
UNIVERSITÉ DE STRASBOURG

École doctorale 269

Institut de recherche mathématique avancée

THÈSE
présentée par

Guillaume Mestdagh
soutenue le 13 décembre 2022

pour obtenir le grade de

Docteur de l’université de Strasbourg

Discipline : Mathématiques

An optimal control formulation for organ registration
in augmented surgery

Membres du jury

M. Emmanuel Maitre . Rapporteur
Professeur, Grenoble Inp – Université Grenoble Alpes
M. Erwan Kerrien . Rapporteur
Chargé de recherche, Inria
Mme Maya de Buhan . Examinatrice
Chargée de recherche, Cnrs
M. Yohan Payan . Examinateur
Directeur de recherche, Cnrs
M. Yannick Privat .Directeur
Professeur, Université de Strasbourg
M. Stéphane Cotin . Co-directeur
Directeur de recherche, Inria

Guillaume Mestdagh

An optimal control formulation for organ registration
in augmented surgery

Résumé
La réalité augmentée est utilisée en chirurgie minimalement invasive pour permettre au person-
nel médical de suivre en temps réel les mouvements du foie du patient. Pour mettre à jour la
déformation d’un organe virtuel, une méthode de recalage élastique aligne un modèle biomé-
canique pré-opératoire du foie avec une surface partielle observée pendant l’opération. Tandis
qu’une grande partie des méthodes de recalage élastique consistent à introduire des forces fictives
dans le modèle direct, notre approche vise à reconstruire la vraie densité de forces surfaciques
qui a créé la déformation observée. Nous exprimons le problème de recalage dans le formalisme
du contrôle optimal, en utilisant comme variable d’optimisation la distribution de forces qui
s’applique à la surface de l’organe. En permettant de définir à l’avance un ensemble de forces
admissibles, cette approche favorise les champs de déplacement ayant un sens physique. Nous
commençons par étudier l’existence de solutions pour le problème continu et nous calculons des
conditions d’optimalité de premier ordre. Puis nous présentons la méthode d’adjoint que nous
avons implémentée afin de traiter le problème numériquement. Finalement, nous validons notre
méthode au moyen de cas-test liés à l’application en chirurgie augmentée. Lors de ces essais, nous
mesurons l’erreur de recalage, et nous cherchons également, dans un cas particulier, à donner un
sens à la distribution de forces obtenue.

Mots-clefs Contrôle optimal – Simulation biomécanique – Chirurgie augmentée

Abstract
In minimally-invasive liver surgery interventions, augmented reality systems aim to help medical
staff by tracking the motion of the patient’s liver in real time. To compute the updated organ
deformation, an elastic registration procedure aligns a pre-operative biomechanical model of the
liver with intra-operative partial surface data. While many elastic registration procedures intro-
duce artificial forces into the direct model to drive the registration, we propose an approach to
reconstruct the surface loading that actually generated the observed deformation. The registra-
tion problem is formulated as an optimal control problem where the unknown is the surface force
distribution that applies on the organ. Advantages of this approach include a greater control
over the set of admissible forces distributions, which promotes physically-consistent displacement
fields. We first study the existence of solutions and compute first-order optimality conditions
for the continuous optimal control problem. Then we describe our implementation of an adjoint
method to solve the problem numerically. Finally, we validate our method using test cases re-
lated to the application in augmented surgery. In these tests, we not only evaluate registration
accuracy, but also give a meaning to the reconstructed distribution in a particular case.

Keywords Optimal control – Biomechanical simulation – Augmented surgery

Remerciements

Les premiers récipiendaires de cette liste de remerciements sont, sans surprise, Yannick
Privat et Stéphane Cotin, qui ont pris le risque de me recruter en thèse, et qui ont monté
ce projet, afin de tisser des liens entre leurs équipes respectives. Merci pour tout ce que
vous m’avez appris, qu’il s’agisse de science ou de politique du milieu de la recherche.
Merci aussi pour la confiance et l’autonomie que vous m’avez accordées tout au long du
projet.

Je remercie Emmanuel Maitre et Erwan Kerrien d’avoir pris le temps de rapporter
ce manuscrit, ainsi que Maya de Buhan et Yohan Payan qui ont accepté de participer à
mon jury, alors qu’ils sont tous les quatre certainement très occupés.

Merci à mes collègues doctorants de l’Ufr de math/info pour leur compagnie, en
particulier pendant le confinement, et merci à tous les locataires d’une aile abandonnée
du pavillon Clovis Vincent pour ces parties de coinche aux annonces exceptionnelles.

Enfin, je remercie mes parents, car ils me soutiennent depuis de longues années déjà.

Notations
Γ Observed surface.

Ω0 Initial domain.

∂ΩD, ∂ΩN Dirichlet boundary, Neumann boundary.

d Geometric space dimension.

g, u, p Surface force distribution, displacement field and ad-
joint state in the continuous problem.

ε(u) Linearized strain tensor.

Ωu Domain deformed by u.

dΩu
Signed distance with respect to Ωu.

S0, Su Initial matching surface, current matching surface.

J(u), R(g) Data attachment functional, regularization term.

dJ(u)(v), ⟨dJ(u), v⟩ Derivative of J in the general case and in the Gateaux-
differentiable case.

GM Admissible set
{
g ∈ L∞(∂ΩN)

∣∣ ∥g∥L∞ ⩽M
}
.

W 1,p
D (Ω0) Functions of W 1,p(Ω0) that vanish on ∂ΩD.

x Point in Ω0 or Ωu.

y Point in Γ.

d(y, Su) Distance between y and Su.

ΠSu
(y) Set of projections of y onto Su.

pSu
(y) Unique projection of y onto Su.

Py(u)
{
x ∈ S0

∣∣ ∥x+ u(x)− y∥ = d(y, Su)
}
.

b,u,p Nodal force distribution, displacement field and ad-
joint state in the discrete problem.

n Number of mesh nodes.

W (u) Elastic deformation energy.

F(u),F′(u) = K(u) Hyperelasticity residual and Jacobian.

A Stiffness matrix in linear elasticity.

MT,M−T Transposed and inverse transposed matrix.

Contents

Introduction en français 11

1 Overview of the manuscript 19

2 State of the art and problem modelling 27
2.1 Problem overview . 27
2.2 Elastic modelling of the liver . 29
2.3 A review of some registration methods . 36
2.4 Our contribution: an optimal control formulation 40

3 A few tools around shapes and mixed boundary conditions 47
3.1 Shapes and shape functionals . 47
3.2 Orthogonal projection and signed distance function 53
3.3 Continuity and mixed boundary conditions 59

4 Existence of solutions and optimality conditions 67
4.1 Properties of the functional . 67
4.2 Existence of solutions . 77
4.3 Optimality conditions . 81

5 An adjoint method to solve the registration problem 87
5.1 Finite element discretization of the problem 88
5.2 Adjoint method . 89
5.3 Discretized shape functional . 92
5.4 Newton methods for static elasticity problem 98
5.5 Optimization procedure . 103

6 Numerical results 113
6.1 Preliminary investigations featuring the toy problems 113
6.2 Sparse Data Challenge dataset . 123
6.3 Local force estimation . 124

7 Future developments and conclusion 133
7.1 Avoid unnecessary difficulties by dropping Dirichlet boundary conditions . 133
7.2 Jump to lightspeed with neural networks 137
7.3 Improve robustness with primal-dual PDE management 139
7.4 Conclusion . 144

Introduction en français

La naissance de ce projet résulte des discussions entre Yannick Privat, professeur à l’Ins-
titut de recherche mathématique avancée de Strasbourg, et Stéphane Cotin, chef de
l’équipe Inria Mimesis. L’équipe Mimesis est spécialisée, entre autres, dans les systèmes
de chirurgie assistée par ordinateur, et, plus généralement, dans la simulation bioméca-
nique en temps réel.

Comme la plupart des organes abdominaux, le foie est un organe mou, et par consé-
quent il subit souvent des déformations importantes. Lors d’une opération chirurgicale,
ces déformations peuvent venir du changement de position du patient, de sa respiration
ou encore de la manipulation de l’organe par le médecin. Par ailleurs, au cours d’une
opération faiblement invasive, le médecin manipule les organes indirectement. Pour cela,
il se sert d’instruments insérés à travers la peau du patient (voir figure 1), tandis qu’un
retour vidéo affiché sur un écran lui permet de voir ce qu’il fait. Le mouvement du mi-
lieu, permanent, et le champ de vision, limité, sont autant de facteurs qui rendent les
opérations faiblement invasives difficiles.

Pour aider les soignants à visualiser la déformation du foie au cours du temps, des
systèmes de réalité augmentée ont été mis au point. Ceux-ci produisent une vue tri-
dimensionnelle de l’organe dans sa configuration actuelle, qui fait apparaître les struc-
tures internes, tumeurs et autres vaisseaux sanguins. Dans ce manuscrit, nous nous inté-
ressons principalement à la méthode de recalage élastique qui met à jour la déformation

Figure 1 : Gauche : intervention en chirurgie laparoscopique. (Samuel Bendet,
US Air Force, https://commons.wikimedia.org/wiki/File:Laparoscopic_stomach_
surgery.jpg). Droite : vue du foie en réalité augmentée (stephanecotin.com).

https://commons.wikimedia.org/wiki/File:Laparoscopic_stomach_surgery.jpg
https://commons.wikimedia.org/wiki/File:Laparoscopic_stomach_surgery.jpg
stephanecotin.com

12 Introduction en français

du foie en combinant des données acquises avant et pendant l’opération. D’une part,
un modèle biomécanique du foie est extrait d’images tomographiques réalisées quelques
jours avant l’opération. D’autre part, une caméra laparoscopique fournit en temps réel
un nuage de points montrant une partie de la surface du foie dans sa configuration ac-
tuelle. Le recalage vise à déterminer pour le modèle pré-opératoire une déformation qui
correspond aux données observées.

Plusieurs difficultés sont liées au recalage élastique du foie. Tout d’abord, la défor-
mation du foie doit être mise à jour en temps réel pendant le déroulement de l’opération.
Notons cependant que le calcul en temps réel ne fait pas partie de nos prétentions dans
ce manuscrit. Par ailleurs, les données per-opératoires, ne montrent qu’une partie de la
surface du foie, et par conséquent le problème d’appariement de surfaces admet plusieurs
solutions, qui n’ont pour la plupart rien à voir avec la physique du problème. Afin de
calculer un champ de déplacement aussi proche que possible de la réalité, la méthode
de recalage doit donc réduire au maximum l’ensemble des déplacements pouvant être
associés à une observation donnée.

Chapitre 2. Revue de littérature et modélisation du pro-
blème
Les méthodes de recalage élastique reposent sur un modèle direct décrivant la mécanique
du foie du patient. Ce modèle est souvent discrétisé par la méthode des éléments finis.
En général, beaucoup d’attention est accordée au choix du modèle élastique décrivant les
déformations du foie et ses interactions avec son environnement, si bien qu’une grande
variété de modèles est utilisée dans la littérature. Habituellement, ces modèles sont de
type hyperélastique. Cependant, lorsque le calcul en temps réel est requis, on optera
plutôt pour un modèle dit co-rotationnel, qui permet d’engendrer des déformations non-
linéaires en ne résolvant que des systèmes linéaires. Les conditions aux frontières utilisées
sont également d’une grande variété et vont de la simple condition de Dirichlet au modèle
complexe, décrivant les ligaments qui maintiennent le foie en place comme des solides
hyperélastiques.

Concernant le processus de recalage lui-même, il consiste à appliquer des forces sur
le maillage de foie pour créer une déformation. Une grande classe de méthodes est direc-
tement inspirée des méthodes de recalage d’image. On y retrouve des forces artificielles
qui attirent le maillage vers le nuage de points observé, et le modèle élastique n’y joue
qu’un rôle de régularisation. Dans ce type de méthode, les forces appliquées ne reflètent
pas l’origine réelle de la déformation. Elles n’ont même rien à voir, puisqu’elles sont
créées par un nuage de points qui n’existe pas réellement. D’autres approches se sou-
cient davantage de savoir si le champ de déplacement engendré est plausible au vu de la
physique. Dans cette deuxième classe de méthodes, un ensemble de forces ou de dépla-
cements admissibles est défini à l’avance en se basant sur des hypothèses physiques. Les
déformations calculées sont ainsi plus réalistes.

Notre approche s’identifie plutôt à la seconde catégorie. Nous exprimons le problème
de recalage comme un problème de contrôle optimal. La formulation qui en découle est

13

Ωu = (Id +u)(Ω0)Ω0

Γ

y

p∂Ωu
(y)

d(y,
∂Ωu

)
Domaine initial
constitué d’un

matériau
élastique

Surface observée

Domaine transporté d’un
déplacement u

Figure 2 : Géométrie du problème. La distance entre un point y ∈ Γ et sa projection
orthogonale sur ∂Ωu s’écrit d(y, ∂Ωu).

très flexible, et permet de bénéficier de nombreux outils génériques d’optimisation pour
étudier et résoudre numériquement le problème. Dans ce manuscrit, nous considérons le
problème

inf
g∈GM

J(u) + α
2 ∥g∥

2
L

2(∂ΩN) sous la contrainte

div(Aε(u)) = 0 dans Ω0

u = 0 sur ∂ΩDirichlet
Aε(u) · n = g sur ∂ΩNeumann.

Ici, le champ de déplacement u est obtenu en appliquant la distribution de forces g sur
la surface du maillage. L’ensemble des forces admissibles est défini par

GM =
{
g ∈ L∞(∂ΩN)

∣∣∣ ∥g∥L∞(∂ΩN) ⩽M
}
.

Le problème de contrôle optimal fait intervenir la fonctionnelle d’attache aux données

J(u) = 1
2

ˆ
Γ
d2(y, Su) dy,

où Su est la partie de surface de foie déformée qui doit atteindre la surface observée Γ,
et d(y, Su) est la distance de y à Su. Les notations sont illustrées en figure 2 dans le
cas particuler Su = ∂Ωu. Les coefficients M > 0 et α > 0 peuvent être ajustés pour
régulariser le champ de déplacement malgré la présence de bruit dans les données.

Chapitre 3. Formes et conditions aux limites mixtes
Pour étudier le problème de contrôle optimal d’un point de vue mathématique, il peut
être utile de connaitre certains outils et résultats. Le recalage étant une opération de
nature géométrique, les outils que nous présentons dans ce chapitre tournent autour des

14 Introduction en français

formes, des distances et projections orthogonales, mais aussi des solutions continues du
système de l’élasticité linéaire.

On peut définir la régularité d’une forme. Celle-ci correspond à la régularité des trans-
formations qui permettent d’aplatir sa frontière. Nous présentons également la dérivée
de forme d’Hadamard, qui donne la possibilité de calculer les dérivées d’une fonction
dépendant d’une forme.

Les distances et projections orthogonales sont des outils utiles pour repérer un point
par rapport à une forme. La régularité de ces applications dépend en réalité de la régu-
larité de la forme concernée.

Les résultats de continuité pour le système d’élasticité linéaire avec conditions aux
bords mixtes s’appuie sur le formalisme des ensembles réguliers au sens de Gröger. Nous
présentons cette notion ainsi que certains théorèmes dont nous nous servons par la suite
pour obtenir des résultats théoriques.

Chapitre 4. Existence de solutions et conditions d’optimalité

Avant de passer au problème de contrôle optimal proprement dit, nous étudions la fonc-
tionnelle J . Bien qu’elle ne soit pas toujours différentiable au sens de Gateaux, la fonc-
tion J admet toujours des dérivées directionnelles, et est continue pour la norme de la
convergence uniforme. Sa dérivée dans la direction v s’écrit

dJ(u)(v) =
ˆ

Γ
min

x∈Py(u)
[v(x) · (x+ u(x)− y)] dy,

où les points x de Py(u) vérifient ∥x+ u(x)− y∥ = d(y, Su). Dans le cas où presque tous
les points de Γ possèdent une unique projection sur Su, dJ(u) est une forme linéaire et
J est différentiable au sens de Gateaux.

Nous étudions l’existence de solutions pour le problème de contrôle optimal en utili-
sant le formalisme des domaines Gröger-réguliers. La présence de conditions aux bords
mixtes représente une difficulté pour montrer l’existence de solutions, car la régularité
des déplacements obtenus s’en retrouve affaiblie. Dans ce travail, nous exploitons la régu-
larité W 1,p des solutions de l’élasticité linéaire. Nous proposons un résultat partiel limité
à la dimension 2, le cas de la dimension 3 s’avérant nettement plus complexe. Toutefois,
quand le système d’élasticité est remplacé par un système elliptique, nous montrons que
des solutions existent quelle que soit la dimension.

Nous calculons les conditions d’optimalité de premier ordre pour plusieurs versions
du problème de contrôle optimal. Elles font intervenir un état adjoint, qui représente la
différentielle de J dans l’espace des contrôles, ainsi que des multiplicateurs de Lagrange
pour gérer la contrainte L∞ sur g. Du fait de cette contrainte, la précaution est de mise
dans le calcul des conditions d’optimalité, puisqu’il n’est pas sûr que J soit Gateaux-
différentiable à l’optimum. Le théorème ci-dessous est une version simplifiée du résultat
principal de cette section. Il énonce les conditions d’optimalité pour un point critique
où J est Gateaux-différentiable. Le résultat présenté dans le manuscrit est plus général

15

et ne fait pas l’hypothèse que J est Gateaux-différentiable. Par ailleurs, nous présentons
des exemples où J est différentiable ou pas afin de fixer les idées.

Théorème. Soit g ∈ GM un minimum local du problème de contrôle optimal et ug

l’état associé. Supposons en outre que J est différentiable au sens de Gateaux en ug

et notons p l’état adjoint correspondant. Alors il existe un multiplicateur de Lagrange
λ ∈ L2(∂ΩN,R), avec

p.p. x ∈ ∂ΩN

{
λ(x) = 0 si ∥g(x)∥ < M
λ(x) ⩾ 0 si ∥g(x)∥ = M,

tel que g vérifie la condition d’optimalité de premier ordre

p.p. x ∈ ∂ΩN p(x) + (α+ λ(x))g(x) = 0.

Chapitre 5. Méthode d’adjoint pour résoudre le problème
de recalage

Nous discrétisons le problème par la méthode des éléments finis. Le problème de contrôle
optimal discrétisé s’écrit

min
b∈B

Φ(b) avec Φ(b) = J(ub) +R(b),

où b est le vecteur des forces nodales s’appliquant sur les sommets du maillage, et ub
est le champ de déplacement solution du système élastique discrétisé F(ub) = b. Dans
la formulation discrète, la seule variable sur laquelle le solveur d’optimisation agit est le
contrôle b. Le calcul des dérivées de J(ub) par rapport à b nécessite l’utilisation d’un
état adjoint. Plus précisément, le gradient de la fonction objectif s’écrit

∇Φ(b) = p +∇R(b),

où l’état adjoint p est la solution du problème adjoint F′(ub)Tp = ∇J(ub).
Notre implémentation de la méthode d’adjoint est constituée de trois procédures,

chacune ayant un rôle particulier : évaluation de la fonctionnelle J , gestion du modèle
d’éléments finis, résolution du problème d’optimisation (voir figure 3). Nous discutons
successivement des choix techniques effectués pour chacune des procédures.

En premier lieu, la fonction d’attache aux données J dépend désormais de la position
des nœuds du maillage et non plus d’un champ de déplacement continu. L’évaluation
de J nécessite d’exécuter une procédure coûteuse pour trouver l’élément de surface du
foie le plus proche de chaque point y ∈ Γ. Plusieurs procédures, dont une faisant appel
à la distance signée par rapport à l’organe déformé, ont été testées. Notre choix s’est
finalement porté sur une méthode dans laquelle les triangles candidats à l’appariement
sont rangés dans une structure d’indexation spatiale, permettant ainsi d’effectuer des
recherches de plus proche voisin très efficacement. Quant aux dérivées de J , elles peuvent

16 Introduction en français

Méthode d’optimisation Bibliothèque
d’éléments finis Fonctionnelle

Nouvel itéré b
Résolution du

problème direct
F(u) = b

Évaluation de
J(u) et ∇J(u)

Gradient de la
fonction objectif

∇Φ(b) = p +∇R(b)

Résolution du
problème adjoint
F′(u)Tp = ∇J(u)

Figure 3 : Structure de la méthode d’adjoint. La chaîne directe (en haut) vise à éva-
luer la fonctionnelle étant donné un contrôle b, tandis que la chaîne adjointe (en bas)
transforme le gradient ∇J(u) en un gradient dans l’espace des contrôles.

être évaluées en appliquant directement la formule obtenue dans le chapitre sur l’analyse
du problème.

La méthode qu’on utilise pour résoudre le problème d’élasticité direct n’est pas la
même selon le modèle élastique choisi. Dans le cas linéaire, la matrice de raideur est
assemblée puis factorisée en début d’exécution, puis la forme factorisée est utilisée pour
résoudre aussi bien le problème direct que le problème adjoint. Dans le cas non-linéaire,
c’est une autre paire de manches. La méthode de Newton est un outil classique pour
traiter ce type problème variationnel. Cependant, bien qu’elle affiche un taux de conver-
gence quadratique dans ses dernières itérations, la méthode de Newton sous sa forme
traditionnelle n’offre aucun garantie de convergence si le point de départ est situé loin
d’une solution. Comme la convergence du solveur direct est une condition sine qua non
pour utiliser la méthode d’adjoint, nous décrivons une méthode de Newton à région
de confiance, issue du domaine de l’optimisation numérique, pour laquelle stabilité et
convergence sont garanties.

Afin de résoudre le problème d’optimisation, nous avons initialement implémenté
quelques algorithmes de premier ordre à la main, avant de nous tourner vers des méthodes
toutes faites disponibles dans la bibliothèque Scipy, et plus particulièrement une méthode
de quasi-Newton à mémoire limitée. Dans le cas où on applique la contrainte L∞, cette
dernière est gérée de manière primale-duale. Nous illustrons la convergence des différents
algorithmes à l’aide de problèmes simples.

17

Chapitre 6. Résultats numériques

La section des résultats numériques vise à illustrer les performances de la méthode d’ad-
joint du point de vue du problème de recalage. Nous commençons par quelques exemples
avec des maillages circulaires ou sphériques. Ces examples sont l’occasion d’illustrer l’ef-
fet régularisant de la méthode d’adjoint. Nous montrons également qu’aucune garantie
en terme d’erreur de recalage ne peut être attendue de la part de notre méthode. Enfin,
nous nous demandons s’il est efficace d’utiliser une pénalisation L2 ou une contrainte
L∞ pour filtrer le bruit dans les données.

Afin de savoir si notre approche est adaptée pour une utilisation en chirurgie aug-
mentée, nous produisons des résultats de recalage basés sur les données du Sparse Data
Challenge. Les données, acquises à l’aide d’un fantôme en silicone, comprennent un
maillage de foie ainsi que 112 nuages de points représentant autant de configurations
déformées différentes. Une fois le recalage effectué et les déformations reconstruites en-
voyées aux organisateurs, ces derniers indiquent l’erreur de recalage commise en moyenne.
Nous obtenons la deuxième place du concours, avec un erreur moyenne de 3,3 mm, bien
au-dessous des 5 mm requis par nos collègues cliniciens.

Dans le dernier cas-test, nous tentons d’estimer une force ponctuelle appliquée par un
bras robot sur la surface du foie. Alors que les robots chirurgicaux embarquent rarement
des capteurs d’efforts, mesurer les forces appliquées est capital pour éviter de causer
des dégats sur le foie du patient. Nous créons des données synthétiques comprenant des
déformations et les nuages de points associés, afin de simuler la manipulation du foie
par un instrument au bout d’un bras robot. Puis nous reconstruisons une distribution
de force sur un support restreint, limité à une petite zone sur la surface du foie. La
force résultante est obtenue en additionnant toutes les forces nodales. Chacun de nos
cinq cas-test met en scène une force dépendant du temps (50 pas de temps). L’erreur
d’estimation de la force résultante est de 10 % en moyenne, et le délai de mise à jour
d’environ 1 s, ce qui est encourageant.

Contributions de la thèse

Cette thèse comporte quatre contributions principales :

• Nous identifions le besoin exprimé dans la littérature pour une modélisation cor-
recte des causes réelles de la déformation, et nous proposons une formulation basée
sur le contrôle optimal pour répondre à ce besoin.

• Nous effectuons une analyse mathématique du problème de contrôle optimal, y
compris l’étude de l’existence de solutions et le calcul des conditions d’optimalité
de premier ordre.

• Nous décrivons une implémentation modulaire de la méthode d’adjoint pour le
problème de recalage, et nous la validons en utilisant les données du Sparse Data
Challenge.

18 Introduction en français

• En guise d’application, nous proposons d’utiliser la méthode d’adjoint pour estimer
une force ponctuelle appliquée par un instrument.

Les deux derniers points font l’objet de l’article de conférence suivant :

• Guillaume Mestdagh et Stéphane Cotin (2022). « An Optimal Control Problem
for Elastic Registration and Force Estimation in Augmented Surgery ». In : Medical
Image Computing and Computer Assisted Intervention – MICCAI 2022. Sous la
dir. de Linwei Wang et al. Cham : Springer Nature Switzerland, p. 74-83. isbn :
978-3-031-16449-1. doi : 10.1007/978-3-031-16449-1_8

Un autre article, davantage orienté vers l’analyse mathématique du problème, sera très
prochainement soumis à une revue internationale à comité de lecture.

https://doi.org/10.1007/978-3-031-16449-1_8

Chapter 1

Overview of the manuscript

This project results from discussions between Yannick Privat, professor at the Institut de
recherche mathématique avancée in Strasbourg, and Stéphane Cotin, leader of the Inria
Mimesis team. The domains of expertise of the Mimesis team include computer-assisted
surgery systems, and, more broadly, real-time biomechanical simulation.

Compared to open surgery, minimally-invasive surgery is known to improve the out-
come of surgical interventions, reducing pain, bleeding and risk of infection. During a
minimally-invasive intervention, the surgeon manipulates organs using instrument in-
serted through small incisions in the patient’s abdomen, and receives visual feedback
on a screen, thanks to a laparoscopic camera introduced through one of the incisions
(see Figure 1.1). In this context of indirect interaction and feedback, operations such
as hepatic tumor resections remain challenging, as the surgeon navigates in an opaque
organ, avoiding blood vessels and following the motion due to breathing and heartbeats.

When an augmented reality system is used, an up-to-date view of the liver in its
current configuration is displayed to help the medical staff keep track of the position
of internal structures, such as tumors and blood vessels. In this manuscript, we are

Figure 1.1: Left: a laparoscopic surgical intervention. (Samuel Bendet,
US Air Force, https://commons.wikimedia.org/wiki/File:Laparoscopic_stomach_
surgery.jpg). Right: Augmented view of the liver (stephanecotin.com).

https://commons.wikimedia.org/wiki/File:Laparoscopic_stomach_surgery.jpg
https://commons.wikimedia.org/wiki/File:Laparoscopic_stomach_surgery.jpg
stephanecotin.com

20 Chapter 1. Overview of the manuscript

interested in the elastic registration procedure that computes an updated deformation
field in the liver volume by combining pre- and intra-operative data. Namely, this
procedure aligns a mesh representing the liver as it appears in pre-operative images with
a part of the liver surface as it appears on images from the laparoscopic camera during
the intervention.

The elastic registration procedure raises several challenges. First, to update the
deformed view as the intervention goes on, real-time computation is required. Note that
we are not expecting to meet the real-time requirement in this manuscript. In addition,
intra-operative data only show a part of the current liver surface, and as a consequence,
many solutions to the matching problem exist, and most of them are not consistent
with the problem physics. A successful registration approach should reduce as much as
possible the range of admissible displacements for a given observed surface, to return a
displacement field as close as possible to the true liver displacement.

Chapter 2. State of the art and problem modelling
An elastic registration procedure relies on a mechanical model of the patient’s liver, and
usually involves the finite element method. In general, much attention is given to the
elastic model that describes the liver deformations and interactions with its surround-
ings (Section 2.2). Existing methods in the literature involve hyperelastic models, and
switch to the co-rotational model when real-time computing is required. A wide range
of boundary conditions is also used, going from Dirichlet boundary conditions on certain
zones of the liver surface to complex elastic model for the ligaments holding the liver.

The registration process itself is often driven by forces applied on the liver mesh
to create a deformation (Section 2.3). In a whole class of methods, inspired from the
image registration domain, artificial forces simply attract the liver mesh toward the ob-
served point cloud, while the elastic model mostly plays the role of a regularizer. In
these methods, we observe that forces driving the registration do not reflect the real
causes of displacement. In particular, these forces are created by intra-operative data
points, which do not really exist. Other methods are more concerned with reconstruct-
ing physically-relevant displacement fields. In this second class of methods, forces and
displacements are chosen among an admissible set defined from physical hypotheses,
resulting in more realistic displacement fields.

Our approach is closer to the second category. We formulate the registration prob-
lem using the optimal control formalism, resulting in a flexible formulation which can
be studied and solved numerically using a wide variety of standard optimization tools
(Section 2.4). Namely, the optimal control problem studied in this manuscript has the
form

inf
g∈GM

J(u) + α
2 ∥g∥

2
L

2(∂ΩN) subject to constraint

div(Aε(u)) = 0 in Ω0

u = 0 on ∂ΩDirichlet
Aε(u) · n = g on ∂ΩNeumann.

In this formulation, u is the displacement field generated by the force distribution g.

21

Ωu = (Id +u)(Ω0)Ω0

Γ

y

p∂Ωu
(y)

d(y,
∂Ωu

)
Initial domain
filled with an

elastic material

Observed surface

Domain updated with
displacement u

Figure 1.2: Problem geometry. The distance between a point y ∈ Γ and its orthogonal
projection onto Ωu is denoted by d(y, ∂Ωu).

The set of admissible forces is defined by

GM =
{
g ∈ L∞(∂ΩN)

∣∣∣ ∥g∥L∞(∂ΩN) ⩽M
}
.

The optimal control formulation features the data attachment functional

J(u) = 1
2

ˆ
Γ
d2(y, Su) dy,

where Su is the part of the deformed liver boundary that should match the observed
surface Γ and d(y, Su) is the distance from y to Su. Figure 1.2 illustrates the notation
in the case Su = ∂Ωu. The L∞ bound M > 0 and the penalty coefficient α > 0 can be
tuned to enforce displacement regularity despite the presence of noise.

Chapter 3. A few tools around shapes and mixed boundary
conditions
To obtain mathematical insight about the optimal control problem, some tools and
existing results might be of help. As the registration problem is rather geometric, the
tools presented in this chapter revolve around shapes, distances, projections, and also
making sure that elastic displacements are continuous.

It is possible to define the regularity of a shape, based on transformations that should
be applied to its boundary to obtain something flat (Section 3.1). We also describe the
Hadamard boundary variation framework, which is useful to differentiate a function
whose variable is a shape.

Distances and orthogonal projections are useful to locate a point with respect to a
shape (Section 3.2). The regularity of those operations depend on the regularity of the
concerned shape.

22 Chapter 1. Overview of the manuscript

Continuity results for solutions to the linear elasticity system with mixed boundary
conditions rely on the framework of Gröger-regular sets (Section 3.3). We describe this
notion and cite a few theorems that are of use in the theoretical chapter.

Chapter 4. Existence of solutions and optimality conditions
Before we state some results about the optimal control problem, we study the differentia-
bility of the functional J (Section 4.1). Though it is not always Gateaux differentiable, J
always has directional derivatives, and is continuous for the uniform convergence norm.
Its derivative in the direction v reads

dJ(u)(v) =
ˆ

Γ
min

x∈Py(u)
[v(x) · (x+ u(x)− y)] dy,

where points x ∈ Py(u) satisfy ∥x+ u(x)− y∥ = d(y, Su). If almost every point in Γ has
a single projection onto Su, then dJ(u) is a linear form and J is Gateaux differentiable
at u.

We study the existence of solutions to the optimal control problem using the frame-
work of Gröger-regular sets for partial differential equations with mixed boundary con-
ditions (Section 4.2). The presence of mixed boundary conditions represents a difficulty
when it comes to proving the existence of solutions, as they degrade the regularity of
resulting displacement fields. Our results rely on the uniform W 1,p regularity of solutions
to the linear elasticity system. We present a partial result limited to dimension 2, as the
three-dimensional case is more complex. However, when the elastic system is replaced
by an elliptic system, we obtain existence of solutions in any dimension.

First-order optimality conditions are derived for several versions of the optimal con-
trol problem (Section 4.3). They involve an adjoint state, which represents the deriva-
tives of J in the space of controls, as well as Lagrange multipliers to manage the L∞

constraint on g. Due to the L∞ constraint, computing optimality conditions requires
special attention, as J is not guaranteed to be differentiable at an optimum. The the-
orem below is a simplified version of the main result of the section. It expresses the
optimality conditions for a minimizer where J is Gateaux differentiable. Note that the
result presented in the manuscript (Theorem 4.4) is more generic and does not assume
Gateaux differentiability. In addition, some examples where J is differentiable or not
are given in Section 4.1.

Theorem. Let g ∈ GM a local minimizer of the optimal control problem and ug the
associated state. Assume that J is Gateaux differentiable at uj and denote by p the
adjoint state. Then there exists a Lagrange multiplier λ ∈ L2(∂ΩN,R) with

for a.e. x ∈ ∂ΩN

{
λ(x) = 0 if ∥g(x)∥ < M
λ(x) ⩾ 0 if ∥g(x)∥ = M

such that g satisfies the first-order optimality condition

for a.e. x ∈ ∂ΩN p(x) + (α+ λ(x))g(x) = 0.

23

Optimization solver Finite element package Functional

New iterate b
Solve direct problem

F(u) = b

Evaluate
J(u) and ∇J(u)

Objective gradient
∇Φ(b) = p +∇R(b)

Solve adjoint problem
F′(u)Tp = ∇J(u)

Figure 1.3: Structure of the adjoint procedure. The forward chain (top) aims to evaluate
the functional for a given control b, while the backward chain (bottom) transforms the
gradient ∇J(u) into a gradient in the space of controls.

Chapter 5. An adjoint method to solve the registration
problem
We discretize the mechanical problem using the finite element method. In the numerical
formulation, the optimal control problem reads

min
b∈B

Φ(b) with Φ(b) = J(ub) +R(b),

where b is the nodal force distribution at the mesh vertices, and ub is the displacement
field defined by the discretized elastic system F(ub) = b. In the discretized formulation,
the only variable seen by the optimization solver is the control b. To compute derivatives
of J(ub) with respect to b, an adjoint method is used (Section 5.2). Namely, the objective
gradient reads

∇Φ(b) = p +∇R(b),

where the adjoint state p is solution to the adjoint problem F′(ub)p = ∇J(ub).
Our implementation of the adjoint method is divided into three parts. The three

parts are responsible for evaluating the functional J , managing the finite-element dis-
cretization, and solving the optimization problem, respectively (see Figure 1.3). We
successively discuss technical options regarding each one of these parts.

First, the discrepancy functional J is now a function of the mesh vertices positions
and not of the continuous displacement field (Section 5.3). Evaluating J involves a
costly procedure to find the closest triangle in the liver boundary to each point y ∈ Γ.
Several procedures were implemented, including one based on the signed distance to the
deformed organ. We finally chose a procedure where triangles that are candidates to

24 Chapter 1. Overview of the manuscript

match Γ are stored in a spatial indexing structure, resulting in efficient nearest-neighbor
searches. Concerning the derivatives of J , they can be evaluated using the derivative
formula obtained in the theoretical chapter.

The algorithm used to solve the direct and adjoint elasticity problem depends on the
chosen elastic model. When a linear model is used, the stiffness matrix is assembled and
factorized as the procedure starts and the factorization is used for solving both direct
and adjoint problems. However, solving the direct problem in the nonlinear case requires
much more precaution. The Newton method is a standard tool for such nonlinear vari-
ational problems. Though it enjoys a fast convergence rate in the last iterations, the
Newton method in its standard form is not guaranteed to converge when the starting
point is too far from a solution. As enforcing convergence of the direct solver is critical
for the adjoint method to succeed, we describe a trust-region Newton method, devel-
oped by the optimization community, where convergence and stability are guaranteed
(Section 5.4).

To solve the optimization problem, we first implemented some artisanal methods, but
we finally turned to off-the-shelf algorithms available in the Scipy package (Section 5.5).
Namely, we use a limited-memory quasi-Newton method. In the L∞-constrained case,
the constraint is managed by a primal-dual strategy. We show results on simple toy
problems to illustrate the convergence of our procedure.

Chapter 6. Numerical results

The results section aims to illustrate the performance of the adjoint method in terms of
registration error. First, we show a few examples with spherical and circular meshes (Sec-
tion 6.1). In these examples, we illustrate the regularizing effect of the adjoint method,
and we show that no guarantee in terms or registration accuracy can be expected from
the procedure. We also evaluate the efficiency of regularization approaches involving the
L2 penalty or the L∞ constraint.

To evaluate the relevance of our approach in augmented surgery, we produce reg-
istration results using the Sparse Data Challenge dataset (Section 6.2). The dataset,
generated from phantom data, consists of a liver mesh and 112 point clouds representing
as many deformed configurations. Registration error statistics are provided by the or-
ganizers after we submit the reconstructed deformation computed for each point cloud.
We obtained the second-best submission in the challenge, with an average 3.3 mm dis-
placement error, far below the 5 mm required by our clinical collaborators.

In the last result, we try to estimate the net force applied by a robotic instrument
on the liver boundary (Section 6.3). As several medical robots are shipped without force
feedback, measuring the applied force is useful to avoid causing damages to the patient’s
liver. We create synthetic deformations and associated point clouds to simulate the liver
being manipulated by a robotic instrument. Then we reconstruct a force distribution
restricted to a small zone on the liver boundary (see Figure 1.4), and add up nodal forces
to obtain a net force estimate. Each one of our five test cases features a time-dependent
force (50 frames). We obtain an average force estimation error of 10 %, and an average

25

Figure 1.4: Left: synthetic deformation generated by a local force. Right: reconstructed
deformation using the point cloud.

update time of 1 s, which is encouraging.

Contributions of the thesis
This thesis revolves around four main contributions.

• We identified the need for accurate modeling of the causes of displacement ex-
pressed in the literature and proposed an optimal control formulation to respond
to this need.

• We proposed a mathematical analysis of the optimal control problem, including
existence of solutions and first-order optimality conditions.

• We implemented a modular adjoint method1 to solve registration problems, and
validated our implementation using the Sparse Data Challenge dataset.

• We proposed an approach to evaluate a single net force applied by an instrument
using our optimal control formulation.

The two last items are the object of the following conference article:

• Guillaume Mestdagh and Stéphane Cotin (2022). “An Optimal Control Problem
for Elastic Registration and Force Estimation in Augmented Surgery”. In: Medical
Image Computing and Computer Assisted Intervention – MICCAI 2022. Ed. by
Linwei Wang et al. Cham: Springer Nature Switzerland, pp. 74–83. isbn: 978-3-
031-16449-1. doi: 10.1007/978-3-031-16449-1_8

Another article revolving around the mathematical analysis will soon be submitted
to a peer-reviewed journal.

