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Résumé étendu

Contexte

Les questions environnementales poussent le secteur de la construction à
rechercher des pratiques plus durables. En ce qui concerne l’industrie des
chaussées routières, les efforts visant à allonger la durée de vie des struc-
tures de chaussée et à réduire la quantité de matériaux consommés sont des
éléments clés pour la réduction des impacts environnementaux, notamment
en ce qui concerne les émissions de dioxyde de carbone pendant la construc-
tion, la réparation et la reconstruction des chaussées.

Le phénomène de fatigue est l’une des principales causes de dégradation
des chaussées, entrâınant une réduction de leur durée de vie. L’analyse et
la prédiction de ces effets sur les structures de chaussée font l’objet d’une
attention croissante de la part des praticiens afin d’optimiser la conception
et la gestion des routes.

Les sollicitations répétées (trafic et température), sont responsables d’une
détérioration mécanique continue des matériaux de structure, qui conduit à
l’initiation et à la propagation de fissures en fonction du nombre de cycles.
Plusieurs processus physiques, tels que la non-linéarité du module complexe,
l’auto-échauffement, la thixotropie et la coalescence des fissures sont im-
pliqués dans les phénomènes de fatigue du béton bitumineux (matériau de
chaussée le plus courant).

Aujourd’hui, les essais expérimentaux sont le principal outil pour déterminer
la performance en fatigue du béton bitumineux, bien que tous les mécanismes
de fatigue ne soient pas encore complètement connus. L’étude des
mécanismes essentiels a été réalisée au cours des dernières décennies par
le biais de simulations numériques.

Le béton bitumineux est un matériau composite composé de granulats, de
liant bitumineux et éventuellement de matériaux de remplissage. Il présente
naturellement une microstructure hétérogène qui affecte de nombreux aspects
du comportement en fatigue. Dans la méthode des éléments discrets (DEM),
le matériau est décrit au moyen d’un assemblage de particules interagissant
par contact, ce qui se transforme en un outil numérique efficace pour imiter
l’effet des hétérogénéités.

iii



iv Résumé étendu

Plan du Mémoire

Objectif de la recherche

L’objectif global de cette thèse est de proposer des modèles de contact
en DEM qui permettent de traiter l’ensemble du processus de fatigue lors
d’essais de laboratoire à température et fréquence de chargement constantes.
Afin d’atteindre cet objectif, les problématiques suivantes sont enoncées :

• Définir une formulation énergétique d’un modèle de contact pour la
croissance des fissures en fatigue pour les fissures longues.

• Proposer une description physique et un modèle subséquent pour
l’initiation des fissures.

• Combinez les deux aspects dans un seul modèle de contact.

Organisation de la thèse

Cette thèse est organisée en plusieurs parties :

Le chapitre 2 passe en revue les phénomènes de fatigue des matériaux, les
essais de fatigue couramment réalisés, les processus physiques impliqués et
les étapes correspondantes de l’évolution de la fatigue. Les connaissances
de base de la mécanique de la rupture élastique linéaire et de la libération
d’énergie pendant le processus de fissuration sont présentées. Les modèles
existants sont évalués, y compris le modèle d’endommagement, le modèle
de croissance des fissures et le modèle de zone cohésive. Les possibilités
d’amélioration sont clarifiées.

Dans le chapitre 3, un modèle de contact, le modèle-p, pour la croissance des
fissures en fatigue est proposé.

Dans le chapitre 4, le modèle-p est validé par des comparaisons respective-
ment avec les calculs théoriques et l’expérimentation.

Au chapitre 5, le modèle-p est simplifié en modèle-sp. De plus, ce modèle-
sp est utilisé de manière créative comme un modèle d’endommagement qui
peut saisir l’ensemble du processus d’évolution de la fatigue pour différents
niveaux de déformation des essais de fatigue. Le modèle-sp est validé par des
comparaisons avec l’expérimentation pour différents matériaux et méthodes
d’essai.

Enfin, les conclusions de ce travail sont présentées et plusieurs perspectives
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d’études futures sont indiquées au chapitre 6.

Représentation d’une fissure en DEM

Un modèle de propagation de fissure et un modèle d’endommagement sont
proposés dans ce travail, lesquels sont à l’origine des solutions permettant de
représenter des fissures en DEM.

Afin de permettre de représenter une fissure en DEM de n’importe quelle
longueur dans un échantillon, les corrélations formulées dans cette section
donnent le moyen de relier précisément la propagation de la fissure ac (0 ≤
ac ≤ dc, où dc est la longueur du domaine de contact voir Figure 3.3, dans
ce cas, dc égal au diamètre de la particule, dc = d) à la dégradation de la
rigidité de contact (0 ≤ D ≤ 1). L’idée de base est d’établir une bijection,
une correspondance biunivoque, entre ces deux quantités ac et D.

(a) (b) (c)

Figure 1: (a) Pointe de fissure au voisinage d’un contact et avec propagation
de la fissure de (a) à (b) puis à (c), sa trajectoire pendant la rupture du
contact est décrite par la variable ac (0 ≤ ac ≤ dc ).

Prenons un exemple pour illustrer la bijection. Dans la Figure 3.4a, une
plaque longue et rectangulaire avec une pré-fissure initiale de longueur a0 est
soumise à une contrainte uniforme constante σ, qui conduit à un déplacement
vertical élastique δ̄0. La propagation ∆a de la fissure conduit à une variation
du déplacement vertical ∆δ̄ (voir Figure 3.4b). L’augmentation progressive
de la longueur de la fissure de a0 à a0 + ∆a est illustrée sur la Figure 3.4c.
Pour simuler un tel processus, un assemblage composé de particules monodis-
persées de diamètre d organisées en un assemblage granulaire bidimensionnel
régulier et carré (Figure 3.4d) est conceptuellement adopté pour modéliser la
plaque élastique. Dans cet exemple, nous avons choisi a0 = 4d, ∆a = d. La
fissure est simplement représentée par quatre contacts qui ont été coupés. La
propagation de la fissure est représentée dans ce cas en coupant le cinquième
contact (clairement représenté sur la Figure 3.4e). Cela peut faire avancer la
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Plaque élastique avec fissure initiale a0 sous contrainte σ,
déplacement résultant δ̄0 (b) effet d’une croissance de fissure (de a0 à a1) sur
les déplacements en fonction de la longueur de la fissure, (c) évolution du
déplacement. (d) échantillon DEM correspondant, (e) zoom de la longueur
propagée (d), et (f) évolution correspondante des déplacements en fonction
de la longueur de la fissure.

fissure d’un ‘saut’. Cependant, la continuité du processus de rupture reste
dépendante de la rupture du contact (comme le suggère la Figure 3.4f).

Afin de caractériser spécifiquement le processus de rupture d’un contact,
l’effet mécanique de la propagation virtuelle de la pointe de fissure sur une
distance dc, définie comme le domaine de contact, est analysé. La longueur dc
correspond au déplacement de la pointe de fissure si le contact est coupé. Pro-
gressivement, le déplacement de la pointe de la fissure, défini par la longueur
ac (0 ≤ ac ≤ dc comme indiqué sur la Figure 3.3), induit une réduction de la
rigidité du contact. On peut adopter une variable d’état D (0 ≤ D ≤ 1) pour
décrire cette dégradation de la rigidité du contact concernée par le processus
de propagation de la pointe de fissure. Aucun processus de propagation n’est
observé pour ac = 0, ce qui est automatiquement lié à un contact intact
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(D = 0). En revanche, si ac = dc, la pointe de fissure s’est propagée et a
coupé le contact (D = 1).

Une relation cohérente entre la propagation de la pointe de fissure ac et
la dégradation de la rigidité D permet au modèle discret de définir un
déplacement de fissure plus petit que la dimension des particules composant
le matériau. Dans les sections suivantes, une relation ac − D basée sur le
bilan énergétique d’un contact est proposée.

Définition du ratio de pente p

Le premier élément pour comprendre la relation entre la propagation de la
fissure et le processus de dégradation du contact à la pointe de la fissure dans
l’échantillon de DEM est l’évolution de la force et des déplacements. Si seul le
contact à la pointe de la fissure est relâché (0 ≤ D ≤ 1), dans des conditions
élastiques, le matériau entourant la pointe de la fissure se comporte comme un
système élastique. Par simplicité, remplaçons le matériau environnant par un
ressort élastique représentant l’élasticité du matériau kp, comme proposé dans
la Figure 3.5. Si l’on considère le processus de rupture de manière opposée,
où la force de contact peut fermer la fissure, l’action individuelle de la force
de contact associée à la pointe de la fissure peut réduire linéairement l’écart
entre les deux particules. De manière naturelle, une valeur décroissante de
F = δ(1−D)k0 peut simplement augmenter proportionnellement la distance
entre les deux particules (décrite par δ), ce qui explique la trajectoire linéaire
observée lors du processus de rupture (0 ≤ D ≤ 1), comme le montre la
Figure 3.6.

Dans la Figure 3.6, un contact qui représente une partie du matériau d’une
plaque est décrit par les deux systèmes de ressorts et l’évolution de la force
de contact F et du déplacement δ dans le système de coordonnées. Quatre
états sont choisis, à savoir, (o) une plaque pré-fissurée sans chargement, (A)
une plaque soumise à une contrainte constante σ, (B) une fissure se propage
jusqu’à la limite du domaine de contact, (C) une fissure traverse totalement le
domaine de contact. Trivialement, la force élastique maximale, juste avant le
processus de rupture du contact (processus de (B) à (C)) est égale à Fmax =
k0δ0. Pour cette même force Fmax agissant sur le ressort 2kp, le déplacement
associé au matériau environnant est simplement δp = Fmax/kp. Après le
processus de rupture progressive, la force diminue de Fmax à 0 suivant la pente
de rupture kp et le ressort du matériau environnant n’est plus en tension.
L’augmentation totale du contact rompu est finalement de δmax = δ0 + δp =
δ0(1 + k0/kp), lorsque F = 0.

Définissons le rapport de pente p comme le rapport entre la pente élastique k0
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(a) (b) (c)

Figure 3: Description schématique de la relation mécanique entre le contact
à la pointe de la fissure et les particules voisines. (a) Plaque pré-fissurée et
(b) son comportement élastique simplifié près de la pointe de la fissure, où
kp représente la rigidité du matériau entourant la pointe de la fissure, F et δ
sont la force et le déplacement de contact, (c) une description plus intuitive
de (b).

et la valeur absolue de la pente de rupture kp, soit p = k0/kp. Physiquement,
le rapport de pente p est une quantité qui caractérise la relation entre la
rigidité du contact et la rigidité de son voisinage. Cela signifie que le rapport
de pente p tient compte de l’effet du matériau environnant sur la pointe de
la fissure.

Pour décrire le changement de la position de la fissure et du déplacement du
contact avec la propagation de la fissure, la figure 3.7 montre deux états de la
position de la fissure et du déplacement du contact, se référant respectivement
aux états (B) et (C) de la figure 3.6.
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Figure 4: Description de l’évolution d’un contact pour l’ensemble du proces-
sus allant de la fissure proche à la fissure traversant ce contact. En bas de la
figure, (o) une plaque pré-fissurée dans laquelle un rectangle rouge représente
le contact dont le comportement est décrit par les deux systèmes de ressorts
et l’évolution de la force de contact F et du déplacement δ dans le système
de coordonnées, (A) plaque soumise à une contrainte constante σ, (B) fissure
se propageant jusqu’à la limite du domaine de contact, (C) fissure traversant
totalement le domaine de contact. De (B) à (C), la croissance de la fissure
dans le domaine de contact est représentée par le processus de dégradation
de la rigidité de contact, pour (0 ≤ D ≤ 1), où k0 est la rigidité de contact
initiale, et (1 −D)k0 est sa valeur dégradée.
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En ce qui concerne la méthode proposée qui représente la propagation des
fissures, lorsqu’elle est comparée au modèle de la zone cohésive (CZM), il
convient de mentionner une similitude et une différence majeures entre eux.
Tous deux utilisent un changement progressif de la propriété mécanique de
l’élément situé à l’avant d’une pointe de fissure pour représenter la propaga-
tion de la fissure. Pour le CZM, la séparation est régie par la déformation δ
qui suit une courbe de radoucissement définie artificiellement. Il est impor-
tant de noter que pour la méthode discutée ci-dessus, comme le montre la
Figure 3.6, la séparation est uniquement régie par la dégradation de la rigidité
de contact, et la courbe de radoucissement n’est pas définie mais se forme
naturellement et c’est ce qui différencie principalement les deux méthodes.

Figure 5: Description schématique de la position de la fissure et du
déplacement du contact. (a) Pointe de fissure à la limite du domaine de
contact, où δ0 est le déplacement de contact, et (b) fissure traversant totale-
ment le domaine de contact.

Équivalence énergétique

Le principe d’équivalence énergétique se base sur le fait que l’énergie libérée
dans les échantillons DEM doit être la même que dans le matériau réel pen-
dant un certain incrément de fissure. Ainsi, l’équivalence de l’énergie libérée
dans une fissure et dans un contact pour la même longueur propagée peut
finalement conduire aux correspondances entre ac et D

ac
dc

=
1 − (1 −D)

1 + p(1 −D)
, (1)

ou inversement

1 −D =
1 − ac

dc

1 + p
ac
dc

. (2)
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Les équations 3.16 et 3.17 fournissent une relation directe entre la propa-
gation de la fissure et l’endommagement dans un contact (0 ≤ ac/dc ≤ 1
en conformité avec 0 ≤ D ≤ 1). Toutes les informations sont entièrement
définies au niveau du contact (propriétés k0 et dc) ou mesurées lors de la
séparation du contact (F × δ) comme kp (qui conduit à p = k0/kp). Cette
approche locale explicite de la libération d’énergie permet l’application di-
recte de modèles de mécanique de la rupture pour simuler la propagation des
fissures.

Forme incrémentale de la relation fissure-dommage

La relation ac−D décrite dans les équations 3.16 et 3.17 suppose une pente de
séparation constante (constante p), ce qui est raisonnable pour des structures
élastiques avec des fissures qui n’interagissent pas, donc ne modifient pas la
réponse mécanique près de la pointe de la fissure de l’une à l’autre. Tout
comportement non linéaire du matériau qui réduit sa rigidité (comme un
endommagement) ou la proximité de fissures qui modifie les conditions aux
limites près d’une pointe de fissure peut affecter la valeur de p. La situation
générale décrite dans la Figure 3.18 est considérée et une forme incrémentale
de ac −D est proposée.

Figure 6: Description schématique de la séparation non-linéaire par traction
de contact.

Dans une formulation incrémentale, les incréments de propagation de fissures
da sont associés à des incréments de dommages dD. L’évolution des fissures
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et l’évolution des dommages peuvent s’écrire comme suit
aci+1 = aci + da

Di+1 = Di + dD
(3)

où i décrit les événements de propagation. La Figure 3.19 montre
schématiquement la relation entre les formulations directe et en taux.

(a) (b)

Figure 7: Transformations (a) entre ac et D, (b) entre da et dD.

En considérant le contact endommagé comme un nouveau contact mais avec
un domaine de contact réduit, on peut finalement obtenir

da =
(dc − ac)dD

(1 −D)[1 + p(1 −D − dD)]
, (4)

ou inversement

dD = (1 −D)

1 −

(
1 − da

dc − ac

)
1 + p(1 −D)

(
da

dc − ac

)
 . (5)

La relation des taux da − dD permet d’écrire la relation directe entre un
incrément de fissure da et un incrément de dégradation de la rigidité dD,
pour un rapport de pente instantané p et une dégradation de la rigidité D
donnés. L’équation 3.24 associée à l’équation 3.18, permet une description
continue de la relation entre ac et D.
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La loi de Paris

La transformation da − dD permet également d’écrire une représentation
énergétiquement cohérente de la propagation d’une fissure causée par un
dommage du contact sur une longueur inférieure à l’échelle de la particule.
La loi de Paris est un critère de fatigue qui se base sur la libération d’énergie
par cycle pour déterminer l’ampleur de la propagation d’une fissure.

La loi de Paris est un critère de croissance des fissures en fatigue dans lequel
l’incrément de fissure pendant un cycle de chargement da est déterminé par
une fonction puissance de la plage de facteurs d’intensité de contrainte cor-
respondante ∆K = Kmax − Kmin dans le cycle de chargement. Le rapport
de contrainte est défini comme le rapport entre la contrainte minimale et la
contrainte maximale subies pendant un cycle de chargement R = σmin/σmax.
Pour R ≤ 0, ∆K = Kmax − 0 = Kmax. Nous supposons que l’incrément de
fissure da se produit au moment où K = Kmax pendant un cycle de charge-
ment. Ainsi, en considérant la relation entre le taux de libération d’énergie
G et le facteur d’intensité de la contrainte K (dans une contrainte plane, par
exemple), G = K2

max/E. La loi de Paris peut alors être réécrite comme suit

da

dN
= C(GE)m/2, (6)

où da/dN est la vitesse de croissance de la fissure, a est la longueur de
la fissure et N est le nombre de cycles de chargement, C et m sont des
paramètres de fatigue et E est le module de Young du matériau. Le taux de
libération d’énergie G = dU/da peut être calculé localement, au niveau d’un
contact, sur la base de la libération d’énergie correspondante associée à une
propagation de fissure donnée da.

Comparaisons entre les résultats théoriques et le modèle-p

Compte tenu du rôle clé du rapport de pente p, le modèle de propagation des
fissures proposé est appelé modèle-p. Les calculs théoriques et les résultats
expérimentaux sont utilisés pour être comparés au modèle-p.

La Figure 4.2a montre l’évolution du rapport de rigidité en fonction du
nombre de cycles de chargement N pour un échantillon compact carré sous
chargement de fatigue contrôler en contrainte. Dans la Figure 4.2b, on peut
voir l’augmentation correspondante des fissures. Dans la Figure 4.2c, la
dégradation du contact peut être clairement associée à l’augmentation de
la fissure à différents états des rapports de rigidité. Les résultats pour tous
les diamètres de particules sont proches des résultats théoriques, bien que
des résultats plus proches soient observés pour les particules plus petites.
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Figure 8: Simulations d’une plaque symétrique fissurée sur les bords sous
chargement de fatigue en contrainte avec des échantillons de forme carré pour
différentes tailles de particules et comparaison avec les résultats théoriques
de (a) la croissance de la fissure et (b) le rapport de rigidité en fonction du
nombre de cycles N dans des conditions de contrainte contrôlées. (c) Carte
de dégradation du contact pendant l’évolution de la fatigue pour d = 2mm.

Comparaisons entre les résultats expérimentaux et le modèle-p

Pour vérifier la validation du modèle-p, deux expériences sont comparées aux
résultats de la simulation.

La première expérience a consisté à analyser des poutres en béton pré-
fissurées soumises à des essais de fatigue en flexion trois points (voir Fig-
ure 4.12). Dans les simulations, on utilise trois échantillons DEM de forme
carrée dont la taille des particules est respectivement de d = 3 mm, 2 mm et
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1 mm. Dans la Figure 4.12b, l’évolution du rapport de longueur de fissure
a/H en fonction du nombre de cycle N est présentée. Un très bon accord
entre l’expérience et les simulations est observé.

Figure 9: (a) Géométrie de la poutre en flexion trois points. (b) Evolution
du rapport de longueur de fissure a/H en fonction du nombre de cycle N .
Comparaison entre les résultats des essais et la simulation DEM.

La deuxième expérience est menée pour un essai de fatigue en traction avec
entaille sur un seul bord de l’acier S460. Les dimensions de l’éprouvette
sont indiquées sur la Figure 4.13a. L’éprouvette est soumise à une contrainte
cyclique avec une amplitude maximale σmax = 29.63 ; MPa et un rapport de
contrainte R = 0.5.

En considérant le rapport de contrainte R, avec ∆K = Kmax(1 − R), la loi
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de Paris (Equation 3.25) peut être réécrite comme suit

da

dN
= C(1 −R)m(GE)m/2. (7)

Les simulations en DEM se basent sur des particules circulaires, avec les
tailles d = 3 mm, 2 mm et 1 mm. Dans la Figure 4.13b, l’évolution de la
longueur de la fissure a en fonction du nombre de cycle N est présentée.

Figure 10: (a) Géométrie de l’essai de fatigue en traction avec entaille sur un
seul bord. (b) Evolution de la longueur de la fissure a en fonction du nombre
de cycle N . Comparaison entre les résultats de l’essai et la simulation DEM.

Les deux comparaisons avec les résultats théoriques et expérimentaux con-
firment la capacité de modélisation de la propagation des fissures en fatigue
du modèle p proposé. En outre, deux avantages du modèle de contact pro-
posé méritent d’être soulignés. Premièrement, une fois que les processus de
dégradation du contact sont déclenchés par une dégradation initiale donnée
Dini, seules les forces de contact F et les déplacements de contact δ sont
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nécessaires pour continuer. Avec des informations aussi limitées, le modèle
p peut toujours calculer le taux de libération d’énergie G et l’incrément
de fissure da, puis représenter da par les dommages de contact dD. Cette
caractéristique en fait un modèle local qui peut être facilement programmé
dans un modèle numérique. Deuxièmement, le modèle p montre une grande
précision par rapport à la loi de Paris, ce qui prouve une bonne incorporation
de la loi de fatigue.

Modèle de dommages basé sur le modèle-p

La Figure 5.5 décrit essentiellement l’idée de représenter le processus
d’endommagement par la dégradation de la rigidité de contact.

Figure 11: Schéma de la modélisation du processus d’endommagement par
le modèle sp, (a) état initial du matériau, avant le développement du réseau
de microfissures, et (b) matériau continuellement endommagé, causé par le
développement et la coalescence des microfissures.
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Le développement des dommages peut être considéré comme le
développement d’un réseau de microfissures. Au début, le matériau con-
tient quelques microfissures ou défauts isolés. Avec la charge de fatigue, ces
microfissures se développent lentement et finissent par fusionner les unes avec
les autres (Figure 5.5). En considérant l’ensemble du réseau de microfissures
dans le domaine de contact comme une fissure courte dont la croissance suit
une variante de la loi de Paris.

Le modèle-p est simplifié en modèle-sp dans lequel un paramètre
supplémentaire p est introduit. Le paramètre p utilisé dans la transformation
da − dD (Equations 3.23 et 3.24) devient un paramètre imposé ; une pro-
priété intrinsèque de la rupture de contact, au lieu d’une quantité mesurée
(rapport de pente, sa signification physique originale).

Comme le montrent les exemples de la Figure 5.3, dans le modèle-sp, lorsque
p = 5 est égal au rapport de séparation du contact, le taux de libération
d’énergie G calculé reste constant pendant la pénétration de la fissure dans
le contact, c’est comme ce qui se passe dans le modèle-p, tandis que si p
est supérieur au rapport de séparation du contact, l’évolution du taux de
libération d’énergie G résultant est une courbe décroissante, et au contraire
si p est inférieur au rapport de séparation du contact, l’évolution du taux de
libération d’énergie G résultant est une courbe croissante.

La différence entre la valeur imposée de p et la valeur mesurée (la signifi-
cation physique originale) de p permet une variation de la valeur calculée
du taux de libération d’énergie G. Un tel effet de variation du paramètre
p sur G résulte finalement en une évolution de la dégradation de la rigidité
de contact qui capture l’ensemble du processus d’évolution de la fatigue, y
compris l’initiation et la propagation des fissures.

Comparaisons entre les résultats expérimentaux et le modèle-sp

La Figure 5.12 montre la simulation et l’expérimentation des essais de fatigue
en Traction-Compression avec des niveaux d’essai respectifs, 79µε, 92µε et
108µε.

Les bons accords entre la simulation et l’expérimentation dans la Figure 5.12
soutiennent fortement la validation du modèle-sp dans la modélisation de
l’évolution de la fatigue des matériaux.

La Figure 5.16 montre la simulation et l’expérimentation d’essais de fatigue
en flexion 4 points avec des niveaux d’essai respectifs, 150µε, 135µε et 115µε.

La Figure 5.17 présente la distribution des dommages et les trajectoires des
fissures dans les échantillons des simulations d’essais de fatigue en flexion 4
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Figure 12: (a) Exemple d’un contact en rupture avec une rigidité initiale
k0, lorsque la fissure atteint sa limite, le déplacement du contact est δ0.
Au cours du processus de rupture, il s’avère que le rapport de pente est
p = k0/kp = 5. (b) Valeurs correspondantes du taux de libération d’énergie
G pour différentes valeurs du paramètre p introduit dans l’équation 3.17.

points, on peut remarquer que ces échantillons ont en commun le fait que les
dommages et les petites fissures sont distribués principalement près du haut
et du bas de l’échantillon avec une ou deux fissures principales indiquant la
défaillance finale de l’échantillon.

La figure 5.21 montre la simulation et l’expérimentation d’essais de fatigue
par flexion à 2 points avec des niveaux d’essai, respectivement, de 160µε,
130µε et 100µε.
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Figure 13: Résultats de la simulation des essais T-C, (a) comparaison des
résultats moyens de la simulation et de l’expérimentation [1] avec différents
niveaux de déformation, et évolution de la fatigue des trois échantillons avec
des niveaux de déformation respectifs de (b) 108µε, (c)92µε et (d) 79µε.

La distribution des dommages et les trajectoires des fissures dans les trois
échantillons des simulations d’essais de fatigue en flexion 2 points sont
présentées dans la Figure 5.22.

De bons accords sont observés dans la comparaison de la simulation et de
l’expérience pour les essais 2PB et 4PB. L’utilisation du modèle-sp en DEM
permet de capturer avec succès l’évolution de la fatigue et la défaillance
localisée dans les essais de fatigue. Il fonctionne également correctement
pour différents niveaux de déformation.
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Figure 14: Comparaison entre la simulation et l’expérimentation [150] des
tests 4PB, (a) courbes moyennes pour différents niveaux de déformation, (b)
courbes moyennes et enveloppes pour le niveau de déformation 150µε, (c)
135µε et (d) 115µε.

Conclusions et perspectives

Conclusions

Dans cette thèse, le comportement en fatigue du béton bitumineux est
modélisé par la méthode des éléments discrets. La propagation des fissures
et le processus d’endommagement sont analysés.

La méthode des éléments discrets présente l’avantage de modéliser
l’hétérogénéité du matériau et la défaillance localisée dans le développement
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(a)

(b)

Figure 15: (a) Cartes de distribution des dommages pour les trois
échantillons au rapport de rigidité F/F0 = 0, 5, pour un niveau de
déformation d’essai 150µε, (b) zoom correspondant de (a).
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Figure 16: Comparaison entre la simulation et l’expérimentation [150] des
essais 2PB, (a) courbes moyennes pour différents niveaux de déformation
d’essai, (b) courbes moyennes et enveloppes pour le niveau de déformation
d’essai 160µε, (c) 130µε et (d) 100µε.

de la fatigue. Cependant, il est encore difficile de modéliser l’ensemble du
processus d’évolution de la fatigue, notamment en tenant compte des essais
de fatigue à différents niveaux. Pour modéliser correctement la propagation
des fissures en fatigue, deux capacités sont nécessaires, premièrement, la ca-
pacité de représenter une quantité d’incrément de fissure, deuxièmement, la
capacité de calculer la variable principale de la loi de fatigue choisie, par
exemple, pour la loi de Paris, la variable principale est la gamme du fac-
teur d’intensité de contrainte pendant un cycle de chargement. En outre,
pour modéliser l’ensemble du processus d’évolution de la fatigue, y compris
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Figure 17: Cartes de distribution des dommages pour les trois échantillons
(rotation de 90◦) au rapport de rigidité F/F0 = 0.5, pour un niveau de
déformation d’essai 160µε.

l’initiation et la propagation des fissures, un modèle d’endommagement plus
général est nécessaire.

