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Introduction française

Cette thèse de physique mathématique présente les travaux de recherche que j’ai effectués lors de mon doc-
torat à l’UFR de mathématiques et d’informatique de l’Université de Strasbourg et l’Institut de Recherche
Mathématique Avancée, de septembre 2018 à décembre 2021. Elle s’articule en deux axes principaux : le
premier à motivations plus physiques et le second à motivations davantage mathématiques, bien que les
domaines concernés soient à l’interface de la théorie des cordes et des mathématiques fondamentales, et
si tant est qu’une telle distinction ait un sens. Cette interface m’intéresse tout particulièrement depuis
plusieurs années et a motivé ces travaux.

La visée de cette introduction en français est de placer mes travaux de thèse dans leur contexte de
recherche. Certains points, bien qu’importants, ne sont mentionnés qu’hâtivement par économie de place,
et ceux que je développe le plus me semblent à la fois fondamentaux et propres à être présentés de manière
pédagogique : les choix faits ci-dessous sont imprégnés de mes biais. Des recherches supplémentaires
et l’accès à de véritables travaux d’histoire des sciences seront assurément indispensables à quiconque
souhaite compléter cette ébauche pour soi-même. J’évoque simultanément des découvertes et résultats
appartenant aujourd’hui à des domaines scientifiques différents (mathématique, physique, chimie), car il
me semble qu’ils ne peuvent être décorrélés dans le cadre de notre récit historique.

Fondations

La communauté scientifique s’accorde aujourd’hui sur l’existence de quatre forces fondamentales qui
gouvernent notre univers : la gravité, l’électromagnétisme, la force nucléaire faible et la force nucléaire
forte. Dans la première partie de cette introduction, nous allons présenter succinctement l’histoire de
deux théories physiques parmi les plus prédictives : la relativité générale d’Einstein, qui décrit la gravité
à l’échelle des corps célestes, et le modèle standard de la physique des particules, qui décrit les trois autres
interactions fondamentales sus-mentionnées à l’échelle subatomique.

Avant 1905 (l’Annus Mirabilis d’Einstein)

• 1685 – Philosophiae Naturalis Principia Mathematica, Newton. Cet ouvrage constitue le fondement
de la mécanique classique, expose les trois lois dites de Newton ainsi que la loi universelle de la
gravitation : deux corps ponctuels de masse m1 et m2 sont soumis à une force attractive de norme

F = −Gm1m2

d2
, (1)

où G est appelée constante gravitationnelle, de valeur mesurée

G = 6.674 30(15)× 10−11 m3kg−1s−2 .

Newton en déduit les lois de Kepler, auparavant empiriques. Le Principia pose les bases du calcul
infinitésimal.

• 1690 – Traité de la Lumière de Huygens, dans lequel est développée une théorie ondulatoire de la
lumière, confirmée et approfondie par Young et Fresnel – entre autres – au 19ème siècle.

• 1733 – du Fay constate que deux objets frottés avec de l’ambre se repoussent, de même que deux ob-
jets frottés avec une baguette en verre, alors que les premiers attirent les seconds. Cette découverte
sera ensuite interprétée comme l’existence de charges électriques positives et négatives.

9
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• 1799 - 1805 – Traité de mécanique céleste de Laplace, qui reformule notamment les lois de Newton
dans le formalisme de calcul différentiel qu’il a lui-même introduit. C’est la formulation “moderne”
des lois de Newton. Ce traité est également la pierre angulaire du calcul différentiel, qui permet
par exemple le développement ultérieur de la géométrie différentielle.

• 1801 – Expérience des fentes de Young. En plaçant une source lumineuse derrière une feuille
opaque percée de deux fentes, on observe sur un écran non pas deux taches lumineuses dans le
prolongement des fentes, mais une tache centrale entourée de bandes lumineuses de plus en plus
fines, caractéristiques des interférences ondulatoires, comme montré en Figure 1. Cette expérience
historique prouve donc le comportement ondulatoire de la lumière.

Figure 1: Franges d’interférences de l’expérience des fentes de Young (source : Wikipédia).

• 1824 – Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette
puissance, Carnot. L’ouvrage contient une formulation préliminaire de la seconde loi de la thermo-
dynamique : “il est impossible de produire de la puissance motrice à moins qu’on ne dispose d’un
corps froid et d’un corps chaud”.

• 1829 - 1832 – Lobatchevski et Bolyai introduisent la géométrie hyperbolique, une des premières
instances de géométrie non-Euclidienne – objet central en mathématique et physique actuelles.

• 1832 – Galois introduit la notion de groupes de permutations et de sous-groupes normaux. La
notion de groupe devient par la suite une notion incontournable en mathématique et en physique.

• 1834 – Loi des gaz parfaits PV = nRT de Clapeyron, fondement de la thermodynamique des gaz.

• 1838 – Faraday découvre les rayons cathodiques en faisant passer un courant électrique dans un
tube de verre sous vide. L’étude de ces mystérieux rayons a été centrale pour les sciences de la
deuxième moitié du 19ème siècle.

• 1849 – Expérience de Fizeau entre Montmartre et Suresnes, qui montre que la lumière se propage
à vitesse finie : c ∼ 3× 108 m/s.

• 1854 – Über die Hypothesen, welche der Geometrie zu Grunde liegen, Riemann. Ces travaux con-
stituent les fondements de la géométrie Riemannienne.

• 1865 – A Dynamical Theory of the Electromagnetic Field de Maxwell est le point culminant de
plusieurs décennies de travaux en électromagnétisme, conduits notamment par Franklin, Volta,
Ørsted, Ampère, Poisson, Gauss, Ohm, Faraday, Kirchhoff et Thompson/Kelvin. Les interactions
électromagnétiques sont décrites de manière unifiée dans la théorie de Maxwell, sous la forme de
20 équations. Ces dernières sont reformulées en 4 équations par Heaviside en 1884 : les champs

https://commons.wikimedia.org/wiki/File:Double_slit_simulated.jpg
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électrique E et magnétique B satisfont, dans le vide et en présence d’une densité de charge ρ et
d’une densité de courant j, les équations couplées suivantes:





∇E = ρ/ε0
∇B = 0
∇∧E = −∂B/∂t
∇∧B = µ0j + c−2∂E/∂t

. (2)

Dans ces équations, c est une vitesse, ε0 la permittivité diélectrique du vide et µ0 la perméabilité
magnétique du vide. Ces constantes satisfont ε0µ0 = c−2, avec µ0 ∼ 10−7 T ·m/A. Dans le vide, les
équations de Maxwell décrivent la propagation d’ondes à la vitesse c, calculée comme très proche
de la vitesse de la lumière. Ceci conduit Maxwell à faire l’hypothèse que la lumière est une onde
électromagnétique, en accord avec l’expérience de Young.

• 1865 – Clausius introduit le terme d’entropie, grâce auquel le second principe de la thermody-
namique peut être reformulé comme : l’entropie d’un système fermé ne peut qu’augmenter.

• 1869 – Mendelëıev propose son tableau périodique des éléments. Les atomes peuvent être classés par
masse atomique croissante ; les propriétés chimiques de ces atomes satisfont alors une périodicité
qui permet de les ranger en un tableau, dans lequel les éléments d’une même colonne ont des
caractéristiques chimiques semblables.

• 1872 – Programme d’Erlangen de Klein qui a une influence considérable sur les développements
futurs de la géométrie.

• 1873 - 1874 – Lie pose les bases de l’étude des groupes continus, c’est-à-dire des groupes et algèbres
de Lie. Les algèbres de Lie de dimension finie ont une riche théorie des représentations, et intervi-
ennent notamment de façon centrale en physique des particules.

• 1879 – Hall découvre l’effet Hall : une plaque métallique parcourue par un courant et soumise à
un champ magnétique transverse exhibe une différence de potentiel à ses bords dans la troisième
direction. L’effet Hall met notamment en évidence que le courant électrique est transporté par des
charges négatives (plus tard identifiées comme étant des électrons) dans la majorité des conducteurs.

• 1881 – Poincaré décrit le plan hyperbolique à l’aide du modèle de l’hyperbolöıde. Les constructions
de Poincaré en géométrie hyperbolique influencent fortement la géométrie discutée dans cette thèse.

• 1885 – Série de Balmer. Les quatre premières raies spectrales de l’hydrogène ont pour longueur
d’onde 652 nm, 486 nm, 434 nm et 410 nm. Balmer montre que ces longueurs d’ondes satisfont la
formule

λ = B × m2

m2 − n2
,

avec n = 2, m = 3, 4, 5, 6 et B = 364 nm. C’est un premier pas dans l’étude de la structure
électronique de l’atome d’hydrogène.

• 1887 – Hertz démontre expérimentalement l’existence des ondes électromagnétiques prédites par
Maxwell, en produisant des ondes Hertziennes. Les ondes électromagnétiques décrites par la théorie
de Maxwell englobent une variété de phénomènes physiques en fonction de leur longueur d’onde λ :
des ondes Hertziennes (λ & 1 m) aux rayons γ (λ . 10−12 m) (découverts par Villard en 1904, qui
prouve également en 1914 que ces rayons γ sont des ondes électromagnétiques) en passant par la
lumière visible (400 × 10−9 m . λ . 800 × 10−9 m). Cela constitue le spectre électromagnétique,
présenté en Figure 2. Dans la suite de cette thèse et notamment de cette introduction, le terme
lumière sera utilisé de manière équivalente à “rayonnement électromagnétique” : la lumière visible,
les ondes radio, les rayonnements infrarouges, ultraviolets, X et γ sont de la lumière.

• 1887 – Les expériences de Michelson et Morley démontrent que la vitesse de la lumière c est
indépendante du référentiel d’observation.

• 1888 – Formule de Rydberg pour les raies spectrales de l’hydrogène et d’autres éléments :

1

λ
= RH

(
1

n2
1

− 1

n2
2

)
,
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Figure 2: Le spectre électromagnétique (source : image de la NASA retravaillée par Inductiveload et traduite par
Berru, sous licence CC BY-SA 3.0).

où n1, n2 ∈ Z>0 et où RH est la constante de Rydberg. Cette formule généralise la série de Balmer
évoquée plus haut.

• 1894 – Cartan défend sa thèse Sur la structure des groupes de transformations finis et continus,
pierre angulaire de la théorie des algèbres de Lie.

• 1895 – Röntgen découvre les rayons X.

• 1895 – Lorentz introduit les transformations de Lorentz, qui sont des changements de coordonnées
de l’espace-temps sous lesquelles les équations de Maxwell gardent la même forme. On dit que ces
transformations préservent les équations de Maxwell.

• 1896 – Becquerel découvre la radioactivité en étudiant des sels d’uranium. Il en distingue deux
types qu’il appelle α et β : les rayons α sont chargés positivement et pénètrent peu la matière
(quelques centimètres dans l’air) tandis que les rayons β sont chargés négativement, et beaucoup
plus pénétrants. De plus, il est trouvé dans les années qui suivent que le spectre d’émission des
rayons α est un spectre de raies, tandis que celui des rayons β est continu. Ses travaux sont
approfondis notamment par Marie et Pierre Curie qui découvrent le polonium et le radium (et sont
à l’origine du terme “radioactivité”).

• 1897 – Thomson, Townsend et Wilson démontrent que les rayons cathodiques sont constitués
d’électrons. Ce sont des particules de charge électrique négative et de masse me ∼ 9 × 10−31 kg.
Thompson propose le modèle de plum pudding, selon lequel la matière est constituée d’un milieu
homogène chargé positivement dans lequel des électrons sont répartis et peuvent se déplacer.

• 1900 – Hilbert propose sa liste de 23 problèmes lors du 2ème congrès international des mathématiques
à Paris. Ces problèmes ont eu un impact très important sur l’évolution ultérieure des mathématiques.

• 1900 – Villard découvre la radioactivité γ, dont les rayons ne sont pas déviés par un champ
magnétique (les rayons γ sont donc électriquement neutres) et plus de 100 fois plus pénétrants
que les rayons β.

• 1902 – Lebesgue soutient sa thèse de doctorat Intégrale, longueur, aire, dans laquelle est introduite
sa théorie de l’intégration, socle des mathématiques modernes et de la théorie des probabilités
axiomatisée par Kolmogorov en 1933.

• 1904 – Poincaré énonce sa célèbre conjecture, prouvée en 2002 par Perelman : toute variété
différentielle fermée de dimension 3 simplement connexe est homéomorphe à une 3-sphère.

http://mynasadata.larc.nasa.gov/images/EM_Spectrum3-new.jpg
https://commons.wikimedia.org/wiki/User:Inductiveload
https://commons.wikimedia.org/wiki/User:Berrucomons
http://creativecommons.org/licenses/by-sa/3.0/
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• 1904 – Abegg énonce une loi précurseuse de la règle de l’octet pour la valence des atomes, qui
explique comment les atomes s’assemblent pour former des molécules.

• 1905 – Théorème de Wedderburn : tout corps fini est commutatif.

Théorie de la relativité restreinte

Les travaux sur la lumière de Young et Fresnel ont été à l’origine du consensus scientifique du 19ème siècle
que la lumière est une onde transversale, qui se propage dans un milieu appelé éther. Différentes théories
de l’éther sont proposées, mais elles sont systématiquement en contradiction avec certaines expériences
comme celle de Michelson et Morley de 1887. Les théories de la relativité d’Einstein tiennent leur nom du
principe de relativité, énoncé ci-dessous. On distingue deux telles théories : la relativité restreinte (1905),
dans laquelle l’espace-temps est un support rigide où on décrit la cinématique d’objets ponctuels, et la
relativité générale (1915), dans laquelle l’espace-temps est dynamique et satisfait l’équation d’Einstein
(et où l’on peut aussi étudier la cinématique d’objets ponctuels).

• 1895 – Électrodynamique de Maxwell–Lorentz, qui repose sur le fait que la vitesse de la lumière est
constante dans toutes les référentiels.

• 1898 – La mesure du temps, Poincaré, où l’auteur souligne que puisque la lumière a une vitesse
finie, la synchronisation de deux horloges par signaux lumineux a des conséquences sur la notion
même de simultanéité.

• 1904 - 1905 – Travaux de Lorentz et Poincaré sur une théorie dynamique de l’électron. Wien montre
qu’il est impossible d’aller plus vite que la vitesse de la lumière.

• 1905 – Zur Elektrodynamik bewegter Körper, Einstein, qui pose les bases de la relativité restreinte.
La théorie d’Einstein repose sur deux hypothèses :

1. Le principe de relativité : Les lois de la physique sont les mêmes pour des observatrices qui se
déplacent à vitesse constante les unes par rapport aux autres.

2. La constance de la vitesse de la lumière pour les observatrices dans tous les systèmes de
référence en mouvement uniforme.

Einstein en déduit naturellement les transformations de Lorentz. Il montre que cela entrâıne la
contraction des longueurs et la dilation du temps. Les transformations relativistes font souvent intervenir
le facteur :

γ =
1√

1− (v/c)2

où v est la vitesse d’un référentiel mobile par rapport à un référentiel fixe, et c la vitesse de la lumière.
Puisque nécessairement v < c, on a γ > 1.

Considérons une observatrice et son référentiel d’observation, ainsi qu’une fusée qui passe devant elle
à une vitesse v et qui émet deux flash lumineux séparés par un intervalle de temps ∆τ mesuré dans le
référentiel de la fusée. Pour l’observatrice immobile, l’intervalle de temps entre les deux flash lumineux
est de ∆t = γ∆τ . C’est la dilatation du temps. De plus, si la fusée a une longueur L dans son référentiel
alors, pour l’observatrice immobile, elle est de taille ∆x = γ−1L. C’est la contraction des longueurs.

Enfin, Einstein démontre que l’énergie cinétique relativiste d’une particule de masse m s’écrit

E = mc2(γ − 1) =
√
m2c4 + p2c2 ,

ce qui conduit (dans le référentiel de repos de la particule) à la célèbre formule :

E = mc2 . (3)

• 1907 - 1908 – Minkowski introduit l’espace-temps comme une variété non-euclidienne à quatre
dimensions. L’espace-temps de Minkowski R1,3 est la variété affine réelle R4 munie de la métrique
pseudo-Riemannienne de signature (−,+,+,+). On distingue trois types de vecteurs selon le signe
de leur norme :

– Un vecteur
−−→
AB est de genre temps si ||−−→AB||2 < 0.
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– Un vecteur
−−→
AB est de genre lumière si ||−−→AB||2 = 0.

– Un vecteur
−−→
AB est de genre espace si ||−−→AB||2 > 0.

Les transformations de Lorentz sont naturellement définies comme les isométries de l’espace-temps
de Minkowski, et par conséquent elle préservent les normes.

Un évènement A (c’est-à-dire, un point de l’espace-temps de Minkowski) ne peut influencer un
évènement B que si une information émise à A peut atteindre B. La vitesse maximale à laquelle cette

information transite est c, et par conséquent il faut que le vecteur
−−→
AB soit de genre lumière et que B

soit dans le futur de A. L’ensemble des points B qui peuvent être influencés par A forme le cône futur
C+ de A. De même, on définit le cône passé C− de A comme l’ensemble des évènements B qui peuvent
influencer A. Les cônes futurs et passés d’un point de l’espace-temps constituent une partie de l’étude
de la structure causale de l’espace-temps.

L’espace-temps de Minkowski peut être défini en toute dimension d ≥ 2 comme l’espace affine Rd muni
de la métrique de signature (−,+, . . . ,+). L’espace-temps de Minkowski de dimension 2 est représenté à
gauche dans la Figure 3.

Figure 3: L’espace-temps de Minkowski en 2 dimensions.

Le diagramme de Minkowski présenté en Figure 3 constitue un exemple de diagramme d’espace-temps,
où comme son nom l’indique à la fois le temps et l’espace sont représentés. Sur un tel digramme, une
courbe dont la tangente est (à chaque instant) contenue dans le cône de lumière futur décrit l’ensemble des
positions successives occupées par une particule massive : au lieu de représenter un objet en mouvement
de manière dynamique dans l’espace, on le voit comme cette courbe statique dans l’espace-temps. On
parle de la ligne d’univers de cet objet. Un exemple de ligne d’univers est représenté dans le diagramme
de Minkowski en Figure 3.

Le diagramme à droite de la Figure 3 est le diagramme de Penrose de l’espace-temps de Minkowski en
2 dimensions. C’est une représentation “déformée” de ce dernier, de taille finie. Plus l’on s’approche du
bord du diagramme, et plus les distances représentées sont grandes. La déformation est judicieusement
choisie pour que les lignes de lumière correspondent toujours à des lignes orientées à 45° (techniquement,
on passe du diagramme de Minkowski au diagramme de Penrose par une transformation conforme). Ainsi,
le diagramme de Penrose décrit efficacement la structure causale de l’espace-temps de Minkowski. Au
bord du diagramme de Penrose, la déformation est telle que certains infinis sont contractés en points :
par exemple, le point i+ (respectivement, i−, i0) est l’infini futur de genre temps (respectivement, passé
de genre temps, de genre espace). Les infinis de genre lumière futur I+ et passé I− sont, quant à eux,
contractés en des segments.
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Physique pré-quantique

Dans cette section, nous allons prendre le temps de détailler davantage les deux expériences fondatrices
de la mécanique quantique, puisqu’elles permettent de saisir l’essence des idées de la physique quantique
développée ultérieurement.

Rayonnement des corps noirs et loi de Planck (1900). Un corps noir est un objet idéal (c’est-
à-dire un concept, une idéalisation, plutôt qu’un objet physique) qui absorbe toute l’énergie électro-
magnétique qu’il reçoit sans en réfléchir ou en transmettre aucune fraction. À température non-nulle,
un corps noir émet un rayonnement électromagnétique sous l’effet de l’agitation thermique (de la même
manière qu’un morceau de métal chauffé au rouge, ou du rayonnement infrarouge émis par un objet à
température ambiante). À l’équilibre thermique, l’énergie émise et absorbée s’équilibrent parfaitement si
bien que le spectre du rayonnement émis ne dépend que de la température.

Une cavité hermétique fournit un bon modèle de corps noir. Dans le cas d’une cavité unidimensionnelle
de longueur L, l’énergie de la cavité se répartit en ondes stationnaires dont la longueur d’onde λ satisfait

λ =
2L

m
,

avec m un nombre entier. Le principe d’équipartition de l’énergie de physique statistique implique que
chaque degré de liberté du système (c’est-à-dire, chaque onde stationnaire) a une énergie moyenne de
kBT , où kB est la constante de Boltzmann et T la température. Cela est possible classiquement puisque
l’amplitude d’une onde peut être arbitrairement petite. Si l’on considère à présent un cube de côtés de
longueur L, on obtient la loi de Rayleigh–Jeans :

IRJ(λ, T ) =
2πckBT

λ4
, (4)

où I(λ, T ) est la puissance émise à la température T par les ondes stationnaires de longueur d’onde λ
(c’est une limite continue). Cette formule varie comme λ−4 : la puissance émise diverge pour les petites
longueurs d’ondes, ce qui n’est pas possible physiquement car la cavité reçoit une énergie finie. On parle
de catastrophe ultraviolette.

Dans la Figure 4, la courbe de radiance spectrale (la puissance émise par unité d’angle solide) en
fonction de la longueur d’onde est donnée pour un corps noir à 3000 K, 4000 K et 5000 K, tandis que la
formule de Rayleigh–Jeans donne la courbe la plus à droite, qui ne cöıncide qu’asymptotiquement, pour
les grandes longueurs d’ondes.

En 1900, Planck propose une résolution de ce problème dans un article intitulé Zur Theorie des Geset-
zes der Energieverteilung im Normalspectrum, basée sur l’hypothèse que l’énergie des ondes stationnaires
dans la cavité est quantifiée. Plus précisément, il impose que l’énergie d’une onde de longueur d’onde λ
doit être un multiple de hc/λ, où h est une constante. Par conséquent, l’amplitude d’une onde ne peut
être arbitrairement petite. Planck estime la valeur de cette constante à h ∼ 6, 55× 10−34 J · s ; elle prend
ensuite le nom de constante de Planck. À haute fréquence (i.e. à petite longueur d’onde), les modes ne
sont pas excités car la plus petite excitation a une énergie supérieure à kBT , et donc la puissance émise
ne diverge plus lorsque λ tend vers 0. La loi de Planck ainsi calculée donne :

IP(λ, T ) =
2πhc2

λ5

1

exp

(
hc

λkBT

)
− 1

,

et contrairement à la loi de Rayleigh–Jeans énoncée plus haut, elle décrit de manière satisfaisante le
spectre d’émission des corps noirs.

Effet photoélectrique (1905). Il s’agit du phénomène selon lequel un matériau métallique soumis
à de la lumière (i.e. un rayonnement électromagnétique) émet des électrons. Observé pour la première
fois en 1839 par Becquerel et Edmond, l’effet photoélectrique a les propriétés intéressantes suivantes. Les
électrons ne sont émis que si la fréquence des ondes lumineuses incidentes est suffisante. La quantité
d’électrons émis est alors proportionnelle à l’intensité de la source lumineuse, mais la vitesse de ces
électrons ne dépend, encore une fois, que de la fréquence de l’onde lumineuse. Ce phénomène n’est pas
explicable par la théorie de Maxwell, dans laquelle l’énergie déposée par une onde électromagnétique dans
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Figure 4: Courbes spectrales de rayonnement de corps noirs et prédiction de Rayleigh–Jeans (source :

travail personnel à partir d’un graphique de wikipédia).

un matériau dépend de la fréquence de l’onde et de son intensité, sans que ces deux grandeurs puissent
être décorrélées.

En 1905, Einstein publie Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuris-
tischen Gesichtspunkt, dans lequel il prolonge l’idée des quantas de lumière de Planck : l’énergie d’une
onde électromagnétique de fréquence ν est un multiple de hν, où h est la constante de Planck. Einstein
interprète ces niveaux d’énergies de manière corpusculaire : de la lumière monochromatique de fréquence
ν est constituée de photons de fréquence ν, et chacun de ces photons a une énergie hν. Ainsi lorsque la
fréquence ν est trop faible, hν est inférieure à l’énergie E nécessaire pour déloger un électron du métal.
Inversement, lorsque la fréquence ν est suffisamment élevée, chaque photon peut déloger un électron du
métal et l’énergie de l’électron émis est de E − hν, c’est-à-dire indépendante de l’intensité de la source
lumineuse. La quantité d’électrons émis par effet photoélectrique est quant à elle proportionnelle à la
densité de photons du faisceau lumineux, c’est-à-dire à l’intensité de la source.

Cette explication de l’effet photoélectrique confirme le bien-fondé physique de la quantification des on-
des électromagnétiques. Ainsi, la lumière a un comportement corpusculaire en plus de ses caractéristiques
ondulatoires mises en exergue par Young et Fresnel.

• 1904 - 1910 – Hilbert pose les bases de la théorie spectrale des opérateurs linéaires, notamment
auto-adjoints.

• 1907 – Rutherford et Royds prouvent que les rayons α sont constitués de particules, et plus
précisément d’ions d’hélium.

• 1909 – Taylor réalise l’expérience des fentes d’Young avec de la lumière d’intensité si faible que
les photons sont émis individuellement, et observe la persistance des interférence. Les photons

https://commons.wikimedia.org/wiki/File:Black_body.svg


CONTENTS 17

introduits par Planck et Einstein étant définis comme des particules, cette expérience prouve qu’ils
ont également des propriétés ondulatoires.

• 1909 – En bombardant une feuille d’or avec des particules α, Geiger, Marsden et Rutherford
démontrent que la fraction de la matière chargée positivement est contenue dans un tout petit
volume : le noyau atomique. Cela réfute le modèle du plum pudding de Thompson qui laisse place
au modèle planétaire de l’atome, dans lequel les électrons, chargés négativement, orbitent autour
d’un noyau atomique, chargé positivement.

• 1909 – L’expérience de la goutte d’huile de Millikan démontre la quantification de la charge électrique,
et permet la mesure de la charge élémentaire e ∼ 1.6× 10−19 C. Il s’agit en fait de la valeur de la
charge de l’électron.

• 1913 – On the constitution of atoms and molecules, Bohr, dans lequel celui-ci propose le modèle
atomique de Bohr. Les électrons sont répartis en orbites circulaires autour du noyau atomique, et
les seules orbites autorisées sont celles telles que le moment angulaire mevr de l’électron (me est
la masse de l’électron, r est la rayon de l’orbite et v et la vitesse de l’électron qui doit compenser
exactement l’attraction électrique) est quantifié. Plus précisément, Bohr demande que mevr = n~,
où n est un entier et ~ = (2π)−1h est la constante de Planck réduite. Le modèle de Bohr permet
de retrouver la formule de Rydberg pour la longueur d’onde des raies spectrales de l’hydrogène, et
fournit ainsi une explication attrayante de cette série heuristique.

• 1916 – The Atom of the Molecule, Lewis, qui pose les bases de la liaison chimique.

• 1917 – Rutherford prouve l’existence des protons dans les noyaux atomiques.

• 1919 – The Arrangement of Electrons in Atoms and Molecules, Langmuir, dans lequel il propose le
terme de liaison covalente.

• 1920 – Rutherford propose l’existence de neutrons au sein des noyaux atomiques.

• 1922 – L’expérience de Stern et Gerlach démontre la quantification du moment angulaire de systèmes
de taille atomique, conduisant à la découverte du spin (le un moment angulaire intrinsèque) de
l’électron.

Théorie de la relativité générale et cosmologie

La théorie de la relativité générale prolonge naturellement les idées d’Einstein développées dans la théorie
de relativité restreinte, et fournit un paradigme nouveau quant à la gravité, par rapport à la théorie de
Newton établie plus de 300 ans auparavant. Elle prédit notamment l’existence de trous noirs, qui jouent
un rôle particulier dans la motivation des travaux présentés dans cette thèse. La cosmologique moderne
(et notamment la théorie du Big Bang) est également basée sur la relativité générale.

• 1908 – Relativitätsprinzip und die aus demselben gezogenen Folgerungen, Einstein, dans lequel est
exposé le principe d’équivalence : une observatrice en chute libre doit percevoir la même physique
que si elle était dans un référentiel inertiel.

• 1911 – Einfluss der Schwerkraft auf die Ausbreitung des Lichtes, Einstein. Sont proposés d’une
part que l’écoulement du temps dépend du champ gravitationnel, et d’autre part que la lumière est
défléchie par les corps massifs.

• 1915 – Einstein publie sa théorie de la relativité générale, qui explique que la métrique de l’espace-
temps gµν , de tenseur de Ricci Rµν et de courbure scalaire R, dépend de la distribution de masse
et d’énergie décrite par le tenseur énergie-impulsion Tµν , selon l’équation d’Einstein:

Rµν −
1

2
Rgµν + Λgµν =

8πG
c4

Tµν , (5)

où Λ est la constante cosmologique et G la constante de gravitation universelle. Si on fait abstrac-
tion de la constante cosmologique, l’équation d’Einstein indique que la courbure de l’espace-temps
(le terme de gauche) est proportionnelle à la densité d’énergie-impulsion (le terme de droite). La
linéarisation de cette équation décrit la propagation d’ondes gravitationnelles, qui sont des pertur-
bations locales des intervalles de temps et des longueurs.
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• 1915 – Hilbert publie également un article sur cette même théorie de la relativité générale. L’équation
d’Einstein peut être obtenue par principe variationnel sur l’action de Einstein–Hilbert :

SEH =
c4

16πG

∫
[(R− 2Λ) + LM ]

√−gd4x , (6)

où LM est la densité lagrangienne des champs de matière dans la théorie.

• 1916 – Schwarzschild calcule la première solution exacte aux équations d’Einstein dans le vide (c’est-
à-dire pour Tµν = 0), dite métrique de Schwarzschild. Dans les coordonnées de Schwarzschild, elle
s’écrit:

g = −
(

1− rS
r

)
c2dt2 +

(
1− rS

r

)−1

dr2 + r2dΩ2
2 , rS =

2GM
c2

, (7)

où rS est appelé rayon de Schwarzschild, dΩ2
2 est l’élément différentiel de surface sur une 2-sphère

et M est une masse. La métrique de Schwarzschild n’est pas complète dans ce jeu de coordonnées ;
sa complétion peut-être décrite en utilisant notamment les coordonnées de Kruskal–Szekeres qui
datent de 1960. Le diagramme de Penrose correspondant à cette complétion est donné en Figure 5
(dans lequel chaque point correspond à une 2-sphère).

Figure 5: Le diagramme de Penrose de la complétion de la métrique de Schwarzschild.

On y distingue quatre régions, judicieusement dénotées I, II, III et IV. Comme avant, le diagramme
de Penrose est un outil pratique pour étudier la causalité dans la solution de Schwarzschild. On y
voit notamment que le cône futur de tout point dans la région II termine sur la ligne supérieure
r = 0. De manière similaire, le cône passé de tout point dans la zone IV commence sur la ligne
inférieure r = 0. Cela détermine la propriété d’horizon des lignes pointillées r = rS . La métrique de
Schwarzschild est interprétée comme une métrique de trou noir où r = rS détermine l’horizon : toute
particule, massive ou non, qui traverse cet horizon ne peut en ressortir. La région de la solution
de Schwarzschild à l’extérieur de l’horizon est I, l’intérieur du trou noir est II, et la singularité est
à r = 0. La région IV est interprétée comme un trou blanc, et la région III, comme un univers
parallèle décrit par la complétion de la métrique de Schwarzschild.

La solution de Schwarzschild fournit un modèle théorique pour étudier certaines propriétés des trous
noirs non chargés et statiques, avec certaines limites, notamment quant à la formation du trou noir
lui-même.

• 1916 - 1918 – Reissner et Nordström écrivent une solution aux équations d’Einstein qui décrit un
trou noir chargé électriquement.

• 1922 - 1927 – Friedmann et Lemâıtre proposent une forme de métrique solution de l’équation
d’Einstein qui décrit un univers homogène, isotrope en expansion ou contraction, et qui constitue
le fondement de la cosmologie moderne.

• 1929 – Hubble découvre que l’univers est en expansion en observant que le décalage vers le rouge de
la lumière émise par les galaxies lointaines est proportionnel à leur distance : plus les galaxies sont
distantes, plus elles s’éloignent vite de la Terre. En extrapolant cette expansion dans le passé, on
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arrive à la conclusion que l’univers devait être incroyablement contracté il y a quelques 14 milliards
d’années : c’est le début de la théorie du Big Bang.

• 1933 – Zwicky observe (par un calcul de gravité de Newton) que la vitesse de certaines galaxies
dans l’Amas de la Chevelure de Bérénice ne correspond pas à ce qu’on attend compte tenu de la
distribution de masse lumineuse de l’amas, c’est-à-dire de la masse estimée à partir de ses émissions
lumineuses. C’est l’un des premiers indices qui mènent ultimement à l’hypothèse de l’existence
d’une forme de matière massive qui n’interagit que par gravitation et n’émet pas de lumière : la
matière noire.

• 1935 – Robertson et Walker prouvent l’unicité de la métrique dite de Friedmann–Lemâıtre–Robertson–
Walker pour décrire un univers homogène et isotrope.

• 1963 – Kerr propose une solution aux équations d’Einstein qui décrit des trous noirs en rotation.

• 1964 – Découverte de Cygnus X-1, dans la constellation du Cygne. Il s’agit du premier trou noir
jamais observé, qui fournit une preuve que les trous noirs existent dans notre univers et ne sont pas
seulement une solution exotique aux équations d’Einstein.

• 1965 – Newman écrit une solution dite de Kerr–Newman qui décrit des trous noirs chargés électri-
quement, en rotation.

• 1965 – Penzias et Wilson découvrent le fond diffus cosmologique (CMB), qui est une certification
importante de la théorie du Big Bang. Le CMB est un rayonnement thermique qui suit presque
exactement la distribution des corps noirs à une température de 2,7 K, et émis quasi-uniformément
de toutes les directions. Il est interprété comme une relique du rayonnement thermique au moment
du découplage lumière-matière, 379 000 ans après le Big Bang, lors duquel l’Univers était à une
température de 3000 K.

• 1967 – Théorème dit de calvitie : un trou noir classique est entièrement décrit par sa masse, sa
charge électrique et son moment angulaire. Autrement dit, un trou noir ne garde aucun information
de comment il s’est formé, à partir de quel(s) astre(s), et dans quelles conditions.

• 1970 – Les observations de Rubin, Ford et Freeman sur les courbes de vitesse radiale dans de nom-
breuses galaxies fournissent des données supplémentaires très convaincantes quant à l’existence de
la matière noire : la vitesse de rotation des étoiles en fonction de la distance au centre galactique est
incompatible avec les prédictions gravitationnelles basées sur la distribution de masse “lumineuse”
de la galaxie.

• 1979 – Guth propose la théorie de l’inflation qui complète de manière élégante la théorie du Big
Bang et rend cette dernière plus accommodable avec les observations expérimentales. L’inflation
serait une période d’expansion exponentielle de l’univers primordial, entre 10−36 et 10−32 secondes
après le Big Bang.

• 1998 – Premières indications directes de l’expansion accélérée de l’univers. L’explication parci-
monieuse de cette accélération requiert une constante cosmologique Λ faiblement positive : c’est
l’énergie noire. Les observations indiquent que la densité d’énergie dans notre univers se répartit en
quelques 70% d’énergie noire, 25% de matière noire et 5% de matière ordinaire. Cette distribution
fait désormais partie intégrante du modèle standard de la cosmologie ou modèle Λ-CMB, dont les
grandes lignes sont présentées en Figure 6.

• 2015 – Première détection d’ondes gravitationnelles dans les interféromètres gravitationnels LIGO
et VIRGO. C’est la première preuve directe de l’existence de celles-ci, bien que prédites par Einstein
cent ans auparavant. Plusieurs ondes gravitationnelles ont depuis été observées, révolutionnant de
nombreux domaines d’astrophysique.

• 2016 – Des observations tendent à montrer qu’une galaxie dénommée Dragonfly 44 est constituée
presque entièrement de matière noire.
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Figure 6: Évolution de l’univers selon le modèle standard de la cosmologie (source : NASA).

• 2019 – Première image directe d’un trou noir supermassif par le “Event Horizon Telescope” (EHT)
(M87* dans la galaxie de Messier M87). Les trous noirs observés auparavant ne l’avaient été que de
manière indirecte, en mesurant les vitesses des étoiles orbitant autour d’eux. L’image de la Figure 7
cependant, qui est la photographie de l’EHT, montre le disque d’accrétion formé de gaz ionisé en
train de chuter dans M87*.

Figure 7: Le trou noir M87* (photo du EHT arrangée par BevinKacon, sous licence CC BY 4.0).

Théorie quantique

• 1923 – Ondes et quantas, de Broglie. La relation de Planck–Einstein E = hν peut se réécrire
en p = h/λ, où p = E/c est la quantité de mouvement d’un photon de longueur d’onde λ. De

https://map.gsfc.nasa.gov/media/060915/index.html
https://www.eso.org/public/images/eso1907a/
https://commons.wikimedia.org/wiki/User_talk:BevinKacon
https://creativecommons.org/licenses/by/4.0/deed.en
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Broglie fait l’hypothèse que cette relation est en fait valable pour toute particule, y compris celles
massives, et donc que tout particule a des caractéristiques ondulatoires. Cette hypothèse est d’abord
confirmée pour les électrons en 1928 par les expériences de Davisson et Germer. Ultérieurement,
l’expérience des fentes d’Young a été réalisée avec des atomes et même des molécules, et montre la
validité de l’hypothèse de de Broglie.

• 1925 – Mécanique matricielle de Heisenberg, Born et Jordan, qui est une première formulation de
la mécanique quantique, obtenue en prenant en considération l’hypothèse de de Broglie.

• 1926 – Schrödinger publie sa célèbre équation :

i~
∂

∂t
Ψ(t) = ĤΨ(t) , (8)

où Ĥ est l’opérateur Hamiltonien (l’analogue quantique de l’énergie) et ~ = h/(2π) est la constante
de Planck réduite. Par exemple, un particule de masse m sur une droite paramétrée par x dans un
potentiel V (x) est décrite par une fonction d’onde Ψ : Rx × Rt → C, et le Hamiltonien s’écrit

Ĥ = − ~2

2m

∂2

∂x2
+ V (x) .

Dans le formalisme moderne de la physique quantique, un système est décrit par un espace de Hilbert
H appelé espace des états (par exemple, dans le cas de la particule massive mentionnée ci-dessus, H =
L2(R)). La fonction d’onde indique la probabilité de présence de la particule : dans un état Ψ(x, t), la
probabilité de mesurer la particule entre x = x− et x = x+ est :

P =

∫ x+

x−

|Ψ(x, t)|2 dx ,

où la fonction d’onde est normalisée de sorte que
∫
R |Ψ(x, t)|2 dx = 1.

La description d’un système de deux particules identiques dans l’espace R3 donne lieu à la distinction
fondamentale entre les particules qualifiées de bosons et celles nommées fermions.

Si l’on échange les deux particules, la fonction d’onde d’état initial Ψ(x) ne peut qu’être multipliée
par une phase θ ∈ R/2πR, et devient θΨ(x). Si l’on ré-échange les deux particules, on obtient la fonc-
tion d’onde θ2Ψ(x) qui doit cöıncider avec Ψ(x), si bien que θ = ±1. On peut argumenter que cette
propriété ne dépend que du type de particule. Dans le cas où θ = −1, on dit que la particule est de type
fermionique. Elle satisfait alors le principe d’exclusion de Pauli (1925) : deux particules fermioniques
identiques ne peuvent occuper simultanément le même état quantique. Un système de plusieurs partic-
ules fermioniques identiques suit la statistique de Fermi–Dirac (1926). Les électrons par exemple sont
des fermions, ce qui explique l’organisation des électrons d’un atome en orbitales électroniques autour du
noyau, et ainsi les propriétés chimiques de cet atome. Dans le cas où θ = +1, on dit que la particule est
de type bosonique. Un système de plusieurs bosons identiques suit la statistique de Bose-Einstein (1925)
: deux bosons peuvent être dans le même état quantique. Les photons sont des exemples de bosons, et
la statistique de Bose–Einstein permet notamment l’existence de faisceaux laser.

Une spécificité de la physique quantique est qu’elle permet l’existence d’états intriqués, où l’on a
une connaissance maximale de l’état global du système en même temps qu’une ignorance maximale des
composantes de cet état. Par exemple, on peut considérer un état de deux électrons de spin total zéro,
sans que l’on puisse distinguer quel électron à un spin “up” et quel électron a un spin “down”.

Indépendamment du formalisme mathématique de la mécanique quantique présenté ci-dessus, on
peut expliquer la différence de nature entre la mécanique quantique et la mécanique classique comme
suit. Considérons un objet ponctuel de masse m, qu’on libère sans vitesse initiale au temps t = t0 en
point A. Soumis aux forces extérieures, la position de l’objet en fonction du temps est déterminée par
la seconde loi de Newton. Admettons qu’à t = t1, l’objet se trouve en un point B. En sachant que
l’objet est en A à t0 et en B à t1, la trajectoire qu’il suit pour aller de A à B est celle déterminée par
la seconde loi de Newton. On peut reformuler cette condition sur les trajectoires en introduisant une
quantité appelée action (pour une telle particule massive, l’action est l’intégrale, le long de la trajectoire,
de la différence entre l’énergie cinétique et l’énergie potentielle) et dénotée S. L’action est donc une
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quantité naturellement associée à toute trajectoire. Celle effectivement prise par la particule massive est
déterminée par un principe variationnel : c’est celle, parmi toutes les trajectoires de A à B qui extrémise
l’action S. C’est une formulation possible de la physique classique, dite Lagrangienne.

Notons qu’une action est homogène à M · L2 · T−1, tout comme la constante de Planck ~ qui pour
cette raison est parfois appelée quanta d’action. En physique quantique, la notion de trajectoire n’est pas
bien définie puisque chaque particule a une longueur d’onde d’après le principe de de Broglie, et donc
une extension spatiale (on peut aussi invoquer les inégalités d’Heisenberg – voir ci-dessous). On peut
néanmoins calculer la probabilité que la particule, partant de A à t0, soit en B à t1, par une intégrale de
chemin : on fait la somme pondérée de toutes les trajectoires, aussi non-physiques soient elles, où à chaque
trajectoire est assigné le poids exp(iS/~). L’intégrale de chemin en question s’écrirait par exemple :

∫
[Dγ] exp

(
i
S[γ]

~

)
, (9)

où γ est un chemin continu de A à B, S[γ] est l’action de γ et [Dγ] est l’élément variationnel sur l’espace
des chemins, qui est très difficile à définir rigoureusement en général, sauf en dimension 0 et en dimension
1, où cela peut notamment être fait grâce au mouvement Brownien. Ainsi, en physique quantique, il
n’y a pas de trajectoire préférée ; toutes les trajectoires sont pondérées par l’exponentielle de l’action
multipliée par le nombre imaginaire i, mesurée en unités de ~. Le lemme de Riemann–Lebesgue assure
que les trajectoires qui contribuent le plus à l’intégrale de chemin sont celles qui sont “proches” des
trajectoires classiques.

• 1926 – Klein, Gordon et Fock proposent l’équation dite de Klein–Gordon qui est une généralisation
relativiste de l’équation de Schrödinger :

(
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ(t,x) = 0 .

• 1927 – Principe d’incertitude ou d’indétermination d’Heisenberg : l’incertitude sur la quantité de
mouvement ∆p et celle sur la position ∆x d’une particule massive satisfont l’inégalité

∆x∆p ≥ ~
2
.

C’est une conséquence directe du caractère ondulatoire des objets en mécanique quantique. On
interprète souvent l’inégalité ci-dessus en disant qu’il est impossible de connâıtre très précisément
à la fois la position et la vitesse d’une particule quantique.

• 1927 – Wechselwirkung neutraler Atome und Homöopolare Bindung nach der Quantenmechanik,
Heitler et London. Cet article étudie la liaison covalente de la molécule de dihydrogène H2 avec une
approche quantique. La notion de liaison chimique est ensuite largement développée par Pauling.

• 1928 – Dirac publie son équation de Dirac :

(i~γµ∂µ −mc)ψ(t,x) = 0 ,

où γ0, γ1, γ2 et γ3 sont des matrices qui satisfont {γµ, γν} = 2hµν avec hµν la métrique de Minkowski,
et avec la convention de sommation d’Einstein : γµ∂µ = γ0∂0 + γ1∂1 + γ2∂2 + γ3∂3 qu’on utilisera
également dans la suite de cette introduction.

Les solutions aux équations de Klein–Gordon et Dirac ne peuvent pas être interprétées comme des
amplitudes de probabilité de présence, à la différence des solutions à l’équation de Schrödinger. En
particulier, ces équations prédisent l’existence d’états d’énergie négative, ce qui mène au modèle de
la mer de Dirac (1930). Un champ d’électrons par exemple est une solution de l’équation de Dirac ;
les excitations d’énergie positive sont les électrons tandis que celles d’énergie négative sont interprétées
comme les anti-particules de l’électron : les positrons.

• 1928 – Gamow explique la radioactivité α comme un effet tunnel, ce qui explique notamment le
spectre en raies de la radioactivité α : un noyau atomique A

ZX devient A−2
Z−2Y (ou l’un de ses états

excités), et l’énergie cinétique de la particule alpha émise est la différence d’énergie de liaison entre
le noyau initial et les produits.
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• 1927 - 1929 – von Neumann développe le concept d’espace de Hilbert abstrait et commence l’étude
des opérateurs auto-adjoints non bornés.

• 1930 – Pauli propose l’existence des neutrinos électroniques pour expliquer le spectre d’énergie
continu observé pour les électrons dans les désintégrations β− des noyaux atomiques.

• 1932 – Découverte expérimentale des positrons e+ par Anderson, qui sont des particules chargées
positivement et dont toutes les autres propriétés sont similaires à celle des électrons. Un positron
et un électron peuvent s’annihiler en des photons.

• 1932 – Découverte expérimentale des neutrons par Chadwick.

• 1924 – Versuch einer Theorie der Strahlen, Fermi, qui développe une première théorie des désinté-
grations β. Cette théorie intègre l’existence des neutrinos et permet ainsi d’expliquer le spectre en
énergie des émissions β : un neutron peut spontanément devenir un proton en émettant un électron
ainsi qu’un anti-neutrino électronique.

Unités naturelles. La description de la physique fondamentale qui émerge des premières décennies du
20ème siècle dégage trois constantes dimensionnées apparemment universelles : la constante de gravitation
G avec [G] = M−1 ·L3 ·T−2, la vitesse de la lumière c avec [c] = L ·T−1 et la constante de Planck réduite
~ où [~] = M · L2 · T−1. On peut combiner ces trois constantes pour obtenir une masse, une longueur et
une unité de temps naturelles, dites de Planck:

mP :=

√
c~
G ∼ 2, 2× 10−8 kg, lP :=

√
G~
c3
∼ 1, 6× 10−35 m, tP :=

√
G~
c5
∼ 5, 4× 10−44 s. (10)

De manière équivalente, la masse, la longueur et le temps de Planck forment un système d’unités dans
lequel G, c et ~ valent 1. Travailler dans ce système d’unités permet notamment de s’affranchir des facteurs
de G, c et ~ dans les calculs, et une analyse dimensionnelle du résultat permet de les restaurer. Ainsi,
l’équation de Klein–Gordon se réécrit simplement (∂µ∂

µ −m2)φ = 0, et celle de Dirac : (i/∂ −m)ψ :=

(iγµ∂µ − m)ψ = 0. À partir de ces trois grandeurs, on peut également construire d’autres quantités
comme l’énergie de Planck : EP = mP c

2 ∼ 2, 0× 109 J.

Électrodynamique quantique

L’électrodynamique quantique (QED) est une théorie qui décrit les interactions lumière-matière de façon
quantique et relativiste, développée notamment par Tomonoga, Schwinger, Feynman et Dyson. La QED
est la théorie dans laquelle cela a du sens de dire qu’un photon est émis par un électron, ou que la
répulsion électrique de deux électrons correspond à l’échange de photons. Plus techniquement, c’est une
théorie de jauge abélienne de groupe de jauge U(1), définie sur l’espace de Minkowski 4-dimensionnel.
Le potentiel vecteur Aµ de l’électromagnétisme est interprété comme le champ de photons, et interagit
avec un champ de spin-1/2 ψ chargé sous Aµ et de masse mB qui décrit, par exemple, les électrons et
positrons. La dynamique de la théorie peut être exprimée sous la forme d’une action SQED qui s’écrit :

SQED =

∫
d4x

[
−1

4
FµνFµν + ψ(i /D −mB)ψ

]
,

où Dµ = ∂µ + ieBAµ et ψ = ψ†γ0. On peut écrire SQED = Sfree + Sint, où

Sfree =

∫
d4x

[
−1

4
FµνFµν + ψ(i/∂ −mB)ψ

]
, Sint = −eB

∫
d4xψγµAµψ .

L’action Sfree définit une théorie libre qui décrit un champ de spin-1 Aµ et un champ de spin-1/2
ψ n’interagissant pas entre eux. La constante eB devant l’intégrale dans Sint est une constante de
couplage dont la valeur indique l’intensité de l’interaction entre les particules correspondantes, ici les
électrons/positrons et les photons. Elle est interprétée comme la charge du champ ψ, tandis que mB est
sa masse.

La valeur de eB est petite devant 1, par conséquent on peut résoudre cette théorie de façon pertur-
bative, en exprimant les quantités recherchées comme des perturbations aux résultats de la théorie libre,
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qui peut, elle, être résolue de manière exacte. À cet effet, Feynman introduit en 1948 des diagrammes
désormais appelés diagrammes ou graphes de Feynman. Dans ces diagrammes, les lignes d’univers des
particules de spin-1/2 (c’est-à-dire, les excitations élémentaires du champ ψ) sont représentées par des
lignes pleines orientées (dans le même sens que le temps pour des électrons et dans le sens contraire
pour des positrons) et les photons (c’est-à-dire, les excitations élémentaires du champ Aµ), par des lignes
ondulées non orientées. Le terme d’interaction ψγµAµψ détermine le type de sommet autorisé : une
ligne décrivant un photon et deux lignes décrivant les fermions (une orientée vers le sommet et l’autre
s’en éloignant) se rencontrent. Ces graphes de Feynman représentent différents phénomènes physiques
lorsqu’ils sont dessinés dans des diagrammes d’espace-temps, comme en Figure 8. De gauche à droite :
un électron émet un photon, une paire électron-positron s’annihile en un photon, deux électrons se re-
poussent en échangeant deux photons, un photon devient une paire électron-positron, qui se ré-annihile
en un photon.

Figure 8: Des graphes de Feynman pour la QED.

A chaque graphe de Feynman on associe un nombre complexe appelé amplitude, calculé à partir des
règles de Feynman. De manière similaire à la discussion ci-dessus quant à la différence entre la mécanique
classique et quantique, pour calculer la probabilité d’un processus physique on doit considérer tous les
diagrammes de Feynman qui décrivent ce processus, et sommer les amplitudes correspondantes. La
probabilité est le carré du module de cette somme. En général, il y a une infinité de diagrammes de
Feynman correspondant à un phénomène donné. Cependant, chaque sommet dans un graphe contribue
notamment d’un facteur eB , et ainsi l’amplitude d’un processus (par exemple, la diffusion électron-électron
e−e− → e−e−) s’écrit :

A =
∑

n

enBAn ,

où An est l’amplitude totale des diagrammes de Feynman à n sommets.
Puisque eB � 1, on peut tronquer la somme en laquelle A est décomposée à un certain ordre, ce qui

donne une approximation du résultat escompté. L’électrodynamique quantique est une des théories les
plus fructueuses de la physique, à ce jour, puisqu’elle permet de calculer des grandeurs de manière très
précise ; les prédictions théoriques sont en excellent accord avec les observations expérimentales. Par
exemple, le calcul théorique du moment anomal de l’électron donne :

ath = 0, 001 159 652 153 5(24 0) ,

tandis que la valeur expérimentale est :

aexp = 0, 001 159 652 180 85 (76) .

L’électrodynamique quantique prédit également des corrections quantiques à la masse mB et la charge
eB , à cause des interactions entre les particules de la théorie et la mer de particules virtuelles environ-
nantes que cette dernière prédit. Les valeurs mesurables de la charge e et de la masse m des électrons, par
exemple, diffèrent des paramètres eB et mB qui apparaissent dans l’action. Ces corrections quantiques
dépendent de l’énergie des particules, et c’est donc aussi le cas des valeurs de e et m qui dépendent de
l’énergie de l’électron. Cette dépendance des paramètres de la théorie en l’énergie s’appelle la renormal-
isation. On introduit souvent la constante de structure fine, qui est adimensionnée :

α(µ) =
e(µ)2

4πε0~c
,
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où µ est l’énergie. Expérimentalement, on trouve par exemple α−1(0 GeV) ∼ 137, et α−1(90 GeV) ∼ 127.

Les énergies sont exprimées ici en puissances d’électronvolts, comme il est courant de le faire en
physique des particules : 1 eV ∼ 1, 6× 10−19 J. L’énergie de Planck vaut par exemple EP ∼ 1019 GeV.
Il est également usuel d’exprimer les masses en eV/c2, ou simplement en puissances d’électronvolts (en
unités naturelles). Par exemple, les particules que nous avons rencontrées jusqu’à maintenant ont les
masses suivantes :

− Photon : 0 eV,

− Électron : 511 keV,

− Proton : 938 MeV,

− Neutron : 940 MeV,

Porté par les succès de l’électrodynamique quantique, le formalisme mathématique de cette théorie
– manifestement adapté à la description des interactions fondamentales – est développé en tant que tel.
On parle de théorie quantique des champs, ou de théorie des champs quantiques. Comme dans le cas
de la QED, on définit souvent une théorie quantique des champs en spécifiant le type de champs qu’elle
contient, ainsi qu’une fonctionnelle des champs encore appelée action, qui détermine la dynamique et
dépend de paramètres. Lorsque la théorie est presque libre, on peut utiliser des techniques perturbatives
– notamment les graphes de Feynman – pour la résoudre de façon approchée. On dit que la théorie est
dans son régime perturbatif, ou à couplage faible. Inversement, lorsque la théorie est loin d’être libre,
on parle de régime non-perturbatif où la théorie est à couplage fort. La dynamique est plus difficile à
résoudre car il n’existe pas de méthode générale pour cela.

Les paramètres d’une théorie quantique des champs doivent en général être renormalisés, comme la
masse et la charge de l’électron en QED. La dépendance d’un paramètre g en l’échelle d’énergie µ est
encodée par la fonction β associée :

β(g) =
∂g

∂ ln(µ)
.

En électrodynamique quantique, la fonction β correspondant à la constante de structure fine α, calculée
par des techniques perturbatives, vaut :

β(α) =
2α2

3π
,

Lorsque l’énergie est très faible (µ ∼ 0), on a vu que α−1 ∼ 137, 036. La théorie est donc dans un régime
perturbatif, ce qui justifie d’ailleurs l’emploi de techniques perturbatives. La fonction β indique que la
valeur de α croit avec µ ; il existe une énergie µ0 telle que α(µ0) ∼ 1 au delà de laquelle les techniques
perturbatives deviennent caduques, car la QED est fortement couplée. La dynamique de la QED est alors
en principe difficile à étudier. En pratique, ce pôle de Landau ΛLandau n’est pas problématique en tant
que tel, en particulier car ΛLandau ∼ 10177 GeV � ΛP , échelle à laquelle une théorie unifiant les quatre
interactions fondamentales doit exister : individuellement, la QED n’a alors plus vraiment de sens. De
plus, nous verrons plus tard que les interactions électromagnétiques et faibles fusionnent en l’interaction
électrofaible autour de 246 GeV, et donc que la seule chose qui importe est de pouvoir parler de la QED
entre 0 eV et quelques centaines de GeV.

