSR1 (s′l′−1, v) ̸= dSR1 (s′l′−1, u) + w1(u, v).
Then, as dSR1 (s′l′−1, u) + w1(u, v) is a shortest path, we know by definition that
dSR1 (s′l′−1, v) > dSR1 (s′l′−1, u) + w1(u, v), meaning that there exist a shortest path p from
s′l′−1 to v with a delay higher than dSR1 (s′l′−1, u)+w1(u, v). However, in this case, we would
have dSR1 (sl−1, v) = dSR1 (snl−1, s

′
l′−1) + dSR1 (s′l′−1, u) + w(u, v) < dSR1 (sl−1, s

′
l′−1) + d1(p),

which contradicts the definition of dSR1 .

Thus, for all possible cases, d+1 remains dominated if (i) is verified.

(i) or (ii) remains verified

Let us start by considering the +0/+0 case. Then, both segment lists Sn and S′

ended with a node segment that has been updated. Let us denote S′+1 the segment list
S′ after being extended. Clearly, t+1

l = t′+1
l′ = Node. Similarly, we have s+1

l = sl−1 and
s′+1
l′−1 = s′l′−1. Since the last (node) segment of S was updated, then we have

dSR(Node, sl−1, u) + w(u, v) = dSR(Node, sl−1, v) (4.2)

Furthermore, as (i) was verified prior to the extension, we know that

dSR(Node, sl−1, s
′
l−1) + dSR(Node, s′l′−1, u) = dSR(Node, sl−1, u) (4.3)

It follows from Eq. 4.2 and Eq. 4.3 that

dSR(Node, sl−1, s
′
l′−1) + dSR(Node, s′l′−1, u) + w(u, v) = dSR(Node, sl−1, v) (4.4)

However, recall that S′ also updated its last node segment, meaning that

dSR(Node, s′l−1, u) + w(u, v) = dSR(Node, s′l′−1, v) (4.5)

It follows from Eq. 4.4 and Eq. 4.5 that

dSR(Node, sl−1, s
′
l′−1) + dSR(Node, s′l′−1, v) = dSR(Node, sl−1, v)

, meaning that condition (i) remains verified.
Considering the +1/+1 case, then both segment list where either extended by one

node segment (Node, u, v) or one adjacency segment (Adj, u, v). Clearly, if both S and
S′ require a new segment, then the edge (u, v) does not lie on a shortest path from sl−1

to v, or had a better delay that other shortest paths. The similar reasoning can be had
regarding s′l′−1. The choice between an adjacency and a node segment thus boils down to
whether (u, v) is the shortest path between u and v and, if it is, it possesses the highest
delay among all shortest path between u and v. Clearly, this choice does not depend on
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any previous segment, and both S and S′ will be extended in the same fashion. Thus,
we have t+1

l+1 = t′+1
l′+1 = Node. Since s+1

l = s′+1
l′ = u, then (i) clearly remains verified, as

the condition translates to dSR(Node, u, u) + dSR(Node, u, v) = dSR(Node, u, v).
Finally, we consider the last possible case, i.e., the +1/+0 case. Note that by defi-

nition, we know that d0 ≥ d′0 (as d is dominated by d′). Then, in the +1/+0 case, we
necessarily have d+1

0 > d′+1
0 , meaning that (ii) is verified.

Thus, in all cases considered above, d remains dominated by d′ after being extended.
We now prove that the same is true when (ii) is verified.

If d is dominated by d′ and d0 > d′0, d
+1 is strongly dominated.

d+1 remains dominated

Similarly to the previous case, we simply need to ensure that after being extended,
d+1
0 ≥ d′+1

0 .
Let us consider the four possible cases. Clearly, for all possible cases +0/+0, +1/+1,

+1/+0, +0/+1, we have either d+1
0 > d′+1

0 or d+1
0 = d′+1

0 , meaning that d+1 is dominated
by d′+1.

(i) or (ii) remains verified

For cases +0/+0, +1/+1, +1/+0, d+1
0 > d′+1

0 clearly remains true, meaning that (ii)
remains verified and that d+1

0 remains strongly dominated.
Let us consider the case +0/+1. In this case, it is possible that d+1

0 = d′+1
0 , meaning

that (ii) would not be verified anymore. However, recall that earlier in this section, we
stated that such a case may only occur once in a row. Indeed, if this case occurs, then
(i) becomes verified, meaning that the +0/+1 case cannot occur at the next iteration, as
proved earlier. Let us show that (i) is now indeed verified.

In this case, we know that the last segment of S+1 is a node segment (Node, s+1
l−1, v),

that has just been updated to encompass the edge (u, v). As a node segment may only
encode shortest paths (with the highest delay), we know that the edge (u, v) must also
be a shortest path from u to v, and possess the maximum delay among all these shortest
paths. We can than deduce that w(u, v) = dSR(Node, u, v) meaning that the segment
added to S′ is also node segment. Thus, the last segment of S+1 and S′+1 share the same
type.

Furthermore, we know that dSR(Node, sl−1, u) + w(u, v) = dSR(Node, sl−1, v). As
w(u, v) = dSR(Node, u, v), we know that dSR(Node, sl−1, u) + dSR(Node, u, v) =

dSR(Node, sl−1, v). However, since the last segment of S′+1 is necessarily
(Node, u, v), then s′+1

l′ = u. Furthermore, we have s+1
l+1−1

= snl−1. Thus, we have
dSR(Node, s+1

l+1−1
, s′+1

l′ ) + dSR(Node, s′+1
l′ , v) = dSR(Node, s+1

l+1 , v), meaning that condi-
tion (i) is verified.

Consequently, a strongly dominated distance d’ remains strongly domi-
nated.
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From Lemma 4.3.5, we can deduce the following theorem :

Theorem 4.3.1. Extending all non-strongly dominated segment list that have been com-
puted through strong encoding allows to retrieve the entirety of the Pareto front of dis-
tances, considering cost, delay, and number of segments.

Proof. As all non-dominated distances are segment lists, each non-dominated
(cost, delay) vector are found. We must then ensure that the minimal segment list will
be found for each of these vectors.

We know that any given segment list encoding these distances strongly encodes a
path (including the minimal segment list). Indeed, let S be a segment list. For any
segment Si, we know that there necessarily exists a path pi from si to si+1 such that
d(pi) = dSR(Si), which is either the shortest path with the highest delay from si to si+1

if ti = Node, or a given link if ti = Adj. Thus, S strongly encodes p0 ⊕ p1 ⊕ · · · ⊕ pl.
Clearly, strongly encoding all paths of a given (cost, delay) distance would then enable

to find the minimal segment list encoding this distance.
While we do not strongly encode all of such paths (as not all paths are extended),

we showed through Lemma 4.3.5 that the paths that are not extended (i.e., strongly
dominated paths) would necessarily have required a higher or equal number of segment
to encode.

Consequently, we visit enough path to ensure that the minimal segment list encoding
any given distance is found, and so that the entire Pareto front is retrieved.

In this section, we presented LCA, an SR conversion scheme that strongly encode paths, an
encoding paradigm allowing to leverage load-balancing. Furthermore, we exhibited the pecu-
liarities of the segment metric. From the latter, we derived the notion of strong dominance,
which allows pruning paths from the exploration while ensuring to capture the entirety of
the Pareto front. By relying on LCA and the concept of strong dominancy, multi-criterion
path computation algorithms can be modified to correctly take into account the number of
segments as a new dimension while exploring the original graph.

Note, however, that while the overhead induced by LCA is limited, the number of ad-
ditional (dominated) distances to maintain may be quite high, with no guarantee that the
latter will indeed end up on the Pareto front. For some algorithms, directly exploring the
SR graph may be more efficient.

4.4 Exploring the SR Graph natively and efficiently with
BEST2COP

The high density of the SR graph does not necessarily imply that exploring the latter directly
is not viable. Indeed, the SR graph possesses characteristics that may be leveraged during
the exploration to achieve competitive performance. Recall that within the SR graph, the
number of segments is equal to the number of hops. The metric thus becomes far easier to
manage, and the simpler relation of classic dominance can be used, reducing the number of
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Figure 4.6: A simplified view of the BEST2COP algorithm.

distances to extend. Furthermore, by using a BFM-like exploration of the SR Graph, one
can not only easily prune paths requiring more than MSD segments, but also benefit from
efficient Pareto front management and multi-threading.

We designed our algorithm, BEST2COP, following this approach. These various features
allow BEST2COP to efficiently solve both DCLC-SR and 2COP, despite the nature of the
SR Graph. The implementation of BEST2COP is available online 8.

4.4.1 The general design of BEST2COP

BEST2COP’s design is centered around two properties. First, the graph exploration is
performed so that paths requiring i segments are found at the ith + 1 iteration, to natively
tackle the MSD constraint. Second, BEST2COP’s structure is easily parallelizable, allowing
to benefit from multi-core architectures with low overhead. A simplified explanation of the
way BEST2COP works can be seen in Fig. 4.6

The exploration scheme followed by BEST2COP is reminiscent of the one proposed by
Corley and Moon [Corley & Moon 1985], or more generally, of BFM.

Simply put, at each iteration, BEST2COP starts by extending the known paths by one
segment (one edge in the SR graph) in a Bellman-Ford fashion (a not-in-place version to
be accurate, to benefit from the I-HOP property). When extended, the distances found
during a given iteration are only checked loosely (and efficiently) for dominancy at first.
This extension is performed in a parallel-friendly fashion that prevents data-races, allowing
to easily parallelize our algorithm. Only once at the end of an iteration are the newly found
distances filtered and thoroughly checked for dominance, to reflect the new Pareto front.
The remaining non-dominated distances are in turn extended at the next iteration.

These steps only need to be performed MSD ≈ 10 times, ignoring so all paths that are
not deployable through SR. When our algorithm terminates, the results structure contains,
for each segment number, all the distances of non-dominated paths from the source towards
all destinations.

Note that interestingly, as the number of hops becomes a metric that must be considered,
using a BFM-like exploration scheme now results in a label-setting approach, as distances

8https://github.com/talfroy/BEST2COP
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discovered during previous iterations are necessarily non-dominated. This interesting conse-
quence (as this type of exploration is usually used by label-correcting algorithms) is probably
one of the reason behind the performance of our algorithm.

4.4.2 BEST2COP in more detail

BEST2COP’s main procedure is shown in Alg. 5. The variable pfront, the end result
returned by our algorithm, contains, for each iteration, the Pareto front of the distances
towards each node n. In other words, pfront[i] contains, at the end of the ith iteration, all
non-dominated (M1,M2) distances of feasible paths towards each node n.

The variable dist is used to store, for each vertex, the best M2-distance found for each
M1-distance to each node. Since the M1-distance of any feasible path in G′ is bounded by Γ,
we can store these distances in a static array dist[v]. Note that during iteration i, dist will
contain the Pareto front of the current iteration (non-dominated distances of i segments) in
addition to distances that may be dominated. Keeping such paths in dist allows us to pre-
filter paths before ultimately extracting the Pareto front of the current iteration from dist
later on. This variable is used in conjunction with pf_cand, a boolean array to remember
which distances within dist were found at the current iteration.

The variable extendable is a simple list that contains, at iteration i, all non-dominated
distances discovered at iteration i − 1. More precisely, extendable is a list of tuples
(u, d_list), where d_list is the list of the best-known paths towards u. The variable
nextextendable is a temporary variable allowing to construct extendable.

After the initialization of the required data structures, the main loop starts. This loop
is performed MSD times, or until no feasible paths are left to extend. For each node v, we
extend the non-dominated distances found during the previous iteration towards v (originally
(0,0) towards src). Extending paths in this fashion allows to easily parallelize the main for
loop (e.g., through a single pragma Line 14). Indeed, each thread can manage a different
node v towards which to extend the non-dominated paths contained within extendable.
As threads will discover distances towards different nodes v (written in turn in structures
indexed on v), this prevents data-races. Note that in raw graphs, this method may lead to
uneven workloads, as not all paths may be extendable towards any node v. However, since
an SR graph is (at least) complete, any path may be extended towards any node v, leading
to similar workloads among threads.

The routine ExtendPaths, detailed in Alg. 6, takes the list of extendable paths, i.e.,
non-dominated paths discovered at the previous iteration, and a node v. It then extends the
extendable paths to u further towards v. The goal is to update dist[v] with new distances
that may belong to the Pareto front. Before being added to dist[v], extended distances go
through a pre-filtering. Indeed, the newly found distance to v may be dominated or may
be part of the Pareto front. While this check is performed thoroughly later, we can already
easily prune some paths: if the new paths to v violate either constraint, there is no point
in considering it. Furthermore, recall that dist stores, for all Γ M1-distances towards a
node, the best respective M2-distance currently known. Thus, if the new M2-distance is
worse than the one previously stored in dist at the same M1 index, this path is necessarily
dominated and can be ignored. Otherwise, we add the distances to dist and update pf_cand
to remember that a new distance that may be non-dominated was added during the current
iteration. Note that ExtendPaths returns the number of paths updated within dist, as well
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Algorithm 5: BEST2COP(G’,src)
1 pfront := Array of size MSD
2 forall i ∈ [0..MSD] do
3 pfront[i] := Array of size |V | of Empty Lists

4 add (pfront[0][src], (0,0))
5 dist := Array of size |V |
6 forall n ∈ V do
7 dist[n] := Array of size Γ

8 dist[src][0] = (0,0)
9 optimal constrained extendable:= Empty List (of Empty Lists)

10 add (extendable, (src, [ (0,0) ]))
11 nextextendable:= Array of size |V | of Empty Lists
12 i:= 1, max_d1:= 0
13 while extendable ̸= [ ] and i ≤ MSD do
14 #pragma omp parallel for
15 forall v ∈ V do
16 pf_cand := Array of size Γ

17 nb, imax := ExtendPaths (v, extendable, pf_cand, dist[v])
18 max_d1 = max (imax, max_d1)

// How to iterate on dist to get new PF
19 if nb log nb + nb + |pfront[i-1][v]| < max_d1 then
20 d1_it := mergesortd1 (pfront[i-1][v], pf_cand)
21 else
22 d1_it := [0. . . max_d1]

23 nextextendable[v] = [ ]
// Extract new PF from dist

24 CptExtendablePaths (nextextendable[v], pfront[i][v], pf_cand, d1_it, dist[v])

// Once each thread done, gather ext. paths
25 extendable = []
26 forall v ∈ V | nextextendable[v] ̸= [ ] do
27 add (extendable, (v,nextextendable[v]))

28 i = i + 1

29 return pfront
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as the highest M2-distance found. This operation is performed for efficiency reasons detailed
here.

Once returned, dist contains distances either dominated or not. We thus need to extract
the Pareto front of the current iteration. This operation is performed in a lazy fashion once
for all new distances (and not for each edge extension). Since this Pareto front lies within
dist, one can simply walk through dist by order of increasing M1 distance from 0 to the
highest M1 distance found yet and filter all stored distances to get the Pareto front of the
current iteration. This may not be effective as most of the entries of dist may be empty.

However, the precise indexes of all active distances that need to be examined (to skip
empty entries) can be constructed by merging and filtering the union of the current Pareto
front and the new distances (pf_cand). Thus, if the sorting and merging of the corresponding
distance indexes is less costly than walking through dist, the former method is performed
in order to skip empty or useless entries. Otherwise, a simple walk-through is preferred. The
merging of the M1 distances of the Pareto front and new M1 distances is here showcased
at high-level (Line 20, Alg. 5). The usage of more subtle data structures in practice allows
performing this operation at the cost of a simple mergesort.

After the list of distances’ indexes to check and filter is computed, the actual Pareto front
is extracted during the CptExtendablePaths procedure, as shown in Alg. 7. This routine
checks whether paths of increasing M1 distance do possess a better M2 distance than the
one before them. If so, the path is non-dominated and is added to the Pareto front, as well
as to the paths that are to be extended at the next iteration. Finally, once each thread
is terminated, nextextendable contains |V | lists of non-dominated distances toward each
node. These lists are merged within extendable, to be extended at the next iteration.

Note that most approximations algorithms relying on interval partitioning or rounding
do not bother with dominance checks. In other words, the structure they maintain is similar
to our dist: the best M2 distance for each M1 distance to a given node. The latter may
thus contain dominated paths that are considered and extended in future iterations. In
contrast, by maintaining the Pareto front efficiently, we ensure to consider the minimum set
of paths required to remain exact and thus profit highly from small Pareto fronts.

The output of BEST2COP. When our algorithm terminates, the pfront array con-
tains, for each segment number, all the distances of non-dominated paths from the source s

towards each destination d. To answer the 2COP problem, for each d and for all (stricter
sub-)constraints c′0 ≤ c0, c′1 ≤ c1 and c′2 ≤ c2, we can proceed as follows in practice:

• for f(M1, c
′
0,Γ, c

′
2, s, d), i.e., to retrieve the distance from s to d that verifies constraints c′0

and c′2 minimizing M1, we look for the first element in pfront[c′0−1][d] verifying constraint
c′2 (the first feasible distance is also the one minimizing M1 because they are indexed on
the latter).

• for f(M2, c
′
0, c

′
1,∞, s, d), we look for the last element in pfront[c′0 − 1][d] verifying con-

straint c′1. The path minimizing M2 being, by design, the last element.

• to compute f(M0,∞, c′1, c
′
2, s, d), let us first denote k the smallest integer such that

pfront[k][d] contains an element verifying constraints c′1 and c′2. The resulting image
is then any of such elements in pfront[k][d].

As one might notice, computing f(Mj , c
′
0, c

′
1, c

′
2, s, d), j = 0, 1, 2 cannot always be achieved
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Algorithm 6: ExtendPaths(v, extendable, pf_cand, dist_v)

1 imax = 0, nb = 0
2 forall (u, d_list) ∈ extendable do
3 forall l ∈ E’(u,v) do
4 forall (d1u, d2u) ∈ d_list do
5 d1v = d1u + w1(l)
6 d2v = d2u + w2(l)

// Filters: constraints and dist
7 if d1v ≤ c1 and d2v ≤ c2
8 and d2v < dist_v[d1v] then
9 dist_v[d1v] = d2v

10 if not pf_cand[d1v] then
11 nb ++
12 pf_cand[d1v] = True

13 if d1v > imax then
14 imax = d1v

15 return nb, imax

Algorithm 7: CptExtendablePaths (nextextendable_v, pfront_iv, pf_cand, d2_it, dist_v)

1 last_d2 = ∞
2 forall d1 ∈ d1_it do
3 if dist_v[d1] < last_d2 then
4 add (pfront_iv, (d1,d2))
5 last_d2 = dist_v[d1]
6 if pf_cand[d1] then
7 add (nextextendable_v, (d1,d2))
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in constant time (for j = 0 and sub-constraints in particular). Indeed, we favor a simple
data structure. A search in an ordered list of size Γ is needed for stricter constraints (and
may be performed log(MSD) times when optimizing M0). To improve the time efficiency
of our solution, each pfront[i][d] may be defined as or converted into a static array in the
implementation.

Finally, for simplicity, we did not show in our pseudo-code the structure and operations
that store and extend the lists of segments. In practice, we store one representative of the
best predecessors and a posteriori retrieve the lists using a backward induction for each
destination.

Several aspects allow BEST2COP to reach good performance. First, the fact that paths
requiring more than MSD segments are natively excluded from the exploration space. Sec-
ond, well-chosen data structures benefit from the limited accuracy of the delay measurements
to limit the number of paths to extend. This allows manipulating arrays of fixed size be-
cause the Pareto front of distances towards each node is limited to Γ at each step (enabling
very efficient read/write operations). Third, using a Bellman-Ford approach allows not only
to easily parallelize our algorithm but also to perform lazy efficient updates of the Pareto
front. Indeed, a newly found path may only be extended at the next iteration. Thus, we can
efficiently extract the non-dominated paths from all paths discovered during the current iter-
ation in a single pass, once at the end of the iteration. Conversely, other algorithms tend to
either check for dominancy whenever a path is discovered (as the latter may be re-extended
immediately), or not bother to check for dominancy at all, e.g., by relying solely on interval
partitioning to limit the number of paths to extend.

4.4.3 For Massive Scale, Multi-Area Networks

Despite these aspects, the design of BEST2COP implies a dominant factor of |V |2 in terms
of time complexity9 (the SR graph being complete), recent SR deployments with more than
10 000 nodes would not scale well enough. The sheer scale of such networks, coupled with the
inherent complexity of TE-related problems, makes 2COP very challenging if not impossible
to practically compute at first glance. In fact, BEST2COP originally exceeds 20s when
dealing with ≈15 000 nodes.

In this section, we describe how we extend BEST2COP in order to deal efficiently with
such massive-scale networks. By leveraging the physical and logical partitioning usually
performed in such networks, we manage to solve 2COP in ≈ 1s even in networks of 100 000
nodes.

4.4.3.1 Scalabity in Massive Network & Area decomposition

The scalability issues in large-scale networks do not arise solely when dealing with TE-related
problems. Standard intra-domain routing protocols encounter issues past several thousands
of nodes. Naive network design creates a large, unique failure domain resulting in numerous
computations and message exchanges, as well as tedious management. Consequently, net-
works are usually divided, both logically and physically, in areas. This notion exists in both
major intra-domain routing protocols (OSPF and IS-IS). In the following, we consider the

9The detailed complexity is given in section 4.4.4.1
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Figure 4.7: The set of solutions across areas is obtained from the cartesian product of the solutions in each
area.

standard OSPF architecture and terminology but our solution can be adapted to fit any one
of them.

Areas can be seen as small, independent sub-networks (usually of around 100 - 1000 nodes
at most). As explained in Section 4.4.3, within OSPF, routers within an area maintain a
comprehensive topological database of their own area only. Stub-areas are centered around
the backbone, or area 0. Area Border Routers, or ABRs, possess an interface in both the
backbone area and a stub area. Being at the intersection of two areas, they are in charge of
sending a summary of the topological database (the best distance to each node) of one area
to the other. There are usually at least two ABRs between two areas 10. Summaries of a non-
backbone area are sent through the backbone. Upon reception, ABRs inject the summary
within their own area. In the end, all routers possess a detailed topological database of their
own area and the best distances toward destinations outside their own area.

4.4.3.2 Leveraging Area Decomposition

This partitioning creates obvious separators within the graph, the ABRs. Thanks to the lat-
ter, we can leverage this native partition in a similar divide-and-conquer approach, adapted
to the computation of 2COP paths, by running BEST2COP at the scale of the areas before
exchanging and combining the results. We do not only aim to reduce computation time, but
also to keep the number and size of the exchanged messages manageable.

We now explain how we perform this computation in detail. For readability purposes,
we rely on the following notations: Ax denotes area x. Ax denotes the ABR between the
backbone and Ax. When necessary, we may distinguish the two ABR A1x and A2x. Finally,
b2cop(Ax, s, d) denotes the results (the non-dominated paths) from s to d within Ax. When
d is omitted, we consider all routers within Ax as destination. Figure 4.7 illustrates a
network with three areas, x, y and 0, the backbone area.
We here chose to detail a simple distributed and router-centric variant of our solution.
However, our solution may well be deployed in other ways, e.g. relying on controllers, or
even a single one. In such cases, the computation could be parallelized per area if needed.
Such discussion is left for future work.

Due to the area decomposition, routers do not possess the topological information to
compute a full, complete SR graph of the whole network. Thus, we make routers only
compute the SR graph of their own area(s). Because exchanging the SR graphs themselves

10We here (and in the evaluation) consider two ABRs, but the computations performed can be easily
extended to manage more ABRs.
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implies a large volume of information to share, we instead make the ABRs exchange their
2COP paths (i.e., the non dominated paths to all destinations of their areas) since we limit
their numbers to Γ at worst. This exchange still provides enough information for all routers
to compute all 2COP paths for every destination.

More formally, each ABR Ax computes b2cop(Ax, Ax) and exchange the results with
Ay, ∀y ̸= x. Areas being limited to a few hundred routers on average, this computation is
very efficient. Note that ABRs also compute b2cop(A0, Ax), but need not exchange it, as all
ABRs perform this computation. Exchanging the computed 3D Pareto front has a message
complexity of |V | × c0 × Γ at worst in theory. In practice, we expect both the size of Pareto
fronts and the number of relevant destinations to consider to be fairly low (<< Γ and << |V |
resp.). In the case of non-scalable Pareto fronts, one can opt for sending only part of them
but at the cost of relaxing the guarantees brought by BEST2COP.

After exchanging messages, any ABR Ax should know the non-dominated paths from
itself to Ay,∀y ̸= x, and the non-dominated paths from Ay to all nodes within Ay. By
combining this information, we can compute the non-dominated paths from Ax to all nodes
within Ay, as we will now detail.

Since ABRs act as separators within the graph, to reach a node within a given area Ay,
it is necessary to go through one of the corresponding ABRs Ay. It thus implies that non-
dominated paths to nodes within Ay from Ax can be found by combining bcop(A0, Ax, Ay)
with bcop(Ay, Ay). In other words, by combining, with a simple cartesian product, the
local non-dominated paths towards the ABRs of a given zone with the non-dominated paths
from said ABRs to nodes within the corresponding distant areas, one obtains a superset
of the non-dominated paths towards the destinations of the distant area. In practice,
since several ABR can co-exist, it is necessary to handle the respective non-dominated
paths (bcop(Ay, A1y) and bcop(Ay, A2y)) with careful comparisons to avoid incorrect
combinations.

