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1.1 The geometric Satake theorem

1.1.1 Motivation

A classical problem in representation theory is the study of a reductive groupG (e.g. GLn, SLn, PGLn)
and its Langlands dual Ǧ (e.g. ǦLn = GLn, ŠLn = PGLn). A celebrated result in the study of Langlands
duality is the Satake theorem, which establishes an isomorphism between the C-algebra of compactly
supportedG(Zp)-biinvariant functions onG(Qp), called the Hecke algebra ofG, and the (complexified)
Grothendieck ring of finite dimensional representations of Ǧ. Ginzburg [Gin95] and later Mirkovic and
Vilonen [MV07] provided a “sheaf theoretic” analogue (actually a categorification) of this theorem, called
the Geometric Satake Equivalence: here G is a complex reductive group, and the statement has the
form of an equivalence of tensor categories between the derived category of equivariant perverse sheaves
PervGO

(GrG) and the category of finite dimensional representations of Ǧ (see Section 1.1.2 below). The
key new object here is the affine Grassmannian GrG, an infinite dimensional algebro-geometric object
with the property that GrG(C) = G(C((t)))/G(CJtK).

The importance of results such as Geometric Satake, Derived Satake and their variants is related to the
more general (and partly conjectural) Geometric Langlands Duality, which was introduced by Beilinson
and Drinfeld in analogy to the celebrated arithmetic Langlands conjecture (see e.g. [BD05]). One can say
that if the Geometric Langlands Duality deals with algebraic and geometric data related to a reductive
group and a smooth complex curveX , the Geometric Satake Equivalence is a “specialization” which looks
at the same data near a chosen closed point inX ; the affine Grassmannian GrG itself, for example, is related
to the local geometry of smooth curves, see Proposition 1.1.5 below. The use of techniques from homotopy
theory and derived algebraic geometry in this field has provided many powerful results, and the current
and most convincing formulations of the Geometric Langlands Duality are themselves derived in nature.
One of the currently most accepted statements for a Geometric Langlands Conjecture is in [AG15].

Intuitively, the statement should satisfy the following requirements.

Conjecture 1.1.1. LetG be a reductive complex group, andX a smooth projective complex curve. Then the
Geometric Langlands Duality should at least:

• establish an equivalence between some category of sheaves over the stack BunG(X) ofG-torsors overX
and a category of sheaves over the stack of Ǧ-local systems onX .

• agree with the Geometric Satake Equivalence (see below) when specialized “at” any closed point ofX .



In order to explain Conjecture 1.1.1 we now present a short overview of the Geometric Satake Equiva-
lence. The expert reader can skip directly to Section 1.3. We refer the reader seeking for a detailed explanation
on this matter to the excellent notes [Zhu16], covering all of the next subsection and much more, including
background, motivations and further developments.

1.1.2 Statement of the Geometric Satake Theorem

Theorem 1.1.2 (Geometric Satake Equivalence). Fix a reductive algebraic group G over C, and a com-
mutative ring k for which the left-hand-side of the following formula is defined: for example, k could be
Qℓ,Zℓ,Z/ℓnZ,Fℓ. There exists a symmetric monoidal structure ⋆ on PervGO

(GrG), called convolution,
and an equivalence of symmetric monoidal abelian categories

(PervGO
(GrG, k), ⋆) ≃ (Repfin(Ǧ, k),⊗).

Let us explain the meaning of this statement. Here Ǧ is the Langlands dual ofG, obtained by dualising
the root datum of the original groupG, and the right-hand-side is the abelian category of finite-dimensional
R-representations of Ǧ, equipped with a tensor (i.e. symmetric monoidal) structure given by the tensor
product of representations.
In order to define the left hand side, we need to introduce some further definitions: byGO we mean the rep-
resentable functor C-algebras→ Set, R 7→ Hom(RJtK, G) (also denoted byG(CJtK)), byGK we mean
the ind-representable functor C-algebras → Set, R 7→ Hom(R((t)), G) (also denoted by G(C((t)))),
and by GrG we mean the affine Grassmannian, that is the stack quotient GrG = G(C((t)))/G(CJtK).
Ind-representability ofGK (and of Gr by consequence) comes from the fact that there is a natural filtration
in finite-dimensional projective schemes Gr≤N , N ≥ 0, induced by [Zhu16, Theorem 1.1.3]. We will call
this filtration the lattice filtration.

Remark 1.1.3. There is a natural action of GO on GrG by left multiplication, whose orbits define an
algebraic stratification of GrG over the poset X•(T )+. When viewed from the point of view of the
complex-analytic topology, this stratification satisfies the so-called Whitney conditions (for a proof, see
[Mat]). This allows to define the categoryPervGO

(GrG, k), namely the abelian category ofGO-equivariant
perverse sheaves on GrG with values in k-modules. This category is defined as

colimN PervGO
(Gr≥N , k)

in the sense of [Zhu16, 5.1 and A.1.4].

The ind-scheme GrG is related to the theory of curves in the following sense: if X is a smooth
projective complex curve, the formal neighborhood X̂x at a given closed point x ofX is given by the map



ϕx : SpecCJtK → X . The inclusion CJtK ⊂ C((t)) induces a map SpecC((t)) → SpecCJtK ϕx−→ X

which is a model for the punctured formal neighbourhood X̊x of x.

Definition 1.1.4. Let BunG be the moduli stack of principalG-bundles. If a schemeZ over C is given,
we define the relative version

BunZG : AlgC → Grpd

R 7→ {principalG-bundles overX × SpecR, flat over SpecR}.

In the language of mapping stacks, we can write

BunZG ≃MapStacks(Z,BunG).

Proposition 1.1.5. For any closed point x of a smooth projective complex curve X , the functor GrG is
equivalent to the following:

Grloc
G : R→ {F ∈ Vectn(X̂x × SpecR), α : F|X̊x×SpecR

∼−→ TGR|X̊x×SpecR} (1.1.1)

where TGR is the trivial G-torsor on X̂x × SpecR. In other words, GrG is equivalent to the fiber at the
trivial bundle of the functor BunX̂x

G → BunX̊x
G .

Proof. The proof is explained for instance in [Zhu16, Proposition 1.3.6].

We will need the following version of the affine Grassmannian as well.

Construction 1.1.6. Define Grglob
G as the fiber of the restriction map BunXG → BunX\{x}

G , i.e. as the
stack

R→ {F, α : F|(X\{x})×SpecR
∼−→ TGR|(X\{x})×SpecR}.

Indeed, in the diagram

Grglob
G BunXG BunX̂x

G

{TGX\{x}} BunX\{x}
G Bun

˚̂
Xx
G

the right-hand square is cartesian by the so-called Formal Gluing Theorem ([HPV16]), extending the
theorem of Beauville and Laszlo [BL95]. Since the left-hand square is cartesian by definition, the outer

square is cartesian. Therefore, Grglob
G is isomorphic to the fiber of the restriction map BunX̂x

G → Bun
˚̂
Xx
G ,

which is exactly Grloc
G . For more details, see [Zhu16, Theorem 1.4.2].



1.1.3 Convolution product of equivariant perverse sheaves

Now we explain the tensor structure on both sides. The category Rep(Ǧ, k) is equipped with the standard
tensor product of representations; we define now the tensor structure given by convolution product
on PervGO

(GrG). A more detailed account is given in [Zhu16, Section 1, Section 5.1, 5.4]. Consider the
diagram

GK × GrG GK ×GO GrG

GrG × GrG GrG
p

q

m
(1.1.2)

whereGK ×GO GrG is the stack quotient of the productGK × GrG with respect to the “anti-diagonal”
left action of GO defined by γ · (g, [h]) = (gγ−1, [γh]). The map p is the projection to the quotient
on the first factor and the identity on the second one, the map q is the projection to the quotient by the
“anti-diagonal” action ofGO, and the mapm is the multiplication map (g, [h]) 7→ [gh]. It is important
to remark that this construction, like everything else in this section, does not depend on the chosen
x ∈ X(C), since the formal neighbourhoods of closed points in a smooth projective complex curve are all
(noncanonically) isomorphic.
Note also that the left multiplication action ofGO onGK and on GrG induces a left action ofGO ×GO

on GrG × GrG. It also induces an action ofGO onGK × GrG given by (left multiplication, id) which
canonically projects to an action of GO on GK ×GO GrG. Note that p, q and m are equivariant with
respect to these actions.

Now ifA1,A2 are twoGO-equivariant perverse sheaves on GrG, one can define a convolution product

A1 ⋆A2 = m∗Ã (1.1.3)

where m∗ is the derived direct image functor, and Ã is any perverse sheaf on GK ×GO GrG which is
equivariant with respect to the left action of GO and such that q∗Ã = p∗(A1 ⊠ A2). (Of course, the
tensor product must be understood as a derived tensor product in the derived category.) Note that such
an Ã exists because q is the projection to the quotient and A2 isGO-equivariant.
This is the tensor structure that we are considering on PervGO

(GrG).

Remark 1.1.7. Note thatm∗ carries perverse sheaves to perverse sheaves: indeed, it can be proven thatm
is ind-proper, i.e. it can be represented by a filtered colimit of proper maps of schemes compatibly with the
lattice filtration. By [KW01, Lemma III.7.5], and the definition of PervGO

(GrG, k) as a direct limit, this
ensures thatm∗ carries perverse sheaves to perverse sheaves.



Remark 1.1.8. Note that the convolution product can be described as follows. Consider the diagram of
stacks

(GO ×GO)\(GK × Gr) GO\(GK×̃Gr)

GO\Gr×GO\Gr GO\Gr
p

∼

m

where all the actions are induced by the left multiplication action ofGO onGK. Then:

• the horizontal map is an equivalence;

• aGO-equivariant perverse sheaf on Gr is the same thing as a perverse sheaf onGO\Gr;

• the convolution product is equivalently described (up to shifts and perverse truncations) by

A1 ⋆A2 = m̄∗(p̄∗(A1 ⊠A2)).

Observations similar to Construction 1.1.6 prove the following:

Proposition 1.1.9. We have the following equivalences of schemes or ind-schemes:

• GO ≃ Aut
X̂x

(TG)

• GK(R) ≃ {F ∈ BunG(X × SpecR), α : F|(X\{x})×SpecR ≃
TG|(X\{x})×SpecR, µ : F|

X̂x×SpecR ≃ TG|X̂x
× SpecR}

• (GK × GrG)(R) ≃ {F, α : F|(X\{x})×SpecR ≃ TG|(X\{x})×SpecR, µ : F|
X̂x×SpecR ≃

TG|X̂x×SpecR,G, β : F|(X\{x})×SpecR ≃ TG|(X\{x})×SpecR}

• (GK×GOGrG)(R) ≃ {F, α : F|(X\{x})×SpecR ≃ TG|(X\{x})×SpecR,G, η : F|(X\{x})×SpecR ≃
G(X\{x})×SpecR}.

Let us finally explain the meaning of Conjecture 1.1.1. Thanks to Proposition 1.1.5 and Construc-
tion 1.1.6, there is a way to interpret PervGO

(GrG) as the “specialization at any point of x” of the
“BunG(X)” side of the Geometric Langlands Conjecture, and Rep(Ǧ) as the specialization of the “local
systems” side. In this sense, one wants the Geometric Langlands Conjecture to agree with the Geometric
Satake Equivalence.



1.2 The spherical Hecke category

1.2.1 Equivariant constructible sheaves

We now review the notion of equivariant constructible sheaves on the affine Grassmannian. Recall that
the affine Grassmannian admits a stratification in Schubert cells. Let k be a finite ring. We can consider the
∞-category of sheaves with coefficients in k which are constructible with respect to that stratification. We
denote this category by Cons(Gr,S ; k). Here we are not assuming any finite-dimensionality constraint
on the stalks nor on the cohomology of our sheaves. We denote byConsfd(Gr,S ; k) the small subcategory
of Cons(Gr,S ; k) spanned by constructible sheaves with finite stalks. The∞-category Cons(Gr,S ; k)
admits a t-structure whose heart is the category of perverse sheaves which are constructible with respect
to S . We also consider the category ConsGO

(Gr,S ; k) of GO-equivariant constructible sheaves with
respect to S , defined as

lim
(
. . . Cons(GO × Gr,S ; k) Cons(Gr,S ; k)

)
, (1.2.1)

where the stratification onGO×· · ·×. . . GO×Gr is trivial on the first factors and S on the last one. Note
that there exists a notion of category of equivariant constructible sheaves with respect to some stratification
(instead of a fixed one, like S in our case). In full generality, let us fix an algebraic groupH acting on a
schemeX defined over a fieldK , and let us denote by S the orbit stratification onX . We have a pullback
square of triangulated (or dg, or stable∞-1) categories (full faithfulness of the vertical arrows comes from
the fact that the transition maps in the colimits are fully faithful).

ConsH(X,S ; k) Cons(X,S ; k)

Dc,H(X; k) Dc(X; k).

(1.2.2)

where

Dc(X; k) = colimS stratification ofX Cons(X,S ; k)

and

Dc,H(X; k) = lim
(
. . . Dc(H ×X; k) Dc(X; k)

)
.

1In this thesis, we adopt the perspective of ∞-categories, which is systematically exposed in [Lur09]. Both dg-categories and
∞-categories are ways to encode the idea of “categories with a notion of homotopy and homotopy equivalence” in a way that is
particularly useful to deal with derived categories and homotopy theory. One of the simplest formulations of this concept is the
notion of categories enriched in topological spaces or simplicial sets.



Now, the horizontal arrows in (1.2.2) are not equivalences, although they are while restricted to the abelian
subcategories of perverse sheaves. Indeed, the forgetful functor

PervGO
(Gr,S ; k)→ Perv(Gr,S ; k)

is an equivalence (see for example [BR18, Section 4.4]), but

ConsGO
(Gr,S ; k)→ Cons(Gr,S ; k)

is not: its essential image only generates the target as a triangulated category ([Ric]).
On the contrary, the left vertical arrow of (1.2.2) is an equivalence. Indeed, the functor is fully faithful

because the transition maps in the diagram of which we take the colimit are, and essentially surjective by
the following argument. First of all, we reduce to the finite-dimensional terms of the filtration {GrN}N∈N

(which can be done by the very definition of category of constructible sheaves on an infinite-dimensional
variety). Then we apply the following lemma:

Lemma 1.2.1. Let H be an group scheme acting on a finite-dimensional scheme Y , and suppose that the
orbits form a stratification S of Y . Then the two categories Dc,H(Y ) and ConsH(Y,S ) are equivalent.

Proof. Let us consider an equivariant constructible sheaf F (with respect to some stratification) and the
maximal open subsetU of Y where the sheaf is locally constant: this is nonempty since we know that F is
constructible with respect to some stratification. ThenU isH -stable by equivariancy of F and maximality
ofU , and thus its complementary is, and we can apply Noetherian induction.

Remark 1.2.2. Let Gran
G (resp. Gan

O ) be the analytic ind-variety (resp. analytic group) corresponding
to GrG (resp GO). There is an equivalence between the (triangulated, or dg/∞-) category of algebraic
GO-equivariant constructible sheaves over the affine Grassmannian, and that of analytic Gan

O -equivariant
constructible sheaves over Gran

G . Indeed, by [BGH20, Proposition 12.6.4] (in turn building on [Art72,
Théorème XVI. 4.1]), there is an equivalence of categories

Dalg
c (GrG) ≃ Dan

c (Gran
G ),

and the construction which adds the equivariant structure is the same on both sides (the analytification
functor commutes with colimits and finite limits).

1.2.2 Derived Satake Theorem and the E3-monoidal structure

The Geometric Langlands Conjecture is currently formulated as a “derived” statement (see [AG15].
Bezrukavnikov and Finkelberg [BF07] have proven the so-called Derived Satake Theorem. There, the



abelian category PervGO
(GrG; k) is replaced by Sphloc.c.(G) (the small spherical Hecke category), which is

a higher category admitting the following presentations:

• as the dg- or∞-category Consfd
GO

(GrG; k) ofGO-equivariant constructible sheaves on GrG with
finite-dimensional stalks;

• as the dg- or ∞-category D-modGO
(GrG; k) GO-equivariant D-modules on GrG with finite-

dimensional stalks.

Theorem 1.2.3 (Derived Satake Theorem, [BF07, Theorem 5]). LetG be a reductive group over a field k of
characteristic zero. There is an equivalence

Consfd
GO

(GrG, k) ≃ Coh(Spec Sym(ǧ∗[1]))Ǧ.

The category PervGO
(GrG, k) is the heart of a t-structure on Sphloc.c(G), and the Geometric Satake

Theorem is indeed recovered from the Derived Satake Theorem by passing to the heart. The same diagram as
in (1.1.2) provides the formula for the convolution product of constructible sheaves, but the commutativity
of the product is lost. However, in [Noc20] we recovered techniques similar to the ones that provide the
commutativity of ⋆ in the perverse case, in order to prove a subtler result.

Theorem 1.2.4 ([Noc20]). Let G be a reductive group over C and k be a finite field of coefficients. The
∞-category Sphloc.c(G, k) admits an E3-monoidal structure in Cat×

∞, extending the symmetric monoidal
convolution product of perverse sheaves.

Theorem 1.2.5. The∞-category Sphloc.c(G) is equivalent, as an E3-∞-category, to the E2-center of the
derived∞-category of finite-dimensional representations

DRepfd(Ǧ, k).

Both theorems were originally stated by Gaitsgory and Lurie in unpublished work. The second one
follows essentially from the Derived Satake Theorem and work of Ben-Zvi, Francis, Nadler and Preygel
[BFN10],[BNP17], and it implies the first one. In Chapter 2, we prove Theorem 1.2.4 independently,
building the sought E3-monoidal structure in an intrinsic way. This is in the same spirit of the Tannakian
reconstruction explained above for the case of perverse sheaves, where the existence of a symmetric monoidal
structure on the category is a part of the initial datum, and only a posteriori it is interpreted as the natural
tensor product in a category of representations. To be precise, we do not work exactly with the usual small
spherical category, but with a big version which is presentable Theorem 2.3.6, and then we deduce the
sought result as a corollary Corollary 2.3.7.



Remark 1.2.6. It is worth noticing that the heart of an E3 stable∞-category C⊗ with a compatible
t-structure is a symmetric monoidal category, whereas for CE1-monoidal one only recovers a monoidal
category. In other words, an E3-monoidal structure for Sphloc.c(G) is the “least level” of commutativity
allowing to recover the full symmetric monoidal structure on PervGO

(Gr) in a purely formal way.

Remark 1.2.7. In recent yet unpublished work [Cam22], Campbell and Raskin proved that, up to a
certain renormalization of both sides, one can put a natural factorizable structure on the RHS of the
Derived Satake Equivalence, and that the equivalence can be promoted to a factorizable/E3-monoidal
equivalence.

Remark 1.2.8. It is worth stressing that the complex topology takes on a prominent role in our proofs.
When taking constructible sheaves, we always look at the underlying complex-analytic topological space
Gran

G of GrG, with its complex stratification in Schubert cells. With this topology, Gran
G is homotopy

equivalent to Ω2B(Gan) (although we do not use this in our paper). This is an equivalent way to derive
the E2-algebra structure on the spherical category. However, by Remark 1.2.2, the category Sphloc.c is the
same both from the algebraic or the complex-analytic point of view and therefore our result works in both
settings.

1.3 An overview

The main guiding principle of the present dissertation (excluding Chapter 4) is the application of the
homotopy theory of stratified spaces (as introduced in [Lur17, Appendix A]) to the study of the affine
Grassmannian and the spherical Hecke category. This idea was not part of the project at the beginning, but
arose in response to some issues in the description of the tensor structure on the spherical Hecke category;
later, it took several other forms. We will now highlight which ones and how they arose.

Before doing this, let us just sketch the structure of the present dissertation. This thesis covers my first
three works (two of them with coauthors). Chapter 2 is dedicated to the preprint [Noc20], which has
been the start of many questions leading to the other works. Chapter 3 contains my work with Marco
Volpe [NV21], which deals with problems of more topological nature and exploits phenomena related to
the formalism of conically smooth spaces. Chapter 4 contains my work with Michele Pernice on Derived
Azumaya Algebras [NP22]. I will explain the connection of this work to my PhD project in Section 1.3.3.

1.3.1 The affine Grassmannian as a Whitney stratified space

As mentioned in Remark 1.1.3, the stratification in Schubert cells of the affine Grassmannian satisfies the
Whitney conditions. Now, a stratification can be seen as a continuous map s from the topological space Y



to a poset P endowed with the Alexandrov topology (Section 2.A.1). A very important consequence of
this property is recorded in the following:

Proposition 1.3.1. Let (Y, P, s) be a stratified space satisfying the Whitney conditions. Then the stratifica-
tion is conical in the sense of [Lur17, Definition A.5.5].

Proof. This is a consequence of [Mat70, Proposition 6.2], as proven in Section 3.2.1.

Theorem 1.3.2 ([Lur17, Theorem A.3.9]). Let (Y, P, s) be a stratified space which is locally of singular
shape (see [Lur17, Definition A.4.15]) and conically stratified, and suppose thatP satisfies the ascending chain
condition. Then there exists an∞-category Exit(Y, P, s) and an equivalence of the form

Cons(Y, P, s; S) ≃ Fun(Exit(Y, P, s), S)

where S is the∞-category of spaces.

Corollary 1.3.3. Let k be any ring. In the hypotheses of the previous theorem, there is an equivalence of
k-linear stable∞-categories

Cons(Y, P, s; k) ≃ Fun(Exit(Y, P, s),Modk)

where Modk is the derived∞-category of k-mondules.

Two easy but important consequences of this theorem are the following:

Corollary 1.3.4. Let (Y, P, s) be a stratified space which is locally of singular shape and conically stratified.
Then its∞-category of constructible sheaves is presentable.

Corollary 1.3.5. Suppose that (Y, P, s)→ (Z,P, t) is a stratified homotopy equivalence of stratified spaces
over the same poset P (i.e. a stratified map inducing equivalences at the level of exit-paths-categories). Then it
induces an equivalence of∞-categories

Cons(Y, P, s; S) ≃ Cons(Z,P, t; S).

Another important consequence regards the functoriality and the symmetric monoidality properties
of the association (Y, P, s) 7→ Cons(Y, P, s; S). The exact same arguments work if we replace S by the
derived∞-category Modk, with k a ring. We record all these consequences (proving those which have not
been proven before) in Section 2.A.

These facts allow to study the affine Grassmannian and the spherical Hecke category Sph(G) from
the viewpoint of stratified homotopy theory. Thanks to this, we may deduce properties about Sph(G)
from homotopy-theoretic considerations about the affine Grassmannian. This is the main content of
Chapter 2, and leads to prove Theorem 1.2.4 by arguments which are purely intrinsic to the topology of
GrG and its variants, and do not involve anything regarding the spectral side of Geometric Langlands.



1.3.2 The affine Grassmannian as a conically smooth stratified space

A much subtler version of Proposition 1.3.1 can be proven. Indeed, the notion of “conical chart” around a
point can be promoted to something more rigid, which represents the analogue in the stratified setting of
a smooth differential structure on a topological space. This notion is made rigorous in [AFT17, Section 3],
where the Authors define what is called a conically smooth structure on a conically stratified space2.
Roughly speaking, the idea is the same as that of a differential structure: a conically smooth structure is
an equivalence class of atlases, and an atlas is a system of conical charts with a “smooth change of charts”
property. A stratified space (Y, P, s) together with a conically smooth structure A is called a conically
smooth space. The Authors conjecture that every stratified space satisfying the Whitney conditions (which
is conical by Proposition 1.3.1) admits such a conically smooth structure. In Chapter 3 (joint work with
Marco Volpe) we prove this conjecture:

Theorem 1.3.6 (Theorem 3.2.7). Let (Y, P, s) be a stratified space satisfying the Whitney conditions. Then
it admits a canonical conically smooth structure.

This result is somehow useful per se, in that it adds a very natural class of examples to the newly
introduce theory of conically smooth spaces. However, our middle-term plan together with Marco Volpe
is to use this fact to prove additional properties of the affine Grassmannian. Indeed, by Theorem 1.3.6 GrG
admits a canonical conically smooth structure, and so does its Ran version GrRan (see Definition 2.1.3,Propo-
sition 2.2.5). Now, [AFT17] introduce the notion of constructible bundle, which is a certain class of
maps between conically smooth spaces representing the stratified analogue of the notion of smooth fiber
bundle.

Our conjecture together with Marco Volpe is the following:

Conjecture 1.3.7. The stratified map strtop(GrRan)→ Ran(Xan) (see Section 2.2) is a constructible bundle,
and it satisfies suitably strong surjectivity properties.

Also, in analogy to what happens with fiber bundles, we conjecture the following:

Conjecture 1.3.8. Every constructible bundle (Y, P, s,A)→ (Z,Q, t,B) satisfying the aforementioned
surjectivity properties satisfies the exit homotopy lifting property. That is, any diagram of stratified maps the
form

H × {0} Y

H × I Zh

f

2To be precise, their notion of “conically stratified space” is slightly different from that of [Lur17], and is defined by induction.



where (H,R, u) is a compact stratified space and I is the unit interval stratified with a closed stratum at 0
and an open stratum at (0, 1], admits a filling.

As a corollary, we would obtain that the map strtop(GrRan)→ Ran(Xan) (see Construction 2.2.3)
satisfies the exit homotopy lifting property. This is a “folklore” fact, whose proof we have not been able to
locate anywhere. This is a crucial step in the proof of Theorem 1.2.4.

1.3.3 Towards an affine Grassmannian for surfaces

A long-term goal in the Geometric Langlands Program is to provide a statement of the Geometric Lang-
lands Conjecture regarding a moduli space of sheaves (or stacks) over a surface S, which should replace
BunG(X) where X is a curve. Such a statement is expected to have connections to representation-
theoretic objects such as double Hecke algebras or similar constructions.

A part of this program is to provide statements analogous to the Geometric or Derived Satake Theorem,
again following the idea that they should represent the “specialization at a point” of the “global” statement.
Therefore, one is naturally led to seek for an analogue of the affine Grassmannian GrG at the level of
surfaces.

For instance, one could fix a complex smooth projective surface S and a point s ∈ S(C), and define

GrG(S, s)(R) = {F ∈ BunG(SR), α : F|(S\{x})×SpecR
∼−→ TG,(S\{x})×SpecR}.

However, one can prove by means of the Hartogs theorem that this functor is “trivial”, because every
trivialization away from a closed subset of codimension at least 2 extends to SR, and therefore our moduli
space is equivalent toG (seen as the automorphism group of TG,S).

Alternatively, one could fix an algebraic curveC in S and define

GrG(S,C)(R) = {F ∈ BunG(SR), α : F|(S\C)×SpecR
∼−→ TG,(S\C)×SpecR}.

This last definition presents an important difference with respect to the setting of curves when it comes to
the convolution product. Indeed, one can figure out suitable versions of the convolution diagram, but
the analogue of the mapm in (1.1.2) is not ind-proper ([Kap00, Proposition 2.2.2]), and therefore we are
not granted that the pushforward (or the proper pushforward) along that map takes perverse sheaves to
perverse sheaves3. However,m! should preserve constructible sheaves, provided that it carries a sufficiently
strong stratified structure. Therefore, although a convolution product of perverse sheaves over GrG(S, x)
or GrG(S,C) is probably not well-defined, there is a good chance that it is well-defined at the level of

3In order for a map to preserve perverse sheaves, one usually assumes that it is semi-small and proper.



some∞-category of (equivariant) constructible sheaves C.

Another possible version of an affine Grassmannian for surfaces is the following (the additional “g”
stays for “gerbes”). Let S be a smooth complex surface and s ∈ S(C). We define

GrgG,S,s(R) = {G aG-gerbe over SR, α : G|(S\{s})×SpecR
∼−→ BG× (S \ {s})× SpecR)}.

This definition circulated in the mathematical community years ago, and I am currently studying the
properties of such an object in an ongoing project. This motivated by interest in the theory of gerbes. In
the caseG = GL1 = Gm, the following result of Toën holds:

Theorem 1.3.9 ([Toë10], see also Section 1.3.4). If S is a quasicompact quasiseparated scheme, then there
is an isomorphism of abelian groups between H2(S,Gm) × H1(S,Z) and the group dBrAz of derived
Azumaya algebras over S up to Morita equivalence. In particular, if S is normal, there is an isomorphism

H2(S,Gm) ≃ dBrAz.

This correspondence is useful in proving properties of GrgG,S,s, although GrgGm,S,s
is itself a fairly

trivial object. Indeed, Jacob Lurie [Lur] suggested to us a way to prove that a “Beauville-Laszlo theorem
forG-gerbes” is true (and thus, that GrgG,S,s is independent of S and s) that reduce to the case whenG is
abelian and then uses a reformulation of Toën’s result in terms of prestable OS -linear prestable presentable
∞-categories (we will talk about this refurmulation in Section 1.3.4).

Motivated by such applications, Michele Pernice and I studied some further properties of the cor-
respondence established in Theorem 1.3.9. This is the content of Chapter 4, which we summarize in
Section 1.3.4.