Pour sonder un objet de taille L avec une onde, il faut que la longueur d’onde de cette dernière soit
comparable avec L. D’après la relation de de Broglie E = hc/λ, l’énergie est inversement proportionnelle
à la distance sondée comme illustré en Figure 9. Pour comparaison, les collisions actuelles au Large
Hadron Collider, au CERN, se font à une énergie de 14 TeV et permettent ainsi de sonder jusqu’à
10−21 m. Par analogie avec la lumière visible, la limite des grandes énergies (c’est-à-dire des petites
distances) est appelée ultraviolet (UV), tandis que la limite des petites énergies (c’est-à-dire des grandes
distances) est appelée infrarouge (IR). Ainsi, on dit que l’électrodynamique quantique est libre dans l’IR
et devient de plus en plus fortement couplée dans l’UV.

La renormalisation des constantes des théories quantiques des champs est liée à la régularisation de
certains infinis qui apparaissent lors de calculs de graphes de Feynman à boucles. Dans les cas favorables,
ces infinis peuvent être remplacés par des contre-termes qui implémentent la renormalisation dans l’action
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Figure 9: Longueurs d’ondes de de Broglie et énergies à l’échelle subatomique.

de la théorie. Lorsqu’une théorie quantique des champs est telle qu’on peut absorber tous ses infinis dans
un nombre fini de tels contre-termes, on dit que cette théorie est renormalisable.

En 1939, Fierz énonce une première version du théorème de spin-statistique, reformulé par Pauli en
1940 puis Schwinger et Feynman dans les années 1950. Chaque champs de particule en théorie quantique
des champs est caractérisé partiellement par son spin, c’est-à-dire son moment angulaire intrinsèque, qui
prend des valeurs positives demi-entières : 0, 1/2, 1, 3/2, . . . . Le théorème de spin-statistique indique
que les particules de spin entier sont des bosons (la fonction d’onde est alors paire sous l’échange de deux
particules) tandis que les particules de spin strictement demi-entier sont des fermions (la fonction d’onde
est impaire sous l’échange de deux particules).

Interactions nucléaires faibles et fortes

Dans les années 30, il est communément admis que les noyaux atomiques sont constitués de protons et de
neutrons, et que ces derniers sont des particules élémentaires. Les protons étant électriquement chargés
(positivement) et les neutrons étant neutres, les noyaux seraient instables si rien ne compensait la répulsion
électrostatique. Ce raisonnement conduit à la conjecture de l’existence d’une nouvelle interaction, appelée
force nucléaire forte. En 1935, Yukawa propose l’hypothèse que la force nucléaire entre protons et neutrons
est transmise par une ou des particules massives. Leur masse implique notamment que ces vecteurs ont
un temps de vie court, donc que la portée de cette force nucléaire est limitée, et enfin que les gros noyaux
atomiques sont instables car leur rayon est supérieur à la portée de l’interaction forte. Yukawa appelle
ces particules des mésons (de la racine grecque ‘mesos’ qui signifie intermédiaire) car, estimant leur masse
par des raisonnements heuristiques, il trouve qu’elle doit se situer entre celle d’un électron (∼ 500 keV)
et celle d’un proton (∼ 1 GeV).

Par ailleurs, la théorie de Fermi de la désintégration β ne peut vraisemblablement pas être décrite en
QED, ni par ces interactions fortes supposées : une quatrième force fondamentale est donc proposée, la
force nucléaire faible, qui tient son nom de la lenteur des désintégrations β comparativement aux inter-
actions électromagnétiques ou fortes, ce qui indique que l’interaction responsable de ces désintégrations
est plus faible que ces dernières.

Le développement des chambres à brouillard (inventées en 1911 par Wilson et améliorées en 1936 par
Langsdorf) et des chambres à bulles (inventées en 1952 par Glaser), ainsi que des premiers accélérateurs de
particules dans les années 1940, ont permis de nombreuses découvertes et ainsi joué un rôle déterminant,
entre les années 1930 et 1980, dans l’accroissement de la compréhension des interactions nucléaires faibles
et fortes. La majorité des particules mentionnées ci-dessous sont instables, et se désintègrent en d’autres
particules en un temps plus ou moins court. C’est en étudiant la désintégration et ses produits qu’on peut
remonter aux propriétés de la particule initiale. Les particules sensibles à l’interaction forte sont appelées
hadrons (de la racine grecque ‘hadros’ : fort), et les autres, leptons (de la racine grecque ‘leptos’ : faible).

• 1936 – Découverte du muon µ par Anderson à partir de l’étude de rayons cosmiques. Cette particule
a une masse d’environ 106 MeV, proche de celle prédite par Yukawa. Cela fait qu’elle est appelée
méson µ durant les premières années de son histoire, cependant rapidement il devient clair qu’elle
ne participe en fait pas aux interactions fortes : il s’agit donc d’un lepton. Le muon est une sorte
d’électron, 200 fois plus massif que ce dernier.

• 1947 – Découverte des mésons π±, ou pions, de masse 140 MeV par Lattes, Occhialini et Powell.
Les pions π± sont instables, et ont un temps de demi-vie de 2, 6 × 10−8 s. Les pions sont des
hadrons.
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• 1947 – Découverte des mésons K± (de masse 494 MeV), ou kaons et K0 (de masse 498 MeV) par
Rochester and Butler. Les kaons sont des hadrons.

• 1950 – Découverte du méson π0, de masse 135 MeV. Les pions π0 sont instables, et ont un temps
de demi-vie de 8, 5× 10−17 s. Les π0 sont également des hadrons.

• 1950 – Découverte du baryon Λ0 par Hopper et Biswas, qui est un hadron de masse m(Λ0) ∼
1115 MeV. Il se distingue des mésons par le fait qu’il peut se désintégrer en un proton et d’autres
particules (ce qui définit les baryons par opposition aux mésons). Son temps de demi-vie est de
10−10 s, contrairement aux 10−23 s attendues.

• 1953 – Découverte du baryon Ξ− par Armenteros et al., de masse 1314 MeV.

• 1953 – Gell-Mann, Pais, Nakano et Nishijima introduisent l’étrangeté S, un nombre quantique associé
aux hadrons, qui serait conservée par les interactions fortes et pas par les interactions faibles, afin
d’expliquer les temps de demi-vie des kaons et du baryon Λ. Par exemple, on a S(π±) = S(π0) = 0,
S(K+) = S(K0) = 1, S(K−) = S(K0) = −1, S(Λ0) = 1, S(Ξ−) = −2.

• 1954 – Yang et Mills étendent le concept de symétrie de jauge auparavant défini pour des groupes
abéliens (comme c’est le cas en électrodynamique quantique) à des groupes non-abéliens. Ces
théories sont désormais appelées théories de Yang–Mills.

• 1956 – Cowan, Reines, Harrison, Kruse and McGuire détectent le neutrino électronique νe, qui est
un lepton de masse apparemment nulle.

• 1956 – Question of Parity Conservation in Weak Interactions de Lee and Yang, qui soulignent
que bien que la symétrie de parité ait été vérifiée expérimentalement pour des interactions électro-
magnétiques et fortes, elle n’a jamais fait l’objet d’une étude en ce qui concerne les interactions
faibles. La symétrie de parité P agit sur les coordonnées dans un repère de l’espace-temps de
Minkowski de la manière suivante :

(t, x, y, z) −→ (t,−x,−y,−z) .

Qu’une interaction ne respecte pas P peut-être reformulé comme le fait que cette interaction ne se
passe pas de la même manière dans notre univers, et dans une copie miroir de ce dernier.

Si l’on s’autorise à considérer des particules qui ne sont pas identifiées sous P (c’est-à-dire qui
diffèrent de leur image miroir), les fermions de Dirac (comme l’électron) ne sont pas les plus
élémentaires possibles. On peut en effet distinguer deux fermions dits de Weyl dans chaque fermion
de Dirac : un de chiralité droite et l’autre de chiralité gauche. Sous la symétrie P, les chiralités
sont échangées. Se poser la question de savoir si les interactions faibles respectent la parité revient
donc à se demander si les fermions de chiralité gauche subissent les mêmes interactions faibles que
les fermions de chiralité droite.

• 1957 – Wu conduit une expérience de désintégration β du Cobalt 60 :

60
27Co −→ 60

28Ni∗ + e− + νe −→ 60
28Ni + e− + νe + 2γ

qui montre que les interactions faibles ne respectent pas la parité. Cela résout le mystère τ − Θ :
les mésons τ+ et Θ+ étaient identifiés comme deux particules pouvant notamment se désintégrer
en

τ+ −→ π+ + π0 ,

Θ+ −→ π+ + π+ + π− .

D’une part, P(π+ + π0) = 1 et d’autre part, P(π+ + π+ + π−) = −1, ce qui, en supposant que la
parité est conservée dans ces désintégrations, semble indiquer que τ+ et Θ+ sont deux particules
différentes. Cependant, les données expérimentales ne permettaient pas de distinguer ces deux
particules, qui ont notamment exactement la même masse. Il s’agit en fait de la même particule, le
kaonK+, et sa désintégration en deux états de différentes parités est possible puisque les interactions
faibles ne préservent pas P.
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L’expérience de Wu implique aussi que les interactions faibles violent la conjugaison de charge C.
Cette symétrie discrète échange les particules avec leurs anti-particules, c’est-à-dire, inverse le signe
de toutes les charges.

La dernière symétrie Lorentzienne discrète est le renversement du temps T, qui dans un repère
agit comme (t, x, y, z) → (−t, x, y, z). Le célèbre théorème CPT, prouvé dans les années 1950 par
Schwinger, Lüders et Pauli, affirme que toute théorie quantique des champs relativiste dans l’espace
de Minkowski R1,3 est symétrique sous la combinaison CPT des trois symétries Lorentziennes
discrètes.

• 1957 – Landau propose que la combinaison CP est la bonne symétrie à considérer entre la matière
et l’antimatière, et que CP est conservée dans les interactions faibles.

• 1959 – Découverte du baryon Ξ0 par Alvarez et al., de masse 1314 MeV et d’étrangeté S(Ξ0) = −2.

• 1961 – The renormalizability of vector meson interactions, Glashow, où l’auteur propose un premier
modèle pour unifier les interactions faibles et l’électromagnétisme, en supposant que l’interaction
faible est transmise par un échange de bosons vecteurs, plutôt qu’une interaction de quatre fermions
comme dans la théorie de Fermi.

• 1961 – Découverte des mésons η et η′ par Pevsner et al., qui ont pour masse m(η) ∼ 548 MeV et
m(η′) ∼ 958 MeV.

• 1961 – Gell-Mann introduit la voie octuple (“Eightfold way”, en anglais) pour classifier les mésons et
baryons. Il s’agit de classifier ces derniers en représentations du groupe SU(3), ce qu’on obtient en
plaçant les particules dans un plan paramétré par la charge électrique et l’étrangeté. Par exemple,
le méson η′ est un singulet de SU(3) tandis que le méson η, les pions, et les kaons forment un octet,
comme montré en Figure 10.

Figure 10: L’octet des pions, kaons et η.

• 1961 – Nambu et Jona-Lasinio étudient les conséquences de l’existence de symétries chirales en
théorie quantique des champs et de leur brisure spontannée. Ce formalisme suggère notamment
que la masse des nucléons est principalement due à l’auto-interaction d’un champ fermionique
élémentaire, et prédit l’existence de particules légères indentifiées aux pions.

• 1962 – Lederman, Schwartz et Steinberger font la première observation d’une interaction impliquant
un neutrino muonique νµ, un lepton de masse apparemment nulle similaire au neutrino électronique.

• 1964 – Electromagnetic and weak interactions, Salam et Ward. Ce deuxième modèle prédit un
photon ainsi que trois bosons de jauge massifs, avec la symétrie de jauge correspondante brisée
explicitement.

• 1964 – La brisure spontanée de symétrie de jauge en théorie quantique de champs relativiste est
développée par Brout et Englert, Higgs, ainsi que Guralnik, Hagen et Kibble.
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• 1964 – Cronin et Fitch montrent que la symétrie CP peut être brisée lors de la désintégration des
kaons, ce qui remet en cause l’hypothèse de Landau de 1957.

• 1964 – Gell-Mann et Zweig introduisent le modèle des quarks qui prolonge la classification la voie oc-
tuple de Gell-Mann. L’idée centrale est que les hadrons ne seraient pas des particules élémentaires,
mais des combinaisons de quarks et d’antiquarks, qui sont des fermions. Ce premier modèle com-
prend trois quarks, dénommés up (u), down(d) et strange (s) ainsi que leurs antiparticules u, d et
s. Leurs charges électriques q valent q(u) = −q(u) = 2/3, q(d) = q(s) = −q(d) = −q(s) = −1/3
et leurs étrangetés : S(u) = S(d) = S(u) = S(d) = 0, S(s) = −1 et S(s) = 1. Les compositions
conjecturées en quarks de quelques uns des mésons et baryons évoqués ci-dessus sont :

proton p : uud,

neutron n : udd,

π+ : ud,

π− : du,

π0 :
1√
2

(
uu− dd

)
,

K+ : us,

η :
1√
6

(
uu+ dd− 2ss

)
,

η′ :
1√
6

(
uu+ dd+ ss

)
,

Λ0 : uds.

La mesure ultérieure de la masse de ces quarks donne m(u) ∼ 2.3 MeV, m(d) ∼ 4, 8 MeV et
m(s) ∼ 95 MeV.

• 1964 – Glashow et Bjorken prédisent l’existence d’un quatrième quark, le charm (c), qui permet
une meilleure description des interactions faibles.

• 1964 – Découverte du baryon Ω− (sss) d’étrangeté −3, de masse 1672 MeV et de spin 3/2, ce qui
pose un problème puisque les quarks sont des fermions et satisfont le principe d’exclusion de Pauli.
Le même problème existe en ce qui concerne le baryon Σ++ (uuu), de spin 3/2.

• 1964 - 1965 – Greenberg, Han et Nambu proposent que les quarks possèdent une symétrie de jauge
SU(3) additionnelle.

• 1965 – Struminsky propose que les quarks possèdent des nombres quantiques supplémentaires encore
non découverts afin de résoudre le problème de l’existence du baryon Ω− (et également du Σ++) :
ce seront les couleurs bleue, rouge et verte qui seront assignées aux quarks en chromodynamique
quantique.

• 1967 – A model of leptons, Weinberg. Dans ce troisième modèle électrofaible est introduite l’idée
de brisure spontanée de symétrie (c’est-à-dire, le mécanisme de Higgs) dans une théorie de jauge de
groupe SU(2)I ×U(1)Y (où I désigne l’isospin faible, et Y , l’hypercharge faible). Le facteur SU(2)I
est chiral, et n’interagit qu’avec les fermions (électrons, neutrinos et leurs équivalents) de chiralité
gauche, tandis que U(1)Y n’est pas chiral et interagit avec les fermions indépendamment de leur
chiralité. Un doublet de Higgs est introduit, qui brise spontanément SU(2)I × U(1)Y en U(1), où
ce dernier facteur est le groupe de jauge de l’électromagnétisme. La théorie prévoit notamment
l’existence de trois bosons de jauge massifs vecteurs de l’interaction nucléaire faible, dénotés W−,
W+ et Z0 et tels que mZ0 > mW± , mZ0 > 80 GeV et mW± > 40 GeV.

• 1968 – Des expériences de diffusion profondément inélastique conduites au “Stanford Linear Ac-
celerator Center” (SLAC) montrent que le proton est constitué d’objets ponctuels qui sont ensuite
identifiés aux quarks de valence du proton : uud. C’est la première observation expérimentale des
quarks up et down.
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• 1968 - 1973 – Le modèle dual de résonance est développé pour expliquer les interactions fortes.
C’est une théorie de cordes ouvertes microscopiques, dont les extrémités sont les quarks.

• 1969 – Adler, Bell et Jackiw calculent que le courant chiral axial ψγ5γµψ en QED est anomal : bien
que l’action de la QED (avec des quarks up et down) satisfasse la symétrie chirale correspondant à
la conservation de ce courant, cette symétrie est brisée par des effets quantiques à une boucle. Cela
explique notamment pourquoi le temps de demi-vie du pion π0, qui est de 8, 5 × 10−18 s, est tant
plus faible que celui des pions π± (2, 6× 10−8 s) : le pion π0 peut se désintégrer en deux photons
via une boucle triangulaire de quarks qui a une amplitude non-nulle (présentée en Figure 11 où les
lignes continues sont des (anti)quarks up ou down), tandis que les pions chargés π± ne peuvent pas
se désintégrer de cette manière. Le temps de demi-vie de ces derniers est donc plus long.

Figure 11: Le graphe de Feynman d’amplitude non-nulle qui correspond à l’anomalie ABJ.

Plus généralement, on dit qu’une symétrie des équations du mouvement classique d’une théorie des
champs est anomale si cette symétrie est brisée par les corrections quantiques. Dans les théories
quantiques des champs chirales où les fermions gauches et droits ne couplent pas de la même manière
aux autres champs, certains courants chiraux souffrent d’anomalies. Lorsque ces derniers correspon-
dent à des symétries globales (comme c’est la cas en QCD – voir plus bas), ces anomalies ne sont
en rien problématiques et fournissent des informations précieuses sur la théorie. Inversement, si les
courants correspondent à des symétries de jauge, une anomalie implique une violation de l’unitarité
de la théorie, qui est alors mal définie en tant que théorie quantique. L’absence d’anomalies de
jauge impose une condition sur la quantité de fermions chiraux gauches et droits qui couplent à
chaque facteur simple du groupe de jauge. Une application importante de l’étude de ces anomalies
de jauge est la condition d’appariement des anomalies de ’t Hooft (1980), qui permet notamment
d’obtenir des informations sur la dynamique à couplage fort d’une théorie quantique des champs, à
partir de la connaissance de cette théorie à couplage faible.

• 1970 – Glashow, Iliopoulos et Maiani proposent leur mécanisme GIM pour expliquer l’absence
expérimentale de “Flavor changing neutral currents”.

• 1973 – Kobayashi et Maskawa étendent les travaux de Cabibbo, en montrant qu’on peut expliquer
la violation de symétrie CP dans les interactions faibles si l’on suppose l’existence de deux quarks
supplémentaires, les quarks top (t) et bottom (b). La matrice CKM est une matrice unitaire de
passage entre la base des états de quarks libres et la base naturelle des états de quarks au regard
des interactions faibles. Le carré de la valeur absolue des entrées donne la probabilité qu’un quark
de type up donné se transforme en un certain quark de type down lors d’une interaction avec les
bosons faibles W±.

• 1973 – Fritzsch, Gell-Mann et Leutwyler développent la théorie de la chromodynamique quantique
(QCD) pour expliquer les interactions fortes. La QCD est une théorie de Yang–Mills de groupe
de jauge SU(3)c appelé le groupe de couleur, en interaction avec les quarks qui sont des fermions
de Dirac dans la représentation fondamentale de SU(3). Autrement dit, on assigne aux quarks
une couleur (rouge, vert ou bleu) qui est l’équivalent de la charge électrique pour l’interaction
électromagnétique. L’équivalent du photon de la QED consiste en huit gluons g, qui sont des
bosons de masse nulle eux-même chargés sous le groupe de couleur (c’est une propriété des théories
de Yang–Mills non-abéliennes). Plus précisément, les gluons sont dans la représentation adjointe
de SU(3)c et on peut donc leur assigner une couleur et une “anti-couleur”.
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• 1973 – Gross, Wilczek et Politzer découvrent la liberté asymptotique de certaines théories de Yang–
Mills non-abéliennes, et en particulier de la QCD. La renormalisation de la constante de couplage
g de la QCD est déterminée par la fonction β (à une boucle) :

β(gs) = −
(

11− 2nf
3

)
g2
s

16π2
,

où nf est le nombre de saveurs de quarks, c’est-à-dire six (up, down, charm, strange, top, bottom).
Ainsi le coefficient de la fonction β de la QCD est négatif, et donc plus l’énergie est grande plus la
constante de couplage est petite. Cette dernière tend vers 0 (et la QCD tend vers une théorie libre)
dans l’extrême UV, et c’est pour cela qu’on parle de liberté asymptotique. Inversement, la constante
de couplage devient de plus en plus grande dans l’infrarouge, et d’ordre 1 autour de ΛS ∼ 332 MeV.
Cette échelle d’énergie ne provient pas d’un terme dans l’action de la QCD, mais de la dynamique
de la théorie elle-même. On parle d’échelle d’énergie dynamique. Le comportement et la description
de la QCD à une échelle d’énergie µ dépendent crucialement de comment µ se compare à ΛS .

Lorsque µ � ΛS , la QCD est dans son régime perturbatif, et est bien décrite par des quarks
interagissant faiblement via le groupe de couleur SU(3)c. Inversement, lorsque µ � ΛS , la QCD
est dans un régime de couplage fort, et la description perturbative en termes de quarks et de gluons
n’est plus adaptée. Il y a même confinement de la couleur : les quarks et les gluons forment des états
liés, qui sont les baryons et mésons observés à basse énergie. Une partie importante de la masse
de ces états liés provient de l’énergie de liaison de ces états composites ; par exemple la somme des
masses des quarks uud constitutifs du proton est de 9.4 MeV, tandis que m(p) ∼ 938 MeV. Puisque
la couleur est confinée, la chromodynamique quantique donne lieu à une force nucléaire résiduelle
entre les protons et les neutrons, principalement transmise par l’échange de pions qui correspondent
donc bien aux particules dont l’existence a été prédite par Yukawa.

Les six saveurs de quarks de la QCD sont naturellement divisées en deux groupes : les quarks
up, down et strange ont une masse de moins de 100 MeV tandis que les quarks charm, top et
bottom ont une masse de plus de 1 GeV. Dans la limite où l’on suppose que la masse de ces trois
premiers quarks est nulle, la théorie jouit d’une symétrie globale chirale SU(3)L × SU(3)R qui agit
indépendamment sur les parties de chiralité gauche et droite de ces trois quarks. Cette symétrie
chirale est brisée dynamiquement dans le vide de la QCD en le sous-groupe diagonal SU(3)D, ce
qui doit donner lieu à des bosons de Goldstone de masse nulle. En restaurant la masse des quarks
u, d et s, on obtient des pseudo bosons de Goldstone dont la masse, bien que non-nulle, est faible.
Ce sont les pions, kaons et η constitutifs de l’octet donné en Figure 10.

• 1974 – Observation expérimentale du quark charm au SLAC et au Laboratoire National de Brook-
heaven, à travers la découverte du méson J/ψ (cc) de masse 3 GeV. Le quark charm a quant à lui
une masse de 1,28 GeV.

• 1974 – Wilson introduit les opérateurs maintenant appelés boucles de Wilson, qui sont des paramètres
d’ordre pour le confinement : dans une phase confinée, ces opérateurs suivent une loi d’aire, tandis
que dans une phase de Higgs, ils suivent une loi de périmètre.

• 1975 – Découverte du tau (τ) au “Stanford Linear Accelerator Center”, qui est un lepton de type
électron et de masse m(τ) ∼ 1, 8 GeV.

• 1977 – Observation expérimentale du quark bottom (b), de masse m(b) ∼ 4, 18 GeV.

• 1978 – ’t Hooft introduit les boucles de ’t Hooft qui sont les analogues magnétiques de boucles de
Wilson.

• 1983 – Découverte des bosons W+, W− et Z0 par les collaborations UA1 et UA2 au CERN.
Leur masse est m(W±) ∼ 80 GeV et m(Z0) ∼ 91 GeV, en accord avec les prédictions du modèle
électrofaible de Weinberg de 1967.

• 1995 – Observation expérimentale du quark top (t) par les collaborations CDF et DØ au Tévatron.
La masse de ce quark est m(t) ∼ 173 GeV.
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• 2000 – Observation du neutrino tauique ντ au CERN, un lepton de masse apparemment nulle qui
est à la particule τ ce que le neutrino électronique (respectivement, muonique) est à l’électron
(respectivement, muon).

• 2012 – Découverte du boson de Higgs H0 par les collaborations ATLAS et CMS au CERN. Sa
masse est de m(H0) ∼ 125 GeV.

Le Modèle Standard de la physique des particules

La théorie qui décrit, de manière unifiée, les interactions électromagnétiques, faibles et fortes, est le fruit
des décennies de recherche rapidement décrites dans la section précédente, et porte le nom de Modèle
Standard de la physique des particules. Il s’agit d’une théorie quantique des champs relativiste définie
dans l’espace-temps de Minkowski R1,3. Les particules élémentaires qu’elle contient peuvent être classifiées
de la manière suivante :

• Les bosons, divisés en deux sous-groupes.

– Les bosons de jauge sont les particules vectrices des interactions elles-mêmes. Ce sont des
particules de spin 1 :

∗ Le photon γ, de masse nulle, vecteur de l’interaction électromagnétique.

∗ Les bosons faibles W+, W− et Z0, vecteurs de l’interaction faible, qui acquièrent spon-
tanément une masse par la brisure de la symétrie de jauge dans le modèle électrofaible
déclenchée par le doublet de Higgs. La masse de ces bosons explique la portée finie des
interactions faibles, à la différence de l’électromagnétisme. Le boson W+ (resp. W−, Z0)
est électriquement chargé positivement (resp. chargé négativement, neutre), et n’a aucune
charge de couleur.

∗ Les huit gluons g qui sont les vecteurs des interactions de couleur en QCD, de masse nulle.
Les gluons sont neutres pour l’interaction électrofaible, et chargés pour les interactions de
couleur. En dessous de l’échelle d’énergie dynamique ΛS des interactions fortes, la couleur
est confinée, ce qui explique la portée finie des interactions fortes d’une manière très
différente de celle des interactions faibles : à des distances de l’ordre du noyau atomique,
ce sont les pions qui transmettent l’interaction forte et non plus les gluons.

– Le boson de Higgs H0 est l’excitation massive qui résulte de la brisure spontanée de la
symétrie de jauge électrofaible par le doublet de Higgs. Il s’agit d’une particule de spin 0.

• Les fermions du modèle standard sont des particules de spin 1/2 qui constituent la “matière”. Ils
sont également divisés en deux sous-groupes :

– Les leptons sont, par définition, ceux qui ne sont pas chargés sous l’interaction forte. Il y a
trois générations rassemblées en doublets :

(
e−

νe

)
,

(
µ−

νµ

)
,

(
τ−

ντ

)
,

respectivement : l’électron, le neutrino électronique, le muon, le neutrino muonique, le tau, le
neutrino tauique. Les neutrinos sont électriquement neutres, tandis qu’électrons, muons et taus
sont chargés négativement (et leur antiparticule, positivement). Par émission ou absorption
d’un boson faible W±, un composant d’un doublet est transformé en l’autre.

– Les quarks sont chargés pour l’interaction forte. Il y a six saveurs de quarks dans le modèle
standard : up, down, charm, strange, top, bottom. Les quarks up, charm et top sont dits de
type up tandis que les quarks down, strange et botton sont dits de type down. De plus, chaque
quark a une couleur (rouge, vert ou bleu) qui peut changer par interaction avec les gluons.
Par exemple, un quark up rouge peut absorber un gluon vert-antirouge et devient ainsi un
quark up vert. Les quarks sont chargés électriquement : les quarks de type up ont une charge
2/3 et ceux de type down, une charge −1/3. Leurs anti-particules ont des charges opposées.
Les quarks sont également chargés pour l’interaction faible qui ne préserve pas les saveurs des
quarks. La matrice CKM (1973), dont les entrées sont mesurées expérimentalement, décrit ces
changement de saveur. Par exemple, la probabilité qu’un quark up devienne un quark down
(respectivement, strange, bottom) par émission d’un boson W+ est de 94,8% (respectivement,
5,0%, 0,001%).
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Figure 12: Quelques interactions leptons-leptons décrites par le Modèle Standard.

Figure 13: Quelques interactions de quarks décrites par le Modèle Standard.
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Figure 14: Particules du Modèle Standard (tableau de Cush obtenu à partir d’une version de MissMJ).

L’accord entre les prédictions théoriques du Modèle Standard et les mesures expérimentales est re-
marquable. Cependant, cette théorie ne peut pas être complète, et ce pour plusieurs raisons, dont les
suivantes :

1. Le Modèle Standard de la physique des particules ne décrit pas la gravité. À des échelles d’énergies
suffisamment faibles devant l’énergie de Planck ΛP ∼ 1018 GeV, la gravité a en effet un impact
négligeable sur les particules, devant les autres interactions que le Modèle Standard décrit. Par

https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://commons.wikimedia.org/wiki/User:Cush
https://commons.wikimedia.org/wiki/User:MissMJ
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exemple, la répulsion électrique entre deux électrons statiques séparés de 1 m est de quelques
10−28 N, tandis que l’attraction gravitationnelle (calculée selon la loi de Newton) est de 10−71 N.
Cependant, la gravité ne peux plus être négligée à des énergies de l’ordre de l’échelle de Planck.
Ainsi, le Modèle Standard ne peut décrire convenablement les interactions électromagnétiques,
faibles et fortes qu’à des énergies suffisamment faibles, inférieures à une certaine échelle ΛSM. Les
expériences conduites au LHC montrent que le Modèle Standard décrit correctement la nature à
des énergies inférieures à 14 TeV, c’est-à-dire à des distances supérieures à 10−21 m. Autrement
dit, on sait que ΛSM ≥ 14 TeV.

Un traitement quantique perturbatif des équations d’Einstein (c’est-à-dire de la gravité) est possi-
ble, et par quantification on obtient une particule sans masse de spin 2 appelée graviton (qui n’a pas
encore été mise en évidence expérimentalement). Cependant, la théorie obtenue n’est pas renor-
malisable et ne peut donc pas être considérée comme une théorie complète de la gravité quantique :
il s’agit tout au plus d’une théorie effective, valable seulement jusqu’à une certaine énergie plus
faible que l’énergie de Planck. Les recherches dans cette direction sont limitées par les difficultés
expérimentales quant aux tests des lois de gravitation pour des petites masses : actuellement, la
loi de Newton n’a été vérifiée que pour des masses supérieures à quelques fractions de grammes.
Les mécanismes de la gravité à l’échelle de particules très énergétiques (la masse de Planck est de
l’ordre de 20 µg) sont encore à élucider.

2. Il a été montré que les particules décrites par le Modèle Standard ne peuvent pas expliquer
entièrement la nature de la matière noire.

3. L’observation des neutrinos émis par le soleil par Davis et Bahcall dans les années 1960, confirmée
par des expériences au “Sudbury Neutrino Observatory” et au “Super Kamiokande” a permis de
montrer le phénomène dit d’oscillation des neutrinos, qui ne peut s’expliquer que si ces derniers
ont une masse. Le Modèle Standard décrit quant à lui des neutrinos non massifs.

4. La renormalisation de la masse du champ de Higgs du modèle Standard souffre de divergences
quadratiques. À cause de cela, et sauf si des suppressions extraordinaires ont lieu entre les différentes
contributions à la masse du Higgs H0 (ce qui est appelé fine tuning), on s’attend à ce que m(H0) soit
typiquement de l’ordre de ΛSM, ce qui est incompatible avec la masse mesurée m(H0) ∼ 125 GeV
et la borne inférieure actuelle sur ΛSM. On parle d’un problème de naturalité, ou de hiérarchie :
comment expliquer que m(H0)� ΛSM ?

5. L’énergie du vide du Modèle Standard est estimée à quelques 10113 J ·m3, alors que la mesure de
la constante cosmologique donne plutôt quelques 10−9 J ·m3. Cet écart est appelé problème de la
constante cosmologique.

6. La violation de la symétrie CP dans les interactions faibles et les interactions fortes a été observée
expérimentalement. Cependant, un terme dit terme thêta dans l’action de la chromodynamique
quantique prévoit, encore une fois sauf s’il y a un fine tuning extraordinaire, une brisure de la
symétrie CP beaucoup plus importante que celle observée. C’est un autre problème de naturalité
appelé problème de CP fort. Peccei et Quinn ont proposé un mécanisme basé sur une brisure spon-
tanée de symétrie permettant de résoudre ce paradoxe en 1977, qui est aujourd’hui très consensuel.
Cependant, la théorie de Peccei–Quinn prévoit une nouvelle particule dénommée axion, et qui n’a
toujours pas été observée. Il n’y a donc pas encore de confirmation directe de cette résolution du
problème de CP fort.

Ainsi, malgré ses succès, le Modèle Standard appelle a être étendu en une théorie qui le contient, et
qui résout certains des problèmes sus-mentionnés. Toutefois, le fait que les collisionneurs de particules
les plus puissants construits aujourd’hui ne puissent pas contredire les prédictions du Modèle Standard
donne une saveur nouvelle à cette tâche : il faut pouvoir approfondir la connaissance que nous avons de
notre univers avec très peu d’indications expérimentales, voire aucunes. Ce constat explique le nouveau
paradigme apparu en physique théorique dans les années 1980, et l’apparition d’une nouvelle branche dans
cette discipline parfois appelée mathématique physique, d’essence et de contenus plus mathématiques,
notamment incarnée par l’étude des théories quantiques des champs supersymétriques et par la théorie
des cordes.
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Mathématique physique contemporaine

Théories de jauge et géométrie

L’application des idées des théories de jauge non-abéliennes introduites par Yang et Mills en 1954 a été
incroyablement fructueuse, en permettant notamment la construction de nouveaux invariants de variétés
lisses, l’étude de structures géométriques comme les variétés hyperkähleriennes ou encore l’étude de nom-
breux espaces des modules en géométrie algébrique. En mathématiques, on entend par théorie de jauge
l’étude des connections sur des fibrés vectoriels et principaux en géométrie différentielle ou algébrique.
L’introduction des fibrés de Higgs par Hitchin a notamment donné une généralisation très intéressante
des espaces de Teichmüller dont nous aurons l’occasion de reparler. Quelques articles fondateurs de cette
branche de la géométrie sont listés ci-dessous.

• 1977 - 1978 – Deformation of instantons et Self-duality in four-dimensional Riemannian geometry,
Atihay, Hitchin, Singer. Les objets d’étude de ces articles sont les connections de Yang–Mills
auto-duales, aussi appelées instantons, sur les variétés Riemanniennes en dimension quatre. Ces
pseudo-particules ont été introduites en 1975 par Belavin, Polyakov, Schwarz et Tyupkin comme
interpolant deux vides de la théorie de Yang–Mills euclidienne de groupe de jauge SU(2).

• 1977 – Instantons and algebraic geometry, Atiyah, Ward, où sont étudiées des connections entre les
instantons et la géométrie algébrique.

• 1978 – Construction of instantons, Atiyah, Drinfeld, Hitchin, Manin, qui décrit l’espace des modules
des instantons en termes de données purement linéaires.

• 1983 – The Yang–Mills equations over Riemann surfaces, Atiyah, Bott. Cet article est la pierre
angulaire de l’utilisation des théories de jauge en géométrie des surfaces de Riemann.

• 1983 – An application of gauge theory to four-dimensional topology, Donaldson, dans lequel l’auteur
développe la théorie des instantons afin d’étudier la topologie des variétés lisses de dimension quatre.
Les invariants de Donaldson permettent notamment de prouver l’existence de variétés topologiques
sans structure lisse, et celle de plusieurs structures lisses non-équivalentes sur R4.

• 1985 – Anti-self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bun-
dles, Donaldson et On the existence of Hermitian Yang–Mills connections in stable vector bundles,
Uhlenbeck, Yau, qui prouvent la correspondance entre les connections de Yang–Mills anti-auto-
duales et les fibrés vectoriels holomorphes stables conjecturée par Kobayashi et Hitchin. Cette
correspondance prolonge celle de Narashiman et Seshadri (1965) entre les fibrés vectoriels holomor-
phes stables sur une surface de Riemann Σ et les représentations projectives unitaires du groupe
fondamental de Σ.

• 1987 – The self-duality equations on a Riemann surface, Hitchin, où sont introduits les fibrés de
Higgs dont les espaces de modules ont des propriétés très intéressantes, et qui fournissent des
généralisations des espaces de Teichmüller. Ces composantes de Hitchin sont discutées en Sec-
tion 4.3.1.

• 1988 – Flat G-bundles with canonical metric, Corlette, où est fait le lien entre les solutions des
équations de Hitchin et les représentations du groupe fondamental de la surface considérée.

• 1989 – Quantum Field Theory and the Jones polynomial, Witten, dans lequel l’auteur développe une
approche du polynôme de Jones, un invariant de nœuds, en termes de théories de Chern–Simons
qui sont des théories de jauge topologiques en dimension trois.

• 1991 - 1992 – Nonabelian Hodge theory et Higgs bundles and local systems, Simpson, qui prouve
que les fibrés des Higgs polystables correspondent aux solutions des équations de Hitchin. La
correspondance de Hodge non-abélienne généralise la décomposition de Hodge pour des coefficients
dans le groupe GLn(C) au lieu de C.
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Supersymétrie

Une supersymétrie en théorie quantique des champs est une symétrie de l’espace-temps sous laquelle
les champs bosoniques (qui ont nécessairement un spin entier d’après le théorème de spin statistique)
sont transformés en champs fermioniques (qui ont nécessairement un spin strictement demi-entier).
Mathématiquement, cela revient à définir les particules élémentaires non comme des représentations
de l’algèbre de Poincaré de symétries infinitésimales relativistes, mais comme des représentations d’une
extension Z/2Z-graduée de l’algèbre de Poincaré. L’idée de supersymétrie sous la forme qu’on lui attribue
aujourd’hui date de 1971.

Certaines théories quantiques des champs supersymétriques peuvent être définies de manière perturba-
tive par une action, comme le modèle de Wess–Zumino (1974), qui est l’un des modèles supersymétriques
les plus simples :

S =

∫
d4x

[
∂µφ

†∂µφ− iχσµ∂µχ−
∣∣∣∣
∂W

∂φ

∣∣∣∣
2

− 1

2

∂2W

∂φ2
χχ− 1

2

∂2W †

∂φ†2 χχ
]
,

où φ est un champ scalaire complexe, χα (respectivement χα̇) est un fermion de Weyl chiral gauche
(respectivement droit) et W est le polynôme

W (φ) =
1

2
mφ2 +

1

3
λφ3 ,

avec m et λ des paramètres interprétés respectivement comme la masse du champ φ et le couplage de
Yukawa entre φ et les fermions χ et χ.

La supersymétrie de cette théorie est la transformation δε définie de la manière suivante, où ε est un
spineur de Weyl infinitésimal :

δεφ =
√

2εχ,

δεχ =
√

2iσµε∂µφ−
√

2ε
∂W †

∂φ†
,

avec σµ, µ = 0, . . . , 3 les matrices de Pauli. On peut vérifier que les équations du mouvement sont
invariantes sous l’action de cette supersymétrie.

Lorsque la supersymétrie est une symétrie globale d’une théorie quantique des champs (comme c’est
le cas dans la théorie de Wess–Zumino) on dit que cette dernière est globalement supersymétrique. Dès
l’article fondateur de Wess et Zumino, les théories quantiques des champs globalement supersymétriques
apparaissent comme remarquables car leur renormalisation est sous bien meilleur contrôle qu’en général.
Par conséquent, ces théories supersymétriques sont des bonnes candidates pour des extensions du Modèle
Standard pouvant prétendre à la résolution du point 4 ci-dessus.

De plus, les théorèmes de Coleman–Mandula (1967) et Haag–Lopuszanski–Sohnius (1975) fournissent
un argument conceptuel solide pour l’étude des théories supersymétriques : en un sens, ce sont les théories
quantiques des champs les plus symétriques que l’on peut considérer si l’on accepte certains principes
physiques fondamentaux s’appliquant aux diffusions de particules élémentaires. Ces théories sont souvent
plus compliquées que des théories génériques car la supersymétrie impose des contraintes sur les partic-
ules impliquées, et dans un même temps plus facilement exploitables de part leur supersymétrie. En
particulier, il est possible de comprendre certains aspects de la dynamique non-perturbative des théories
quantiques des champs supersymétriques, et ainsi d’étudier des phénomènes physiques très intéressants
comme le confinement, l’existence de monopoles magnétiques, les instantons et diverses dualités, pour ne
citer qu’eux.

Phénoménologie de la supersymétrie. Une première extension supersymétrique du Modèle Stan-
dard est proposée par Fayet en 1977, et complétée notamment par Dimopoulos et Georgi en 1981, con-
duisant à l’extension supersymétrique minimale du Modèle Standard (MSSM). Cette théorie améliore la
renormalisation du champ de Higgs (point 4 ci-dessus) en doublant le nombre de particules du Modèle
Standard. En effet, la définition même de la supersymétrie implique un appariement des degrés de liberté
bosoniques et fermioniques de la théorie quantique des champs en considération. Les bosons et fermions
appariés doivent avoir les mêmes charges locales et globales, ce qui est impossible sans ajout de nouvelles
particules, appelées superpartenaires de celles du Modèle Standard.
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Si la supersymétrie n’est pas brisée spontanément, les fermions et bosons dans une même paire doivent
également avoir la même masse, ce qui est contraire aux observations expérimentales. Une brisure spon-
tanée est donc nécessaire, et implique une séparation entre la masse des bosons et des fermions ap-
pariés. Le superpartenaire le plus léger est une particule stable selon ce modèle, et constitue un candidat
intéressant pour la particule constitutive de la matière noire (point 2 ci-dessus).

Enfin, la théorie MSSM modifie la renormalisation des constantes de couplage des interactions faible,
électromagnétique et forte, de sorte qu’elles cöıncident à une énergie de quelques ΛGUT ∼ 1015 GeV
(appelée échelle d’énergie de grande unification). Cela laisse espérer une unification de ces trois forces
fondamentales au delà de cette énergie.

L’implémentation pratique de la brisure spontanée de la supersymétrie dans le modèle MSSM est
étonnamment compliquée : soit on accepte une dose importante d’arbitraire, ce qui diminue le pouvoir
prédictif de la théorie et son attrait conceptuel, soit on est forcé de considérer une théorie auxiliaire
appelée secteur caché, qui décrit des interactions et des particules inobservables si ce n’est par les effets
ténus et indirects qu’elles ont sur les particules du MSSM.

Sous l’hypothèse d’une résolution complète du problème de hiérarchie 4, une version exploitable du
modèle MSSM appelée pMSSM (qui dépend de 19 paramètres au lieu d’une centaine) prédit l’existence
de particules supersymétriques qui devraient vraisemblablement déjà avoir été observées au LHC. Ainsi :

− soit pour une raison ou une autre, ces particules existent mais n’ont toujours pas été découvertes,

− soit ces particules n’existent pas, le modèle pMSSM est correct mais on doit accepter un certain
réglage fin et une résolution seulement partielle du problème de hiérarchie,

− soit ces particules n’existent pas et les modèles pMSSM ou MSSM ne fournissent pas une description
valable de la nature.

Dans tous les cas (même le dernier) ce n’est que le modèle particulier qui est remis en cause, et non pas
l’idée que la supersymétrie doive être invoquée pour décrire la nature. Par exemple, un autre modèle
dénommé supersymétrie fractionnée a été proposé en 2004 par Arkani–Hamed et Dimopoulos ; il ne
résout le problème de hiérarchie que partiellement, mais continue à fournir des candidats constitutifs de
la matière noire, et une unification des interactions microscopiques à des énergies supérieures à ΛGUT.

Dimension de l’espace-temps et supersymétrie. Un aspect plus théorique très intéressant de
l’étude des théories quantiques des champs supersymétriques est le fait que l’implémentation de la su-
persymétrie est fortement dépendante de la dimension de l’espace-temps. Même si jusqu’à présent nous
avons considéré des théories quantiques des champs dans l’espace de Minkowski R1,3, puisque l’espace-
temps dans lequel nous vivons est manifestement de dimension quatre macroscopiquement, il est tout à
fait possible d’étudier des théories quantiques des champs dans des espaces-temps de dimension n, par
exemple les espaces de Minkowski R1,d−1 où d ∈ Z>0.

Alors que les champs bosoniques ne dépendent que peu de d, les champs fermioniques, eux, en
dépendent fortement. C’est une conséquence de la théorie des représentations des algèbres de Lie or-
thogonales so(d,C), qui est la complexification de l’algèbre de Lorentz en dimension d. On distingue
plusieurs types de fermions irréductibles : de Weyl W, de Majorana M, de Majorana–Weyl MW, sym-
plectiques S ou sympletiques–Weyl SW. L’existence de ces fermions en fonction de la dimension d est
donnée dans la table suivante :

Dimension d Fermion Nombre de composantes
2 MW 1
3 M 2
4 M, W 4
5 S 8
6 SW 8
7 S 16
8 M, W 16
9 M 16
10 MW 16
11 M 32
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La suite des natures de fermions irréductibles en fonction de la dimension est 8-périodique ; c’est une
manifestation de la périodicité de Bott (1957-1959).

Les générateurs des supersymétries échangeant des bosons et des fermions, ils ne préservent pas le
spin. Plus précisément, l’action d’un générateur de supersymétrie sur un champ fait varier le spin de
1/2. Plus il y a de supersymétries, et plus la théorie doit contenir des champs fondamentaux de spins
différents. Dans les théories quantiques des champs telles que celles présentées plus haut, on se restreint en
général à des champs de spin 0, 1/2 ou 1. Cela limite le nombre N de supersymétries possibles en chaque
dimension : il faut que le nombre total des composantes des supersymétries (appelées supercharges) soit
inférieur à 16. Chaque supersymétrie contribue d’un nombre de supercharges indiqué dans la colonne de
droite du tableau, si bien que cette contrainte sur le spin donne par exemple N ≤ 4 pour d = 4, N ≤ 2
pour d = 6 et N ≤ 1 pour d = 10.

Plus la valeur de N est grande, plus la théorie est rigide et analysable de façon exacte, et moins elle
est phénoménologique. Par exemple, en dimension d = 4, les théories de Yang–Mills avec N = 4 super-
symétries sont entièrement déterminées par leur groupe de jauge et sont superconformes, ce qui implique
en particulier qu’aucune quantité n’est renormalisée : la dynamique de la théorie est indépendante de
l’échelle d’énergie. Ces théories de Yang–Mills exhibent une dualité électrique-magnétique étudiée par
Montonen et Olive en 1977, qui est une version rigoureuse de la symétrie manifeste entre les champs
électriques et magnétiques des équations de Maxwell dans le vide, et a des liens avec la dualité de Lang-
lands. Avec N = 2 supersymétries, on peut calculer exactement la dynamique à basse énergie des théories
de Yang–Mills asymptotiquement libres ou superconformes à l’aide de la théorie de Seiberg–Witten, qui
est déjà extrêmement riche. Cette dernière a notamment permis la découverte de théories exotiques, dites
d’Argyres–Douglas, où l’on observe par exemple une coexistence d’excitations électriques et magnétiques
légères. Les théories avec N = 1 supersymétrie sont probablement encore plus intéressantes, mais moins
tractables mathématiquement ; en particulier, il est souvent impossible de calculer exactement la dy-
namique à basse énergie lorsqu’elle est à couplage fort. Néanmoins, la supersymétrie présente a permis la
découverte et l’étude de phénomènes profonds comme la dualité de Seiberg (1994), qui implémente dans
un cadre physique des transformations amassées tropicales.

En dimension quatre, les théories avec N = 3 supersymétries définies perturbativement ont toujours
N = 4 supersymétries, pour une raison analogue au théorème de Frobenius (1877) qui caractérise les
algèbres associatives à division de dimension finie sur R comme étant R, C et H. Cependant, l’existence
de théories non-définies perturbativement en dimension 4 a été montrée par Garcia-Etxebarria et Regalado
en 2015 grâce à une construction de théorie des cordes, les S-folds.

Le simple fait qu’il soit possible d’étudier une telle variété de phénomènes physiques grâce à la super-
symétrie illustre parfaitement la puissance de cette hypothèse mathématique, ainsi que le changement de
paradigme évoqué à la fin de la présentation du Modèle Standard. Il est probable que les théories super-
symétriques étudiées n’aient, en grande majorité, aucun rôle direct à jouer dans la description de notre
univers ; cependant la profondeur d’étude rendue possible par l’hypothèse de la supersymétrie permet
d’étudier le langage des théories quantiques des champs en tant que tel et d’accéder à une diversité aupar-
avant inaccessible. L’espoir absolu d’un point de vue phénoménologique est de pouvoir ensuite transposer
les connaissances ainsi acquises à la description de la nature ; d’un point de vue mathématique, l’accès à
une telle richesse théorique est un trésor bien suffisant.

Si on s’autorise des spins 3/2, la cohérence de la théorie implique également l’existence de particules
de spin 2. La contrainte de ne pas avoir de spin plus grand que 5/2 donne alors N ≤ 8 pour d = 4,
N ≤ 2 pour d = 10 et N ≤ 1 pour d = 11. Aucune théorie cohérente de particules de spin plus
grand que 5/2 n’est connue, ce qui fait donc de 11 la dimension maximale possible pour l’implémentation
de la supersymétrie. Une particule non massive de spin 2 a toutes les propriétés d’un graviton, le
quanta hypothétique des ondes gravitationnelles d’Einstein. On peut montrer que dans les théories
supersymétriques qui contiennent des particules de spin 2, la supersymétrie est locale et non globale,
ce qui implique l’équation d’Einstein. Ces théories où la supersymétrie est une symétrie de jauge sont
nommées théories de supergravité. Elles fournissent une description semi-classique non-renormalisable de
la relativité générale avec d’autres champs de spin s ≤ 3/2.

Supersymétrie et géométrie. La supersymétrie tisse des liens forts entre les théories quantiques des
champs et certaines structures géométriques. Ces liens s’observent naturellement dans les espaces des
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modules des théories supersymétriques.
Dans une théorie quantique des champs, on définit un état de vide comme une configuration de

champs invariante de Lorentz qui minimise une fonction appelée potentiel scalaire. En général, les effets
quantiques impliquent que les vides d’une théorie sont tous isolés dans l’espace des configurations de
champs. Cependant, lorsque la théorie est supersymétrique, la situation est radicalement différente.
D’une part, les configurations de champs ont toutes une énergie positive. D’autre part, les vides se
rangent en deux catégories : ceux qui ont une énergie strictement positive, dans lesquels la supersymétrie
est brisée spontanément, et ceux qui ont une énergie nulle, qui préservent la supersymétrie. Cette dernière
dompte les corrections quantiques et permet l’existence de variétés continues de vides supersymétriques
pour la théorie. L’union de ces variétés forme l’espace des modules des vides supersymétriques de la
théorie.

En fonction de la dimension d’espace-temps d et de la quantité N de supersymétries de la théorie,
des sous-variétés naturelles de l’espace des modules sont dotées de structures mathématiques riches. On
trouve par exemple des variétés Kähleriennes, des variétés Kähleriennes spéciales, ou encore des variétés
hyperkähleriennes.

Dans le cas spécial où d = 1, un article célèbre de Witten de 1982 fait le lien entre la supersymétrie
et la théorie de Morse, qui permet d’analyser la topologie d’une variété différentielle en étudiant les fonc-
tions différentiables qui y sont définies, initiée par le lemme de Morse (1931) et développée durant la
deuxième moitié du 20ème siècle. En dimension d = 4, l’étude des théories de Yang–Mills avec N = 2
supersymétries a conduit à la théorie de Seiberg–Witten qui permet notamment de calculer des nombres
d’instantons. En 1994, Witten introduit les invariants de Seiberg–Witten issue de la théorie éponyme,
qui sont très similaires aux invariants de Donaldson, mais plus faciles à construire.

L’étude des théories des champs supersymétriques en dimension 4 fait l’objet du Chapitre 5.

Théorie des cordes

Définition perturbative. La théorie des cordes a d’abord été développée en tant que modèle des
interactions fortes sous le nom de modèle dual de résonance.

• 1968 – Veneziano propose son amplitude de diffusion qui s’exprime en termes de la fonction bêta
d’Euler, et qui satisfait de nombreuses propriétés nécessaires à la description de mésons à couplage
fort.

• 1969 – Les règles de Chan–Paton permettent d’inclure la symétrie de saveur (alors connue sous le
nom d’isospin) dans l’amplitude de Veneziano.

• 1969 - 1970 – Nambu, Nielsen et Susskind interprètent l’amplitude de Veneziano en termes de
cordes.

• 1971 – Ramond, Neveu et Schwarz proposent une méthode pour inclure une description des fermions
dans le modèle dual de résonnance. Ce sont ces recherches qui sont à l’origine de l’étude de la
supersymétrie, discutée plus haut.

Les prédictions de la théorie des cordes ainsi construite sont en contradiction avec les observations
expérimentales, et le modèle dual de résonance laisse la place à la chromodynamique quantique en 1973,
beaucoup plus fructueuse pour décrire les interactions fortes. Cependant, en 1974, Schwarz, Scherk et
Yoneya montrent que les théories des cordes décrivent une particule dont les propriétés sont celles d’un
graviton. Ainsi renâıt l’intérêt pour la théorie des cordes, en tant que candidate d’une description de la
gravité quantique. Le postulat fondamental de la théorie des cordes est que les particules élémentaires
ne sont pas ponctuelles comme cela est supposé en théorie classique des champs, mais plutôt des cordes
qui se déplacent dans l’espace en vibrant. L’analogue des lignes d’univers associées aux trajectoires des
particules ponctuelles évoquées en dessous de la Figure 3 sont, pour les cordes, des surfaces d’univers.
Les graphes de Feynman sont adaptés de la même manière.

L’hypothèse que les particules élémentaires sont des cordes et non des points n’est pas en contradiction
avec les données expérimentales, à condition que la taille de ces cordes ls soit bien plus faible que les
distances les plus petites sondées à ce jour, c’est-à-dire que ls � 10−21 cm ; si c’est le cas, ces cordes
paraissent être ponctuelles. En plus de se déplacer dans l’espace, les cordes (contrairement aux points)
peuvent vibrer, ces vibrations se décomposant en modes de Fourier. Chaque mode de vibration a une
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Figure 15: Cordes ouvertes, fermées, surfaces d’univers et “graphes” de Feynman.

énergie associée, qui est d’autant plus grande que la longueur d’onde est petite. S’il est impossible de
distinguer l’extension spatiale des cordes alors cette énergie apparâıt seulement comme une contribution
à la masse de ce qui apparâıt comme étant effectivement ponctuel. Ainsi, la théorie des cordes prévoit,
de manière effective, l’existence d’une “tour” de particules de masses de plus en plus grandes. L’un des
espoirs (phénoménologique) de la théorie des cordes est de pouvoir expliquer toutes les particules connues
de cette manière. Ainsi on peut espérer donner une explication naturelle à la question de pourquoi les
particules élémentaires du Modèle Standard sont ce qu’elles sont, et ont les propriétés qui les caractérisent.

La construction perturbative d’une théorie des cordes dans un espace-temps plat de dimension d
(c’est-à-dire l’espace-temps de Minkowski M1,d−1) commence par la construction d’une théorie classique
relativiste. Cette dernière est décrite par l’action de Nambu–Goto, qui est l’intégrale de l’aire relativiste
de la surface d’univers de la corde. Une reformulation intéressante est l’action de Polyakov, à laquelle on
ajoute des champs fermioniques qui servent (à terme) à décrire des fermions dans l’espace-temps, selon les
préceptes de Ramond, Neveu et Schwarz (RNS). Cette action dépend du choix d’une métrique auxiliaire
sur la surface d’univers de la corde, mais est crucialement invariante par transformation conforme de
cette métrique.

La quantification de cette théorie des cordes relativiste fixe la dimension d de l’espace-temps afin que
la symétrie conforme de la théorie ne soit pas anomale : d = 10. La projection GSO, introduite par
Gliozzi, Scherk et Olive en 1979, permet alors d’obtenir une théorie sans tachyon, relativiste et quan-
tique, dans R1,9. En 1984, Green et Schwarz proposent un mécanisme d’annulation des anomalies de jauge
et gravitationnelles, prouvant ainsi l’existence d’une théorie des cordes quantiques et relativiste cohérente.