1Code available at https://github.com/gmestdagh/adjoint-elastic-registration.

https://doi.org/10.1007/978-3-031-16449-1_8
https://github.com/gmestdagh/adjoint-elastic-registration

Chapter 2

State of the art and problem
modelling

2.1 Problem overview

2.1.1 A few facts about the liver

Let us begin with a few figures about the liver itself. Located just below the diaphragm,
the liver is the heaviest internal organ in the human body. It plays a role in a large
number of vital functions, including detoxificating blood, secreting hormones and regu-
lating glycogen storage. Several ligaments hold the liver in place, including the falciform
ligament and the left and right triangular ligaments (see Figure 2.1). As a consequence,
the liver is not rigidly connected to a bone or a rigid support.

The liver weighs in average 1.5 kg (Gray and Lewis, 1918), and its dimensions are
about 28 cm × 16 cm × 8 cm (Marchesseau et al., 2017). The matter that composes
the liver, called the parenchyma, enters the category of soft tissues. It is nearly in-
compressible and its Young modulus amounts to approximately 10 kPa (Nikolaev and
Cotin, 2020). Another consequence of liver tissues containing water is a density of
ρ = 1, 070 kg/m3 (Niehues et al., 2010). The liver stiffness is increased by the presence
of large blood vessels across the parenchyma.

2.1.2 The liver registration problem

A soft organ, the liver is constantly subject to large deformations. During a surgi-
cal operation, sources of such deformations include changes in the patient’s position,
breathing or organ manipulation by the surgeon. During minimally invasive surgery,
the surgeon manipulates the liver using tools inserted through small incisions in the
patient’s abdomen and gets visual feedback on a screen using a laparoscopic camera. In
this context, the constant motion and the limited field of view make it difficult for the
surgeon to keep track of the position of the liver internal structures. Augmented reality
systems have been designed to help the surgeon navigate through the surgical theater.

28 Chapter 2. State of the art and problem modelling

Figure 2.1: Left: the liver in the human body. (Ties van Brussels, https://
commons.wikimedia.org/wiki/File:Anatomy_Abdomen_Tiesworks.jpg). Right: lig-
aments holding the liver (extracted from Nikolaev and Cotin, 2020). The falciform
splits the parenchyma between the right lobe (on the left) and the left lobe (on the
right).

The objective of augmented reality systems is to track the deformations of the pa-
tient’s liver during the surgical operation, and provide the medical staff with an updated
view of the organ, along with its internal structures such as tumors or blood vessels. In
this project, we follow the pipeline proposed by Haouchine et al. (2013). In their pipeline,
a pre-operative liver geometrical model and intra-operative images from the laparoscopic
camera are combined through an elastic registration procedure to produce the updated
liver tri-dimensional image.

On the one hand, pre-operative data consist of a liver model extracted from tomo-
graphic images. Such images accurately depict the internal structures of the liver. A
tetrahedral mesh representing the liver is segmented from images and is embedded with
an elastic model. On the other hand, intra-operative data are extracted from laparo-
scopic images provided in real time by the camera. A point cloud representing the part
of the liver surface that is in the camera field of view is created. Figure 2.2 shows a
pre-operative liver model, including tumors (green) and blood vessels (blue and red),
along with a point cloud superimposed onto a laparoscopic intra-operative image. The
augmented reality procedure follows three steps:

1. Intra-operative images are processed to extract a three-dimensional point cloud
representing the current liver surface.

2. An initial rigid registration of the pre-operative model onto the point cloud is
performed.

3. An elastic registration of the pre-operative biomechanical model is performed to

https://commons.wikimedia.org/wiki/File:Anatomy_Abdomen_Tiesworks.jpg
https://commons.wikimedia.org/wiki/File:Anatomy_Abdomen_Tiesworks.jpg

2.2. Elastic modelling of the liver 29

Figure 2.2: Left: liver geometry extracted from pre-operative tomographic images.
Right: point cloud representing a part of the deformed liver surface.

match the intra-operative point cloud.

In this manuscript, we are interested in the third part, which is the elastic registration
procedure. It consists in computing a displacement field defined on the liver mesh, so
that the deformed liver surface matches the intra-operative point cloud. Our purpose
is to reconstruct the displacement field we need to apply to the organ to obtain the
current configuration (or deformed configuration) from a reference configuration (or
initial configuration). Those two configurations are known through pre-operative images
and intra-operative measures, respectively.

The elastic registration procedure raises several challenges. First, the augmented
reality pipeline is supposed to run in a few tenth of milliseconds in order to provide
real-time updates. Though we are not expecting to meet the real-time requirement
in this work, we should keep in mind that involved procedures should be as fast as
possible. In addition, an intra-operative point cloud is not sufficient to identify a unique
displacement field. Therefore, the registration problem has a lot of solutions, and most of
them are far from being physically relevant. As a consequence, some other information,
such as physical hypotheses, should be added before we start thinking about registration
accuracy. The chosen model and methods should result from a trade-off between the
physical acceptability of the solution and the efficiency required by real-time execution.

Note that, in this study, we do not consider or compare to registration approaches
based on machine learning (Brunet et al., 2019; Mendizabal et al., 2020). Though those
modern methods are very efficient, we focus on getting some insight about the problem
physics.

2.2 Elastic modelling of the liver

A key ingredient to include in a physics-based registration recipe is a good mechanical
model. This model describes how the organ is deformed when forces are applied onto it.
By providing an accurate description of the liver and its surroundings, one expects their
model to behave like the real system in a direct simulation.

30 Chapter 2. State of the art and problem modelling

In this section, we describe a few models used in the literature to describe the liver.
Beforehand, a short reminder about static elasticity problems seems in order. We first
introduce the formulation of the elasticity system as a minimization problem, and then
we describe a few common elastic models.

2.2.1 Deformation energy and forces

In this section, we give some context about static elasticity problems. We are only
interested in static elasticity, which means that inertial effects are not taken into account.
The phenomena we want to capture by performing liver registration are the deformations
generated by external forces that change along time. Those external forces, whether they
are created by the physician’s gesture, contact with other organs of breathing movements,
evolve very slowly compared to inertial forces. On the other hand, by considering a
Young modulus E = 10 kPa, a density ρ = 1070 kg/m3 and a Poisson ratio ν = 0.49,
we obtain that the velocity of mechanical waves in the liver reads

c =
√

E

2ρ(1 + ν) = 1.8 m/s.

As the average liver length is approximately 28 cm, the typical duration of dynamical
effects is 0.16 s. Therefore, inertial effects, such as vibrations or mechanical waves
propagating across the liver parenchyma, are too fast to be captured by the augmented
reality system.

An elastic material is a material that returns to its initial shape when left at rest. It
is defined by an elastic energy that only depends on the current local deformation of the
material (Ciarlet, 1988, Chapter 4). In particular, the elastic energy does not depend
on the material velocity, the amplitude of its displacement or any past configuration.
We consider a domain Ω ⊂ R3 filled with an elastic material. The global deformation
energy is obtained by accumulating the local energy associated to local deformation over
the whole material. Namely, when a displacement field u ∈ H1(Ω,R3) is applied to the
material, the point x ∈ Ω is transported to x+ u(x) and the global elastic energy reads

W (u) =
ˆ

Ω
w(∇u) dx,

where w ∈ C2(R3×3,R) represents the local deformation energy. Here w is a function
of ∇u, which means that adding a translation displacement to u does not change the
deformation energy. Actually, the deformation energy is insensitive to any rigid displace-
ment, including rotations. We discuss this aspect below when describing usual elastic
models. The deformation energy is minimal when u = 0, i.e. the material is in its
rest configuration. The energy cost to bring the material from its rest shape to a given
displacement u is W (u)−W (0).

External actions that apply onto the solid are represented by forces. Forces are
a convenient way to provide a summary of various types of interaction by describing
the first-order variation of the total energy around a given displacement u. Examples of

2.2. Elastic modelling of the liver 31

forces include gravity forces, that derive from a gravitational potential, or contact forces,
that enforce a non-interpenetration condition between two materials. In the context of
static elasticity, a force is represented by a linear potential energy. For instance, a
surface force distribution g ∈ L2(∂Ω,R3) and a volume force distribution f ∈ L2(Ω,R3)
are represented by the energy terms

−⟨g, u⟩ = −
ˆ

∂Ω
g · u ds and − ⟨f, u⟩ = −

ˆ
Ω
f · udx,

respectively.
Stable equilibrium configurations correspond to displacement fields where the system

energy is at a minimum. In other words, the displacement generated by f and g is a
solution to the optimization problem

min
u∈U

W (u)−
ˆ

Ω
f · udx−

ˆ
∂Ω
g · uds. (2.1)

In (2.1), U is the set of admissible displacements, or feasible set. Typical feasible
sets involve a Dirichlet condition on a subset ∂ΩD ⊂ ∂Ω of the boundary to ensure the
existence of a solution. From now on, we assume that a Dirichlet condition is applied,
and we use the notation

U = H1
D(Ω) =

{
u ∈ H1(Ω,R3) | u = 0 on ∂ΩD

}
.

The strong formulation of the elasticity system can be derived (at least formally),
from the first-order optimality conditions of (2.1). Note that, for v ∈ H1

D(Ω) a small
displacement,

⟨dW (u), v⟩ =
ˆ

Ω
w′(∇u) : ∇v dx =

ˆ
∂Ω

(w′(∇u)n) · v ds−
ˆ

Ω
div(w′(∇u)) · v dx,

where the last expression is a consequence of Green’s formula. Thus, an equilibrium
displacement u satisfies the variational equality

∀v ∈ H1
D(Ω)

ˆ
Ω

[
−div(w′(∇u))− f

]
· v dx+

ˆ
∂Ω

(w′(∇u)n− g) · v ds = 0,

which yields the strong formulation
−div(w′(∇u)) = f in Ω

w′(∇u)n = g on ∂ΩN
u = 0 on ∂ΩD,

(2.2)

where ∂ΩN = ∂Ω \ ∂ΩD. In the context of elasticity, w′(∇u) is called the first Piola-
Kirchhoff stress tensor.

32 Chapter 2. State of the art and problem modelling

2.2.2 Common elastic models

A wide variety of elastic models exists in the literature, with very different properties
(see Wex et al., 2015, for examples in biomechanics). Though the elastic problems we
consider can be formulated using (2.1) or (2.2), the numerical method used to compute a
displacement depends on the model complexity. In this section, we introduce three of the
most common elastic models. In those models, the material resistance to deformation
and volume changes are characterized by the Lamé parameters, which are deduced from
the Young modulus E and the Poisson ratio ν by

µ = E

2(1 + ν) and λ = Eν

(1 + ν)(1− 2ν) . (2.3)

Saint Venant-Kirchhoff model

The simplest nonlinear elastic model is the Saint Venant-Kirchhoff model (St Venant,
1844; Kirchhoff, 1852) which applies a quadratic penalty on the nonrigid part of the
displacement.

Let us introduce a few notations. When a displacement u is applied to the elastic
solid, a particle initially located at x ∈ Ω is transported to x + u(x). The gradient of
Id +u, denoted by F = (I +∇u), describes the local transformation around x, including
nonrigid deformation and rotation. The tensor that is penalized in the Saint Venant-
Kirchhoff energy is the Green-Saint Venant strain tensor

e(u) = FTF − I
2 = 1

2

(
∇u+∇uT +∇uT∇u

)
.

Note that the rotation component of F is completely evacuated when FTF is considered,
and thus only nonrigid deformations such as shear and volume changes are seen by the
Green-Saint Venant tensor.

The local deformation energy is characterized by Hooke’s tensor A, defined by Aε =
2µε+ λ tr(ε)I, with µ and λ from (2.3). Its expression reads

w(∇u) = 1
2Ae(u) : e(u) = µ|e(u)|2 + λ

2 (tr e(u))2.

Though it is a nonlinear model, the Saint Venant-Kirchhoff model involves a simple
energy function and is not relevant for large deformations. In particular, it allows the
deformation gradient F to be an indirect transformation, which translates as inverted
triangles in a finite element simulation. On the other hand, solving a static problem
requires to use a Newton method, which comes at a high computational cost. For these
reasons, the Saint Venant-Kirchhoff model is not relevant for applications where fast
computations are required or large deformations are involved.

Linear elasticity

The linear elastic model is obtained by performing a quadratic approximation of the
Saint Venant-Kirchhoff energy around u = 0. Namely, the Green-Saint Venant tensor

2.2. Elastic modelling of the liver 33

e(u) is replaced by the linearized strain tensor ε(u) = 1
2

(
∇u+∇uT

)
and the linear

elastic energy reads

w(∇u) = 1
2Aε(u) : ε(u) = µ|ε(u)|2 + λ

2 div(u)2.

When a Dirichlet condition is involved, the existence and uniqueness of the solution
for smooth domains is a consequence of the Lax-Milgram theorem and Korn’s inequality
(see a detailed explanation in Allaire, 2007, Section 2.3). The solution of (2.1) solves
the linear partial differential equation

−div(Aε(u)) = f in Ω0
Aε(u) · n = g on ∂ΩN

u = 0 on ∂ΩD.

From a numerical point of view, the linear elastic model allows very fast computa-
tions, since a displacement is computed by solving a positive definite sparse linear sys-
tem. Methods to solve a positive definite linear system include the Conjugate Gradient
method (Hestenes and Stiefel, 1952) or direct methods involving the Cholesky factor-
ization (see Nocedal and Wright, 2006, Appendix A). Direct methods are especially
relevant when the elasticity system is solved several times, as the Cholesky factorization
can be computed once and stored as long as needed.

Due to its definition, the linear elastic model only provides a first-order approxima-
tion of the displacement with respect to the force distribution. As a consequence it is
only relevant for small displacements (which is a very subjective notion), typically when
the material is very stiff compared to the forces applied onto it.

Neo-Hookean model

The Neo-Hookean model (Rivlin and Rideal, 1948) is more complex than the Saint
Venant-Kirchhoff model, but it is far more relevant to describe soft materials undergoing
large deformations. The local deformation energy penalizes the Green-Saint Venant
deformation tensor e(u) and the Jacobian determinant J = det(F). Though several
formulations exist (Smith et al., 2018), we stick to a version previously used in the
Mimesis team and software (Brunet, 2020),

w(∇u) = µ tr(e(u))− µ ln(J) + λ

2 (ln J)2.

A key feature of Neo-Hookean models is the presence of terms involving ln(J) in the
expression. These terms are defined only when the local deformation F is direct (i.e.
det(F) > 0) and grow toward infinity as F becomes more and more singular. As a
consequence, resulting displacement fields only involve direct local deformations, and
deformed meshes do not exhibit inverted triangles.

In Figure 2.3, we apply a uniform volume force distribution f(x) ∝ (−4, 1) onto a
two-dimensional rectangular beam, and we compute the resulting deformation using the

34 Chapter 2. State of the art and problem modelling

Neo-Hookean

Linear

Saint Venant-Kirchhoff

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ja
co

bi
an

 d
et

er
m

in
an

t

Figure 2.3: Resulting deformations for the uniform force distribution, using the linear
model (bottom left), the Saint Venant-Kirchhoff model (top left) and the Neo-Hookean
model (right).

three models described in this section. The color map represents the local Jacobian de-
terminant of the transformation. Namely, inverted triangles are represented in red while
non-inverted triangles are represented in blue. First, the linear deformation, which is
just an amplification of an infinitesimal deformation, features a significant dilatation,
which is common with linear deformations. In addition, rotations are penalized by the
linear model, as the Green-Saint Venant tensor e(u) is replaced with its linearized ver-
sion. As a consequence, the resulting displacement does not involve a sufficient rotation.
Rotation is better represented in the Saint Venant-Kirchhoff displacement, especially at
the end of the beam. However, the displacement also features inverted triangles close
to the clamped boundary. Finally, the Neo-Hookean displacement looks more realistic
as it features a large rotation, and contains no inverted triangles. Even though some
overlapping appears between triangles, every triangle is transformed in a direct way.
Thus, the Neo-Hookean model is relevant for large deformations without self-contact.

Solving numerically a neo-Hookean problem using a Newton method might be chal-
lenging, as the problem residual is not defined for non-feasible points (J < 0). As a
consequence, the solver should only generate iterates that lie in the feasible region.

Remark 2.1. Let us add a word about the existence of solutions for nonlinear models.
The neo-Hookean model, along with some more generic models, falls into the category
of polyconvex stored energy functions (Ball, 1976). For such functions, the existence

2.2. Elastic modelling of the liver 35

of a minimizer is guaranteed. In the case of Saint Venant-Kirchhoff materials, Raoult
(1986) proves that the deformation energy function is not polyconvex, and proving the
existence of minimizers is more difficult (see Ciarlet, 1988, Section 7.7 Remark (5) and
Exercise 7.16). Though, it is possible to prove that the strong formulation (2.2) has
solutions, using the implicit functions theorem (Ciarlet, 1988, Chapter 6).

2.2.3 Mechanical models in liver simulation

We now review a few models that were proposed in the computer-assisted intervention
literature to model the liver and its surroundings. Such models should not only involve
a constitutive law to describe the liver parenchyma, but also account for the interactions
between the liver and its surroundings.

We first focus on constitutive laws used to model the liver parenchyma. Liver tissues,
as well as most biological tissues, enter the category of soft materials and their simula-
tion requires a hyperelastic model. In their extensive review Marchesseau et al. (2017)
indicate that, in general, the liver parenchyma exhibits an isotropic behavior, and thus
can be represented using an isotropic model. Used models in the literature include the
classic Saint Venant-Kirchhoff (Delingette and Ayache, 2004) and Neo-Hookean (Miller
et al., 2007) models, but also the more generic Ogden model (Nikolaev and Cotin, 2020),
defined by

w(∇u) =
N∑

p=1

µp

αp

(
λ

αp

1 + λ
αp

2 + λ
αp

3 − 3
)
,

where λ1, λ2, λ3 are the principal stretches and N,αp, µp are material parameters. How-
ever, hyperelastic models often require heavy calculations, too heavy for real-time reg-
istration. A popular compromise between model accuracy and computational efficiency,
the linear co-rotational model (Nesme et al., 2005) offers the possibility to simulate non-
linear deformations while solving linear systems. Adopters of the co-rotational model
for liver registration include Suwelack et al. (2014), Plantefève et al. (2016) and Peterlík
et al. (2018), among others.

The liver parenchyma is traversed by large blood vessels that are stiffer than liver
tissues, resulting in an additional resistance to deformations. Peterlík et al. (2012)
propose a liver biomechanical model including the mechanical properties of blood vessels.
To meet the real-time requirement, the authors use the co-rotational model for the
parenchyma, coupled with a beam model for blood vessels.

Another critical part of the mechanical model is the interaction between the liver and
its surroundings. Though it is feasible to perform ex-vivo measures on the parenchyma
to estimate mechanical parameters, estimating the parameters of ligaments and tissues
that hold the liver is more difficult. As a consequence, boundary conditions applied to
the liver mesh are often simple. To produce their synthetic validation data, Peterlík et al.
(2018) apply homogeneous Dirichlet conditions on the parts of the boundary attached
to ligaments and at the entry of the portal and the hepatic veins. Ozkan and Goksel
(2018) consider that the liver is embedded in a larger elastic continuum, and set the
boundary conditions as an approximation of the behavior of surrounding tissues. Peterlík

36 Chapter 2. State of the art and problem modelling

et al. (2017) represent ligaments surrounding the liver as linear springs holding the
organ. They use a data assimilation procedure involving a Kalman filter to progressively
estimate the associated stiffnesses. Their model was recently improved by Nikolaev and
Cotin (2020), who use nonlinear springs and a better initialization procedure.

2.3 A review of some registration methods

We now turn to elastic registration methods. Based on a mechanical model of the liver,
these methods apply forces onto the liver virtual model to generate a deformation. The
choice of a registration method is as critical as the choice of a mechanical model, as the
forces applied by the method determine whether the resulting deformation is physically
relevant or not.

Before we focus on registration methods for augmented surgery, we give a bit of
context about image registration methods, as those methods have been around for several
decades and have probably inspired the augmented surgery community.

2.3.1 Image registration methods based on a mechanical model

Image registration is a vast and well established domain of image processing. In the med-
ical domain, image registration is used to account for anatomy variability between pa-
tients (Christensen et al., 1997), to combine images from different modalities (D’Agostino
et al., 2003), or to match data with an atlas (Wang and Staib, 2000). In this section,
we describe some registration methods that involve a mechanical model, namely a solid
or a fluid model. The review by Sotiras et al. (2013) adopts a wider scope and includes
methods based on interpolation and geometry.

Let us consider an image registration problem involving two liver images. Each image
is represented by a density function (1 for bone, 0 for void) with compact support defined
on Rd, where d = 2 or 3 is the image dimension. The template image, represented by
the distribution t, is for instance an atlas where each part of the liver is identified. The
source image, represented by the distribution s, may be a patient-specific image. During
the registration process, a displacement field u is computed, so that the point x in the
template image is associated to the point x+ u(x) in the source image. In other words,
the template image is transported by a displacement field u to look like the source image.
Usually, the displacement field u is the solution to a minimization problem, where the
cost function F measures the discrepancy between t and s ◦ (Id +u). A common choice
for F (see for instance Rabbitt et al., 1995; Dupuis et al., 1998) is the least-squares error

F (u) = 1
2

ˆ
Rd

[
t(x)− s(x+ u(x))

]2 dx.

While the choice of F depends on the available data and image modalities, the chosen
physical model is related to the expected qualities of u, especially its smoothness and
the possibility to obtain large deformations.

2.3. A review of some registration methods 37

Models based on elasticity

In an elastic registration process, we consider that the domain is filled with an elastic
material, so that applying a displacement field has a cost in terms of deformation energy.
The functional F defined in (2.3.1) plays the role of an external potential energy, which
applies a loading onto the material to generate a deformation. The resulting displacement
u is solution to the problem

min
u

F (u) +W (u), (2.4)

where W is the elastic deformation energy, which plays the role of a regularization term.
First mentions of elastic registration appear in Broit’s doctoral thesis (1981), followed

by a series of articles involving his advisor where elastic registration is applied to match
brain images with an atlas (Bajcsy and Kovačič, 1989; Gee and Bajcsy, 1999). While
these early works involve a linear elastic model, hyperelastic models are later adopted
(Rabbitt et al., 1995) to account for a wider range of deformations. Subsequent develop-
ments around hyperelastic models include struggling against inconsistent deformations,
computing the reverse transformation along with the direct one, or writing more efficient
numerical schemes.

Models based on viscosity

As they penalize the global deformation applied to the template image, elastic models
may be too restrictive when large deformations are required. Christensen et al. (1996)
prefer to use a model based on fluid mechanics. In a viscous model, the deformation
energy is applied to the velocity field instead of the displacement field. As a consequence,
the regularity of the final displacement field is preserved, but nothing prevents large
deformations to occur.

The resulting registration is the consequence of an time-dependent displacement field
u : [0, tf]×Ω→ Rd. A particle initially at x is transported at x+ u(t, x) at time t. The
evolution of u is driven in a Eulerian fashion by a velocity field v : [0, tf]×Ω→ Rd such
that

∀(t, x) ∈ [0, tf]× Ω ∂tu(t, x) = v(t, x+ u(x, t)).

To enforce the smoothness of the final displacement u(tf , ·), v is the solution to the
elasticity problem

min
v

dF (u) · v +W (u).

Several modern shape-matching methods rely on velocity-based models. In the ap-
proach by de Buhan et al. (2016), the authors use the shape optimization framework to
register an unstructured mesh onto a fixed shape. Following the extension-regularization
framework, they define the velocity field at each iteration as the solution to an elasticity
problem. In the large deformation diffeomorphic metric mapping (LDDMM) framework
(Dupuis et al., 1998; Beg et al., 2005), still used nowadays, the velocity field is solution
to a variational problem involving the whole time interval.

38 Chapter 2. State of the art and problem modelling

2.3.2 Organ registration in augmented surgery

Augmented surgery represents a particular application of registration, as pre- and intra-
operative data both represent the same organ. In this context, the mechanical model
has a real meaning, as the computed deformation should represent the true organ de-
formation. In contrast, mechanical models only play a role of regularizer in the image
registration methods mentioned above.

Forces resulting from a fictitious agent

A large number of organ registration procedures are inspired from the famous Iterative
Closest Point algorithm by Besl and McKay (1992). Created for generic rigid registra-
tion, the Iterative Closest Point algorithm relies on orthogonal projections between the
intra-operative point cloud Γ = {y1, y2, · · · } and the current liver mesh. At each itera-
tion, the orthogonal projections a1, a2, · · · of points in Γ onto the liver mesh boundary
are computed. Then, a rigid displacement ur, solution to the least-square problem

min
ur

1
2
∑

j

∥aj + ur(aj)− yj∥
2,

is determined. This rigid displacement is applied to the liver mesh, projections onto the
new mesh are computed and so on. The method stops when the least-square error does
not decrease sufficiently between iterations. Clements et al. (2008) propose an improved
version of the Iterative Closest Point algorithm, where landmark correspondence between
the pre- and intra-operative data is taken into account.

Adaptations of the Iterative Closest Point algorithm to elastic registration often
consist in introducting fictitious forces between the observed point cloud and the liver
model. For Haouchine et al. (2013), these forces are generated by linear springs (see
Figure 2.4). Using the same notation as above, the static elasticity problem solved at
each iteration reads

min
u

1
2
∑

j

kj∥aj + u(aj)− yj∥
2 +W (u),

where kj is a stiffness parameter, which increases progressively along iterations to enforce
the matching. Note how close to (2.4) this formulation is. Plantefève et al. (2016)
replace the linear springs with a nonlinear attractive force. They model the registration
process using dynamic elasticity to ensure the existence of a solution without Dirichlet
boundary conditions. In a similar fashion, Suwelack et al. (2014) use an electrostatic
attractive force between positively charged observed points and a negatively charged
liver boundary.

Artificial forces sometimes appear in a more implicit way, taking the form of an
optimization constraint in the mechanical model. To perform the registration, Peterlík
et al. (2018) solve the optimization problem

min
u

W (u) subject to constraint C(u) = 0, (2.5)

2.3. A review of some registration methods 39

Figure 2.4: Observed data points (green) and their orthogonal projection onto the liver
mesh (Haouchine et al., 2013).

where the constraint C(u) = 0 enforces correspondence between the current displacement
field u and observed data. In an earlier work (Peterlík et al., 2014), the authors use the
resulting Lagrange multipliers to estimate the boundary condition necessary to perform
a registration between two configurations of the same organ. Approaches using similar
sliding constraints are used in the context of pelvic system simulation (Courtecuisse et
al., 2020) and brain-shift compensation (Morin et al., 2017).

Forces resulting from an inverse problem

Whether they derive from an imaginary potential energy or play the role of constraint-
enforcing Lagrange multipliers, such fictitious forces do not correspond to a real physical
phenomenon. They are created by data points, which do not really exist. As a conse-
quence, in the methods above, forces that drive the registration are necessarily applied
where data points are, without consideration for the true causes of displacement. If the
registration problem involved landmarks located inside the organ, then registration forces
would not even apply on the liver boundary. This often results in a poorly physically
consistent displacement field, regardless of the direct model accuracy.

Rucker et al. (2014) address this issue in the context of open liver surgery. They
control the imposed displacement on the posterior face of the liver (in contact with
the support), while the anterior surface is observed by the camera. Heiselman et al.
(2017) extend this work to laparoscopic surgery, by applying an imposed displacement
on zones where ligaments hold the liver. Here, the authors use linear elasticity. In order
to make computations faster, they create a basis of displacement fields associated to a
range of non-homogeneous Dirichlet conditions. The authors use a similar displacement
basis in a more recent work (Heiselman et al., 2020) to register the liver model onto
slices obtained from ultrasound intra-operative measures. Özgür et al. (2018) propose
a method for initial pose reconstruction when depth information is not available in
laparoscopic images. They compute a rest shape by compensating the effect of gravity
in pre-operative images, and they simulate pneumoperitoneum pressure and gravity load
in intra-operative conditions to determine the final liver shape. Xie et al. (2022) use

40 Chapter 2. State of the art and problem modelling

surface-matching as a constraint in an optimization problem to update a force estimation
between two successive frames. From a current force distribution gn, they estimate a
new force distribution gn+1 by solving the problem

min
g

1
2∥g − gn∥

2 subject to constraint C(ug) = 0,

where C is defined as in (2.5) and ug is the displacement field generated by g. Note that,
here, the constraint is not imposed in the direct problem, but in the inverse problem, so
that no artificial protagonist is introduced into the direct problem.

2.4 Our contribution: an optimal control formulation

The approach studied in this manuscript falls in the category of registration methods
based on an inverse problem. Methods described in the paragraph above lead to very
accurate registration (see for instance the Vanderbilt result in Figure 6.8). However,
these methods are often very integrated, specific to a given problem, and formulated
in terms of matrix-vector operations. In addition, certain features, such as the linear
displacement basis, are tailored for linear elasticity.

In this manuscript, we take a step backward and formulate the registration problem
in the generic optimal control framework. Using an optimal control problem results in a
very flexible formulation that can be easily modified to include new physical information
or intra-operative data. The optimal control framework offers a wide range of generic
tools to study and solve the problem.

Our contribution includes a mathematical study of the continuous registration prob-
lem and an implementation of an adjoint method to solve the problem numerically, even
with a nonlinear elastic model. We also mention a possible application of our registration
procedure to estimate a local force applied onto the liver.

In the remaining of this section, we introduce the notation we use all along the
manuscript, and we introduce the optimal control formulation.

2.4.1 Mechanical model and data representation

The organ and its deformed configurations

We first define the notation for the liver constitutive law. Figure 2.5 illustrates the
problem geometry. In its reference configuration, the liver is represented by an open
domain Ω0 ⊂ Rd (with d = 3) filled with an elastic material. Due to its interactions
with the environment, this continuum is subject to surface loadings, such as pressure or
contact with surrounding tissues. As we neglect gravity, we do not consider body forces,
though they may be easily accounted for as a parameter of the problem. The organ
boundary ∂Ω0 splits into two parts, ∂ΩD and ∂ΩN. On ∂ΩD, a homogeneous Dirichet
boundary condition applies, whereas ∂ΩN is subject to a Neumann condition involving
a surface force distribution g ∈ L2(∂ΩN,R

d). In our numerical experiments, Dirichlet

2.4. Our contribution: an optimal control formulation 41

Ωu = (Id +u)(Ω0)Ω0

Γ

y

p∂Ωu
(y)

d(y,
∂Ωu

)
Initial domain
filled with an

elastic material

Observed surface

Domain updated with
displacement u

Figure 2.5: Problem geometry. The distance between a point y ∈ Γ and its orthogonal
projection onto ∂Ωu is denoted by d(y, ∂Ωu).

boundary conditions are set at the hepatic vein entry and in the region where the liver
is in contact with the falciform ligament. The space of displacement fields is defined by

H1
D(Ω0) =

{
v ∈ H1(Ω0)

∣∣ v = 0 on ∂ΩD
}
,

and we denote by ug ∈ H1
D(Ω0,R

d) the displacement field generated by a given force
distribution g ∈ L2(∂ΩN). In the case of linear elasticity, ug solves the partial differential
equation

div(Aε(u)) = 0 in Ω0
u = 0 on ∂ΩD

Aε(u) · n = g on ∂ΩN.
(2.6)

Unless specified otherwise, we use a linear elastic model to describe the liver parenchyma.
In addition, we do not model blood vessels in this study.

We denote by Ωu = {x+ u(x), x ∈ Ω0} the volume occupied by the deformed organ.
To be consistent with the numerical implementation, we do not expect (Id +u) to be
a bijection. In the numerical framework, the liver is represented by a mesh and its
boundary is represented by a set of triangles, but we do not take measures to detect
or prevent self-intersection. When a boundary triangle is inside the deformed mesh, it
is still considered to be a boundary element. For this reason, in the whole manuscript
we always work with the surface (Id +u)(∂Ω0), which is the boundary ∂Ω0 transported
by a displacement u, even when it does not match with the boundary of Ωu. However,
the range of deformations expected in the application case usually does not include
self-contact. In that case, both definitions coincide.

42 Chapter 2. State of the art and problem modelling

Data representation and objective function

While the reference configuration Ω0 is known through pre-operative images, the current
position shall be estimated with the help of data provided during the intervention by a
measuring device. In the continuous problem, we represent observed data as a (d− 1)-
dimensional manifold Γ (a surface, actually). This data represents the current location
of a part of ∂Ω0.

Due to the liver geometry, it is very likely that the surgeon has a vague idea of
which part of the liver surface appears on the camera, and therefore which part of the
pre-operative liver boundary should match Γ. The part of the liver boundary that is
candidate to match Γ is denoted by S0 ⊂ ∂Ω0. From now on, we assume that S0 is
compact. When S0 is transported by a displacement u, we use the notation

Su = (Id +u)(S0) ⊂ (Id +u)(∂Ω0).

In this context, the estimated displacement u should satisfy

Γ ⊂ Su. (2.7)

To enforce this condition, we compute u as the minimizer of a functional J : C(Ω0)→ R,
which vanishes if and only if (2.7) holds. Moreover, it should not promote one part of
S0 in particular to match Γ.

The design of our objective function is inspired by the work by de Buhan et al.
(2016). In their procedure, a meshed set Ω is transported along a velocity field to match
a target shape ΩT, known only through its signed distance function dΩT

, defined by

∀y ∈ Rd, dΩT
(y) =

d(y, ∂ΩT) if x /∈ ΩT
0 if x ∈ ∂ΩT
−d(y, ∂ΩT) if x ∈ ΩT.

The proposed objective function reads

J(Ω) =
ˆ

Ω
dΩT

(x) dx. (2.8)

It is minimized by using a gradient descent. The authors also considered the functional

P (Ω) =
ˆ

∂Ω
d2

ΩT
(x) ds

to measure the discrepancy between the boundaries ∂Ω and ∂ΩT (Nardoni, 2017). How-
ever, this functional led to convergence difficulties, and for this reason they preferred to
use (2.8).

Unlike de Buhan et al., we are not matching a full shape, but only an open surface,
and we cannot use a signed distance function. Moreover we cannot penalize the distance
to Γ on the whole boundary ∂Ω0, as only an unknown subpart of it should match Γ.

2.4. Our contribution: an optimal control formulation 43

Finally, we use a least-squares functional similar to that in previous registration methods.
Inspired from the Iterative Closest Point algorithm, the functional J reads

J(u) = 1
2

ˆ
Γ
d2(y, Su) dy. (2.9)

Note that, as d2(y, Su) = minx∈Su
∥x− y∥2, J(u) vanishes if and only if Γ ⊂ Su up to a

zero Lebesgue measure set. The expression (2.9) does not seem to promote a particular
part of S0 as a better candidate to match Γ, at least among feasible solutions u such
that J(u) = 0. Though, evaluating the distance function involves orthogonal projections,
which promotes the part of Su that is closest to Γ.

In an improved version of the functional, pairings between points from Γ and points
from Su may be performed using something else than orthogonal projections. Other
surface-matching techniques are studied in the registration community, including func-
tional maps (Ovsjanikov et al., 2012) or varifolds (Antonsanti et al., 2021). For a review
of surface-matching methods, see Sahillioğlu (2020).

Remark 2.2. A possible minor improvement in the expression for J consists in giving
a weight to points of Γ, depending on their measure uncertainty. Taking in account
different noise variances for the points in Γ could lead to an objective function of the
form

Jσ(Ω) = 1
2

ˆ
Γ

d2(y, Su)
σ2(y)

dy,

with 1/σ2 ∈ L∞(Γ).

2.4.2 An optimal control formulation

While the role of J is to associate points from Γ and Su to compute a discrepancy, the
role of the optimal control formulation is to make sure that the chosen minimizer of J
satisfies the physical model. A simple version of the optimal control problem reads

inf
g∈G

J(ug), (2.10)

where G = L2(∂ΩN). The formulation (2.10) contains the minimal information necessary
to compute a displacement field, and additional information should be added to reduce
the set of solutions. For instance, new data, such as anatomical landmarks may be taken
into account in the objective function, while information about the nature of forces that
create the displacement should be included in the definition of G. In the following
paragraph, we consider two options to promote regular displacement fields despite the
presence of noise in observed data. At the end of the section, we mention another
formulation with a constraint on the displacement field.

44 Chapter 2. State of the art and problem modelling

Penalty on the control norm

If we solve (2.10), the algorithm finds a control such that almost every point of Γ is
included in Sug

. In the medical application, Γ is extracted from laparoscopic images
using depth estimation. As a consequence, the intra-operative surface observation is
polluted by noise. An exact matching is not what we look for, as it would result in a
very irregular displacement field. A better result would be to make the liver boundary
pass through the point cloud without matching every single point. To enforce control
smoothness, we consider two options, namely a regularization term and a constraint.
In both approaches, the goal is to prevent the control g from taking the large values it
needs to reach every point in Γ.

In the regularized approach, a penalty term is included in the objective function, to
prevent the control from oscillating too much. The regularized problem reads

inf
g∈G

J(ug) +R(g), (2.11)

where R(g) is a penalization term, for instance

R(g) = α
2

ˆ
∂ΩN

∥g∥2 ds or R(g) = α
2

ˆ
∂ΩN

∥∇∂ΩN
g∥2 ds,

and G is L2(∂ΩN) or H1(∂ΩN) depending on the chosen penalty. Though solving the
regularized problem should result in a smoother control, it has a poor physical meaning,
as the penalty is non-local. The algorithm could output a control with oscillations
around Γ to save some cost on J , while creating an artificially smooth control on other
parts of the boundary to save some cost on the penalty. Moreover, it is difficult to set a
coefficient α based on physical considerations.

In the constrained approach, the feasible set is defined by

GM =
{
g ∈ L∞(∂ΩN) | ∥g∥L∞(∂ΩN) ⩽M

}
. (2.12)

Admissible force distributions should not take pointwise intensities greater than a upper
bound M > 0. Though managing a pointwise constraint is more difficult than evaluating
a penalty term, it seems easier to find a parameter M with a physical meaning. Namely,
M may be chosen so that pressures greater than M cannot be expected in the human
body.

For future reference, we write here the problem that is considered in Chapter 4. The
problem, which involves both a L2 penalty term an a L∞ constraint, reads

inf
g∈GM

J(ug) + α
2 ∥g∥

2
L

2(∂ΩN). (2.13)

Movement restriction on a subdomain

Information added into the optimal control formulation may also result from statistical
observations. Assume that, in general, it is observed that the displacement field in a

2.4. Our contribution: an optimal control formulation 45

subdomain of the liver does not exceed a certain magnitude. Namely, a subdomain
ω0 ⊂ Ω0 is expected to remain close to its initial configuration during the surgical
intervention. This information may be included in the problem by adding a constraint
on the displacement norm on ω0. The resulting problem reads

inf
g∈GM

J(ug) subject to constraint 1
2

ˆ
ω0

∥ug∥
2 dx ⩽ U, (2.14)

where U > 0 is a parameter. Here, U can be estimated by measuring the average
displacement amplitude in ω0 during past experiments. Note that optimality conditions
for problem (2.14) are derived in Chapter 4, but this approach is not implemented
numerically, as we obtained satisfying results with the other approaches. However, it
remains an interesting alternative to introduce physical information into the optimization
problem.

Chapter 3

A few tools around shapes and
mixed boundary conditions

One of our major contributions in this manuscript is to tackle the liver registration prob-
lem using a mathematical formalism. In this chapter, we introduce a few mathematical
tools that should be of use to analyse the optimal control problem.

First, as the initial momentum of the project revolved around shape optimization,
we give some definitions around shapes, shape functionals and shape optimization. The
mathematical definition of a shape is not really different from what anyone would call
a shape. A shape functional is a functional whose parameter is a shape, and shape
optimization consists in minimizing a shape functional. However, shape optimization
requires some dedicated tools, as inner products and other features from Hilbert spaces
are not available in a set of shapes.