Les deux problèmes principaux pour la modélisation de la propagation des
fissures, à savoir comment représenter une minuscule croissance de fissure
da causée par un cycle de chargement et comment déterminer la quantité
de croissance de fissure da, sont résolus. Le premier problème est résolu
avec succès par les transformations ac − D proposées qui sont basées sur
l’équivalence énergétique entre l’énergie dissipée due à la dégradation de la
rigidité de contact et l’énergie libérée pendant la propagation de la fissure.
Ces transformations permettent de transformer librement l’incrément de fis-
sure da en incrément de dégradation de la rigidité de contact dD ou de
manière réversible de dD à da. En profitant des transformations ac −D, la
loi de Paris est facilement incorporée sous la forme d’une relation entre le taux
de croissance de fissure da/dN et le taux de libération d’énergie G. Après
avoir résolu les deux problèmes principaux grâce notre modèle de contact
adapté la croissance des fissures de fatigue, le modèle-p est proposé et con-
firmé à la fois par la comparaison avec le calcul théorique et la comparaison
avec l’expérience.

Les avantages du modèle-p résident dans sa caractéristique locale et sa
précision. Premièrement, une fois que les processus de dégradation du con-
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tact sont déclenchés par une dégradation initiale donnée Dini, seules les forces
de contact F et les déplacements de contact δ sont nécessaires pour continuer.
Avec des informations aussi limitées, le modèle p peut toujours calculer le
taux de libération d’énergie G et l’incrément de fissure da, puis représenter da
par le dommage de contact dD. Cette caractéristique locale fait qu’il peut être
naturellement adopté dans la simulation DEM. Deuxièmement, sa précision
indique un grand potentiel pour une large gamme de tests de fatigue.

Un modèle d’endommagement est proposé dans lequel le développement de
l’endommagement du matériau est causé par le développement d’un réseau de
microfissures qui peut être représenté comme une seule croissance de fissure
courte régie par une variante de la loi de Paris. Pour capturer le processus
d’endommagement à l’échelle du contact, un paramètre supplémentaire p est
introduit. En fixant une valeur constante du paramètre p dans les trans-
formations ac − D, le modèle-p est simplifié en modèle-sp qui permet une
variation de la valeur calculée du taux de libération d’énergie G. Un tel
effet de variation du paramètre p sur G résulte finalement en une évolution
de la dégradation de la rigidité du contact qui capture l’ensemble du pro-
cessus d’évolution de la fatigue, y compris l’initiation et la propagation des
fissures. Le modèle d’endommagement proposé (modèle-sp) est comparé à
l’expérimentation des essais de T-C, de flexion à 2 points et de flexion à
4 points. Il montre une forte capacité à ajuster les courbes d’évolution de
la fatigue pour différents types d’essais, différents matériaux d’essai et avec
différents niveaux d’essai.

Perspectives

A partir des méthodes et modèles discutés dans cette thèse, pour améliorer
continuellement la modélisation du comportement de la propagation de fis-
sures en fatigue, plusieurs extensions de l’étude méritent d’être approfondies
dans le futur. En particulier :

• Le modèle d’endommagement proposé peut saisir globalement
l’ensemble du processus d’évolution de la fatigue, tandis que les
phénomènes physiques liés à la non-linéarité, à l’auto-échauffement et
à la thixotropie, doivent également être directement pris en compte.

• L’utilisation des modèles proposés dans des échantillons tridimension-
nels peut couvrir davantage de processus physiques dans le matériau
réel, comme une initiation de fissure plus détaillée et une coalescence
de fissure plus complexe.

• Pour reproduire de manière plus réaliste l’hétérogénéité du matériau,
on peut accorder plus d’attention à la granularité du matériau.
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• Les simulations sont comparées à des calculs théoriques ou à des
expériences en laboratoire. Une comparaison avec les observations in
situ sur le terrain doit également être effectuée.
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du matériau entourant la pointe de la fissure, F et δ sont la
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dégradation de la rigidité de contact, pour (0 ≤ D ≤ 1), où
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0.5, pour un niveau de déformation d’essai 160µε. . . . . . . . xxiv

2.1 Scheme of volumetric properties of a bituminous mixtures,
where Vtot is a unit volume of mixture, VMA (Voids in Min-
eral) and VFA (Voids Filled with Asphalt) [8]. . . . . . . . . . 6

2.2 Schemes of vehicle loading and pavement layer response [1]. . . 8
2.3 Example of fatigue cracks on pavement [21]. . . . . . . . . . . 9
2.4 Typical fatigue tests: Tension-Compression (T/C), Two Point

Bending (2PB), Three Point Bending (3PB), Indirect Tensile
(IDT) and Four Point Bending Test (4PB), (Modified from [2]). 10

2.5 Configuration of 4-point bending test. . . . . . . . . . . . . . . 11
2.6 (a) 4-point bending test samples and (b) test equipment [3]. . 11
2.7 Schematic description of loading and response in: (a, b) strain

controlled mode, and (c, d) stress controlled mode [7]. . . . . 12
2.8 A typical fatigue evolution curve during fatigue test. . . . . . 13
2.9 Schema of damage development in bituminous mixtures under

traffic load (Modified from [52]). . . . . . . . . . . . . . . . . . 14
2.10 Typical mechanical behavior domains of bituminous mixtures

depending on strain amplitude ε and number of cycles N , for
a given temperature [55]. . . . . . . . . . . . . . . . . . . . . . 15

2.11 Example of Wohler curve and endurance limit [8]. . . . . . . . 15
2.12 An example of concentrated damage (crack) in asphalt con-

crete (Modified from [52]). . . . . . . . . . . . . . . . . . . . . 16
2.13 4PB test experimental results and simulations in FEM by Ar-

senie [3], (Modified from [4]). . . . . . . . . . . . . . . . . . . . 17
2.14 Damage maps (blue to red means D = 0 to D = 1) displaying

different localization levels of 4-point bending fatigue test sim-
ulations by using damage model: (a) finite element method
conducted by Arsenie [3], (Modified from [101]), (b) regu-
lar packing discrete element method conducted by Gao [101],
(Modified from [101]), (c) randomly packing discrete element
method conducted by Liu [4], (Modified from [4]). . . . . . . . 18



xxxiv List of Figures

2.15 4PB test simulation in DEM by Liu [4], experimental results
by Arsenie [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.16 (a) Finite element mesh and (b) discrete element mesh, (Mod-
ified from [83]). . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.17 (a) Finite element mesh refinement for crack propagation,
(Modified from [84])and (b) discrete element particles detach-
ment for crack propagation, (Modified from [78]). . . . . . . . 20

2.18 Example of mesh assignment based on material image, (Mod-
ified from [99]). . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.19 4PB test simulation in DEM by Gao [101], experimental re-
sults and simulations in FEM by Arsenie [3, 102,103]. . . . . . 21

2.20 Schematic of the basic fracture modes: (a) Mode I (opening),
(b) Mode II (sliding) and (c) Mode III (tearing) [104]. . . . . . 22

2.21 A center cracked infinite plate subjected to uniform remote
tension [101]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.22 The rectangular and polar coordinate components of stress
field around the crack tip. . . . . . . . . . . . . . . . . . . . . 24

2.23 Scheme of the stress distribution near a crack tip as a function
of the stress intensity factor K [105]. . . . . . . . . . . . . . . 25

2.24 Case 1: plate subjected to a constant force, (a) original state,
(b) loading state, (c) crack growth. . . . . . . . . . . . . . . . 26

2.25 Case 2: after tension, plate displacement δ is fixed, (a) original
state, (b) loading state, (c) crack growth. . . . . . . . . . . . . 26

2.26 Case 3: after tension, plate top is restrained by elastic con-
straint with stiffness k, (a) original state, (b) loading state,
(c) crack growth. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.27 Case 4: after tension, plate top is restrained by elastic con-
straint with varying stiffness k and position, (a) original state,
(b) loading state, (c) crack growth, (d) after elastic constraint
stiffness and position change, crack continually grows. . . . . . 27

2.28 Released energy during crack extension: (a) constant force,
(b) fixed displacement, (c) elastic constraint and (d) varying
elastic constraint. . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.29 Stress distribution before extension and surface opening after
extension [101]. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.30 Scheme of the stress intensity factor range ∆K. . . . . . . . . 31

2.31 Schematic of the fatigue crack growth behavior for long crack
and short crack (Modified from [114]). . . . . . . . . . . . . . 32

2.32 The schematic map of fracture process zone by Otsuka (Mod-
ified from [125]). . . . . . . . . . . . . . . . . . . . . . . . . . 33



List of Figures xxxv

2.33 Multiphases and corresponding separation model, (Modified
from [131]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.34 Schematic of crack propagation modeling: (a) nodes and crack
in FEM with cohesive zone elements (a) and (b) enriched
nodes and crack in XFEM, (Modified from [136]). . . . . . . . 34

2.35 Example of crack propagation in XFEM, (Modified from [136]). 35

2.36 Schematic of transformation between crack and damage by
Nguyen, (Modified from [78]). . . . . . . . . . . . . . . . . . . 36

2.37 The cohesive zone in front of a crack tip. . . . . . . . . . . . . 37

2.38 An example of the traction separation law for CZM, (Modified
from [4]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.39 DEM sample in hexagonal packing, (Modified from [140]). . . 37

2.40 Crack trajectory resulting from CZM, (Modified from [140]). . 38

2.41 Fatigue curve for tensile simulation by Gao, (Modified
from [101]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.42 Contact stress-displacement behavior in pure cyclic tension
test by Nguyen, (Modified from [78]). . . . . . . . . . . . . . . 39

2.43 Three examples of damage zones in TLS, the black line is the
front of damage zone and white zone is the fully damaged
material area, (Modified from [143]). . . . . . . . . . . . . . . 40

3.1 (a) Material description in DEM, where the black lines repre-
sent the contacts, and (b) their rheological representation. (c)
Contact relative displacement, and (d) corresponding normal
and shear forces. (e) Representation of the contact domain.
(Modified from [4]). . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Particle arrangements and corresponding contact maps: (a)
square-packed, (b) hexagonal packed, and (c) randomly packed. 47

3.3 (a) Crack tip at vicinity of a contact and with crack propaga-
tion from (a) to (b) then to (c),its trajectory during the rup-
ture of the contact described by the variable ac (0 ≤ ac ≤ dc
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 (a) Elastic plate with initial crack a0 under stress σ, resulting
displacement δ̄0 (b) effect of a crack growth (from a0 to a1)
over the displacements versus crack length, (c) evolution of the
displacement. (d) DEM corresponding sample, (e) zoom of the
propagated length (d), and (f) the corresponding evolution of
the displacements versus crack length. . . . . . . . . . . . . . 48



xxxvi List of Figures

3.5 Schematic description of the mechanical relation between the
contact at the crack tip and the neighboring particles. (a)
Pre-cracked plate and (b) its simplified elastic behavior near
the crack tip, where kp represents the stiffness of material sur-
rounding the crack tip, F and δ are contact force and displace-
ment, (c) a more intuitive description of (b). . . . . . . . . . . 50

3.6 Description of the evolution of a contact for the whole pro-
cess from crack near to crack through this contact. At the
bottom of figure, (o) a pre-cracked plate in which a red rect-
angular represents the contact whose behavior is described by
both spring systems and the evolution of contact force F and
displacement δ in the coordinate system, (A) plate subjected
to a constant stress σ, (B) crack propagates till the boundary
of the contact domain, (C) crack totally through the contact
domain. From (B) to (C), crack growth within the contact
domain is represented by the process of the contact stiffness
degradation, for (0 ≤ D ≤ 1), where k0 is the initial contact
stiffness, and (1 −D)k0 is its degraded value. . . . . . . . . . 51

3.7 Schematic description of the position of crack and contact dis-
placement. (a) Crack tip at the boundary of the contact do-
main, where δ0 is the contact displacement, and (b) crack to-
tally through the contact domain. . . . . . . . . . . . . . . . . 52

3.8 (a) Geometry of the plate, crack propagation modeling in (b)
square and (c) hexagonal packed samples. . . . . . . . . . . . 53

3.9 (a) Value of the slope ratio p as a function of the length to plate
width ratio a/b for different particle diameters (0.5mm ≤ d ≤
2mm) of a plate with symmetric edge cracks, simulated by
square packed samples and (b) a zoom of the values of p as
a function of the crack to diameter ratio a/d during crack
initiation a/d ≤ 5. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 (a) Value of the slope ratio p as a function of the crack
length to plate width ratio a/b for different particle diameters
(0.5mm ≤ d ≤ 2mm) of a plate with center crack, simulated
by square packed samples and (b) a zoom of the values of p
as a function of the crack to diameter ratio a/d during crack
initiation a/d ≤ 5. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Comparison of p as a function of the crack length to plate
width ratio a/b, for center crack and symmetric edge cracks
propagation, result from respectively square and hexagonal
packed samples, with diameter d = 1mm. . . . . . . . . . . . . 56



List of Figures xxxvii

3.12 Value of the slope ratio p for crack at different vertical po-
sitions (y/d, where y is the distance from loading boundary
and d = 2mm is particle diameter) and with different crack
length (a/b), (a) with imposed stress and (b) with imposed
strain (ε = 100µε). The black dashed line represents p = 2.8
in both (a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . 57

3.13 Comparison of the slope ratio p as a function of the crack
length to plate width ratio a/b, for center crack, (a) with im-
posed stress and (b) with imposed strain (ε = 100µε). The
black dashed line represents p = 2.8. . . . . . . . . . . . . . . 58

3.14 Schematic description of the limitation of the slope ratio p,
for p = 0 corresponding to the homogeneous state and p = ∞
corresponding to the ultimate state. . . . . . . . . . . . . . . . 58

3.15 (a) Released energy during contact degradation. (b) Cracked
plate, and (c) zoom of the crack propagation at the scale of
one contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.16 Plate under uniform stress and the associated boundary dis-
placement for (a) intact and (b) cracked cases. . . . . . . . . . 62

3.17 (a) Comparison of the ratio of displacement δ̄/δ̄0 between
theoretical results and simulation results and (b) a zoom for
0.2 ≤ a/2b ≤ 0.22. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.18 Schematic description of nonlinear contact traction separation. 64

3.19 Transformations (a) between ac and D, (b) between da and dD. 65

3.20 (a) Description of the contact and force-displacement evolu-
tion during a propagation event, (b) a certain state in (a). . . 66

3.21 Quasi-static loading and extraction of the values of stress in-
tensity range ∆K at crack tips. . . . . . . . . . . . . . . . . . 68

3.22 Schematic description of the procedures of fatigue crack
growth calculation. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Definition of a crack for (a) square, (b) hexagonal and (c)
randomly packed samples. Identification of the crack domain
dc for square and hexagonal packed samples. . . . . . . . . . . 73

4.2 Simulations of a symmetric edge cracked plate under stress
fatigue loading with square packed samples for different par-
ticle sizes and comparison with theoretical results of (a) crack
growth and (b) the stiffness ratio as functions of the num-
ber of cycles N in controlled stress conditions. (c) Contact
degradation map during fatigue evolution for d = 2mm. . . . 76



xxxviii List of Figures

4.3 Simulations of a symmetric edge cracked plate under stress
controlled fatigue loading with hexagonal packed samples and
comparison with theoretical results of the stiffness ratio as a
function of the number of loading cycles N for (a) different
particle size (Poisson’s ratio ν = 0) and (b) different Poisson’s
ratios (and d = 2mm) in controlled stress conditions. . . . . . 77

4.4 Simulations of a symmetric edge cracked plate under strain
fatigue loading with square packed samples for different par-
ticle sizes and comparison with theoretical results of (a) crack
growth and (b) the stiffness ratio as functions of the number
of cycles N in controlled strain conditions. . . . . . . . . . . . 77

4.5 Simulations of a symmetric edge cracked plate with square
packed samples and comparison with theoretical results of the
energy release rate G under stress controlled fatigue loading
for particle size (a) d = 2 mm and (b) d = 1 mm, and under
strain controlled fatigue loading for particle size (c) d = 2 mm
and (d) d = 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Stiffness ratio of a double edge cracked plate under stress fa-
tigue: for a square packed sample (a) as a function of the num-
ber of cycles N and (b) as a function of [d′c/(1.0d)]1+m/2N ; for
a hexagonal packed sample (c) as a function of the number of
cycles N and (d) as a function of [d′c/(0.5d)]1+m/2N . . . . . . . 80

4.7 Stiffness ratio of a single edge cracked plate under stress
fatigue for a random packed sample (a) as a function
of the number of cycles N and (b) as a function of
[d′c/(0.875d)]1+m/2N , for Paris’s law parameters: C = 1.0 ×
10−12 (m/cycle/(Pa

√
m)m) and m = 1.25, and that of (c) and

(d) for C = 2.0 × 10−22 (m/cycle/(Pa
√

m)m) and m = 3. . . . 81

4.8 (a)Stiffness ratio of a double edge cracked plate under stress
fatigue for random packed sample s1 to s6, as a function of
the number of cycles N . And each calibrated value of dc,
based on Equation 4.3 and theoretical results for Paris’s law
parameters: C = 1.0 × 10−12 (m/cycle/(Pa

√
m)m) and m =

1.25. (b) Comparison of simulations with dc = 0.958d and the
theoretical results. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Crack trajectories for all six randomly packed samples. . . . . 83

4.10 Fatigue evolution (a) versus number of cycles N and (b) versus
C ×N for different values of parameter C. . . . . . . . . . . 85

4.11 Fatigue evolution (a) versus number of cycles N and (b) versus
number of cycles Nnorm for different values of parameter m. . . 86



List of Figures xxxix

4.12 (a) Geometry of the three-point bending beam. (b) Evolution
of the crack length ratio a/H as a function of the number of
cycle N . Comparison between test results and DEM simulation. 87

4.13 (a) Geometry of the single edge notch tension fatigue test. (b)
Evolution of the crack length a as a function of the number of
cycle N . Comparison between test results and DEM simulation. 88

5.1 (a) Scheme of the three fatigue stages and (b) its effect on the
propagation of cracks per cycle da/dN as a function of crack
length a or stress intensity range ∆K, solid line for long crack
(except a is too small or too large, crack propagation complies
with Paris’ law), and dotted lines indicate tow possibilities of
the unknown law for short crack (modified from [114]). . . . . 92

5.2 Curves relating stiffness reduction 1 − D and relative propa-
gated length ac/dc for different values of p, based on Equa-
tion 3.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 (a) Example of a contact in rupture with initial stiffness
k0, when crack reaches its boundary, contact displacement
is δ0. During the rupture process, the measured slope ratio
k0/kp = 5. (b) Corresponding values of energy release rate G
for different values of parameter p adopted in Equations 3.23
and 3.24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Simulations of a symmetric edge cracked plate with square
packed samples and comparison with theoretical results of the
energy release rate G under stress controlled fatigue loading
for particle size d = 2 mm (a) p is measured cycle by cycle,
generally p ≈ 2.85 and (b) p is imposed as a parameter, p = 2.6. 96

5.5 Scheme of the equivalent propagated length for an initially
micro-cracked contact: (a) initial state of material, and (b)
progressive coalescence of cracks. . . . . . . . . . . . . . . . . 98

5.6 Flowchart of the damage model (sp-model) applicable to any
couple of interacting particles. . . . . . . . . . . . . . . . . . . 99

5.7 (a) Geometry of 4PB tests, (b) samples in DEM, and (c) sim-
ulation implementation. . . . . . . . . . . . . . . . . . . . . . 100

5.8 (a) Configuration of T-C test, and (b) details of test equip-
ment. (Modified from [8]) . . . . . . . . . . . . . . . . . . . . 102

5.9 (a) Fatigue evolution expressed by the stiffness ratio (repre-
sented as the ratio of the reaction force to the initial reaction
force, F/F0) as a function of the number of cycle N for dif-
ferent values of parameter p, and (b) stiffness ratio versus the
normalized number of cycle. . . . . . . . . . . . . . . . . . . . 103



xl List of Figures

5.10 Effect of parameter p on fatigue damage distribution at stiff-
ness ratio F/F0 = 0.5, where red means totally broken and
blue means intact. . . . . . . . . . . . . . . . . . . . . . . . . 104

5.11 Comparison of results for different levels of contact endurance
limit εlim, for test strain levels respectively (a) 108µε, (b)
92µε and (c) 79µε. . . . . . . . . . . . . . . . . . . . . . . . . 105

5.12 T-C fatigue tests simulation results, (a) comparison of aver-
age simulation results (three samples) and experimentation [1]
with different test strain levels, and fatigue evolution of all
three samples (S1, S2 and S3) with strain levels respectively
(b) 108µε, (c) 92µε and (d) 79µε. . . . . . . . . . . . . . . . 107

5.13 Crack distribution maps of all three samples, (a) contact
degradation map (where red is totally broken and blue is in-
tact), and (b) contact opening map representing by the ratio
of the contact displacement δ at stiffness ratio F/F0 = 0.5
to the contact displacement at test beginning (F/F0 = 1) δ0
(where red means δ/δ0 ≥ 10 and blue means δ/δ0 = 0 ), for
simulation with strain level 108µε. . . . . . . . . . . . . . . . 108

5.14 Fatigue lines of experiments and simulation for T-C fatigue
tests. The slopes of fatigue lines in log-log scale coordinates
and the coefficient of determination R2 are presented. . . . . . 109

5.15 Comparison between envelop curves and average curves of 4PB
fatigue test simulations and that of experiments [150], for dif-
ferent test strain levels. For example, Sim ave 115µε is the
average curve of simulation of all three samples at test stain
level 115µε, Sim max 115µε is the maximum boundary of
the envelop of all simulations at test stain level 115µε, and
sign of min for the minimum boundary of the envelop of all
simulations. So that for experimental results with sign Exp. . 111

5.16 Comparison between 4PB fatigue test simulations and exper-
iments [150], (a) average curves for different test strain levels,
(b) average and envelop curves for test strain level 150µε, (c)
135µε and (d) 115µε. For example, Sim ave 115µε is the
average curve of simulation of all three samples at test stain
level 115µε, Sim max 115µε is the maximum boundary of
the envelop of all simulations at test stain level 115µε, and
sign of min for the minimum boundary of the envelop of all
simulations. So that for experimental results with sign Exp. . 112



List of Figures xli

5.17 (a) Damage distribution maps (where red is totally broken and
blue is intact) for all three samples at stiffness ratio F/F0 =
0.5, for test strain level 150µε, (b) corresponding zoom of (a).
Main cracks are marked by red rectangular. . . . . . . . . . . 114

5.18 Fatigue lines of experiments and simulation for 4PB fatigue
tests. The slopes of fatigue lines in log-log scale coordinates
and the coefficient of determination R2 are presented. . . . . . 115

5.19 (a) Configuration of 2PB fatigue test, (b) details of test sam-
ple, and (c) sample dimension and test scheme. (Modified
from [8,151]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.20 Comparison between envelop curves and average curves of 2PB
fatigue tests simulation and that of experimentation [150], for
different test strain levels. For example, Sim ave 160µε is the
average curve of simulation of all three samples at test stain
level 160µε, Sim max 160µε is the maximum boundary of
the envelop of all simulations at test stain level 160µε, and
sign of min for the minimum boundary of the envelop of all
simulations. So that for experimental results with sign Exp. . 118

5.21 Comparison between 2PB fatigue tests simulation and experi-
mentation [150], (a) average curves for different test strain lev-
els, (b) average and envelop curves for test strain level 160µε,
(c) 130µε and (d) 100µε. For example, Sim ave 160µε is the
average curve of simulation of all three samples at test stain
level 160µε, Sim max 160µε is the maximum boundary of
the envelop of all simulations at test stain level 160µε, and
sign of min for the minimum boundary of the envelop of all
simulations. So that for experimental results with sign Exp. . 119

5.22 Damage distribution maps (where red is totally broken and
blue is intact) for all three samples (90◦ rotated) at stiffness
ratio F/F0 = 0.5, for test strain level 160µε. Main cracks are
marked by red rectangular. . . . . . . . . . . . . . . . . . . . . 120

5.23 Fatigue lines of experiments and simulation for 2PB fatigue
tests. The slopes of fatigue lines in log-log scale coordinates
and the coefficient of determination R2 are presented. . . . . . 121

A.1 Operations executed during each calculation cycle. . . . . . . . 125

B.1 Square sample generation. (a) Initial particle distribution
(hr ≈ 1.37×10−2. and 2 floater particles are indicated in black.
(b) At the end of the generation process (hr ≈ 1.04×10−9, no
floater is observed), (Modified from [4]). . . . . . . . . . . . . 131



xlii List of Figures

C.1 (a) Plate deformation without crack, (b) plate deformation
with crack, (c) the average relative displacement at plate ends
versus crack length in the plate, (d) the external force ver-
sus the average relative displacement, describing the released
energy during plate cracking. . . . . . . . . . . . . . . . . . . . 134

C.2 (a) Finite plate with symmetric edge cracks, (b) finite plate
with center crack. . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.3 Comparison of the average relative displacement δ̄ between
analytic results and simulation results, for (a) plate with edge
crack, (b) plate with symmetric edge cracks, (c) plate with
center crack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

D.1 Quasi-static process for stress controlled fatigue test. . . . . . 141

D.2 Quasi-static process for strain controlled fatigue test. . . . . . 142

E.1 Fatigue evolution from simulation results with different pa-
rameter Dini. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

E.2 Energy release rate from simulation results with parameter
Dini = 1.0 × 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . 146

E.3 The contact separation ratio p evolution from simulation re-
sults with parameter Dini = 1.0 × 10−2. . . . . . . . . . . . . . 147

E.4 Energy release rate from simulation results with parameter
Dini = 1.0 × 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . 147

E.5 The contact separation ratio p evolution from simulation re-
sults with parameter Dini = 1.0 × 10−3. . . . . . . . . . . . . . 148

E.6 Energy release rate from simulation results with parameter
Dini = 1.0 × 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . 148

E.7 The contact separation ratio p evolution from simulation re-
sults with parameter Dini = 1.0 × 10−4. . . . . . . . . . . . . . 149

E.8 Energy release rate from simulation results with parameter
Dini = 1.0 × 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . 149

E.9 The contact separation ratio p evolution from simulation re-
sults with parameter Dini = 1.0 × 10−5. . . . . . . . . . . . . . 150

E.10 Schematic description of the error for contact traction separa-
tion slope calculation. . . . . . . . . . . . . . . . . . . . . . . . 151

E.11 Energy release rate from simulation results with balance level
1.0 × 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

E.12 The contact separation ratio p evolution from simulation re-
sults with balance level 1.0 × 10−5. . . . . . . . . . . . . . . . 152

E.13 Energy release rate from simulation results with balance level
1.0 × 10−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



List of Figures xliii

E.14 The contact separation ratio p evolution from simulation re-
sults with balance level 1.0 × 10−6. . . . . . . . . . . . . . . . 153

E.15 Energy release rate from simulation results with balance level
1.0 × 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

E.16 The contact separation ratio p evolution from simulation re-
sults with balance level 1.0 × 10−7. . . . . . . . . . . . . . . . 154

E.17 Fatigue evolution from simulation results with different bal-
ance level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

F.1 Examples for triangle and polygon contact structure in ran-
domly packed sample. . . . . . . . . . . . . . . . . . . . . . . 157

F.2 (a) Initial crack tip identification, yellow contacts shows crack
surface near crack tip, and (b) schematic for the effective width
of contact domain dc detection. . . . . . . . . . . . . . . . . . 158

F.3 (a) Crack path in contact degradation map, red to green cor-
responds to D = 1 to D = 0, and (b) dc of contacts on
crack path, red contact means its dc = dmin and green means

dc =
1

2
dmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

F.4 Comparison of simulations results with theoretical results, in
samples with average particle diameter d = 2mm. . . . . . . . 160

F.5 Crack paths in contact degradation map, red to green corre-
sponds to D = 1 to D = 0, in samples with average particle
diameter d = 2mm, s1-s6 represent sample 1-sample 6. . . . . 161

F.6 Comparison of simulations results with theoretical results, in
samples with average particle diameter d = 1mm. . . . . . . . 162

F.7 Crack paths in contact degradation map, red to green corre-
sponds to D = 1 to D = 0, in samples with average particle
diameter d = 1mm, s1-s6 represent sample 1-sample 6. . . . . 162

G.1 Illustration of scales in simulation. . . . . . . . . . . . . . . . . 164

G.2 Examples for different scale times and corresponding con-
sumed time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

H.1 T-C fatigue tests simulation results, (a) comparison of average
simulation results and experimentation [1] with different test
strain levels, and reaction force evolution of all three samples
with strain levels respectively (b) 108µε, (c) 92µε and (d)
79µε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



xliv List of Figures

H.2 Comparison of reaction force evolution between 4PB fatigue
tests simulation and that of experimentation [150], (a) average
curves for different test strain levels, (b) average and all curves
for test strain level 150µε, (c) 135µε and (d) 115µε. . . . . . 166

H.3 Comparison of reaction force evolution between 2PB fatigue
tests simulation and experimentation [150], (a) average curves
for different test strain levels, (b) average and all curves for
test strain level 160µε, (c) 130µε and (d) 100µε. . . . . . . . 167



List of Tables

4.1 Set of parameters for the analysis of parameter C in fatigue
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Set of parameters for the analysis of parameter m in fatigue
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Set of parameters for simulations testing the effect of p. . . . . 103
5.2 Model parameters for T-C fatigue tests simulations (without

scaling). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Parameter setting for 4PB fatigue tests simulations. . . . . . . 111
5.4 Parameter setting for 2PB fatigue tests simulations. . . . . . . 117

E.1 Parameters set for simulations to research the effect of param-
eter Dini. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xlv



xlvi List of Tables



Chapter 1

Introduction

Contents
1.1 General background . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . 2

The work of this thesis was undertaken at the National Institute of Ap-
plied Science of Strasbourg (INSA de Strasbourg), in the Laboratory ICUBE
(UMR7357), and was funded by the China Scholarship Council (CSC). The
work is related to the project SolDuGri funded by the French National Re-
search Agency (ANR).