A final remark: we suspect that techniques analogous to the ones used for the construction of the
E3-structure on Sph(G) can be used to build an E5-structure4 on a suitable category of equivariant
constructible sheaves/D-modules on GrgG. A naïve topological motivation comes from the fact that we
can define a “topological affine Grassmannian ofG-gerbes on a surface” as

Map(S3,AutB(Gan)/Map(D4,AutB(Gan))

where S3 is the real 3-sphere, D4 is the real 4-disk,Gan is the complex analytic topological group associated
to G, and AutB(Gan) is the 2-group of automorphisms of the trivial topological Gan-gerbe. Now this
space is homotopy equivalent to

Ω3AutB(Gan) ∼ Ω4BAutB(Gan),
4Here E1 would stand for an “associativity” coming from some convolution diagram, and E4 would come from the real

dimension of S, just like E2 comes from the real dimension of the curve X in our construction.



where BAutB(Gan) is the higher classifying space of AutB(Gan), and on the latter space we have an
evident E4-structure which is the exact analogue of the E2-structure on Ω2B(Gan) ∼ Gran

G . Not that
the relationship between Grgan

G and this topological counterpart is at the moment unclear to us (we do
not know an immediate argument to deduce that they are equivalent; the analogous statement for GrG
is already nontrivial), and therefore the existence of the E4-structure on Ω4BAut(Gan) remains just a
heuristic motivation.

1.3.4 The derived Brauer map via twisted sheaves

Let us fix a quasicompact quasiseparated schemeX over some field k of arbitrary characteristic.
In 1966, Grothendieck [Gro66] introduced the notion of Azumaya algebra overX : this is an étale

sheaf of algebras which is locally of the form End(E), the sheaf of endomorphisms of a vector bundle E
overX . This is indeed a notion of “local triviality” in the sense of Morita theory: two sheaves of algebras
A,A′ are said to be Morita equivalent if the categories

LModA = {F quasicoherent sheaf overX together with a left action ofA}

and its counterpart LModA′ are (abstractly) equivalent; one can prove that LModEnd(E) is equivalent to
QCoh(X) via the functorM 7→ E∨ ⊗End(E) M .

The classical Brauer group BrAz(X) of X is the set of Azumaya algebras up to Morita equivalence,
with the operation of tensor product of sheaves of algebras. Grothendieck showed that this group injects
into H2(X,Gm) by using cohomological arguments: essentially, he used the fact that a vector bundle
corresponds to a GLn-torsor for some n, and that there exists a short exact sequence of groups

1→ Gm → GLn → PGLn → 1.

The image of BrAz(X) inside H2(X,Gm) is contained in the torsion subgroup, which is often called the
cohomological Brauer group ofX .5

One of the developments of Grothendieck’s approach to the study of the Brauer group is due to
Bertrand Toën and its use of derived algebraic geometry in [Toë10]. There, he introduced the notion of
derived Azumaya algebra as a natural generalization of the usual notion of Azumaya algebra. Derived
Azumaya algebras over X form a dg-category DerazX . There is a functor DerazX → Dgc(X), this
latter being (in Toën’s notation) the dg-category of presentable stable OX -linear dg-categories6 which are
compactly generated, with, as morphisms, functors preserving all colimits. The functor is defined by

A 7→ LModA = {quasicoherent sheaves onX with a left action ofA}
5Other authors, however, use this name for the whole H2(X,Gm).
6See Section 4.1.2 for a definition of OX -linear category in the ∞-categorical setting.



where all terms have now to be understood in a derived sense. One can prove that this functor sends the
tensor product of sheaves of algebras to the tensor product of presentable OX -linear dg-categories, whose
unit is QCoh(X). Building on classical Morita theory, Toën defined two derived Azumaya algebras to be
Morita equivalent if the dg-categories of left modules are (abstractly) equivalent. This agrees with the fact
mentioned above that LModEnd(E) ≃ QCoh(X) for any E ∈ Vectn(X).

In [Toë10, Proposition 1.5], Toën characterized the objects in the essential image of the functor
A 7→ LModA as the compactly generated presentable OX -linear dg-categories which are invertible with
respect to the tensor product, i.e. thoseM for which there exists another presentable compactly generated
OX -linear dg-categoryM∨ and equivalences 1 ∼−→ M ⊗M∨ andM∨ ⊗M ∼−→ 1. The proof of this
characterization goes roughly as follows: given a compactly generated invertible dg-categoryM , one can
always suppose thatM is generated by some single compact generator EM . Now, compactly generated
presentable OX -linear dg-categories satisfy an important descent property [Toë10, Theorem 3.7]; from
this and from [Toë10, Proposition 3.6] one can deduce that the EndM (EM ) has a natural structure of a
quasicoherent sheaf of OX -algebrasA, and one can prove thatM ≃ LModA.

Both Antieau-Gepner [AG14] and Lurie [Lur18, Chapter 11] resumed Toën’s work, using the language
of∞-categories in replacement of that of dg-categories. Lurie also generalized the notion of Azumaya
algebra and Brauer group to spectral algebraic spaces, see [Lur18, Section 11.5.3]. He considers the∞-
groupoid of compactly generated presentable OX -linear∞-categories which are invertible with respect to
the Lurie tensor product⊗, and calls it the extended Brauer space Br†

X . This terminology is motivated by
the fact that the set π0Br†

X has a natural abelian group structure, and by a result of Toën is isomorphic
to H2

ét(X,Gm)×H1
ét(X,Z): in particular, it contains the usual cohomological Brauer group ofX . At

the categorical level, Lurie proves that there is an equivalence of∞-groupoids between Br†(X) and
MapStk

(X,B2Gm × BZ) (Stk is the∞-category of stacks over the base field k). In particular, Br†(X) is
categorically equivalent to a 2-groupoid.

We can summarize the situation in the following diagram:

DerazX [Morita−1]≃ ∼−→ Br†(X) ∼−→ MapStk
(X,B2Gm × BZ) (1.3.1)

where the left term is the maximal∞-groupoid in the localization of the∞-category of derived Azumaya
algebras to Morita equivalences. At the level of dg-categories, this chain of equivalences is proven in [Toë10,
Corollary 3.8]. At the level of∞-categories, this is the combination of [Lur18, Proposition 11.5.3.10] and
[Lur18, p. 11.5.5.4]

Note that, while in the classical case we had an injection BrAz(X) → H2(X,Gm), in the derived
setting one has a surjection dBr†

Az(X) := π0(DerazX [Morita−1])≃ → H2(X,Gm). If H1(X,Z) = 0
(e.g. whenX is a normal scheme), then the surjection becomes an isomorphism of abelian groups.



While the first equivalence in (1.3.1) is completely explicit in the works of Toën and Lurie, the second
one leaves a couple of questions open:

• since the space Map(X,B2Gm × BZ) is the space of pairs (G,P ), whereG is a Gm-gerbe overX
and P is a Z-torsor overX , it is natural to ask what are the gerbe and the torsor naturally associated
to an element of Br†(X) according to the above equivalence. This is not explicit in the proofs of
Toën and Lurie, which never mention the words “gerbe” and “torsor”, but rather computes the
homotopy group sheaves of a sheaf of spaces Br†

X overX whose global sections are Br†(X).

• conversely: given a pair (G,P ), what is the∞-category associated to it along the above equivalence?

The goal of Chapter 4 is to give a partial answer to the two questions above. The reason for the word
“partial” is that we will neglect the part of the discussion regarding torsors, postponing it to a forthcoming
work, and focus only on the relationship between linear∞-categories/derived Azumaya algebras and
Gm-gerbes. Our precise result is stated in Theorem 4.1.19.
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The content of this chapter is the paper [Noc20]. The aim is to provide an extension of the convolution
product of equivariant perverse sheaves on the affine Grassmannian, whose definition will be recalled in
the first subsection of this Introduction, to the∞-category ofGO-equivariant constructible sheaves on
the affine Grassmannian1. We will endow this extension with an E3-algebra structure in∞-categories,
which is the avatar of Mirkovic and Vilonen’s commutativity constraint [MV07, Section 5]. The final
result is Theorem 2.3.6.

Theorem 2.0.1 (Theorem 2.3.6). If G is a reductive complex group and k is a finite ring of coefficients,
there is an object A ∈ AlgE3

(Cat×
∞,k) describing an associative and braided product law on the k-linear

∞-category Consfd
GO

(GrG, k) of GO-equivariant constructible sheaves over the affine Grassmannian (see
Section 1.2.1). The restriction of this product law to the abelian category of equivariant perverse sheaves coincides
up to shifts with the classical (commutative) convolution product of perverse sheaves [MV07].

From now on, we will fix the reductive groupG and denote the affine Grassmannian associated toG
simply by Gr.

The theorem will be proven by steps.

• in Section 2.1, we encode the convolution diagram Remark 1.1.8 in a semisimplicial 2-Segal stack
Grx,•, thus providing an associative algebra object in Corr(StrStkC) which, after quotienting by
the analogue of theGO-action, describes the span given in Remark 1.1.8. This is done in order to
express the convolution product, formally, as push-pull of constructible sheaves along this diagram.

• Let Ran(X) be the algebraic Ran space ofX , i.e. the prestack parametrising finite sets of points
in X (see Definition 2.1.1). The affine Grassmannian Gr admits a variant GrRan, called the Ran
Grassmannian (see Definition 2.1.3), living over Ran(X), and parametrizing G-torsors on X to-
gether with a trivialization away from a finite system of points. This object is a reformulation of

1Our notion of constructible sheaf does not require finitely dimensional stalks. However, the full subcategory obtained by
imposing this condition (which is the one usually considered) is closed under the product law that we describe.



the classical Beilinson-Drinfeld Grassmannian, and just like that it allows to define the so-called
fusion product of perverse sheaves over the affine Grassmannian (see [MV07, Section 5] for the
definition of the fusion product via Beilinson-Drinfeld Grassmannian). This fusion product is built
on the fact that the Beilinson-Drinfeld Grassmannian satisfies the so-called factorization property
(see [Zhu16, Section 3.1]). This property is formulated in a very convenient way for GrRan, taking
advantage of the features of the Ran space.

Again in Section 2.1, we give a version of Gr• living over Ran(X). Formally, what we obtain is
a semisimplicial 2-Segal (stratified) prestack GrRan,• over Ran(X). This is done in order to take
into account the factorization structure of GrRan and give the setup of the extension of the fusion
product to the setting of constructible sheaves. The same is done forGO, thus defining a “global”
objectGO,Ran; all the preceding constructions areGO,Ran-equivariant.

• Given a finite-type (stratified) scheme Y over the complex numbers, one can consider its analytifica-
tion Y an (see [Rey71]). This is a complex analytic (stratified) space with an underlying (stratified)
topological space which we denote by strtop(Y ). This procedure can be extended to a functor
strtop : PSh(StrSchC)→ Sh(StrTop, S), where S is the∞-category of spaces. In Section 2.2, we
consider the analytification of all the constructions performed in Section 2.1. The goal is to exploit
the topological and homotopy-theoretic properties of the analytic version of Ran(X), which are
reflected all the way up to GrRan and to the definition of the fusion product. In particular, these
properties allow to apply [Lur17, Theorem 5.5.4.10] and realize the fusion product as a consequence
of the very existence of the map Gran

Ran,k → Ran(X)an for each k. Combining this with the simpli-
cial structure of GrRan,•, we obtain that strtop(GO\Gr) carries a natural E3-algebra structure in
Corr(Sh(StrTop, S)) (by taking quotients in Theorem 2.2.30).

• In Section 2.A we show, building on [Lur17, Appendix A] and many other contributions, that
there is a natural “equivariant k-valued constructible sheaves” functor Cons from a certain category
of stratified topological spaces with action of a group towards the∞-category of presentable k-
linear∞-categories, which is also symmetric monoidal (Corollary 2.A.11). A very important feature
of this functor is that it sends stratified homotopy equivalences to equivalences of presentable
∞-categories. Also, it satiesfies the Beck-Chevalley properties, that allow to take push-pull along
correspondences of stratified spaces in a functorial way. In our case, the needed formal properties are
contained essentially in the fact that the affine Grassmannian is a stratified ind-scheme and its strata
are exactly the orbits with respect to the action ofGO. Thanks to all these properties, in Section 2.3
we formally obtain that the category ConsGO

(Gr) admits a structure of E3-algebra in presentable
k-linear∞-categories (with respect to the Lurie tensor product) inherited from the structure built



on strtop(GO\Gr) in the previous point. As a corollary, Consfd
GO

(Gr) has an induced E3-algebra
structure in small k-linear categories (with respect to the usual Cartesian product).

Some of the techniques used in the present chapter are already “folklore” in the mathematical commu-
nity; for example, application of Lurie’s [Lur17, Theorem 5.5.4.10] to the affine Grassmannian appears
also in [HY19], though in that paper the Authors are interested in the (filtered) topological structure of
the affine Grassmannian and do not take constructible sheaves. Up to our knowledge, the formalism
of constructible sheaves via exit paths and exodromy has never been applied to the study of the affine
Grassmannian and the spherical Hecke category. Here we use it in order to take into account the homotopy
invariance of the constructible sheaves functor, which is strictly necessary for the application of Lurie’s
[Lur17, Theorem 5.5.4.10].

2.1 Convolution over the Ran space

The aim of this section is to expand the construction of the Ran Grassmannian defined for instance in
[Zhu16, Definition 3.3.2] in a way that allows us to define a convolution product of constructible sheaves
in the Ran setting.

2.1.1 The presheaves GrRan,k

The Ran Grassmannian

Let us recall the definition of the basic objects that come into play. Let AlgC be the category of (discrete)
complex algebras andX a smooth projective curve over C.

Definition 2.1.1. The algebraic Ran space ofX is the presheaf

Ran(X) : AlgC → Set

R 7→ {finite subsets ofX(R)}.

Remark 2.1.2. Let Finsurj be the category of finite sets with surjective maps between them. Then we have
an equivalence of presheaves

Ran(X) ≃ colimPSh(X)
I∈Finsurj

XI .

Definition 2.1.3. The Ran Grassmannian ofX is the functor GrRan : AlgC → Grpd

R 7→ {S ∈ Ran(X)(R),F ∈ BunG(XR), α : F|XR\ΓS

∼−→ TG|XR\ΓS
},



where TG is the trivialG-bundle onXR, ΓS is the union of the graphs of the si insideXR, si ∈ S, andα
is a trivialization, i.e. an isomorphism of principalG-bundles with the trivialG-bundle. This admits a
natural forgetting map towards Ran(X).

Remark 2.1.4. Consider the twisted tensor product defined in [Zhu16, (3.1.10)]

GrX = X̂ ×Aut(Spec CJtK) GrG,

where X̂ is the space of formal parameters defined in loc. cit.. This parametrizes

GrX(R) = {x ∈ X(R),F ∈ BunG(XR), α : F|XR\Γx

∼−→ TG|XR\Γx
}.

For each finite set I , there is a multiple version

GrXI (R) = {(x1, . . . , x|I|) ∈ X(R)I ,F ∈ BunG(XR),

α : F|XR\Γx1 ∪···∪Γx|I|

∼−→ TG|XR\Γx1 ∪···∪Γx|I|
}.

Then we have
GrRan = colimI∈Finsurj GrXI .

Definition 2.1.5. We can defineGK,XI , GO,XI in the same way. Let alsoGK,Ran be the functor

R 7→ {S ∈ Ran(X)(R),F ∈ BunG(XR), α : F|XR\ΓS

∼−→ TG|XR\ΓS
,

µ : F|(̂XR)ΓS

∼−→ TG|(̂XR)ΓS

} ≃ colimI GK;XI .

LetGO,Ran be the functor

R 7→ {S ∈ Ran(X)(R), g ∈ Aut(̂XR)ΓS

(TG)} ≃ colimI GO;XI .

By means of [Zhu16, Proposition 3.1.9] one has that GrRan ≃ GK,Ran/GO,Ran in the sense of a
quotient in PSh(StkC), i.e.

GrRan ≃ colimI GK,XI/GO,XI

where each term is the étale stack quotient in the category of stacks (recall thatGK is an ind-scheme and
GO is a group scheme) and is equivalent to GrXI .

Definition 2.1.6. We define GrRan,k to be the functor AlgC → Grpd

k−1 times︷ ︸︸ ︷
GK,Ran ×Ran(X) · · · ×Ran(X) GK,Ran×Ran(X)GrRan,



that is
R 7→ {S ∈ Ran(X)(R),Fi ∈ BunG(XR),

αi trivialization of Fi outside ΓS , i = 1, . . . , k,

µi trivialization of Fi on the formal neighborhood of ΓS , i = 1, . . . , k − 1}.

We callrk : GrRan,k → Ran(X) the natural forgetting map. Note that GrRan,0 = Ran(X),GrRan,1 =
GrRan.

A priori, GrRan,k is groupoid-valued, because ifR is fixed theFi’s may admit nontrivial automorphisms
that preserve the datum of the αi’s and the µj ’s. Actually, this is not the case, just like for the classical
affine Grassmannian which is ind-representable:

Proposition 2.1.7. For any k ≥ 0 the functor

GrRan,k : AlgC → Grpd

factorises through the inclusion Set→ Grpd.

Proof. See Section 2.B.1.

It is worthwhile to remark that the map GrRan,k → Ran(X) is ind-representable, although GrRan,k

itself is not.

Definition 2.1.8. Let x ∈ X(C) be a closed point ofX . There is a natural map {x} → X → Ran(X),
represented by the constant functorR 7→ {x} ∈ Set. Let us denote Grx,k = GrRan,k ×Ran(X) {x}.

Proposition 2.1.9. Grk,x is independent from the choice ofX and x, and

Gr1,x ≃ GrG

Gr2,x ≃ GK × GrG.

Proof. Note first that

Grk,x(R) =
{
(Fi ∈ BunG(XR), αi : Fi|XR\({x}×SpecR)

∼−→ TG|XR\({x}×SpecR),

µi : Fi|(̂XR)({x}×Spec R)

∼−→ TG|(̂XR)({x}×Spec R)
)i=1,...,k

}
.

By the Formal Gluing Theorem [HPV16] this can be rewritten as

Grk,x(R) =
{
(Fi ∈ BunG((̂XR){x}×SpecR),



αi : F| ˚(XR){x}×Spec R

∼−→ TG| ˚(XR){x}×Spec R
,

µi : F|(̂XR)({x}×Spec R)

∼−→ TG|(̂XR)({x}×Spec R)
)i=1,...,k

}
≃

≃
{
(Fi ∈ BunG(X̂{x} × SpecR), αi : F|X̊{x}×SpecR

∼−→ TG|X̊{x}×SpecR,

µi : F|
X̂{x}×SpecR

∼−→ TG|X̂{x}×SpecR)i=1,...,k
}
,

but X̂{x} is independent from the choice of the point x, being (noncanonically) isomorphic to SpecCJtK
(and the same for X̊x). The rest of the statement is clear from the definitions.

2.1.2 The 2-Segal structure

Face maps

We now establish a semisimplicial structure on the collection of the GrRan,k.

Construction 2.1.10. Let ∂i be the face map from [k − 1] to [k] omitting i. We define the corresponding
map δi : GrRan,k → GrRan,k−1 as follows. A tuple (S,F1, α1, µ1, . . . ,Fk, αk) is sent to a tuple

(S,F1, α1, µ1, . . . ,Fi−1, αi−1, µi−1,

Fgl(Fi,Fi+1, αi, αi+1, µi), µ′
i, . . . ,Fk, αk),

where:

• Fgl(Fi,Fi+1, αi, αi+1, µi) is the pair (F′
i, α

′
i) formed as follows: the Formal Gluing Theorem

([HPV16]) allows us to glue the sheavesFi|XR\ΓS
andFi+1|(̂XR)ΓS

along the isomorphismµ−1
i | ˚(XR)ΓS

◦

αi+1| ˚(XR)ΓS

. This is our F′
i. Also, F′

i inherits a trivialization over ˚(XR)ΓS
described by

αi| ˚(XR)ΓS

µ−1
i | ˚(XR)ΓS

αi+1| ˚(XR)ΓS

,

which is the second datum.

• µ′
i coincides with µi+1 via the canonical isomorphism between the glued sheaf and Fi+1 over the

formal neighbourhood of ΓS .

Proposition 2.1.11. This construction defines a semisimplicial object GrRan,• : ∆op
inj → Fun(AlgC, Set)

because the given maps satisfy the simplicial identities.



Proof. Let k be fixed. We check the face identities δiδj = δj−1δi for i < j.
The essential nontrivial case is when k = 3, i = 0, j = 1 or i = 1, j = 2 or i = 2, j = 3. Otherwise the
verifications are trivial since, if i < j − 1, then the two gluing processes do not interfere with one another.
The cases i = 0, j = 1 and i = 2, j = 3 are very simple, because there is only one gluing and one
forgetting (F1 or F3 respectively). In the remaining case, we must compare F1,23 = Fgl(F1, Fgl(F2,F3)
with F12,3 = Fgl(Fgl(F1,F2),F3). (we omit the S, αi, µi from the notation for short). We have:

• F1,23|XR\ΓS
≃ F1|XR\ΓS

≃ F12|XR\ΓS
≃ F12,3|XR\ΓS

• F1,23|(̂XR)ΓS

≃ F23|(̂XR)ΓS

≃ F2|(̂XR)ΓS

≃ F12|(̂XR)ΓS

≃ F12,3|(̂XR)ΓS

.

This tells us that the two sheaves are the same, and from this it is easy to deduce that the same property
holds for the trivializations.

We thus have a semisimplicial structure on GrRan,•, together with maps rk : GrRan,k → Ran(X)
which commute with the face maps by construction.

Verification of the 2-Segal property

The crucial property of the semisimplicial presheaf GrRan,• is the following:

Proposition 2.1.12. For anyR ∈ AlgC, the semisimplicial set GrRan,•(R) enjoys the 2-Segal property, that
is the equivalent conditions of [DK19, Proposition 2.3.2].

Proof. Case “0, l ≤ k”. With the natural notations appearing in [DK19, Proposition 2.3.2], there is a
map GrRan,{0,1,...,l} ×GrRan,{0,l} GrRan,{0,l,l+1,...,k} → GrRan,{0,...,k} = GrRan,k inverse to the natural
projection. The map sends

(S,F1, α1, µ1, . . . ,Fl, αl,F
′
l, α

′
l, µ

′
l,

ξ : (F′
l, α

′
l)

∼−→ Fgl({Fi, αi, µj}i=1,...,l,j=1,...,l−1),F′
l+1, α

′
l+1, µ

′
l+1, . . . ,F

′
kα

′
k)

7→ (F1, α1, µ1, . . . ,Fl, αl, µ
′′
l ,F

′
l+1, α

′
l+1, µ

′
l+1, . . . ,F

′
k, α

′
k)

where µ′′
l,l+1 is the trivialization of Fl on the formal neighbourhood of x defined as Fl|(̂XR)ΓS

∼−→

Fgl({Fi, αi, µj}i=1,...,l,j=1,...,l−1)|(̂XR)ΓS

ξ−1
−−→ F′

l|(̂XR)ΓS

µ′
l−→ TG (̂XR)ΓS

.

This map is indeed inverse to the natural map arising from the universal property of the fibered product,
thus establishing the 2-Segal property in the case “0, l”. The case “l, k” can be tackled in a similar way.

Notation 2.1.13. Given a category or an∞-category C, we denote by 2-Segss(C) the (∞-)category of
2-Segal semisimplicial objects in C.



2.1.3 Action of the arc group in the Ran setting

We now introduce analogues of the “arc group”GO to our global context, namely group functors over
Ran(X) denoted by ArcRan,k, each one acting on GrRan,k over Ran(X).

The Ran version of the arc group

Construction 2.1.14. Consider the functor

GO,Ran : AlgC → Set

from Definition 2.1.5. It is immediate to see that this functor takes values in Set just like GrRan,k, and
admits a map towards Ran(X).
This functor is a group functor over Ran(X) under the law

(S, g) · (S, h) = (S, g · h).

There is a semisimplicial group object of (PShC)/Ran(X) assigning

[k] 7→
k times︷ ︸︸ ︷

GO,Ran ×Ran(X) · · · ×Ran(X) GO,Ran .

The face maps are described by

δi : (S, g1, . . . , gk) 7→ (S, g1, . . . ,
i︷ ︸︸ ︷

gigi+1, . . . , gk).

Definition 2.1.15. We denote this semisimplicial group functor over Ran(X) by ArcRan,•.2

Note that ArcRan,0 = Ran(X), and ArcRan,1 = GO,Ran. It is also useful to define the version of
ArcRan,k overXI :

ArcXI ,k :=
k times︷ ︸︸ ︷

GO,Ran ×Ran(X) · · · ×Ran(X) GO,Ran .

As usual, the “Ran” version is the colimit over I ∈ Finsurj of the “XI” versions.

Remark 2.1.16. The simplicial object Arc• enjoys the 2-Segal property. The verification is straightforward
thanks to the multiplication structure.

2We replace the notation “GO” with “Arc” for typographical reasons.



The action on GrRan,•

The first observation now is that ArcRan,k−1 acts on GrRan,k on the left over Ran(X) in the following
way:

(S, g2, . . . , gk).(S,F1, α1, µ1, . . . ,Fk, αk) =

= (S,F1, α1, µ1g
−1
2 ,F2, g2α2, µ2g

−1
3 , . . . ,Fk, gkαk)

where giαi is the modification of αi by gi on ˚(XR)ΓS
which, by the usual “local-global” reformulation,

induces a new trivialization of Fi outside S.
We denote by:

• Φk−1,k this action of ArcRan,k−1 on GrRan,k.

• Ξ1,k the left action of ArcRan,1 on GrRan,k altering the first trivialization α1.

• Φk,k the left action of ArcRan,k on GrRan,k obtained as combination of Ξ1,k and Φk−1,k.

Definition 2.1.17. Define ConvRan,k, the Ran version of the convolution Grassmannian, as the quo-
tient of GrRan,k by the left action Φk−1,k described above. That is, ConvRan,k = colimI ArcXI ,k−1\GrXI ,k,
where the terms of the colimits are quotient stacks with respect to the étale topology and ArcXI ,k−1 acts
through the pullback toXI of the action Φk−1,k.

Remark 2.1.18. ConvGrk is a presheaf which can alternatively be described as follows:

R 7→ {S ⊂ X(R),F1,G2, . . . ,Gk ∈ BunG(XR), α1 : F1|XR\ΓS

∼−→ TG|XR\ΓS
,

η2 : G2|XR\ΓS

∼−→ F1|XR\ΓS
, . . . , ηk : Gk|XR\ΓS

∼−→ Gk−1|XR\ΓS
}.

This is proven in [Rei12, Proposition III.1.10, (1)], because if we takem = k then G̃rp|∆ in loc. cit. is the
pullback alongXn → Ran(X) of the functor described in Remark 2.1.18, and Convmn is the pullback
alongXn → Ran(X) of our ConvRan,m.

2.1.4 The convolution product over Ran(X)

Connection with the Mirkovic-Vilonen convolution product

Consider the action of ArcRan,k on ConvGrk induced by Ξ1,k, which we still call Ξ1,k by abuse of notation,
and consider also Φ1,1 as an action of ArcRan,1 on GrRan. Note that Φ×k

1,1 is an action of Arc×Ran(X)k
Ran,1 on



Gr×Ran(X)k
Ran . The actions Φ×k

1,1 on Gr×Ran(X)k
Ran , Φk,k on GrRan,k, Ξ1,k on ConvGrk and Φ1,1 on GrRan are

compatible with the k-associative convolution diagram

GrRan,k ConvGrk

Gr×Ran(X)k
Ran GrRan

p

q

m
(2.1.1)

where:

• p is the map that forgets all the trivializations µi.

• q is the projection to the quotient with respect to Φk−1,k, alternatively described as follows: we keep
F1 and α1 intact, and define Gh by induction as the formal gluing of Gh−1 (or F1 if h = 1) and
Fh along µh−1 and αh: indeed, µh−1 is a trivialization of Gh−1 over the formal neighbourhood of
ΓS via the canonical isomorphism between Gh−1 and Fh−1 on that formal neighbourhood. The
isomorphism

ηh : Gh|XR\ΓS

∼−→ Gh−1|XR\ΓS

is provided canonically by the formal gluing procedure.

• m is the map sending

(S,F1, α1,G2, η2, . . . ,Gk, ηk) 7→ (S,Gk, α1 ◦ η2 ◦ · · · ◦ ηk).

Remark 2.1.19. Consider the special case k = 2. Note first of all that, since this diagram lives over
Ran(X), we can take its fiber at {x} ∈ Ran(X). Under the identifications of Proposition 1.1.9, we obtain
the diagram (1.1.2).

We can consider the diagram

Φk,k\GrRan,k Ξ1,k\ConvGrk

Φ×k
1,1\Gr×Ran(X)k

Ran,1 Φ1,1\GrRan.

∼

(2.1.2)

The horizontal map is an equivalence since it exhibits its target as the quotient Ξ1,kΦk−1,k\GrRan,k ≃
Φk,k\GrRan,k. For k = 2 one obtains:

Φ2,2\GrRan,2 Ξ1,2\ConvGr2

Φ×2
1,1\Gr×Ran(X)2

Ran Φ1,1\GrRan.

∼



Remark 2.1.20. Take again the fiber of this diagram at the point {x} ∈ Ran(X). This results in a
diagram of the form

Φx,2,2\Grx,2 Ξx,1,2\ConvGrx,2

Φ×2
1,1,x\Gr×2

x,1 Φ1,1,x\Grx,1.

∼

Recall now the identifications of Proposition 1.1.9.
Here, the action Φx,1,1 is the usual left-multiplication action ofGO over Gr. The action Φx,2,2 is the

action ofGO ×GO onGK × Gr given by (g1, g2).(h, γ) = (g1hg
−1
2 , g2γ). Finally, the action Ξx,1,2

on ConvGrx,2 is the action ofGO onGK ×GO Gr given by g[h, γ] = [gh, γ].
Consider now two perverse sheaves F and G on the quotient Φx,1,1\Grx,1. This is equivalent to the

datum of twoGO-equivariant perverse sheaves over Gr. We can perform the external product F⊠ G living
over Φ×2

x,1,1\Gr×2, and then pull it back to Φx,2,2\Grx,2. Under the equivalence displayed above, this can
be interpreted as a Ξ1,2-equivariant perverse sheaf over ConvGr2. By construction, this is exactly what
[MV07] call F⊠̃G (up to shifts). Its pushforward alongm is therefore the sheaf F ⋆ G ∈ PervGO

(Gr).