En réalité, il y a des choix à faire quant aux types de cordes (fermées, ou ouvertes et fermées) et
de surfaces d’univers (orientables, ou orientables et non-orientables) que l’on considère, et quant à la
manière selon laquelle les fermions RNS sont introduits. Il n’y a donc pas une, mais plusieurs théories
des cordes cohérentes dans M1,9 . Cinq d’entre elles sont supersymétriques : les théories de type I (1982),
type IIA (1982), type IIB (1982), hétérotique SO(32) (1985) et hétérotique E8 × E8 (1985). À basse
énergie, les théories des cordes sont décrites de manière effective par des théories de supergravité, et
contiennent des champs tensoriels, ainsi que différents champs de jauge généralisés qui sont des formes
différentielles de différents degrés. Il existe également une théorie des cordes hétérotique SO(16)×SO(16)
non-supersymétrique (1986), dans laquelle l’absence de supersymétrie implique un moins bon contrôle
des corrections quantiques ; elle est donc plus difficile à étudier que ses analogues supersymétriques.

Les théories des cordes sont par construction bien définies à toute énergie : les graphes de Feynman
sont en effet des surfaces, sans sommets d’interaction. Cette propriété empêche l’existence des diver-
gences ultraviolettes qui gâtent certaines théories quantiques des champs. Ainsi, les théories des cordes
sont considérées comme des complétions ultraviolettes des théories de supergravité correspondantes : ces
dernières sont satisfaisantes en dessous d’une certaine énergie Λstring, mais doivent être complétées en des
théories des cordes pour avoir un sens à des énergies supérieures à Λstring.

Compactifications. Au lieu de considérer les théories des cordes dans R1,9, on peut les étudier dans
des espaces-temps de dimension 10 et de topologies plus compliquées. Une famille de cas parcimonieux est
constituée des compactifications toröıdales R1,d−1 × (S1)10−d. Ces espaces-temps sont particulièrement
intéressants d’un point de vue phénoménologique : de la même manière qu’on ne peut “résoudre”
l’extension spatiale des cordes si elles sont suffisamment petites, si les dimensions circulaires de ces
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espaces-temps ont une taille R, elles sont invisibles à des énergies inférieures à R−1 (en unités naturelles).
On obtient donc des théories effectives en dimension d. Les théories résultantes ont le même nombre de
composantes de supersymétries. Par exemple, la théorie de type IIB dans R1,3×(S1)6 est décrite, à basse
énergie, par la théorie de supergravité avec N = 8 supersymétries en dimension quatre.

Ce mécanisme de compactification permet d’expliquer comment une théorie des supercordes, qui pour
être définie perturbativement doit l’être dans un espace-temps de dimension 10, peut décrire une physique
macroscopiquement de dimension inférieure (d = 4 si l’on s’intéresse à des questions phénoménologiques).
En 1985, Candelas, Horowitz, Strominger et Witten montrent que la condition pour obtenir des théories
effectives en dimension d ≤ 10 est de considérer des compactifications de la forme R1,d−1 × X10−d, où
X10−d est une variété de dimension 10 − d d’holonomie spéciale. Dans le cas d = 4, on obtient par
exemple diverses théories de supergravité avec N = 1 en faisant l’hypothèse que X6 est une variété de
Calabi–Yau, c’est-à-dire une variété complexe Kählerienne compacte de dimension 3 dont l’holonomie
est contenue dans SU(3). Comme souligné dans la section précédente, plus le nombre de supersymétries
est petit et plus la théorie en question est réaliste. Ainsi, il est intéressant de considérer des variétés de
Calabi–Yau dont l’holonomie est contenue dans SU(3) mais pas dans SU(2), afin que la théorie résultante
en dimension 4 ait exactement N = 1. En 1985, peu de telles variétés algébriques sont connues, mais
l’intérêt que leur portent les théoriciens des cordes crée un engouement pour ces objets, et rapidement de
nouvelles constructions apparaissent, notamment celle de Batyrev (1994), qui prouve l’existence d’environ
un demi-milliard de Calabi–Yau compacts différents de dimension (réelle) d = 6.

Afin d’obtenir des vides intéressants en théorie des cordes, il est nécessaire des considérer des com-
pactifications avec flux, dans lesquelles en plus de choisir la géométrie de l’espace de compactification X
il faut fixer les flux (quantifiés) de certaines formes différentielles de jauge le long des cycles homologiques
de X. Cela mène à une quantité considérable de choix de vides, l’estimation la plus basse étant de
quelques 10500 vides “raisonnables”. L’ensemble de ceux-ci est appelé le paysage de la théorie des cordes,
par analogie avec la notion de “paysage adaptatif” en génétique.

La théorie des cordes (ou les théories des cordes) est un langage, au même titre que la théorie quantique
des champs : il s’agit d’un ensemble d’axiomes et de règles qui définissent un cadre mathématique d’étude.
Alors qu’en théorie quantique des champs on définit une théorie particulière en spécifiant son contenu en
champs et ses couplages à une certaine énergie, ces choix sont essentiellement géométriques en théorie des
cordes. De plus, le fait qu’il n’existe que quelques théories fondamentales dans R1,9 est particulièrement
attrayant conceptuellement.

Dualités. Une dualité est une symétrie entre théories, c’est-à-dire une correspondance entre deux des-
criptions différentes de la même physique. Une première telle dualité entre théories des cordes est la
T-dualité, découverte par Sathiapalan en 1987. Elle relie notamment la théorie IIA dans M1,8 × S1

R de
constante de couplage gs et la théorie IIB dans M1,8 × S1

α′/R de constante de couplage α′gs/R, où S1
R

signifie que la taille du cercle S1 est R, et où α′ est la pente de Regge, qui vaut α′ = l2s avec ls la longueur
des cordes. De même, les deux théories hétérotiques supersymétriques sont T-duales.

La S-dualité est introduite par Sen en 1994. C’est une dualité qui lie une description à couplage
fort et une description à couplage faible, ce qui la rend très intéressante. En effet, on peut grâce à elle
étudier le régime de couplage fort d’une théorie des cordes à l’aide de méthodes perturbatives dans la
description duale. Les théories de type I et hétérotique SO(32) sont par exemple S-duales, et la théorie
IIB est S-autoduale.

L’étude des dualités S et T entre théorie des supercordes montre que ces cinq théories sont cinq de-
scriptions différentes d’une même physique. En 1995, Witten argumente en faveur de l’existence d’une
théorie appelée théorie M, définie en dimension 11 et à partir de laquelle on peut obtenir les cinq super-
cordes dans certaines limites. La théorie M ne décrit pas de cordes mais des membranes de dimensions
3 et 6. A basse énergie, elle est décrite de manière effective par l’unique théorie de supergravité en
dimension maximale 11. Les dualités entre ces théories sont souvent représentées comme en Figure 16.

Un produit dérivé de l’étude de ces dualités a eu un impact considérable en mathématiques : il s’agit
de la symétrie miroir. L’homologie des Calabi–Yau compacts de dimension 3 est entièrement décrite par
la donnée de deux nombres de Hodge : h1,1 (qui est la dimension de l’espace des modules de Kähler) et
h2,1 (qui est la dimension de l’espace des structures complexes). Dans sa formulation la plus faible, la
symétrie miroir postule que pour chaque Calabi–Yau compact X de dimension 3, il en existe un autre
Y tel que h1,1(X) = h2,1(Y ) et h1,1(Y ) = h2,1(X). Physiquement, la théorie IIA compactifiée sur X est
duale à la théorie IIB compactifée sur Y , et réciproquement.
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Figure 16: Dualités des théories des cordes.

Branes. Introduites par d’une part par Dai, Leigh et Polchinski et d’autre part par Horava en 1989,
les D-branes (où ‘brane’ est une analogie au terme ‘membrane’) sont des objets étendus non-perturbatifs
décrits par les théories des cordes. Mathématiquement, ce sont des sous-variétés de l’espace-temps munies
de fibrés vectoriels. Lorsque le volume d’une D-brane est décrit par p directions d’espace et une direction
de temps, on parle de Dp-brane. Ainsi, une Dp-brane est une sous-variété Lorentzienne de dimension
p + 1 de l’espace-temps. Il existe deux points de vue duaux sur les D-branes, ce qui en fait des objets
particulièrement riches.

D’une part, les D-branes supportent les extrémités de cordes ouvertes. Lors de la quantification des
cordes perturbatives en présence d’une D-brane, les modes de vibration des cordes ouvertes donnent
lieu à une théorie de Yang–Mills supersymétrique dans le volume de la D-brane, de manière effective, à
basse énergie. Par exemple, le volume d’une unique D3-brane dans R1,9 étendue le long des directions
t = x0, x1, x2, x3 et localisée en x4 = · · · = x9 = 0 est doté de la théorie de super Yang–Mills en dimension
4 avec N = 4 supersymétries et U(1) comme groupe de jauge. On peut empiler des D-branes les unes
sur les autres, ce qui augmente la symétrie de jauge : la superposition de N D3-branes disposées comme
avant donne lieu à la théorie de super Yang–Mills en dimension 4 avec N = 4 supersymétries et de groupe
de jauge U(N).

D’autre part, à basse énergie, les branes sont décrites par des solutions des équations de supergravité,
et correspondent à des trous noirs étendus. Ces solutions sont appelées branes noires. En théorie des
cordes, cette description des D-branes les définit comme des états non-perturbatifs de cordes fermées.

Les D-branes que l’on peut considérer dépendent de la théorie des cordes dans laquelle on travaille.
Par exemple, la théorie IIA contient des D0s, D2s, D4s, D6s et D8s tandis que la théorie IIB contient des
D(-1)s, D1s, D3s, D5s, D7s et D9s. De plus, les théories des cordes décrivent d’autres types de branes
ou d’objets étendus, comme les cordes (parfois appelées NS1-branes), les NS5-branes et les orientifolds.
Sous les dualités S et T, les branes sont transformées en d’autres branes, ou éventuellement en géométrie.

En considérant des configurations de branes, on peut construire des théories quantiques des champs
(effectives, à basse énergie) dont la structure est encodée dans la géométrie de la configuration. L’étude de
la dynamique des branes en théorie des cordes fournit alors des informations précieuses sur la dynamique
perturbative et non-perturbative de ces théories des champs. Deux exemples de telles configurations de
branes sont représentées en Figure 17. Il s’agit de (p, q)-toiles, introduites en 1997 par Aharony, Hanany
et Kol, et qui encodent des théories en dimension d = 5 avec N = 1 supersymétrie. Celle de gauche
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décrit une théorie de super Yang–Mills de groupe de jauge SU(2) avec 3 saveurs, tandis que celle de droite
décrit une théorie de super Yang–Mills pure (i.e. sans saveur), de groupe de jauge SU(3). Ces (p, q)-toiles
sont la tropicalisation de courbes algébriques tropicales qui apparaissent lorsque ces configurations sont
relevées en théorie M.

De manière similaire, on peut considérer des branes qui ne sont pas placées dans l’espace plat R1,9

mais dans un espace de géométrie plus compliquée, par exemple au sommet d’une singularité Calabi–Yau
affine X. Dans cette thèse, le cas suivant est considéré à de nombreuses reprises : des D3-branes sont
placées dans un espace-temps de la forme R1,3 ×X6, où X6 est une singularité Calabi–Yau affine isolée
de dimension complexe 3, et où les branes s’étendent le long des directions de R1,3 et sont localisées au
point singulier de X6. La théorie de jauge dans le volume des D3-branes est alors déterminée par la
géométrie de X6. Ces deux approches sont essentiellement duales par des combinaisons de dualités S et
T ; les branes au point singulier de variétés Calabi–Yau peuvent notamment être représentées par des
configurations particulières nommées pavage par branes (“brane tiling” en anglais) qui sont obtenues par
deux T-dualités successives sur la configuration de départ. Cette manière de construire des théories de
jauge et d’étudier leur dynamique s’appelle l’ingénierie de jauge.

Figure 17: Deux (p, q)-toiles.

L’ingénierie de jauge permet de construire des familles infinies de théories quantiques des champs
supersymétriques qui, par construction, admettent une complétion ultraviolette en une théorie de gravité
quantique (la théorie des cordes). C’est une donnée intéressante quant à ces théories car si l’on considère
une théorie quantique des champs quelconque, supersymétrique ou non, le fait qu’elle puisse être ainsi
complétée dans l’UV n’est jamais une évidence. Le programme du marécage, initié par Vafa en 2005, tente
de dégager les propriétés que les théories quantiques des champs doivent satisfaire pour être compatibles
avec la gravité quantique. La théorie des cordes fournit un cadre d’étude idéal pour cela. Un exemple
de conjecture marécageuse, parmi les plus consensuelles, est la conjecture de gravité faible (“weak gravity
conjecture” en anglais) introduite par Arkani-Hamed, Motl, Nicolis et Vafa en 2006. Dans l’une de ses
versions, elle statue qu’une théorie quantique de jauge en dimension quatre de groupe de jauge U(1) et
de constante de couplage g ne peut être compatible avec la gravité quantique que si elle contient une
particule chargée suffisamment légère, dont la masse satisfait m ≤ gΛP . Un exemple plus récent est la
conjecture des cobordismes énoncée par McNamara et Vafa en 2019, qui stipule que les classes de cobor-
dismes dans l’espace des configurations d’une théorie quantique des champs doivent toutes être triviales
afin que cette théorie puisse être compatible avec la gravité quantique.

Le formalisme de la théorie des cordes est introduit et étudié dans les Chapitres 6 et 7.

Information quantique, holographie, et correspondance AdS–CFT

L’entropie thermodynamique d’un système mesure la mésinformation que l’on a sur l’état microscopique
de ce dernier si on ne connâıt que son état macroscopique. Par exemple, la donnée d’un gaz parfait
constitué de n moles de particules dans un volume V et à une température T > 0 ne détermine pas une
unique configuration microscopique. Si Ω est le nombre de configurations microscopiques compatibles
avec l’état macroscopique du système, l’entropie est S = kB ln(Ω), où kB est la constante de Boltzmann.
La seconde loi de la thermodynamique affirme que l’entropie d’un système fermé ne peut qu’augmenter.

Cependant, si l’on considère un trou noir, il semble que l’entropie de tout ce qui y tombe est
irrémédiablement perdue, puisque le théorème de calvitie des trous noirs (qui est un théorème de relativité
générale, c’est-à-dire un résultat non quantique) stipule justement que ces derniers ne gardent aucune
trace de ce qui traverse l’horizon, si ce n’est dans l’évolution de leur masse, charge et moment angulaire.
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Motivé par l’observation de Christodoulou et Hawking que l’aire de l’horizon d’un trou noir ne décrôıt
jamais, Bekenstein propose en 1972 qu’on peut assigner une entropie à tout trou noir, proportionnelle à
son aire A mesurée en unités de Planck : SBH ∝ kBl−2

P A. Un trou noir ayant une masse, il a a également
une une énergie (relativiste), et s’il a une entropie alors il doit également avoir une température. Cette
intuition est confirmée par Hawking en 1974, qui montre par un calcul de théorie quantique des champs
au voisinage d’un trou noir de masse M que ce dernier rayonne de l’énergie selon la loi de Planck, à une
température dite de Hawking :

TH(M) =
~c3

8πkBGM
.

Cette température varie inversement proportionnellement à la masse du trou noir ; pour un trou noir
de masse solaire elle est très faible, de l’ordre de 10−7 K. L’expression de cette température permet de
calculer l’entropie de Bekenstein–Hawking :

SBH(A) =
kBA
l2P

,

qui fixe l’entropie d’un trou noir à un quart de son aire, mesurée en unités de Planck (multipliée par
kB). Bekenstein argumente également que l’entropie maximale que peut contenir une région d’espace-
temps bornée par une surface d’aire A est SBH(A). C’est la borne entropique de Bekenstein, qui dépend
de manière surprenante de l’aire bornant la région et non pas du volume de cette dernière, comme on
pourrait s’y attendre en extrapolant les exemples habituels de systèmes thermodynamiques. Cette borne
permet de définir des trous noirs d’une manière nouvelle : un trou noir d’horizon H est, parmi tous les
corps bornés par H, celui qui a une entropie maximale.

Une conséquence importante du calcul d’Hawking est qu’un trou noir isolé dans le vide (quantique)
perd de l’énergie en rayonnant : on dit que les trous noirs s’évaporent. En pratique, les trous noirs astro-
physiques de masse comparable à celle du Soleil ou plus importante sont plus froids que le rayonnement
de fond diffus cosmologique, dont la température est de 2, 7 K. Par conséquent en se thermalisant avec
leur environnement ils ne s’évaporent pas, au contraire. La situation théorique des trous noirs isolés
fournit cependant une expérience de pensée fort intéressante. Dans ce cas, un trou noir de masse solaire
s’évapore en 1064 ans.

La radiation émise par le trou noir est intriquée avec l’intérieur de ce dernier. L’intrication quantique
peut être mesurée par l’entropie d’intrication de l’extérieur du trou noir relativement à l’intérieur. Les lois
de la physique quantique, et en particulier le fait que l’évolution temporelle d’un système quantique est
unitaire, impliquent que l’entropie totale d’intrication est conservée. Cette dernière est nulle pour un état
quantique pur (par distinction avec un état mixte), qui le reste sous une évolution unitaire. Considérons
donc un trou noir formé par l’effondrement d’une sphère de photons dans un état quantique pur. Le
calcul de Hawking suggère que l’entropie d’intrication du rayonnement émis (par rapport à l’intérieur
du trou noir) augmente de façon monotone avec le temps. Ainsi, une fois que le trou noir s’est évaporé,
l’ensemble de la radiation émise possède une grande entropie d’intrication. Alors :

1. Soit l’évaporation du trou noir laisse un reliquat de taille Planckienne qui possède lui aussi une
grande entropie d’intrication afin que l’entropie d’intrication totale de l’univers soit nulle,

2. Soit il faut abandonner l’idée d’évolution unitaire en mécanique quantique couplée à la gravité,

3. Soit l’entropie d’intrication de la radiation émise n’augmente pas de façon monotone, en contradic-
tion avec le raisonnement d’Hawking.

C’est le paradoxe de l’information. La première éventualité n’est pas satisfaisante d’un point de vue
thermodynamique, ce qui laisse donc une alternative entre les deux autres points.

’t Hooft (Dimensional reduction in Quantum Gravity, 1993) et Susskind (The world as a hologram,
1994) soulignent la conséquence suivante de la borne entropique de Bekenstein : pour toute surface S
dans l’espace, il est possible de décrire fidèlement tout ce qu’il se passe dans la région bornée par S en
termes de degrés de liberté sur la surface S elle-même. C’est le principe holographique, en analogie avec les
plaques holographiques qui contiennent l’information de l’hologramme, une image tri-dimensionnelle, sur
une plaque photographique bi-dimensionnelle. En particulier, la théorie gravitationnelle décrivant le voisi-
nage d’un trou noir doit pouvoir être encodée de manière équivalente en une théorie non-gravitationnelle
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sur une surface bornant ce voisinage (en une dimension de moins). Cela permet potentiellement de
décrire l’évaporation d’un trou noir en termes d’une théorie non-gravitationnelle qui, si elle est quan-
tique, a sûrement une évolution unitaire.

En 1998, Maldacena publie The Large N Limit of Superconformal field theories and supergravity, dans
lequel il utilise les deux points de vue duaux sur les D-branes de Polchinski pour montrer notamment la
dualité entre les deux théories suivantes.

− La théorie de supergravité qui décrit le voisinage de branes noires (dont la géométrie est AdS5 ×
S5), obtenues comme limite à basse énergie d’une superposition de N D3-branes en théorie des
supercordes de type IIB, avec gN � 1 où g est la constante de couplage de la théorie IIB.Ici AdS5

désigne l’espace-temps anti de Sitter en dimension 5, qui est la version Lorentzienne de l’espace
hyperbolique de dimension 5, et S5 est la 5-sphere.

− La théorie de jauge N = 4 super Yang–Mills de groupe de jauge SU(N) et de constante de couplage
gYM tel que g2

YMN � 1, obtenue à basse énergie dans le volume des D3-branes.

C’est le premier exemple explicite de dualité holographique : la théorie de jauge, qui est une théorie
quantique des champs en dimension 4 dont l’évolution est unitaire, encode fidèlement la théorie de
supergravité IIB dans AdS5 × S5 qui est, de manière effective, une théorie en dimension 5. Il existe des
solutions de trous noirs en supergravité IIB dans AdS5 × S5, dont l’évolution est décrite par une théorie
unitaire, ce qui montre que le raisonnement d’Hawking n’est pas correct, au moins dans ce cas.

Lorsque g2
YMN n’est pas grand devant 1, la théorie de jauge doit être duale non plus à la supergravité

IIB mais à la théorie des supercordes de type IIB ; la correspondance de Maldacena fournit donc en
principe une définition non-perturbative de la théorie IIB dans AdS5 × S5. Maldecena conjecture que
cette correspondance doit s’étendre à de nombreuses compactifications de la théorie IIB de la forme
AdS5 ×X5, où X5 est une variété de Sasaki–Einstein, duales à diverses théories conformes des champs
(CFT) généralisant la théorie N = 4 super Yang–Mills. C’est la correspondance AdS–CFT.

Cette correspondance a le bon goût de lier une théorie de supergravité, qui peut être étudiée par des
méthodes de géométrie classique, et une théorie quantique des champs à couplage fort. C’est donc une ex-
cellente opportunité pour étudier ces dernières, et les applications de cette correspondance holographique
allant dans ce sens ont été nombreuses, aussi bien pour l’étude de théories supersymétriques que dans
d’autres domaines de la physique, comme en chromodynamique quantique (on parle de correspondance
AdS–QCD) ou en théorie de la matière condensée (AdS–CMT).

Les correspondances holographiques ont également été généralisées à d’autres théories de gravité,
dans l’espoir de pouvoir étudier de plus en plus finement les propriétés quantiques des trous noirs. En
particulier, l’étude d’une théorie de gravité dite de Jackiw–Teitelboim (JT) en dimension d = 2 a suscité
beaucoup d’intérêt depuis 2015, année où Kitaev a argumenté que le modèle de Sachdev–Ye–Kitaev de
matière condensée est le dual holographique de la gravité de JT, dans un certain régime. Les théories
de gravité en deux dimensions sont intimement liées aux espaces de Teichmüller des surfaces lisses, que
nous allons maintenant brièvement présenter.

Les correspondances AdS–CFT et jauge–gravité sont présentées dans le Chapitre 8.

Espaces de Teichmüller et généralisations

Espaces de Teichmüller classiques. Une surface lisse S connexe est un espace topologique connexe
muni d’un atlas lisse, qui est la donnée de cartes (Ui, fi)i∈I , où I est un ensemble tel que S ⊂ ⋃i∈I Ui,
et ∀i ∈ I, Ui est un ouvert de S et fi : Ui → R2 est un homéomorphisme de son domaine de définition
sur son image, et tel que pour tous i, j ∈ I, fi ◦ f−1

j est un difféomorphisme sur son image. Prosäıque-
ment, une surface lisse correspond à l’intuition qu’on se fait d’une surface S infiniment fine possiblement
courbe mais sans plis, et à déformations près où l’on s’autorise toutes les déformations qui ne plient pas S.

Une structure complexe sur S est la donnée d’un atlas holomorphe (Vk, gk)k∈K , défini de la même manière
qu’auparavant mais avec gk : Vk → C des homéomorphismes tels que pour tous k, l ∈ K, gk ◦ g−1

l est un
biholomorphisme de son domaine de définition sur son image. Prosäıquement, un biholomorphisme est
un isomorphisme continu du plan complexe qui préserve les angles. Une structure complexe sur S est
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la donnée d’un atlas où les cartes sont des ouverts de C, et où les fonctions de transitions d’une carte
à une autre, quelconques, préservent les angles. De plus, la structure complexe est également définie à
déformations près, mais où cette fois-ci les seules déformations qu’on s’autorise sont celles qui préservent
les angles.

Puisqu’un tel isomorphisme du plan qui préserve les angles est un cas (très) particulier d’isomorphisme
lisse du plan, la définition d’une structure complexe est plus contraignante que celle d’une structure lisse.
On peut donc se demander : étant donnée une surface lisse connexe S, combien de structures complexes
différentes compatibles avec la structure lisse existe-t-il sur S ?

On peut donner deux sens distincts au mot “différentes” de la question précédente, car il existe aussi
deux sens distincts de la “reparamétrisation” de S. En effet, on ne veut pas compter plusieurs fois les
mêmes structures complexes seulement parce que l’on change la paramétrisation de S. On peut définir
deux groupes de reparamétrisations qui préservent la structure lisse : le groupe de difféomorphismes
Diff(S) de S, et son sous-groupe des difféomorphismes qui peuvent être continûment déformés en l’identité,
noté Diff0(S). On définit alors l’espace de Teichmüller T (S) de S et l’espace des modules M(S) de S
comme les quotients :

T (S) = StrC(S)/Diff0(S) , M(S) = StrC(S)/Diff(S) ,

où StrC(S) désigne l’espace des structures complexes sur S.

Une surface lisse connexe est dite de type fini si elle est obtenue à partir de la surface fermée de
genre g en lui retirant un nombre fini k de disques fermés disjoints. On note cette surface Sg,k, et
χ(Sg,k) = 2− 2g − k sa caractéristique d’Euler.

Le théorème d’uniformisation de Riemann affirme que si S est munie d’une structure complexe, le
revêtement universel Ŝ de S ne dépend que du signe de χ(Sg,k) : s’il est négatif, Ŝ est le plan hyperbolique
H. Il s’agit du cas général, puisqu’il n’y a qu’un nombre fini de couples (g, k) qui donnent χ(Sg,k) ≥ 0, et
un nombre infini dans le cas contraire. On peut alors montrer que T (S) est homéomorphe à R6g−6+3s.
L’espace des modules M(S) est obtenu en quotientant T (S) par le groupe modulaire, défini comme
Diff(S)/Diff0(S). Puisque ce dernier n’agit pas librement sur l’espace de Teichmüller, l’espace des modules
est en général un orbifold.

Toujours par le théorème d’uniformisation de Riemann, on peut définir l’espace de Teichmüller d’une
surface de type fini Sg,k avec 2g + k > 2 comme le quotient

T (S) = StrHyp(S)/Diff0(S) ,

où StrHyp(S) désigne l’espace des métriques hyperboliques sur S, c’est-à-dire les métriques de courbure
constante négative égale à -1. Cela identifie l’espace des modules de S à l’espace des configurations de la
gravité topologique en dimension 2, qui intervient aussi dans les théories de gravité avec dilaton dont la
gravité JT est un exemple.

Il existe une troisième définition de l’espace de Teichmüller Sg,k avec 2g+ k > 2 en termes du groupe

fondamental π1(Sg,k). Étant donnée une structure complexe sur Sg,k, l’application de revêtement H →
Sg,k est une application holomorphe, et le groupe fondamental π1(Sg,k) agit sur H par automorphismes du
revêtement. Les automorphismes de H forment le groupe PSL2(R), si bien que la donnée d’une structure
complexe sur Sg,k détermine un morphisme discret et fidèle π1(Sg,k) → PSL2(R). Le changement de
point-base pour le groupe fondamental conjugue ce morphisme par un élément de PSL2(R), et on peut
vérifier que

T (Sg,h) = Homd,f(π1(Sg,k),PSL2(R))/PSL2(R) ,

où Homd,f(π1(Sg,k),PSL2(R)) est l’ensemble des morphismes π1(Sg,k)→ PSL2(R) discrets et fidèles, sur
lequel PSL2(R) agit par conjugaison.

Les espaces de Teichmüller peuvent être munis de structures intéressantes : métriques, structure
complexe, divers plongements, crochet de Poisson, ainsi que des systèmes de coordonnées remarquables.
Des objets combinatoires et géométriques comme les laminations, introduites par Thurston, ont des liens
naturels avec les espaces de Teichmüller. L’espace des laminations T(Sg,k) sur une surface Sg,k de type
fini supporte également des structures intéressantes, et notamment des systèmes de coordonnées. Lorsque
la surface Sg,k est telle que 2g + k > 2 et k > 0, il existe plusieurs versions d’espaces de Teichmüller et
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de laminations. Dans cette thèse nous nous intéresserons en particulier à quatre de ces espaces, dénotés
T x(Sg,k), T a(Sg,k), Tx(Sg,k), Ta(Sg,k), qui admettent des systèmes de coordonnées dans lesquels les
formules de changement de cartes sont des transformations amassées. Ces espaces de Teichmüller sont
introduits dans le Chapitre 2, et les espaces de laminations correspondants, dans le Chapitre 3.

Algèbres et variétés amassées. Une algèbre amassée de rang n est une algèbre engendrée par cer-
taines fractions rationnelles en n indéterminées. L’un des exemples les plus simples d’algèbre amassée
complexe est l’algèbre dite de type A2 :

AA2
= C

[
a1, a2,

1 + a1

a2
,

1 + a2

a1
,

1 + a1 + a2

a1a2

]
, (11)

qui est de rang 2. Les algèbres amassées on été introduites par Fomin et Zelevinski entre 2001 et 2006.
La structure d’une algèbre amassée est encodée dans un carquois, c’est-à-dire un graphe orienté fini

décrit par ses sommets et l’ensemble de ses flèches (d’où son nom). Numérotons 1, . . . , n les n sommets
d’un carquois Q et supposons qu’il n’existe aucun 2-cycle i → j → i. Il existe une transformation
élémentaire de carquois appelée mutation à un sommet, et qui est définie de la manière suivante. Soit k
un sommet de Q.

1. Pour toute séquence de flèches i→ k → j, on ajoute une flèche i→ j.

2. On inverse la direction de toutes les flèches incidentes à k.

3. On ôte tous les 2-cycles i→ j → i obtenus durant les deux premières étapes.

Le carquois résultant est appelé le résultat de la mutation en k de Q, et dénoté µk(Q). On peut noter
qu’une mutation n’agit que sur les flèches d’un carquois, et par conséquent la numérotation des sommets
deQ définit naturellement une numérotation des sommets de µk(Q). Un exemple de mutation est présenté
en Figure 18.

Figure 18: La mutation en 3 d’un carquois.

Étant donné un carquois Q, on peut associer n indéterminées a1, . . . , an à ses sommets. Le cœur de la
théorie des algèbres et variétés amassées réside dans les formules de mutation qui définissent des fractions
rationnelles en a1, . . . , an naturellement associées aux sommets de µk(Q). Pour tout l = 1, . . . , n, soit
µk(al) la fraction rationnelle associée au l-ième sommet de µk(Q). Pour l 6= k, on a µk(al) = al. Lorsque
l = k, on a :

µk(ak) = a−1
k

(∏

i→k

ai +
∏

k→i

ai

)
. (12)

Ce sont les formules de mutation dites de type A. Elles apparaissent dans de nombreux domaines à la
fois en mathématique et en physique. Il existe également des formules de mutation de type X . Une
transformation amassée est une composition de mutations et d’automorphismes du carquois.

L’algèbre amassée définie par un carquois est obtenue en calculant toutes les expressions rationnelles
résultats de mutations à partir d’un jeu d’indéterminées initiales, et est l’algèbre polynomiale engendrée
par l’ensemble de ces expressions rationnelles. Ces algèbres sont présentées dans le Chapitre 1. Un
résultat central de la théorie des algèbres amassées est le théorème de Laurent, qui stipule que toutes
ces expressions rationnelles sont en fait des polynômes de Laurent en les indéterminées initiales, c’est-à-
dire que leur dénominateur est toujours un monôme en ces indéterminées. Par conséquent, les variétés
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amassées, qui sont (moralement) les duales algébro-géométriques des algèbres amassées, sont obtenues
en recollant des tores algébriques déployés le long d’isomorphismes birationnels. Ces variétés algébriques
sont introduites dans le Chapitre 4. Pour chaque carquois on construit deux variétés amassées dénotées
A et X . La théorie des variétés amassées a été développée par Fock et Goncharov à partir de 2003 et
leur article fondateur : Moduli space of local systems and higher Teichmüller theory.

Les formules de mutations sont intéressantes en ce qu’elles ne contiennent pas de soustraction. Elles
sont donc définies sur tout semi-corps (F,+,×), dans lesquels les éléments n’ont pas forcément d’inverse
pour la loi +. Des exemples de semi-corps de notre intérêt sont (R>0,+,×), et, pour A = Z,Q,R, le semi-
corps tropical At = (A,max,+). Puisque les formules de mutation sont bien définies sur le semi-corps F ,
on peut considérer les F -points X (F ) et A(F ) des variétés X et A.

Pour chaque surface S = Sg,k telle que 2g + k > 2 et k > 0, on peut construire naturellement une
classe unique de carquois à mutations près, et donc deux variétés amassées AS et XS . On a alors les
résultats suivant :

T x(S) = XS(R>0) , T a(S) = AS(R>0) , Tx(S,Q) = XS(Qt) , Ta(S,Q) = AS(Qt) .

Composantes de Hitchin. L’étude des représentations du groupe fondamental d’une surface de Rie-
mann S dans des groupes de Lie à l’aide de fibrés de Higgs a été initiée par Hitchin dans Lie groups and
higher Teichmüller spaces, 1992. Il montre en particulier que si G est un groupe complexe simple adjoint
et si Gr est sa forme réelle déployée, deux des composantes connexes de la variété Hom(π1(S), Gr)/Gr

contiennent l’espace de Teichmüller classique T (S). Elles sont appelées composantes de Hitchin. En
2004, Labourrie, et indépendamment, Fock et Goncharov, prouvent que les représentations dans les com-
posantes de Hitchin sont toutes fidèles et discrètes. Ces composantes fournissent donc une généralisation
des espaces de Teichmüller présentés ci-dessus, lorsque le groupe PSL2(R) est remplacé par Gr.

Dans leur article de 2003, Fock et Goncharov développent une construction combinatoire de ces
espaces, et fournissent des systèmes de coordonnées complètement explicites lorsque G = PGLn(R).
Il s’agit de construire des variétés amassées XG,S et AGL,S qui sont des espaces des modules de G-
connections (ou GL-connections) plates sur S, avec GL le dual de Langlands de G. Les composantes de
Hitchin sont alors identifiées à XG,S(R>0) et AGL,S(R>0). La présentation de la construction de Fock et
Goncharov forme le cœur du Chapitre 4.

Dualités amassées. Fock et Goncharov proposent également une généralisation d’une observation sur
les laminations dans le cas des espaces de Teichmüller classiques, qui est que les laminations entières de
type X (resp. A) paramétrisent une base des fonctions universellement positives de Laurent sur la variété
amassée A (resp. X ).

Réseaux spectraux. Les constructions de Fock et Goncharov ont été centrales dans le développement
de la théorie des réseaux spectraux de Gaiotto, Moore et Neitzke entre 2008 et 2014. Les réseaux spectraux
sont l’aboutissement de l’étude des états BPS dans les théories quantiques des champs dites de classe
S, obtenus en plaçant des M5-branes en théorie M sur une sous-variété de l’espace-temps de la forme
R1,3 × S, où S est une surface de Riemann. C’est une vaste généralisation de la théorie de Seiberg et
Witten de 1994. Les coordonnées de Fock et Goncharov interviennent dans le calcul des propriétés de
wall-crossing des états BPS de ces théories.



Sommaire narratif

Ce manuscrit est divisé en cinq parties. Les deux premières ne contiennent pas de résultats nouveaux ;
ce sont plutôt des introductions pédagogiques aux deux grandes théories qui interviennent dans la suite.

La première partie est une introduction à la théorie de Teichmüller de Fock et Goncharov (2003-
2006). Le premier chapitre porte sur les algèbres amassées ; on introduit les mutations A et X . Le
deuxième chapitre discute des espaces de Teichmüller classiques et de leur paramétrisation amassée. Le
troisième chapitre débute par une introduction générale à la théorie des laminations sur les surfaces, et
finit par la description de la paramétrisation amassée des espaces de laminations classiques. Enfin, le
quatrième chapitre aborde les espaces de Teichmüller supérieurs amassés. On introduit tout d’abord les
variétés amassées, puis les composantes de Hitchin, l’approche de Fock et Goncharov, et enfin on discute
brièvement des G-espaces de Teichmüller supérieurs où G n’est pas un groupe de Lie réel déployé : il
s’agit des espaces de représentations maximales, et enfin des espaces de représentations Θ-positives.

La deuxième partie comporte d’abord un cinquième chapitre sur la supersymétrie, qui tient plus du
memento que d’une véritable introduction. Le sixième chapitre porte sur les fondements des théories
de supercordes de type II et de la théorie M : définition perturbative des théories IIA et IIB, D-branes,
NS-branes et M-branes, dualités S et T. On y discute en particulier des configurations de branes de type
Hanany–Witten en dimensions 4 et 5, avec des exemples de l’étude des théories quantiques des champs
qu’elles permettent. Le cœur du septième chapitre est l’étude des théories de jauge dans le volume de
D3-branes placées au sommet de singularités Calabi–Yau affines toriques de dimension 3. Après une
discussion générale des compactifications en théorie des cordes, la théorie sur des D3-branes au point
singulier de l’orbifold C3/Z5 est calculée de façon perturbative. Cet exemple motive la géométrie torique,
présentée ensuite. On introduit alors les pavages par branes, ou dimères, en discutant notamment de
l’implémentation des branes fractionnaires et des orientifolds. Le huitième chapitre porte sur les corre-
spondances “jauge–gravité”. Après une présentation de la dualité de Maldacena, celle-ci est généralisée
au cas des singularités toriques, puis aux correspondances non-conformes en présence de branes fraction-
naires. On classifie ces dernières en fonction de la dynamique de la théorie correspondante à basse énergie.

Les trois parties restantes contiennent les résultats originaux de cette thèse.

La troisième partie discute de l’implémentation de théories quantiques des champs brisant la super-
symétrie dynamiquement, dans des systèmes de D3-branes transverses à des orientifolds de singularités
(affines toriques Calabi–Yau de dimension 3) décrites par des dimères. Les théories en question sont les
modèles de brisure dynamique de supersymétrie (DSB) SU(5) et 3− 2. La motivation originale de cette
étude a été la découverte (en 2018 par Buratti, Garćıa-Valdecasas et Uranga) d’un canal d’instabilité,
dit N = 2, dans les dimères alors connus complétant ces deux modèles. Cette instabilité N = 2 existe
si et seulement si la singularité en question, avant orientifold, n’est pas isolée, ce qui est équivalent à
l’existence dans le dimère de branes fractionnaires N = 2. Lorsque ces théories DSB sont plongées dans
des dimères, l’existence de branes fractionnaires N = 2 déstabilise le vide stable prédit par la brisure
dynamique de supersymétrie. D’où la problématique : est-il possible de plonger soit le modèle SU(5) soit
le modèle 3−2 dans un dimère définissant une théorie correcte, et sans l’instabilité N = 2 ? L’hypothèse
de ne pas utiliser de D7-branes de saveur, par parcimonie, est posée.

Le neuvième chapitre présente des résultats généraux sur les orientifolds de pavages par branes, qui
montrent en particulier que presque toutes les implémentations possibles des modèles SU(5) et 3 − 2
impliquent immédiatement la présence de l’instabilité N = 2. Seule une, dans laquelle sont décrites deux
copies de la théorie SU(5), semble ne pas l’engendrer. Le dixième chapitre introduit des méthodes de
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construction de pavages par branes avec contraintes, afin d’explorer si ce modèle dit twin-SU(5) peut
réellement être plongé dans un dimère correct. Des exemples sont trouvés mais souffrent d’anomalies de
jauge. Le onzième chapitre présente des techniques combinatoires pour l’étude des anomalies de jauges
dans les orientifolds fixant une droite, deux droites ou quatre points dans le dimère (sans D7-brane de
saveur). Dans le cas des orientifolds fixant une ou deux droites, ces techniques montrent que l’existence
d’anomalies ne dépend que du diagramme torique, et pas du pavage par branes particulier en question.
Armé de ces nouveaux résultats, un dimère satisfaisant, l’octogone, est finalement trouvé. Il implémente
le modèle twin-SU(5) sans aucune des instabilités connues à ce jour, et est présenté en détails dans le
douzième chapitre.

La quatrième partie cöıncide avec le treizième chapitre, qui présente la construction de nouveaux
orientifolds de dimères sans points fixes. L’involution correspondante est une translation glissée, et donne
donc une bouteille de Klein par quotient du tore. Cette construction répond donc à la question de Franco
et Vegh (2006) du sens des pavages par branes sur une bouteille de Klein. Ces théories ont les propriétés
nécessaires pour définir des théories superconformes. La translation d’une moitié de cellule fondamentale
est également étudiée, mais on montre qu’elle conduit toujours à des orientifolds non-supersymétriques.
Ces résultats achèvent la classification des types topologiques d’orientifolds de dimères.

La cinquième partie traite de la généralisation des laminations de Thurston aux espaces de Teichmüller
supérieurs. Dans le quatorzième chapitre est présenté un tableau conjectural des objets qui, en toute
vraisemblance, devraient jouer un rôle dans la définition des laminations supérieures. Le quinzième
chapitre est dédié à la construction d’une famille de théories topologiques des champs dérivée des idées
du chapitre précédent. Il y a une telle théorie topologique pour chaque algèbre de Hecke associée à un
groupe de Coxeter fini, qui associe en particulier à chaque surface topologique épointée un polynôme de
Laurent. Ce dernier peut être exprimé en termes de la théorie des représentations de l’algèbre de Hecke
correspondante. Le seizième chapitre est une preuve courte et élémentaire de la dualité entre les théories
topologiques des champs dites ouvertes-fermées et les anneaux symétriques.
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partagés pendant et depuis ces années. Votre amitié compte beaucoup pour moi. Merci Luc, pour ton
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Papaul, Mam, Madame Aouici, Monsieur Aouici, Papi, Mamie, Papa, Maman, Tycho et Bethsabée,
c’est grâce à vous, avant tout, que je suis qui je suis. Je vous dédie ce manuscrit, avec beaucoup d’amour.



Introduction

A dramatic turn of events occurred in the 1980’s in fundamental physics, and particularly in elementary
particle physics. After decades of intense experimental discoveries guiding the building of relentlessly
improving phenomenological models – culminating with the Standard Model of particle physics – began
an era of theoretical questions of a different nature. Many of these new developments were hopelessly out
of reach of experiments; that led to a complete new paradigm of a more mathematical essence. Mean-
while, undoubtedly stirred by Michael Atiyah’s impulse [Hit20], the study of interactions between gauge
theories, supersymmetry, topology and geometry became an important research field. This contributed
to popularizing previously unfamiliar mathematical objects in the theoretical physics community, in par-
ticular thanks to Edward Witten’s catalysis. All this ultimately led to the emergence of a new branch
of mathematical physics, sometimes referred to as physical mathematics, experimental mathematics or
theoretical mathematics, in contrast with the old field of rigorous mathematics [JQ93]. Among theoretical
mathematics, string theory without doubt holds a very special place. Very abstract mathematical struc-
tures naturally come alive in it, such as complex algebraic geometry, manifolds with special holonomy
or category theory. The rich mathematical content of string theory, together with the fact that it is
pervaded by a deep physical intuition, has many times proved to be very fruitful in order to conjecture
mathematical results and correspondences. The best example of this is perhaps the discovery of mirror
symmetry.

The common thread in this dissertation is another example of mathematical objects which lie at an
interface between pure mathematics and string theory: cluster structures. Cluster algebras have been
introduced by Sergei Fomin and Andrei Zelevinsky in [FZ02], as the abstraction of algebraic relations
appearing in George Lusztig’s description of total positivity in reductive Lie groups and dual canonical
bases of quantized universal enveloping algebras. Shortly after, Vladimir Fock and Alexander Goncharov
defined cluster varieties in the context of higher Teichmüller theory [FG06]. Seiberg duality of four-
dimensional N = 1 quiver gauge theories, proposed by Nathan Seiberg in [Sei95], was subsequently
reinterpreted as a tropical mutation. Cluster structures also appear in the study of BPS states of four-
dimensional N = 2 gauge theories [GMN13c], and were even more recently shown to play a role in planar
amplitudes of four-dimensional N = 4 super Yang-Mills theories [AHBC+16]. The work I have produced
as part of my PhD articulates in two main directions. Let us discuss them in turn.

The Teichmüller space T (S) of a compact oriented topological surface S is a connected component
of the PSL2(R)-character variety Hom(π1(S),PSL2(R))/PSL2(R) of S, consisting solely of discrete and
faithful representations. Hitchin has shown that when G is the split real form of an adjoint reductive
group, there is a connected component of the Γ-character variety Hom(π1(S), G)/G of S in which the
Teichmüller space T (S) embeds [Hit92]. It was later proved that Hitchin’s components consist also solely
of discrete and faithful representations. For any adjoint reductive group G with Langlands dual GL, and
for S possibly non-closed, Fock and Goncharov have constructed a pair of cluster varieties (XG,S ,AGL,S)
whose spaces of real positive points XG,S(R>0) and AGL,S(R>0) are variants of Hitchin’s components
[FG06]. The space T (S) can be defined in terms of different structures on S, and is related to other
interesting objects on S, such as Thurston’s laminations. Rational laminations are systems of weighted
curves on S, and the projectivisation of their space’s completion provides a spherical compactification of
T (S) to which the action of the mapping class group extends. Fock and Goncharov have also proposed a
generalization of two variants of rational laminations spaces when G is a general reductive adjoint group:
XG,S(Qt) and AGL,S(Qt). The projectivisation of these spaces of laminations also provides a spherical
compactification of the corresponding varieties XG,S(R>0) and AGL,S(R>0). However, the generalization
of rational laminations as systems of weighted curves on S remained elusive.

The first part of my work (in collaboration with Vladimir Fock and Alexander Thomas) is directed
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towards this generalization. We conjecture the following:

Conjecture 0.1. A G-higher lamination is a union of curves on S colored with the positive simple
roots of the affine group ĜL corresponding to GL, with vertices of some type determined by the braid
and quadratic relations in the (spherical) Hecke algebra of GL. Moreover, G-higher laminations are in
one-to-one correspondence with ramified coverings Σ̃ of S in T ∗S which are Lagrangian subspaces and
such that the restriction of the Liouville 1-form λ to Σ̃ is integral, i.e.

λ|Σ̃ ∈ H1(Σ̃, ∂Σ̃,Z) , (13)

modulo Hamiltonian diffeomorphisms preserving the zero section.

However, we do not yet have a satisfying description of these higher laminations. The framework we de-
veloped nevertheless led us to the interesting construction of non-commutative open-closed 2-dimensional
topological quantum field theories, which associate a Laurent polynomial with integer coefficients to every
punctured surface. Each such topological quantum field theory corresponds to the Iwahori–Hecke alge-
bra of a finite Coxeter system. Last, we developed a short proof of the correspondence between algebras
endowed with a symmetrizing trace and open-closed topological quantum field theories. Besides pursuing
towards a definition of higher laminations, the topological quantum field theories we have introduced
open interesting new research directions. For example, it is natural to wonder whether a categorification
in terms of Soergel bimodules exist, or even motivic generalizations of these Hecke topological quantum
field theories.

The AdS–CFT correspondence is one of the greatest theoretical discoveries of the last decades; in
particular, it has far-reaching implications in the study of quantum black holes and the dynamics of
gauge theories. By considering D3-branes at affine toric Calabi–Yau singularities, the original duality
between type IIB superstrings on AdS5 × S5 and four-dimensional N = 4 super Yang–Mills has been
generalized to correspondences between type IIB superstrings on AdS5×Y5 (with Y5 is a five-dimensional
Sasaki–Einstein manifold) and N = 1 quiver CFTs. The latter are nicely described in terms of brane
tilings, i.e. dimer models on a torus. Seiberg dualities on brane tilings are encoded as urban renewal,
or spider moves. The addition of fractional branes and/or orientifolds breaks the conformal invariance,
yielding gauge–gravity correspondences between locally AdS warped-throats and N = 1 quiver gauge
theories. In this context, the question of whether it is possible to realize Dynamical Supersymmetry
Breaking (DSB) models on deformation fractional branes at singularities is of great relevance. Some
instances of orientifold singularities with realizations of the SU(5) and 3− 2 DSB models were proposed
in [FHK+07]. However, it was shown in [BGVU19] that the vacuum of these DSB models was destabilized
into runaway, eventually because the corresponding singularities were not isolated, as proved shortly after
in [ABMP19]. A singularity is non-isolated if and only if it hosts N = 2 fractional branes, which are
pushed to infinity by the DSB sector along N = 2 flat directions in the moduli space.

As a second part of my work, Ricardo Argurio, Matteo Bertolini, Sebastián Franco, Eduardo Garćıa-
Valdecasas, Shani Meynet, Antoine Pasternak and myself, tackled the following refinement of the question
of above: is it possible to realize Dynamical Supersymmetry Breaking (DSB) models on deformation
fractional branes at isolated singularities? A study of the dimer model substructures needed to encode
the SU(5) and 3 − 2 DSB models showed that all of them imply the presence of N = 2 fractional
branes, except one. However, the fact that the latter could be embedded in a consistent brane tiling in a
satisfactory way was not obvious. In particular, after orientifold the model can suffer gauge anomalies. As
a consequence, we performed a general analysis of the anomaly cancellation conditions in orientifolded
brane tilings, which constrained the type of orientifolds than could possibly work. Armed with these
knowledge, we developed an inverse algorithm with constraints, which led us to a dimer model hosting
a twin version of the SU(5) DSB model. It is very likely that it is the simplest of such models, though
it is a very complicated brane tiling: it encodes a theory with fourteen simple gauge factors. The mere
fact that we were able to compute such a dimer proves the effectiveness of our methods. That such a
model exists proves that DSB models exist in string theory, or at least that the previously discovered
instabilities do not rule them out. An exciting continuation of this research would be to generalize the
model for M � 1 deformation fractional branes; if the corresponding gauge theory is still DSB, one could
hope to obtain a gravitational dual description of dynamical supersymmetry breaking.

Together with Eduardo Garćıa-Valdecasas, Shani Meynet and Antoine Pasternak, we explained the
physical meaning of dimer models on a Klein Bottle (that they can possibly encode superconformal field
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3 The Octagon that works

Using the fast inverse algorithm we managed to construct the following dimer from the

octagonal toric diagram of Figure 10

Figure 14: Dimer obtained by the octagon singularity.

We can immediately see that the singularity accommodates a fractional branes given by

faces 1,2,3,7,12,13 and 14. This is precisely the deformation we wanted, from the discussion

of Section 2.

We now move to the orientifolded theory. We chose the surviving fields to be 1,2,3,4,5,6,7

and 8, the ACC reads (we selected the - charge for the central line and the + for the one on

the edge of the fundamental cell)
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The system admits a solution for n1 = n3 = n7 = N + 4 and n2 = N . This gives us a

SU(N + 4)⇥ SU(N)⇥ SU(N + 4)⇥ SO(N + 4) theory, with matter content given by

Q1 = ( 1, 2) , Q3 = ( 2, 3) , A1 = 1 , A3 = 3 ,

18

Figure 19: The brane tiling hosting the twin SU(5) model on a fractional brane after orientifold.

theories had been noted in [FV06], hence raising the question of their interpretation). This completed
the description of orientifolds of brane tilings as involutions of the underlying bipartite maps.

In [GK11], a class of cluster integrable systems build from dimer models on a torus was introduced.
It would be interesting to understand what part they play in the physics of D3-branes at toric affine
CY3 singularities, and whether the cluster dualities between them and brane tilings have any physical
meaning. Moreover, the orientifolded brane tilings presumably correspond to cluster integrable systems
on double Bruhat cells of affine groups not of type ÂN , hence connecting with [FM16a].

I chose to include two pedestrian introductory parts in this dissertation, one on cluster higher Te-
ichmüller theory, and the other on the physics background needed to discuss DSB models in brane tilings.
They are for sure less rigorous than research articles or standard textbooks, however since comprehensive
introductions to these topics are rare, I think that they might be of some interest at least for those who
would like to have a first overview of either subject, if any.

Since cluster algebras and varieties are the common thread of this manuscript, the introduction to
cluster higher Teichmüller theory comes first, and constitutes Part I. The physics introduction follows in
Part II. Then, Part III consist of the articles:

1. Dimers, orientifolds and stability of supersymmetry breaking vacua [ABF+21b],
with R. Argurio, M. Bertolini, S. Franco, E. Garćıa-Valdecasas, S. Meynet and A. Pasternak, hep-
th/2007.13762,
Journal of High Energy Physics, 2021(1), 61,

2. Inverse algorithm and triple point diagrams [Tat21],
hep-th/2111.02195,

3. Dimers, orientifolds and anomalies [ABF+21a],
with R. Argurio, M. Bertolini, S. Franco, E. Garćıa-Valdecasas, S. Meynet and A. Pasternak, hep-
th/2009.11291,
Journal of High Energy Physics, 2021(2), 153,

4. The Octagon and the non-supersymmetric string landscape [ABF+21c],
with R. Argurio, M. Bertolini, S. Franco, E. Garćıa-Valdecasas, S. Meynet and A. Pasternak, hep-
th/2005.09671,
Physics Letters B, 815, 136153,

in order of appearance on ArXiv, while Part IV is based on:
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1. Dimers in a bottle [GVMPT21],
with E. Garćıa-Valdecasas, S. Meynet and A. Pasternak, hep-th/2101.02670
Journal of High Energy Physics, 2021(4), 274.

The core of Part V is the article on Hecke topological quantum field theories (TQFTs):

1. Topological quantum field theories from Hecke algebras [FTT21],
with V. Fock and A. Thomas, math.QA/2105.09622,

preceded by a chapter casting the characters that presumably play a part in the combinatorial definition of
higher laminations, and followed by another containing the short proof (that should appear as a preprint
one day) of the equivalence between symmetric algebras and open-closed TQFTs.



Part I

Cluster higher Teichmüller theory
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Introduction

The main goal of this part of the dissertation is to introduce, in a pedestrian way, Fock and Gon-
charov’s cluster higher Teichmüller theory [FG06]. Rather than focusing on details and rigor, we aim to
follow a pedagogical line of thoughts which hopefully will pinpoint the main ideas in a clear way. Our
hope is that this part may be useful as a first introduction to the topic, after which anyone interested
would be able to go through the original research papers – and in particular [FG06] – more easily.

This topic is of course not uncorrelated with the sequel of the dissertation; Part V in particular
strongly relies on the ideas introduced below. Since the work presented in Part V is mainly motivated
by the quest towards the generalization of Thurston’s laminations, we will put a special emphasis on
classical laminations in the following four introductory chapters.

Cluster algebras – introduced in Chapter 1 – are the common thread throughout the manuscript. On
the one hand, cluster algebras (and varieties) play a central part in cluster higher Teichmüller theory, as
the name suggest. On the other, they also appear in the context of brane tilings introduced in Section 7.5:
under Seiberg duality, the ranks of the unitary gauge groups in a brane tiling transform as tropical cluster
A variables. Brane tilings are central characters in Parts III and IV. An interesting example in geometry
where such structures appear is the Teichmüller theory of non-closed surfaces of finite type, or more
generally, ciliated surfaces. Chapter 2 is devoted to the presentation of the so-called Teichmüller space
with holes and decorated Teichmüller space of a ciliated surface. Then, Chapter 3 discusses laminations,
and more specifically rational laminations on ciliated surfaces. Cluster transformations also naturally
appear in their description. These Teichmüller and laminations spaces motivate the introduction of
cluster ensembles and varieties in Chapter 4. With these objects at hand, we turn to higher Teichmüller
theory and more specifically to G-higher Teichmüller theory, where G is the split real form of a reductive
group, either with finite center or simply-connected. To every ciliated surface S and adjoint reductive
group G, one can associate a pair (X+

G,S ,A+
GL,S

) of higher Teichmüller spaces, where GL is the Langlands

dual of G. Prosaically, GL is the simply-connected group whose root (resp. weight) lattice is the weight
(resp. root) lattice of G 1. Both Teichmüller spaces X+

G,S and A+
GL,S

project to the moduli space L+
G,S

of positive representations π1(S)→ G(R) modulo G(R)-conjugation, which is a connected component of
the G(R)-character variety of S:

Hom(π1(S), G(R))/G(R) , (14)

and generalizes Hitchin’s components. Here G(R) is the split real form of G. The space L+
G,S con-

sists solely of discrete and faithful representations, and there is a canonical embedding of the classical
Teichmüller space in it.