To ensure that the results obtained through the cartesian product aforementioned are cor-
rect, some post-processing is required. When combining segment lists, the latter are simply
concatenated. More precisely, the resulting segment list necessarily possesses the following
structure: (u0, u1)| . . . |(ui, A)|(A, v0)| . . . |(vj−1, vj), with A denoting an ABR. However, A
being a separator, it is likely that the best IGP path from ui to v0 natively goes through
A without the need of an intermediary segment. Thus, segments of the form (ui, A)|(A, v0)
can often be replaced by a single segment (ui, v0). Such anomalies should be corrected, as
an additional useless segment may render the path falsely unfeasible, even though it actually
fits the MSD constraint. This correction can be performed easily. Let A1 be the separator,
if (ui, A1) and (A1, v0) are node segments, and all best IGP paths from ui to v0 go through
A1 (or possess the same cost and delay as the best IGP ones going through A2), the two
node segments can be replaced by a single one.

This correction is performed quickly and relies solely on information available to the
router (the local SR graph and the received distances summary). Finally, after having
performed and corrected the cartesian products for all the ABRs of the area, the latter are
merged in a single Pareto front.

Once performed for all areas, an ABR Ax now possesses all 2COP paths to all considered
destinations within the network. These can then be sent to routers within Ax, who will
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need to perform similar computations to compute non-dominated paths to all routers within
a different area. Note that the 2COP paths for each destination can be sent as things
progress, so that routers can process such paths progressively (and in parallel) if needed.

4.4.4 A Limited Complexity with Strong Guarantees

4.4.4.1 An Efficient Polynomial-Time Algorithm

The flat BEST2COP. In the worst-case, for a given node v, there are up to degree(v)×Γ

paths that can be extended towards it. Observe that degree(v) is at least |V | (because
G′ is complete) and depends on how many parallel links v has with its neighbors. With
L being the average number of links between two nodes in G′, on average we thus have
degree(v) = |V | × L × Γ paths to extend to a given node, at worst. These extensions are
performed for each node v and up to MSD times, leading to a complexity of

O(c0 · Γ · |V |2 · L)

Using up to |V | threads, one can greatly decrease the associated computation time. Note
that, while the algorithm is easily parallelizable with regular loads between cores, the
exhibited speedup ultimately depends on the underlying hardware characteristics and the
difficulty of the problem instance. As such, while we will see that the speedup observed is
significant, it is unlikely that the theoretical (quasi-linear) speedup can be reached in practice.

The Cartesian Product. Its complexity is simply the size of the 2COP solution space
squared, for each destination, thus at worst O((c0 · Γ)2 · |V |). Note that we can reach a
complexity of O(c20 ·Γ2), again with the use of |V | threads since each product is independent.
This worst case is not expected in practice as metrics are usually mostly aligned to result
in Pareto fronts whose maximal size is much smaller than c0 · Γ.

Overall, BEST2COP-E (multi-area) exhibits a complexity of

O
(
c0 · Γ ·

(
c0 · Γ + L ·max∀i∈[1..m](|Vi|)

))
with Vi denoting the set of nodes in each area i (m being their number) and the use of |V |
threads and sufficient CPU resources (this bound is achievable ideally because the load is
perfectly balanced and bottlenecks negligible). Note that the cartesian product dominates
this worst-case analysis as long as the product Vi · L remains small enough. However, with
realistic weighted networks, we argue that the contribution of the Cartesian product is
negligible in practice, so BEST2COP-E is very scalable for real networking cases.

4.4.4.2 What are the Guarantees one can expect when the Trueness exceeds
the Accuracy, i.e., if t > γ ?

If propagation delays are measured with a really high trueness (e.g., with a delay grain of
1 µs or less), BEST2COP (and so, BEST2COP-E) can either remain exact but slower, or, on
the contrary, rapidly produce approximated results. In practice, if one prefers to favor per-
formance by choosing a fixed discretization of the propagation delay (to keep the computing
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time reasonable rather than returning truly exact solutions), this may result in an array not
accurate enough to store all non-dominated delay values, i.e., two solutions might end up
in the same cell of such an array even though they are truly distinguishable. Nevertheless,
we can still bound the margin errors, relatively or in absolute, regarding constraints or the
optimization objective of the 2COP variant one aims to solve.

In theory, note that while no exact solutions remain tractable if the trueness of measured
delays is arbitrarily high (for worst-case DCLC instances), it is possible to set these error
margins to extremely small values with enough CPU power. If t < γ, each iteration of
our algorithm introduces an absolute error of at most 1

γ for the M1 metric, i.e., the size
of one cell in our array (recall that γ = Γ

c1
is the accuracy level and is the inverse of the

delay grain of the static array used by BEST2COP). So our algorithm may miss an optimal
constrained solution p∗ (for a given destination) only if there exists another solution p such
that d1(p) ≥ d1(p

∗) but the M1 distance of both solutions associated with the same integer
(that is stored in the same cell of the dist array) i.e., only if d1(p) ≤ d1(p

∗) + c0
γ . In

this case, we have d2(p) ≤ d2(p
∗) because otherwise, p∗ would have been stored instead

of p. From this observation, depending on the minimized metric, BEST2COP ensures the
following guarantees.

If one aims to minimize M0 or M2 (e.g., when solving DCLC), then BEST2COP guar-
antees a solution p that optimizes the given metric, but this solution might not satisfy the
given delay constraint c ≤ c1. As an example, for DCLC-SR (optimizing M2), we have

d0(p) ≤ c0

d1(p) < c+
c0
γ

d2(p) ≤ d2(p
∗)

With p∗ denoting the optimal constrained solution. When minimizing M1, the solution
returned by BEST2COP for a given destination, p, will indeed verify the constraints on M0

and M2, and we have d1(p) < d1(p
∗) + c0

γ . The induced absolute error of c0/γ regarding
the delay of paths becomes negligible as the delay constraint increases. If c ≈ c1, the latter
translates to a small relative error of c0/Γ. Conversely, it becomes significant if c << c1.
When minimizing M0 or M2, it is thus recommended to set c1 as low as possible regarding
the relevant sub-constraint(s) c ≤ c1 if necessary. Similarly, to guarantee a limited relative
error when minimizing M1, it is worth running our algorithm with a small c1 as we can have
d1(p

∗) << c1. However, note that this later and specific objective (in practice less interesting
than DCLC in particular) requires some a priori knowledge, either considering the best delay
path without any c2 and c0 constraints, or running twice BEST2COP to get d1(p) as a first
approximation to avoid set up c1 blindly initially (here c1 is not a real constraint, only c2
and c0 apply as bounds of the problem, c1 just represents the absolute size of our array and,
as such, the accuracy one can achieve).

For other variants, like DCCLS (i.e., 2COP (s, 10, c1, c2,M0)), the guarantee turns out
to be similar. The discretized delay is also constrained, leading to identical guarantees on
the latter. Since BEST2COP prefers paths of lower IGP cost, the paths found are bound to
respect any feasible constraint on the IGP cost. Finally, regarding the number of segments,
we have d0(sp

′) = d0(sp) as the whole M0 dimension is visited, regardless of the delay
accuracy.
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The CCLD-SR variant (i.e., 2COP (s, c0, c1,∞,M1)) is different, as the discretized value
is here optimized. The guarantee is thus absolute for the M1 metric (propagation delay).
Formally, for each destination, BEST2COP returns sp′ that verifies at worst: d1(sp

′) <

d1(sp) +MSD/t, d2(sp′) < c2 and d0(sp
′) < c0, where sp is an optimal solution.

Focusing back on DCLC, even though BEST2COP exhibits strong and tunable guaran-
tees, it may not return exact solutions once two paths end up in the same delay cell, which
may happen even with simple instances exhibiting a limited Pareto front. Fortunately, a
slight tweak in the implementation is sufficient to ensure exact solutions for such instances.
Keeping the original accuracy of M1 distances, one can rely on truncated delays only to find
the cell of each distance. Then, one possible option consists of storing up to k distinct dis-
tances in each cell11. Thus, some cells would form a miniature, undiscretized Pareto front of
size k when required. This trivial modification allows the complexity to remain bounded and
predictable: as long as there exists less than k distances within a cell, the returned solution
is exact. Otherwise, the algorithm still enforces the aforementioned guarantees. While this
modification increases the number of paths we have to extend to k · Γ at worst, such cases
are very unlikely to occur in average. Notably, our experiments show that 3D Pareto fronts
for each destination contain usually less than ≈ 10 elements at most on realistic topologies,
meaning that a small k would be sufficient in practice. In summary, BEST2COP is efficient
and exact to deal with simple instances and/or when t ≥ γ, while it provides approximated
but bounded solutions for difficult instances if t < γ to remain efficient and so scalable even
with massive scale IP networks.

4.5 Evaluating BEST2COP, LCA, and SR

In this section, we evaluate the computation time of our solution. However, as both
BEST2COP and LCA are able to compute DCLC paths and their minimal segment lists,
we first use these algorithms to evaluate whether SR is an adequate technology to deploy
DCLC paths.

4.5.1 DCLC paths can indeed be deployed through SR

Given the MSD constraint, one may question the choice of SR for deploying DCLC paths in
practice. Indeed, in some cases, in particular if the metrics are not aligned12, constrained
paths may require more than MSD detours to satisfy a stringent latency constraint.

While it has been shown that few segments are required for most current SR usages (e.g.,
for FRR or when considering mono-metric paths such as least-delay ones) [Filsfils 2020,
Aubry 2020], to the best of our knowledge, there is no similar study for our specific use-
case, i.e., massive scale networks with two valuation functions (delay and IGP cost). This is
probably one of the most exciting challenge for SR as DCLC is a complex application. Since
such massive-scale computer network topologies are not available publicly, we rely on our

11In practice, note that several implementation variants are possible whose one consists of using the array
only when the stored Pareto front exceeds a certain threshold. Moreover, k can be set up at a global scale
shared for all cells or even all destinations, instead of a static value per cell, to support heterogeneous cases
more dynamically. These approaches were also evoked by Song and Sahni et al. [Song & Sahni 2006]

12The delay and the IGP costs in particular. Since node segments represent best IGP paths, the IGP cost
and the number of segments will most likely be aligned by design
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Figure 4.8: Required number of segments for all DCLC solutions, in a network of 45 000 nodes generated
by YARGG, with delay constraints of up to 100ms.

own topology generator (presented in the following section) to perform this study. For this
analysis, we opt for a worst-case graph having ≈ 45 000 nodes and ≈ 92 000 edges scattered
in 140 areas.

For this analysis, we keep track, for each destination, of all the solutions solving DCLC
for all delay constraints up to 100ms, and extract the necessary number of segments. In
other words, we show the number of segments required to encode all non-dominated (and
thus practically relevant for some given constraint) paths, considering all delay constraints
up to 100ms. The results are shown in Fig. 4.8.

One can see that most paths require less than 10 segments, meaning that performant
hardware should be able to deploy most DCLC paths. However, some corner-cases requir-
ing more than 10 segments do exist, probably arising from stringent delay constraints. In
addition, less performant hardware (e.g., with MSD ≈ 5), while able to deploy the majority
of DCLC paths, can not deploy any DCLC path. Note that several mechanisms discussed
in Section 2.4.2 exist to bypass this limit, such as Flexible Algorithms [Psenak et al. 2020]
and Binding Segments [Filsfils et al. 2018]. However, both techniques increase the message
exchange, number of states to maintain, and overall complexity. Their usage should thus be
limited to a few corner cases.

Consequently, our analysis exhibits two main points. First, SR is appropriate to deploy
TE paths. Indeed, the majority of DCLC paths should be deployable within the MSD
constraint, if not all when using performant hardware. Second, since there may however exist
DCLC paths requiring more than MSD segments, this limit must be considered to compute
feasible paths correctly. Otherwise, a single non-feasible path dominating feasible ones is
enough to lead to an incorrect algorithm. The underlying path computation algorithm must
then efficiently consider delay, IGP cost and the number of segments to ensure its correctness.
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4.5.2 Performance Evaluation

We now evaluate the computation time of our solutions. We start by evaluating BEST2COP,
which explores the SR Graph directly on various flat network instances, ranging from worst-
case scenarios to real topologies. We then compare these results to another existing algorithm
SAMCRA, modified to benefit from (both) our methods used to consider the segment metric.
Then, after having introduced our multi-area topology generator, we evaluate the extended
variant of BEST2COP-E, on massive scale networks.

Recall from Chapter 3 that SAMCRA is a multi-metric algorithm able to deal with more
than two metrics and can thus be used to solve DCLC-SR through the SR Graph or LCA.
SAMCRA is a label-setting Dijkstra-like algorithm that relies on a priority queue indexed
according to a non-linear aggregated metric (referred to as length), and which extends all
non-dominated distances.

The delays fed to SAMCRA are also discretized in the same fashion as for BEST2COP, al-
lowing the number of non-dominated distances that SAMCRA has to consider to be bounded
by Γ. Consequently, SAMCRA is also able to rely on optimized static structures to store and
manage the Pareto front 13. Overall, SAMCRA has to consider (at worst) MSD × Γ× |V |
distances at most within the queue 14, meaning that extracting the distance with minimal
length bears a complexity of O(MSD × Γ × |V | × (log(MSD × Γ × |V |))). Each time
a new edge (u, v) is considered, the MSD × Γ distances of node u must be extended, and
checked for dominance against the MSD × Γ distances of node v, leading to a complexity
of (MSD × Γ2 × E)× log(MSD × Γ) when relying on a binary heap, or (MSD × Γ2 × E)

when relying on a Fibonacci heap 15. Overall, the theoretical complexity of SAMCRA (when
exploring the SR Graph) is either (when relying on a binary heap)

O(MSD × Γ× |V | × (log(MSD × Γ× |V |)) + (MSD × Γ2 × E)× log(MSD × Γ))

or

O(MSD × Γ× |V | × (log(MSD × Γ× |V |)) + (MSD × Γ2 × E))

when relying on a Fibonacci Heap.
As SAMCRA is not designed with the SR Graph in mind, it is difficult to know whether

it is best to make the algorithm explore the SR Graph directly, or rely on LCA. Thus,
we compare ourselves to both variants. First, we run SAMCRA on the fully-meshed SR
Graph, which allows using the SAMCRA algorithm nearly as-is (by adding the number of
hops with a constraint of MSD as a metric considered by the length). We call this variant
SAMCRA+SR Graph (SRG). Second, we implement LCA on top of SAMCRA. This method
requires however further modification of the SAMCRA algorithm, not only by adding the
conversion algorithm but also by extending its dominance checks to strong dominance ones.

13As SAMCRA does now rely on static structure of size Γ, its design is arguably closer to its heuristic
variant, TAMCRA (which extended only k path per node) with k = Γ. We here use the name SAMCRA to
remind that a k value of Γ enables the algorithm to be exact.

14This complexity considers the direct exploration of the SR Graph. When relying on LCA, the number
of non-strongly-dominated distances to extend may reach Γ× |V | per node, although this high bound is very
unlikely to be reached.

15In practice, we have observed that the binary heap leads to similar, if not better results. We thus rely
on a binary heap in our evaluation.
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We refer to this variant as SAMCRA+LCA 16.
We thus re-implemented SAMCRA in C 17 as described. Note that our implementation of

SAMCRA (both SAMCRA+SRG and SAMCRA+LCA) is purely sequential. While it may
be possible to parallelize some inner loops (or the outer ones by adapting methods used to
parallelize the Dijkstra algorithm [Crauser et al. 1998b]), doing so raises several challenges
to verify the correctness and actual efficiency of the resulting algorithm in our context.

In the following, we consider our discretization to be exact (i.e., Γ is high enough to
prevent loss of relevant information) and consider :

• c0 = MSD = 10, as it is close to the best hardware limit;

• L = 2: while some pairs of nodes may have more than two parallel links connecting them
in G, we argue that, on average in G′, one can expect that the total number of links in E′

is lower than 2|V |2.

• Γ = 1000, although this value is tunable to reflect the expected product trueness-constraint
on M1, we consider here a fixed delay grain of 0.1ms (so an accuracy level of γ = 10)
regarding a maximal constraint c1 = 100ms. This Γ limitation is realistic in practice and
guarantees the efficiency of BEST2COP even for large complex networks as it becomes
negligible considering large |V |.

All our experiments are performed on an Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
× 8. We measure the execution time starting from the allocation of the structures, up to
the return of the results.

4.5.2.1 Computing Time & Comparisons for Flat Networks

This section illustrates the performance of our BEST2COP and SAMCRA (both SAM-
CRA+LCA and SAMCRA+SRG) using three flat network scenarios: real networks, random
networks, and large-scale random networks. Note that we do not take advantage of any area
decomposition to mitigate the computing time.

Real networks. We start by considering a real IP network topology. We use our largest
available ISP topology, consisting of more than 1100 nodes and 4000 edges. This topology
describes the network of a Tier-1 operator and is not available to the public 18. While the
IGP costs of each link were available, we do not have their respective delays. We thus infer
delays thanks to the available geographical locations we do possess: we set the propagation
delays as the orthodromic distances between the connected nodes divided by the speed of
light, and run both algorithms on the obtained topology. The execution times are then

16While we investigated whether a BEST2COP-like exploration scheme would lead to interesting perfor-
mance when relying on LCA (and exploring the original graph), preliminary results did not seem promising.
This may be because, by not exploring the original graph, BEST2COP becomes a label-correcting algorithm.
Indeed, as the number of hops becomes (at least partially) irrelevant, BEST2COP may extend dominated
distances. Coupled with the strong dominance requirement, which requires extending distances that may be
dominated as well, this could lead BEST2COP to consider too many irrelevant distances. However, further
investigation considering various graph instances is yet to be done.

17https://github.com/talfroy/BEST2COP
18While public topology datasets exist, these topologies are often too small for our use-case and/or do

not possess any link valuation.
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Figure 4.9: Computation time of BEST2COP and SAMCRA on various experiments. Although the
results can be close when considering mono-threaded BEST2COP and SAMCRA, BEST2COP outperforms
SAMCRA when using multi-threading.

shown in Fig. 4.9a. BEST2COP (1, 2, 8 threads) and SAMCRA (with LCA and SRGs) are
run for every node as source, resulting in the distributions showcased.

One can see that SAMCRA+SRG (i.e., SAMCRA run directly on the SR Graph) exhibits
the worst execution times out of all the algorithms and variants presented, averaging at
100ms, and reaching 250ms at worst. Interestingly, this shows that exploring the SR Graph
itself may be detrimental to some algorithms (in particular priority-queue-based ones) due
to its high density. Hence, algorithms not designed to take advantage of its features may
fare better by exploring the original, sparser topology, and using the information within
the SR Graph to compute the number of necessary segments to encode the paths being
explored. This is visible on SAMCRA+LCA computation times. Our construct, coupled
with our conversion algorithm, allowed SAMCRA+LCA to reach computation times very
similar to the mono-threaded variant of BEST2COP, with an average execution time of
≈ 60ms. Note that BEST2COP, which runs on the SR Graph itself, shows equivalent
execution time when relying on a single thread. However, when relying on multiple threads,
BEST2COP outperforms SAMCRA in all runs, reaching a computation time of ≈ 25ms at
worst when using 8 threads, i.e., three times faster than SAMCRA.

These low execution times are not only due to the efficiency of the algorithms presented,
but also to the realistic link valuations, which tend to be correlated in practice. In realistic
cases, BEST2COP can thus work with Γ > 1000 and so with a supported accuracy
t >> 0.1ms (to deal with a micro-second grain) for small enough delay constraint (i.e.,
<< 100ms), while keeping the execution time in the hundreds of milliseconds. One may
notice that (almost) perfectly aligned metrics reduce the usefulness of any DCLC-like
algorithm, but such metrics are not always aligned for all couples in practice (even with
realistic cases, we observe that the average size of the 3D Pareto front is strictly greater
than 1, typically ≈ 4). Our algorithm deals efficiently with easy cases and remains exact19

and efficient for more complex cases, e.g., with random graphs.

19Or at least near exact for difficult instances having both high trueness and exponential increasing Pareto
fronts.
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Random networks The number of publicly available large topologies being limited, we
continue our evaluation with random scenarios to assess the computation time of the afore-
mentioned algorithms on a larger number of scenarios.

We generate raw connected graphs of |V | nodes by using the Erdos-Rényi model. The
generated topologies have a degree of log(|V |). Both the delays and the IGP weights are
picked uniformly at random. IGP weights are chosen within the interval [1, 232/|V |/10], to
ensure that no paths possesses a cost higher than 232. Delays are chosen within the interval
[0, 0.01× c1], with c1 = 100ms, to ensure that a high number of feasible paths exist.

We start by running BEST2COP and SAMCRA for |V | ranging from 100 to 1000 (with
steps of 100). To account for the randomness of both valuation functions, we generate
30 differently weighted distinct topologies for each value of |V |. We run BEST2COP and
SAMCRA for 30 nodes selected as representative sources (randomly picked uniformly). Com-
puting times are shown in Fig 7.5b.

While the computation times are slightly higher (due to the random valuations which
lead to a higher number of non-dominated paths), the results are similar to the previous
experiment. These results display more clearly that SAMCRA does not benefit from explor-
ing the SR Graph. Indeed, on random networks, SAMCRA+SRG is about 7 times slower
than the other algorithms displayed. However, as on real networks, SAMCRA+LCA shows
results close (if not equal) to BEST2COP execution time. Nevertheless, even on random
networks, BEST2COP remains three times faster than SAMCRA when relying on 8 threads.

Interestingly, BEST2COP mono-threaded and SAMCRA+LCA computation times
get closer as |V | increases. Thus, we continue our comparison on networks of 2000 to
10 000 nodes. Given the long computation times of SAMCRA+SRG, we here only consider
SAMCRA+LCA. The results are shown in Fig. 4.9c. On such networks, BEST2COP
(mono-threaded) exhibits an execution time of 7s, while SAMCRA+LCA remains under 5s.
The quadratic complexity of BEST2COP (whose main factor is |V |2) is here clearly visible.
SAMCRA+LCA exhibits a less steep growth. However, when relying on multiple-thread,
BEST2COP remains far more efficient. While two threads already allow reaching an
execution time slightly lower than SAMCRA (4s), 8 threads allow BEST2COP to remain
≈ 3.3 times faster than SAMCRA.

The way to use the SR Graph has a high impact on the underlying algorithm. As the SR
Graph is not at the core of SAMCRA’s design, exploring the latter leads to high execution
time due to its density. However, adding our conversion algorithm (which relies on the SR
Graph data) within SAMCRA allowed the latter to reach competitive execution times while
solving 2COP. BEST2COP, which explores the SR Graph directly, exhibits an execution
similar to SAMCRA+LCA when relying on a single thread. When using multi-threading,
BEST2COP outperforms its SAMCRA in all scenarios.

In any case, it is interesting to note that even BEST2COP takes more than one second on
networks of 10 000 nodes. To showcase the performance of our contribution on massive-scale
networks, we now evaluate the execution time of its extension, BEST2COP-E, which supports
and leverages OSPF-like area division. This version is adapted to tackle TE problems in
massive-scale hierarchical networks. In the following, we only consider our approach. Indeed,
the latter showcased better performance than SAMCRA even without relying on multiple
threads when considering a topology size |V | < 1000, which encompasses the size of standard
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OSPF areas.
However, before continuing to analyze the computing time results, we first introduce our

generator for massive-scale, multi-areas, realistic networks having two valuations (IGP cost
& delays).

4.5.2.2 Massive Scale Topology Generation

To the best of our knowledge, although such networks exist in the wild, there are no massive
scale topologies made publicly available which exhibit IGP costs, delays, and area subdi-
vision. For example, the graphs available in the topology zoo (or sndlib) datasets do not
exceed 700 nodes in general. Moreover, the ones for which the two metrics can be extracted,
or at least inferred, are limited to less than 100 nodes. Thus, at first glance, performing a
practical massive-scale performance evaluation of BEST2COP-E is highly challenging if not
impossible. There exist a few topology generators [Quoitin et al. 2009, Medina et al. 2001]
able to generate networks of arbitrary size with realistic networking patterns, but specific
requirements must be met to generate topologies onto which BEST2COP-E can be evalu-
ated, in particular the need for two metrics and the area decomposition.

Topology generation requirements. First, the experimental topologies must be
large, typically between 10 000 and 100 000 nodes. Second, they must possess two valuation
functions as realistic as possible, one for the IGP cost and the other modeling the delay.
Third, since the specific patterns exhibited by real networks impact the complexity of
TE-related problems, the generated topologies must possess realistic structures (e.g., with
respect to redundancy in the face of failures in particular). Finally, for our purposes, the
topology must be composed of different areas centered around a core backbone, typically
with two ABRs between each to avoid single points of failure. Since we do not know
any generator addressing such requirements, we developed YARGG, a python tool(Code
available online 20) which allows one to evaluate its algorithm on massive-scale realistic IP
networks. In the following, we describe the generation methods used to enforce the required
characteristics.