The same construction can be done with constructible sheaves instead of perverse sheaves. In the
rest of the chapter we will describe an algebra structure on the category ConsGO

(GrG) of equivariant
constructible sheaves over the affine Grassmannian. This∞-category is equivalent to Cons(GO\GrG),
and from this point of view the product law is exactly the one described here.

2.1.5 Stratifications

Stratification of Gr,GrRan and GrRan,k

Construction 2.1.21. Recall from Remark 1.1.3 that the affine Grassmannian has a stratification in Schubert
cells. We have explained in Section 1.2.1 that we are interested in considering constructible sheaves on the
affine Grassmannian which are equivariant and constructible with respect to this stratification. While in
principle the equivariant structure on the sheaf/D-module is sufficient in that implies the constructibility
condition by what observed in Section 1.2.1, it will be very important for us to consider “stratified homotopy
equivalences” when in the topological setting (see Definition 2.A.21). Therefore, it is essential to keep
track of the stratifications. We will now extend the stratification from Gr to GrRan,k. We give/recall the
definition of stratified schemes and presheaves in Definition 2.A.2 and Construction 2.A.3.
In that formalism, the stratification in Schubert cells can be seen as a continuous map of ind-topological
spaces zar(GrG) → X•(T )+ where zar(GrG) is the Zariski ind-topological space associated to GrG,



and X•(T )+ is the poset of dominant coweights of any maximal torus T ⊂ G. Therefore, the datum
(GrG,S ) may be interpreted as an object of StrPShC. The global version GrX admits a stratification
described in [Zhu16, eq. 3.1.11], which detects the monodromy of the pair (bundle, trivialization) at the the
chosen point. By filtering GrX by the lattice filtration (see discussion after Theorem 1.1.2) at every point of
X , we can exhibit GrX as a stratified ind-scheme, or more generally a stratified presheaf, whose indexing
poset is again X•(T )+.3

Notation 2.1.22. From now on, an arrow of the form X→ P , where X is a complex presheaf and P is a
poset, will denote a geometric morphism zar(X)→ P, zar(X) being colimX→X scheme zar(X).

We will now construct maps GrXI → (X•(T )+)I for any I . Recall from [Zhu16] the so-called
factorising property of the Beilinson-Drinfeld Grassmannian. For |I| = 2, it says the following:

Proposition 2.1.23 ([Zhu16, Proposition 3.1.13]). There are canonical isomorphisms GrX ≃ GrX2 ×X2,∆

X, c : GrX2 |X2\∆ ≃ (GrX × GrX)|X2\∆.

For an arbitrary I , the property is stated in [Zhu16, Theorem 3.2.1].
This property allows us to define a stratification on GrXI over (X•(T )+)I endowed with the lexicograph-
ical order:

Definition 2.1.24. For |I| = 2, (GrXI )≤(µ,λ) ⊂ GrX2 is defined to be the closure of GrX,≤µ ×
GrX,≤k ⊂ (GrX × GrX)|X2\∆

∼−→ (GrX2)|X2\∆ inside GrX2 .

For an arbitrary I , the definition uses the small diagonals. This stratification coincides with the
partition in ArcXI -orbits of GrXI . We now consider the map sI : GrXI → X•(T )+ given by

GrXI → (X•(T )+)I → X•(T )+

where the first map is the one described above, and the second one is the map

(µ1, . . . , µ|I|) 7→ Σn
i=1µi.

The map sI is a stratification. Also, by applying [Zhu16, Proposition 3.1.14], one proves that the diagonal
map XJ → XI induced by a surjective map of finite sets I → J is stratified with respect to sI , sJ .
Now, GrRan is the colimit colimI∈Finsurj GrXI , and therefore GrRan inherits a map towardsX•(T )+. This
stratification coincides with the stratification in ArcRan-orbits of GrRan.

Finally, GrRan,k admits a map towards Ran(X•(T )+)k, inherited from the bundle map

GrRan,k →
k︷ ︸︸ ︷

GrRan ×Ran(X) · · · ×Ran(X) GrRan .

Definition 2.1.25. We denote the induced stratification GrRan,k → (X•(T )+)k by σk.
3One can see that this is again a stratification by the translational invariance property, i.e. by the fact that GrA1 ≃ Gr × A1.



Interaction with the semisimplicial structure and with the action of ArcRan,•

Now we want to study the interaction between the stratifications and the semisimplicial structure. In
particular, we want to prove that the simplicial maps agree with the stratifications σk (and consequently
τk), thus concluding that GrRan,• upgrades to a semisimplicial object in (StrPShC)/Ran(X).

Definition 2.1.26. Consider the semisimplicial group

Cw(I)
•

(coweights) defined by
Cwk = (X•(T )+)k

δj : (µ1, . . . , µk) 7→ (µ1, . . . , µj−1, µj + µj+1, µj+2, . . . , µk).

Note that the formal gluing procedure

GrRan,2 → GrRan

sends the stratum ((µ, λ), n) to the stratum (µ+λ, n). Indeed, unwinding the definitions and restricting
to the case of points of cardinality 1 in Ran(X), formal gluing at a point amounts to multiplying two
matrices, one with coweight µ and the other with coweight λ, hence resulting in a matrix of coweight µλ.
Thus if S : X•(T )+ × X•(T )+ → X•(T )+ is the sum map, the diagram

GrRan,2 GrRan,1

Cw2 = X•(T )+ × X•(T )+ Cw1 = X•(T )+

τ2

∂1

τ1

S

commutes.
The case of an arbitrary I uses similar arguments. We can therefore say that for any face mapϕ : [h]→

[k] the induced square

GrRan,k GrRan,h

Cwk Cwh

τk

GrRan(ϕ)

τh

Cw(ϕ)

commutes. Note that the top row is a map of presheaves, so the correct interpretation of this diagram is:
the diagrams

XI ×Ran(X) (GrRan,k)≤N XI ×Ran(X) (GrRan,h)≤N

Cwk Cwh



commute for every I andN , whereN refers to the lattice filtration.

Lemma 2.1.27. The strata of the stratification σk are the orbits of the action of ArcRan,k on GrRan,k over
Ran(X).

Proof. We know that the orbits of the Schubert stratification of the affine Grassmannian are the orbits of
the action ofGO. The same is true at the Ran level.

Remark 2.1.28. Both (GrRan,•, σ•) and (ArcRan,•) (unstratified) enjoy the 2-Segal property.

Proof. We want to use the unstratified version of the same result, proved in Section 2.1.2. In order to do this,
it suffices to prove that the functor StrPShC → PShC preserves and reflects finite limits. We can reduce
this statement to the one that StrSchC → SchC does. By definition, this follows from Lemma 2.A.4.

We can thus summarise the content of this whole section as follows, again in the notations of Sec-
tion 2.A.3. Recall that Ran(X) is seen as a trivially stratified presheaf over SchC.

Theorem 2.1.29. There exists a functor

ActGr• : ∆op
inj → Act((StrPShC)/(Ran(X)))

[k] 7→ ((GrRan,k, σk)→ (Ran(X)), (ArcRan,k → Ran(X),

Φk,k stratified action of ArcRan,k on GrRan,k over Ran(X)),

which enjoys the 2-Segal property, and such that:

• ActGr1 = (GrRan → Ran(X), GO,Ran → Ran(X),Φ1,1 : GO,Ran ×Ran(X) GrRan → GrRan)

• the values of ActGrk object for higher k’s describe the Mirkovic-Vilonen convolution diagram and its
associativity in the sense of Section 2.1.4.

2.2 Fusion over the Ran space

2.2.1 Analytification

Topological versions of GrRan,k and ArcRan,k

In order to take into account the topological properties of the affine Grassmannian and of its global
variants, we will now analytify the construction performed in the previous section. This will allow us to
consider the complex topology naturally induced on the analytic analogue of the prestacks GrRan,k by



the fact thatX is a complex curve, as well as a naturally induced stratification on the resulting complex
analytic spaces.
In 2.A.1 we describe the stratified analytification functor, which in turn induces a functor

strtop : PSh(StrSchC)→ PSh(StrTop)

(see Construction 2.A.3). Recall that this functor preserves finite limits.
Hence, if we precompose strtop with GrRan,• : ∆op

inj → StrPShC we obtain a 2-Segal semisimplicial
object in stratified spaces. Also, since strtop sends stratified étale coverings to stratified coverings in the
topology of local homeomorphisms, it extends to a functor between the categories of sheaves.

Notation 2.2.1. For simplicity, we set GrRan = strtop(GrRan), GrRan,k = strtop(GrRan,k).

This construction admits a relative version over Ran(X) which is not exactly the natural one, because
of a change of topology we are going to perform on top(Ran(X)).

Remark 2.2.2. Let M = top(X), which is a real topological manifold of dimension 2. In [Lur17,
Definitions 5.5.1.1, 5.5.1.2] J. Lurie defines the Ran space Ran(M) of a topological manifold. By definition,
there is a map of topological spaces top(Ran(X))→ Ran(M). Indeed,

top(colimI X
I) ≃ colimI top(XI) ≃ colimI(topX)I = colimIM

I ,

because top is a left Kan extension. Now each term of the colimit is the space of I-indexed collections of
points inX(C), and hence it admits a map of sets towards Ran(M). This is a continuous map: indeed,
let f : I → X(C) be a function such that f(I) ∈ Ran({Ui}) for some disjoint open setsUi. Then there
is an open set V in MapTop(I, top(X)) containing f and such that ∀g ∈ V , g(I) ∈ Ran({Ui}): for
instance,

V =
⋂
i

{g : I → X | g(f−1(f(I) ∩ Ui)) ⊂ Ui}

suffices.
This induces a continuous map from colimM I to Ran(M) by the universal property of the colimit topol-
ogy, and therefore a continuous map top(Ran(X)an)→ Ran(M) which is the identity set-theoretically
(and thus it is compatible with the stratifications).

Construction 2.2.3. Composition with the map that we have just described yields a functor which we
call again

strtop : (StrPShC)/Ran(X) → PSh(StrTop)/Ran(M). (2.2.1)



In particular, we obtain a map ρ• : strtop(GrRan,•, σ•)→ Ran(M), which we consider as an object of
2-Segss(PSh(StrTop)/Ran(M)) (we abuse of notation by denoting the cardinality stratification again by κ).

Analogously, the functor ActGrRan,• : ∆op
inj → Act((StrPShC)/Ran(X)) induces a functor ActGr• :

∆
op
inj → Act(PSh(StrTop)/Ran(M)).

Remark 2.2.4. An important remark: with the notations of Section 2.A.3, the functor ActGr• takes
values in Actcon(PSh(StrTop)/Ran(M)).

This is the combination of Lemma 2.1.27 and the following result:

Proposition 2.2.5. Every Grk is a colimit of objects belonging to StrTopcon ⊂ StrTop.

Proof. See Section 2.B.3.

Let us stress that we are consider Actcon(PSh(StrTop)/Ran(M)) and not Actcon(StrTop) because the
whole affine Grassmannian is stratified by a poset which does not satisfy the ascending chain condition,
whereas the stratifying posets of the truncations at the levelN do.

Preimage functors

For every openU ⊂ Ran(M), there exists a “preimage space” GrU,k ∈ StrTop, whose underlying set can
be described as

{tuples in GrRan,k(C) such that S lies inU}.

Formally:

Definition 2.2.6. We define functors FactGrk : Open(Ran(M))→ StrTop/Ran(M) as

Open(Ran(M)) ⊂ Top/Ran(M)
ρ−1

k−−→ StrTop/FactGrk
→ StrTop/Ran(M)

sendingU to (U, κ|U ) and finally to (ρ−1
k (U)→ Ran(M), σk|ρ−1

k
(U)).

This operation is compatible with the semisimplicial structure, and therefore we obtain a functor:

FactGr• : Open(Ran(M))→ 2-Segss(StrTop/Ran(M)).

We can perform the same restriction construction as above for ArcRan,k and obtain stratified topologi-
cal groups

ArcU,k



acting on GrU,k ∈ StrTop/Ran(M), functorially in

U ∈ Open(Ran(M))

and k. We denote the functorU 7→ (ArcU,k → Ran(M)) by

FactArck : Open(Ran(M))→ Grp(StrTop/Ran(M)).

Again, this construction is functorial in k.

Remark 2.2.7. The two functors FactGrk and FactArck are hypercomplete cosheaves with values in
PSh(StrTop/Ran(M)).

2.2.2 Fusion

Definition 2.2.8. Let

StrTop⊙
/Ran(M)

be the following symmetric monoidal structure on StrTSpc/(Ran(M),κ): if ξ : X→ Ran(M), υ : Y→
Ran(M) are continuous maps, we define ξ ⊙ υ to be the disjoint product

(X× Y)disj = {x ∈ X, y ∈ Y | ξ(x) ∩ υ(y) = ∅}

together with the map towards Ran(M) induced by the map

union : (Ran(M)× Ran(M))disj → Ran(M)

(S, T ) 7→ S ⊔ T.

Recall the definition of the operad Fact(M)⊗ from [Lur17, Definition 5.5.4.9]. The aim of this
subsection is to extend the FactGrk’s and the FactArck’s to maps of operads respectively FactGr⊙

k :
Fact(M)⊗ → StrTSpc⊙

/Ran(M) and FactArc⊙
k : Fact(M)⊗ → Grp(StrTSpc/Ran(M))

⊙: the idea is that
the first one should encode the gluing of sheaves trivialised away from disjoints systems of points, and the
second one should behave accordingly.

The gluing map

We turn back for a moment to the algebraic side.



Definition 2.2.9. Let (Ran(X)×Ran(X))disj be the subfunctor of Ran(X)×Ran(X) parametrising
those S, T ⊂ X(R) for which ΓS ∩ ΓT = ∅.
Let also (GrRan,k × GrRan,k)disj be the preimage of (Ran(X) × Ran(X))disj with respect to the map
rk × rk : GrRan,k × GrRan,k → Ran(X)× Ran(X).

Proposition 2.2.10. There is a map of stratified presheaves χk : (GrRan,k × GrRan,k)disj → GrRan,k

encoding the gluing of sheaves with trivializations outside disjoint systems of points.

Proof. The map χk is defined as follows: we start with an object

(S,F1, α1, µ1, . . . ,Fk, αk), (T,G1, β1, ν1, . . . ,Gk, βk),

where S ∩ T = ∅. We want to obtain a sequence (P,H1, γ1, ζ1, . . . ,Hk, γk). Since the graphs of S
and T are disjoint,XR \ ΓS andXR \ ΓT form a Zariski open cover ofXR. Therefore, by the descent
property of the stack BunG, every couple Fi,Gi can be glued by means of αi and βi.

Each of these glued sheaves, that we call Hi, inherits a trivialization γi outside ΓS ∪ ΓT , which is
well-defined up to isomorphism (it can be seen both as αi|XR\(ΓS∪ΓT ) or as βi|XR\(ΓS∪ΓT )). Now set
P = S ∪ T (in the usual sense of joining the two collections of points).

It remains to define the glued formal trivializations. However, to define a trivialization ζi of Hi over
the formal neighbourhood of ΓP amounts to look for a trivialization of Hi on the formal neighbourhood
of ΓS ⊔ ΓT . But the first part of this union is contained inXR \ ΓT , where Hi is canonically isomorphic
toFi by construction; likewise, the first part of the union is contained inXR \ΓS , whereHi is canonically
isomorphic to Gi by construction. Hence, the originary trivializations µi and νi canonically provide the
desired datum ζi, and the construction of the map is complete.
Moreover, this map is stratified. Indeed, we have the torsor GrRan,k → GrRan×Ran(X) · · ·×Ran(X) GrRan,
and the stratification on GrRan,k is the pullback of the one on GrRan×Ran(X) · · ·×Ran(X) GrRan. Now for
any I, J finite sets, the map (GrXI×GrXJ )disj → GrXI⊔J is stratified by definition (cfr. Definition 2.1.24).
Therefore,

((
k︷ ︸︸ ︷

GrXI ×XI · · · ×XI GrXI )× (
k︷ ︸︸ ︷

GrXJ ×XJ · · · ×XJ GrXJ ))disj →

→
k︷ ︸︸ ︷

GrXI⊔J ×XI⊔J · · · ×XI⊔J GrXI⊔J

is stratified, and taking the colimit for I ∈ Finsurj, we obtain that

((GrRan ×Ran(X) · · · ×Ran(X) GrRan)× (GrRan ×Ran(X) · · · ×Ran(X) GrRan))disj

is stratified. Finally, since the stratification on GrRan,k is induced by the one on GrRan×Ran(X) · · ·×Ran(X)

GrRan via the torsor map GrRan,k → GrRan ×Ran(X) · · · ×Ran(X) GrRan, we can conclude.



Construction of FactGr⊙
k

Remark 2.2.11. Consider two independent open subsetsU and V of Ran(M). We have the following
diagram

GrU,k × GrV,k strtop((GrRan,k × GrRan,k)disj) GrRan,k

U × V (Ran(M)× Ran(M))disj Ran(M),

π

⊂ union

(2.2.2)

where the left hand square is a pullback of topological spaces, and the right top horizontal map is in-
duced by Proposition 2.2.10 by applying strtop. Here we use that the underlying complex-analytical
topological space of Ran(X) is – set-theoretically – the space of points of M , and therefore the map
strtop(Ran(X)×Ran(X))→ Ran(M)×Ran(M) restricts to a well-defined map strtop((Ran(X)×
Ran(X))disj)→ (Ran(M)× Ran(M))disj.
Note also that the bottom composition coincides with U × V → U ⋆ V ↪→ Ran(M), the first map
being the one taking unions of systems of points; hence, by the universal property of the fibered prod-
uct of topological spaces, (FactGrk)(U)× (FactGrk)(V ) admits a map towards (FactGrk)(U ⋆ V ) =
GrRan,k ×Ran(M) (U ⋆ V ), which we call pU,V,k. Of course the triangle

ArcU,k ×ArcV,k ArcU⋆V,k

Ran(M) ,

pU,V,k

union◦π

commutes.

Proposition 2.2.12. Remark 2.2.11 induces well-defined maps of operads FactGr⊙
k : Fact(M)⊗ →

StrTop⊙
/Ran(M) encoding the gluing of sheaves trivialised outside disjoint systems of points. That is, we

have

• FactGr⊙
k (U) is the map (ArcU,k)→ U ↪→ Ran(M) for everyU open subset of Ran(M).

• the image of the morphism (U, V )→ (U ⋆ V ) for any independentU, V ∈ Open(Ran(M)) is the
commuting triangle

(FactGrk)(U)× (FactGrk)(V ) (FactGrk)(U ⋆ V )

Ran(M) ,

where the top map is the gluing of sheaves trivialised outside disjoints systems of points, and the left
map is the map that remembers the two disjoint systems of points and takes their union.



Proof. See Section 2.B.2.

Remark 2.2.13. The constructions performed in the proof of Proposition 2.2.12 are compatible with the
face maps of GrRan,•. Indeed, for any two independent open subsetsU, V ⊂ Ran(M), the squares

GrU,k × GrV,k GrU⋆V,k

GrU,k−1 × GrV,k−1 GrU⋆V,k−1

are commutative because the original diagrams at the algebraic level commute. That is,

(GrRan,k × GrRan,k)disj GrRan,k

(GrRan,k−1 × GrRan,k−1)disj GrRan,k−1

commutes, since the construction involved in the horizontal maps, as we have seen, does not change the
formal trivializations, and, by the independence hypothesis, the non-formal trivializations do not change
in the punctured formal neighbourhoods involved in the formal gluing procedure.

Proposition 2.2.14. The maps of operads FactGr⊙
k : Fact(M)⊗ → StrTop⊙

/Ran(M) assemble to a map of
operads FactGr⊙

• : Fact(M)⊗ → (2-Segss(StrTop))⊙
/Ran(M).

Proof. Since we have already noticed that the functor strtop preserve finite limits, the condition that
FactGr• is 2-Segal can be recovered from the algebraic setting. Now the map

FactGrk(U)→ FactGr{0,...,l}(U)×FactGr{0,l}(U) FactGr{l,...,k}(U)

is the pullback of
GrRan,k → GrRan,{0,...,l} ×GrRan,{0,l} GrRan,{0,l,...,k}

alongU → Ran(M), hence it is a homeomorphism (and the same holds for the {l, k} case).

Construction of FactArc⊙
k

Construction 2.2.15. We can perform a similar construction for

FactArck : Open(Ran(M))→ Grp(StrTop/Ran(M))

as well. Indeed, we can define

(ArcRan,k × ArcRan,k)disj(R) = {(S, g1, . . . , gk) ∈ FactArck(R),



(T, h1, . . . , hk) ∈ ArcRan,k(R) | ΓS ∩ ΓT = ∅}

and maps
(ArcRan,k × ArcRan,k)disj(R)→ ArcRan,k(R)

((S, g1, . . . , gk), (T, h1, . . . , hk)) 7→ (S ∪ T, g̃1h1, . . . , g̃khk),

where g̃ihi is the automorphism ofTG (̂XR)ΓS∪ΓT

defined separatedly as gi andhi on the two components,

which are disjoint by hypothesis. The rest of the construction is analogous, and provides maps of operads

FactArc⊙
k : Fact(M)⊗ → Grp(StrTop/Ran(M))

⊙

which are, as usual, natural and 2-Segal in k ∈∆
op
inj.

2.2.3 The factorizing property

Our aim now is to verify the so-called factorization property (see [Lur17, Theorem 5.5.4.10]) for the functors

FactGr⊙
k : Fact(M)⊗ → StrTop⊙

/Ran(M)

and
FactArc⊙

k : Fact(M)⊗ → Grp(StrTop/Ran(M))
⊙.

This will immediately imply the property.

Proposition 2.2.16 (Generalised factorization property). IfU, V are independent, then the mapsFactGrk(U)×
FactGrk(V )→ FactGrk(U ⋆ V ), resp. FactArck(U)× FactArck(V )→ FactArck(U ⋆ V ), are strat-
ified homeomorphisms over Ran(M), resp. homeomorphisms of topological groups over Ran(M).

Proof. Note that the right-hand square in Diagram (2.2.2) is Cartesian. Indeed, let us now prove that its
algebraic counterpart

(GrRan,k × GrRan,k)disj GrRan,k

(Ran(X)× Ran(X))disj Ran(X)

is cartesian in PShC.
The pullback of the cospan computed in PShC is, abstractly, the functor parametrising tuples of the

form (S, T ), (P,Hi, γi, ζi), where (S, T ) ∈ (Ran(X)×Ran(X))disj(R), P = S∪T, (P,Hi, γi, ζi) ∈
GrRan,k(R). From this we can uniquely reconstruct a sequence (S,Fi, αi, µi, T,Gi, βi, νi) in (GrRan,k×
GrRan,k)disj(R). To do so, define Fi ∈ BunG(XR) as the gluing of Hi with the trivialG-bundle around



T , which comes with a trivialization αi : Fi|XR\ΓS

∼−→ TG|XR\ΓS
. We also define Gi as the gluing of Hi

with the trivialG-bundle around S, coming with a trivialization βi outside T . As for the formal part of
the datum, the ζi’s automatically restrict to the desired formal neighbourhoods.
This construction is inverse to the natural map (GrRan,k ×GrRan,k)disj → GrRan,k ×Ran(X) (Ran(X)×
Ran(X))disj.
But now, the diagram

strtop(Ran(X)× Ran(X))disj strtop(Ran(X))

(Ran(M)× Ran(M))disj Ran(M)

is again Cartesian, since, set-theoretically, the vertical maps are the identity, and we are just performing
a change of topology on the bottom map. Hence the right-hand square in Diagram (2.2.2) is Cartesian,
because the functor strtop preserves finite limits.
This concludes the proof since the outer square in (2.2.2) is Cartesian, and therefore the natural map
FactGrk(U)× FactGrk(V )→ FactGrk(U ⋆ V ) is a homeomorphism of topological spaces.
Now we turn to FactArck. It suffices to prove that the square

(ArcRan,k × ArcRan,k)disj ArcRan,k

(Ran(X)× Ran(X))disj Ran(X)

is Cartesian in PShC. But this is clear once one considers the map

(Ran(X)× Ran(X))disj ×Ran(X) ArcRan,k → (ArcRan,k × ArcRan,k)disj

given by

(S, T, {gi ∈ Aut(̂XR)ΓS∪ΓT

(TG)}) 7→ ((S, {gi|(̂XR)ΓS

}), (S, {gi|(̂XR)ΓT

})).

Since the graphs are disjoint, this map is an equivalence. This concludes the proof.

2.2.4 Local constancy

The aim of this subsection is to prove that the functors FactGr⊙
k and FactArc⊙

k satisfy a suitable “local
constancy” property, which will be used in the following to apply [Lur17, Theorem 5.5.4.10].



Definition 2.2.17. Let f : (Y, s, P ) → (Y ′, s′, P ′) be a map of stratified topological spaces (in the
notation of Section 2.A.1), andG a topological group. We say that f is a stratifiedG-bundle if, locally in
the topology strloc (see Section 2.A.1), f coincides with the projectionG× Y ′ → Y ′.

Lemma 2.2.18. Let G be a stratified group scheme. If f : S → T is a morphism of stratified schemes
which is a stratifiedG-torsor with respect to the étale topology strét(see again Section 2.A.1), then strtop(f) :
strtop(S)→ strtop(T ) is a principal stratifiedG-bundle.

Proof. First we perform the proof in the unstratified setting. First of all, to be locally trivial with respect to
the étale topology at the algebraic level implies to be locally trivial with respect to the analytic topology at
the analytic level (see [Rey71, Section 5] and [Bha, Section 5]). Now the analytic topology on an analytic
manifold is the topology whose coverings are jointly surjective families of local homeomorphisms. We
want to prove that a trivialising covering for top(f) with respect to this topology is the same of a classical
trivialising open covering. Any open embedding is a local homeomorphism. Conversely, let us suppose
that we have a trivialising local homeomorphism, that is a local homeomorphism of topological spaces
w : W → top(T ) such that top(S) ×top(T ) W is isomorphic to top(G) ×W . Now, by definition of
local homeomorphism, for every x in the image ofw we have thatw restricts to an open embedding on
some open setU ⊂W whose image contains x. Moreover,U →W → top(T ) is trivialising a fortiori,
that isU ×top(T ) top(S) ≃ U × top(G). In conclusion, if we have a jointly surjective family of trivialising
local homeomorphisms, the above procedure yields a covering family of trivialising open sets.
In the stratified setting, the proof is the same, since the relevant maps are étale-stratified on the algebraic
side, and therefore become analytic-stratified on the topological side.

Recall the definition of conically smooth space from [AFT17, Section 3] (see Section 3.1.2 for a quick re-
view) and the definition of weakly constructible bundle and constructible bundle from [AFT17, Definition
3.6.1].

Lemma 2.2.19. The map GrRan → Ran(M) is a weakly constructible bundle.

Proof. Fix a stratum Rann(M) in Ran(M). The restriction of the map GrRan → Ran(M) to that
stratum is locally trivial with stratified fiber Grn, since by the factorization property GrRan|Rann(M) ≃
(GrstrtopX )×n|(Xn)topdisj /Sn

, and GrX ≃ Gr ×Aut+(D) X , which is étale-locally trivial over X with fiber
Gr.

Conjecture 2.2.20. The map GrRan → Ran(M) is a constructible bundle.

Conjecture 2.2.21. Let f : (Y, s, P )→ (Y ′, s′, P ′) be a constructible bundle of conically smooth spaces.
Then stratified homotopies can be lifted along f .



Forthcoming work with Mauro Porta, Jean-Baptiste Teyssier and Marco Volpe is devoted to the proof
of these two conjectures.

Proposition 2.2.22. For every nonempty finite collection of disjoint disksD1, . . . , Dn ⊆M containing
open subdisksE1 ⊆ D1, . . . , En ⊆ Dn, the maps

FactGrk(Ran({Ei}))→ FactGrk(Ran({Di}))

and
FactArck(Ran({Ei}))→ FactArck(Ran({Di}))

are stratified homotopy equivalences over (Ran(X•(T )+))k in the sense of Definition 2.A.21.

Proof. The factorising property tells us that these maps assume the form
∏n
i=1 FactGrk(Ran(Ei)) →∏n

i=1 FactGrk(Ran(Di)) and
∏n
i=1 FactArck(Ran(Ei)) →

∏n
i=1 FactArck(Ran(Di)) respectively,

and hence it suffices to perform the checks term by term, i.e., to assume n = 1.
We deal first with the case FactGrk(Ran({Ei})) → FactGrk(Ran({Di})). Now we observe that we
can reduce to the case k = 1: indeed, GrRan,k is a stratified ArcRan,k−1-torsor over the k-fold product
GrRan ×Ran(X) · · · ×Ran(X) GrRan, and therefore GrRan,k → GrRan ×Ran(M) · · · ×Ran(M) GrRan is
a stratified ArcRan,k−1-principal topological bundle, in particular it is a Serre fibration. Thus, if we
prove that GrRan(E) → GrRan(D) is a stratified homotopy equivalence, then the same will be true for
GrRan(E)×Ran(E) · · ·×Ran(E) GrRan(E) → GrRan(D)×Ran(D) · · ·×Ran(D) GrRan(D) and therefore at the
upper level for GrRan(E),k → GrRan(D),k.
But this is true by Lemma 2.2.19.