Let now G be any connected semi-simple real Lie group with finite center. There are fundamental
differences in the G-character varieties for G split real and for G complex or compact, which allow in
particular the existence of connected components such as L+

G,S in the first case. A connected component
of the character variety consisting solely of discrete and faithful representations is said to be a G-higher
Teichmüller space. Apart from split real forms of reductive groups, Hermitian Lie groups of tube type
are also known to yield G-higher Teichmüller spaces. Recently, the notion of Θ-positive representations
was proposed by Guichard and Wienhard in [GW18]. It defines in turn moduli spaces of Θ-positive
representations of π1(S) into G which have been shown to be a union of G-higher Teichmüller spaces
[GLW21]. Θ-positivity provides a unified framework which includes both cases of real split groups and
Hermitian groups of tube type, as well as two new families of real Lie groups for which higher Teichmüller
spaces therefore exist. We will discuss Θ-positivity briefly at the end of Chapter 4.

1Similarly, if G is simply-connected, its Langlands dual is the adjoint group GL with root and weight lattices exchanged.
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Chapter 1

Cluster algebras

Cluster algebras are commutative algebras introduced in a series of papers by Fomin and Zelevinsky
[FZ02, FZ03, FZ05, FZ07]. To give a first example, a complex cluster algebra A of rank n satisfies

C[a1, . . . , an] ⊂ A ⊂ C(a1, . . . , an) , (1.1)

i.e. it is a sub C[a1, . . . , an]-module of C(a1, . . . , an). It is defined as the polynomial algebra C[αi]
generated by a finite or countable family (αi)i∈I , where αi ∈ C(a1, . . . , an). Every such αi is obtained
by successive mutations, whose exact expression depends on an auxiliary combinatorial object: a quiver.
One of the simplest examples of a cluster algebra over C is the rank-2 cluster algebra denoted AA2

(C),
defined as:

AA2
(C) = C

[
a1, a2,

1 + a1

a2
,

1 + a2

a1
,

1 + a1 + a2

a1a2

]
. (1.2)

Cluster algebras generalize the algebraic structure that appears in the study of the (dual) canonical
basis of the ring C[SL3/U ] [GZ86] where U is the subgroup of upper-triangular unipotent matrices, and
more generally in the dual canonical bases in C[G/U ] [Lus90], where G is a connected simply-connected
semi-simple algebraic group, and U a maximal unipotent subgroup of G. The theory of dual canonical
bases is related to total positivity in reductive Lie groups [Lus10, Lus94, FZ99a]; the exchange relations
appearing in the study of positivity in double Bruhat cells have also been a motivation for the definition
and the study of cluster algebras. We refer to the introduction of [FZ02] for a more detailed discussion
of the motivations and the historical context, and well as references.

Cluster algebras also appear in high-energy physics. Some instances are Seiberg duality of four-
dimensional N = 1 supersymmetric quantum field theories [Sei95, BD02] (discussed in Chapter 5), the
study of BPS states in theories of class S [GMN13c] (evoked in Chapter 14), scattering amplitudes of
planar four-dimensional N = 4 super Yang–Mills theory [AHBC+16] and some classes of algebraic inte-
grable systems [GK11, FM16b] (briefly introduced in Chapter 7).

In this chapter we introduce cluster algebras in a pedestrian way. First, we present some aspects
of total positivity in Section 1.1. More precisely, we define totally positive Grassmannians, show how
efficient total-positivity tests can be designed for elements of Gr2,m(C) and how these are related to
triangulations of an m-gon. We also touch upon total-positivity in GLn(C) and SLn(C), again showing
how efficient total-positivity tests can be designed and how these correspond to combinatorial objects
known as pseudo-line arrangements. In Section 1.2 we define (generalized) quivers, which generalize both
triangulations and pseudo-line arrangements. Elementary moves in the latter correspond to mutations of
the corresponding quiver. We also discuss quivers with potentials, and show how such structures appear
as one considers bipartite graphs on oriented surfaces. The latter will play a prominent role in Parts III
and IV. The definition of cluster algebras is given in Section 1.3; we also provide classic examples of
cluster algebras of rank 1 and 2. The Laurent phenomenon – a cornerstone of the cluster theory, is
discussed in Section 1.4. We present some applications in Section 1.5. Lastly, we introduce Y -patterns
in Section 1.6. These are also rational expressions in the variables of a cluster algebra, enjoy interesting
properties and will be of importance in the sequel of the manuscript.
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1.1 Total positivity

We introduce total positivity, first by considering the totally positive grassmannian Gr+
2,m, following

[FWZ06], and then total positivity of matrices in GLn and SLn, following [FZ99b, Fom10]. These
examples are also discussed in the introduction of [FZ02].

1.1.1 The totally positive Grassmanian Gr+
2,m

Let k ≤ m ∈ Z>0. The space of k-dimensional subspaces of an m-dimensional complex vector space V is a
complex manifold called the (complex) Grassmannian manifold of k planes in Cm and denoted Grk,m(C).
Fixing a basis (e1, ..., em) of V allows to identify the points of Grk,m(C) with equivalence classes of rank
k matrices in Mk,m(C) in the following way: the point in Grk,m(C) corresponding to such a matrix is
the span of its rows in Cm, and conversely a point z ∈ Grk,m(C) corresponds to the equivalence class
of matrices in Mk,m(C) whose rows form a linear basis of the subspace z. The equivalence relation is
left-multiplication by GLk(C) on Mk,m(C).

Definition 1.1. Let l ≤ k, I ⊂ {1, ..., k}, J ⊂ {1, ...,m} subsets with l elements and M ∈ Mk,m. The
determinant of the l × l matrix obtained from M by taking only the rows in I and columns in J is the
(I, J)-minor of M , denoted ∆I,J(M). If I = [|1, k|] and if J is a subset of [|1,m|] of cardinal k, the
minor ∆[|1,k|],J =: ∆J(M) is the Plücker coordinate corresponding to J .

The Plücker coordinates {∆J(z)}|J|=k are functions

∆J(z) :Mk,m(C) −→ C (1.3)

which are invariant under left-multiplication by GLk(C) except for the fact that they rescale with a
common factor det(g). They can nonetheless be considered as homogeneous coordinates on Grk,m(C);

Grk,m(C) −→ PN (C) (1.4)

is an embedding called the Plücker embedding, where N =
(
m
k

)
− 1.

Let us now restrict to the case k = 2, and as before let us identify Gr2,m(C) with the space of
equivalence classes inM2,m(C) under left GL2(C) multiplication. The minors of a matrix M ∈M2,m(C)
are either 1×1 – these are the entries of the M , or 2×2 – these are the Plücker coordinates on Gr2,m(C).

Definition 1.2 (Def. 3.1 of [Pos06]). The totally positive Grassmannian Gr+
2,m is the subset of Gr2,m(C)

consisting of the elements represented by the equivalence classes of matrices in M2,m(C) whose Plücker
coordinates are either all in R>0, or all in R<0.

The Plücker coordinates on Gr2,m(C) being labeled by a pair of integers i < j ∈ [|1,m|], from now on
we will denote them Pij instead of ∆{i,j}. One can wonder how one could test whether all the maximal

minors of a matrix M ∈M2,m(C) are in R>0. The brute-force computation of all the
(
m
2

)
minors surely

works, however it is not necessary to do that many tests, since there are relations between the minors.

Proposition 1.3. For 1 ≤ i < j < k < l ≤ m, one has:

PikPjl = PijPkl + PilPjk . (1.5)

The relation of Equation (1.5) is reminiscent of the Ptolemy theorem1. Moreover, Plücker relations
exhaust the relations between Plücker coordinates: the homogeneous coordinate ring of Gr2,m(C) is

OGr2,m(C) = C
[
(Pij)i<j∈[|1,n|]

]
/PR , (1.6)

wher PR is the set of all Plücker relations.
Equation (1.5) implies that if Pjl, Pij , Pkl, Pil, Pjk ∈ R>0, then it also holds that Pik ∈ R>0. Hence,

an interesting refinement of the question of above is: are there efficient total positivity tests for the
elements of Gr2,m(C)? It turns out to be the case, as we are going to explain now. In order to ensure
total positivity, it suffices to check the positivity of only 2m − 3 well-chosen minors - this is a drastic
reduction of complexity compared to the brute-force algorithm.
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Figure 1.1: A triangulation Γ of a regular hexagon.

Let us consider a convex m-gon Pm with vertices labeled 1, . . . ,m clockwise and assign the Plücker
coordinate Pij to the chord with endpoints i and j. Let Γ be a triangulation of Pm by pairwise non-
crossing diagonals but possibly common endpoints: it consists of m sides and m− 3 diagonals and hence
there is a distinguished collection x̃(Γ) of 2m− 3 Plücker coordinates corresponding to the chords of Γ.

The Plücker coordinates corresponding to the sides of the m-gon Pm are said to be frozen variables
or coefficients; they belong to every triangulation. The m − 3 Plücker coordinates which correspond to
chords in the interior of Pm are called cluster variables; together frozen and cluster variables form the
cluster x(Γ). The union of the cluster and the frozen variables is called extended cluster x̃(Γ).

One can check that the 2m − 3 Plücker coordinates associated with the chords of any triangulation
T are algebraically independent as polynomials on the entries of the matrices in M2,k(C). Thus, the
following result implies that the positivity of the Plücker coordinates in the extended cluster corresponding
to Γ is enough to ensure the total positivity of the corresponding matrix.

Theorem 1.4. Let i < j ∈ [|1,m|]. The Plücker coordinate Pij can be expressed as a subtraction-free
rational expression in the elements of any given extended cluster x̃(Γ).

The theorem is implied by the following three points:

1. Any Pij appears as an element of an extended cluster x̃(Γ) for some triangulation Γ of Pm.

2. If Γ and Γ′ are any two triangulations of Pm, Γ can always be transformed into Γ′ by a finite
sequence of flips.

i

j

k

l
flip

i

j

k

l

Figure 1.2: The flip of the diagonal in the quadrilateral ijkl.

3. Upon the flip of the diagonal of a quadrilateral ijkl appearing in the triangulation Γ as in Figure 1.2,
Pki is replaced by

Pil =
PjkPli + PklPij

Pkl
, (1.7)

1In any quadrilateral inscribed in a circle on a plane, the products of the lengths of opposite sides add up to the product
of the lengths of the two diagonals.
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while all other Plücker coordinates are left unchanged. This transformation is a rational subtraction-
free expression of the elements of the extended cluster associated with Γ.

1.1.2 Positivity in GLn(C) and SLn(C)

Definition 1.5. Let G = GLn or G = SLn. An invertible matrix m ∈ G is totally non-negative (resp.
totally positive) if for all I, J ⊂ [|1, n|] such that |I| = |J |, one has ∆I,J(m) ∈ R≥0 (resp. ∆I,J(m) ∈ R>0).

The systematic study of such matrices was initiated in [GK02]. In particular, Gantmacher and Krein
proved that such matrices have distinct real positive eigenvalues. For a general survey on this notion
of total positivity, see [And87]. The following proposition is a direct consequence of the Cauchy–Binet
formula:

Proposition 1.6. Totally non-negative (resp. positive) matrices form a multiplicative sub-semigroup of
G denoted G≥0 (resp. G>0).

Now, the next proposition implies that the study of the semi-group G≥0 reduces to the study of its
sub-semigroup B≥0, where B is the subgroup of upper-triangular matrices in G.

Proposition 1.7 (Cryer’s splitting lemma [Cry73, Cry76]). A matrix m ∈ G is totally non-negative
if and only if it has a Gaussian decomposition m = u−du, where u− is non-negative lower-triangular
unipotent (i.e. with a diagonal of 1’s), d is non-negative diagonal and u is non-negative upper-triangular
unipotent.

Furthermore, the Loewer–Whitney theorem [Loe55, Whi52] implies that every non-negative unipotent
upper-triangular matrix u ∈ U≥0 can be written as a product of totally non-negative matrices xi(t) where
t ∈ R≥0 and where xi(t) is the matrix in GLn(C) with 1’s on the diagonal, t at the entry (i, i+ 1) and 0
elsewhere:

xi(t) =




1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 t · · · 0
0 . . . 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1




(1.8)

Definition 1.8. Let U be the subgroup of SLn(C) consisting of unipotent upper-triangular matrices. An
element x ∈ SLn(C)/U is totally positive if all its flags minors ∆I(x) are in R>0 where the flag minor
∆I(x) corresponding to a non-empty proper subset I ⊂ [|1, n|] is defined as

∆I : x 7−→ ∆I(x) = det{xij |i ∈ I, j ≤ |I|} . (1.9)

Proposition 1.7 implies that a matrix x ∈ SLn(C) is totally positive if and only if x and its transpose
xT represent totally positive elements in SLn(C)/U . Flag minors satisfy generalized Plücker relations.
As in the case of the totally positive Grassmanian Gr+

2,m, it is enough to check that only a subset of the
flag minors are positive in order to ensure that an element x ∈ SLn(C)/U is totally positive. In total,
there are 2n − 2 flag minors but total positivity is implied by the positivity of only

dim(SLn(C)/U) =
(n− 1)(n+ 2)

2
(1.10)

well chosen flag minors.
Efficient positivity tests are provided by pseudo-line arrangements which play the role of the trian-

gulations of the m-gon in the case of Gr+
2,m. Two examples of pseudo-line arrangements for n = 4 are

presented in Figure 1.3, which reproduces Fig. 2 of [Fom10]. A pseudo-line is the graph of a continuous
function on [0, 1] and a pseudo-line arrangement is a set of pseudo-lines such that each pair has exactly
one crossing point in common, and considered up to homotopy.

Total positivity in SLn(C)/U is encoded in pseudo-line arrangements with n pseudo-lines, that we
will consider as labeled 1, . . . , n from bottom to top. To each region of a pseudo-line arrangement but the
bottom and the top ones, one associates a flag minor ∆I(R) where I(R) is the set of pseudo-lines passing
below the region. An example is shown in Figure 1.3.
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Figure 1.3: Pseudo-line arrangements.

As in the case of Gr+
2,m, the set of (n−1)(n+2)

2 flag minors appearing in a pseudo-line arrangement
form an extended cluster. The flag minors corresponding to open regions of the pseudo-line arrangement
are frozen variables, while the ones corresponding to regions entirely bounded by pseudo-lines are cluster
variables. In Figure 1.3 the flag minors ∆1,∆4,∆12,∆34,∆123,∆234 are frozen variables, while the others
are cluster variables. Each cluster contains

(
n−1

2

)
flag minors.

Flips of the triangulation of the m-gon that appeared while studying Gr+
2,m also have an equivalent

here, as local moves of the pseudo-line arrangements. They consist of dragging one of the pseudo-lines
through an intersection of two others, as shown in Figure 1.4. One can show that for under such a local
move of pseudo-line arrangements, the flag minors appearing in the clusters satisfy

ef = ac+ bd . (1.11)

These are the generalized Plücker relations. As in the case of the triangulations of m-gons, given any two
pseudo-lines arrangements one can always transform the first into the second through a finite sequence
of these local moves. For example, in the example of Figure 1.3 one has:

∆13 =
∆1∆23 + ∆12∆3

∆2
, (1.12)

which is a subtraction-free expression of the flag minors in the extended cluster corresponding to the
pseudo-line arrangement on the left of Figure 1.3.

Figure 1.4: Local move in pseudo-line arrangements.

Therefore, a reasoning similar to the one in the proof of Theorem 1.4 shows that any pseudo-line
arrangement provides an efficient total positivity test for the elements in SLn(C)/U . One can prove that
these tests, just as the ones given by the triangulation of an m-gon in the case of Gr+

2,m are the most
efficient ones.

1.2 Mutations of quivers and matrices

Quivers generalize both the triangulations of the m-gon in the case of Gr+
2,m and the pseudo-line arrange-

ments in the case of total positivity in SLn(C)/U . Flips in triangulations and local moves in pseudo-lines
arrangements are both special instances of quiver mutations.
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Quivers and mutations

Definition 1.9. A quiver is a finite oriented graph possibly with multiple arrows but neither loops nor
oriented 2-cycles. Two examples are shown in Figure 1.5. We do not require such quivers to be connected.
Consistently with the above, one can declare some of the vertices to be frozen. Non-frozen vertices will be
referred to as mutable. Edges between frozen vertices are superfluous.

Figure 1.5: The Markov (left) and the Somos-4 (right) quivers.

Let Γ be a triangulation of an oriented m-gon Pm. In order construct a quiver QΓ from Γ, one assigns
a vertex of QΓ to each chord of Γ and declare that the vertices corresponding to the chords on the
boundary of Γ are frozen while the others are mutable. Then, inside each triangle of Γ one draws three
arrows, linking each edge of the triangle to the next one according to the counterclockwise orientation.
Last, one removes all arrows connecting frozen vertices. An example is shown on the left of Figure 1.6.
Numbers label the mutable vertices, and letters, the frozen ones.

One can also assign a quiver to a pseudo-line arrangement, in such a way that the local moves
correspond to the mutations that will be defined soon. The procedure is more involved than the one for
triangulations, and hence we refer to [FWZ06, Section 2.3] for its precise description. Nevertheless, an
example is depicted on the right of Figure 1.6.

Figure 1.6: Frozen (resp. mutable) vertices are labeled by letters (resp. numbers).

Definition 1.10. Let k be a mutable vertex of a quiver Q. The mutation at k is another quiver µk(Q),
obtained as follows:

1. First, for every path i
e // k

f // j one adds an arrow i
[ef ] // j (unless i and j are frozen).

2. Then, one reverses the directions of all arrows incident to k.

3. Last, one repeatedly removes oriented 2-cycles that appeared during the first two steps.
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One can check easily that the Markov quiver on the left of Figure 1.5 is invariant under the mutation
at any of its vertices, while the mutation at the vertex 1 (resp. 2) of the Somos-4 quiver shown on the
right of Figure 1.5 yields a copy of the same quiver rotated by −π/2 (resp. +π/2). However, the mutation
at a vertex of a quiver does not generally yield an isomorphic quiver.

Mutations at the mutable vertices of a quiver corresponding to a triangulation of an m-gon are exactly
flips, as advertised. It is also the case that mutations of a quiver obtained from a pseudo-line arrangement
with the rules of [FWZ06, Section 2.3] encode local moves. The mutation corresponding to the local move
at face 1 on a pseudo-line arrangement is shown in Figure 1.7.

Figure 1.7: The mutation at face 1 on the quiver on the left.

These mutation rules seem to be very ad-hoc at first sight, however they amazingly appear in many
different contexts in mathematics and in physics, as underlined in the introduction of this chapter.

1.2.1 The mutation class of a quiver

Let Q be a quiver, and let MQ be the set of all quivers that can be obtained from Q by repeated mutations
at mutable vertices. The relation Q ∼ Q′ if Q and Q′ are related through a finite sequence of mutations
is an equivalence relation. The set MQ is the equivalence class of Q for ∼. When the set MQ has finite
cardinal one says that Q is of finite mutation type, however in general MQ is infinite. The Markov quiver
of Figure 1.5 is an example of a finite mutation type quiver, however the Somos-4 quiver in the same
figure is not of finite mutation type.

Quivers of finite mutation type without frozen vertices type have been completely classified in [FST12],
and fall into three classes:

1. quivers with two vertices,

2. quivers associated with triangulations of punctured surfaces, as in Figure 1.6,

3. 11 ”exceptional” cases denoted E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 , X6 and X7 (see Fig. 6.1

in [FST12]) together with their mutations. The exceptional quivers X6 and X7 are shown in
Figure 1.8.

1.2.2 Skew-symmetric and skew-symmetrizable matrices

Definition 1.11. Let Q be a quiver with mutable vertices labeled 1, ..., n, and frozen ones, n + 1, ...,m.
The extended exchange matrix associated with Q is the skew-symmetric m × n matrix B̃Q such that
(B̃Q)ij = n if there are n arrows going from i to j in Q, (B̃Q)ij = −n if there are n arrows going from

j to i in Q, and (B̃Q)ij = 0 otherwise. The corresponding exchange matrix BQ is the upper n× n block

of B̃Q.

The following three matrices are respectively the extended exchange matrices of the Markov quiver,
the Somos-4 quiver in Figure 1.5, and the quiver associated with the triangulation Γ of the 6-gon shown
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Figure 1.8: Exceptional quivers of finite mutation type X6 (left) and X7 (right).

in Figure 1.6.

B̃Markov =




0 2 −2
−2 0 2
2 −2 0


 B̃Somos−4 =




0 −1 2 −1
1 0 1 −2
−2 −1 0 3
1 2 −3 0


 B̃Γ =




0 −1 0
1 0 1
0 −1 0
0 0 −1
0 0 1
−1 1 0
1 0 0
−1 0 0
0 1 −1




(1.13)

Conversely, given a matrix of size m × n with m ≥ n and such that the upper n × n block is skew-
symmetric, one can define a quiver with that extended exchange matrix by considering a mutable vertex
for each of the first n rows, a frozen vertex for each of the remaining m − n rows, and with the arrows
between any two vertices i and j determined by the entries of the matrix.

Proposition 1.12. Let k be a mutable vertex of a quiver Q with extended exchange matrix B̃Q = (bij).

The extended exchange matrix B̃′ = B̃µk(Q) = (b′ij) of the quiver µk(Q) is given by

b′ij =

{
−bij if i = k or j = k
bij + sgn(bik)[bikbkj ]+ otherwise

, (1.14)

where [bikbkj ]+ = max(bikbkj , 0).

One can generalize this mutation formula to matrices that are non skew-symmetric but skew-symmetrizable.

Definition 1.13. An n×n matrix B with integer entries is skew-symmetrizable if there exists d1, ..., dn ∈
Z called the multipliers, such that dibij = −djbji. An extended skew-symmetrizable matrix is an m × n
matrix with m ≥ n such that its top n× n sub-matrix is skew-symmetrizable.

Definition 1.14. Let B̃ = (bij) be an extended skew-symmetrizable m × n matrix (with m ≥ n), and

let k ∈ {1, ..., n}. The mutation of B̃ at k is the extended skew-symmetrizable matrix µk(B̃) with entries
satisfying Eq. 1.14.

It is straightforward to prove the following facts:

Proposition 1.15. 1. µk(B̃) is skew-symmetrizable with the same multipliers as B̃.

2. µk ◦ µk(B̃) = B̃.

3. If bij = bji = 0 then µi ◦ µj(B̃) = µj ◦ µi(B̃).

Any skew-symmetrizable matrix can be encoded as a generalized quiver, where to each mutable vertex
i is assigned its multiplier di, and with dibij arrows from i to j if dibij ≥ 0, or −dibij = djbji arrows from
j to i otherwise. We will present an explicit example involving those generalized quivers in Section 1.5.2
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1.2.3 Quivers with potential and bipartite graphs on oriented surfaces

Quivers with potential appear in string theory [DM96, DGM97] as the combinatorial objects describing the
worldvolume theory of D-branes at toric Calabi-Yau singularities (see Chapter 7). More mathematically,
topological B-branes and open strings between them on the orbifold Cd/G, where G is a finite subgroup of
SU(d) and d ≤ 3, are described by the derived category of McKay quiver representations (with relations)
[Asp04]. This follows from a result by Bridgeland, King and Reid [BKR99].

Let us sketch here some aspects of the theory of quivers with potential and their mutations, following
[DWZ08], as well as how such quivers with potentials arise from bipartite graphs on oriented surfaces.
As a first step, let us rewrite the definition of quivers of above somewhat more formally.

Definition 1.16. A quiver is the data of a quadruple Q = (Q0, Q1, s, t) where Q0 is the finite set of
vertices, Q1 is the finite set of arrows and s, t : Q1 → Q0 are the source and target maps, respectively. As
before, we assume that our quivers do not have oriented 2-loops. Let K be a field, R = KQ0 the vector
space of K-valued functions on Q0 and A = KQ1 the vector space of K-valued functions on Q1.

The vector A is naturally endowed with an R-bimodule structure [DWZ08, Section 2]. Let Ad be the
tensor product of d copies of A with itself over R. One also sets A0 = R.

The set of arrows Q1 of Q is naturally identified with a basis of the R-bimodule A. For every d ≥ 1,
the elements a1 . . . ad ∈ Ad, such that for all k = 1, . . . , d− 1 one has t(ak) = s(ak+1), form a K-basis of
Ad called the path basis. Each Ad module Ad can be decomposed as:

Ad =
⊕

i,j∈Q0

Adi,j , (1.15)

where Adi,j is spanned by the paths a1 . . . ad such that s(a1) = i and t(ad) = j. Now, for each d ≥ 1 the

cyclic part Adcyc of Ad is defined as:

Adcyc =
⊕

i∈Q0

Adi,i . (1.16)

The complete path algebra of Q is

R〈〈A〉〉 =

∞∏

d=0

Ad ; (1.17)

its elements are (possibly infinite) K-linear combinations of the elements of a path basis in R〈A〉. Let

R〈〈A〉〉cyc =

∞∏

d=1

Adcyc . (1.18)

Denote A∗ = Hom(A,R) and let ξ ∈ A∗. The cyclic derivative ∂ξ : R〈〈A〉〉cyc −→ R〈〈A〉〉 with respect
to ξ is defined as:

∂ξ(a1 . . . ad) =

d∑

k=1

ξ(ak)ak+1 . . . ada1 . . . ak−1 . (1.19)

Definition 1.17 (3.1 of [DWZ08]). A potential for Q is an element of R〈〈A〉〉cyc. The Jacobian ideal
corresponding to a potential S is the closure in R〈〈A〉〉 of the two-sided ideal generated by the elements
∂ξ(S) for all ξ ∈ A∗; it is also a two-sided ideal. The Jacobian algebra corresponding to S is

R〈〈A〉〉/J(S) . (1.20)

In physics terminology, a potential is rather called a superpotential, the Jacobian ideal is the space of
F-term equations and the Jacobian algebra is the space of solutions to the F-term equations, also called
master space of the quiver gauge theory – we refer to Chapter 5 for more details.

Let now B = (VW q VB , E) be a finite bipartite graph embedded in an oriented surface S, where
VW (resp. VB) is the set of white (resp. black) vertices and where E ⊂ VW × VB . The faces of B as
the connected components of S − B, and one assumes that they all have the topology of a disk. The
embedding of B in S is equivalent to a fat structure on B, which is the data, at each vertex, of a cyclic
orientation of the edges incident to it. Let us assume that B has no two-valent vertex. One assigns a
quiver Q with potential S to any such B as follows:
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1. The vertices of Q are in one-to-one correspondence with the faces of B.

2. The arrows of Q connect faces of B to adjacent ones in such a way that each arrow crosses an edge
of B with the black end of the edge to its left.

3. Each white (resp. black) vertex in B defines an element of R〈〈A〉〉 for the quiver we defined, by fol-
lowing the arrows of Q crossing the edges incident to the vertex clockwise (resp. counterclockwise).

An example is shown in Figure 1.9. The corresponding quiver (displayed on the right) encodes the
gauge theory on the worldvolume of D3-branes at the tip of the affine cone over the toric del Pezzo surface
dP1

2; again we refer to Chapter 7 for more details about this. The potential is shown below the quiver.
The corresponding Jacobian ideal is generated by:

J(S) = 〈dbj−cbi, jad− iac, ef−bia, bja−eg, fc−gd, ce−hj, hi−de, ig−jf, gh−acb, adb−fh〉 . (1.21)

Figure 1.9: A quiver with potential from a bipartite graph on the torus T 2.

Quivers with potentials can be mutated: the mutation of a quiver with potential (Q, S) at a (mutable)
vertex k is another quiver with potential (µk(Q), µk(S)), where µk(Q) is the quiver obtained from Q by
mutating at k with the same rules as for quivers without potential. Assume that vertices of Q are denoted
i, j, k, . . . while e, f, . . . stand for arrows. Then:

1. For every path i
e // k

f // j one adds an arrow i
[ef ] // j .

2. Then one inverts all arrows incident to k: an arrow i
e // k is replaced by i k

e′oo and an

arrow k
f // j is replaced by k j

f ′oo .

3. Remove all 2-cycles created by the two first steps.

The mutated potential µk(S) is [S]+∆k, where [S] is obtained from S by substituting [ef ] for each factor
ef with t(e) = k = s(f) of any cyclic path occurring in the expression of S, and where

∆k =
∑

e,f∈Q1|t(e)=k=s(f)

[ef ]f ′e′ . (1.22)

If the mutated potential contains a cyclic path of length two, it has to be removed, accordingly to the
fact that the 2-cycles suffer the same fate at step 3 above.

There exists an elementary transformation of bipartite fat graphs called spider move and depicted in
Figure 1.10, which corresponds to some of the mutations of quivers with potential. Spider moves can

2it is the blow-up of P2(C) at a point
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only be applied to any square face of the bipartite graph, for otherwise the mutated quiver with potential
cannot be associated with a bipartite graph on an oriented surface anymore. However, a spider move at
a square face encodes exactly the mutation of the equivalent quiver with potential, at the corresponding
vertex. Similar spider moves where black and white vertices are exchanged are of course also allowed.

Figure 1.10: A spider move (top). Adding and removing two-valent nodes (bottom).

In order to make a spider move at some face of a bipartite fat graph, one might first need to split
vertices of valency four or greater into more vertices of lower valency. In addition, spider move at square
faces might create 2-valent vertices, in which case one contracts them afterwards so that their neighbor
vertices merge. This splitting-contraction operation is shown at the bottom of Figure 1.10 for black 2
valent vertices; the same operation can also be done for 2-valent vertices.

Let us consider an explicit example of these spider moves. In the bipartite graph in Figure 1.9 one
can split the top black node of the face 2 into two 3-valent black vertices connected by a 2-valent white
vertex, do a spider move, and then contract the white 2-valent vertex that has appeared. The result is
shown in Figure 1.11, and the corresponding quiver with potential is shown on the right. One can check
easily that the latter is the result of mutating the quiver with potential in Figure 1.9 at the node 2.

Figure 1.11: The bipartite graph, quiver and superpotential after the mutation at 2 in Figure 1.9.
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1.3 Cluster algebras

In this section, we mostly follow [Mar14]. We restrict our presentation to complex cluster algebras of
geometric type (see [FZ02] for a precise definition). Since we have introduced a lot of terminology in
the previous subsections, let us refine what is written in the introduction: a cluster algebra A of rank
n ∈ Z>0 over C is an integral domain with distinguished subsets of size n called clusters, the union of
which generates A. It satisfies

C[a1, . . . , an] ⊂ A ⊂ C(a1, . . . , an) , (1.23)

as a ring, and A is generated by rational fractions in a1, . . . , an determined by some combinatorial data
encoded in a quiver. Let m ≥ n be another integer and let F = C(a1, ..., am) be the field of rational
fractions in m variables with complex coefficients.

Definition 1.18. A seed in F is a pair (ã, B̃), where ã = {a1, ..., am} is a free generating set of F and
where B̃ is an extended skew-symmetrizable matrix of size m × n. Each ai for i = 1, ..., n is a cluster
variable and the set {a1, . . . , an} is the cluster of the seed. The frozen variables are an+1, . . . , am. The
set ã is the extended cluster of the seed.

Definition 1.19. Let (ã, B̃) be a seed, and let k ∈ {1, ..., n}. The mutation of
(
ã, B̃

)
at k is the seed

µk

(
ã, B̃

)
=
(
ã′, B̃′

)
where B̃′ = µk

(
B̃
)

as defined in the previous section, and where ã′ = {a′1, ..., a′m}
is such that:

a′i =





ai if i 6= k

a−1
k

( ∏

bik>0

abiki +
∏

bik<0

a−biki

)
if i = k

. (1.24)

Let Tn be the n-valent regular tree with edges labeled 1, ..., n, such that for each vertex the n edges
incident to it all have distinct labels.

Definition 1.20. A seed pattern on Tn is an assignment
(
ã(t), B̃(t)

)
t∈Tn

of seeds to the vertices of Tn,

such that two seeds at neighbor vertices linked by an edge labeled k are obtained one from the other by
mutation at k.

Let χ be the set of all cluster variables appearing in a seed pattern
(
ã(t), B̃(t)

)
t∈Tm

, and let

R = C[an+1, ..., am] (1.25)

be the polynomial ring in the frozen variables an+1, ..., am.

Definition 1.21. The cluster algebra corresponding to the seed pattern
(
ã(t), B̃(t)

)
t∈Tm

is the R-

subalgebra of F generated by the cluster variables, i.e. A = R[χ].

The mutation formula of Equation (1.24) is subtraction-free; hence it also makes sense if the indeter-
minates are evaluated in any multiplicative semifield in place of the field of complex numbers.

Definition 1.22. A (commutative) semi-field (S,⊕,⊗) is a set S endowed with two inner laws ⊕ and ⊗
such that (S,⊗) is an abelian group, and such that ⊕ is associative, commutative, and ⊗ is distributive
with respect to ⊕. By a slight abuse of notation, the set (S∪{0}), where 0 is the additive unit and a zero
element for ⊗, is still called semifield when endowed with the inner laws ⊕, ⊗.

Fields are clearly semifields, and hence Q,R,C are semifields. Examples of semifields which are not
fields are (Q>0,+,×) and (R>0,+,×), to which one can add the zero unit, yielding (Q≥0,+,×) and
(R≥0,+,×). More exotic examples are the so-called tropical semifields. Let A be Z, Q or R; the tropical
semifield At is defined as At = (A,max,+). The additive unit in that case is {−∞}, and we will sometimes
consider At = (A ∪ {−∞},max,+). Tropical semifields arise naturally in the context of valued fields, in
which they encode how valuations behave under addition and multiplication in the field. For example,
tropical semifields appear naturally in the study of functional asymptotics, under the name of max-plus
algebras.



1.3. CLUSTER ALGEBRAS 73

The tropical semifield Rt is the limit of a family of isomorphic semifield structures on R: let ~ ≥ 0
and let R~ = (R,+~,×~) where for a, b ∈ R:

a+~ b = ~ ln

(
exp
(a
~

)
+ exp

(
b

~

))
, (1.26)

a×~ b = ~ ln

(
exp
(a
~

)
× exp

(
b

~

))
= a+ b . (1.27)

When ~ > 0, R~ is isomorphic to (R>0,+,×) whereas R0 = Rt. This is called Maslov dequantization.

We will elaborate on this when discussing cluster varieties, in Chapter 4.

1.3.1 Rank-1 cluster algebras

The tree T1 has exactly two vertices, and thus there are only two seeds and two clusters {a1} and {a′1}.
The extended exchange matrix B̃ is a column with m entries, and with the first entry necessarily 0 by
antisymmetry. The relation of Equation (1.24) in this case reads

a1a
′
1 = M1 +M2 , (1.28)

where M1 and M2 are monomials in the frozen variables a2, . . . , am whose precise expressions depends on
B̃. The corresponding rank-1 cluster algebra A is the R-subalgebra of F generated by a1 and a′1 subject
to Equation (1.28):

C[a1, a2, . . . , am] ⊂ A = C
[
a1,

M1 +M2

a1
, a2, . . . , am

]
⊂ C(a1, . . . , am) . (1.29)

Consider for example the quiver on the left of Figure 1.12, where the only mutable vertex is the node
1 and the frozen vertices are the boxes 2, 3 and 4.

Figure 1.12: A quiver defining a rank-1 cluster algebra.

The mutation at 1 yields the opposite quiver (where all arrows are reversed). The mutation rule in
that case is:

a′1 =
a3a4 + a2

2

a1
, (1.30)

and mutating again at 1′ yields:

a′′1 =
a2

2 + a3a4

a′1
= a1 , (1.31)

This is a general fact: the mutation rules imply straightforwardly that if k is a mutable vertex in a quiver
and if k′ is the corresponding vertex in the mutated quiver, then µk′ ◦ µk is the identity transformation
on the cluster. Hence in that case the cluster algebra corresponding to this quiver is

A = C
[
a1,

a3a4 + a2
2

a1
, a2, a3, a4

]
. (1.32)



74 CHAPTER 1. CLUSTER ALGEBRAS

1.3.2 Rank-2 cluster algebras without frozen variables

We start by studying rank-2 cluster algebras without frozen variables. Any 2 × 2 skew-symmetrizable
matrix with integer entries writes:

±B(b, c) = ±
[

0 b
−c 0

]
, (1.33)

where b, c ∈ Z are either strictly positive or zero. The mutation of such matrices at 1 or 2 is merely
multiplication by −1.

Let A(b, c) be the cluster algebra corresponding to the seed pattern defined by the matrix of Equa-
tion (1.33). The case b = c = 0 is not particularly interesting, and hence we assume that b, c > 0. Let us
start with a seed ((a1, a2), B(b, c)). A mutation at 1 yields the seed ((a′1 =: a3, a2),−B(b, c)), where

a3 =
ac2 + 1

a1
. (1.34)

Mutating at 2 this new seed yields ((a3, a
′
2 := x4), B(b, c)), where

a4 =
ab3 + 1

a2
. (1.35)

Doing this over and over again in both directions (one can also mutate the original seed at 2 to obtain
a0, and so on), one obtains a sequence (..., a0, a1, a2, a3, a4, ...) where for all i ∈ Z, the cluster variable ai
is a rational fraction in a1 and a2. Part of the seed pattern is shown in Figure 1.13.

Figure 1.13: The general form of the seed pattern for a rank-2 cluster algebra.

The exchange relation is:

ak−1ak+1 =

{
ack + 1, (k even)

abk + 1, (k odd)
. (1.36)

1. The cluster algebra A(1, 1) is said to be of type A2. The exchange relation yields the following
5-periodic sequence of cluster variables:

..., a1, a2,
a2 + 1

a1
,
a1 + a2 + 1

a1a2
,
a1 + 1

a2
, a1, a2, ... . (1.37)

Hence:

C[a1, a2] ⊂ A(1, 1) = C
[
a1, a2,

a2 + 1

a1
,
a1 + a2 + 1

a1a2
,
a1 + 1

a2

]
⊂ C(a1, a2) . (1.38)

2. The cluster algebra A(1, 2) is said to be of type B2. The exchange relation yields:

A(1, 2) = C
[
a1, a2,

a2
2 + 1

a1
,

1 + a1 + a2
2

a1a2
,

2a1 + a2
1 + a2

2 + 1

a1a2
2

,
a1 + 1

a2

]
. (1.39)

3. The cluster algebra A(1, 3) is said to be of type G2. The exchange relation yields:

A(1, 3) = C
[
a1, a2,

1 + a3
2

a1
,

1 + a1 + a3
2

a1a2
,

1 + 2a3
2 + a6

2 + 3a1 + 3a1a
3
2 + 3a2

1 + a3
1

a2
1a

3
2

,

1 + 2a1 + a2
1 + a3

2

a1a2
2

,
1 + 3a1 + 3a2

1 + a3
1 + a3

2

a1a3
2

,
1 + a1

a2

]
. (1.40)
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4. When b = 1 and c = 4, applying repeatedly the exchange relation of Equation (1.36) gives rise to
a non-periodic sequence of cluster variables, hence the corresponding cluster algebra A(1, 4) is a
polynomial algebra over countably many rational fractions in a1 and a2. In general, if the sequence
of cluster variables is periodic, one says that the corresponding cluster algebra is of finite type. For
example, A(1, 1), A(1, 2) and A(1, 3) are of finite type, but not A(1, 4). Cluster algebras of finite
type have been classified in [FZ03], and are in one-to-one correspondence with the Dynkin diagrams
of finite dimensional simple Lie algebras.

1.3.3 A rank-2 cluster algebra with frozen variables

Now let us consider a rank-2 cluster algebra with frozen variables. The quiver, the sequence of muta-
tions generating all cluster variables as well as the clusters generated via these mutations are shown in
Figure 1.14.

Figure 1.14: A quiver with mutable and frozen vertices generating a cluster algebra.

As before, mutable vertices are represented as circles and labeled 1 and 2, while frozen vertices are
represented as squares and labeled 3, 4, 5, 6, 7. The cluster and frozen variables corresponding to the
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upper-left quiver in Figure 1.14 are denoted a1, a2, a3, a4, a5, a6, a7. Note that after doing the sequence
of mutations µ1 ◦ µ2 ◦ µ1 ◦ µ2 ◦ µ1 on the upper-left seed one obtains a seed which is exactly the one we
started with, up to the exchange of the labels on the nodes 1 and 2. This is the simplest example of the
pentagon relation, which holds in general: given two vertices i and j of a quiver connected by a simple
arrow, the sequence of mutations µi ◦ µj ◦ µi ◦ µj ◦ µi is an automorphism of the seed.

The cluster algebra corresponding to the upper-left seed in Figure 1.14 is:

A = C
[
a1, a2, a3, a4, a5, a6, a7,

a2a3 + a4a7

a1
,
a2a3a6 + a4a6a7 + a1a5a7

a1a2
,
a4a6 + a1a5

a2

]
. (1.41)

Comparing this cluster algebra to A(1, 1) one sees that the variables assigned to frozen vertices appear as
coefficients. One can specialize the values of a3, . . . , a7 to 1, in which case one is exactly left with A(1, 1).

Each quiver appearing in Figure 1.14 is the quiver corresponding to a triangulation of some pentagon,
hence it is natural to expect some relationship between the cluster algebra of Equation (1.41) and the
Grassmannian Gr2,5(C). Indeed, this cluster algebra is the ring O(Gr2,5(C)) of regular functions over
Gr2,5(C), as explained in [Mar14]. One can identify the cluster and frozen variables with Plücker variables
in the following way: a = P12, b = P23, c = P34, d = P45, e = P15, x = P25, y = P35. One can then read
directly on Figure 1.14 all the relations between Plücker coordinates. For example:

P14 =
P12P45P35 + P23P45P15 + P34P15P25

P25P25
. (1.42)

We could consider any seed as the initial one - for example, the one corresponding to the extended
cluster: (

a2a3 + a4a7

a1
,
a2a3a6 + a4a6a7 + a1a5a7

a1a2
, a3, a4, a5, a6, a7

)
. (1.43)

Let us rename these indeterminates (a′1, a
′
2, a3, a4, a5, a6, a7). Then the cluster algebra in Equation (1.41)

can be equivalently be described as:

A = C
[
a′1, a

′
2, a3, a4, a5, a6, a7,

a′2a4 + a3a5

a′1
,
a′2a4a7 + a3a5a7 + a′1a3a6

a′1a
′
2

,
a5a7 + a′1a6

a′2

]
. (1.44)

The totally positive Grassmannian Gr+
2,5 can be described as the points in Gr2,5(C) such that a1, a2, a3, . . . , a7

are all either positive or negative. Equivalently, it is also the elements in Gr2,5(C) such that a′1, a
′
2, a3, . . . , a7

are either all positive or all negative. The structure of the cluster algebra encodes conveniently the pos-
itive part of Gr2,5: a point is in Gr+

2,5 if and only if the elements in one (equivalently, any) extended
cluster of O(Gr2,5(C)) are all positive at it (or all negative). Each extended cluster can be understood as

defining an (R>0)
7
-chart on Gr2,5(C), with the elements of the extended cluster as coordinate functions.

Transition functions between cluster charts are obtained as sequences of mutations. Hence, a point in
the Grassmanian is in Gr+

2,5 if and only if its coordinates in one (equivalently, any) cluster chart are all
positive or all negative.

One can define the totally non-negative Grassmanian (Gr2,5)≥0 as the subset of Gr2,5(C) consisting of
those elements such that their Plücker coordinates are all either in R≥0 or in R≤0. Again, extended clusters

form (R≥0)
7
-charts on (Gr2,5)≥0. However, some of the points in (Gr2,5)≥0 which are not totally positive

do not belong to all charts: for example, the point defined by the coordinates (a1, a2, a3, a4, a5, a6, a7) =
(0, 3, 1, 2, 1, 2, 1) in a first cluster chart corresponds to the points with coordinates

(
a1a5 + a4a6

a2
, a1, a3, a4, a5, a6, a7

)
= (4/3, 0, 1, 2, 1, 2, 1) (1.45)

in this second chart, but it does not correspond to any point in the third chart parameterized by
(
a2a3 + a4a7

a1
, a2, a3, a4, a5, a6, a7

)
, (1.46)

i.e. it is ‘at infinity’. Formally, the totally non-negative Grassmannian can be described by charts to
(R≥0)

7
with transition functions which are birational isomorphisms. We will make these ideas precise in

Chapter 4.

Looking at all the examples we have seen so far, one fact is striking: the cluster variables obtained
through repeated mutations on an initial seed all seem to belong to C[a±1

1 , . . . , a±1
n , an+1, . . . , am], where

(a1, . . . , an, . . . , am) is the initial extended cluster. This is surprising: looking at the mutation formula of
Equation (1.24), one merely expects the cluster variables to belong to C(a1, . . . , an, . . . , am).
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1.4 The Laurent phenomenon

Theorem 1.23. Let A be a cluster algebra of rank n > 0, let Tn be the n-regular tree underlying the
seed pattern of A and let t0 ∈ Tn with (ã0, B̃0) the extended cluster at t0, where ã0 = (a1, ..., am) and
B̃0 = (bij)m×n, as before. If t ∈ Tn is any other vertex of the seed pattern of A and if a is a cluster
variable at t, then:

a ∈ C[a±1
1 , . . . , a±1

n , an+1, . . . , am] (1.47)

In particular, frozen variables do not appear in the denominators of the Laurent polynomials.

Partial proof. It is clear from the mutation formula of Equation (1.24) that

a ∈ C(a1, . . . , an, an+1, . . . , am) . (1.48)

Let us consider the unique path in Tn which connects t0 to t and let d ∈ Z>0 be its length. Let
j, k ∈ [|1, n|] be the labels assigned to the first two edges of this path as one goes from t0 to t:

t0 t1 t2 ... t
j k

. (1.49)

By definition of the seed pattern, one has j 6= k. The proof goes by induction on d.

If d = 1 and d = 2, the result of the theorem follows directly from the exchange formula of Equa-
tion (1.24). Let us now assume that d ≥ 3. The proof of [FZ02, FWZ06] distinguishes the cases
bjk = bkj = 0 and bjkbkj < 0. In the latter case the proof is more subtle and longer than the in the
former, even if the strategy is similar. For conciseness, we will only discuss the case bjk = bkj = 0 for
which the strategy is already very instructive. The other case is lengthier but the strategy is similar. For
the complete proof of the theorem we refer to [FWZ06].

Let us assume that the result of the theorem holds for paths of length d− 1, and let t3 be the vertex
of Tn connected to t0 by a k-edge:

t3 t0 t1 t2
k j k

. (1.50)

Since bjkbkj = 0 one has µj ◦ µk(ã0, B̃0) = µk ◦ µj(ã0, B̃0). This follows from Proposition 1.15 for the
skew-symmetrizable matrix part, and from the exchange formula for the extended cluster part. Hence
µk(ã0, B̃0) = µj ◦µk ◦µj(ã0, B̃0), and the seed at t3 is the same as the seed at the vertex of Tn connected
to t2 by an edge labeled j. Both seeds at t1 and t3 are at a distance d− 1 away from a seed containing a
and hence the induction hypothesis implies that:

a ∈ C
[
a±1

1 , . . . , a±1
j−1, (a

′
j)
±1, a±1

j+1, . . . , a
±1
n , an+1, . . . , am

]
, (1.51)

where

a′j =
M1 +M2

aj
(1.52)

with M1,M2 ∈ C[a1, ..., am], and also as an element

a ∈ C
[
a±1

1 , . . . , a±1
k−1, (a

′
k)±1, a±1

k+1, . . . , a
±1
n , an+1, . . . , am

]
, (1.53)

where

a′k =
M3 +M4

ak
(1.54)

with M3,M4 ∈ C[a1, ..., am]. Hence we can write

a =
P (a1, . . . , am)

Q(a1, . . . , an)(M1 +M2)u
=

R(a1, . . . , am)

S(a1, . . . , an)(M3 +M4)v
, (1.55)

where P,R ∈ C[a1, . . . , am]; Q,S ∈ C[a1, . . . , an] are monomials and u, v ∈ Z≥0. Note that if (M1 +M2)
and (M3 + M4) were coprime then one would necessarily have u = v = 0, but this does not hold in
general.



78 CHAPTER 1. CLUSTER ALGEBRAS

Let us now add two additional frozen variables am+1 and am+2 at t0, in such a way that bj,m+1 = 1
and bi,m+1 = 0 for i 6= j, as well as bk,m+2 = 1 and bi,m+2 = 0 for i 6= k. Modify the seed pattern and the
cluster algebra correspondingly. What is above is left unchanged upon the addition of am+1 and am+2,
and hence:

a =
P ′(a1, . . . , am, am+1, am+2)

Q′(a1, . . . , am)(M1 +M2)u′
=
R′(a1, . . . , am, am+1, am+2)

S′(a1, . . . , am)(M3 +M4)v′
, (1.56)

where P ′, R′ ∈ C[a1, . . . , am, am+1, am+2]; Q′, S′ ∈ C[a1, . . . , an] are monomials, and u′, v′ ∈ Z≥0.
From the mutation formula of Equation (1.24), one knows that M1 +M2 ∈ C[a1, ..., am] is a binomial

of degree 1 in am+1 (resp. degree 0 in am+2), while M3 +M4 ∈ C[a1, ..., am] is a binomial of degree 0 in
am+1 (resp. degree 1 in am+2). Both are thus irreducible and coprime; subsequently, one has u′ = v′ = 1.
Specializing am+1 and am+2 to 1 now implies that:

a ∈ C
[
a±1

1 , . . . , a±1
n , an+1, . . . , am

]
. (1.57)

This concludes the induction step of the proof, and thus proves the theorem in the case bjkbkj = 0.

1.5 Three amusing consequences of the Laurent phenomenon

In this section we mostly follow [Mar14].

1.5.1 The Somos-4 sequence

We have already emphasized that the Somos-4 quiver (shown in Figure 1.5) has the special property that
the mutation at 1 yields the same quiver rotated by −π/2. Let us start with a seed ((a1, a2, a3, a4), B),
where B corresponds to this quiver, and where the cluster variables a1, a2, a3, a4 correspond to the vertices
with labels as in Figure 1.5. Mutation in the direction 1 yields the seed ((a5 := a′1, a2, a3, a4), B′), where:

a5a1 = a2a4 + a2
3 , (1.58)

and where B′ is the matrix obtained from B by permuting the lines as well as the rows, as (1, 2, 3, 4)→
(2, 3, 4, 1). One can then mutate at 2, which yields the new cluster variable

a6a2 = a3a5 + a2
4 . (1.59)

Repeating this procedure yields a sequence of cluster variables (an)n≥1 such that

an+4an = an+1an+3 + a2
n+2 . (1.60)

The Somos-4 sequence is defined by the recurrence relation of Equation (1.60) and a1 = a2 = a3 =
a4 = 1. It consists a priori of rational numbers, however Theorem 1.23 implies that each cluster variable
an is a Laurent polynomial in a1, a2, a3, a4, and hence the Somos-4 sequence consists only of integers.

1.5.2 Euler’s counterexample of the primality of Fermat numbers

Euler disproved Fermat’s conjecture that all numbers of the form Fn = 22n + 1 are prime numbers, by
pointing out that

F5 = 232 + 1 = 641 · 6700417 . (1.61)

This equality can be obtained in the context of cluster algebras. In this example we need to consider
quivers with multipliers, encoding skew-symmetrizable matrices as at the end of Section 1.2. Let us start
with the extended seed

σ̃ =


ã = (a1, a2, aA), B̃ =




0 4
−1 0
1 −3




 , (1.62)

encoded in the leftmost quiver on the top row of Figure 1.15. Multipliers are depicted as numbers in
parentheses near the nodes of the quivers; the arrow multiplicities are shown as numbers on the edges. A
sequence of mutations is presented on the same figure, with the generalized quivers and extended clusters
shown at each step.
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Figure 1.15: A sequence of mutations on an extended seed with generalized quiver.

Let us now specialize the variables in the initial extended cluster to (a1, a2, aA) to (3,−1, 16). The-
orem 1.23 implies that every cluster variable appearing somewhere on the seed pattern is of the form
M/3k, where M ∈ Z and k ∈ Z≥0. Under the mutation of the initial seed at 1, the extended cluster
becomes (

a2 + aA
a1

, a2, aA

)
, (1.63)

which is (5,−1, 16) when (a1, a2, aA) = (3,−1, 16). Similarly, Theorem 1.23 implies that every cluster
variable that appear somewhere on the seed pattern is of the form N/5l, where N ∈ Z and l ∈ Z≥0.
Hence we conclude that when (a1, a2, aA) = (3,−1, 16) every cluster variable is an integer.

The extended cluster µ1µ2µ1(a1, a2, aA) when (a1, a2, aA) = (3,−1, 16) becomes:
(

(a2 + aA)3 + a4
1

a2a3
1

,
(a2 + aA)4 + a4

1aA
a2a4

1

, aA

)
= (−128,−641, 16) , (1.64)

hence applying µ2 once more, we obtain a new cluster variable a′2 such that −641 ·a′2 = ((a′1)4 ·aA+ 1) =
(1284 · 16 + 1) = (232 + 1) = F5.

1.5.3 Markov numbers

The Markov quiver shown on the left of Fig. 1.5 is invariant under mutations, therefore exchange relations
will always be of the form a′iai = a2

j +a2
k, for {i, j, k} = {1, 2, 3}. If a specialization of a cluster (a1, a2, a3)

satisfies the Diophantine equation
3a1a2a3 = a2

1 + a2
2 + a2

3 , (1.65)

then the image of this cluster under any mutation is also a solution. For example:

3a1a2a
′
3 = 3a1a2

a2
1 + a2

2

a3
=
(
a2

1 + a2
2 + a2

3

) a2
1 + a2

2

a2
3

=

(
a2

1 + a2
2

)2

a2
3

+ a2
1 + a2

2

= (a′3)2 + a2
1 + a2

2 . (1.66)
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If one specializes (a1, a2, a3) to (1, 1, 1) one obtains a sequence of triples of integers (this is a consequence
of Theorem 1.23) that are all solutions to Equation (1.65).

Equation (1.65) is called the Markov equation. A triple of integers which is a solution of this equation
is said to be a Markov triple, and an element of a Markov triple is a Markov number. It can be shown
that every Markov triple appears as the image of (1, 1, 1) under multiple mutations.

1.6 Y -patterns

Let
(

(a1, . . . , am), B̃ = (bij)
)

be a seed, and for all j ∈ [|1, n|] let

xj =

m∏

i=1

a
−bij
i , (1.67)

so that xj is the ratio of the two monomials that appear in the numerator of the right-hand side of the
exchange relation Equation (1.24) for the mutation at j and the cluster variable aj .