High-level structure. One of the popular ISP structure is the three-layers architec-
ture [Cisco Networks 2008], illustrated in Fig. 4.11. The access layer provides end-users
access to the communication service. Traffic is then aggregated in the aggregation layer. Ag-
gregation routers are connected to the core routers forming the last layer. The aggregation
and access layers form an area and usually cover a specific geographical location. The core
routers, the ABRs connecting the backbone other areas, and their links, form the backbone
area that interconnect the stub areas, i.e., the aggregation and access layers of the different
geographical locations. Core routers are ABRs and belong both to a sub-area, per couple
of 2 for redundancy. Thus, while the access and aggregation layers usually follow standard
structures and weight systems recommended by different network vendors, the backbone can
vastly differ among different operators, depending on geographical constraints, population
distribution, and pre-existing infrastructure. Taking these factors into account, YARGG

20https://github.com/JroLuttringer/YARGG
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Figure 4.10: Core network (before step 5) generated by YARGG in France. While we consider the road
distances, we represent the links in an abstract fashion for readability purposes. The color and width of the
links represent their bandwidth (and thus their IGP costs).

generates large networks by following this 3-layer model, given a specific geographical
location (e.g., a given country).

Generating the core network and the areas. YARGG is a heuristic that gener-
ates the core network by taking the aforementioned considerations into account: existing
infrastructures, population, and geographical constraints. An example of a core network
as generated by YARGG may be seen in Fig. 4.10. Given a geographical location (e.g., a
country or a continent), YARGG builds the structure of the core network by

1. Extracting the x most populated cities in the area. Close cities are merged into a single
entity. The merge trigger value may change (the exact values used here can be found in
[Luttringer et al. 2021a]).

2. Constructing a minimum Spanning-Tree covering all cities of the area, using road dis-
tances as the metric. Links between cities totaling more than 30% of the total population
are normalized in order to be highly prioritized.21

3. Removing articulation-points. YARGG picks one bi-connected component and adds the
smallest link (in terms of road distances) that bridges this component with another. This
process is repeated until no articulation point remains (i.e., the topology is bi-connected).

4. Adding links increasing the connectivity and resilience for a limited cost. YARGG
considers all links meeting certain criteria. The two cities/nodes must be closer than
20% of the largest road distance. Their current degree must be lower than 4. The link, if
added, should reduce the distance (and so, the delay) between the nodes by at least 25%.
Among these links, YARGG adds the one with the highest attractiveness, expressed as
the sum of the distance reduction and the population of the cities (normalized).

5. Doubling the obtained topology. The topology is doubled. There are now two nodes
(/routers) per city. Links are added between the two routers of the same city, making the
21The parameters tuned may be easily modified. For now, the latter are purely empirical.
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Figure 4.11: Weights and structures of an area generated by YARGG.

topology tri-connected.

The couple of routers located at each city within this generated backbone area become
the ABRs between the backbone and their area, which is generated next.

Access & aggregation layers. These last two layers make up a non-backbone area
and span a reduced geographical area. Thus, one access and one aggregation layer are
located in each city considered by YARGG. Several network equipment vendors recommend
a hierarchical topology, such as the three-layer hierarchical model [Cisco Networks 2014].
An illustration can be seen in Fig. 4.11. Simply put, there should be two core routers (the
ABRs) at the given location (a city in YARGG’s case). Each core router is connected to all
aggregation routers. For better resiliency, the aggregation layer is divided into aggregation
groups, composed of two connected routers. Finally, routers within an aggregation group
are connected to access-layer routers. To achieve areas of ≈ 300 nodes, we consider 30
access routers per aggregation group. This results in a large, dense, and realistic graph.

Weights. In the backbone, the weights generated by YARGG are straightforward. The
delays are extracted from the road distances between the cities, divided by 60% the speed
of light (close to the best performing fiber optic). The IGP cost is 1 for links between large
cities since these links usually have a high bandwidth (in black in Fig. 4.10), 2 for standard
links, necessary to construct a tri-connected graph (added at step 3, in red in Fig. 4.10), and
5 for links that are not mandatory, but that increase the overall connectivity (added at step
4, in orange in Fig. 4.10).

Within an area, the IGP costs follow a set of realistic constraints, according to two main
principles: (i) access routers should not be used to route traffic (except for the networks
they serve), (ii) links between routers of the same hierarchical level (e.g., between the two
core routers or the two aggregation routers of a given aggregation group) should not be
used, unless necessary (e.g., multiple links or node failures). These simple principles lead
to the IGP costs exhibited in Fig. 4.11. The delays are then chosen uniformly at random.
Since access routers and aggregation routers are close geographically, the delay of their links
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Figure 4.12: BEST2COP-E computation time on 5 continent-wide topologies generated by YARGG.

is chosen between 0.1 and 0.3ms. The delay between aggregation routers and core routers
is chosen between 0.3ms and the lowest backbone link delay. Thus, links within an area
necessarily possess a lesser delay than core links.

In summary, YARGG computes a large, realistic, and multi-area topology. The backbone
spans a given geographical location and possesses simple IGP weights and realistic delays.
Other areas follow a standard three-layer hierarchical model. Weights within a stub area are
chosen according to a realistic set of usual ISP constraints. Delays, while chosen at random
within such areas, remain consistent with what should be observed in practice.

4.5.2.3 Computing Time for Massive Scale Multi-Areas Networks

Using YARGG, we generate five massive scale, continent-wide topologies, and run
BEST2COP on each one of them. The topologies ranges from 10 000 to 100 000 nodes.
Each non-backbone area possess around 320 nodes. The topologies, their geographi-
cal representations and some of the associated network characteristics can be found on-
line [Luttringer et al. 2021a].

We run BEST2COP on each ABR as a source (around |V |/320 × 2 sources). The time
corresponding to the message exchange of the computed Pareto front (step 2 of BEST2COP-
E) is not taken into consideration. Thus, the computation time showcased is the sum of the
average time taken by ABRs to perform the preliminary intra-area BEST2COP (and the
distances to segment lists conversions) plus the time taken to perform the |V |/320 × 2 − 2

Cartesian products (for all other ABRs of all other areas).
Note that we consider an ABR as a source and not an intra-area destination. In practice,

the ABR would send the computed distances to the intra-area nodes, who in turn would
have to perform a Cartesian product of these distances with its own distances to said ABR.
However, both the ABR and the intra-area node have to consider the same number of
destinations (|V |), and the results computed by the ABR can be sent as they are generated
(destination per destination), allowing both the ABR and the intra-area nodes to perform
their Cartesian product at the same time. In addition, intra-area nodes may benefit from
several optimizations regarding their Cartesian product. For these reasons, we argue that
the time measured here, using an ABR as a source, is representative of the total actual time
required, i.e., the overall worst time for the last treated destination at each source.

The results of this experiment are shown in the violin plot of Fig. 4.12. By leveraging
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the network structure, BEST2COP-E exhibits very good performance despite the scale of
the graph. For 10 000 nodes, BEST2COP-E exhibits a time similar to the one taken by
its flat variant for |V | = 2000. Furthermore, BEST2COP-E seems to scale linearly with
the number of nodes, remaining always under one second for |V | ≈ 75 000. Even once the
network reaches a size of ≈ 100 000, BEST2COP-E is able to solve 2COP in less than one
second for a non-negligible fraction of the sources, and never exceeds 1.5s.

Note that the times showcased here rely on a single thread. While BEST2COP-E’s
Cartesian product can be parallelized locally (both at the area and the destination scale),
this parallelization hardly has any effect. This is explained by the fact that these individual
computations are in fact fairly efficient, hence the overhead induced by the creation and
management of threads is heavier than their workload. In addition, since BEST2COP deals
with very large topologies, some complex memory-related effects might be at play. Indeed,
we notice these results to surprisingly vary depending on the underlying system, operating
system, and architecture due to the differences in terms of memory management.

Thus, while massive scale deployments seem to a priori prevent the usage of fine-grained
TE, their structures can be leveraged, making complex TE problems solvable in less than
one second even for networks reaching 100 000 nodes. The computations performed for each
area can also be distributed among different containers within the cloud, if handled by a
controller.

4.6 Conclusion, Limitations & Perspectives

While the overhead of MPLS-based solutions led to a TE winter in the past decade, Segment
Routing marked its rebirth. SR encouraged operators to ask for the ability to perform fine-
grained, large-scale TE, in particular the ability to deploy DCLC paths. While computing
DCLC path is already NP-Hard, this complexity is further increased by the technical con-
straint of SR. Through a novel evaluation, we showed that the number of segment required to
implement DCLC paths is manageable, showcasing that SR is indeed a relevant technology
to deploy DCLC paths.

We propose several contributions enabling such deployments. Through a novel construct,
the SR graph, we propose two ways to encompass the number of segments when computing
paths.

LCA relies on the information contained within the SR graph to enable multi-criterion
algorithms to translate paths in segment list on the fly, during the exploration of the original
graph. We formalize this algorithm, as well as how this new dimension (whose behavior is
more peculiar than the cost or the delay) must be handled by multi-constrained path algo-
rithms. LCA may be fitted onto existing DCLC algorithm (along with the aforementioned
guidelines) to solve DCLC-SR efficiently and correctly. We implemented LCA on top of a
state-of-the-art algorithm, SAMCRA.

We also propose BEST2COP, an algorithm that directly explores the SR Graph, and
leverage the characteristics of the latter to efficiently solve DCLC-SR. A specific graph
exploration, a parallelizable structure, and an efficient management of the Pareto front allow
BEST2COP to exhibit good performance. We implemented BEST2COP in C, and showed
that the latter exhibits good performances, in particular when relying on multi-threading.
By leveraging multi-area partitioning, BEST2COP is able to solve DCLC-SR on networks
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of up to 100 000 nodes in about one second.

The work behind BEST2COP and LCA offers several interesting and challenging per-
spectives that are yet to be tackled. For example, the effect of Flex-Algo can be more
thoroughly investigated, in particular when considering conversion schemes. While the SR
Graph enables to deal with Flex-Algo natively, its impact on the complexity of LCA has not
been studied. Similarly, the impact of SRv6 (and adjacency segment with global meaning)
should be supported natively by LCA, but the best way to deal with this paradigm when
relying on the SR graph does not seem trivial. Indeed, one could either allow segment lists to
be extended two times per iteration (as using a node segment followed by an adjacency seg-
ment could be replaced by a single adjacency segment) or by representing the global meaning
of adjacency segment within the SR Graph, which would further increase its density. The
complexity of both approaches has not been extensively discussed yet. Finally, the notion of
strong dominance can be further investigated. While a stricter definition may allow reducing
the number of distances one has to extend, checking for the associated conditions in practice
may be more computationally expensive, resulting in an interesting trade-off to evaluate.

Furthermore, I plan to extend YARGG to provide a tool allowing to evaluate path compu-
tation algorithms on massive-scale multi-metric computer networks. While showing whether
the resulting topologies are realistic or not may prove arduous (if not impossible) given that
little data is available, YARGG could at least offer the community a way to easily per-
form reproducible experimentation. As YARGG was at first programmed only to evaluate
BEST2COP-E, a lot of room is left for improvement or additional features. For example,
the performance of YARGG leaves a lot to be desired but could be enhanced by relying
on probabilistic choices within the construction of the topology. This perspective offers in-
teresting and varied tasks. Algorithmically, efficiently generating numerous massive-scale
topologies is quite challenging. In addition, such a tool should be easily usable, which raises
interesting questions design-wise. Finally, a tool can be envisioned to translate the gener-
ated topologies into OSPF advertisements (similarly to the tool lsad proposed by Thomas
Alfroy [Alfroy 2020]). This would, for example, allow the evaluation of path computation
algorithms when implemented on real routing software such as Free-Range Routing.

YARGG would also enable us to revisit the current state-of-the-art. Modern hardware
coupled with the realistic overall structure of the networks generated by YARGG may
have had a drastic impact on the previous results of the literature regarding the design
of multi-constrained path computation algorithms (node-based/label-based selection,
label-setting/label-correction, type of queues...). Revisiting these results could thus prove
interesting and lead to perhaps surprising results. However, while YARGG already offers
interesting tasks to be tackled, our multi-constrained path computation algorithms leads to
even more compelling perspectives.

For example, BEST2COP was designed assuming a source routing paradigm, but a hop-
by-hop variant could be envisioned. As mentioned in Section 2.2.2, the subpath optimality
property does not hold per se when considering DCLC paths, making hop-by-hop routing a
less adequate paradigm. More precisely, a subpath of a DCLC path is a DCLC path, but
considering a different constraint. More formally, with p = (x0, x1) . . . (xn − 1, xn) a DCLC
path with a delay constraint c1, p[xi,xn] is a DCLC path considering a delay constraint c′1 =

c1−d1(p[x0,xi]). To perform hop-by-hop DCLC routing, routers should thus maintain several
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entries per destination within the FIB, offering different delays, and select the adequate
entries according to the current delay already experienced by the packet.

While routing packets in this fashion is not possible in standard architectures, pro-
grammable data-planes could enable such hop-by-hop DCLC routing. A timestamp could
be maintained at line-rate within the transiting packet. Furthermore, P4 tables allow
maintaining several entries (c′1, n) per destination, and to select the appropriate one based
on the timestamp of the packet and the original c1 constraint. While maintaining enough
entries to ensure optimal routing may not be possible due to the size of the Pareto front,
one may only push some entries (a sample of the Pareto front, e.g., as computed by
2COP) within the P4 data plane, sufficient to ensure some sort of degraded but controlled
guarantees. This type of routing could be interesting, as it would be guided by the actual
delay experienced by the packet rather than pre-established measurements. The main
challenge is here technical, as a full proof-of-concept would require implementing both
the data-plane and the control-plane while ensuring proper communication between the
two. Finding the best way(s) to sample the Pareto front to select appropriate FIB entries
also raises interesting algorithmic questions. Note that SR is here not required anymore,
meaning that BEST2COP would be used in a different context not reliant on the SR
Graph. Preliminary experiments have shown that BEST2COP can offer interesting and
competitive performances even without considering SR (i.e., when run on the original graph
with no constraint on the number of hops) in particular cases, and could thus be used in
this context. These encouraging results also plead for further investigation regarding the
relative performance of different exploration schemes and priority when relying on LCA.

LCA could also be extended to additional use-cases. More precisely, the general concept
behind this contribution (strong dominance and loose encoding) may very well be used as-is
to augment other path computation algorithms for SR. However, the concrete steps that
should be taken to fit LCA within this much larger context have to be investigated in deppth.

One can also envision reducing the theoretical complexity of BEST2COP (or any similar
algorithms) by modifying the IGP weights of the network. Indeed, currently, we state that
the delay is the most adequate metric to discretize in order to limit the size of the Pareto
front predictably. However, for operators relying on few IGP weights, the number of possible
IGP distances between each couple of routers may be even lower than our currently proposed
Γ. More generally, a tool could be created (e.g., relying on linear programming) to propose
new IGP weights minimizing the number of possible IGP distances without impacting the
original routing performed within the network.

Similarly, IGP weights could be modified to reduce the number of required segments to
deploy DCLC paths, if the MSD constraint of the underlying hardware proves too tight.
However, as this implies increasing the correlation of the IGP weights and the propagation
delays, routing would be modified. In this case, relying on Flex-Algo or Binding segment
may be more appropriate.

Some further discussions may also be had regarding the behavior of BEST2COP in a
real, dynamic network undergoing frequent changes.

First, it should be noted that FRR mechanisms such as LFAs do not consider any TE
objectives when computing backup paths. One could thus envision computing backup paths
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that still respect the original delay constraint (if they exist). Note that such paths could, in
some cases, already be found within the output of 2COP.

However, recall that to reduce the scale of the required pre-computation, each node
usually computes backup paths only in the event of local failures. If a failure occurs, traffic
is re-routed by the adjacent node. When considering SR, this would require (i) removing the
current segment list from the packet and (ii) pushing a new list encoding the new backup
path. This operation may be quite heavy, which could make the concept of delay-aware FRR
self-defeating in a segment routing environment. However, this may prove interesting when
relying on hop-by-hop DCLC routing, as the underlying required programmable data-plane
could already offer the tools necessary to implement such intricate FRR.

One could however argue that a network is not (and should not be) expected to fulfill its
TE requirements upon failure, and that the induced suboptimal state should be transient
and short enough to not cause heavy Service Level Agreement (SLA) violations. Critical
flows, which would benefit from the stronger guarantees brought by delay-aware FRR, are
in addition likely to be deployed on resilient resources specifically allocated to this effect.

Perhaps more interestingly, one could envision ways to reduce the impact of the SR
Graph computation time. Indeed, after an internal event, the recomputation performed
by BEST2COP (or any other algorithm fitted with LCA) should be quick. The compu-
tation of the required SR graph is however expensive by nature. Several optimizations
exist to reduce the computation time when solving APSP [Demetrescu & Italiano 2004,
Demetrescu & Italiano 2006]. However, I believe that the most interesting option is to keep
the computation as-is (running one Dijkstra’s algorithm per source in parallel), but minimiz-
ing the number of re-computations. Ideally, only changes that impact the results of one (or
several) of said runs of Dijkstra’s algorithm would trigger a partial (or full) recomputation.
Efficiently predicting (or, at least, approximating) the effect of any possible failures is an
interesting algorithmic challenge. However, one could also rely on fine-grained active moni-
toring to detect when the APSP should be recomputed, a perspective that I find particularly
interesting.

Indeed, just as SR may steer traffic, it can also be used to steer probes and perform
network monitoring [Aubry et al. 2016b, Ventre et al. 2020]. Probes could then periodically
be sent over the DCLC paths that have been deployed (using the segment lists computed
beforehand). These probes would enable us to track the actual delay experienced by the
traffic. The recomputation of the SR Graph (and the segment lists) would thus not be
triggered by IGP events, but rather by an actual measured violation of the delay constraint
regarding one flow (or a sample of them). Note however that while this ensures that the
delay constraint is still respected, the IGP cost of the path may not be optimal anymore.
One may envision a hybrid design, where the APSP is periodically re-computed to ensure
that DCLC paths do not deviate too much (or too long) from the shortest IGP paths,
and are re-computed immediately upon strong measured SLA violations. Performing such
fine-grained distributed monitoring of the latency raises several technical challenges, in
particular to ensure the accuracy of the measurements. In addition, this design requires a
centralized controller to monitor said measurement and trigger the re-computation. From
an operator’s viewpoint, this architecture enables greater transparency and detailed history
regarding the service provided to the client but may have a significant cost.
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BEST2COP and LCA are two algorithmic contributions aiming to tackle a well-known
practical routing problem: the computation and deployment of TE paths in large-scale
networks. However, TE-related problems are only part of the challenges one has to tackle in
modern-day networks. In the following chapter, we visit the other extremity of the qualitative
routing spectrum and consider another type of challenge: resiliency. More precisely, we
examine how to ensure quick optimal routing for transit traffic after internal events.
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In Section 2.3, we have seen that the Internet is composed of independent domains known
as ASes. IGPs provide intra-domain connectivity within each AS, while BGP allows ASes
to trade transit traffic. ASes exchange routes through eBGP, while iBGP enables their
dissemination among internal routers.

Since several distinct routes may exist for a given BGP prefix, internal routers determine
the best route towards each prefix by running the BGP decision process, a process that
may be long given the scale at which BGP operates [Filsfils et al. 2011, Holterbach 2021].
Furthermore, as the ranking of the routes varies depending on the state of the IGP topol-
ogy (through hot-potato routing), this process is triggered whenever an IGP event occurs.
Since intra-domain changes are frequent [Merindol et al. 2018], this interaction becomes a
challenging issue.
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In this chapter, we present OPTIC, a multi-scale routing scheme mitigating the impact
of such IGP changes on the BGP convergence while enforcing both hot- and cold-potato
routing. OPTIC fulfills two design requirements, effectively making the transit traffic
impervious to any IGP event.

OPTIC re-routes traffic quickly towards the new optimal BGP route. Upon an
internal event, OPTIC allows the transiting traffic to benefit from the new optimal route in
a time equivalent to the IGP convergence (without running a full BGP decision process).
We say that OPTIC optimally protects BGP prefixes, meaning that whatever the IGP event,
the BGP prefixes are almost immediately reachable again through their best BGP route.

To achieve this requirement, OPTIC efficiently computes backup sets of gateways1 guar-
anteed to contain the optimal gateway after any internal event. The new optimal gateway
can be found quickly within said set, and the latter can be constructed without having to
consider every possible event independently.

The computed sets are shared in memory by a group of prefixes, allowing to quickly
switch to the new optimal gateway for all prefixes within the same group.

OPTIC’s background processing performed to anticipate any next future IGP
event is manageable. Once the traffic is optimally re-routed, the current set may be
obsolete if the internal event impacted the overall connectivity level of the network. In
this case, groups and their associated sets should be updated in background to antici-
pate any next future event.With OPTIC, this process is manageable, i.e., at worst similar
to BGP, but negligible when the event does not hamper the connectivity level of the network.

We start by reminding of the interaction between BGP and the IGP, exhibited on a
more intricate example than the one used in Section 3.1. We then define the notions behind
OPTIC and present the associated structures and algorithms in detail, before evaluating the
feasibility of OPTIC through a theoretical model.

OPTIC is a continuation of my Master’s thesis internship (supervised by Dr. Pas-
cal Mérindol). Since my Master’s thesis, OPTIC has been considerably refined, in par-
ticular to better encompass the effects of the MED, and more thoroughly evaluated
through an extensive theoretical evaluation. Furthermore, OPTIC is currently being im-
plemented in a routing software, as well as in P4. OPTIC has been published in INFO-
COM’21 [Luttringer et al. 2021d] and in CoRes’21 [Luttringer et al. 2021c].

5.1 BGP/IGP: an Intimate Relationship

We start by reminding the IGP-BGP interplay, on a new example, which will be used in the
following chapter to illustrate the concepts of OPTIC.

Recall that BGP routes are characterized by a collection of attributes β ◦α of decreasing
importance, as explained in Section 2.3.2.2 (the Table referencing the BGP attributes is

1Since we also consider the failure of an external gateway, the term gateway refers to the external gateway
of the neighboring AS by default. Thus, gateway and route may be used interchangeably.
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Figure 5.1: This example consists of an AS that learns routes towards D via several border routers, focusing
on the point of view of s. Each link from an internal border router to the BGP NH is labeled with the type of
relation between the two ASes (p2c means provider-to-customer, p2p and c2p, peer-to-peer and customer-to-
provider respectively, modeled in practice by a decreasing local preference). A route Rx is advertised by the
BGP NH nx. The routes announced by n4 and n5 are discriminated through the MED attribute. Unlabeled
edges weight one.

shown again in Table 5.1 for readability purposes.). Some attributes can be locally mod-
ified by each router. The BGP decision process elects the best route by ordering them
lexicographically, according to their attributes.

When the inter-domain related attributes β = [local-pref,as-path,med] of two routes
are equal, routers considering the following attributes α = [ibgp/ebgp, igp cost, id]. Since
the attribute after the IGP cost is a simple tie-break, and since preferring eBGP routes over
iBGP routes can be seen as an extension to the IGP cost (an eBGP route has an IGP cost
of 0), we can refer to α simply as the IGP distance towards the IGP NH.

It becomes clear that IGP events may affect the ranking of BGP routes. Let us consider
Fig. 5.1. We state that Rx ≺ Ry if Rx is better than Ry according to the BGP decision
process. We consider the routes R1, R2, R3 and R4 towards the prefix D announced by n1,
n2, n3 and n4 respectively. The MED being irrelevant to the point, we consider that these
routes have no MED for now. R4 originates from a client and has an as-path length of 2,
leading to the attributes β(R4) = [p2c, 2, -, -]. R1, R2 and R3 are all characterized by the
same β(R1,R2, R3) = [p2c, 1, -, -] and so are discriminated through their α distances (4 vs
5 vs 6). All have a better β than R4. Thus, overall, R1 ≺ R2 ≺ R3 ≺ R4 from the point of
view of s.

While the inequality R1 ≺ R2 ≺ R3 holds initially, this order is reversed after the failure
of the link a→c as the IGP distances, taken into account by BGP, go from 4, 5 and 6 to 9, 8
and 6 respectively. After the failure, R3 ≺ R2 ≺ R1, requiring to wait for the BGP decision
process to find the new best route. However, note that inter-domain related attributes (β)
are left unaffected by an IGP event, meaning that R4 will remain less preferred than the
other three routers after any IGP event in any cases.
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Table 5.1: An example of the set of attributes taken into consideration by BGP, as already shown in
Section 2.3.2.2.

Step Criterion

1 Highest local-pref LP (economical relationships)
2 Shortest as-path
3 Lowest origin
4 Lowest MED (cold-potato routing)
5 eBGP over iBGP
6 Lowest IGP distance (hot-potato routing)
7 Lowest router-id rid (arbitrary tie-break)

β

α

Fig. 5.1 also illustrates the shortcomings of PIC [Filsfils et al. 2011] and Add-
path [Uttaro et al. 2016a], already described in Section 3.1.

First, after the failure of the link a→c, PIC’s HFIB would restore the connectivity to
n1 by updating the IGP NH used to reach n1, allowing the transit traffic to reach n1 again.
However, the effect of the IGP event in the α ranking of some routes is ignored. Restoring
the connectivity to n1 without considering such changes leads to the use of a sub-optimal
route until BGP re-converges, violating so the hot-potato routing policy. Besides, the traffic
may first be re-directed after the IGP convergence, and then re-directed once again after the
BGP convergence, potentially leading to flow disruptions [Teixeira & Rexford 2006].