Then, to obtain insight about the discrepancy functional J and approaches involving
closest points, we state some results around the signed distance function and orthogonal
projections. Regularity properties of J are very similar to those of the signed distance
function to a shape. They both depend on the uniqueness of an orthogonal projection of
a point onto a shape. In addition, those two functions share the properties of applications
defined using the min operator.

Finally, we introduce the notion of Gröger-regular set, which is useful to study partial
differential equations with mixed boundary conditions. The Gröger-regular property re-
quires sufficient regularity for the domain boundary, but also for the boundary between
regions with Dirichlet boundary conditions and regions with Neumann boundary condi-
tions. Using this framework, we state a few regularity results found in the literature, for
the elasticity system, but also for elliptic systems. The results mentioned in this section
are used to study the existence of a solution to our optimal control problem.

3.1 Shapes and shape functionals
Surface registration is a very geometric operation, and in this work we need to manipulate
functionals that depend on a deformed shape. In addition, the regularity of solutions to

48 Chapter 3. A few tools around shapes and mixed boundary conditions

x0

B

ψ(x0)

ψ(B)

ψ ∈ Ck(B,Rd)

Figure 3.1: Local Ck regularity for a shape. The Ck-diffeomorphism ψ transforms the
boundary part ∂Ω ∩B into a part of the plane of equation xd = 0.

partial differential equations often depends on the domain regularity. For this, reason,
we provide in this section some facts about shapes.

In this section, Ω is a domain, which means a bounded open subset of Rd, and ∂Ω
is its boundary. We might also use the term shape to emphasize the status of Ω as the
variable of a shape functional, but it actually means the same as a domain. We first give
a few definitions about shape regularity. Then, we introduce functionals that depend on
a shape variable, and a tool to study their variations, Hadamard’s boundary variation
framework.

3.1.1 Regularity of a domain

In this section, we begin with some tools to describe a domain and obtain local infor-
mation about its boundary. Then we briefly evoke the transposition of these notions in
a numerical context.

Domains of class Ck

The local regularity of a shape Ω is assessed by considering the part of its boundary ∂Ω
that lies in the vicinity of any point x ∈ ∂Ω and answering the following question: how
regular is a diffeomorphism which transforms this part of the boundary into something
flat, namely a part of an affine subspace of dimension d − 1? When, for instance, a
diffeomorphism of class Ck can be found for each point x of ∂Ω, then Ω is said to have a
Ck boundary (see Figure 3.1). A more formal definition (Gilbarg and Trudinger, 1977,
Section 6.2) is given below.

Definition 3.1 (Domain of class Ck). Let 0 ⩽ k ⩽ +∞. A bounded domain Ω ⊂ Rd

and its boundary are of class Ck when, at each point x ∈ ∂Ω, there is a ball B = B(x0)
and a Ck-diffeomorphism ψ from B to D ⊂ Rd such that

ψ(B ∩ Ω) ⊂ Rd
+ and ψ(B ∩ ∂Ω) ⊂ ∂Rd

+,

3.1. Shapes and shape functionals 49

where Rd
+ =

{
x ∈ Rd | xd > 0

}
. For 0 < ℓ ⩽ 1, domains of class Ck,ℓ are defined the

same way.

The regularity of a domain Ω is useful to ensure regularity of solutions to partial
differential equations defined on Ω, but also to study the variations of a shape functional
when Ω is deformed. In the second situation, tools such as boundary normal or curvature
sometimes need to be available to compute shape derivatives. These tools are defined
right now.

We first define the boundary normal, which is characterized using the diffeomorphism
ψ and its jacobian matrix (Delfour and Zolésio, 2011, Chapter 2, Remark 3.2).

Definition 3.2 (Outer normal). Let Ω a domain with C1 boundary, x0 ∈ ∂Ω and ψ the
diffeomorphism from Definition 3.1. Without loss of generality we assume ψ(x0) = 0Rd ,
and we denote by (e1, · · · , ed) the canonical base of Rd. The outer unit normal to ∂Ω at
x0 is defined by

n(x0) = m(x0)
∥m(x0)∥ where m(x0) = −

[
∇ψ(x0)T

]
ed,

and ∇ψ is the Jacobian matrix of ψ.

Remark 3.1. To be convinced by the expression ofm(x0), note that the tangent space to
∂Ω at x0 is defined by Tx0

= span(∇ϕ(0)e1, . . . ,∇ϕ(0)ed−1), where ϕ = ψ−1. Therefore
we require m(x0) to satisfy{

∀1 ⩽ i ⩽ d− 1 m(x0) · ∇ϕ(0)ei = 0
m(x0) · ∇ϕ(0)ed = −1.

In other words,[
∇ϕ(0)T

]
m(x0) = −ed and m(x0) = −

[
∇ϕ(0)−T

]
ed = −

[
∇ψ(x0)T

]
ed.

To define curvature, it is easier to use the representation of Ck domains as local
epigraphs, introduced below (Delfour and Zolésio, 2011, Chapter 2, Definition 5.2 and
Theorem 5.2).

Definition 3.3 (Local epigraph). A domain Ω ⊂ Rd with nonempty boundary is said
to be locally a Ck-epigraph, k ⩾ 0, when for each x0 ∈ ∂Ω, there is a ball B centered at
0, a hyperplane S ⊂ Rd with normal a and a Ck function φ : S ∩B → R such that

∀v ∈ B x0 + v ∈ Ω⇔ v · a > φ(vS) and x0 + v ∈ ∂Ω⇔ v · a = φ(vS),

where vS is the component of v along S.

Proposition 3.1. For k ⩾ 1, a domain Ω has a Ck boundary if and only if it is locally
a Ck-epigraph.

50 Chapter 3. A few tools around shapes and mixed boundary conditions

For k ⩾ 1 and 0 < ℓ ⩽ 1, domains of class Ck,ℓ are characterized by their local
epigraph representation. Note that the equivalence is not true for less regular domains,
though. We can now state a definition for principal curvatures and mean curvature for
C2 domains.

Definition 3.4 (Curvature). Let Ω a domain with C2 boundary and x0 ∈ ∂Ω. Without
loss of generality, we assume that the local epigraph representation of Ω around x0
involves the tangent space to ∂Ω at x0, i.e. S = Tx0

and the inner normal vector
a = −n(x0). Using the notation of Definition 3.3, the application φ ∈ C2(B ∩ Tx0

,R)
satisfies φ(0) = 0 and ∇φ(0) = 0.

• The principal curvatures κ1, . . . , κd−1 of ∂Ω at x0 are the eigenvalues of the Hessian
matrix ∇2φ(0).

• The mean curvature of ∂Ω at x0 is defined by

H(x0) =
d−1∑
i=1

κi = ∆φ(0).

Remark 3.2. The curvatures are associated to the variations of the outer normal vector
n(x) as x moves along the boundary ∂Ω. Namely, n and H satisfy

H = div∂Ω(n), (3.1)

where div∂Ω is the tangent divergence operator (Henrot and Pierre, 2005, Definition
5.4.7).

Remark 3.3. The definition of boundary curvature is still valid for domains of class
C1,1. In such domains, the normal vector n is a Lipschitz continuous function defined
on ∂Ω. Due to Rademacher’s theorem, the normal vector function has derivatives at
almost every point in ∂Ω, and curvature can be defined at these points using (3.1).

Domains with Lipschitz boundary

Lipschitz regularity for sets is a weaker condition than Ck regularity for k ⩾ 1. It is based
on local epigraphs involving Lipschitz continuous functions instead of Ck functions. We
state a definition of Lipschitz sets in the case of domains with compact boundary (for
instance bounded domains). When ∂Ω is not compact, several variants of the Lipschitz
regularity exist, but they become all equivalent when ∂Ω is compact (Delfour and Zolésio,
2011, Chapter 2, Definition 5.1 and Theorem 5.1), which will always be the case in this
work.

Definition 3.5 (Lipschitz domain). A domain Ω with compact boundary is said to
have a Lipschitz boundary when there exists a constant c > 0 such that Ω is locally the
epigraph of a Lipschitz continuous function with Lipschitz constant c.

3.1. Shapes and shape functionals 51

In other words, a Lipschitz domain is locally a C0,1-epigraph involving functions φ
that share a uniform Lipschitz constant. This condition is stronger than being a domain
of class C0,1: A Lipschitz domain is of class C0,1 but some domains of class C0,1 are
not Lipschitz. Grisvard (2011, Chapter 1, Section 1.2) gives more details about the
differences between those definitions.

Lipschitz domains are omnipresent when it comes to solving real-world problems.
For instance, mechanical or thermal simulations involving industrial pieces with sharp
edges or corners require to solve partial differential equations on Lipschitz domains.
In particular, the normal n is defined almost everywhere on a Lipschitz boundary, as a
consequence of Rademacher’s theorem, and Green’s formula is valid on Lipschitz domains
(Grisvard, 2011, Chapter 1, Theorem 1.5.3.1), which is a good start for solving partial
differential equations.

3.1.2 Shape functional and shape derivative

In this section, we introduce the notion of shape functional. A shape functional is a
real-valued function which depends on a variable shape. Though continuity for such
functionals can be defined using a topology on shapes sets, the absence of Hilbert space
structure on shape sets makes it more difficult to define differentiability with respect
to a shape. We first provide a definition for shape functionals, and then we introduce
Hadamard’s framework for shape differentiation.

In this document, a shape functional is defined as follows (Delfour and Zolésio, 2011,
Chapter 7, Definition 2.1).

Definition 3.6 (Shape functional). Let D a nonempty subset of Rd and P(D) =
{Ω | Ω ⊂ D}. A shape functional is an application J : A → R, where A ⊂ P(D),
such that, for Ω ∈ A, and T a homeomorphism of D such that T (Ω) = Ω, the equality
J(Ω) = J(T (Ω)) holds.

Common choices for D include D = Rd or D a compact subset of Rd. The above
definition emphasizes the independence of J with respect to continuous transformation
that preserve Ω. In the case of open Lipschitz sets, it is common to apply a small
deformation field onto the shape boundary to change the value of J .

Boundary variation framework

To study the variations of a shape functional J , it is convenient to use Hadamard’s
boundary variation method (see for instance Murat and Simon, 1976; Sokolowski and
Zolésio, 1992; Henrot and Pierre, 2005, and references therein). To represent small
variations of a bounded Lipschitz subset Ω of Rd, we use the notation ΩV to denote the
set Ω transported by a displacement field V ∈W 1,∞(Rd,Rd), namely

ΩV = (Id +V)(Ω) = {x+ V (x), x ∈ Ω} . (3.2)

The definition for shape differentiability we give is stated in Allaire (2007, Chapter 6,
Definition 6.15).

52 Chapter 3. A few tools around shapes and mixed boundary conditions

Definition 3.7 (Shape differentiability). Let Ω a bounded subset of Rd with Lipschitz
boundary.

The shape functional J is said to be shape differentiable in the direction V ∈
W 1,∞(Rd,Rd) whenever the application t 7→ J(ΩtV) is differentiable at t = 0. If it
exists, the directional shape derivative of J is defined by

dJ(Ω)(V) = lim
t↘0

J(ΩtV)− J(Ω)
t

. (3.3)

In addition, J is said to be Fréchet differentiable at Ω whenever the application
V 7→ J (ΩV) is Fréchet differentiable at 0 on W 1,∞(Rd,Rd).

This definition of shape differentiability, which involves Lipschitz continuous dis-
placement fields, is appropriate for numerical computations, but several versions exist in
the literature. Delfour and Zolésio (2011, Chapter 8, Definition 3.3) use a more general
definition. They only consider C∞ displacement fields with compact support and define
the shape gradient as a distribution on Rd. Sokolowski and Zolésio (1992, Chapter 2,
Definition 2.19) state the definition with a continuous displacement field. Though, all
these definitions consist in applying a displacement field to Ω.

We now state standard examples of shape differentiability results for shape function-
als defined as integrals on a variable domain (Henrot and Pierre, 2005, Theorems 5.2.2
and 5.4.17). In the second proposition, we use the notation C1,∞ = W 1,∞ ∩ C1.

Proposition 3.2. Let Ω ⊂ Rd a shape with Lipschitz boundary and f ∈ W 1,1(Rd,Rd).
The functional defined by J : W 1,∞(Rd,Rd) → R, V 7→

´
ΩV

f dx is differentiable at 0
and its differential reads

∀V ∈W 1,∞(Rd,Rd) ⟨dJ(0), V ⟩ =
ˆ

∂Ω
(V · n)f ds. (3.4)

Proposition 3.3. Let Ω ⊂ Rd a shape with C2 boundary and g ∈ W 2,1(Rd,Rd). The
functional defined by J : C1,∞(Rd,Rd)→ R, V 7→

´
∂ΩV

g ds is differentiable at 0 and its
differential reads

∀V ∈ C1,∞(Rd,Rd) ⟨dJ(0), V ⟩ =
ˆ

∂Ω0

(V · n)
(
∂g

∂n
+Hg

)
ds, (3.5)

where H is the mean curvature of ∂Ω.

A wide range of similar results exist in the literature. Standard shape functionals
include functions based on the solution of a partial differential equation defined on Ω,
or eigenvalues of differential operators such as the Laplacian. The interested reader is
refered to Henrot and Pierre (2005, Chapter 5) and Delfour and Zolésio (2011, Chapter
9) for more information.

3.2. Orthogonal projection and signed distance function 53

Structure theorem

Note that, in Proposition 3.2 and Proposition 3.3, the differential dJ(0) has its support
included in ∂Ω. Moreover the shape derivatives depend only on the normal component
of V on ∂Ω. Indeed, the variation of J only depends on the movements of the shape
boundary ∂Ω. In addition, if Ω has a C1 boundary and V only has a tangential compo-
nent on ∂Ω, then Ω is not changed by V at first order. This property of shape derivatives
is stated in the structure theorem below (Henrot and Pierre, 2005, Theorem 5.9.2).

Theorem 3.1 (Structure). Let k ⩽ 1, Ω ⊂ Rd an open set with Ck+1 boundary and
J a shape functional. Assume that the application J̃ : Ck,∞(Rd,Rd) → R, V 7→ J(ΩV)
is Fréchet differentiable at 0. Then there exists a linear form ℓ, continuous on Ck(∂Ω),
such that

∀V ∈ Ck,∞(Rd,Rd)
〈
dJ̃(0), V

〉
= ℓ(V |∂Ω · n),

where n is the normal to ∂Ω.

3.2 Orthogonal projection and signed distance function

Given a domain Ω with Lipschitz boundary and a point y ∈ Rd, one can wonder whether
y is inside or outside Ω, or how far from Ω y is. The signed distance function and
the orthogonal projection are two tools to answer such questions. For a detailed and
exhaustive presentation, the reader may refer to Delfour and Zolésio (2011, Chapter 7).
Unless specified otherwise, ∥ · ∥ and · denote the Euclidean norm and scalar product on
Rd, respectively.

As we are working with the signed distance to ∂Ω, we need a tool to differentiate
functions based on a minimum. Such a theorem is provided by Danskin (1967, Chapter
3, Theorems I and II) in the case of functions defined on spaces of finite dimension.

Lemma 3.1 (Danskin’s theorem). Let f : E × K → R a continuous function, with
E a vector space of finite dimension and K a compact subset of a Euclidean space.
Assume that (y, z) 7→ ∂f

∂y (y, z) exists and is continuous, and define φ : E → R, y 7→
minz∈K f(y, z).

If y is a point of E and w ̸= 0 is a direction, then φ has a directional derivative in
the direction w at the point y, which reads

lim
t↘0

φ(y + tw)− φ(y)
t

= min
z∈K(y)

〈
∂f

∂y
(y, z), w

〉
,

where K(y) = {z ∈ k | f(y, z) = φ(y)} is the set of points in K which yield the minimum
of f(y, ·).

In addition, assume that K(y) is a singleton. Then φ is differentiable in the sense
of Fréchet at y. Last but not least, if K(y) is a singleton for y in a neighborhood, then
φ is C1 on this neighborhood.

54 Chapter 3. A few tools around shapes and mixed boundary conditions

3.2.1 Generalities

Here we give a few definitions and properties about the signed distance function and the
orthogonal projection.

Definition 3.8 (Signed distance function). Let Ω ⊂ Rd be an open set with Lipschitz
boundary. The signed distance function with respect to Ω is defined by

∀y ∈ Rd, dΩ(y) =

d(y, ∂Ω) if x /∈ Ω
0 if x ∈ ∂Ω
−d(y, ∂Ω) if x ∈ Ω,

where d(y, ∂Ω) = minx∈∂Ω ∥y − x∥ is the Euclidean distance between y and ∂Ω.

Definition 3.9 (Orthogonal projection). Let Ω be an open domain. The set of orthog-
onal projections of y onto ∂Ω is defined by

Π∂Ω(y) = {x ∈ ∂Ω | ∥x− y∥ = d(y, ∂Ω)} .

When Π∂Ω(y) is a singleton, we denote by p∂Ω(y) its element. The set of points which
have several orthogonal projections onto ∂Ω is called the skeleton of ∂Ω and is denoted
by Σ.

We state the following properties (Delfour and Zolésio, 2011, Chapter 7, Theorems 2.1
and 3.1) to better understand the relationship between the orthogonal projection and
the signed distance function.

Proposition 3.4. Let Ω be an open bounded Lipschitz set.

1. The signed distance function is Lipschitz continuous with Lipschitz constant 1. As
a consequence, it is differentiable almost everywhere in Rd with ∥∇dΩ(y)∥ ⩽ 1.

2. For y ∈ Rd, d2
Ω has directional derivatives at y and

∀w ∈ Rd lim
t↘0

d2
Ω(y + tw)− d2

Ω(y)
t

= min
z∈Π∂Ω(y)

2(y − z) · w. (3.6)

3. A point y ∈ Rd has a unique projection p∂Ω(y) if and only if d2
Ω is Fréchet differ-

entiable at y. In this case, p∂Ω(y) = y − 1
2∇d

2
Ω(y).

4. Σ is included in the set of points where dΩ is not Fréchet differentiable, and Σ has
zero Lebesgue measure in Rd.

Proof. 1. For x, y ∈ Rd, a classic triangle inequality yields |d(x, ∂Ω) − d(y, ∂Ω)| ⩽
∥y − x∥. To prove the result with the signed distance function, we consider two
cases, depending on whether x and y are on the same side of ∂Ω. In the first case
x, y ∈ Ω or x, y /∈ Ω, and

|dΩ(x)− dΩ(y)| = |d(x, ∂Ω)− d(y, ∂Ω)| ⩽ ∥x− y∥.

3.2. Orthogonal projection and signed distance function 55

In the other case x ∈ Ω and y /∈ Ω, then [x, y] ∩ ∂Ω is nonempty. Considering
z ∈ [x, y] ∩ ∂Ω, we obtain

∥y − x∥ = ∥y − z∥+ ∥z − x∥ ⩾ d(y, ∂Ω) + d(x, ∂Ω) = |dΩ(y)− dΩ(x)|

and dΩ is Lipschitz continuous on Rd with Lipschitz constant at most 1. The
differentiability is a consequence of Rademacher’s theorem (Evans and Gariepy,
2015, Theorem 3.2).

2. Note that d2
Ω(y) = minz∈∂Ω ∥z − y∥

2, with (z, y) 7→ ∥z − y∥2 a C1 function, and
∂Ω a compact set. We obtain (3.6) by applying Lemma 3.1.

3. Assume that y has a unique projection point p∂Ω(y). Then Fréchet differentiability
is also a consequence of Lemma 3.1, and we obtain ∇d2

Ω(y) = 2(y − p∂Ω(y)).
Now, choose a point y ∈ Rd which has several projection points, and let z1 ̸= z2 ∈
Π∂Ω(y). Note that the elements of Π∂Ω(y) are equidistant from y. Equation (3.6)
and the Cauchy-Schwarz inequality yield

dd2
Ω(y)(z1 − y) = min

z∈Π∂Ω(y)
2(y − z) · (z1 − y) = −2∥y − z1∥

2.

We compute the derivative in the opposite direction. As z2 ̸= z1 and ∥z1 − y∥ =
∥z2 − y∥, the Cauchy-Schwarz inequality yields (y− z2) · (y− z1) < ∥z1 − y∥

2, and
the derivative reads

dd2
Ω(y)(y − z1) = min

z∈Π∂Ω(y)
2(y − z) · (y − z1) ⩽ 2(y − z2) · (y − z1) < 2∥y − z1∥

2.

We conclude that dd2
Ω(y) is not a linear application and d2

Ω is therefore not Fréchet
differentiable at y.

4. This result is a consequence of points 1 and 3.

If ∂Ω is C1, each point y ∈ Rd \ Σ can be associated to a unique pair of parameters
consisting of its orthogonal projection onto ∂Ω and its signed distance to Ω. In this case,
the normal vector is defined at every point of ∂Ω, and thus y is given by the formula

y = p∂Ω(y) + dΩ(y)n (p∂Ω(y)) ,

where n(x) is the outward normal vector at x ∈ ∂Ω. If ∂Ω is only Lipschitz, some pairs
of the form (x, ℓ) ∈ ∂Ω × R might be associated with several points, especially if ∂Ω
has an angular point at x. On Figure 3.2, y2 and y′

2 are associated to the same signed
distance value and projection.

The points of Σ should be handled with care in this parametrization, as they can be
associated with several sets of parameters. However, when computing derivatives, it is
possible to choose one orthogonal projection depending on the direction with respect to
which the derivative is computed.

56 Chapter 3. A few tools around shapes and mixed boundary conditions

Ω

Σ

y1 x1

x′
1

y2

y′
2

x2

y3

x3

Figure 3.2: Set (in gray) with its skeleton (dashed line) and the signed distance level
curves (gray lines). At the bottom, y1 ∈ Σ, has several projections. On the right, note
that p∂Ω(y2) = p∂Ω(y′

2) and dΩ(y2) = dΩ(y′
2). The gradient of dΩ is defined at y2 and

y′
2 but not at x2. On the left, ∇2dΩ is not defined at y3, as the curvature of ∂Ω is not

defined at x3.

To handle shape functionals based on the signed distance function, we need to know
how the orthogonal projection and the signed distance evolve when y moves or when Ω
is subject to a deformation. The following propositions gather some information found
in Henrot and Pierre (2005), Delfour and Zolésio (2011) and Dapogny (2013).

3.2.2 Pointwise derivatives

The regularity of dΩ away from Σ depends on the regularity of ∂Ω, and its derivatives
are defined using the normal vector to ∂Ω and its curvature. The following proposition
(Dapogny, 2013, section 4.2.1) states sufficient conditions for first and second derivatives
of dΩ to exist.

Proposition 3.5. Let Ω be a bounded open set with C1,1 boundary, y ∈ Rd \ (Σ ∪ ∂Ω),
and x = p∂Ω(y). The application dΩ is differentiable in the sense of Fréchet at y and

∇dΩ(y) = y − x
dΩ(y) = n(x),

where n(x) is the outward normal to Ω at x.
In addition, if Ω has C2 boundary and y ∈ Rd \Σ, we denote by (e1, · · · , ed−1) the di-

rections of principal curvatures at x and κ1, · · · , κd−1 the associated principal curvatures.

3.2. Orthogonal projection and signed distance function 57

Ω

Σ

Figure 3.3: Set of equation y < x4/3. The signed distance function is not C1 at (0, 0).

The signed distance is twice differentiable at y and

∇2dΩ(y) =
d−1∑
k=1

κk

1 + κkdΩ(y) ek ⊗ ek. (3.7)

Some examples of these conditions are illustrated on Figure 3.2. The signed distance
function is not differentiable at y1, as y1 ∈ Σ. Moreover, the signed distance Hessian at
y3 is not defined, because the curvature of ∂Ω is not defined at x3.

Remark 3.4. If dΩ is differentiable at y but the normal is not defined at x, it is still
possible to write ∇dΩ(y) = y−x

dΩ(y) (see y2 and y′
2 in Figure 3.2).

The following proposition (Delfour and Zolésio, 2011, Ch. 7, Th. 4.3) provides more
specific information about the regularity of dΩ in a vicinity of ∂Ω.

Proposition 3.6. Let Ω be a bounded domain.

1. If Ω is of class C1,1, then dΩ has C1,1 regularity in a neighborhood W of ∂Ω.
Moreover,

∀y ∈W ∇dΩ(y) = n(p∂Ω(y))

2. If Ω is of class Ck, with k ⩾ 2, then dΩ is C2 in a neighborhood W of ∂Ω and d2
Ω

is C1,1 in W . An expression for the Hessian of dΩ is given by (3.7).

Working with a C1,1 set, i.e. a set with bounded curvature, provides additional
comfort as Σ is kept away from ∂Ω. For instance the set of equation y > x4/3 has C1

boundary but not bounded curvature (See Figure 3.3). Thus, dΩ is not differentiable on
a neighborhood of ∂Ω.

We finally state a proposition (Dapogny, 2013, Lemma 4.2) about the pointwise
derivative of the orthogonal projection operator at points far from the skeleton of Ω.

58 Chapter 3. A few tools around shapes and mixed boundary conditions

Proposition 3.7. Assume Ω has C2 boundary, y ∈ Rd \ Σ and x = p∂Ω(y). Denote by
(e1, · · · , ed−1) the directions of principal curvatures at x and κ1, · · · , κd−1 the associated
principal curvatures. The orthogonal projection is Fréchet differentiable at y and its
Jacobian matrix reads

∇p∂Ω(y) =
d−1∑
k=1

1− κkdΩ(y)
1 + κkdΩ(y) ek ⊗ ek. (3.8)

Proof. According to Proposition 3.5, the orthogonal projection of y is unique and given
by the formula

p∂Ω(y) = y − dΩ(y)∇dΩ(y).

As the hypotheses ensure the existence of the signed distance Hessian at y, the expression
above is differentiable, with

∇p∂Ω(y) = I −∇dΩ(y)⊗∇dΩ(y)− dΩ(y) ∇2dΩ(y).

To conclude, we use (3.7) and we notice that

I −∇dΩ(y)⊗∇dΩ(y) = I − n(x)⊗ n(x) =
d−1∑
k=1

ek ⊗ ek.

3.2.3 Shape derivatives

In this section, we discuss shape differentiability for the signed distance function to a
given set. To be more specific, we only consider the squared signed distance d2

Ω, which
is actually the squared distance from ∂Ω. We will see that there are some similarities
between expressions for derivatives with respect to the shape and derivatives with respect
to the point. Indeed, sometimes, deciding whether it is the point or the set that moves
is only a question of reference frame.

In the following propositions (Dapogny, 2013, Section 4.2), we state Lipschitz conti-
nuity and directional differentiability with respect to the shape for d2

Ω.

Proposition 3.8. Let y ∈ Rd, Ω a bounded Lipschitz domain, and

B
W

1,∞(0, 1) =
{
w ∈W 1,∞(Ω)

∣∣∣ ∥w∥
W

1,∞ < 1
}
,

the application B
W

1,∞(0, 1)→ R+, w 7→ 1
2d

2(y, ∂Ωw) is Lipschitz continuous.

Proof. Let w1, w2 ∈ B
W

1,∞(0, 1). Because ∥w1∥W 1,∞ , ∥w2∥W 1,∞ < 1, (Id +w1) and
(Id +w2) are W 1,∞ diffeomorphisms (Allaire, 2007, Chapter 6, Lemma 6.13).

Assume d(y, ∂Ωw2
) ⩾ d(y, ∂Ωw1

) and choose x1 ∈ Π∂Ωw1
(y). Then for x2 ∈ ∂Ωw2

d(y, ∂Ωw2
)− d(y, ∂Ωw1

) ⩽ ∥y − x2∥ − ∥y − x1∥ ⩽ ∥x2 − x1∥.

3.3. Continuity and mixed boundary conditions 59

The previous inequality holds for any x2 ∈ ∂Ωw2
. In particular, we may consider x =

(Id +w1)−1(x1) and set x2 = x+ w2(x). With these notations,

∥x2 − x1∥ = ∥x+ w2(x)− x− w1(x)∥ = ∥w2(x)− w1(x)∥ ⩽ ∥w2 − w1∥W 1,∞ .

Note also that w 7→ d(y, ∂Ωw) is bounded on B
w

1,∞(0, 1), with

d(y, ∂Ωw) = min
x∈∂Ω

∥x+ w(x)− y∥ ⩽ min
x∈∂Ω

∥x− y∥+ ∥w(x)∥ ⩽ d(y, ∂Ω) + 1.

We conclude the proof by noting that

1
2d

2(y, ∂Ωw2
)− 1

2d
2(y, ∂Ωw1

) = 1
2
(
d(y, ∂Ωw2

) + d(y, ∂Ωw1
)
)(
d(y, ∂Ωw2

)− d(y, ∂Ωw1
)
)

⩽
(
d(y, ∂Ω) + 1

)
∥w2 − w1∥W 1,∞ .

Proposition 3.9. Let y ∈ Rd, and Ω a bounded Lipschitz domain. The application
w 7→ 1

2d
2(y,Ωw) defined on W 1,∞(Ω) has directional derivatives at 0 with

lim
t↘0

1
2d

2(y,Ωtw)− 1
2d

2(y,Ω)
t

= min
z∈Π∂Ω(y)

w(z) · (z − y). (3.9)

Proof. We use the notations

gy(t) = 1
2d

2(y, ∂Ωtw) = min
x+tw(x)∈∂Ωtw

1
2∥x+ tw(x)− y∥2,

and, for t small enough for tw to be a diffeomorphism,

K(t) =
{
x ∈ ∂Ω | 1

2d
2(y, ∂Ωtw) = 1

2∥x+ tw(x)− y∥2
}

= (I + tw)−1(Π∂Ωtw
(y)). (3.10)

For t close to 0, K(t) is a nonempty subset of ∂Ω. Also, the application (t, x) 7→
1
2∥x+ tw(x)− y∥2 has a continuous partial derivative with respect to t. The result is a
consequence of Lemma 3.1.

3.3 Continuity and mixed boundary conditions

As mentioned earlier, in this document we are working with functionals based on geo-
metric operations such as the orthogonal projection, and we consider shapes which are
deformed using a displacement field. For this reason, it is important to give a meaning
to the value of the displacement field at a single point. In other words, we need to ma-
nipulate displacement fields that are continuous and obtain convergences for the uniform
convergence norm.

In this section, we enumerate a few continuity results for elliptic equations and for
elasticity equations with mixed boundary conditions.

60 Chapter 3. A few tools around shapes and mixed boundary conditions

3.3.1 Some notation

From now on, we consider that Ω is an open domain with Lipschitz boundary ∂Ω. We
denote by ∂ΩN the open part of the boundary where a Neumann condition applies, and
∂ΩD = ∂Ω\∂ΩN. The space C(Ω) contains functions that are continuous on Ω, endowed
with the uniform convergence norm (the L∞ norm). For κ > 0, we also define the space
C0,κ(Ω) of κ-Hölder continuous functions, endowed with the norm

∥u∥
C

0,κ(Ω) = ∥u∥L∞(Ω) + sup
x ̸=y

|u(x)− u(y)|
|x− y|κ

,

and for 1 ⩽ p ⩽ ∞, W 1,p(Ω) is the Sobolev space of Lp functions whose first-order
derivatives are also in Lp(Ω), where things are measured with the norm

∥u∥
W

1,p(Ω) =
(ˆ

Ω
|u|p + |∇u|p dx

)1/p

.

Those two spaces are interesting from the point of view of continuous solutions. To
be more specific, for p > d, W 1,p(Ω) embeds continuously into C0,κ(Ω) where κ = 1−d/p
(Brezis, 1983, Theorem IX.12), and for κ > 0, the injection C0,κ(Ω) ↪→ C(Ω) is compact
(Brezis, 1983, Theorem IV.24), which means that a bounded sequence of C0,κ(Ω) or
W 1,p(Ω) (with p > d) converges uniformly, up to a subsequence. For this reason, we
would like to see our solutions in such a space.

However, two main obstacles appear when it comes to obtaining sufficient regularity
for solutions of elasticity systems with mixed boundary. First, the linear elastic system
is not an elliptic equation, as its energy functional does not penalize rigid-body displace-
ments. In addition, the presence of mixed boundary conditions degrades the regularity of
solutions, even in C1 domains. Gröger (1989) addressed the second difficulty by propos-
ing a class of domains adapted to the study of partial differential equations with mixed
boundary conditions. We now give a word about his framework.

Gröger regular sets for mixed-boundary conditions

To work with mixed boundary conditions, it is interesting to consider the subset G =
Ω∪ ∂ΩN of Rd. The subset G contains all necessary information about the regularity of
Ω and the distribution of Dirichlet and Neumann conditions on its boundary. Like in the
definition of Ck domains, the definition of Gröger regular sets involves diffeomorphisms
from a part of the surface to the unit ball of Rd. Before we give a formal definition, we
define the following subsets of Rd:

B = {x ∈ Rd | ∥x∥ < 1}
B+ = {x ∈ B | xd > 0}
D = {x ∈ B | xd = 0}
D0 = {x ∈ D | x1 < 0}

3.3. Continuity and mixed boundary conditions 61

Figure 3.4: The elementary sets B+, B+ ∪ D and B+ ∪ D0. A full line indicates that
the boundary is included in the set. A set is Gröger-regular when its boundary locally
looks like one of these sets, up to a Lipschitz diffeomorphism.

Definition 3.10 (Gröger-regular set). Let Ω a bounded domain and ∂ΩN a relatively
open part of its boundary. We say that G = Ω ∪ ∂ΩN is Gröger-regular when, for each
x ∈ ∂Ω, there is a neighborhood U of x and a Lipschitz diffeomorphism Φ : U → B such
that Φ(U ∩G) either coincides with B+, or with B+ ∪D or with B+ ∪D0.

Figure 3.4 shows the sets B+, B+ ∪D and B+ ∪D0. These three cases correspond
to the case x ∈ ∂Ω \ ∂ΩN, x ∈ ∂ΩN and x ∈ ∂(∂ΩN), respectively. A simpler way to
express this definition is that a bounded subset G is Gröger-regular when ∂ΩN has a
W 1,∞ boundary in ∂Ω (Gröger, 1989). A very similar definition for Gröger-regular sets
has been given independently by Droniou (2000, Condition (2.11)), where the author
describes ∂ΩN and ∂ΩD as "well separated" when the regularity assumption is respected.

Haller-Dintelmann et al. (2009, Section 5) give a few more details about Gröger-
regular sets in dimension 2 and 3. In particular, they note that in dimension 2, a
domain G is Gröger-regular when ∂Ω is W 1,∞, ∂ΩN is a finite union of open arcs in ∂Ω
and ∂ΩD is a finite union of closed arcs, none of which is reduced to a single point. They
also state the following characterization in dimension 3.

Proposition 3.10. Assume Ω is a bounded domain of class C0,1 and ∂ΩN is open in
∂Ω. Then G = Ω ∪ ∂ΩN is Gröger-regular if and only if the two conditions below hold:

1. ∂ΩD is the closure of its interior.

2. For x ∈ ∂(∂ΩN), there is a neighborhood U of x and a Lipschitz diffeomorphism Ψ
such that Ψ(U ∩ ∂(∂ΩN)) = (−1, 1).

This characterization, which is not true in dimension larger than 3, implies that
W 1,∞ polyhedrons of R3 where ∂(∂ΩN) is a finite union of line segments are Gröger
regular sets.

3.3.2 Linear elliptic equations

Though the linear elasticity system does not fall into this category, we first present some
regularity results in the case of linear elliptic equations, for which a wider literature
exists. Here we only state results for scalar equations, keeping in mind that uncoupled
systems of dimension d reduce to d scalar equations.

62 Chapter 3. A few tools around shapes and mixed boundary conditions

A convenient space to study problems with mixed boundary conditions is the Sobolev
space W 1,p

D (Ω), defined as the closure of the set{
u ∈ C∞

c (Rd)
∣∣∣ supp(u) ∩ ∂ΩD = ∅

}
(3.11)

for the usual norm in W 1,p(Ω). Functions contained in W 1,p
D (Ω) have a zero trace on

∂ΩD but can take some nonzero values on ∂ΩN.
The topological dual of W 1,p

′

D (Ω) is denoted by W−1,p
D (Ω), where p′ is the conjugate

exponent to p, defined by 1/p+1/p′ = 1. This dual contains, among others, linear forms
of type v 7→

´
Ω f · v dx for a measurable function f , but also distributions supported by

a submanifold of dimension d − 1 included in G. In particular, it contains applications
of the form v 7→

´
∂ΩN

g · v dx, which correspond to Neumann conditions.
From now on, we consider that ∂ΩD has a nonzero relative Lebesgue measure in ∂Ω.
We consider (scalar) linear partial differential equations of type

−div(A∇u) + bu = f in Ω
A∇u · n = g on ∂ΩN,

u = 0 on ∂ΩD

(3.12)

where A ∈ L∞(Ω,Md(R)) satisfies the ellipticity condition

∀x ∈ Ω,∀z ∈ Rd m∥z∥2 ⩽ z ·A(x)z ⩽M∥z∥2 (3.13)

for some M > m > 0 and b ∈ L∞(Ω,R) is a nonnegative function. It is known, due to
Lax-Milgram’s theorem, that for f ∈ H−1(Ω) and g ∈ H−1/2(∂ΩN), (3.12) has a unique
solution u ∈ H1

D(Ω).
In the context of Gröger-regular sets, Gröger (1989) studies (3.12) in terms of the

operator A : W 1,p
D (Ω)→W−1,p

D (Ω) defined by

⟨Au, v ⟩ =
ˆ

Ω
(A∇u · ∇v + buv) dx. (3.14)

His framework also includes the study of non-linear elliptic equations and the evolution
of a regularity result when the domain is transformed using a Lipschitz diffeomorphism.
We state here a simplified corollary of his regularity result (Gröger, 1989, Theorem 1).

Proposition 3.11. Assume that Ω∪∂ΩN is Gröger-regular. If b > m almost everywhere
in Ω, then there is a q > 2 such that for all p ∈ [2, q], the mapping A is a continuous
isomorphism from W 1,p

D (Ω) to W−1,p
D (Ω).

In other words, if for such a p the application v 7→
´

Ω fv dx +
´

∂ΩN
gv ds is in

W−1,p
D (Ω), then the solution of (3.12) is in W 1,p

D (Ω). The author also provides for A−1

an estimate which depends on the ellipticity constant (1 − m/M)1/2 and the domain
regularity (see also Gröger and Rehberg, 1989). Though this article introduces a frame-
work for the study of mixed boundary conditions, the result in Proposition 3.11 is not
fully satisfying. Indeed, in our application case, Ω represents an organ, and we cannot
easily make sure that it is regular enough so that q > d.

3.3. Continuity and mixed boundary conditions 63

Remark 3.5. Even in the case of Poisson’s equation (A = I), the presence of mixed
boundary conditions degrades the regularity of solutions. While solutions to the Dirichlet
problem are in W 1,p for every p > 2, no regularity better than that of Proposition 3.11
can be expected.

A Hölder regularity result is proposed by Droniou (2000, Theorem 2.1). Though the
author does not cite Gröger’s work, the hypotheses he sets on the domain are similar
to the definition of Gröger-regular sets. Once again, the author handles a general class
of linear elliptic problems, involving for instance nonhomogeneous Dirichlet boundary
conditions, a transport term and several configurations of boundary conditions. The
regularity result adapted to our case is stated below.