Proposition 1.24. For all j ∈ [|1, n|] let also µk(xj) be the monomial obtained as in Equation (1.67),
but substituting the ai’s for the mutated cluster variables µk(ai) and the matrix (bij) for (b′)ij. Then:

µk(xj) =





x−1
k if k = j,
xj(1 + xk)bkj if j 6= k and bkj ≤ 0 ,
xj(1 + x−1

k )bkj if j 6= k and bkj ≥ 0 .
(1.68)

Proof. Consider first the case j = k. Then

µk(xk) =
∏

i

µk(ai)
−b′ik =

∏

i 6=k

a
−b′ik
i =

∏

i6=k

abiki = x−1
k . (1.69)

Now let us assume that j 6= k. Then

µk(xj) =
∏

i

µk(ai)
−b′ij = µk(ak)bkj


∏

i6=k

a
−bij−sgn(bik)[bikbkj ]+
i




=




∏

i|bik>0

abiki +
∏

i|bik<0

a−biki

xk




bkj 
∏

i 6=k

a
−bij−sgn(bik)[bikbkj ]+
i




=


 ∏

i|bik>0

abiki +
∏

i|bik<0

a−biki



bkj

a
−bij
k


∏

i 6=k

a
−bij−sgn(bik)[bikbkj ]+
i




=


 ∏

i|bik>0

abiki +
∏

i|bik<0

a−biki



bkj (∏

i

a
−bij
i

)(∏

i

a
−sgn(bkj)[bikbkj ]+
i

)

= xj


 ∏

i|bik>0

abiki +
∏

i|bik<0

a−biki



bkj (∏

i

a
−sgn(bkj)[bikbkj ]+
i

)
, (1.70)

and

∏

i

a
−sgn(bkj)[bikbkj ]+
i =






 ∏

i|bik<0

a−biki



−bkj

if bkj < 0,


 ∏

i|bik>0

abiki



−bkj

if bkj > 0,

1 if bkj = 0,

(1.71)
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so that

µk(xj) =





xj(xk + 1)bkj if bkj < 0,
xj(1 + x−1

k )bkj if bkj > 0,
xj if bkj = 0.

(1.72)

One can define Y -seeds and Y -patterns analogously to the above definitions, as in [FZ07].

Definition 1.25. A Y -seed of rank n is a pair (x,B) with x = (x1, . . . , xn) and with B a skew-
symmetrizable n × n matrix (with integer entries). The mutation of a Y -seed (x,B) at k ∈ [|1, n|] is
the Y -seed (x′, B′) such that B′ = µk(B) and x′ is obtained from x via Equation (1.68).

Definition 1.26. A Y -pattern of rank n is a collection of Y -seeds (x(t), B(t))t∈Tn at the vertices of the
n-regular tree Tn with edges labeled in [|1, n|], such that no two edges incident to the same vertex have
the same label, and such that the Y -seeds on two neighboring vertices linked by an edge carrying the label
k are related through the mutation at k.

As in Equation (1.24), the equations of Equation (1.68) are subtraction-free, and hence they make
sense in any semifield. More details on Y -patterns can be found in [FZ07, FWZ06], for example.

∗ ∗ ∗ ∗ ∗ ∗ ∗

Cluster algebras are commutative algebras generated by a family of Laurent polynomials in some inde-
terminates, generated from the latter by mutations. They will play a central role in the following chapters.

In Chapter 2, we will present aspects of the Teichmüller theory of so-called ciliated surfaces, in which
the mutation formulas of Equation (1.24) and Equation (1.68) appear naturally. In Chapter 3, we will
discuss laminations on ciliated surfaces, in which the tropical versions of the mutation formulae appear
naturally. Building on this, cluster varieties will be introduced in Chapter 4. They are the geometric
objects dual to cluster algebras, in an algebro-geometric sense. Fock and Goncharov’s higher Teichmüller
spaces provide examples of cluster varieties; they constitute the core of Chapter 4.

Even if it will be less prominent, cluster algebras and varieties will also be present in Parts II to IV
of this dissertation: under Seiberg dualities on toric phases of worldvolume theories on D3-branes at
toric Calabi–Yau singularities, the rank of gauge groups transform accordingly to the tropical mutation
formula of Equation (1.24).
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Chapter 2

Teichmüller theory

We first introduce the (classical) Teichmüller spaces of smooth oriented surfaces of finite type. A slight
generalization of this class of surfaces, dubbed the class of ciliated surfaces, is then presented. Such
oriented smooth surfaces form a good framework to introduce two variants of the classical Teichmüller
space, namely the Teichmüller space with holes and the decorated Teichmüller space. Both spaces have
interesting coordinates that are naturally associated to the edges of a triangulation of the surface. Under
flips of the triangulations, these coordinates change accordingly to the mutation formulae for Y-patterns
and cluster variables, respectively. Moreover, they are endowed with additional structure: the Teichmüller
space with holes admits a canonical Poisson bracket, while there exist a canonical closed 2-form on the
decorated Teichmüller space.

2.1 Generalities on Teichmüller spaces

This first section is mostly based on [FM11, IT12, TM79].

2.1.1 Hyperbolic geometry

The hyperbolic plane H is the unique complete, simply connected two-dimensional Riemannian manifold
with Riemannian metric dH of constant sectional curvature −1. One model for the hyperbolic plane is
the Poincaré upper half-plane

{
(x, y) ∈ R2| y > 0

}
, endowed with the metric:

ds2 =
dx2 + dy2

y2
. (2.1)

The geodesics in the upper half-plane model are vertical lines and half-circles perpendicular to the real
axis, and hence any two distinct points in R ∪ {∞} are the endpoints of a unique geodesic. Another
model is the Poindaré disk

{
(x, y) ∈ R2| r2 = x2 + y2 < 1

}
, with the metric

ds2 = 4
dx2 + dy2

(1− r2)2
, (2.2)

in which geodesics are arcs and lines in the disk perpendicular to the unit circle in R2, and hence any
two distinct points on the unit circle S1 are the endpoints of a unique geodesic. The map

z 7−→ z − i
z + i

(2.3)

is an isometry from the half-plane to the disk model of H.
Let us define an equivalence relation on the space of unit-speed half geodesics γ : [0,∞[→ H by

imposing that γ and γ′ are equivalent if there exists D ∈ R>0 such that for all t ∈ [0,∞[:

dH(γ(t), γ′(t)) ≤ D . (2.4)

Definition 2.1. The boundary at infinity ∂∞H of H is the set of equivalence classes of half unit-speed
geodesics in H for the above-defined equivalence relation. One denotes H = H ∪ ∂∞H.

83
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The boundary ∂∞H is naturally identified with R∪{∞} = P1(R) in the half-plane model, and with the
unit circle in the disk model. Moreover, the map of Equation (2.3) extends to the boundary: P1(R)→ S1.

Isometries of H are naturally represented by elements of PSL2(R) acting on H by homographies:
[
a b
c d

]
· z =

az + b

cz + d
, (2.5)

where z ∈ C is such that Im(z) > 0, and where ad−bc = 1. This action extends to ∂∞H, and hence every
isometry of H is a homeomorphism from the closed unit disk in C to itself. Brouwer fixed point theorem
then implies that it has a least one fixed point in H. At such a fixed point z0 Equation (2.5) becomes

P (z) := cz2
0 + (d− a)z0 − b = 0 , (2.6)

and three cases can be distinguished.

• P has two conjugated roots in C, with exactly one in H. Equivalently, (d − a)2 + 4bc < 0 from
which one deduces that (d + a)2 < 4 since ad − bc = 1, and hence |d + a| < 2. The corresponding
elements of PSL2(R) are said to be elliptic. They are rotations about their fixed point.

• P has a double real root. This is equivalent to having the absolute value of the trace equal to 2;
the corresponding elements in PSL2(R) are said to be parabolic.

• P has two distinct real roots. This is equivalent to having the absolute value of the trace strictly big-
ger than 2; the corresponding elements in PSL2(R) are said to be hyperbolic. Hyperbolic isometries
of H have a unique geodesic orbit, shown in as dotted red lines in Figure 2.1.

It follows from Equation (2.6) that the only element in PSL2(R) which fixes three distinct points or
more in H is the identity. The orbits of typical elliptic, parabolic and hyperbolic elements in PSL2(R)
acting on the half-plane or disk models of H are shown in Figure 2.1, where the boundary ∂∞H is shown
as a dashed line.

Figure 2.1: Orbits of an elliptic (left), parabolic (middle) and hyperbolic (right) element in PSL2(R).

Let now S be a hyperbolic oriented compact smooth surface, i.e. a two dimensional oriented compact
Riemannian smooth manifold with metric of constant sectional curvature −1. Its universal cover is H.

Proposition 2.2 (Prop 5.3.1 in [TM79]). Let α ∈ π1(S) be a free homotopy class of closed curves in S.
There exists a unique geodesic in α.

Let us assume that S has a non-empty boundary, and let β ∈ π1(S, {p0, p1}) be a homotopy class of
curves in S from p0 ∈ ∂S to p1 ∈ ∂S such that the preimages of p0 and p1 under the covering map H→ S
lie on ∂∞H, and considered relatively to {p0, p1}. There exists a unique geodesic in β.
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Proof. Let Mα ∈ PSL2(R) be the covering automorphism of H corresponding to α. It cannot be elliptic
since S is smooth. It cannot be parabolic, for otherwise there would be simple closed curves in α of
arbitrarily small length, which goes against the fact that S is compact. Hence Mα is a hyperbolic
element of PSL2(R), and it preserves a unique geodesic which projects to a closed geodesic on S in the
homotopy class α. The geodesics γ and γ′ corresponding to two hyperbolic elements Mα and Mα′ in
PSL2(R) project to the same geodesic in S if and only if there is a covering transformation which maps
the first to the second, i.e. α′ = gαg−1 for g ∈ π1(S), which is equivalent to α′ and α being in the same
free homotopy class.

Let p̃0 (respectively p̃1) be a preimage of p0 (respectively p1) under the covering map H → S. The
points p̃0 and p̃1 are distinct points on ∂∞H. There exists a one-parameter family of hyperbolic elements
in PSL2(R) which preserves p̃0 and p̃1 and fixes a unique geodesic from p̃0 to p̃1 (again shown as dotted
red lines on the right of Figure 2.1). This geodesic projects to a geodesic on S in the class β. If p̃′0 and
p̃′1 are two other lifts of p0 and p1 in ∂∞H, the unique geodesic from p̃′0 to p̃′1 projects to a geodesic in
β if and only if it is related to the unique one from p̃0 to p̃1 by a covering transformation, which implies
that both geodesics in H project to the same one in S.

Let us now turn to the definition of horocycles, which are central objects in the definition decorated
Teichmüller spaces.

Definition 2.3. The horocycle in H at A ∈ P1(R) = ∂∞H and going through M ∈ H is the limit of the
family of hyperbolic circles in H going through M as their hyperbolic center tends to A. Equivalently, it
is an orbit of a parabolic element in PSL2(R) stabilizing A (see Figure 2.1).

In the half-plane model and the disk model of H, hyperbolic circles are euclidean circles tangent at
a point of the boundary ∂∞H: a horocycle at A ∈ R ⊂ P1(R) is a circle (hyperbolic, or equivalently,
euclidean) in the upper half-plane H and tangent to the real axis at A. A horocycle at ∞ ∈ P1(R) is a
horizontal line in the upper half-plane. Any horocycle at A is orthogonal to every geodesic in H that has
A as one of its endpoint. Moreover, the following holds.

Proposition 2.4. Let H1 and H2 be two horocycles based at the same point A ∈ P1(R), and let p and p′

be two points on H1. Then dH(p,H2) = dH(p′, H2).

There is a convenient description of the set of horocycles [FG07]:

Proposition 2.5. The map

(
R2 − {(0, 0)}

)
/± 1 −→ {Horocycles in H} (2.7)

which associates to (x, y) ∈
(
R2 − {(0, 0)}

)
the horocycle at x/y ∈ P1(R) and of euclidean diameter y−2

(when y = 0 it is x−2 which plays the role of y−2) is a canonical isomorphism equivariant with respect to
the action of PSL2(R).

2.1.2 Generalities on Teichmüller spaces

Three definitions of the Teichmüller space of a smooth oriented surface. Let S be an oriented
smooth surface. A marked complex structure on S is a pair (X, fX) where X is a Riemann surface and
fX : S → X is an orientation preserving diffeomorphism. Two marked complex structures (X, fX) and
(Y, fY ) on S are said to be equivalent if fY ◦ f−1

X : X → Y is isotopic to a biholomorphic map.

Definition 2.6. The Teichmüller space T (S) of S is the space of equivalence classes of marked complex
structures on S.

For example, T (S2) is a point, T (R2) consists of two points representing the complex plane and the
Poincaré disk, and T (T 2) = H.

Let now Diff(S) be the group of orientation-preserving diffeomorphisms of S, and let Diff0(S) be the
normal subgroup of Diff(S) consisting of the diffeomorphisms of S isotopic to Id. The mapping class
group MCG(S) of S is the quotient group Diff(S)/Diff0(S). The mapping class group MCG(S) acts on
T (S) by changing the marking, and the quotientM(S) = T (S)/MCG(S) is naturally identified with the
moduli space M(S) of complex structures on S. In the case of the torus T2, the mapping class group is
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PSL2(Z) and M(T2) = H/PSL2(Z).

Let us now recall the following fundamental theorem, for the proof of which we refer to the references
listed in [IT12, Section 2.1].

Theorem 2.7 (Uniformization theorem). Every simply connected Riemann surface is biholomorphically
equivalent to the complex sphere P1(C), the complex plane C or the upper half-plane H.

The data of a Riemannian metric ds2 on an oriented 2-manifold S induces a complex structure on
S through isothermal coordinates [IT12, Section 1.5]. Depending on whether the universal cover of the
Riemann surface constructed from (S, ds2) is P1(C), C or H respectively, one can show that there is a
unique metric on S of constant curvature 1, 0 or −1 respectively, in the same conformal class as ds2.
Which of these three simply-connected Riemann surface is the universal cover of a given compact Riemann
surface depends only on the Euler characteristic χ(S) of S: if χ(S) > 0 the universal cover is P1(C), if
χ(S) = 0 it is C and if χ(S) < 0 it is H. If S is closed then χ(S) = 2− 2g where g is the genus of S.

Let R′ and S′ be two Riemann surfaces whose complex structures are induced by the Riemannian
metric of two oriented Riemann 2-manifolds (R,ds2

R) and (S, ds2
S). Then, a map f : R→ S is a conformal

isomorphism if and only if f : R′ → S′ is a biholomorphism [IT12, Theorem 1.7]. Hence the Teichmüller
space of a smooth surface S can be defined as follows.

Definition 2.8. If χ(S) < 0 (respectively χ(S) = 0, χ(S) > 0), the Teichmüller space of S is the space
of metrics of constant curvature −1 (respectively 0, 1) with which S can be endowed, up to Diff0(S): two
metrics ds2 and (ds′)2 on S are equivalent is there exists f ∈ Diff0(S) such that f : (S,ds2) −→ (S, (ds′)2)
is a conformal isomorphism.

Regarding this definition and having already described the Teichmüller spaces of the sphere and the
torus, we will assume in the sequel that χ(S) < 0 1. A Riemannian metric of constant curvature −1 on a
smooth oriented surface S is said to be hyperbolic. By extension, a smooth oriented surface S such that
χ(S) < 0 will also be said hyperbolic. When S is closed and oriented, χ(S) < 0 is equivalent to g ≥ 2. If
S is obtained by removing k disjoint open disks to the closed oriented surface of genus g, in which case
S is said to be of finite type, one has:

χ(S) = 2− 2g − k . (2.8)

Except when g = 0 and k ≤ 2 or g = 1 and k = 0, the Euler characteristic of S is negative; in other
words, being hyperbolic is the norm.

The universal covering transformation group Γ of a hyperbolic surface of finite type S endowed with
a hyperbolic metric is a subgroup of Aut(H) and acts properly discontinuously on H.

Theorem 2.9 (2.5 in [IT12]). For all p ∈ S, the group Γ is isomorphic to the fundamental group π1(R, p).

There is a natural topology on PSL2(R) induced by the one on SL2(R): a sequence (An)n≥1 ∈ SL2(R)
converges to A ∈ SL2(R) if and only if the entries of (An) converge to the entries of A. This topology
coincide with the compact-open topology on PSL2(R) = Aut(H). If a subgroup Γ of PSL2(R) is discrete
with respect to it, it is called a Fuchsian group.

Theorem 2.10 (2.17 in [IT12]). Let Γ be a subgroup of PSL2(R) = Aut(H). The following are equivalent:

1. Γ is Fuchsian.

2. Γ acts properly discontinuously on H.

The Fuchsian group Γ defined as the universal covering group of H → S is called Fuchsian model of
S. We can now state a third definition of Teichmüller spaces.

Definition 2.11. Let S be a smooth oriented surface with χ(S) < 0, p ∈ S and π1(S, p) the fundamental
group of S based at p. The Teichmüller space of S is the space of faithful group morphisms

π1(S, p) −→ PSL2(R) (2.9)

with discrete image, modulo overall conjugation by PSL2(R) (accounting for base point changes)2. The
class of loop surrounding a puncture needs to be mapped to a parabolic element of PSL2(R).

1This case is the most general one: every Riemann surface whose universal cover is not H is either P1(C), C, C− {0} or
a torus [IT12, Theorem 2.15].

2More precisely: the space of discrete and faithful morphisms π1(S, p)→ PSL2(R) modulo PSL2(R)-conjugation consists
of two connected components – one of which is the Teichmüller space. This will be discussed more extensively in Chapter 4.
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The Fricke embedding of T (S). One can choose a normalization of the image of the map in Equa-
tion (2.9) which fixes a representative of the conjugacy class under the global action of PSL2(R). The
free entries of the image of a set of generators of π1(S, p) under the map of Equation (2.9) then form a
set of coordinates for the Teichmüller space T (S).

Let Sg,k be the surface obtained from the closed oriented smooth surface of genus g by removing k
points. The fundamental group of Sg,k can be presented as

π1(Sg,k, p) =

〈
α1, . . . , αg, β1, . . . , βg, γ1, . . . , γk

∣∣∣∣∣

g∏

i=1

αiβiα
−1
i β−1

i =

k∏

i=1

γi

〉
, (2.10)

and any choice of normalization defines an embedding:

T (Sg,k)→ R6g−6+3k , (2.11)

which in turns induces a topology on T (Sg,k) from the one on R6g−6+3k, with respect to which T (Sg,k)
is homeomorphic to R6g−6+3k: topologically, the Teichmüller space is an open ball.

The topology on T (S) can be defined in a more intrinsic way. Consider a point in T (Sg,k), so that
Sg,k is endowed with a hyperbolic structure. Proposition 2.2 tells than in each free homotopy class of
closed curves on Sg,k there exists a unique geodesic for the hyperbolic metric at hand. The hyperbolic
length of this geodesic can be considered as a function

l : T (S) −→ R>0 , (2.12)

and denoting SCC the set of all simple closed curves on S, the map

T (S) −→ RSCC (2.13)

is an embedding. The product topology on RSCC induces a topology on T (S) for which it is homeomorphic
to R6g−6+3k.

Metrics on Teichmüller spaces. There is yet another definition of Teichmüller spaces in terms of
quasiconformal mappings, on which we will not extend (see [IT12, Chapter 4,5,6] for details about this).
Let us only point out that when S is a closed oriented smooth surface there is a natural open embedding
(called the Bers embedding) of T (S) into the space of quadratic differentials on S, which is a complex
space of complex dimension 3g − 3. This endows T (S) with a natural complex structure.

The definition of Teichmüller spaces in terms of quasi-conformal mappings allow the definition of
metrics on T (S). On the first hand, the Teichmüller metric induces the topology on T (S) as defined
above, and T (S) is complete with respect to it. On the other hand, the Weil–Peterson metric is defined
as follows. The tangent space of T (S) at some point (R, f) is identified with the space of quadratic
differentials on S, which is endowed with an L2-hermitian product called the Petersson inner product.
The latter induces the Weil–Peterson metric on T (S); it is a Kähler metric with negative Ricci, scalar
and holomorphic sectional curvatures [IT12, Chapter 8].

Fenchel–Nielsen coordinates. Any decomposition of a hyperbolic surface S of finite type in pairs of
pants yields a set of coordinates on T (S).

A pair of pants is a smooth oriented surface diffeomorphic to a sphere with three holes. Given a pair of
pants P and a, b, c ∈ R>0 there is a unique hyperbolic structure on P such that the boundary components
of P are geodesics of respective hyperbolic length a,b and c. Given two hyperbolic pairs of pants P and
P ′ such that both have a boundary component (denoted C and C ′ respectively) of hyperbolic length
a ∈ R>0, one can glue P and P ′ together by identifying C and C ′. This can be done in R inequivalent
ways ensuring that the hyperbolic metrics on the two original surfaces glue to a hyperbolic metric on the
resulting one. This real parameter is called the twist corresponding to the simple closed curve C = C ′ in
the resulting surface. One can also glue together different boundary components of the same hyperbolic
pair of pants.

In the case of the finite type surface Sg,k obtained by removing k > 0 disks to a genus g ≥ 0 oriented
closed surface where g and k are such that χ(Sg,k) = 2 − 2g − k < 0, one needs 3g − 3 + k simple
closed curves to define a pants decomposition, and the latter contains 2g − 2 + k pairs of pants. The
boundary components of S are hyperbolic geodesics entirely described by their lengths, whereas the
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simple closed curves in the interior of S are assigned a hyperbolic length and a twist parameter; these
are the Fenchel–Nielsen coordinates. They form a chart

R3g−3+2k
>0 × R3g−3+k −→ T (Sg) . (2.14)

An example of a pants decomposition of the closed oriented smooth surface of genus g = 3 is shown on
the left of Figure 2.2, and another of the surface of finite type Sg,k with g = 2 and k = 1 is shown on the
right of Figure 2.2.

Figure 2.2: Hyperbolic lengths are denoted li and ki while the twists are the φi and ψi.

There are in general many different pants decompositions of the same surface, and each one yields a
different set of Fenchel–Nielsen coordinates on the Teichmüller space T (S) of the surface S. These sets
are different global charts on T (S). One can compute the transitions functions from one chart to another.

When S is closed, the mapping class group MCG(S) of S is generated by the Dehn twists about simple
closed curves in S. A Dehn twist about a simple closed curve c on S can be described as follows: let
N ' S1× [0, 1] ⊂ S the a tubular neighborhood of c in S. The Dehn twist about c is the map f : S → S
which is the identity in S −N and defined in N by:

f : (s, t) ∈ S1 × [0, 1] 7−→ (e2iπts, t) . (2.15)

In the remainder of this chapter we are going to introduce two slightly different notions of Teichmüller
spaces, namely Teichmüller space with holes T x(S) and decorated Teichmüller spaces T a(S). They are
defined on ciliated surfaces, i.e. finite type smooth oriented surfaces with marked points on the boundary.
Each version of Teichmüller space is endowed with coordinate systems, which as in the Fenchel-Nielsen
case are associated to decompositions of the surface into elementary pieces – triangles in these cases. The
set of coordinates associated to a given triangulation of a ciliated surface can be seen as a global chart on
the Teichmüller space, and the transition functions between any two charts are sequences of Y-patterns
mutations as in Equation (1.68) and cluster mutations as in Equation (1.24). Hence, both Teichmüller
spaces hint for the notion of cluster varieties, i.e. algebraic varieties whose regular functions are related
to cluster algebras. Teichmüller spaces with holes are endowed with a canonical Poisson bracket (with
Casimirs), whereas on the decorated ones there is a canonical closed 2-form.

We will discuss these two types of cluster Teichmüller spaces in turn, after having defined carefully
ciliated surfaces and studied the notion of triangulation we are interested in.

2.2 Ciliated surfaces and triangulations

2.2.1 Definitions

Definition 2.12. A ciliated surface is a compact oriented smooth surface obtained from a closed oriented
smooth surface by removing a finite number of disjoint open disks and by marking a finite set of points
on the boundary. The latter are called cilia. A boundary component without cilium is said to be a hole.
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Let k ∈ Z≥0 be the number of disjoint open disks one removes from the closed oriented smooth surface
Sg of genus g, and let us label the boundary components of the resulting surface 1, . . . , k in such a way
that 1, . . . , h are holes and with pi ∈ Z>0 the number of marked points on the i-th boundary circle, for
i = h+1, . . . , k. The resulting ciliated surface is completely determined by g, h and the set {ph+1, . . . , pk}
as a smooth (equivalently, topological) surface, and hence we will denote it Sg,h,{ph+1,...,pk} (and Sg,h for
short when there is no cilium). Three examples of ciliated surfaces are shown in Figure 2.3.

Figure 2.3: Three ciliated surfaces.

In the sequel, unless explicitly specified, we will assume every ciliated surface to be non-closed: k ≥ 1,
and hyperbolic: χ(S) < 0. These conditions are equivalent to either g = 0 and k ≥ 3, or g ≥ 1 and k ≥ 1.

Definition 2.13. The boundary of a ciliated surface is the disjoint union of the boundary segments
connecting two adjacent cilia.

Definition 2.14. A triangulation Γ of a ciliated surface S such that k ≥ 1 and χ(S) < 0 is a maxi-
mal isotopy class of non self-intersecting, pairwise non-intersecting and non-isotopic curves on S whose
endpoints are at holes or cilia. A triangulation of S with holes shrunk to punctures decomposes it into
topological triangles such that each vertex is either a cilium or a shrunk hole.

A triangulation of S0,1,{3,5} is shown on the right of Figure 2.3. If Γ is a triangulation of a ciliated
surface S, the curves in Γ are the edges of Γ, the endpoints of these curves are its vertices, while the
connected components of S−Γ are its faces. One can distinguish the external edges, which belong to the
boundary of S, and the other edges, dubbed internal edges.

Let V (Γ), E(Γ), F (Γ), Ee(Γ), Ei(Γ) be respectively the set of vertices, edges, faces, external edges
and internal edges of Γ, and for each such finite set A let #A denote the cardinal of A. Let also c =

∑
pi

be the total number of cilia in S. One has:

#Ee(Γ) = c , (2.16)

#V (Γ) = h+ c (2.17)

by Definition 2.14. The Euler characteristic of S with shrunk holes is

#F (Γ)−#E(Γ) + #V (Γ) = 2− 2g + h− k , (2.18)

and since Γ decomposes S in triangles:

3#F (Γ) = 2#E(Γ)−#Ee(Γ) = 2#E(Γ)− c . (2.19)
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From these two last equations one deduces that:

#E(Γ) = 6g − 6 + 2c+ 3k , (2.20)

#Ei(Γ) = 6g − 6 + c+ 3k , (2.21)

#F (Γ) = 4g − 4 + c+ 2k . (2.22)

Hence #E(Γ), #Ee(Γ), #Ei(Γ), #V (Γ), #F (Γ) are entirely determined by the topology of S.

The number of distinct triangulations of a ciliated surface is in general infinite, except for S0,0,{p}
and S0,1,{p} with p ≥ 1. Two triangulations, respectively of S0,0,{5} and S0,1,{4} are shown in Figure 2.4,
together with their corresponding quiver constructed as in Section 1.2. The mutable part of the quiver
on the left of Figure 2.4 is a Dynkin quiver of type A2, and the one on the right of Figure 2.4 is a Dynkin
quiver of type D4; the corresponding cluster algebras are of finite type as proved in [FZ03].

Figure 2.4: A triangulation of S0,0,{5} (left) and of S0,1,{4} (right).

The following classical result will be of prime importance to us, since the coordinates to be constructed
on T x(S) and T a(S) are associated to the edges of a triangulation Γ of S. It implies that in order to
compute the transition function between any two charts, i.e. any two triangulations of S, one only needs
to know what the transition function is when the two triangulations are related by a mere flip of an
internal edge.

Theorem 2.15 ([Mos88, Hat91, Bur99]). Any two triangulations of ciliated surface can be related through
a finite sequence of flips (or Whitehead moves) displayed in Figure 2.5.

2.2.2 Combinatorial type of a triangulation

While there are, in general, infinitely many inequivalent triangulations of a fixed ciliated surface S, the
number of different combinatorial types of triangulations of S is always finite. The combinatorial type of
the triangulation corresponds exactly to what is encoded in the quiver dual to it.

As in Section 1.2 the quiver corresponding to a triangulation can be equivalently described as a
skew-symmetric extended exchange matrix. In the sequel we will denote the edges of a triangulation
α, β, γ ∈ E(Γ), and the extended exchange matrix will be written εαβ . It is straightforward to check that:

εαβ =
∑

i∈F (Γ)

〈α|i|β〉 , (2.23)
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Figure 2.5: A flip of a triangulation at the inner edge e.

where 〈α|i|β〉 = +1 if α and β are two sides of the face i and if β is the edge directly after α with respect
to their common vertex, in the clockwise direction. Likewise, 〈α|i|β〉 = −1 if α and β are two sides of the
face i and if β is the edge directly after α with respect to their common vertex, in the counterclockwise
direction. The extended exchange matrix ε encoding the topology of the triangulation is rectangular
E(Γ) × Ei(Γ) (since external edges of Γ cannot be flipped), and its entries belong to {0,±1,±2}. For
example, the exchange matrices corresponding to the triangulations of S0,0,{5} and S0,1,{4} shown in
Figure 2.4 are respectively:




0 1
−1 0
−1 0
1 −1
0 1
0 −1
1 0




and




0 1 0 0
−1 0 −1 1
0 1 0 0
0 −1 0 0
−1 0 0 0
1 −1 0 0
0 0 1 −1
1 0 0 0




. (2.24)

Triangulations of ciliated surfaces can be flipped at internal edges α as shown in Figure 2.5. There
is a natural identification between the edges of the original triangulation and the edges of the resulting
one, and hence there is a natural choice of edge labels after a flip, in terms of the ones before the flip.
The extended exchange matrix varies in the following way under the flip of some edge α ∈ Ei(Γ):

(ε′)βγ =

{
−εβγ if α = β or α = γ
εβγ + sgn(εβα)[εβαεαγ ]+ otherwise

, (2.25)

i.e. just as in Equation (1.14). If α ∈ Ei(Γ) we will denote µα the flip at α so that we can write:

µα : Ei(Γ) −→ Ei(µα(Γ)) . (2.26)

Proposition 2.16. Let α, β ∈ Ei(Γ). Under the identification of the edges of a triangulation Γ with the
edges of the triangulation obtained by the flip of an internal edge, one has:

1. µα ◦ µα = Id,

2. If εαβ = 0, then µα ◦ µβ = µβ ◦ µα: flips at disjoint edges commute.

Let us emphasize once more that distinct triangulations can have the same combinatorial type. For
example the two triangulations of the once-punctured torus shown in Figure 2.6 cannot be deformed one
into the other, however they have the same topological type, which corresponds to the Markov quiver.
We have seen in Section 1.2 that this quiver is invariant under mutations, and therefore the topological
type of any triangulation of S1,1 is described by the Markov quiver.
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Figure 2.6: Two different triangulations of S1,1.

2.2.3 Mapping class groups of ciliated surfaces

Definition 2.17. The mapping class group MCG(S) of a ciliated surface S is the group of connected
components of the diffeomorphisms of S preserving the orientation and the set of cilia.

Let us quickly and without proof present the description of the modular groupoid of S given in [FG07,
Appendix A]. A groupoid is a category G where all morphisms are invertible and where any two objects
are isomorphic. To each such category one can associate a group called the fundamental group of the
groupoid since for all A,B ∈ Ob(G) the automorphism groups Hom(A,A) and Hom(B,B) are isomorphic.
For example, the fundamental groupoid of a topological space X has the points of X as objects, and for
all x, y ∈ X, Hom(x, y) is the set of homotopy classes of paths from x to y. From the definition it is
clear that Hom(x, x) = π1(X,x) and Hom(y, y) = π1(X, y). Any φ ∈ Hom(x, y) induces an isomorphism
Hom(y, y)→ Hom(x, x).

Let Tr(S) be the set of pairs (Γ, f) where Γ is a triangulation of S and f is a marking of the edges of
Γ, i.e. an isomorphism:

f : E(Γ) −→ {1, . . . , 6g − 6 + 2c+ 3k} . (2.27)

A pair (Γ, f) is said to be a marked triangulation of S. Let also |Tr|(S) be the set of combinatorial classes
of triangulations of S. The mapping class group of S acts freely on the set of marked triangulations (the
marking deals with possible degeneracies of the action on triangulations with non-trivial automorphism
groups), and:

|Tr|(S) = Tr(S)/MCG(S) . (2.28)

Definition 2.18. The modular groupoid MCG(S) is the category whose set of objects is |Tr|(S) and
where for C1, C2 ∈ |Tr|(S) the set Hom(C1, C2) consists of the classes

[Γ1,Γ2] = MCG(S) · (Γ1,Γ2) , (2.29)

where Γ1 is of type C1 and Γ2 of type C2, and where MCG(S) acts diagonally on the pairs. If Γ1,Γ2 and
Γ3 are triangulations of S then [Γ1,Γ2] ◦ [Γ2,Γ3] = [Γ1,Γ3].

One can check that if Γ1,Γ2 are any two triangulations of S then [Γ1,Γ1] is the identity and [Γ1,Γ2] =
[Γ2,Γ1]−1. Moreover for any C ∈ |Tr|(S) the group Hom(C,C) is isomorphic to MCG(S). There are
morphisms in MCG(S) corresponding to the flips: if Γ is a triangulation of S and if α ∈ Ei(Γ), then
[Γ, µαΓ] is a morphism from the combinatorial type of Γ to the one of µαΓ. The main proposition is:
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Proposition 2.19. The modular groupoid MCG(S) of S is generated by the flips and subjects to the
following three types of relations only:

1. If α ∈ Ei(Γ) and if [Γ, µαΓ] is a flip then [µαΓ,Γ] is also a flip and

[Γ, µαΓ] ◦ [µαΓ,Γ] = Id|Γ| , (2.30)

2. If α, β are disjoint edges in Ei(Γ) then

[µαΓ, µβµαΓ] ◦ [Γ, µαΓ] = [µβΓ, µαµβΓ] ◦ [Γ, µβΓ] (2.31)

where we used implicitly the natural identification E(Γ)→ E(µαΓ),

3. For any α, β ∈ Ei(Γ) such that εαβ = ±1, the triangulations µαµβΓ and µβµα are related by a flip
and:

[Γ, µβΓ] ◦ [µαµβΓ, µβΓ] ◦ [µβµαΓ, µαµβΓ] ◦ [µαΓ, µβµαΓ] ◦ [Γ, µαΓ] = Id|Γ| . (2.32)

This is the pentagon identity that we already encountered in Figure 1.14.

We refer to [FG07, Appendix B] for the proof of this proposition as well as more details on the
combinatorial description of MCG(S).

2.3 Teichmüller X -space (Teichmüller space with holes)

Let S be a ciliated surface (hyperbolic and with k ≥ 1). The Teichmüller space T (S) of S parametrizes
equivalence classes of hyperbolic metrics on S such that the preimages of every cilium under the universal
covering map H −→ S lie on ∂∞H, and such that circles bounding holes are geodesics of finite length
while segments of the boundary between adjacent cilia are geodesics of infinite length. The length of
the geodesic corresponding to a hole can be zero, in which case the hole is actually a puncture. The
Teichmüller space with holes T x(S) is very similar to T (S): it is a ramified cover of it of degree 2h, where
h is the number of holes in S. The only difference between T (S) and T x(S) is that in the latter, a point
also encodes an orientation for each hole which is not a puncture: we will denote it + or − depending
on whether it coincides with the orientation induced by the one of the surface, or not. Studying T x(S)
instead of T (S) allows for the construction of a very nice set of coordinates which behave as Y-patterns,
as already advertised.

Figure 2.7: What a point in T x(S1,2,{3}) corresponds to.

At a generic point of T x(S), the geodesic bounding any hole is a finite non-zero length and hence if
S = Sg,h,{ph+1,...,pk}, there are 2h possible choices of orientation for the holes. All of these project to the
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same hyperbolic metric on S. The covering ramifies over the equivalence classes of hyperbolic metrics on
S for which some holes are cusps. Hence T x(S) is indeed a 2h : 1 ramified cover over the space we are
interested in. An illustration of how one may represent oneself what a point of T x(S1,2,{3}) looks like is
proposed in Figure 2.7. The three cilia are ‘at infinity’ and the segments on the boundary between cilia
are geodesics of infinite length. There is one cusp and one hole which is not a cusp, and which is assigned
the orientation +.

The coordinates on T x(S) that we are going to describe are often called Thurston’s shear coordinates,
and are thourougly reviewed in [Pen87, Foc97, Thu98, FG07, BBFS09]. We follow the presentation of
[FG07].

Let Γ be a triangulation of S. Shear coordinates, to which we will refer as X -coordinates, are assigned
to the internal edge of Γ. They parametrize T x(S).

2.3.1 Parametrization

Coordinates on T x(S) can be constructed as follows. At a point of T x(S), the surface S is endowed
with a hyperbolic structure with respect to which the edges of the triangulation Γ can be taken to be
geodesics, as follows from Proposition 2.2. Note that with that hyperbolic structure, some holes of S are
punctures while the others correspond to a unique geodesic of finite size.

Actually, one can easily assume an edge of Γ to be geodesic only if it connects two cilia, two punctures,
or a puncture to a cilium – since the preimages of punctures and cilia for H→ S lie on ∂∞H. As for the
edges of Γ connecting a puncture or a cilium to a hole or two holes together, one proceeds as follows. For
each hole one considers the unique geodesic surrounding it, and after having chosen an arbitrary point
on it one deforms the edge under consideration to a geodesic there. Then, one rotates this point along
the geodesic in the direction prescribed by the orientation of the hole, infinitely many times. This yields
an limiting geodesic of infinite length, corresponding to the edge of Γ.

After having done this at every hole of S, each face of Γ has become an ideal hyperbolic triangle, i.e.
a hyperbolic triangle with geodesic sides of infinite length homeomorphic to R.

This yields a triangulation of the convex core of S. Starting from any ciliated surface S endowed
with a hyperbolic metric, one can consider the completion S̃ of S from which the convex core of S is
obtained as follows: each hole defines a free homotopy class, in which there is a unique geodesic from
Proposition 2.2. Cut S̃ along this geodesic for each hole, and remove the semi-infinite throats created
by the cuts. What remains is the convex core of S. Therefore, T x(S) describes equivalence classes of
hyperbolic metrics on S such that the boundary components corresponding to holes are geodesics of finite
length (and zero length for the cusps, in which case the boundary component is at infinity). One may
however equivalently think of T x(S) as describing complete hyperbolic metrics on S.

Two ideal hyperbolic triangles can be smoothly glued along an edge in R different ways: one can shear
one triangle with respect to the other along their common edge. Let us lift the triangulation Γ of S to
the universal cover H, and consider two adjacent triangles of this lift. The vertices of this triangulated
quadrilateral are four distinct points on the boundary at infinity x1, x2, x3, x4 ∈ ∂∞H = P1(R) = R∪{∞}
– say that the two triangles have vertices at x1 < x2 < x3 and x1 < x3 < x4, respectively. There exists
a unique element in PSL2(R) which maps (x1, x2, x3) to (∞,−1, 0) since the action of PSL2(R) on ∂∞H
is 3-transitive, as follows from the discussion in Section 2.1.1. Let z ∈ R be the image of x4 under it, as
shown in Figure 2.8: it is the shear parameter associated with this gluing. Since PSL2(R) preserves the
cyclic ordering of triples of points on P1(R) one has z ∈ R>0.

Since the element of PSL2(R) mapping (x1, x2, x3) to (∞,−1, 0) is unique, z is uniquely defined by
the ordered quadruple (x1, x2, x3, x4) and the choice of a first element x1. One may as well take x3 as
first element and consider the quadruple (x3, x4, x1, x2). Then, it is the triangle with vertices x3, x4, x1

which is mapped to ∞,−1, 0 while the second one has vertices at x1, x2, x3. One can check easily that
the shear parameters in both cases actually coincide. Hence the shear parameter we have defined is
PSL2(R)-invariant and depends only on the vertices x1, x2, x3, x4 of the quadrilateral, and on the way it
is triangulated.

Explicitly, one has:

z = − (x1 − x2)(x3 − x4)

(x2 − x3)(x4 − x1)
, (2.33)

and indeed z can be intrinsically defined as (minus) the cross-ratio of the four lines x1, x2, x3, x4 ∈ P1(R).
If x1, x2, x3 and x4 are pairwise distinct, z ∈ R>0.
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Figure 2.8: A normal form for a triangulated quadrilateral in H.

Since H→ S is a local isometry, for any internal edge e ∈ Ei(Γ) one can assign a shear parameter which
is the one corresponding to a lift (equivalently, all of them) of e to H. Shear coordinates corresponding
to the triangulation Γ can be seen as a map

XΓ : (R>0)Ei(Γ) −→ T x(S) . (2.34)

The coordinates on the internal edges of Γ can be expressed as the monodromy of an abelian connection
on an auxiliary bipartite graph ΛB on S, defined as follows. There is one white vertex for each vertex of
Γ, and one black vertex for each face of Γ. There is an edge between a white node and a black one in ΛB
if the vertex of Γ corresponding to the white node belongs to the face of Γ corresponding to the black
one. An example for a triangulation of the pentagon S0,0,5 is shown in Figure 2.9.

Figure 2.9: A bipartite graph (plain lines) from a triangulation of S0,0,5 (dashed lines).

Likewise, one can construct a bipartite graph from the lift of Γ to the universal cover H of S: it is the
lift of ΛB , that we will still denote in the same way. In the universal cover, each white vertex of ΛB is
on the boundary of H and hence it corresponds naturally to a point in P1(R), i.e. to a line in R2. These
are denoted L1, . . . , L5 in Figure 2.9. Each black node of ΛB , or rather, its lift, can also be associated
to a line in R2. Let Li, Lj and Lk be the lines corresponding to the white nodes connected to it, with
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i < j < k. These three lines are in R2, and hence generically the map

Li ⊕ Lj ⊕ Lk −→ R2 (2.35)

has a one-dimensional kernel Lijk, which we associate to the corresponding black vertex, as in Figure 2.9.
The collection of real lines at white and black vertices of ΛB can be considered as a line bundle on ΛB .
Choosing a trivialization of it amounts to pick a non-zero vector in the line at each vertex of ΛB . Upon
such a choice, the natural maps Lijk → Li, Lijk → Lj and Lijk → Lk are represented as non-zero real
numbers that can be assigned to the edges of ΛB with the convention that every edge is oriented from
black to white. Hence we obtain an element of (R×)E(ΛB).

Changing the trivialization amounts to an action of (R×)V (ΛB) on (C×)E(ΛB). This is a (discrete)
gauge action, and the space of configurations modulo gauge is naturally identified with

H1(ΛB ,R×) , (2.36)

which in turns corresponds to assigning a non-zero real number to each edge of Γ since faces of ΛB corre-
spond to quadruples of white nodes forming a quadrilateral of Γ, and one can show that the monodromy
is minus the cross-ratio of the corresponding four lines. As before, if Li < Lj < Lk < Ll ∈ P1(R), the
monodromy corresponding to this quadruple is in R>0.

This way of computing X -coordinates will be generalized in Section 4.3.3.

2.3.2 Reconstruction

Let us construct the reciprocal of the map of Equation (2.34). More precisely, we are going to explain
how one constructs a Fuchsian model G < PSL2(R) of S from an element (xα)α∈Ei(Γ) ∈ (R>0)Ei(Γ) such
that this is indeed the reciprocal of Equation (2.34).

One wishes to associate an element of PSL2(R) to every closed path on S, using the fact that G acts
as deck transformations of the covering H → S. Every such element will be defined as a product of the
matrices I, I−1 and B(xα) for xα ∈ R>0, where:

I =

(
1 1
−1 0

)
, B(xα) =

(
0 (xα)1/2

−(xα)−1/2 0

)
. (2.37)

Note that both are matrices in PSL2(R). One the one hand, I ∈ PSL2(R) maps (∞,−1, 0) to
(−1, 0,∞) when acting on ∂∞H. On the other hand, B(xα) maps (∞,−1, 0) to (0, xα,∞). In terms
of ideal hyperbolic triangles, I is a counterclockwise rotation of angle 2π/3 of the triangle with vertices
(∞,−1, 0), while B(xα) maps the latter to the triangle with vertices (0, xα,∞).

Let ∆ and ∆′ be two neighbor triangles of the lift of Γ to H sharing a common edge. Suppose that
the latter carries the coordinate xα ∈ R∗+. There exists a unique M∆ ∈ PSL2(R) such that M∆∆ is the
triangle with vertices (∞,−1, 0) and M∆∆′ is the triangle with vertices (0, xα,∞). Thus, the unique
element of PSL2(R) which maps ∆ to ∆′ is

M−1
∆ B(xα)M∆ , (2.38)

and the unique one which rotates cyclically the vertices of ∆ counterclockwise is:

M−1
∆ IM∆ . (2.39)

Let γ be a closed loop on S based at a point in the interior of a face of the triangulation Γ, and lift it
to a path γ̃ in H. This path starts and ends in the interior of faces of the lift Γ̃ of Γ to H. Possibly after an
isotopy of γ̃ in H, one can assume that γ̃ intersects the edges of Γ̃ transversely. Let ∆1, . . . ,∆k, . . . ,∆N

be the faces of Γ̃ met along γ̃. Since γ is closed, ∆1 and ∆N are two lifts of the same face of Γ. We
are going to compute a sequence of elements Id = M1,M

′
2,M2, . . . ,M

′
N ,MN ∈ PSL2(R) such that for

k ∈ [|2, N |] both Mk and M ′k map ∆1 to ∆k, though not in the same way.
Up to PSL2(R) one can assume that ∆1 has vertices (∞,−1, 0) and that the edge through which γ̃

exits this face is the one opposite to −1. This is illustrated in Figure 2.10. One starts with M1 = Id,
which trivially maps (∆1,♣) to (∆1,♣) in a trivial way (♣ marks a vertex, as in the figure).

As γ̃ goes through the edge shared by ∆1 and ∆2 one considers the matrix M ′2 = B(xα). It maps
(∆1,♣) to (∆2,♣) in the only orientation-preserving way.
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Figure 2.10: From shear coordinates to monodromies.

At this point, one would like to rotate ∆2 in such a way that γ̃ exits it through the edge opposite to
the starred vertex. From Equation (2.39) one obtains:

M2 = M ′2I
b (M ′2)

−1
M ′2 = B(xα)Ib , (2.40)

where b = 0, 1 or 2 depending on through which edge γ̃ exits. In Figure 2.10 one has b = 1, and the
matrix B(xα)I maps (∆1,♣) to (∆2,♠).

As γ̃ crosses the edge β shared by ∆2 and ∆3 and corresponding to the shear parameter xβ , Equa-
tion (2.38) implies that

M ′3 = M2B(xβ)M−1
2 = M ′3 = B(xα)IbB(xβ) ∈ PSL2(R) . (2.41)

In Figure 2.10, the matrix M ′3 maps (∆1,♣) to (∆3,♠). One continues likewise until ∆N is reached.

Figure 2.11: The graph Λ constructed from the triangulation Γ of S.
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Building on this, there is a convenient way to compute the monodromy Mγ ∈ PSL2(R) of a closed
loop γ ∈ π1(S) corresponding to a point in T x(S) ' (R>0)Ei(Γ). Let us first define again another graph
Λ on S from the triangulation Γ: one draws a small edge for Λ transverse to each edge of Γ, and connects
the endpoints of these small edges by clockwise oriented edges in each face of Γ. This construction is
displayed in Figure 2.11.

Let γ be a closed loop on S representing [γ] ∈ π1(S). One can isotope it to an oriented loop on Λ,
which can moreover be chosen with the minimal possible edge-length. Let us take an arbitrary vertex
of this path on Λ as starting point, and construct inductively a matrix in PSL2(R) from the identity
element, by following the oriented path on Λ isotopic to γ.

1. Multiply on the right by B(xα) for each edge of Λ transverse to an edge of Γ labeled by a shear
parameter xα ∈ R∗+. Note that B(xα) is its own inverse in PSL2(R) and thus the edges of Λ
transverse to those of Γ do not need to be oriented.

2. Multiply on the right by I (respectively, I−1) for each edge belonging to a small triangle in Λ if the
orientation of the path agrees (respectively, disagrees) with the orientation of the small edge.

For example, an oriented path on Λ is shown on Figure 2.11 as the thick red edges, with the arbitrary
starting point denoted A. The first steps of the construction of the monodromy matrix corresponding to
this path yield

M = IB(x)I−1B(y)IB(z) . . . (2.42)

2.3.3 Flips, hole lengths and Poisson structure

Coordinate transformation under a flip. Given two triangulations Γ1 and Γ2 of Σ, one would
like to relate the set of shear coordinates corresponding to Γ1 and the one corresponding to Γ2. From
Theorem 2.15 we know that there exists a finite sequence of flips through with Γ1 is transformed to Γ2,
and hence we wish to understand how the shear coordinates vary under a flip. In the case of two triangles
glued along a single edge the coordinate change under the flip of that edge is given in Figure 2.12. All
other shear coordinates not displayed in the figure remain the same.

Figure 2.12: The X -coordinates change rule under a flip.

In general, if
(
εαβ
)
α,β∈E(Γ)

is the extended exchange matrix of the triangulation Γ, the mutation

formula under the flip of the edge α is exactly the Y-pattern mutation formula, from now on called the
cluster X -mutation formula of Equation (1.68):

µα(xβ) =





(xα)−1 if β = α

(xβ)(1 + xα)ε
αβ

if εαβ ≥ 0

(xβ)(1 + (xα)−1)ε
αβ

if εαβ ≤ 0

. (2.43)

As already emphasized, these formulae are subtraction-free, hence if Γ and Γ′ are two triangulations
of the same ciliated surface related by a flip at e ∈ Ei(Γ) these mutation rules define a map

µe : R∗+
Ei(Γ) → R∗+

Ei(Γ
′) . (2.44)
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Moreover, if e′ is the flipped edge in Γ′ one can easily check that µe′ : R∗+
Ei(Γ

′) −→ R∗+
Ei(Γ) is the

reciprocal of µe. This mutation rule is the transition functions from the chart on T x(S) corresponding
to Γ to the one corresponding to Γ′:

R∗+
Ei(Γ)

µe

��

XΓ

$$
T x(S)

R∗+
Ei(Γ

′)

µe′

KK

XΓ′

::

(2.45)

Hole lengths. For any hole ρ in S, let

rρ : T x(S) −→ R>0 (2.46)

be the map given by the exponent of the length (resp. minus the exponent of the length) of the geodesic
surrounding ρ if the orientation of ρ coincides (resp. disagrees) with the orientation of Σ. In terms of
shear coordinates, a direct computation shows that the map rρ is:

rρ =
∏

α

xα , (2.47)

where the product runs over all edges incident to the hole ρ, counted with multiplicity. This follows from
the reconstruction described in the previous subsection: the monodromy of a simple loop going around a
hole ρ can be written as

Mρ =
∏

α

IbB(xα) , (2.48)

where b is either 1 or −1, and does not depend on i. The terms (IbB(xα)) appearing in the product
are either all upper-triangular or all lower-triangular, depending on the value of b, and hence one writes
easily Mρ. For example if b = 1:

Mρ =




∏

α

(xα)−1/2 −
∏

α

(xα)−1/2

0
∏

α

(xα)1/2


 . (2.49)

The length of the geodesic preserved by Mρ, which is the one bounding the hole ρ, is given by the
absolute value of the logarithm of the ratio of the two eigenvalues of Mρ, which implies Equation (2.47).

A Poisson structure. The log-canonical Poisson structure on (R>0)Ei(Γ) is defined by

{f, g} =
∑

α,β∈Ei(Γ)

εαβ xαxβ
∂f

∂xα
∂g

∂xβ
, (2.50)

where f, g are functions on (R>0)Ei(Γ). The main property of this Poisson bracket is that it is independent
of the triangulation Γ, as follows from a direct calculation using Equation (2.43) and Equation (1.14).
Hence it defines an intrinsic Poisson bracket on T x(S). This Poisson bracket is a prominent feature of
cluster X -varieties defined in Chapter 4.

2.4 Teichmüller A-space (decorated Teichmüller space)

Let S be a ciliated surface (hyperbolic and with k ≥ 1). The decorated Teichmüller space T a(S) of S
describes hyperbolic structures on S such that holes are all punctures, together with horocycles at the
cilia and the punctures. It contains more information than the usual Teichmüller space T (S), however it
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projects naturally to it. As in the last section, one of the nicest properties of this version of the Teichmüller
space is that it admits a nice parametrization. This construction is due to Penner [Pen87, Pen92].

Horocycles, as introduced in Section 2.1.1, can also be defined on hyperbolic ciliated surfaces. Let
H/∆ be a Fuchsian model of S. A horocycle at a puncture or a cilium A in S is a ∆-invariant set
consisting of one horocycle at each preimage of A in H. If the horocycles are small enough in H, their
image in S is a small curve close to A, to which all the geodesics emanating at A are orthogonal. However,
if the horocycles in H are too big, their image is a curve on S winding non-trivially. Two horocycles on
S are said to be tangent along a path γ connecting their base points if the corresponding horocycles at
the ends of a (equivalently, any) lift of γ to H are tangent.

Definition 2.20. A decorated ciliated hyperbolic surface is a ciliated surface endowed with a hyperbolic
metric such that every hole is a puncture, and with a horocycle chosen at each puncture and cilium. The
Teichmüller space of decorated ciliated surfaces T a(S) is called the decorated Teichmüller space.

An illustration of how one may represent oneself what a point on T a(S1,2,{3}) looks like is proposed
in Figure 2.13. Cilia are labeled 1, 2, 3 and their corresponding horocycles, H1, H2, H3; the cusps are
labeled A,B and their corresponding horocycles, HA, HB .

Figure 2.13: What a point in T a(S1,2,{3}) corresponds to.

Clearly, if one forgets the horocycles one is left with a hyperbolic structure on S, which corresponds
to a special point in T x(S) at which the holes all have zero length. In other words, there is a natural
map:

p : T a(S) −→ T x(S) . (2.51)

Let us emphasize that it is in general neither surjective (since the only points of T x(S) in its image are
those at which the holes are all punctures) nor injective (since two points in T a(S) which differ only by
the choice of horocycles are mapped to the same point in T x(S)).

The space T a(S) has the canonical subspace T a0 (S), which consists of all decorated ciliated Riemann
surfaces such that for each path connecting to adjacent cilia (hence retractable to the boundary) the
horocycles at its two ends are tangent. For every cilium and for every hole ρ there is an action rρ of
(R>0,×) on T a(S):

rρ : R>0 × T a(S) −→ T a(S) . (2.52)

which corresponds to changing the size of the corresponding horocycle.

Let Γ be a triangulation of S. Assigning a strictly positive real number to every edge of Γ (and not
only the internal ones) provides the interesting parametrization of T a(S) we are after.

2.4.1 Parametrization

Let us fix a point of T a(S). Let α be any edge of Γ that we can assume to be geodesic, as follows from
Proposition 2.2, and let α̃ be any lift of α to the universal cover H. There is a horocycle in H based at
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each of the endpoints of α̃. Let l be the length of the segment in α̃ between the intersection points with
each of these horocycles (any other lift of α yields the same l). The coordinate one assigns to α is

aα = e±l/2 , (2.53)

with a plus (respectively, minus) sign when the two horocycles do not (respectively, do) intersect, as
shown in Figure 2.14.

Figure 2.14: The definition of A-coordinates.

The coordinate aα can be computed easily when the horocycles at the two ends of α̃ are represented
as elements of (R2−{(0, 0)}/± 1) as in Proposition 2.5: if the two horocycles are represented by (x1, y1)
and (x2, y2), then

aα =

∣∣∣∣det

(
x1 x2

y1 y2

)∣∣∣∣ . (2.54)

The coordinates (aα)α∈E(Γ) corresponding to the triangulation Γ can be seen as a map

AΓ : (R>0)E(Γ) −→ T a(S) . (2.55)

The points lying in the subspace T a0 (S) clearly correspond to those whose A-coordinates on external
edges are 1’s.