IfD is a disk around x inM , we can define GrD,1 as the preimage along r1 : GrRan → Ran(M) of
the (not open) subsetD ↪→ Ran(D) ⊂ Ran(M).

Corollary 2.2.23. The natural injective map Grx,1 → GrD,1 is a stratified homotopy equivalence over
(Ran(X•(T )+))k .

Notation 2.2.24. From now on, we will denote the relation “being stratified homotopy equivalent” by
she∼ and “being homotopy equivalent as topological groups” by ghe∼ .

We can express this property in a more suitable way by considering the∞-categorical localization
PSh(Actcon(StrTop/Ran(M))[esh

−1])× see Definition 2.A.21. Since she is closed under the symmetric
monoidal structure of PSh(StrTop)×, the localization functor extends to a map of operads

(ActconPSh(StrTop))× → ActconPSh(StrTop)[esh−1]×



and therefore to

Corr(ActconPSh(StrTop))× → Corr(ActconPSh(StrTop)[esh−1])×.

This provides a functor

ActGr× : Fact(M)⊗ × Enu
1 → Corr(Actcon(PSh(StrTop)/Ran(M)))[esh1])×,⊙ (2.2.3)

which is a map of operads in both variables with respect to the respective symmetric monoidal structures
on the target, has the factorization property in the first variable and sends the usual inclusions of Ran
spaces of systems of disks to equivalences in the target category.

2.2.5 Interaction of convolution and fusion over Ran(M)

Construction 2.2.25. Let thus ActGr•(−)· : Fact(M)⊗ ×∆
op
inj → PSh(Act((StrTop)/Ran(M)))⊙

denote the functor defined by (U, k) 7→ (FactArck(U),FactGrk(U),Φk,k(U)). Recall that this functor
satisfies the 2-Segal property in k. If we apply (the semisimplicial variant of) [DK19, Theorem 11.1.6] to
ActGr•(−)⊙, we obtain a functor

ActGr(−,−)⊙,× : Fact(M)⊗ × Enu
1 → Corr(PSh(Act(Top/Ran(M))))

⊙,×

This functor is lax monoidal in the variable Fact(M)⊗ with respect to the structure⊙ on the target, and
in the variable Enu

1 with respect to the structure× on the target.

Remark 2.2.26. Now we make the two algebra structures interact. Consider GrRan,1 = GrRan: we have
two ways of defining an “operation” on it:

• restrict to GrRan,1 ×Ran(M) GrRan,1 and consider the correspondence

GrRan,2

GrRan,1 ×Ran(M) GrRan,1 GrRan,1

• restrict to (GrRan,1 × GrRan,1)disj, or more precisely to GrU,1 × GrV,1 for independent open sets
U, V ⊂ Ran(M), and consider the map GrU,1 × GrV,1 → GrU⋆V,1 induced by Remark 2.2.11.

Formally, these “restrictions” are obtained by forgetting both structures to StrTop. Indeed, the forgetful
functor StrTop/Ran(M) → StrTop induces a functor

Corr(PSh(StrTop)/Ran(M))→ Corr(PSh(StrTop))



which is lax monoidal with respect to both×Ran(X) and⊙. Indeed, there are maps

GrRan,1 ×Ran(M) GrRan,1 → GrRan,1 × GrRan,1

and
(GrRan,1 × GrRan,1)disj → GrRan,1 × GrRan,1

which can be encoded as correpondences fromGrRan,1×GrRan,1 toGrRan,1×Ran(M)GrRan,1 and (GrRan,1×
GrRan,1)disj respectively. Note that the context of correspondences here is very useful to encode this
“restriction” procedure.

By this argument, the functor obtained from

ActGr(−,−)⊙,× : Fact(M)⊗ × Enu
1 → Corr(PSh(ActconStrTop/Ran(M)))

⊙,×

by composition with

Corr(PSh(ActconStrTop/Ran(M)))
⊙,× → Corr(PSh(ActconStrTop))×

is a lax monoidal functor in both variables

ActGr(−,−)× : Fact(M)⊗ × Enu
1 → Corr(PSh(ActconStrTop))×.

2.2.6 The stalk of the factorising cosheaf

We can apply [Lur17, Theorem 5.5.4.10] to the map of operads (2.2.3), since we have proven in the previous
subsections that the hypotheses of the theorem are satisfied. We denote the operads E⊗

n ,E⊗
M by En,EM .

Corollary 2.2.27. The functor ActGr× induces a nonunital EM -algebra object

ActGr×
M ∈ Algnu

EM
(Algnu

E1
(PSh(Act(Top)[esh−1])×)).

Fix a point x ∈M . The main consequence of the above result is that the stalk of ActGr× at the point
{x} ∈ Ran(M) inherits an Enu

2 -algebra structure in 2-Segss(PSh(Act(Top)[esh−1])×)). We will now
explain how, running through [Lur17, Chapter 5] again.

Remark 2.2.28. By [Lur17, Example 5.4.5.3], a nonunitalEM -algebra objectA⊗ in a symmetric monoidal
∞-category C induces a nonunital En-algebra object in C, where n is the real dimension of the topological
manifoldM , by taking the stalk at a point x ∈M . More precisely, there is an object in AlgEn

(C) whose
underlying object is lim{x}∈U∈Open(Ran(M))A(U), which coincides with limx∈D∈Disk(M)A(Ran(D)),



since the family of Ran spaces of disks aroundx is final in the family of open neighbourhoods of {x} inside
Ran(M). Now eachA⊗|Fact(D)⊗ induces a nonunital ED-algebra by Lurie’s theorem [Lur17, p. 5.5.4.10].
But [Lur17, Example 5.4.5.3] tells us thatED-algebras are equivalent toEn algebras. Also, by local constancy
(i.e. constructibility), the functor D 7→ A(D) is constant over the family x ∈ D ∈ Disk(M), and
therefore the stalkAx coincides with any of those En-algebras. This also implies that all stalks at points of
M are (noncanonically) isomorphic.4

Also, the content of [Lur17, Subsection 5.5.4] tells us how theEn-multiplication structure works concretely.
Choose a diskD containing x. We interpret this as the only object in the ⟨1⟩-fiber of ED. Recall that a
morphism in ED lying over the map

⟨2⟩ → ⟨1⟩

1, 2 7→ 1

is the choice of an embeddingD ⨿D ↪→ D. Call nD the unique object lying over ⟨n⟩ in ED.
Consider the canonical map ED → EM . IfAM is the Enu

M -algebra object appearing in the conclusion
of Lurie’s theorem, callAD its restriction to ED. Recall from the proof of Lurie’s theorem thatAM is
obtained by operadic left Kan extension of the restrictionA|Disk(M) along the functor Disk(M)⊗ → EM .
Then we have that

Lemma 2.2.29.
AD(1D) = A(Ran(D)),

and
AD(2D) = colim{A(Ran(E))⊗A(Ran(F )) | E,F ∈ Disk(M),

E ∩ F = ∅, D ⨿D ∼−→ E ⨿ F ↪→ D} ≃

≃ A(Ran(E0))⊗A(Ran(F0))

for any choice of an embeddingD ⨿D ∼−→ E0 ⨿ F0 ↪→ D.

Proof. We need to prove that the colimit degenerates. Take indeed two couples of disks as in the statement,
sayE1, F1 andE2, F2. By local constancy, we can suppose that all four disks are pairwise disjoint. Now
we can embed bothE1 andE2 into someE, and F1, F2 into some F , in such a way thatE ∩ F = ∅.
Then we have canonical equivalences

A(Ran(E1))⊗A(Ran(F1)) ∼−→ A(Ran(E))⊗A(Ran(F ))
4Note that this is true only for points of Ran(M) coming from single points of M . If we allow the cardinality of the system

of points to vary, stalks may take different values. In fact, the factorization property tells us that a system of cardinality m will give
the m-ary tensor product in C of the stalk at the single point.



and
A(Ran(E2))⊗A(Ran(F2)) A−→ (Ran(E))⊗A(Ran(F )).

This discussion implies that the operation µ onAx encoded by Lurie’s theorem has the form

Ax ⊗Ax ≃ A(Ran(D))⊗A(Ran(D)) ∼−→ A(Ran(E0))⊗A(Ran(F0))

∼−→ A(Ran(E0) ⋆ Ran(F0))→ A(Ran(D)) ≃ Ax, (2.2.4)

where:

• the first and last equivalences come from local constancy;

• the second equivalence is induced by the chosen embeddingD ⨿D ∼−→ E0 ⨿ F0 ↪→ D;

• the third equivalence is the factorization property.

The discussion about the stalk leads to the main theorem of this section:

Theorem 2.2.30. The stalk at x ∈ M of the EM -algebra object ActGrM from Corollary 2.2.27 can be
naturally viewed as an object of

ActGr×
x ∈ Algnu

E2
(Algnu

E1
(Corr(ActconStrTop[esh−1])×))

encoding simultaneously the convolution and fusion procedures onGO\GrG.

2.3 Product of constructible sheaves

2.3.1 Taking constructible sheaves

Definition 2.3.1. We denote by A⊗,nu the functor

Cons⊗
corr ◦ActGr×

x : Enu
2 × Enu

1 → PrL,⊗
k .

By construction, one has that A⊗,nu(1, 1) = ConsGO
(Gr) and more in general

(⟨m⟩, ⟨k⟩) 7→

m︷ ︸︸ ︷
ConsG×k

O

(G×k−1
K × Gr)⊗ · · · ⊗ ConsG×k

O

(G×k−1
K × Gr) .



2.3.2 Units and the main theorem

Remark 2.3.2. Let us inspect the behaviour of the E2 product. We had a map

µ : Hckx ×Hckx → Hckx

from (2.2.4). By construction, when we apply the functor Cons, this is sent forward with lower shriek
functoriality. Therefore, for k = 1, we end up with a map

ConsGO
(Gr)× ConsGO

(Gr) µ!−→ ConsGO
.

Recovering the original structure of the map µ, µ! decomposes as

ConsGO
(Gr)× ConsGO

(Gr)
∼−→ ConsArcRan(D)(GrRan(D))× ConsArcRan(D)(GrRan(D))
∼−→ ConsArcRan(E)(GrRan(E))× ConsArcRan(F )(GrRan(F ))

∼−→ ConsArcRan(E)⋆Ran(F )(GrRan(E)⋆Ran(F ))

→ ConsArcRan(D)(GrRan(D))
∼−→
j∗

x

ConsGO
(Gr),

where jx : {x} → Ran(M) is the inclusion.

Proposition 2.3.3. Let x ∈M be a point. Consider the functor A⊗
x : Enu

2 × Enu
1 → PrL,⊗

k . Then this can
be upgraded to a map of operads E2 × Enu

1 → PrL,⊗
k .

Proof. We can apply [Lur17, Theorem 5.4.4.5], whose hypothesis is satisfied since for any∞-category C the
functor C× → Fin∗ is a coCartesian fibration of∞-operads ([Lur17, Proposition 2.4.1.5]): therefore, it
suffices to exhibit a quasi-unit for anyA⊗(−, ⟨k⟩), functorial in ⟨k⟩ ∈ Enu

1 . We can consider the map (nat-
ural in k) uk : SpecC→ Grx,k represented by the sequence (TG, id|X\{x}, id|X̂x

, . . . ,TG, idX\{x}) ∈
Grx,k. Note now that this induces a map of spaces

∗ → Grx,k.

The formal gluing property evidently commutes with this map at the various levels, so this construction
is natural in k. As usual, let us denote by Hckx,k be the evaluation of Hck×

x at ⟨1⟩ ∈ Enu
2 , ⟨m⟩ ∈ Enu

1 .
We have an induced map ∗ → Hckx,k for every k. Now if µk : Hckx,k ×Hckx,k → Hckx,k is the
multiplication in Sh(StrTop), we can consider the composition

Hckx,k
she∼ Hckx,k × ∗

id,uk−−−→ Hckx,k ×Hckx,k
µk−→ Hckx,k

and we find that this composition is the identity. Therefore, uk is a right quasi-unit, functorially in k. The
condition that it is a left-quasi unit is verified analogously.



Remark 2.3.4. Let us now inspect the behaviour of the E1 product. Let us fix the E2 entry equal to ⟨1⟩
for simpplicity. Then the product law is described by the map

Ax(⟨1⟩, ⟨2⟩) = ConsGO
(Gr)⊗ ConsGO

(Gr) ⊠−→ ConsGO×GO
(Gr× Gr)

Hckx(∂2×∂0)∗=p∗
−−−−−−−−−−−→ ConsGO×GO

(FactGr2,x) = Cons(Hckx) ∼=

Cons(GO\(GK ×GO Gr)) FactGr(δ1)∗=m∗−−−−−−−−−−→ ConsGO
(Gr) = Ax(⟨1⟩, ⟨1⟩).

The “pullback” and “pushforward” steps come from the construction of the functor out of the category of
correspondences, which by construction takes a correspondence to the “pullback-pushforward” transform
between the categories of constructible sheaves over the bottom vertexes of the correspondence. Note that
the most subtle step is the equivalence in the penultimate step. If one is to compute explicitly a product
of two constructible sheaves F,G ∈ ConsGO

(Gr), one must reconstruct the correct equivariant sheaf
over ConvGrx,2 whose pullback to Grx,2 is p∗(F ⊠G), and then push it forward alongm (in the derived
sense of course). We stress again that this, when restricted to PervGO

(Gr), is exactly the definition of the
convolution product of perverse sheaves from [MV07] (up to shift and t-structure).

Proposition 2.3.5. The map of operads A⊗
x : E2 × Enu

1 → PrL,⊗
k can be upgraded to a map of operads

A⊗
x : E2 × E1 → PrL,⊗

k .

Proof. Again, it suffices to exhibit a quasi-unit. In this case, this is represented by the element ∗ 1−→
Consk,GO

(Gr). Here 1 is the pushforward along the trivial section t : ∗ → Gr, t(∗) = (TG, id|X\x), of
the constant sheaf with value k.
The proof is given in [Rei12, Proposition IV.3.5]. We denote by ⋆ the E1-product of equivariant con-
structible sheaves on Gr described by Ax(−). By Remark 2.3.4 for any F ∈ Consk,GO

(Gr) we can
compute the product via the convolution diagram

GK × Gr = Grx,2 GK ×GO Gr = ConvGr2,x

Gr× Gr Gr.

p

q

m

In our specific case, we are given a diagram

GK × Gr GK ×GO Gr

∗ × Gr Gr× Gr Gr,

p

q

m

t×id

j



where j is the closed embedding (F, α) 7→ (TG, id|X\x,F, α) whose image is canonically identified with
Gr. Let F ∈ Consk,GO

(Gr). We want to prove that 1⊠̃F ≃ j∗(k ⊠ F ), i.e. that

q∗j∗(k ⊠ F ) ≃ p∗(t× id)∗(k ⊠ F ).

Note that because of the consideration about the image of j the support of both sides lies inGO × Gr ⊂
GK × Gr, and this yields a restricted diagram

GO × Gr Gr

Gr Gr.

q̃

p̃ m̃∼
j

This proves the claim. By applyingm∗ we obtain

1 ⋆ F ≃ m∗(j∗(k ⊠ F )) = k ⊠ F = F

sincemj = id.

Thanks to these results, our functor A⊗
x is promoted to a map of operads E2 × E1 → PrL,⊗

k . By the
Additivity Theorem ([Lur17, Theorem 5.1.2.2]), we obtain an E3-algebra object in PrL,⊗

k . Summing up:

Theorem 2.3.6 (Main theorem). LetG be a complex reductive group and k be a finite ring of coefficients.
There is an object A⊗

x ∈ AlgE3
(PrL,⊗

k ) describing an associative and braided product law on the∞-category

ConsGO
(GrG)

ofGO-equivariant constructible sheaves over the affine Grassmannian. The restriction of this product law to
the abelian category of equivariant perverse sheaves coincides, up to shifts and perverse truncations, with the
classical (commutative) convolution product of perverse sheaves [MV07].

Corollary 2.3.7. There is an induced E3-monoidal structure in Cat×
∞ on Consfd

GO
(Gr).

Proof. The inclusion PrL
k → Cat∞,k is lax monoidal with respect to the⊗-structure on the source and

the×-structure on the target. Therefore, ConsGO
(Gr) has an induced E3-algebra structure in Cat×

∞,k.
One can easily check that the convolution product restricts to the small (not presentable) subcategory of
finite-dimensional sheaves, and this concludes the proof.



2.A Constructible sheaves on stratified spaces: theoretical complements

2.A.1 Stratified schemes and stratified analytic spaces

Definitions

The following definitions are particular cases of [BGH20, p. 8.2.1] and ff. .

Definition 2.A.1. Let Top be the 1-category of topological spaces. The category of stratified topological
spaces is defined as

StrTopC = Fun(∆1,Top)×Top Poset,

where the map Fun(∆1,Top) → Top is the evaluation at 1, and Alex : Poset → Top assigns to each
poset P its underlying set with the so-called Alexandrov topology (see [BGH20, Definition 1.1.1]).

Definition 2.A.2. Let StrSch = Sch×Top StrTop, where the map Sch→ Top sends a schemeX to its
underlying Zariski topological space, and the other map is the evaluation at [0], be the category of stratified
schemes, and StrAff its full subcategory of stratified affine schemes.

Analogously, one can define stratified complex schemes StrSchC and stratified complex affine schemes
StrAffC. The key point now is that there is an analytification functor an : AffC → StnC, the category of
Stein analytic spaces. This is defined in [Rey71, Théorème et définition 1.1] (and for earlier notions used
there, see also [Gro57, p. 6]). In this way we obtain a Stein space, which is a particular kind of complex
manifold with a sheaf of holomorphic functions. We can forget the sheaf and the complex structure and
recover an underlying Hausdorff topological space (which corresponds to the operation denoted by | − |
in [Rey71]) thus finally obtaining a functor

top : SchC → Top.

A reference for a thorough treatment of analytification (also at a derived level) is [HP18].
Let now StrStnC = StnC ×Top,ev0 StrTop. There is a natural stratified version of the functor top,

namely the one that assigns to a stratified affine complex scheme (S, s : zar(S) → P ) the underlying
topological space of the associated complex analytic space, with the stratification induced by the map of
ringed spaces u : San → S:

StrAffC → StrStnC → StrTop

(S, s) 7→ (San, s ◦ u) 7→ (|San|, s ◦ u).



Construction 2.A.3. We can define the category StrPShC as PSh(StrAffC). Note that StrTop is cocom-
plete, because Top, Fun(∆1,Top) and Poset are. By left Kan extension we have a functor

strtop : StrPShC → StrTop. (2.A.1)

By construction, this functor preserves small colimits and finite limits (since both−an : AffC → StnC

and | − | : StnC → Top preserve finite limits, see [Rey71]).

Pullbacks of stratified spaces

Lemma 2.A.4. The forgetful functor StrTop→ Top preserves and reflects finite limits.

Proof. Since StrTop = Fun(∆1,Top)×ev1,Top,Alex Poset (see Section 2.A.1), it suffices to show that:

• the functor ev0 : Fun(∆1,Top)→ Top preserves and reflects pullbacks.

• the functor Alex : Poset→ Top preserves and reflects pullbacks;

Now, the first point follows from the fact that limits in categories of functors are computed component-
wise. The second point can be verified directly, by means of the following facts:

• the functor preserves binary products. Indeed, given two posets P,Q, then the underlying sets of
P × Q and Alex(P ) × Alex(Q) coincide. Now, the product topology on Alex(P ) × Alex(Q)
is coarser than the Alexandrov topology Alex(P × Q). Moreover, there is a simple base for the
Alexandrov topology of a poset P , namely the one given by “half-lines” Pp0 = {p ∈ P | p ≥ p0}.
Now, if we choose a point (p0, q0) ∈ Alex(P ×Q), the set (P ×Q)(p0,q0) is a base open set for
the topology of Alex(P ×Q), but it coincides precisely withPp0 ×Qq0 . Therefore the Alexandrov
topology on the product is coarser that the product topology, and we conclude. Note that this latter
part would not be true in the case of an infinite product.

• equalizers are preserved by a simple set-theoretic argument. Therefore, we can conclude that finite
limits are preserved.

• Alex is a full functor (by direct verification). Since we have proved that it preserves finite limits, then
it reflects them as well.



Topologies

In our setting, there are two specially relevant Grothendieck topologies to consider: the étale topology on
the algebraic side and the topology of local homeomorphisms on the topological side (which has however
the same sheaves as the topology of open embeddings). We have thus sites AffC, ét and Top, loc. We can
therefore consider the following topoi:

• Shét(SchC);

• PSh(Shét(SchC)), which we interpret as “étale sheaves over the category of complex presheaves”;

• Shloc(Top). This last topos is indeed equivalent to the usual topos of sheaves over the category of
topological spaces and open covers.

Now, there are analogs of both topologies in the stratified setting. Namely, we can define strét as the
topology whose coverings are stratification-preserving étale coverings, and strloc as the topology whose
coverings are jointly surjective famiilies of stratification-preserving local homemorphisms. Therefore, we
have well-defined stratified analogues:

• Shstrét(StrSchC)

• Shstrét(StrPShC) := PSh(Shstrét(StrSchC))

• Shstrloc(StrTop).

The stratification functor strtop : StrSchC → StrTop sends stratified étale coverings to stratified coverings
in the topology of local homeomorphism, and thus induces a functor

Shstrét(StrPShC)→ Shstrloc(StrTop).

2.A.2 Symmetric monoidal structures on the constructible sheaves functor

Constructible sheaves on conically stratified spaces locally of singular shape

Fix a finite ring of coefficients k (this can be extended to the ℓ-adic setting and to more general rings of
coefficients, but we will not do this in the present work. For a reference, see [LZ17]).

Remark 2.A.5. Let (X, s) be a stratified topological space, and k be a torsion ring. Suppose that (X, s)
is conically stratified, that X is locally of singular shape and that P , the stratifying poset, satisfies the
ascending chain condition (see [Lur17, Definition A.5.5 and A.4.15 resp.]). By [Lur17, Theorem A.9.3] the



∞-category of constructible sheaves onX with respect to swith coefficients in k, denoted byConsk(X, s),
is equivalent to the∞-category

Fun(Exit(X, s),Modk).

Here Exit(X, s) is the∞-category of exit paths on (X, s) (see [Lur17, Definition A.6.2], where it is
denoted by SingA(X),A being the poset associated to the stratification). We will often write Cons instead
of Consk.

We review the definition of conical stratifications in more detail in Definition 3.1.11.

Remark 2.A.6. In recent work by Porta and Teyssier [PT22], the hypothesis of “being locally of singular
shape” has been removed. For simplicity, we will often work in this higher degree of generality.

Let StrTopcon denote the 1-category of stratified topological spaces (X,P, s) such that the stratification
is conical, X is locally of singular shape, and P satisfies the ascending chain condition. This category
admits finite products because the product of two cones is the cone of the join space. Therefore, there is a
well-defined symmetric monoidal Cartesian structure StrTop×

con.

Corollary 2.A.7. Let (X,P, s) ∈ StrTopcon, and k be a ring. ThenConsk(X,P, s) is a presentable stable
k-linear category.

Therefore, the∞-category PrL
k of presentable stable k-linear∞-categories will be our usual environ-

ment from now on.

Symmetric monoidal structure

Lemma 2.A.8. The functor

Exit : StrTopcon → Cat∞

(X, s : X → P ) 7→ Exit(X, s) = SingP (X)

carries a symmetric monoidal structure when we endow both source and target with the Cartesian symmetric
monoidal structure. That is, it extends to a symmetric monoidal functor

StrTop×
con → Cat×

∞.

Proof. Given two stratified topological spacesX, s : X → P, Y, t : Y → Q, in the notations of [Lur17,



A.6], consider the commutative diagram of simplicial sets

SingP×Q(X × Y ) Sing(X × Y ) Sing(X)× Sing(Y )

N(P ×Q) Sing(P ×Q)

N(P )×N(Q) Sing(P )× Sing(Q).

∼

∼ ∼

The inner diagram is Cartesian by definition. Therefore the outer diagram is Cartesian, and we conclude
that SingP×Q(X × Y ) is canonically equivalent to SingP (X)× SingQ(Y ). Since SingP (X) models the
∞-category of exit paths ofX with respect to s, and similarly for the other spaces, we conclude.

Remark 2.A.9. There exists a functor P(∗) : Cat×
∞ → PrL,⊗ sending an∞-category C to the presheaf

∞-category P(C), a functorF : C→ D to the functorF ∗ : P(D)→ P(C) given by given by restriction
under F .

We would like to set a symmetric monoidal structure on this functor. However, this is slightly
complicated. Up to our knowledge, the symmetric monoidal structure is well-studied on its “covariant
version”, in the following sense.

Lemma 2.A.10 ([Lur17, Remark 4.8.1.8 and Proposition 4.8.1.15]). There exists a symmetric monoidal
functor P(!) : Cat×

∞ → PrL,⊗ sending an∞-category C to the∞-category of S-valued presheaves P(C), a
functor F : C→ D to the functor P(D)→ P(C) given by F! = LanF (−).

Proof. The existence of an oplax-monoidal structure follows from [Lur17, p. 4.8.1]. As for symmetric
monoidality, apparently, a detail in the proof of [Lur17, Proposition 4.8.1.15] needs to be fixed: for any pair
of∞-categories C,D, the equivalence P(C)× P(D) follows from the universal property of the tensor
product of presentable categories, and not from [Lur17, Corollary 4.8.1.12]. Indeed, for any cocomplete
∞-category E one has:

Cocont(P(C×D),E) ≃ Fun(C×D,E) ≃ Fun(C, Fun(D,E)) ≃

≃ Fun(C0,Cocont(P(D),E)) ≃ Cocont(P(C),Cocont(P(D),E)) ≃

≃ Bicocont(P(C)× P(D),E).



Corollary 2.A.11. There is a well-defined symmetric monoidal functor

Cons⊗
(!) : StrTop×

con → PrL,⊗
k

(X, s) 7→ Consk(X, s)

f 7→ f formal
! = LanExit(f).

Proof. The previous constructions provide us with a symmetric monoidal functor

StrTop× Exit(−)−−−−→ Cat×
∞

op−→ Cat×
∞

P(−)−−−→ PrL,⊗

sending
(X, s) 7→ Fun(Exit(X, s), S),

f 7→ LanExit(f).

But now, with the notations of [Lur17, Subsection 1.4.2], for any∞-category C we have

Fun(C,Sp) = Sp(Fun(C, S)).

Then we can apply [Rob14, Remark 4.2.16] and finally [Rob14, Theorem 4.2.5], which establish a symmetric
monoidal structure for the functor Sp(−) : PrL,⊗ → PrL,⊗

stable. The upgrade from Sp to Modk is
straightforward and produces a last functor PrL,⊗

stable → PrL,⊗
k (the∞-category of presentable stable

k-linear categories).

From now on, we will often omit the “linear” part of the matter and prove statements about the
functor Cons : StrTop×

con → PrL,⊗ and its variations, because tha passage to the stable k-linear setting is
symmetric monoidal.

Remark 2.A.12. We denote the functor LanExit(f) by f formal
! because, in general, it does not coincide with

the proper pushforward of sheaves. We will see in the next subsection that it does under some hypothesis
on f .
We will also see that, as a corollary of Corollary 2.A.11, there exists a symmetric monoidal structure on the
usual contravariant version

Cons(∗) : StrTopop
con → PrL,⊗

(X, s) 7→ Cons(X, s)

f 7→ f∗ = − ◦ Exit(f)

as well.



2.A.3 Constructible sheaves and correspondences

First of all, we need to recall some properties of the category of constructible sheaves with respect to an
unspecified stratification.

Definition 2.A.13. LetX be a topological space. Then there is a well-defined∞-category of constructible
sheaves with respect to a non-fixed stratification

Dc(X) = colims:X→P stratification Cons(X, s).

where the colimit is taken over the category StrTop ×Top {X} of stratifications of X and refinements
between them.

Our aim is to prove the following theorem (we will indeed prove a more powerful version, see Theo-
rem 2.A.22).

Theorem 2.A.14. There is an∞-functor

Dcorr
c : Corr(Top)→ Cat∞

that coincides with Dc when restricted to

Topop ↪→ Corr(Top).

It sends morphisms in horiz to pullback functors along those morphisms, and morphisms in vert to proper
pushforward functors along those morphisms.

Unlike in the stratified case (i.e. the case when the stratification is fixed at the beginnig, treated in the
previous subsections), for Dc(−) there is a well-defined six functor formalism. In particular

Lemma 2.A.15. For any continuous map f : X → Y , there are well defined functors f∗, f ! : Dc(Y )→
Dc(X). Moreover, f∗ has a right adjointRf∗ and f ! has a left adjointRf!.

From now on, we will write f∗ forRf∗ and f! forRf!. With these notations, the Proper Base Change
Theorem (stated e.g. in [Kim15, Theorem 6] at the level of abelian categories, and in [Vol21] at the level of
derived∞-categories) holds:

Theorem 2.A.16 (Base Change theorem for constructible sheaves). For any Cartesian diagram of unstrat-
ified topological spaces

X ′ X

Y ′ Y

f ′

g′

f

g

(2.A.2)



there is a canonical transformation of functors Dc(X)→ Dc(Y ′)

f ′
! g

′∗ → g∗f!

which is an equivalence of functors. The same holds for f !g∗ → g′
∗f

! as functors Dc(Y )→ Dc(X).