Proposition 3.12. Assume Ω ∪ ∂ΩN is Gröger-regular and choose p > d. If f ∈(
W 1,p

′
(Ω)

)′
and g ∈

(
W 1−1/p

′
,p

′
(∂ΩN)

)′
, then there exists κ ∈ (0, 1 − d/p] depending

only on Ω, p, m, M such that the solution u of (3.12) is κ-Hölder continuous in Ω.
In addition, if there is a constant Λ > 0 such that

∥b∥
L

dp/(d+p)(Ω) + ∥f∥(
W

1,p
′
(Ω)
)′ + ∥g∥(

W
1−1/p

′
,p

′
(∂ΩN)

)′ ⩽ Λ,

then there is a constant C = C(Ω, ∂ΩN,m,M, p,Λ) such that

∥u∥
C

0,κ(Ω) ⩽ C.

In Proposition 3.12, the Neumann data g is supposed to be a linear form which
applies on W 1−1/p

′
,p

′
(∂ΩN). This space contains the traces of functions in W 1,p

′

D (Ω) on
∂ΩN. Therefore, f and g define elements of W−1,p

D (Ω) and another way to formulate the
result is that A−1 maps continuously W−1,p

D (Ω) into C0,κ(Ω).
Years later, using Gröger’s formalism, Haller-Dintelmann et al. (2009) obtain a result

similar to Proposition 3.12. In addition to the characterization of Gröger-regular sets
mentioned above, they also give precisions about the interest of Hölder continuity results
in the context of optimal control.

3.3.3 Elasticity equation

We now turn to the linear elasticity system. Though we already introduced the linear
elasticity system in Section 2.2, we give some additional details here concerning the
regularity of solutions. Unless stated otherwise, functions in this paragraph take their
value in Rd.

As opposed to elliptic equations, the elastic energy only penalizes the symmetric
part of the displacement gradient (also known as the linearized strain tensor), denoted
ε(u) = 1

2(∇uT +∇u). In this section A denotes the elasticity tensor, a linear operator
which satisfies an ellipticity condition with respect to the strain tensor of the form

∀x ∈ Ω ∀ε ∈Md(R) such that εT = ε m∥ε∥2 ⩽ Aε : ε ⩽M∥ε∥2

64 Chapter 3. A few tools around shapes and mixed boundary conditions

for some M > m > 0. In the context of the standard elasticity system, the linear
elasticity tensor is defined by Hooke’s law

Aε(u) = 2µε(u) + λ tr(ε(u)).

Remember that the linear elasticity equation reads
div(Aε(u)) = f in Ω0
Aε(u) · n = g on ∂ΩN,

u = 0 on ∂ΩD

(3.15)

with g ∈ H−1/2(∂ΩN) a surface force field and f ∈ H−1(Ω) stands for volume forces.
The weak formulation of (3.15) reads as follows: find a displacement field u ∈ H1(Ω0)

such that

∀v ∈ H1
D(Ω0)

ˆ
Ω0

Aε(u) : ε(v) dx =
ˆ

Ω
f · v dx+

ˆ
∂ΩN

g · v ds.

A key result to establish the well-posedness of (3.15) is the equivalence between norms
based on the strain tensor with the H1 norm. We state it here as a lemma (Ciarlet,
1988, Chapter 6, Theorems 6.3-3 and 6.3-4).
Lemma 3.2. Denote the space

KD(Ω) =
{
u ∈ L2(Ω) | ε(u) ∈ L2(Ω) and u = 0 on ∂ΩD

}
.

The spaces KD(Ω) and H1
D(Ω) are actually the same space. In addition, if ∂ΩD has

positive measure in ∂Ω0, then the norm u 7→ ∥ε(u)∥
L

2(Ω) is equivalent to the H1 norm.

Due to the presence of the symmetric gradient ε(u) instead of ∇u, the linear elastic
system is not included in the framework of elliptic partial differential equations, and as
a consequence, fewer works exist about it in the literature. We present a few regularity
works where the authors adapt techniques used in the context of elliptic systems to the
elasticity system.

An early work is proposed by Shi and Wright (1994), where the authors adapt tech-
niques used for elliptic equations to the linear elasticity system in a domain with C1

boundary. In the case of data in W−1,p
D (Ω), they obtain W 1,p-estimates for p in an inter-

val (2, q) where q depends only on the domain and the elliptic constants of the system
m and M .

An interesting result is proposed by Herzog et al. (2011). The authors adapt Gröger’s
framework to linear and non-linear equations that satisfy an ellipticity condition with
respect to the strain tensor ε(u). We state their theorem in the case of linear elasticity.
Proposition 3.13. Assume Ω ∪ ∂ΩN is Gröger-regular. There is a q > 2 such that
for all p ∈ [2, q], the system (3.15) has a unique solution u ∈ W 1,p

D (Ω) which depends
Lipschitz continuously on the data, provided that f and g define elements of W−1,p

D (Ω).
Namely, there is a constant C such that

∥u∥
W

1,p(Ω) ⩽ C
(
(∥f∥

W
−1,p(Ω) + ∥g∥

W
−1,p(Ω)

)
.

3.3. Continuity and mixed boundary conditions 65

This result is the best we found in the literature. Though it ensures Hölder continuity
of solutions in dimension 2, it is not sufficient in dimension 3.

We end this section by quoting a regularity result in dimension 3 from Ciarlet (1988,
Chapter 6, Theorem 6.3-6) which requires more regular data. The theorem is stated for
Dirichlet boundary conditions, but the author explains that the result still holds in the
case of Neumann conditions, i.e. ∂ΩN = ∂Ω. Though, the result is not true in the case
of mixed boundary conditions, as the solution might be irregular in a vicinity of the
interface between ∂ΩN and ∂ΩD.

Solutions to a problem with Neumann boundary conditions are defined up to an
infinitesimal rigid displacement. We denote by T (Ω) = {w | ε(w) = 0} the set of rigid
translation in Ω. In particular, such displacements satisfy

´
Ω0
Aε(w) : ε(v) dx = 0 for

any test function v, which means that they do not cost any elastic energy. Solutions to
the elastic problem are measured with the seminorm

∥u∥
W

k,p(Ω)/T (Ω) = inf
w∈T (Ω)

∥u+ w∥
W

k,p(Ω). (3.16)

As rigid translations are not penalized by the elastic deformation energy, they should
not be encouraged by the external forces. In order for solutions to exist, the forces f
and g should satisfy the following compatibility conditions

∀w ∈ T (Ω)
ˆ

Ω
f · w dx+

ˆ
∂Ω
g · w ds = 0. (3.17)

Keeping this condition in mind, we state the result for Neumann boundary conditions.

Proposition 3.14. Assume ∂Ω ⊂ R3 is of class C2 with ∂ΩN = ∂Ω. Let p ∈ [6/5,∞),
f ∈ Lp(Ω) and g ∈W 1−1/p,p(∂Ω) such that (3.17) holds, then the solutions of (3.15) are
in W 2,p(Ω), and there is a constant C such that

∥u∥
W

2,p(Ω)/R(Ω) ⩽ C
(
∥f∥Lp(Ω) + ∥g∥

W
1−1/p,p(Ω)

)
.

Chapter 4

Existence of solutions and
optimality conditions

4.1 Properties of the functional

To better understand the properties of the optimization problem, we first give a closer
look at the functional (2.9). Remember that its expression reads

J(u) =
ˆ

Γ
jy(u) dy, where jy(u) = 1

2d
2(y, Su). (4.1)

Here, jy denotes an elementary functional associated to a single point y ∈ Γ and Su

denotes the part of the deformed boundary (Id +u)(∂Ω0) that should match Γ. If Γ
is a discrete set, for instance a point cloud, the integral in (4.1) is replaced by a sum.
Remember also that, a priori, J(u) is defined for a continuous displacement field u ∈
C(Ω0).

As J measures the discrepancy between the deformed surface Su and the observed
data Γ, its properties depend on the geometric relationship between those two surfaces.
In particular, the orthogonal projection plays a key role as a transformation between Γ
and Su. On the one hand, the Gateaux differentiability of J depends on whether points
from Γ have a unique projection point onto Su. On the other hand, the regularity of
descent directions is degraded when several points from Γ project onto the same point in
Su. In this section, we first discuss the functional differentiability, and then we mention
the possibility to generate regular descent directions.

4.1.1 Directional differentiability and more

In this section, we study the differentiability of the functional J . In the context of
optimization problems, computing derivatives is useful to find descent directions, i.e.
directions that make the objective function decrease, and also to assess optimality. In
our case, J is not always Gateaux differentiable, as for certain displacement fields u, J
cannot be approximated around u using an affine function. However, we prove below that

68 Chapter 4. Existence of solutions and optimality conditions

J has directional derivatives. In addition, the expression (4.1) involves a min operation
(hidden in the distance term). We show below that the min operator also appears in the
derivative expression, which suggests that it is easier to make J decrease than increase.
In other words, non-differentiability results in an abundance rather than in a lack of
descent directions.

We now derive an expression for the derivatives of J . In a first technical lemma, we
focus on the elementary functional jy defined in (4.1). From there, we use the dominated
convergence theorem to obtain a result for J .

As jy is expressed in terms of distance to Su, we compute derivatives using Danskin’s
theorem (Danskin, 1967), stated as Lemma 3.1 in this manuscript, to investigate direc-
tional differentiability. In his work, the author proposes conditions to obtain Fréchet
differentiability and even C1 regularity for the considered function, but those results
are stated for finite-dimensional spaces. For this reason, we only use Lemma 3.1 for
directional differentiability, by considering jy along a fixed direction. This result is very
close to and inspired from Proposition 3.8 and Proposition 3.9, but here the derivative
is expressed with respect to the displacement field instead of the shape.

Differentiability is related with the number of orthogonal projections of a given point
y ∈ Γ onto the deformed surface Su. In this chapter, we use the notation

Py(u) = {x ∈ S0 | ∥x+ u(x)− y∥ = d(y, Su)} = (Id +u)−1ΠSu
(y). (4.2)

Points in Py(u) belong to the original surface S0, but their images by Id +u are located
at a distance d(y, Su) from y. When Py(u) is a singleton, it means that y has a single
projection point onto Su, and this projection point is the image of a single point from
S0 by Id +u.

Lemma 4.1. Assume Ω0 ⊂ Rd is a bounded set with Lipschitz boundary, and consider
u a continuous displacement field and y a fixed point in Γ.

1. The application jy is locally Lipschitz continuous for the uniform convergence
norm. The Lipschitz constant can be chosen independent from y ∈ Γ but still
depends on Γ.

2. In addition, jy has directional derivatives at u. For v ∈ C(Ω0), the directional
derivative in the direction v reads

djy(u)(v) = min
x∈Py(u)

v(x) · (x+ u(x)− y).

where Py(u) is defined in (4.2).

Proof. Recalling that Su = (Id +u)(S0) and that S0 is compact, we write

jy(u) = min
x∈S0

1
2∥x+ u(x)− y∥2. (4.3)

4.1. Properties of the functional 69

1. Let u1, u2 ∈ C(Ω0). Because S0 is compact and u1 is continuous, there exists
x1 ∈ S0 such that jy(u1) = 1

2∥x1 + u1(x1)− y∥2. Now, using (4.3),

jy(u2)− jy(u1) ⩽ 1
2∥x1 + u2(x1)− y∥2 − 1

2∥x1 + u1(x1)− y∥2

= 1
2(2x1 + u2(x1) + u1(x1)− 2y) · (u2(x1)− u1(x1))

⩽
(

max
x∈S0

∥x− y∥+ 1
2∥u2 + u1∥L∞(Ω0)

)
∥u2 − u1∥L∞(Ω0).

As Γ is compact, the previous Lispchitz constant is controlled by

L = max
y∈Γ

(
max
x∈S0

∥x− y∥
)

+ 1
2∥u2 + u1∥L∞(Ω0).

2. Let v ∈ C(Ω0) a direction. To compute the derivative of jy in the direction v, we
apply Lemma 3.1 to the application

f : R+ × S0 → R
(t, x) 7→ 1

2∥x+ u(x) + tv(x)− y∥2,

and we use the notation

K(t) = {x ∈ S0 | d(y, Su+tv) = ∥x+ u(x) + tv(x)− y∥} .

Note that for t > 0, K(t) is nonempty as S0 is compact and u + tv is continu-
ous. Moreover, the derivative ∂tf exists and is continuous. As a consequence of
Lemma 3.1 applied to the identity jy(u+ tv) = minx∈S0

f(t, x), jy is differentiable
at u in the direction v, and its directional derivative reads

djy(u)(v) = lim
t↘0

jy(u+ tv)− jy(u)
t

= min
x∈K(0)

∂tf(0, x),

hence the result with Py(u) = K(0).

Of course, if Γ contains a finite number of points, the derivative of J can be written
using a simple sum. In the case where Γ is continuous and J is defined using an integral,
we conclude using the dominated convergence theorem.
Proposition 4.1. Let Ω0 ⊂ Rd a Lipschitz bounded set, and u ∈ C(Ω0). The functional
(2.9) is directionally differentiable at u. Its derivative in the direction v ∈ C(Ω0) is given
by

dJ(u)(v) =
ˆ

Γ
min

x∈Py(u)
[v(x) · (x+ u(x)− y)] dy, (4.4)

where Py(u) is defined in (4.2). In addition, denote by Γ̃ ⊂ Γ the set where Py(u) is not a
singleton. For y ∈ Γ \ Γ̃, denote by xy the single element of Py(u). If Γ̃ has zero relative
Lebesgue measure in Γ, dJ(u) is a linear continuous application on C(Ω0) defined by

⟨dJ(u), v⟩ =
ˆ

Γ\Γ̃
v(xy) · (xy + u(xy)− y) dy. (4.5)

70 Chapter 4. Existence of solutions and optimality conditions

Proof. Let B = BC(Ω0)(0, r) a small ball of radius r > 0. Due to Lemma 4.1, for y ∈ Γ,
jy is Lipschitz continuous on u+B. Therefore, for v ∈ B

∀t ∈ (0, 1)
∣∣∣∣∣jy(u+ tv)− jy(u)

t

∣∣∣∣∣ ⩽ L∥v∥L∞(Ω0) ⩽ Lr,

where L > 0 is independent from y ∈ Γ. Using the dominated convergence theorem, we
pass to the limit in the expression

J(u+ tv)− J(u)
t

=
ˆ

Γ

jy(u+ tv)− jy(u)
t

dy −−→
t↘0

ˆ
Γ

djy(u)(v) dy

to obtain the derivative.
Now, if we assume that Γ̃ has zero Lebesgue measure, formula (4.5) is easily derived

from (4.4), and dJ(u) is obviously linear. Remembering that the application d(·, Su) is
continuous, we obtain

|⟨dJ(u), v⟩| ⩽ |Γ|
(

max
y∈Γ

d(y, Su)
)
∥v∥L∞(Ω0),

which shows that dJ is continuous.

As the expression of J is based on the distance with respect to Su, dJ is not always
a linear form. Non-differentiability happens when Py(u) contains several points for a
part of Γ with a positive relative Lebesgue measure. We see in the expression Py(u) =
(Id +u)−1[ΠSu

(y)] that, for a given y ∈ Γ, this non-uniqueness is either caused by the
projection operator ΠSu

or by the deformation (Id +u). In the first situation, y belongs
to the skeleton of Su and has several projections onto Su. In the second situation, y may
have a unique projection pSu

(y), but this projection is the image of several points of S0
by the application (Id +u).

Figure 4.1 shows a configuration where Γ is included in the skeleton of S0 (here
u = 0). In this case, every point in Γ has two projections onto S0, while Id +u = Id
is a bijection. If we consider the rigid translation v ≡ V with V ∈ R2, we note that
dJ(0)(−v) = dJ(0)(v) < 0. Thus, dJ is not a linear application. In Figure 4.2, each
point y ∈ Γ has a single projection onto Su, but this projection point is the image of
both x1, x2 ∈ S0 by (Id +u). Once again, each leg of the deformed set can move closer
to Γ with the same effect on J . However, if only one leg moves away, from Γ, the value
of J does not change as the other leg is not moving, which is again a nonlinear behavior.

Let us look more closely at the example from Figure 4.1. If we only consider rigid
deformations dJ(0)(v) and dJ(0)(−v) can be both negative but cannot be both positive,
as y can move closer to x1 or x2 but cannot move away from x1 and x2 at the same
time. In Figure 4.2, one leg moving closer to Γ is sufficient to make J decrease, while
both legs need to move away from Γ to make J increase. Thus, it seems easier to make
J decrease than increase. Due to the presence of a min operator in the derivative of J ,
we can generalize this observation in a tiny lemma.

4.1. Properties of the functional 71

Γ

y
x1x2

V

Figure 4.1: Non-differentiable case with u = 0 and S0 = ∂Ω0. The point y ∈ Γ is
equidistant from x1 and x2, so that Py(u) = {x1, x2}. The derivative of J has the same
(negative) value in the directions V 1Ω0

and −V 1Ω0
.

Γ
y

a

x1 x2

Figure 4.2: Non-differentiable case with self-intersection and, again, S0 = ∂Ω0. The
dashed set is Ω0, while the gray set is Ωu. The displacement field u transports both x1
and x2 to a = pSu

(y).

72 Chapter 4. Existence of solutions and optimality conditions

Lemma 4.2. Let u ∈ C(Ω0) and v a direction. Then dJ(u)(−v) ⩽ −dJ(u)(v).

Proof. Let (xy)y∈Γ a family such that xy ∈ Py(u) and

dJ(u)(v) =
ˆ

Γ
v(xy) · (xy + u(xy)− y) dy.

The directional derivative in the direction −v reads
ˆ

Γ
min

x∈Py(u)
[−v(x) · (x+ u(x)− y)] dy ⩽

ˆ
Γ
−v(xy) · (xy + u(xy)− y) dy,

A simple consequence of Lemma 4.2 is that a non-differentiable point cannot be a
local minimizer of J . Non-differentiable minimizers are a pet peeve of continuous opti-
mization solvers, as it is difficult to measure optimality around such points. Fortunately,
the following lemma evacuates this possibility.

Lemma 4.3. Let u ∈ C(Ω0) a local minimizer of J . Then J is Gateaux differentiable
at u with dJ(u) = 0.

Proof. As u is a local minimizer of J , every direction v satisfies dJ(u)(v) ⩾ 0. If v is a
direction such that dJ(u)(v) > 0, then, due to Lemma 4.2, we obtain dJ(u)(−v) < 0,
and −v is a descent direction. As it is in contradiction with u being a local minimizer,
the only possibility is dJ(u)(v) = 0.

Last but not least, we try to obtain some insight about the first-order behavior of
jy and J in the non-differentiable case. In Figure 4.1, y has two projections onto Su. If
we consider all directions in the space of continuous displacement fields, we understand
that, for a part of those directions, x1 moves closer to y faster (or gets away from y
slower) than x2 , and the expression for djy(0) involves x1. For the remaining bunch of
directions, x2 gets closer to y faster than x1 and the expression for djy(0) involves x2. We
show below that those directions are organized in two closed cones, associated with x1
and x2, respectively. On each cone, the function djy(0) behaves like a linear application.
In this very example, the cones are two half-spaces, separated by the hyperplane

H =
{
v ∈ C(Ω0)

∣∣ v(x1) · (x1 + u(x1)− y) = v(x2) · (x2 + u(x2)− y)
}
.

The directions v ∈ H belong to both cones and leave y in the skeleton of Su+tv at
first-order.

This behavior is similar for J . This time, each cone is associated with a family
(xy)y∈Γ, with xy ∈ Py(u), such that for each y, xy statisfies the min in (4.4). Such a
cone may contain only one direction, or represent the whole space in the differentiable
case. We state a more formal result in the following proposition.

4.1. Properties of the functional 73

Proposition 4.2. Let u a continuous displacement field, and v ∈ C(Ω0) a direction.
We denote by (xy)y∈Γ a family such that xy ∈ Py(u) and

dJ(u)(v) =
ˆ

Γ
v(xy) · (xy + u(xy)− y) dy.

If w ∈ C(Ω0) is another direction associated with the same family (xy)y∈Γ, then for α
and β two nonnegative coefficients,

dJ(u)(αv + βw) =
ˆ

Γ
(αv + βw)(xy) · (xy + u(xy)− y) dy.

In other words, each direction in the cone generated by v and w is associated with the
same family (xy)y∈Γ.

Proof. First, note that for y ∈ Γ, xy ∈ Py(u), and as a consequence
ˆ

Γ
min

x∈Py(u)
[(αv + βw)(x) · (x+ u(x)− y)] dy ⩽

ˆ
Γ
(αv + βw)(xy) · (xy + u(xy)− y) dy.

Now, if (x′
y) is another family with x′

y ∈ Py(u), then
ˆ

Γ
v(x′

y) · (x′
y + u(x′

y)− y) dy ⩾
ˆ

Γ
v(xy) · (xy + u(xy)− y) dy;

ˆ
Γ
w(x′

y) · (x′
y + u(x′

y)− y) dy ⩾
ˆ

Γ
w(xy) · (xy + u(xy)− y) dy,

and, as α, β ⩾ 0,
ˆ

Γ
(αv + βw)(x′

y) · (x′
y + u(x′

y)− y) dy ⩾
ˆ

Γ
(αv + βw)(xy) · (xy + u(xy)− y) dy.

Finally, we obtain
ˆ

Γ
min

x∈Py(u)
[(αv + βw)(x) · (x+ u(x)− y)] dy =

ˆ
Γ
(αv + βw)(xy) · (xy + u(xy)− y) dy,

and αv + βw is also associated with the family (xy).

Instead of one single linear form dJ(u) in the differentiable case, non-differentiable
points yield as many linear forms as there are families of type (xy)y∈Γ. Each one of these
linear forms ℓ satisfies

⟨ℓ, v⟩ =
ˆ

Γ
v(xy) · (xy + u(xy)− y) dy ⩾ dJ(u)(v).

As a consequence, a descent direction for one linear form is also a descent direction for
J . In the numerical implementation, the projection algorithm only return one family
(xy), that is used to generate a descent direction.

74 Chapter 4. Existence of solutions and optimality conditions

4.1.2 Generate descent directions using extension-regularization

In this section, we only consider the Gateaux differentiable case. We discuss the pos-
sibility to compute descent directions to make the objective function decrease in the
context of a displacement-based optimization procedure. In particular, we need descent
directions to be continuous, so that the successive displacement fields in the optimization
process remain in C(Ω0). Steepest descent directions are usually computed by finding
a representant of dJ(u) in a certain inner product. In infinite-dimensional spaces, such
directions are not guaranteed to be as regular as the optimization variable u.

A classical technique to compute regular descent directions in shape optimization is
the velocity extension-regularization method (see Doǧan et al., 2007). When the ob-
jective function is Gateaux differentiable, this method consists in choosing the shape
gradient in the H1 inner product (or another elliptic inner product) as a descent direc-
tion. Due to elliptic regularity, resulting directions are more regular. We follow a similar
approach and we describe several cases depending on the regularity of dJ(u).

We fix a displacement field u ∈ C(Ω0). Following the extension-regularization frame-
work, we look for descent directions w ∈ C(Ω0) ∩H1

D(Ω0) such that

∀v ∈ C(Ω0) ∩H1
D(Ω0)

ˆ
Ω0

A∇w : ∇v dx = −⟨dJ(u), v⟩, (4.6)

where A satisfies the ellipticity condition (3.13). In practice, the inner product associated
to linear elasticity, defined by

⟨u, v⟩el =
ˆ

Ω0

Aε(u) : ε(v) dx,

is also used (see de Buhan et al., 2016; Dapogny et al., 2018, and associated codes).
Indeed, an elastic model is more likely to produce a deformation that does not require
remeshing. Though, in this section, we stick to the elliptic case, in order to exploit
theoretical results presented in Section 3.3.2.

As we are interested in continuous descent directions, we now check the hypotheses of
Proposition 3.12. Hölder continuity of solutions is guaranteed when dJ(u) is an element
of W−1,p

D (Ω), for some p > d. In other words, dJ(u) should apply on functions in
W 1,p

′

D (Ω), which is not always possible. Remember that p′ is defined so that 1/p+1/p′ =
1, and thus satisfies p′ < d/(d− 1).

In order to better understand the differential dJ , we describe below a favorable case
and a pathological case. The existence of different cases comes from the definition of dJ
as an integral on Γ. Here, the key parameter is not the number of projections of a given
point y ∈ Γ onto Su, but rather the number of points from Γ that project onto a given
point a ∈ Su.

A favorable case

Though this case is based on a lot of hypotheses, it is quite common in practice. We
assume that (Id +u) is a Lipschitz diffeomorphism from S0 to Su. For instance, when

4.1. Properties of the functional 75

Γ

ΠS0
(Γ)

Γ

ΠS0
(Γ)

Figure 4.3: Examples of favorable cases for u = 0. On the left, Γ is in bijection with
ΠS0

(Γ). On the right, each connected part of Γ is in bijection with a subset of ΠS0
(Γ).

∥u∥
W

1,∞ < 1, (Id +u) is guaranteed to be a Lipschitz diffeomorphism (Henrot and Pierre,
2005). We also assume that the orthogonal projection operator pSu

defines a Lipschitz
diffeomorphism between Γ and Su. Finally, we define the Lipschitz diffeomorphism
Ψ = (Id +u)−1 ◦ pSu

. In other words, there is a Lipschitz change of variable between Γ
and Ψ(Γ) ⊂ S0. By doing the substitution in the expression of dJ(u), we obtain

⟨dJ(u), v⟩ =
ˆ

Ψ(Γ)
v(x) · (x+ u(x)−Ψ−1(x))| det∇Ψ−1(x)| dx.

As Ψ is a Lipschitz diffeomorphism, det∇Ψ−1(x) is bounded, and we also note that

∥x+ u(x)−Ψ−1(x)∥ ⩽ max
x∈Su,y∈Γ

∥x− y∥.

Therefore, if v ∈ W 1,1
D (Ω0) and M = ∥ Id +u − Ψ−1∥L∞∥det∇Ψ−1∥L∞ , there is a con-

stant C > 0 such that

|⟨dJ(u), v⟩| ⩽M∥v∥
L

1(∂Ω0) ⩽MC∥v∥
W

1,1(Ω0).

Here we used the trace theorem (Evans, 2010, Section 5.5, Theorem 1) for the second
inequality. Therefore, dJ(u) is represented by an element of W 1,1

D (Ω0)′. As a conse-
quence, it is possible to apply the regularity result and obtain Hölder continuity for
descent directions.

Note that this calculation is still valid when Ψ is a W 1,p diffeomorphism with p > d.
In this case, dJ(u) defines an element of Lp(∂Ω0). It is also possible to split Γ into a
finite partition Γ1,Γ2, . . . , each element of which is in bijection with its image by Ψ, and
to express dJ(u) as a sum of elements of Lp(∂Ω0). Figure 4.3 shows two examples of
favorable cases with u = 0. In both cases, each connected part of Γ is diffeomorphic to
its projection onto Su.

A pathological case

The regularity of dJ(u) is degraded when a subset of positive measure in Γ is associated
by Ψ with a subset of dimension d− 2 or less in ∂Ω0. Thus, the linear form dJ(u) can

76 Chapter 4. Existence of solutions and optimality conditions

Γ

ΠS0
(Γ)

Γ

ΠS0
(Γ)

Figure 4.4: Examples of pathological cases for u = 0. In both cases, there is an accu-
mulation point in ΠS0

, wich results in a loss of regularity for dJ(0).

only apply to displacement fields for which the trace on a (d− 2)-dimensional set has a
meaning, for instance continuous displacement fields. An example is given in Figure 4.4.
Note that this situation is likely to happen when the domain is a polyhedron, as corners
tend to concentrate orthogonal projections.

An example of pathological case arises when Γ is a point cloud {y1, y2, . . . } and
(Id +u) is a Lipschitz diffeomorphism. If we denote xj = Ψ(yj), the expression of dJ(u)
reads

⟨dJ(u), v⟩ =
∑

j

v(xj) · (xj + u(xj)− yj).

The linear form dJ applies to displacement fields v that can be evaluated at every
point xj ∈ ∂Ω0. In other words, dJ only applies on continuous displacement fields. As
displacement fields in W 1,p

′

D (Ω0) are not guaranteed to be continuous, we conclude that
dJ is not in W−1,p

D (Ω0). Therefore, the Hölder continuity result cannot be applied to a
descent direction computed with the elliptic inner product.

In such a pathological case, descent directions that are generated using the extension-
regularization framework are not in C(Ω0), and thus cannot be used in the optimization
process, at least from a continuous point of view. When solving the problem numerically
in fixed dimension, regularity of descent directions is not a concern. However, if the mesh
is refined, the discretized problem may approximate better the continuous problem and
some irregularities may appear in the successive displacement fields generated by the
optimization solver.

Remark 4.1. Haller-Dintelmann et al. (2009, Remark 4.2) note that Proposition 3.11
can be stated with p in an interval of type [2 − δ, 2 + δ]. As a consequence, if Propo-
sition 3.11 yields a δ > 0 such that 2 − δ < d/(d − 1) (which is true in dimension 2),
then we have dJ(u) ∈ C(Ω0)′ ⊂ W−1,2−δ

D (Ω0), and resulting descent directions are in
W 1,2−δ

D (Ω0).

4.2. Existence of solutions 77

4.2 Existence of solutions

We now turn to the existence of solutions. Proving that solutions exist may be useful,
even in a numerical context, to ensure that displacement fields returned by the registra-
tion algorithm are consistent with the continuous problem.

We use very standard tools to prove the existence of a solution, starting with a
minimizing sequence in the space of controls, and then proving that the associated
state sequence converges to a state that minimizes the functional J . In this section,
the regularity of solutions to the elasticity system is critical to ensure the required
convergences. Unfortunately, we did not find the relevant results in the literature, and
we were not able to prove the existence of solutions in a general case.

We begin the section by considering a toy problem, obtained by replacing the elas-
ticity system with an elliptic system, and we prove existence of solutions in a general
case. Then, we turn to the problem involving the linear elasticity system, with a partial
result. Finally, we consider a problem with stronger hypotheses, in order to obtain an
existence result with the elasticity system. Remember that the feasible set GM is defined
in (2.12) by

GM =
{
g ∈ L∞(∂ΩN) | ∥g∥L∞(∂ΩN) ⩽M

}
.

In this section, we also refer to Gröger-regular sets. This notion is defined and discussed
in Section 3.3.

4.2.1 A full result with an elliptic equation

Before we consider the existence of solutions for the elastic model, we first consider a
simpler toy problem. The main difficulty from this toy problem to the real problem
(2.13) is to handle the regularity of solutions for the linear elasticity system. The toy
problem is based on Poisson’s equation and reads

min
g∈GM

J(ug) s.t.

−∆ug + ug = 0 in Ω

ug = 0 on ∂ΩD,
∂nug = g on ∂ΩN,

(4.7)

The key result we use to prove the existence of solution is Proposition 3.12 which
provides Hölder estimates for solutions of elliptic partial differential equations.

Theorem 4.1. Assume that Ω0 is Gröger-regular. Then the toy problem (4.7) has at
least one solution.

Proof. Consider a minimizing sequence (gj) of elements of GM . As (gj) is bounded in
L∞(∂ΩN), it converges ⋆-weakly in L∞(∂ΩN), up to a subsequence. We denote its limit
by g. Note that GM is closed for the ⋆-weak topology in L∞(∂ΩN), and for this reason
g ∈ GM . The proof falls into two parts. First, we prove that the sequence of associated
states converges in some sense to the state associated to g . Then, we prove that the
states actually converge uniformly to finish the proof.

78 Chapter 4. Existence of solutions and optimality conditions

Denote respectively by uj = ugj
the state associated to gj and by u = ug the state

associated to g. We first show that the sequence of states (uj) converges toward u in
some sense. The state equations for u and uj read

∀v ∈ H1
D(Ω)

ˆ
Ω0

(
∇uj : ∇v + uj · v

)
dx =

ˆ
∂ΩN

gj · v ds

∀v ∈ H1
D(Ω)

ˆ
Ω0

(∇u : ∇v + u · v) dx =
ˆ

∂ΩN

g · v ds.

Because (gj) converges weakly in L2(∂ΩN), we obtain

∀v ∈ H1
D(Ω)

ˆ
∂ΩN

gj · v ds −−−−→
j→+∞

ˆ
∂ΩN

g · v ds.

Now, using the state equations satisfied by u and uj results in

∀v ∈ H1
D(Ω)

ˆ
Ω0

(
∇uj : ∇v + uj · v

)
dx −−−−→

j→+∞

ˆ
Ω0

(∇u : ∇v + u · v) dx,

i.e. uj ⇀ u in H1(Ω0). In particular, uj ⇀ u in L2(Ω0).
Now, we show that the convergence of (uj) is actually uniform. Uniform convergence

implies weak convergence in L2(Ω0), which ensures that the uniform limit of (uj) is u.
Droniou (2000, Remark 2.3) notes that L(d−1)p/d(∂ΩN) ⊂W 1−1/p

′
,p

′
(∂ΩN)′ with con-

tinuous imbedding. As a consequence, the imbedding from L∞(∂ΩN) toW 1−1/p
′
,p

′
(∂ΩN)′

is also continuous and (gj) is bounded in W 1−1/p
′
,p

′
(∂ΩN)′. Due to Proposition 3.12,

there exists κ > 0 such that uj is κ-Hölder continuous and there is a constant C > 0
such that

∀j ∥uj∥C0,κ(Ω0) < C.

In other words, the uj are bounded and equicontinuous. Due to Ascoli’s theorem (Evans,
2010, Appendix C.7), up to a subsequence, (uj) converges uniformly in C(Ω0) toward u.
As J is continuous for the L∞(Ω) norm, J(u) is the limit of J(uj) and u is a solution of
(4.7).

Remark 4.2. When d = 2, it is also possible to prove the existence of solutions for
the (unconstrained) penalized problem min

g∈L
2(∂ΩN) J(ug) + α

2 ∥g∥
2
L

2(∂ΩN), with α >

0. Indeed, taking p = 3, we obtain (d − 1)p/d = 3/2 < 2, and thus L2(∂ΩN) ⊂
W 1−1/p

′
,p

′
(∂ΩN)′. As the coerciveness of the penalization term makes sure that the

minimizing sequence (gj) is bounded in L2, Proposition 3.12 yields a uniform bound on
the Hölder norm of the (uj) and the existence of a solution follows.

4.2. Existence of solutions 79

4.2.2 Extension to the linear elastic system

Given the theorems introduced in Section 3.3.3, we cannot prove the existence of so-
lutions for problem (2.13) with linear elasticity as state equation without any further
assumption. In order to obtain Hölder estimates for solutions to the linear elastic sys-
tem, we need to obtain q > d in Proposition 3.13. This is guaranteed in dimension
2, but not in dimension 3. In particular, q depends on Lamé coefficients and on the
domain regularity. Since it seems restrictive to assume that the boundary of a liver is
very regular, it is difficult to be sure that the domain is regular enough.

However, we can still have a look at the necessary modifications to adapt the existence
proof to linear elasticity in dimension 2. We also highlight a specificity of dimension 2:
the L∞ constraint is not necessary in the proof provided that the penalty coefficient is
positive (see Remark 4.2).

Theorem 4.2. Assume that d = 2 and Ω0 is Gröger-regular. If α > 0 or M <∞, then
(2.13) has at least one solution.

Proof. As previously, consider a minimizing sequence (gj) of points in L2(∂ΩN) and
denote by (uj) the sequence of associated states. Either due to the L∞ constraint
(M < ∞) or to the penalty term coercivity (α > 0), (gj) is bounded in L2(∂ΩN) and
converges weakly in L2 toward g ∈ L2(∂ΩN), up to a subsequence. As a consequence,
we obtain

∀v ∈ H1
D(Ω0)

ˆ
Ω0

Aε(uj) : ε(v) dx→
ˆ

Ω0

Aε(u) : ε(v) dx,

where u = ug is the state associated to g. As the linear elasticity bilinear form is a scalar
product on H1

D(Ω0) (see Lemma 3.2), the previous equation means uj ⇀ u in H1(Ω0).
We now use a compact embedding to prove that (uj) converges uniformly toward u.

Using Proposition 3.13, there is a q > 2 such that gj ∈W
−1,p
D (Ω0)⇒ uj ∈W

1,p
D (Ω0) for

any p ∈ [2, q]. We choose p = min(4, q), so that (d− 1)p/d = p/2 ⩽ 2. As mentioned in
Remark 4.2, the embedding L2(∂ΩN) ↪→W 1−1/p

′
,p

′
(∂ΩN)′ is continuous in dimension 2.

Therefore, (gj) is uniformly bounded as a sequence of W−1,p
D (Ω0) and, using the estimate

in Proposition 3.13, (uj) is uniformly bounded as a sequence of W 1,p
D (Ω0). The Rellich-

Kondrachov theorem (Adams and Fournier, 2003, Chapter 6, Theorem 6.3) states that
the imbedding W 1,p(Ω0) ↪→ C(Ω0) is compact, and, up to a subsequence, (uj) converges
uniformly toward u.

As J is continuous for the uniform convergence norm, J(u) = lim J(uj). In addition,
(gj) converges weakly in L2(∂ΩN) and ∥g∥

L
2(∂ΩN) ⩽ lim inf ∥gj∥L2(∂ΩN). Finally, g is a

solution of problem (2.13).

In dimension 3, the existence of solutions requires M < ∞ and is subject to the
condition that the q in Proposition 3.13 satisfy q > 3. We did not find a sufficient
condition in the literature to enforce this inequality.

80 Chapter 4. Existence of solutions and optimality conditions

4.2.3 A problem with stronger hypotheses

In this section, we transform problem (2.13) to apply Proposition 3.14. To this end,
strong hypotheses are necessary. First, Ciarlet (1988) explains that the result is not
valid if the interface ∂ΩD ∩ ∂ΩN is not empty. For this reason, we consider the problem
with Neumann conditions. For the sake of simplicity, we consider the case p = 2.

The surface loading field g must be the trace on ∂Ω0 of a function in H1(Ω0). It is
measured using the norm

∥g∥
H

1/2(∂Ω0) = inf
{
∥w∥

H
1(Ω0), w ∈ H

1(Ω0), w|∂Ω0
= g

}
.

The problem we consider is

min
g∈WM

J(ug) subject to constraint

div(Aε(u)) = 0 in Ω0
Aε(u) · n = g on ∂Ω0,´

Ω0
udx = 0

(4.8)

where

WM =
{
g ∈ H1/2(∂Ω0)

∣∣∣∣∣ ∥g∥H1/2(∂Ω0) ⩽M and ∀w ∈ R(Ω0)
ˆ

∂Ω0

g · w ds = 0
}
.

Theorem 4.3. Assume that d = 3, Ω0 has a C2 boundary and p = 2. Then problem
(4.8) has at least one solution.

Proof. We denote by (gj) a minimizing sequence. As (gj) is bounded in H1/2(∂Ω0), it
is bounded in L2(∂Ω0) and converges weakly in L2(∂Ω0), up to a subsequence, toward
a limit g ∈ L2(∂ΩN).

Solutions to the elastic problem with Neumann boundary conditions are equal up to
a rigid translation. The set of equivalence classes is denoted H2(Ω0)/T (Ω0). By adding
the condition

´
Ω0
udx = 0, we select the class representative with the least H2-norm.