Figure 2.15: Constructing coordinates on the decorated Teichmüller space.
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Similarly to the computation of X -coordinates as the monodromy of an abelian connection on a graph,
let us reformulate the definition of A-coordinates in a way similar to the construction of A-coordinates
on higher A-Teichmüller spaces presented in Section 4.3.4. We follow [FG06, Section 11].

Let us consider the lift of Γ with geodesic edges to H. The endpoints of these edges lie on the
boundary P1(R), and there is a horocycle in H at each such endpoint, to which one can associate a vector
(up to sign) in R2 − {(0, 0)}/± 1, as follows from Proposition 2.5. The line in R2 generated by one such
vector is the point in P1(R) at which the horocycle is. The example of the pentagon S0,0,{5} is shown
in Section 2.4.1, with [v1], . . . , [v5] ∈ (R2 − {(0, 0)}/ ± 1) the vectors (up to sign) corresponding to the
horocycles.

The A-coordinates can be computed as before; for example, in the case of the pentagon one has

aij = |[vi] ∧ [vj ]| . (2.56)

There is also another way to compute the A-coordinates which trades the configuration of the sign-
ambiguous [vi]’s for a twisted configuration of ordinary vectors. For definiteness we will stick to the case
of the pentagon. Let L1, . . . , L5 be the lines in R2 generated by [v1], . . . , [v5]. Pick any line L ⊂ R2 which
does not contain any vi for i = 1, . . . , 5, and fix one of the complements of R2 − L. For each i = 1, . . . , 5
it contains either vi or −vi. Then, one associates the line Li together with the vector wi = ±vi ∈ Li,
depending on the choice of L, to the corresponding point on P1(R). One example is shown in Figure 2.16,
which determines the choice w5 = −v5, w1 = v1, w2 = v2, w3 = v3, w4 = v4.

Figure 2.16: Constructing a twisted configuration of vectors.

The computation of A-coordinates goes as follow. Let i, j ∈ [|1, 5|] such that there is an edge of the
lift of Γ connecting the two corresponding points on the boundary of H. Then:

aij = wi ∧ ε(wi, j)vj , (2.57)

where ε(wi, j) has value 1 (resp. −1) if the representative of [vj ] directly after wj as one goes counter-
clockwise in Figure 2.16 starting at wj is vj (resp. −vj). This definition of the coordinates is independent
of the choice of i among i, j. For example:

a45 = v4 ∧ v5 = (−v5) ∧ v4 . (2.58)

It also does not depend on the choice of the line L.

2.4.2 Reconstruction

Proposition 2.21. In coordinates, the canonical map of Equation (2.51) is:

xα =
∏

β

(aβ)−ε
αβ

, (2.59)
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where the sum runs over all edges of Γ, and where εαβ is the exchange matrix of Γ.

Proof. Consider an ideal triangulated quadrilateral in H with edges α, β, γ, δ, diagonal α and vertices
A,B,C and D a shown in Figure 2.17. Assume that a horocycle HA (respectively HB , HC and HD) has
been fixed at A (respectively B, C and D).

Figure 2.17: Proof of the explicit expression of the canonical map T a(S) −→ T x(S).

Up to PSL2(R) one can assume that A = ∞, B = −1 and C = 0. Let z ∈ R>0 be the coordinate of
D ∈ ∂∞H, as in Figure 2.17.

Let (xA, yA) (respectively (xB , yB), (xC , yC) and (xD, yD)) be the vectors corresponding to HA (re-
spectively HB , HC and HD) as in Proposition 2.5. Clearly one has yA = 0, xB = −yB , xC = 0, and
moreover one can assume that xA, xB , yC , xD, yD > 0. It follows from Equation (2.54) that

aα = xAyC , aβ = −xAyB , aγ = xByC , aδ = yCxD , aε = xAyD , (2.60)

and since z = xD/yD it implies that z = (aδaβ)(aεaγ)−1, which is what was expected. All other cases
are proved in the same way.

Given (aα)α∈E(Γ) ∈ (R>0)E(Γ) one can thus reconstruct the hyperbolic structure on S as a point of
T x(S), using the reconstruction for T x(S) presented in the last section.

The horocycles still need to be reconstructed. Let us consider a face of Γ with vertices Ã, B̃ and C̃
enumerated clockwise, and corresponding sides α, β and γ as in Figure 2.18.

Lift the triangulation Γ to the universal cover H and consider one of the lifts of the triangle ÃB̃C̃. Let
A, B and C be its vertices, projecting to Ã, B̃ and C̃ respectively. One can consider a first coordinate
z on H which is such that A = ∞, B = 0 and the horocycle at A is the horizontal line Imz = 1. Let
xC ∈ R>0 be the coordinate of C in this frame. This is depicted in Figure 2.18.

Note that the affix of the intersection point E between the geodesic from B to A and the horocycle
at B is ia−2

α , since the hyperbolic distance between E and D (which has affix i) is lα = 2 log aα. The
element of PSL2(R) which exchanges A and B and maps the horocycle at B to Imz′ = 1 in terms of the
new coordinate z′ is the matrix:

D(aα) =

(
0 a−1

α

−aα 0

)
. (2.61)

The horocycle at B in Figure 2.18 corresponds to the pair (0, aα) while the one at C is (aγxC , aγ), so
that Equation (2.54) implies:

|xC | =
aβ
aαaγ

, (2.62)

which, since xC ∈ R<0, leads to:

xC = − aβ
aαaγ

. (2.63)



104 CHAPTER 2. TEICHMÜLLER THEORY

Figure 2.18: The reconstruction of horocycles from the data of Penner’s coordinates.

The element in PSL2(R) which fixes B = 0 and maps C to∞ and the horocycle at C to the horizontal
line Imz′′ = 1 in terms of the new coordinate z′′ is

F

(
aα
aβ
, aγ

)
=




aα
aβ

0

aγ
aβ
aα


 . (2.64)

It maps 0 to itself, C to ∞ and ∞ to aα(aγaβ)−1. Moreover, the affix of the point H in Figure 2.18 is
xC + ia−2

γ , hence under the transformation of Equation (2.64) it is mapped to i+ aα(aγaβ)−1, which is
the point on the geodesic linking ∞ to aα(aγaβ)−1 with imaginary part 1. Hence the horocycle at C
going through H is mapped to the horocycle at ∞ given by Imz′′ = 1, as wanted.

Hence, the data of A-coordinates (aα)α∈E(Γ) unambiguously determines the horocycles at the vertices.
As in the (shear) X -coordinates case, we can express the monodromies corresponding to a point in T a(S)
using an auxiliary graph Λ on S build from the triangulation Γ. The procedure is illustrated in Figure 2.19:
the triangulation Γ is shown as dashed lines and Λ as plain lines.

The graph Λ is constructed from the triangulation Γ in the following way. On each edge α of Γ one
assigns two vertices of Λ (one near each end of α). These are all the vertices of Λ, connected in the
following way: each edge of Γ gives rise to an edge of Λ which connects the two vertices of Λ on it.
Moreover, inside each triangle of Γ there are three additional clockwise oriented ‘small’ edges for Λ, in
such a way that each vertex of Γ is connected to its neighbor as in Figure 2.19.

To the edge of Λ corresponding to an edge α of Γ with A-coordinate aα, one assigns the element
D(α) ∈ PSL2(R). To each clockwise oriented edge in Λ one assigns F (aα/aβ , aγ). This is shown in
Figure 2.19.

Let γ be an oriented closed loop γ on S, and let a = (aα)α∈E(Γ) ∈ T a(S). Deform γ to a loop on Λ
in such a way that its orientation coincides with the one on the small edges of Λ. Multiplying together
the matrices one meets on the way (from left to right) yields the monodromy matrix along γ at a.

Using Λ one can also easily compute the distance between the horocycles at any two holes or cilia
A and B. Let HA and HB be the horocycles at A and B corresponding to a point a ∈ T a(S). Let γ
be the unique geodesic with endpoints A and B, and let iA (resp. iB) be the intersection point γ ∩HA

(resp. γ ∩ HB). Deform γ to a path on Λ from one of the neighboring vertices of A in Λ to one of
the neighboring vertices of B, in such a way that its orientation coincides with the one on the small
edges of Λ. The hyperbolic distance between iA and iB is the upper-right element of the product of the
matrices corresponding to the elementary segments on the path from A to B on Λ. Since the F -matrices
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Figure 2.19: The auxiliary graph to compute the monodromies from Penner’s coordinates.

of Equation (2.64) are lower-triangular, this element does not depend on the choice of endpoints for the
path on Λ.

2.4.3 Flips and the closed 2-form

Mutation rule. The transformation of A-coordinates under the flip of an edge α ∈ Ei(Γ) in given in
Figure 2.20 in the special case where α is the unique edge shared by the two triangles it bounds. The
A-coordinates on the edges of the triangulation not represented in the picture do not vary.

Figure 2.20: The A coordinates change rule under a flip.

In general if
(
εαβ
)
α,β∈E(Γ)

is the extended exchange matrix of the triangulation Γ, the variation of
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A-coordinates µα corresponding to the flip of some edge α can be written for any γ ∈ E(Γ) as:

µα(aγ) = aγ if γ 6= α ,

µα(aα) = a−1
α


 ∏

β∈E(Γ), εαβ>0

aβ +
∏

β∈E(Γ), εαβ<0

aβ


 if γ = α .

This is exactly the mutation formula for cluster variables of Equation (1.24). From now on it will
be called the cluster A-mutation formula These rules are subtraction-free, and hence if Γ and Γ′ are
two triangulations of the same ciliated surface related by a flip at some edge α of Γ, these mutation

rules µα indeed map RE(Γ)
>0 to RE(Γ′)

>0 . Moreover, if α′ is the flipped edge in Γ′ one sees easily that

µα′ : RE(Γ′)
>0 −→ RE(Γ)

>0 is the reciprocal map of µα. These coordinate changes are transition functions:

R∗+
E(Γ)

µe

��

AΓ

$$
T a(S)

R∗+
E(Γ′)

AΓ′

::
µe′

KK
(2.65)

A closed 2-form on T a(S). In the cluster chart corresponding to Γ, one can check directly that the
2-form

ω =
∑

α,β∈E(Γ)

εαβ
daα
aα
∧ daβ
aβ

(2.66)

is closed. In general, it is degenerate. Moreover, the mutation formulae of Equation (1.14) and Equa-
tion (2.65) imply that it is independent of the triangulation. As such, it defines a degenerate symplectic
structure on T a(S).

∗ ∗ ∗ ∗ ∗ ∗ ∗

The Teichmüller space with holes T x(S) and the decorated Teichmüller space T a(S) of a ciliated
surface S are interesting variants of Teichmüller spaces in which cluster structures naturally appear.
They are charted by copies of (R>0)N which describe the whole space, where N = #Ei(Γ) in the first
case and N = #E(Γ) in the second. Transition functions between charts are sequences of X -mutations
and A-mutations, respectively. The space T x(S) is endowed with a Poisson bracket, and T a(S), with a
closed 2-form. In fact, these two Teichmüller spaces are the R>0-points of cluster varieties, which will be
defined in Chapter 4.

Before that however, we will discuss laminations on ciliated surfaces. There are also two variants of
lamination spaces denoted A and X and they correspond to tropical points of cluster varieties.

In Chapter 4 we will introduce the G-higher and Teichmüller spaces of type X and A, where G is the
split real form of any reductive algebraic group, either adjoint or simply connected. These spaces are the
generalization of what has been done in this chapter, for general reductive algebraic groups.



Chapter 3

Laminations on surfaces

The Teichmüller space of a surface S is related to various structures on S, as the three different definitions
presented at the beginning of last chapter indicate: T (S) is at the same time the space of hyperbolic
structures on S modulo Diff0(S), the space of complex structures on S modulo Diff0(S) and a connected
component of Hom(π1(S),PSL2(R))/PSL2(R) consisting of discrete and faithful morphisms. Laminations
form another class of objects on surfaces which connect with Teichmüller theory.

We present measured laminations, as well as the close notions of curve systems and train tracks in
Section 3.1. An important property of the space of measured laminations on a surface S is that it provides
a compactification of the Teichmüller space T (S) to which the action of the mapping class group MCG(S)
extends. Curve systems provide a definition of integral and rational laminations, which differ from the
real (measured) laminations. The latter are in general more difficult to describe explicitly than the former:
real laminations correspond to a singular foliations of S together with a transverse real measure, whereas
integral and rational laminations are mere systems of curves on S with integral or rational weights.

The definition of integral and rational laminations can be extended to ciliated surfaces. They come in
two flavors denoted A and X , as in the case of Teichmüller spaces. The notation comes from the fact that
the space of laminations of type A (resp. X ) admits coordinate systems corresponding to triangulations
of S, and with the transition functions being sequences of (tropical) mutations of type A (resp. X ). This
will be presented in Section 3.2. Just as the Teichmüller spaces of the last chapter can be interpreted as
the R>0-points of cluster varieties, integral (resp. rational) laminations spaces naturally appear as the
Zt-points (resp. Qt-points) of cluster varieties, as we will see in Chapter 4.

Laminations play an important role in the cluster Teichmüller theory of ciliated surfaces, because
they encode functions on the Teichmüller space. More precisely, an A-lamination corresponds to a
function on T x(S) while an X -lamination can be interpreted as a function on T a(S). These properties
are nicely described in terms of pairings, as we will do in Section 3.3. The duality conjectures discussed
in Section 3.3.3 state that integral laminations of type A (resp. of type X ) provide a basis of a special
subset of functions on the Teichmüller space of type X (resp. of type A).

3.1 Thurston’s measured laminations

The goal of this section is to provide general background for Thurston’s laminations. We will (briefly)
discuss three-dimensional hyperbolic manifolds with boundary, curve systems, train tracks, measured
laminations and Thurston’s compactification of the Teichmüller space.

3.1.1 Laminations from three-dimensional hyperbolic spaces

In this section we follow [TM79, Section 8].

Generalities. Let n ≥ 2 be an integer, Hn the n-dimensional real hyperbolic space, Sn−1
∞ its boundary

at infinity defined as in Definition 2.1, and Γ a discrete group of orientation preserving isometries of Hn.
Let x be any point in Hn, and define the limit set LΓ ⊂ Sn−1

∞ of Γ as the set of accumulation points of
the orbit {Γ · x}.

Proposition 3.1. LΓ does not depend on the choice of x ∈ Hn.

107
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Proof. Let y ∈ Hn be any other point, and let {γi}i∈N be a sequence in Γ such that γix → p ∈ LΓ as
i→∞. Since Γ is a group of isometries of Hn, if d(·, ·) is the hyperbolic metric in Hn:

d(γix, γiy) = d(x, y) (3.1)

is independent of i. Hence, if dE(·, ·) is the euclidean metric on the boundary Sn−1
∞ , dE(γix, γiy)→ 0 as

i→∞, and hence lim
i→∞

γix = lim
i→∞

γiy.

Let us define the domain of discontinuity of Γ as DΓ := Sn−1
∞ − LΓ, and set:

MΓ = ConvHull(LΓ)/Γ , (3.2)

which is a hyperbolic manifold if Γ acts freely on ConvHull(LΓ). From now on we restrict to n = 3.

Definition 3.2. A Kleinian group is a discrete subgroup of Isom(H3) = PSL2(C) whose domain of
discontinuity is non-empty.

Let K be any closed set on the boundary S2
∞ of H3, and let H(K) be its convex hull in H3. Any point

in ∂H(K)−K belongs to some line segment in ∂H(K), and hence ∂H(K)−K can be developed in the
hyperbolic plane. Usually ∂H(K)−K is not smooth, however if Γ is a torsion-free Kleinian group, ∂MΓ

is a smooth hyperbolic surface bent along a lamination. Let us give our first definition of a lamination
in a fairly general setting.

Definition 3.3. A lamination L on an n-dimensional manifold M is a closed subset A ⊂ M called the
support of L, with a local product structure for A: there is a covering of a neighborhood of A in M by
open sets Ui with charts φi : Ui → Rn−k × Rk such that

φ(Ui ∩A) = Rn−k ×Bi , (3.3)

where B ⊂ Rk. The transition functions φij = φi ◦ φ−1
j must be of the form

φij(x, y) = (fij(x, y), gij(y)) , (3.4)

where y ∈ Bi, and gij(y) ∈ Bj ∈ Rk.

Equivalently, a lamination is a regular foliation of a closed subset of M .

Figure 3.1: A chart of lamination.

Geodesic laminations and transverse measures. Let us assume that M = S is a hyperbolic
surface. A lamination is said to be geodesic if the leaves of the corresponding foliation are geodesics.

Let γ be a geodesic foliation of a hyperbolic surface S and let us consider the complement of the
lamination S − γ. The Euler characteristic of the support of γ is zero since it admits a regular foliation,
and since χ(S) < 0 the complement of γ in S cannot be empty. It consists of regions bounded by
geodesics which are either closed or open. For each connected component of S − γ we can consider its
double, obtained by identifying the boundaries of two copies of this connected component, as show in
Figure 3.2. Each of these doubles D is a complete hyperbolic surface with finite area −2πχ(D), hence
the number of connected components of S − γ is bounded from above by 2|χ(S)|, and in particular it is
finite.
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Figure 3.2: Doubles of an ideal hyperbolic triangle and a torus with one hole.

Figure 3.3: Some values for the index.

Every geodesic lamination γ on S can be extended to a foliation with isolated singularities on S − γ.
There is an index formula for the Euler characteristic of S in terms of the index of these singularities.
Some values of the index are shown in Figure 3.3. The index formula implies that χ(S) is half the Euler
characteristic of the double of S − γ, and hence Area(S) = Area(S − γ), thus γ has measure 0.

In the case of the boundary ∂MΓ of the three-dimensional convex hyperbolic manifold MΓ correspond-
ing to a Kleinian group Γ, one can add assign a transverse measure in order to account quantitatively for
the bending along a curve of the corresponding lamination. More precisely:

Definition 3.4. Let S be a hyperbolic surface and let γ be a lamination on S. A transverse measure µ
for γ is a measure defined on each local leaf space Bi and such that the coordinate changes are measure-
preserving. Equivalently, a transverse measure for γ can be thought of as a measure defined on every 1-
dimensional submanifold T of S transverse to γ, supported on T ∩γ, and invariant under local projections
along the leaves of γ. A geodesic lamination together with such a transverse measure is called a measured
geodesic lamination.

3.1.2 Laminations from curve systems

In this subsection we follow [Hat88]. Let S be a compact surface, with or without boundary.

Definition 3.5. A curve system on S is a finite collection of non self- and pairwise-intersecting curves
which are either:

• a circle not bounding a disk in S and non-isotopic to a connected component of ∂S,
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• an arc with endpoints in ∂S non-isotopic (relatively to its endpoints) to arcs in ∂S.

Figure 3.4: Examples and non-examples of the curves that can belong to a curve system.

Let CS(S) be the set of isotopy classes of such curve systems in S. Let PS(S) be the set of projective
isotopy classes of curve systems in S, i.e. the set obtained from CS(S) by identifying a non-empty curve
systems with any positive number of parallel copies of itself.

Figure 3.5: The simplicial complex PS(S) when S is a pair of pants.

Remark 3.6. Any point in CS(S) can be written as

n0C0 + · · ·+ nkCk (3.5)

for k ∈ N, where the Ci’s are curves of one of the two types described in Definition 3.5 and the n′is are
strictly positive integers, so that niCi denotes ni parallel copies of Ci.
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Let us define a simplicial complex PS(S) whose k-simplices are in bijection with isotopy classes of
such (k + 1)-tuples (C0, . . . , Ck) forming a curve system, and endowed with homogeneous coordinates
[x0 : · · · : xk], where x0, . . . , xk ∈ R. Let i ∈ [|0, k|]. The i-th facet of the k-simplex corresponding to
(C0, . . . , Ck) is defined by the condition xi = 0.

Any point n0C0 + · · ·+nkCk ∈ CS(M) projects to a point with homogeneous coordinates [n0 : · · · : nk]
in PS(S). Hence one can identify PS(S) with the points in PS(S) whose homogeneous coordinates are
integral, or equivalently, rational. We will see below that the non-rational points of PS(S) can be identified
with measured projective laminations on S. The example of PS(S) when S is a pair of pants is depicted
in Figure 3.5.

3.1.3 Train tracks

Definition 3.7. A train track τ on a hyperbolic surface S is a closed subset of S meeting the boundary
∂S transversely, and locally diffeomorphic to the model shown on the left of Figure 3.6. Equivalently it a
compact submanifold of S meeting ∂M transversely, except at finitely many branch points in the interior
of S where two arcs merge into one with the same tangential direction. We will assume that our train
tracks are good, meaning that they have none of the complementary regions listed in Figure 3.7. An
example of a good train track is displayed on the right of Figure 3.6.

Figure 3.6: The only allowed junction in train tracks.

Figure 3.7: Bad train tracks. The dashed red lines represent the segments of the boundary of the surface.

Definition 3.8. A measure on a track τ is an assignment of real positive weights αi ≥ 0 to the connected
components of the non-branching locus of τ satisfying the branch equation αi = αj + αk at each branch
point, with the notation of Figure 3.6.

The set of measures on a given train track τ forms a cone C(τ) in Rn, which is the intersection of the
hyperplanes defined by the branching equation with the quadrant [0,∞[n.
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Given a train track τ and an n-tuple (α1, · · · , αn) ∈ C(τ)∩Zn, one can take αi parallel copies to the
i-th non-singular arc of τ and match these arcs together at the branch points according to the branch
equations, as in Figure 3.8. It yields a curve system Sα ⊂M said to be carried by τ .

Figure 3.8: From a train track to a curve system.

The main point is the following lemma 1.1 of [Hat88], to which we refer for the proof:

Lemma 3.9. If τ is a good train track and if Sα is carried by τ , then Sα ∈ CS(M).

One can define a simplicial complex MS(S) from a surface S, by considering the so-called standard
train tracks on S determined by a decomposition of S into pairs of pants. We refer to [Hat88] for a
precise definition. Each such standard train track τ defines a cone C(τ) such that if τ ′ is a subtrack of
τ , then C(τ ′) is a face of C(τ). Doing the identifications as prescribed by combinatorics, one obtains the
simplicial complex ML(S) (where ML stands for measured laminations) that can be projectivised into a
projective simplicial complex PL(M).

Proposition 3.10 (1.2 of [Hat88]).

ML(S)Z ' CS(S) (3.6)

PL(S)Q ' PS(S) (3.7)

Proposition 3.11 (1.5 of [Hat88]). ML(S) is piecewise linearly homeomorphic to R−3χ(S)−b × [0,∞[b.

More on train tracks can be found in [TM79, PH92].

3.1.4 Measured laminations from train tracks

Given a train track τ on a surface S and α ∈ C(τ) a (real) measure on τ one can construct a foliationNα of
the fibered neighborhood Nτ of τ . For each non-singular arc i of τ one considers the fibered neighborhood
of i of size αi and connect these neighborhoods at each branch point as displayed in Figure 3.9. Then,
one removes all the singular leaves. An example of such a singular leaf is shown as the dashed line in
Figure 3.9.

Figure 3.9: The construction of laminations from measured train tracks.
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Figure 3.10: How Cantor sets arise in generic laminations.

Figure 3.10 shows how this construction works near a closed curve on S. Generically, the result-
ing lamination can not be interpreted as a projective curve system anymore. This gives a geometric
interpretation of train tracks on a surface, with generic real measure.

When the measure assigned to the train track τ is rational, removing the singular leaves during the
construction of the lamination from the measured train track as in Figure 3.9 yields a collection of strips
on the surface1 of finite rational width, which is a fattening of a projective curve system.

Proposition 3.12 (2.3 of [Hat88]). ML(S) is isomorphic to the space of measured laminations on S.

Hence every point of PL(S) can be naturally interpreted as a projective measured lamination on S,
which generalizes the interpretation of the rational points of PL(S) as projective curve systems on S.

3.1.5 Laminations and Thurston’s compactification of Teichmüller spaces

The space of projective measured laminations on a surface S forms a boundary for the Teichmüller
space of S, to which the action of the mapping class group extends [Thu88]. Heuristically, this can be
understood as follows. A point in the Teichmüller space of S consists of the data of a hyperbolic metric
on S, which is a smooth rank 2 section of the symmetric product Sym2(T ∗M) of the cotangent space of
S with itself: at each point, the metric can be written in coordinates as

g = gµνdxµdxν µ, ν ∈ {0, 1} , (3.8)

where gµν is a rank-2 matrix: (
g00 g01

g10 g11

)
(3.9)

1Note that there is no contradiction with the fact that laminations have zero measure, since everything we are doing
here is purely topological.
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A boundary for the Teichmüller space of S can be defined as all the smooth sections of Sym2(T ∗M)
which degenerate at every point of S into a rank-1 tensor. Locally, each such section can be written as
(df)2, where f is a smooth function on S. Just as usual differential 1-forms correspond to oriented level
lines, rank-1 sections of Sym2(T ∗M) correspond to unoriented level lines and carry some kind of measure
determined by f : they are measured laminations. Actually, the set of level lines does not change when
f is rescaled uniformly, and this explains why it is the space of projective measured laminations which
appear.

After having developed the theory of cluster varieties, we will have an interesting perspective which will
allow us to understand conceptually why projective measured laminations naturally provide a spherical
compactification of the Teichmüller space, and how this can be extended to general positive varieties.
This will be conducted in Section 4.1.2.

3.2 Rational laminations on ciliated surfaces

Throughout this section, we will say that a curve on a ciliated surface S (without self-intersection and
either closed or connecting two points on the boundary disjoint from the cilia) is special if it is retractable
to a hole or to an interval on the boundary containing exactly one cilium. A curve is contractible if it can
be retracted to a point within this class of curves. This section is based on [Foc97, FG06, FG07]. We
will stick to the notation for ciliated surfaces introduced in Section 2.2.

Before introducing A-laminations and X -laminations on ciliated surfaces, we will discuss briefly sin-
gular (a.k.a. bounded) and Borel–Moore (a.k.a. unbounded) homologies of topological spaces, for the
way they are defined is very similar to laminations. By analogy, A-laminations (resp. X -laminations) are
also called bounded (resp. unbounded) laminations in [FG07].

3.2.1 Singular and Borel–Moore homologies

Let X be a locally compact space, and let i ∈ Z≥0. A singular i-simplex in X is a continuous map

∆i → X , (3.10)

where ∆i is the standard i-simplex. In bounded homology, also called homology with compact support,
for all i ∈ Z≥0 one defines the space of i-chains Ci(X) as the free abelian group generated by all possible
singular i-simplices in X. Then one considers the chain complex

. . .
φ3 // C2(X)

φ2 // C1(X)
φ1 // C0(X)

0 // 0 (3.11)

and from it one defines the singular homology groups as:

Hi = ker(φi)/im(φi+1) . (3.12)

In Borel-Moore homology [BM60], also called homology with closed support or unbounded homology,
one defines the space CBM

i (X) as the space of formal (infinite) sums of i-simplices in X with integer
coefficients:

u =
∑

σ

aσσ , (3.13)

where σ runs over all i-simplices in X and where aσ ∈ Z, and such that for any compact subspace S ⊂ X
only finitely many simplices σ whose image meets S have a non-zero coefficient aσ. Then one considers
the chain complex

. . .
φBM

3 // CBM
2 (X)

φBM
2 // CBM

1 (X)
φBM

1 // CBM
0 (X)

0 // 0 (3.14)

and defines from it the singular homology groups as:

HBM
i = ker(φBM

i )/im(φBM
i+1) . (3.15)

Consider the cylinder C =]− 1, 1[×S1 shown in Figure 3.11, and the dashed red circle {0} × S1 ⊂ C.
In bounded homology it is a 1-chain and not a boundary, hence it represents a non-trivial element in
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Figure 3.11: The cylinder C =]− 1, 1[×S1.

H1(C). In unbounded homology it is also a 1-chain, however it is a boundary and hence it is trivial in
HBM

1 (C). Conversely, the blue line ] − 1, 1[×{0} ⊂ C is not even a 1-chain in homology with compact
support, however in homology with closed support it is a 1-chain and it is not a boundary, hence it
represents a non-trivial element in HBM

1 (C).
Borel-Moore homology extends Poincaré duality for non-compact spaces X. More precisely:

Proposition 3.13. Let X be a locally compact topological space with a closed embedding into an oriented
manifold M of dimension m. Then for all i ∈ [|0,m|]:

HBM
i (X) = Hm−i(M,M\X) . (3.16)

where Hm−i(M,M\X) is the (m− i)-th cohomology group of M relatively to M\X.

The proof can be found in [Ive12, Theomem IX.4.7]. When X = M this result indeed extends Poincaré
duality to a duality between homology with closed support and ordinary cohomology. Subsequently:

Proposition 3.14. If X be a compact topological space, homologies with compact and closed support on
X coincide:

HBM
∗ (X) = H∗(X) . (3.17)

3.2.2 Rational A-laminations

Definition 3.15. A rational A-lamination on S, or rational bounded measured lamination, is a homotopy
class of a finite number of self and mutually non-intersecting unoriented curves, either closed or connecting
two points of the boundary disjoint from cilia and the holes, with rational weight and such that the weight
of a curve is non-negative, unless it is special. Moreover, rational A-laminations are subject to the
following equivalence relation:

1. A lamination containing a curve of weight zero is equivalent to the lamination with this curve
removed.

2. A lamination containing a contractible curve is equivalent to the lamination with that curve removed.

3. A lamination containing two homotopy equivalent curves with weights u and v is equivalent to the
lamination with one of these curves removed and with the weight u+ v on the other.

Figure 3.12: Equivalence relations for rational A-laminations.

Let Ta(S,Q) be the space of rational bounded measured laminations. It has the space Ta(S,Z)
consisting of bounded measured laminations with integral weights as a natural subset. Moreover, given a
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rational bounded measured laminations one can multiply all the weights by any λ ∈ Q>0; in other words
there is an action:

Q>0 × Ta(S,Q) −→ Ta(S,Q) . (3.18)

The space Ta(S) has another natural subspace Ta0(S); which consists of the rational bounded measured
laminations such that for any segment of the boundary of S between two cilia the total weight of the
curves ending at it vanishes. Let us emphasize that curves of an A-lamination cannot end at holes.

Let us now describe how the set of rational bounded measured laminations can be parameterized by
rational numbers on the edges of a triangulation Γ of S.

Parametrization. One first deforms the curves of the lamination in such a way that they intersect
the edges of the triangulation at the minimal possible number of points. Then, to each edge α ∈ Γ one
assigns half the sum of the weights of the curves of the lamination intersecting α.

This parametrization is a chart:

AtΓ : QE(Γ) −→ Ta(S,Q) , (3.19)

where as before E(Γ) is the set of (internal and external) edges of Γ. Note that the image of Ta(S,Z)
is contained in ( 1

2Z)E(Γ) and the one of Ta0(S) consists of those edge assignments such that the rationals
assigned to the exterior edges of Γ vanish.

Reconstruction. Let {aα}α∈E(Γ) ∈ (Q)E(Γ). For all u, v ∈ Q and α ∈ E(Γ) one sets:

ãα = uaα + v . (3.20)

Choosing wisely u and v one can always ensure that the ãα are positive integers and satisfy the
triangle inequality for every face Γ: if α, β and γ are the sides of a triangle f we ask that

|ãα − ãβ | ≤ ãγ ≤ ãα + ãβ . (3.21)

On each edge α ∈ E(Γ) one marks 2ãα points, and joins them pairwise inside each triangle with non-
intersecting and non-self-intersecting curves, in the up-to-homotopy unique way allowed by the triangular
inequality of Equation (3.21). An example is shown in Figure 3.13.

Figure 3.13: The construction of the curves of the element of Ta(S) in each triangle of Γ.

Last, one adds a special curve around each hole and each cilium with weight −v, and one divides the
weights of all other curves by u. This yields the lamination corresponding to the coordinates {aα}α∈E(Γ).

Mutation rules Under the flip of an internal edge α ∈ Ei(Γ) the coordinates constructed above on
the space of rational bounded measured laminations transform in the following way:

µα(aβ) =





max

( ∑

γ, εαγ>0

aγ ,
∑

γ, εαγ<0

aγ

)
− aα if β = α

aβ otherwise

, (3.22)
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where β, γ ∈ E(Γ). This formula is the usual A-mutation formula of Equation (2.65), in the tropical
semi-field Qt. In the case of a flip of the single common edge of two adjacent triangles, the transformation
rule is presented explicitly in Figure 3.19. Restricting to the laminations whose coordinates in the chart
AtΓ are integers (resp. half-integers), one replaces Qt by the sub-semifield Zt (resp. 1

2Z
t).

Borrowing notation from the next chapter, let A(S, 1
2Z

t) (resp. A(S,Zt)) denote the space of lamina-
tions on S whose coordinates in one (equivalently, every) cluster chart are half-integers (resp. integers).

Integral A-laminations as defined in the previous section correspond to systems of curves on S with
integral weights. They form the space Ta(S,Z) which, by the above, satisfies:

A(S,Z) ⊂ Ta(S,Z) ⊂ A(S,
1

2
Zt) . (3.23)

In fact, one can show that the elements of Ta(S,Z) are exactly the points in A(S, 1
2Z

t) such that at each
vertex v of Γ, the sum of the coordinates on the edges incident to v is an integer.

As in the case of Teichmüller spaces, the AtΓ are cluster charts on the lamination space Ta(S,Q) or
Ta(S,Z). In the next chapter we will see that these lamination spaces relate to the tropical points of
cluster varieties.

Figure 3.14: The coordinate changes under a flip for tropical A coordinates.

3.2.3 Rational X -laminations

Definition 3.16. A rational X -lamination γ on a ciliated surface S, or rational unbounded measured
lamination, is an isotopy class of a finite collection of non-self-intersecting and pairwise non-intersecting
curves on S with positive rational weights, either closed or ending at the boundary (including holes) and
disjoint from cilia, and subject to the following relations:

1. A lamination containing a contractible or special curve is equivalent to the lamination with this
curve removed,

2. A lamination containing two homotopy equivalent curves of weights u and v is equivalent to the
lamination with one of these curves removed and with the weight u+ v on the other,

Moreover, a rational X -lamination encodes a choice of orientation of the holes of S, but the ones which
are disjoint from the curves.

Let Tx(S,Q) be the space of rational unbounded measured laminations. The space Tx(S,Z) of integral
unbounded measured laminations is a natural subset of Tx(S,Q). Moreover, given a rational unbounded
measured laminations one can multiply all the weights by any λ ∈ Q>0, which amounts to the action

Q>0 × Tx(S,Q) −→ Tx(S,Q) . (3.24)

Let us now describe how the set of rational unbounded measured laminations can be parameterized
by rational numbers on the internal edges of a triangulation Γ of S.
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Figure 3.15: Equivalence relations for rational X -laminations.

Parametrization First, one rotates each hole infinitely many times in the direction prescribed by the
orientation, as shown in Figure 3.16.

Figure 3.16: Rotating the holes.

Then, one deforms the curves in Γ in such a way that they do not cross any edge of Γ consecutively
in opposite directions. Given a quadrilateral formed by two adjacent triangles in Γ sharing an edge
α ∈ Ei(Γ), one can distinguish two types of curves which enter and exit the quadrilateral through
opposite sides, dubbed positive and negative, as in Figure 3.17.

Figure 3.17: The definition of positive and negative curves with respect to the edge α ∈ E(Γ).

Note that since the curves of a lamination do not intersect, with respect to an edge α ∈ Ei(Γ), a
lamination contains only positive curves or only negative ones, but not both. Note also that the curves
of a lamination not entering and exiting a quadrilateral through opposite edges are neither positive not
negative with respect to the diagonal.

To any internal edge of the triangulation α ∈ Ei(Γ), one assigns the sum of the weights of positive
curves minus the sum of the weights of negative curves intersecting it.



3.2. RATIONAL LAMINATIONS ON CILIATED SURFACES 119

This parametrization assigns a rational number to each internal edge of Γ, which is seen as a chart:

X tΓ : QEi(Γ) −→ Tx(S,Q) . (3.25)

The image of the integral X -lamination under this map are the points ZEi(Γ).

Reconstruction Thanks to the action of Equation (3.24), it is enough to understand how to reconstruct
a rational unbounded measured lamination corresponding to a integral coordinates {xα}α∈Ei(Γ) ∈ ZEi(Γ).

One starts by considering the faces of Γ, whose sides are homeomorphic to the real line R. For all
k ∈ Z≥0, one connects the point corresponding to k + 1/2 ∈ R one one of the sides of a triangle to
the point corresponding to −k − 1/2 ∈ R one the side directly after the first one, with respect to the
counterclockwise orientation. One does so in such a way that all these segments are non-self-intersecting
and mutually non-intersecting. This step of the reconstruction is shown in Figure 3.18.

Now, given an internal edge α of Γ carrying the coordinate xα ∈ Z, one glue the triangles sharing the
edge α by identifying the point corresponding to k + 1/2 ∈ R on α in the first triangle with the point
corresponding to xα − k − 1/2 ∈ R on α in the second triangle. In Figure 3.18 the gluing of the two
triangles corresponds to xα = −2.

Figure 3.18: The reconstruction of rational unbounded measured laminations.

As one reconstructs S by gluing the faces of Γ together, the infinite set of curves in each triangle
becomes a collection of open or closed curves on the surface. Either such a curve intersects a least one
internal edge of Γ positively or negatively, or it is closed. The total number of positive and negative
intersections between internal edges of Γ and the curves is

∑

α∈Ei(Γ)

|xα| , (3.26)

and in particular it is finite. Hence, the resulting lamination contains no more that this number of con-
nected components, together with possibly infinitely many special curves which are to be considered as
removed.

There is a natural map:

p : Ta(S,Q) −→ Tx(S,Q) , (3.27)

obtained by removing all special curves in a rational bounded measured lamination. One can check that
in coordinates, it reads:

xi =
∑

j

εijaj . (3.28)
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Mutation rules Under the flip of an internal edge α the coordinates constructed above on the space
of rational unbounded measured laminations transform in the following way:

µα(xβ) =




−xα if β = α
xβ + εαβ max(0, xα) if εαβ ≥ 0
xβ + εαβ max(0,−xα) if εαβ ≤ 0

(3.29)

where β, γ ∈ E(Γ) and where the coordinates on external edges of Γ are always zero. This formula
is the usual X -mutation formula of Equation (2.43) in the tropical semi-field Qt. In the case of a flip
of the single common edge of two adjacent triangles, the transformation rule is presented explicitly in
Figure 3.19. Integral X -laminations have integral X -coordinates, and the way the latter change under a
flip is also given by the above mutation formula, except that it is now interpreted in Zt instead of Qt.

As in the case of Teichmüller spaces and A-laminations, the X tΓ are cluster charts. We will see in the
next chapter that Tx(S,Q) is the space of tropical rational points of a cluster variety.

Figure 3.19: The coordinate changes under a flip for tropical X coordinates.

3.3 Pairings

Teichmüller and laminations spaces relate through pairings that we are going to introduce in this section,
following [FG06, Sections 12.2, 12.3, 12.4] as well as [FG07].

3.3.1 Additive and intersection pairings

The choice of a point in the Teichmüller space of a surface S allows to associate a positive real number to
any element of π1(S), by taking the hyperbolic length of the unique geodesic representing this homotopy
class. This leads to the definition of additive pairings between Teichmüller and lamination spaces.

Additive pairing between T x(S) and Ta0(S,Q). The pairing

I : T x(S)× Ta0(S,Q) −→ R (3.30)

is defined recursively as follows.
If γ is a simple closed curve on S, interpreted as an element of Ta0(S,Q), the pairing I(·, γ) is the

function which to each point of T x(S) associates ± half of the length of γ with respect to the hyperbolic
metric defined by the point of T x(S). The sign is + unless γ surrounds a hole which is negatively oriented
at that point of T x(S).

If l1, l2 ∈ Ta0(Q) and if l1 and l2 are non-intersecting, for all α, β ∈ Q one sets:

I(·, αl1 + βl2) = αI(·, l1) + βI(·, l2) . (3.31)



3.3. PAIRINGS 121

Part of [FG06, Proposition 12.1] is that the pairing I is continuous. This follows from the fact that
I(m, ·) is a convex function of the coordinates AtΓ : Ta0(Q)→ QE(Γ), where m ∈ T x(S,Q):

I(m,AtΓ(l1)) + I(m,AtΓ(l2)) ≥ I(m,AtΓ(l1) +AtΓ(l2)) . (3.32)

Since the mutation rules of Equation (3.22) are continuous, the cluster charts define a topology on
Ta(S,Q). Its completion defines the space of real A-laminations on S, denoted Ta(S,R). The cluster
charts extend naturally to:

AtΓ : RE(Γ) −→ Ta(S,R) . (3.33)

Rational curve systems on S are dense in the space of transverse measured laminations, with respect
to the topology of the length function which is exactly the pairing I(·,m) for m ∈ T x(S). Hence we
conclude that:

Corollary 3.17 (12.1 in [FG06]). Elements of Ta0(S,R) are Thurston’s measured laminations, generalized
to ciliated surfaces.

Additive pairing between Tx(S,Q) and T a0 (S). As in the previous case, the pairing

I : Tx(S,Q)× T a0 (S) −→ R (3.34)

is defined recursively. If l ∈ Tx(S,Q) is a weight-one simple closed curve or a curve ending on the boundary
of S but not on a hole, the pairing I(l, ·) is the function which to each point of T a0 (S) associates the
length of l with respect to the hyperbolic structure corresponding to that point. If l has one of its ends
or both ending on a hole, the pairing I(l, ·) is the function which to each point of T a0 (S) associates the
signed length of the segment of the geodesic obtained after rotating infinitely many times in the direction
prescribed by the orientation of the hole(s), and intersected with the horocycle(s) at that (those) holes,
as in Figure 2.14.

If l1, l2 ∈ Tx(Q) and if l1 and l2 are non-intersecting, for all α, β ∈ Q one sets:

I(αl1 + βl2, ·) = αI(l1, ·) + βI(l2, ·) . (3.35)

Let us list some of the properties stated and proved in [FG06] and [FG07]. This pairing is also
continuous. Moreover, let p and p denote the maps of Equation (2.51) and Equation (3.27), respectively.
Then for m ∈ T a0 (S) and l ∈ Ta(S,Q) one has:

I(p(m), l) = I(p(l),m) . (3.36)

In coordinates, if an X -lamination l has positive coordinates (xα)α∈Ei(Γ) in the chart X tΓ and if a point
m ∈ T a0 (S) has coordinates (aα)α∈Ei(Γ) in the chart AΓ corresponding to the same triangulation, then

I(l,m) =
∑

α

aαxα . (3.37)

As in the previous paragraph, let us note the the space Tx(S,Q) can be completed into the space of
real X -laminations Ts(S,R), and the additive pairing of Equation (3.34) extends naturally to

I : Tx(S,R)× T a0 (S) −→ R . (3.38)

Intersection pairing between Tx(S) and Ta0(S). Last, the intersection pairing

I : Tx(S,Q)× Ta0(S,Q) −→ R (3.39)

is defined as follows. Let γ1 ∈ Tx(S,Q) and γ2 ∈ Ta0(S,Q) are two simple closed curves with weight
one. If one or both ends of γ1 lie on a segment of the boundary of S between two cilia, one moves it or
them counterclockwise until the nearest cilium. Then one defines I(γ1, γ2) to be the minimal number of
intersections between γ1 and γ2. If l1, l2 ∈ Tx(Q) and if l1 and l2 are non-intersecting, for all α, β ∈ Q
one sets:

I(αl1 + βl2, ·) = αI(l1, ·) + βI(l2, ·) . (3.40)
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If l1, l2 ∈ Ta0(Q) and if l1 and l2 are non-intersecting, for all α, β ∈ Q one sets:

I(·, αl1 + βl2) = αI(·, l1) + βI(·, l2) . (3.41)

The intersection pairing also extend to the real lamination spaces. It is a degeneration of the additive
pairings defined above, in the following sense. Let Γ be a triangulation of S, and let m ∈ T x(S) with
coordinates (xα)α∈Ei(Γ) in the chart XΓ. For any positive real number C, denote mC the point in T x(S)
with coordinates ((xα)C)α∈Ei(Γ). Let also l ∈ Tx(S,R) with coordinates (log xα)α∈Ei(Γ). Then

lim
C→∞

1

C
I(mC , ·) = I(l, ·) . (3.42)

The same holds with the roles of the X - and A0-spaces exchanged.

3.3.2 Multiplicative pairings

Another way to construct functions on Teichmüller spaces from a closed curve γ on S is to consider the
absolute value of the monodromy along γ with respect to the hyperbolic structure determined by the
point in the Teichmüller space. This extends to laminations, and yields multiplicative pairings, which
are algebraic functions on the Teichmüller space.

Multiplicative pairing between Tx(S,Z) and T a0 (S). Following [FG06] and [FG07], the pairing

I : Tx(S,Z)× T a0 (S) −→ R>0 (3.43)

is defined as follows. If γ ∈ Tx(S,Z) is a single closed curve with weight k and if m ∈ T a(S), then I(γ,m)
is the absolute value of the trace of the monodromy along γk. If γ ∈ Tx(S,Z) is a single curve of weight
k connecting two points of the boundary of S and if m ∈ T a(S), then I(γ,m) = exp I(γ,m).

Last, if u, v ∈ Z≥0, if l1, l2 ∈ Tx(S,Z) such that no curve in l1 intersects or coincide with a curve in
l2, and if m ∈ T a(S), then

I(ul1 + vl2,m) = I(l1,m)uI(l2,m)v . (3.44)

This pairing can be considered as a family of functions on T a0 (S) indexed by X -laminations. An
important property is the following.

Proposition 3.18. Let (xα)α∈Ei(Γ) be the coordinates of an integral X -lamination l in a chart XΓ. The
function I(l, ·) on T a0 (S) is a Laurent polynomial with positive integral coefficients in the coordinates
(aα)α∈Ei(Γ) in the chart AΓ on T a0 (S).

In other words, the function I(l, ·) is a universally positive Laurent polynomial on T a0 (S), in the sense
that it a Laurent polynomial with positive coefficients in every cluster chart.

Multiplicative pairing between T x(S) and Ta0(S,Z). Following [FG06] and [FG07], the pairing

I : T x(S)× Ta0(S,Z)→ R>0 (3.45)

is defined as follows. If m ∈ T x(S) and if γ ∈ Ta(S,Z) is a single closed curve with weight k which is
not retractable to a hole, then I(m, γ) is the absolute value of the trace of the monodromy along γk. If
m ∈ T x(S) and if γ ∈ Ta(S,Z) is a single closed curve with weight k which is retractable to a positively
(resp. negatively) oriented hole, then I(m, γ) is the absolute value of the trace of the largest (resp.
smallest) eigenvalue of the monodromy of γk.

Last, if m ∈ T a(S), if u, v ∈ Z≥0 and if l1, l2 ∈ Ta(S,Z) such that no curve in l1 intersects or coincide
with a curve in l2a, then

I(m,ul1 + vl2) = I(m, l1)uI(m, l2)v . (3.46)

This pairing can be considered as a family of functions on Tx(S) indexed by A0-laminations. An
important property is the following.

Proposition 3.19. Let (aα)α∈Ei(Γ) ∈ ( 1
2Z)Ei(Γ) be the coordinates of an integral A0-lamination l in

a chart AΓ. The function I(·, l) on T x(S) is a Laurent polynomial with positive integral coefficients in
((xα)1/2)α∈Ei(Γ), where (xα)α∈Ei(Γ) are the coordinates in the chart XΓ on T a0 (S). It has highest term is∏
α(xα)aα , and lowest one

∏
α(xα)−aα .

In other words, the function I(·, l) is a universally positive Laurent polynomial on T x(S), in the sense
that it a Laurent polynomial with positive coefficients in every cluster chart.
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3.3.3 Duality conjectures (I)

In order to motivate the Conjecture 3.20, let us study a toy model consisting of the ciliated surface
S = S0,0,5 in which we have artificially frozen one of the two cluster variables. Since we are interested
in X -spaces and A0-spaces only, we completely forget about the frozen variables on the sides of the
pentagon. There are only two charts on the spaces T x(S), T a0 (S), Tx(S) and Ta(S), related through the
mutation at the unique mutable edge.

We will restrict to the pair of spaces T x(S) and Ta0(S,Z). Let x be the cluster variable and y the
frozen variable in one chart on T x(S). Likewise, let a be the cluster variable and b the frozen variable
in one chart on T a0 (S). Under the flip of the non-frozen edge, these variables transform according to the
mutation formulae of type X and At:

{
x
y
−→

{
x′ = x−1

y′ = y(1 + x)
,

{
a
b
−→

{
a′ = max(b, 0)− a
b′ = b

. (3.47)

Note that y = y′(1 + (x′)−1)−1 and a = max(b′, 0)− a. These mutations are depicted in Figure 3.20.

Figure 3.20: Coordinate changes under the only possible flip.

We are interested in studying the universally positive Laurent polynomials on T x(S). Let us consider
the monomial xkyl, which is clearly universally positive Laurent in the first chart. In terms of the variables
in the second chart however, it writes (x′)−k(y′)l(1+(x′)−1)−l and it is Laurent only if l ≤ 0 (however it is
still positive). If the latter condition holds, the highest order term reads (x′)−k(y′)l = (x′)max(l,0)−k(y′)l.

Conversely, a monomial (x′)m(y′)n with m,n ∈ Z can be rewritten as x−myn(1 + x)n, and it is
universally positive Laurent in both charts if and only if n ≥ 0. If the latter condition holds, the highest
order term is xn−myn = xmax(n,0)−myn.

Hence in this example the only universally positive Laurent polynomials in the cluster coordinates
on T x(S) are those such that the exponents of the highest order term (as well as the lowest order
one) transform according to the tropical A-mutation formulae, i.e. as the coordinates of laminations in
A0(S,Z). This motivates the following conjecture, that we will discuss more in the next chapter.

Conjecture 3.20 (12.2 in [FG06]). Here T (S) stands for either version of Teichmüller spaces of S.
Let L(T (S)) be the ring of algebraic functions on T (S) which are Laurent polynomials in every cluster
chart, and let L+(T (S)) be the sub-semiring of those polynomials which moreover have positive integer
coefficients only in every cluster chart. It is a cone, of which we denote E(T (S)) the set of extremal
elements in L+(T (S)). Then:

A0(S,Z) ' E(T x(S)) , Tx(S,Z) ' E(T a0 (S)) , (3.48)

where A0(S,Z) is, as before, the space of A-laminations in Ta0(S,Z) whose coordinates in one (equiva-
lently, every) cluster chart are integers.
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∗ ∗ ∗ ∗ ∗ ∗ ∗

We have defined two different versions of laminations on ciliated surfaces, namely A-laminations and
X -laminations. Both spaces admit coordinate systems associated with triangulations of the underlying
surfaces, and coordinates are naturally associated to the edges of the triangulation. Under the flip of an
internal edge, they undergo cluster mutations of type A and X , respectively.

Teichmüller and laminations spaces are related through additive and multiplicative pairings: an A0-
lamination (resp. X -lamination) provides naturally a function on the X - (resp. A-) Teichmüller space.
Laminations whose coordinates are integers play a special role. The functions on Teichmüller spaces
they define are extremal universally positive Laurent polynomials. Conjecturally, the converse also holds:
every extremal universally positive Laurent polynomial on either Teichmüller space corresponds to a point
in the other lamination space.

In the next chapter we will introduce cluster varieties, which allow to consider uniformly the Te-
ichmüller and lamination space of one kind, as the space of points over different semifields of a single
cluster variety. Many of the properties introduced above extend naturally to this general setup.



Chapter 4

Higher Teichmüller theory

In Chapter 1, we introduced the totally positive Grassmanian Gr+
2,m and the semigroup (SLn)>0 of totally

positive matrices in (SLn). Both are subspaces in an algebraic variety over C – respectively Gr2,m(C) and
SLn(C), on which the cluster variables take real positive values. The Teichmüller spaces T x(S) and T a(S)
of a ciliated surface S were introduced in Chapter 2, and are parameterized by positive real numbers on
the edges of a triangulation. Importantly, the fact the elements of a single cluster are real positive at a
point ensures that the same holds for every cluster variable. This points towards the definition of totally
positive varieties.

More generally, one can wonder what the algebraic variety corresponding to a cluster algebra is, and
how the positivity properties of the latter are encoded geometrically. In the first part of this chapter
we will tackle this question and introduce cluster ensembles, which consist of a pair (X ,A) of cluster
varieties associated with a mutation class of a seed, as introduced in [FG06, FG09]. Both cluster varieties
are positive varieties, which implies that one can consider their points (X (S),A(S)) over any semifield S –
as expected. In this framework, both Teichmüller spaces T x(S) and T a(S) are naturally identified with
the R>0-points of the elements of a cluster ensemble. The X -space is endowed with a canonical Poisson
structure, and the A space, with a canonical closed 2-form. In Section 4.1 we discuss positive algebraic
geometry. Then, we define the cluster ensemble associated to a seed in Section 4.2, and present some of
its properties in Section 4.2.3. We follow [FG09] closely.

Using Lusztig’s generalization of total positivity to an arbitrary reductive Lie group G, one can con-
sider the spaces (X+

G,S ,A+
G,S) obtained as the (R>0)-points of a cluster ensemble. They are analogous to

the Teichmüller spaces introduced in Chapter 2 except that now G plays the role of PSL2(R). Just as the
Teichmüller space T (S) of a ciliated surface S is a connected component of Hom(π1(S),PSL2(R))/PSL2(R)
consisting of discrete and faithful representations, both X+

G,S and A+
G,S project to the space of positive

representations L+
G,S , which is a connected component of the G-character variety Hom(π1(S), G)/G of

S, consisting solely of discrete and faithful representations. Defining these spaces, which is the main goal
of this part of the dissertation, will be done in Section 4.3, following [FG06].

When G is a complex reductive Lie group or a compact real Lie group, the connected components
of the G-character variety of a surface S are in one-to-one correspondence with the elements of π1(G)
[AB83, Li93]. When G is split real, the situation is drastically different: there are additional connected
components in the G-character variety, such as the Hitchin components. A connected component of
Hom(π1(S), G)/G consisting of discrete and faithful representations is called a G-higher Teichmüller
space. For example, the spaces L+

G,S are higher Teichmüller spaces. One can wonder whether higher
Teichmüller spaces exist for real Lie groups G which are not split real.

It turns out to be the case when G is a real Lie group of Hermitian type [BIW10]: the spaces of
maximal representations π1(S) → G are unions of higher Teichmüller spaces. Recently, positive and
maximal representations were both described as special cases of Θ-positive representations [GW18]. The
spaces of Θ-positive representations are (unions of) higher Teichmüller spaces, and exist for real Lie groups
G which are neither split nor of Hermitian type, thereby leading to new families of higher Teichmüller
spaces [GLW21]. This story will be reviewed in Section 4.4.
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4.1 Positive algebraic geometry

4.1.1 Generalities

Let Γm = Spec Z[X,X−1] denote the multiplicative group scheme: over any field F one has Γm(F) = F×.
A split algebraic torus H is a scheme Γnm, where n ∈ Z>0. Over C for example one has Γnm = (C×)n, with
ring of regular functions OΓnm

= C[X−1
1 , . . . , X±1

n ], i.e. the ring of Laurent polynomials, and function
field KH = C(X1, . . . , Xn), i.e. the field of rational fractions in n indeterminates.