1.1 General background

Environmental issues push the construction industry to search for more
sustainable practices. Concerning the road pavement industry, efforts to
lengthen the service life of pavement structures and reduce the quantity
of consumed materials are key elements for the reduction of environmen-
tal impacts, specially related to carbon dioxide emission during pavement
construction, reparation and reconstruction.

Fatigue phenomenon is one of the main cause of pavement distresses, causing
the reduction of service life. The analysis and prediction of its effects over
the pavement structures acquire increasing attention of practitioners in order
to optimize the design and management of roads.

Repeated loadings (traffic and temperature), are responsible for a contin-
uous mechanical deterioration of the structural materials, which leads to
the initiation and propagation of cracks depending on the number of cycles.
Several physical processes, such as the non-linearity of the complex modu-
lus, selfheating, thixotropy and crack coalescence are involved in the fatigue
phenomena of asphalt concrete (most common pavement material).

1
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Nowadays, experimental tests are the main tool to determine the fatigue
performance of asphalt concrete, although all fatigue mechanisms are still
not completely understood. Investigation of essential mechanisms has been
performed in the last decades through numerical simulations.

Asphalt concrete is a composite material composed by aggregates, bitumi-
nous binder and eventually filler materials. It naturally presents an heteroge-
nous microstructure which affects many aspects of the fatigue behavior. In
the discrete element method (DEM), the material is described by means of
an assembly of particles interacting through contact, which turns into an
effective numerical tool to mimic the effect of heterogeneities.

1.2 Objectives

The global aim of this thesis is to propose DEM contact models which can
deal with the whole fatigue process during laboratory tests under constant
temperature and loading frequency. In order to fulfill this global purpose,
the following objectives are stated:

• Define an energetic formulation of a contact model for fatigue crack
growth for long cracks.

• Propose a physical description and subsequent model for crack initia-
tion.

• Combine both aspects in a single contact model.

1.3 Organization of the thesis

This dissertation is organized in the following parts:

In Chapter 2 a review of the fatigue phenomena, usual fatigue tests, and phys-
ical processes involved. Basic knowledge of linear elastic fracture mechanics
and energy release during cracking process are introduced. Existing models
are discussed, including damage, crack growth and cohesive zone approaches.
Advantages and disadvantages of each point of view are commented.

In Chapter 3, the energy release of a contact at a crack tip is analysed.
A relation between the crack propagation length and the contact stiffness
reduction is proposed leading to a fatigue crack growth model, p-model.

In Chapter 4, the p-model is applied to theoretical calculation of simple struc-
tures. The physical effects of the parameters of the contact model associated
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to particle micro-structure are explored. Simulations are then compared to
a experimental test of crack propagation.

In Chapter 5, a generalization of the p-model is proposed. A damage model
able to describe the whole fatigue process, from crack initiation to crack
propagation is presented, the sp-model. Simulations are then compared to
different fatigue experiments: tension-compression, four-point and two-point
bending fatigue tests.

Finally, the conclusions of the work are presented and several perspectives
for future studies are pointed out in Chapter 6.
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2.1 Introduction

Fatigue phenomenon is characterized as material mechanical weakening
caused by cyclic loading whose magnitude does not exceed material elastic do-
main. Fatigue damage is the phenomenon due to repeated traffic or climatic
loadings is the main source of distresses attributed to the reduction of service
life of civil engineering infrastructures such as road and airport pavements.
Research efforts have been done in the last decades to improve experimental
characterization of such phenomena [1–3]. More recently, the contribution of
computer modeling has allowed a better interpretation of fatigue tests, which
has helped researchers to identify the main physical mechanisms related to
the degradation of properties of the materials [4–6].

2.2 Asphalt concrete

Asphalt concrete (AC) is a composite material, composed by a mixture of
mineral aggregates and bitumen [7], see in Figure 2.1. The AC material
has been widely used in pavement construction due to its good performance
in terms of toughness, resistance, durability, installation and maintainability.
Mainly, the collective effect of aggregates and bitumen forms the performance
of asphalt concrete [4].

Figure 2.1: Scheme of volumetric properties of a bituminous mixtures, where
Vtot is a unit volume of mixture, VMA (Voids in Mineral) and VFA (Voids
Filled with Asphalt) [8].
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Aggregates are considered as the skeleton of the AC material which princi-
pally provides the load-bearing capacity through their high strength and in-
terlocking ability. Such a role requires the aggregates to fulfill several require-
ments including angularity, polish resistance, shock resistance, freeze/thaw
resistance and binder/aggregate compatibility [8].

The gradation of aggregates describes the particle size distribution of ag-
gregates of the AC material based on sieve analysis. A good gradation of
aggregates tends to an optimal density of the mixtures both for the cement
concrete [9] and asphalt concrete [10, 11]. There is also the gradation opti-
mization aiming to the minimum air void [12], for a better rutting resistance.
When the sample is loaded, among all aggregates, some aggregates belong
to the load chains by their inter particle contacts [13, 14]. The shape and
surface texture of aggregates have an influence on the fatigue resistance of
the mixtures [15].

The cohesion of the AC material is provided by the bituminous binder which
includes the bitumen and the mineral powder. The bituminous binder also
contributes to the elasticity, plasticity and viscosity of asphalt concrete. Gen-
erally, the hydrocarbon bitumen mainly contains two important elements,
carbon (82 − 88%) and hydrogen (8 − 11%). Also some other elements ex-
ist in bitumen at relatively low proportion, such as sulfur (0 − 6%), oxygen
(0 − 1.5%), nitrogen (0 − 1%) and traces of heavy metals, iron, vanadium,
aluminum, nickel, etc. . . [16]. Bitumen is composed of high molecular weight
species which are formed by molecules connected through π − π bonds, and
this feature is helpful to explain the AC material sensitivity to changes in
shear conditions and temperature [17].

Different additives may be added into bitumen and resulting modified bitu-
men improve the performance of material in service period or in production
procedures. Common additives are adhesion agents, polymers, sulfur, waxes
and crumb rubber [18].

Air void has also some influence on the performances of AC materials, when
air void content decreases the stiffness of asphalt mixtures increases [8,19,20].
The void content has different effects on the fatigue resistance depending on
the loading conditions: in strain controlled fatigue test, with the void content
decreasing, the fatigue life decreases; however, in stress controlled fatigue
test, with the void content decreasing, the fatigue life increases [8].
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2.3 Material fatigue behavior

2.3.1 Overview about fatigue behavior

In the 19th century, with the development of the industrial revolution,
standard production and transportation designedly or undesignedly exert
repetitive loading on structures that finally leads to fatigue failures of
materials. Fatigue failures were related to accidents of steam engines,
pumps,locomotives and axles, like the Versailles train crash of 1842. Fatigue
phenomenon was recognized as a kind of fracture process occurring after ma-
terials were exposed to a large number of repetitive loading cycles with the
magnitude of repetitive load remaining below the material strength. In 1837,
Wilhelm Albert published the first laboratory study on fatigue. Jean-Victor
Poncelet for the first time use the word ‘fatigue’ to describe the phenomenon,
in 1839.

2.3.2 Fatigue behavior for asphalt concrete

Asphalt concrete is an important component of multi-layer road pavements,
and during service time, it suffers repetitive traffic loads. Bending caused by
traffic loads leads to both compression stress in the bulk section and tension
stress at the bottom of the layer as shown in Figure 2.2. For a long service
time, the repetitive stresses and strains in asphalt concrete lead to fatigue
cracks, for example, as shown in Figure 2.3.

Figure 2.2: Schemes of vehicle loading and pavement layer response [1].
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Figure 2.3: Example of fatigue cracks on pavement [21].

2.3.2.1 Fatigue tests

In order to investigate fatigue phenomenon in asphalt concrete, laboratory
tests were designed to observe the evolution of the mechanical properties
under cyclic loading, in specific controlled conditions. Typical fatigue tests
include bending tests, two point bending, three point bending and four point
bending, tension-compression test and indirect tensile test (Figure 2.4 and
2.5). Different types of fatigue tests show a significant influence on the test
results for the same material [2]. Figure 2.5 shows an example of the config-
uration of a 4-point bending test, also test samples and test equipment are
shown in Figure 2.6.

Generally, in laboratory, two main types of cyclic loading, i.e. stress con-
trolled and strain controlled, are applied for fatigue tests [22–24]. Figure 2.7
typically shows loadings and responses in different loading modes. In stress
controlled mode, a constant stress is imposed and the corresponding strain
level of the specimen is monitored, then one of the fatigue failure criteria
is based on the moment when the specimen finally reaches excessive tensile
strains [25–27]. In strain controlled mode, the most widely used fatigue fail-
ure criterion is the 50% reduction of specimen stiffness compared with initial
stiffness [28], as shown in Figure 2.8. We can mention that some other fail-
ure criteria have been suggested by different researchers [29, 30]. The most
commonly used loading signal shape is sinusoidal, as shown in Figure 2.5,
but there are also square or haversine forms [31,32].

For strain controlled 4-point bending (4PB) test, as an example, a sinusoidal
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Figure 2.4: Typical fatigue tests: Tension-Compression (T/C), Two Point
Bending (2PB), Three Point Bending (3PB), Indirect Tensile (IDT) and Four
Point Bending Test (4PB), (Modified from [2]).

displacement signal δv(t) with constant amplitude δv,max is imposed at two
middle points of the specimen (see Figure 2.5). Consequently the bottom and
top of the central cross-section are subjected to a sinusoidal strain wave ε(t),
whose amplitude εmax is identified as the test strain level, for instance 150µε,
135µε and 115µε. The relation between δv,max and εmax can be described
by the expression [4]:

δv,max =
5

3

A2

h
εmax (2.1)

And the reaction force Fv can be obtained by the equation [4, 33]:

Fv =
6

5

EI

A3
δv,max (2.2)

where A is the distance between the two loading points, E is the elastic
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Figure 2.5: Configuration of 4-point bending test.

(a) (b)

Figure 2.6: (a) 4-point bending test samples and (b) test equipment [3].
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Figure 2.7: Schematic description of loading and response in: (a, b) strain
controlled mode, and (c, d) stress controlled mode [7].

modulus, I is the moment of inertia of the cross-section and h is the test
specimen height.

2.3.2.2 Physical processes involved in a fatigue test

During a fatigue test, the global stiffness of specimen progressively degrades
with increasing number of loading cycles. The fatigue evolution consists of
three distinct phases [34, 35] (see Figure 2.8). During phase I, the stiffness
initially decreases sharply. However, several physical phenomena including
non-linearity, self-heating and thixotropy play a more crucial role to the
decrease than fatigue. Phase II is characterized by a quasi-linear development
trend, during which, the gradient of stiffness change stabilizes and micro-
cracks network progresses. Finally, in phase III, micro-cracks coalesce into
macro cracks whose propagation leads to the fracture of material.

One important difference between the laboratory fatigue test and the pave-
ment in real traffic condition is that cyclic loading is generally applied contin-
uously during tests and on the contrary for real pavement the pause between
two vehicles passing may last relatively longer than the period of the loading
wave in laboratory tests. Fatigue life obtained from laboratory tests may
hence deviate from the fatigue distress in real pavement [36]. For continu-
ously performed fatigue tests without the pause between loads the transient
reversible variations, mentioned as non-linearity, self-heating and thixotropy,
are incorporated in stiffness evolution during tests, especially in phase I.
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Figure 2.8: A typical fatigue evolution curve during fatigue test.

Non-linearity refers to the disproportion between strain amplitude and stress
amplitude, when the applied strain level is higher than the linear viscoelastic
limit of material [37, 38]. Considering the micro structure inside the mate-
rial, the binder within the aggregate surrounding space can concentrate a
significantly higher strain level than the overall strain [39].

Under repetitive loadings, viscoelastic materials exhibit a temperature in-
crease (self-heating), due to the energy dissipation [40,41]. Such phenomenon
also has been observed during fatigue tests on bituminous mixtures [42, 43].
Since the mechanical behavior of bituminous mixture is typically temperature
dependent, self-heating plays an important role in the evolution of material
properties during fatigue test [44].

Thixotropy is defined as the viscosity decrease of the sample, previously at
rest when a flow is suddenly applied, and the subsequent viscosity recovery
after the flow is stopped [45]. Phenomena of thixotropy occurrence have been
observed in bituminous mixtures [46–50]. Thixotropy may have a stronger
influence than self-heating on the variation of material mechanical properties
during fatigue tests of mastics [51].

Besides these reversible phenomena, Moreno-Navarro [52] suggested that the
steep decrease of modulus in phase I may be related to both the reversible
phenomena and the accumulated permanent deformation which can influ-
ence the viscoelastic properties of material (i.e. strain hardening [53, 54],
material tend to more stiffness and elasticity), and finally results in breakage
of molecular chain bonds and the forming of stress concentration and cracks
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(see Figure 2.9).

Figure 2.9: Schema of damage development in bituminous mixtures under
traffic load (Modified from [52]).

Generally, the mechanical behavior of bituminous mixtures may be influ-
enced by several factors, temperature, applied strain amplitude and num-
ber of loading cycles. Referring to small strain amplitude and relatively low
number of loading cycles, bituminous mixtures behave as a linear viscoelastic
material, and the effect caused by the viscosity of material has very limited
influence, it can be considered as a kind of linear elastic material, at a very
low temperature. Whereas referring to large strain amplitude, it becomes a
nonlinear mechanical behavior. However, even under relatively small strain
amplitude, with a relatively large number of loading cycles, it may lead to
failure caused by fatigue. Temperature also has a strong influence on the
behavior of bituminous mixtures [55]. Temperature affects the phenomena
including non-linearity, viscoelasticity and fatigue, as shown in Figure 2.10.

2.3.2.3 Fatigue endurance limit

Wöhler introduced the Wöhler curve (S-N curve) that relates the magnitude
of the applied repetitive stress and the number of cycles to failure (known
as ‘fatigue life’) [56, 57]. In semi-logarithmic scale, the S-N curve shows a
straight line as shown in Figure 2.11.

An obvious tendency in S-N curves is that with loading amplitude decreas-
ing the fatigue life increases, till a certain value of loading amplitude, the
straight line in S-N curve becomes flat, meaning an infinite fatigue life. The
‘endurance limit’ was introduced by Wöhler [56], defined as a certain stress
level below which the fatigue damage is not accumulative, an infinite or a
very huge number of loading cycles could be applied without leading to ma-
terial failure [58], for instance, for portland cement concrete the stress level
for a fatigue life equal to 2 million cycles is the endurance limit (EL) [59].
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Figure 2.10: Typical mechanical behavior domains of bituminous mixtures
depending on strain amplitude ε and number of cycles N , for a given tem-
perature [55].

Figure 2.11: Example of Wohler curve and endurance limit [8].

Lower strain level at the bottom of the asphalt pavement leads to less proba-
bility of cracking [60–62], and below a given strain level the structural damage
becomes not accumulative [63], this kind of pavement is called as ‘perpetual’
pavement [64]. Such conception is the basis for the fatigue endurance limit
of asphalt concrete [65]. First research in asphalt concrete, Monismith and
McLean [66] proposed an endurance limit of 70 microstrain. Some different
values of asphalt concrete fatigue endurance limit are reported in [67–70].
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2.4 Modeling of fatigue damage

Existing modeling methods of fatigue evolution can be categorized into two
main directions, based on damage mechanics or fracture mechanics. The
damage models intend to establish the evolution law of damage variable
which represents the loss of material mechanical capacity, with respect to
an increasing number of loading cycles [71–74]. On the other hand, crack
growth models relate the crack growth increment per loading cycle to fracture
mechanics features for cracking state, such as stress intensity factor, energy
release rate and crack tip opening [75–78].

A favorable fatigue model is supposed to capture both the fatigue evolution,
like global stiffness change (see Figure 2.8), and localized failure, like crack
distribution and propagation (see Figure 2.12 ). For instance, in Arsenie’s
study [3], the fatigue evolution is in good agreement with experimental data
(Figure 2.13), however, fatigue damage did not localize (Figure 2.14a). In an-
other example, Liu [4] observed localized failure in simulations (Figure 2.14c)
and modeled 4PB test at relatively high strain level, 150µε and 135µε, but
simulation results for strain level 115µε did not agree with experimental
result so well (Figure 2.15).

Figure 2.12: An example of concentrated damage (crack) in asphalt concrete
(Modified from [52]).

Generally, local damage models use information from local mechanical re-
sponse of the material (material in one element domain), such as strain,
stress or energy, to determine the damage evolution of material within this
corresponding element domain. However, due to mesh-dependency, it is dif-
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Figure 2.13: 4PB test experimental results and simulations in FEM by Ar-
senie [3], (Modified from [4]).

ficult to deal with high stress gradient, like stress near crack tip. Further-
more, the strain singularity in an element near the crack tip may lead to
an unrealistically huge damage rate which may present a spurious localiza-
tion [79, 80]. Non-local damage models need more information beyond the
mechanical response of only one element, consequently more programming
and computation efforts are required to implement non-local models than
corresponding local models [81, 82].

2.4.1 Numerical methods

Both the continuous method (finite element method (FEM) [85] and ex-
tended element method (XFEM) [86]) and the discrete element method
(DEM) [87] can be used for fatigue behavior modeling. Compared with
continuous method, its discrete nature enables DEM to easily reproduce the
heterogeneous micro-structure of granular materials (Figure 2.16) and deal
with large deformation, which is a strong advantage for crack propagation
modeling [88]. Furthermore, mesh refinement may be needed to simulate
crack propagation in FEM (Figure 2.17).

2.4.2 Damage model

Usually a damage variable D is used to describe the deterioration of material
load-bearing capacity, for virgin material D = 0 and D = 1 for totally broken
with no stiffness. For isotropic damage case, the effective modulus E can be
expressed as
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(a)

(b)

(c)

Figure 2.14: Damage maps (blue to red means D = 0 to D = 1) displaying
different localization levels of 4-point bending fatigue test simulations by
using damage model: (a) finite element method conducted by Arsenie [3],
(Modified from [101]), (b) regular packing discrete element method conducted
by Gao [101], (Modified from [101]), (c) randomly packing discrete element
method conducted by Liu [4], (Modified from [4]).

E = (1 −D)E0 (2.3)

where E0 is the modulus of virgin material.

Various damage models have been developed based on different theories and
assumptions. The viscoelastic continuum damage (VECD) model is based
on the Schapery’s work potential theory [89] and the elastic–viscoelastic cor-
respondence principle [90], by which the time dependency of material are
transformed in the change of mechanical properties, like the reduction of
pseudo stiffness. Studies [91–95] use the VECD model to generally model
the mechanical behavior change of viscoelastic materials. Generally, these
models show good agreement with experimentation in the first two phases of
fatigue evolution. The disturbed state concept (DSC) model [96] considers
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Figure 2.15: 4PB test simulation in DEM by Liu [4], experimental results by
Arsenie [3].

(a) (b)

Figure 2.16: (a) Finite element mesh and (b) discrete element mesh, (Modi-
fied from [83]).

the behavior of a deforming material as the collective responses of two com-
ponents, relatively intact (RI) and fully adjusted (FA). This model is used to
characterize asphalt concrete behaviors, such as elastic, plastic, creep, rut-
ting, fracture and reflection cracking [97, 98]. One of the machine learning
methods, the recurrent neural network (RNN) is trained by experimental
results to predict the fatigue behavior of asphalt [5].

The randomness of asphalt concrete structures can be represented by the
mesh distribution according to material image [99] (Figure 2.18) or Monte
Carlo Simulation method [100].

Attempts to use only a damage model [73] to simulate the entire process of
asphalt concrete 4PB fatigue test [3] were made respectively by Arsenie [3],
Gao [101] and Liu [4]. Their work may be evaluated from two aspects,
localized failure and fatigue evolution.
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(a) (b)

Figure 2.17: (a) Finite element mesh refinement for crack propagation, (Mod-
ified from [84])and (b) discrete element particles detachment for crack prop-
agation, (Modified from [78]).

Figure 2.18: Example of mesh assignment based on material image, (Modified
from [99]).

A strong tendency of increasing damage localization is shown following the
order Arsenie [3], Gao [101] and Liu [4], see Figure 2.14, due to both the differ-
ent numerical methods they used and the adaption they made to incorporate
the damage model. Arsenie used FEM and originally non-local definition of
strain to determine the damage rate, whereas the strain is obtained by an
average with weight function based on a characteristic length [3,73]. Such a
non-local continuous method may to a certain extent yield unrealistic dam-
age distribution, in fact, no localization (Figure 2.14a). Gao used regular
packing DEM and a relatively local definition of strain related to surround-
ing contact pairs. This approach resulted in an improvement on damage
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localization(Figure 2.14b), but a sudden and unrealistic crack propagation
was observed(Figure 2.19).

Figure 2.19: 4PB test simulation in DEM by Gao [101], experimental results
and simulations in FEM by Arsenie [3, 102,103].

Liu finally realized good damage localization (Figure 2.14c) by applying DEM
to randomly packed materials and a totally local definition of strain deter-
mined only by the contact length and its displacement. It should be men-
tioned that the damage distribution in phases I and II (distributed green or
some red contact near top and bottom in Figure 2.14c) is reasonable and
is caused by the heterogeneous structure and local damage model, while
the ‘fracture’ like damage distribution (connected red contacts from edge to
inside in Figure 2.14c) may result from strain singularity of local damage
model. Anyway, it is a promising method to achieve damage distribution
and localization by DEM with local model.

However, as shown in Figure 2.15, globally, one may notice that it is still
a challenge to use only damage model to catch all three phases of fatigue
evolution in fatigue test, as we can see on the deviation of numerical dam-
age curve from experimental one for strain level 115µε. Focusing on the
beginning of simulation curves and experimental curves, where a large dam-
age rate dominates specimen degradation, obvious deviation occurs for tests
with strain level 115µε. Even for experimental curves, strain effect strongly
changes shapes of fatigue curves and final fatigue lives. Thus, a new damage
model which can capture material fatigue responses for different strain level
tests would be welcome.
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2.5 Relevant knowledge of fracture mechan-

ics

2.5.1 Crack modes

A crack in a solid consists of disjoined upper and lower faces. The junction
segment of the two crack faces forms the crack tip [104]. The movement of
two crack faces with respect to each other depends on external forces exerted
on the cracked body. Corresponding to three direction relative moments,
three fundamental fracture modes are categorized by Irwin [105]. Mode I
(opening), the two crack surfaces move apart from each other in y direction
(see Figure 2.20), their movements being symmetric with respect to the crack
plane. Mode II (sliding), the two crack faces slide against each other in x
direction, perpendicularly to the crack tip and within the same plane . Mode
III (tearing), the two crack faces tear over each other in z direction, parallel
to the crack tip and within the same plane. Any crack mode in a cracked
body can be described as one of these three modes, or combinations of them.

(a) (b) (c)

Figure 2.20: Schematic of the basic fracture modes: (a) Mode I (opening),
(b) Mode II (sliding) and (c) Mode III (tearing) [104].

2.5.2 The elastic stress field near a crack tip

The Westergaard function method [104,106] yields the 2D elasticity solution
of stress field near a crack tip within an infinite plane under uniform remote
tension stress (see Figure 2.21). The Westergaard solutions are given below
in the coordinate system shown in Figure 2.22. The origins of the polar
coordinate system (r, θ) and rectangular coordinate system (X, Y ) are located
at the crack tip.

The stress and displacement fields given by Westergaard Function Method
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Figure 2.21: A center cracked infinite plate subjected to uniform remote
tension [101].

in the polar coordinate system in Mode I are given by:
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where K is the stress intensity factor (SIF) [105], as shown in Figure 2.23, E
is the Young’s modulus, ν is Poisson ratio, shear modulus µ = E/[2(1 + ν)],
κ = 3 − 4ν for plane strain and κ = (3 − ν)/(1 + ν) for plane stress.