Second, recall that PIC stored the two best BGP NH, in case the preferred exit point
were to fail. Here, even if both n1 and n2 were stored, both become unreachable if a fails
(due to the network not being node-biconnected), leading to a loss of connectivity until BGP
re-converges and finds the new best available gateway, n3.

In both scenarios, retrieving the correct new optimal path requires the BGP decision
process which does not scale well. Furthermore, even events that do not impact the connec-
tivity state lead to useless computations. For example, if s → a fails, BGP still re-converges,
and PIC re-considers its sets of gateways even though the latter are still viable, given the
nature of the event.

With OPTIC, we aim at dealing with these cases more elegantly and efficiently, by
guaranteeing to be able to switch immediately to the new best BGP NH whatever the
internal event, for a low maintenance cost and while limiting unnecessary computations.

5.1.1 How to Reach a Symbiotic Coupling?

We present here the necessary operational condition to untie the BGP convergence from IGP
events. The question to address is: how to efficiently pre-compute the subset composed of
every BGP route that may become the new best route upon any IGP change? We state that
prefixes need to be optimally protected, as per Definition 5.1.1.

Definition 5.1.1 (Optimal Protection). Let D be an external destination. We state that
D is optimally protected by a set O, if both pre- and post-convergence BGP NHs are
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stored within O. More precisely, O should verify the two following properties for any IGP
change c:

• (i) It contains the best BGP NH n towards D before c occurs (pre-convergence NH for
D);

• (ii) It contains the BGP NH of the new best path towards D after c occurs (post-
convergence NH for D). It should be true for any kind of c: link or node event, n
included, such as an insertion, deletion or weight update.

Computing such sets naively may look costly, as predicting the optimal gateway for each
specific possible failure and weight change is time-consuming. However, OPTIC computes
and maintains these sets efficiently by rounding them. We will show that the size and number
of such rounded sets are limited in most cases. Finding the new optimal gateway among
these sets is performed through a simple min-search within each set (with no additional
computation), updating so each group of prefixes depending on this set, and thus every
prefix. Depending on how such sets of gateways (per group of prefixes) are designed, OPTIC
can protect the traffic transiting in a BGP network against any link, node, or even SRLG
(i.e.,, links sharing a common fate) single failure.

5.2 Optimal Protection Technique for Inter-intra-domain Con-
vergence (OPTIC)

This section explains our solution in detail. OPTIC mitigates the impact of IGP events on the
BGP convergence without hampering neither hot- or cold- potato routing. It pre-computes
sets of gateways bound to contain the current and future optimal gateways after any single
IGP failure or change, optimally protecting every prefix2. For the sake of simplicity, we only
consider single node and link failures (including the gateway) as well as weight changes, but
OPTIC can be extended for more general failure scenarios at the cost of complexifying the
group management overhead.

5.2.1 Sorting and Rounding BGP Routes

First, we show that optimal protecting sets can be efficiently computed and maintained by
sorting and rounding BGP routes in a specific way. We start by explaining this concept in
a high-level fashion before formally detailing our solution.

5.2.1.1 General idea

Using our β (inter-domain attributes) and α (IGP distance) attribute separation, we can
compute optimal protecting sets easily. Indeed, β is of higher importance than α within the
BGP decision process, and IGP events can only affect α, leaving β unchanged. Thus, given
the current optimal route, denoted Rst, with β(Rst) = βst, the new optimal route after an

2The addition of a gateway, taken into account in our set-maintaining algorithms, is signaled by a BGP
message and thus considered a BGP event.
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IGP event is among the ones with the same best βst – we simply need to find the one with
the new best α.

We can then easily avoid predicting which gateway will be the optimal one for a specific
event; whatever the IGP event is (except the gateway failure possibly requiring to look for
more gateways), the new optimal route is among {R | β(R) = βst}. We thus create a rounded
set that includes all routes sharing the same β. After the IGP event, since β attributes
are unaffected, we simply need to consider that α may have changed and find within this
rounded set the gateway with the lowest α (i.e.,, with a simple min-search). In Fig. 5.1, such
a set would be composed of n1, n2, n3 as they share the same (best) β attributes. We indeed
showed in Section 5.1 that any of these three gateways may become the new optimal gateway.

This is however not sufficient to deal with all failures. In particular, if the first rounded
set only contains one gateway, a single failure (that of the gateway itself) may render all
routes within the set unusable. If this scenario occurs (because there are no two node-
disjoint paths toward the external prefix – see Section 5.2.1.4), more gateways are needed
to optimally protect the prefix. Since β attributes are unchanged by an internal event, the
new best route is, a priori, among the ones with second-to-best β attributes βnd.

To form an optimal protecting set, we add rounded sets of β-tied gateways up until there
is enough path diversity to ensure that no single failure may render all of them unreachable
(there are two node-disjoint paths between the border routers and prefix D). By never
adding less at a time than all gateways sharing the same β, we ensure that the final set
contains all potential optimal gateways (as only α can be affected by internal events). This
final set (composed of the union of rounded sets) is thus optimally protecting, and the new
optimal gateway can be found through a simple walk-through of this set after any IGP event.

If two prefixes share an equal optimal protecting set, they belong in the same group and
share the same set in memory, reducing both the memory consumption and the number
of entries to go through and update upon an event (as covering all shared sets covers all
prefixes). In Fig. 5.1, n1, n2, and n3 provided enough path-diversity to ensure the prefix was
protected, and shared the same best β. Thus, the optimal gateway after any internal event
is bound to be one of these three, which then form an optimal protecting set (for all single
possible failures).

We can now present formally the data structures allowing OPTIC to compute and main-
tain optimal protecting sets easily. Our solution requires to re-design both the control- and
the data-plane. The control-plane here refers to all learned BGP routes. It is restructured
to ease the handling of the routes, their comparison in particular, for efficient computation
of optimal protecting sets. The data-plane only contains the information necessary for the
optimal forwarding and protection of all prefixes (i.e., the optimal protecting sets). The
resulting structures are illustrated in Fig. 5.2, which shows how the network depicted in
Fig. 5.1 would be translated within OPTIC’s control-plane (left) and data-plane (right). To
better illustrate our data structures, we assume here that n4 has a better MED than n5,
while other routes do not possess any MED. The next sections describe the control-plane
structure, how we construct optimal protecting sets from it, and how they are used in the
data-plane.
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Figure 5.2: OPTIC’s data-plane and control-plane data structures. In the control-plane, routes are sorted
within a prefix tree T whose leaves form a linked list L of structured BGP NH. MED-tied routes from the
same AS are chained within a linked list inside their leaf. Only a sufficient optimally protecting subset O of
routes is pushed to the data-plane.

5.2.1.2 OPTIC’s control-plane

At the control-plane level, OPTIC stores every BGP routes learned within a sorted prefix-
tree referred to as T , whose leaves form an ordered linked-list L, which contains rounded
sets of routes sorted by decreasingly preferred β attributes. Both T and L are per-prefix
structures. The set of all trees, for all prefixes, is referred to as T. It is important to observe
that, since α is not considered, the tree and the list stay stable upon IGP changes and that
routes sharing the same β attributes are stored within the same leaf.

This observation implies that when an IGP event occurs, the BGP NH of the new optimal
route belongs to the first leaf of the list L that contains at least one reachable gateway. In
addition, a route from another leaf cannot be preferred to the routes of the first leaf. While
any route within the first leaf can become optimal after an internal change, the
order of the leaves themselves can not be modified by an IGP change.

The MED attribute can only be used to compare routes originated from the same AS,
hence we cannot use it as a global, generic attribute. One can only consider a route with a
greater MED if the route with a better one from the same AS becomes unreachable. Thus,
routes discriminated by their MED (MED-tied routes) for each AS are stored within a sub-
linked-list inside their leaf. This is illustrated in Fig. 5.2 with n4 and n5. Both BGP NH
share the same three first BGP attributes and are thus stored within the same blue leaf of T
(MR2). As they originated from the same AS, we store them in a sorted linked list depending
on their MED attribute. By doing so, we consider only the first route in the MED-tied list
that is reachable (referred to as Mtop), respecting the MED’s semantics. Peculiar situations,
such as routes not having a MED while others do, can be resolved by applying the standard
ISP practices (e.g., ignoring such routes or using a default MED value). The leaves of the
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tree T thus form a sequence of rounded sets of gateways stable upon IGP changes. We call
each set a MED-aware Rounded (MR) set.

Definition 5.2.1. MED-aware Rounded (MR) For a given prefix, a leaf of its prefix tree
T is called a MED-Aware Rounded set. In particular, it contains all the routes having
the same β attributes (MED-Excluded).

5.2.1.3 Getting optimal-protecting sets from the control-plane

We now explain how this construct eases the computation of optimal protecting sets.

For each prefix D, the first MR set contains, by construction, the optimal pre-convergence
route. As stated in Section 5.2.1.2, any BGP NH within the same MR set may offer the new
optimal post-convergence route after an internal event. However, this first MR set is not
always sufficient to protect D. In this case, the new optimal BGP NH is bound to be within
the first MR set in L which contains a gateway that is still reachable. Consequently, OPTIC
constructs an optimally protecting set by considering the union of the best MR sets, in order,
until the destination prefix D is protected from any failure, i.e., there exist two node-disjoint
paths. The union of such MR sets is referred to as an Optimal-Protecting Rounded (OPR) set
for D. The formal definition is given in Theorem. 5.2.1. Due to lack of space and its intuitive
design, its proof is not presented here (but available in [Luttringer & Mérindol 2019]).

Definition 5.2.2 (OPR set). Let D be a destination prefix, and M1,M2, . . . be the se-
quence of MR sets in the list L. The OPR set of D is defined as O =

⋃x
i=1Mi, with x

minimal such that there exist two node-disjoint paths towards D (passing through O)

Theorem 5.2.1. Let D be a prefix, and O an OPR set as defined by Def. 5.2.2. Then,
O is optimally protecting D.

Adding MR sets until the prefix D is protected means that there now exists enough path
diversity to protect D from any single event. The number of routes necessary to protect a
prefix depends on the resilience of the network. In bi-connected networks, two gateways are
enough.

OPR sets computation does not require any (prior) knowledge of the IGP graph to
cover all possible IGP events. Verifying the existence of two node-disjoint paths between
the border router and D via O is enough and the lightest possible processing to test the
protection property. Unless the protection property is affected by the event, OPR sets stay
stable.
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Figure 5.3: For prefixes to share the same OPR set, the latter must not only possess the same gateways,
but also the same MR set decomposition.

5.2.1.4 Using OPR sets in the data-plane

Once OPR sets are extracted from the control-plane, we push them to the data-plane. The
bottom part of Fig. 5.2 shows OPTIC’s data-plane. For a given prefix, only the OPR set
O (and not the whole list L) that optimally protects D is pushed to the data-plane. The
data-plane contains the meta-set O of all OPR sets for all groups of prefixes, indexed by
their hash, as shown in Fig. 5.2. Prefixes, when sharing the same OPR set, point towards
the same set O. The hash index is content-based (see next sections for more details) and
eases the management of O. Allowing prefixes to share the same O reduces the amount of
data that has to be stored within the data-plane, as well as the scale of the updates. Note
that, since O is constructed from a subset of L, prefixes can share the same OPR set O
while having different control-plane structures L. Note, however, that in order to share an
OPR set, prefixes must not only share the same best gateways but also the same MR set
decomposition within the OPR set. Indeed, when retrieving the new best gateway within
an OPR set after an internal event, one does not have to consider all the gateways of the
OPR set. More precisely, one should only consider the first MR set (i.e., find the gateway
with the minimum IGP cost within the first MR set of the OPR). Thus, prefixes that don’t
share the same MR set decomposition of their OPR sets must not share the same OPR set
in memory, as the min-search should not be performed on the same routes. This issue is
illustrated in Fig. 5.3.

Fig. 5.3 shows the OPR sets (and their respective decomposition into MR sets) of the
prefixes D1 and D2, from the point of view of s. If n1 fails, the new best gateway to D1

becomes n3, while the new best gateway to D2 becomes n2. Thus, one must look for the
new best gateway in the first MR set that contains a reachable gateway only, and not in the
whole OPR set. Hence, the MR-decomposition of each OPR set is relevant at the data-plane
level and should be kept in O (not only in T and L). Prefixes then share their OPR set in
memory if they contain the same gateways and the same MR-decomposition.

To manage OPR sets within the data-plane, we first require a utility function able to
extract, from L, the current OPR set. This function is described in Alg. 8. In short, the
required MR sets are computed by first (i) creating a graph G′ from G where we add a
virtual node representing a destination prefix D, then (ii) connecting in G′ the gateways
from MR sets, MR per MR to this virtual node, until there exists two node-disjoint paths
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towards the virtual node. Once this condition is verified, we know that the OPR set should
be composed of the union of these MR. Extract_OPR thus returns an OPR set as defined
by Theorem 5.2.1. The start variable is useful if we know that the OPR set should contain
more than x MR, in which case we can set this variable to x in order to skip the first steps
of the main loop.

Another way of finding the number of required MR sets, more intuitive, would rely on
checking the existence of a path from the current node to the destination for any possible
failure on the best path towards p. However, this method is far less efficient than the one
proposed here and does not allow to deal easily with ECMP. With this function, we can
know design algorithms allowing to manage OPTIC’s data-plane.

Algorithm 8: extract_opr

1
Data:

L, G, start = 0 (Index of the start of the search)
Result:

OPR set required for protection
2
3 Function extractOPRSet→
55 V’ = V ∪ D;
77 E’ = E ∪ {(u,p) | u=L[i][n], ∀ i ∈ [0,start], ∀ n ∈ L[i]});
99 G’ = (V’, E’);

1111 ρ = any_path(G’, D);
1313 RGρ(V’, E”) = residual_graph (G’,ρ);
1515 while ∄ path (RGρ, D) do
1717 RGρ(V’, E”) = (V’, E’ ∪ {(u,D) | u=L[j][n], ∀ n ∈ L[j]}));
1919 j++;

2121 O = ∅;
2323 for i = 0...j do
2525 O = O ∪ L[i];
2727 i++;

2929 return O;

30

Algorithm 9 shows how the OPR sets are updated in the data-plane when necessary. The
optimal protection property may require adding gateways from the data-plane structure O
(while removals are performed for efficiency). We start by extracting the OPR set O from
the control-plane structure L (Line 5). We then add the IGP distances towards each gateway
(contained within dIGP ) to the structure (Line 9). This is done for each gateway, including
MED-tied ones (Line 13). Finally, OPTIC retrieves the current optimal gateway within O,
Otop, i.e., the one with the lowest IGP distance (Line 15) within the first MR set that still
contains at least one gateway.

Once the OPR set O is updated, we compute its hash to check its existence within O and
insert it if required (Line 21). Finally, if no prefixes still use the previous O, it is removed from
the data-plane (Line 27). This algorithm maintains the data-plane in an optimal-protecting
state. Its limited complexity is often bypassed (after the bootstrap), as we expect OPR sets
to stay stable in bi-connected networks. Unused OPR sets could be kept transiently within
the data-plane to mitigate the effects of intermittent failures.
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Algorithm 9: update_OPR
1

Data: L, O, oldH, D, G, dIGP

Result: updates OPR sets and DBGP2
3 Function update_OPR →
55 O = extractOPRSet (L, G);
77 for Mtop ∈ O do
99 while Mtop not = ∅ do

1111 Mtop.α = dIGP[Mtop];
1313 Mtop = Mtop.next;

1515 Otop = minα(O[0]);
1717 newH = hash (O);
1919 if O /∈ O then
2121 O[newH] = O;

2323 DBGP(D) = newH;
2525 if not∃ D | DBGP(D) = oldH then
2727 remove O[oldH] from O;

28

5.2.2 Dealing with BGP and IGP events

We describe here how OPR sets are updated upon a BGP or an IGP event to achieve optimal
protection of all destinations.

Algorithm 10: BGP_Update
1

Data: T, O, DBGP, R = (D, n, β), G, dIGP

Result: Update of T, O, DBGP2
3 Function BGP_Update →
55 T = T(D, tree);
77 H = DBGP(D); // H = hash (O)
99 L = T(D, leaves);

1111 if Event = Add then
1313 rMR = add R in T;
1515 else
1717 rMR = remove R from T;

1919 if rMR ∈ useful_MR (L) then
2121 update_OPR (L, O, H, D, G, dIGP);

22

5.2.2.1 BGP updates

Algorithm 10 showcases how to maintain OPR sets upon a BGP update, being either an Add
(i.e.,, a new route is learned) or a Down event (i.e.,, a withdraw that cancels a route)3. As a
BGP update concerns a given prefix, only one OPR set O (the one that optimally protects

3A modified route can be handled through a Down followed by an Add.
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D) is modified when necessary. Intuitively, checking whether the route R belongs (or should
belong) to the leaves of T extracted to create the current O (i.e., if R belongs to the current
O) is enough to know if the update is necessary.

First, Alg. 10 retrieves the route-tree T of the updated prefix D (Line 5). Depending
on the nature of the update, we update the control-plane structure T (and implicitly L) by
either adding (Line 13) or removing (Line 17) the updated route. When performing these
operations, we store the rank of the MR set containing the route R, rMR.

Using rMR, one can check whether R belongs (or should belong) to O (Line 19), e.g.,
by memorizing the number of MR sets used to form O. If R is not good enough to belong
to the current OPR set, there is no need to consider it and the algorithm ends. Otherwise,
if R is a newly added (resp. withdrawn) route, it must be added (resp. removed) from the
data-plane structure O which can be found in O through its hash. In both cases, O has to be
updated (Line 21). One can see that OPTIC’s behavior when dealing with a BGP update is
pretty straightforward and that BGP events are likely to have no bearing on the data-plane.

Algorithm 11: IGP_Change

1
Data: T, O, DBGP, G= (E, V ), l, w
Result: Update of T, O, DBGP, G

2
3 Function Change →

// get new IGP distances
55 dIGP = spt (G, l, w);
77 forall O ∈ O do
99 iMR = 0;10 i = 0;11 forall Mtop ∈ O do

1313 while Mtop not = ∅ ∧ dIGP[Mtop] = ∞ do
1515 Mtop = Mtop.next;

1717 if Mtop = ∅ then
1919 remove Mtop from O;
2121 else
2323 Mtop.α = dIGP[Mtop];
2525 iMR = min (i, iMR);

2727 i += 1;

// Switch to optimal route
2929 Otop = minα(O[iMR]);

// Anticipate next igp event
3131 if l ∈ E ∧ wnot = ∞ then

// Just a valuation change
3333 continue;
3535 else if 2disj_routes (O, G) ∧ is_min(O) then
3737 continue;

3939 add hash (O) in OPR_to_update;

4141 forall H ∈ OPR_to_update do
4343 forall D | DBGP(D) = H do
4545 L = T(D, list);
4747 update_OPR (L, O, H, D, G, dIGP);

48
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5.2.2.2 IGP changes

Algorithm 11 showcases the behavior of OPTIC upon an IGP change, which can be a mod-
ification on the existence (insertion or deletion – modeled by an infinite weight) or on the
weight w of a link l (a node wide change can be modeled through its multiple outgoing links).

Upon a change, the new IGP distances dIGP are recovered. OPTIC then considers each
O, covering so every BGP prefixes (Line 7). For each relevant gateway (with the best
MED for each AS, Mtop) within O, we first check whether it is still reachable (Line 13).
Unreachable gateways are replaced by the next MED-tied route when possible (Line 15) or
removed (Line 19) otherwise. Reachable gateways are first updated with their new best IGP
distances (Line 23). The whole group of prefixes using the set benefits from its new optimal
path as soon as possible (Line 29). Afterward, if necessary, we update OPTIC’s structures
in the background to anticipate any future internal event.

If the updated link l is a valuation change (Line 31), there is no loss of reachability. Thus,
O still contains two disjoint paths towards D and remains stable. For other kinds of events,
O may need to be updated, as connectivity may have evolved due to the insertion or deletion
of a link. If a link was added, the network connectivity may have increased and useless MR
sets can be removed if O is not already minimal (e.g., containing two gateways). If a link
was removed, O may have lost its protecting property and may have to be updated. These
two scenarios, leading to the update of O, are visible in the condition Line 35. This update
is used to prepare for a future event. We perform it in the background afterwards (Line 41)
and continue to walk through O to restore the optimal forwarding state of all groups of
prefixes quickly.

The update aforementioned (Line 41) is performed at the prefix granularity (i.e.,, for
each prefixes that used O that will be updated). Indeed, while these prefixes share the
same O before the change, they do not necessarily share the same L. Since O may be
updated by fetching information from L, they may point to distinct OPR sets after the
update. Recall that this is a background processing phase where OPTIC may fall back
to the prefix granularity to anticipate the next change only if node-bi-connectivity is not
granted anymore. The fast switch to the new optimal post-convergence gateway was already
performed at Line 29. This switch is not done at the prefix granularity, it is performed only
for each O instead.

In short, most BGP and IGP updates both result in simple operations. A BGP update
just triggers a prefix tree manipulation: a single OPR set is re-computed only if the updated
route is, or should be, part of the set. An IGP weight-change results in the walk-through
of all OPR sets (O) and a min-search to converge to the new optimal forwarding state
followed by a background processing if necessary. We argue that the cardinal of O will be
orders of magnitudes lower than the number of BGP prefixes in most networks. The failure
or addition of a link or node results in the same walk-through, but could also require the
background update of some OPR sets to prepare for a future event. More precisely, only
when the network gains or loses its bi-connected property could some OPR sets be affected.
New OPR sets then need to be re-computed for the prefixes of the groups that depended on
the affected OPR sets. Instead of the number of prefixes, OPTIC convergence scales with the
number and the size of the OPR sets. Consequently, to assess the viability of OPTIC, we aim
at limiting their size (and so number). While Sec. 5.3.3 analyzes that aspect in detail, the
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Figure 5.4: surprise doom-med. Example illustrated while all the gateways within a MED linked list
should be kept within the first MR.

next subsection explores conditions on the graph properties allowing to use smaller optimally
protecting sets.

5.2.3 Optimizations

In this section, we introduce optimizations that allow reducing the size of the OPR sets used
by OPTIC.

Let us start with a fairly reasonable assumption: well-designed networks should offer
bi-connectivity between border routers. Based on this realistic hypothesis, we can consider
two kinds of reductions: (i) removing some MED-tied entries from an OPR set and (ii)

discarding all gateways in the second MR set except the best one (when the first MR set
includes only one gateway).

Let us consider the first optimization. Recall that the MED is an attribute of higher
importance than the IGP cost. Hence, a gateway that does not have the best MED has no
chance of becoming the best gateway after an IGP event, as the one with the best MED
(Mtop) will always be preferred by the decision process (excluding if Mtop itself fails).

Now, let us consider Otop as the current optimal gateway, and as the only gateway within
the first MR set. Clearly, the only possible internal event that may impact the optimal
status of Otop is the failure of Otop itself, meaning that the new best gateway is in the second
MR set. However, this internal event cannot impact the MED-attribute of these gateways.
Consequently, the new optimal gateway is necessarily one of the gateways with the best
MED pre-failure, i.e., the head Mtop of each list. Consequently, there is no point if pushing
to the data-plane more than the head of each list of any MR set after the first one.

A legitimate question would be to ask whether this optimization could also be performed
in the first MR set of the OPR set. Indeed, following similar reasoning, the failure of Otop (or
a change of distance towards the latter) does not change the MED, and the new best gateway
should thus be a head of a linked list. However, in this case, a perhaps surprising effect may
occur depending on the underlying BGP configuration, as illustrated by the surprisingly
doom-med gadget in Fig. 5.4.

Here, the OPR set is composed of a single MR set containing a, b and c, with b having
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a lower MED than c. Recall that the route comparison is usually done two-by-two, for
efficiency purposes. Thus, it is possible for a to be chosen as the best gateway (if c was
eliminated by b prior because of the MED). In this case, if b were to fail, c would become
the best gateway, meaning that it is necessary to keep the entirety of the list within the
MR set. This effect is here due to the fact that the MED breaks the total ordering between
routes (similarly to what was shown on the medevil gadget in Section 2.3.2.2), hiding so
the route with the actual lowest IGP distance. This effect should thus not occurs when
relying on the always compare med option, which changes the MED semantics to that
of a standard attribute. Nevertheless, this showcases that particular care must be taken
regarding the hypothesis behind such optimizations.

The second optimization is perhaps more general, and can be performed if the first MR
set is composed of a single gateway. Then, clearly, an internal event will not make this
gateway lose its optimal status, except if the gateway itself becomes unreachable. As the
network is supposed to be bi-connected, the only failure which may render the gateway
unreachable is the failure of the gateway itself. Let us suppose that such a failure occurs.
Then, the new optimal gateway should be found within the second MR set. However, if the
failed gateway was not part of the path used to reach the best gateway of the second MR
set, then the best gateway of the second MR set is the same before and after the failure (and
is the new optimal gateway).

Thus, in such a case where the first MR set is composed of a single gateway and this
gateway is not on the path used to reach the best gateway of the second MR set, the best
gateways of the first two MR set form an OPR set.

Such optimizations can be important, as, to react to an IGP event, OPTIC only operates
a min-search in all OPR sets. OPTIC’s performances thus mainly depend on the number of
OPR sets (|O|) and their sizes.