In other words, the state uj ∈ H
2(Ω0) associated to gj satisfies

∥uj∥H2(Ω0) = min
w∈R(Ω0)

∥uj + w∥
H

2(Ω0) = ∥uj∥H2(Ω0)/R(Ω0), (4.9)

where notation is defined in (3.16).
Due to Proposition 3.14, the sequence (uj) is uniformly bounded in H2(Ω0). Due to

the continuous imbedding H2(Ω0) ↪→W 1,6(Ω0), (uj) is also bounded in W 1,6(Ω0), and it
converges uniformly, up to a subsequence, toward a limit u. Therefore J(uj) −−−→

j→∞
J(u).

We check that u is a solution associated to g. As the sequence (uj) converges uni-
formly, it also converges weakly in L2(Ω0). Now, as (uj) is bounded in H1(Ω), it con-
verges H1-weakly, up to a subsequence, toward u. This last remark, together with the

4.3. Optimality conditions 81

elasticity equation and the weak convergence of (gj) in L2(∂Ω0), yields

∀v ∈ H1(Ω0)
ˆ

Ω0

Aε(v) : ε(u) dx = lim
j→∞

ˆ
Ω0

Aε(v) : ε(uj) dx

= lim
j→∞

ˆ
∂Ω0

v · gj ds =
ˆ

∂Ω0

v · g ds.

Finally, u is a state associated to g and g is a solution of problem (4.8).

4.3 Optimality conditions

In this paragraph we derive optimality conditions for the optimal control problem (2.13).
When J is Gateaux differentiable, it is standard to use an adjoint state p to transform
descent directions in the space of states into descent directions in the space of controls.
The adjoint state associated with a state u where J is differentiable is solution to the
adjoint problem

∀q ∈ H1
D(Ω0)

ˆ
Ω0

Aε(p) : ε(q) dx = ⟨dJ(u), q⟩ . (4.10)

If dJ(u) is in H−1
D (Ω0), then, due to the Lax-Milgram theorem, p is unique and be-

longs to H1
D(Ω0). In the following optimality conditions, we make the hypothesis

dJ(u) ∈ H−1
D (Ω0), keeping in mind that optimality conditions are useful for the nu-

merical application, where everything is much simpler (and finite-dimensional).
In a similar way to Lemma 4.3, we consider the case of minimizers for the uncon-

strained problem (2.11), where the objective function is necessarily differentiable. The
corresponding optimality conditions are stated in the following proposition.

Proposition 4.3. Let g ∈ L∞(∂ΩN) a local (unconstrained) minimizer of the application
F : g 7→ J(ug) + R(g). Then F is differentiable at g, and g satisfies the first-order
optimality condition

∀h ∈ L∞(∂ΩN)
ˆ

∂ΩN

p · h ds+ ⟨dR(g), h⟩ = 0,

where p is the adjoint state defined by (4.10).

Proof. For g ∈ L∞(∂ΩN) a control, the directional derivative of F in a direction h ∈
L∞(∂ΩN) reads

dF (g)(h) = dJ(ug)(wh) + ⟨dR(g), h⟩,

where wh ∈ H
1
D(Ω0) is the state associated to h, defined by

∀v ∈ H1
D(Ω0)

ˆ
Ω0

Aε(wh) : ε(v) dx =
ˆ

∂ΩN

h · v ds. (4.11)

82 Chapter 4. Existence of solutions and optimality conditions

Now, if g is a minimizer of F , then for every direction h, g satisfies dF (g)(h) ⩾ 0.
Assume that there is a direction h such that dF (g)(h) > 0. Then, using Lemma 4.2, we
obtain

dF (g)(−h) = dJ(ug)(−wh)− ⟨dR(g), h⟩ ⩽ −dJ(ug)(wh)− ⟨dR(g), h⟩ < 0.

In other words, −h is a descent direction, which contradicts g being a local minimizer.
As a consequence, a local minimizer g satisfies dF (g)(h) = 0 for every direction h ∈
L∞(∂ΩN). Therefore, F is differentiable at g with dF (g) ≡ 0.

In particular, J is differentiable at ug. We combine (4.11) and (4.10) to obtain an
expression of dJ(u) as a function of h,

⟨dJ(u), wh⟩ =
ˆ

Ω0

Aε(p) : ε(wh) dx =
ˆ

∂ΩN

p · h ds.

Finally, the differential of F reads

⟨dF (g), h⟩ = ⟨dJ(u), wh⟩+ ⟨dR(g), h⟩ =
ˆ

∂ΩN

p · h ds+ ⟨dR(g), h⟩ = 0,

hence the optimality condition.

The proof of Proposition 4.3 relies on the fact that every direction h ∈ L∞(∂ΩN)
is an admissible direction. In particular if h is an admissible direction, then −h is also
an admissible direction. When the optimization problem involves a L∞ constraint, the
cone of admissible directions is not the whole space anymore, in particular when the
constraint is active. As a consequence, we cannot expect J to be Gateaux differentiable
at local minimizers for the constrained problem.

When J is not differentiable, J can be approximated at first order using several linear
forms ℓ (defined below), associated to families (xy)y∈Γ (see Section 4.1 for more details).
Each linear form approximates J on a cone of directions. Those multiple linear forms
are represented in the space of controls by as many adjoint states pℓ, which satisfy

∀q ∈ H1
D(Ω0)

ˆ
Ω0

Aε(pℓ) : ε(q) dx = ⟨ℓ, q⟩ =
ˆ

Γ
q(xy) · (xy + u(xy)− y) dy. (4.12)

For a given direction h in the space of controls, there is a linear form ℓ0 associated to a
family (xy,0), such that

dJ(ug)(wh) = ⟨ℓ0, wh⟩ =
ˆ

∂ΩN

pℓ0
· hds, (4.13)

where wh is the corresponding direction in the space of displacements.
In the following proposition, we consider the constrained problem (2.13), where

R(g) = α
2 ∥g∥

2
L

2(∂ΩN), and we do not assume that F is differentiable. As a consequence,
we prove an optimality condition that should hold for every adjoint state pℓ at this point.
When F turns out to be differentiable at g, there is only one adjoint state p that should
satisfy the first-order optimality condition below.

4.3. Optimality conditions 83

Theorem 4.4. Let g ∈ GM a local minimizer of problem (2.13) and ug the associated
state defined by (2.6). For (xy)y∈Γ a family such that ∀y ∈ Γ, xy ∈ Py(ug), we consider
the linear form ℓ and the adjoint state pℓ defined in (4.12). Then there exists a Lagrange
multiplier λℓ ∈ L

2(∂ΩN,R) with

for a.e. x ∈ ∂ΩN

{
λℓ(x) = 0 if ∥g(x)∥ < M
λℓ(x) ⩾ 0 if ∥g(x)∥ = M

such that g satisfies the first-order optimality condition

for a.e. x ∈ ∂ΩN pℓ(x) + (α+ λℓ(x))g(x) = 0. (4.14)

Proof. • We first give a justification for the definition of the adjoint state. We use
the notation F (g) = J(ug) + α

2 ∥g∥
2
L

2(∂ΩN). For a direction h ∈ L∞(∂ΩN), we
consider the associated displacement field wh , solution of (4.11). By combining
(4.11) with (4.12), we obtain

ˆ
Γ
wh(xy) · (xy + u(xy)− y) dy =

ˆ
Ω0

Aε(pℓ) : ε(wh) dx =
ˆ

∂ΩN

pℓ · hds.

The derivative of F in the direction h satisfies

dF (g)(h) =
ˆ

Γ
min

x∈Py(u)
wh(x) · (x+ u(x)− y) dy + α

ˆ
∂ΩN

g · h ds

⩽
ˆ

Γ
wh(xy) · (xy + u(xy)− y) dy + α

ˆ
∂ΩN

g · hds

=
ˆ

∂ΩN

(pℓ + αg) · hds.

• We now characterize the cone of admissible directions at g. Admissible directions
h ∈ L∞(∂ΩN) are only constrained at points where the L∞ constraint is active.
We split ∂ΩN into two disjoint subsets, the active set A and the inactive set I, so
that A ∪ I = ∂ΩN. The two subsets are defined by

A = {x ∈ ∂ΩN | ∥g(x)∥ = M} and I = {x ∈ ∂ΩN | ∥g(x)∥ < M} . (4.15)

Admissible directions h satisfy the condition

for a.e. x ∈ A h(x) · g(x) ⩽ 0.

To be more specific, the cone of admissible directions is the intersection L∞(∂ΩN)∩
K, where K is the closed cone

K =
{
h ∈ L2(∂ΩN)

∣∣∣ ∀λ ∈ L2(∂ΩN,R+)
ˆ

A
λ(h · g) ds ⩽ 0

}
.

84 Chapter 4. Existence of solutions and optimality conditions

Another expression for K ⊂ L2(∂ΩN) reads

K =
{
h ∈ L2(∂ΩN)

∣∣ ∀q ∈ Q ⟨h, q⟩
L

2(∂ΩN) ⩽ 0
}
,

where
Q =

{
1Aλg, λ ∈ L

2(∂ΩN,R+)
}
.

Here, Q is the polar cone of K (Rockafellar, 1970, Section 14). As Q is convex,
the orthogonal projection sQ of −(pℓ + αg) onto Q satisfies

∀q ∈ Q ⟨(pℓ + αg) + sQ, q⟩ = −⟨−(pℓ + αg)− sQ, q − sQ⟩ ⩾ 0.

Therefore, −(pℓ +αg)− sQ belongs to K, and we obtain the orthogonal decompo-
sition (pℓ + αg) = −sQ − sK , with sQ ∈ Q and sK ∈ K.

• To derive the first-order optimality condition, we now consider the admissible
direction

h = sK

max(1, ∥sK∥)
∈ L∞(∂ΩN) ∩K.

As g is a local minimizer, it results from Euler’s inequation that

0 ⩽ dF (g)(h) ⩽
ˆ

∂ΩN

(pℓ + αg) · hds = −
ˆ

∂ΩN

min
(
∥sK∥, ∥sK∥

2
)

ds.

Finally, we obtain sK = 0, which yields the first-order optimality condition pℓ +
αg + sQ = 0.

We now turn to the problem with subdomain restriction. For the sake of simplicity,
we assume that J is Gateaux differentiable at the considered local minimizer. However,
we keep in mind that, in the case of a non-differentiable minimizer, the derived optimality
condition applies to every adjoint state pℓ. Problem (2.14) involves a differentiable
constraint on the state. We manage this state constraint using another adjoint state
z ∈ H1

D(Ω0), defined by

∀q ∈ H1
D(Ω0)

ˆ
Ω0

Aε(z) : ε(q) dx =
ˆ

ω0

u · q dx. (4.16)

Though we derive optimality conditions for this problem, the state-constrained approach
is not considered in the following chapters.

Theorem 4.5. Let g ∈ L∞(∂ΩN) a local minimizer for problem (2.14) and let ug the
associated state defined by (2.6). Assume also that J is differentiable at ug with dJ(ug) ∈
H−1

D (Ω0). Then there exists a Lagrange multiplier λ ∈ L2(∂ΩN,R) with

for a.e. x ∈ ∂ΩN

{
λ(x) = 0 if ∥g(x)∥ < M
λ(x) ⩾ 0 if ∥g(x)∥ = M

4.3. Optimality conditions 85

and a real multiplier η ∈ R+ such that g satisfies the first-order optimality condition

for a.e. x ∈ ∂ΩN p(x) + λ(x)g(x) + ηz(x) = 0. (4.17)
Moreover, one has either η = 0 or

´
ω0
∥u∥2 dx = U .

Proof. We use the notation F (g) = J(ug), C(g) =
´

ω0
∥ug∥

2 dx, and for a direction
h ∈ L∞(∂ΩN), wh is the associated state defined by (4.11). Due to their definitions, the
adjoint states p and z satisfy

∀h ∈ L∞(∂ΩN) ⟨dF (g), h⟩ =
ˆ

∂ΩN

p · hds and ⟨dC(g), h⟩ =
ˆ

∂ΩN

z · h ds

We also define A and I as previously.
If C(g) < U , i.e. the constraint on ug is inactive, the same procedure as above results

in (4.14), which is (4.17) with η = 0.
Now we consider the case C(g) = U . Admissible directions h satisfy h · g ⩽ 0 in A

and
´

∂ΩN
z ·h ds ⩽ 0. It is easy to check that such directions h belong to L∞(∂ΩN)∩K,

where the closed cone K ⊂ L2(∂ΩN) is defined by

K =
{
h ∈ L2(∂ΩN)

∣∣∣ ∀λ ∈ L2(∂ΩN,R+)
ˆ

A
λ(h · g) ds ⩽ 0 and

ˆ
∂ΩN

z · hds ⩽ 0
}
.

Let us check that the polar cone to K reads

Q =
{

1Aλg + ηz, λ ∈ L2(∂ΩN,R+), η ∈ R+
}
.

Consider q = 1Aλg+ηz ∈ Q, with λ ∈ L2(∂ΩN,R+) and η ∈ R+. Then for every h ∈ K,

⟨h, q⟩
L

2(∂ΩN) =
ˆ

A
λ(h · g) ds+ η

ˆ
∂ΩN

z · hds ⩽ 0.

Now consider a direction h ∈ L2(∂ΩN) such that ⟨q, h⟩
L

2(∂ΩN) ⩽ 0 for all q ∈ Q. By
considering q1 = 1Aλg ∈ Q and q2 = z ∈ Q, we obtain h ∈ K. Therefore, for h ∈
L2(∂ΩN), the equivalence

h ∈ K ⇔ ∀q ∈ Q ⟨h, q⟩
L

2(∂ΩN) ⩽ 0

holds and Q is the polar cone to K.
As Q is convex, the orthogonal projection pQ of −p onto Q satisfies

∀q ∈ Q ⟨p+ pQ, q⟩ = −⟨−p− pQ, q − pQ⟩ ⩾ 0,
which results in the unique orthogonal decomposition p = −pQ − pK with pQ ∈ Q and
pK ∈ K.

If we consider the admissible direction h = pK
max(1,∥pK∥) , Euler’s inequation results in

0 ⩽
ˆ

∂ΩN

h · p ds = −
ˆ

∂ΩN

min
(
∥pK∥, ∥pK∥

2
)

ds.

As a consequence, pK = 0 and p + pQ = 0, which is the optimality condition we were
looking for.

Chapter 5

An adjoint method to solve the
registration problem

To solve the registration problem numerically, we discretize the optimal control formu-
lation using the finite element method. The finite element method is relevant to handle
domains with all kinds of shapes. For this reason it is widely used in the Mimesis team,
especially through the home-brewed SOFA framework (Allard et al., 2007). For all nu-
merical investigations, we adopt a discretize-then-optimize approach, which means that
the entire formulation is transformed into a finite-dimensional problem, and then solved
using numerical tools for finite-dimensional optimization. The reasons for this choice are
multiple. First, as we do not change or refine meshes during the online procedure, the
problem dimension is fixed and going back to continuous considerations is not necessary.
In addition, using expressions from the continuous framework may represent a lack of
robustness, as the solver may fail because the discretized problem does not approximate
the continuous problem well enough. We really need our numerical methods to be as
simple as possible, and forgetting that the liver mesh actually represents a real liver
seems to avoid unnecessary considerations, at the expense of continuous consistency.

In this chapter, we give some details about our implementation of an adjoint method.
This choice results from our initial intention to use shape optimization. Adjoint methods
are also relevant in optimal control when the direct problem is handled by a black-box
software such as SOFA, and for this reason we kept using an adjoint method. Modularity
is actually a key advantage of the adjoint method, as it can be broken down into several
procedures, each of which can be handled by a separate protagonist. In our case, these
procedures consist in evaluating the registration functional, managing the elastic model,
and solving the optimization problem, respectively.

After defining notations to express the registration problem in terms of matrix and
vector operations, we present an overview of the adjoint method and its structure. In
the end of the chapter we consider separately each procedure involved in the adjoint
pipeline. We first describe the chosen option to perform orthogonal projections onto the
mesh boundary when evaluating the cost function. Then, we mention Newton methods
that can be used to solve nonlinear elastic problems. Finally, we discuss the choice of an

88 Chapter 5. An adjoint method to solve the registration problem

optimization solver and show some examples to illustrate their convergence properties.

5.1 Finite element discretization of the problem
In order to perform numerical computations, we derive a discretized version of the prob-
lem using the finite element method. The domain Ω0 is represented by a tetrahedral
mesh T0, and functions of interest are represented by P1 finite element functions defined
on T0. When a deformation is applied to the mesh T0, the deformed mesh is known
through the position of its vertices x1, · · · , xn ∈ R3. We denote by x = (x1, · · · , xn)
the vector containing the coordinates of all vertices of the deformed mesh, and x0 the
positions vector in the reference configuration. We also use u = x − x0 = (u1, · · · , un)
to denote the displacement of vertices with respect to the initial configuration. With a
slight abuse of notation, we use the same bold letter u to denote the P1 finite element
function associated to the displacement field in T0. As a P1 finite element function is de-
fined by its value at the mesh vertices, a finite element function and a vector represented
by the same letter actually contain exactly the same information.

In the discrete framework, we write the linear elasticity equation (3.15) using the
matrix formulation

Au = Sg, (5.1)

where the force distribution g is a P1 finite element function defined only on the boundary
elements of ∂ΩN. If we denote by Ig the set of indices associated to vertices of ∂ΩN, one
can write g = (gi)i∈Ig

, resulting in a vector g smaller than u. Here, the stiffness matrix
A stands for the linear elasticity inner product and satisfies

vTAu =
ˆ

Ω0

Aε(u) : ε(v) dx,

while the matrix S represents the L2 inner product on ∂ΩN, which satisfies the equality

uTSg =
ˆ

∂ΩN

u · g ds.

Here, A and S were obtained by expressing the involved bilinear forms in a basis of
the finite element space. In the context of nonlinear elasticity, a similar development
involving the same basis leads to a nonlinear system of the form

F(u) = Sg.

We give more details about this system at the end of the chapter.
Though we produced an early implementation where we control the surface force

distribution g, we proceed in a different way in our main implementation, for two reasons.
First, choosing g as an optimization variable would require to perform several products
between S and a vector. Namely, at least two products involving S or its adjoint per
evaluation of the objective function would be necessary, whereas in a real-time context, it

5.2. Adjoint method 89

is preferable to make computations as light as possible. In addition, the SOFA framework
does not provide an implementation of S. As a consequence, we control the nodal forces
instead, which is consistent with the habits of the Mimesis team. The nodal forces are
represented by the vector b = Sg = (b1, · · · , bn). An element bk ∈ R3 can be interpreted
as the force (in Newtons) that applies on the k-th node, so that the work of the force
distribution (also known as compliance), reads

ˆ
∂ΩN

u · g ds = uTb =
n∑

i=1
ui · bi.

In this context, the Neumann boundary ∂ΩN is defined in terms of nodes where we
allow bk to be nonzero. In particular, bk is zero for every node that is not on the mesh
boundary. The state equation in the linear case and in the nonlinear case reads

Au = b and F(u) = b,

respectively. From now on, in the manuscript, we use the b-formalism, even to describe
optimization methods from the early implementation that are implemented using the
g-formalism.

In the context of the adjoint method, the optimization procedure is performed in
the space of nodal forces vectors b. The inner product used by generic optimization
solvers to compute descent directions and measure optimality conditions is the standard
inner product in R3n defined by ⟨u,v⟩ = uTv = ∑

ui · vi. As a consequence, in this
chapter gradients and derivatives are always expressed using this inner product, with
the notation

⟨df(u),v⟩ = ∇f(u)Tv =
n∑

i=1
∂if(u) · vi, (5.2)

where f is a scalar function.
A consequence of this choice is a less significant consistency with the continuous

optimal control problem, as the space of nodal forces is not a finite element space, and
the vector of nodal forces b has no counterpart in the continuous problem. In addition,
as opposed to inner products in function spaces, the standard inner product in R3n is
completely blind to geometric information such as the size of triangles. In other words,
we are not even trying to perform iterations that approximate iterations in the continuous
case. However, every standard optimization solver uses the standard inner product in
the discrete vector space. To be consistent with the continuous case, we would need
to implement optimization solvers that work with the L2 inner product, at the cost of
several additional matrix-vector products and system inversions. Finally, working with
nodal forces at the expense of consistency with the continuous framework is relevant in
view of real-time requirements and available software.

5.2 Adjoint method
The adjoint method is a standard approach for solving optimal control problems, based
on the optimality conditions derived in Section 4.3. In particular, an adjoint state p is

90 Chapter 5. An adjoint method to solve the registration problem

used to compute the derivatives of the objective function with respect to the control. A
general presentation of the adjoint method is given in Section 5.2.1.

In an adjoint method, the direct problem and the optimization problem are han-
dled in separate procedures, which makes the resulting program very modular. In Sec-
tion 5.2.2, we give a few details about our implementation of the adjoint method.

5.2.1 Overview of the method

The adjoint method is very specific to optimal control problems, where the entire system
state is defined by the choice of a control. We consider the discrete version of the optimal
control problem (2.11), featuring the nodal force vector b in the role of the control, and
the displacement field u as the state. A possible formulation reads

min
u∈R3n

,b∈B
J(u) +R(b) subject to constraint F(u) = b, (5.3)

where B is the set of admissible controls. Though the elastic system F(u) = b is denoted
as an optimization constraint, it is a particular constraint, as a given control b yields a
unique state ub so that the pair (ub,b) is feasible. In an adjoint method, everything is
expressed as a function of b, making b the only variable controlled by the optimization
solver. The resulting optimization problem reads

min
b∈B

Φ(b) where Φ(b) = J(ub) +R(b). (5.4)

Here, the elastic system is hidden in the objective function Φ. In particular, each eval-
uation of the objective value Φ(b) requires to solve the elastic system to compute ub.

Now, to solve (5.4) using a first-order optimization method, computing the objective
gradient ∇Φ(b) is also required. The derivation is similar to that in Section 4.3. If h
is an admissible direction in the space of controls, the corresponding direction in the
space of states w is solution of the tangent system F′(ub)w = h, where F′ denotes the
Jacobian of the elastic residual. With this notation, the first-order variation of Φ reads

∇Φ(b)Th = ∇J(u)Tw +∇R(b)Th.

The adjoint state p is used to transform the functional gradient ∇J(ub) in the space
of states into a gradient in the space of controls. It is defined as the solution to the
adjoint system F′(ub)Tp = ∇J(ub). Note that here the constraint Jacobian F′(ub) is
a symmetric matrix, as it represents the Hessian of the discretized elastic energy. We
obtain

∇J(ub)Tw = pTF′(ub)w = pTh,

and, finally,
∇Φ(b) = p +∇R(b).

This gradient can then be used by an optimization solver to minimize Φ. Algorithm 1
gives a summary of the adjoint procedure to compute∇Φ(b). Problem (5.4) can be fed to

5.2. Adjoint method 91

generic first-order primal solvers, such as gradient descents or quasi-Newton solvers. By
using solvers for constrained optimization problems, it is possible to handle constraints
on b. If the optimization problem involves constraints on u, however, calculations similar
to those above are necessary to transform those constraints into constraints on b.

Algorithm 1: Computation of the objective gradient using an adjoint method.
Data: Current iterate b
Compute the displacement u by solving F(u) = b
Evaluate J(u) and ∇J(u)
Compute the adjoint state p by solving F′(u)Tp = ∇J(u)
Result: ∇Φ(b) = p +∇R(b)

Remark 5.1. In the space of displacements, the first-order descent direction for J
returned by the adjoint method reads

w = F′(u)−1F′(u)−T∇J(u),

Though it ensures the regularity and feasibility of displacement fields, this expression
seems less natural than ∇J(u) as a descent direction for J , due to the change of metrics
created by the elastic model. If the Jacobian F′(u) is poorly conditioned, using an adjoint
method can degrade the numerical properties of the problem, making convergence more
difficult.

As mentioned earlier, implementing an adjoint method is very convenient, as the
direct solver and the optimization solver are separated from each other. In the next
section, we briefly describe the software produced during the thesis.

5.2.2 A modular implementation of the adjoint method

We first produced an early implementation of the adjoint method using the FreeFem++
software (Hecht, 2012). This implementation was used to test the adjoint method on two-
dimensional examples, with homemade procedures and optimization algorithms. Then
we switched to Python, in order to benefit from the features of a modern language,
such as object oriented programming. It was also the occasion to use state-of-the-art
scientific libraries to solve larger-scale problems in a reasonable time. As mentioned
above, this early implementation works with the surface force finite element function g
as the control variable, while the Python implementation uses b as the control variable.
For the sake of consistency, we always consider that b is the control in the description
of the implemented procedures.

Our Python implementation involves three separate procedures that communicate
together through simple interfaces, using the NumPy linear algebra library. Figure 5.1
shows an overview of the adjoint procedure to evaluate the shape functional and its
gradient.

92 Chapter 5. An adjoint method to solve the registration problem

On the one hand, the shape functional procedure is responsible for evaluating the
value and gradient of the functional J for a given displacement field u. It is expected
to return an accurate gradient, as otherwise the optimization solver would fail to solve
the problem with a tight tolerance. This part of the program is implemented using the
Trimesh package and involves an exact projection onto the deformed triangular surface
of the discretized organ. We give details about this procedure in Section 5.3.

On the other hand, the optimization solver is responsible for making the objective
function decrease. In our implementation, only first-order methods are supported, as
our shape functional procedure does not provide second-order information. We use the
standard solvers available in the Scipy package. In particular, quasi-Newton solvers are
the reference choice when only first-order information is available. The choice of an
optimization solver is discussed in Section 5.5.
Remark 5.2. Note that using second order solvers such as the Newton method would
require careful attention, as the objective Hessian ∇2Φ is full due to the presence of the
elastic problem. In addition, even if the Hessian is not assembled, performing Hessian-
vector products might require to solve several linear systems, resulting in a heavy com-
putational cost.

Finally, the central element in the implementation is the finite element package, that
manages the elastic problem. The finite element package is responsible for connecting
the optimization solver, that works in the space of controls, with the shape functional
procedure, that works in the space of states. This part of the program is critical for the
success of the registration process. First, it should give accurate results for the same
reasons as the shape functional procedure. But most of all, the direct solver should
not fail, in particular when it involves an iterative algorithm. When a linear elastic
model is used, the stiffness matrix is precomputed using Fenics or SOFA, then converted
into a Scipy matrix and factorized before the registration starts. Thus, the direct and
adjoint problem are solved in a fast and robust way. However, when the elastic model is
nonlinear, the direct problem is solved iteratively using a Newton method. In this last
case, enforcing convergence requires special attention, as discussed in Section 5.4.

5.3 Discretized shape functional
In this section, we describe a procedure to evaluate the shape functional J numerically.
In the discrete framework, the deformed surface ∂Ωu is a triangular mesh, and defining
S0 consists in selecting a set of triangles that are used to evaluate J . The observation Γ
is provided as the point cloud

Γ = {y1, · · · , yp} ⊂ Rd.

Due to this lack of structure, the objective function cannot be defined as an integral
on Γ. Thus, we use the expression

J(u) = 1
2p

p∑
i=1

d2(yi, Su). (5.5)

5.3. Discretized shape functional 93

Optimization solver Finite element package Functional

New iterate b
Solve direct problem

F(u) = b

Evaluate
J(u) and ∇J(u)

Objective gradient
∇Φ(b) = p +∇R(b)

Solve adjoint problem
F′(u)Tp = ∇J(u)

Figure 5.1: Structure of the objective evaluation procedure. The forward chain (top)
aims to evaluate the functional for a given control b, while the backward chain (bottom)
transforms the gradient ∇J(u) into a gradient in the space of controls.

With this notation,
√

2J(u) is the quadratic mean of distances from a point in Γ to the
deformed mesh surface.

Beside the fact that the integral is transformed into a sum, the discrete version of
J is very close to the continuous one, as the points from Γ are projected exactly onto
Su. The projection procedure exploits the triangular mesh structure of Su. It involves
a nearest neighbor search that determines the closest triangle from y. As one nearest
neighbor search is performed per point in Γ, its implementation should be efficient. We
discuss such procedures at the end of this section.

First, we briefly explain how the derivative formula computed in Lemma 4.1 adapts
to the finite element configuration.

5.3.1 Evaluation of the functional gradient

We now choose a point y ∈ Γ and we derive a practical formula to evaluate the gradient
of the elementary application

j : u 7→ 1
2d

2(y, Su). (5.6)

The expression d(y, Su) denotes the distance between y and its projection a onto Su.
First, note that here the projection point a is supposed to be unique. Actually, even
when y has several projection points onto Su, the nearest neighbor search algorithm is
supposed to return only one of them. This detail may be a problem when it comes to
obtaining reproducible results, as the projection point depends on the search procedure.
However, cases with multiple projections are rare, as for almost every displacement
field u, each point in Γ has a unique projection. In addition, a case with multiple
projections means that several descent directions are available, and by choosing one of

94 Chapter 5. An adjoint method to solve the registration problem

these projections, the algorithm selects one of those directions. Thus, the optimization
procedure is not likely to fail because of that.

Since we are dealing with P1 finite element functions, differentiating j with respect
to the displacement field u means differentiating j with respect to the displacements
(u1, · · · , un) at the mesh vertices. Thus, the gradient ∇j(u) is defined by its vertex-wise
components (∂1j(u), · · · , ∂nj(u)). We assume that the projection point a falls into the
triangle xk1

xk2
xk3

. Provided that a is the only projection point, the nodes xk1
, xk2

and
xk3

are the only ones whose displacement has an impact on the first-order variation of
j. Indeed, if another mesh node moves, the triangle containing a is not affected and the
value of j remains constant at first order. Therefore,

∀k /∈ {k1, k2, k3} ∂kj(u) = ∂j

∂uk
(u) = 0.

We now apply Lemma 4.1 to determine the nonzero components of∇j(u). We denote
by θ1, θ2, θ3 the barycentric coordinates of a in the triangle xk1

xk2
xk3

, so that

a = θ1xk1
+ θ2xk2

+ θ3xk3
,

where θ1, θ2, θ3 ⩾ 0 and θ1 + θ2 + θ3 = 1. If v is a perturbation of the displacement field
u, Lemma 4.1 yields

⟨dj(u),v⟩ = v(a) · (a− y) =
(
θ1vk1

+ θ2vk2
+ θ3vk3

)
· (a− y) .

This expression confirms that ∇j(u) has at most three nonzero components. Finally,
the components of ∇j(u) read

∀i ∈ {1, 2, 3} ∂ki
j(u) = θi(a− y) ∀k /∈ {k1, k2, k3} ∂kj(u) = 0. (5.7)

Formula (5.7) contains the cases where a falls onto an edge or a vertex. These cases
appear when one or two of the barycentric coefficients are set to zero, respectively.
Figure 5.2 illustrates the gradient formula in a two-dimensional case. On the left, y lies
in the polar cone to Su at xk and its projection falls onto xk, resulting in a gradient
fully supported by the node k. On the right, a belongs to a boundary edge and ∇j(u)
has nonzero components at xk and xm, which are proportional to the corresponding
barycentric coefficients.

We just computed the gradient of the elementary function ji associated to a single
point yi ∈ Γ. By summing all the elementary gradients, we obtain the global gradient
of the functional

∇J(u) = 1
p

p∑
i=1
∇ji(u). (5.8)

Remark 5.3. Computing the first-order derivatives of j using automatic differentiation
is very convenient, as the first-order derivatives of j are the same as the derivatives of
the application

u 7→ 1
2∥θ1xk1

+ θ2xk2
+ θ3xk3

− y∥2,

5.3. Discretized shape functional 95

−∂kj(u)

xk

xℓ

xm

y

−∂kj(u)
−∂mj(u)

xk

xℓ

xm

y

a

Figure 5.2: Illustration of ∇j(u) in two configurations. Points xℓ, xk and xm are located
on the mesh boundary, while the last vertex is inside the mesh. The red arrows represent
the components of the descent direction −∇j(u). On the right, the equality y − a =
−∂kj(u)− ∂mj(u) holds.

with the convention xk = x0
k + uk. In other words, the barycentric coefficients can be

treated as constants in the gradient computation. For instance, assume that the nearest
neighbor search procedure returns the indices k1, k2, k3 and the corresponding barycen-
tric coordinates t1, t2, t3. Then, the elementary gradient ∇j(u) can be computed using,
for instance the following lines in PyTorch:

x is the vector of node positions , y is the point from Gamma.
k1 , k2 , k3 , t1 , t2 , t3 = nearest_neighbor_procedure (x, y)
x. requires_grad = True # Save operations performed on x from now on.
j = 0.5 * norm(t1*x[k1] + t2*x[k2] + t3*x[k3] - y)**2

Functional value
j. backward () # Backpropagation
nabla_j = x.grad # Functional gradient

However, this remark is not true when it comes to evaluating the second-order derivatives
of j. In this case, it is also necessary to save the operations performed on x to obtain
θ1, θ2, θ3, as they depend on the displacement field.

5.3.2 Computation of orthogonal projections

We now discuss the nearest neighbor procedure that is used to find the nearest triangle
from a point y. Computing J(u) requires to compute the orthogonal projection of each
point of Γ onto Su, which means that the search procedure is run once per point in Γ. As
a consequence, efficiency in this part of the program is critical for the global performance
of the algorithm.

Though we did not investigate quantitatively the performance of orthogonal projec-
tions, we give a few details about the procedures involved in our code. A naive approach

96 Chapter 5. An adjoint method to solve the registration problem

would consist in evaluating the distance between each point in Γ and each triangle in
Su, which leads to a complexity of O(p× ntri), where p = |Γ| and ntri is the number of
triangles.

Except for the naive approach, we did not implement the procedures below ourselves.
We used existing functions available in Python packages.

Signed distance field: a continuous approach We first considered an approach
involving a signed distance field with respect to the deformed organ. Here, we only
consider the case S0 = ∂Ω0. Remember that, whenever the projection of a point y is
unique, it can be expressed as a function of the signed distance field dΩu

by the expression

p∂Ωu
(y) = y − dΩu

(y)∇dΩu
(y). (5.9)

We implemented this method using the MshDist software (Dapogny and Frey, 2012),
resulting in faster projections than the naive method, especially in three-dimensional
cases. The procedure begins by evaluating the signed distance function dΩu

at the
vertices of a background tetrahedral mesh, so that the signed distance and its gradient
can be interpolated a each point y ∈ Γ. Then the coordinates of the orthogonal projection
are computed using (5.9). Finally, some interpolation work is required to find the triangle
containing the projection point. Figure 5.3 shows a signed distance field computed on a
background mesh in a bi-dimensional case.

An advantage of this approach is that the most expensive operation has to be exe-
cuted once for all points in Γ. Though, the signed distance field has to be recomputed
every time u changes. The signed distance approach comes with several other draw-
backs. First, it is necessary to use a background mesh which should always contain
the organ model while it is subject to deformations. If the deformed organ does not
stay inside the background mesh, the procedure may fail. In addition, the signed dis-
tance field is approximated using a P1 finite element function. For the signed distance
estimation to be accurate, the background mesh needs to be dense, which makes the
computation costly. However, even with a dense background mesh, the signed distance
gradient may be inaccurate, especially close to the skeleton of ∂Ωu. In the same vein,
the signed distance value may be inaccurate close to ∂Ωu, making it impossible to solve
the optimization problem with a tight tolerance. For those reasons, despite its apparent
interest from a continuous point of view, an approach based on the signed distance is
not adequate for our needs.

Spatial indexing structures While the signed distance approach is based on the
discretization of a continuous process, the solution we chose is based on the polyhedral
structure of the discretized organ and explicitly consists in finding the closest triangle
from y. The procedure is based on spatial indexing structures. Such structures are used
for instance in computer graphics for collision detection (James and Pai, 2004).

We use a procedure available in the Trimesh Python package1, based on a R-tree
(Guttman, 1984). The functioning of such a structure is well beyond the scope of this

1https://trimsh.org/

https://trimsh.org/

5.3. Discretized shape functional 97

Figure 5.3: Signed distance field with respect to a two-dimensional mesh. Projection
directions are orthogonal to the level curves of the signed distance field.

manuscript, but here is the main idea. In an R-tree, triangles are gathered in small
groups represented by their bounding boxes. Those small boxes are gathered in bigger
boxes, which are gathered in even bigger boxes, and so on. This results in a hierarchy of
boxes, represented by a tree structure. When searching for the closest triangle to a point
y ∈ Γ, the algorithm does not need to explore smaller boxes if they are contained in a
bigger box that is already too far from y. This results in an average query complexity
of O(logntri). Figure 5.4 shows an example of such a box hierarchy on a surface mesh.
The performance of an R-tree is determined by the insertion algorithm used to build
the tree. More complex insertion algorithms are more costly but result in more efficient
queries. A popular variant is the R*-tree (Beckmann et al., 1990), where the area and
overlapping of boxes is minimized. Later, packing algorithms (Leutenegger et al., 1997;
García R et al., 1998) have proven efficient to add several elements into the tree in one
procedure.

The R-tree approach is particularly relevant in our application case. First, the pro-
cedure returns the triangle on which the projected point falls, along with barycentric
coordinates. In addition, it is possible to select the triangles that are candidates to
match the observed point cloud, when a signed distance field can only be computed with
respect to the full shape.

Let us add a qualitative remark about the performance of the R-tree approach. In
this manuscript, we use the algorithm from Trimesh as a black box but we are far from
an efficient implementation. At each evaluation, a new R-tree is built and then one query
per point in Γ is performed. As the mesh topology does not change along the deformation
process, it is not necessary to build a new tree from zero before each evaluation of the

98 Chapter 5. An adjoint method to solve the registration problem

Figure 5.4: Bounding box hierarchy around a triangular surface mesh. Small boxes are
the bounding boxes of single triangles, while the biggest box is the bounding box of the
whole surface. Red boxes represent an intermediate level of boxes.

functional, only the coordinates of boxes and triangles need to be updated. Maintaining
the same indexing structure along iterations and performing hierarchy changes only when
necessary might improve performance.

Brute-force returns on the GPU Due to the real-time requirements, we are not
expecting to deal with very dense meshes or point clouds. While spatial indexing struc-
tures are able to store millions of points, we only expect to compare at most a few
thousands points with a few thousands triangles. In this case, evaluating the distances
between every point and every triangle is still possible in a reasonable time, due to the
highly parallel structure of graphic cards (or GPU for Graphics Processing Unit). In
particular, this brute force approach is implemented in a function from the PyTorch3D
library and might be considered for a GPU implementation of the registration procedure.
Also, note that implementations of spatial indexing structures on the GPU exist in the
literature (Prasad et al., 2015).

5.4 Newton methods for static elasticity problem

We now turn to the procedure that manages the elastic model using a finite element
discretization. Namely, this procedure is responsible for solving the direct problem to
transform a force distribution b into a displacement field u, and to solve the adjoint
problem to transform a gradient ∇J(u) in the space of displacements into an adjoint

5.4. Newton methods for static elasticity problem 99

state p. When a linear model is used, the role of the finite element package boils down
to solving linear systems involving the stiffness matrix. Even in the nonlinear case, the
adjoint problem remains linear, and an adjoint states is computed by assembling and
solving a linear system. For this reason, we focus here on the most challenging part,
which is to solve the direct problem in the nonlinear case. This task is usually taken
care of using a Newton method. Though, some precautions must be taken to ensure the
convergence of the algorithm.

Invented in the 17th century, the Newton method (also known as the Newton-
Raphson method) remains nowadays the go-to method to solve nonlinear variational
problems such as static elasticity (Kelley, 1995, Chapter 5 and references therein). In
a recent study, Morch et al. (2022) compare the performance of Newton-type methods
of order 2 and higher on a few selected problems, and evaluate the effect of damping
on the method robustness. The most computationally efficient method in their bench-
mark turns out to be the standard Newton method, even though other variants exhibit
a higher convergence rate in theory. Other approaches, such as quasi-Newton methods
(Gelin and Picart, 1988) show interesting performance in mechanical simulation (Liu
et al., 2017; Yusa et al., 2021). However, we focus here on the Newton method and some
of the remarks we formulate also apply to quasi-Newton methods.