24 Chapter 2. Literature review

xx

yy

xy

rr


r



r

X

Y

Upper surface

Lower surface

Figure 2.22: The rectangular and polar coordinate components of stress field
around the crack tip (Modified from [107]).

When θ = 0 and r = x, the stress in y direction can be obtained from
Equation 2.5, as:

σyy =
K(a)√

2πx
(2.9)

For infinite plate with center crack subjected to remote uniform tension
stress, the stress intensity factor can be written as:

K = σ0

√
πa (2.10)

where σ0 is the remote stress, and a is crack length.

Furthermore, the stress intensity factor K for a finite plate with different
crack distributions (edge crack, center crack, symmetric edge cracks) has
been approximately described [108].

2.5.3 Energy release rate

Griffith [109] first proposed the energetic method to characterize material
fracture behavior. The condition for crack propagation is that the energy
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Figure 2.23: Scheme of the stress distribution near a crack tip as a function
of the stress intensity factor K [105].

released during crack extension is equal or more than the needed surface
energy to generate the newly extended crack surface. Thus, the energy release
rate G is the energy dissipated during fracture per unit of newly created
fracture surface area, and can it be calculated by Equation 2.11:

G = −∂(V −W )

∂Q
(2.11)

where V is the potential energy available for crack growth, W is the work
associated with any external forces acting, and Q is the extended crack area.

2.5.4 Energy release rate in cracked plate

The Griffith theory of fracture is based on the principle of energy conser-
vation, during crack extension for the system (cracked body) the released
energy must be equal to the added energy. A single-edge-cracked elastic
plate with unitary thickness t can be used to easily describe the energy re-
lease process [104], and four cases of loadings are schematically illustrated in
Figures 2.24 to 2.27.

- Case 1: Plate subjected to a constant force F .

- Case 2: After tension, plate displacement δ is fixed.

- Case 3: After tension, plate top is restrained by elastic constraint with
stiffness k.

- Case 4: After tension, plate top is restrained by elastic constraint with
varying stiffness k and position.
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(a) (b) (c)

Figure 2.24: Case 1: plate subjected to a constant force, (a) original state,
(b) loading state, (c) crack growth.

(a) (b) (c)

Figure 2.25: Case 2: after tension, plate displacement δ is fixed, (a) original
state, (b) loading state, (c) crack growth.

For all four cases, Equation 2.11 can be rewritten as

G =
dU

dA
=

dW − dV

tda
(2.12)

where

- dA is the crack surface increment, dA = t × da, where da is the crack
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(a) (b) (c)

Figure 2.26: Case 3: after tension, plate top is restrained by elastic constraint
with stiffness k, (a) original state, (b) loading state, (c) crack growth.

(a) (b) (c) (d)

Figure 2.27: Case 4: after tension, plate top is restrained by elastic constraint
with varying stiffness k and position, (a) original state, (b) loading state, (c)
crack growth, (d) after elastic constraint stiffness and position change, crack
continually grows.

length increment and t is the thickness of the plate.

- dU is the released energy during crack extension dA.

- dW is the work done by external force during crack extension.

- dV is the strain energy increment during crack extension.

As shown in Figure 2.28, dW can be geometrically expressed as the area
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of quadrangle formed by (A,B,C,D), S ABCD, and dV is equal to the dif-
ference between the area of triangles, S∆ODC the strain energy after crack
extension, and the area of triangles, S∆OAB the strain energy before crack
extension. Thus the released energy dU during crack extension, according to
Equation 2.12, can be expressed as

dUR = S ABCD − (S∆ODC − S∆OAB)

= S∆OAD

(2.13)

Upon setting O(0, 0), and other two vertices A(δ1, F1), D(δ2, F2), the triangle
surface S∆OAD can be easily calculated by the Gauss area formula as

S∆OAD =
1

2
|δ2F1 − δ1F2| (2.14)

It should be noted that restrained by an elastic constraint (Case 3), the curve
formed by the reaction force F and plate displacement δ descends following
a slope −k which relate to the stiffness of corresponding elastic constraint,
and if the elastic constraint varies during crack propagation, consequently the
curve slope changes accordingly (see Figure 2.28d). Imagining that within the
region of a cracked plate like in Figure 2.24, a small region which contains
the crack tip can be considered as a secondary micro ‘cracked plate’, and
the material surrounding this micro ‘cracked plate’ can be considered as an
elastic constraint. By thinking this way, one may notice that the varying
elastic constraint represents meaningful physical processes, such as micro
crack network development surrounding the macro crack tip, damage zone
or multi cracks propagation.

2.5.5 The relation between G and K in Mode I

The released energy during crack growth can be calculated by the the crack
closure method (CCM). The stress distribution before extension and crack
surface opening after propagation are shown in Figure 2.29.

The work done to close the crack new increment da is exactly the released
energy during crack extension da from its origin position. To calculate the
work, the stress field before extension can be described by Equation 2.9,
and the displacement of the newly opened surface can be calculated in x’-y’
coordinates by Equation 2.8, with θ = π, as
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(a) (b)

(c) (d)

Figure 2.28: Released energy during crack extension: (a) constant force, (b)
fixed displacement, (c) elastic constraint and (d) varying elastic constraint.

uy =
κ + 1

4µπ
K
√

2π(−x′) (2.15)

Noting that x′ = x− da, we rewrite this expression as

uy =
κ + 1

4µπ
K
√

2π(da− x) (2.16)

where K = K(a + da). Because da is vanishingly small, K in Eq. 2.16 can
be taken to be equal to K(a).

Then the equivalence between the work done to close the crack surface (upper
and lower) and the released energy during crack extension can be written as

Gda = 2

∫ da

0

1

2
σyyuydx (2.17)
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Before extension: a
x

y

x’

y’

After extension: a+da

Figure 2.29: Stress distribution before extension and surface opening after
extension [101].

Substituting Equation 2.9 and 2.16 into Equation 2.17, we have the relation
between G and K, as

G =
κ + 1

8µ
K2 (2.18)

For plain strain, κ = 3 − 4ν, we have

G =
1 − ν

2µ
K2 =

1 − ν2

E
K2 (2.19)

For plain stress, κ = (3 − ν)/(1 + ν), we have

G =
K2

2µ(1 + ν)
=

K2

E
(2.20)
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2.5.6 Fatigue crack growth-Paris’ law

For a wide variety of materials, fatigue crack growth may be well described
by the well-known Paris’ law [110], in which the crack increment during one
loading cycle da is determined by a power function of the corresponding stress
intensity factor increment ∆K (Figure 2.30) during one loading cycle.

da

dN
= C(∆K)m (2.21)

∆K = Kmax −Kmin (2.22)

where da/dN is the crack growth rate, a is the crack length and N is the
number of loading cycles, C and m are material parameters.

Figure 2.30: Scheme of the stress intensity factor range ∆K.

The parameter m in Paris’ law mathematically relates to the slope of the
curve relating the crack growth rate da/dN and ∆K in logarithmic scale,
though such meaning of m is only validated for long crack (see Figure 2.31).
Equation 2.21 may not be suitable for short cracks. The deviation from
Paris’ law for short crack fatigue propagation has been widely noticed and
discussed [111–114]. Thus, to model different stages of cracking, crack initi-
ation and propagation, different theories may be adopted.
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Figure 2.31: Schematic of the fatigue crack growth behavior for long crack
and short crack (Modified from [114]).

2.5.7 Fracture process zone (FPZ)

Studying concrete fracture behavior, Glucklich [115] reported that during
crack propagation, the strain energy was mainly converted into surface energy
and the surface area absorbing this energy was larger than the effective crack
surface. Also it was noticed that ahead of the macro crack exists a damage
zone with variable size [116], such a zone is named the fracture process zone
(FPZ).

Micro cracks in FPZ absorb energy by opening surface with increasing de-
formation, during the macro crack propagation, and the size and shape of
the FPZ have been investigated by different techniques, including high-speed
photography [117], ultrasonic measurement [118], optical microscopy [119],
laser speckle interferometry [120], scanning electron microscopy [121, 122],
compliance and multicutting techniques [123], and acoustic emission (AE)
technique [124].

By using X-rays and three-dimensional Acoustic Emission (AE) techniques to
monitor micro-cracks behavior during splitting test on concrete, Otsuka [125]
defined the micro-cracks zone as two overlapping zones, fracture core zone
(FCZ) and fracture process zone (FPZ), corresponding to 70% and 95% of
the total energy of all AE events as shown in schematic map of Figure 2.32.
In FCZ, it is observed that AE events are more densely distributed than the
FPZ, which implies that a more densely distributed micro-cracks network
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exists in this area.

Figure 2.32: The schematic map of fracture process zone by Otsuka (Modified
from [125]).

2.6 Numerical modeling of fatigue crack

growth

2.6.1 Crack growth model

In FEM, meshes need to coincide with crack trajectory [126]. By using zero
thickness interface elements, FEM can incorporate the cohesive zone method
(CZM) [127,128], and cracks propagate along the boundary of finite element
meshes [129]. A crack can penetrate through a finite element, with the ele-
ment erosion in FEM [130]. To adapt the heterogeneity of asphalt concrete,
contact phases are defined, aggregate phase, mastic phase and interface be-
tween the aggregate and mastic [131], as shown in Figure 2.33. In addition,
the non-ordinary state-based peridynamics (NOSB-PD) can be employed by
the FEM to model crack branching in asphalt mixtures [6]. Study [132]
uses the Gibbs potential-based multinetwork formulation of viscoelasticity
to model the crack initiation and propagation.

In XFEM, crack propagation path may be arbitrary and no element remesh-
ing is needed [133, 134]. Through the use of the partition of unity [135],
XFEM can model crack location and growth which is independent of meshes.
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Figure 2.33: Multiphases and corresponding separation model, (Modified
from [131]).

The element nodes within the domain close to the crack are enriched with
additional degrees of freedom and shape functions which allows the state of
discontinuity caused by the crack to be modeled [136] (Figure 2.34). An ex-
ample of crack propagation in XFEM is shown in Figure 2.35. Even though,
XFEM deals a crack deed no element remeshing, it still need to add more
enriched nodes, which increases complexity of program and calculation. Fur-
thermore, modeling a relatively large number distributed micro-cracks in
which some finally develops to macro or short cracks, and crack bifurcation
are still challenges for XFEM. But the discrete nature of DEM allows to
model these phenomena simply and naturally.

(a) (b)

Figure 2.34: Schematic of crack propagation modeling: (a) nodes and crack
in FEM with cohesive zone elements (a) and (b) enriched nodes and crack in
XFEM, (Modified from [136]).
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Figure 2.35: Example of crack propagation in XFEM, (Modified from [136]).

Noting the successful realization of damage distribution and localization in
simulations by DEM, we now review two fatigue crack growth models for
DEM, respectively proposed by Gao [101] and Nguyen [78]. Two issues will
be investigated, firstly, how the model incorporates fatigue crack growth law
(in these two cases, Paris’ law), or how the model calculates the key fracture
features (stress intensity factor K), secondly, how the model represents the
change of material properties caused by crack growth.

2.6.1.1 Stress intensity factor calculation

Gao’s model [101] uses the relation between stress intensity factor K and
energy released rate G (Equation 2.20) to replace the ∆K in Paris’ law by
∆G. The advantage of this approach is the avoidance of global variables
needed in conventional formulas [108] to calculate K, such as remote stress
σ, crack length a and specimen dimensions. The disadvantage is that the
energy release rate G is based on the degradation process of the former
contact, therefore, since this approach is non-local and crack path dependent,
it is complex to implement and can not be used for distributed cracks in
heterogeneous materials.

On the contrary, Nguyen [78] uses conventional formula to calculate stress
intensity factor K, while the global variables in formula are replaced by a
group of corresponding local variables. The idea is assuming the contact
domain as a ‘small plate’ (Figure 2.36), thus, in the formulas for K, the
remote stress is replaced by contact stress, crack length is replaced by a
presumed crack length within contact domain, and contact domain dimension
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is also used. Such replacement allows the local model to calculate K, however,
using such a ‘small plate’ to model real specimen with a macro crack has not
been validated. Anyway, this model is local and can lead to a value of K
only based on one contact state.

Seemingly, a local model can easily and precisely calculate the stress intensity
factor, to be incorporated in Paris’ law.

Figure 2.36: Schematic of transformation between crack and damage by
Nguyen, (Modified from [78]).

2.6.1.2 Representation of crack growth

The cohesive zone model (CZM) [137] assumes that the stress distribution
ahead of the crack tip is gradually increasing due to the fracture process
zone (FPZ), as shown in Figure 2.37, unlike the singularity near the crack
tip resulting from the linear elastic fracture mechanics (LEFM).

In the CZM, the cohesive zone consists of two cohesive surfaces ahead of
the nominal crack tip, where the cohesive traction between the two cohesive
surfaces is based on the distance between the two cohesive surfaces, according
to the cohesive law [138] described in Figure 2.38.

The CZM is implemented into the DEM, to investigate the fracture behavior
of asphalt concrete [139–141], as shown in Figure 2.39 and 2.40.

Naturally, the CZM relates the crack surface opening to the traction force.
In DEM, the traction separation law can be seen as a special constitutive
contact model describing the relation between contact force and contact dis-
placement. But if we want to represent a certain crack length a or crack
length increment da in DEM samples, the correspondence between the crack
length a or the crack length increment da and specific mechanical properties,
such as contact stiffness, contact force, contact displacement or dissipated
energy, has to be established.
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Figure 2.37: The cohesive zone in front of a crack tip.

Figure 2.38: An example of the traction separation law for CZM, (Modified
from [4]).

Figure 2.39: DEM sample in hexagonal packing, (Modified from [140]).

Given a certain crack length increment da after a loading cycle based on
fatigue law, a corresponding degradation of contact dD should happen to
express such a small change on material mechanical properties due to crack
growth. Gao’s model does not explain such a transformation, but counts
the number of loading cycles and keeps undamaged D = 0, then suddenly
rupture (from D = 0 to D = 1) till a certain value which is determined by
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Figure 2.40: Crack trajectory resulting from CZM, (Modified from [140]).

Paris’ law using energy release rate and particle size. Some simulation results
are shown in Figure 2.41.

Figure 2.41: Fatigue curve for tensile simulation by Gao, (Modified
from [101]).

In Nguyen’s model, the contact damage level D is assumed to have a linear
relationship with the presumed ‘crack’ length within contact domain (Fig-
ure 2.36), thus,

D =
a

d
(2.23)

∆D =
∆a

d
(2.24)

where the denominator d is the width of contact domain.
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As shown in Figure 2.42, after every loading cycle the contact stiffness slightly
decreases, consistently with the stress-displacement slope decrease. However,
contact stiffness decrease and fatigue-crack-growth behavior ceases when a
yield criterion is fulfilled, then the stress-displacement relation starts to follow
a soften curve based on fracture behavior. When crack propagates in real
materials, the crack tips may totally go through a region of material and
the stress in this region may drop to zero. During such process, the stress
in this region decreases, the stress intensity factor K at crack tip increases.
But in Nguyen’s model, when a crack almost thoroughly through a contact
domain, the contact stress would close to zero, the K calculated by variables
including contact stress would drop to almost zero too, which is the opposite
to what happened in real crack propagation.

Figure 2.42: Contact stress-displacement behavior in pure cyclic tension test
by Nguyen, (Modified from [78]).

The linear transformation from da to dD is pretty inspiring, nevertheless
without theoretical justification. A new transformation from da to dD which
can be based on a rigorous derivation and can fulfill the transformation during
the whole process of crack propagating through the contact domain would
be greatly helpful for fatigue simulation.

2.6.2 Transition from damage model to crack propa-
gation

It may be difficult to use only damage model or crack growth model to
describe the three phases of fatigue evolution during tests, since different
physical processes dominate at different stage of fatigue, crack initiation and
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crack propagation. Material can not be considered as homogeneous after
macro crack appearance and propagation. A transition between phase II
and III has been noticed in fatigue test, and a global damage variable of
specimen DIII was proposed to distinguish the transition [2,142]. This vari-
able describes the transition based on the modulus change of specimen during
fatigue tests, it points out at which moment the material of the specimen be-
comes heterogeneous, however, a local transition method is still needed to
determine when and where the macro crack occurs in the specimen domain.

A thick level set (TLS) [143] is proposed and used in XFEM, by which dam-
aged zone and totally damaged zone (like crack) are separated by a level
set, material at a distance from the front of damage zone being considered
completely damaged. Such method can be considered as performing the tran-
sition from damage to fracture [79]. While the damage zone in TLS method
is always a level surrounding the ‘crack path’ (totally damaged zone), as
shown in Figure 2.43, however, due to heterogeneity of real material, dam-
age and micro cracks may be distributed diffusely within a relatively wide
region in material domain. DEM has some advantages for modeling hetero-
geneous micro structure of material and can easily realize distributed damage
in simulation, see Figure 2.14c as an example. Nevertheless, to the author’s
knowledge, a transition method for DEM able to reasonably model the tran-
sition from damage model to fracture model, when and where macro cracks
occur, has not been proposed.

Figure 2.43: Three examples of damage zones in TLS, the black line is the
front of damage zone and white zone is the fully damaged material area,
(Modified from [143]).

2.6.3 Conclusion

In the above sections, damage model, cohesive zone model, crack growth
model and transition method are reviewed. Common numerical methods,
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FEM, XFEM and DEM are compared. FEM and XFEM can to a certain
extent reproduce heterogeneity and randomness of materials, but need addi-
tional operation and more complex than that in DEM. For single or a few
number of cracks, FEM and XFEM can also model crack propagation with
element mesh refinement or enriched nodes, but in real materials, a relatively
large number of cracks occur during fatigue process. In these aspects, DEM
shows great potential. Randomly packed DEM with local damage model
leads to good damage distribution and initiation of localization, after that,
spurious localization occurs like fracture behavior due to strain singularity
near crack tip. Great efforts and advances have been made by previous re-
searchers in fatigue crack growth model for DEM, while two issues remain
to be addressed, effective approach to calculate stress intensity factor K and
good transformation from computational crack increment da to contact stiff-
ness degradation increment dD. Transition method from damage to crack
propagation for DEM has still not been developed.

2.7 Summary of the chapter

Material fatigue phenomena, especially asphalt concrete, are firstly pre-
sented, and physical processes involved and corresponding fatigue evolution
stages are explained using an example of 4-point bending fatigue test. Then
basic fracture mechanics relevant about fatigue crack growth is mentioned
as it is helpful to understand crack propagation in material. Discussion of
both existing damage models and crack growth models highlights the advan-
tage of DEM over FEM and XFEM in modeling damage distribution and
localization, whilst necessitates the following three improvements in fatigue
behavior simulation:

- A crack growth model which can easily and precisely incorporate fatigue
evolution law, and rigorous transformation from crack increment da to
stiffness loss dD to effectively represent crack growth effect on material.
Such a transformation is one of the core ideas and first novelty in this
research work.

- A new damage model capable of modeling the whole process of fatigue
evolution including crack initiation and crack propagation.
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3.8 Summary of the chapter 3 . . . . . . . . . . . . . . . . . 70

3.1 Introduction

In polycyclic fatigue processes, crack increments are relatively small, much
smaller than the particle scale used in simulations. In DEM for crack prop-
agation in real conditions, the contact model should precisely quantify the
effect (energetically consistent) of very small crack increment. In this chap-
ter, the energy release of one contact is analyzed with the aim of expressing
its stiffness reduction as a function of a virtual crack propagation.

3.2 Discrete element method

3.2.1 Contact behavior

A typical elastic bonded contact model is presented in Figure 3.1. The nor-
mal and tangential components of the contact force are governed by Equa-
tions 3.1, where δn and δs are respectively the normal and tangential relative
displacements (with time derivatives δ̇n and δ̇s ), kn and ks are the normal
and tangential stiffnesses of contact, cn and cs are the normal and tangential
viscous damping coefficients.

Fn = knδn − cnδ̇n

Fs = ksδs − csδ̇s

(3.1)

To avoid disturbing viscoelastic effect, the damping parameters are smaller
than values of the critical damping constant ci (see in Appendix A) to improve
the convergence in quasi static conditions without any disturbing viscous
effect. In Appendix A , more details about the algorithm and numerical
strategies are discussed.

The resultant contact force can be expressed as:

F =
√

Fn
2 + Fs

2, (3.2)

based on normal and shear components, Fn and Fs respectively. Its orienta-
tion can be described by the angle θ defined as [4]

θ = arctan
Fn

Fs

, (3.3)
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Figure 3.1: (a) Material description in DEM, where the black lines represent
the contacts, and (b) their rheological representation. (c) Contact relative
displacement, and (d) corresponding normal and shear forces. (e) Represen-
tation of the contact domain. (Modified from [4]).

as shown in Figure 3.1d.

The projection of the contact displacement on the direction of the resultant
force F is defined by δ

δ = δn sin θ + δs cos θ (3.4)

The corresponding strain level of contact can be defined as

ε =
δ

(Ri + Rj)
, (3.5)

where δ is defined by Equation 3.4, Ri and Rj are the radii of two connecting
particles (Figure 3.1e).

Contact stiffness degradation can be expressed by the following equations:
kn = kn0(1 −D)δn

ks = ks0(1 −D)δs

(3.6)

where D is a damage variable representing the loss of contact stiffness, kn0
and ks0 are the initial values of the normal and tangential stiffnesses.
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3.2.2 Work at contact level

The work done by external force WF can be calculated as

WF =
1

2
(Fnδn + Fsδs)

=
1

2
(Fδn sin θ + Fδs cos θ)

=
1

2
Fδ

(3.7)

where F is the resultant force defined in Equation 3.2 and δ is defined in
Equation 3.4.

3.2.3 Isotropic Elasticity

To make the particle assembly (including randomly packed assembly, as
shown in Figure 3.1) generally and evenly exhibit a uniformed modulus,
the contact stiffness can be directly related to the contact elastic modulus
Ecmod and the parameter kratio (ratio of the normal to shear stiffness) by the
expressions [144]:


kn =

EcmodAc

lij
=

Ecmod × t× 2min(Ri, Rj)

(Ri + Rj)

ks =
kn

kratio

(3.8)

where the contact is supposed to behave as a prismatic bar with a cross
section Ac = 2 × min(Ri, Rj) × t, length lij = Ri + Rj, Ri and Rj are the
radii of the particles and t is the thickness of the specimen in experimentation.
Calibration tests can be used to reach the elastic parameters of the material
(for the isotropic case: Young’s modulus E and Poisson ratio ν) [145], which
may be dependent on particles granular assembly (as shown in Figure 3.2),
granulometry, etc.

Analytical equations exist for ordered packing. For the square-packed sample
Ac = t× d, lij = d, d is the diameter of the particles, and Ecmod = E which
leads to

kn = ks = Et, (3.9)

for kratio = 1.
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(a) (b) (c)

Figure 3.2: Particle arrangements and corresponding contact maps: (a)
square-packed, (b) hexagonal packed, and (c) randomly packed.

For hexagonal packed sample, Tavarez [146,147] established the relation be-
tween contact stiffness and material elastic parameters (Young’s modulus E
and Poisson ratio ν). In plane stress it corresponds to:


kn =

Et√
3 (1 − ν)

,

ks =
1 − 3ν

1 + ν
kn =

1 − 3ν√
3 (1 − ν2)

Et.

(3.10)

3.3 Contact behavior at the crack tip

In order to enable the DEM to represent a crack of any length in a sample, the
correlations formulated in this section work as a bridge to precisely connect
the crack propagation ac (0 ≤ ac ≤ dc, where dc is the contact domain length
see Figure 3.3, in this case, dc equal to particle diameter, dc = d) to the
contact stiffness degradation (0 ≤ D ≤ 1). The basic idea is to establish a
bijection, one-to-one correspondence, between these two quantities ac and D.

Let us consider an example to illustrate the bijection. In Figure 3.4a, a long
and rectangular plate with an initial pre-crack of length a0 is subjected to
a constant uniform stress σ, which leads to an elastic vertical displacement
δ̄0. The propagation ∆a of the crack leads to a variation of the vertical
displacement ∆δ̄ (see Figure 3.4b). The progressive increase of the crack
length from a0 to a0+∆a is shown in Figure 3.4c. To simulate such a process,
an assembly composed of monodisperse particles of diameter d organized
in a bi-dimensional regular square-packed granular assembly(Figure 3.4d) is
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(a) (b) (c)

Figure 3.3: (a) Crack tip at vicinity of a contact and with crack propagation
from (a) to (b) then to (c),its trajectory during the rupture of the contact
described by the variable ac (0 ≤ ac ≤ dc ).

(a) (b) (c)

(d) (e) (f)

Figure 3.4: (a) Elastic plate with initial crack a0 under stress σ, resulting
displacement δ̄0 (b) effect of a crack growth (from a0 to a1) over the dis-
placements versus crack length, (c) evolution of the displacement. (d) DEM
corresponding sample, (e) zoom of the propagated length (d), and (f) the
corresponding evolution of the displacements versus crack length.
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conceptually adopted to model the elastic plate. In this example, a0 = 4d,
∆a = d. The crack is simply represented by four contacts which were cut off.
The propagation of the crack is represented in this case by cutting the fifth
contact (clearly represented in Figure 3.4e). It can make the crack a ”jump”
forward. However the continuity of the process of rupture remain dependent
on the contact rupture (as suggested in Figure 3.4f).

In order to specifically characterize the rupture process of one contact, the
mechanical effect of the virtual propagation of the crack tip through a dis-
tance dc, defined as the contact domain, is analyzed. The length dc corre-
sponds to the crack tip displacement if the contact is cut off. Gradually,
the displacement of the crack tip, defined by the length ac (0 ≤ ac ≤ dc as
shown in Figure 3.3), induces a reduction of the stiffness of the contact. One
may adopt a state variable D (0 ≤ D ≤ 1) to describe this degradation of
stiffness of the contact concerned by the crack tip propagation process. No
propagation process is observed for ac = 0, which is automatically related to
an intact contact (D = 0). On the other hand, if ac = dc, the crack tip has
propagated and cut the contact off (D = 1).

A consistent relation between the crack tip propagation ac and the stiffness
degradation D allows the discrete model to define crack displacement smaller
than the dimension of the particles composing the material. In the follow-
ing sections, a relation ac − D based on the energy balance of a contact is
proposed.

3.4 Contact separation - elastic case

3.4.1 Definition of the slope ratio p

The first element to understand the relation between the crack propagation
and the degradation process of the contact at the crack tip in DEM sample
is the evolution of the force and the displacements. If only the contact at
the crack tip is released (0 ≤ D ≤ 1), in elastic conditions, the material
surrounding the crack tip behaves as an elastic system. By simplicity, let
us replace the surrounding material by an elastic spring representing the
material elasticity kp, as proposed in Figure 3.5. If one considers the rupture
process in the opposite way, where the contact force may close the crack, the
individual action of the contact force associated to crack tip may reduce the
gap between the two particles linearly. In the natural way, a decreasing value
of F = δ(1 −D)k0 may simply increase proportionally the distance between
the two particles (described by δ), which explains the observed linear path
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during the rupture process (0 ≤ D ≤ 1), as shown in Figure 3.6.