5.3 Theoretical Evaluation

5.3.1 Preliminary Model: counting #OPR sets

To react to an IGP event, OPTIC only operates a min-search in all OPR sets. OPTIC’s
performances thus mainly depend on the number of OPR sets (|O|) and their sizes.

We present here a theoretical model capturing a wide variety of scenarios. This ana-
lytical approach is more suitable than experiments, as it is more general and provides a
pessimistic order of magnitude of OPTIC’s potential. This approach yields the same results
as a simulation, but allows to easily explore numerous scenarios. It highlights what an ISP
can expect by running OPTIC given only a few structural parameters on their networks. We
investigate several ASes profiles (constructed from [Luckie et al. 2013]’s data), varying the
number of gateways, peers, clients, and providers, as well as the number of prefixes learned
through each of the latter. We show that |O| remains manageable and/or close to the lower
bound, being 99% smaller than the number of prefixes for stub networks.
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5.3.2 Preliminary Model: counting #OPR sets

We consider an AS (or a portion of it), with B bi-connected gateways advertising P prefixes
in total. Each prefix D is advertised by a subset of b ≤ B of those gateways, chosen uniformly
at random. The β of each prefix is represented by a value between 1 and ps (policy spreading)
also chosen uniformly at random. For a given D, this implies that any subset of gateways of
a given size n ≤ b all have the same probability to be the OPR set for D. Our model analyzes
the number |O| = |OB,P,ps| of unique OPR sets depending on the number B of gateways,
the number P of prefixes, and on the policy spreading ps. In practice, we decide to set b to
a constant value (e.g., b = 5) greater than the median in [Luckie et al. 2013].

In bi-connected networks, OPR sets can only take two possible forms: they are either
composed of one MR set (all best β-tied gateways) or two MR sets, if the first one only
contains a single gateway. Indeed, more than 2 MR sets are not necessary, as two gateways
will by definition protect the prefix, and two MR sets will thus do so optimally. Similarly, a
single MR set of two gateways or more will always be sufficient. Recall that OPR sets are
shared if they share both the same gateways and the same MR set decomposition. Both
cases thus need to be treated independently.

We first compute the probability pn of a prefix to have an OPR composed of a single
MR set of n gateways. In this case, all n gateways must have the same best β, an event
with a probability of 1

psn . In addition, all other b − n gateways must not have a better β.

This event has a probability of
(
1− i

ps

)b−n
, with i the β value of the n best gateways. This

may happen for each possible ps values, so the probability must be summed for i = 1 to ps.
Finally, there are

(
B
n

)
such possible sets of size n. Thus, the probability that a prefix has an

OPR set composed of a single MR of n gateways is

pn =

ps∑
i=1

(
b

n

)
1

psn

(
1− i

ps

)b−n

(5.1)

An OPR set of size n may also be composed of 2 MR sets, if the first one only contains a
single gateway (the second MR set will thus contains n−1 gateways). We thus compute the
probability p′n of a given prefix to have an OPR set of size n composed of two MR sets. For
this to happen, n−1 gateways must have the same β attributes, while a single gateway must
have better β attributes. In addition, all other b−n gateways must have worst β attributes,

leading to a probability of 1
psn−1

i−1
ps

(
1− i

ps

)b−n
, with i the β value of the n− 1 gateways of

the second MR set. Any one of the b gateways may possess the best β attribute, and there
are

(
b−1
n−1

)
possible second MR set of n − 1 gateways. Thus, this event occurs b

(
b−1
n−1

)
times.

Summing all the cases (for each possible ps), we have

p′n =

ps∑
i=1

b

(
b− 1

n− 1

)
1

psn−1

i− 1

ps

(
1− i

ps

)b−n

(5.2)

From Eq. 5.1 and 5.1, we can compute the probability that a given OPR set of size n is
associated with at least one prefix.

First, let us compute the probability that a given OPR set of size n composed of a single
MR is associated with at least one prefix. There are

(
B
n

)
such sets. On average, the number

of prefixes associated with OPR sets of size n (with a single MR set) is pnP . Thus, the
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probability that a given set of size n is not associated with any prefix is
(
1−

(
B
n

)−1
)pnP

(all prefixes chose another OPR set). So, the probability that a given OPR set is associated
with at least one prefix is

PB,ps,P,n = 1−

(
1−

(
B

n

)−1
)pnP

(5.3)

A similar reasoning can be done to find the probability that a given OPR set of size n

composed of two MR is associated with at least one prefix, the main difference being that
there are B

(
B−1
n−1

)
such sets (B possible first MR set, and

(
B−1
n−1

)
possible second MR set),

leading to

P′
B,ps,P,n = 1−

(
1−

(
B

(
B − 1

n− 1

))−1
)p′nP

(5.4)

From P and P′, we can compute |OB,P,ps|, the number of distinct OPR sets. The quantity
|OB,P,ps| can be seen as the sum of distinct OPR sets of different sizes. From our assumptions,
OPR sets of size n (2 ≤ n ≤ b) are in OB,P,ps with the same probability. A particular subset
of gateways of size n can be the OPR of a given prefix through its one MR set variant (with
a probability PB,P,ps,n) or through its two MR set variant (with a probability P′

B,P,ps,n),
leading to a probability PB,P,ps,n + P′

B,P,ps,n, to account for both possible configurations.
There are respectively

(
B
n

)
and B

(
B−1
n−1

)
such sets, for n = 2 to b (as b gateways announce

the prefix). Thus, we have

|OB,P,ps| =
b∑

n=2

(
B

n

)
PB,P,ps,n +B

(
B − 1

n− 1

)
P′
B,P,ps,n (5.5)

We can also easily compute the number of distinct OPR sets when applying the opti-
mizations mentioned in the previous sections. In particular, recall that when the first MR
contains a single gateway, then the OPR set can be reduced to a size of two (two MR with
one gateway each), no matter how many gateways actually are in the second MR set. This
optimization is very likely in practice, as the properties required are pretty lenient 4. With
this optimization, the probabilities do not change when considering OPR sets composed of
one MR set (all gateways must have the same β attributes, as expressed by the left side of
equation (5)). However, the probabilities slightly change when considering OPR sets com-
posed of two MR sets (right sight of equation (5)): as long as only one gateway has the best
β attributes, the OPR set will be of size 2, and there are B(B − 1) possible sets of size two.
Thus, for the optimized version, we have

|Oopt
B,P,ps| =

ps∑
i=1

B(B − 1)
b

ps

(
1− i

ps

)b−1

+
b∑

n=2

(
B

n

)
PB,P,ps,n (5.6)

5.3.3 Towards a Realistic Evaluation

5.3.3.1 Break Down Into Classes

In practice, neighboring ASes are partitioned in several classes (eg., clients, peers, and
providers), usually represented by the local-pref attribute. At the end of the decision

4The best path to the best gateway does not contain the second-best gateway
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Table 5.2: Number of distinct OPR sets (|O|) for several scenarios.
Type of AS # gateways # prefix # distinct OPR sets Lower

per class per class OPR sets median size bound
Stub (10; 20; 0) (700K; 100K; 0K) 3945 4 235

Tier 4 (10; 25; 25) (500K; 200K; 100K) 11 879 3 645

Tier 3 (10; 50; 100) (500K; 200K; 100K) 46 010 3 6219

Large Tier 3 (10; 100; 500) (500K; 200K; 100K) 127 433 2 73 781

Tier 2 (5; 500; 2000) (500K; 200K; 100K) 263 219 2 197 194

Tier 2 (other) (5; 500; 2000) (450K; 250K; 100K) 294 886 2 205 484

Tier 1 (0; 50; 5000) (0K; 600K; 200K) 232 180 2 199 633

Tier 1 (other) (0; 50; 5000) (0K; 400K; 400K) 425 786 2 394 891

process, we know that a prefix D is associated with a single class. Indeed, the local-pref
depends only on the set of advertising neighbors for D: it belongs to the class of the neighbor
having the highest local-pref.

This allows us to split the analysis by class. With this assumption, OPR sets are included
inside a unique class of gateways, but as a counterpart, the policy spreading in each class is
reduced (because gateways have the same local-pref inside a class). We use our former
model to compute the number of distinct OPR sets in each class with ps = b = 5. This
calibration is pessimistic enough as it only takes into account a limited AS length dispersion
and always 5 learning gateways in the best class.

B1, B2 and B3, denote respectively the number of gateways with local-pref 1, 2
and 3. Similarly, P1, P2 and P3, denote respectively the number of prefixes originating
from a gateway with local-pref 1, 2 and 3. We have P1 + P2 + P3 = P = 800 000 and
B1+B2+B3 = B. We can now compute |O| by assuming each class follows our basic model:

|O| = |OB1,P1,5|+ |OB2,P2,5|+ |OB3,P3,5|

This sum gives the theoretical performance of OPTIC as it is the number of OPR sets
each router has to manage.

5.3.3.2 Definition of the Lower Bound

We define here the best theoretical performance an optimally protecting scheme could reach,
to compare it with OPTIC. Such a scheme would have to store sets of at minima two
gateways (less cannot ensure protection). This lower bound also provides an estimation
of the performances of techniques just aiming at providing (non-optimal) protection like
PIC [Filsfils et al. 2011]. In other words, with Pi prefixes and Bi gateways in a given class,
the average minimum number of optimally protecting sets is the average number of dis-
tinct sets obtained when choosing Pi random subsets of two gateways (such sets are chosen
uniformly at random).

5.3.3.3 Evaluation on Fixed Break Down

We now compute |O| for several AS categories; a Stub has few peers and even fewer providers
from where most the prefixes originate; a Transit (Tier 2, 3 and 4) has a limited number
of providers but from where the majority of the prefixes originate, more peers and possibly
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numerous customers; a Tier 1 has few peers and a large number of customers. For Transit
and Tier 1, we present different class and prefix break down. Note that our model is pes-
simistic, as, for Tier 1 in particular, ASes may have more classes with ps > 5 (e.g.,, gateways
can be geographically grouped). The number of gateways, and their partition into classes,
are rounded upper bounds of realistic values obtained from [Luckie et al. 2013]. Moreover,
we did not assume any specific popularity of certain gateways. Using our complementary
material [Bramas et al. 2020], |O| can be computed for any parameters.

Table 7.1 shows that the number of OPR sets is more than reasonable for Stubs and small
Transit. For large transit, the distribution of the prefixes into classes has a great impact on
|O|. As expected, for Tier 1, the number of OPR sets is high, but OPTIC is close to the lower
bound (there is not much room for possible improvements). The number of routes contained
within each OPR set is limited, meaning that the min-search applied upon an IGP event has
a limited computational cost. Finally, it is worth recalling that our analysis is pessimistic
because uniform. Regional preferences or gateway popularity can strongly reduce the size of
O in practice.

5.3.3.4 Evaluation on Variable Break Down

In addition to previous specific cases, we here show how |O| evolves depending on the sizes of
the classes and their relation. For that, we introduce the variable δ that represents the ratio
between the sizes of two successive classes. More precisely, when a break down considers a
ratio of δ, then it means (B1, B2, B3) = (B1, B1× δ,B1× δ2). Similarly, we also assume that
the number of prefixes learned by each class verifies (P1, P2, P3) = (P1, P1/δ, P1/δ

2).
We present in Figure 5.5a the number of distinct OPR sets depending on δ for B = 500;

δ varies from 1 (all the classes have the same size) to 15 (each class has 15 times more
gateways that the previous class, but learns 15 times fewer prefixes). When the number of
gateways is low, the management cost is obviously limited (even when all the classes have
the same size). With B = 500, OPTIC’s performance is limited for small δ but gets better
quickly. When δ ≥ 8, our optimization performs as well as the lower bound.

We now investigate the case where δ equals 5 and look at how |O| evolves depending on
B. We see in Fig. 5.5b that our optimized OPR reduction outperforms the non-optimized
one. For less than 1500 gateways, the number of OPR sets is smaller than 100 000 with our
optimized version. Then, |O| increases quickly to reach 200 000 when there are around 4000
gateways, with a lower bound at 125 000 sets. After, the growth is linear, so the proportional
overhead of our solution compared to the lower bound tends to one.

The management cost of OPTIC is reasonable, especially for networks having a lim-
ited number of border gateways where OPTIC exhibits very good performances. For large
networks having numerous gateways, the size of our data-plane structures remains limited
regarding the number of prefixes, and there does not exist many room for theoretical im-
provements.

5.4 Conclusion & Perspectives

Because the IGP and BGP are entangled to enforce hot-potato routing at the AS scale, an
IGP change triggers the full and slow BGP convergence. With OPTIC, we aim at re-designing
this IGP/BGP coupling. We proposed efficient MED-aware algorithms and data-structures
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(a) |O| depending on the ratio δ between classes with
B = 500. (b) |O| depending on the number of gateways, with δ = 5.

Figure 5.5: Evolution of |O| depending on various factors.

to anticipate and quickly react to any single IGP event (weight change, link, or node failure,
including the outage of BGP border routers). At the data-plane level, OPTIC ensures a
fast and optimal re-convergence of the transit traffic. In the control-plane, OPTIC updates
its constructs in the background to anticipate a future event when necessary (only after
changes modifying the 2-node-connectivity network property). This process has the same
computational as BGP at worst to deal with one event in advance (the optimal connectivity
being already restored prior).

Since nearly all calculations are performed per group of prefixes, OPTIC scales orders of
magnitudes lower than the number of BGP prefixes. Our analytical evaluation shows that
the number of entries to manage in the FIB is at worst 50% of the full Internet table for
large Tier-1. It scales down to 25% for large Tier-2s and less than 1% for Stub AS, which
represents 84% of all ASes in the current Internet.

Several short- to mid-term perspectives can be envisioned for OPTIC. New ways
to construct OPR sets can be investigated, e.g., considering (some) concurrent failures,
leveraging other network characteristics, or even considering the operators’ arbitrary
requirements. Our tool (used to predict the number of OPR set in the evaluation) could
then be extended to propose these various schemes and predicts the resulting O, allowing
operators to choose the best protecting scheme remaining under a given constraint on the
number of OPR sets. One may also envision computing sets whose objectives differ from
the one presented here. For example, one may compute sets with TE objectives, e.g.,
aiming to protect the destination prefix (if possible) and ensuring that the gateways within
the set can be reached within a certain delay constraint, performing a kind of delay-aware
hot-potato routing. Such a set could be constructed by solving 2COP, if paths towards the
gateway are to be deployed with SR 5. This may however require deep modifications to the
decision process, as the latter may currently eliminate too many routes before reaching the
hot-potato rule to ensure that routes satisfying such intricate requirements are still available.

Further discussion regarding the actual behavior of OPTIC within an operator’s networks
may also be required. For example, the behavior of OPTIC considering intricate iBGP
topologies or communities [Li et al. 1996] is worthy of additional investigation. More realistic

5Note that ensuring such constraints within an AS would however not allow ensuring end-to-end guar-
antees
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evaluations may also be envisioned, relying on data gathered through projects such as BGP
Streams 6 or RIPE RIS 7.

Furthermore, the interaction of OPTIC with other FRR mechanisms can be worthy of
discussion. In theory, such interaction should not raise any troublesome issues. Nevertheless,
after an IGP event, FRR mechanisms such as LFAs could direct the traffic towards the pre-
event optimal gateway through backup paths, even though said gateway may be obsolete.
Similar cases may occur when relying on tunneling. The use of this transient sub-optimal
gateway and the switch over to the new optimal one could lead to desequencing 8. Investi-
gating whether other detrimental effects may occur and whether they may be mitigated is a
further step to show that OPTIC can be deployed within real operators’ networks.

Similarly, further discussions and considerations regarding the deployment of OPTIC
may also prove interesting. In particular, partially deploying OPTIC incrementally may
lead to further heterogeneity and could increase the chances of transient forwarding loops
or deflection. Indeed, OPTIC-routers may make use of the new optimal route earlier than
non-OPTIC routers. Should a non-OPTIC router be used as the new optimal gateway, the
latter may not yet be aware of its new status and thus forward traffic to another gateway (or
even back to the source). This effect can however be mitigated when relying on tunneling
mechanisms, in particular if such tunnels are extended one hop past the gateway, enforcing
traffic to enter a specific neighboring AS (this can be done through technologies such as
BGP Egress Peer Engineering (EPE) with SR [Filsfils et al. 2021b]). When such tunnels
are deployed, deployed OPTIC-routers could enforce their choices, allowing traffic going
through OPTIC-routers to benefit from the new optimal route quicker with no ill-effects.
This argument is however worthy of further discussions.

Currently, OPTIC must rely on either a fully-meshed iBGP topology or Add-Path All, the
only mode of Add-Path ensuring enough route diversity to construct OPR sets. However, one
may envision a new mode of Add-Path built upon and for OPTIC, consisting in exchanging
the OPR set associated with each prefix. As OPR sets are computed solely following the β

attributes, which are identical among all routers, routers should agree regarding whether a
given route belongs within an OPR set or not. Consequently, exchanging these routes should
ensure that all routers possess enough information to compute OPR sets while reducing the
scale of the message exchanges compared to Add-Path All. Other architectures may be
envisioned, more or less centralized. For example, routers may send all their routes to a
given node in charge of the computation and re-distribution of the OPR set, akin to a
route-reflector.

In addition, exchanging OPR sets should not only ensure that all routers are aware of the
post-convergence route after any IGP event but should also prevent MED and IGP-related
oscillations within the AS. Indeed, by definition, routers (i) would not hide routes to other
routers because of local preferences (as α is not considered), and (ii) the route with the best
MED is necessarily available to all routers (when the optimizations presented in Sec. 5.2.3

6https://bgpstream.caida.org
7https://ris-live.ripe.net
8Note that while this effect could also occur without any underlying FRR schemes, between the IGP

convergence and OPTIC’s convergence. However, as will be detailed later on, OPTIC’s data-plane can be
programmed in a fashion allowing an immediate switch to the new optimal gateway, without going through
any transient state between the IGP and OPTIC’s convergence.
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Figure 5.6: Simplified illustration of the OPTIC data-plane pipeline.

are not implemented). Recall that such conditions were the root cause of both types of
oscillations presented in Sec. 2.3.2.2. These claims however require additional proof and
further investigation.

OPTIC was implemented in Free-Range Routing by Thomas Alfroy [Alfroy 2020]. How-
ever, this implementation exhibited some limitations when implementing OPTIC fully within
the control-plane. Mainly, once the new optimal gateway is computed, updating the FIB
accordingly takes a non-negligible amount of time. This comes as no surprise, given the
results within the literature [Boucadair 2005, Filsfils et al. 2011, Holterbach 2021].

New technologies now allow implementing OPTIC as envisioned and described, i.e.,
through modifications both within the control-plane and the data-plane. In particular,
P4 [Bosshart et al. 2014] allows modifying the data-plane of a routing device. OPTIC was
indeed imagined as a hardware-software co-design, where the control-plane would only be in
charge of the more tedious operators. Implementing the data-plane of OPTIC through P4
would allow updating the new optimal BGP NH (i.e., finding the best gateway within an
OPR set) directly within the data-plane, instead of relying on the control-plane to perform
such operations. To ensure that packets are still processed at line-rate, P4 does, however,
have strong limitations (e.g., not allowing control loops) which makes such implementation
far from trivial.

While the current implementation of OPTIC in P4 is a work in progress, this perspective
seems promising 9 and preliminary tests with a minimal control-plane demonstrated the
feasibility of this approach.

Fig.5.6 shows an illustration of the currently implemented P4 pipeline for OPTIC. Given
a destination prefix D, we retrieve a set (g, s, n) composed of the group of the prefix, a
sequence number, and the current optimal BGP NH n, all stored within registers. Along
with the BGP NH is a sequence number s. After an IGP event, the control plane (i)
updates the IGP distances towards each gateway within the FIB (P4 tables in this case)
and (ii) increments a global sequence number S. The control-plane then re-computes and
updates the best BGP NH n associated to each prefix group and sets the associated sequence
number s to S. If, for a given packet, we have s = S, then n is optimal, and the packet can

9https://icube-forge.unistra.fr/jr.luttringer/optic-p4



5.4. Conclusion & Perspectives 175

be forwarded through the associated interface. If s differs from S, then n is not optimal. In
this case, the OPR set (stored within tables in the data-plane) is retrieved. The gateway
with minimal IGP distance is found within the OPR set, n and s are set accordingly within
the registers, and the packet is forwarded through the associated port.

In practice, since there are no control loops, we look for the minimal IGP distance within
the first k value of the set. If the size of the OPR set is equal or inferior to k, the optimal
gateway has been found. Otherwise, the packet can be resubmitted to the start of the
pipeline, carrying states allowing to start the search for the minimal distance from k onward.

By allowing both the control-plane and the data-plane to update the current optimal
gateway for each group, we aim to get the best of both worlds (or in this case, planes). As
updates are triggered by data packets, the latter immediately benefit from the new optimal
gateway once the FIB has been updated with the new IGP distances: there are no transient
suboptimal states. Furthermore, groups with less popular prefixes will still be updated by
the control-plane, which may update the latter through a clever prioritized ordering.

Currently, the P4 implementation of OPTIC was coded for BMv2, a software environ-
ment simulating a P4 switch. We plan on implementing both the control and data-plane
of OPTIC on actual hardware and perform in-depth experimentations. This perspective
gives rise to several technical challenges (in particular, the actual update and modification
of the OPR sets are one of the more complex aspects of OPTIC which is yet to be imple-
mented). Furthermore, some steps of OPTIC could potentially be implemented by leverag-
ing TCAM memory to drastically reduce their computational complexity, in the fashion of
PURR [Chiesa et al. 2019]. All of these challenges remain to be explored and tackled.





Chapter 6

Conclusion

Over the course of this thesis, we have explored different topics related to qualitative routing
within computer networks. In particular, we discussed the topic of computing DCLC paths
deployable within SR domains with BEST2COP and LCA (Chapter 4), and improving the
convergence of the BGP protocol upon intra-domain events, mitigating so the ill-effects of
hot-potato routing with OPTIC (Chapter 5).

The recent surge of interest for SR incited operators to strive for the ability to compute
and deploy more intricate paths, suited for premium flows with strict latency requirements.
While numerous algorithms exist to compute these DCLC paths, most do not consider
the underlying deployment technology and its operational constraint, i.e., the number of
segments required to encode the path, a metric that cannot be handled natively by most
algorithms. This prompted the need for efficient algorithms, able to compute DCLC paths
deployable with SR, i.e., solving DCLC-SR. To this effect, we proposed two schemes that
rely on our specific construct, the SR Graph : BEST2COP and LCA.

BEST2COP is a parallel algorithm which explores the SR Graph to solve DCLC-SR.
By leveraging the characteristics of the SR Graph, BEST2COP computes deployable DCLC
paths in less than 100ms on networks of 1000 nodes. By taking advantage of obvious graph
separators within operator networks, we show on topologies generated by a generator of
our own design that BEST2COP can solve DCLC-SR in about 1 second within networks of
100 000 nodes. This showcases the feasibility of deploying DCLC paths in modern networks,
that are slowly reaching such scales [Matsushima et al. 2022].

LCA is a conversion algorithm enabling multi-criterion path computation algorithms to
keep track of the number of segments required to encode the distances they are currently
exploring. We formally define (and prove) for the first time in this thesis how distances
should be maintained to find the minimal encoding segment list of each distance and retrieve
the entirety of the Pareto front.

Similarly, while improving the convergence of IP routing protocols or providing fast
reroute capabilities has been researched extensively, few works focus on mitigating the detri-
mental effects of multi-protocol interactions, which yet lies at the heart of routing.

Our goal was to re-visit the interaction between BGP and the IGP and propose a new,
more appropriate way to fit these protocols together. OPTIC, the scheme described in
this thesis, efficiently pre-computes optimal protecting sets of backup routes (which may be
shared in memory by several prefixes) for any internal event. The standard BGP convergence
is thus replaced by a simple walk-through of each set, updating so the route to every remote
prefixes quickly. We detail algorithms enabling the management and update of these sets.
Furthermore, we showed, through a theoretical evaluation, that the number of entries to
update is drastically reduced compared to vanilla BGP for most ASes within the Internet,
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in particular for Stub and enterprise networks.
In the chapters describing these contributions, I have already described and discussed

several short- to mid-term perspectives that are closely related to my contributions. However,
the work I did during these past three years made me eager to investigate several other
subjects and challenges related to the ones mentioned in this thesis.

6.1 Perspectives

When working on BEST2COP, LCA and OPTIC, I have discovered and come to think about
several research questions or domains that seem deeply interesting to me, and that I plan to
investigate further.

After having studied some aspects of BGP in-depth through OPTIC, I believe that
the way inter-domain routing is performed could be revisited, in particular to open up new
extension possibilities. The development of OPTIC’s data-plane in P4 also made me eager to
investigate the possibilities offered by new programmable devices. Furthermore, while I have
studied path computations problems mainly within computer networks, other contexts and
networks offer very compelling challenges and new ways to approach these problems. Finally,
the teachings I had the chance to give in the past years made me realize how stimulating
pedagogical challenges and the creation of pedagogical tools could be.

6.1.1 Revisiting the Inter-domain routing paradigm

The drastically different paradigm that inter-domain routing followed is, nowa-
days, very rarely challenged or even discussed, aside from contributions such as
HLP [Subramanian et al. 2005b] and SCION [Barrera et al. 2017]. In the future, I plan to
investigate whether (and how) a more viable kind of inter-domain routing could be achieved
by relying on the link-state paradigm.