In Section 2.2, we formulated the nonlinear elastic problem as the minimization prob-
lem (2.1). Here, we consider a discretized version of (2.1). After defining some notations,
we describe the standard Newton algorithm and a variant adapted to optimization prob-
lems.

Remember that the discretized displacement field is represented by a vector u ∈ R3n,
where n is the number of vertices in the mesh, and forces are represented by b ∈ R3n.
The discrete optimization problem reads

min
u∈U

W (u)− bTu, (5.10)

where we keep using U to denote the feasible set in the discrete case, and we denote the
first-order optimality conditions by

F(u)− b = 0 where F = ∇W. (5.11)

5.4.1 Newton method for variational problems

The most common approach to solving nonlinear elastic problems is to solve the optimal-
ity condition (5.11) as a variational problem. In this context, the Newton method takes
the form of a fixed-point algorithm, where a linear approximation of (5.11) is solved at
each iteration. The first-order development of the residual reads

F(u + w) = F(u) + K(u)w + o(∥u∥),

where K(u) = F′(u) denotes the residual Jacobian at u (also called the stiffness matrix).
The Newton step w is the solution of the tangent system

K(u)w = b− F(u),

100 Chapter 5. An adjoint method to solve the registration problem

Algorithm 2: Standard Newton method for nonlinear variational systems.
Data: Initial iterate u0, tolerance ϵ
for k = 0, 1, 2, . . . do

Evaluate the residual rk = b− F(uk)
if ∥rk∥ ⩽ ϵ then

return uk

end
Compute a step wk by solving K(uk)wk = rk

uk+1 ← uk + wk

end

and the next iterate is defined as u+ = u + w.
The main source of cost in the method is the inversion of a linear system involving

K(u) at each iteration. This operation can either be taken care of by a direct solver, for
instance involving a LU factorization (Nocedal and Wright, 2006, Appendix A), or by
an iterative solver such as GMRES (Saad and Schultz, 1986). Though the principles of
such solvers are out of the scope of this manuscript, we briefly describe the advantages
of both families of solvers in Newton methods. Iterative solvers are more relevant for
large-scale systems, as they do not require to assemble the system matrix. In addition,
they can solve systems inexactly to gain time. For instance, the linear solver may be
used with a large tolerance in the first Newton iterations and then the tolerance be-
comes tighter along iterations to enforce superlinear convergence of the Newton method
(Nocedal and Wright, 2006, Chapter 11, Theorem 11.3). On the other hand, iterative
solvers are sensitive to the system matrix conditioning and often need preconditioning
to perform efficiently. Direct solvers, which rely on a factorization of the system ma-
trix, are less sensitive to bad conditioning and can achieve higher accuracy in system
solutions. Though matrix assembly and factorization represent a significant overhead,
modern parallel implementations of direct solvers are very efficient. For these reasons,
direct solvers are often preferred in our application domain, where linear systems keep
reasonable sizes in order to keep up with the real-time requirement. The interested
reader may refer to the book by Saad (2003) and the review by Davis et al. (2016) for
more information about iterative and direct solvers, respectively.

Algorithm 2 gives a summary of a standard Newton method. Newton methods are
popular due to their fast convergence rate, provided that F is regular enough and K
has good properties in a vicinity of the solution. The following theorem (Nocedal and
Wright, 2006, Chapter 11, Theorem 11.2) states the theoretical convergence rate of the
method.

Theorem 5.1. Suppose that F is continuously differentiable, let u⋆ a solution of problem
(5.11) such that K(u⋆) is nonsingular, and let (uk) the sequence of iterates generated by
Algorithm 2. Then when uk is close enough to u⋆, the Newton method converges at a
superlinear rate, i.e.

uk+1 − u⋆ = o
(∥∥uk − u⋆∥∥) .

5.4. Newton methods for static elasticity problem 101

In addition, if F is Lipschitz continuously differentiable, then convergence is quadratic,
i.e.

uk+1 − u⋆ = O
(∥∥uk − u⋆∥∥2)

.

Theorem 5.1 only states a local convergence result. In other words, the initial iterate
should be close enough to the solution for the method to converge toward this solution.
As a consequence, the Newton method suffers from a lack of robustness when iterations
start far away from a solution.

In addition, monitoring convergence along iterations is sometimes difficult. The
stopping criterion in Algorithm 2 is the residual norm ∥rk∥. Though the residual norm
decreases dramatically when getting close to the solution, it is not supposed to decrease
in general and can even take very large values before convergence. As a consequence it
is difficult to evaluate the progress of the method during execution.

In optimization algorithms based on the Newton method, some features were added
to better enforce and monitor convergence, at the expense of efficiency.

5.4.2 Newton method for optimization problems

We now consider the elasticity problem under the form (5.10). Treating a nonlinear
elastic problem as a minimization problem is a way to obtain useful insight, especially
by looking at the properties of the objective function. In particular, the evolution of
the objective value along iterations is convenient to monitor convergence in the first
iterations. It is complementary to the residual norm, which is more meaningful in the last
iterations. By requiring the objective function to decrease along iterations, optimization
algorithms enforce global convergence toward a local minimizer of the problem. In this
paragraph, we describe a trust-region Newton method that solves optimization problems.
Trust-region methods have already been considered in the context of nonlinear mechanics
(Gross and Krause, 2009; Youett et al., 2019). While we mainly refer to Nocedal and
Wright (2006), the interested reader might find more specific information about trust-
region methods in the book by Conn et al. (2000).

Though it is based on the standard Newton method, the trust-region Newton method
uses a slightly different formalism. During an iteration, the objective function u 7→
W (u) − bTu is approximated around a given iterate uk by its second-order Taylor
expansion. The local quadratic model reads

mk(w) =
(
W (uk)− bTuk

)
︸ ︷︷ ︸

objective value

+ (F(uk)− b)︸ ︷︷ ︸
objective gradient

Tw + 1
2wTK(uk)︸ ︷︷ ︸

objective Hessian

w. (5.12)

Now, the Jacobian K plays the role of the Hessian of W , and its properties depend on
the convexity of W . In particular, it is positive definite whenever W is strictly convex.
Here we assume that K(u) is nonsingular everywhere.

A standard Newton step, starting from uk, lands on the critical point ofmk. However,
this critical point is a minimizer of mk only when K(uk) is positive definite. Otherwise, it
may be a saddle point or a maximum of mk, while a minimum does not necessarily exist.

102 Chapter 5. An adjoint method to solve the registration problem

For this reason, the Newton step is reformulated into an optimization subproblem which
aims to minimize the local model on a ball centered at uk. The ball, called the trust-
region, defines a zone where the quadratic model mk provides a suitable approximation
of the objective function, and enforces the existence of a solution to the subproblem.
The trust-region subproblem reads

min
w

mk(w) subject to ∥w∥ < ∆k (5.13)

where ∆k > 0 is the trust-region radius. Provided that mk is strictly convex and
∆k is large enough, solving (5.13) boils down to performing a standard Newton step.
This situation arises in particular when iterates approach a solution of the optimization
problem, and thus the trust-region Newton method benefits the convergence rates stated
in Theorem 5.1.

In practice, the trust-region problem is approximately solved using a truncated Con-
jugate Gradient method (Nocedal and Wright, 2006, Algorithm 7.2), which stops upon
trust-region bound violation or generation of a direction of nonpositive curvature. In
a recent paper, Dahito and Orban (2019) compare the performance of the Conjugate
Gradient method and the Conjugate Residual method for trust-region problems.

Algorithm 3: Trust-region mechanism (Nocedal and Wright, 2006, Alg. 4.1).
Data: Initial radius ∆0, reject tolerance η ∈ [0, 1/4)
for k = 0, 1, 2, . . . do

Compute a step w by solving (5.13)
Evaluate ρk

// Adjust trust-region radius
if ρk < 1/4 then

Reduce trust-region: ∆k+1 < ∆k

else if ρk < 1/4 and ∥w∥ = ∆k then
Expand trust-region: ∆k+1 > ∆k

else
∆k+1 = ∆k

end
// Accept or reject step
if ρk > η then

Accept step: uk+1 = uk + w
else

Reject step: uk+1 = uk

end
end

The trust-region mechanism is summarized in Algorithm 3. To accept or reject a step
w as well as to adjust the trust-region radius, the mechanism relies on the coefficient

ρk = f(uk)− f(uk + w)
mk(0)−mk(w) ,

5.5. Optimization procedure 103

where f(u) = W (u) − bTu denotes the objective value. The coefficient ρk compares
the model reduction and the actual reduction allowed by the step w. In particular,
when a step w does not decrease the objective function as much as predicted by the
model, it is rejected and the trust-region radius is decreased. Though rejecting steps
represent an additional computational cost, it ensures the convergence of the trust-region
Newton method, as stated in the following theorem (Nocedal and Wright, 2006, Chapter
4, Theorem 4.1).

Theorem 5.2. Assume η > 0 in Algorithm 3. Assume also that ∥K∥ is uniformly
bounded, that the objective function W (u)−bTu is bounded below and that F is Lipschitz
continuous. Let (uk) be the iterates generated by the trust-region Newton method. Then

lim
k→∞

F(uk)− b = 0.

In Figure 5.5, we applied random nodal forces to the 2D beam from Figure 2.3,
resulting in a very irregular displacement field. We plotted the convergence statistics of
the standard and trust-region Newton method, in the case of a Saint Venant-Kirchhoff
model and in the case of a Neo-Hookean model. Due to the good properties of the
Saint Venant-Kirchhoff energy functional, the standard Newton method behaves well
and converges much faster than the trust-region method. On the other hand, the trust-
region method is the only one to converge in the more difficult case of the Neo-Hookean
model. While the standard Newton methods fails as soon as an iterates lands onto a
non-feasible point, the trust-region mechanism allows the trust-region method to take
shorter steps when necessary.

The very aggressive standard Newton method and the more careful trust-region New-
ton method are only two examples among a full spectrum of variants with various levels
of convergence enforcement. Strategies we did not mention include line search algo-
rithms (Nocedal and Wright, 2006, Chapter 3), which are relevant for convex problems
and quasi-Newton methods. The energy-minimization nature of static elasticity prob-
lems gives access to a large choice of strategies to enforce convergence. Compromises
between all those strategies should be found to combine efficiency requirements with the
robustness necessary in sensitive applications such as augmented surgery.

5.5 Optimization procedure

In this section, we discuss the choice of an appropriate optimization algorithm to solve
the optimal control problem in the unconstrained case and in the pointwise-constrained
case. Note that in this manuscript we do not solve the state-constrained problem (2.14)
numerically. The chosen algorithms should satisfy two main requirements. First, second-
order information is not available for the objective function Φ, thus Newton methods are
excluded from possible choices. For this reason, we rather turn toward first-order meth-
ods and quasi-Newton algorithms. Second, we are dealing with optimization problems
that can be large, and thus storing full matrices is often impossible. For this reason,

104 Chapter 5. An adjoint method to solve the registration problem

Neo-Hookean

Saint Venant-Kirchhoff

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ja
co

bi
an

 d
et

er
m

in
an

t

0 20 40 60 80 100
Iterations

10 11

10 8

10 5

10 2

101

104

107

Re
sid

ua
l n

or
m

Optimality conditions - StVK
Trust-region
Standard Newton

0 20 40 60 80 100
Iterations

2.5

2.0

1.5

1.0

0.5

0.0
Ob

je
ct

iv
e

va
lu

e
Objective value - StVK

Trust-region

0 25 50 75 100 125 150
Iterations

10 6

10 4

10 2

100

Re
sid

ua
l n

or
m

Optimality conditions - NHK

Trust-region

0 25 50 75 100 125 150
Iterations

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Ob
je

ct
iv

e
va

lu
e

Objective value - NHK
Trust-region

Figure 5.5: Resulting deformation and convergence statistics of the standard New-
ton method and the trust-region method (including rejected steps for the trust-region
method). Missing points in the Neo-Hookean case correspond to infeasible points where
the objective function evaluates to +∞.

5.5. Optimization procedure 105

chosen optimization software should support sparse matrices and limited-memory quasi-
Newton Hessian approximations.

In this section, we use the notation g = ∇Φ(b) to denote the objective gradient. It
has nothing to do with the surface force distribution.

5.5.1 Unconstrained problem

We first illustrate the adjoint method on a registration problem whithout L∞ constraint.
Dropping the L∞ constraint makes sense in a finite dimensional context, as this con-
straint is not indispensable for solutions to exist. In addition, displacement regularity can
be enforced by cheaper means such as penalty terms, which saves the cost of constraint
management. As far as the optimization solver is concerned, the first-order optimality
conditions for problem (5.4) in the unconstrained case read

∇Φ(b) = 0.

First-order methods

In the early FreeFem++ implementation, we implemented two simple first-order methods
to validate the approach. We first used a standard gradient descent with backtracking
linesearch (Armijo, 1966). Then we implemented an accelerated gradient descent (Nes-
terov, 1983), where some inertia is given to the sequence of iterates to avoid zigzagging
phenomena (see also Su et al., 2016).

In Figure 5.6, we show an example of registration involving a two-dimensional mesh.
A point cloud is generated from a deformed configuration and used to perform the regis-
tration. As expected, the Nesterov accelerated gradient descent decreases the objective
function faster than the standard gradient descent, especially in the first iterations (Fig-
ure 5.6c). However, note (Figure 5.6b) that the surface force distribution reconstructed
by the Nesterov method is more irregular than the one reconstructed by the gradient de-
scent. Indeed, accelerated and higher-order methods converge faster because it is easier
for them to reach irregular surface forces distributions. On the other hand, the gradient
descent method is very sensitive to the regularizing effet of the adjoint method, but it
is also the reason why its convergence is slow.

An off-the-shelf quasi-Newton solver

In the Python implementation, we use a standard quasi-Newton solver available in the
Scipy package, namely the L-BFGS-B algorithm (Byrd et al., 1995). This limited-
memory BFGS method is normally tailored for bound-constrained problems, but remains
relevant for our case. We create a toy problem by applying a surface loading onto a
truncated sphere mesh of radius 1 (10,385 vertices) with a Dirichlet boundary condition
applied on its base. Then, we sample the deformed surface to create a point cloud of
200 points. We perform the registration on a coarser mesh (907 vertices), resulting in a
direct problem of size 2,721. More details about the toy problem are given in Section 6.1.

106 Chapter 5. An adjoint method to solve the registration problem

(a) Initial (left) and deformed (right) configurations with generated point cloud.

(b) Resulting deformations for the standard (left) and accelerated (right) gradient descents.

0 100 200 300 400 500
Iterations

10 8

10 6

10 4

10 2

Ob
je

ct
iv

e
va

lu
e

Objective function
Gradient
Nesterov

0 100 200 300 400 500
Iterations

10 5

10 4

10 3

10 2

10 1

Gr
ad

ie
nt

 N
or

m

Optimality conditions
Gradient
Nesterov

(c) Convergence statistics.

Figure 5.6: Results for the 2D unconstrained problem after 500 iterations of the standard
and accelerated gradient methods.

5.5. Optimization procedure 107

For both data generation and reconstruction, a linear elastic model is used, with
E = 1 and ν = 0.49. We use the adjoint method to estimate nodal forces on boundary
nodes that are not subject to a Dirichlet boundary condition, resulting in an optimization
problem with 418× 3 = 1254 unknowns. We set the penalty term to zero, and we use a
limited-memory BFGS method available in the Scipy package, with at most 200 stored
updates. Figure 5.7a illustrates the data generation process and Figure 5.7b shows
the reconstructed deformation along with the nodal forces on the coarser mesh. The
reconstructed deformation is correctly fitting the pointcloud. Figure 5.7c shows the
convergence statistics. After 184 iterations (4.5 s on our configuration), the objective
gradient norm has decreased by a factor 105. Meanwhile, the objective value, which
is supposed to converge toward zero, has also decreased by 105, which means that the
average distance d(y, Su) has decreased by a factor 102.5 ≈ 316.

5.5.2 Problem with pointwise constraint

In the discrete context, the L∞ constraint takes the form of a pointwise (or should we
say nodewise) constraint on the components bi of the control. Though the physical
meaning is not exactly the same as the continuous formulation, the spirit is similar,
namely avoiding too strong nodal forces. If we denote by Ib the set of nodes where bi is
nonzero, the constraint reads

∀i ∈ Ib
1
2∥bi∥

2 ⩽ 1
2M

2, (5.14)

and the first-order optimality conditions read

∀i ∈ Ib

∂iΦ(b) + µibi = 0

µi ⩾ 0
1
2∥bi∥

2 − 1
2M

2 ⩽ 0
1
2µi

(
∥bi∥

2 −M2
)

= 0,

(5.15)

where µi ∈ R+ is the Lagrange multiplier associated with the i-th pointwise constraint.

Projected gradient and fixed-point iteration

Like previously, we preferred to use simple first-order algorithms to solve the pointwise
constrained problem in the FreeFem++ implementation. As the pointwise constraint
applies separately on each component bi, it is very easy to perform projections onto the
feasible set

B =
{

(bi)i∈Ib
| ∀i ∈ Ib ∥bi∥ ⩽M

}
by projecting each bi onto a ball of radius M . Thus, the projection operation reads

∀i ∈ Ib Proj(b)i =
{
bi if ∥bi∥ ⩽M

M bi
∥bi∥

if ∥bi∥ > M.

We exploited those cheap projections in a projected gradient method (Bertsekas,
1976). An overview of the projected gradient iteration is given in Algorithm 4. At

108 Chapter 5. An adjoint method to solve the registration problem

(a) Initial sphere mesh and deformed configuration with generated point cloud.

(b) Reconstructed deformation and nodal forces that generated the optimal displacement.

0 50 100 150
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Ob
je

ct
iv

e
va

lu
e

Objective function

0 50 100 150
Iterations

10 5

10 4

10 3

10 2

10 1

100

Gr
ad

ie
nt

 n
or

m

Optimality conditions

(c) Convergence statistics.

Figure 5.7: Reconstruction results for the 3D unconstrained problem.

5.5. Optimization procedure 109

each iteration, the step length is selected using a projected backtracking linesearch, and
optimality is measured using the projected gradient norm ∥Proj(b − g) − b∥, where
g = ∇Φ(b).

Algorithm 4: A projected gradient descent
Data: Initial guess b0, tolerance ε
for k = 0, 1, 2, . . . do

Evaluate objective gradient: gk = ∇Φ(bk)
if ∥Proj(bk − gk)− bk∥ < ε then

return bk

end
Select a step size βk by doing a linesearch
Compute the next iterate bk+1 = Proj(bk − βkgk)

end

We also implemented a variant of the projected gradient descent, inspired from fixed-
point methods. When they converge, fixed-point methods based on optimality conditions
may yield fast and robust convergence. In our variant, we replace the orthogonal pro-
jection by a so-called fixed-point step, derived from the optimality conditions. When
R(b) = 0, the first line in (5.15) can be reformulated

∀i ∈ Ib pi + µibi = 0.

As a consequence, at optimality, bi should be colinear to pi if µi > 0. To enforce this
condition, the fixed-point step reads

FPStep(b)i =
{
bi if ∥bi∥ ⩽M
−M pi

∥pi∥
if ∥bi∥ > M.

The FPStep operator is used in the last line of Algorithm 4 instead of the orthogonal pro-
jection. Note that the fixed-point step has a stronger effect than the projected gradient
step. If we only consider components that are affected by the step, the fixed point step
is equivalent to applying a projected gradient step with βk = +∞ to these components.
This is the reason why the fixed-point method has good convergence properties in good
conditions but might also show some instability.

Figure 5.8 shows the convergence results on a simple two-dimensional problem. In
the case of the projected gradient, the projected gradient norm decreases by a factor
104 in about 600 iterations, and a visually correct matching is achieved. The fixed-point
method, however, seems to converge in a few iterations, but not toward a solution of
the optimization problem. In particular, the resulting deformed mesh does not match
the point cloud. Other tests with the fixed-point method exhibit behaviors where the
mesh oscillates between two deformations, none of which is a solution of the optimization
problem.

After several tentatives, we decided to drop the fixed-point approach due to its
instability, and to keep using standard optimization methods.

110 Chapter 5. An adjoint method to solve the registration problem

(a) Resulting deformations for the fixed-point (left) and projected gradient (right) algorithms.

0 200 400 600 800 1000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

Ob
je

ct
iv

e
va

lu
e

Objective function
Projected gradient
Fixed-point

0 200 400 600 800 1000
Iterations

10 5

10 4

10 3

10 2

Pr
oj

ec
te

d
gr

ad
ie

nt
 n

or
m

Optimality conditions

Projected gradient
Fixed-point

(b) Convergence statistics.

Figure 5.8: Results for the 2D problem after 1000 iterations of the projected gradient
method and the fixed-point method. Constraint violation is not plotted, as projected
method only generate feasible iterates.

5.5. Optimization procedure 111

A primal-dual algorithm with BFGS approximation

While using projected directions is very convenient in the context of gradient descents,
it is way more difficult when using methods involving a change of metrics, such as
Newton and quasi-Newton methods (Bertsekas, 1982). As a consequence, standard
projected-directions algorithms are limited to problems with bound constraints (Lin
and Moré, 1999; Byrd et al., 1995), while our L∞ constraint is nonlinear. For this
reason, we turned to primal-dual methods in the Python implementation. Though the
functioning of such methods is out of the scope of this manuscript, let us mention
that they manage constraints using Lagrange multipliers (Nocedal and Wright, 2006,
Chapters 17–19). Primal-dual methods include interior-points methods such as Ipopt
(Wächter and Biegler, 2006), sequential quadratic programming algorithms like SLSQP
(Kraft, 1988), or augmented Lagrangian methods (Hestenes, 1969).

We encountered difficulties to find an adequate optimization method, as most primal-
dual programs are Newton methods that require the objective Hessian, or only provide
full BFGS approximations, which is not relevant for large problems. Though, we still
present an example involving the same sphere problem as before, where we add constraint
(5.14) with M = 10−2 (The maximal nodal force in the solution to the unconstrained
problem was ∥b∥∞ = 3 · 10−2). We solve the optimization problem using the sequential
quadratic programming algorithm SLSQP by Kraft (1988), available in the Scipy library.

Figure 5.9a shows the deformed sphere after the constrained reconstruction, with the
same color scale as in Figure 5.7b for nodal forces. Note that nodal forces do not exceed
the limit M in intensity. The convergence statistics are plotted in Figure 5.9b. As the
internal variables of the optimization solver are not available from the Python interface,
we used the projected gradient norm to measure optimality conditions. Note that, due
to the constraint, the objective function does not decrease toward zero as previously, but
converges toward a positive value. In addition, the forces intensities graph, along with
the plotted reconstruction, suggest that every component of the nodal force distribution
tends to reach the maximal allowed intensity M . Note that, as soon as all constraints are
active (iteration 50), the projected gradient norm seems to decrease with more difficulty.

These examples shows the feasibility of a L∞ constraint on the control. However, the
L∞ constraint is a nonlinear constraint that requires a primal-dual method to solve the
optimization problem. Such methods are more relevant when second-order information
about the objective function is available and are difficult to use with quasi-Newton
approximations. On the other hand, assembling a Hessian matrix for the adjoint method
is out of question due to the composite nature of the objective function Φ. For this reason,
we do not investigate algorithms to deal with the constrained problem any further.

Remark 5.4. The best choice to manage the L∞ constraint is probably the interior-
points strategy, as it only generates that satisfy the constraint. Solving the elasticity
problem with large forces using the Newton method requires many iterations, and in
addition the optimization solver might converge toward a minimizer devoid of physical
meaning. The interior-points strategy circumvents this possibility by preventing the
magnitude of nodal forces to exceed M .

112 Chapter 5. An adjoint method to solve the registration problem

(a) Reconstructed deformation and nodal forces. The color scale is the same as in Figure 5.7b.

0 50 100 150 200
Iterations

10 5

10 4

10 3

10 2

10 1

Ob
je

ct
iv

e
va

lu
e

Objective function

0 50 100 150 200
Iterations

10 5

10 4

10 3

10 2

10 1

100
Pr

oj
ec

te
d

gr
ad

ie
nt

 n
or

m

Optimality conditions

0 50 100 150 200
Iterations

10 10

10 8

10 6

10 4

10 2

La
rg

es
t n

od
al

 c
on

st
ra

in
t v

io
la

tio
n Constraint violation

0 50 100 150 200
Iterations

10 2

10 1

No
da

l f
or

ce
s i

nt
en

sit
ie

s

Forces intensities (418 vertices)
Inter-quartile
Median
Max

(b) Convergence statistics for the quasi-Newton method.

Figure 5.9: Reconstruction results for the 3D problem with pointwise constraint.

Chapter 6

Numerical results

We now present a few applications of our approach in the context of augmented surgery.
As a patient’s life is at stake during a surgical operation, an augmented reality system
for operation rooms is expected to be robust and accurate. In addition, such a method
should be able to update the augmented view in real-time. With the following numerical
tests, we try to evaluate the performances of our approach.

6.1 Preliminary investigations featuring the toy problems
Before we consider cases from the application domain, we present a couple of examples
involving the toy problems used to illustrate the optimization methods in Section 5.5.

2D toy problem

In the case of the FreeFem++ implementation, the test case involves a two-dimensional
truncated circular mesh of radius 1, where the distance from the disc center to the flat
face is 1/2. The flat face of the mesh is subject to a homogeneous Dirichlet condition,
while forces are applied on the circular boundary to generate a displacement. A point
cloud with 22 points is created using a mesh with 690 nodes. An elastic deformation is
applied to the mesh and a point cloud is extracted from the deformed boundary. For
data generation as well as for reconstruction, a linear elastic model is used with E = 1
and ν = 0.49.

3D toy problem

The toy problem for the Python implementation is a three-dimensional version of the
previous one. We create a mesh with the shape of a truncated sphere of radius 1, where
the distance from the sphere center to the truncating plane is 1/2. The flat surface of
the mesh is subject to a homogeneous Dirichlet condition, while forces are applied on
the round surface to generate a displacement. After an elastic deformation is applied
to the mesh, the round surface is sampled to create point clouds with different sizes.
The registration procedure involves a similar mesh. The flat surface is still subject to

114 Chapter 6. Numerical results

a homogeneous Dirichlet condition, while the round surface is deformed to match the
point cloud. In addition, nodal forces are allowed on every node which is not subject to
the Dirichlet condition (i.e. every node from the round surface).

We generate data using a mesh with 10,385 nodes and 6,702 faces. Linear elasticity is
used with E = 1 and ν = 0.49. Unless stated otherwise, the same model and parameters
are used in the examples below. Figure 5.7a shows the initial mesh and the generated
deformation. The mesh used for registration is generally coarser.

6.1.1 No accuracy guarantee, even in an ideal case

Let us put it straight from the start: our registration method does not come with any
guarantee in terms of displacement accuracy. Compared to other methods, an increased
displacement accuracy might result from a more rigorous physical modeling, but no
theoretical result confirms that.

To illustrate this disclaimer, we evaluate the displacement accuracy of the procedure
in an ideal case. First, the point cloud is very dense (10,000 points), contains no noise
and therefore provides a good representation of the deformed surface. In addition, the
same mesh is used for data creation and for reconstruction, which evacuates possible
discrepancies between two meshes representing the same shape.

The evolution of the objective function is plotted in Figure 6.1, along with the error
statistics in terms of displacement field and force distribution. The objective func-
tion keeps decreasing during the execution, and evaluates to 2 · 10−7, meaning that
the quadratic mean of the distance between data points and the mesh approximately
amounts to 6 · 10−4. Though, the displacement error seems to remain stable after 50
iterations. The displacement error settles between 0.006 and 0.3 for half of the points,
and the maximal error is 0.6. These figures are to be compared to the sphere radius,
which is 1. The lower part of Figure 6.1 shows the evolution of the magnitude and
error distribution among nodal forces. These results give us a few insights about the
registration procedure. First, the reconstructed nodal forces do not exceed the maximal
intensity of nodal forces used to create data (see also Figure 6.2a). As the objective
function only measures the discrepancy between the point cloud and the reconstructed
surface, the algorithm tends to choose among the simplest deformations that make them
match, regardless of the original deformation. Here, a simple deformation is one that
requires low forces intensities. The (absolute) error on nodal forces seems to increase at
the same rate as forces intensities along iterations, and both distributions remain in the
same order of magnitude. As a consequence, we understand that, in general, it might be
difficult to give a quantitative meaning to the computed distribution, especially when it
contains a large number of degrees of freedom.

In Figure 6.2, the true and reconstructed deformations are compared. Green shapes
represent the true deformation, while yellow shapes represent the reconstructed defor-
mation. The true and reconstructed nodal forces distributions are plotted in Figure 6.2a.
Despite the large error between individual nodal forces, the same accumulation of forces
on top of the mesh appears in both distributions. In Figure 6.2b, we superposed the
original and reconstructed surfaces. Though the surfaces match well with each other,

6.1. Preliminary investigations featuring the toy problems 115

0 50 100 150
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

Ob
je

ct
iv

e
va

lu
e

Objective function

0 50 100 150
Iterations

10 1

100

No
de

 d
isp

la
ce

m
en

t e
rro

r

Displacement error
Inter-quartile
Median
Max

0 50 100 150
Iterations

10 3

No
da

l f
or

ce
s i

nt
en

sit
ie

s

Forces intensities (2522 vertices)

Inter-quartile
Median
Max

0 50 100 150
Iterations

10 3

No
da

l f
or

ce
s e

rro
r

Forces error

Inter-quartile
Median
Max

Figure 6.1: Top: objective value and displacement error at mesh nodes. Bottom: Inten-
sity and error statistics for nodal forces.

116 Chapter 6. Numerical results

the individual position of each node was not retrieved by the procedure. In Figure 6.2c,
we applied the same pattern to the true and reconstructed surfaces to highlight the dif-
ference of position between both surfaces. Though both surfaces are consistent with the
point cloud, points from the initial sphere were not transported at the same place by the
true and reconstructed displacement fields. This behavior is expected, as nothing pre-
vents the reconstructed surface from sliding along the surface represented by the point
cloud. In Figure 6.2d, we plotted the displacement error in the reconstructed mesh. The
displacement error increases when we move away from the fixed boundary, and it reaches
0.6 at the top of the object (the sphere radius is 1).

To increase the accuracy of the method, more information should be included in the
model, such as landmark correspondence, curvature information or distinguishing free
and loaded surfaces.

6.1.2 Regularizing effect of the adjoint method

An advantage of the optimal control approach is that the mesh boundary nodes where
forces apply can be chosen in advance, according to the physical model. In contrast,
standard registration methods, by adding artificial forces depending on the data, impose
that the forces that create the displacement be located close to data points. Using the 2D
toy problem, we compare the registration result from the adjoint method with the result
from a displacement-based method, which is similar to standard registration methods.

In the displacement-based method we implement, the optimization problem reads

min
u∈R3n

J(u).

Here, the optimization variable is u. To make the objective function decrease, u should
move in the direction opposite to the gradient of J . Following the extension-regularization
framework (discussed in Section 4.1.2), instead of moving in the standard gradient direc-
tion −∇J(u), we compute a gradient using the linear elastic inner product. This results
in the scaled iteration

u+ = u− βA−1∇J(u),

where A is the stiffness matrix. In other words, the opposite gradient direction −∇J(u)
is transformed into a force that generates a direction descent in the space of displace-
ments, which is exactly what is done in standard registration methods. As ∇J(u) is
entirely supported by boundary nodes, the successive displacement fields are ensured to
be elastic displacements created by a surface force distribution.

Remark 6.1. If ∇J(u) had some components inside the mesh, for instance if there
were some landmarks inside the mesh, the resulting force distribution would also have
components inside the mesh. This is how little control on the force distribution support
we have when using a displacement-based method.

The displacement fields resulting from the adjoint and displacement-based methods
are plotted in Figure 6.3a, along with the surface force distribution necessary to create

6.1. Preliminary investigations featuring the toy problems 117

(a) Comparison between true (left) and reconstructed (right) forces.

(b) Point cloud and superposition of the true and reconstructed surface.

(c) Discrepancy between the true (left) and reconstructed (right) surface.

(d) Displacement error.

Figure 6.2: Registration results in the ideal case.

118 Chapter 6. Numerical results

the displacement. For the displacement-based method, these forces are located only
on vertices close to data points, which supported the gradient ∇J(u) along iterations.
The deformation computed using the adjoint method is more regular and the force
distribution is spread all over the mesh boundary. Let us be more specific about the
impact of the adjoint method. Both deformations are solutions to the optimal control
problem, as the feasible set allows (but does not require) force distributions to be spread
all over the mesh boundary. But the forces in the right figure actually spreading all over
the mesh boundary is a consequence of the regularizing effect of the adjoint method.
Another optimal control method would not necessarily return such a regular distribution
without an additional regularization mechanism.

Figure 6.3b shows the convergence and displacement error statistics. As the toy
problem was generated using a regular force distribution, it could be expected that the
volume registration error is lower in average for the adjoint method. The objective func-
tion graph illustrates the degradation of numerical properties mentioned in Remark 5.1.
By adding a regularization layer when computing descent directions, the adjoint method
makes also convergence more difficult. As the problem has a geometrical meaning, the
space of displacements (in other words the geometrical space) is more relevant to solve
it, and for this reason convergence is way faster for the displacement-based method.

6.1.3 Irregularity due to noise

In the context of augmented surgery, the point cloud is the result of an image processing
pipeline, and as a consequence it comes with a certain amount of noise. In this case, the
deformed mesh from the registration process should not meet every point in the cloud,
as an irregular point cloud would yield an artificially irregular surface on the augmented
reality view. Such numerical artefacts might be misleading for the medical staff. It is
preferable that the mesh boundary pass through the point cloud without matching each
point individually.

In this section we consider two simple approaches to regularize the computed dis-
placement field in the mesh, in the context of the FreeFem++ implementation (i.e. where
the control is g). Those two approaches are those suggested by the optimal control for-
mulation. In the penalized approach, we set R(g) = α

2 ∥g∥
2
L

2 , and the L∞ constraint is
dropped. In the constrained approach, the penalty function R is set to 0 while the L∞

bound is set to a positive value M .

Comparison on a partial matching case

We experiment those two solutions on the two-dimensional toy problem. We add gaussian
noise with standard deviation σ = 0.02 to the point cloud, and we solve the registration
problem using Ipopt with a full BFGS Hessian approximation. The displacement error
statistics for several parameters are displayed in Figure 6.4a. The median error seems
constant across box plots, but the maximal displacement error depends on the chosen
strategy. The penalty strategy did not manage to decrease the displacement error.
Starting from the same distribution as the unregularized case for small coefficients, the

6.1. Preliminary investigations featuring the toy problems 119

(a) Displacement-based (left) and adjoint-based (middle) registration results.

0 100 200 300 400 500
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

Ob
je

ct
iv

e
va

lu
e

Objective function
Adjoint
Displacement-based

Displacement-based Adjoint
0.00

0.05

0.10

0.15

0.20

No
da

l r
eg

ist
ra

tio
n

er
ro

r

Displacement error

(b) Evolution of the objective function and node displacement errors.

Figure 6.3: Comparison between the displacement-based approach and the adjoint
method.

120 Chapter 6. Numerical results

displacement error does not reach a minimum before the penalty is too strong for the
mesh to match the point cloud. On the other hand, a significant decrease is achieved
with the constraint strategy, with a minimum for M = 0.4. Note that the final force
distribution in the noise-free case has a maximal intensity of 0.5.

In Figure 6.4b, we plotted the resulting force distribution for the unregularized case,
the constrained case that achieves the minimal displacement error (M = 0.4), and the
first penalized case where the error distribution is impacted (α = 10−1). The constraint
and penalty strategies both result in more regular surface forces, but the constrained
result still features an irregular surface. However, the case M = 0.4 did a satisfying job.
The corresponding displacement errors are plotted in Figure 6.4c. It is noteworthy that
the main source of error is not the noise in Γ, but rather the point cloud not covering
the whole mesh boundary, resulting in large displacement error far from the points. This
phenomenon appears in the unregularized and the penalty case. Finally, the lower error
in the constrained case is just an uncontrolled consequence of the mesh being pushed
inwards to compensate for the intensity bound. On the other hand, the penalty approach
just resulted in a more regular surface without impacting the remaining of the mesh,
which is no more than what we expect from a regularization strategy. Far from breaking
the tie between the two strategies, this example shows that using a regularization has
an impact on the region close to the point cloud as well as on regions far from the point
cloud.

Comparison on a full matching case

For the sake of curiosity, we also compare the two regularization strategies on a full
surface-matching case. Now, the point cloud represents the whole deformed surface, so
that the error is less likely to come from the limited point cloud coverage. The error
statistics are plotted in Figure 6.5, along with the force distribution and displacement
error field for a few selected cases. It seems that constrained approaches managed to
reduce the displacement error where it is the largest (close to certain points). This time,
the penalty strategy was effective to decrease the displacement error. In particular,
when α = 10−3, the maximal displacement error is three times smaller than in the
unregularized case.

The conclusion of this section is certainly not that one of those two strategies is
better than the other in terms of noise regularization. The choice of a strategy should
take account of other arguments in favor of one or the other option. Those arguments
include ease of implementation for the penalty and the possibility to reject excessive
forces for the constraint.

Remark 6.2. In the early implementation, we also experimented theH1 penalty, defined
by R(g) = α

2 ∥∇g∥2
L

2 . However, when the penalty coefficient α was sufficiently large to
regularize the mesh boundary, it also resulted in a quasi-uniform force distribution. In
addition, this penalty was difficult to use in the three-dimensional cases, where the
optimization variables are the nodal forces b. For these reasons, we quickly dropped
this option.

6.1. Preliminary investigations featuring the toy problems 121

10 10 10 ³ 10 ² 10 ¹ No reg. 0.3 0.4 0.5 0.6 0.7
Penalty coefficients and intensity bounds

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Di
sp

la
ce

m
en

t e
rro

r

Nodal registration error
L2 penalty
No regularization
Constraint

(a) Nodal registration error for several penalty coefficients and constraint bounds.

(b) Resulting force distributions for the case without regularization (left), the constrained case
with M = 0.4 (middle) and the penalized case with α = 10−3 (right).

0.000
0.016
0.032
0.048
0.064
0.080

(c) Displacement error inside the mesh for the three cases.

Figure 6.4: Comparison of several kinds of regularization for the partial matching case.

122 Chapter 6. Numerical results

10 10 10 ³ 10 ² 10 ¹ No reg. 0.2 0.3 0.4 0.5 0.6
Penalty coefficients and intensity bounds

0.00

0.05

0.10

Di
sp

la
ce

m
en

t e
rro

r

Nodal registration error
L2 penalty
No regularization
Constraint

(a) Nodal registration error for several penalty coefficients and constraint bounds.

0.000
0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120

(b) Resulting force distributions and displacement error for the case without regularization (top),
the constrained case with M = 0.5 (middle) and the penalized case with α = 10−3 (bottom).

Figure 6.5: Comparison of several kinds of regularization for the full matching case.