(a) (b) (c)

Figure 3.5: Schematic description of the mechanical relation between the
contact at the crack tip and the neighboring particles. (a) Pre-cracked plate
and (b) its simplified elastic behavior near the crack tip, where kp represents
the stiffness of material surrounding the crack tip, F and δ are contact force
and displacement, (c) a more intuitive description of (b).

In Figure 3.6, a contact which represents a part of material of a plate is
described by both spring systems and the evolution of contact force F and
displacement δ in the coordinate system. And four states are chosen, specif-
ically, (o) a pre-cracked plate without loading, (A) plate subjected to a con-
stant stress σ, (B) crack propagates till the boundary of the contact domain,
(C) crack totally through the contact domain. Obviously, the maximum elas-
tic force, right before the rupture process of the contact (process from (B) to
(C)) is equal to Fmax = k0δ0. For this same force Fmax acting over the spring
2kp, the displacement associated to the material surrounding material is sim-
ply δp = Fmax/kp. After the progressive rupture process, the force decrease
from Fmax to 0 following the rupture slope kp and the surrounding material
spring is no longer in tension. The total increase of the broken contact is
finally δmax = δ0 + δp = δ0(1 + k0/kp), when F = 0.
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Figure 3.6: Description of the evolution of a contact for the whole process
from crack near to crack through this contact. At the bottom of figure, (o)
a pre-cracked plate in which a red rectangular represents the contact whose
behavior is described by both spring systems and the evolution of contact
force F and displacement δ in the coordinate system, (A) plate subjected to
a constant stress σ, (B) crack propagates till the boundary of the contact
domain, (C) crack totally through the contact domain. From (B) to (C),
crack growth within the contact domain is represented by the process of the
contact stiffness degradation, for (0 ≤ D ≤ 1), where k0 is the initial contact
stiffness, and (1 −D)k0 is its degraded value.



52 Chapter 3. Contact model for fatigue crack growth

Let us define the slope ratio p as the ratio between the elastic slope k0 and
kp the absolute value of the rupture slope, that is p = k0/kp. Physically,
the slope ratio p is a quantity which characterizes the relation between the
stiffness of the contact and the stiffness of its vicinity. It means that the
slope ratio p account for the effect of the surrounding material on the crack
tip.

To describe the change of crack position and contact displacement with crack
propagation, Figure 3.7 shows two states of crack position and contact dis-
placement, respectively referring to the states (B) and (C) in Figure 3.6.

(a) (b)

Figure 3.7: Schematic description of the position of crack and contact dis-
placement. (a) Crack tip at the boundary of the contact domain, where δ0 is
the contact displacement, and (b) crack totally through the contact domain.

For the proposed method which represents crack propagation, when com-
pared with CZM, a major similarity and a major difference between them
should be mentioned. Both of them using gradual change of mechanical
property of element ahead a crack tip to represent crack propagation. For
CZM, the separation is governed by the deformation δ which follows an ar-
tificially defined softening curve (Figure 2.38). Importantly, for the method
discussed above, as shown in Figure 3.6, the separation is only governed by
the contact stiffness degradation, and the softening curve is not defined but
forming naturally. That is the biggest difference between them two.

3.4.2 Study of the slope ratio p

In the following analysis, one may observe the effect of the crack length, crack
distribution, loading condition and particle size on the slope ratio p.
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3.4.2.1 Crack propagation strategy

To continually observe the rupture process at the crack tip, the crack
propagation is performed by orderly releasing contacts (for each contact,
0 ≤ D ≤ 1) in the crack growing direction, in samples, as shown in Figure 3.8.
For symmetric edge cracks (Figure 3.9) and center crack (Figure 3.10), con-
tact degradation is symmetrically and synchronously operated.

(a) (b) (c)

Figure 3.8: (a) Geometry of the plate, crack propagation modeling in (b)
square and (c) hexagonal packed samples.

Crack propagation is performed on plates with height H = 160 mm, width
2b = 100 mm and unitary thickness (t = 1 m). The material Young’s mod-
ulus E = 10 GPa, subjected to constant vertical stress σ = 0.625 MPa, Fig-
ure 3.8a. In plane stress the Poisson ratio ν is not relevant (Section 2.5.5).The
crack grows from a = 0 to a/2b = 0.8. Three different particle diameters are
tested 0.5 mm, 1 mm and 2 mm.

For square packed samples, the elastic stiffness is kn = 1 × 1010 N/m as
defined in Equation 3.9. Then, for simplicity and without effects on the
results, ks = kn.

For hexagonal packed samples, the elastic stiffness is kn = 5.77 × 109 N/m
as defined in Equation 3.10. A value of ks = kn is also chosen, associated to
a Poisson ratio ν = 0.

3.4.2.2 Analysis of the p ratio variations

In Figures 3.9 and 3.10, the variations of the slope ratio p as a function of the
crack length to plate width ratio a/b during crack initiation and subsequent
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(a)

(b)

Figure 3.9: (a) Value of the slope ratio p as a function of the length to plate
width ratio a/b for different particle diameters (0.5mm ≤ d ≤ 2mm) of a
plate with symmetric edge cracks, simulated by square packed samples and
(b) a zoom of the values of p as a function of the crack to diameter ratio a/d
during crack initiation a/d ≤ 5.

propagation are presented. For well developed cracks (a/b ≥ 0.1), a stable p
value can be observed. The effect of the diameter of the particles is mostly
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(a)

(b)

Figure 3.10: (a) Value of the slope ratio p as a function of the crack length to
plate width ratio a/b for different particle diameters (0.5mm ≤ d ≤ 2mm)
of a plate with center crack, simulated by square packed samples and (b)
a zoom of the values of p as a function of the crack to diameter ratio a/d
during crack initiation a/d ≤ 5.

due to a more precise definition of the crack tip for smaller particles, where
the value of p get stable earlier for smaller particle. The value of p is spe-
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cially affected during crack initiation where the stress conditions passes from
homogeneous (no crack) to singular state (with crack) at the crack tip. This
evolution seems more dependent on the number of particles which represents
the relative crack length than absolute length as suggested by the results of
p as a function of the crack length to diameter ratio a/d (see Figures 3.9b
and 3.10b).

The comparison between the values of p for the plates with central and sym-
metric edge cracks (Figure 3.11) confirms that for fully developed cracks a
stable value of p is observed, which only depends on particle packed struc-
tures.

Figure 3.11: Comparison of p as a function of the crack length to plate width
ratio a/b, for center crack and symmetric edge cracks propagation, result from
respectively square and hexagonal packed samples, with diameter d = 1mm.

Figures 3.12 shows the effect of loading condition on the value of p for different
crack lengths and at different vertical positions. For well developed cracks,
when the crack positions are far from the loading boundary, the loading
conditions have only slight effect on the value of p, which is described more
clearly in Figure 3.13.

Based on the definition of the slope ratio p, geometrically, the limitation of
p is 0 ≤ p ≤ ∞. Physically, p = 0 and p = ∞ respectively correspond to
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(a)

(b)

Figure 3.12: Value of the slope ratio p for crack at different vertical positions
(y/d, where y is the distance from loading boundary and d = 2mm is particle
diameter) and with different crack length (a/b), (a) with imposed stress and
(b) with imposed strain (ε = 100µε). The black dashed line represents
p = 2.8 in both (a) and (b).

the homogeneous and ultimate states of materials, as shown in Figure 3.14.
As an example, one may notice that in Figure 3.13 when the crack is small,
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Figure 3.13: Comparison of the slope ratio p as a function of the crack length
to plate width ratio a/b, for center crack, (a) with imposed stress and (b)
with imposed strain (ε = 100µε). The black dashed line represents p = 2.8.

Figure 3.14: Schematic description of the limitation of the slope ratio p, for
p = 0 corresponding to the homogeneous state and p = ∞ corresponding to
the ultimate state.

the value of p tends to be lower than its stable value for well developed
crack, and when the crack is almost cutting off the plates, p tends to increase
dramatically.
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3.4.3 Energetic analysis of the contact separation

In this section, the relation between the propagated crack length and stiffness
reduction ac − D is formulated with the energy equivalence between the
released energy during DEM contact degradation (damage) and cracking of
physical material.

3.4.3.1 Energy release of a contact

The partial energy released during the contact separation process UB can be
calculated (as already discussed in Section 2.5.4) as the surface area of the
triangle formed by the origin point O (0, 0), point A (δ0, F0) representing co-
ordinated by the contact force and contact displacement before degradation,
and point B (δi, Fi) representing coordinated by the contact force and con-
tact displacement after degradation of the stiffness, as shown in Figure 3.15a.
That is to say UB = S∆OAB. The total energy released by the contact corre-
sponds to UC = S∆OAC .

The ratio UB/UC can be calculated by

UB

UC

=
S∆OAB

S∆OAC

=
S∆OAC − S∆OBC

S∆OAC

= 1 − Fi

F0

= 1 − (1 −D)
δi
δ0
, (3.11)

where F0 = k0δ0 and Fi = (1 −D)k0δi.

The length of the bottom line OC, can be geometrically obtained based on
δ0 or δi by the relation OC = δ0(1 +p) = δi(1 +p(1−D)) (where p = k0/kp).
Introducing the consequent ratio δi/δ0 into Equation 3.11, one gets the ratio
UB/UC

UB

UC

= 1 − (1 −D)
1 + p

1 + p(1 −D)
=

1 − (1 −D)

1 + p(1 −D)
. (3.12)

3.4.3.2 Energy release in a crack

The released energy in cracking process can be described by the energy release
rate G = dU/dA (see Section 2.5.4) defined as the released energy dU per
unit of crack area increment dA (in 2D, dA = t×da, where t is the thickness
of the geometry, see Figure 3.15b). Integrating Equation 2.12, the released
energy during crack growth Uac, can be calculated as

Uac = t

∫ ac

0

Gda ≈ tGac. (3.13)

It should be noted that the energy release rate G is supposed to remain
constant during crack growth at the scale of a contact (0 ≤ ac ≤ dc). This
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(a)

(b) (c)

Figure 3.15: (a) Released energy during contact degradation. (b) Cracked
plate, and (c) zoom of the crack propagation at the scale of one contact.

hypothesis is a simplification of the real process, where some variation may
exist, specially during crack initiation. Consequently, the total released en-
ergy (for a crack growth ac = dc) is simply equal to

Udc = tGdc. (3.14)

Combining Equations 3.13 and 3.14, yields the energy ratio Uac/Udc

Uac

Udc

=
ac
dc
. (3.15)
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3.4.3.3 Energy equivalence

The equivalence of the energy released in a crack and in a contact for the
same propagated length can be obtained by combination of Equations 3.12
and 3.14, where one may get by definition UB/UC = Uac/Udc. It finally leads
to the correspondences between ac and D

ac
dc

=
1 − (1 −D)

1 + p(1 −D)
, (3.16)

or conversely

1 −D =
1 − ac

dc

1 + p
ac
dc

. (3.17)

Equations 3.16 and 3.17 provide a direct relation between the crack propaga-
tion and damage in a contact (0 ≤ ac/dc ≤ 1 in compliance with 0 ≤ D ≤ 1).
All information is entirely defined at contact level (properties k0 and dc) or
measured during contact separation (F×δ) like kp (which leads to p = k0/kp).
This explicit local approach of the energy release allows the direct application
of fracture mechanics models to simulate the crack propagation as it will be
seen in the next sections.

3.5 Verification of ac −D transformations

The energy released by cracks in simple structures is precisely related to
boundary behavior, which can be adopted to verify the ac−D transformations
(in Equations 3.16 and 3.17).

A simple rectangular plate with dimensions (height H = 160 mm, width
2b = 100 mm and unitary thickness t) under uniform stress σ = 0.625 MPa
is considered as shown in Figure 3.16a. The material Young’s modulus E =
10 GPa. Before cracking, it simply presents an elastic boundary displacement
δ̄0. The boundary displacement for δ̄ (see Figure 3.16b can be theoretically
calculated for any crack dimension based on existing solutions for the stress
intensity factor (as shown in Appendix C).

In Figure 3.17a, the theoretical results of the ratio between the boundary
displacements δ̄/δ̄0 is presented as a function of the crack length 0 ≤ a/2b ≤
0.5. For comparison purpose, contacts are progressively released (0 ≤ D ≤ 1)
in three simulations with a square packed sample with d = 0.5 mm, 1 mm
and 2 mm, corresponding to 0.2 ≤ a/2b ≤ 0.22. The proximity of the scale of
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(a) (b)

Figure 3.16: Plate under uniform stress and the associated boundary dis-
placement for (a) intact and (b) cracked cases.

the simulated displacements with respect to theory (in Figure 3.17a) confirms
the ability of the discrete model to describe the mechanical behavior of the
system.

The effect of the ac − D transformations can be clearly observed in Fig-
ure 3.17b. For d = 2 mm, the trend for the displacement ratio δ̄/δ̄0 of the
simulation is parallel and follows closely the theoretical results, for a single
contact release. The offset between simulations and theory decreases with
particle diameter d, which is consistent with the mechanical hypothesis con-
sidered (energy release rate G is assumed constant during crack crossing one
contact). Thus, particle diameter decrease naturally results higher precision
of G with respect to theoretical calculation. For d = 1 mm and d = 0.5 mm,
2 and 4 contacts are released respectively. A clear continuity of δ̄/δ̄0 is ob-
served, which indicates that cracks can be described bellow a particle scale
with the proposed formulation (in Equation 3.17).
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(a)

(b)

Figure 3.17: (a) Comparison of the ratio of displacement δ̄/δ̄0 between
theoretical results and simulation results and (b) a zoom for 0.2 ≤ a/2b ≤
0.22.

3.6 Contact separation - non elastic case

The ac−D relation described in Equations 3.16 and 3.17 supposes a constant
separation slope (constant p), which is reasonable for elastic structures with
cracks that do not interact, hence do not modify the mechanical response
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close to the crack tip from one to another. Any non linear behavior of the
material which reduces its stiffness (like damage) or the proximity of cracks
which modifies the boundary conditions near a crack tip may affect the value
of p (see discussion in Section 3.4.1). The general situation described in
Figure 3.18 is considered in this section, where an incremental form of ac−D
is proposed.

Figure 3.18: Schematic description of nonlinear contact traction separation.

3.6.1 Incremental form of the crack-damage relation

In an incremental formulation, increments of crack propagation da are asso-
ciated to increments of damage dD. The crack evolution and the damage
evolution may be written as

aci+1 = aci + da

Di+1 = Di + dD
(3.18)

where i describes the propagation events. Figure 3.19 schematically shows
the relation between the direct and the rate formulations.

3.6.2 Contact evolution scheme

The deduction of the relation da− dD is based on the scheme shown in Fig-
ure 3.20a, where the incremental propagation of the crack is described by
events where p remains constant piece by piece. The stiffness reduction of
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(a) (b)

Figure 3.19: Transformations (a) between ac and D, (b) between da and
dD.

the contact induced by the crack propagation can be seen after each event as
a new contact. As represented in Figure 3.20b at the beginning of each prop-
agation event, one may suppose an initial contact stiffness ki for a contact
with a reduced domain dc−aci. After a propagation da an apparent stiffness
reduction dD′ is observed, with the new contact stiffness ki+1 = (1 − dD′)ki
and an apparent slope ratio p′ = ki/kpi. These elements can be automatically
introduced in Equation 3.16, which takes the following shape

da

dc − ac
=

1 − (1 − dD′)

1 + p′(1 − dD′)
. (3.19)

The final step is to adapt the apparent parameters (dD′ and p′, defined with
respect to the stiffness ki) to the parameters defined with respect to the
initial contact stiffness k0 (dD and p).

The apparent stiffness reduction is defined by

1 − dD′ =
ki+1

ki
=

(1 −Di+1)k0
(1 −Di)k0

=
(1 −Di+1)

(1 −Di)
, (3.20)

where ki = (1−Di)k0 and ki+1 = (1−Di+1)k0. The evolution of the stiffness
reduction given in Equation 3.18 can be introduced in Equation 3.20. After
some algebraic work isolating dD′, one may have

dD′ =
dD

1 −Di

. (3.21)

The apparent slope ratio p′ is defined as

p′ =
ki
kpi

=
(1 −Di)k0

kpi
= (1 −Di)pi. (3.22)
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(a)

(b)

Figure 3.20: (a) Description of the contact and force-displacement evolution
during a propagation event, (b) a certain state in (a).

Replacing Equations 3.21 and 3.22 into Equation 3.19, one may finally get

da =
(dc − ac)dD

(1 −D)[1 + p(1 −D − dD)]
, (3.23)

or conversely

dD = (1 −D)

1 −

(
1 − da

dc − ac

)
1 + p(1 −D)

(
da

dc − ac

)
 , (3.24)
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where the index i was dropped.

The rate relation da − dD allows the direct relation between a crack incre-
ment da and stiffness degradation increment dD, for a given instantaneous
slope ratio p and stiffness degradation D. Equation 3.24 associated to Equa-
tion 3.18, allows a continuous description of the relation between ac and D.

3.7 Implementation of fatigue crack growth

The transformation da−dD allows an energetically consistent representation
of a crack propagation caused by contact damage over a length smaller than
the particle scale. Paris’ law is a fatigue criterion which relies on the energy
release per cycle to determine how much a crack propagates.

3.7.1 Paris’ law

As introduced in Section 2.5.6, Paris’ law is a fatigue crack growth criterion
in which the crack increment during one loading cycle da is determined by
a power function of the corresponding stress intensity factor range ∆K =
Kmax −Kmin in the loading cycle, (Equation 2.21). Stress ratio is defined as
the ratio of the minimum stress to the maximum stress experienced during
one loading cycle R = σmin/σmax. For R ≤ 0, ∆K = Kmax − 0 = Kmax. We
assume that the crack increment da happens at the moment where K = Kmax

during one loading cycle. Thus, considering the relation between the energy
release rate G and the stress intensity factor K (in plane stress, for example),
in Equation 2.20, G = K2

max/E. Then the Paris’ law can be rewritten as

da

dN
= C(GE)m/2, (3.25)

where da/dN is the crack growth rate, a is the crack length and N is the
number of loading cycles, C and m are fatigue parameters and E is the
Young’s modulus of the material. The energy release rate G = dU/da can
be calculated locally, at a contact, as discussed in Section 3.4.3.1, based on
the corresponding energy release associated to a given crack propagation da.
The explicit numerical approach is discussed in the following sections.

3.7.2 A quasi-static approach to simulate fatigue cy-
cles

In controlled conditions, if we neglect any dynamic effect, the loading cycles
imposed at the boundaries are in phase with the mechanical efforts inside the
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structure. For centered loading cycles, the whole structure (in homogeneous
conditions) or part of it (in all other cases) are periodically submitted to ten-
sion and compression efforts. If one supposes a slow evolution of the material
during one cycle, it is reasonable to admit that tension and compression ef-
forts present the same magnitude (but different signs). In this case, for Paris’
law, tension ranges can be simply obtained with a static loading represent-
ing the amplitude of the loading cycle. For the zones in compression, the
absolute value of the mechanical efforts correspond to the same values when
in tension.

As shown in Figure 3.21 the range of the stress intensity factor ∆K (or any
other mechanical quantity like stress and strain) is obtained in quasi-static
conditions.

As shown in Figure 3.21, considering a fatigue test under stress control, the
plate subjected to sinusoidal cyclic stress (illustrated by the dotted sinusoidal
curve in the top right coordinate system of Figure 3.21), the resultant stress
intensity range ∆K at crack tips is a semi sinusoidal curve during tension
half cycle and keep 0 in compression half cycle (illustrated by the dotted
semi sinusoidal curve in the bottom right coordinate system of Figure 3.21),
during every loading cycle crack grows and consequently cause the stress
concentration intensity increase at crack tips.

Figure 3.21: Quasi-static loading and extraction of the values of stress in-
tensity range ∆K at crack tips.
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3.7.3 Numerical procedures for the fatigue crack
growth calculation in DEM

The local calculation of the rupture process depends on the progressive re-
lease of energy to be defined. As shown in Figure 3.22 (to be simple, elastic
separation case is used), an initial (numerical) damage Dini is introduced to
give rise to a first release of energy dU and the identification of the value
of p. The application of Equation 3.23 allows the identification of da corre-
sponding to dD = Dini − 0. The energy release rate can be calculated and
the analysis of the crack growth process can start.

The explicit numerical procedure can be presented as follows :

1 ) Definition and application of the initial degradation value Dini, for
example Dini = 1 × 10−4;

2 ) Measurement of dU and p;

3 ) Put the initial values of D = 0, ac = 0 and dD = Dini and p into
Equation 3.23 and calculate corresponding da;

4 ) Update D = D+dD and ac = ac +da (until D = 1, complete rupture);

5 ) Calculation of G = dU/(tda);

6 ) Paris’ law, Equation 3.25, and calculation of the new crack increment
da;

7 ) The new da, present D, ac and p, into Equation 3.24, calculation of the
corresponding new degradation increment dD;

8 ) Measurement of new dU and p and cycle back to step 4.

Considering the key role of the slope ratio p, this model scheme is called
p-model in the following. In Chapter 4 applications of p-model are presented
where its capabilities and limitations are discussed.
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Figure 3.22: Schematic description of the procedures of fatigue crack growth
calculation.

3.8 Summary of the chapter 3

In Chapter 3, the basic equations characterizing the elasticity and rupture
of the contacts in discrete element method is presented. The crack tip be-
havior is analyzed in detail for an elastic medium and the effect of a discrete
description of the material is identified on the diagram force×displacements.
Consequently, a damage like model is adopted to describe the loss of stiffness
of each contact during crack propagation.

An energetic consistent approach is proposed where each damage increment
dD is associated to a crack increment da. Crack increments with dimensions
much below particle scale become clearly described. Finally, it allowed Paris’
law to be adapted to relate the energy release rate G to the crack increment
da in fatigue tests.
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4.1 Introduction

Chapter 3 presents the fatigue rupture of a contact localized at the crack tip
consistently with Paris’ law. Based on the analysis of pre-cracked samples,
where crack tips are clearly identified (similarly to most of the methods in
continuum mechanics) practical elements are discussed in this chapter. First,
the DEM simulation procedures are presented, then simulation results for
regularly packed samples are compared with theoretical calculation. The the
width of the contact domain dc for different contact structures is discussed
followed by parametric studies of parameters C and m. Finally, comparison
of the proposed model with experiments are shown.

4.2 DEM simulation procedures

4.2.1 Particle sample arrangements and crack descrip-
tion

Particle regular structures like square and hexagonal packed samples (see
Figure 4.1) are adopted here to verify theoretical results considering the
more intuitive description of cracks and their evolution. As can be seen in
Figure 4.1a, the width of the contact domain dc for a square packed samples
is identical to the particle diameter d. In hexagonal packed samples, during
one contact total degradation, crack propagates for a distance of dc = d/2,
as shown in Figure 4.1b.

However, regular packings are often less realistic to describe geomaterials
since their behavior is associated with those of ideal materials, completely
homogeneous. The value of dc for randomly packed samples is not directly
identified, but it depends on the granulometry, void ratio, etc (as discussed
further in Section 4.4).
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(a)

(b)

(c)

Figure 4.1: Definition of a crack for (a) square, (b) hexagonal and (c)
randomly packed samples. Identification of the crack domain dc for square
and hexagonal packed samples.
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4.2.2 Non local crack tip identification and numerical
procedure

As shown in Figure 4.1, as soon as a contact is in rupture due to crack
propagation, crack surfaces continually grow and crack tip continually ad-
vances. The new crack tip is identified as the contact where the strain level
ε (Equation 3.5) is maximum in the newly grown crack surface. Thus, the
rupture of this contact begins, following the Paris’ law formulation discussed
in Chapter 3.

Hence, multicracked systems in fatigue may be simulated with the following
steps:

1 ) Sample preparation.

2 ) Initialization of cracks.

3 ) Load application.

4 ) Attribute rupture model to contacts at the crack tips.

5 ) Start fatigue crack propagation.

6 ) After each total contact rupture, identification of the new crack tips
and return to step 4. Repeat the procedure until the end of the fatigue
test.

4.3 Comparison of the model with theoreti-

cal results

The relevance of the formulation and the physical effects of model parameters
are examined in this section through the comparison between numerical and
theoretical results (see Appendix D). Two different cyclic boundary condi-
tions are adopted: stress and strain control.

4.3.1 Sample dimensions and material properties

A theoretical fatigue test of a rectangular plate with symmetric edge cracks
is used as a reference for comparison. The plate dimensions are: height
H = 160 mm, width 2b = 100 mm and thickness t = 1 m, with initial crack
lengths a0 = 10 mm

A material with Young’s modulus E = 10 GPa and Poisson’s ratio ν = 0
is adopted. Parameters used in the fatigue model are Dini = 1.0 × 10−3,
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C = 1.0 × 10−12 (m/cycle/(Pa
√

m)m) and m = 1.25. For these simulations,
samples with square and hexagonal packed are employed with 3 different
particle diameters: d = 4 mm, d = 2 mm and d = 1 mm, contact stiffnesses
setting based on Equations 3.9 and 3.10.

4.3.2 Cyclic loading

For stress controlled tests, sinusoidal stress with amplitude σmax = 1.0 MPa
is applied. The crack propagation induces a reduction of the global stiffness
of the plate. For a constant stress amplitude, it yields an increase on the dis-
placements amplitude. Fatigue evolution is monitored by the sample stiffness
ratio (see Appendix C) expressed as δ̄0/δ̄ which is the ratio of the average
displacements at the extremities of a plate without a crack (δ̄0) compared to
the ones of a cracked plate (δ̄).

For strain controlled tests, sinusoidal strain with amplitude εmax = 100 µε
is applied. The crack propagation induces a reduction of the global stiffness
of the plate. For a constant strain amplitude, it corresponds to a decrease of
the amplitude of the measured forces. Fatigue evolution is monitored by the
sample stiffness ratio expressed as F/F0 which is the ratio of the resultant
forces at the extremities of a plate without a crack (F0) compared to the one
of a cracked plate (F ).

4.3.3 Numerical results

4.3.3.1 Crack length and stiffness evolution

Figure 4.2a shows the evolution of the stiffness ratio as a function of the
number of loading cycles N for a square packed sample under stress control
fatigue loading. In Figure 4.2b one can see the corresponding crack increase.
In Figure 4.2c the contact degradation can be clearly associated to the crack
increase at different states of stiffness ratios. The results for all particle diam-
eters are close to the theoretical results, although closer results are observed
for smaller particles.

The same trends with respect of the stiffness ratio are observed for hexag-
onal packed (as visible in Figure 4.3a). Furthermore, hexagonal structure
allows the control of the Poisson’s ratio ν (as described in Equation 3.10). In
Figure 4.3b the complete absence of effect of ν is consistent with the linear
elastic fracture mechanics theory.

The results for strain controlled tests (Figure 4.4) follow exactly the same
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(a) (b)

(c)

Figure 4.2: Simulations of a symmetric edge cracked plate under stress
fatigue loading with square packed samples for different particle sizes and
comparison with theoretical results of (a) crack growth and (b) the stiffness
ratio as functions of the number of cycles N in controlled stress conditions.
(c) Contact degradation map during fatigue evolution for d = 2mm.

trends as those observed for stress controlled tests in comparison to theoret-
ical predictions.