We are now ready to prove Theorem 2.A.14. We follow the approach used by D. Gaitsgory and N.
Rozenblyum in [GR17, Chapter 5] to construct IndCoh as a functor out of the category of correspon-
dences. As in these works, we need a theory of (∞, 2)-categories. In particular, we need to extend Cat∞

to an (∞, 2)-category, which we shall denote by Cat2-cat
∞ : this is done in [GR17], informally by allowing

natural transformations of functors which are not natural equivalences. We proceed by steps.

Step 1: (f∗, f∗) adjunction and proper base change.

The previous discussion tells us that Dop
c : Top → Cat2-cat,op

∞ satisfies the left Beck-Chevalley condi-
tion [GR17, Chapter 7, 3.1.5] with respect to adm = vert = all, horiz = proper, taking Φ = Dc :
StrTopop → Cat∞. Indeed, for any f ∈ horiz we set Φ!(f) = f∗, which is right adjoint to f∗ = Φ(f).
Finally, the base change property for the diagram (2.A.2) completes the proof of the left Beck-Chevalley
property.
Therefore by [GR17, Chapter 7, Theorem 3.2.2.(a)] the functor Consop : StrTop→ Cat2−cat,op

∞ extends
to a functor

(Consop)all;proper : Corr(StrTop)properall;proper → Cat2-cat,op
∞ ,

or equivalently a functor

Consall;proper : (Corr(StrTop)proper,all;proper)
op → Cat2−cat

∞ .

Now we restrict this functor to the (∞, 1)-category

(Corr(StrTopop)isomall;proper)op,

which is equivalent to the more familiar Corr(StrTop)isomproper;all (horizontal and vertical maps are inter-
changed while considering the opposite of the correspondence category). We have an (∞, 1)-functor

Consproper,all : Corr(StrTop)isomproper,all → Cat∞. (2.A.3)

Step 2: Nagata compactification and proper pushforward

Consider the classes of morphisms in StrTop given by horiz = all, vert = all, adm = open ⊂
horiz, co-adm = proper∩ ⊂ vert (note that we need adm ⊂ horiz and co-adm ⊂ vert instead of



the converse, because we are performing a kind of construction “dual” to that used for IndCoh in [GR17]).
We want to apply [GR17, Chapter 7, Theorem 5.2.4] and extend our functor to Corr(StrTop)openall,all ⊃
Corr(StrTop)isomproper,all. We perform the verifications necessary to the application of that theorem:

• The pullback and 2-out-of-3 properties for horiz = all, co-adm = proper, isom, which are
immediately verified.

• Every map in adm ∩ co-adm = open ∩ proper should be a monomorphism. But the class
open ∩ proper consists of embeddings of unions of connected components.

• For any α : X → Y in vert = all, consider the ordinary category Factor(α), whose objects are

X X Y,ε γ

where ε ∈ adm = open and γ ∈ co-adm = proper, and whose morphisms are commutative
diagrams

X
′

X Y

X
′′

.

Consider the (∞, 1)-category N(Factor(α)). We require N(Factor(α)) to be contractible for any
α ∈ vert. But this is exactly Nagata’s compactification theorem, see [GR17, Chapter 5, Proposition
2.1.6].

• Dc|Top should satisfy the right Beck-Chevalley condition with respect to adm = open ⊂ horiz =
all. This is true, because for every f ∈ open we have that f∗ = f !: now this admits a left adjoint
f!, and the Base Change Theorem holds.

• Given a Cartesian diagram
X Y

Z W

ε0

γ1 γ0

ε1

with εi ∈ open and γi ∈ proper, the Beck-Chevalley condition is satisfied (every functor from
correspondences must satisfy it; this is the “easy” part of the extension theorems). Hence there is an
equivalence

(γ1)∗ε
∗
0 ≃ ε∗

1(γ0)∗.



Now we use the other Beck-Chevalley condition, the one introduced and checked in the previous
point, using the fact that ε1 ∈ open. This new set of adjunctions gives us a morphism

(ε1)!(γ1)∗ → (γ0)∗(ε0)!.

We require that this morphism is an equivalence. But since γi ∈ proper, we have that (γi)∗ ≃ (γi)!

and we conclude by commutativity of the diagram and functoriality of the proper pushforward.

Note that we have used exactly once that, respectively, for an open embedding f∗ ≃ f ! and for a proper
morphism f∗ = f!.

This completes the proof of Theorem 2.A.14: the application of [GR17, Chapter 7, Theorem 5.2.4]
provides us with an (∞, 2)-functor from

Corr(Top)openall,all

to Cat2-cat
∞ which we restrict to an (∞, 1)-functor from

Corr(Top)isomall,all

to Cat∞.

Equivariant constructible sheaves

Definition 2.A.17. Let ActStrSchC be the category with the following objects

{H group scheme over C, (Y, P, s) stratified varieties of finite type over C,

Φ action ofH over Y, such that P is finite and the strata of (Y, P, s) coincide with the orbits of Φ}

and the following morphisms

{f : H → H ′ morphism of group schemes, g : Y → Y ′ f -equivariant morphism of schemes }.

We take the definition of “conically stratified space”

Definition 2.A.18. Let ActconStrTop be the category with the following objects

{H topological group, (Y, P, s) locally compact conically stratified topological space locally of singular shape,

Φ action ofH on Y such that the strata of

(Y, P, s) coincide with the orbits of Φ, and P satisfies the ascending chain condition}

and morphisms analogue to the previous definition.



Remark 2.A.19. All algebraic actions with finitely many orbits induce a Whitney stratification by orbits,
and hence their analytic counterpart lies in Actcon(Top). Also, by [use], the analytification of algebraic
varieties is locally of singular shape. Formally, this means that the functor strtop induces a functor
ActStrSchC → ActconStrTop.

Remark 2.A.20. There exist functors

• Actcon(StrTop)→ StrTopcon (which remembers only the stratification inH-orbits)

• Actcon(StrTop)→ Shloc(Top) sending (Y,H,Φ) to the quotient Y/H defined as the colimit of
the usual diagram in the category of sheaves. Note that here the stratification is forgotten.

All the preceding constructions can be extended to presheaves, by replacing StrSchC by PSh(StrSchC)
and StrTop by PSh(StrTop).

Definition 2.A.21. We define she to be the class of maps in StrTopcon which admit a homotopy inverse
which is itself stratified. We define esh to be the class of mapsf : H → H ′, g : Y → Y ′ inActcon(StrTop)
which admit a homotopy inverse f̄ : H ′ → H, ḡ : H ′ → H also living in Actcon(StrTop) (i.e. f̄ , ḡ
stratified and ḡ f̄ -equivariant). These classes easily extend to the the setting of presheaves.

Theorem 2.A.22. There is a well-defined “equivariant constructible sheaves” functor

Cons⊗
act,corr : Corr(P(Actcon(PSh(StrTop))[esh−1]))× → PrL,⊗

k .

Proof. We argue as in [GR17, Chapter 5, 3.4]. First of all, we have defined above a (symmetric monoidal)
functor q : Actcon(StrTop)× → Sh(StrTop)×, in turn inducing a symmetric monoidal functor qcorr

between the categories of correspondences. We now show that there exists a symmetric monoidal functor

Corr(Sh(Top))× → PrL,⊗.

By right Kan extension of Dc along the Yoneda embedding we obtain a functor P(Top)op → Cat∞,k. By
using the same arguments as in the proof of [GR17, Chapter 5, Theorem 3.4.3], Theorem 2.A.14 provides
an extension to

Corr(P(Top)).

To replaceP(Top) with the category of sheaves we use the descent properties of the functorDc(−). We call
Dc,corr the extension Corr(Sh(Top))→ Cat∞. LetConsact,corr = Dc,corr◦qcorr : Corr(Actcon(StrTop))→
Cat∞,k.Note that if we restrict the functor we just obtained to Actcon(Top) ↪→ Corr(Actcon(Top))vert,

then coincides with the composition Actcon(Top)→ StrTopcon
Cons(!)−−−−→ PrL. Now:



• this proves that Consact,corr takes values in PrL
k, since it does on objects and on vertical morphism,

and for what concerns horizontal morphisms we have that any f∗ is a left adjoint;

• the functor Actcon(Top)→ StrTopcon sends the class esh to stratified homotopy equivalences, and

the by the Exodromy Theorem the functor StrTopcon
Cons(!)−−−−→ PrL

k sends stratified homotopy equiv-
alences to equivalences of∞-categories. Therefore, Dc,corr sends equivariant stratified homotopy
equivalences to equivalences as well, and therefore it factors through the localization;

• the functor Actcon(Top)→ StrTopcon is Cartesian symmetric monoidal, and by Corollary 2.A.11

the functor StrTopcon
Cons(!)−−−−→ PrL is symmetric monoidal with respect to the Cartesian structure

on the source and to the Lurie tensor product on the target. Therefore, to conclude we can apply
arguments similar to the ones used in [GR17, Chapter 5, 4.1.5], that is essentially [GR17, Chapter 9,
Proposition 3.2.4], whose hypotheses are trivially verified since horiz = all.

In particular, the functor

Cons : StrTopop
con → Cat∞

(X, s) 7→ Cons(X, s)

f 7→ f∗ = − ◦ Exit(f)

is symmetric monoidal, as we had announced in Remark 2.A.12.

2.B Omitted proofs and details

2.B.1 Proof of Proposition 2.1.7

Proof. Fix a discrete complex algebraR, and let ξ = (S,Fi, αi, µi)i be a vertex of the groupoid GrRan,k(R).
We must prove that π1(GrRan,k(R), ξ) = 0. We know that Ran(X) is a presheaf of sets over complex
algebras. Therefore it suffices to prove that for every S ∈ Ran(X)(R), the fiber of GrRan,k → Ran(X)
at S is discrete.
Consider then an automorphism of a point (S,Fi, αi, µi): this is a sequence of automorphisms ϕi for



each bundle Fi, such that the diagrams

Fi|XR\ΓS
TG|XR\ΓS

Fi|XR\ΓS

αi

ϕi|XR\ΓS αi

(for i = 1, . . . , k) and
Fi|(̂XR)ΓS

TG|(̂XR)ΓS

Fi|(̂XR)ΓS

µi

ϕi|(̂XR)ΓS µi

(for i = 1, . . . , k−1) commute. (Actually, only the commutation of the former set of diagrams is relevant
to the proof.)

The first diagram implies that ϕi is the identity overXR \ ΓS . We want to show that ϕi is the identity.
In order to show this, we consider the relative spectrum Spec

XR
(Sym(Fi)) of Fi, which comes with a

map π : Y = Spec
XR

(Sym(Fi)) → XR. An automorphism of Fi corresponds to an automorphism
fi of Y overXR, which in our case is the identity over the preimage ofXR \ ΓS inside Y . LetU be the
locus {fi = id}. This set is topologically dense, because it contains the preimage of the dense open set
XR \ ΓS . We must see that it is schematically dense, that is the restriction map OY (Y ) → OY (U) is
injective. If we do so, then ϕi = id globally.
The remaining part of the proof was suggested to us by Angelo Vistoli.

We may suppose that R (and therefore Y and XR) are Noetherian. Indeed, we can reduce to the
affine case and supposeXR = SpecP and Y of the form SpecP [t1, . . . , tn] from the Noether Lemma
(observe that Y is finitely presented overXR). Any global section f of SpecP [t1, . . . , tn] lives in a smaller
Noetherian subalgebra P ′[t1, . . . , tn], because it has a finite number of coefficients in P . Analogously,
we can supposeU to be a principal open set of SpecP [t1, . . . , tn] and thus f |U can be seen as a section
in some noetherian subalgebra of P [t1, . . . , tn]g , with g a polynomial in P [t1, . . . , tn]. Therefore we
conclude that the proof that f is zero can be carried out over a Noetherian scheme.

Let us recall the following facts.

• ([Mat89, page 181]) IfA→ B is a flat local homomorphism of local noetherian rings, then

depthB = depthA+ depthB/mB,

where m is the maximal ideal ofA.



• If f : S → T is a flat morphism of noetherian schemes, p ∈ S, then p is associate in S if and only
if p is associate in the fiber of f(p) and f(p) is associate in T .

Let now S = Y and T = XR. First of all, if we consider the composition Y red → XR we have that
U red = Y red, because two morphisms between separated and reduced schemes coinciding on an open
dense set coincide everywhere.

Now we note that U contains the generic points of every fiber. Indeed, every f1(x) ⊂ Y factors
through Y red → Y because the fibers are integral, and hence throughU red = Y red → Y .

Now if y is an associate point in Y then it is associate in f−1(f(y)). Therefore it is a generic point
of f−1(f(y)), because every fiber of a principalG-bundle is isomorphic toG, which is integral. ButU
contains all generic points of the fibers, which are their associated points because the fibers are integral.

This implies thatU is schematically dense.

2.B.2 Proof of Proposition 2.2.12

Proof. Since the inclusionsU ↪→ V of open sets in Ran(X) induce inclusions (FactGrk)U ↪→ (FactGrk)V
and do not alter the datum of (FactGrk)U , it suffices to prove that the maps pU,V,k make the diagram

(FactGrk)U⋆V × (FactGrk)W

(FactGrk)U × (FactGrk)V × (FactGrk)W (FactGrk)U⋆V ⋆W

(FactGrk)U × (FactGrk)U⋆V

pU⋆V,W,k

id×pV,W,k

pU,V,k×id

pU,V ⋆W,k

commute in StrTop. Now this is true because of the following. Define (Ran(X)×Ran(X)×Ran(X))disj

as the subfunctor of Ran(X)×Ran(X)×Ran(X) parametrising thoseS, T, P ⊂ X(R) whose graphs
are pairwise disjoint inXR. Let (GrRan,k × GrRan,k × GrRan,k)disj be its preimage under rk × rk × rk :



GrRan,k × GrRan,k × GrRan,k → Ran(X)× Ran(X)× Ran(X). Then the diagram

(GrRan,k × GrRan,k)disj

(GrRan,k × GrRan,k × GrRan,k)disj GrRan,k

(GrRan,k × GrRan,k)disj

χk

id×χk

χk×id

χk

commutes because the operation of gluing is associative, as it is easily checked by means of the defining
property of the gluing of sheaves.
Note also that everything commutes over Ran(M).
Finally, to prove that the functor defined in Remark 2.2.11 is a map of operads, we use the characterization
of inert morphisms in a Cartesian structure provided by [Lur17, Proposition 2.4.1.5]. Note that:

• An inert morphism in Fact(M)⊗ is a morphism of the form

(U1, . . . , Um)→ (Uϕ−1(1), . . . Uϕ−1(n))

covering some inert arrow ϕ : ⟨m⟩ → ⟨n⟩where every i ∈ ⟨n⟩◦ has exactly one preimage ϕ−1(i).

• An inert morphism in StrTop× is a morphism of functors ᾱ between f : P(⟨m⟩◦)op → Top and
g : P(⟨n⟩◦)op → Top, covering some α : ⟨m⟩ → ⟨n⟩, and such that, for any S ⊂ ⟨n⟩, the map
induced by ᾱ from f(α−1S)→ g(S) is an equivalence in StrTop.

By definition, CGr×
k ((U1, . . . , Um)) is the functor f assigning

T ⊂ ⟨m⟩◦ 7→
∏
j∈T

(FactGrk)Uj ,

and analogously CGr×
k ((Uϕ−1(1), . . . , Uϕ−1(m))) is the functor g assigning

S ⊂ ⟨n⟩◦ 7→
∏
i∈S

(FactGrk)Uϕ−1(i)
.

But now, if α = ϕ and T = ϕ−1(S), we have the desired equivalence.



2.B.3 Proof of Proposition 2.2.5

Proof. It is sufficient to prove that eachFactGrk is conically stratified and locally of singular shape (although
as remarked in Remark 2.A.6 this condition is not strictly necessary). Indeed, each (FactGrk)U , being an
open set of FactGrk with the induced stratification, will be conically stratified and locally of singular shape
as well.
Moreover, it suffices to show that strtop(GrRan) is conically stratified and locally of singular shape. Indeed,
this will imply the same property for the k-fold-product of copies of strtop(GrRan) over Ran(M), and
FactArck is a principal bundle over this space, with unstratified fiber. This consideration implies the
property for FactArck.
Let us then prove the property for strtop(GrRan). First of all, the Ran Grassmannian is locally of singular
shape because of the following argument.

Proposition 2.B.1. LetU : ∆op → Open(X) be a hypercovering. Then Sing(X) ≃ colim Singn∈∆op(Un).

Proof. We use [Lur17, Theorem A.3.1]. Condition (*) in loc.cit. is satisfied for the following modification
of U. Since U is a hypercovering, one can choose for any [n] a covering (U in)i of Un, functorially in n. We
can thus define a category C→∆op as the unstraightening of the functor

∆op → Set

[n] 7→ {(U in)i}.

Then there is a functor Ũ : C→ Open(X), ([n], U in) 7→ U . This functor satisfies (*) in [Lur17, Theorem
A.3.1], and therefore colim([n],U)∈C Sing(U) ≃ Sing(X). Now note that U is the left Kan extension of Ũ
along C→∆op. Therefore,

Sing(X) ≃ colimC Sing(U) ≃ colim∆op Sing(Un).

This allows us to apply the proof of [Lur17, Theorem A.4.14] to any hypercovering of Ran(M).
Now, the space Ran(M) is of singular shape because is contractible and homotopy equivalences are shape
equivalences. Therefore, so are elements of the usual prebase of its topology, namely open sets of the
form

∏
i Ran(Di). One can construct a hypercovering of Ran(M) by means of such open subsets, and

therefore we can conclude by applying the modified version of [Lur17, Theorem A.4.14] that we have just
proved.
It remains to prove that the Ran Grassmannian is conically stratified. Indeed, it is Whitney stratified. The



proof of such property has been suggested to us by David Nadler [Nad], and uses very essential properties
of the Ran Grassmannian. Consider two strata X and Y of GrRan. We want to prove that they satisfy
Whitney’s conditions A and B; that is:

• for any sequence (xi) ⊂ X converging to y, such that TxiX tends in the Grassmanian bundle to a
subspace τy of Rm, TyY ⊂ τy (Whitney’s Condition A forX,Y, (xi), y);5

• when sequences (xi) ⊂ X and (yi) ⊂ Y tend to y, the secant lines xiyi tend to a line v, and TxiX

tends to some τy as above, then v ∈ τy (Whitney’s Condition B forX,Y, (xi), (yi), y).6

The only case of interest is whenX ∩Y is nonempty. Observe that, when the limit point y ∈ Y appearing
in Whitney’s conditions is fixed, conditions A and B are local in Y , i.e. we can restrict our stratum Y to an
(étale) neighbourdhood U of the projection of y in Ran(M). Also, both Y and the yi in Condition B
live over some common stratum Rann(M) of Ran(M). Using the factorization property, which splits
components and tangent spaces, we can suppose that n = 1. Therefore,X projects onto the “cardinality
1” component of Ran(M), that isM itself. By the locality of conditions A and B explained before, we can
suppose that y and the (yi) involved in Whitney’s conditions live over A1. There, the total space is GrA1

and this is simply the product Gr× A1 because on the affine line the identification is canonical. From
this translational invariance it follows that we can suppose our stratum Y concentrated over a fixed point
0 ∈ A1, that is: both y and the yi can be canonically (thus simultaneously) seen inside Gr0 ⊂ GrA1 .
Now, by [Kal05, Theorem 2] we know that there exists at least a point y ∈ X ∩ Y such that, for any
(xi) → y as in the hypothesis of Whitney’s Condition A, Whitney’s Condition A is satisfied, and the
same for Whitney’s condition B. In other words, the space

Sing(X,Y ) = {y ∈ X ∩ Y | y does not satisfy either Whitney’s

Condition A or B for some choice of (xi), (yi)}

does not coincide with the wholeX∩Y . Letπ : GrRan → Ran(M) be the natural map. Note thatX and
Y are acted upon by RanArc×Ran(M) π(X) and RanArc×Ran(M) π(Y ) ≃ GO respectively (recall that
Y is a subset of Gr = Gr0 ⊂ GrA1 ), and this action is transitive on the fibers over any point of Ran(M).
Now, the actions of RanArc andGO take Whitney-regular points with respect toX to Whitney-regular
points with respect toX , since it preserves all strata. Therefore, if y is a “regular” point as above, the whole
Y is made of regular points, and we conclude.

5X and Y are said to satisfy Whitney’s condition A if this is satisfied for any (xi) ⊂ X tending to y ∈ Y . The space is said
to satisfy Whitney’s condition A if every pair of strata satisfies it.

6Idem.
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Whitney stratifications and conically
smooth structures
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3.1 Background

In this section we briefly review the definition of Whitney stratified space and we recall the basic properties
of conically stratified and conically smooth spaces. By doing this, we will also introduce the necessary
notations to state our main result, conjectured in [AFT17, Conjecture 1.5.3].

3.1.1 Smooth stratifications of subsets of manifolds (Thom, Mather)

We take the following definitions from [Mat70], with minimal changes made in order to connect the
classical terminology to the one used in [AFT17].
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Definition 3.1.1. LetM be a smooth manifold. A smooth stratification of a subsetZ ⊂M is a partition
ofZ into smooth submanifolds ofM . More generally, ifM is aCµ-manifold, then aCµ stratification of
a subsetZ ofM is a partition ofZ intoCµ submanifolds ofM .

Remark 3.1.2. In particular, all strata of a smoothly stratified spaceZ ⊂M are locally closed subspaces
ofZ .

Definition 3.1.3 (Whitney’s Condition B in Rn). Let X,Y be smooth submanifolds of Rn, and let
y ∈ Y be a point. The pair (X,Y ) is said to satisfy Whitney’s Condition B at y if the following holds.
Let (xi) ⊂ X be a sequence converging to y, and (yi) ⊂ Y be another sequence converging to y. Suppose
that TxiX converges to some vector space τ in the r-Grassmannian of Rn and that the lines xiyi converge
to some line l in the 1-Grassmannian (projective space) of Rn. Then l ⊂ τ .

Definition 3.1.4 (Whitney’s condition B). LetX,Y be smooth submanifolds of a smooth n-dimensional
manifoldM , and y ∈ Y . The pair (X,Y ) is said to satisfy Whitney’s Condition B at y if there exist a
chart ofM ϕ : U → Rn around y such that (ϕ(U ∩X), ϕ(U ∩ Y )) satisfies Whitney’s Condition B at
ϕ(y).

Definition 3.1.5 (Whitney stratification). Let M be a smooth manifold of dimension n. A smooth
stratification (Z,S ) on a subsetZ ofM is said to satisfy the Whitney conditions if

• (local finiteness) each point has a neighbourhood intersecting only a finite number of strata;

• (condition of the frontier) if Y is a stratum of S , consider its closure Ȳ inM . Then we require
that (Ȳ \ Y ) ∩ Z is a union of strata, or equivalently that S ∈ S , S ∩ Ȳ ̸= ∅⇒ S ⊂ Ȳ ;

• (Whitney’s condition B) Any pair of strata of S satisfies Whitney’s condition B when seen as
smooth submanifolds ofM .

Given two strata of a Whitney stratificationX and Y , we say thatX < Y ifX ⊂ Ȳ . This is a partial
order on S .

3.1.2 Conical and conically smooth stratifications (Lurie, Ayala-Francis-Tanaka)

Definition 3.1.6. Let P be a partially ordered set. The Alexandrov topology on P is defined as follows. A
subsetU ⊂ P is open if it is closed upwards: if p ≤ q and p ∈ U then q ∈ U .

With this definition, closed subsets are downward closed subsets and locally closed subsets are “convex”
subsets: p ≤ r ≤ q, p, q ∈ U ⇒ r ∈ U .



Definition 3.1.7 ([Lur17, Definition A.5.1]). A stratification on a topological spaceX is a continuous map
s : X → P where P is a poset endowed with the Alexandrov topology. The fibers of the points p ∈ P
are subspaces ofX and are called the strata. We denote the fiber at p byXp and by S the collection of
these strata.

In this definition we do not assume any smooth structure, neither on the ambient space nor on the
strata. Note that, by continuity of s, the strata are locally closed subsets ofX .

Note also that the condition of the frontier in Definition 3.1.5 implies that any Whitney stratified space
is stratified in the sense of Lurie’s definition: indeed, one obtains a map towards the poset S defined by
S < T ⇐⇒ S ⊂ T̄ , which is easily seen to be continuous by the condition of the frontier.

Definition 3.1.8. A stratified map between stratified spaces (X,P, s) and (Y,Q, t) is the datum of a
continuous map f : X → Y and an order-preserving map ϕ : P → Qmaking the diagram

X Y

P Q

f

s t

ϕ

commute.

Definition 3.1.9. Let (Z,P, s) be a stratified topological space. We defineC(Z) (as a set) as

Z × [0, 1)
{(z, 0) ∼ (z′, 0)} .

Its topology and stratified structure are defined in [Lur17, Definition A.5.3]. WhenZ is compact, then the
topology is the quotient topology. Note that the stratification ofC(Z) is over P ◁, the poset obtained by
adding a new initial element to P : the stratum over this new point is the vertex of the cone, and the other
strata are of the formX × (0, 1), whereX is a stratum ofZ .

Note 3.1.10. A very useful notion relative to stratified spaces (see for example from [AFT17, Definition
2.4.4]) is the notion of depth of a stratified space at a point. For example, letZ be an unstratified space of
Lebesgue covering dimension n. Then the depth of the coneC(Z) at the cone point is n+ 1.

Definition 3.1.11 ([Lur17, Definition A.5.5]). Let (X,P, s) be a stratified space, p ∈ P , and x ∈ Xp.
Let P>p = {q ∈ P | q > p}. A conical chart at x is the datum of a stratified space (Z,P>p, t), an
unstratified space Y , and a P -stratified open embedding

Y × C(Z) X

P



whose image hits x. Here the stratification of Y × C(Z) is induced by the stratification ofC(Z), namely
by the maps Y × C(Z)→ C(Z)→ P≥p → P (see Definition 3.1.9).

A stratified space is conically stratified if it admits a covering by conical charts.

More precisely, the conically stratified spaces we are interested in are the so-calledC0-stratified spaces
defined in [AFT17, Definition 2.1.15]. Here we recall the two important properties of aC0-stratified space
(X, s : X → P ):

• every stratumXp is a topological manifold;

• there is a basis of the topology ofX formed by conical charts

Ri × C(Z)→ X

whereZ is a compactC0-stratified space over the relevant P>p. Note thatZ will have depth strictly
less thanX ; this observation will be useful in order to make many inductive arguments work.

Hence the definition of [AFT17] may be interpreted as a possible analog of the notion of topological
manifold in the stratified setting: charts are continuous maps which establish a stratified homeomorphism
between a small open set of the stratified space and some “basic” stratified set.

Following this point of view, one may raise the question of finding an analog of “smooth manifold” (or,
more precisely, “smoothly differentiable structure”) in the stratified setting. We refer to [AFT17, Definition
3.2.21] for the definition of a conically smooth structure (and to the whole Section 3 there for a complete
understanding of the notion), which is a very satisfactory answer to this question. AC0-stratified space
together with a conically smooth structure is called a conically smooth stratified space.

The definition of conically smooth structure is rather elaborate. As in the case ofC0-stratified spaces,
here we just give a couple of important and enlightening properties of these conically smooth stratified
spaces:

• any conically smooth stratified space is aC0-stratified space;

• all strata have an induced structure of smooth manifold, like in the case of Whitney stratifications;

• there is a notion of atlas, in the sense of a system of charts whose domains are the so-called basics,
i.e. stratified spaces of the form Ri × C(Z) where Z is equipped with a conically smooth atlas:
indeed, to make this definition rigorous, the authors of [AFT17] employ an inductive argument on
the depth, where the case of depth equal to zero corresponds to the usual notion of an atlas for a
smooth manifold, and to pass to a successive inductive step they observe that, whenever there is an
open stratified embedding Ri × C(Z) ↪→M , then depthZ < depthM .



This system admits a notion of “smooth” change of charts, in the sense that charts centered at the
same point admit a subchart which maps into both of them in a “rigid” way. We recommend to
look at the proof of Theorem 3.2.7 for a more precise explanation of this property.

• the definition of conically smooth space is intrinsic, in the sense that it does not depend on a given
embedding of the topological space into some smooth manifold, in contrast to the case of Whitney
stratifications (see Definition 3.1.1 and Definition 3.1.5);

• in [AFT17] the authors also introduced a notion of conically smooth maps, which differs substan-
tially from the “naive” requirement of being stratified and smooth along each stratum that one has
in the case of Whitney stratifications, and hence define a category Strat of conically smooth stratified
spaces. In this setting, they are able to build up a very elegant theory and prove many desirable results
such as a functorial resolution of singularities to smooth manifolds with corners and the existence of
tubular neighbourhoods of conically smooth submanifolds. These results allow to equip Strat with
a Kan-enrichment (and hence, a structure of∞-category); also, the hom-Kan complex of conically
smooth maps between two conically smooth spaces has the “correct” homotopy type (we refer to
the introduction to [AFT17] for a more detailed and precise discussion on this topic), allowing to
define a notion of tangential structure naturally extending the one of a smooth manifold and to
give a very simple description of the exit-path∞-category of a conically smooth stratified space.

Up to now, the theory of conically smooth spaces has perhaps been in need of a good quantity of explicit
examples, specially of topological nature. The following conjecture goes in the direction of providing a
very broad class of examples coming from differential geometry and topology.

Conjecture 3.1.12 ([AFT17, Conjecture 1.5.3]). Let (M,S ) be a Whitney stratified space. Then it admits
a conically smooth structure in the sense of [AFT17].