6.2. Sparse Data Challenge dataset 123

6.2 Sparse Data Challenge dataset

The accuracy of a registration method is critical for the augmented surgery application.
A good accuracy allows the surgeon to target small structures inside the liver while
avoiding blood vessels. In practice, clinical collaborators of the Mimesis team usually
require an accuracy of 5 millimeters. Though we did not state any theoretical result
about accuracy, here we evaluate this criterion experimentally.

We use the adjoint method on a liver registration problem involving the Sparse
Data Challenge1 dataset. The dataset consists of one tetrahedral mesh representing a
liver phantom in its initial configuration and 112 point clouds acquired from deformed
configurations of the same phantom (Collins et al., 2017; Brewer et al., 2019). To
generate data, the challenge organizers used a silicon liver phantom. They created
deformations by laying the phantom on irregular supports on its posterior face, and
acquired pictures of the anterior face with a camera to produce the point clouds (Rucker
et al., 2014, Figure 2). The phantom also contains 159 targets whose position is measured
in reference and deformed configurations to establish ground truth data. The position of
targets remains unknown to us, and the registration error is computed by the challenge
website after we upload the final mesh position associated with each point cloud. By
keeping the ground truth hidden from participants, the challenge organizers ensure that
there is no bias associated with knowledge of the ground truth.

Due to the acquisition process, the forces that create the deformation are only applied
on the posterior surface of the liver, while the surface represented by the point cloud is the
anterior surface. As a consequence, we label the posterior surface as the loaded surface,
where the force distribution is allowed to take nonzero values, while the anterior surface
is labeled as the matching surface, which is used to evaluate the objective function.
Figure 6.6 illustrates the definition of the matching and loaded surfaces.

We first perform a rigid alignment between the matching surface and the point cloud
using the standard Iterative Closest Point method (Besl and McKay, 1992). The pro-
vided point clouds are split into four parts which correspond to parts of the liver that are
easily identifiable, namely, the right and left ridges, the falciform region and the general
surface. This information is used to initialize the rigid registration process. The point
cloud and the mesh after rigid registration are shown in Figure 6.6.

We now turn to the elastic registration process. To ensure uniqueness of the solution
to the direct elastic problem, we set a fixed boundary condition on a small zone of the
posterior face. As the liver mesh represents a phantom, no information about blood
vessels is available and for this reason we just choose six adjacent triangles close to the
center of the posterior face to apply the fixed displacement constraint. We solve problem
(5.3) (with R(b) = 0) using the adjoint method. As only small deformations are involved
in this dataset, we use a linear elastic model for the liver phantom, with E = 1 and
ν = 0.4. The procedure is stopped after 200 iterations (80s on our configuration).

Let us add a word about the choice of elasticity parameters, which are not specified
by the challenge organizers. Actually, a small part of the ground truth is available to

1Challenge website: sparsedatachallenge.org.

sparsedatachallenge.org

124 Chapter 6. Numerical results

Figure 6.6: Left: Initial liver mesh with matching surface on top and loaded surface
at the bottom. Right: Point cloud and liver mesh after rigid registration. Point colors
correspond to the left ridge (blue), the right ridge (green), the falciform region (magenta),
and remaining points (yellow), respectively.

participants in order to calibrate some parameters. This sample consists of the position
of 35 targets (out of 159) after deformation for 4 cases (out of 112). The partial ground
truth was used to determine the Poisson ratio ν. Concerning the Young modulus E, it
has no impact in this study, and for this reason we set it to 1. Indeed, in this example
we retrieve a displacement, and we are not interested in the force intensities. Even for
nonlinear models, E is a multiplicative scaling parameter in the elastic energy expression,
which mean that the force distribution necessary to generate a given displacement field is
proportional to E. As a consequence, changing the Young modulus just means changing
the intensity of estimated forces, while the computed displacement remains the same.

Figure 6.7 shows the target registration errors associated with the partial ground
truth data provided by the challenge authors (position of 35 targets for 4 point clouds).
The box plot shows that significant improvement is achieved by the elastic registration
step with respect to the rigid registration result. In average, the elastic registration im-
proves the target registration error by 46%. However, these error results are very partial,
while the only error statistics for the full dataset are those displayed by the challenge
website after submission of the results. In Table 6.1, we reported the target registration
error statistics for all datasets. We compare these results with other submissions to the
challenge in Figure 6.8. We obtained the second-best result displayed on the challenge
website. In particular, our performance is very close to that of the Vanderbilt team (the
challenge organizers), who also use approaches based on a mechanical model (Heiselman
et al., 2020). This confirms that approaches that care about respecting the direct model
are relevant in augmented surgery.

6.3 Local force estimation

Is it possible to give a meaning to the force distribution reconstructed by the optimal
control method? If it applies onto a large part of the liver boundary, probably not.
However, when the distribution is very local, estimating the resulting net force may be
considered. In this section we consider an example associated to robotic surgery.

6.3. Local force estimation 125

Set 44 Set 57 Set 67 Set 84
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ta
rg

et
 re

gi
st

ra
tio

n
er

ro
r (

m
m

)

Target error after elastic registration
Rigid
Nonrigid

Figure 6.7: Target registration error for datasets where ground truth is available (from
left to right, top to down : sets 44, 57, 67, 84). As these datasets were used to calibrate
the method, results are better for these sets than in average.

20-28% 28-36% 36-44% All Data Sets
Surface Coverage

0

1

2

3

4

5

6

7

M
ea

n
ta

rg
et

 re
gi

st
ra

tio
n

er
ro

r (
m

m
)

Average error for all submissions

Vanderbilt
Inria Mimesis (us)
York University

Figure 6.8: Comparison of our accuracy results with other submissions. Our column is
the middle one.

126 Chapter 6. Numerical results

Surface Coverage Average Standard deviation Median
20-28 % 3.54 1.11 3.47
28-36 % 3.27 0.85 3.19
36-44 % 3.13 0.82 3.13

All data sets 3.31 0.94 3.19

Table 6.1: Target registration error statistics (in millimeters) for all datasets, as returned
by the website after submission.

In remote laparoscopic surgery, the surgeon manipulates the patient’s liver by con-
trolling a robotic arm. In this context, estimating the force applied by the robotic
instrument is necessary, as an excessive force applied onto the organ may cause serious
damage to living tissues and threaten the intervention outcome. On the other hand, it
is difficult to embed force sensors on instruments that evolve in an environment like the
human body, mostly due to geometry, biocompatibility and asepsis constraints (Marbán
et al., 2014). For this reason, certain standard surgical systems, such as the famous
daVinci robot are not equipped with force sensors. Indirect methods based on image
processing have been proposed to keep track of the applied force without a sensing system
inside the patient’s body (Nazari et al., 2021).

Here we estimate a force in a context similar to that in Haouchine et al. (2018),
where the authors monitor the evolution of the force applied by an instrument using a
sequence of point clouds extracted from laparoscopic frames. We generate synthetic test
cases using a liver mesh of 3,046 vertices and a linear elastic model (E = 20, 000 Pa,
ν = 0.45). Dirichlet conditions are applied in the region where the hepatic vein enters
the liver and in the falciform region. To simulate an instrument manipulating the liver,
we apply a very local force onto the mesh. We then sample the deformed mesh around
the force application point to create a point cloud. Figure 6.9 shows the displacement
generated by synthetic local forces, along with the reconstructed deformation using the
sampled point cloud of 500 points.

6.3.1 Single estimation

We begin by estimating the single local force from the case illustrated in Figure 6.9.
To do so, we allow the force distribution b to be nonzero only in a small zone (about
50 vertices) surrounding the triangles concerned by the traction force. We solve the
optimization problem with a relative tolerance of 5 · 10−4 on the objective gradient
norm, and we compute the net force estimation as the sum fest = ∑

i bi ∈ R3 of all the
nodal forces of the reconstructed distribution b. The estimated force is compared to
the ground truth ftrue by computing the relative error ∥fest − ftrue∥/∥ftrue∥. Note that
working with nodal forces makes it easy to work with several meshes, as we do not have
to take the area of surface triangles into account.

In figure Figure 6.9, the same mesh is used to generate the data and to perform
the registration. As a consequence, performing an accurate registration is easy, as the

6.3. Local force estimation 127

Figure 6.9: Left: synthetic deformation generated by a local force. The black wireframe
represents the reference configuration. Right: reconstructed deformation using the point
cloud. Nodal forces are summed to produce a net force estimation.

shape of tetrahedrons appears in the point cloud. The reconstructed force distribution
and the estimation error are represented in Figure 6.10, on the left. At the end of
the optimization process, the relative error on the net force is below 1%. Actually, we
noticed that, with a denser point cloud (5,000 points), the reconstructed force seems to
converge toward the ground truth force. This bias appears when the same discretization
is used for data generation and reconstruction. On the right part of Figure 6.10, we show
the result of registration performed with a different mesh (3,829 vertices), obtained by
remeshing the original mesh. The force distribution is noisier and nodal forces take
larger values, as tetrahedrons must be stretched to match the point cloud. Though, the
noise is somehow filtered by summing all nodal forces, leaving a net force estimation
with an error below 10%.

In Figure 6.11, we present the same effect with a refined mesh, (19,234 nodes) ob-
tained by splitting the original mesh. The L∞ norm of nodal forces, plotted in the top
right graph, increases along iterations. The bottom images show the force distribution at
iterations 57 (when the estimation error is minimal) and 293 (last iteration). Though the
force distribution at the last iteration is very noisy and takes large values, the estimation
error remains stable around 8%.

6.3.2 Estimation of a variable force

To mimic the action of a robotic tool manipulating the liver in the field of view of a
laparoscopic camera, we create sequences of point clouds by applying a time-dependent
force to a small spot on the liver surface. For each frame in the sequence, the resulting
displacement is computed from the current force and a part of the deformed boundary is
sampled to create a point cloud of 500 points. Each sequence consists of 50 forces, with
a displacement of about 1 mm in a random direction between two successive forces. We
create 5 sequences, where the force is applied on different points.

The registration is performed using the remeshed mesh of 3,829 vertices, already used
in Figure 6.10 on the right. For each sequence, the observed point clouds are successively

128 Chapter 6. Numerical results

0 25 50 75 100 125 150 175
Iterations

1 %

10 %

100%

Re
la
tiv

e
Fo

rc
e
er
ro
r

Evolution of force error

0 20 40 60 80 100 120 140 160
Iterations

1 %

10 %

100%

Re
la
tiv

e
Fo

rc
e
er
ro
r

Evolution of force error

Figure 6.10: Reconstructed force distribution and evolution of the force estimation error
for the original mesh (left) and the remeshed mesh (right). Nodal forces are summed to
produce a net force estimation.

6.3. Local force estimation 129

0 50 100 150 200 250 300
Iterations

1 %

10 %

100%

Re
la
tiv

e
Fo

rc
e
er
ro
r

Evolution of force error

0 50 100 150 200 250 300
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

 n
od

al
 fo

rc
e
no

rm
 (N

)

Evolution of control norm

Figure 6.11: Top: Evolution of the force estimation error and the maximal nodal force
for the refined mesh. Bottom: reconstructed force distribution at iterations 57 (left) and
293 (right).

130 Chapter 6. Numerical results

Sequence N. eval. Update Time Relative error
Case 1 9.2 1.42 s 8.9 %
Case 2 5.6 0.85 s 16.2 %
Case 3 5.5 0.84 s 5.7 %
Case 4 5.4 0.82 s 4.4 %
Case 5 6.2 0.96 s 15.0 %

Table 6.2: Average number of objective evaluations, execution time per update and
relative error for each sequence.

fed to the procedure to update the force estimation by solving the optimization problem.
The optimization algorithm is initialized with the last reconstructed distribution, so that
only a few iterations are required for the update. Table 6.2 shows the average error
obtained for each sequence, together with the average execution time of the updates
and the number of evaluations of the objective function. The noise in the reconstructed
distribution results in an intensity smaller than the reference, which is the main cause
of an overall error of 10 % in average. In all cases, the update time is below 1.5 s
in average, which is an encouraging result to show the feasibility of our approach in a
real-time context.

Note that this test case is only a toy problem, which is far from representing clinical
conditions. In our result, the main source of error is the use of two different meshes
for data generation and registration. However, other sources of error arise in a clinical
context, as the physical model only provides a rough approximation of the real system.
For instance, the estimated net force is proportional to the Young modulus used in the
liver model. Patient-specific parameters may be estimated using elastography, but nowa-
days this procedure is not part of a standard clinical routine. According to Oudry et al.
(2014), an error of 20 % is typical for clinical elastographic measurements. The elasto-
graphic error, combined with other sources of error, might amount to an overall error
that prohibits the estimation of the robot force. Though, our results are at least encour-
aging in terms of performance. In a clinical software, it is not expected to use meshes
much finer than those used in this study, in particular because of memory requirements
due to computing on graphic processors.

6.3.3 Toward force estimation with a hyperelastic model

All along the project, we encountered difficulties to use the adjoint method with a
nonlinear hyperelastic model, because of the instability of standard Newton methods
available in most finite element packages. This point is discussed in Section 5.4. However,
we are now in a position to present an early convergence result involving a Neo-Hookean
model. Elastic parameters are the same as previously.

Like previously, we created synthetic deformations by applying a local force onto the
liver mesh. As hyperelastic models are less rigid than the linear elastic model, applying
nodal forces onto one or two triangles only results in a very irregular displacement field.

6.3. Local force estimation 131

To produce more realistic deformations, we spread the synthetic force on a slightly larger
zone. The reconstructed force distribution is also spread on a zone larger than before.

In this example, the finite element model is managed using the Dolfin package (Logg
and Wells, 2010; Logg et al., 2012). To solve the direct problem, we combine both
Newton methods described in Section 5.4. For the first iterations, we use a trust-region
Newton method available in the Scipy package. This Newton method is guaranteed to
converge, but it is also very slow. As a conjugate gradient method is used to solve linear
subproblems, the trust-region Newton method can only solve the nonlinear problem up
to a residual norm of 10−9. To obtain a solution with a tighter tolerance, we perform a
few iterations with the standard Newton method available in Dolfin to reach a residual
norm of 10−14.

Figure 6.12 shows convergence statistics and resulting deformations for two test cases.
Here the same mesh is used for data generation and reconstruction. In both cases, we
performed as many adjoint iterations as possible, letting the solver fail when the direct
solver accuracy is not sufficient to compute descent directions. Note that this failure did
not happen after the same number of iterations for both examples. For case 1, iterations
stopped after 10 min 49 s, while for case 2 they stopped after 1 h 4 min 11 s (on a single
thread). However, in both cases the adjoint method managed to decrease the gradient
norm by approximately four orders of magnitude. This result shows the feasibility of the
adjoint method with a nonlinear elastic model. From the point of view of the inverse
problem, however, the very noisy force distributions illustrate the difficulty associated
to an enlarged support for nodal forces.

132 Chapter 6. Numerical results

0 20 40 60
Iterations

10 8

10 7

10 6

10 5

Ob
je

ct
iv

e
va

lu
e

Objective function

0 20 40 60
Iterations

10 7

10 6

10 5

10 4

Gr
ad

ie
nt

 n
or

m

Optimality conditions

(a) Case 1.

0 100 200 300
Iterations

10 8

10 7

10 6

10 5

10 4

Ob
je

ct
iv

e
va

lu
e

Objective function

0 100 200 300
Iterations

10 8

10 7

10 6

10 5

10 4

Gr
ad

ie
nt

 n
or

m

Optimality conditions

(b) Case 2.

Figure 6.12: Convergence statistics and resulting deformations for two test cases with
the nonlinear model. The true deformation and force distribution are plotted on the left,
while the reconstructed deformation and force distributions are plotted on the right.

Chapter 7

Future developments and
conclusion

This project results from discussions between Yannick Privat and Stéphane Cotin, about
the possibility to use a mathematical point of view to tackle the liver registration prob-
lem. The early work was quite prospective, and the optimal control approach we came
up with is the result of numerous discussions, negociations and also false leads. While
some choices result from tests and comparison between several methods, other choices
were made by default in order to move forward in the project. The first category includes
the choice of tree-based procedures to perform orthogonal projections, while the second
category includes the choice to use an adjoint method or to set Dirichlet boundary con-
ditions. In this chapter, we discuss a few possible enhancements for our work. We did
not implement those options by lack of time, but they could improve computational
performances or remove difficulties from the problem.

7.1 Avoid unnecessary difficulties by dropping Dirichlet
boundary conditions

All along this manuscript, we only considered static elasticity problems involving a
Dirichlet boundary condition. The main role of the Dirichlet boundary condition is
to ensure the existence of a solution displacement u for a given force distribution g. Its
role is also, to a lesser extent, to take into account anatomic factors that limit the liver
motion. In liver surgery, the Dirichlet condition is often set at the hepatic vein entry,
or sometimes at places where ligaments hold the liver (e.g. the falciform region). Note
that the Dirichlet boundary is necessary because a static elastic model is used. When a
time-dependent dynamic model is used, existence of an equilibrium configuration is not
required.

However, using a Dirichlet condition is far from being the best option, and it was even
a source of difficulty in certain parts of the project. From a theoretical point of view,
the presence of mixed boundary conditions degrades the regularity of solutions to the

134 Chapter 7. Future developments and conclusion

elasticity system. In particular, it is common to see stress accumulation at the interface
between Dirichlet and Neumann boundary conditions. Due to this lack of regularity, we
failed to prove the existence of a solution to the optimization problem in the general case.
From a numerical point of view, setting a Dirichlet boundary condition before elastic
registration sets the initial rigid registration result in stone. If the rigid registration went
wrong, this cannot be corrected during elastic registration. Finally, from the modeling
point of view, a hard Dirichlet condition does not even model accurately liver/ligaments.
Ligaments, as well as main blood vessels, limit the organ motion but do not prevent it
completely. For all these reasons, getting rid of the Dirichlet boundary condition should
remove a difficulty from the problem. Though, an alternative mechanism should be used
to ensure the uniqueness of solutions to the direct problem.

Replacing Dirichlet condition with stiffnesses

A first possibility is to relax Dirichlet boundary conditions into Robin boundary condi-
tions. Instead of being fixed, the corresponding surface ∂ΩD is subject to a force that
attracts it toward a target position uD. This model seems particulary relevant when
ligaments are modeled as linear or nonlinear springs. For instance, Nikolaev and Cotin
(2020) model ligaments that hold the liver as a neo-Hookean material, whose stiffness is
estimated using a Kalman filter. To keep things simple, assume that interactions with
ligaments are represented using a cubic stiffness. The elasticity problem then reads

min
u

W (u) + κ

3

ˆ
∂ΩD

∥u− uD∥
3 ds−

ˆ
∂ΩN

g · uds, (7.1)

where κ > 0 is the spring stiffness. With the same notation as (2.2), the resulting strong
formulation reads

−div(w′(∇u)) = 0 in Ω0
w′(∇u)n = g on ∂ΩN
w′(∇u)n = κ∥uD − u∥(uD − u) on ∂ΩD.

(7.2)

Using stiffnesses instead of Dirichlet boundary conditions may result in a more accurate
modeling of the liver mechanics as well as in more flexibility to adjust rigid transforma-
tion in the shape matching problem. In addition, provided that forces due to ligaments
are not concentrated at one point, the resulting displacement is solution to a Neumann
problem with w′(∇u)n ∈ L∞(∂Ω0), which might ensure better regularity than mixed
boundary conditions.

Note that rigid displacements should be penalized enough by the stiffnesses to avoid
unwanted large rotations of the liver during registration. In particular, the stiffness
coefficients κ should be large enough, and the restrained surfaces ∂ΩD should be spread
all around the surface so that the liver can resist against torques. Last but not least,
this strategy requires to know the elastic parameters of ligaments holding the liver.

7.1. Avoid unnecessary difficulties by dropping Dirichlet boundary conditions 135

A pure traction elastic problem

Another option consists in using only Neumann boundary conditions and work in a subset
of H1(Ω0,R

3) to ensure uniqueness of solutions to the direct problem. In this situation,
all forces that apply on the liver boundary are represented by the unknown Neumann
condition. Constraints and penalties on the force distribution g may be specialized,
depending on types of forces that are expected on each part of the liver boundary. In
particular, larger intensities may be allowed on regions that were previously subject to
Dirichlet conditions, as thoses forces are responsible for balancing the forces that drive
the registration.

Let us have a look at the linear elasticity case. The former Dirichlet region is now
included in the Neumann region, and we denote by ∂ΩF the region where a free boundary
condition must be applied. It is known that the null space of the bilinear form

a(u, v) =
ˆ

Ω0

Aε(u) : ε(v) dx

is the space of uniform translations T = {1Ω0
x, x ∈ R3}. Thus, the space H1(Ω0,R

3)
can be decomposed into the direct sum T ⊕ T⊥ (either for the L2 or H1 inner product),
where

T⊥ =
{
v ∈ H1(Ω0,R

3)
∣∣∣∣∣
ˆ

Ω0

v dx = 0
}
.

Provided that the surface force distribution belongs to the zero-mean subspace

S⊥ = {1∂ΩN
x, x ∈ R3}⊥ =

{
g ∈ L2(∂ΩD)

∣∣∣∣∣
ˆ

∂ΩN

g dx = 0
}
,

then solutions in H1(Ω0,R
3) to the system
−div(Aε(u)) = 0 in Ω0

Aε(u)n = g on ∂ΩN
Aε(u)n = 0 on ∂ΩF.

(7.3)

are equal up to a uniform translation. In particular, there is a unique solution ug that
belongs to T⊥. Note that in this case, u is the least-norm representant of solutions to
(7.3). Finally, to be consistent with the numerical development, we say a word about
the case g /∈ S⊥, where (7.3) is replaced by the least-squares problem

min
u∈T

⊥
1
2

ˆ
∂ΩN

∥Aε(u)− g∥2 dx s.c
{
−div(Aε(u)) = 0 in Ω0

Aε(u)n = 0 on ∂ΩF.
(7.4)

Of course, as S⊥ is the orthogonal of S = {1∂ΩN
x, x ∈ R3} in L2(∂ΩD), solutions to

(7.4) satisfy
Aε(u)n = g −

1∂ΩN

|∂ΩN|

ˆ
∂ΩN

g dx.

136 Chapter 7. Future developments and conclusion

Though the study of the continuous problem needs to be consolidated, the full-
Neumann configuration can be translated in our numerical framework without increasing
too much the size of the direct system. We now derive a linear elasticity operator adapted
to this new situation. When it does not include Dirichlet conditions, the stiffness matrix
A does not have full rank. With the same notation as before, its kernel and range read

T = ker A = {(x, x, · · · , x), x ∈ R3} and T⊥ = im A =
{

v ∈ R3n

∣∣∣∣∣
n∑

i=1
vn = 0

}
.

To construct the direct problem matrix, we also introduce the matrices S and Sb defined
by

∀x ∈ R3 Sx = (x, · · · , x), [Sbx]i =
{
x if i ∈ Ib
0 otherwise;

∀v ∈ R3n STv =
n∑

i=1
vi, ST

bv =
∑
i∈Ib

vi.

The matrix Sb has the same effect as S, but its action only affects nodes corresponding
to ∂ΩN and has no effect on nodes corresponding to ∂ΩF or nodes inside the domain.
The direct problem can be formulated in a compact way using the system A Sb

ST 0

u

λ

 =

b

0

 , (7.5)

where b still only has nonzero coefficients at nodes in Ib. Let us check that this system
does what is expected from it. The first line reads Au = b − Sbλ. A necessary and
sufficient condition for solutions to this line to exist is to set λ as the mean of (bi)i∈Ib

, so
that b−Sbλ lies in the range of A. Here, by using Sb instead of S, we correct b with a
uniform vector field defined only on the nodes of Ib and avoid to artificially add forces to
other nodes. It also ensures that, the adjoint state p resulting from the adjoint system
solution satisfies ∑i∈Ib

pi = 0, which is consistent with the requirement b ∈ T⊥. Now,
with the first line only, u is defined up to an element of ker A. By ensuring u ∈ T⊥,
the second line STu = 0 enforces the uniqueness of u, which is, again, the least-norm
solution of the first line. Thus, dropping the Dirichlet boundary only adds 3 lines to the
direct problem.

Coupled with a good shape-matching functional, those two solutions should be good
candidates to replace the Dirichlet condition. Compared to the stiffness-restricted prob-
lem, the restriction-free problem seems more relevant when little information from the
direct model is available, e.g. ligament stiffness is unknown. However, it can result in too
many degrees of freedom, especially if the translational component of the displacement
is also chosen as an optimization variable instead of being set to zero.

7.2. Jump to lightspeed with neural networks 137

7.2 Jump to lightspeed with neural networks

After looking at update time results in Section 6.3 it is not clear that achieving real-time
registration using the adjoint method is feasible, even with a better implementation of
the adjoint procedure and a good trade-off between accuracy and computation cost. The
adjoint method shares processor time with other parts of the pipeline, including point
cloud generation from laparoscopic images and displaying the augmented view. This
constatation holds when a linear model is used and the stiffness matrix is factorized
once when the procedure begins. When a nonlinear model is used, however, solving
the direct problem requires an iterative method, which means several linear systems to
assemble and solve. In that case, at least, it seems clear that real-time computation is
not feasible as is.

A neural network to predict elastic displacements

Like biomechanical simulation, deep learning is a central research interest in the Mimesis
team, and for this reason we considered replacing the iterative nonlinear solver with a
neural network. The network, developed in the team by Odot et al. (2022), is a fully-
connected multi-layer perceptron with four layers of size 3n. In such a structure, each
neuron in a given layer is connected to every neuron from the previous layer and to every
neuron from the next layer. Figure 7.1 shows the network structure. The result zi of
the i-th layer is obtained from the previous layer using the formula

∀ 1 ⩽ i ⩽ 4 zi = fi(Wizi−1 + ci), (7.6)

where parameters Wi and ci result from the network training. The function fi ap-
plies pointwise an activation function to each component of its input. Here the chosen
activation function is the Parametric Rectified Linear Unit, defined by

PRelu(x) =
{

x if x ⩾ 0
ax if x ⩽ 0,

where a ⩾ 0 is a learned parameter specific to each neuron. The network input receives
the nodal force distribution z0 = b and the displacement field u = z4 is read at the
other end of the network. The network is trained by showing it a wide range of force
distributions, along with the corresponding displacement fields. As neural networks
mainly involve matrix-vector products and pointwise operations, implementations take
advantage of the architecture of graphic processors to perform very fast predictions. A
prediction operation, denoted u = N(b), is performed in approximately five milliseconds
on a modern computer.

Optimization involving the network

The development of the adjoint method is carried out jointly with Alban Odot, while the
network design and training is taken care of exclusively by Alban Odot. The structure

138 Chapter 7. Future developments and conclusion

Input
tensor

Output
tensor

W1 f1, c1 W2 f2, c2 W3 f3, c3 W4 f4, c4

3n neurons

Figure 7.1: Structure of the multi-layer perceptron. The Wi, ci and fi represent the
parameters associated to each step of the network.

Optimization solver Neural network Functional

New iterate b
Forward propagation

u = N(b)

Evaluate
J(u) and ∇J(u)

Objective gradient
∇Φ(b) = p +∇R(b)

Backward propagation
p = N′(u)∇J(u)

Figure 7.2: Structure of the adjoint method with the neural network. Compared to
Figure 5.1, only the middle part has changed.

7.3. Improve robustness with primal-dual PDE management 139

of the adjoint method involving the neural network is shown in Figure 7.2. In our cur-
rent implementation, the same optimization solver as before is used. However, network
operations are run on the graphic card, using the PyTorch framework. The functional
evaluation is performed on the GPU as well, by using the brute-force projection function
from PyTorch3D mentioned in Section 5.3. As the optimization solver does not run on
the GPU, this implementation requires a lot of exchange between the central processor
and the GPU, which is a known source of overhead. In a future version, quasi-Newton
operations should run on the GPU to minimize inter-device exchanges.

The whole backward chain is taken care of automatically by the automatic differen-
tiation module in PyTorch. Yet, let us add a word about backward propagation in the
neural network. This operation replaces the adjoint problem and involves the adjoint
operator of the neural network. In Figure 7.1, information now circulates from the right
to the left. The rightmost tensor receives the gradient s4 = ∇J(u) in the space of dis-
placements, while the adjoint state p = s0 is read at the left extremity. The operation
to progress a layer backward is the adjoint operation to (7.6), namely

∀ 1 ⩽ i ⩽ 4 si−1 = WT
i ∇fi(Wizi−1 + ci)si,

where ∇fi(Wizi−1 + ci) is a diagonal matrix. In other words, the information circulates
in the same wires and using the same weights as forward propagation. Each neuron,
instead of applying the activation function, multiplies its input by the activation function
derivative that has been saved during forward propagation.

We obtained early results using a parallelepipedic beam mesh with a Dirichlet condi-
tion at one extremity. A synthetic deformation is created by applying a force distribution
on the beam surface and its surface is sampled to create a point cloud. A reconstructed
deformation is obtained in approximately 300 ms on our configuration. Figure 7.3 shows
the synthetic and reconstructed beam deformation, along with convergence statistics.
Beside the fact that the reconstructed beam is twisted the wrong way, the pointcloud
matching seems visually acceptable. Despite the use of a L2 penalty, high-frequency
oscillations appear in the reconstructed deformation but keep a reasonable amplitude.
Note that the Dirichlet condition is not enforced but learned by the network, and Dirich-
let nodes may be subject to a small displacement in certain cases.

The beam result is encouraging, but our network-based optimization approach is far
from being operational. In the next step of our investigations, we intend to perform
nonlinear registration and net force estimation using a liver mesh.

7.3 Improve robustness with primal-dual PDE manage-
ment

The whole numerical implementation presented in this manuscript revolves around an
adjoint method, where the only variable seen by the optimization solver is the control
b. To converge up to a sufficiently tight tolerance, the optimization solver needs the
adjoint method to return an objective value and gradient with high precision. In other

140 Chapter 7. Future developments and conclusion

(a) Synthetic (left) and reconstructed deformation (right).

0 20 40 60 80
Iterations

10 3

10 2

Ob
je

ct
iv

e
va

lu
e

Objective function

0 20 40 60 80
Iterations

10 6

10 5

10 4

10 3

10 2

Gr
ad

ie
nt

 n
or

m

Optimality conditions

(b) Convergence statistics.

Figure 7.3: Results of the network-based optimization procedure.

7.3. Improve robustness with primal-dual PDE management 141

words, the whole adjoint pipeline, including the direct solver, the functional evalutation
procedure and the adjoint solver (see Figure 5.1) should return a result with an error as
close as possible to machine precision. For this reason, the adjoint method is relevant
when the elasticity problem is solved using a direct procedure, such as a direct linear
solver for the linear case or the neural network in the nonlinear case. However, when
the elastic problem is solved using an iterative method, expecting a result with a close-
to-machine precision at each iteration is very costly and unrealistic at the same time. In
particular, if a variation of the nodal forces is too small, the solver returns the previous
displacement field as a good enough solution and the whole process fails because the
objective function does not decrease. In this section, we discuss an alternative to the
adjoint method where elasticity constraint is managed using Lagrange multipliers. We
first mention two primal-dual algorithms, the Augmented Lagrangian method and the
Sequential Quadratic Programming method, that are good candidates for our applica-
tion. As both methods are often used in the context of second-order methods, we also
discuss the feasibility of evaluating a numerical Hessian for the shape functional J .

Primal-dual solvers

In a primal-dual algorithm, u and b are both optimization variables in (5.3), while the
adjoint state p is used as a Lagrange multiplier to manage the constraint F(u) = b.
The min-max problem associated to (5.3) reads

min
u,b

max
p

L(u,b,p) where L(u,b,p) = J(u) +R(b)− pT(F(u)− b).

During an iteration of the Augmented Lagrangian method (Hestenes, 1969), the
primal and dual variables are updated alternatively. First, a minimization subproblem
involving a variant of the Lagrangian is solved with a fixed Lagrange multiplier p. The
minimization subproblem reads

min
u,b

J(u) +R(b)− pT(F(u)− b) + µ
2∥F(u)− b∥2. (7.7)

Compared to the standard Lagrangian, the augmented Lagrangian involves an additional
penalty term to better enforce the constraint. In the second part of the iteration, the
multiplier is updated using

p+ = p− µ(F(u)− b),

so that, along iterations, the sequence of solutions to (7.7) converges toward the solu-
tion to (5.3). A simple summary of the Augmented Lagrangian iteration is given in
Algorithm 5. The reader interested in more details about the tuning of parameters may
consult Nocedal and Wright (2006, Chapter 17). The Augmented Lagrangian method is
flexible, as the user can choose how to solve the minimization subproblem. In particular,
constraints on u or b can either be handled by the inner subproblem solver, or managed
by the augmented Lagrangian method by introducing additional Lagrange multipliers.

142 Chapter 7. Future developments and conclusion

Algorithm 5: Augmented Lagrangian strategy. (Nocedal and Wright, 2006,
Alg.17.3)

Data: Initial multiplier p0, initial penalty coefficient µ0, constraint violation
tolerance η

for k = 0, 1, 2, . . . do
Find a pair (uk,bk) that minimizes L(u,b,p0) + µk

2 ∥F(u)− b∥2

if ∥F(u)− b∥ ⩽ η then
return (uk,bk)

end
Adjust Lagrange multiplier: pk+1 = pk − µk(F(uk)− bk)
Choose a new penalty coefficient µk+1 ⩾ µk

end

Another method for equality-constrained problems is the Sequential quadratic pro-
gramming method (Nocedal and Wright, 2006, Chapter 18). The main idea of this
algorithm is to apply the Newton method to solve the first-order optimality conditions

∇J(u)− F′(u)Tp = 0
∇R(b) + p = 0

b− F(u) = 0.

Namely, the quadratic subproblem that is assembled at each iteration to compute a step
(w,h) reads

min
w,h

(
∇J(u)
∇R(b)

)T(
w
h

)
+
(

w
h

)T(
∇2J(u)− F′′(u)Tp

∇2R(b)

)(
w
h

)

subject to constraint F(u) + F′(u)w = b + h,

where ∇2F(u)Tp = ∂
∂u(∇F(u)Tp). Of course, sequential quadratic programming al-

gorithms feature mechanisms to ensure convergence, such as a line search, trust-region
or filter procedure. Though we do not give more details about sequential quadratic
programming methods, let us add that sequential quadratic programming methods are
usually expected to perform better on optimization problems with nonlinear constraints.

As they involve both u and b as optimization variables, primal-dual methods often
lead to large problems and require to solve large linear systems. However, in our case,
the objective function is splitted between a function of u and a function of b, leading
to sparse systems. This splitting may even be exploited by using methods such as the
Alternating direction method of multipliers (see Ouyang et al., 2015, and references
therein). Finally, primal dual methods might be interesting if computations are sped
up using reduced bases. In that case, an iterative procedure would still be necessary to
perform the optimization, but the optimization problem would keep a reasonable size.

7.3. Improve robustness with primal-dual PDE management 143

Computing a Hessian for J

In primal-dual methods, the displacement field u and the functional J are manipulated
directly by the optimization solver instead of being hidden in the depths of the adjoint
procedure. As a consequence, it makes sense to consider second-order information for
J . Sequential Quadratic Programming methods require to solve a quadratic subproblem
involving the Hessian matrix ∇2J(u). Here, using a BFGS approximation is tricky,
as it would deteriorate the sparsity structure of the system matrix. Concerning the
Augmented Lagrangian method, solving the minimization subproblem with an increasing
accuracy using a first-order or quasi-newton method would result in very long iterations.
In both case, being able to evaluate a numerical Hessian for J seems profitable.

The strategy to compute numerically the Hessian of J is the same as the one to
evaluate the gradient of J . For a given point y ∈ Γ, the projection point p∂Ωu

(y) lies
either on a vertex, inside an edge or inside a triangle of the deformed mesh. In addition,
in the majority of cases, when a small perturbation v is applied to u, the projection point
p∂Ωu+v

(y) is expected to remain on the same element. As a consequence, the elementary
function jy is locally equal to the squared distance between y and a point, a line or a
plane.

Let us take an example based on Figure 5.2. On the left, jy is locally equal to
u 7→ 1

2∥y − xk∥
2, and the only nonzero term in the Hessian matrix ∇2jy(u) is the

diagonal block ∂2
kkjy(u) = I corresponding to xk. On the right, however, jy is locally

equal to 1
2d

2(y, (xkxm)), and the Hessian matrix should contain 4 nonzero blocks, at the
lines and columns corresponding to xk and xm.

To compute those Hessian coefficients, we use the change of variable

v = xk + xm

2 − y and u = xk − xm

2 ,

and we define the function

f(u, v) = 1
2d

2(y, (xkxm)) = 1
2

(
∥v∥2 − θ2∥u∥2

)
, where θ = θ(u, v) = −⟨u, v⟩

∥u∥2
.

The expression for θ is obtained by minimizing ∥v+θu∥, while the expression for f(u, v)
is obtained by noticing that v+θu and θu are orthogonal and applying the Pythagorean
theorem (see notations in Figure 7.4). Here, θ depends on u and v and its derivatives
read

∂θ

∂v
(u, v) = − u

∥u∥2
∂θ

∂u
(u, v) = −v + 2θu

∥u∥2
.

It can be verified that the first-order derivatives of f ,

∂f

∂v
(u, v) = v + θu

∂f

∂u
(u, v) = θ(v + θu),

144 Chapter 7. Future developments and conclusion

xk

xm

y

a
xk+xm

2

v

v + 2θuθu
u

Figure 7.4: Notations for computing the Hessian of jy.

are consistent with the expressions obtained in Section 5.3. After a new round of differ-
entiation, the second-order derivatives of f read(

∂2
vvf ∂2

uvf

∂2
vuf ∂2

uuf

)
(u, v) =

(
I
θI

)(
I
θI

)T

− 1
∥u∥2

(
u

v + 2θu

)(
u

v + 2θu

)T

,

and by applying the change of variable, we obtain the second derivatives of jy
(
∂2

kkjy ∂2
mkjy

∂2
kmjy ∂2

mmjy

)
(u) =

(
θkI
θmI

)(
θkI
θmI

)T

− 1
∥xk − xm∥

2

(
(a− y) + θk(xk − xm)
−(a− y) + θm(xk − xm)

)(
(a− y) + θk(xk − xm)
−(a− y) + θm(xk − xm)

)T

,

where θk = (1+θ)/2 and θm = (1−θ)/2 are the barycentric coefficients of the projection
points in the element [xk, xm].

From this expression, it is difficult to obtain visual insight about jy, but it shows the
feasibility of computing a Hessian matrix. In the case of a triangle element, computing
second-order derivatives is much more involved, as our change of variable is not applicable
anymore. However, a numerical implementation should take advantage of automatic
differentiation to compute Hessian coefficients.

It might seem strange to compute the second-order derivatives of a function which is
not Gateaux differentiable everywhere. However, as the optimization method converges,
displacement steps get smaller and pairings between the mesh boundary elements and
observed points are not expected to change too much. On the other hand, second-order
information can be helpful in the first iterations of the optimization solver, to avoid
taking too large steps.

7.4 Conclusion
In this manuscript, we presented a registration procedure based on an optimal control
formulation of the registration problem. We not only proposed a structure for the imple-
mentation of a registration method, but also some mathematical insight that might be

7.4. Conclusion 145

of use to understand the behavior of the discretized procedure. Of course, our approach
is far from being mature, and many other choices could have been made, such as a more
clever functional J , a more accurate physical model or more efficient numerical meth-
ods. However, new mathematically sound approaches in augmented surgery might be
derived by adapting tools from the generic optimal control framework. Proposing open
and easily adaptable procedures should help democratize computer-assisted surgery, let-
ting more people around the world benefit from safer care and go back home from the
hospital in good health.