4.3.3.2 Evolution of the energy release rate

The best fit of theoretical result by the simulation results obtained for smaller
particles can be explained by the analysis of the trends of the energy release
rate G shown in Figure 4.5. In the formulation presented in Chapter 3,
the value of G is supposed to be constant during crack propagates through
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(a) (b)

Figure 4.3: Simulations of a symmetric edge cracked plate under stress
controlled fatigue loading with hexagonal packed samples and comparison
with theoretical results of the stiffness ratio as a function of the number of
loading cycles N for (a) different particle size (Poisson’s ratio ν = 0) and (b)
different Poisson’s ratios (and d = 2mm) in controlled stress conditions.

(a) (b)

Figure 4.4: Simulations of a symmetric edge cracked plate under strain
fatigue loading with square packed samples for different particle sizes and
comparison with theoretical results of (a) crack growth and (b) the stiffness
ratio as functions of the number of cycles N in controlled strain conditions.

a contact. This assumption is well verified by the shape of the simulations
curves of G, composed by uniform segments. Each of these uniform segments
corresponds to the process of the crack propagates through a contact. The
evolution of G depends on the boundary conditions (Figures 4.5a and b were
obtained for stress controlled, whilst Figures 4.5c and d for strain controlled).
However, the decrease of particle size from d = 2 mm (Figures 4.5a and c)
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to d = 1 mm (Figures 4.5b and d) allows a better approximation of the
theoretical trends in both cases.

(a) (b)

(c) (d)

Figure 4.5: Simulations of a symmetric edge cracked plate with square
packed samples and comparison with theoretical results of the energy release
rate G under stress controlled fatigue loading for particle size (a) d = 2 mm
and (b) d = 1 mm, and under strain controlled fatigue loading for particle
size (c) d = 2 mm and (d) d = 1 mm.

The values of G are usually constant per segment, but some rare deviations
can be observed, specially for imposed stress cases. This phenomenon is due
to the sensitivity of the value of the slope ratio p in the first rupture cycle
associated to the value of the parameter Dini. More details of this point are
discussed in Appendix E.
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4.4 Identification of the dimension dc

The contact domain length dc is a parameter of the propagation model which
depends directly on the particle diameter d, but also on particle arrangement.
As discussed in Section 4.2.1, dc is equal to d for a square arrangement, and
it becomes d/2 for a hexagonal arrangement. In these examples, it can be
visually identified. However, a more general interpretation of this intrinsic
scale of the granular arrangement can be obtained.

The propagated crack length inside the contact domain can be written as
ac = αdc for 0 ≤ α ≤ 1. Replacing this expression for ac in Equation 3.23,
one may get

dα

1 − α
=

dD

(1 −D)[1 + p(1 −D − dD)]
, (4.1)

which means that a relative variation of the propagated length dα is directly
associated to a stiffness reduction dD independently of dc. A stiffness reduc-
tion dD induces a release of energy dU , consequently, it is also independent
of dc.

The energy release rate (see Section 2.5.4) can be defined as G = dU/(t×da).
Introducing in Equation 3.25 of the Paris’ law: ac = αdc, da = dαdc and the
previous definition of G, one may get after some algebraic work

(dαdc)
1+m/2 = C

(
dU

t
E

)m/2

dN. (4.2)

For a different value of contact domain d′c, the only difference in Equation 4.2
would be in the number of cycles dN ′, since the rest of the parameters (dα,
m, C, dU , t and E) is completely independent of dc. It means that di-
viding Equation 4.2 by itself with another value of contact domain d′c (and
consequently another number of cycles dN ′), one may simply get

dN ′ =

(
d′c
dc

)1+m/2

dN. (4.3)

Equation 4.3 predicts that the effect of a different contact domain value d′c
with respect to a reference one dc would be only in the scale of the number
of cycles. This result is presented in Figure 4.6a for a fatigue test similar
to the previous section for imposed stress with square packed samples and
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three different values of d′c: 0.5d, 1.0d and 1.5d. In Figure 4.6b, all curves
collapse when the number of cycles is divided by (d′c/dc)

1+m/2 with dc = 1.0d.
Similarly, Figure 4.6c shows the results for hexagonal packed samples with
three different values of d′c: 0.25d, 0.5d and 0.75d. In Figure 4.6d, all curves
collapse with dc = 0.5d.

(a) (b)

(c) (d)

Figure 4.6: Stiffness ratio of a double edge cracked plate under stress fatigue:
for a square packed sample (a) as a function of the number of cycles N and
(b) as a function of [d′c/(1.0d)]1+m/2N ; for a hexagonal packed sample (c) as a
function of the number of cycles N and (d) as a function of [d′c/(0.5d)]1+m/2N .

The effect described in Equation 4.3 allows the determination of dc based on
the comparison of a simulation with any value of d′c and theoretical results.

For randomly packed structures the parameter dc is not trivial, depending
on the texture of the arrangement. Six samples with an average diameter
d = 2 mm, minimum diameter dmin = 1.54 mm and maximum diameter
dmax = 2.46 mm where generated as detailed in Appendix B. Due to the het-
erogeneity and randomness of randomly packed samples, to perform the same
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modulus as the target material, the contact stiffness can not be set directly
as Ecmod = E which is good for square packed samples (Section 3.2.3). And
an appropriate value of Ecmod need to be determined by simulation tests [4].
In this case, based on tension test simulation, the contact stiffness setting are
calibrated as Ecmod = 1.21×E and kratio = 1.0, where E is material Young’s
modulus.

To reduce the effect of cracks interaction, reference fatigue test is set as single
edge cracked plate, with initial crack lengths a0 = 10 mm, sinusoidal stress
with amplitude σmax = 1.0 MPa, plate dimensions and material properties
are taken similar to those used in previous fatigue tests (Section 4.3.1).

(a) (b)

(c) (d)

Figure 4.7: Stiffness ratio of a single edge cracked plate under stress fatigue
for a random packed sample (a) as a function of the number of cycles N
and (b) as a function of [d′c/(0.875d)]1+m/2N , for Paris’s law parameters:
C = 1.0 × 10−12 (m/cycle/(Pa

√
m)m) and m = 1.25, and that of (c) and (d)

for C = 2.0 × 10−22 (m/cycle/(Pa
√

m)m) and m = 3.
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The fatigue behavior of one of the randomly packed samples is shown in
Figure 4.7a for three different values of d′c: 0.875d, 1.0d and 1.5d, where
for randomly packed samples, the mentioned diameter d is the minimum
diameter of the two particles sharing a contact, d = dmin. All curves collapse
to dc = 0.875d as shown in Figure 4.7b.

In Figures 4.6 and 4.7a and b the parameters of Paris’s law are C = 1.0 ×
10−12 (m/cycle/(Pa

√
m)m) and m = 1.25. In Figure 4.7c and d another set

of parameters (C = 2.0× 10−22 (m/cycle/(Pa
√

m)m) and m = 3) is adopted.
The same effect is observed, since it depends on the crack trajectory and this
is not affected by C and m.

To identify the value of dc that yields the best fit of the stiffness ratio as a
function of the number of cycles for theoretical calculation in the case of ran-
domly packed samples, d′c = 0.875d is set for all six samples, then based on
Equation 4.3 and theoretical results, the fatigue behavior and corresponding
calibrated dc value of each of them are shown in Figure 4.8a. An average
value of contact domain dc = 0.958 is obtained as the identified contact do-
main dc for samples with the same granulometry as these six samples. Finally
simulations with dc = 0.958d confirms the results, and good agreement be-
tween the average curve and the theoretical results is observed (Figure 4.8b).
Crack trajectories of all six samples are shown in Figure 4.9.

The contact domain length dc is a parameter with an average value for a given
particle arrangement, but it presents a natural variation since it depends on
crack path during rupture. In Appendix F, a more detailed explanation of
the variation of dc is proposed based on the analysis of the morphology of
the particle arrangement.
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(a) (b)

Figure 4.8: (a)Stiffness ratio of a double edge cracked plate under stress
fatigue for random packed sample s1 to s6, as a function of the number of
cycles N . And each calibrated value of dc, based on Equation 4.3 and theoret-
ical results for Paris’s law parameters: C = 1.0 × 10−12 (m/cycle/(Pa

√
m)m)

and m = 1.25. (b) Comparison of simulations with dc = 0.958d and the
theoretical results.

Figure 4.9: Crack trajectories for all six randomly packed samples.
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4.5 Parametric study

The effect of parameters C and m over the fatigue behaviour is analysed in
the following section. Stress controlled tests are performed on the same plate
with double edge cracks and the same material parameters as in Section 4.3.3
unless told otherwise.

4.5.1 Effect of parameter C

The effect of parameter C is examined by comparing three fatigue simula-
tions. In all simulations, the particle size d = 2 mm is adopted as well as the
parameters in Table 4.1.

Table 4.1: Set of parameters for the analysis of parameter C in fatigue
simulations.

Dini C (m/cycle/(Pa
√

m)m) m
1.0 × 10−3 1.0 × 10−12 1.25
1.0 × 10−3 2.0 × 10−13 1.25
1.0 × 10−3 1.0 × 10−13 1.25

As shown in Figure 4.10a, with parameters Dini and m unchanged, parameter
C has a multiplying effect on the fatigue life, the number of cycles till a certain
failure limit. This effect is clearly visible, by displaying the fatigue evolution
as a function of C×N (see Figure 4.10b). With this scaling, the three curves
with different C are perfectly superposed. Such property of C can be used to
save calculation time for long life materials in fatigue simulations by setting
a relatively bigger parameter C and then scaling the results.

4.5.2 Effect of parameter m

The effect of parameter m is examined by comparing three fatigue simula-
tions. In all simulations, the particle size d = 2 mm is adopted as well as
parameters in Table 4.2.

Since parameter m is an exponent in Equation 3.25 which determines the
crack increment da, a larger value of m indicates that crack propagation
in the material is more sensitive to the value of the energy release rate G.
As shown in Figure 4.11a, with larger values of m, the fatigue process is
dramatically accelerated.
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(a) (b)

Figure 4.10: Fatigue evolution (a) versus number of cycles N and (b) versus
C ×N for different values of parameter C.

Table 4.2: Set of parameters for the analysis of parameter m in fatigue
simulations.

Dini C (m/cycle/(Pa
√

m)m) m
1.0 × 10−3 3.0 × 10−22 1.25
1.0 × 10−3 3.0 × 10−22 2.0
1.0 × 10−3 3.0 × 10−22 3.0

The effect of m on fatigue evolution shape can be more visible if the results
are shown as a function of a normalized number of cycle Nnorm (as shown
in Figure 4.11b). One may propose a normalization by the number of cycles
associated to a similar stiffness ratio:

Nnorm =
N

N0.5

(4.4)

where N0.5 is the number of cycles corresponding to δ̄0/δ̄ = 0.5.

Generally, parameter C globally effects on fatigue life, which possibly relates
to material strength or toughness. Parameter m effects on fatigue rate with
respect to crack propagation, which possibly relates to material brittleness.
Higher value of parameter m indicates higher brittleness and more concen-
tration of energy release at crack tip, more obvious acceleration in the last
phase of fatigue evolution.
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(a) (b)

Figure 4.11: Fatigue evolution (a) versus number of cycles N and (b) versus
number of cycles Nnorm for different values of parameter m.

4.6 Comparison of the proposed contact

model with experimental results

Bažant and Xu [148] analyzed pre-cracked concrete beams subjected to three
point bending fatigue tests (see Figure 4.12). A cyclic force is applied with
a maximum amplitude F = 4147.4 N. Experimental results obtained with
the largest sample in this study (height H = 152.4 mm, span L = 381 mm
and thickness t = 38.1 mm) are compared to those from DEM simulations.
The material presents a Young’s modulus E = 27120 MPa. For initial crack
length, a value of a0 = 33.3 mm is considered (a/H = 0.219), which corre-
sponds to the result at N = 10 cycles in experimentation.

Three square packed DEM samples respectively with particle size d = 3 mm,
2 mm and 1 mm, are used in simulations, with parameter set Dini = 1.0 ×
10−3, C = 1.06 × 10−60 (m/cycle/(Pa

√
m)m) and m = 9.27. In Figure 4.12b,

the evolution of the crack length ratio a/H as a function of the number of
cycle N is presented. A very good agreement between the experiment and
the simulations is observed.

Ma et al. [149] conducted a single edge notch tension fatigue test of steel
S460 with Young’s modulus E = 200 GPa. The specimen dimensions are
height H = 108 mm, total length L = 90 mm and thickness t = 6 mm,
with initial crack a0 = 45.8 mm (Figure 4.13a). The specimen subjected to a
cyclic stress with a maximum amplitude σmax = 29.63 MPa and stress ratio
R = 0.5.
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(a)

(b)

Figure 4.12: (a) Geometry of the three-point bending beam. (b) Evolution
of the crack length ratio a/H as a function of the number of cycle N .
Comparison between test results and DEM simulation.

Considering the stress ratio R, with ∆K = Kmax(1−R) and Equation 2.20,
the Paris’ law (Equation 3.25) can be rewritten as

da

dN
= C(1 −R)m(GE)m/2. (4.5)

Three square packed DEM samples respectively by particle size d = 3 mm,
2 mm and 1 mm, are used in simulations, with parameter set Dini = 1.0 ×
10−3, C = 1.98×10−23 (m/cycle/(Pa

√
m)m) and m = 2.1. To save simulation

time, scaling effect of parameter C is used, in programming parameter C is
set 100 times bigger than 1.98× 10−23, after program running the results are
correspondingly scaled 100 times. In Figure 4.13b, the evolution of the crack
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length a as a function of the number of cycle N is presented.

(a)

(b)

Figure 4.13: (a) Geometry of the single edge notch tension fatigue test. (b)
Evolution of the crack length a as a function of the number of cycle N .
Comparison between test results and DEM simulation.

4.7 Summary of the chapter

Chapter 4 deal with the application of the formulation (p-model) of Chapter 3
to multi-particle crack propagation.

Comparisons of the simulations with theoretical results show the relevance
of the proposed formulations. The energy release rate is well identified nu-
merically and the assumption of a constant energy release rate per contact
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appears reasonable.

The contact domain length dc, a particular parameter of the discrete ap-
proach, is shown to be a characteristic length of the sample arrangement. Its
effect on the numerical results is shown and a systematic procedure for its
identification is proposed.

After a parametric study presenting the effect of the parameters of the Paris’
law (C and m), a comparison with experimental results confirms the good
trends observed with the theoretical analysis.

Both comparisons with theoretical and experimental results support the fa-
tigue crack propagation modeling ability of the proposed p-model. Besides,
two advantages shown in the proposed contact model are worthy to be no-
ticed. First, once after the contact degradation processes are triggered by
a given initial degradation Dini, only contact forces F and contact displace-
ments δ are needed to continue. With such a limited information, p-model
still can calculate energy release rate G and crack increment da, then repre-
sents da by contact damage dD. This feature make it a local model and can
be easily programmed into DEM. Second, p-model shows high precision with
respect to Paris’ law, which evidences a good incorporation of fatigue law.
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5.1 Introduction

Fatigue process can be divided in three stages with respect to the propagation
of cracks (see Figure 5.1) as discussed by [114]. The first stage is character-
ized by the propagation of distributed inner micro-cracks and defects. The
propagation and coalescence of the major ones lead to a regime dominated
by relatively big cracks (stage 2), where their propagation per cycle da/dN

91
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as a function of the stress intensity factor range ∆K follows approximately
a power law (see Paris’ law, Chapter 2). When some cracks are big enough
to mobilize the toughness of the material, the propagation per cycle da/dN
accelerates corresponding to the final stage.

(a)

(b)

Figure 5.1: (a) Scheme of the three fatigue stages and (b) its effect on the
propagation of cracks per cycle da/dN as a function of crack length a or stress
intensity range ∆K, solid line for long crack (except a is too small or too
large, crack propagation complies with Paris’ law), and dotted lines indicate
tow possibilities of the unknown law for short crack (modified from [114]).

The previous chapters present the main elements of an energetical contact
model dealing with crack propagations in the framework of linear elastic
fracture mechanics (LEFM). That is to say, the energy release is strictly
governed by the behavior of crack tips. This approach corresponds to the
description of stage 2.
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In this chapter, a generalization of the proposed concepts leads to the con-
struction of a damage model able to deal with rupture behavior from initia-
tion to propagation of multiple cracks (stages 1 and 2). Basically, the energy
release during material rupture is potentially distributed over all contacts
instead of only at previously identified crack tips.

Based on an analysis of the physical effects of the slope ratio p, an implicit
variant Paris’ law is proposed. After the introduction of the concept of
contact endurance limit, the complete damage model is presented.

The proposed damage model is used to simulate the whole process of fatigue
tests (T-C, 4PB and 2PB, see Section 2.3.2.1), and comparisons between
simulation and experimentation are analyzed.

5.1.1 Physical interpretation of the parameter p

As discussed in Chapter 3, p = k0/kp represents the ratio between the elastic
slope k0 and kp the absolute value of the rupture slope of a contact during
the propagation of a crack (see Figures 3.6).

The values of p are shown to be measurable following the scheme presented
in Figure 3.6. Considering the energy equivalence between crack propaga-
tion and energy release in a contact (see Chapter 3), the p variable (mainly
governing the ac −D and da − dD relations, Equations 3.16 and 3.23) con-
ceptually characterizes the relation between the propagated length ac and
the stiffness reduction of the contact D.

Observing Equations 3.16 and 3.17, without consideration about the physical
meaning of p, mere mathematically, the value of p obviously can effect the ac−
D relation. In Figure 5.2, different values of p are adopted in Equation 3.17,
and resultant curves of corresponding relation between 1−D and ac/dc show
the influence of value of p on ac −D relation.

In p-model (Section 3.7.3), the energy release rate G is calculated as G =
dU/(tda), which is related to da − dD relation (Equations 3.23 and 3.24).
And we already know that when value of p in Equations 3.23 and 3.24 is
adopted as the measured slope ratio p = k0/kp, the resultant G values are
constant during each contacts and are close to theory result (see Figure 4.5
in Section 4.3.3.2). Thus, it would be interesting to see what will result if an
imposed value of p which is not equal to the measured slope ratio p = k0/kp
is adopted in Equations 3.23 and 3.24.

To present effect of p on the calculated G in p-model, different values of p
are respectively adopted in the same example. Figure 5.3a shows the rupture
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Figure 5.2: Curves relating stiffness reduction 1−D and relative propagated
length ac/dc for different values of p, based on Equation 3.16.

process of a contact with initial stiffness k0 = 1.61 × 109 N/m. When crack
reaches contact domain (dc = 2 mm) boundary, contact displacement is
δ0 = 3×10−7 m. During rupture process, the measured slope ratio k0/kp = 5.
Plate thickness t = 1 m, and crack growth is governed by p-model with
parameters Dini = 1.0 × 10−5, C = 1.0 × 10−27 (m/cycle/(Pa

√
m)m) and

m = 4.

Figure 5.3b shows G as a function of the ratio of ac/dc, with different imposed
values of p. For p = 5, since it is equal to the measured slope ratio k0/kp = 5,
one gets naturally a constant G, similar to Figure 4.5 in Section 4.3.3.2. For
other values, a clear variant effect is observed. For p value is bigger than
the measured slope ratio k0/kp = 5, resultant G evolution is a decreasing
curve, and in contrast when p value is smaller than the measured slope ratio
k0/kp = 5, resultant G evolution is a increasing curve.

Furthermore, the resultant values of G for different p in p-model are compared
with theoretical result of G. In Figure 5.4, the same test which is performed
for Figure 4.5a is presented for different values of p. The average measured
slope ratio is k0/kp ≈ 2.85 which induces constant values of G per contact.
Figure 5.4a is exactly Figure 4.5a, As shown in Figure 5.4b smaller values of
p = 2.6, induce increasing G during crack through each contact domain, and
the collective results of G are still close to theoretical results.
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(a)

(b)

Figure 5.3: (a) Example of a contact in rupture with initial stiffness k0,
when crack reaches its boundary, contact displacement is δ0. During the
rupture process, the measured slope ratio k0/kp = 5. (b) Corresponding
values of energy release rate G for different values of parameter p adopted in
Equations 3.23 and 3.24.

One can conclude that when an imposed value of p is adopted in p-model,
the calculated value of energy release rate G′ in p-model can be expressed as
G′ = f(p)G, where f(p) is an implicit function of p (no expression), and G is
the calculated value of energy release rate that of the measured slope ratio
k0/kp is adopted as the value of p in p-model.
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(a) (b)

Figure 5.4: Simulations of a symmetric edge cracked plate with square
packed samples and comparison with theoretical results of the energy release
rate G under stress controlled fatigue loading for particle size d = 2 mm (a)
p is measured cycle by cycle, generally p ≈ 2.85 and (b) p is imposed as a
parameter, p = 2.6.

5.1.2 A variant Paris’ law

Paris’ law, Equation 2.21, is a power function, the constant power index m
is related to the slope of the curve to crack growth rate da/dN and ∆K in
logarithmic scale, as shown in Figure 5.1.

For long crack, there exist a clear linear straight stage 2 in Figure 5.1, where
Paris’ law is suitable. For short crack, Paris’ law is not suitable and there
does not exist a widely accepted fatigue law [114]. However, there must
exist a function can express the relation of short crack growth rate da/dN
and ∆K. Instead of a constant power index m and constant parameter C,
varying m and C are surely able to display the relation between crack growth
rate da/dN and ∆K. For example, C and m are respectively of two unknown
function of number of loading cycle N , C = f(N) and m = g(N), then the
crack growth rate for short crack can be described as:

da

dN
= f(N)(∆K)g(N) (5.1)

Alternatively, one may use another one unknown function q(N) to replace
the two unknown function f(N) and g(N) by modifying the base of power
function ∆K, Equation 5.1 can be rewritten as:

da

dN
= C(q(N)∆K)m = C(q(N)GE)m/2 (5.2)
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Theoretically, if the function q(N) is complex enough, the Equation 5.2 can
successfully describe the crack growth rate for short crack.

By assuming that G′ has the same effect as q(N)G, the implicit variant Paris’
law 5.2 can be easily realized in p-model, with a proper imposed value of p. It
means that the effect of p may enable p-model the ability of modeling short
crack propagation.

Continually, assuming the damage development of material is caused by
micro-cracks network development which can be represented as a single short
crack growth governed by a variant Paris’ law (see Figure 5.5). As discussed
above (Figure 5.3), the difference between the imposed value of p and the
measured slope ratio k0/kp leads to variant effect of G which is used in Equa-
tion 3.25, and finally results a variant effect of Paris’ law.

5.1.3 Contact endurance limit

During fatigue tests, fatigue damage distributes unevenly. For some parts of
material subjected to relatively low strain level, fatigue damage is avoided.
To take this phenomenon into consideration, a threshold is needed to de-
termine whether a contact is suffering fatigue damage. Thus, a contact
endurance limit εlim is introduced in simulations, based on the concept of
fatigue endurance limit, in Section 2.3.2.3. For contacts where the strain
level is below the endurance limit ε < εlim no stiffness reductions are devel-
oped. In practice, D is not affected by the loading cycles for these contacts.

This parameter, which has a direct physical meaning, adds robustness to the
model avoiding unrealistic rupture processes in contacts where the strain is
too low or fluctuating around zero.
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(a)

(b)

Figure 5.5: Scheme of the equivalent propagated length for an initially micro-
cracked contact: (a) initial state of material, and (b) progressive coalescence
of cracks.

5.2 Complete damage model (sp-model)

Considering the developpements of chapters 3 and 4, and the discussion of
the previous section, a damage model to be applied in all contacts identically,
where the detection of crack tips is no longer necessary is introduced here.

A simplified p-model, the sp-model is proposed. Two main simplifications
related to the parameters dc (contact domain) and p (slope ratio), specially
useful for randomly packed samples, are presented as follows:

- The effective width of the contact domain dc = dmin, where dmin is the
smallest diameter of the two particles composing this contact.
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- the parameter p becomes an imposed parameter; an intrinsic property
of the contact rupture, instead of a measured quantity.

The damage model contains four parameters: Dini, C, m and p. A constant p
enhances the stability and robustness of calculation and enables the model to
deal with more complex situations, like multi cracks or crack propagation in
softening material caused by damage. It avoids the effects of the fluctuations
of the slope ratio expected in these cases. The complete flowchart of the
damage model implementation is shown in Figure 5.6.

Figure 5.6: Flowchart of the damage model (sp-model) applicable to any
couple of interacting particles.

5.3 Simulation approach for fatigue tests in

DEM

The quasi-static method (Section 3.7.2) is used to conduct fatigue test simu-
lation. Take 4PB fatigue test simulation as an example, the detailed proce-
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dures and principles are depicted in Figure 5.7, moreover, these procedures
and principles are also practicable for T-C and 2PB fatigue tests simulation.

Strain loading is applied by four supports located on the neutral axis of the
sample (Figure 5.7b), the two end supports are vertically fixed, and the two
middle supports move downward till the displacement amplitude δv,max is
reached. δv,max = 76.7µm, 90µm and 100µm correspond respectively to
test strain amplitudes εmax = 115µε, 135µε and 150µε.

(a)

(b)

(c)

Figure 5.7: (a) Geometry of 4PB tests, (b) samples in DEM, and (c) simu-
lation implementation.

Once the two middle supports have been moved downward to achieve the
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test strain amplitudes εmax (Figure 5.7c), they are vertically fixed to keep
the sample in the state of maximum strain level corresponding to the loading
peak in experiments. Such a state corresponds to the beam bending down-
ward, with bottom layers under tension and upper layers under compression.
Thus only bottom layers are involved in the fatigue process, since material
under compression does not experience fatigue. In experiment, beam bends
alternately downward and upward, therefore, both upper and bottom layers
are subjected to fatigue damage alternately. Of course, alternately mov-
ing down and up the two middle supports can be numerically achieved, but
such a dynamic movement requires huge computational capacity and is time
consuming.

As shown in Figure 5.7c, if material at a position (for example,top at middle
span) is under compression when beam bends downward (during the fist half
of loading cycle), then it will be under tension when beam bends upward
(during the second half of loading cycle), and vice versa. The reacted com-
pression force (during the fist half of loading cycle) and tension force (during
the second half of loading cycle) at this position are theoretically equal but
with inverse sign.

Given such symmetry, it is easy to represent both states of bending upward
and downward by only the state of bending upward or downward. To cap-
ture fatigue development of the whole loading cycle, in simulation, keep the
sample bending downward and make contacts both under tension and com-
pression to be involved into fatigue process, since the contacts under ten-
sion represent material undergoing fatigue process in experiment when beam
bends downward (during the fist half of loading cycle) and the contacts under
compression represent material undergoing fatigue process when beam bends
upward (during the second half of loading cycle). This symmetric responses
assumption has been proved in previous studies by Liu [4].