To every split algebraic torus H = Γnm correspond two rank-n lattices (equivalently, abelian groups
of finite rank). The lattice of characters is X•(H) = Hom(H,Γm) and the lattice of cocharacters is
X•(H) = Hom(Γm, H). Characters are regular functions on H. Over C, they are:

H(C) 3 (t1, . . . , tn) 7−→
∏

i

tαii ∈ C× , (4.1)

for (α1, . . . , αn) and n-tuple of integers. Likewise, cocharacters of H(C) correspond to n-tuples of integers
(β1, . . . , βn):

C× 3 t 7−→ (tβ1 , . . . , tβn) ∈ H(C) . (4.2)

A rational function f ∈ KH on a split algebraic torus H = Γnm is said to be positive if it belongs to
the sub-semifield generated by the characters, i.e. if it can be written as the ratio of two elements of
Z>0[X•(H)]. A rational map H1 → H2 between two algebraic tori is a positive rational map if f∗ induces
a morphism of the semifields of positive rational functions. For example, the map

Γ2
m −→ Γ2

m

(x, y) 7−→ (xy + 1, xy−1)
(4.3)

is a positive regular map, while (x, y) 7→ (x− y, y) is not. Importantly, mutations such as:

(a1, a2, a3) 7−→
(
a2a3 + 1

a1
, a2, a3

)
, (x1, x2, x3) 7−→

(
x1

1 + x−1
2

,
1

x2
, x3(1 + x2)

)
(4.4)

are positive rational maps. Note that the inverse of a positive map is not necessarily positive: (x, y) 7→
(x + y, y) is positive but its inverse (x′, y′) 7→ (x′ − y′, y′) is not. A positive divisor on a split algebraic
torus H is a divisor f = 0 where f ∈ KH is a positive rational function. Let Pos be the category whose
objects are split algebraic tori and whose morphisms are positive rational functions.

Let now X be an irreducible scheme or stack over Q. A positive atlas on X is a family of birational
isomorphisms

ψα : Hα → X , α ∈ CX , (4.5)

where CX is a non-empty set, and where the Hα are split algebraic tori, such that each ψα is regular on
the complement of a positive divisor in Hα, and such that for all α, β ∈ CX , the map

ψ−1
β ◦ ψα : Hα → Hβ (4.6)

is a positive rational map. The maps ψα : Hα → X are said to be positive coordinate systems or positive
charts on X, and a scheme X endowed with a positive atlas is said to be a positive scheme. If Γ is a
group of automorphism on X, one says that a positive atlas is Γ-equivariant if Γ acts on CX and if each
γ ∈ Γ induces an isomorphism iγ : Hα → Hγ(α) such that ψγ(α) ◦ iγ = γ ◦ ψα.

Now we can state the definition of a positive space as in [FG09, Definition 1.3]. Recall from Sec-
tion 2.2.3 that a groupoid is a category where morphisms are isomorphisms, and where any two objects
are isomorphic. The fundamental group of a groupoid is the automorphism group of any object in the
category. Let GX be a groupoid. A positive space is a functor

ψX : GX → Pos . (4.7)

If X is a positive scheme with the notation of Equation (4.5), the category GX has the positive charts as
objects hence Ob(GX) = CX , and the morphisms are given by the elements in CX×CX consisting of pairs
of charts with non-zero intersection. The functor ψX satisfies ψX(α) = Hα and ψx(α→ β) = ψ−1

β ◦ ψα.
Let ΠX be the fundamental group of GX . A positive space GX → Pos gives rise to a (non-necessarily
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separated) scheme X∗ endowed with a ΠX -equivariant positive atlas, obtained by gluing together the
algebraic split tori Hα along the birational maps ψ−1

β ◦ ψα.
The ring of regular functions L(X) on X∗ consists of all rational functions which are regular on

every coordinate torus Hα; it is called the ring of universally Laurent polynomials on X. Since X∗

admits a positive structure, there is a well-defined semifield Q+(X) of positive rational functions over X.

Intersecting it with L(X) yields the semiring denoted L̃+(X).
A regular rational function might be positive without the coefficients of the corresponding Laurent

polynomials being necessarily positive as well. For example:

1 + x3

1 + x
= 1− x+ x2 . (4.8)

Let L+(X) be the sub-semiring of L̃+(X) consisting of the regular positive rational functions on X
whose restriction to one (equivalent, any) positive chart is a Laurent polynomial with positive integral
coefficients. It is called the semiring of positive universally Laurent polynomials on X. Let E(X) be the
set of extremal elements in L+(X), i.e. those elements that cannot be written as the sum of two non-zero
elements of L+(X).

4.1.2 Points over a semifield and tropical compactifications

An important property of positive spaces is that one can consider their points valued in any semifield. If
H is an algebraic split torus and if (S,⊕,�) is an arbitrary semifield defined as in Section 1.3, the set of
S-valued points of H is defined as

H(S) = X•(H)⊗Z S , (4.9)

where the tensor product is with respect to the abelian group (S,�). Any positive birational isomorphism
ψ : H1 → H2 induces a map ψ∗ : H1(S) → H2(S). If the reciprocal ψ−1 of ψ is positive as well, then
ψ∗ is an isomorphism. For example, the map Γ3

m → Γ3
m defined by a′ = a−1(bc + 1), b′ = b, c′ = c

becomes the piecewise linear map α′ = max(β + γ, 0) − α, β′ = β, γ′ = γ between the set of Rt-points
Γ3
m(Rt)→ Γ3

m(Rt), where α, β, γ, α′, β′, γ′ ∈ R.
If X is a positive space, one defines the set of S-points of X as:

X(S) =
∐

α

Hα(S)/ ∼ , (4.10)

where ∼ denotes the identifications induced by the isomorphisms (ψ−1
β ◦ ψα)∗.

Let X be a positive variety. As advertised in Section 3.1.5, we will now explain, following the lines of
[FG06, Section 4.5], why the space X(Rt) provides a spherical compactification of X(R>0). Let A = Q
or R, and let H = Γnm be a split algebraic torus. The set of At-points of H is the abelian group (An,+),
with 0 as neutral element. The multiplicative group (A>0,×) acts naturally on it. The spherization
SphH(At) is defined as

SphH(At) =
(
H(At)− {0}

)
/A>0 . (4.11)

It is a sphere, as the name suggests.
Let φ : H → H ′ be a positive rational map, and let φ∗ : H(At) → H ′(At) be the corresponding

piecewise linear map. It satisfies φ∗(0) = 0, and the action of A>0 commutes with φ∗. Hence φ∗ induces
a map

φ∗ : SphH(At)→ SphH ′(At) . (4.12)

Hence one can defined the spherization of X(At) as

SphX(At) = {{pα ∈ SphHα(At)} | ψα,β(pα) = pβ ∀α, β ∈ GX} . (4.13)

Let now R((ε−1))>0 be the semifield of formal Laurent series
∑∞
N asε

−s with N ∈ Z and aN ∈ R>0.
Each element of R((ε−1))>0 can be interpreted as a function to R>0 defined when ε ∈ R>0 is real and
large enough. Likewise, the elements of H(R((ε−1))>0) modulo reparametrizations ε−1 → f(ε−1) for
f ∈ R((ε−1))>0 can be interpreted as lines in H(R>0) defined only in a neighborhood of infinity. The
asymptotics of these lines is encoded in the degree −deg :

∑∞
N asε

−s → −N , which induces a map

− deg : X(R((ε−1))>0) −→ X(Zt) . (4.14)
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The image of any element of X(R((ε−1))>0) under it projects to SphX(Qt) if its degree is not zero.
Hence the completion SphX(Rt) of SphX(Qt) provides a spherical boundary for X (R>0), to which the
action of the fundamental group ΠX of the groupoid GX on X (R>0) extends, in a natural way.

4.2 Cluster ensembles

In the last section we have explained how to obtain positive schemes from positive spaces by gluing
algebraic split tori along birational isomorphisms. Before defining cluster ensembles formally, let us
briefly recollect some facts from the previous chapters.

Cluster algebras are defined starting with an initial seed consisting of a (generalized) quiver together
with a set of variables, either mutable or frozen, associated to the vertices of that quiver. By mutating
the latter in all possible ways, one generates all cluster variables. These, together with the frozen
variables, generate the cluster algebra as a polynomial ring. The Laurent phenomenon implies that the
cluster algebra is a subring of the Laurent algebra in the cluster variables of any seed, tensored with the
polynomial algebra in the frozen variables.

We have introduced two versions of Teichmüller spaces of ciliated surfaces, both endowed with co-
ordinate systems associated with triangulations of the ciliated surface, in which the transition functions
are positive rational maps. More precisely, the Teichmüller spaces are charted by copies of (R>0)Ei(Γ) or
(R>0)E(Γ) depending on the version, where Γ is a triangulation. Denoting by N either Ei(Γ) or E(Γ),
the space (R>0)N is the set of R>0-points of the algebraic split torus ΓNm. Regarding rational laminations
spaces, they are charted by copies of QN which is the set of Qt-points of the algebraic split torus ΓNm,
and likewise for laminations with integral or real coordinates.

This suggests that there exists a pair of positive varieties (XS ,AS) for any ciliated surface S, both
endowed with a positive atlas in which the charts correspond to the triangulations of S, i.e. CX = CA is
the set of all triangulations of S. This would yield the identifications

XS(R>0) = T x(S) , XS(Qt) = Tx(S,Q) , AS(R>0) = T a(S) , AS(Qt) = Ta(S,Q) . (4.15)

It turns out to be the case, as we are going to discuss now. In fact for every seed s, as in the case
of cluster algebras, one can construct a pair of positive varieties (X[s],A[s]) which depends only on the
mutation class [s] of s. Both positive spaces are called cluster varieties, and the pair is said to be the
cluster ensemble corresponding to [s].

4.2.1 Cluster X - and A-tori

Since we need algebraic split tori in order to define positive varieties, we first need to understand how
to obtain such objects from a seed. This will come naturally upon a slight change of perspective on
the definition of seeds from Chapter 1. Let us rewrite here, for convenience, the Definition 1.13 of
skew-symmetrizable matrices with integer entries:

Definition 4.1. An n×n matrix ε with integer entries is skew-symmetrizable if there exists d1, ..., dn ∈ Z
called the multipliers, such that diεij = −djεji. Equivalently one could write εijd

−1
j = −εjid−1

i . An
extended skew-symmetrizable matrix is an m × n matrix with m ≥ n such that its top n × n sub-matrix
is skew-symmetrizable.

Definition 4.2. A seed is a quadruple (I, I0, ε, {di}) such that

i) I is a finite set and I0 ⊂ I,

ii) ε = (εij) is a Q-valued function on I × I such that εij ∈ Z when i, j ∈ I − I0,

iii) {di}i∈I is a set of positive rational numbers such that (εijd
−1
j ) is skew-symmetric.

Since we wish to have an algebraic split torus associated with each seed, we consider the lattice (i.e.
the free abelian group) generated by elements in one-to-one correspondence with the rows of the extended
exchange matrix, since the categories of finite rank lattices and of split algebraic tori are mutually dual.
The definition of a seed is naturally rewritten as:

Definition 4.3. A seed is a quadruple s = (Λ, (∗, ∗), {ei}, {di}), where:
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i) Λ is a lattice,

ii) (∗, ∗) is a skew-symmetric Q-valued bilinear form on Λ,

iii) {ei}i∈I is a basis of the lattice Λ, and there is a subset I0 of I whose elements are said to be frozen,

iv) {di}i∈I are positive integers such that for all (i, j) ∈ I2\I2
0 one has εij := (ei, ej)dj ∈ Z.

Cluster X -torus of a seed. The lattice Λ is dual to the split algebraic torus XΛ = Hom(Λ,Γm).
Any v ∈ Λ defines a character Xv ∈ Hom(XΛ,Γm), whose value at x ∈ XΛ is x(v). Conversely, any
a ∈ Λ∗ = Hom(Λ,Z) gives rise to a cocharacter φa ∈ Hom(Γm,XΛ). For any field F, at the level of
F-points if f ∈ Γm(F) = F× then φa(f) is the homomorphism v → fa(v).

Definition 4.4. The split algebraic torus XΛ is called the X -torus corresponding to the seed s. It carries
a natural log-canonical Poisson structure induced by the form (∗, ∗):

{Xv, Xw} = (v, w)XvXw . (4.16)

The basis {ei} yields special characters {Xi} dubbed cluster X -coordinates. They form a basis in the
abelian group of characters of XΛ. Note that accordingly to [FG09] but contrarily to what we have done
above, this defines cluster X -coordinates associated with the frozen vectors. In general we will forget about
those.

Cluster A-torus of a seed. Let {e∗i }i∈I be the basis of Λ∗ dual to {ei}. For all i ∈ I let fi = d−1
i ei,

and let Λ◦ ⊂ Λ∗ ⊗Z Q be the lattice generated by the fi. Let AΛ = Hom(Λ◦,Γm). As before, every
v ∈ Λ◦ defines a character on AΛ and every a ∈ (Λ◦)∗ defines a cocharacter on AΛ. The skew-symmetric
Q-valued bilinear form on Λ can be naturally interpreted as an element of the antisymmetric tensor space∧2

Λ◦, and therefore it defines an element W ∈ O(AΛ)∗ ∧ O(AΛ)∗. The image of W under the map

d log∧d log : O(AΛ)∗ ∧ O(AΛ)∗ −→ Ω2(AΛ) (4.17)

is a closed two-form Ω on AΛ.

Definition 4.5. The split algebraic torus AΛ is called the A-torus corresponding to the seed s. It carries
a closed 2-form Ω induced by the form (∗, ∗). The basis {fi} provides the cluster A-coordinates {Ai}.

Moreover, the natural map p∗ : Λ→ Λ◦, defined by:

v 7−→
∑

j

(v, ej)e
∗
j =

∑

j

[(v, ej)dj ]fj . (4.18)

yields a homomorphism p : AΛ → XΛ.

Proposition 4.6 (Lemma 1.5 in [FG09]). The fibers of p are the leaves of the null-foliation of the closed
2-form Ω. The image p(AΛ) is a symplectic leaf of the Poisson structure on XΛ, and the symplectic
structure on p(AΛ) induced by Ω coincides with the one induced by restriction of the Poisson structure.

Let εij = (ei, ej)dj be the exchange matrix corresponding to the seed s. In coordinates, the Poisson
structure on the X -torus reads:

{Xi, Xj} =
εij
dj
XiXj , (4.19)

the 2-form Ω on AΛ writes:

Ω =
∑

i,j∈I
diεijd logAi ∧ d logAj , (4.20)

and the homomorphism from AΛ to XΛ is:

p∗Xi =
∏

j∈I
A
εij
j . (4.21)

These last equations are the analogues of Equations (2.50), (2.51), (2.66) and (3.27).



130 CHAPTER 4. HIGHER TEICHMÜLLER THEORY

4.2.2 Cluster transformations

Among all positive varieties, cluster varieties are singled out by the choice of birational isomorphisms
ψ−1
β ◦ ψα as in Equation (4.6): they are compositions of cluster mutations.

Definition 4.7. Let k ∈ [|1, n|]. The mutation of a seed s = (Λ, (∗, ∗), {ei}, {di}) in the direction k is a
seed µk(s) = (Λ, (∗, ∗), {e′i}, {di}), where

e′i =

{
ei + [εik]+ek if i 6= k
−ek if i = k

. (4.22)

Denoting ε′ij = (e′i, e
′
j)dj the mutated exchange matrix, one has

(ε′)βγ =

{
−εβγ if α = β or α = γ
εβγ + sgn(εβα)[εβαεαγ ]+ otherwise

, (4.23)

as in Equation (1.14). As we have already emphasized, the mutation is involutive on the exchange matrix
(but not necessarily on the basis, see [FG09, remark below Eq. 9]).

Any seed mutation in the direction k induces a positive rational map between the corresponding seed
X - and A- tori. Let us denote X ′i (resp. A′i) the cluster coordinates on the seed torus µk(XΛ) (resp.
µk(AΛ)), and set

µ∗kX
′
i :=

{
X−1
k if i = k

Xi(1 +X
sgn(εik)
k )−εik if i 6= k

, (4.24)

as in Equation (1.68), and

Ak · µ∗kA′k =
∏

j:εkj>0

A
εkj
j +

∏

j:εkj<0

A
−εkj
j , µ∗kA

′
i = Ai for i 6= k (4.25)

as in Equation (1.24). An isomorphism of seeds induces isomorphisms between the corresponding X - and
A-tori. A seed cluster transformation is a composition of seed isomorphisms and mutations. It gives rise
to a cluster transformation of the corresponding X - and A- tori. A seed cluster transformation is trivial
if the corresponding cluster transformations of X - and A-tori are trivial.

Let s be a seed. The cluster modular groupoid G[s] is the category whose objects are all the seeds
mutation equivalent to s, and where morphisms are the cluster transformations modulo the trivial ones.
The fundamental group Π[s] of G[s] is the cluster modular group of the class.

The functor from G[s] to the category whose objects are X -tori and morphisms cluster transformations
is a positive space denoted X[s]. Similarly, the functor from G[s] to the category whose objects are A-
tori and morphisms cluster transformations is a positive space denoted A[s]. The pair of positive spaces
(X[s],A[s]) is the cluster ensemble associated to the mutation class of the seed s. They give rise to positive
varieties called cluster varieties, endowed with a Π[s]-equivariant positive atlas.

Let S be a ciliated surface and Γ a triangulation of S. Let s be the seed obtained from Γ as in
Section 1.2 and Section 2.2.2. For reasons that will become clear in the next chapter, the corresponding
cluster varieties are denoted XS,SL2 and AS,SL2 . One deduces from the previous chapters that:

XSL2,S(R>0) = T x(S) , XSL2,S(Qt) = Tx(S,Q) , XSL2,S(Zt) = Tx(S,Z) , (4.26)

as well as
ASL2,S(R>0) = T a(S) , ASL2,S(Qt) = Ta(S,Q) . (4.27)

The space ASL2,S(Zt) (resp. ASL2,S( 1
2Z

t)) consists of the rational A-laminations on S whose coordinates
in one (equivalently, every) cluster chart are in Z (resp. 1

2Z
t). We have already seen that:

ASL2,S(
1

2
Zt) ⊂ Ta(S,Z) ⊂ ASL2,S(Zt) . (4.28)

The reasoning of Section 4.1.2 implies that SphXSL2,S(Rt) (resp. SphASL2,S(Rt)) provides a spherical
boundary for XSL2,S(R>0) (resp. ASL2,S(R>0)) to which the action of the cluster modular group on
XSL2,S(R>0) (resp. ASL2,S(R>0)) extends, as in Thurston’s compactification of the Teichmüller space.
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4.2.3 Properties of cluster ensembles

Cluster X -varieties

Let XΛ be the cluster X -torus corresponding to a seed s = (Λ, (∗, ∗), {ei}, di) and let us consider the
bilinear form corresponding to the exchange matrix εij :

[ei, ej ] = (ei, ej)dj . (4.29)

Its left-kernel is the sublattice of Λ defined by

kerL[∗, ∗] =

{
{αi} ∈ Λ

∣∣∣∣∣
∑

i∈I
αiεij = 0 ∀j ∈ I

}
. (4.30)

Let HX be the split algebraic with group of characters kerL[∗, ∗]. The inclusion kerL[∗, ∗] ↪→ Λ provides
a surjection

XΛ −→ HX , (4.31)

which glues well under mutations, i.e. the X -space is fibered over the torus HX [FG09, Section 2.1].

Proposition 4.8 (Lemma 2.6 in [FG09]). A cluster X -variety admits a Poisson structure preserved
under the action of the cluster modular group.

This follows from the fact that the Poisson structure defined by Equation (4.19) at the level of
a seed X -torus, is preserved under mutations. Remarkably, this Poisson structure admits a canonical
deformation quantization.

Let Λ be a lattice, and let (∗, ∗) be a skew-symmetric bilinear form. The Heisenberg group HΛ

associated to (Λ, (∗, ∗)) is the central extension 0 → Z → HΛ → Λ → 0 with group law defined for all
v1, v2 ∈ Λ and n1, n2 ∈ Z by:

{v1, n1} ◦ {v2, n2} = {v1 + v2, n1 + n2 + (v1, v2)} . (4.32)

Let us denote by q the element (0, 1) ∈ HΛ, and by Xv the element (v, 0) ∈ HΛ, for all v ∈ Λ. Equa-
tion (4.32) can be rewritten as:

q−(v1,v2)Xv1Xv2 = Xv1+v2 (4.33)

for all v1, v2 ∈ Λ. There is an involutive antiautomorphism ∗ : TΛ → TΛ, defined by:

∗ (Xv) = Xv , ∗(q) = q−1 . (4.34)

The quantum torus algebra TΛ corresponding to (Λ, (∗, ∗)) is the group ring of HΛ. Given a basis {ei}i∈I
of Λ, and letting Xi := Xei , the algebra TΛ is the algebra of non-commutative polynomials in the Xi’s
over Z[q, q−1] with relations

q−(ei,ej)XiXj = q−(ej ,ei)XjXi ∀i, j ∈ I . (4.35)

The quantum dilogarithm Ψq(x) is the q-analogue of the gamma function. It satisfies the difference
equation:

Ψq(q
2x) = (1 + qx)Ψq(x) . (4.36)

as well as Ψq−1(x) = Ψq(x)−1. Let s be a seed and let µk(s) be the result of the mutation in the direction
k. Let Ts (resp. Tµk(s)) be the non-commutative fraction field of the quantum torus algebra Ts (resp.
Tµk(s)). The quantum mutation can be described as the homomorphism µqk : Tµk(s) → Ts defined by:

Tµk(s)
∼ // TΛ

AdΨqk
(Xk)

// TΛ
∼ // Ts . (4.37)

Specializing q to 1 yields the classical X -mutation formula [FG09, Corollary 3.6].
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Cluster A-varieties

Let A be the cluster A-variety defined by the mutation class of a seed s = (Λ, (∗, ∗), {ei}, di). The
right-kernel of the bilinear form of Equation (4.29) is:

kerR[∗, ∗] =



{βj} ∈ Λ

∣∣∣∣∣∣
∑

j∈I
εijβj = 0 ∀i ∈ I



 . (4.38)

The map δ : Λ → (Λ◦)∗ defined on the basis {ei} by δ(ei) = diei is an isomorphism of lattices. Let KA
be the image of kerR[∗, ∗] under it; it acts on (Λ◦)∗ in a natural way. Let HA be the split algebraic torus
with group of cocharacters KA. The action of KA on (Λ◦)∗ transposes into a morphism of tori:

HA ×AΛ −→ AΛ , (4.39)

defined for all χβ(t) ∈ HA = Hom(Γm,KA) and (a1, . . . , an), by:

χβ(t)× (a1, . . . , an) = (tβ1a1, . . . , t
βnan) . (4.40)

This map glues well under mutation and defines an action of HA on the cluster A-variety defined by s
[FG09, Lemma 2.10].

Proposition 4.9 (Corollary 6.9 in [FG09]). A cluster A-variety admits a closed 2-form preserved under
the action of the cluster modular group.

This follows from the fact that the closed 2-form defined by Equation (4.20) at the level of seed A-tori
is preserved under mutations. It is shown in [FG09, Section 6] that this 2-form has a motivic avatar.

4.2.4 Duality conjectures (II)

Let s = (Λ, (∗, ∗), {ei}, di) be a seed. The Langlands dual seed of s is the seed s∨ = (Λ∨, (∗, ∗)Λ∨ , {e∨i }, d∨i ),
where Λ∨ = (Λ◦)∗ with basis elements e∨i = diei, multipliers d∨i = d−1

i D with D the lowest common
multiple of the di’s, and where (e∨i , e

∨
j )Λ∨ = −(ej , ei)didjD

−1. Langlands duality on seeds amounts to

replacing the exchange matrix εij by ε∨ij = −εji and the multipliers di by d∨i = d−1
i D.

Let (X ,A) be the cluster ensemble corresponding to the seed s and let (X∨,A∨) be the one corre-
sponding to the Langlands dual seed s∨.

Conjecture 4.10 (4.1 in [FG09]). There exist isomorphisms

A(Zt) = E(X∨) and X (Zt) = E(A∨) (4.41)

equivariant with respect to the cluster modular group. They imply in turn the isomorphisms:

IA : Z+{A(Zt)} → L+(X∨) , IX : Z+{X (Zt)} → L+(A∨) , (4.42)

which are in particular expected to have the following properties.

1. If (a1, . . . , an) are the coordinates of a point l ∈ A(Zt) in some cluster chart, one has:

IA(l) =
∏

i

Xai
i + . . . , (4.43)

where “ . . . ” stands for lower order terms, and where the Xi’s are the cluster coordinates on X∨ in
the same chart.

2. If the coordinates (a1, . . . , an) of a point l ∈ X (Zt) in some cluster chart are non-negative, one has:

IX (l) =
∏

i

Axii . (4.44)

where . . . stands for lower order terms, and where the Ai’s are the cluster coordinates on A∨ in the
same chart.
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3. Let l ∈ A(Zt) and let m ∈ A∨. Then

IA(l)(p(m)) = IX (p(l))(m) . (4.45)

It is argued in [FG09] that this conjecture implies the existence of pairings

A(Rt)×X∨(R>0)→ R , X (Rt)×A∨(R>0)→ R , (4.46)

as well as an intersection pairing

A(Rt)×X∨(Rt)→ R , (4.47)

all three equivariant with respect to the cluster modular group. These generalize the pairings discussed
at the end of the last chapter, in Section 3.3.

4.3 Hitchin components and cluster higher Teichmüller spaces

4.3.1 Hitchin components

In [Hit92], Hitchin introduced a family of higher Teichmüller spaces for G the adjoint (i.e., with trivial
center) group of a split real form of a complex simple Lie group GC. The construction is based on the
theory of Higgs bundles on Riemann surfaces developed in [AB83, Hit87, Sim90, Sim92, Cor93]. For
other, more detailed and nicer introductions we refer to [BGPG07, GRR15, Wen16, Hua20].

First, let us recall the classical Riemann-Hilbert isomorphism. Let Σ be a Riemann surface, E → Σ
a complex rank-n vector bundle over Σ where n ∈ Z>0, and ∇ a flat connection on E. Since ∇ is flat,
the holonomy along a closed path γ on Σ depends only on the homotopy class of γ, and hence it defines
a representation

π1(Σ) −→ GLn(C) . (4.48)

This morphism is independent of the gauge action of GLn(C) on E. Changing the base point in Σ
amounts to conjugating by GLn(C).

Conversely, a representation ρ : π1(Σ) −→ GLn(C) defines an associated bundle over Σ. The universal

cover Σ̂→ Σ is a principal π1(Σ)-bundle over Σ, and the associated bundle of interest is

Σ̂×ρ Cn . (4.49)

It admits locally constant transition functions, and hence a flat connection.

Theorem 4.11 (Riemann–Hilbert correspondence). Let Σ be a Riemann surface. The space of gauge
equivalence classes of flat rank-n vector bundles E over Σ is isomorphic to the space of equivalence classes
of representations π1(Σ)→ GLn(C) modulo conjugation by GLn(C).

The Riemann–Hilbert correspondence can also be stated in algebro-geometric terms [Del06]. A G-
local system on an algebraic curve S is a sheaf L on S such that locally it is the constant sheaf with value
G, i.e. for all x ∈ S there exists an open neighborhood U of x such that L|U is the constant G-sheaf. On
nice curves S, G-local systems are equivalent to principal G-bundles on S with a flat connection. The
Riemann–Hilbert correspondence is between isomorphism classes of G-local systems on S and algebraic
G-connections on S with regular singularities.

There exist other correspondences involving representations of π1(Σ), such as the so-called non-abelian
Hodge correspondence [Hit87, Sim90], which states the homeomorphisms

MDol 'MdR 'MB , (4.50)

where MDol is the moduli space of polystable Higgs bundles on Σ (to be defined in a few lines) modulo
complex gauge transformations, MdR is the moduli space of flat connections on E modulo gauge, and
MB is the moduli space of representations Hom(π1(Σ),GLn(C)) modulo GLn(C)-conjugation.

Definition 4.12. A Higgs bundle over Σ is a pair (E,Φ), where E → Σ is a holomorphic vector bundle
and Φ is a holomorphic section of End(E)⊗ Ω1(Σ) called the Higgs field.
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A Higgs bundle is said to be stable if for each subbundle F ⊂ E such that Φ(F ) ⊂ F ⊗Ω1(Σ) one has

µ(F ) :=
deg(F )

rk(F )
<

deg(E)

rk(E)
=: µ(E) . (4.51)

The rational µ(E) is called the slope of E. A Higgs bundle is polystable if it is a direct sum of stable
Higgs bundles of the same slope.

Theorem 4.13. If (E,Φ) is stable and if degE = 0, then there is a unique unitary connection A on E
compatible with the holomorphic structure and satisfying

FA + [Φ,Φ∗] = 0 , (4.52)

where FA is the curvature of A. Equation (4.52) is called the Hitchin equation.

Equation (4.52) also makes sense when A is a unitary connection on a principal G-bundle P over Σ,
where G is the compact real form of GC, with Cartan involution A 7→ −A∗. Correspondingly, there is
also a principle bundle version of Higgs bundles.

Definition 4.14. Let G be a compact real Lie group. A G-Higgs bundle is a pair (P,Φ) where P → Σ is
a principal G-bundle and where Φ is a holomorphic section of AdP ⊗C Ω1,0(Σ), with AdP the associated
bundle corresponding to the adjoint representation G→ End(g).

Let MG be the moduli space of G-Higgs bundles modulo complex gauge transformations, where
g ∈ GC acts as (E,Φ) → (g · E, gΦg−1). The space MG is referred to as the Hitchin moduli space of
G-Higgs bundles. Let us assume that G is simple, and that p1, . . . , pl are the elements of a basis of the
invariant polynomials on g⊗ C, of degree n1, . . . , nl. The Hitchin fibration is the holomorphic map:

MG −→
l⊕

i=1

H0(Σ,K⊗ni)

(A,Φ) 7−→ (p1(Φ), . . . , pl(Φ))

, (4.53)

where K is the canonical bundle on Σ. This map is proper. From a unitary connection A on the principal
G-bundle P which satisfies Equation (4.52) one can canonically construct a flat GC-connection:

∇ = ∇A + Φ + Φ∗ . (4.54)

The corresponding representation of π1(Σ) provided by the Riemann–Hilbert correspondence is com-
pletely reducible. A theorem by Corlette [Cor88] asserts the converse: if E is a vector bundle over Σ with
a completely reducible flat connection ∇, there exists a metric on E such that ∇ can be written as in
Equation (4.54) with (A,Φ) a solution of Equation (4.52). Therefore MG is identified with the moduli
space of flat, completely reducible, GC connections on Σ, and hence with the moduli space of completely
reducible morphisms π1(Σ)→ GC, modulo GC-conjugation.

The goal now is to identify a connected component consisting of representations π1(Σ)→ Gr within
this space, where Gr is the real split fort of GC. This is done explicitly in [Hit92] by constructing the
so-called Hitchin section:

MG ←−
l⊕

i=1

H0(Σ,K⊗ni) , (4.55)

which determines a subset of the moduli space MG as its image.

Theorem 4.15 (7.5 in [Hit92]). Let GC be an adjoint complex simple Lie group G, and let Gr be its
split real form. The image of the Hitchin section is a connected component of the moduli space of flat
completely reducible Gr-connections on Σ, called the Hitchin component.

The Teichmüller space of Σ embeds into the Hitchin component. Moreover, Labourie proved, using
Anosov representations, that:

Theorem 4.16 (1.5 in [Lab04]). Every representation in Hitchin component is discrete and faithful.

In other words, the Hitchin components are Gr-higher Teichmüller spaces. They provide a class of
such spaces for all adjoint split real simple Lie groups: PSLn(R), SOn,n+1(R), PSp2n(R), PSOn,n(R)
together with the five exceptional adjoint split real cases.
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4.3.2 Total positivity and positive configurations of flags

Total positivity in SLn(C) introduced in Section 1.1.2 was generalized for arbitrary split complex reductive
groups by Lusztig in [Lus94]. Let G be a split reductive group over Q, let B+ be a Borel subgroup of G
containing a Cartan subgroup H and let W = Norm(H)/H be the Weyl group of G. Eventually, let B−

be the Borel subgroup opposite to B+ and let U+ (resp. U−) be the unipotent radical of B+ (resp B−).
Set H>0 := H(R>0).

Let {si}i∈I be the set of simple reflections in W , and let xi(t), yi(t), hi(t) be the corresponding
one-parameter subgroups of G. The non-negative unipotent subgroup U+

≥0 = U+(R≥0) of G is defined as
the semigroup generated by the xi(t) where t ∈ R>0. Let now w0 be the longest element in W .

Proposition 4.17 (2.7 in [Lus94], 5.1 in [FG06]). Every reduced expression si1 . . . sik of w0 gives rise to
an open regular embedding Γkm ↪→ U+:

(t1, . . . , tk) −→ xi1(t1) . . . xik(tk) . (4.56)

The image of (R>0)k under this map defines the totally positive unipotent semigroup U+
>0 in G. A different

choice of reduced expression for w0 gives a different parametrization of U+
>0. The transition function from

any such parametrization to another is a positive birational map. In other words, the set of these maps
for all possible reduced expression of w0 forms a positive atlas on U+.

Replacing the xi’s in Equation (4.56) by yi’s, one obtains a positive atlas on U− and a set of parametriza-
tions of U−>0. As proved in [FZ99a, FG06], a positive structure can also be defined on double Bruhat cells
in G:

Gu,v = BuB ∩B−vB− . (4.57)

For any set C, group G and set X on which G acts, one denotes

ConfC(X) = XC/G (4.58)

the configuration space of points in X parameterized by C, where the action of G on the set of maps XC

is the one induced by the action of G on X. When C = [|1, n|] we write ConfC(X) = Confn(X), for
short. Assume now that there is another group π acting on C. In that case one can consider the set of
π-equivariant maps:

ConfC,π(X) = ConfC(X)π . (4.59)

A set C is said to be a cyclic set if the choice of any element in C defines a total order on C, with the
orders corresponding to different elements related in the obvious way. As a defining example, a set of
points on a circle is cyclically ordered by the choice of an orientation of the circle. An example that will
be of great importance is the set F∞(S) ⊂ ∂H of the preimages of punctures and cilia of a ciliated surface
S endowed with a hyperbolic structure. There is a natural action of π1(S) on F∞(S). As a cyclic set
endowed with a π1(S)-action, F∞(S) is independent of the hyperbolic structure on S.

Let B = G/B+ be the flag variety of G. It parametrizes Borel subgroups in G, and the opposite Borel
subgroups B+ and B− project to two flags in generic position, still denoted B+ and B−. The group G
acts on B on the left by translation. For example, the flag variety B when G = GLm parametrizes the
complete flags in an m-dimensional vector space V :

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V , where dimVi = i for all i = 1, . . . ,m . (4.60)

Definition 4.18. An element (B1, . . . , Bn) ∈ Confn(B) is positive if:

(B1, . . . , Bn) ∼ (B+, B−, u1B
−, u1u2B

−, . . . , u1 . . . un−2B
−) , (4.61)

where u1, . . . , un−2 ∈ U+(R>0). Let Conf+
n (B) be the space of positive configurations of n flags in B. More

intrinsically, Confn(B) is endowed with a positive atlas, under which the image of (R>0)N is Conf+
n (B).

Theorem 4.19 (1.2 in [FG06]). Let (B1, . . . , Bn) ∈ Conf+
n (B). Then

(B2, . . . , Bn, B1) ∈ Conf+
n (B) and (Bn, Bn−1, . . . , B1) ∈ Conf+

n (B) . (4.62)
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Definition 4.20 (1.5 in [FG06]). Let C be a cyclic set. A map β : C → B(R) is said to be positive if for
any finite cyclic subset x1, . . . , xn in C one has:

(β(x1), . . . , β(xn)) ∈ Conf+
n (B) . (4.63)

Let now A = G/U+ be the principal affine variety of G, whose elements are called affine flags, and on
which G acts on the left by translation. For example when G = GLm the affine flag variety A parametrizes
the complete decorated flags in an m-dimensional vector space V :

0 ⊂ Vect(v1) ⊂ Vect(v1, v2) ⊂ · · · ⊂ Vect(v1, . . . , vm) = V , (4.64)

where v1, . . . , vm ∈ V and for all i = 2, . . . ,m, one has vi /∈ 〈v1, . . . , vi−1〉.
The identification W ' Norm(H)/H provides a way to lift the elements of W to G (more technically,

one needs a pinning [Lus94]). Let sG ∈ G be the lift of w2
0 to G. It is a central element of G such

that s2
G = e, where e ∈ G is the identity [FG06, Corollary 2.1]. For example, when G = SLm one has

sG = (−1)m−1e.

Definition 4.21 (2.5 in [FG06]). A twisted cyclic configuration of affine flags in A is an orbit in Confn(A)
for the twisted cyclic shift map:

(A1, . . . , An) −→ (A2, . . . , An, sGA1) . (4.65)

Let C̃onfn(A) be the moduli space of twisted cyclic configurations of affine flags in A.

4.3.3 Framed local systems and Teichmüller X -spaces

Let S be a ciliated surface and let LG,S be the moduli space of G-local systems on S with holes shrunk
to punctures. Let L be a G-local system on S, and let LB = L ×G B be the associated flag bundle.

Definition 4.22 (2.1 in [FG06]). Let G be a split reductive group defined over Q. A framed G-local
system on S is a pair (L, β) where L is a G-local system on S and β is a flat section of the restriction

of LB to the set ∂̃S containing the circles bounding a hole in S, and the segments obtained as follows.
For each boundary component of S carrying cilia, one removes a point in the interior of each segment
between adjacent cilia. This decomposes the boundary component into a disjoint union of segments, each
of which containing exactly one cilium. Let XG,S be the moduli space of framed local systems on S.

This definition is a slight modification of the one in [FG06]. The restriction of LB to a segment in ∂̃S
is equivalent to the choice of a flag in B at each of these segments, i.e. at each cilium of S. The restriction
of LB to the circle components of the boundary bounding holes is equivalent to the data of a flag invariant
under the monodromy around the hole at each of these circles. For example when S = S0,0,{n} = Dn

is the disk with n cilia, one has XG,Dn = G\Bn = Confn(B) . When S is an annulus (which is not a
hyperbolic ciliated surface), the moduli space XG,S is the space of triples (g,B1, B2) modulo G, where g is
the monodromy around the topologically non-trivial class of π1(S), and B1, B2 are two Borel subgroups
of G such that g ∈ B1∩B2. The group G acts on such triples by conjugation on g and left-multiplication
on B1, B2. In that case, XG,S coincides with the so-called Steinberg variety [CG97].

Proposition 4.23 (Lemma 1.1 in [FG06]). There exists a natural bijection

XG,S(C) ' ConfF∞(S),π1(S)(B(C)) . (4.66)

Theorem 4.24 (Decomposition theorem). Let us assume that G is a split semi-simple adjoint algebraic
group over Q. Then, the moduli space XG,S is birationnally equivalent to

∏

f∈F (Γ)

XG,f ×
∏

e∈E(Γ)

H , (4.67)

where Γ is a triangulation of S.

A consequence is that the set of these birational isomorphisms, when Γ runs over the set of all
triangulations of S, provide a positive atlas on XG,S equivariant with respect to the cluster modular
groupoid [FG06, Theorem 6.1]. It is obtained from the positive atlas on each XG,f and the trivial one

on H ' Γ
rk(G)
m . In fact, XG,S is a cluster X -variety as defined in Section 4.2. We will see this explicitly

below for G = PGLm.
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Definition 4.25. Let S be a ciliated surface and G a split semi-simple adjoint algebraic group over Q.
The G-higher framed Teichmüller space of S, or Teichmüller X -space of S, is defined by:

X+
G,S = Conf+

F∞(S),π1(S)(B) . (4.68)

This definition coincides with the one coming from the positive structure on XG,S.

X+
G,S = XG,S(R>0) . (4.69)

The elements of X+
G,S are called positive framed G-local systems on S. There is a natural map XG,S →

LG,S obtained by forgetting the framing, and the image of X+
G,S under it is called the space of positive

G-local systems on S – or, Riemann–Hilbert-equivalently, positive representations π1(S) → G. The
moduli space of such positive representations is denoted L+

G,S. It consists of classes of representations
π1(S)→ G(R) modulo G(R).

Subsequently, after taking logarithms of the coordinates one sees that the G-higher Teichmüller spaces
X+
G,S are homeomorphic to open balls RN for some N ∈ R. Moreover there is a natural embedding

X+
PGL2,S

↪→ X+
G,S . The name higher Teichmüller space is justified by the following proposition.

Proposition 4.26 (Theorems 1.9 and 1.10 in [FG06]). Any positive representation ρ ∈ X+
G,S is discrete

and faithful.

Two generalizations of the above are proposed in [FG06], namely the universal G-higher Teichmüller
space X+

G as well as G-higher Teichmüller spaces X+
G,S for closed surfaces. The latter coincides with

Hitchin’s construction, which is proved by showing that when S has no boundary, the moduli space of
positive representations L+

G,S coincides with Labourie’s moduli space of Anosov representations [Lab04],
which was itself proved to correspond to Hitchin’s components when G = PGLm(R) by Labourie, using
a result from [Gui08]. Interestingly, despite the correspondence between the L+

G,S and Hitchin’s compo-
nents, the way they are constructed is very different: in the first case the construction is combinatorial
and algebraic, and does not require the choice of an analytic structure on S, whereas in the second case
the construction is mostly analytic and requires S to be a Riemann surface.

As emphasized in the introduction of [FG06], the discreteness condition that appears in the definition
of (higher) Teichmüller spaces is of a non-algebraic nature. However, positivity provides a good algebraic
framework in which one can possibly accounts for such a constraint.

When G = PGL2, the space X+
PGL2,S

is shown to coincide with the Teichmüller space with holes of S
[FG06, Section 11]:

X+
PGL2,S

= T x(S) . (4.70)

Moreover, L+
PGL2,S

is the classical Teichmüller space T (S) of S.

Special coordinates when G = PGLm. One can construct coordinates on X+
PGLm,S

as follows. This
generalizes the construction of coordinates on T x(S) presented in Chapter 2. Let Γ be a triangulation of a
ciliated surface S as defined in Section 2.2, and consider the m-subtriangulation obtained by subdividing
each face of Γ into m2 triangles, m(m + 1)/2 pointing up and m(m − 1)/2 pointing down, as shown on
the left of Figure 4.1 for m = 4. Edges of Γ are the plain lines, while the edges of the subtriangulation
are dashed.

The vertices of the m-triangulation of a triangle are in one-to-one correspondence with triples of non-
negative integers (i, j, k) such that i+ j+k = m, as on the left of Figure 4.1. The moduli space XPGLm,S

is parameterized by complex numbers at each vertex of the subtriangulation, but the ones of Γ. At each
point of XPGLm,S there is a flag at each vertex of Γ, from which these coordinates are constructed. Here
we follow the presentation of [Pal13].

Let us first consider a face of Γ, at the vertices of which are the flags A = (0 = A0 ⊂ A1 ⊂ · · · ⊂
Am = Cm), B = (0 = B0 ⊂ B1 ⊂ · · · ⊂ Bm = Cm) and C = (0 = C0 ⊂ C1 ⊂ · · · ⊂ Cm = Cm) of
B(C) as on the right of Figure 4.1. To the vertices of the subtriangulation inside this face are associated
triple-ratios Xi,j,k(A,B,C) as follows, where i, j, k ∈ [|1,m− 1|] and i+ j+ k = m. Generically A,B and
C are transverse, and hence Ai−1 ⊕Bi−1 ⊕ Ci−1 is a subspace of Cm of codimension 3. Let

Vi,j,k = Cm/Ai−1 ⊕Bi−1 ⊕ Ci−1 . (4.71)
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Figure 4.1: The construction of coordinates on X+
PGL4,S

.

Let (Ai, Ai+1), (Bi, Bi+1) and (Ci, Ci+1) be the projections of (Ai, Ai+1), (Bi, Bi+1) and (Ci, Ci+1) to
Vi,j,k. They form a triple of (generically transverse) flags in Vi,j,k. Let vA (respectively, vB , vC) be a
non-zero vector in Ai (respectively Bi, Ci), and let fA (respectively, fB , fC) be a linear form whose
kernel is Ai+1 (respectively Bi+1, Ci+1). Then one sets:

Xi,j,k(A,B,C) =
fA(vB)fB(vC)fC(vA)

fA(vC)fB(vA)fC(vB)
. (4.72)

Note that Xi,j,k(A,B,C) = Xj,k,i(B,C,A).
Consider now an internal edge of Γ, with flags B and D assigned to its ends, and C,D at the other

vertices, as in Figure 4.1. To the vertices of the subtriangulation in the interior of this edge are assigned
the coordinates Xi,j(B,C,D,A) where i, j ∈ [|1,m− 1|] and i+ j = k, constructed as follows. The direct
sum Bi−1 ⊕Di−1 is generically a subspace of Cm of codimension 2. Let

Vi,j = Cm/Bi−1 ⊕ Ci−1 . (4.73)

The projection of Bi (resp. C1, Dj , A1) in Vi,j is a line Bi (resp. C1, Di and A1). Then one sets:

Xi,j(B,C,D,A) = χ(Bi, C1, Dj , A1) , (4.74)

where χ is (minus) the cross-ratio. Note that Xi,j(B,C,D,A) = Xj,i(D,A,B,D).
The set of coordinates Xi,j,k for each face of Γ and Xi,j for each internal edge of Γ parametrizes

XPGLm,S . More precisely:

Proposition 4.27. The map

ΓNm → XPGLm,S , (4.75)

where N = |F (Γ)| (m−1)(m−2)
2 +|Ei(Γ)|(m−1) and where ΓNm accounts for the aforementioned coordinates,

is a birational isomorphism. It is a positive chart on XPGLm,S. The image of R>0 under it parametrizes
the PGLm-higher Teichmüller space X+

PGLm,S
.

The subtriangulation can be flipped at any internal edge, yielding another positive chart on XPGLm,S

related to the original one by a cluster X -mutation. The quiver underlying the cluster variety XPGLm,S

is the one obtained from the m-subtriangulation of Γ, as in Section 1.2. Note however that in most
cases, after a sequence of flips one does not obtain a subtriangulation of a triangulation of S, and the
coordinates cannot be expressed as triple ratios and cross-ratios of the flags at the punctures and cilia
of S. However these positive charts do exist: they are defined by sequences of mutations starting at a
subtriangulation of a triangulation of S. For more details on this construction of the coordinates we refer
to [FG06, Pal13]. Since XPGLm,S is a cluster X -variety, it is endowed with a canonical Poisson structure.
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As in Section 2.3.1 one can construct the coordinates corresponding to an m-subtriangulation of a
triangulation Γ of S as the monodromy of an auxiliary bipartite graph ΛB . Consider a triangle of Γ
together with its m-subtriangulation, oriented as on the left of Figure 4.1. Define a white vertex of ΛB
in each of the m(m+ 1)/2 triangles pointing up, and a black vertex in each of the m(m− 1)/2 triangles
pointing down. The edges of Γ are determined by the adjacency of these small triangles. Note that
the small triangles pointing up are in bijection with the triples of positive integers (ι, κ, λ) such that
ι+ κ+ λ = 2m+ 1, whereas the ones pointing down are in bijection with the triples of positive integers
(ι, κ, λ) such that ι+κ+λ = 2m+ 2. For example, to the bottom-left (resp. bottom-right) small triangle
pointing up is assigned the triple (1,m,m) (resp. (m, 1,m)), and to the pointing-down-one next to it is
assigned (2,m,m) (resp. (m, 2,m)).

Let A,B,C be the flags in B(C) assigned to the vertices of this triangle of Γ, enumerated counterclock-
wise and starting at the bottom left vertex. Let us assume that they are in general position. For every
triple of positive integers (ι, κ, λ) such that ι+κ+λ = 2m+ 1, one assigns the line Aι∩Bκ∩Cλ ⊂ Cm to
the white vertex of ΛB corresponding to (ι, κ, λ). The dimension of Aι∩Bκ∩Cλ is ι−(κ−1)−(λ−1) = 1
under the genericity assumption, i.e. it is indeed a line in Cm.

Let us now consider a triple of positive integers (ι, κ, λ) such that ι + κ + λ = 2m + 2, i.e. a black
vertex of ΛB . The white vertices of ΛB adjacent to it correspond to the triples (ι− 1, κ, λ), (ι, κ− 1, λ)
and (ι, κ, λ− 1), and the lines Aι−1 ∩Bκ ∩ Cλ, Aι ∩Bκ−1 ∩ Cλ and Aι ∩Bκ ∩ Cλ−1 are all contained in
the plane Aι ∩Bκ ∩ Cλ. We assign the kernel of the map

(Aι−1 ∩Bκ ∩ Cλ)⊕ (Aι ∩Bκ−1 ∩ Cλ)⊕ (Aι ∩Bκ ∩ Cλ−1)→ Aι ∩Bκ ∩ Cλ (4.76)

to this black vertex. We are thus in the same situation as in Section 2.3.1: choosing a trivialization of the
lines over every vertex of ΛB yields an assignment of numbers in (C)× to the edges of ΛB , and changing
the trivialization amounts to a natural (C×)V (ΛB) action on (C×)E(ΛB). The example of this construction
for G = PGL4 is depicted in Figure 4.2.

Figure 4.2: Coordinates as the monodromy of an abelian connection on a graph.

This generalizes straightforwardly to a construction of a bipartite graph ΛB on a general ciliated
surface S from a triangulation Γ of S: one constructs ΛB in the faces of Γ first, and then one glues the
latter together. After this, one merges the white vertices in adjacent small triangles; this is compatible
with the line assignment on them. The invariants Xi,j and Xi,j,k of above are then obtained as the
monodromy of the abelian (C×)-connection on ΛB .

G-higher X -laminations. The space XG,S being a positive space, one can consider its points valued
in a tropical semi-field Zt, Qt or Rt. When G = PGLm we have the positive charts defined in the last
paragraph (one for each triangulation Γ of S), and hence the image of ZN , QN or RN under the map
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of Equation (4.75) parametrizes the corresponding space in each case. As before the internal edges of
the subtriangulation can be flipped, which yields new coordinate systems that in general do not have a
simple geometric interpretation. Under a flip, the coordinates change accordingly to the tropical cluster
X -mutations.

The space XPGL2,S(Zt) (resp. XPGL2,S(Qt), XPGL2,S(Rt)) corresponds to the space of integral (resp.
rational, real) X -laminations on S. That follows from the analysis of Chapter 3. By analogy, in the
general G-case one speaks of G-higher X -lamination spaces. The cluster duality conjectures reviewed
in Section 4.2.4 interpret the points of XG,S(Zt) as parametrizing the elements of E((AGL,S)0), where
(AG,S)0 is the subset with trivial frozen coordinates of the cluster variety AGL,S defined in the next
section, and where GL is the Langlands dual of G. The reasoning of Section 4.1.2 implies that SpXG,S(Rt)
is a spherical compactification of XG,S(R>0).

4.3.4 Decorated local systems and Teichmüller A-spaces

The Cartan subgroup H of G is canonically isomorphic to the quotient B+/U+. Let

iB+ : H → B+/U+ (4.77)

be the canonical isomorphism. The Cartan subgroup H acts on the principle affine variety A = G/U+

on the right as follows. Let g ∈ G and h ∈ H. Then

gU+ · h = hiB(h)U . (4.78)

The quotient A/H is identified with B = G/B. Let L be a G-local system on S considered with the
natural action of G on the right. The principal affine bundle corresponding to L is LA = L/U .

Let T ′S = TS − S be the tangent space to S with the zero section removed. The fundamental group
π1(T ′S, x) for x ∈ T ′Sy with y ∈ S is a central extension:

1→ Z→ π1(T ′S, x)→ π1(S, y)→ 1 ; (4.79)

the inclusion T ′Sy ⊂ T ′S induces an isomorphism between the Z appearing in the previous equation and
π1(T ′Sy, x). Let σS be a generator of this central subgroup of π1(T ′S, x), defined up to a sign.

Definition 4.28. A twisted G-local system on S is a G-local system on T ′S with monodromy sG along
σS, modulo gauge. Since s2

G = e, this definition is well-posed.

Consider the quotient π1(T ′S, x) of π1(T ′S, x) by the central subgroup 2Z ⊂ Z, so that π1(T ′S, x) is
a central extension of π1(S, y) by Z/2Z, and let σS be the image of σS in this quotient. Then the twisted
local systems on S correspond to the representations ρ : π1(T ′S, x) → G such that ρ(σS) = sG, modulo
G-conjugation.

Let C be a small neighborhood of a hole in S with boundary curve C. One has a canonical isomorphism
π1(T ′C) ' Z × Z where one factor is generated by the lift of the homotopy class of C and the other
is π1(T ′Cx), so that π1(T ′C) ' Z/2Z × Z. Let now D be a boundary component in S with p, and let
x1, . . . , xp ∈ S, one in each segment between two adjacent cilia. Let D be a small neighborhood of D in
S homeomorphic to D×]0, 1], and let D′ = (D − {x1, . . . , xp})×]0, 1] ⊂ D.

Definition 4.29. Let us from now on assume that G is simply connected (and still split reductive over
Q). Let L be the representative of a twisted local system on S. A decoration on L is a locally constant
section α of the restriction of LA to ∪iCi ∪j D′j. A decorated twisted G-local system is a pair (L, α). Let
AG,S be the moduli space of decorated twisted G-local systems on S.

Note that when sG = e, a decorated twisted G-local system is simply a pair (L, α) where L is a
G-local system on S and where α is a locally constant section of the restriction of LA to ∪iCi ∪j D′j .

Lemma 4.30 (2.3 in [FG09]). Let S = S0,0,{k} be the disk with k cilia. Then AG,S ' C̃onfk(A).

Proof. The tangent space T ′S in this case can be retracted to a circle, hence there is a unique isomorphism
class of twisted G-local system on S. Its monodromy along a curve in T ′S obtained by considering a
non-zero tangent vector field near the boundary of S is sG. Let c1, . . . , ck be the cilia on the boundary
of S, enumerated clockwise. For all i = 1, . . . , k let vi be a non-zero tangent vector to S at xi pointing
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inside D, and consider the restriction of the flat section α of LA to v1, . . . , vk ∈ T ′S . Consider now for
each i = 2, . . . , k the counterclockwise flat transport of each vi to x1 along the boundary of S. This yields
a configuration (A1, . . . , Ak) ∈ Confk(A) at x1. Basing the same reasoning at x2 instead of x1 yields
(A2, . . . , Ak, sGA1) ∈ Confk(A), etc...

Let G′ = G/Z(G) be the adjoint group corresponding to G. Since sG is in the center, under the
canonical projection G′ → G a twisted G-local system on S defines a G′-local system on S. Moreover,
given a twisted G-local system on S, a decoration α naturally defines a framing β since A → B is a
principal H-bundle. Hence there is a natural map

p : AG,S → XG′,S (4.80)

which generalizes Equation (2.51). The image of AG,S under it is the set of framed unipotent G-local
systems on S, i.e. a framed G-local system on S such that its monodromy along any curve bounding a
hole is unipotent.

There is an analogue of Proposition 4.23 for the moduli space AG,S [FG09, Section 8.6]. Let F̃∞(S) be
the non-trivial twofold cover of F∞(S) such that it is again a cyclic set with a cyclic structure compatible
with the one on F∞(S), and let σ be its non-trivial automorphism. The Z/2Z-extension π1(S) acts by

automorphisms on F̃∞(S), with σS acting as σ.

Proposition 4.31. There exists a natural bijection

AG,S(C) ' ConfF̃∞(S),π1(S)(A(C)) . (4.81)

Theorem 4.32 (Decomposition theorem). Let Γ be a triangulation of S. There exists a natural map

AG,S →
∏

f∈F (Γ)

AG,f ×
∏

e∈E(Γ)

AG,e (4.82)

and the image of AG,S under it is birationnally identified with the subvariety AG,Γ of the right-hand side
defined by the equations qf,e ◦ qf = qe for e and edge of f , and where for any e ∈ E(Γ) and f ∈ F (Γ)
the maps qe : AG,S → AG,e, qf : AG,S → AG,f and qf,e : AG,f → AG,e when e is an edge of f , are the
natural projections.