Indeed, research around BGP has shown that this protocol exhibits several issues, ranging
from exponential message complexity to long convergence time or even correctness issues.
Furthermore, I believe that some arguments usually put forward to justify the design choices
behind BGP do not necessarily still hold, in particular given the current capabilities of
routing devices.

I am especially interested in the starting point proposed by HLP. In particular, I believe
that link-state routing could scale well enough (if not better), even in an inter-domain routing
context. While maintaining a full router-level map of the Internet is impossible, maintaining
a coarser, AS-level connectivity map may be achievable. The hierarchical structure of the
Internet may allow the presence of natural graph separators, enabling one to rely on schemes
similar to multi-area IGPs (a concept also explored in HLP). As there are currently (in
total) around 100 000 ASes, the computation of shortest paths should scale (as we showed
with BEST2COP). While this scheme does show some limitations for now (in particular
regarding the type of supported policies), I believe that it is worthy of further exploration
and discussion.

In particular, I also want to investigate what further benefits (in addition to scalability)
such a routing scheme would enable, were it to be deployed. Relying on the link-state
paradigm would allow for (at least partial) knowledge of the connectivity map, which would
for example enable the design of more efficient FRR schemes, similar to the ones currently
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proposed at the intra-domain scale. Furthermore, additional information could be added to
the link of the connectivity map. For example, the latency induced by going from domain
A to domain B could be advertised, without revealing precise topological information. As
this latency depends on the entry and exit points used at a given AS, this would however
require a connectivity map with finer information and increase the size of the resulting graph.
Further investigation is then required regarding the feasibility of this approach (in particular
its scalability) or possible security concerns.

Overall, if doable, a re-design of the current inter-domain routing paradigm may not
only remove (some) of its current plagues and caveats but also opens the path toward new
routing capabilities.

I also plan to investigate the ability to perform end-to-end, inter-domain TE without
drastic changes to the current inter-domain routing paradigm. While this problem has
become less and less visited in the past years, I believe that SR could be leveraged to
perform inter-domain TE with no drastic modifications to the existing protocols.

In particular, Binding Segments (BSIDs) allow one to advertise specific distances while
keeping detailed topological information mostly opaque. One could thus envision adding
Binding Segment to advertised BGP routes, which could be used by the neighboring AS
to forward data across a specific path (e.g., guaranteeing a given latency) within the
remote network. By correctly maintaining this information across ASes and advertisement,
implementing inter-domain TE paths could be achievable. However, the actual logistics
of how such attributes should be exchanged and behave, as well as the possible security
implications require further investigation.

6.1.2 Programmable routing devices

While starting to implement the data-plane of OPTIC in P4, I have come to realize that
programmable routing hardware offers a myriad of paths to investigate. Through their abil-
ities to mitigate network ossification, deploy personalized data-plane behavior or protocols,
and by being carried by both academia and the industry alike, I believe that programmable
switches will become more and more prevalent as time goes on.

Being intrigued as well by the capabilities of these devices, I plan to further investi-
gate how to best leverage the latter. Programmable data-planes (with P4 in particular)
may not only allow improving the performance of existing solutions but also pursuing new
goals. For example, the fine control that these new architectures could be leveraged to de-
ploy new routing strategies, aiming for example to reduce the energy consumption of the
routing devices, e.g., by limiting the use of energy-consuming components such as TCAM.
Consequently, interesting challenges also arise regarding the optimization of P4 programs.
While low-level optimizations mainly lie in the realm of compilation, high-level optimizations
(be it computation-wise or energy-wise) could be performed automatically depending on the
characteristics of the underlying network, and be implemented as possible strategies within
the P4 compiler. My advisors and I recently started to discuss these perspectives with the
ICube laboratory team working on the compilation and optimization of computer programs,
to better investigate such prospects.



180 Chapter 6. Conclusion

6.1.3 Path computation in various contexts

Path computations and routing problems have been a cornerstone of my thesis, and a
subject that I have come to deeply enjoy. While I, for now, mainly focused on path
computations within computer networks, I have found that other contexts bring additional
challenges and interesting variations to these problems.

In particular, the computation of paths within dynamic networks is a challenging and
interesting subject. Indeed, while computer networks are dynamic, the path computation
algorithms used therein rely on a snapshot of the network.

Dynamic networks, on the other hand, are a perhaps more theoretical object that thus
require different approaches when designing path computation algorithms. In particular, the
theoretical framework defined around dynamic networks allows setting various hypotheses
on these entities, to better study the effects they may have on the complexity of well-
known problems. I believe that this framework (with the right set of hypotheses) could
very well be used to study some specific, real networks with specific behaviors (e.g., satellite
constellations) to offer strong theoretical results which could be relevant in practice.

I have had the opportunity to already work on some of these challenges with Quentin
Bramas and Sebastien Tixeuil, by discussing the complexity of delay-constrained, least cost
path computation in dynamic networks when considering route planning with time travel (a
kind of network which is, to the best of my knowledge, hypothetical for now). We showed
that some multi-constrained path computation problems can be solved in polynomial time
in such dynamic graphs.

Similarly, the Lightning Network, a recent addition to the Bitcoin Blockchain, is a
multi-metric network with peculiar metrics [Poon & Dryja 2016]. The Lightning Network
allows performing transactions through a peer-to-peer network, minimizing the usage of
the blockchain. A direct connection is not necessary to perform this transaction: the latter
can be routed along intermediary nodes (which may ask for a small fee in exchange) if the
capacity of the links supports the transaction. Interestingly, the transaction can be split
across various paths, effectively introducing flow-related problems within a multi-metric
network. This very rich and complex environment leads to problems that are intrinsi-
cally computationally expensive, even when considering apparently simple and relevant
mono-optimization path computation (e.g., minimizing the total amount of fees). This new
ecosystem thus offers a novel challenging playground into which to study path computation.

Finally, two other contexts, with which I am currently not as familiar as the previous
ones, deeply interest me.

First, the study of routing problems within satellite networks. Low Earth and Medium
Earth Orbit satellite constellations are dynamic, but deterministic networks. As the comput-
ing capabilities of these devices may be limited, designing efficient routing algorithms fitter
to this context is complicated. However, as orbits are predictable, the periodicity of the con-
stellation can be leveraged to optimize routing decisions (and could be modeled and studied
as a periodic dynamic graph) or even prevent congestion, by factoring in the non-uniform
geographical distribution of the population [Wood et al. 2001]. I plan to become more famil-
iar with satellite networks and their peculiarities and study the possibility of implementing
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QoS or even FRR within these constellations that, despite their specificities, share numerous
concepts with terrestrial networks.

Second, routing problems within quantum networks seem particularly fascinating. Al-
though I do believe that the main challenges regarding quantum networks are still mainly
related to physics, it seems that enough is known to start discussing and anticipating what a
quantum routing protocol should be. As qubits cannot be cloned to be sent over a communi-
cation link, exchanging qubits between two distant parties A and B is done through quantum
teleportation. Quantum teleportation requires not only classic communication links (mean-
ing that the communication cannot be faster than classical communication, only more secure
as it is resilient to quantum attacks) but also the creation of an entangled state between A

and B (i.e., both nodes should possess one half of an entangled pair of particles). This state
can be achieved simply by having A prepare two entangled particles and send one to B, or,
more interestingly, two entangled states A−B and B−C can be transformed into a single-hop
entanglement A−C through entanglement swapping. This allows A and C to communicate
a qubit even if they do not share any physical link, thus essentially creating a quantum
virtual overlay over the physical network [Schoute et al. 2016, Caleffi 2017]. These virtual
links cannot be kept up for too long, and can only be used once. This begs to investigate
how routing could be performed in such an environment. For example, whether (and how)
virtual links should be pre-established (and refreshed) depending on the communications
usually occurring within these networks [Schoute et al. 2016]. As quantum communication
between satellites has been discussed, perhaps the periodicity and predictability of these
constellations could be leveraged to this effect. If new virtual links should be constructed
on the fly, choosing how the latter should be constructed requires the design of a complex
routing metric, taking into consideration the stochastic nature of the process [Caleffi 2017].
The new problems and considerations as well as the ability to create new routing paradigms
from scratch in such a peculiar environment makes the novel context of quantum networks
very appealing to me.

6.1.4 Pedagogical tools

I’ve had the chance to be able to teach varied courses throughout the entirety of my thesis,
to students within different cursus. This experience was very insightful and made me realize
that some pedagogical challenges may prove as (if not more) stimulating than research
ones. Consequently, I plan to get further involved in the conception and implementation of
pedagogical tools. To this effect, I am currently working with a former Ph.D. student of
the ICube laboratory, Amine Mohammed Falek, to conceive a tool assisting the teaching of
path computation algorithms. This tool, (soberly) called Graph Theory Algorithm, allows
students to code and visualize any algorithms on personalized graphs, to better understand
their behavior. In time, we plan on extending this tool to support multi-metric graphs and
dynamic graphs, or even serve as a support to ease the understanding of other types of
network-related problems, such as intra or inter-domain routing.

Since my first research internship in 2016, I have had the opportunity to work on various
research topics, such as distributed computing, topology discovery, network measurements,
and (of course) resiliency and quality of service. Each time, the new challenges that I
discovered were more intriguing than the last. In particular, networks offer problematics
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that I find particularly enticing, as they often lead to interesting theoretical problems that
are yet deeply anchored in reality.

These past three (to six) years have made me enthusiastic to continue exploring this
field, and perhaps venture a bit beyond it, as distributed systems as a whole present other
tempting areas such as autonomous robots and population protocols.

I, however, am under no illusion that I will be able to explore all of the interesting
aspects that computer science has to offer. If anything, I have learned that proper research
takes time and that it is possible to get (pleasantly) lost within even one square inch of
these research areas. Nevertheless, I do hope that I will be able to explore (and continue
wandering through) some of them as time goes on.



Chapter 7

Résumé français

7.1 Introduction

Au cours des dernières décennies, les défis que les réseaux informatiques ont dû relever
ont considérablement évolué. Au début, ces défis tournaient principalement autour de la
connectivité. Permettre la communication entre les machines d’un réseau est en effet déjà une
tâche considérable, notamment en raison de la nature dynamique de ces réseaux qui peuvent
subir des pannes ou d’autres changements topologiques. Lorsque les réseaux informatiques
ont commencé à devenir de plus en plus prévalents, il est devenu évident que la connectivité
ne devait pas seulement être assurée entre les dispositifs d’un même réseau, mais également
entre différents réseaux indépendants, afin d’établir une connectivité globale entre tous les
terminaux. Cet ensemble de réseaux indépendants (également appelés domaines ou ASes)
interconnectés formera plus tard l’Internet moderne.

Pour obtenir une connectivité constante, des protocoles de routage ont été conçus, tels que
OSPF [Moy 1998], IS-IS [rfc 1990], ou BGP [Rekhter et al. 2006]. Les protocoles de routage
dictent la manière dont le routage doit être effectué, c’est-à-dire comment les informations
topologiques doivent être échangées entre les équipements chargés de transmettre les données,
et comment les meilleurs chemins de transmission de données doivent être calculés.

Les protocoles de routage appelés IGPs spécifient comment le routage intra-domaine doit
être effectué. En général, le routage intra-domaine repose sur des chemins qui minimisent le
coût IGP, une métrique additive fixée sur chaque lien par l’opérateur du réseau en fonction
de ses souhaits de conception.

Bien que le routage entre réseaux (i.e., inter-domaine) soit également spécifié par des
protocoles de routage, ces protocoles diffèrent fortement des IGPs, car ils évoluent dans un
contexte radicalement différent. En effet, chaque AS est gouverné par des entités adminis-
tratives distinctes, avec des points de vue différents (ou même contradictoires) concernant
les meilleurs chemins, en fonction des relations politiques ou économiques entre chaque do-
maine. Par conséquent, le routage inter-domaines est régi par un protocole de routage
différent, BGP, conçu pour fonctionner dans un tel environnement.

Les communications sur Internet dépendent donc de l’interaction entre différents proto-
coles de routage : alors que les domaines traversés par le trafic sont décidés par le protocole
BGP, son chemin au sein de chaque domaine est décidé par le protocole IGP qui y est
déployé.

Avec la mise en place d’une connectivité stable et globale, l’Internet a commencé à devenir
l’épine dorsale d’un nombre croissant de communications, allant de flux triviaux et sans
importance à des flux critiques ayant des exigences strictes concernant les caractéristiques
des communications, telles que la latence expérimentée. En conséquence, les défis à relever
se sont orientés vers le contexte du routage qualitatif, afin d’améliorer le service procuré aux
utilisateurs. Dans cette thèse, nous allons étudier plus en détail deux types principaux de
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défis de routage qualitatif : la résilience et la qualité de service.
En effet, la popularité croissante des services en temps réel demande une disponibilité

des services quasi permanente, malgré les nombreux changements non planifiés que subissent
les réseaux informatiques. Une telle résilience n’est pas facile à obtenir, car les changements
topologiques obligent à recalculer les meilleurs chemins de transmission. Cette reconvergence
place le réseau dans un état transitoire et incohérent au cours duquel la connectivité peut
être perdue ou le routage effectué peut être sous-optimal.

De nombreuses améliorations ont été proposées et mises en œuvre pour améliorer le
temps de convergence des protocoles de routage. Des améliorations ont été apportées au
protocole IGPs pour mieux gérer les événements survenant dans son propre domaine, ou au
protocole BGP, pour offrir une meilleure résilience aux événements distants survenant dans
des domaines éloignés.

Ce défi devient encore plus intéressant si l’on considère que les deux types d’événements
et de protocoles sont enchevêtrés. Plus précisément, BGP doit re-converger même après
des événements intra-domaine. En effet, lorsque plusieurs routes inter-domaines semblent
intéressantes, celle permettant au trafic de sortir du domaine le plus rapidement possible (en
suivant les meilleurs chemins intra-domaine) est sélectionnée. En raison de ce routage dit de
la patate chaude, les routes interdomaines doivent être réévaluées même lors d’événements
intra-domaines, un processus intrinsèquement long qui peut conduire à un routage sous-
optimal ou à des interruptions de service de longue durée. Naturellement, la question suiv-
ante, à laquelle nous répondons dans ces travaux, se pose :

Peut-on assurer une reconvergence rapide de BGP après un événement interne ?

De plus, même des réseaux parfaitement résilients peuvent ne pas offrir des performances
ou une QoS suffisantes pour certains types de trafic. En effet, les réseaux informatiques
suivent généralement le paradigme best-effort, ce qui signifie que le réseau ne fournit au-
cune garantie quant à la qualité réelle des chemins d’acheminement empruntés. Bien que
ce paradigme soit suffisant pour la plupart du trafic, certains flux modernes ont des exi-
gences plus strictes. Par exemple, les flux de transactions financières échangent des données
temps-réel sensibles qui impliquent des enjeux monétaires importants [Giacalone et al. 2015],
obligeant les clients à payer un montant considérable pour des latences faibles. Bien que ces
flux aient rarement à traverser l’Internet, ils peuvent s’appuyer sur des VPNs pour commu-
niquer. Les ISPs fournissant de tels services VPN sont donc confrontés à des SLAs encore
plus strictes que d’habitude.

S’assurer que le trafic concerné bénéficie effectivement de chemins d’acheminement re-
spectant ces SLAs est une tâche complexe, tant d’un point de vue informatique que technique.
Ces-dernier doivent en effet respecter la latence requise, mais devraient aussi idéalement
viser à minimiser les coûts IGP, car ces derniers reflètent des choix de conception impor-
tants. Trouver des chemins qui minimisent le coût IGP tout en respectant une contrainte
supérieure sur le délai nécessite de résoudre DCLC, un problème NP-Hard.

Ce problème devient encore plus intéressant si l’on considère les contraintes opéra-
tionnelles entrant en jeu. En effet, étant donné que les chemins calculés peuvent s’écarter
des chemins standard de type "best-effort" (toujours utilisés par la majorité du trafic), des
technologies supplémentaires sont nécessaires pour garantir que les flux concernés suivent
effectivement ces chemins DCLC, c’est-à-dire pour deployer ces chemins. Actuellement, SR
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(une implémentation du paradigme de routage à la source) est la technologie la plus populaire
offrant de telles capacités. Au sein des réseaux déployant SR (parfois appelés domaines SR),
des chemins spécifiques peuvent être spécifiés sous la forme de détours (appelés segments)
ajoutés au paquet lui-même. Ces segments, prenant la forme d’instructions de routage in-
terprétées par les routeurs sur le chemin, sont limités en nombre en fonction du matériel
sous-jacent. Par conséquent, les chemins doivent non seulement respecter la latence requise,
mais aussi pouvoir être déployés en moins de segments que la limite supportée par le du
matériel. Cette métrique supplémentaire présente un comportement particulier par rapport
aux métriques additives standard. En particulier, elle ne peut pas être représentée comme
un poids statique supplémentaire sur le graphe et, si considérée naïvement, brise l’optimalité
des plus courts chemins (une propriété fondamentale utilisée par la majorité des algorithmes
de calcul de chemins). Plus précisément, il n’est pas trivial de prédire la manière dont une
liste de segment va évoluer. Il est donc nécessaire d’être particulièrement prudent lorsque
des distances sont élaguées de l’espace d’exploration. Il est donc nécessaire de concevoir des
méthodes supplémentaires pour considérer cette métrique correctement, ce qui augmente
encore la complexité d’un problème théorique déjà complexe. Ces défis donnent lieu à la
question suivante, à laquelle nous répondons également dans cette thèse :

Peut-on efficacement calculer des chemins DCLC pour SR ?

7.1.1 Contributions

Dans cette thèse, je présente plusieurs contributions, tournant autour des défis centrés sur
la résilience et les QoS mentionnés ci-dessus. Bien qu’ils soient liés par le thème commun
du routage qualitatif, ces deux défis (et donc, les contributions qui leur sont associées) sont
distincts et indépendants.

Premièrement, nous fournissons plusieurs mécanismes permettant un calcul
efficace des chemins DCLC déployables dans les domaines SR. Pour concevoir ces
méthodes, nous proposons d’abord de nous appuyer sur l’imprécision des mesures de latence
pour réduire la complexité théorique de DCLC.

Pour considérer correctement le nombre de segments, nous proposons une structure, le
Graph SR, qui nous permet de considérer cette métrique correctement en englobant les trois
métriques pertinentes (nombre de segments, délai et coût) et en transformant le nombre de
segments en une métrique plus facile à gérer (le nombre de sauts). Nous proposons deux
façons de s’appuyer sur cette construction pour calculer les chemins DCLC déployables.

La première consiste à explorer directement le graphe SR afin de considérer facilement
les trois métriques. En effet, sur ce graphe augmenté, le nombre de segments redevient une
métrique standard, permettant l’utilisation d’algorithmes et de techniques habituelles. Bien
que le graphe SR soit particulièrement dense, nous montrons que cette méthode est viable en
concevant un algorithme, BEST2COP, qui résout DCLC pour les domaines SR en explorant
le SR Graph. En tirant parti des caractéristiques du SR et du multithreading, nous montrons
que BEST2COP peut calculer des chemins DCLC déployables efficacement, même dans des
réseaux à grande échelle. En particulier, nous étendons également BEST2COP pour tirer
parti de la structure des réseaux d’opérateurs à grande échelle. Nous concevons un généra-
teur de topologies multi-métriques large échelle, YARGG, pour évaluer notre algorithme, et
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montrons que cette extension de BEST2COP est capable de résoudre DCLC pour SR en
environ 1s dans des réseaux de 100 000 nœuds.

Explorer le graphe SR pouvant être coûteux (de par sa densité), nous proposons une
autre méthode permettant de résoudre DCLC pour SR. En s’appuyant sur les informations
contenues dans le graphe SR, il est possible pour un algorithme de calcul de chemin de calculer
des chemins DCLC-SR tout en explorant le graphe originel. Il est cependant nécessaire de
modifier l’algorithme originel, afin que ce dernier puisse convertir les chemins explorés en
liste de segments à la volée. Il est également nécessaire de modifier la manière dont les
chemins sont relaxés afin de considérer l’effet de cette métrique particulière sur la propriété
de sous-optimalité des chemins. Nous concevons ainsi un algorithme de conversion, LCA,
permettant aux algorithmes de calcul de chemins multi-métriques de connaître le nombre
de segments nécessaires pour encoder les chemins à la volée, tout en explorant le graphe
originel du réseau. Comme cette nouvelle métrique se comporte différemment des métriques
standard, nous décrivons et prouvons formellement les modifications nécessaires à apporter
pour que les algorithmes de calcul de chemins gèrent correctement ces particularités lorsqu’ils
s’appuient sur LCA, et récupèrent correctement tous les chemins pertinents. Nous mettons
en œuvre ces modifications sur un algorithme multi-métrique existant et évaluons ce dernier
dans divers scénarios.

Deuxièmement, pour assurer une meilleure résilience du réseau lors
d’événements intra-domaine, nous proposons OPTIC, qui rend les événements
intra-domaine transparents pour le trafic de transit passant par le domaine mal-
gré les effets néfastes du routage de la patate chaude. OPTIC parvient à ces résultats
grâce à des structures de données et des algorithmes adéquats. En exploitant la manière dont
les routes inter-domaines sont sélectionnées, OPTIC peut précalculer efficacement des ensem-
bles de routes de secours garanties de contenir la nouvelle meilleure route vers une destination
distante après n’importe quel événement interne. Lors d’un événement interne, la nouvelle
route optimale peut être trouvée efficacement dans ces ensembles, au lieu de s’appuyer sur la
lente convergence BGP. De plus, les destinations distantes partageant les mêmes ensembles
de routes de secours partagent la même entrée en mémoire, ce qui permet des mises à jour
groupées efficaces. Nous montrons par une évaluation théorique que le nombre d’ensembles
distincts (et donc d’entrées à gérer) est largement inférieur au nombre d’entrées gérées tradi-
tionnellement par BGP. Comme OPTIC a été conçu avec le contexte émergeants des réseaux
programmables à l’esprit, nous discutons en détail de la façon dont notre solution s’intègre
dans ces architectures modernes grâce à une co-conception matérielle-logicielle intelligente
et les avantages qui en découlent.

Plan

Cette thèse est organisée en six chapitres. Dans le chapitre 2, nous commençons par fournir
le contexte nécessaire pour discuter de nos contributions et des travaux connexes. Nous
introduisons d’abord les concepts fondamentaux de la théorie des graphes. Nous discutons
ensuite du calcul de chemin et, plus généralement, du routage. Nous présentons les al-
gorithmes de calcul des plus courts chemins mono-métriques les plus connus, ainsi que les
concepts généraux nécessaires pour comprendre comment des métriques multiples affectent le
calcul des plus courts chemins. Nous décrivons ensuite comment ces algorithmes s’intègrent
dans les protocoles de routage avant d’aborder les technologies de TE, en mettant l’accent
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sur SR. Dans le chapitre 3, nous détaillons les travaux connexes à notre contribution. Nous
commençons par discuter de la résilience et examinons les solutions visant à améliorer le
temps de convergence des protocoles ou à fournir des capacités de reroutage rapide, que ce
soit dans un contexte intra-domaine ou inter-domaine. Nous passons ensuite en revue les
travaux et propositions centrés sur SR. Enfin, nous passons en revue les algorithmes de calcul
des chemins contraints, en visitant des heuristiques, des approximations, des schémas exacts
et d’autres approches. Ces chapitres ne seront pas présentés dans ce résumé. Cependant, les
concepts clés seront inclus dans les résumés des chapitres des contributions.

Dans le chapitre 4, nous présentons nos contributions liées au calcul de chemins multi-
métriques déployables dans les domaines SR. Nous décrivons comment nous traitons la com-
plexité de DCLC d’une manière adaptée aux réseaux d’opérateurs. Nous décrivons en détail
notre construction, le graphe SR, et les deux algorithmes qui en dépendent, BEST2COP et
LCA. Nous évaluons ensuite leurs performances, avant de conclure ce chapitre et de discuter
des perspectives possibles à court et moyen termes.

Dans le chapitre 5, nous présentons OPTIC. Nous expliquons comment OPTIC con-
struit et maintient des ensembles de routes de secours, permettant à BGP de réagir presque
instantanément aux événements intra-domaines. Nous présentons ensuite notre évaluation
théorique de OPTIC, montrant que son coût opérationnel est gérable, avant de discuter des
perspectives possibles.

Enfin, nous concluons cette thèse dans le chapitre 6 en résumant nos résultats et en
discutant des perspectives à long terme. Notez que le code de nos contributions et le code
permettant de reproduire facilement nos expériences est mis à disposition en ligne (les liens
étant listés au début de ce document).

7.2 Résumé du chapitre 4 : calcul de tunnels multi-contraints

Certains services de communication exigent des garanties fortes sur plusieurs métriques, no-
tamment le délai de propagation. Bien que la minimisation du coût IGP soit essentielle
pour satisfaire les intentions de l’opérateur – en prenant en compte les ressources consom-
mées comme la bande passante relative, il peut également être nécessaire de garantir un
délai maximal. Cependant, calculer un chemin respectant une contrainte sur une première
métrique additive tout en en minimisant une seconde est un problème NP-Difficile connu
sous le nom de DCLC, Delay Constrained, Least Cost. Résoudre DCLC requiert de visiter
l’intégralité des distances non-dominées, i.e., le front de Pareto [Deb 2005], pouvant croître
de manière exponentielle avec le nombre de nœuds.