The rest of the chapter is devoted to the proof of this conjecture (Theorem 3.2.7).

3.2 Whitney stratifications are conically smooth

3.2.1 Whitney stratifications are conical

We will need the following lemma, whose proof (to our knowledge) has never been written down.

Lemma 3.2.1. Let (M,S ) be a Whitney stratified space, T a smooth unstratified manifold, and let
f : M → T be a proper map of topological spaces which is a smooth submersion on the strata. Then for every
p ∈ T the fiber of f at p has a natural Whitney stratification inherited fromM .



Proof. First of all, by definition of smoothly stratified space we may suppose that M ⊂ S for some
manifold S of dimension n. Again by definition the problem is local, and we may then supposeM = Rn.

We want to prove Whitney’s condition B for any pair of strata of the formX = X ′ ∩ f−1(p) and
Y = Y ′∩f−1(p), whereX ′, Y ′ are strata ofM andp ∈ T . To this end, we reformulate the problem in the
following way: consider the productM×T with its structure mapsπ1 : M×T →M,π2 : M×T → T ,
and its naturally induced Whitney stratification. Consider also the following two stratified subspaces of
M × T : the graph Γf and the subspace π−1

2 (p). Note that we can see Γf as a homeomorphic copy ofM
inside the product (diffeomorphically on the strata). Having said that, the intersection Γf ∩ π−1

2 (p) is
exactly the fiber f−1(p). Consider now strataX,Y in f−1(p) as above, seen as strata of Γf . Consider
sequences xi ⊂ X, yi ⊂ Y both converging to some y ∈ Y . Let li be the line between xi and yi, and
suppose that li → l, TxiX → τ . By compactness of the Grassmannians Gr(n, 1) and Gr(n,dimTxiX)
(which is independent of i), there exists a subsequence (xij ) such that Txij

Γf |X′ converge to some vector
spaceV ⊃ τ . Since the stratification onM is Whitney, we obtain that l ⊂ V . On the other hand, applying
the same argument to π−1

2 (p) (which is again stratified diffeomorphic toM via the map π1), we obtain
that, up to extracting another subsequence, Txij

(π−1
2 (p) ∩ π−1

1 (X)) converges to someW ⊃ τ . Again,
since the stratification onM is Whitney, we obtain that l ⊂W . Note that the lines li and l only depend
on the points xi, yi and on the embedding ofM into some real vector space, and not on the subspace we
are working with.

Now we would like to show that τ = V ∩W , and this will follow from a dimension argument that
uses the fact that f |X is a smooth submersion onto T .

Note that dim τ = dimTxiX for every i. Moreover, by the submersion hypothesis, this equals
dimX ′ − dimT . Also,

dimV = dimTxij
Γf |X′ = dimX ′

and
dimW = dimTxij

(π−1
2 (p) ∩ π−1

1 (X ′)) = dimX ′.

To compute dimV ∩W , it suffices to compute dim(V + W ), which by convergence coincides with
dim(Txij

Γf |X′ +Txij
(π−1

2 (p)∩π−1
1 (X ′))). Let Vj = Txij

Γf |X′ ,Wj = Txij
(π−1

2 (p)∩π−1
1 (X ′))).

We have a map of vector spaces

Vj ⊕Wj → Txij
X ′ ⊕ Tf(xij

)T

sending (v, w) 7→ (w − v,dfxij
v). This map is surjective (since df is) and is zero on the subspace

{(v, v) | v ∈ Vj ∩Wj}; hence it induces a surjective map

Vj +Wj → Txij
X ′ ⊕ Tf(xij

)T.



It follows that

dim(Txij
Γf |X′ + Txij

(π−1
2 (p) ∩ π1(X ′))) ≥ dimX ′ + dimT

and therefore

dimV ∩W = dimV + dimW − dim(V +W ) ≤ dimX ′ − dimT = dim τ.

Since τ ⊂ V ∩W the proof is complete.

Lemma 3.2.2. Any open subset of a Whitney stratified manifold inherits a natural Whitney stratification
by restriction.

Proof. Unlike the previous lemma, this is just a direct verification allowed by the fact that tangent spaces
to open subsets of strata coincide with the tangent spaces to the original strata. One can also apply the
more general and very useful argument appearing in [Gib+76, (1.3), (1.4) and discussion below].

Lemma 3.2.3 (Thom’s first isotopy lemma, [Mat72, (8.1)]). Let f : X → Y be aC2 mapping, and let
A be a closed subset ofX which admits aC2 Whitney stratification S . Suppose f |A : A → Y is proper
and that for each stratumU of S , f |U : U → T is a submersion. Then f |A : A→ Y is a locally trivial
fibration.

We recommend the reading of Mather’s two papers [Mat70] and [Mat72] to understand the behaviour
of Whitney stratified spaces, specially in order to understand the notion of tubular neighbourhood around
a stratum, which is the crucial one in order to prove our main result. We refer to [Mat70, Section 6] for a
tractation of tubular neighbourhoods. Here we just recall the definition:

Definition 3.2.4. Let S be a manifold and X ⊂ M be a submanifold. A tubular neighborhood T
of X in M is a triple (E, ε, ϕ), where π : E → X is a vector bundle with an inner product ⟨, ⟩, ε is a
positive smooth function onX , and ϕ is a diffeomorphism ofBε = {e ∈ E | ⟨e, e⟩ < ε(π(e))} onto
an open subset of S, which commutes with the zero section ζ ofE:

Bε

X S.

ϕ
ζ

From [Mat72, Corollary 6.4] we obtain that any stratumW of a Whitney stratified space (M,S ) has
a tubular neighbourhood, which we denote by (TW , εW ); the relationship with the previous notation is



the following: TW is ϕ(Bε)∩M (recall that a priori ϕ(Bε) ⊂ S, the ambient manifold)1. We also denote
by ρ the tubular (or distance) function

TW → R≥0

v 7→ ⟨v, v⟩

with the notation as in Definition 3.2.4. Note that ρ(v) < ε(π(v)).
A final important feature of the tubular neighbourhoods of strata constructed in Mather’s proof is

that they satisfy the so-called “control conditions” or “commutation relations”. Namely, consider two
strata X < Y of a Whitney stratified space M . Then, if TX and TY are the tubular neighbourhoods
relative toX and Y as constructed by Mather, one has that

πY πX = πY

ρXπY = ρX .

We explain the situation with an example.

Example 3.2.5. LetM be the real plane R2 and S the stratification given by

X = {(0, 0)}

Y = {x = 0} \ {(0, 0)}

Z = M \ {x = 0}.

We take R2 itself as the ambient manifold. Then Mather’s construction of the tubular neghbourhoods
associated to the strata gives a result like in Fig. 3.1. Here the circle is TX , and the circular segment is a
portion of TY around a point of Y . We can see here that TY is not a “rectangle” around the vertical line,
as one could imagine at first thought, because the control conditions impose that the distance of a point in
TW from the origin of the plane is the same as the distance of its “projection” to Y from the origin.

Keeping this example in mind (together with its upper-dimensional variants) for the rest of the
tractation may be a great help for the visualization of the arguments used in our proofs.

Now we closely review the proof of [Mat72, Theorem 8.3], which is essential for the next section. This
review is also useful to fix some notations. Note that we will use euclidean disksDn (and not euclidean
spacesRn) as domains of charts for smooth manifolds, because this will turn out to be useful in Section 3.2.2
in order to define some “shrinking” maps in an explicit way.

1Also, we usually identify this subspace of M with its preimage in the “abstract” tubular neighbourhood Bε ⊂ E.



Figure 3.1: Tubular neighbourhoods in (R2, (X,Y, Z)).

Theorem 3.2.6 ([Mat72, Theorem 8.3]). Let M be a space endowed with a Whitney stratification S .
ThenM is conically stratified, and its conical charts are of the typeDi × C(Z), whereDi ⊂ Ri is the unit
open disk, andZ is a compact topological space endowed with a natural Whitney stratification.

Proof. Denote by πW : TW → W the projection, ρW : TW → R≥0 the tubular function and
εW : W → R>0 the "radius" function of TW . We examine closely the proof of [Mat72, Theorem 8.3].
Choose a positive smooth function ε′ onW such that ε′ < εW . LetN be the set

{x ∈ TW | ρW (x) ≤ ε′(πW (x))}.

Let also

A = {x ∈ TW | ρW (x) = ε′(πW (x))}

and f = πW |A : A→W . Note that f is a proper stratified submersion, since πW is a proper stratified
submersion and for any stratum S ofM the differential of πW |S vanishes on the normal toA∩S. Hence
by Lemma 3.2.1 the restriction of the stratification ofM to any fiber of f is again Whitney. Consider the
mapping

g : N \W →W × (0, 1]



defined by

g(x) =
(
πW (x), ρW (x)

ε′(πW (x))

)
.

The spaceN \W inherits fromM a Whitney stratification (see Lemma 3.2.2) and, by [Mat70, Lemma 7.3
and above], the map g is a proper stratified submersion. Thus, sinceA = g−1(W ×{1}), by Lemma 3.2.3
one gets a stratified2 homeomorphism h fitting in the commuting triangle

N \W A× (0, 1]

W × (0, 1]
g

h

f×id
.

Furthermore, sinceW = ρ−1(0) ⊆ N , h extends to a homeomorphism of pairs

(N,W ) (h,id)−−−→ (M(f),W ),

whereM(f) is the mapping cylinder of f (we recall that f : A→W is the projection (πW |A)).
If Di ⊂ Ri is the unit open disk, for any euclidean chart j : Di ↪→ W , the pullback of f along j

becomes a projectionDi × Z → Di. Note that Z is compact by properness of f , and has an induced
Whitney stratification being a fiber of f , as we have noticed above. Finally,

M(f) ≃M(Di × Z pr1−−→ Di) ≃ C(Z)×Di.

From now on the conical charts obtained through the procedure explained in the previous theorem
will be referred to as the Thom-Mather charts associated to the Whitney stratified spaceM . The rest of
this chapter will be devoted to prove that these charts constitute a conically smooth structure (atlas) for
M , as conjectured in [AFT17, Conjecture 1.5.3 (3)].

3.2.2 Whitney stratifications are conically smooth

We take all the definitions and notations from [AFT17], specially from Section 3. In particular, we recall
that the definition of conically smooth structure is given in [AFT17, Definition 3.2.21].

Let now (M,S ) be a Whitney stratified space. Given a chosen system of tubular neighbourhoods
around the strata along with their distance and projection functions {ρX , πX}, we have an induced
collection of Thom-Mather charts associated to this choice. Call A this collection. We are now going to

2With respect to the Whitney stratification induced on A, see Lemma 3.2.1.



prove that this is a conically smooth atlas in the sense of [AFT17, Definition 3.2.10]. We will then prove
(Remark 3.2.9) that different choices of systems of tubular neghbourhoods induce equivalent conically
smooth atlases, again in the sense of [AFT17, Definition 3.2.10].

Theorem 3.2.7 (Main Theorem). If (M,S ) is a Whitney stratified space, then the Thom-Mather charts
exhibit a conically smooth structure on (M,S ).

Proof. The proof will proceed by induction on the depth of (M,S ) (see Note 3.1.10). The case of depth
0 is obvious, since any Whitney stratified space over a discrete poset is just a disconnected union of strata
which are smooth manifolds. Thus, we may assume that for any Whitney stratified set (M ′,S ′) with
depth(M ′,S ′) < depth(M,S ), the Thom-Mather charts induce a conically smooth structure on
(M ′,S ′).

Now we need to show that the Thom-Mather charts induce an atlas of (M,S ) in the sense of [AFT17,
Definition 3.2.10]. We know that the charts cover the spaceM . By Theorem 3.2.6, a Thom-Mather chart is
in particular an open embedding of the formDi × C(Z) ↪→M whereZ has a Whitney stratification
S ′ and depth(Z,S ′) < depth(M,S ); thus, by the inductive hypothesis, Z is conically smooth and
this implies that the Thom-Mather chart is a basic in the sense of [AFT17, Definition 3.2.4].

Hence it remains to prove that the “atlas” axiom is satisfied: that is, if m ∈ M is a point, u :
Ri ×C(Z)→M and v : Rj ×C(W )→M are Thom-Mather charts with imagesU and V , such that
m ∈ U ∩ V , then there is a commuting diagram

Dk × C(T ) Di × C(Z)

Dj × C(W ) M

f

g u

v

(3.2.1)

such that x ∈ Im(uf) = Im(vg) and that f and g are maps of basics in the sense of [AFT17, Definition
3.2.4].
It is sufficient to consider strataX,Y such thatX < Y (that isX is in the closure of Y ) andm ∈ Y . In
particular,X will have dimension strictly less than Y . 3

In this setting, we may reduce to the case when u is a Thom-Mather chart forX which also contains
m ∈ Y and v is a Thom Mather chart for a neighbourhood ofM in Y , such that v−1(m) = (0, ∗) (∗ is
the cone point). Consider v−1(U ∩ Y ) as an open subset ofDj × ∗. This open subset contains some
closed ball of radius δ and dimension j centered at 0; denote it byBδ×∗. Also, let ρY : V → R>0 be the
“distance from Y ” function associated to the Thom-Mather chart v, and let γ be a positive continuous

3One may use Example 3.2.5 as a guiding example, with m a point on {x = 0} \ {(0, 0)}.



function on Y (defined at least locally aroundm) such that there is an inclusion

{n ∈ V | ρY (n) < γ(πY (n)), πY (n) ∈ U ∩ Y } ⊆ V ∩ U.

Let γ̄ be defined as follows. Let εY : V ∩Y → R>0 be the radius function asociated to the Thom-Mather
chart v. Note that εY is equal to the function

y 7→ sup{ρY (n) | n ∈ V, πY (n) = y}

(“maximum radius function” for v). Then it makes sense to define

γ̄ = min
v(Bδ×∗)

(γ/εY ) > 0.

Now let us consider the self-embedding

Dj i
↪−→ Bδ ⊂ Dj

where i is of the form (t1, . . . , tj) 7→ ( t1a1
, . . . ,

tj
aj

) (in such a way thatm ∈ Im(v ◦ i)). We call

ψ : Dj × C(W )
i×(·γ̄)
↪−−−→ Dj × C(W ).

This construction is a way to “give conical parameters” for a sufficiently small open subspace ofv−1(U∩V ):
the multiplication by γ̄ is the rescalation of the cone coordinate, while i is the rescalation of the “euclidean”
coordinate (i.e. the one relative to theDj component). By construction,m ∈ Im(v ◦ ψ) ⊆ U ∩ V . In
particular, the image is contained inU \X .

Lemma 3.2.8. The function ψ is a map of basics.

Proof. We prove that:

• ψ is conically smooth alongDj . Indeed, the map on the bottom row of the diagram in [AFT17,
Definition 3.1.4] takes the form

(0, 1)× Rj ×Dj × C(W )→ (0, 1)× Rj ×Dj × C(W )

(t, (v1, . . . , vj), (u1, . . . , un), [s, z]) 7→(
t,

(
v1
a1
, . . .

vj
aj

)
,

(
u1
a1
, . . . ,

uj
aj

)
,

[
s

γ̄
, z

])
. (3.2.2)

As one can see from the formula, this indeed extends to t = 0, and the extension is called D̃ψ; the
differentialDψ of ψ is the restriction of D̃ψ to t = 0.
The same argument works for higher derivatives.



• Dψ is injective on vectors. This is an immediate verification using the formula (3.2.2).

• We have that Aψ−1((Dj×C(W ))\Dj) = ψ∗
ψ−1((Dj×C(W ))\Dj)A(Dj×C(W ))\Dj . This is proven by

looking at the definition of ψ: charts are only rescaled along the cone coordinate, or rescaled and
translated in the unstratified part.

Now consider the open subsetDi × Z × (0, 1) ⊂ Di × C(Z). By [AFT17, Lemma 3.2.9], basics
form a basis for basics, and therefore we may find a map of basics ϕ : Di′ ×C(Z ′) ↪→ Di×C(Z) whose
image is contained inDi × Z × (0, 1). Therefore we have a diagram

Di′ × Z ′

Dj × C(W ) U \X

u′

v◦ψ

But now, depth(U \X) < depth(U) ≤ depth(M), andU \X with its natural stratification as an open
subset of M is Whitney by Lemma 3.2.2 (or also by definition of Thom-Mather chart). Therefore, by
induction we may find maps of basics f ′, g′ sitting in the diagram

Dk × C(T ) Di′ × Z ′

Dj × C(W ) U \X

f ′

g′ u′

v◦ψ

Let us define f as the composition

Dk × C(T ) f ′
−→ Di′ × C(Z ′) ϕ−→ Di × C(Z)

and g as the composition

Dk × C(T ) g′
−→ Dj × C(W ) ψ−→ Dj × C(W ).

Now

u ◦ f = u′ ◦ f ′ = v ◦ ψ ◦ g′ = v ◦ g.

Since ϕ, ψ, f ′, g′ are maps of basics, then also f and g are, and this completes the proof.



Remark 3.2.9. By [Mat70, Proposition 6.1], different choices of Thom-Mather charts induce equivalent
conically smooth atlases in the sense of [AFT17, Definition 3.2.10]. Indeed, the construction of a Thom-
Mather atlas A depends on the choice of a tubular neighbourhood for each stratum X , along with its
distance and projection functions ρX , πX . Thus, let A,A′ be two conically smooth atlases induced by
different choices of a system of tubular neighbourhoods as above. We want to prove that A ∪A′ is again
an atlas. The nontrivial part of the verification is the following. Let us fix two strataX < Y , and a point
y ∈ Y ; take ϕX a Thom-Mather chart associated to the A-tubular neighbourhood TX ofX , and that
ψ′
Y a Thom-Mather associated to the A′-tubular neighbourhood T ′

Y of Y . We want to verify the “atlas
condition” (3.2.1); let TY be the A-tubular neighbourhood of Y . Now by [Mat70, Proposition 6.1] there
is an isotopy between T ′

Y and TY fixing Y . By pulling back ψ′
Y to TY along this isotopy, we obtain an

A-Thom Mather chart ψY around y; we are now left with two A-charts ϕX and ψY and we finally can
apply the fact that A is an atlas.



Chapter 4

Derived Brauer map via twisted sheaves
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4.1 Introduction and reminders

4.1.1 Reminders on gerbes and twisted sheaves

Construction 4.1.1. LetX be a qcqs scheme. For us, a Gm-gerbe will be what is defined for example in
[Ols16, Definition 12.2.2] (takeµ = Gm×X there). LetG be aGm-gerbe overX . The derived∞-category
of quasicoherent sheaves onG is denoted by QCoh(G) and it is a presentable stable compactly generated
OX -linear category. Inside this category, we will recall the definition of G-twisted sheaves on X . This
notion dates back to Giraud [Gir71] and later to Max Lieblich’s thesis [Lie08], and has been developed
in the derived setting by Bergh and Schnürer [BS19] (using the language of triangulated categories) and
Binda and Porta [BP21] (using the language of stable∞-categories).
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Let now F ∈ QCoh(G). Let IG be the inertia group stack ofG overX . Thus F is endowed with a
canonical right action by IG, called the inertial action. For an explicit definition, see [BS19, Section 3].

Proposition 4.1.2. Let G be a Gm-gerbe over a qcqs scheme X . The pullback functor QCoh(X) →
QCoh(G) establishes an equivalence between QCoh(X) and the full subcategory of QCoh(G) spanned by
those sheaves on which the inertial action is trivial.

Note that the banding Gm ×G→ IG induces a right action ρ of Gm on any sheaf F ∈ QCoh(G),
by composing the banding with the inertial action. On the other hand, for any character χ : Gm → Gm,
Gm acts on F on the left by scalar multiplication precomposed with χ. Let us call this latter action σχ.

Remark 4.1.3. Let 1 be the trivial character of Gm. Proposition 4.1.2 can be restated as: the pullback
functor QCoh(X)→ QCoh(G) induces an equivalence between QCoh(X) and the full subcategory of
QCoh(G) where ρ = σ1.

Let G be a Gm-gerbe over a qcqs scheme X , and χ a character of Gm. We define the category of
χ-homogeneous sheaves overG, informally, as the full subcategory QCohχ(G) of QCoh(G) spanned by
those sheaves on which ρ = σχ.

Remark 4.1.4. The above definition is a little imprecise, in that it does not specify the equivalences
ρ(γ,F) ≃ σχ(γ,F), γ ∈ Gm,F ∈ QCoh(G). A formal definition is given in [BP21, Definition
5.14]. There, the Authors define an idempotent functor (−)χ : QCoh(G) → QCoh(G), taking the
“χ-homogeneous component”. This functor is t-exact ([BP21, Proof of Lemma 5.17], and comes with
canonical maps iχ,F : Fχ → F. The category QCohχ(G) is defined as the full subcategory of QCoh(G)
spanned by those F such that iχ(F) is an equivalence. To fix the notations, let us make these constructions
explicit. IfX is a scheme andG a Gm-gerbe, we have the following diagram

G G× BGm G

BGm G X

u actα

q
p

π

π

where p, q are the projections, u is the atlas of the trivial gerbe and actα is the morphism induced by the
bending α ofG. See [BP21, Section 5] for more specific description of these maps. Given F ∈ QCoh(G)
and χ a character of Gm, the Authors define

(F)χ := u∗(q∗q∗(act∗
α(F)⊗ L∨

χ)⊗ Lχ)

and the morphism iχ(F) : (F)χ → F to be the pullback through u of the counit of the adjunction
q∗ ⊣ q∗. We will denote by Lχ the line bundle over BGm associated to the character χ, while Lχ is the
pullback ofLχ to the trivial gerbeG×Gm, i.e. Lχ := p∗Lχ.



[BP21] also prove that there is a decomposition

QCoh(G) ≃
∏

χ∈Hom(Gm,Gm)
QCohχ(G)

building on the fact that F ≃
⊕

χ∈Hom(Gm,Gm) Fχ. The same result was previously obtained by Lieblich
in the setting of abelian categories and by Bergh-Schnürer in the setting of triangulated categories.

Definition 4.1.5. In the case when χ is the identity character id : Gm → Gm, QCohχ(G) is usually
called the category ofG-twisted sheaves onX .

The relationship between categories of twisted sheaves and Azumaya algebras has been intensively
studied, see [De 04], [De ], [Lie08], [HR17], [BS19], [BP21]. Given a Gm-gerbeG overX , its category of
twisted sheaves QCohid(G) admits a compact generator, whose algebra of endomorphisms is a derived
Azumaya algebraAG. In contrast, if we restrict ourselves to the setting of abelian categories and consider
abelian categories of twisted sheaves, this reconstruction mechanism does not work anymore. This is one
of the reasons of the success of Toën’s derived approach.

The construction of the category of twisted sheaves gives rise to a functor

GerGm(X)→ LinCatSt(X)

G 7→ QCohid(G)

taking values in the 2-groupoid Br†(X) of compactly generated invertible categories (see Theorem 4.2.6).
To be precise, this was already known, see for instance [HR17, Example 9.3]. This functor corresponds
to a section of the map Br†(X) ∼−→ Map(X,B2Gm × BZ) → Map(X,B2Gm). This section is
not fully faithful nor essentially surjective. However, one can observe that QCohid(G) is not just an
∞-category, but also carries a t-structure which is compatible with filtered colimits, since as recalled
in Remark 4.1.4 the functor (−)id is t-exact. This additional datum allows to “correct” the fact that
QCohid(−) is not an equivalence. Indeed, we can change the target from LinCatSt(X) to the∞-category
of stable OX -linear presentable categories with a t-structure compatible with filtered colimits. Under
the association (C,C≥0,C≤0) 7→ C≥0, this∞-category is equivalent to the category LinCatPSt(X) of
so-called Grothendieck prestable OX -linear∞-categories (see Definition 4.1.11). Therefore, we have a
functor

Ψ : GerGm(X)→ LinCatPSt(X) (4.1.1)

G 7→ QCohid(G)≥0.



4.1.2 Reminders on stable and prestable linear categories

Definition 4.1.6. Let C be an∞-category. We will say that C is prestable if the following conditions are
satisfied:

• The∞-category C is pointed and admits finite colimits.

• The suspension functor Σ : C→ C is fully faithful.

• For every morphism f : Y → ΣZ in C, there exists a pullback and pushout square

X Y

0 ΣZ.

f ′

f

Proposition 4.1.7 ([Lur18, Proposition C.1.2.9]). Let C be a presentable∞-category. Then the following
conditions are equivalent:

• C is prestable and has finite limits.

• There exists a stable∞-category D equipped with a t-structure (D≥0,D≤0) and an equivalence
C ≃ D≥0.

Proposition 4.1.8 ([Lur18, Proposition C.1.4.1]). Let C be a presentable∞-category. Then the following
conditions are equivalent:

• C is prestable and filtered colimits in C are left exact.

• There exists a stable∞-category D equipped with a t-structure (D≥0,D≤0) compatible with filtered
colimits, and an equivalence C ≃ D≥0.

Definition 4.1.9 ([Lur18, Definition C.1.4.2]). Let C be a presentable∞-category. We will say that C is
Grothendieck if it satisfies the equivalent conditions of Proposition 4.1.8. Following [Lur18, Definition
C.3.0.5], we denote the∞-category of Grothendieck presentable∞-categories (and colimit-preserving
functors between them) by Groth∞. We also denote the category of presentable stable∞-categories (and
colimit-preserving functors between them) by PrL

St.

Remark 4.1.10. By [Lur17] and [Lur18, Theorem C.4.2.1], both PrL
St and Groth∞ inherit a symmetric

monoidal structure from PrL which we denote again by⊗.



Definition 4.1.11. LetX be a qcqs scheme. An OX -linear prestable∞-category is an object of

LinCatPSt(X) := ModQCoh(X)≥0(Groth⊗
∞).

A stable presentable OX -linear∞-category is an object of

LinCatSt(X) := ModQCoh(X)(PrL,⊗
St ).

Remark 4.1.12. There exists a stabilization functor stX : LinCatPSt(X)→ LinCatSt(X), induced by
the usual stabilization procedure.

Remark 4.1.13. The category LinCatPSt(X) has a tensor product − ⊗QCoh(X)≥0 − (which we will
abbreviate by⊗) induced by the Lurie tensor product of presentable∞-categories. See [Lur18, Theorem
C.4.2.1] and [Lur18, Section 10.1.6] for more details. The same is true for LinCatSt(X). The stabilization
functor LinCatPSt(X)→ LinCatSt(X) is symmetric monoidal with respect to these structures.

LinCatSt(X) and LinCatPSt(X) satisfy a very important “descent” property, which is what Gaitsgory
[Gai15] calls 1-affineness.

Construction 4.1.14. The functors
CAlgk → Cat∞

R 7→ LinCatSt(SpecR)

R 7→ LinCatPSt(SpecR)

can be right Kan extended to functors

QStkSt,QStkPSt : Schop
k → Cat∞.

This gives a meaning to the expressions QStkSt(X),QStkPSt(X), which can be thought of as “the category
of sheaves of QCoh-linear (resp. QCoh≥0-linear) (pre)stable categories onX”. For anyX ∈ Schk, there
are well-defined “global sections functors”

QStkSt(X)→ LinCatSt(X),QStkPSt(X)→ LinCatPSt(X)

constructed in [Lur18, discussion before Theorem 10.2.0.1].

Theorem 4.1.15. LetX be a qcqs scheme over k. Then the global sections functors

QStkSt(X)→ LinCatSt(X)

QStkPSt(X)→ LinCatPSt(X)

are symmetric monoidal equivalences.



Proof. For the stable part, this is [Lur11, Proposition 6.5]. For the prestable part, this is the combination of
[Lur18, Theorem 10.2.0.2] and [Lur18, Theorem D.5.3.1]. Symmetric monoidality follows from the fact
that the inverse of the global sections functor (the “localization functor”, see [BP21, Section 2.3]) is strong
monoidal.

This theorem means that, ifX is a qcqs scheme over k, every (Grothendieck pre)stable presentable
OX -linear∞-category C has an associated sheaf of∞-categories on X having C as category of global
sections. We will make substantial use of this fact in the present work. The main reason why we will always
assume our base schemeX to be qcqs is because it makes this theorem hold.

Definition 4.1.16. We denote by Br(X) the maximal∞-groupoid contained in QStkPSt(X) and gen-
erated by ⊗QCoh(X)≥0 -invertible objects which are compactly generated categories, and equivalences
between them. We denote by Br†(X) the maximal∞-groupoid contained in QStkSt(X) generated by
⊗QCoh(X)-invertible objects which are compactly generated categories, and equivalences between them.

We call dBr(X) := π0Br(X) the derived Brauer group of X and dBr†(X) := π0(Br†(X)) the
extended derived Brauer group ofX .

By [Lur18, Theorem 10.3.2.1], to be compactly generated is a property which satisfies descent. The
same is true for invertibility, since the global sections functor is a symmetric monoidal equivalence by
Theorem 4.1.15. Therefore, Br†(X) is equivalent to the∞-category of invertible and compactly generated
categories in LinCatSt, and an analogous statement is true for Br(X).

Remark 4.1.17. The stabilization functor mentioned in Remark 4.1.12 restricts to a functor Br(X)→
Br†(X), whose homotopy fiber at any object C ∈ Br†(X) is discrete and can be identified with the
collection of all t-structures (C≥0,C≤0) on C satisfying the following conditions:

• The t-structure (C≥0,C≤0) is right complete and compatible with filtered colimits.

• The Grothendieck prestable∞-category C≥0 is an⊗-invertible object of LinCatPSt(X).

• The Grothendieck prestable∞-category C≥0 and its⊗-inverse are compactly generated.