By vertically fixing four supports, the sample keeps in the state of bending
downward. Then the sp-model is applied to all contacts except for contacts
in four circled regions surrounding supports (Figure 5.7c). These four fatigue
free regions are set to avoid unrealistic fatigue development caused by stress
concentration near supports.

With sp-model, fatigue development is represented by contact degradation
increment dD. After each ‘loading cycle’, contact stiffness is updated, and
stress and strain fields in sample are redistributed. Contact dissipated energy
is used to calculate the energy release rate G by which contact degradation
increment dD for next ‘loading cycle’ is determined. These steps are repeated
to continue fatigue evolution till final failure. Globally, during the whole
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simulation, the sample keeps bending downward, it is like static, however,
locally, its stress and strain fields slowly change for every ‘loading cycle’.
That is the quasi-static method to model fatigue test. It is also adopted in
T-C and 2PB fatigue tests simulation.

5.4 Modeling of Tension-Compression fa-

tigue test

Simulation results are compared with experimental results [1] of Tension-
Compression fatigue tests (see Section 2.3.2.1). Configuration setup and
equipment are shown in Figure 5.8. Cylindrical specimens with dimensions
of height 140mm and diameter 75mm are tested respectively for strain
amplitudes 79µε, 92µε and 108µε, at temperature 10◦C with frequency
f = 10 Hz.

(a) (b)

Figure 5.8: (a) Configuration of T-C test, and (b) details of test equipment.
(Modified from [8])

Three randomly packed samples with average particle diameter d = 1mm,
dmin = 0.78mm and dmax = 1.23mm, are generated for simulations (sample
generation procedures are detailed in Appendix B). Material Young’s modu-
lus is considered as E = 16489 MPa, the average value of initial modulus of
specimens in experimentation, and the contact stiffness setting are calibrated
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as Ecmod = 1.21 × E and kratio = 1.0, based on tension tests. Since simu-
lations are in two dimensions 2D method, the cylinder is considered as an
isopachous plate with width equal to cylinder diameter 75mm and thickness
t = 75π/4mm by which the intersection area is same as the cylinder.

5.4.1 Effect of the parameter p

In this section, the effect of p is analysed. Adopted sp-model parameters
are gathered in Table 5.1. In Figure 5.9, simulations of tension-compression
fatigue tests with different values of p = 1, 3, 5, 7, 10 are shown.

Table 5.1: Set of parameters for simulations testing the effect of p.

εlim Dini C (m/cycle/(Pa
√

m)m) m

70µε 1 × 10−4 2.03 × 10−48 8

The parameter p has a strong influence on both fatigue life and the shape
of fatigue evolution curve, as shown in Figure 5.9. When p decreases, the
fatigue life dramatically increases (see Figure 5.9a), the turn point of fatigue
evolution curves occur at higher level of stiffness ratio (expressed as the ratio
of the reaction force to the initial reaction force, F/F0) and the accelerated
part of fatigue evolution curves become steeper (see Figure 5.9b), which
means the final failure caused by macro crack propagation occurs earlier and
more sudden.

(a) (b)

Figure 5.9: (a) Fatigue evolution expressed by the stiffness ratio (represented
as the ratio of the reaction force to the initial reaction force, F/F0) as a
function of the number of cycle N for different values of parameter p, and
(b) stiffness ratio versus the normalized number of cycle.
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Generally, a lower p indicates a more concentrated fatigue damage distribu-
tion. On the contrary, a higher p leads to more distributed fatigue damage,
as shown in Figure 5.10.

Figure 5.10: Effect of parameter p on fatigue damage distribution at stiffness
ratio F/F0 = 0.5, where red means totally broken and blue means intact.

5.4.2 Effect of the contact endurance limit

The effect of the contact endurance limit is investigated here. Adopted sp-
model parameters are gathered in Table 5.2 with two aditional values of
contact endurance limit εlim = 50µε and 80µε. Figure 5.11 shows results for
three different imposed strain levels 79µε, 92µε and 108µε.

Table 5.2: Model parameters for T-C fatigue tests simulations (without
scaling).

εlim Dini p C (m/cycle/(Pa
√

m)m) m

70µε 1 × 10−4 10 1.41 × 10−51 8

As shown in Figure 5.11, despite a slight decrease of the stiffness reduction be-
fore fatigue evolution curve turning acceleration, a larger contact endurance
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limit εlim tends to decrease the fatigue life by hastening the strain localiza-
tion leading to a global rupture. Larger cracks dominate the fatigue process
causing a more brittle behaviour of the sample. This effect is more visible for
lower strain limits because larger zones of the sample become simply elastic,
inducing an even bigger localization of strain at crack tips.

In Figure 5.11c, the fatigue process is observed even for a strain level below
the contact endurance limit. It is simply explained by the heterogeneity of
the random pack structure of the sample, where strain can be locally larger
than the average imposed on the sample.

(a) (b)

(c)

Figure 5.11: Comparison of results for different levels of contact endurance
limit εlim, for test strain levels respectively (a) 108µε, (b) 92µε and (c) 79µε.

The original purpose to introduce the contact endurance limit εlim is to
control the range of contact involved in the damage process. From this point
of view, expressing the material endurance limit as a contact endurance limit
is reasonable, in a certain extent. When material subjected to a loading
condition below its endurance limit, even though its mechanical properties



106 Chapter 5. A damage model for crack initiation and multi-cracking

still slowly change with number of loading cycles increase, these change are
reversible due to non-linearity, self-healing and thixotropy. Thus, we can
consider contact is undamaged under loading condition below the contact
endurance limit.

5.4.3 Simulation versus experimental results of T-C fa-
tigue tests

Simulations results are compared to experimental results of [1] in Figure 5.12.
The model parameters are indicated in Table 5.2.

5.4.3.1 Scaling technique

To save simulation time, the scale effect of parameter C is used (discussed in
Appendix G). For example, setting parameter C value 100 times larger than
its nominal value in Table 5.2, will accelerate simulation 100 times. Thus,
after simulation, the fatigue evolution curve should be scaled by a factor of
100 times. For T-C fatigue test simulation results are shown in Figure 5.12,
a scaling factor of 144 was chosen.

Good agreement are obtained between simulations and experimental results
of T-C fatigue tests. In Figure 5.13, the crack distribution of the three sam-
ples after a fatigue test with strain level of 108µε is presented. In Figure 5.13a
a distributed damage coexists with main crack, which shows the model capa-
bility of dealing with complex fatigue processes. More details about fatigue
evolution expressed by the reaction force F are disclosed in Appendix H.

Fatigue lines of experiments and simulations are shown in Figure 5.14. The
slopes of fatigue lines in log-log scale coordinates for experimental results is
−7.9873 and −7.6732 for simulation, which is close to the value of parameter
m = 8. The linearity of fatigue lines are expressed by the coefficient of
determination R2 = 0.9981 for experimental results and R2 = 0.9868 for
simulation, these values are close to 1 which means totally straight line. The
test strain level ε6 corresponding to fatigue life equal N = 1.0 × 106, for
experiments ε6 = 92.11µε, and ε6 = 92.37µε for simulation.
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(a) (b)

(c) (d)

Figure 5.12: T-C fatigue tests simulation results, (a) comparison of average
simulation results (three samples) and experimentation [1] with different test
strain levels, and fatigue evolution of all three samples (S1, S2 and S3) with
strain levels respectively (b) 108µε, (c) 92µε and (d) 79µε.
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(a)

(b)

Figure 5.13: Crack distribution maps of all three samples, (a) contact degra-
dation map (where red is totally broken and blue is intact), and (b) con-
tact opening map representing by the ratio of the contact displacement δ
at stiffness ratio F/F0 = 0.5 to the contact displacement at test beginning
(F/F0 = 1) δ0 (where red means δ/δ0 ≥ 10 and blue means δ/δ0 = 0 ), for
simulation with strain level 108µε.
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Figure 5.14: Fatigue lines of experiments and simulation for T-C fatigue
tests. The slopes of fatigue lines in log-log scale coordinates and the coeffi-
cient of determination R2 are presented.
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5.5 4PB fatigue tests

The 4PB fatigue test experiments performed by Nguyen [150] are parts of the
project SolDuGri funded by the French National Research Agency (ANR).

The dimensions of test specimens are presented in Figure 5.7a, the test beam
has a total length l = 630mm, with height H = 100mm and thickness
t = 100mm. Three strain amplitudes are applied in strain controlled tests,
150µε, 135µε and 115µε, at temperature 10◦C with frequency f = 25 Hz.

As mentioned in Chapter 2, in test, the relation between the displacement
amplitude on the middle two points δv,max and the resultant strain amplitude
in upper and bottom layers of beam at middle span εmax can be described
by (Equation 2.1):

δv,max =
5

3

A2

H
εmax. (5.3)

And the corresponding reaction force Fv can be obtained by (Equation 2.2):

Fv =
6

5

EI

A3
δv,max, (5.4)

where A is distance between two loading points (Figure 5.7a), E is Young’s
modulus, I is moment inertia and H is the height of beam intersection.

Three randomly packed samples with average particle diameter d = 1.5mm,
dmin = 1.15mm and dmax = 1.85mm, are generated for simulations. Mate-
rial Young’s modulus is taken as E = 13894 MPa (average value of initial
modulus in experiments) and the contact stiffness settings are calibrated as
Ecmod = 1.43 × E and kratio = 1.0, based on the reaction force and corre-
sponding displacement of supports in bending tests (Equation 5.4).

5.5.1 Simulation results of 4PB tests

Simulation parameters are gathered in Table 5.3, and 875 times scaling is
chosen (see Section 5.4.3.1). Comparison between simulation and experi-
mentation is shown in Figures 5.15 and 5.16. More details about fatigue
evolution expressed by the reaction force F are shown in Appendix H.

Figures 5.15 globally shows the good agreement between simulations and
experiments for different test strain levels, which evidences the validation of
sp-model. In Figure 5.16, the envelop curves of the experimental results and
simulations are superposed well, which indicates the simulations for different
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Table 5.3: Parameter setting for 4PB fatigue tests simulations.

εlim Dini p C (m/cycle/(Pa
√

m)m) m

70µε 1 × 10−4 4.5 5.71 × 10−38 5.5

Figure 5.15: Comparison between envelop curves and average curves of 4PB
fatigue test simulations and that of experiments [150], for different test strain
levels. For example, Sim ave 115µε is the average curve of simulation of all
three samples at test stain level 115µε, Sim max 115µε is the maximum
boundary of the envelop of all simulations at test stain level 115µε, and sign
of min for the minimum boundary of the envelop of all simulations. So that
for experimental results with sign Exp.
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(a) (b)

(c) (d)

Figure 5.16: Comparison between 4PB fatigue test simulations and exper-
iments [150], (a) average curves for different test strain levels, (b) average
and envelop curves for test strain level 150µε, (c) 135µε and (d) 115µε.
For example, Sim ave 115µε is the average curve of simulation of all three
samples at test stain level 115µε, Sim max 115µε is the maximum bound-
ary of the envelop of all simulations at test stain level 115µε, and sign of
min for the minimum boundary of the envelop of all simulations. So that for
experimental results with sign Exp.

samples have the same disparity of the experiments for different specimen. It
not just confirms the ability of sp-model for modeling fatigue tests but also
supports the advantage of DEM in reproducing material heterogeneity and
micro structures.
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Figure 5.17 presents the damage distribution and crack trajectories in sam-
ples, one may notice the similarity among these samples that damage and
small crack are distributed mainly near the top and bottom of sample with
one or two main cracks indicating the final failure of sample.

Fatigue lines of experiments and simulations are shown in Figure 5.18. The
slopes of fatigue lines in log-log scale coordinates for experimental results is
−4.5100 and −4.6744 for simulation, which is close to the value of parameter
m = 5.5. The linearity of fatigue lines are expressed by the coefficient of
determination R2 = 0.9533 for experimental results and R2 = 0.9627 for
simulation, these values are close to 1 which means totally straight line. The
test strain level ε6 corresponding to fatigue life equal N = 1.0 × 106, for
experiments ε6 = 115.09µε, and ε6 = 115.97µε for simulation.
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(a)

(b)

Figure 5.17: (a) Damage distribution maps (where red is totally broken and
blue is intact) for all three samples at stiffness ratio F/F0 = 0.5, for test
strain level 150µε, (b) corresponding zoom of (a). Main cracks are marked
by red rectangular.
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Figure 5.18: Fatigue lines of experiments and simulation for 4PB fatigue
tests. The slopes of fatigue lines in log-log scale coordinates and the coeffi-
cient of determination R2 are presented.
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5.6 2PB fatigue tests

The 2PB fatigue tests experiments performed by Nguyen [150] are parts of the
project SolDuGri funded by the French National Research Agency (ANR).

(a) (b) (c)

Figure 5.19: (a) Configuration of 2PB fatigue test, (b) details of test sample,
and (c) sample dimension and test scheme. (Modified from [8,151])

The 2PB test configuration and equipment are shown in Figure 5.19. The
dimensions of test specimens as shown in Figure 5.19c are a wide base B =
56mm, with narrow base e = 25mm, width on top b = 25mm and a total
height h = 250mm. Three strain amplitudes are applied in strain controlled
tests, 160µε, 130µε and 100µε, at temperature 10◦C with frequency f =
25 Hz.

The relation between the displacement amplitude on the top of sample z
(Figure 5.19c) and the corresponding strain amplitude εmax can be described
by [151]

εmax =
z (B − b)2

8bh2
[
(b−B)(3B−b)

2B2 + ln B
b

] , (5.5)

and the corresponding reaction force F can be obtained by [152]:

F =
zEe(B − b)3

12h3
[(

2 − b
2B

)
b
B
− 3

2
− ln b

B

] (5.6)

where h,B, b, e are sample dimensions as shown in Figure 5.19c, and E is
Young’s modulus of material.
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Three randomly packed samples with average particle diameter d = 1.5mm,
dmin = 1.15mm and dmax = 1.85mm, are generated for simulations. Material
Young’s modulus is considered as E = 16254 MPa (average value of initial
modulus in experiments) and the contact stiffness setting are calibrated as
Ecmod = 1.30 × E and kratio = 1.0, based on the reaction force and corre-
sponding displacement of supports in bending tests (Equation 5.6).

5.6.1 Simulation results of 2PB tests

Simulation parameters gathered in Table 5.4, and 1350 times scaling is chosen
(see Section 5.4.3.1). Comparison between simulation and experimentation
is shown in Figures 5.20 and 5.21. More details about fatigue evolution
expressed by the reaction force F are shown in Appendix H.

Table 5.4: Parameter setting for 2PB fatigue tests simulations.

εlim Dini p C (m/cycle/(Pa
√

m)m) m

70µε 1 × 10−4 4.5 3.7 × 10−38 5.5

Damage distribution and crack trajectories in all three samples are presented
in Figure 5.22.

It should be mentioned that in experimentation the same material is used for
4PB and 2PB fatigue tests. As a consequence, one may notice that almost
all simulation parameters settings are identical for 4PB and 2PB fatigue
tests, except slight differences on parameter C which may relate to the slight
difference of material void content, around 4.5% for the 2PB fatigue tests and
2% for the 4PB fatigue tests. And fatigue evolution curves are less dispersed
for 4PB than 2PB fatigue tests.

Fatigue lines of experiments and simulations are shown in Figure 5.23. The
slopes of fatigue lines in log-log scale coordinates for experimental results is
−6.6000 and −4.8279 for simulation, which is close to the value of parameter
m = 5.5. The linearity of fatigue lines are expressed by the coefficient of
determination R2 = 0.8688 for experimental results and R2 = 0.9129 for
simulation. The relatively lower value of R2 for experiments indicates the
disparity of fatigue evolution for different specimens at same test strain level,
which also can be reflected from the scattered fatigue evolution curves in
Figure 5.21. The test strain level ε6 corresponding to fatigue life equal N =
1.0× 106, for experiments ε6 = 117.49µε, and ε6 = 120.73µε for simulation.
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Figure 5.20: Comparison between envelop curves and average curves of 2PB
fatigue tests simulation and that of experimentation [150], for different test
strain levels. For example, Sim ave 160µε is the average curve of simulation
of all three samples at test stain level 160µε, Sim max 160µε is the max-
imum boundary of the envelop of all simulations at test stain level 160µε,
and sign of min for the minimum boundary of the envelop of all simulations.
So that for experimental results with sign Exp.
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(a) (b)

(c) (d)

Figure 5.21: Comparison between 2PB fatigue tests simulation and experi-
mentation [150], (a) average curves for different test strain levels, (b) average
and envelop curves for test strain level 160µε, (c) 130µε and (d) 100µε. For
example, Sim ave 160µε is the average curve of simulation of all three sam-
ples at test stain level 160µε, Sim max 160µε is the maximum boundary
of the envelop of all simulations at test stain level 160µε, and sign of min
for the minimum boundary of the envelop of all simulations. So that for
experimental results with sign Exp.
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Figure 5.22: Damage distribution maps (where red is totally broken and blue
is intact) for all three samples (90◦ rotated) at stiffness ratio F/F0 = 0.5, for
test strain level 160µε. Main cracks are marked by red rectangular.
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Figure 5.23: Fatigue lines of experiments and simulation for 2PB fatigue
tests. The slopes of fatigue lines in log-log scale coordinates and the coeffi-
cient of determination R2 are presented.
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5.7 Summary of the chapter

In this chapter, a damage model (sp-model) is proposed based on the crack
propagation model (p-model). It can be employed by all contacts. The
collective response of all these contacts (governed by sp-model) successfully
reflects the fatigue evolution of the whole sample, in both sample stiffness
evolution and damage distribution.

A parameter p was introduced in sp-model, it directly performs in da− dD
transformation (Equations 3.23 and 3.24). For a contact, the amount of the
difference between parameter p and its slope ratio k0/kp finally has effect
on the fatigue rate of this contact. When p > k0/kp, it leads to a decrease
effect on the fatigue rate, and with larger amount of p− k0/kp, the stronger
decrease tendency. On the contrast, when p < k0/kp, it leads a increase effect
on the fatigue rate.

During fatigue test simulation, all contacts behavior are governed by sp-
model with a constant value of parameter p. Contacts at different positions,
near or far from a crack tip, also the surrounding micro structures, have
different values of the slope ratio k0/kp. Also, with fatigue simulation going,
the slope ratio of a contact may change due to degradation of surrounding
contacts. That is parameter p keeping constant, while contacts slope ratio
changes, which means the amount of the difference between parameter p and
contact slope ratio k0/kp changes and consequently the fatigue rate of contact
changes. The collective fatigue evolution of all contacts finally behaves as
the fatigue process of the whole sample.

Good agreements are observed in comparison of simulation and experiment
for T-C, 4PB and 2PB fatigue tests. Using the sp-model in DEM successfully
catches both the fatigue evolution and localized failure in fatigue tests. Also
it works well for different test strain levels. Based on the scale effect of
parameter C, a scale technique is used in simulations. It can efficiently save
computational time.
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6.1 Conclusions

In this work, a contact model based on the local release of energy is devel-
oped for discrete element simulations of fatigue behavior with applications
to asphalt concrete samples.

The discrete element method allows a consistent representation of heteroge-
neous materials, which leads to more realistic failure processes with localized
crack development. As outlined in Chapter 2, two aspects are necessary to
properly model fatigue crack propagation: firstly, the capacity of represent-
ing small crack increments and, secondly, the evaluation of the energy release
rate. For the whole fatigue evolution, the crack initiation must naturally be
also considered.

The two main problems for modeling crack propagation, are solved in Chap-
ter 3. The proposed relation between propagation length da and stiffness
reduction dD allows the representation of any amount of crack growth, much
below the particle scale. This is a fundamental feature for fatigue crack prop-
agation, which is based on tiny increments per loading cycle. This description
is supported by the evaluation of the energy release, another key element in
the large majority of fracture models. Paris’ law is then simply incorporated
composing a contact model for fatigue crack growth, called here p-model.

Another important advantage of p-model relay on its local evaluation of the
energy release rate, which is a key element in a discrete element contact
model. The rupture of the contact at the crack tip is triggered by a small
initial stiffness degradation Dini and the subsequent evolution is defined by
the direct evaluation of contact forces and displacements. Convergent re-
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sults were obtained for regular particle packings with progressive reduction
of the particle diameter, which confirms the consistency of the formulation
in Chapter 4.

In Chapter 5, the effect of the slope rate p is identified on the evaluation
of the energy release rate G. Imposed values (instead of the measured val-
ues in p-model) leads to the control of the variation of G inside a contact.
This micro-structural effect is incorporated in a damage model, called here
sp-model. Such model is defined to be applied in all contacts, independently
to the existence of initial cracks. This important feature allows a complete
description of the rupture process dealing with crack initiation and its sub-
sequent propagation with a single and simple approach. The simulations
of experiments of tension-compression, 2-point and 4-point bending tests of
asphalt concrete show very good agreements with different strain amplitudes.

6.2 Perspectives

Considering the models proposed in this thesis, several extensions and new
applications are worth of more investigation in the future. In particular:

• Phenomena like non-linearity, self-heating and thixotropy, which affects
the fatigue response of asphalt materials, can be further discriminated.

• The effect of the granulometry may lead to more complex crack patterns
and deserves further analysis.

• The simple extension of the proposed models for three dimensional
samples may also cover more complex multi-cracking process.

• The fatigue response of other materials should be analyzed considering
the generality of the formulation.



Appendix A

Discrete element method

A.0.1 Algorithm of DEM calculation [101]

Discrete element method (DEM) is a numerical model capable of describing
the mechanical behavior of assemblies of discs and spheres. It allows finite
displacements and rotations of discrete particles, detects new contacts au-
tomatically as the calculation progresses, and solves the time evolution of
this discrete system using an explicit dynamic solution to Newton’s laws of
motion. The fundamental elements for calculation are the dimensions of the
particles, their spatial positions and properties.

Being a time-stepping formulation, as the simulation progresses, the model
state is advanced in time by a series of calculation cycles. In each single calcu-
lation cycle, five operations are executed successively, including the timestep
determination, law of motion, advance time, contact detection and force-
displacement law, as shown in Figure A.1 [144].

Figure A.1: Operations executed during each calculation cycle.
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The detailed information about the operations are well described in the doc-
umentation of Particle Flow Code 5.0 and summarized as follows [144]:

1. Timestep determination: The DEM calculation requires a valid, finite
timestep to ensure the numerical stability of the model. The critical timestep
for one contact is tcrit =

√
m/ktran or tcrit =

√
I/krot, where m is the mass,

I is the moment of inertia of the particle, ktran and krot are the translational
and rotational stiffnesses. The critical timestep for the whole structure is
decided by the smallest tcrit among all the contacts.

2. Law of motion: The position and velocity of each body is updated
according to Newton’s laws of motion using the current timestep and the
forces calculated during the previous cycle.

3. Advance time: The model time is advanced by adding the current
timestep to the previous model time.

4. Contact detection: Contacts are dynamically created/deleted based on
the current particle positions.

5. Force-displacement law: The forces developing at each contact are
updated by the appropriate contact model using the current state of the
particles.

A.0.2 Stabilisation [4]

For a simulation under (quasi-)static condition, the model requires the stable
state of force distribution or particle equilibrium, which means that enough
time or time-steps are required in order to reach such a balance state or
equilibrium. For a quasi-static load, the method of stabilization is low loading
rate or small time-step. It should be noted the critical time-step is in fact the
maximum timestep to keep a stable state of model, but may not small enough
for the quasi-static load. In the simulation with requirement of extreme
equilibrium, the stabilization within a certain tolerance should be worked
out with all boundary condition fixed unmovable.

A.0.3 Viscous damping

The critical damping constant ci is given by:

ci = 2
√
kimc (A.1)

where mc =
m1m2

m1 + m2

, m1 and m2 are the mass of two connecting particles.
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In this work, cn = cs = 0.7ci .

A.0.4 Other

In this work, ball density is set as 2600Kg/m3, and time step is set automat-
ically by software PFC. These two settings do not effect the results presented
in this work, just for information.
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Appendix B

Samples generation [4]

There are many methods to generate the randomly packed assemble in DEM,
which can be categorized into dynamic methods (e.g. boundary compaction
method, particle drop method and particle size scaling method) and construc-
tive method [153, 154]. In this research work, the randomly packed sample
generation procedure is based on the procedure adopted by Potyondy [145],
which is mainly the size scaling method. The assembly is generated with three
procedures, namely particle generation, internal stress control and floater
elimination. During all the model generation, the particles are frictionless
(Fs = 0, see Equation 3.1), which avoid any internal shear contact force.

B.1 Particle generation and internal stress

control

In the first phase, a highly compacted assembly is generated within the do-
main of rectangular walls with relatively big overlaps between the parti-
cles [145]. Normally, when the contact model is applied, the tremendous
lock-in force exists among the assembly. Addressing to this issue, a stress
control procedure is imposed to reduce the stress of the initial assembly by
shrinking all the particle sizes with the same factor step by step. In Po-
tyondy’s study [145], a specified isotropic stress is set as the target stress,
whose value is 1% of the initial stress. The target stress is naturally depen-
dent on the initial particle distribution and should be adapted to the contact
stiffness. In order to avoid any misunderstanding, the internal stress level is
expressed by the overlap ratio hr relative to the mean particle radius R,

hr =
δn

R
, (B.1)

where δn is the average overlap of all contacts of the assembly.

A scale factor for the particle shrinking XR is then defined based on the
existing overlap ratio hr and its target hT

r
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XR = η ×
(
hT
r − hr

)
+ 1 (B.2)

where η is a hysteresis factor working on the numerical stability of the pro-
cedure. Its value is set as η = 0.1 in this work, which promises the gradual
decrease of the particle radius. If hr is bigger than its target value hT

r all
particles may be decreased by the scale factor XR < 1, otherwise, their radius
may increase. The tolerance of the stress control procedure is defined as:

(
hr − hT

r

)
hT
r

< 0.2 (B.3)

After the rescaling, the system is no longer in balance. A particle natural
rearrangement occurs during a stabilization phase (see Appendix A).

B.2 Floater elimination procedure

Floaters are defined as the particles with less than 3 contacts. These particles
are not in stable state because only normal forces exist for all contacts,
and thus forming unintended voids inside the material. To eliminate these
potential voids, the radius of all particles identified as floaters, are firstly
enlarged until they are in contact with more than 2 particles around. Then
their radius are decreased step by step until the average overlap of each floater
reaches the average overlap of the assembly. During this process, the rest of
the particles do not move.

B.3 Interactive procedure and adopted pa-

rameters

In practice, after the generation of the particles, a loop containing the Equa-
tions B.1 and B.2, followed by the rescaling of radius by the XR factor is
calculated until the relative error between the overlap and the target overlap
becomes smaller than 20% as expressed in Equation B.3.

In the following, all numerical samples are generated with a uniform distribu-
tion of radius between the minimum to maximum particle radius (respectively
Rmin and Rmax). If Rmax/Rmin is close to 1.0, the assembly will be seriously
crystalline arrangement [145], while if Rmax/Rmin is too big, the demanded
number of particles forming the assembly is too large to have acceptable
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computational time. The size ratio is set as Rmax/Rmin = 1.6, which is in
the range of the size ratio adopted by other researchers [145,154,155], and is
available to produce isotropic macro properties.