Bibliography

Adams, Robert A. and John J. F. Fournier (2003). Sobolev spaces. Second. Vol. 140. Pure and Ap-
plied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, pp. xiv+305. isbn:
0-12-044143-8.

Allaire, Grégoire (2007). Conception optimale de structures. Vol. 58. Mathématiques & Appli-
cations (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, pp. xii+278. isbn:
978-3-540-36710-9; 3-540-36710-1.

Allard, Jérémie, Stéphane Cotin, François Faure, Pierre-Jean Bensoussan, François Poyer, Chris-
tian Duriez, Hervé Delingette, and Laurent Grisoni (2007). “SOFA - an Open Source Frame-
work for Medical Simulation”. In: MMVR 15 - Medicine Meets Virtual Reality. Vol. 125.
Studies in Health Technology and Informatics. Palm Beach, United States: IOP Press, pp. 13–
18.

Antonsanti, Pierre-Louis, Joan Glaunès, Thomas Benseghir, Vincent Jugnon, and Irène Kalten-
mark (2021). “Partial Matching in the Space of Varifolds”. In: Information Processing in
Medical Imaging. Ed. by Aasa Feragen, Stefan Sommer, Julia Schnabel, and Mads Nielsen.
Cham: Springer International Publishing, pp. 123–135. isbn: 978-3-030-78191-0.

Armijo, Larry (1966). “Minimization of functions having Lipschitz continuous first partial deriva-
tives”. In: Pacific J. Math. 16, pp. 1–3. issn: 0030-8730.

Bajcsy, Ruzena and Stane Kovačič (1989). “Multiresolution elastic matching”. In: Computer
Vision, Graphics, and Image Processing 46.1, pp. 1 –21. issn: 0734-189X. doi: 10.1016/
S0734-189X(89)80014-3.

Ball, John M. (1976). “Convexity conditions and existence theorems in nonlinear elasticity”.
In: Archive for Rational Mechanics and Analysis 63.4, pp. 337–403. issn: 1432-0673. doi:
10.1007/BF00279992.

Beckmann, Norbert, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger (1990). “The R*-
Tree: An Efficient and Robust Access Method for Points and Rectangles”. In: SIGMOD Rec.
19.2, 322–331. issn: 0163-5808. doi: 10.1145/93605.98741.

Beg, M. Faisal, Michael I. Miller, Alain Trouvé, and Laurent Younes (2005). “Computing Large
Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms”. In: International
Journal of Computer Vision 61.2, pp. 139–157. doi: 10.1023/B:VISI.0000043755.93987.
aa.

Bertsekas, Dimitri P. (1976). “On the Goldstein-Levitin-Polyak gradient projection method”. In:
IEEE Trans. Automatic Control AC-21.2, pp. 174–184. issn: 0018-9286. doi: 10.1109/tac.
1976.1101194.

— (1982). “Projected Newton methods for optimization problems with simple constraints”. In:
SIAM J. Control Optim. 20.2, pp. 221–246. issn: 0363-0129. doi: 10.1137/0320018.

Besl, Paul J. and Neil D. McKay (1992). “Method for registration of 3-D shapes”. In: Sensor
Fusion IV: Control Paradigms and Data Structures. Ed. by Paul S. Schenker. Vol. 1611.
International Society for Optics and Photonics. SPIE, pp. 586 –606. doi: 10.1117/12.57955.

https://doi.org/10.1016/S0734-189X(89)80014-3
https://doi.org/10.1016/S0734-189X(89)80014-3
https://doi.org/10.1007/BF00279992
https://doi.org/10.1145/93605.98741
https://doi.org/10.1023/B:VISI.0000043755.93987.aa
https://doi.org/10.1023/B:VISI.0000043755.93987.aa
https://doi.org/10.1109/tac.1976.1101194
https://doi.org/10.1109/tac.1976.1101194
https://doi.org/10.1137/0320018
https://doi.org/10.1117/12.57955

148 Bibliography

Brewer, E. Lee, Logan W. Clements, Jarrod A. Collins, Derek J. Doss, Jon S. Heiselman, Michael
I. Miga, Chris D. Pavas, and Edward H. Wisdom III (2019). “The image-to-physical liver
registration sparse data challenge”. In: Medical Imaging 2019: Image-Guided Procedures,
Robotic Interventions, and Modeling. Ed. by Baowei Fei and Cristian A. Linte. Vol. 10951.
International Society for Optics and Photonics. SPIE, pp. 364 –370. doi: 10.1117/12.
2513952.

Brezis, Haïm (1983). Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise.
[Collection of Applied Mathematics for the Master’s Degree]. Théorie et applications. [Theory
and applications]. Masson, Paris, pp. xiv+234. isbn: 2-225-77198-7.

Broit, Chaim (1981). “Optimal registration of deformed images”. PhD thesis. University of Penn-
sylvania.

Brunet, Jean-Nicolas (2020). “Exploring new numerical methods for the simulation of soft tissue
deformations in surgery assistance”. Theses. Université de Strasbourg.

Brunet, Jean-Nicolas, Vincent Magnoux, Benoît Ozell, and Stéphane Cotin (2019). “Corotated
meshless implicit dynamics for deformable bodies”. In: WSCG 2019 - 27th International Con-
ference on Computer Graphics, Visualization and Computer Vision. Pilsen, Czech Republic:
Západočeská univerzita. doi: 10.24132/CSRN.2019.2901.1.11.

de Buhan, Maya, Charles Dapogny, Pascal Frey, and Chiara Nardoni (2016). “An optimization
method for elastic shape matching”. In: C. R. Math. Acad. Sci. Paris 354.8, pp. 783–787.
issn: 1631-073X. doi: 10.1016/j.crma.2016.05.007.

Byrd, Richard H., Peihuang Lu, Jorge Nocedal, and Ciyou Zhu (1995). “A Limited Memory
Algorithm for Bound Constrained Optimization”. In: SIAM Journal on Scientific Computing
16.5, pp. 1190–1208. doi: 10.1137/0916069.

Christensen, G. E., S. C. Joshi, and M. I. Miller (1997). “Volumetric transformation of brain
anatomy”. In: IEEE Transactions on Medical Imaging 16.6, pp. 864–877. issn: 1558-254X.
doi: 10.1109/42.650882.

Christensen, G. E., R. D. Rabbitt, and M. I. Miller (1996). “Deformable templates using large
deformation kinematics”. In: IEEE Transactions on Image Processing 5.10, pp. 1435–1447.
issn: 1941-0042. doi: 10.1109/83.536892.

Ciarlet, Philippe G. (1988). Mathematical elasticity. Vol. I. Vol. 20. Studies in Mathematics and
its Applications. Three-dimensional elasticity. North-Holland Publishing Co., Amsterdam,
pp. xlii+451. isbn: 0-444-70259-8.

Clements, Logan W., William C. Chapman, Benoit M. Dawant, Robert L. Galloway Jr., and
Michael I. Miga (2008). “Robust surface registration using salient anatomical features for
image-guided liver surgery: Algorithm and validation”. In: Medical Physics 35.6Part1, pp. 2528–
2540. doi: 10.1118/1.2911920.

Collins, Jarrod A., Jared A. Weis, Jon S. Heiselman, Logan W. Clements, Amber L. Simpson,
William R. Jarnagin, and Michael I. Miga (2017). “Improving Registration Robustness for
Image-Guided Liver Surgery in a Novel Human-to-Phantom Data Framework”. In: IEEE
Transactions on Medical Imaging 36.7, pp. 1502–1510. doi: 10.1109/TMI.2017.2668842.

Conn, Andrew R., Nicholas I. M. Gould, and Philippe L. Toint (2000). Trust-region methods.
MPS-SIAM series on optimization. Society for Industrial and Applied Mathematics. isbn:
978-0-89871-460-9. doi: 10.1137/1.9780898719857.

Courtecuisse, H., Z. Jiang, O. Mayeur, J. F. Witz, P. Lecomte-Grosbras, M. Cosson, M. Brieu,
and S. Cotin (2020). “Three-dimensional physics-based registration of pelvic system using
2D dynamic magnetic resonance imaging slices”. In: Strain 56.3, e12339. doi: 10.1111/str.
12339.

D’Agostino, Emiliano, Frederik Maes, Dirk Vandermeulen, and Paul Suetens (2003). “A viscous
fluid model for multimodal non-rigid image registration using mutual information”. In: Med-

https://doi.org/10.1117/12.2513952
https://doi.org/10.1117/12.2513952
https://doi.org/10.24132/CSRN.2019.2901.1.11
https://doi.org/10.1016/j.crma.2016.05.007
https://doi.org/10.1137/0916069
https://doi.org/10.1109/42.650882
https://doi.org/10.1109/83.536892
https://doi.org/10.1118/1.2911920
https://doi.org/10.1109/TMI.2017.2668842
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1111/str.12339
https://doi.org/10.1111/str.12339

Bibliography 149

ical Image Analysis 7.4. Medical Image Computing and Computer Assisted Intervention,
pp. 565 –575. issn: 1361-8415. doi: 10.1016/S1361-8415(03)00039-2.

Dahito, Marie-Ange and Dominique Orban (2019). “The Conjugate Residual Method in Line-
search and Trust-Region Methods”. In: SIAM Journal on Optimization 29.3, pp. 1988–2025.
doi: 10.1137/18M1204255.

Danskin, John M. (1967). The theory of max-min and its application to weapons allocation prob-
lems. Econometrics and Operations Research, Vol. V. Springer-Verlag New York, Inc., New
York, pp. ix+126.

Dapogny, Charles (2013). “Shape optimization, level set methods on unstructured meshes and
mesh evolution”. 2013PA066498. PhD thesis. Paris 6, 1 vol. (402 p.)

Dapogny, Charles and Pascal Frey (2012). “Computation of the signed distance function to a
discrete contour on adapted triangulation”. In: Calcolo 49.3, pp. 193–219. issn: 0008-0624.
doi: 10.1007/s10092-011-0051-z.

Dapogny, Charles, Pascal Frey, Florian Omnès, and Yannick Privat (2018). “Geometrical shape
optimization in fluid mechanics using FreeFem++”. In: Struct. Multidiscip. Optim. 58.6,
pp. 2761–2788. issn: 1615-147X. doi: 10.1007/s00158-018-2023-2.

Davis, Timothy A., Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar (2016). “A survey
of direct methods for sparse linear systems”. In: Acta Numerica 25, 383–566. doi: 10.1017/
S0962492916000076.

Delfour, M. C. and J.-P. Zolésio (2011). Shapes and geometries. Second. Vol. 22. Advances in
Design and Control. Metrics, analysis, differential calculus, and optimization. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, pp. xxiv+622. isbn: 978-0-
898719-36-9. doi: 10.1137/1.9780898719826.

Delingette, Hervé and Nicholas Ayache (2004). “Soft Tissue Modeling for Surgery Simulation”.
In: Computational Models for the Human Body. Vol. 12. Handbook of Numerical Analysis.
Elsevier, pp. 453–550. doi: 10.1016/S1570-8659(03)12005-4.

Doǧan, G., P. Morin, R. H. Nochetto, and M. Verani (2007). “Discrete gradient flows for shape op-
timization and applications”. In: Comput. Methods Appl. Mech. Engrg. 196.37-40, pp. 3898–
3914. issn: 0045-7825. doi: 10.1016/j.cma.2006.10.046.

Droniou, Jérôme (2000). “Solving convection-diffusion equations with mixed, Neumann and
Fourier boundary conditions and measures as data, by a duality method”. In: Adv. Dif-
ferential Equations 5.10-12, pp. 1341–1396. issn: 1079-9389.

Dupuis, Paul, Ulf Grenander, and Michael I. Miller (1998). “Variational problems on flows of
diffeomorphisms for image matching”. In: Quart. Appl. Math. 56.3, pp. 587–600. issn: 0033-
569X. doi: 10.1090/qam/1632326.

Evans, Lawrence C. (2010). Partial differential equations. Second. Vol. 19. Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, pp. xxii+749. isbn: 978-0-
8218-4974-3. doi: 10.1090/gsm/019.

Evans, Lawrence C. and Ronald F. Gariepy (2015). Measure theory and fine properties of func-
tions. Revised. Textbooks in Mathematics. CRC Press, Boca Raton, FL, pp. xiv+299. isbn:
978-1-4822-4238-6.

García R, Yván J., Mario A. López, and Scott T. Leutenegger (1998). “A Greedy Algorithm
for Bulk Loading R-Trees”. In: Proceedings of the 6th ACM International Symposium on
Advances in Geographic Information Systems. GIS ’98. Washington, D.C., USA: Association
for Computing Machinery, 163–164. isbn: 1581131151. doi: 10.1145/288692.288723.

Gee, James C and Ruzena K Bajcsy (1999). “Elastic matching: Continuum mechanical and
probabilistic analysis”. In: Brain warping 2, pp. 183–197.

https://doi.org/10.1016/S1361-8415(03)00039-2
https://doi.org/10.1137/18M1204255
https://doi.org/10.1007/s10092-011-0051-z
https://doi.org/10.1007/s00158-018-2023-2
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1137/1.9780898719826
https://doi.org/10.1016/S1570-8659(03)12005-4
https://doi.org/10.1016/j.cma.2006.10.046
https://doi.org/10.1090/qam/1632326
https://doi.org/10.1090/gsm/019
https://doi.org/10.1145/288692.288723

150 Bibliography

Gelin, J. C. and P. Picart (1988). “Use of quasi-Newton methods for large strain elastic-plastic fi-
nite element computations”. In: Communications in Applied Numerical Methods 4.4, pp. 457–
469. doi: 10.1002/cnm.1630040402.

Gilbarg, David and Neil S. Trudinger (1977). Elliptic partial differential equations of second
order. Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-
New York, pp. x+401. isbn: 3-540-08007-4.

Gray, Henry and Warren H Lewis (1918). Anatomy of the human body. Lea and Febiger, Philadel-
phia, p. 1396.

Grisvard, Pierre (2011). Elliptic problems in nonsmooth domains. Vol. 69. Classics in Applied
Mathematics. Reprint of the 1985 original [MR0775683], With a foreword by Susanne
C. Brenner. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
pp. xx+410. isbn: 978-1-611972-02-3. doi: 10.1137/1.9781611972030.ch1.

Gröger, Konrad (1989). “A W 1,p-estimate for solutions to mixed boundary value problems for
second order elliptic differential equations”. In: Math. Ann. 283.4, pp. 679–687. issn: 0025-
5831. doi: 10.1007/BF01442860.

Gröger, Konrad and Joachim Rehberg (1989). “Resolvent estimates in W−1,p for second order
elliptic differential operators in case of mixed boundary conditions”. In: Math. Ann. 285.1,
pp. 105–113. issn: 0025-5831. doi: 10.1007/BF01442675.

Gross, Christian and Rolf Krause (2009). “On the Convergence of Recursive Trust-Region Meth-
ods for Multiscale Nonlinear Optimization and Applications to Nonlinear Mechanics”. In:
SIAM Journal on Numerical Analysis 47.4, pp. 3044–3069. doi: 10.1137/08071819X.

Guttman, Antonin (1984). “R-Trees: A Dynamic Index Structure for Spatial Searching”. In:
SIGMOD Rec. 14.2, 47–57. issn: 0163-5808. doi: 10.1145/971697.602266.

Haller-Dintelmann, R., C. Meyer, J. Rehberg, and A. Schiela (2009). “Hölder continuity and
optimal control for nonsmooth elliptic problems”. In: Appl. Math. Optim. 60.3, pp. 397–428.
issn: 0095-4616. doi: 10.1007/s00245-009-9077-x.

Haouchine, N., J. Dequidt, I. Peterlík, E. Kerrien, M. Berger, and S. Cotin (2013). “Image-guided
simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery”.
In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 199–
208. doi: 10.1109/ISMAR.2013.6671780.

Haouchine, Nazim, Winnie Kuang, Stephane Cotin, and Michael Yip (2018). “Vision-Based Force
Feedback Estimation for Robot-Assisted Surgery Using Instrument-Constrained Biomechan-
ical Three-Dimensional Maps”. In: IEEE Robotics and Automation Letters 3.3, pp. 2160–
2165. doi: 10.1109/LRA.2018.2810948.

Hecht, F. (2012). “New development in FreeFem++”. In: J. Numer. Math. 20.3-4, pp. 251–265.
issn: 1570-2820.

Heiselman, Jon S., Logan W. Clements, Jarrod A. Collins, Jared A. Weis, Amber L. Simpson,
Sunil K. Geevarghese, T. Peter Kingham, William R. Jarnagin, and Michael I. Miga (2017).
“Characterization and correction of intraoperative soft tissue deformation in image-guided
laparoscopic liver surgery”. In: Journal of Medical Imaging 5.2, pp. 1 –12. doi: 10.1117/1.
JMI.5.2.021203.

Heiselman, Jon S., William R. Jarnagin, and Michael I. Miga (2020). “Intraoperative Correction
of Liver Deformation Using Sparse Surface and Vascular Features via Linearized Iterative
Boundary Reconstruction”. In: IEEE Transactions on Medical Imaging 39.6, pp. 2223–2234.
doi: 10.1109/TMI.2020.2967322.

Henrot, Antoine and Michel Pierre (2005). Variation et optimisation de formes. Vol. 48. Math-
ématiques & Applications (Berlin). Une analyse géométrique. Springer, Berlin, pp. xii+334.
isbn: 978-3-540-26211-4; 3-540-26211-3. doi: 10.1007/3-540-37689-5.

https://doi.org/10.1002/cnm.1630040402
https://doi.org/10.1137/1.9781611972030.ch1
https://doi.org/10.1007/BF01442860
https://doi.org/10.1007/BF01442675
https://doi.org/10.1137/08071819X
https://doi.org/10.1145/971697.602266
https://doi.org/10.1007/s00245-009-9077-x
https://doi.org/10.1109/ISMAR.2013.6671780
https://doi.org/10.1109/LRA.2018.2810948
https://doi.org/10.1117/1.JMI.5.2.021203
https://doi.org/10.1117/1.JMI.5.2.021203
https://doi.org/10.1109/TMI.2020.2967322
https://doi.org/10.1007/3-540-37689-5

Bibliography 151

Herzog, Roland, Christian Meyer, and Gerd Wachsmuth (2011). “Integrability of displacement
and stresses in linear and nonlinear elasticity with mixed boundary conditions”. In: J. Math.
Anal. Appl. 382.2, pp. 802–813. issn: 0022-247X. doi: 10.1016/j.jmaa.2011.04.074.

Hestenes, Magnus R. (1969). “Multiplier and gradient methods”. In: J. Optim. Theory Appl. 4,
pp. 303–320. issn: 0022-3239. doi: 10.1007/BF00927673.

Hestenes, Magnus R and Eduard Stiefel (1952). “Methods of Conjugate Gradients for Solving
Linear Systems”. In: Journal of Research of the National Bureau of Standards 49.6.

James, Doug L. and Dinesh K. Pai (2004). “BD-Tree: Output-Sensitive Collision Detection for
Reduced Deformable Models”. In: ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04. Los
Angeles, California: Association for Computing Machinery, 393–398. isbn: 9781450378239.
doi: 10.1145/1186562.1015735.

Kelley, Carl T (1995). Iterative methods for linear and nonlinear equations. Frontiers in Applied
Mathematics. SIAM, pp. xiii+156. isbn: 978-0-89871-352-7.

Kirchhoff, Gustav Robert (1852). “Über die Gleichungen des Gleichgewichtes eines elastischen
Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile”. In: Sitzungsberichte der
Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften
in Wien IX 9, pp. 762–773.

Kraft, Dieter (1988). A software package for sequential quadratic programming. Tech. rep. DFVLR-
FB 88-28. Köln, Germany: DLR German Aerospace Center – Institute for Flight Mechanics.

Leutenegger, S.T., M.A. Lopez, and J. Edgington (1997). “STR: a simple and efficient algorithm
for R-tree packing”. In: Proceedings 13th International Conference on Data Engineering,
pp. 497–506. doi: 10.1109/ICDE.1997.582015.

Lin, Chih-Jen and Jorge J. Moré (1999). “Newton’s method for large bound-constrained opti-
mization problems”. In: vol. 9. 4. Dedicated to John E. Dennis, Jr., on his 60th birthday,
pp. 1100–1127. doi: 10.1137/S1052623498345075.

Liu, Tiantian, Sofien Bouaziz, and Ladislav Kavan (2017). “Quasi-Newton Methods for Real-
Time Simulation of Hyperelastic Materials”. In: ACM Trans. Graph. 36.3. issn: 0730-0301.
doi: 10.1145/2990496.

Logg, Anders and Garth N. Wells (2010). “DOLFIN: Automated Finite Element Computing”.
In: ACM Trans. Math. Softw. 37.2. issn: 0098-3500. doi: 10.1145/1731022.1731030.

Logg, Anders, Garth N. Wells, and Johan Hake (2012). “DOLFIN: a C++/Python finite element
library”. In: Automated Solution of Differential Equations by the Finite Element Method: The
FEniCS Book. Ed. by Anders Logg, Kent-Andre Mardal, and Garth Wells. Springer Berlin
Heidelberg, pp. 173–225. isbn: 978-3-642-23099-8. doi: 10.1007/978-3-642-23099-8_10.

Marbán, Arturo, Alicia Casals, Josep Fernández, and Josep Amat (2014). “Haptic Feedback in
Surgical Robotics: Still a Challenge”. In: ROBOT2013: First Iberian Robotics Conference:
Advances in Robotics, Vol. 1. Ed. by Manuel A. Armada, Alberto Sanfeliu, and Manuel
Ferre. Cham: Springer International Publishing, pp. 245–253. isbn: 978-3-319-03413-3. doi:
10.1007/978-3-319-03413-3_18.

Marchesseau, Stéphanie, Simon Chatelin, and Hervé Delingette (2017). “Nonlinear Biomechanical
Model of the Liver”. In: Biomechanics of Living Organs. Ed. by Yohan Payan and Jacques
Ohayon. Vol. 1. Translational Epigenetics. Oxford: Academic Press, pp. 243–265. doi: 10.
1016/B978-0-12-804009-6.00011-0.

Mendizabal, Andrea, Eleonora Tagliabue, Tristan Hoellinger, Jean-Nicolas Brunet, Sergei Niko-
laev, and Stéphane Cotin (2020). “Data-driven simulation for augmented surgery”. In: De-
velopments and Novel Approaches in Biomechanics and Metamaterials. Ed. by Bilen Emek
Abali and Ivan Giorgio. Vol. 132, pp. 71–96. doi: 10.1007/978-3-030-50464-9.

Mestdagh, Guillaume and Stéphane Cotin (2022). “An Optimal Control Problem for Elastic
Registration and Force Estimation in Augmented Surgery”. In: Medical Image Computing and

https://doi.org/10.1016/j.jmaa.2011.04.074
https://doi.org/10.1007/BF00927673
https://doi.org/10.1145/1186562.1015735
https://doi.org/10.1109/ICDE.1997.582015
https://doi.org/10.1137/S1052623498345075
https://doi.org/10.1145/2990496
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1007/978-3-642-23099-8_10
https://doi.org/10.1007/978-3-319-03413-3_18
https://doi.org/10.1016/B978-0-12-804009-6.00011-0
https://doi.org/10.1016/B978-0-12-804009-6.00011-0
https://doi.org/10.1007/978-3-030-50464-9

152 Bibliography

Computer Assisted Intervention – MICCAI 2022. Ed. by Linwei Wang, Qi Dou, P. Thomas
Fletcher, Stefanie Speidel, and Shuo Li. Cham: Springer Nature Switzerland, pp. 74–83. isbn:
978-3-031-16449-1. doi: 10.1007/978-3-031-16449-1_8.

Miller, Karol, Grand Joldes, Dane Lance, and Adam Wittek (2007). “Total Lagrangian explicit
dynamics finite element algorithm for computing soft tissue deformation”. In: Communica-
tions in Numerical Methods in Engineering 23.2, pp. 121–134. doi: 10.1002/cnm.887.

Morch, Hélène, Sibo Yuan, Laurent Duchêne, Ridha Harzallah, and Anne Marie Habraken (2022).
“A review of higher order Newton type methods and the effect of numerical damping for the
solution of an advanced coupled Lemaitre damage model”. In: Finite Elements in Analysis
and Design 209, p. 103801. issn: 0168-874X. doi: 10.1016/j.finel.2022.103801.

Morin, Fanny, Hadrien Courtecuisse, Ingerid Reinertsen, Florian Le Lann, Olivier Palombi,
Yohan Payan, and Matthieu Chabanas (2017). “Brain-shift compensation using intraopera-
tive ultrasound and constraint-based biomechanical simulation”. In: Medical image analysis
40, pp. 133–153. doi: 10.1016/j.media.2017.06.003.

Murat, François and Jacques Simon (1976). Sur le contrôle par un domaine géométrique. Tech.
rep. RR-76015. Laboratoire d’Analyse Numérique.

Nardoni, Chiara (2017). “Mesh deformation strategies in shape optimization. Application to
forensic facial reconstruction”. Theses. Université Pierre et Marie Curie - Paris VI.

Nazari, Ali A., Farrokh Janabi-Sharifi, and Kourosh Zareinia (2021). “Image-Based Force Esti-
mation in Medical Applications: A Review”. In: IEEE Sensors Journal 21.7, pp. 8805–8830.
doi: 10.1109/JSEN.2021.3052755.

Nesme, Matthieu, Yohan Payan, and François Faure (2005). “Efficient, Physically Plausible Finite
Elements”. In: Eurographics. Short papers. Dublin, Ireland.

Nesterov, Yu. E. (1983). “A method for solving the convex programming problem with conver-
gence rate O(1/k2)”. In: Dokl. Akad. Nauk SSSR 269.3, pp. 543–547. issn: 0002-3264.

Niehues, S. M., J. K. Unger, M. Malinowski, J. Neymeyer, B. Hamm, and M. Stockmann (2010).
“Liver volume measurement: reason of the difference between in vivo CT-volumetry and
intraoperative ex vivo determination and how to cope it”. In: European Journal of Medical
Research 15.8, p. 345. issn: 2047-783X. doi: 10.1186/2047-783X-15-8-345.

Nikolaev, Sergei and Stéphane Cotin (2020). “Estimation of boundary conditions for patient-
specific liver simulation during augmented surgery”. In: International Journal of Computer
Assisted Radiology and Surgery 15.7, pp. 1107–1115. doi: 10.1007/s11548-020-02188-x.

Nocedal, Jorge and Stephen J. Wright (2006). Numerical optimization. Second. Springer Series
in Operations Research and Financial Engineering. Springer, New York, pp. xxii+664. isbn:
978-0387-30303-1; 0-387-30303-0.

Odot, Alban, Ryadh Haferssas, and Stephane Cotin (2022). “DeepPhysics: A physics aware deep
learning framework for real-time simulation”. In: International Journal for Numerical Meth-
ods in Engineering 123.10, pp. 2381–2398. doi: https://doi.org/10.1002/nme.6943.

Oudry, Jennifer, Ted Lynch, Jonathan Vappou, Laurent Sandrin, and Véronique Miette (2014).
“Comparison of four different techniques to evaluate the elastic properties of phantom in
elastography: is there a gold standard?” In: Physics in Medicine and Biology 59.19, pp. 5775–
5793. doi: 10.1088/0031-9155/59/19/5775.

Ouyang, Yuyuan, Yunmei Chen, Guanghui Lan, and Eduardo Pasiliao Jr. (2015). “An accelerated
linearized alternating direction method of multipliers”. In: SIAM J. Imaging Sci. 8.1, pp. 644–
681. doi: 10.1137/14095697X.

Ovsjanikov, Maks, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas
(2012). “Functional Maps: A Flexible Representation of Maps between Shapes”. In: ACM
Trans. Graph. 31.4. issn: 0730-0301. doi: 10.1145/2185520.2185526.

https://doi.org/10.1007/978-3-031-16449-1_8
https://doi.org/10.1002/cnm.887
https://doi.org/10.1016/j.finel.2022.103801
https://doi.org/10.1016/j.media.2017.06.003
https://doi.org/10.1109/JSEN.2021.3052755
https://doi.org/10.1186/2047-783X-15-8-345
https://doi.org/10.1007/s11548-020-02188-x
https://doi.org/https://doi.org/10.1002/nme.6943
https://doi.org/10.1088/0031-9155/59/19/5775
https://doi.org/10.1137/14095697X
https://doi.org/10.1145/2185520.2185526

Bibliography 153

Özgür, Erol, Bongjin Koo, Bertrand Le Roy, Emmanuel Buc, and Adrien Bartoli (2018). “Pre-
operative liver registration for augmented monocular laparoscopy using backward–forward
biomechanical simulation”. In: International Journal of Computer Assisted Radiology and
Surgery 13.10, pp. 1629–1640. issn: 1861-6429. doi: 10.1007/s11548-018-1842-3.

Ozkan, Ece and Orcun Goksel (2018). “Compliance boundary conditions for patient-specific de-
formation simulation using the finite element method”. In: Biomedical Physics & Engineering
Express 4.2, p. 025003. doi: 10.1088/2057-1976/aa918d.

Peterlík, Igor, Hadrien Courtecuisse, Christian Duriez, and Stéphane Cotin (2014). “Model-Based
Identification of Anatomical Boundary Conditions in Living Tissues”. In: IPCAI 2014 - 5th
International Conference on Information Processing in Computer Assisted Interventions.
Fukuoka, Japan. doi: 10.1007/978-3-319-07521-1_21.

Peterlík, Igor, Hadrien Courtecuisse, Robert Rohling, Purang Abolmaesumi, Christopher Nguan,
Stéphane Cotin, and Septimiu Salcudean (2018). “Fast elastic registration of soft tissues
under large deformations”. In: Medical Image Analysis 45, pp. 24–40. issn: 1361-8415. doi:
10.1016/j.media.2017.12.006.

Peterlík, Igor, Christian Duriez, and Stéphane Cotin (2012). “Modeling and Real-Time Simula-
tion of a Vascularized Liver Tissue”. In: Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2012. Ed. by Nicholas Ayache, Hervé Delingette, Polina Golland,
and Kensaku Mori. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 50–57. isbn: 978-3-
642-33415-3. doi: 10.1007/978-3-642-33415-3_7.

Peterlík, Igor, Nazim Haouchine, Lukáš Ručka, and Stéphane Cotin (2017). “Image-Driven
Stochastic Identification of Boundary Conditions for Predictive Simulation”. In: Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2017. Ed. by Maxime
Descoteaux, Lena Maier-Hein, Alfred Franz, Pierre Jannin, D. Louis Collins, and Simon
Duchesne. Cham: Springer International Publishing, pp. 548–556. isbn: 978-3-319-66185-8.
doi: 10.1007/978-3-319-66185-8_62.

Plantefève, Rosalie, Igor Peterlík, Nazim Haouchine, and Stéphane Cotin (2016). “Patient-Specific
Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery”. In: An-
nals of Biomedical Engineering 44.1, pp. 139–153. issn: 1573-9686. doi: 10.1007/s10439-
015-1419-z.

Prasad, Sushil K., Michael McDermott, Xi He, and Satish Puri (2015). “GPU-based Parallel
R-tree Construction and Querying”. In: 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, pp. 618–627. doi: 10.1109/IPDPSW.2015.127.

Rabbitt, Richard D., Jeffrey A. Weiss, Gary E. Christensen, and Michael I. Miller (1995). “Map-
ping of hyperelastic deformable templates using the finite element method”. In: Vision Ge-
ometry IV. Ed. by Robert A. Melter, Angela Y. Wu, Fred L. Bookstein, and William D. K.
Green. Vol. 2573. International Society for Optics and Photonics. SPIE, pp. 252 –265. doi:
10.1117/12.216419.

Raoult, Annie (1986). “Non-polyconvexity of the stored energy function of a Saint Venant-
Kirchhoff material”. eng. In: Aplikace matematiky 31.6, pp. 417–419.

Rivlin, R. S. and Eric Keightley Rideal (1948). “Large elastic deformations of isotropic materials
IV. further developments of the general theory”. In: Philosophical Transactions of the Royal
Society of London. Series A, Mathematical and Physical Sciences 241.835, pp. 379–397. doi:
10.1098/rsta.1948.0024.

Rockafellar, R. Tyrrell (1970). Convex Analysis. Princeton University Press. isbn: 9780691015866.
Rucker, D. Caleb, Yifei Wu, Logan W. Clements, Janet E. Ondrake, Thomas S. Pheiffer, Amber

L. Simpson, William R. Jarnagin, and Michael I. Miga (2014). “A Mechanics-Based Non-
rigid Registration Method for Liver Surgery Using Sparse Intraoperative Data”. In: IEEE
Transactions on Medical Imaging 33.1, pp. 147–158. doi: 10.1109/TMI.2013.2283016.

https://doi.org/10.1007/s11548-018-1842-3
https://doi.org/10.1088/2057-1976/aa918d
https://doi.org/10.1007/978-3-319-07521-1_21
https://doi.org/10.1016/j.media.2017.12.006
https://doi.org/10.1007/978-3-642-33415-3_7
https://doi.org/10.1007/978-3-319-66185-8_62
https://doi.org/10.1007/s10439-015-1419-z
https://doi.org/10.1007/s10439-015-1419-z
https://doi.org/10.1109/IPDPSW.2015.127
https://doi.org/10.1117/12.216419
https://doi.org/10.1098/rsta.1948.0024
https://doi.org/10.1109/TMI.2013.2283016

154 Bibliography

Saad, Youcef and Martin H. Schultz (1986). “GMRES: A Generalized Minimal Residual Al-
gorithm for Solving Nonsymmetric Linear Systems”. In: SIAM Journal on Scientific and
Statistical Computing 7.3, pp. 856–869. doi: 10.1137/0907058.

Saad, Yousef (2003). Iterative methods for sparse linear systems. SIAM, pp. xvii+520. isbn:
978-0-89871-534-7.

Sahillioğlu, Yusuf (2020). “Recent advances in shape correspondence”. In: The Visual Computer
36.8, pp. 1705–1721. issn: 1432-2315. doi: 10.1007/s00371-019-01760-0.

Shi, Peter and Steve Wright (1994). “Higher integrability of the gradient in linear elasticity”. In:
Math. Ann. 299.3, pp. 435–448. issn: 0025-5831. doi: 10.1007/BF01459793.

Smith, Breannan, Fernando De Goes, and Theodore Kim (2018). “Stable Neo-Hookean Flesh
Simulation”. In: ACM Trans. Graph. 37.2. issn: 0730-0301. doi: 10.1145/3180491.

Sokolowski, Jan and Jean-Paul Zolésio (1992). Introduction to shape optimization. Vol. 16. Springer
Series in Computational Mathematics. Shape sensitivity analysis. Springer-Verlag, Berlin,
pp. ii+250. isbn: 3-540-54177-2. doi: 10.1007/978-3-642-58106-9.

Sotiras, Aristeidis, Christos Davatzikos, and Nikos Paragios (2013). “Deformable medical image
registration: A survey”. In: IEEE transactions on medical imaging 32.7, p. 1153. issn: 0278-
0062. doi: 10.1109/tmi.2013.2265603.

St Venant, Adhémar Barré de (1844). “Sur les pressions qui se développent à l’intérieur des corps
solides lorsque les déplacements de leurs points, sans altérer l’élasticité, ne peuvent cependant
pas être considérés comme très petits”. In: Bull. Soc. Philomath. 5, pp. 26–28.

Su, Weijie, Stephen Boyd, and Emmanuel J. Candès (2016). “A differential equation for modeling
Nesterov’s accelerated gradient method: theory and insights”. In: J. Mach. Learn. Res. 17,
Paper No. 153, 43. issn: 1532-4435.

Suwelack, Stefan, Sebastian Röhl, Sebastian Bodenstedt, Daniel Reichard, Rüdiger Dillmann,
Thiago dos Santos, Lena Maier-Hein, Martin Wagner, Josephine Wünscher, Hannes Ken-
ngott, Beat P. Müller, and Stefanie Speidel (2014). “Physics-based shape matching for intra-
operative image guidance”. In: Medical Physics 41.11, p. 111901. doi: 10.1118/1.4896021.

Wächter, Andreas and Lorenz T. Biegler (2006). “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming”. In: Mathematical Pro-
gramming 106.1, pp. 25–57. issn: 1436-4646. doi: 10.1007/s10107-004-0559-y.

Wang, Yongmei and Lawrence H. Staib (2000). “Physical model-based non-rigid registration
incorporating statistical shape information”. In: Medical Image Analysis 4.1, pp. 7 –20. issn:
1361-8415. doi: 10.1016/S1361-8415(00)00004-9.

Wex, Cora, Susann Arndt, Anke Stoll, Christiane Bruns, and Yuliya Kupriyanova (2015). “Isotropic
incompressible hyperelastic models for modelling the mechanical behaviour of biological tis-
sues: a review”. In: Biomedical Engineering / Biomedizinische Technik 60.6, pp. 577–592.
doi: doi:10.1515/bmt-2014-0146.

Xie, Hujin, Jialu Song, Yongmin Zhong, Chengfan Gu, and Kup-Sze Choi (2022). “Constrained
finite element method for runtime modeling of soft tissue deformation”. In: Applied Mathe-
matical Modelling 109, pp. 599–612. issn: 0307-904X. doi: 10.1016/j.apm.2022.05.020.

Youett, Jonathan, Oliver Sander, and Ralf Kornhuber (2019). “A Globally Convergent Filter-
Trust-Region Method for Large Deformation Contact Problems”. In: SIAM Journal on Sci-
entific Computing 41.1, B114–B138. doi: 10.1137/17M1142338.

Yusa, Yasunori, Shota Miyauchi, and Hiroshi Okada (2021). “Performance investigation of quasi-
Newton-based parallel nonlinear FEM for large-deformation elastic-plastic analysis over 100
thousand degrees of freedom”. In: Mechanical Engineering Journal 8.3, pp. 21–00053–21–
00053. doi: 10.1299/mej.21-00053.

https://doi.org/10.1137/0907058
https://doi.org/10.1007/s00371-019-01760-0
https://doi.org/10.1007/BF01459793
https://doi.org/10.1145/3180491
https://doi.org/10.1007/978-3-642-58106-9
https://doi.org/10.1109/tmi.2013.2265603
https://doi.org/10.1118/1.4896021
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1016/S1361-8415(00)00004-9
https://doi.org/doi:10.1515/bmt-2014-0146
https://doi.org/10.1016/j.apm.2022.05.020
https://doi.org/10.1137/17M1142338
https://doi.org/10.1299/mej.21-00053

	Introduction en français
	Overview of the manuscript
	State of the art and problem modelling
	Problem overview
	Elastic modelling of the liver
	A review of some registration methods
	Our contribution: an optimal control formulation

	A few tools around shapes and mixed boundary conditions
	Shapes and shape functionals
	Orthogonal projection and signed distance function
	Continuity and mixed boundary conditions

	Existence of solutions and optimality conditions
	Properties of the functional
	Existence of solutions
	Optimality conditions

	An adjoint method to solve the registration problem
	Finite element discretization of the problem
	Adjoint method
	Discretized shape functional
	Newton methods for static elasticity problem
	Optimization procedure

	Numerical results
	Preliminary investigations featuring the toy problems
	Sparse Data Challenge dataset
	Local force estimation

	Future developments and conclusion
	Avoid unnecessary difficulties by dropping Dirichlet boundary conditions
	Jump to lightspeed with neural networks
	Improve robustness with primal-dual PDE management
	Conclusion