See [Lur18, Remark 11.5.7.3] for further comments.

Consider now the functor Ψ introduced in Eq. (4.1.1). In analogy to the stable setting, we will prove
that it factors through Br(X)→ LinCatPSt(X) (see Theorem 4.2.6).

The inverse will be described as follows. By Theorem 4.1.15, if X is a quasicompact quasiseparated
scheme, andM a prestable presentable∞-category equipped with an action of QCoh(X)≥0, thenM is
the category of global sections overX of a unique sheaf of prestable QCoh(X)≥0-linear categories M.



Definition 4.1.18. LetX be a quasicompact quasiseparated scheme, andM be an element of Br(X).
Then we define the Triv≥0(M) as the sheaf of categories

S 7→ Equiv
(

QCoh(S)≥0,M(S)
)
.

Finally, observe that both Br(X) and GerGm(X) have symmetric monoidal structures: on the first
one, we have the tensor product⊗ inherited by LinCatPSt(X) (Remark 4.1.13), and on the second one we
have the rigidified product ⋆ of Gm-gerbes. Although the two structures are well-known to experts, we
will recall them in Section 4.2.1.

We are now ready to formulate our main theorem.

Theorem 4.1.19. LetX be a qcqs scheme over a field k. Then there is a symmetric monoidal equivalence of
2-groupoids

Φ : Br(X)⊗ ←→ GerGm(X)⋆ : Ψ

where

• Φ(M) = Triv≥0(M)

• Ψ(G) = QCohid(G)≥0.

Remark 4.1.20. By taking the π0, one obtains an isomorphism of abelian groups

dBr(X) ≃ H2(X,Gm).

This isomorphism appears also in [Lur18, Example 11.5.7.15], but as mentioned before, it is a consequence
of the equivalence of∞-categories

Br(X) ≃ Map(X,B2Gm)

whose proof however does never refer to the notion of Gm-gerbe.

4.2 Study of the derived Brauer map

4.2.1 Symmetric monoidal structures

We begin by describing the symmetric monoidal structure on the category of Gm-gerbes.
LetX be a scheme andG1 andG2 be two Gm-gerbes onX . One can costruct the productG1 ⋆ G2,

which is a Gm-gerbe such that its class in cohomology is the product of the classes ofG1 andG2 (see [BP21,
Conjecture 5.23]). Clearly, this is not enough to define a symmetric monoidal structure on the category of



Gm-gerbes. The idea is to prove that this ⋆ product has a universal property in the∞-categorical setting,
which allows us to define the symmetric monoidal structure on the category of Gm-gerbes using the theory
of simplicial colored operads and∞-operads (see Chapter 2 of [Lur17]).

Construction 4.2.1. Let AbGer(X) be the (2, 1)-category of abelian gerbes overX and AbGr(X) the
(1, 1)-category of sheaves of abelian groups overX . We have the so-called banding functor

Band : AbGer(X) −→ AbGr(X),

see for example Chapter 3 of [BS19]. It is easy to prove that Band is symmetric monoidal with respect to
the two Cartesian symmetric monoidal structures of the source and target, that is it extends to a symmetric
monoidal functor Band : AbGer(X)× → AbGr(X)× of colored simplicial operads (and therefore also
of∞-operads).

Recall that, given a morphism of sheaf of groups ϕ : µ → µ′ and a µ-gerbe G, we can construct a
µ′-gerbe, denoted by ϕ∗G, and a morphism ρϕ : G→ ϕ∗Gwhose image through the banding functor is
exactly ϕ. This pushforward construction is essentially unique and verifies weak funtoriality. This follows
from the following result: ifG is a gerbe banded by µ, then the induced banding functor

BandG/ : AbGer(X)G/ −→ AbGr(X)µ/

is an equivalence and the pushforward construction is an inverse (see [BS19, Proposition 3.9]). This also
implies that Band is a coCartesian fibration.

LetFin∗ be the Segal category of pointed finite set. Consider now the morphismFin∗ → AbGr(X)×

induced by the algebra object Gm,X in AbGr(X)×. We can consider the following pullback diagram

G AbGer(X)×

Fin∗ AbGr(X)×;

B Band
Gm,X

thus B is a coCartesian fibration. This implies that G is a symmetric monoidal structure over the fiber
category G<1> := B−1(< 1 >) which is exactly the category of Gm-gerbes. The operadic nerve of G will
be the symmetric monoidal∞-category of Gm-gerbes (see [Lur17, Proposition 2.1.1.27]).

We claim that this symmetric monoidal structure coincides with the ⋆ product of gerbes defined in
[BS19]. In fact, following the rigidification procedure in [Ols16, Exercise 12.F] and [AOV08, Appendix A],
we can define the ⋆ product as the pushforward of the multiplication mapm : Gm ×Gm → Gm, i.e. if
G1 andG2 are two Gm-gerbes overX , then

G1 ⋆ G2 := m∗(G1 ×X G2).



Remark 4.2.2. Let us describe G as a simplicial colored operad. The objects (or colors) of G are Gm-gerbes
overX . Let {Gi}i∈I be a sequence of objects indexed by a finite set I and H another object; we denote
by
∏
i∈I Gi the fiber product ofGi overX . The simplicial set of multilinear maps Mul({Gi}i∈I ,H) is

the full subcategory of the 1-groupoid of morphisms MapX(
∏
i∈I Gi,H) of gerbes overX such that its

image through the banding functor is the n- fold multiplication map of Gm, where n is the cardinality of
I . Note that because the simplicial sets of multilinear maps are Kan complexes by definition, then they are
fibrant simplicial sets. This is why the operadic nerve gives us a symmetric monoidal structure, see [Lur17,
Proposition 2.1.1.27].

Definition 4.2.3. We denote by GerGm(X)⋆ the symmetric monoidal∞-groupoid of Gm-gerbes over
X , with the symmetric monoidal structure given by Construction 4.2.1.

Remark 4.2.4. Note that GerGm(X) is just a (2, 1)-category, since gerbes are by definition 1-truncated
stacks. Also, it is 0-truncated (i.e. a 2-groupoid) since morphisms of Gm-gerbes are always equivalences.

Next, we will describe the symmetric monoidal structure on Br(X). We know that it is the restriction
of the symmetric monoidal structure of LinCatPSt(X), see Remark 4.1.13.

Remark 4.2.5. We now describe explicitly the symmetric monoidal structure of LinCatSt(X) using the
language of simplicial colored operads. The same description will apply to the prestable case. This will
come out useful in the rest of the chapter.

The simplicial colored operad LinCatSt(X) can be described as follows:

1. the objects (or colors) are stable presentable∞-categories which are modules over QCoh(X) ( see
[Lur17, Section 4.5] for the precise definition of module over an algebra object);

2. given {Mi}i∈I a sequence of objects indexed by a finite set I andN another object, the simplicial
set of multilinear maps Mul({Mi}i∈I , N) is the mapping space FunL(

∏
i∈IMi, N) of functors

of stable presentable categories which are QCoh(X)-linear and preserve small colimits separately in
each variable.

4.2.2 Derived categories of twisted sheaves

Recall from Section 4.1.1 the definition of QCohid(G) and QCohid(G)≥0. Our aim in this subsection is
to prove the following statement:

Theorem 4.2.6. LetX be a qcqs scheme. The functors

QCohid(−) : GerGm(X)⋆ → LinCatSt(X)⊗



and
QCohid(−)≥0 : GerGm(X)⋆ → LinCatPSt(X)⊗

carry a symmetric monoidal structure with respect to the ⋆-symmetric monoidal structure on the left hand side
and to the⊗-symmetric monoidal structures on the right hand sides. In particular, since every Gm-gerbe is
⋆-invertible and GerGm(X) is a 2-groupoid, QCohid(−) takes values in Br†(X) and QCohid(−)≥0 takes
values in Br(X).

Remark 4.2.7. Notice that we need to explicit how QCohid(−) (or QCohid(−)≥0) acts on the mapping
spaces as well. We decided to stick with the covariant notation, i.e we define the image of a morphism of
Gm-gerbes f : G1 → G2 to be f∗. We omit the proof of the fact that f∗ sends twisted sheaves to twisted
sheaves, which follows from a straightforward computation.

Although there are no real issues with the contravariant notation (considering pullbacks instead of
pushforwards), there are some technical complications when one wants to prove that a contravariant
functor is symmetric monoidal.1 Note that, if f is any morphism of gerbes, then, f∗ = (f∗)−1.

We will prove Theorem 4.2.6 in two different steps.

Remark 4.2.8. LetC be a presentable∞-category, p : C → C be an endofunctor and η : p⇒ idC be
a natural transformation. LetC0 be the equalizer of the following diagram

C C

p

idC

η

which can be described as the full subcategory ofC spanned by the elementsX ofC such that η(X) is an
equivalence. Now consider (C1, p1, η1) and (C2, p2, η2) triples as the above one, and let ρ : C1 → C2

be a functor and α : p2 ◦ ρ⇒ ρ ◦ p1 be an equivalence of functors. If (idρ ∗ η1) ◦ α = (η2 ◦ idρ) then
(ρ, α) is a morphism between the two diagrams and therefore there exists a unique (up to homotopy)
morphismC0

1 → C0
2 compatible with all the data.

IfG is a Gm-gerbe and χ is a character of Gm, the endofunctor (−)χ of QCoh(G) and the natural
transformation iχ introduced in Remark 4.1.4 form a diagram as above. In this situation, QCohχ(G) is
exactly the equalizer.

Proposition 4.2.9. Let X be a quasicompact quasiseparated scheme over a field k. Let G,G′ → X be
two Gm-gerbes over X , and χ, χ′ two characters of Gm. The external tensor product establishes a t-exact
equivalence

⊠ : QCohχ(G)⊗QCoh(X) QCohχ′(G′) ∼−→ QCoh(χ,χ′)(G×X G′)
1In fact, one would need to use the construction of the “opposite of an ∞-operad”, see [Bea], [Lur17, Remark 2.4.2.7].



whereG×X G′ is seen as a Gm ×Gm-gerbe onX .

Proof. First we prove that the external tensor product induces a t-exact equivalence

⊠ : QCoh(G)⊗QCoh(X) QCoh(G′) ≃ QCoh(G×X G′). (4.2.1)

By Theorem 4.1.15, every side of the sought equivalence is the∞-category of global sections of a sheaf
in categories over X , which means that the equivalence is étale-local on X . Therefore, by choosing a
coveringU → X which trivializes bothG andG′, we can reduce to the caseG = U × BGm → U,G′ =
U×BGm → U , both maps being the projection toU . But by [BP21, Corollary 5.6], QCoh(U×BGm) ≃
QCoh(U) × QCoh(BGm), and this proves our claim. Finally, t-exactness follows from the Künneth
formula.

Now we prove that the restriction of the functor (4.2.1) to QCohχ(G)⊗QCoh(X) QCohχ′(G′) lands
in QCoh(χ,χ′)(G×X G′). It is enough to construct an equivalence

α(F ⊠ F′) : (F ⊠ F′)(χ,χ′) ≃ (F)χ ⊠ (F′)χ′

for everyF⊠F′. With the notation of Remark 4.1.4, we can do this using the following chain of equivalence:

(F ⊠ F′)(χ,χ′) = (p× p′)∗(act∗
(α,α′)(F ⊠ F′)⊗ L∨

(χ,χ′))

≃ (p× p′)∗((actα × actα′)∗(F ⊠ F′)⊗ (L∨
χ ⊠ L∨

χ′))

≃ (p× p′)∗((act∗
αF ⊗ L∨

χ) ⊠ (act∗
α′F′ ⊗ L∨

χ′)) ≃ (F)χ ⊠ (F′)χ′ .

A straightforward computation shows that α is in fact a natural transformation and verifies the condition
described in Remark 4.2.8.

It remains to prove that the restricted functor induces an equivalence, which will automatically be
t-exact. But again, it suffices to show this locally, and in the local case this just reduces to the fact that

QCohχ(U × BGm)⊗QCoh(U) QCohχ′(U × BGm) ≃ QCoh(U)⊗QCoh(U) QCoh(U)→ QCoh(U)

is an equivalence.

Remark 4.2.10. Using the associativity of the box product ⊠, the same proof works in the case of a finite
number of Gm-gerbes.

Proposition 4.2.11. LetG ⋆ G′ be the Gm-gerbe defined in Construction 4.2.1. Then the pullback along
ρ : G×X G′ → G ⋆ G′ establishes a t-exact equivalence

QCohid(G ⋆ G′) ∼−→ QCoh(id,id)(G×X G′).



Proof. Note that the character m : Gm × Gm → Gm given by multiplication induces a line bundle
Lid,id on BGm × BGm. One can prove easily that this line bundle coincides with the external product
of Lid, the universal line bundle on BGm, with itself. This means that what we denote by L(id,id) ∈
QCoh(G ×X G′ × BGm × BGm) has the form Lid ⊠ Lid (again with the usual notations of Remark
4.1.4).

We need to prove that ρ∗ sends id-twisted sheaves in (id, id)-twisted sheaves. To do this, we will
construct an equivalence

α(F) : (ρ∗F)(id,id) ≃ ρ∗(Fid)

for every F in QCoh(G ⋆ G′) and apply Remark 4.2.8. An easy computation shows that α is in fact a
natural transformation and it verifies the condition described in Remark 4.2.8.

By construction of the ⋆ product, one can prove that the following diagram

G×X G′ × BGm × BGm G×X G′

G ⋆ G′ × BGm G ⋆ G′

act(α,α′)

(ρ,Bm) ρ

actαα′

is commutative, where act(α,α′) is the action map ofG×X G′ defined by the product bending, actαα′

is the action map of G ⋆ G′ and Bm is the multiplication map m : Gm × Gm → Gm at the level of
classfying stacks. This implies that

act∗(α,α′)(ρ
∗F) = (ρ,Bm)∗act∗αα′(F).

Consider now the following diagram:

G×X G′ × BGm × BGm

G×X G′ × BGm G×X G′

G ⋆ G′ × BGm G ⋆ G′
(ρ,Bm)

q̃(α,α′)

(id,Bm)

q(α,α′)

(ρ,id) ρ

qαα′

where q̃(α,α′), q(α,α′) and qαα′ are the projections. This is a commutative diagram and the square is a
pullback.



Finally, we can compute the (id, id)-twisted part of ρ∗F:

(ρ∗F)id,id =q̃(α,α′),∗(act∗(α,α′)(ρ
∗F)⊗ L∨

id,id)

=q(α,α′),∗(id,Bm)∗
(
(id,Bm)∗(ρ, id)∗(act∗αα′(F))⊗ L∨

id,id

)
;

notice that since Bm∗Lid = Lid,id we have (ρ,Bm)∗Lid = Lid,id. Furthermore, an easy computation
shows that the unit id→ (id,Bm)∗(id,Bm)∗ is in fact an isomorphism, because of the explicit description
of the decomposition of the stable∞-category of quasi-coherent sheaves over BGm. These two facts
together give us that

(ρ∗F)id,id =q(α,α′),∗(id,Bm)∗
(
(id,Bm)∗(ρ, id)∗(act∗αα′(F))⊗ L∨

id,id

)
=q(α,α′),∗(id,Bm)∗(id,Bm)∗(ρ, id)∗

(
act∗αα′(F)⊗ L∨

id

)
=q(α,α′),∗(ρ, id)∗

(
act∗αα′(F)⊗ L∨

id

)
=ρ∗qαα′,∗

(
act∗αα′(F)⊗ L∨

id

)
=ρ∗((F)id).

To finish the proof, we need to verify that ρ∗ restricted to id-twisted sheaves is an equivalence with
the category of (id, id)-twisted sheaves. Again, this can be checked étale locally, therefore we can reduce
to the case G ≃ G′ ≃ X × BGm where the morphism ρ can be identified with (idX ,Bm). We know
that for the trivial gerbe we have that QCoh(X) ≃ QCohid(X × BGm) where the map is described by
F 7→ π∗F⊗Lid, π being is the structural morphism of the (trivial) gerbe. A straightforward computation
shows that, using the identification above, the morphism ρ∗ is the identity of QCoh(X).

Finally, t-exactness follows from the fact that ρ is flat (see [AOV08, Theorem A.1]).

Remark 4.2.12. One can prove easily thatρ∗ is an inverse of the morphismρ∗ which we have just described.
It is still true that send twisted sheaves to twisted sheaves and it has the same functorial property of the
pullback, due to the natural adjunction. Furthermore, ρ∗ is t-exact because ρ is a morphism of gerbes
whose image through the banding functor Band(ρ) is a surjective morphism of groups with a linearly
reductive group as kernel. This implies that it is the structure morphism of a gerbe banded by a linearly
reductive group, therefore ρ∗ is exact.

Proof of Theorem 4.2.6. First of all, we start with the stable case. We have to lift QCohid(−) from a mor-
phism of∞-groupoid to a symmetric monoidal functor, i.e. to extend the action of QCohid(−) to
multilinear maps. Let {Gi}i∈I be a sequence of Gm-gerbes indexed by a finite set I andH be a Gm-gerbe,



then we can define a morphism of simplicial set

QCohid(−) : Mul({Gi}i∈I , H) −→ Mul({QCohid(Gi)}i∈I ,QCohid(H))

by the following rule: if f :
∏
i∈I Gi → H is a multilinear map, we define QCohid(f) to be the composi-

tionf∗◦⊠n :
∏
i∈I QCohid(Gi)→ QCohid(H) where⊠n :

∏
i∈I QCohid(Gi)→ QCohid(

∏
i∈I Gi)

is just the n-fold box product. The fact that this association is well-defined follows from Proposition 4.2.9
and Proposition 4.2.11. A priori, QCohid(−) is a lax-monoidal functor from GerGm(X)⋆ toLinCatSt(X)×,
where LinCatSt(X)× is the symmetric monoidal structure on LinCatSt(X) induced by the product of
∞-categories. However, f∗ and ⊠n are both QCoh(X)-linear and preserves small colimits. Notice that
f∗ preserves small colimits because it is exact, due to the fact that it is a µ-gerbe, with µ a linearly reductive
group (see Remark 4.2.12). This implies that QCohid(−) can be upgraded to a morphism of∞-operad if
we take the operadic nerve. It remains to prove that it is symmetric monoidal, i.e. to prove that it sends
coCartesian morphism to coCartesian morphism. This follows again from the isomorphisms described in
Proposition 4.2.11 and Proposition 4.2.9.

The prestable case can be dealt with in the exact same way. Because the equivalences in Proposition
4.2.9 and Proposition 4.2.11 are t-exact, they restrict to the prestable connective part of the∞-categories.
The fact that they remain equivalences can be checked étale locally.

4.2.3 Gerbes of positive trivializations

Definition 4.2.13. LetM ∈ Br(X). We define the functor

Triv≥0(M) : Sch/X → S

(S → X) 7→ EquivQCoh(S)≥0
(QCoh(S)≥0,M(S))

where M is the stack of categories associated toM (see Theorem 4.1.15).

Our aim in this subsection is to prove that for every M ∈ Br(X), the functor Triv≥0(M) has a
natural structure of a gerbe overX , and also that the functor Triv≥0(−) : Br(X)→ GerGm(X) can be
promoted to a symmetric monoidal functor Br(X)⊗ → GerGm(X)⋆. Let us recall the main result about
the Brauer space proven in [Lur18] (specialized to the case of qcqs schemes).

Theorem 4.2.14 ([Lur18, Theorem 11.5.7.11]). Let X be a qcqs scheme. Then for every u ∈ dBr(X) =
π0(Br(X)), there exists an étale covering f : U → X such that f∗u = 0 in dBr(U); that is, any
representative of f∗u is equivalent to QCoh(U)≥0 as an∞-category.



Lemma 4.2.15. LetX be a qcqs scheme. Then the stack EquivQCoh(X)≥0
(QCoh(X)≥0,QCoh(X)≥0) is

equivalent to BGm ×X .

Proof. Let S → X be a morphism of schemes. A QCoh(S)-linear autoequivalence of QCoh(S) is
determined by the image of OS , and therefore amounts to the datum of a line bundle L concentrated
in degree 0 (the degree must be nonnegative because we are in the connective setting, and if it were
positive then the inverse functor would be given by tensoring by a negatively-graded line bundle, which is
impossible).

This implies that the desired moduli space is Pic×X , which is the same as BGm ×X .

Proposition 4.2.16. LetX be a qcqs scheme, andM ∈ Br(X). Then Triv≥0(M) has a natural structure
of Gm-gerbe over X . Furthermore, given an isomorphism f : M → N of prestable invertible categories,
then the morphism Trivgeq0(f) defined by the association ϕ 7→ f ◦ ϕ is a morphism of Gm-gerbes.

Proof. To prove that Triv≥0(M) is a Gm-gerbe we need to verify that both the structure map and the
diagonal of Triv≥0(M) are epimorphisms and to provide a Gm-banding. The first two assertions are
evident from the fact thatTriv≥0(M) is locally of the formX×BGm. Now we provide the banding in the
following way. First of all, notice thatGm,X can be identified with the automorphism group of the identity
endofunctor of QCoh(X)≥0, namely OX -linear invertible natural transformations of idQCoh(X)≥0 . Let
ITriv≥0(M) be the inertia stack of Triv≥0(M). We define a functor

αM : Triv≥0(M)×Gm −→ ITriv≥0(M)

as αM (ϕ, λ) := (ϕ, idϕ ∗ λ) ∈ ITriv≥0 for every (ϕ, λ) object of Triv≥0(M), ∗ being the horizontal
composition of natural transformations. Since being an isomorphism is an étale-local property, we can
reduce to the trivial case, for which it is a straightforward computation. The second part of the statement
follows from a straightforward computation.

Lemma 4.2.17. The functor Triv≥0(−) is symmetric monoidal.

Proof. To upgrade Triv≥0 to a symmetric monoidal functor, we need to define its action on multilinear
maps. Let {Mi}i∈I be a sequence of invertible prestable OX -linear∞-categories indexed by a finite set I
andN be another invertible prestable OX -linear category. Then we define

Triv≥0(−) : Mul
(
{Mi}i∈I , N

)
−→ Mul

(
{Triv≥0(Mi)}i∈I ,Triv≥0(N)

)
in the following way: if f :

∏
i∈IMi → N is a morphism inLinCatPSt(X) which preserves small colimits

separately in each variable, we have to define the image Triv≥0(f) as a functor

Triv≥0(f) :
∏
i∈I

Triv≥0(Mi) −→ Triv≥0(N)



such that Band(Triv≥0(f)) is the n-fold multiplication of Gm, where n is the cardinality of I . We define
it on objects in the following way: if {ϕi} is an object of

∏
i∈I(Triv≥0(Mi)), then we set

Triv≥0(f)
(
{ϕi}

)
:= f ◦

∏
ϕi

where
∏
ϕi is just the morphism induced by the universal property of the product.

First of all we need to prove that f ◦
∏
ϕi is still an equivalence. LetS ∈ SchX and f :

∏
i∈IMi → N

morphism in LinCatPSt(X), we can consider the following diagram:

QCoh(S)
∏
i∈I Mi(S)

⊗
i∈I Mi(S) N(S)

∏
ϕi

⊗ϕi
u

f(S)
f̃(S)

(4.2.2)

where the tensors are in fact relative tensors over QCoh(S). The diagonal mapu is the morphism universal
between all the QCoh(X)-linear morphisms from

∏
i∈I Mi(S) which preserve small colimits separately

in each variable.Equivalently, one can say that it is a coCartesian morphism in LinCatPSt(S)⊗.
Thus, it is enough to prove that both⊗ϕi and f̃ are equivalences. Because the source of the functor

Triv≥0(−) is the∞-groupoid dBr(S), the morphism f̃(S) is an equivalence. Furthermore, the mor-
phisms ϕi are equivalences, therefore it follows from the functoriality of the relative tensor product that
⊗ϕi is an equivalence. A straightforward but tedious computation shows that it is defined also at the level
of 1-morphism and it is in fact a functor.

It remains to prove that Band
(
Triv≥0(f)

)
is the n-fold multiplication of Gm, where n is the cardi-

nality of I . It is equivalent to prove the commutativity of the following diagram:

∏
i∈I Triv≥0(Mi)×Gm

n Triv≥0(N)×Gm

∏
i∈I ITriv≥0(Mi) ITriv≥0(N)

(Triv≥0(f),mn)

∏
αMi

αN

ITriv≥0(f)

wheremn is the n-fold multiplicatoon of Gm. The notation follows the one in the proof of Lemma 4.2.16.
Using diagram 4.2.2 again, we can reduce to the following straightforward statement: let λ1, . . . , λn be
QCoh(S)-linear automorphisms of idQCoh(S), which can be identified with elements of Gm(S); then the
tensor of the natural transformations coincide with the product as elements of Gm, i.e λ1 ⊗ · · · ⊗ λn =
mn(λ1 . . . λn).

Finally, because we are considering∞-groupoid, the condition of being stricly monoidal is automoti-
cally satisfied.



4.2.4 Proof of the equivalence

The goal of this subsection is to prove that the constructions

M 7→ Triv≥0(M)

and
G 7→ QCohid(G)≥0

establish a (symmetric monoidal) categorical equivalence between the 2-groupoids Br(X) and GerGm(X),
thus proving Theorem 4.1.19.

Proposition 4.2.18. The functor Triv≥0(−) is fully faithful.

Proof. We want to prove that for anyM,M ′ ∈ Br(X) the map

MapBr(X)(M,M ′)→ MapGerGm (X)(Triv≥0(M),Triv≥0(M ′))

is a homotopy equivalence of spaces (more precisely, an equivalence of 1-groupoids). First of all, by
using the grouplike monoid structure of Br(X) together with Lemma 4.2.17, we can reduce to the case
M ′ = QCoh(X)≥0 = 1.

IfM does not lie in the connected component of 1, then what we have to check is that

MapGerGm (X)(Triv≥0(M),Triv≥0(1)) = ∅.

But if this space contained an object, then in particular we would have an equivalence at the level of
global sections between EquivQCoh(X)≥0

(M,1) and EquivQCoh(X)≥0
(1,1). But the first space is empty

by hypothesis, while the second is not.
On the other hand, ifM lies in the connected component of 1, by functoriality of Triv≥0(−) we can

suppose thatM = 1. In this case, we have to prove that the map

MapBr(X)(1,1)→ MapGerGm (X)(Triv≥0(1),Triv≥0(1)) ≃ MapGerGm (X)(X × BGm, X × BGm)

is an equivalence of groupoids. But the first space is the groupoid Pic(X), the latter is the space of maps
X → BGm, and the composite map is the one sending a line bundle overX to the mapX → BGm that
classifies it.

Proposition 4.2.19. LetX be a qcqs scheme. Then there is a natural equivalence of functors

IdGerGm (X) ⇒ Triv≥0 ◦QCohid(−)≥0.



Proof. LetG be a Gm-gerbe overX . Let us observe that for any S → X we have

G(S) ≃ EquivGerGm (S)(S × BGm, GS).

Indeed, there is an evident map of stacks overX

F : EquivGerGm
(X × BGm, G)→ G

and up to passing to a suitable étale covering ofX , the map becomes an equivalence: in fact the choice
of an equivalence ϕ : S × BGm → S × BGm of gerbes over S amounts to the choice of a map S → BGm,
because ϕmust be a map over S (hence prBGm

◦ ϕ = prBGm
) and it must respect the banding . Therefore,

F is an equivalence over X , and this endows EquivGerGm
(X × BGm, G) with a natural structure of a

Gm-gerbe overX .
The construction ϕ 7→ ϕ∗ thus provides a morphism of stacks

G→ EquivQCoh(X)

(
QCohid(X × BGm),QCohid(G)

)
.

Now since the pushforward ϕ∗ of an equivalence ϕ of stacks is t-exact, the construction ϕ 7→ ϕ∗

factors through the stabilization map

EquivQCohid

(
QCohid(X×BGm)≥0,QCohid(G)

)
→ EquivQCoh(X)

(
QCohid(X×BGm),QCohid(G)

)
.

Note that the stabilization map makes sense in the id-twisted context since the stabilization functor has
descent (it is the limit of iterated loops), and thus we can reduce to the case whenG is trivial.

We have therefore obtained a map of stacks overX

G→ EquivQCoh(X)≥0

(
QCoh(X)≥0,QCohid(G)≥0

)
= Triv≥0(QCohid(G)≥0).

But now, Triv≥0(QCohid(G)) is a Gm-gerbe overX (note that this was not true before passing to the
connective setting), and therefore to prove that the map is an equivalence it suffices to prove that it agrees
with the bandings, that is, that it is a map of Gm-gerbes. This follows from unwinding the definitions.

We are now ready to prove our main result.

Proof of Theorem 4.1.19: Section 4.2.2 and Section 4.2.3 tell us that the two functors are symmetric
monoidal and take values in the sought∞-categories. The fact that they form an equivalence follows from
Proposition 4.2.18 and Proposition 4.2.19.



Bibliography

[AFT17] D. Ayala, J. Francis, and H. Tanaka. “Local structures on stratified spaces”. In: Adv.Math. 307,
903-1028 (2017).

[AG14] B. Antieau and D. Gepner. “Brauer groups and étale cohomology in derived algebraic geome-
try”. In: Geometry and Topology 18 (2014).

[AG15] D. Arinkin and D. Gaitsgory. “Singular support of coherent sheaves, and the geometric
Langlands conjecture”. In: Selecta Mathematica 21, 1-199 (2015).

[AOV08] D. Abramovich, M. Olsson, and A. Vistoli. “Tame stacks in positive characteristic”. en. In:
Annales de l’Institut Fourier 58.4 (2008), pp. 1057–1091. doi: 10.5802/aif.2378. url:
http://www.numdam.org/articles/10.5802/aif.2378/.