À cette difficulté inhérente au problème s’ajoute une difficulté technique : le dé-
ploiement des chemins calculés. Les opérateurs peuvent maintenant utiliser SR, Segment
Routing [Filsfils et al. 2017], une technologie extensible de routage à la source. SR permet
d’encoder la route dans le paquet sous forme d’instructions appelées segments.

En pratique, le nombre de segments est contraint à MSD Maximum Segment Depth,
≈ 10. À première vue, SR complexifie ainsi DCLC avec une dimension et une contrainte
additionnelles. Cette métrique est ignorée par les solutions existantes qui ne prennent pas
en considération la contrainte technique liée au déploiement des segments.

Dans cette section, nous commençons par présenter le problème DCLC plus en détail,
avant de présenter la technologie SR et les difficultés induite par la nouvelle métrique que
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cette technologie rajoute au problème. Nous détaillerons ensuite nos contributions, permet-
tant de résoudre DCLC pour SR efficacement : BEST2COP et LCA.

7.2.1 Delay-constrained Least-Cost : le problème de calcul de chemins
multi-métriques par excellence

Les problèmes de calcul de chemins multi-critères sont une généralisation des problèmes
de calcul de chemins mono-critère bien connus. Comme leurs homologues mono-critères,
ces problèmes prennent en entrée un graphe pondéré G = (V,E,w), contenant |V | nœuds
et |E| arêtes. Cependant, la fonction de coût w associe à une arête un vecteur de poids,
représentant par exemple le coût IGP et la latence du lien en question. Cette fonction peut
donc être défini comme w : E → Nm, où m est le nombre de composants du vecteur.

Lorsque l’on considère un chemin, défini comme une suite d’arête, les éléments des
vecteurs de poids de chaque arête se combinent différemment, selon la métrique que ces-
derniers suivent.

Nous nous concentrons ici sur des métriques additives. Dans ce cas, la distance d’un
chemin est égale à la somme des vecteurs de poids de chaque arête qui le compose. Les
métrique additives permettent notamment de modéliser la latence (car le délai d’un chemin
est égale à la somme du délai de ses arêtes). Ils existent plusieurs algorithmes connus per-
mettant de trouver un chemin minimisant une unique métrique additive. Cependant, il peut
être intéressant de considérer plusieurs métriques additives. Par exemple, un flux premium
peut nécessiter des chemins qui offrent de fortes garanties de latence tout en minimisant une
métrique additive telle que le coût IGP. Étonnamment, la prise en compte d’un tel ensemble
de métriques a un impact considérable sur la complexité des problèmes de calcul des chemins.

Cette augmentation drastique de la complexité de calcul peut s’expliquer par le fait
que, contrairement au calcul de chemins monocritères, il n’existe pas de moyen naturel
de définir un ordre total parmi un ensemble de chemins multicritères. Par conséquent, la
notion d’optimalité devient floue, et le choix du chemin à étendre devient moins évident.
Par exemple, il n’est pas possible de comparer deux vecteurs de distances (1, 10) et (10, 1)

de manière non-arbitraire. Ces distances sont donc non-comparables. Dans le cadre des
problèmes multi-critères, chaque distance non-comparable est considérée optimale et doit
être explorée. Un nombre exponentiel de ces distances pouvant exister, ces problèmes sont
en général NP-Difficile.

Un des problèmes multi-métriques les plus connu est DCLC, dans lequel le délai doit
respecter une borne supérieure, et un coût (e.g., le coût IGP) doit être optimisé. Denotons
le délai M1, et le coût M2. Denotons la distance d’un chemin d, avec d1 son délai et d2 son
coût. Enfin, notons le poids d’un lien w, avec w1 son délai et w2 son coût. Une contrainte c1
s’applique au délai. Malgré la présence d’un objectif à optimiser (M2), les distances explorées
peuvent rester incomparables, comme illustré par la Figure 2.3.

La figure 7.1 montre un réseau hypothétique composé de 9 nœuds, couvrant plusieurs
pays. Chaque lien est caractérisé par un vecteur de poids (delai; couts). Le coût est fixé
arbitrairement tandis que le délai est représentatif de la distance réelle entre les villes corre-
spondantes.

Considérons le problème DCLC, de Strasbourg à Brest avec c1 = 150. Plusieurs chemins
simples vers Rennes peuvent être prolongés pour atteindre Brest, qui offrent différents com-
promis entre le délai et le coût. Une manière intuitive de visualiser leur distance est dans
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(a) Réseaux hypothétique traversant la France,
Belgique et les Pays-Bas. Les arêtes sont an-
notés par le délai et le coût des liens. Le coût
IGP est arbitraire, mais le délai est représen-
tatif de la distance géographique (ici, euclidi-
enne) entre chaque ville.
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Figure 7.1: Exemple illustrant les notions de front de Pareto et de dominance.

l’espace délai-coût, montré dans la Figure 7.1b.
La distance d0, par exemple, offre le meilleur délai, mais pour un coût élevé. Inversement,

d4 offre le meilleur coût, mais avec un délai élevé. Enfin, d1, d2, et d3 offrent des compromis
alternatifs. Bien que d4 soit la distance dont le chemin associé résout cette instance de DCLC
(avec c1 = 150) en considérant Rennes comme destination, elle ne résout pas nécessairement
la même instance de DCLC en considérant Brest comme destination. En effet, étendre cette
distance pourrait violer la contrainte fixée après extension. Pour s’assurer qu’une solution
est trouvée, des distances supplémentaires doivent être explorées. Ici, la distance d3 devrait
également être découverte et maintenue, au cas où d4 finirait par violer la contrainte. Suivant
le même raisonnement, les distances d2, d1, et d0 devraient également être découvertes et
maintenues, car n’importe laquelle d’entre elles pourrait devenir la distance DCLC vers
Brest (ou tout autre nœud) en fonction des poids des liens restants à explorer. Le nombre
de distances non-comparables à conserver et à étendre peut augmenter rapidement, rendant
DCLC intractable.

Il est important de noter que certaines distances peuvent être élaguées de l’exploration.
Puisque seuls les poids strictement positifs sont considérés, il est inutile d’étendre des dis-
tances qui violent déjà une contrainte. De plus, toutes les distances oranges visibles sur la
Fig. 2.3b sont pires sur tous les critères qu’au moins une des distances indiquées en bleu.
On dit qu’elles sont dominées. Par exemple, d7 possède un délai et un coût plus mauvais
que d2 pour atteindre le même nœud (Rennes). La distance d7 ne peut donc pas devenir une
meilleure distance que d2 après avoir été étendue. On dit que la distance d7 est dominée par
d2. La Fig 2.3b représente cette relation de dominance. Toutes les distances situées dans
une zone bleue sont dominées par la distance bleue d’où provient la zone bleue.

L’ensemble des distances non dominées, représenté en bleu sur la Fig. 2.3b, forme le
front de Pareto de la solution [Deb 2005]. Pour résoudre DCLC, (ou MCOP/MCP), il
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est nécessaire d’étendre toutes ces distances non dominées qui forment le front de Pareto.
Ainsi, bien que la résolution de DCLC nécessite de retourner un seul chemin par destination,
la totalité du front de Pareto doit toujours être explorée. Les distances dominées peuvent
cependant être élaguées de l’exploration, réduisant drastiquement la complexité du problème
en pratique.

Dans le pire des cas, toutes les distances sont non dominées, ce qui conduit à un front
de Pareto de taille exponentielle, rendant le problème intractable.

7.2.2 Segment Routing et DCLC-SR

SR est une implémentation du paradigme de routage à la source : la source (ou le nœud
le plus proche d’elle) calcule et choisit comment le trafic entrant doit être dirigé à travers
le réseau. Contrairement au routage saut par saut, le chemin est donc entièrement décidé
par le routeur en amont et non par une séquence de décisions de routage indépendantes. Le
SR est, à l’heure actuelle, l’une des technologies TE les plus largement déployées et les plus
populaires. En tant que tel, SR est au cœur de nos contributions.

SR implémente le routage à la source en ajoutant des instructions dans l’en-tête du
paquet lui-même sous la forme d’une liste de segments. Les routeurs en aval ne prennent en
compte que les instructions contenues dans le paquet pour prendre des décisions de routage.

Pour encoder ces instructions, les segments utilisés sont généralement des segments
IGP. Comme leur nom l’indique, les segments IGP sont des instructions de routage liées
aux informations relatives à l’IGP. Il existe de nombreux types de segments IGP. Dans
cette thèse, nous nous concentrons sur les segment de préfixe (en particulier, les segment de
nœud) et les segment d’adjacence, car ils fournissent un cadre suffisant pour déployer des
chemins multicritères.

Les segments de nœud sont un type particulier de segments qui identifient un nœud au
sein du réseau. En d’autres termes, l’utilisation d’un segment de nœud permet de demander
à un routeur de transmettre le paquet à un nœud spécifique du réseau via les chemins les plus
courts vers ce nœud (le trafic peut donc suivre n’importe lequel de ces plus courts chemins, si
plusieurs existent). Nous notons un segment de nœud s ayant pour instruction d’envoyer un
packet à v lu par le u par s = (Node, u, v). Notez que si plusieurs chemins existent et que le
routage multi-chemins (ECMP) est activé, le seul délai pouvant être garanti par l’utilisation
d’un segment de nœud est le délai maximal des chemins encodés.

Les segments d’adjacence permettent d’ordonner aux routeurs de transmettre le paquet
par une interface spécifique. Ils peuvent donc être utilisés pour imposer l’utilisation d’un
lien spécifique le long du chemin. Nous notons un segment d’adjacence imposant un lien
(u, v) par s = (Adj, u, v). Si des liens parallèles existent, l’identifiant du lien x est rajouté et
noté s = (Adj, u, v, x)

La Fig 7.2 illustre comment SR peut être utilisé pour encoder plusieurs chemin. La
distance d4, par exemple, était la plus courte distance IGP vers Rennes. En tant que tel, un
seul segment de nœud est suffisant pour coder un chemin avec ces distances.

La distance d0 était particulièrement intéressante, car c’était la distance minimisant la
latence. Notons cependant que le fait qu’utiliser des segments de nœuds pour encoder ce
chemin n’est pas suffisant pour garantir que la distance d0 sera respectée. En effet, les
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Figure 7.2: Encodage de chemins multi-critères via SR.

paquets peuvent prendre n’importe quel chemin ECMP de Strasbourg à Paris (indiqué en
orange dans la Fig 7.2). Ainsi, les paquets peuvent prendre le lien direct ou passer par
Liège. Une fois arrivés à Parisn le segment suivant est considéré, et les paquets sont envoyés
à Rennes via les plus courts chemins. La seule latence qui peut être garantie est la plus
mauvaise latence parmi tous ces chemins possibles, ici 136.

Pour imposer le chemin avec le meilleur délai (70), le lien entre Strasbourg et Paris ainsi
que le lien entre Paris et Rennes doivent être explicitement imposés par l’utilisation de seg-
ments d’adjacence. Par conséquent, la liste de segments requise est (Adj, Str, P ) | (Adj, P,R).

En pratique, l’insertion de segments dans les paquets de données implique nécessaire-
ment une surcharge supplémentaire. Ainsi, le nombre de segments que l’on peut ajouter
à un paquet est limité. Cette limitation dépend fortement du matériel sous-jacent. Les
routeurs haut de gamme peuvent permettre des listes de segments allant jusqu’à environ
10 segments. Les équipements moins performants, en revanche, peuvent n’autoriser que 3
à 5 segments [Guedrez et al. 2016a]. Cette limite, appelée MSD, doit donc être prise en
considération lors de l’encodage des chemins.

De ce fait, afin de résoudre DCLC tout en considérant le contexte opérationnel sous-
jacent, il est nécessaire de considérer également le nombre de segments nécessaires pour
encoder ces chemins, et de s’assurer que ce nombre reste sous la contrainte imposée par le
matériel utilisé.

Il existe de nombreux algorithmes de calculs de chemins multi-métriques pouvant gérer
une métrique supplémentaire, que nous notons M0. Résoudre DCLC pour SR semble donc
être une extension naturelle, demandant de rajouter une distance additionnelle d0 dans le
vecteur de distance des chemins.

Cependant, cette nouvelle métrique (le nombre de segments) est particulièrement délicate
à considérer. En effet, cette dernière brise la propriété d’optimalité des sous-chemins utilisée
par les algorithmes multi-critères. Plus précisément, nous avons vu que les distances dominés
peuvent être élagués de l’exploration. En effet, lorsque des métriques traditionnelles sont
considérées, une distance dominée restera dominée. Cette dernière n’offrant un compromis
intéressant sur aucune métrique, il n’est donc pas nécessaire de l’étendre. Cependant, cette
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(a) comeback gadget. (b) underdag gadget.

Figure 7.3: Figures illustrant les péculiarités de la métrique SR.

propriété essentielle pour limiter la complexité des algorithmes utilisé doit être ré-visitée
pour être adaptée à SR.

Ce défi est illustré par les gadgets underdag et comeback, illustrés en Fig. 7.3a et
7.3b.

Considérons le gadget comeback. Deux vecteurs délai-coût (d1; d2) existent pour at-
teindre u depuis s : (1; 1) et (100; 1). Les deux peuvent être encodés avec un seul segment
((Adj, s, u) et (Node, s, u) respectivement), conduisant aux distances d(s, u) = (1; 1; 1) et
d′(s, u) = (1; 100; 1), où la première composante d0 est le nombre de segments. Notez que
suivant la définition standard de la dominance, d′(s, u) est dominée, car pire sur toutes les
métriques.

Les distances d′ et d peuvent être étendues par (u, v), ce qui conduit au vecteur délai-
coût (2; 2) et (101; 2). Cependant, alors que le vecteur (2; 2) nécessite un segment de nœud
supplémentaire (après le segment d’adjacence), le vecteur (101; 2) reste encodable par un seul
segment de nœud (Node, s, v). Ainsi, après extension, les distances obtenues sont d(s, v) =

(2; 2; 2) et d′(s, v) = (1; 101; 2).
Bien que résultant de l’extension d’une distance dominée, d′(s, v) est non-dominée (et la

seule distance ne violant pas une éventuelle contrainte stricte de c0 de 1).
Dans le gadget comeback, cet effet résulte du fait qu’un segment d’adjacence ne

peut encoder qu’un seul lien. Par conséquent, les arêtes suivantes à encoder nécessiteront
nécessairement des segments supplémentaires. A l’inverse, un segment de nœud peut
encoder tout chemin se trouvant dans le DAG des plus court chemin de la destination
intermédiaire courante. Ainsi, tant que les bords suivants restent à l’intérieur dudit DAG,
utiliser des segments supplémentaires n’est pas forcément nécessaire.

Cependant, cet effet peut également se produire même si les deux listes de segments se
terminent par un segment de nœud. Ceci est illustré par le gadget underdag. Considérons
les vecteurs délai-coût de s à u (2; 2) et (2; 3), à partir des chemins p(s, u) = (s1, a), (a, u) et
p′(s, u) = (s2, b), (b, u) respectivement. Ces distances et chemins peuvent être encodés par
les listes de segments S = (Adj, s1, a)|(Node, a, u) et S′ = (Adj, s2, b)|(Node, b, u) respec-
tivement. Ainsi, leurs distances sont d = (2; 2; 2) et d′ = (2; 2; 3). Notez que d′ est dominée
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par d, et que S et S′ sont toutes deux composées de segments de même type. Ces deux
listes de segments permettent actuellement de joindre u en utilisant comme destinations
intermédiaires a et b respectivement.

Cependant, on remarque que l’arête (u, v) se trouve dans le DAG des plus court chemins
de b. Par conséquent, le dernier segment de S′, (Node, b, u), peut simplement être modifié
en (Node, b, v) pour englober (u, v). Au contraire, l’arête (u, v) ne se trouve pas dans le plus
court chemin DAG de a. Ainsi, le dernier segment de S, (Node, a, u) ne peut pas être mis
à jour pour englober (u, v), et un nouveau segment est nécessaire. Par conséquent, une fois
mises à jour, les distances à v sont d = (3; 4; 3) et d′ = (2; 4; 4). Une fois encore, la distance
non dominée d′ résulte de l’extension d’une distance dominée.

Cette découverte a un impact non-négligeable : les distances d’apparence dominées ne
peuvent plus, à présent, être élaguées de l’exploration. De prime abord, ceci implique que
la plupart (si pas toutes) les distances dominées doivent être étendues, rendant le problème
intractable même sur des petits réseaux.

Pour résoudre ce défi et calculer des chemins DCLC pour SR efficacement, nous proposons
trois contributions. Premièrement, nous définissons une transformation de graphe. Le graphe
résultant de cette transformation, appelé le graphe SR, contient toutes les informations
nécessaires au calcul de ces chemins (délai, coût et nombre de segments). De plus, sur ce
graphe, le nombre de segments se transforme en une métrique traditionnelle. Nous définission
ensuite deux manière d’utiliser ce graphe augmenté : l’explorer directement (BEST2COP)
ou s’en servir afin de considérer le nombre de segments tout en explorant le graphe originel
(LCA).

7.2.3 Le graphe SR

Le graphe SR représente les segments sous forme d’arcs dans un graphe augmenté : les arcs
entre les nœuds u et v représentent les segments pouvant être utilisés pour guider le paquet
vers v depuis u. Sur notre construction [Luttringer et al. 2020a], un arc peut représenter
l’unique segment de nœud encodant les meilleurs chemins ECMP de u vers v. Dans ce cas,
le poids IGP de l’arc est la distance IGP commune aux chemins encodés par le segment, et son
délai est le temps de propagation maximum parmi ces chemins. Des segments d’adjacence
peuvent s’ajouter, auquel cas les poids des arcs les représentant sont exactement égaux
aux arcs initiaux qu’ils encodent. Seuls les arcs non-dominés sont conservés en cas d’arcs
multiples.

Afin de réduire la complexité du problème, les délais des arêtes sur le graphe SR sont
discrétisés. En effet, en pratique, il s’avère que M1 permet aisément de borner la taille du
front de Pareto. La métrique délai est par construction bornée par une contrainte c1 stricte.
De plus, bien que représentés avec une grande précision, les mesures réelles ont une fidélité,
ou exactitude, beaucoup plus limitée à cause des défis techniques liés à la mesure du temps
de propagation (e.g., synchronisation des instruments). Il est alors facile de discrétiser les
distances M1 sans perte d’information pertinente. Par exemple, avec une fidélité de 0.1ms,
le nombre maximal de distances sur le front de Pareto est de Γ = c1 × 1

0.1 . La fidélité avérée
des délais de propagation mesurés permet donc de stocker l’intégralité du front de Pareto
dans une structure efficace car pré-bornée, par exemple un tableau indexé sur M1 de taille
Γ, et ce sans sacrifier l’exactitude de la solution.

Sur le graphe SR multi-métrique, les chemins originaux encodables en x segments sont
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Figure 7.4: Diagramme représentant notre algorithme BEST2COP dans sa résolution de DCLC-SR

représentés par des chemins de x arcs. En explorant le graphe SR de manière similaire à
l’algorithme de Bellman-Ford, l’exploration des chemins itère donc sur le nombre de seg-
ments. Cette exploration permet de ne visiter que les chemins compatibles avec SR (en
s’arrêtant à l’itération MSD) et de découvrir rapidement les chemins DCLC : les segments
sont construits sur l’IGP, que DCLC cherche à minimiser. Si les coût IGP sont majoritaire-
ment alignés sur le délai, il est vraisemblable que la solution requière peu de segments.

7.2.4 BEST2COP : Résoudre DCLC-SR sur le Graphe SR

Grâce au graphe SR, BEST2COP explore les chemins par nombre croissant de segments, i.e.,
par nombre croissant d’arcs, et mémorise toutes les distances non-dominées : leur nombre
est borné par |V |×Γ à chaque itération. BEST2COP est décrit à haut niveau sur la Fig. 7.4.
Le front de Pareto de l’itération courante est mémorisé dans un tableau de taille |V | × Γ,
et contient initialement la distance (0, 0) vers la source. A chaque itération i, BEST2COP
parcourt tous les nœuds v depuis chaque nœud u. En combinant les distances vers u non-
dominées découvertes à l’itération i−1 avec les poids des arcs (u, v), BEST2COP calcule tous
les nouveaux chemins de i segments vers v, candidats au front de Pareto. Bien que filtrés,
certains de ces chemins candidats peuvent être dominés en fin d’itération. La vérification
de leur appartenance au front de Pareto n’est faite qu’une fois que toutes les distances ont
été calculées (boîte 3) pour amortir la complexité de mise à jour du front de Pareto; cette
vérification n’étant réalisée qu’une seule fois par itération et pas à chaque ajout/modification.
Ces nouvelles distances sont à leur tour étendues d’un arc et ainsi de suite. Ce processus est
répété MSD fois, afin d’explorer l’intégralité du front de Pareto 3D, mais uniquement celui
des distances encodables avec SR : la solution à DCLC-SR est alors fournie vers l’ensemble
des destinations.

Outre le maintien efficace du front de Pareto, les bonnes performances de BEST2COP
proviennent également des structures utilisées. La taille du front étant bornée et prédictible
grâce à la discrétisation, BEST2COP peut bénéficier de structure efficaces, par exemple des
tableaux statiques de taille Γ. Cerise sur le gâteau, les itérations de la boîte 3 sont indépen-
dantes (chaque itération explore des distances vers des nœuds v distincts), permettant de
facilement paralléliser cette boucle. Le graphe SR Multi-Métrique étant a minima une clique,
les charges des différents threads sont aisément distribuables de manière équitable.

Enfin, BEST2COP a également été étendu afin de profiter de l’existence de séparateurs
dans les graphes de réseaux réalistes. En effet, la division physique et logique des réseaux
large échelle en aires permet d’utiliser une approche diviser pour mieux régner afin de ré-
soudre DCLC-SR efficacement. Plus précisément, DCLC-SR peut être résolu dans chacunes
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des aires du réseau. Les distances trouvées peuvent ensuite être combinées au niveau des
séparateurs via un simple produit cartésien. Cette approche permet à BEST2COP d’être
utilisable et efficace même sur des réseaux modernes vastes. Cette variante est appelée
BEST2COP-E.

BEST2COP possède une complexité de O(MSD × |V |2 × L × Γ). Pour les |V | voisins
de |V | nœuds, BEST2COP étend au pire Γ distances par L liens parallèles, le tout MSD

fois. Ce coût peut être divisé par le nombre de threads utilisés. Dans l’évaluation, nous
considérons Γ = 1000 et L = 2 sur le graphe SR (davantage que le nombre que nous avons
observé en pratique).

7.2.5 Live Conversion Algorithm

Bien que BEST2COP soit efficace, l’utilisation du graphe SR n’est pas nécessairement idéale.
En effet, BEST2COP a été conçu avec ce graphe à l’esprit. Il est donc conçu pour profiter
de ces charactéristiques sans souffrir (excessivement) de sa forte densité.

Cependant, pour certains algorithmes, explorer directement le graphe SR peut induire
un coût non-négligeable et impacter négativement les performances natives de l’algorithme.
Pour cette raison, nous concevons également LCA, permettant à un algorithme de calculs
de chemins multi-critère de résoudre DCLC-SR efficacement.

Pour ce faire, deux principaux défis doivent être résolus. Premièrement, là où le nombre
de segments était connu nativement quand le graphe SR était exploré (car il était égal
au nombre de sauts), il est ici nécessaire de convertir les chemins en segments lors de
l’exploration, afin de connaitre le nombre de segments nécessaires pour l’encoder. Deux-
ièmement, si le graphe originel est exploré, le problème initial amené par la métrique SR (la
perte d’optimalité des sous-chemins) doit être également être considéré. Pour résoudre ces
défis, nous proposons deux solutions.

7.2.5.1 Une traduction lâche en liste de segments

Nous proposons une méthode de traduction des chemins explorés en liste de segments de
manière lâche. Plus précisément, cet algorithme ne vise pas à encoder un chemin précis,
mais des chemins possédant une distance (coût et délai) équivalent au chemin considéré.
Adopter une telle stratégie d’encodage permet de conserver les propriétés importantes des
chemins (leurs métriques) tout en utilisant un nombre de segments réduit (car encoder un
chemin unique précis requiert généralement davantage de segments, à cause d’ECMP).

Notre algorithme d’encodage suit une approche greedy, en tentant d’encoder itérativement
le plus long sous-chemin possible en un unique segment. Intuitivement, un sous-chemin peut
être encodé en un unique segment tant que c’est un plus court chemin et qu’il possède le coût
maximal parmi ces chemins (i.e.,, la meilleure distance pouvant être garantie par un segment
de nœud). Si un sous-chemin viole ces propriétés, un segment additionnel est nécessaire pour
l’encoder. Nous définissons formellement cet algorithme, qui est ensuite prouvé.