An example of generation of a square sample with dimension L = 40mm is
presented in Figure B.1. The difference after model generation is presented
in Figure B.1b, where a significant reduction of the contact overlap ratio
has been obtained, and there is no floater in the assembly. The system
presents 429 particles with an average radius R = 1mm and L = 40R. A
target overlap ratio hT

r = 10−9 is adopted. One may observe the relatively
homogeneous overlap distribution at the end of the process, associated to a
neglectful internal stress state obtained with the generation procedure.

Figure B.1: Square sample generation. (a) Initial particle distribution (hr ≈
1.37 × 10−2. and 2 floater particles are indicated in black. (b) At the end of
the generation process (hr ≈ 1.04 × 10−9, no floater is observed), (Modified
from [4]).

B.4 Generator random seed

To generate randomly packed samples, a number is needed as the random
seed. By default of the software (PFC), the random seed is 10000. In this
work, random seeds for three samples of Tension-Compression and 2PB fa-
tigue tests are 10001, 10002 and 10003, for 4PB fatigue tests are 10021, 10022
and 10023.
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Appendix C

Theoretical calculation of
cracked plate

C.1 The stiffness of cracked finite plate

Considering a thought experiment, an elastic plate with height H, width 2b,
thickness t, material Young’s modulus E, subjected uniformly distributed
stress σ, see in Figure C.1a. For the plate without crack, its stiffness kP

0 can
described as

kP
0 =

F

δ̄0
(C.1)

where the net force F and the average relative displacement δ̄0 can be ob-
tained by

F = σ · 2bt (C.2)

δ̄0 =
σH

E
(C.3)

In the thought experiment, an edge crack appear at the middle and grows to
a length a (see in Figure C.1b). The stiffness of plate after cracking kP

a may
be globally calculated by

kP
a =

F

δ̄a
(C.4)

By associating to Equation C.1 and C.4, one may get the ratio of kP
a to kP

0 ,

kP
a

kP
0

=
δ̄0
δ̄a

=
δ̄0

δ̄0 + ∆δ̄
(C.5)

In global view, taking the whole plate as an object, the released energy
during cracking process Ua can be calculated by the difference between the
work done by external force and the elastic potential energy change (see
section ??), and Ua can be geometrically described as the area of the triangle
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(a) (b)

(c) (d)

Figure C.1: (a) Plate deformation without crack, (b) plate deformation with
crack, (c) the average relative displacement at plate ends versus crack length
in the plate, (d) the external force versus the average relative displacement,
describing the released energy during plate cracking.

shown in Figure C.1d, therefore,

Ua =
1

2
F (δ̄a − δ̄0)

=
1

2
F∆δ̄

(C.6)

associated with Equation C.2, we can rewrite Equation C.6 as

Ua =
1

2
σ · 2bt∆δ̄ (C.7)
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transform Equation C.7, one may get

∆δ̄ =
Ua

σbt
(C.8)

combine Equation C.3 and C.8, Equation C.5 can be rewritten as

kP
a

kP
0

=
δ̄0
δ̄a

=

σH

E
σH

E
+

Ua

σbt

(C.9)

Till here, once we get the expression of Ua and submit it into Equation C.9,
we can solve Equation C.3.

G =
K2

E
(C.10)

In local view, the energy release only occurs at the crack tip, when crack
propagates and new crack surface is generated, since at anywhere else of the
plate, material keeps continuous and elastic. Based on Equation ?? and ??
the released energy Ua can be calculated as

Ua =

∫
dU = t

∫ a

0

Gda (C.11)

and the energy release rate G may be obtained by its relation with the stress
intensity factor (SIF) K,for plane stress condition, Equation 2.20.

Thus, the Equation C.11 can be rewritten as

Ua =
t

E

∫ a

0

K2 da (C.12)

For finite width plate with edge crack (see Figure C.1), the stress intensity
factor K is described as [108]

K = σ
√
πa

(
1.122 − 0.231ξ + 10.550ξ2 − 21.710ξ3 + 30.382ξ4

)
(C.13)

where ξ = a/2b.

Submit Equation C.13 into Equation C.12 and solve Ua, then submit Ua into
Equation C.9, one may obtain

kP
a

kP
0

=
δ̄0
δ̄a

=
1

1 + πP

(
2b

H

) (C.14)



136 Appendix C. Theoretical calculation of cracked plate

where,

P =1.261ξ2 − 0.338ξ3 + 11.871ξ4 − 21.404ξ5 + 63.110ξ6

− 134.803ξ7 + 278.099ξ8 − 293.149ξ9 + 184.608ξ10

and ξ = a/2b.

(a) (b)

Figure C.2: (a) Finite plate with symmetric edge cracks, (b) finite plate
with center crack.

By the approach above, one can also get the expression of plate stiffness with
two symmetric edge cracks or center crack (see Figure C.2).

For the plate with two symmetric edge cracks, stress intensity factor K is
described as [108]

K = σ
√
πa · 1.122 − 0.561ξ − 0.205ξ2 + 0.471ξ3 − 0.190ξ4√

1 − ξ
(C.15)

where ξ = a/b.

The resultant expression of plate stiffness is

kP
a

kP
0

=
δ̄0
δ̄a

=
1

1 + πP

(
2b

H

) (C.16)

where,

P = − 0.406 ln |ξ − 1| − 0.406ξ + 0.427ξ2 − 0.135ξ3 − 0.138ξ4

+ 0.147ξ5 − 0.029ξ6 − 0.022ξ7 + 0.018ξ8 − 0.004ξ9
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and ξ = a/b.

For the plate with center crack, stress intensity factor K is described as [108]

K = σ
√
πa · 1 − 0.5ξ + 0.370ξ2 − 0.044ξ3√

1 − ξ
(C.17)

where ξ = a/b.

The resultant expression of plate stiffness is

kP
a

kP
0

=
δ̄0
δ̄a

=
1

1 + πP

(
2b

H

) (C.18)

where,

P = − 0.682 ln |ξ − 1| − 0.682ξ + 0.159ξ2 − 0.227ξ3 + 0.077ξ4

− 0.030ξ5 + 0.005ξ6 − 0.0003ξ7

and ξ = a/b.

C.2 Verification of formulas describing the

stiffness of cracked finite plate

To compare with Equation C.14, C.16 and C.18, three groups simulation for
tension test of cracked plates, respectively with edge crack, symmetric edge
cracks and center crack. The target plates with height H = 160 mm, width
2b = 100 mm and thickness t = 1 m, material Young’s modulus E = 10 GPa,
subjected uniformly distributed stress σ = 0.625 MPa, see in Figure C.1a.
The regular square-packed samples with particle diameter d = 2 mm, and
contact normal stiffness and shear stiffness are set based on material Young’s
modulus E.

kn = ks =
EAc

l
(C.19)

where Ac = td is the area of contact intersection, and l = d is contact length,
therefore,

kn = ks = Et (C.20)

in this case, kn = ks = 1 × 1010 N/m.

A series of crack whose length a is integer multiple of particle diameter d,
for example, for particle diameter d = 2mm, crack length could be set as
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a = 2mm, 4mm, 6mm · · · , for d = 1mm, a = 1mm, 2mm, 3mm · · · , and
cracks were set by accordingly cutting off certain contacts in DEM samples.
Subjected the same uniformly distributed stress σ = 0.625 MPa, the aver-
age relative displacement δ̄ result from simulations and that result from the
analytic expression are compared in Figure C.3

Good agreements are shown in Figure C.3, which strongly support the valid-
ity of the formulas describing the stiffness of cracked finite plate, respectively
with respectively with edge crack, symmetric edge cracks and center crack.
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(a)

(b)

(c)

Figure C.3: Comparison of the average relative displacement δ̄ between
analytic results and simulation results, for (a) plate with edge crack, (b)
plate with symmetric edge cracks, (c) plate with center crack.
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Appendix D

Theoretical calculation of
fatigue evolution

D.1 Calculation of theoretical results

For several classical scenario of plate with crack, like center crack, edge crack
and symmetric edge cracks, there are formulas that can describe the extent of
stress concentration at crack tips by the stress intensity factor K (Section C.1,
in Appendix C), and combining the formulas that can describe the stiffness
of cracked plates in Section 3.7.2, Chapter 3, the theoretical fatigue evolution
for these classical scenario can be calculated by the quasi-static method.

Figure D.1: Quasi-static process for stress controlled fatigue test.

For stress controlled fatigue test, taking the symmetric edge cracks scenario
(see in Figure D.1) as an example, its fatigue evolution both in aspect of crack
propagation and plate stiffness change can be obtained by the following steps:

1 ) Given plate dimension (height H, width 2b and thickness t), material
property E, the maximum stress during a ‘loading cycle’ σmax, and the
initial crack length a0,
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2 ) With the crack length a0 and plate dimension, the plate stiffness ratio
can be obtained by Equation C.16,

3 ) With the crack length a0, plate dimension and the load stress σmax, the
corresponding Kmax can be calculated by Equation C.15,

4 ) With the Kmax, by using Paris’ law result the crack increment da,

5 ) Update crack length a and back to step 2 for next ‘cycle’ till stiffness
ratio reach 0.5.

By this approach, the curve of stiffness ratio versus number of cycles and
the curve of crack length versus number of cycles can be obtained as the
theoretical results of a fatigue test. Mentioned that this approach can also
be used for scenario of center crack and edge crack in the same procedures.

Figure D.2: Quasi-static process for strain controlled fatigue test.

Compared with the stress controlled fatigue test, for the strain controlled fa-
tigue test the main procedures to calculate theoretical results is exact same,
only a slight difference in the calculation of the Kmax. It is that in stress con-
trolled fatigue test the load stress is constant σ = σmax and can be directly
submit into Equation C.16 while for strain controlled fatigue test with the
crack growth the holding force F at the ends of plate changes thus the cor-
responding load stress σ changes accordingly. First the holding force for an
intact plate F0 = εE ·2bt, the equivalent initial load stress σ0 = F0/2bt = εE,
then after crack occurrence the equivalent load stress σ = σ0(k

P/kP
0 ), and σ

can be used to calculate the Kmax.

Also taking the symmetric edge cracks scenario (see in Figure D.2) as an
example, its fatigue evolution both in aspect of crack propagation and plate
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stiffness change can be obtained by the following steps:

1 ) Given plate dimension (height H, width 2b and thickness t), material
property E, the maximum strain during a ‘loading cycle’ εmax, and the
initial crack length a0,

2 ) With the crack length a0 and plate dimension, the plate stiffness ratio
can be obtained by Equation C.16, and meanwhile the load stress σ,

3 ) With the crack length a0, plate dimension and load stress σ, the cor-
responding Kmax can be calculated by Equation C.15,

4 ) With the Kmax, by using Paris’ law result the crack increment da,

5 ) Update crack length a and back to step 2 for next ‘cycle’ till stiffness
ratio reach 0.5.
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Appendix E

Stability and robustness
analysis

E.1 Effect of parameter Dini

To investigate the effect of the parameter Dini in the proposed model, three
stress controlled fatigue test simulations are compared. The test configura-
tion is same as the test in Section 4.3.3. In three simulations, particle size
d = 2 mm, and parameters are set as Table E.1.

Table E.1: Parameters set for simulations to research the effect of parameter
Dini.

Dini C m
1.0 × 10−2 1.0 × 10−12 1.25
1.0 × 10−3 1.0 × 10−12 1.25
1.0 × 10−4 1.0 × 10−12 1.25
1.0 × 10−5 1.0 × 10−12 1.25

Two points may be concluded. First, within a relatively wide range Dini =
1.0 × 10−2 to Dini = 1.0 × 10−5, the parameter Dini does not obviously
influence the fatigue evolution (Figure E.1), that is because the parameter
Dini only as a trigger to start the contact degradation by calculating the
energy release rate G for the first cycle, and not involved in after cycles
(Section 3.7.3). This feature allow the proposed model potential user to
choose the value of parameter Dini in a relative wide range.

Second, a larger value of parameter Dini leads to a relative stabler calculation
of the contact separation ratio p and G at the first several cycles for a contact
(see in Figure E.2 to E.9), such a tendency may due to the computation
precision of DEM software, since p is calculated by the scope of two sequential
points coordinated by the contact forces and contact displacements. If the
parameter Dini as an initial degradation of contact is too small, the two points
would be very close, which may increase the error for the calculation of p,
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Figure E.1: Fatigue evolution from simulation results with different param-
eter Dini.

Figure E.2: Energy release rate from simulation results with parameter
Dini = 1.0 × 10−2.

otherwise a higher precision of computation of DEM software is required, see
in next section.
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Figure E.3: The contact separation ratio p evolution from simulation results
with parameter Dini = 1.0 × 10−2.

Figure E.4: Energy release rate from simulation results with parameter
Dini = 1.0 × 10−3.
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Figure E.5: The contact separation ratio p evolution from simulation results
with parameter Dini = 1.0 × 10−3.

Figure E.6: Energy release rate from simulation results with parameter
Dini = 1.0 × 10−4.
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Figure E.7: The contact separation ratio p evolution from simulation results
with parameter Dini = 1.0 × 10−4.

Figure E.8: Energy release rate from simulation results with parameter
Dini = 1.0 × 10−5.
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Figure E.9: The contact separation ratio p evolution from simulation results
with parameter Dini = 1.0 × 10−5.
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E.2 Robustness analysis

As mentioned before, the deviated values of G and p are almost located at
the beginning several cycles of a contact, in fact it is the deviated values of
parameter p lead to the unrealistic transformation from initial degradation
Dini to crack increment da, consequently unrealistic value of da final result
a deviated energy release rate G.

While the contact separation ratio p is defined as the absolute value of the
ratio of the initial stiffness of contact k0 (constant)to the slope of contact
traction separation kp, thus obviously the deviated value of p may caused by
the error in the calculation of the slope of contact traction separation.

As shown in Figure E.10, two factors may influence the slope calculation.
First, the DEM software computation precision determine the precision of
contact displacement and contact forces which can be vividly illustrated as
the point position (see Figure E.10). Second, the bigger difference of contact
force and displacement between current state and the previous cycle, dis-
played as a larger distance of two points on the contact traction separation
path, can be helpful to reduce the error of slope calculation caused by the
computation error. That can explain why larger value of initial degradation
Dini result stabler p values. And also that is why under same conditions
simulation with larger particle size result stabler p values.

Figure E.10: Schematic description of the error for contact traction separa-
tion slope calculation.
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Figure E.11: Energy release rate from simulation results with balance level
1.0 × 10−5.

Figure E.12: The contact separation ratio p evolution from simulation results
with balance level 1.0 × 10−5.

In DEM simulations, for every time strain field and stress field redistribution
caused by particle displacement change or particle subjected force change,
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Figure E.13: Energy release rate from simulation results with balance level
1.0 × 10−6.

Figure E.14: The contact separation ratio p evolution from simulation results
with balance level 1.0 × 10−6.

the system needs to once again get equilibrium, the balance level of system
equilibrium [144] can be defined as the ratio of the magnitude of unbalance
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Figure E.15: Energy release rate from simulation results with balance level
1.0 × 10−7.

Figure E.16: The contact separation ratio p evolution from simulation results
with balance level 1.0 × 10−7.

force to the magnitude of the resultant force on the particle, like 1.0 × 10−5.
A lower balance level may leads to a higher precision of particle position and
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contact forces.

To investigate the effect of balance level, three stress controlled fatigue test
simulations are compared. The test configuration is same as the test in
Section 4.3.3. In three simulations, particle size d = 2 mm, and parameters
are set as Dini = 1.0×10−3, C = 1.0×10−12 and m = 1.25, while balance level
for three simulations are set respectively as 1.0× 10−5, 1.0× 10−6 1.0× 10−7.
From Figure E.11 to E.16, it is obvious that with the computation precision
increase both the values of p and values of G become stabler.

Figure E.17: Fatigue evolution from simulation results with different balance
level.

Interestingly, the fatigue evolution seems not influenced by different balance
level in computation (see in Figure E.17). And combined with the effect of
the initial degradation Dini, the total results prove a strong robustness of the
proposed model. The further reason to explain such a robustness is that after
the contact degradation is triggered by the given initial degradation Dini, all
after calculations are only determined by contact forces and displacements,
even though at the beginning several cycles the slope of contact traction
separation may be calculated not so precisely, it naturally become stable and
precise very soon.



156 Appendix E. Stability and robustness analysis



Appendix F

Morphology method

F.1 Using p-model in randomly packed sam-

ples

Morphological features of randomly packed samples, can be roughly classi-
fied into two types: triangle and polygon contact structures, as shown in
Figure F.1. The triangle contact structures can be approximated as hexag-
onal packed samples, thus, the effective width of contact domain can be

considered as dc =
1

2
dmin, dmin is the minimum diameter of two particles

consisting the contact. Otherwise, the polygon contact structures can be ap-
proximated as square-packed samples, dc = dmin. By this way, the p-model
can be successfully adopted in randomly packed samples.

Figure F.1: Examples for triangle and polygon contact structure in randomly
packed sample.
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(a) (b)

Figure F.2: (a) Initial crack tip identification, yellow contacts shows crack
surface near crack tip, and (b) schematic for the effective width of contact
domain dc detection.

F.1.1 Simulation procedures

Unlike square-packed and hexagonal packed samples have the constant effec-
tive width of contact domain dc, in randomly packed samples, every contacts
are identified as the nearest one to crack tip has to detect its surrounding
contact structure by which to determine its dc.

As an example shown in Figure F.2a, the contact nearest initial crack tip
is identified as the contact whose strain level is the highest among contacts
forming initial crack surface near crack tip (from crack tip till a distance
equal to half initial crack length). Let us assume the contact c1 is identified
as the contact nearest initial crack tip, obviously it belongs to a polygon
contact structure, therefore for contact c1, its dc = dmin. Continually, with
crack propagation, after crack thoroughly permeates contact c1, the contact
nearest new crack tip will be identified based on strain level among contacts
forming newly grown crack surface. As shown in Figure F.2b, if contact c2 is
identified as the contact nearest new crack tip, and it belongs to a polygon
contact structure, thus its dc = dmin. Otherwise, if contact c3 is identified
as the contact nearest new crack tip, and it belongs to a triangles contact
structure (already broken contacts do not count as any contact structure),

thus its dc =
1

2
dmin. By the method, crack continually propagates. Figure F.3

shows one example of crack path and their dc in simulation.

F.1.2 Sample preparation

Randomly packed samples generation procedures are detailed in Appendix B.
6 samples with average particle diameter d = 2mm, and another 6 samples
with average particle diameter d = 1mm are used in simulations.
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(a)

(b)

Figure F.3: (a) Crack path in contact degradation map, red to green corre-
sponds to D = 1 to D = 0, and (b) dc of contacts on crack path, red contact

means its dc = dmin and green means dc =
1

2
dmin.

Based on tension test simulation, the contact stiffness setting are calibrated
as Ecmod = 1.21 × E and kratio = 1.0, where E is material Young’s modu-
lus. Then every specific contact stiffness are automatically set based on the
contact elastic modulus Ecmod and kratio = 1.0 following Equation 3.8.

F.1.3 Simulation results in randomly packed samples

The modeled fatigue test is exactly same with Section 4.3.3, the plate dimen-
sion are height H = 160 mm, width 2b = 100 mm and thickness t = 1 m,
with symmetric edge cracks, initial crack length a0 = 10 mm, subjected
sinusoidal strain εmax = 100 µε, material Young’s modulus E = 10 GPa.

For theoretical results calculation, the parameters relate to material proper-
ties are set as C = 1.0 × 10−12 and m = 1.25.

For simulation, parameters used in p-model are set as Dini = 1.0 × 10−3,
C = 1.0 × 10−12 and m = 1.25.

The average results of fatigue evolution from 6 samples with average par-
ticle diameter d = 2mm shows excellent agreement with theoretical result,
as shown in Figure F.4. Compared with the fatigue evolution results from
samples with average particle diameter d = 1mm, in Figure F.6, bigger av-
erage particle size leads to more dispersed fatigue curves, caused by more
tortuous crack paths (Figure F.5) than that for smaller average particle size
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Figure F.4: Comparison of simulations results with theoretical results, in
samples with average particle diameter d = 2mm.

(Figure F.7).

These good agreements between simulations and theoretical results support
the usage of p-model in randomly packed samples, and the crack paths indi-
cate the ability of modeling crack propagation for p-model.
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Figure F.5: Crack paths in contact degradation map, red to green cor-
responds to D = 1 to D = 0, in samples with average particle diameter
d = 2mm, s1-s6 represent sample 1-sample 6.
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Figure F.6: Comparison of simulations results with theoretical results, in
samples with average particle diameter d = 1mm.

Figure F.7: Crack paths in contact degradation map, red to green cor-
responds to D = 1 to D = 0, in samples with average particle diameter
d = 1mm, s1-s6 represent sample 1-sample 6.



Appendix G

Technique to save simulation
time

From Equation 3.25 and discuss in Section 4.5.1, we know that parameter C
has an effect of scaling the fatigue evolution. For example, two simulations
have same parameter sets except the parameter C, with respectively C and
C ′ and C ′ = βC, based on Equation 3.25 of the Paris’ law, one can get the
relation of resultant fatigue lives

da

dN ′ = βC (GE)m/2 , (G.1)

then

dN ′ =
dN

β
. (G.2)

In simulation computation, using C ′ = βC will scale the fatigue evolution β
times and save β times computation.

Figure G.1 displays the crack growth with different scale times for parameter
C. The nature of this scaling technique is using current crack growth rate
da/dN to predict crack growth in following a number of cycles. While crack
growth rate may change with crack length increase, thus, smaller scale times
leads to more accurate result.

To investigate the error caused by this scaling technique, four simulations are
compared (Figure G.2), the parameter for simulation without scale is shown
in Table 5.2. For other three simulations, except for parameter C, other
parameter are set as the same with simulation without scale. For simulation
scale 10 times, C ′ = 10C, correspondingly, the resultant number of cycle dN ′

is multiplied by 10.

From Figure G.2, one may notice that even scale 1000 times, the resultant
fatigue evolution curve is still not deviated too much, and a greatly time
saving is realized.
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Figure G.1: Illustration of scales in simulation.

Figure G.2: Examples for different scale times and corresponding consumed
time.



Appendix H

Reaction force evolution

Figures H.1, H.2 and H.3 show comparisons of reaction force evolution be-
tween simulations and that of experimentation of T-C, 4PB and 2PB fatigue
tests.

(a) (b)

(c) (d)

Figure H.1: T-C fatigue tests simulation results, (a) comparison of average
simulation results and experimentation [1] with different test strain levels,
and reaction force evolution of all three samples with strain levels respectively
(b) 108µε, (c) 92µε and (d) 79µε.
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(a) (b)

(c) (d)

Figure H.2: Comparison of reaction force evolution between 4PB fatigue
tests simulation and that of experimentation [150], (a) average curves for
different test strain levels, (b) average and all curves for test strain level
150µε, (c) 135µε and (d) 115µε.
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(a) (b)

(c) (d)

Figure H.3: Comparison of reaction force evolution between 2PB fatigue
tests simulation and experimentation [150], (a) average curves for different
test strain levels, (b) average and all curves for test strain level 160µε, (c)
130µε and (d) 100µε.
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[143] N. Moës, C. Stolz, P.E. Bernard, and N. Chevaugeon. A level set based
model for damage growth: the thick level set approach. International
Journal for Numerical Methods in Engineering, 86(3):358–380, 2011.
(Cited on pages xxxv and 40.)

[144] Itasca Consulting Group Inc. Particle Flow Code 5.0 documentation,
2018. (Cited on pages 46, 125, 126 and 153.)

[145] D.O. Potyondy and P.A. Cundall. A bonded-particle model for rock. In-
ternational journal of rock mechanics and mining sciences, 41(8):1329–
1364, 2004. (Cited on pages 46, 129, 130 and 131.)

[146] F.A. Tavarez and M.E. Plesha. Discrete element method for modelling
solid and particulate materials. International journal for numerical
methods in engineering, 70(4):379–404, 2007. (Cited on page 47.)

[147] B.D. Le. Modélisation discrète en mécanique de la rupture des
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Lei MA 

Discrete element modeling of asphalt 
concrete fatigue behavior by an 

energetic method. 

 

 

Résumé 

Deux modèles discrets, le modèle de propagation des fissures et le modèle d'endommagement sont 

proposés dans ce travail. Tout d'abord, pour représenter l'incrémentation des fissures dans la 

méthode des éléments discrets, la relation entre la croissance des fissures et l'endommagement du 

contact est formulée, sur la base de l'équivalence énergétique entre l'énergie dissipée en raison de 

la dégradation de la rigidité du contact et l'énergie libérée pendant la propagation des fissures. 

Ensuite, selon la relation entre le facteur d'intensité de contrainte et le taux de libération d'énergie, la 

loi de Paris est incorporée dans le modèle de propagation des fissures pour régir la croissance des 

fissures de fatigue. Les comparaisons du modèle de propagation des fissures proposé avec les 

résultats théoriques et expérimentaux présentent de bons accords et une grande précision. Le 

modèle d'endommagement proposé considère que le développement de l'endommagement du 

matériau est causé par le développement d'un réseau de microfissures qui peut être représenté 

comme une seule croissance de fissure courte régie par une variante de la loi de Paris. Un 

paramètre supplémentaire est introduit pour exercer un effet sur le calcul du taux de libération 

d'énergie, ce qui entraîne un effet de variante sur la loi de fatigue, ce qui permet au modèle 

d'endommagement de capturer l'ensemble du processus d'évolution de la fatigue pendant les 

essais de fatigue. Enfin, les simulations sont comparées aux expérimentations des essais de 

tension-compression, de flexion à deux points et de flexion à quatre points. Les bons accords de 

ces comparaisons soutiennent la capacité du modèle proposé à modéliser l'ensemble du processus 

d'évolution de la fatigue de différents matériaux à différents niveaux de chargement. 

Mots-clés: béton bitumineux ; fatigue ; endommagement ; fissuration ;  méthode des 

éléments discrets  

 

Abstract 

Two discrete models, crack propagation model and damage model are proposed in this work. 
Firstly, to represent crack increment in discrete element method, the relation between crack growth 
and contact damage is formulated, based on the energy equivalence between the energy dissipated 
due to contact stiffness degradation and the energy released during crack propagation. Then, 
according to the relation between stress intensity factor and energy release rate, Paris’ law is 
incorporated in the crack propagation model to govern fatigue crack growth. Comparisons of the 
proposed crack propagation model with theoretical and experimental results present good 
agreements and high precision. The proposed damage model considers that the damage 
development of material is caused by micro-cracks network development which can be represented 
as a single short crack growth governed by a variant Paris' law. An additional parameter is 
introduced to exert effect on the calculation of energy release rate, hence results a variant effect on 
fatigue law, which allows the damage model to capture the whole process of fatigue evolution during 
fatigue tests. Finally, simulations are compared to experimentations of Tension-Compression, Two-
Point Bending and Four-Point Bending tests. Good agreements of these comparisons support the 
capacity of the proposed model for modeling the whole process of fatigue evolution of different 
materials under different loading levels.  

Keywords: asphalt concrete; fatigue; damage; crack propagation; discrete element method 
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