[Art72] M. Artin. SGA 4, Théorie des topos et cohomologie étale des schemas. Exposé XVI. Théorème
de changement de base par un morphisme lisse, et applications. http://www.normalesup.
org/~forgogozo/SGA4/16/16.pdf. 1972.

[BD05] A. Beilinson and V. Drinfeld. Quantization of Hitchin’s integrable system and Hecke eigen-
sheaves. http://www.math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.
pdf. 2005.

[Bea] Jonathan Beardsley. Opposite Symmetric Monoidal Structure on an Infinity Category. Math-
Overflow. url: https://mathoverflow.net/q/191739.

[BF07] R. Bezrukavnikov and M. Finkelberg. Equivariant Satake category and Kostant-Whittaker
reduction. https://arxiv.org/abs/0707.3799. 2007.

[BFN10] D. Ben-Zvi, J. Francis, and D. Nadler. “Integral transforms and Drinfeld centers in derived
algebraic geometry”. In: J. Amer. Math. Soc. 23, 909-966 (2010).

[BGH20] C. Barwick, S. Glasman, and P. Haine. Exodromy. https://www.maths.ed.ac.uk/
~cbarwick/papers/exodromy_book.pdf. 2020.

109

https://doi.org/10.5802/aif.2378
http://www.numdam.org/articles/10.5802/aif.2378/
http://www.normalesup.org/~forgogozo/SGA4/16/16.pdf
http://www.normalesup.org/~forgogozo/SGA4/16/16.pdf
http://www.math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf
http://www.math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf
https://mathoverflow.net/q/191739
https://arxiv.org/abs/0707.3799
https://www.maths.ed.ac.uk/~cbarwick/papers/exodromy_book.pdf
https://www.maths.ed.ac.uk/~cbarwick/papers/exodromy_book.pdf


[Bha] B. Bhatt. The étale topology. http://www-personal.umich.edu/~bhattb/math/
etalestcksproj.pdf.

[BL95] A. Beauville and Y. Laszlo. “Un lemme de descente”. In: C. R. Acad. Sci. Paris Sér. I Math.
320.3 (1995), pp. 335–340.

[BNP17] D. Ben-Zvi, D. Nadler, and A. Preygel. “Integral transforms for coherent sheaves”. In: Journal
of the European Mathematical Society, 19 (12), 3763–3812 (2017).

[BP21] F. Binda and M. Porta. GAGA problems for the Brauer group via derived geometry. https:
//arxiv.org/pdf/2107.03914c. 2021.

[BR18] P. Baumann and S. Riche. Notes on the geometric Satake equivalence. arXiv:1703.07288v3.
2018.

[BS19] D. Bergh and O. Schnürer. Decompositions of derived categories of gerbes and of families of
Brauer-Severi varieties. 2019. url: https://arxiv.org/abs/1901.08945.

[Cam22] J. Campbell. The derived geometric Satake equivalence via factorization. Cycle of online talks
at https://people.math.harvard.edu/~gaitsgde/GLOH_2020. 2022.

[De ] J.A. De Jong. A result of Gabber. https://www.math.columbia.edu/~dejong/
papers/2-gabber.pdf.

[De 04] J.A. De Jong. “The period-index problem for the Brauer group of an algebraic surface”. In:
Duke Math. J. 123 (1) 71 - 94 (2004).

[DK19] T. Dyckerhoff and M. Kapranov. Higher Segal Spaces. 1st ed. Lecture Notes in Mathematics.
Springer, 2019. isbn: 978-3-030-27122-0.

[Gai15] D. Gaitsgory. “Sheaves of categories and the notion of 1-affineness”. In: Stacks and categories
in geometry, topology, and algebra, volume 643 of Contemp. Math., pages 127–225. Amer. Math.
Soc., Providence, RI (2015).

[Gib+76] C.G. Gibson et al. Topological Stability of Smooth Mappings. Springer-Verlag, 1976.

[Gin95] V. Ginzburg. Perverse sheaves on a Loop group and Langlands’ duality. https://arxiv.
org/abs/alg-geom/9511007. 1995.

[Gir71] J. Giraud. Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften,
Band 179. Springer-Verlag, 1971.

[GR17] D. Gaitsgory and N. Rozenblyum. A Study in Derived Algebraic Geometry Vol. I. AMS, 2017.

[Gro57] A. Grothendieck. “Sur les faisceaux algébriques et les faisceaux analytiques cohérents”. In:
Séminaire Henri Cartan, tome 9, exp. no 2 (1957).

http://www-personal.umich.edu/~bhattb/math/etalestcksproj.pdf
http://www-personal.umich.edu/~bhattb/math/etalestcksproj.pdf
https://arxiv.org/pdf/2107.03914c
https://arxiv.org/pdf/2107.03914c
arXiv:1703.07288v3
https://arxiv.org/abs/1901.08945
https://people.math.harvard.edu/~gaitsgde/GLOH_2020
https://www.math.columbia.edu/~dejong/papers/2-gabber.pdf
https://www.math.columbia.edu/~dejong/papers/2-gabber.pdf
https://arxiv.org/abs/alg-geom/9511007
https://arxiv.org/abs/alg-geom/9511007


[Gro66] A. Grothendieck. “Le groupe de Brauer : I. Algèbres d’Azumaya et interprétations diverses”.
In: Séminaire N. Bourbaki, 1966, exp. no 290 (1966).

[HP18] J. Holstein and M. Porta. Analytification of mapping stacks. arXiv:1812.09300. 2018.

[HPV16] B. Hennion, M. Porta, and G. Vezzosi. Formal gluing along non-linear flags. arXiv:1607.04503v2.
2016.

[HR17] J. Hall and D. Rydh. “Perfect complexes on algebraic stacks”. In: Compositio Mathematica
153.11 (2017), pp. 2318–2367.

[HY19] J. Hahn and A. Yuan. Multiplicative structure in the stable splitting of ΩSLn(C), preprint.
http://arxiv.org/abs/1710.05366. 2019.

[Kal05] V. Yu. Kaloshin. “A geometric proof of the existence of Whitney stratifications”. In: Moscow
Mathematical Journal, Volume 5, Number 1, Pages 125–133 (2005).

[Kap00] M. Kapranov. The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody
groups. https://arxiv.org/pdf/math/0001005.pdf. 2000.

[Kim15] D. Kim. Constructible Derived Category. http://math.mit.edu/~sidnv/Derived_
Category_of_Sheaves_and_Verdier_Duality.pdf. 2015.

[KW01] R. Kiehl and R. Weissauer. Weil Conjectures, Perverse Sheaves and l’adic Fourier Transform.
Springer, 2001.

[Lie08] Max Lieblich. “Twisted sheaves and the period-index problem”. In: Compositio Mathematica
144.1 (2008), pp. 1–31.

[Lur] J. Lurie. personal communication.

[Lur09] J. Lurie. Higher Topos Theory. Princeton University Press, 2009.

[Lur11] J. Lurie. DAG XI: Descent Theorems. https://people.math.harvard.edu/~lurie/
papers/DAG-XI.pdf. 2011.

[Lur17] J. Lurie. Higher Algebra. http://people.math.harvard.edu/~lurie/papers/HA.
pdf. 2017.

[Lur18] J. Lurie. Spectral Algebraic Geometry. https://www.math.ias.edu/~lurie/papers/
SAG-rootfile.pdf. 2018.

[LZ17] Y. Liu and W. Zheng. Enhanced six operations and base change theorems for Artin stacks.
https://arxiv.org/abs/1211.5948v3. 2017.

http://math.mit.edu/~sidnv/Derived_Category_of_Sheaves_and_Verdier_Duality.pdf
http://math.mit.edu/~sidnv/Derived_Category_of_Sheaves_and_Verdier_Duality.pdf
https://people.math.harvard.edu/~lurie/papers/DAG-XI.pdf
https://people.math.harvard.edu/~lurie/papers/DAG-XI.pdf
http://people.math.harvard.edu/~lurie/papers/HA.pdf
http://people.math.harvard.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf
https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf


[Mat] MathOverflow. Whitney stratification and affine Grassmanian. MathOverflow, answer by
Olivier Straser. url: https://mathoverflow.net/q/154594.

[Mat70] J. Mather. “Notes on Topological Stability”. In: Published as Bull. AMS, Volume 49, Number
4, October 2012 Pages 475-506, Originally published as notes of lectures at the Harvard University
(1970).

[Mat72] J. Mather. “Stratifications and Mappings”. In: Uspekhi Mat. Nauk, 27:5(167), 85–118 (1972).

[Mat89] H. Matsumura. Commutative Rings. Cambridge University Press, 1989.

[MV07] I. Mirkovic and K. Vilonen. “Geometric Langlands duality and representations of algebraic
groups over commutative rings”. In: Annals of Mathematics, 166, 95–143 (2007).

[Nad] D. Nadler. Private communication.

[Noc20] G. Nocera. A model for E3 the fusion-convolution product of constructible sheaves on the affine
Grassmannian. https://arxiv.org/abs/2012.08504. 2020.

[NP22] G. Nocera and M. Pernice. The derived Brauer map via homogeneous sheaves. https://
arxiv.org/abs/2205.07789. 2022.

[NV21] G. Nocera and M. Volpe. Whitney stratifications are conically smooth. https://arxiv.
org/abs/2012.08504. 2021.

[Ols16] M. Olsson. Algebraic Spaces and Stacks. AMS, 2016.

[PT22] M. Porta and J.-B. Teyssier. Topological exodromy with coefficients. in preparation. 2022.

[Rei12] R. C. Reich. “Twisted factorizable Satake equivalence via gerbes on the factorizable Grass-
mannian”. In: Represent. Theory 16, 345-449 (2012).

[Rey71] M.e Reynaud. “Géometrie algébrique et géometrie analytique”. In: SGA1, Exposé XII (1971).

[Ric] S. Riche. Private communication.

[Rob14] M. Robalo. Théorie Homotopique Motivique des Espaces Noncommutatifs. https://webusers.imj-
prg.fr/ marco.robalo/these.pdf. 2014.

[Toë10] B. Toën. “Derived Azumaya algebras and generators for twisted derived categories”. In: Inven-
tiones mathematicae 189(3) (2010).

[use] MO user19475. Homotopy type of a complex affine variety. MathOverflow. url: https :
//mathoverflow.net/q/260097.

[Vol21] M. Volpe. Six functor formalism for sheaves with non-presentable coefficients. 2021.url: https:
//arxiv.org/abs/2110.10212.

https://mathoverflow.net/q/154594
https://arxiv.org/abs/2012.08504
https://arxiv.org/abs/2205.07789
https://arxiv.org/abs/2205.07789
https://arxiv.org/abs/2012.08504
https://arxiv.org/abs/2012.08504
https://mathoverflow.net/q/260097
https://mathoverflow.net/q/260097
https://arxiv.org/abs/2110.10212
https://arxiv.org/abs/2110.10212


[Zhu16] X. Zhu. An introduction to affine Grassmannians and to the geometric Satake equivalence.
http://arxiv.org/abs/1603.05593v2. 2016.



RÉSUMÉ DE THÈSE : UNE ÉTUDE DE LA CATÉGORIE SPHÉRIQUE DE HECKE VIA
GÉOMÉTRIE ALGÉBRIQUE DÉRIVÉE

GUGLIELMO NOCERA

Mon projet de thèse se situe à l’interface de la géométrie algébrique, de la topologie et de la théorie
des représentations. Je me suis concentré sur l’utilisation d’outils de la théorie de l’homotopie, en parti-
culier la géométrie algébrique dérivée et la théorie des ∞-catégories, pour fournir des généralisations
significatives des résultats classiques établis dans le Programme Géométrique de Langlands. La thèse
se compose de trois chapitres principaux, tous relatifs à l’étude de la Grassmannienne affine et de ses
modifications ou notions connexes, dont je vais maintenant résumer le contenu.

1. TRAVAIL DANS LE CADRE DU PROGRAMME GÉOMÉTRIQUE DE LANGLANDS

Un problème classique en théorie des représentations géométriques est l’étude des groupes réductifs
G (e.g. GLn, SLn, PGLn) et leurs doubles de Langlands Ǧ (par exemple, ˇGLn = GLn, ˇSLn = PGLn) .
L’une des conjectures centrales dans ce domaine est la Geometric Langlands Duality, introduite par
Beilinson et Drinfeld et intensivement étudiée par Gaitsgory et d’autres. L’énoncé doit reproduire d’une
certaine manière la conjecture de Langlands classique dans un cadre géométrique et est lui-même conjec-
tural, mais doit satisfaire aux exigences suivantes. Soit G un groupe complexe réductif, et X une courbe
complexe projective lisse. Alors la dualité géométrique de Langlands devrait au moins :

— établir une équivalence entre une catégorie de faisceaux sur le champ BunG(X) de G-torseurs
sur X et une catégorie de faisceaux sur le champ de checkG- systèmes locaux sur X.

— restituer la Geometric Satake Equivalence lorsqu’il est spécialisé à n’importe quel point fermé
de X.

Theorème 1.1 (Geometric Satake Equivalence, [MV07]). Soit G un groupe réductif complexe, et k un anneau
de coefficients parmi Qp, Zp, Z/pn, Fp. Alors il existe une équivalence de catégories tensorielles abéliennes

(PervGO (GrG, k), ?) ' (Rep(Ǧ, k),⊗).
Remarque 1.2. Ici GrG est la Grassmannienne affine associé à G. C’est un objet de dimension infinie,
plus précisément une colimite filtrée de schémas propres sur C, et possède les propriétés suivantes :

(1) GrG(C) = G(C((t)))/G(CJtK).
(2) Dans le cas G = GLn, GrG est interprétable comme un espace de CJtK-reseaux dans C((t))n.

(3) Dans le cas général, c’est l’espace des G-torseurs sur le disque complexe formel Spec CJtK avec
une trivialisation sur Spec C((t)).

De plus, GO est un schéma en groupes de dimension infinie agissant sur GrG et tel que GO(C) =
G(CJtK). La catégorie abélienne PervGO (GrG, k) est constituée de faisceaux pervers équivariants par rap-
port à l’action de GO sur GrG. Enfin, ? est une structure monoı̈dale symétrique sur PervGO (GrG) appelée
produit de convolution. Sa définition dépend essentiellement des propriétés géométriques de la Grassman-
nienne affine.

Theorème 1.3 (Geometric Satake Equivalence, [MV07]). Soit G un groupe réductif complexe, et k un anneau
de coefficients parmi Qp, Zp, Z/pn, Fp. Alors il existe une équivalence de catégories tensorielles abéliennes

(PervGO (GrG, k), ?) ' (Rep(Ǧ, k),⊗).
Remarque 1.4. Ici GrG est le affine Grassmannian associé à G. C’est un objet de dimension infinie, plus
précisément une colimite filtrée de schémas propres sur C, et possède les propriétés suivantes :

(1) GrG(C) = G(C((t)))/G(CJtK).

1
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(2) Dans le cas G = GLn, GrG est interprétable comme un espace de CJtK-treillis dans C((t))n.

(3) Dans le cas général, c’est l’espace des G-torseurs sur le disque complexe formel Spec CJtK avec
une trivialisation sur Spec C((t) !).

Il existe un moyen d’interpréter PervGO (GrG) comme la “spécialisation en tout point de x” du côté
“BunG(X)” de la conjecture géométrique de Langlands, et Rep(Ǧ) comme spécialisation du côté “systèmes
locaux”.

Étant donné que la conjecture géométrique de Langlands est actuellement formulée comme une
déclaration “ dérivée”, Bezrukavnikov-Finkelberg [BF08] et Arinkin-Gaitsgory [AG15] ont prouvé la
Théorème Dérivée de Satake. Là, la catégorie abélienne PervGO (GrG) est remplacée par la catégorie
dite catégorie sphérique de Hecke Sph(G), qui est une catégorie supérieure admettant les présentations
suivantes :

— en tant que dg- ou ∞-category Dc,GO (GrG, k) de GO-réas constructibles équivariants sur GrG ;

— en tant que dg- ou ∞-category D-modGO (GrG, k) de GO-équivariants D-modules sur GrG.

J’ai prouvé le premier des deux théorèmes suivants :

Theorème 1.5 ([Noc20]). La ∞-category Sph(G) admet un E3- structure monoı̈dale étendant le produit de
convolution monod̈ale symétrique des faisceaux pervers.

Theorème 1.6. La ∞-category Sph(G) est équivalente au E2-center de la ∞-categorie dérivée des représentations

DRep(Ǧ, k).

Remarque 1.7. Les dg-categories et les ∞-categories sont des moyens d’encoder l’idée de “catégories
avec une notion d’homotopie et d’équivalence d’homotopie” d’une manière particulièrement utile pour
traiter les catégories dérivées et l’homotopie la théorie. Dans mes travaux, j’adopte la perspective des ∞-
categories, qui est systématiquement exposée dans [Lur09]. L’une des formulations les plus simples de
ce concept est la notion de catégories enrichies dans des espaces topologiques d’ensembles simpliciaux.

Dans ce cadre, des propriétés telles que l’associativité ou la commutativité des structures monoı̈dales
sur les catégories (∞) sont encodées dans certaines “structures de cohérence”, qui permettent également
des notions intermédiaires d’“associativité plus élevée”, appelées Ek-structures algébriques, k ∈N. Par
exemple, un loopspace ΩY supporte un produit qui n’est associatif qu’à homotopie près, dans la mesure
où les associateurs dépendent des paramétrisations de l’intervalle unitaire. C’est ce qu’on appelle une
E1-algèbre dans les espaces. Cette idée se généralise en ΩkY, k ≥ 2 : il existe k lois de produit différentes,
associatives à homotopie près, et distributives les unes par rapport aux autres, qui coı̈ncident à homo-
topie près par le théorème d’Eckmann-Hilton. De la même manière, on peut définir des Ek-algèbres en
∞-catégories (appelées ∞-catégories Ek-monoı̈dales). Pour les 1-catégories, la situation est très simple.
Une E1-algèbre en catégories n’est qu’une catégorie monoı̈dale. Une E2-algèbre en catégories est ce
qu’on appelle une catégorie monoı̈dale tressée. Une catégorie ordinaire Ek-monoı̈dale, pour k ≥ 3, n’est
qu’une catégorie monoı̈dale symétrique. Par exemple, PervGO (GrG) avec le produit de convolution ?
est une catégorie Ek-monoı̈dale pour chaque k ≥ 3. Dans le cas des ∞-catégories générales, au contraire,
une Ek+1-algèbre dans les ∞-catégories est une notion strictement plus forte qu’une Ek-algèbre. En ce
sens, mon résultat sur Sph(G) dans [Noc20] est l’analogue correct dans le monde dérivé de la commu-
tativité de ? sur PervGO (GrG) .

Les deux théorèmes Theorème 1.5 et Theorème 1.6 ont été initialement énoncés par Gaitsgory et
Lurie (non publié). La seconde découle des résultats de Bezrukavnikov-Finkelberg [BF08], Gaitsgory-
Lurie (non publié) et Nadler, et elle implique la première. Dans [Noc20], j’ai prouvé Theorème 1.5
indépendamment, en construisant la structure E3-monoı̈dale recherchée de manière intrinsèque. Ceci
est dans le même esprit de la reconstruction tannakienne expliquée plus haut pour le cas des faisceaux
pervers, où l’existence d’une structure monoı̈dale symétrique sur la catégorie fait partie de la donnée
initiale, et ce n’est qu’a posteriori qu’elle est interprétée comme le produit tensoriel naturel dans une
catégorie de représentations.
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Ma preuve de Theorème 1.5 utilise des outils de la théorie de l’homotopie et de la géométrie algébrique
dérivée, en particulier les travaux de Jacob Lurie dans [Lur17] et de Gaitsgory-Rozenblyum dans [GR17],
afin de fournir l’interaction correcte entre la géométrie objets (par exemple la Grassmannienne affine) et
des invariants hautement structurés sur eux (par exemple la catégorie des faisceaux constructibles).

2. FAISCEAUX CONSTRUCTIBLES ET ESPACES CONIQUEMENT LISSES

La nature de ce projet est beaucoup plus topologique. Dans [Noc20], je me suis intéressé à comprendre
la ∞-catégorie des faisceaux constructibles équivariants sur la Grassmannienne affine par rapport à la
stratification dans les cellules de Schubert. En ignorant un instant la structure équivariante, ce sont des
faisceaux à valeurs spatiales particulières sur l’espace topologique analytique complexe sous-jacent de
GrG (noté Gran

G ) qui sont localement constants sur les strates de S. 1

La théorie des faisceaux constructibles sur les espaces topologiques et les variétés algébriques a
été développée par exemple dans [GM80, Tre09, Lur17, BGH20]. MacPherson a prouvé que sous cer-
taines hypothèses la donnée d’un faisceau constructible sur un espace stratifié (Y, S) est équivalente
à une donnée combinatoire, à savoir une représentation de la “catégorie des chemins de sortie” de
(Y, mathscrS). Lurie [Lur17, Appendix A] a étendu cette remarque à des hypothèses très générales
et à un cadre dérivé, définissant une ∞-category of exit paths Exit(Y, S) et établissant le théorème suivant :

Theorème 2.1 (Théorème d’exodromie, [Lur17, Théorème A.9.3]). Soit (Y, S) un espace coniquement stra-
tifié localement de forme singulière. Alors la ∞-catégorie des faisceaux constructibles à valeurs spatiales sur (Y, S)
est équivalente à

Fun(Exit(Y), Spaces).

L’hypothèse d’être “localement de forme singulière” est assez générale, et est satisfaite par la Grass-
mannienne affine. L’hypothèse que la stratification est conique dit essentiellement que chaque point a un
voisinage où la stratification ressemble à Rn×C(Z), C(Z) étant le cône topologique d’un espace stratifié
Z. On peut interpréter cette condition comme un analogue stratifié de “être une variété topologique”.

Or, la stratification en cellules de Schubert du Grassmannien affine satisfait les conditions de Whitney,
et il est bien connu que

Lemma 2.2. Toute stratification satisfaisant les conditions de Whitney est conique.

Cela m’a permis d’appliquer Theorème 2.1 dans [Noc20] et de compléter la preuve de l’existence de
la E3-structure recherchée sur la catégorie sphérique.

Ayala, Francis et Tanaka [AFT17] ont introduit la notion de structure coniquement lisse sur un espace
stratifié, qui est interprétable comme un analogue stratifié d’une structure différentiable. Dans [NV21],
j’ai prouvé avec Marco Volpe (Ratisbonne) la conjecture suivante contenue dans leur article [AFT17],
affinant ainsi Lemma 2.2.

Theorème 2.3 (N.-Volpe 2021, [NV21]). Tout espace stratifié satisfaisant les conditions de Whitney [Whi64,
Whi65] admet une structure conique lisse.

Notre résultat fournit une large classe d’exemples de structures coniquement lisses. En particulier,
cela implique que la Grassmannienne affine GrG admet une structure canonique coniquement lisse.

3. ALGÈBRES D’AZUMAYA DÉRIVÉES ET GERBES

Le groupe de Brauer d’un champ a été largement étudié depuis son introduction par Serre et Gro-
thendieck. Dans les mêmes articles, la théorie générale des groupes de Brauer de variétés algébriques
est développée, généralisant ainsi le cas des corps : c’est le groupe des algèbres d’Azumaya sur X, à une
relation d’équivalence appelée Morita équivalence. Giraud [Gir71] a montré comment pour toute variété

1. Dans notre cas, nous voulons des faisceaux évalués dans la ∞-catégorie dérivée des Λ-modules pour un anneau de coeffi-
cients Λ, mais cela n’est pas pertinent dans la présente section.
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algébrique S, H2(S, Gm) peut être interprété comme un ensemble de Gm-gerbes sur S. Il existe une carte
des groupes

Br(S)→ H2(S, Gm)

impliquant que toute algèbre d’Azumaya sur S donne lieu à un Gm-gerbe sur S. Cette application est
injective, mais elle prend des valeurs dans le sous-groupe de torsion de H2(S, Gm), qui peut en général
être un sous-groupe approprié pour les variétés non régulières.

En utilisant la théorie des dg/∞-catégories stables présentables, Toën [Toë12] a défini une notion de
algèbre d’Azumaya dérivée sur une variété algébrique S et une notion correspondante de Équivalence
de Morita étendant l’équivalence classique. Il montre que le groupe dBr(S) des algèbres d’Azumaya
dérivées jusqu’à l’équivalence de Morita est isomorphe à

H2(S, Gm)×H1(S, Z)

où le deuxième facteur est 0 si S est normal.
Il y a eu des travaux ultérieurs dans le sens de rendre plus explicite la relation entre Gm-gerbes et

les algèbres d’Azumaya dérivées. [BP21, Théorème 5.19], suite aux travaux de [Lie04] et [BS19] res-
pectivement au niveau des catégories abéliennes et triangulées, dit que si G est un Gm-gerbe sur une
base S, alors il y a une action du champ d’inertie I(G/S), induisant une notion de χ-faisceau quasi-
cohérent homogène sur G, pour χ un caractère de Gm. Elle dit aussi que la ∞-catégorie QCoh(G) des
faisceaux quasi-cohérents se décompose en une somme directe des sous-catégories QCohχ(G) des fais-
ceaux homogènes. Partant de là, une explicitation de la connexion entre Gm-gerbes sur S et les algèbres
d’Azumaya dérivées semble possible, selon les lignes suivantes.

Mon intérêt pour la théorie des Gm-gerbes (et donc des algèbres d’Azumaya) est né du fait que de
puissantes modifications de la Grassmannienne affine usuelle GrG, liée à la dualité conjecturale de Lan-
glands pour les surfaces , sont exprimés en termes de gerbes.

Dans l’ouvrage [BP21] apparaı̂t la conjecture suivante :

Conjecture 3.1. Si Y → S est un Gm-gerbe, alors

QCohα(S)⊗QCohβ(S) ' QCohα+β(S)

comme QCoh(S)-linear ∞-categories présentables, pour tout α, β ∈ H2(S, Gm).

Corollaire 3.2. En particulier, la ∞-category QCohα(X) est inversible dans PrL,c.g.
X , d’où Morita équivalent à

une algèbre d’Azumaya dérivée par le travail de Toën.

Michele Pernice (Scuola Normale Superiore) et moi avons prouvé cette conjecture. Plus précisément,
le théorème principal que nous démontrons est le suivant :

Theorème 3.3. Soit S un schéma quasi-séparé quasicompact. Le foncteur

GerGm(S)→ {objets inversibles dans PrL,c.g.
X }

est monoı̈dal symétrique par rapport à :

— le produit rigidifié de Gm-gerbes ? sur la source (cfr. [BP21]) ;

— le produit tenseur de Lurie sur le codomaine.

De plus, il a un inverse qui est à nouveau monoı̈dal symétrique, envoyant une ∞-catégorie ∞-linéaire inversible
M à sa champ de trivialisations sur X.

4. LISTE DES PUBLICATIONS

— A model for the E3 fusion-convolution product of constructible sheaves on the affine Grassmannian (pre-
print disponible sur https://arxiv.org/abs/2012.08504)

— Whitney stratifications are conically smooth (avec Marco Volpe, preprint disponible sur https://

arxiv.org/abs/2105.09243)
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Guglielmo NOCERA
Une étude de la catégorie sphérique de Hecke via la géometrie algébrique dérivée

RÉSUMÉ
Mon projet de thèse se situe à l’interface de la géométrie algébrique, de la topologie et de la théorie des

représentations. Je me suis concentré sur l’utilisation d’outils de la théorie de l’homotopie, en particulier la
géométrie algébrique dérivée et la théorie des∞-catégories, pour fournir des généralisations significatives
des résultats classiques établis dans le Programme Géométrique de Langlands. Dans le premier chapitre,
j’ai prouvé que, sous certaines conjectures, l’∞-categorie Sph(G) associé à un groupe reductifG admet un
E3- structure monoïdale étendant le produit de convolution monoïdale symétrique des faisceaux pervers.
Dans le deuxième chapitre, j’ai prouvé avec Marco Volpe une conjecture de Ayala, Francis et Rozenblyum
disant que tout espace stratifié satisfaisant les conditions de Whitney admet une structure coniquement
lisse. Dans le troisième chapitre, j’ai prouvé avec Michele Pernice une conjecture de Federico Binda et
Mauro Porta établissant une rélation entre la notion de Gm-gerbe et de algèbre de Azumaya derivée.

Mots clé: Programme Géométrique de Langlands, Grassmannienne affine, faisceau constructible,
stratification de Whitney, algèbre d’Azumaya, gerbe.

RÉSUMÉ EN ANGLAIS
My thesis project lies at the interface of algebraic geometry, topology and representation theory. I

focused on using tools from homotopy theory, and particularly derived algebraic geometry and∞-category
theory, to provide significant generalizations of classical results in the area of the Geometric Langlands
Program. In the first chapter, I proved that under certain conjectures the∞-category Sph(G) associated
to a reductive groupG admits an E3-monoidal structure extending the symmetric monoidal convolution
product of perverse sheaves. In the second chapter, I proved with Marco Volpe a conjecture of Ayala,
Francis and Rozenblyum saying that every stratified space satisfying Whitney’s conditions admits a conically
smooth structure. In the third chapter, I proved with Michele Pernice a conjecture by Federico Binda and
Mauro Porta establishing a relationship between the notions of Gm-gerbe and derived Azumaya algebra.

Keywords: Geometric Langlands Program, Affine Grassmannian, constructible sheaf, Whitney
stratification, Azumaya algebra, gerbe.
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