Enfin, afin de garantir que la solution optimale est trouvée, nous redéfinissons les condi-
tions permettant d’élaguer un chemin de l’espace d’exploration. Intuitivement, deux listes
de segments peuvent évoluer différement si ces-dernières évoluent depuis une destination
intermédiaire différente. Par exemple, si l’on considère la Fig. 7.3b, la liste de segments
correspondant à la distance d de s à u évoluait actuellement depuis le nœud intermédiaire
a. Á l’inverse, la liste de segments de la distance d′ évoluait depuis le nœud intermédiaire
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Figure 7.5: Temps d’exécution de BEST2COP and SAMCRA dans divers scénarios.

b. L’arête (u, v) n’appartenant pas aux plus courts chemins de a vers v, mais appartenant
aux plus courts chemins de b vers v, le nombre de segments de ces listes peuvent évoluer
différent. Il est donc nécessaire d’étendre les deux distances.

En considérant les distances dont les listes de segments évoluent depuis des nœuds in-
termédiaires différents comme incomparables, suffisamment de chemins sont étendus pour
résoudre DCLC-SR optimalement. Nous définissons formellement cette nouvelle relation,
appelée strong dominance. Nous prouvons qu’étendre les chemins n’étant pas strongly domi-
nated suffit à résoudre le problème optimalement, pour un surcoût polynomial en les dimen-
sions du graphe originel.

Ces algorithmes sont ensuite implémentés dans un algorithme de calcul de chemins multi-
critères existant, SAMCRA [Van Mieghem & Kuipers 2003], et évalué.

7.2.6 Évaluation

Réseaux réels Nous commençons par considérer une topologie réelle. Nous utilisons notre
plus grande topologie disponible, composée de plus de 1100 nœuds et 4000 arêtes. Cette
topologie décrit le réseau d’un opérateur de niveau 1 et n’est pas disponible pour le public 1.
Les temps d’exécution sont ensuite présentés dans la Fig. 4.9a. BEST2COP (1, 2, 8 threads)
et SAMCRA (avec LCA et avec le graphe SR) sont exécutés pour chaque nœud comme
source, ce qui donne les distributions présentées.

On peut voir que SAMCRA+SRG (i.e., SAMCRA exécuté directement sur le graphe SR)
présente les pires temps d’exécution parmi tous les algorithmes, avec une moyenne de 100ms,
et atteignant 250ms au pire. Il est intéressant de noter que cela montre que l’exploration du
graphe SR peut être préjudiciable à certains algorithmes. Par conséquent, les algorithmes
qui ne sont pas conçus pour tirer parti de ses caractéristiques peuvent mieux s’en sortir en
explorant la topologie originale, plus clairsemée, et en utilisant les informations contenues
dans le graphe SR pour calculer le nombre de segments nécessaires. Ceci est visible sur
les temps de calcul SAMCRA+LCA. Notre construction, couplée à notre algorithme de
conversion, a permis à SAMCRA+LCA d’atteindre des temps de calcul très similaires à la
variante mono-thread de BEST2COP, avec un temps d’exécution moyen de ≈ 60ms. Notez
que BEST2COP, qui fonctionne sur le graphe SR lui-même, présente un temps d’exécution

1Bien que des ensembles de données topologiques publiques existent, ces topologies sont souvent trop
petites et/ou ne possèdent pas d’évaluation de liens
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Figure 7.6: Temps d’exécution de BEST2COP-E sur des réseaux à très large échelle.

équivalent lorsqu’il s’appuie sur un seul thread. Cependant, lorsqu’il s’appuie sur plusieurs
threads, BEST2COP surpasse SAMCRA dans toutes les exécutions, atteignant un temps de
calcul de ≈ 25ms au pire en utilisant 8 threads, i.e., trois fois plus rapide que SAMCRA.

Réseaux aléatoires Nous générons ensuite des graphes connectés bruts de |V | nœuds en
utilisant le modèle d’Erdos-Rényi. Les topologies générées ont un degré de log(|V |). Tandis
que les délais et les poids IGP sont choisis uniformément au hasard.

Bien que les temps de calcul soient légèrement plus élevés (en raison des évaluations
aléatoires qui conduisent à un plus grand nombre de chemins non dominés), les résultats sont
similaires à l’expérience précédente. Comme sur les réseaux réels, SAMCRA+LCA montre
des résultats proches (sinon égaux) du temps d’exécution de BEST2COP. Néanmoins, même
sur des réseaux aléatoires, BEST2COP reste trois fois plus rapide que SAMCRA lorsqu’il
s’appuie sur 8 threads.

La manière d’utiliser le SR a un impact important sur l’algorithme sous-jacent. Étant
donné que le SR n’est pas au cœur de la conception de la conception de SAMCRA,
l’exploration de ce dernier entraîne un temps d’exécution élevé. Cependant, l’ajout de
notre algorithme de conversion au sein de SAMCRA a permis à ce dernier d’atteindre des
temps d’exécution compétitifs tout en résolvant 2COP. BEST2COP, qui explore directe-
ment le Graph SR directement, présente une exécution similaire à celle de SAMCRA+LCA
lorsqu’elle repose sur un seul thread. En utilisant le multithreading, BEST2COP surpasse
son SAMCRA dans tous les scénarios.

Topologie large-échelle À notre connaissance, bien que de tels réseaux existent, il n’y
a pas de topologies à grande échelle disponibles publiquement. De plus, bien qu’il ex-
iste quelques générateurs de topologies [Quoitin et al. 2009, Medina et al. 2001] capables de
générer des réseaux de taille arbitraire, ils ne permettent pas de générer de très grandes
topologies multi-valuées (coût et délai).

Nous avons donc créé YARGG, une heuristique qui génère de tels réseaux tout en prenant
des données géographiques en considération afin de rendre ces topologies réalistes. YARGG
calcule une topologie large, réaliste et multi-zone. Le cœur du réseau s’étend sur un lieu
géographique donné et possède des poids IGP simples et des délais réalistes. Les autres
zones suivent un modèle hiérarchique standard à trois couches.

En utilisant YARGG, nous générons cinq topologies à grande échelle, à l’échelle du con-
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tinent, et nous exécutons BEST2COP sur chacune d’entre elles. Les résultats de cette
expérience sont présentés dans le diagramme en violon de la Fig. 7.6. En tirant parti de
la structure du réseau, BEST2COP présente de très bonnes performances malgré l’échelle
du graphe. Pour 10 000 nœuds, BEST2COP-E affiche un temps similaire à celui pris par sa
variante plate pour |V | = 2000. De plus, BEST2COP-E semble évoluer linéairement avec le
nombre de nœuds, restant toujours inférieur à une seconde pour |V | = 75 000. Même lorsque
le réseau atteint une taille de ≈ 100 000, BEST2COP-E est capable de résoudre 2COP en
moins d’une seconde pour une fraction non négligeable des sources, et ne dépasse jamais
1,5s.

7.2.7 Conclusion et Perspectives

Nous proposons plusieurs contributions permettant de résoudre DCLC-SR. Grâce à une
nouvelle construction, le graphe SR, nous proposons deux façons de considérer le nombre de
segments lors du calcul des chemins. LCA s’appuie sur les informations contenues dans le
graphe SR pour permettre aux algorithmes multicritères de traduire les chemins en liste de
segments à la volée, pendant l’exploration du graphe original. BEST2COP explore directe-
ment le graphe SR et exploite les caractéristiques de ce dernier pour résoudre efficacement
DCLC-SR.

Plusieurs défis intéressants peuvent encore être relevés. Plus particulièrement, le concept
de LCA peut être adapté à d’autres défis que le calcul de DCLC-SR. En effet, la notion de
strong dominance pourrait être utilisée pour adapter des algorithmes de calcul de chemins
arbitraires pour SR. YARGG pourrait également être retravaillé et étendu, afin de devenir
un outil à part entière utilisable par la communauté. Enfin, on pourrait étudier si ce type de
routage peut être implémenté directement dans le plan de données, en utilisant des langages
tels que P4. En particulier, plusieurs next-hop pourraient être poussés dans le plan de
données pour chaque destination, afin de les sélectionner en direct en fonction du retard subi
par le paquet.

7.3 Résumé du chapitre 5 : une patate cuite à la perfection

Une des briques essentielles à Internet est l’acheminement des paquets en transit à travers
les domaines qui le composent. Dans un domaine (ou système autonome, AS), les routeurs
commutent les paquets en fonction du préfixe IP auquel la destination du paquet appartient.
Lorsque le préfixe n’appartient pas à l’AS où le paquet est commuté, on dira qu’il s’agit de
trafic en transit. Ce trafic est acheminé via un mécanisme de routage appelé patate chaude
: l’opérateur de l’AS cherche à se débarrasser du paquet le plus vite possible selon la route
interne la plus courte.

Cette route est obtenue en appliquant le processus de décision BGP dont l’une des
dernières règles stipule que la meilleure route est celle qui minimise la distance dans l’AS
— meilleure route parmi celles dont les critères strictement inter-domaines (préférence
économique et longueur en saut d’AS en particulier) sont égaux. En d’autres termes, la
sélection des routes BGP dépend des changements de l’IGP. Malheureusement, BGP con-
verge lentement, même de manière interne avec iBGP. Pour augmenter la visibilité des
routes à l’intérieur du domaine et diminuer le temps de convergence, les opérateurs peuvent
utiliser addPath [Uttaro et al. 2016b] mais la mise à jour du meilleur prochain saut reste
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Figure 7.7: Des routes vers les prochains sauts de bordure : représentation et structuration.

relativement lente car il existe beaucoup de préfixes BGP à traiter (plus de 800K) : en cas
de panne, beaucoup d’entrées doivent être mises à jour. PIC (Prefix Independent Conver-
gence) [Filsfils et al. 2011] permet, grâce à une table de routage hiérarchique, de grouper les
préfixes BGP pour réduire le nombre d’entrées et de basculer rapidement, en cas de change-
ment IGP, vers une route de secours pré-calculée pour chaque groupe. Cependant la route
de secours n’est pas nécessairement la route optimale (post-convergence BGP). De plus, PIC
suppose la bi-connexité du réseau comme hypothèse garantie. Comme l’alternative de sec-
ours n’est ni nécessairement active ni optimale, PIC se repose encore et toujours sur BGP
pour finalement re-converger à son tour. Or les groupes de PIC ne sont d’aucune utilité pour
cela : la re-convergence BGP est à nouveau nécessaire pour l’ensemble des préfixes.

Cet aspect est critique : comment anticiper et garantir l’optimalité face à tous les événe-
ments sans les considérer un à un ? La réponse est plus simple qu’il n’y parait et est
expliquée en détail dans la partie 7.3.1. Un ensemble de passerelles possédant les mêmes
attributs inter-domaines, et suffisant pour assurer la 2-connectivité, contient nécessairement
la meilleure passerelle après un changement IGP. Nous exploitons cette propriété pour con-
struire facilement des ensembles de passerelles protecteurs après n’importe quel changement
IGP. Ces ensembles, partagés en mémoire par groupe de préfixes, permettent de basculer
très vite vers la nouvelle meilleure route BGP pour tous les préfixes d’un groupe.

Néanmoins, ces ensembles doivent potentiellement être mis à jour après un événement.
Cette opération se doit donc également d’être efficace. Pour mettre en évidence la faisabilité
d’OPTIC, et avant même de montrer que le nombre et la taille de ces ensembles sont limités en
théorie comme en pratique (partie 7.3.3), nous allons expliquer comment facilement maintenir
ces ensembles à jour lors de changement BGP ou IGP (partie 7.3.2). En d’autres termes,
nous allons montrer qu’OPTIC est capable de maintenir efficacement ses groupes de préfixes
ayant des ensembles de passerelles en commun pour toujours avoir un coup d’avance sur
BGP. Alors que la convergence vers la nouvelle passerelle est quasi instantanée, la mise à
jour des groupes pour garantir la protection face à un prochain événement à un coût au pire
égal à celui de BGP.
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7.3.1 Garantir une protection optimale face à tout évènement IGP

Dans cette partie et dans la suite de l’article, nous ferons l’hypothèse que la visibilité des
routes est suffisante grâce à une solution comme AddPath et une architecture iBGP très
simple, par exemple avec un seul route reflector. Des hypothèses plus réalistes sont abordées
dans [Luttringer et al. 2021d], et OPTIC peut s’y adapter. Sur l’exemple donné en fig-
ure 7.7a, nous montrons les limites d’une solution comme PIC. Avec cette fonctionnalité de
re-routage, le routeur s mémoriserait uniquement les routes via n1 (optimal) et n2 (secours si
n1 tombe en panne) vers le préfixe p. Après un événement IGP, PIC se contente de restaurer
rapidement la connectivité vers p via la meilleure route mémorisée encore active. Or, si le
lien a − c tombe en panne, la route via n3 devient optimale. PIC se contente de restaurer
la connectivité vers n1, qui est toujours joignable, et offre donc une route sous-optimale vers
p jusqu’à ce que BGP converge. Pire encore, si le routeur a tombe en panne, PIC n’a pas
de route de secours, car il fait l’hypothèse d’un réseau 2-connexe sans vérification préalable
ni ajustement : s est alors déconnectée de p jusqu’à la re-convergence. PIC n’apporte ni
une protection complète, ni un re-reroutage optimal, et n’assure donc pas seul
la re-convergence de BGP.

Notre objectif est d’assurer une re-convergence optimale et immédiate avec une méthode
efficace. Notre solution consiste à trouver, pour chaque préfixe p, un ensemble de passerelles
garanti de contenir la nouvelle meilleure route après n’importe quel événement IGP. Pour
calculer cet ensemble, (i) nous groupons les passerelles ayant les mêmes attributs inter-
domaine (cad sans considérer la distance IGP) et (ii) nous empilons ces ensembles (en
commençant par les passerelles avec les meilleurs attributs inter-domaine) jusqu’à ce que
les passerelles de l’union de ces ensembles offrent deux chemins disjoints vers le préfixe
p. L’union ainsi formée, qu’on appelle ensemble protecteur, contient donc suffisamment
de passerelles pour tolérer tout changement IGP (chemins disjoints vers p). Comme les
routes ont été considérées suivant leurs attributs inter-domaine, ces dernières resteront les
meilleures routes après n’importe quel changement IGP car ces changements ne modifient
pas les attributs inter-domaine des routes. Après un événement IGP, pour basculer sur
la nouvelle route optimale de manière quasi-immédiate, il suffit donc de sélectionner dans
l’ensemble protecteur la passerelle avec le poids IGP le plus faible. Les préfixes ayant un
ensemble protecteur identique le partagent en mémoire : ainsi, une unique mise à jour de
l’ensemble protecteur bénéficie à tous les préfixes.

Sur la Fig. 7.7a, l’ensemble des passerelles possédant les meilleurs attributs inter-domaine
{n1,n2,n3} suffit à offrir deux chemins disjoints vers p. Si le nœud a est supprimé, la nouvelle
meilleure passerelle est celle possédant le plus petit poids IGP : n3. Cependant, après la
panne de a, cet ensemble composé uniquement de n3 n’offre plus deux chemins disjoints vers
p : il est nécessaire de rajouter l’ensemble des passerelles possédant les deuxièmes meilleurs
attributs inter-domaine afin de re-créer un ensemble protecteur.

7.3.2 Toujours un coup d’avance, ou la gestion efficace des groupes

La principale difficulté à surmonter est de garantir une reconstruction efficace des groupes
après un changement IGP : la bascule vers la meilleure passerelle étant déjà réalisée, comment
préparer efficacement les prochains groupes protecteurs pour anticiper n’importe quel futur
événement IGP ? Sur la Fig. 7.7, on peut observer que le plan de contrôle d’OPTIC est
construit sur base d’un arbre de préfixes T dont les feuilles L sont triées selon les attributs
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inter-domaine. Les premières (meilleures) feuilles permettent de construire les ensembles
protecteurs, transférés dans le plan de données O. C’est sur ces ensembles réduits que
pointent les groupes de préfixes, une fonction de hachage étant appliquée aux contenus des
ensembles afin de les identifier de manière unique. Ainsi, dans le plan de données, un groupe
de préfixes est associé à un ensemble de passerelles contenant la meilleure route courante et
la meilleure route après tout changement IGP.

Après un changement IGP OPTIC opère une bascule vers la meilleure passerelle en
appliquant un simple minimum dans chaque ensemble. Le changement IGP est donc pris en
compte de manière optimale et quasi-instantanée. Ensuite, OPTIC se met à jour afin d’être
prêt pour le prochain changement IGP. Pour chaque groupe de préfixe, si les passerelles
de l’ensemble protecteur associé offrent toujours deux chemins disjoints vers p, ce-dernier
reste inchangé. En revanche, si cette propriété n’est plus vérifiée, le groupe est mis à jour
via les informations contenues dans L. Cette mise à jour s’opère préfixe par préfixe dans le
groupe concerné (car ils ne partagent pas nécessairement le même L). OPTIC opérant à
la granularité des groupes de préfixes, son coût de mise à jour pour anticiper
le prochain événement IGP est inférieur ou au pire égal au coût de BGP pour
réagir à l’événement courant. Sur la Fig. 7.7a, seule la panne du nœud a provoque
une modification du groupe (pour le préfixe p). Son effet est visible dans la Fig. 7.7b :
la passerelle n4 doit être ajoutée car n1 et n2 sont inaccessibles. Dans tous les autres cas,
l’ensemble IGP arrondi n1, n2, n3 est suffisant pour assurer la protection, même après une
panne.

Après une annonce BGP Quand une route BGP est apprise/modifiée, il suffit de
l’insérer (resp. la modifier) dans T et d’appliquer les éventuels changements associés dans O
si la route modifie effectivement l’ensemble protecteur. Le coût de cette mise à jour d’OPTIC
est équivalent à celui de BGP.

7.3.3 Analyse du nombre de groupes : un plan de données compact

Nous fournissons ici2 un modèle d’analyse assez défavorable car ne prenant pas en compte
les préférences régionales limitant le nombre d’annonces à considérer dans la réalité. Soit
un AS avec B passerelles bi-connectées annonçant P préfixes au total. Chaque préfixe D
est annoncé par un sous ensemble b ≤ B de passerelles, choisies aléatoirement selon une loi
uniforme. Pour chaque préfixe, l’étalement de la politique BGP est représenté par un entier
entre 1 et ps choisi aléatoirement selon une loi uniforme. Cela implique que chaque sous
ensemble de taille n ≤ b donnée a la même probabilité d’existence. Notre modèle calcule
le nombre |O| = |OB,P,ps| d’ensembles uniques en fonction de B, P , et ps. La quantité
|OB,P,ps| est donc le nombre d’ensembles de passerelles distinctes, i.e. le nombre de groupes
de préfixes.

Suivant sa configuration interne, un ensemble de taille n (2 ≤ n ≤ b) est dans OB,P,ps avec
une probabilité PB,P,ps,n ou P′

B,P,ps,n. Comme il existe respectivement
(
B
n

)
ou B

(
B−1
n−1

)
de ces

ensembles, nous en déduisons (avec pn et p′n la probabilité pour un ensemble d’une certaine

2Les résultats présentés sont issus d’une version optimisée d’OPTIC expliquée ici : https://
optic-icube.github.io/
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Table 7.1: Nombre de groupes distincts (|O|) selon plusieurs configurations.

Type of AS # gateways per class # prefix per class # distinct OPR sets OPR sets median size Lower bound
Stub (10; 20; 0) (700K; 100K; 0K) 3945 4 235

Tier 3 (10; 50; 100) (500K; 200K; 100K) 46 010 3 6219

Tier 2 (5; 500; 2000) (500K; 200K; 100K) 263 219 2 197 194

Tier 1 (0; 50; 5000) (0K; 600K; 200K) 232 180 2 199 633

configuration interne de taille n avec b passerelles par préfixe et des distances inter-domaines
entre 1 et ps) :

|OB,P,ps| =
b∑

n=2

(
B

n

)
PB,P,ps,n + B

(
B − 1

n− 1

)
P′
B,P,ps,n (7.1)
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Le tableau 7.1 décrit le nombre de groupes obtenus en raffinant l’analyse. Les AS étant
triés en fonction de la dispersion de leurs préférences locales en trois classes (fournisseurs,
paires, clients) et de leur structure topologique — nombre de passerelles et préfixes appris par
classes de voisins. Pour la majorité des AS, tels que les réseaux Stubs et les réseaux
de transit avec un nombre de passerelles inférieur à la centaine, le nombre de
groupes |O| est très réduit. Pour les gros réseaux de transit, le nombre de groupe distincts
|O| est fortement dépendant de la décomposition en sous classes : pour les grands Tier 1, |O|
est relativement élevé mais OPTIC est de toute façon proche de la borne minimale pour la
protection. Globalement, comme le nombre de groupes est (bien) plus faible que le nombre
d’entrées BGP, OPTIC est à même de répondre rapidement à la plupart des changements
IGP très efficacement.

7.3.4 Conclusion

OPTIC découple l’IGP de BGP à l’aide de groupes de préfixes BGP peu nombreux, petits et
stables. Chaque groupe pointe vers un ensemble de routes protecteur commun offrant deux
chemins disjoints vers le préfixe et contenant les meilleures routes pre- et post-convergence
pour n’importe quel événement IGP. Afin de protéger le trafic de transit en cas de nouveau
changement, c’est à dire pour anticiper la prochaine panne avec de nouveaux ensembles
protecteurs, le coût de la mise à jour des groupes d’OPTIC est limité pour être inférieur – ou
au pire égal bien que généralement très inférieur – au temps pris par BGP pour se “remettre de
la panne précédente” ! Lors de changements internes ou de pannes de bordure, OPTIC a un
coup d’avance sur BGP pour un coût moindre : la bascule vers la route post-convergence est
quasi-immédiate et les prochains groupes protecteurs reconstruits efficacement si nécessaire.

Á l’heure actuelle, OPTIC reste à l’état d’idée, bien qu’une implémentation partielle de
son plan de contrôle ait été faite sur Free Range Routing. L’étape suivante et les perspectives
directes de cette contribution concerne donc son implémentation et son évaluation dans un
environnement réaliste. De plus, OPTIC est parfaitement compatible avec les architectures
modernes des réseaux programmables. Une implémentation de son plan de données en P4
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est actuellement en cours de réalisation, afin de démontrer la faisabilité d’OPTIC dans un
réseau d’opérateur réel.

7.4 Conclusion

Les travaux présentés dans cette thèse se centraient autour du routage qualitatif.
Nous avons motivé l’intérêt de résoudre DCLC, ainsi que la complexité additionnelle

apportée par le contexte opérationnel souvent négligé par les algorithmes de plus courts
chemins. Nous avons conçu différentes méthodes et algorithmes permettant de résoudre
DCLC efficacement dans ce contexte opérationnel.

Nous avons ensuite étudié les effets néfastes des interactions entre BGP et l’IGP, entraî-
nant des temps de convergence long. Avec OPTIC, nous avons proposé un moyen de ramener
ce temps de convergence à un temps marginal.

Ces contributions ont été formalisées et prouvées. Ces-dernières ont également été éval-
uées, théoriquement ou via des évaluations pratiques. Le code de ces contributions a été mis
en ligne. Enfin, des perspectives possibles ont été énoncées.
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Jean-Romain LUTTRINGER

Calcul de Chemins pour Réseaux
IP : Routage de la patate Chaude

et Froide lors de Pannes &
Chemins Multi-contraints pour

Segment Routing

Résumé

Les travaux présentés dans cette thèse se décomposent en deux parties centrées autour du 
routage. 

Nous nous intéressons d'abord aux calculs de chemins multicritères, notamment utiles pour router 
du trafic exigeant une latence faible. Le problème NP-Difficile étudié, appelé DCLC, devient 
radicalement plus complexe lorsque l'on considère les contraintes opérationnelles rajoutées par la 
technologie utilisée pour déployer ces chemins, Segment Routing. Nous proposons différents 
méthodes et algorithmes afin de résoudre DCLC dans un tel contexte opérationnel, et montrons 
l'efficacité de nos solutions via une évaluation sur des réseaux large-échelle. 

Nous nous concentrons ensuite sur les effets néfastes induits par les interactions inter-
protocolaires. Les interactions entre BGP (le protocole de routage utilisé dans l'Internet) et l'IGP 
(utilisé au sein d'un réseau) provoquent un temps de convergence long lors de changements 
topologiques. Nous retravaillons ces interactions et proposons OPTIC, ramenant ce temps de 
convergence à une durée marginale. Nous montrons la faisabilité d'OPTIC via évaluation théorique
basée sur des données réelles. 

Mot-clés : Routage, Calcul de chemins, DCLC, Segment Routing, BGP, IGP, Qualité de Service, 
Ingénierie de Trafic

Résumé en anglais

The work presented in this thesis is divided into two parts centered around routing. 

First, we focus on multi-criteria path computations, which are particularly useful for routing traffic 
requiring low latency. The NP-hard problem studied, called DCLC, becomes radically more 
complex when we consider the operational constraints added by the technology used to deploy 
these paths, Segment Routing. We propose different methods and algorithms to solve DCLC in 
such an operational context, and show the efficiency of our solutions via an evaluation on large-
scale networks. 

We then focus on the adverse effects induced by inter-protocol interactions. Interactions between 
BGP (the routing protocol used in the Internet) and the IGP (used within a network) cause long 
convergence times during topological changes. We rework these interactions and propose OPTIC, 
reducing this convergence time to a marginal duration. We show the feasibility of OPTIC via 
theoretical evaluation based on real data. 

Keywords: Routing, Path Computation, DCLC, Segment Routing, BGP, IGP, Quality of Service, 
Traffic Engineering