The set of birational isomorphisms

AG,Γ → AG,S , (4.83)

where Γ runs over the set of all triangulations of S, provide a positive atlas on AG,S equivariant with
respect to the cluster modular groupoid [FG06, Theorem 8.2]. In fact, AG,S is a cluster A-variety as
defined in Section 4.2. We will see this explicitly below for G = SLm.

Definition 4.33. Let S be a ciliated surface and G a split semi-simple simply-connected algebraic group
over Q. The G-higher decorated Teichmüller space of S, or Teichmüller A-space of S, is defined by:

A+
G,S = AG,S(R>0) . (4.84)

There is a notion of positive twisted configuration of affine flags, and hence a definition of the Teichmüller
A-space in terms of the boundary map of Equation (4.81), and both definitions coincide. The space A+

G,S

consists of classes of representations π1(S)→ G(R) modulo G(R).

Subsequently, after taking logarithms of the coordinates one sees that the G-higher Teichmüller spaces
A+
G,S are homeomorphic to open balls RN for some N ∈ R. Moreover there is a natural embedding

A+
SL2,S

↪→ A+
G,S . That these spaces are higher Teichmüller spaces is justified again by the Proposition 4.26

and the natural map p : AG,S → XG′,S , where G′ is as before the adjoint group G/Z(G).

When G = SL2, the space A+
SL2,S

is shown to coincide with the decorated Teichmüller space of S
[FG06, Section 11]:

A+
SL2,S

= T a(S) . (4.85)
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Special coordinates when G = SLm. Starting from a triangulation Γ of S, we consider as in the
previous subsection the m-subtriangulation of Γ (see Figure 4.1). Let us first consider a triangle of Γ.
The twisted SLm-local system on Γ determines a configuration of three affine flags A = (a1, . . . , am),
B = (b1, . . . , bn) and C = (c1, . . . , cn) in Cm at a fixed vertex of the triangle (going from the latter to the
one directly after it with respect to the clockwise orientation yields the triple (B,C, sGA), and so forth,
and so on). To each internal point of the triangle corresponding to the triple of positive integers (i, j, k)
such that i+ j + k = m one associates the coordinate:

∆i,j,k(A,B,C) =

∫

Cm
dω a1 ∧ · · · ai ∧ b1 ∧ · · · ∧ bj ∧ c1 ∧ · · · ∧ ck , (4.86)

where ω is the volume form on Cm. Note that this definition implies that

∆j,k,i(B,C,A) = (−1)i(j+k)Xi,j,k(A,B,C) . (4.87)

If m = i+j+k is odd then i(j+k) is even. Conversely, if m = i+j+k is odd then (−1)i(j+k) = (−1)i, and
thus ∆j,k,i(B,C,−A) = (−1)i∆j,k,i(B,C,A) = ∆i,j,k(A,B,C). Hence in both cases ∆j,k,i(B,C, (−1)m−1A) =
∆i,j,k(A,B,C). Since sG = (−1)m−1 for SLm, these invariants are well-defined on twisted cyclic config-
urations of affine flags.

Let us now consider an edge of Γ with the twisted local system defining a configuration of two affine
flags A = (a1, . . . , am) and B = (b1, . . . , bn) at one of its ends. For any pair of positive integers i, j such
that i+ j = m (hence defining a vertex of the subtriangulation in the interior of the edge) one sets

∆i,j(A,B) =

∫

Cm
dω a1 ∧ · · · ai ∧ b1 ∧ · · · ∧ bj . (4.88)

As before these invariants are well-defined on twisted configurations:

∆i,j(A,B) = ∆j,i(B, (−1)m−1A) . (4.89)

Proposition 4.34. The map
ΓNm → XSLm,S , (4.90)

where N = |F (Γ)| (m−1)(m−2)
2 +|E(Γ)|(m−1) and where ΓNm accounts for the above-mentioned coordinates,

is a birational isomorphism. It is a positive chart on ASLm,S. The image of R>0 under it parametrizes
the SLm-higher Teichmüller space A+

SLm,S
.

The subtriangulation can be flipped at any internal edge, yielding another positive chart on APGLm,S

related to the original one by a cluster A-mutation. The quiver underlying the cluster variety AG,S is
the one obtained from the m-subtriangulation of Γ, as in Section 1.2. As before, after a sequence of flips
one does not obtain a subtriangulation of a triangulation of S in general, and therefore the coordinates
cannot be expressed easily as ∆-invariants: they are defined by sequences of mutations starting at a
subtriangulation of a triangulation of S. The cluster variety AG,S admits a natural subvariety (AG,S)0

defined by the fact that external edges are assigned trivial coordinates. Again, we refer to [FG06] for a
more detailed discussion of these coordinates.

When G = SL2, these coordinates coincide with those on T s(S) introduced in Chapter 2, as sketched
in Section 2.4.1 (for a full proof of this point we refer to [FG06, Section 11]).

G-higher A-laminations. The space AG,S being a positive space, one can consider its points valued
in a tropical semi-field Zt, Qt or Rt. When G = SLm we have the positive charts defined in the last
paragraph (one for each triangulation Γ of S), and hence the image of ZN , QN or RN under the map
of Equation (4.75) parametrizes the corresponding space in each case. As before the internal edges
of the subtriangulation can be flipped, and the coordinates change accordingly to the tropical cluster
A-mutations.

The space ASL2,S(Zt) (resp. ASL2,S(Qt), ASL2,S(Rt)) corresponds to the space of rational with integer
coordinates (resp. rational, real) A-laminations on S. That follows from the analysis of Chapter 3. By
analogy, in the generalG-case one speaks ofG-higherA-lamination spaces. The cluster duality conjectures
reviewed in Section 4.2.4 interpret the points of (AG,S)0(Zt) as parametrizing the elements of E(XG,S).
The reasoning of Section 4.1.2 imply that SpAG,S(Rt) is a spherical compactification of AG,S(R>0).
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4.4 Other higher Teichmüller spaces

The study of another class of higher Teichmüller spaces was pioneered in [BIW10] with the introduction
of spaces of maximal representations. We discuss it briefly in Section 4.4.1. Maximal representations can
be described in terms of positive boundary maps, in the spirit of Proposition 4.23 and Proposition 4.31.
However, the notion of positivity in this case differs from the one developed in the previous section. In
[GW18], Guichard and Wienhard introduced a broad notion of positivity generalizing both the positivity
of configurations of flags introduced in the previous section and the positivity associated with maximal
representations, under the name Θ-positivity. One defines Θ-positive representations in terms of Θ-
positive boundary maps, and the spaces of Θ-positive representations are higher Teichmüller spaces
generalizing both Hitchin’s components and spaces of maximal representations. Interestingly, this led to
the discovery of new Teichmüller spaces. We discuss Θ-positivity in Section 4.4.2.

4.4.1 Spaces of maximal representations

In this section we follow [BIW10] and [GW18].

A real Lie group is said to be of Hermitian type if it is connected, semi-simple, with finite center,
without compact factor, and if the associated symmetric space is Hermitian. Let G be a Lie group of
Hermitian type and let H = G/K be the associated symmetric space. Let S be a connected oriented
compact surface of finite type. Let ρ : π1(S) → G be a representation. It induces a map ρ∗ : S → H.
The Toledo invariant T (S, ρ) associated to ρ is defined as the evaluation of the pullback of the class of
the Kähler form on H, on the fundamental class of S relative to its boundary. For any representation ρ
one has:

|T (S, ρ)| ≤ |χ(S)| · rk(H) , (4.91)

where rk(H) is the rank of H.

Definition 4.35. A representation ρ : π1(S)→ G is said to be maximal if

T (S, ρ) = |χ(S)| · rk(H) . (4.92)

Let Hommax(π1(S), G) be the subspace of maximal representations in the G-character variety of S.

From now on we assume that χ(S) ≤ −1. A Hermitian symmetric space if said to be of tube type if it
is biholomorphic to a domain of the form TΩ = V +iΩ where V is a real vector space and Ω ⊂ V is a sharp
convex cone. A Lie group of Hermitian type whose associated Hermitian symmetric space is of tube type
is said to be a Hermitian Lie group of tube type. For example, the group SL2(R) ' SU(1, 1) ' Sp2(R) is
Hermitian of tube type, for its associated Hermitian symmetric space is H = R+iR+. For n ≥ 2, the group
Sp2n(R) is also Hermitian of tube type, with associated Hermitian symmetric space the Siegel upper-
half space Symn(R) + iPosn(R). Here Posn(R) ⊂ Symn(R) is the subset of positive definite symmetric
matrices.

Theorem 4.36 (1, 4.1 in [BIW10]). Any maximal representation ρ : π1(S)→ G is faithful and discrete.
Moreover, the image of ρ is Zariski-dense if and only if G is Hermitian of tube type.

Hence we can restrict to the study of maximal G-representations when G is Hermitian of tube type.
From now on we assume it to be case. Spaces of maximal G-representations of S generalize the classical
Teichmüller space of S, in the following sense.

Theorem 4.37 (3 in [BIW10]). A representation π1(S)→' PSL2(R) is maximal if and only if it is the
holonomy representation of a complete hyperbolic metric in the interior of S.

Maximal representations can be described in terms of boundary maps, as advertised in the introduction
of this section. To this end, let us define the Shilov boundary of H. The symmetric space H can be
realized as a bounded domain D in a complex space C. The Shilov boundary Sh(H) of H is the smallest
closed subset of the boundary ∂D of D for which the maximum modulus principle holds, i.e.

max
z∈Sh(H)

|f(x)| = max
z∈∂D

|f(x)| (4.93)
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for every holomorphic function f defined in a neighborhood ofD in C. For example, whenG = Sp2n(R) the
Siegel half-plane is biholomorphic to the so-called Siegel disc, whose Shilov boundary can be identified with
the space of Lagrangian subspaces in R2n. There is a notion of transversality for pairs of points in Sh(H).
Any triple of points (x, y, z) ∈ Sh(H)3 can be assigned a generalized Maslov index βSh(H)(x, y, z) ∈ R (see
[Cle07] and references therein) which, under our assumption that G in of tube-type, takes only finitely
many values. A triple (x, y, z) ∈ Sh(H)3 is maximal if its generalized Maslov index is the greatest possible.

Theorem 4.38 (8 in [BIW10]). Let Ŝ be a hyperbolic surface homeomorphic to the interior of S and of
finite area, so that one can consider its universal cover H, and let ρ : π1(S) → G be a representation.
Then ρ is maximal if and only if there exists a π1(S)-equivariant left-continuous map ∂H→ Sh(G) which
maps positively oriented triples in ∂H to maximal triples in Sh(G).

Here the boundary map is stated in a language closer to the one of [Lab04] than to the one of [FG06],
however both definitions are equivalent.

Proposition 4.39. If S is closed, Hommax(π1(S), G) is a union of connected components of Hom(π1(S), G).
If S has a non-empty boundary, then

Hommax(π1(S), G) ⊂ HomSh(H)(π1(S), G) , (4.94)

where the space on the right-hand side is defined as the space of representations in Hom(π1(S), G)
such that the image of the class of any simple closed curve on S bounding a hole or a puncture has
at least one fixed point in Sh(H). Moreover Hommax(π1(S), G) is a union of connected components of

HomSh(H)(π1(S), G).

In other words, spaces of maximal representations into a Hermitian Lie group of tube type provide
new examples of higher Teichmüller spaces.

The condition for a triple of points on the Shilov boundary of H to be maximal can be recast in a
form closer to what has been presented in the previous section. Following [GW18], we will consider the
specific case of Sp2n(R). Let us first define a sub-semigroup Sp�0

2n of Sp2n(R), in the spirit of Cryer’s
splitting lemma (Proposition 1.7). Here the positivity comes from the sharp convex cone appearing in
the tube type presentation of the Hermitian symmetric space corresponding to G rather than conditions
on minors. Let:

V =

{
g ∈ Sp2n,R | g =

(
Idn 0
M Idn

)
, M ∈ Symn(R)

}
, (4.95)

W =

{
g ∈ Sp2n,R | g =

(
Idn N
0 Idn

)
, N ∈ Symn(R)

}
, (4.96)

H =

{
g ∈ Sp2n,R | g =

(
A 0
0 (At)−1

)}
. (4.97)

Then one sets:

Sp�0
2n = V �0H◦W�0 , (4.98)

where V �0 (resp. W�0) is defined as V (resp. W ) except that the condition M ∈ Symn(R) (resp.
M ∈ Symn(R)) is replaced by M ∈ Posn(R) (resp. N ∈ Posn(R)), and where H◦ stands for the
connected component of the identity in H. Let now (e1, . . . , en, f1, . . . , fn) be a symplectic basis of R2n

and let Le = Vect(e1, . . . , en) and Lf = Vect(f1, . . . , fn). Any Lagrangian subspace L of R2n transverse to
Lf can be written as g ·Le for some g ∈ V . One says that the triple (Le, L, Lf ) is positive if g ∈ V �0 ⊂ V
[GW18]. This coincides with the notion of maximal triples of points in the Shilov boundary of the Siegel
upper half-space, acted on by Sp2n(R).

4.4.2 Θ-positivity

Let us define Θ-positivity, following [GW18]. It generalizes both notions of positivity evoked above.
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Let G be a real semisimple Lie group with finite center and let g = Lie(G) with Cartan decomposition
g = k ⊕ p, where k is the Lie algebra of the maximal compact subgroup of G. Let a ⊂ p be a maximal
abelian algebra in p, let Σ = Σ(g, a) be the restricted root system of g with respect to a [Gor94] and

g = g0 ⊕
(⊕

α∈Σ

gα

)
(4.99)

the corresponding root decomposition. Let Σ+ and Σ− be the spaces of positive and negative roots with
respect to a fixed ordering, and let ∆ be the corresponding set of positive simple roots. For any subset
Θ ⊂ ∆ one sets

uΘ =
∑

α∈Σ+
Θ

gα and uopp
Θ =

∑

α∈Σ+
Θ

g−α , (4.100)

with Σ+
Θ = Σ+\Span(∆−Θ). One also defines

lΘ = g0 ⊕
⊕

α∈Span(∆−Θ)∩Σ+

gα ⊕ g−α . (4.101)

Let PΘ = NormG(uΘ) and P opp
Θ = NormG(uopp

Θ ), as well as LΘ = PΘ ∩ P opp
Θ . One has Lie(LΘ) = lΘ.

The group LΘ acts on uΘ via the adjoint action ad : LΘ → End(uΘ). Let zΘ be the center of lΘ, and for
all β ∈ z∗Θ set

uβ = {N ∈ uΘ | ad(Z)N = β(Z)N, ∀Z ∈ zΘ} , (4.102)

so that
uΘ =

⊕

β∈z∗Θ

uβ . (4.103)

Any β ∈ z∗Θ can be uniquely written as the restriction of a root in a∗ ∩ Span(Θ) to zΘ, and hence we
consider the β’s as elements of a∗ ∩ Span(Θ). Moreover, one has [uβ , uβ′ ] = uβ+β′ , and hence as a Lie
algebra uΘ is generated by the uβ for β ∈ Θ.

Definition 4.40. The group G admits a Θ-positive structure if for all β ∈ Θ there exists an L◦Θ-invariant
sharp convex cone cβ in uβ.

Theorem 4.41 (4.8 in [GW18]). The group G has a Θ-positive structure if and only if there are two
transverse points EΘ, FΘ in the partial flag variety G/PΘ, such that there exists a connected component
of ΩEΘ

∩ ΩFΘ
with a semigroup structure. Here ΩEΘ

denotes the space of flags in G/PΘ transverse to
EΘ, and similarly for ΩFΘ

.

In the case of Lusztig’s positivity, G is split, Θ = ∆, PΘ = B and LΘ = H. When G is Hermitian
of tube type, Σ is of type Cr so that ∆ = {α1, . . . , αr}. The choice Θ = {αr}, such that PΘ stabilizes
a point on the Shilov boundary of the corresponding Hermitian symmetric space, defines a Θ-positive
structure on G which corresponds to the one of the previous section.

In fact, one can understand exactly for which cases the condition of Definition 4.40 is satisfied, which
leads to the following classification.

Theorem 4.42 (4.3 in [GW18]). A semi-simple real Lie group G with finite center admits a Θ-positive
structure if and only if (G,Θ) belongs to the following four cases:

1. G is a split real form and Θ = ∆,

2. G is of Hermitian type and Θ = {αr},

3. G is locally isomorphic to SO(p, q) for p 6= q and Θ = {α1, . . . , αp−1},

4. G is a real form of F4, E6, E7 or E8 whose restricted root system is of type F4, and Θ = {α1, α2}.
Let G be a group and Θ ⊂ ∆ such that G admits a Θ-positive structure. For every β ∈ Θ let

Cβ = exp(cβ) ⊂ Uβ = exp(uβ) ⊂ UΘ = exp(uΘ). For all β ∈ Θ let xβ : uβ → Uβ be the map

v 7−→ exp(v) . (4.104)

Let U≥0
Θ be the sub-semigroup of UΘ generated by the Cβ ’s, for all β ∈ Θ. One defines (Uopp

Θ )≥0 similarly.
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Definition 4.43. The Θ-nonnegative semigroup G≥0
Θ is defined as G≥0

Θ = U≥0
Θ L◦Θ(Uopp

Θ )≥0.

Let W = 〈sα | α ∈ ∆〉 be the Weyl group of G. There is at most one node βΘ ∈ Θ in the Dynkin
diagram corresponding to Σ, such that it is connected to ∆−Θ. For all β ∈ Θ−{βΘ} let σβ = sβ , and let
σβΘ

be the longest element in the subgroup of the Weyl group generated by the sα for α ∈ {βΘ}∪(∆−Θ).
Let now

W (Θ) = 〈σβ | β ∈ Θ〉 . (4.105)

In every case appearing in Theorem 4.42, W (Θ) is isomorphic to the Weyl group of a simple root system,
in which the σβ are the simple reflections. For example, when G is split real one has W (Θ) = W , and
when G is Hermitian of tube type, W (Θ) 'WA1 .

The group W (Θ) acts on the weight spaces uβ for β ∈ a∗ ∩ Span(Θ). Let w0
Θ ∈W (Θ) be the longest

element and let σi1 ·σil be a reduced expression for w0
Θ. For each β ∈ Θ let c◦β denotes the interior of the

sharp convex cone cβ , and let Fσi1 ·σil : c◦βi1
× · · · × c◦βil → UΘ be the map:

(vi1 , . . . , vil) 7−→ xβi1 (vi1) . . . xβil (vil) (4.106)

In the spirit of Lusztig’s parametrization of the positive sub-semigroup G>0 of Proposition 4.17, one
can show that the image U>0

Θ of the map Fσi1 ·σil is independent of the reduced expression for w0
Θ.

Definition 4.44. The sub-semigroup U>0
Θ of G is called the Θ-positive semigroup of UΘ. One defines

(U>0
Θ )opp in a similar way. The Θ-positive semigroup G>0

Θ is defined as the sub-semigroup in G generated
by U>0

Θ , (U>0
Θ )opp and L0

Θ.

This notion of positivity allows to define a broad class of higher Teichmüller spaces.

Definition 4.45. Let G be a semisimple Lie group with a Θ-positive structure, and let Sg be the oriented
closed surface of genus g. A representation π1(Sg) → G is said to be Θ-positive if there exists a ρ-
equivariant positive map ∂H→ G/PΘ which maps positively oriented triples in ∂H to positive triples in
G/PΘ.

Conjectures about the properties of the spaces of Θ-positive representations we proposed in [GW18]
and subsequently proved in [GLW21] after having shown that Θ-positive representations are Θ-Anosov.
Let us state two main results of [GLW21].

Theorem 4.46 (A in [GLW21]). If G admits a Θ-positive structure, then there exists a connected com-
ponent of the G-character of variety of a closed oriented surface which consists solely of discrete and
faithful representations.

Theorem 4.47 (D in [GLW21]). Let S be a closed oriented surface and G a semi-simple Lie group
admitting a Θ-positive structure. The set of Θ-positive representations HomΘ−pos(π1(S), G) is a union of
connected components of Hom∗(π1(S), G), where Hom∗(π1(S), G) is the space of homomorphisms which
do not factor through a parabolic subgroup of G, even when restricted to a finite index subgroup of π1(S).

Therefore Θ-positivity yields higher Teichmüller spaces. In the classification Theorem 4.42, the cases
when G is split real and when G is Hermitian of tube type correspond to the already-known Hitchin
components and spaces of maximal representations, however the two remaining families (G = SO(p, q)
for p 6= q, and the exceptional types) define new higher Teichmüller spaces.

Higher Teichmüller spaces when G = SO(p, q) for p 6= q have been studied in [BP21, AABC+18,
AABC+19, BCGP+21] using various methods. The notion of magical sl2-triple was introduced recently
in [BCGP+21] in the context of G-Higgs bundles. The groups G admitting such magical sl2-triple are
exactly the ones admitting a Θ-positive structure.
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∗ ∗ ∗ ∗ ∗ ∗ ∗

The algebro-geometric duals to cluster algebras are cluster varieties, which are special instances of
positive varieties. To the mutation class of a seed one can associate a cluster ensemble consisting of a
pair (X ,A) of cluster varieties and enjoying various interesting features.

Moduli spaces of framed or decorated G-local systems on a ciliated surface S form examples of cluster
ensembles of geometric interest. Their underlying positive structure allows to consider their points over
various semi-fields. In particular, the (R>0)-points of these cluster varieties generalize the Teichmüller
space with holes and the decorated Teichmüller space of a ciliated surface. They form connected compo-
nents of the G-character variety of S which consist solely of discrete and faithful representations, and are
identified with Hitchin’s components. It is interesting that the positive structure on these varieties allows
to account for a discreteness condition, which is non-algebraic in nature, within algebraic geometry.

By analogy with the classical laminations spaces of S, the spaces of rational G-higher laminations on
S are defined as the Qt-points of the cluster varieties XG,S and AG,S . In Chapter 14, we will explore
directions towards the definition of combinatorial objects on S generalizing the rational laminations on
S as systems of curves, as presented in Chapter 3.

When G is of type A, the spaces XPGLm,S and ASLm,S admit special coordinate systems for each
triangulation Γ of S. These coordinates are expressed in terms of flags.

Lastly, we have discussed another class of higher Teichmüller spaces defined for Hermitian Lie groups
of tube type, as well as the recent notion of Θ-positivity which leads to the definition of a broad class of
higher Teichmüller spaces containing both Hitchin’s components and spaces of maximal representations,
as well as completely new instances.
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Chapter 5

Supersymmetry in four dimensions

Our current understanding of fundamental particle physics at energies below a few TeV is gathered in
the Standard Model of particle physics, which is a gauge theory with gauge group U(1)× SU(2)× SU(3)
(possibly quotiented by a subgroup of Z/6Z). It describes the electromagnetic, weak and strong nuclear
forces in a unified framework. The Standard Model is currently tested at many particle colliders around
the world, and the agreement between theoretical predictions and experiments is astonishing [Z+20].

However the Standard Model has some short-comings that are motivations to look for an extension of
it. Our Universe is believed to be governed by four fundamental forces at low energies: the aforementioned
three and gravity. At energies far below the Planck scale ΛP = 1019 GeV, gravity is negligible, and
that makes it possible for the Standard Model to account faithfully for most of fundamental physics
phenomena – but this cannot be true anymore as soon as gravity has to be taken into account, e.g. at
energies comparable to ΛP . Moreover, there are some features of the Standard Model that still lack a
deep understanding, as well as physics besides gravity which cannot be described within the Standard
Model. Unraveling such mysteries would provide hints on how to extend the Standard Model into a more
complete theory, and hence to an even better description of physics. Let us discuss briefly three such
conundrums.

• The first is known as the hierarchy problem. The mass of the Higgs boson MH ∼ 125 GeV is related
to the scale of electroweak symmetry breaking ΛEW ∼ 246 GeV, for both of which there is now
a good amount of experimental evidence. The Higgs boson being a scalar particle, one expects
its mass to receive quadratic corrections from quantum effects, which would in principle give it an
observable mass comparable to the energy scale up to which the Standard Model is defined, except
if some particularly fine-tuned cancellations between these quantum corrections happen. This fine-
tuning would seemingly go against a principle known as naturalness. The hierarchy problem is often
boldly expressed as: why is the Higgs mass so small compared to the Planck scale ΛP ∼ 1018 GeV?

• The study of galaxy rotation curves, gravitational lensing, anisotropies of the Cosmic Microwave
Background, and direct observations such as the Bullet cluster suggest the existence of dark matter,
presumably constituted of massive particles interacting only very weakly with electromagnetism.
The Standard Model does not describe particles with the good properties to be the main constituent
of dark matter; this points towards searching for consistent extensions containing such particles.

• Under renormalization, the observable strengths of the gauge couplings in the Standard Model
depend on the energy scale, and seem to converge approximately around the so-called Grand Unifi-
cation scale ΛGUT ∼ 1018 GeV. This suggest that the three microscopic forces, i.e. electromagnetism
as well as the weak and strong nuclear forces, might unify above this energy scale. This would be
very interesting theoretically and philosophically, however for the convergence to be exact one needs
to consider a more complete theory than the Standard Model.

Extensions of the Standard Model must be constructed with care, for the resulting theory might
otherwise be inconsistent phenomenologically. No-go theorems constraining the possible infinitesimal
symmetries of reasonable quantum field theories were proved in the 1960’s, culminating with the Coleman–
Mandula theorem [CM67]: the most general Lie algebra of infinitesimal symmetries of a phenomenologi-
cally viable quantum field theory must be a direct product of the Poincaré algebra and an internal algebra
[Wei13]. This theorem severely constraints quantum field theories of phenomenological interest.
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A way out the Coleman–Mandula theorem is to weaken the required assumptions on the algebraic
structure of the set of infinitesimal symmetries of quantum field theories. One may for example allow it
to be a Lie superalgebra (i.e. a Z2-graded Lie algebra) instead of a conventional Lie algebra [HLS75].
In that case some of the infinitesimal symmetries are odd, and they link bosonic states of the theory to
fermionic states, and vice–versa. The quantum field theories which have such infinitesimal symmetries
are said to be supersymmetric.

Extensions of the Standard Model that are supersymmetric solve some of the flaws mentioned above:
there are natural candidates for the particle constituting dark matter, the unification of gauge couplings
is better or even exact in many models, and quantum corrections are under much more control than in
non-supersymmetric gauge theories, which lets one hope for a resolution of the hierarchy problem. For ex-
ample, some models such as the Minimal Supersymmetric extension of the Standard Model (MSSM) and
its variants offer a natural explanation of the weak hierarchy problem [Z+20], even if the latest data from
the Large Hadron Collider suggests that there is some fine-tuning in the Higgs mass, after all. Other mod-
els such as split supersymmetry [AHD05] embrace this scenario and show that supersymmetric extensions
of the Standard Model can be implemented in a rich variety of ways. Even if today’s available experi-
mental data might induce pessimistic feelings regarding models such as the MSSM, the non-observation
of a particular supersymmetric extension of the Standard Model at LHC1 does not challenge the very
idea of supersymmetry at all, but rather the specific implementation under study.

All the more so as supersymmetry may somehow be necessary to describe quantum gravity; it is in
particular the case in string theory, which is one of the more developed and sprawling approach to it:
supersymmetry seems to always be necessary in order to obtain phenomenologically interesting string
theories. Should this fact be true, the question would not be whether supersymmetry exists at all but
rather how it has to be implemented in the description of our universe.

Furthermore, whether supersymmetry must play a role in the description of fundamental physics or
not, it can be seen as a mere mathematical constraint which grants much control on quantum field theories.
It allows one to wonder about deep questions which are less (if at all) accessible in general quantum
field theories: supersymmetry is a very interesting theoretical laboratory. Quantum field theories with
the minimal possible amount of supersymmetry in four dimensions satisfy powerful non-renormalization
theorems reviewed in Section 5.2, which tame radiative corrections a lot. Holomorphy and holomorphic
decoupling allow moreover to peep into the strong coupling behaviour of supersymmetric gauge theories:
we will review in Section 5.4 the quantum dynamics of SQCD (the analogue of quantum chromodynamics
with N = 1 supersymmetry) which is worked out by extensive use of holomorphy.

The more supersymmetries, the more control: we discuss the quantum dynamics of gauge theories
in four dimensions with N = 2 in Section 5.6 and N = 4 in Section 5.7, which is the maximal possible
amount of supersymmetries in non-gravitational theories in four dimensions. In these cases one can do
much more than a mere peep into the strong coupling dynamics.

Section 5.3 and Section 5.5 tackle questions of a more phenomenological origin: namely, how super-
symmetry can be broken, and how it can be implemented in interesting ways to the description of the
physics of our world.

A last important feature of supersymmetric quantum field theories is that they often allow for many
different choices of vacua. The set of all possibles vacua of such a theory is its moduli space. It is always
a complex algebraic variety, and is often endowed with additional mathematical structure, therefore
becoming Kähler manifolds, special Kähler manifolds or hyperkähler manifolds, for example. When
looking at supersymmetric gauge theories with gauge group G, one often uncovers bridges between the
representation theory of G, the geometry of the moduli space, and the low-energy dynamics of the
quantum field theory.

What follows in this chapter is mostly based on [Ber15]. Other lectures I used include [Arg01] and
[IS07], as well as [PT98, SS00] as far as dynamical supersymmetry breaking is concerned.

1or rather, its testable avatars [Z+20]
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5.1 General definitions and properties

Super-Poincaré algebras.

Let N ∈ Z≥0. A 4-dimensional super-Poincaré algebra with N supersymmetries is a super-Lie algebra

g = g0 ⊕ g1 (5.1)

satisfying some requirements derived in [HLS75] and listed below. By definition [Kac77] the super Lie
bracket

[·, ·] : g× g→ g (5.2)

is bilinear and for i, j, k ∈ Z2 and gi ∈ gi it satisfies

[gi, gj ] ⊂ gi+j , (5.3)

[gi, gj ] = −(−1)ij [gj , gi] , (5.4)

(−1)ik[gi, [gj , gk]] + (−1)ji[gj , [gk, gi]] + (−1)kj [gk, [gi, gj ]] = 0 . (5.5)

The even homogeneous part g0 of degree 0 is the direct sum g0 = p⊕ b of the 4-dimensional Poincaré
algebra p = so(1, 3)⊕ R4 with usual generators Mµν , Pµ and a reductive Lie algebra b which commutes
with p.

The odd part g1 of g is of the form
[(

1

2
, 0

)
⊗ V

]
⊕
[(

0,
1

2

)
⊗ V ∗

]
, (5.6)

where
(

1
2 , 0
)

and
(
0, 1

2

)
stand for the two non-isomorphic spin representations of so(1, 3) and where V is

an N -dimensional representation of b. Let QIα, α = 1, 2; I = 1, ..., N , denote generators of
[(

1
2 , 0
)
⊗ V

]

and let Q
I

α̇, α̇ = 1, 2; I = 1, ..., N , generators of
[(

0, 1
2

)
⊗ V ∗

]
. In our conventions (QIα)† = Q

I

α̇. These
generators of g1 are called supercharges; they commute with infinitesimal space-time translations, and:

[
Mµν , Q

I
α

]
= i(σµν)βαQ

I
β , (5.7)

[
Mµν , Q

Iα̇
]

= i(σµν)α̇
β̇
QIα̇ , (5.8)

[
QIα, Q

J

β̇

]
= 2σµ

αβ̇
Pµδ

IJ , (5.9)

[QIα, QJβ ] = εαβZ
IJ , (5.10)

[
Q
I

α̇, Q
J

β̇

]
= εα̇β̇

(
ZIJ

)∗
. (5.11)

In Equation (5.7) and Equation (5.8) Mµν stands for the usual generators of the Lorentz algebra

so(1, 3) and σµν = (σµσν − ηµν) are the 2-index Pauli matrices: the QIα and Q
Iα̇

transform as left and

right Weyl spinors under the Lorentz group. Moreover, one sees that QI1 and Q
I

2̇ raise the z component

of the spin (J3) by half a unit, while QI2 and Q
I

1̇ lower the z component of the spin by half a unit. Hence

the supersymmetry generators QIα and Q
Iα̇

map fermionic states to bosonic ones, and vice versa.
In Equation (5.9) the Pµ are the generators of space-time translations, and the σµ are the usual Pauli

matrices. This equation indicates that an infinitesimal supersymmetry translation is somehow the square
root of an infinitesimal space-time translation. It also implies that in a supersymmetric theory defined
as a representation of g on a Hilbert space the energy of any state is positive:

0 ≤
2∑

α,α̇=1

||(Q1α)† |φ〉 ||2 + ||Q1α |φ〉 ||2 =

2∑

α,α̇=1

2σµαα̇ 〈φ|Pµ |φ〉 = 4δµ0 〈φ|Pµ |φ〉 = 4 〈φ|P0 |φ〉 . (5.12)

Lastly in Equation (5.10) and Equation (5.11) εαβ and εα̇β̇ are the totally antisymmetric Levi-Civita

symbols and hence ZIJ = −ZJI . The latter matrix is the central charge of the algebra – it is in the
center of g. Note that both equations are trivial when N = 1.

Moreover, there are generators in b which do not commute with the QIα and Q
I

α̇: these are called
R-symmetry generators of the algebra.
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The Haag–Lopuszanski–Sohnius theorem [HLS75] states that the most general graded Lie algebra of
infinitesimal symmetries of the S-matrix in a nice massive quantum field theory in four dimensions is the
direct sum of a super-Poincaré algebra as described above and a finitely generated internal part commute
with the super-Poincaré algebra.

N = 1 superspace and superfields.

From now on and until the last section of this chapter let us assume parsimoniously that we are considering
a d = 4 N = 1 quantum field theory, i.e. a representation of the four dimensional N = 1 super Poincaré
algebra on a Hilbert space of states H.

In order to describe the fields corresponding to irreducible representations of the super Poincaré
algebra is it convenient to introduce the superspace M4|1 = OSp(4|1)/SO(1, 3) in which points are
described by triples (xµ, θα, θα̇) where the xµ are the usual space-time coordinates in four-dimensional
Minkowski space and where θα and θα̇ for α, α̇ = 1, 2 are anti-commuting Grassmannian coordinates.
The supersymmetry generators act as translations in superspace:

Qα = −i∂α − σµαβ̇θ
β̇
∂µ, Qα̇ = i∂α̇ − θβσµβα̇∂µ . (5.13)

It is convenient to define the following two covariant derivatives in superspace:

Dα = ∂α + iσµ
αβ̇
θ
β̇
∂µ, Dα̇ = ∂α̇ + iθβσµβα̇∂µ ; (5.14)

they anticommute with the supersymmetry generators.
Because of the fact that the Grassmannian coordinates are anti-commuting any (smooth) function on

M4|1 admits a Taylor-like expansion:

Y (x, θ, θ) = f(x)+θψ(x)+θχ(x)+θθm(x)+θθn(x) = θσµθvµ(x)+θθθλ(x)+θθθρ(x)+θθθθd(x) . (5.15)

A superfield is a function on M4|1 such that

Y (x+ δx, θ + δθ, θ + δθ) = e−i(εQ+εQ)Y (x, θ, θ)ei(εQ+εQ) . (5.16)

A general recipe to construct supersymmetric actions is to consider expressions such as:

S =

∫
dx4d2θd2θY (x, θ, θ) =

∫
dx4L(φ(x), ψ(x), Aµ(x), . . . ) . (5.17)

Instead of considering general superfields one can impose supersymmetric constraints to obtain more
elementary building blocks for our supersymmetric Lagrangian densities, in fact those corresponding to
irreducible representations of the supersymmetry algebra. In what follows since we will most of the time
consider quantum field theories in which the spin of particles is smaller than 1, we will be working with
two kinds of supermultiplets.

• Chiral superfields Φ, which satisfy
Dα̇Φ = 0 . (5.18)

The physical degrees of freedom they describe consist of a complex scalar field φ(x) and a Weyl
fermion ψ(x). Off-shell there is also an auxiliary field F . In fact:

Φ = φ(x) +
√

2θψ(x) + iθσµθ∂µφ(x)− θθF (x)− i√
2
θθ∂µψ(x)σµθ − 1

4
θθθθ�φ(x) . (5.19)

Chiral superfields describe matter, and hence they are sometimes refer to as matter superfields and
supermultiplets.

• Vector superfields V , also called real superfieldssince they satisfy

V = V . (5.20)

They are the supersymmetric generalization of gauge fields. They take value in the Lie algebra of
a gauge group G: V = VaT

a, and the supersymmetric generalization of a gauge transformation is

eV → eiΛeV e−iΛ . (5.21)
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In the so-called Wess–Zumino gauge, a vector superfield reads:

VWZ = θσµθvµ(x) + iθθθλ(x) + iθθθλ(x) +
1

2
θθθθD(x) , (5.22)

from which one sees that the degrees of freedom of a vector superfield consists of a gauge boson
vµ(x), a Weyl fermion λ(x) called a gaugino and an auxiliary field D(x).

The supersymmetric generalization of the field strength of a vector field is

Wα = −1

4
DD(e−VDαe

V ) = −iλα(y) + θαD(y) + i(σµνθ)αFµν(y) + θθ(σµDµλ)α(y) , (5.23)

where yµ = xµ + iθσµθ and where Fµν is the usual field strength of the vector field vµ(x).

The most general gauge-matter action (with canonical Kähler potential – see below) writes:

L =
1

32π
Im

(
τ

∫
d2θTrWαWα

)
+
∑

A

ξA

∫
d2θd2θV A

+

∫
d2θd2θ ΦeV Φ +

∫
dθ2W (Φ) +

∫
dθ

2
W (Φ) , . (5.24)

In order to obtain a Lagrangian with canonical normalization of the fields after integration over the
Grassmanian coordinates one must rescale the vector superfield as V → 2gV , where g is the Yang–Mills
coupling. One then obtains:

L = Tr

[
−1

4
FµνF

µν − iλσµDµλ+D2

]
+

Θ

32π2
g2 TrFµν F̃

µν + g
∑

A

ξAD
A

+ (DµΦ)DµΦ− iψσµDµψ + FF + i
√

2gφλψ − i
√

2gψλφ+ gφDφ

− ∂W

∂φi
F i − ∂W

∂φi
F i −

1

2

∂2W

∂φi∂φj
ψiψj − 1

2

∂2W

∂φi∂φj
ψiψj . (5.25)

In Equation (5.24) we have denoted τ the complexified gauge coupling:

τ = i
4π

g2
+

Θ

2π
, (5.26)

where Θ is the usual theta angle of Yang–Mills theories. The first and third terms in Equation (5.24) are
the kinetic terms for respectively the vector superfields collectively denoted V and the chiral superfields
collectively denoted Φ; g is the charge of Φ under the gauge group G with respect to which V transforms
in the adjoint. The second term in Equation (5.24) is called a Fayet–Illiopoulos term, and exists only
for abelian factors U(1) of the gauge group G, over which the sum runs. The W which appears in the
last two terms of Equation (5.24) is called the superpotential and it must be a holomorphic (analytic)
function of the chiral superfield. The superpotential terms contain Yukawa interaction terms for the
chiral superfields.

In any integral over superspace one can distinguish between terms that are integrals over half-
superspace only (this is the case for the superpotential terms only in Equation (5.24)) and which are
called F-terms, and the others which are called D-terms.

The kinetic term for chiral multiplets in Equation (5.24) is actually not the most general one:

∫
dθ2dθ

2
K(Φe−2gV ,Φ) with K(a, b) =

∞∑

m,n=1

cmnb
man, cmn = c∗nm , (5.27)

is a perfectly fine kinetic term for the chiral supermultiplets. The functionK is called the Kähler potential,
and the choice in Equation (5.24) is said to be the canonical Kähler potential.

Integrating out the auxiliary fields Da and F i in Equation (5.24) using their equation of motion:

F i =
∂W

∂φi
, Da = −gφT aφ− gξa , (5.28)
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where ξa = ξA if T a is the generator of a U(1) factor in G and 0 otherwise, yields

L = Tr

[
−1

4
FµνF

µν − iλσµDµλ

]
+
θYM

32π2
g2 TrFµν F̃

µν + (DµΦ)DµΦ− iψσµDµψ (5.29)

+ i
√

2gφλψ − i
√

2gψλφ− 1

2

∂2W

∂φi∂φj
ψiψj − 1

2

∂2W

∂φi∂φj
ψiψj − V (φ, φ) , (5.30)

where

V (φ, φ) =
∂W

∂φi
∂W

∂φi
+
g2

2

∑

a

∣∣φi(T a)ijφ
j + ξa

∣∣2 = FF +
1

2
D2 ≥ 0 (5.31)

is the scalar potential of the theory (defined as before as the non-derivative scalar part of the Hamiltonian).
The equation of motion for the auxiliary fields F i has to be modified if the Kähler potential is not the
canonical one. Now comes the following important result:

Proposition 5.1. The (classical) supersymmetric vacua of the theory defined by Equation (5.29) are
exactly the zeros of the scalar potential V (φ, φ). The classical moduli space (of vacua) of the theory is
the (analytic) algebraic subvariety defined by V (φ, φ) = 0 in the field space, parameterized by the φi. The
equations Fi = 0 are called F-term equations, and the ones Da = 0 are called D-term equations.

Proof. A vacuum is a Lorentz-invariant field configuration of (locally) minimal energy. The result follows
from the fact that in a supersymmetric theory the energy of any state is positive and that a state has zero
energy if and only if it is supersymmetric. The fact that the classical moduli space of any supersymmetric
quantum field theory is an algebraic variety is proved in [LT96]. The idea is that the classical moduli
space can be defined by imposing the D-term equations and identifying gauge equivalent configurations
on the space of solutions to the F-terms. The latter is clearly is a subvariety of the field space, and the
solutions to the D-terms modulo gauge is exactly the G-symplectic quotient of F , which is homeomorphic
to the (GIT) quotient of F by the complexified gauge group GC: this is a version of the Kempf–Ness
theorem [KN79].

R-symmetry

Remember that the R-symmetry is generated by those elements in the reductive part b of the super-
Poincaré algebra which do not commute with the supersymmetry generators (but remember that b
commutes with p). In four-dimensional theories with N = 1, the group of R-symmetries is at most
U(1). It is convenient to define its action on superspace by defining the R-charges of the odd coordinates:
R[θα] = 1 and R[θα̇] = −1. This and the rules of Grassmanian calculus imply in turn that R[dθα] = −1
and R[dθα̇] = +1. Since the Lagrangian density is uncharged under global symmetries one sees that
the superpotential must have R-charge 2 in order for the R-symmetry to be unbroken, and that vector
superfields necessarily have R-charge 0. Moreover from the expansion in components of a chiral Φ = (φ, ψ)
and a vector V = (λ, vµ) superfield it is necessarily the case that

R[ψ] = R[φ]− 1 = R[Φ]− 1, R[λ] = R[vµ] + 1 = R[V ] + 1 = 1 . (5.32)

5.2 Renormalization and anomalies.

Non-renormalization theorems.

One of the most interesting properties of supersymmetric quantum field theories is that quantum correc-
tions are under much better control than in a general quantum field theory. Using Feynman supergraphs
techniques [GSR79] (see also [Sei93]), in a supersymmetric quantum field theory containing chiral and
vector superfields only one can prove that all contributions to the effective action that can be generated
by loop diagrams can be written as an integral over d2θd2θ, hence by definition it is a D-term. This
contribution cannot affect superpotential terms since they are F-terms.

Proposition 5.2. The superpotential in a four-dimensional supersymmetric quantum field theory is tree-
level exact in perturbation theory.
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The superpotential may still receive corrections at the non-perturbative level and we will see many
examples of that later on. D-terms on the contrary in general do receive contributions at any order in
perturbation theory.

The perturbative tree-exactness of the superpotential imply that the renormalization of the couplings
appearing in the superpotential can be expressed in terms of the renormalization of the chiral fields
appearing in it. In general if a chiral field Φ renormalizes as ΦΦ → ZΦΦΦ one defines the anomalous
dimension γΦ of Φ as

γΦ = −∂ lnZΦ

∂ lnµ
. (5.33)

The renormalized scaling dimension of Φ reads

dim Φ = 1 +
1

2
γΦ . (5.34)

Concerning the gauge part of the theory since the Θ coupling does not enter the equations of motion
it does not renormalize. The complexified gauge coupling τ however does renormalize but at one-loop
only in perturbation theory, because of the supersymmetric non-renormalization theorems. Let G be the
gauge group of the theory, and assume that there are matter superfields Φi in representations Ri of G.
Then:

βτ = 3T (Adj)−
∑

i

T (Ri) =: b , (5.35)

where T (Ri) is the Dynkin label of the representation Ri defined as:

Tr
(
TARiT

B
Ri

)
= T (Ri)δ

AB . (5.36)

For example if G = SU(N) one has

T (Adj) = N, T = T =
1

2
, T =

N − 2

2
, T =

N + 2

2
. (5.37)

It is common to absorb the choice of normalization for the generators of G in the defining representation
by dividing all the Dynkin labels by the one of the defining representation.

Equation Equation (5.35) implies that the complexified gauge coupling τ runs with the energy scale
as

τ(µ) = τUV −
b

2πi
log

µ

ΛUV
+ · · · = − b

2πi
ln
µ

Λ
+ . . . , (5.38)

where τUV is the coupling at the energy scale ΛUV, where the dots stand for non-perturbative contri-
butions, and where Λ = ΛbUVe

2πiτUV is the (holomorphic) dynamical scale of the theory, which does not
renormalize.

The way in which the complexified gauge coupling enters the supersymmetric gauge Lagrangians
densities does not correspond to the usual normalization of gauge theories. Instead of considering the
normalization of Equation (5.24) one should consider

(
1

4g2
c

− i Θ

32π2

)∫
d2θTrWα(gcV )Wα(gcV ) + c.c. , (5.39)

where the subscript c is here to emphasize that this corresponds to the canonical normalization. The
innocent looking rescaling V → gcV that seems to be necessary to go from the so-called holomorphic
normalization of Equation (5.24) to the one of Equation (5.39) is actually not that innocent, because
of a rescaling anomaly. Hence one must distinguish between the holomorphic gauge coupling which
renormalizes at one-loop only in perturbation theory as in Equation (5.35) and the physical gauge coupling ,
which renormalizes at all orders in perturbation theory: the running with the energy scale of the physical
gauge coupling is given by the NSVZ beta function [NSVZ86]:

β 8π2

g2
c

=
3T (Adj)−∑i T (Ri)(1− γi)

1− g2
cT (Adj)/8π2

. (5.40)

Fixed points of the renormalization group flow are scale-invariant theories. In most cases it implies
in fact that the super Poincaré algebra of infinitesimal symmetries of the theory extends to the su-
perconformal algebra, in which case the theory is said to be superconformal . The bosonic part of the



158 CHAPTER 5. SUPERSYMMETRY IN FOUR DIMENSIONS

superconformal algebra is so(2, 4) × u(1)R. Contrarily to the super Poincaré case the U(1)R symmetry
now fully enters the superconformal algebra, and this implies in particular that the dimension of any
pure chiral primary operator O depends on its R-charge as:

dimO =
3

2
R[O] = 1 +

1

2
γO . (5.41)

The relations in the algebra involving R-symmetry imply that it commutes with bosonic global symmetries
and hence operators related by such a bosonic global symmetry have the same anomalous dimension.

Anomalies and ’t Hooft anomaly matching.

A global symmetry G̃ is said to be anomalous if it is broken by quantum effects. Let us assume that the
classical conserved current jµA associated with G̃ is chiral, so that G̃ is a classical chiral global symmetry.
A chiral global symmetry in a classical field theory is anomalous when the field integration measure in
the path integral description of the quantum theory is not invariant under the symmetry [Fuj84]. For a
general discussion on anomalies we refer to [Har05].

Only U(1) factors in G̃ can be anomalous, and they get contributions at one loop only from triangle
(in four dimensions) Feynman diagrams. Let us consider a theory with gauge group G with generators
tA, a classical global symmetry group G̃ with generators t̃A and a set of Weyl fermions ψi transforming
in the representations (Ri, R̃i) of G× G̃. The Adler–Bell–Jackiw (ABJ) [Adl69, BJ69] calculation yields:

∂µj
µ
A =

A

16π2
FBµνF̃

Bµν , (5.42)

where A =
∑
i q̃iT (Ri) is the anomaly coefficient, q̃i is the charge of ψi under the global U(1) factors,

T (Ri) is the Dynkin index of the representation Ri, F
µν
B is the B-component of the G field strength and

F̃µν is the magnetic (Hodge) dual of Fµν .
Instantons are classical solutions of the Euclidean Yang–Mills action which approach pure gauge at

infinity. They satisfy
θ

32π2

∫
d4xTrFµν F̃

µν = nθ (5.43)

where n ∈ Z is the instanton number. They are intrinsically strong-coupling effects since they vanish for
Λ → 0, where Λ is the strong coupling scale of the theory. The global U(1) anomaly of Equation (5.42)
can be re-expressed as:

∆Q = 2An (5.44)

after integration of Equation (5.42) in space-time and with ∆Q the amount of charge violation due to the
anomaly: anomalous symmetries are violated by a specific amount 2An is a given instanton background
with instanton number n.

Global U(1) symmetry groups can be anomalous without harming the consistence of the gauge theory,
contrarily to the gauge symmetries for which an anomaly violates the unitarity of the theory. ABJ
anomalies can thus be interpreted as obstructions to gauge a given U(1) global symmetry. The condition
from the ABJ formula that an R-symmetry is free of ABJ anomalies amounts precisely to the vanishing
of the NSVZ beta function of Equation (5.40).

By definition, ’t Hooft anomalies [tH80] are computed from triangle Feynman diagrams with only
global currents at the vertices (while ABJ anomalies have one global and two local current insertions).
By weakly gauging a global symmetry and adding spectator fermions so as to cancel the gauge anomaly,
one proves easily that ’t Hooft anomalies are renormalization group independent quantities: this is the
’t Hooft anomaly matching condition. It imposes stringent constraints on the low-energy dynamics of
supersymmetric gauge theories, as we will see.

Four dimensional superconformal algebras have central charges a and c, and they can be computed
as ’t Hooft anomalies:

a =
3

32

(
3 TrR3 − TrR

)
, c =

1

32
(9 TrR3 − 5 TrR) . (5.45)

Note that if U(1)R is a valid R-symmetry in the supersymmetric (not necessarily superconformal)
sense and if U(1) is any other bosonic global non-R symmetry of the theory then U(1)R × U(1) is also
valid as an R-symmetry. Among all the possible R-symmetries obtained in this way, in a superconformal
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theory only one of them is the superconformal R-symmetry which enters the infinitesimal symmetry
algebra. It was proved in [IW03] that the superconformal R-symmetry is singled out by the fact that it
maximizes the central charge a.

5.3 Perturbative spontaneous supersymmetry breaking

Supersymmetry is not a manifest symmetry in our universe, at least at energies lower that a few TeV,
hence if it exists at all it must be a hidden symmetry. In order to implement the breaking of a super-
symmetric UV theory, either the UV lagrangian of the theory contains relevant supersymmetry breaking
terms (these are called soft supersymmetry breaking terms) or supersymmetry is spontaneously broken
by the choice of vacuum. The low-energy effective Lagrangians of theories at non-supersymmetric vacua
typically contain soft-supersymmetry breaking terms. Let us quickly analyze how supersymmetry may
break spontaneously.

In a d = 4, N = 1 gauge theory with canonical Kähler potential and Lagrangian given by Equa-
tion (5.25), the scalar potential reads:

V (φ, φ) = FF +
1

2
D2 . (5.46)

By definition a vacuum of the theory satisfies:

∀i , ∂V

∂φi
= 0 and

∂V

∂φi
= 0 , (5.47)

and it is supersymmetric if and only if it has zero energy, that is:

F i(φ) = 0 and Da(φ, φ) = 0 . (5.48)

One can show with supersymmetric Ward identities that at a supersymmetry-breaking vacuum there
must be a massless fermion, called the goldstino. This is the analogue of the Goldstone theorem for
ordinary bosonic symmetries. In a Lagrangian theory defined by Equation (5.25) it can be expressed as

ψGα ∼ 〈F i〉ψiα + 〈Da〉λaα . (5.49)

F-term breaking

A first way supersymmetry may break spontaneously is if there does not exist any local minimum of
the scalar potential such that all F-terms vanish. Since the superpotential terms in a supersymmetric
Lagrangian do not renormalize, if this happens in perturbation theory then it must happen at tree-level.

One of the simplest examples of a theory which exhibits F-term supersymmetry breaking is the so-
called Polonyi model . It is a theory of a single chiral superfield Φ with Lagrangian density:

L =

∫
dθ2dθ

2
ΦΦ +

∫
dθ2λΦ +

∫
dθ

2
λΦ . (5.50)

The scalar potential in that case is constant equal to |λ|2 and that sets the supersymmetry breaking scale
to |λ| = M2

s . This model admits an R-symmetry with R(Φ) = 2 which is broken at any choice of vacuum
such that 〈Φ〉 6= 0. Allowing the Kähler potential to be non-canonical:

L =

∫
dθ2dθ

2
K(Φ,Φ) +

∫
dθ2λΦ +

∫
dθ

2
λΦ , (5.51)

allows a variety of different behaviors. The scalar potential is

V (φ, φ) =

(
∂2K

∂φ∂φ

)−1

|λ|2 , (5.52)

and depending on the analytical properties of K one can obtain very different situations, some of which
are displayed in Figure 5.1: there can be a stable non-supersymmetric vacuum (i.e. a global minimum of
the scalar potential at a strictly positive height), a metastable non-supersymmetric vacuum (i.e. a local
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Figure 5.1: Different qualitative behaviors in the Polonyi model with non-canonical Kähler potential.

minimum of the scalar potential at a strictly positive height), no vacuum at all when the scalar potential
slopes to zero at infinity (one speaks of a runaway behaviour). The fact that Kähler potential explodes
at finite distance in the configuration space hints for the existence of new massless degrees of freedom
there, i.e. a breakdown of the effective description.

Another classic family of models exhibiting F-term supersymmetry breaking consists of the so-called
O’Raifeartaigh models. The simplest such theory describes three chiral superfields X,Φ1 and Φ2 with
canonical Kähler potential and superpotential

W =
1

2
hXΦ2

1 +mΦ1Φ2 − µ2X . (5.53)

This model has an R-symmetry with R-charges R(X) = 2, R(Φ1) = 0 and R(Φ2) = 2. The F-term
equations are

FX = 1
2hφ

2
1 − µ2,

F 1 = hxφ1 +mφ2,
F 2 = mφ1,

(5.54)

where x is the bosonic field in the chiral multiplet X. The equations FX = 0 and F 2 = 0 cannot be
solved simultaneously, and hence supersymmetry is broken in any vacuum. If |µ| < |m| there is a family
of vacua defined by

φ1 = φ2 = 0 (5.55)

and with any value of x allowed. The energy of these vacua are |µ2|2.

D-term breaking.

In a theory with chiral and vector superfields and no Fayet–Illiopoulos terms supersymmetry breaking is
governed by the F-terms in the sense that if all F-terms are zero at some point in field space then all the
D-terms can also be put to zero with gauge transformations. Hence the most interesting case is when
there are Fayet–Illiopoulos terms. The Fayet–Illiopoulos model describes two massive chiral superfields
Φ+ and Φ− with opposite charge with respect to a single U(1) gauge factor, and with Lagrangian density:

1

32π
Im

(
τ

∫
d2θTrWαWα

)
+

∫
d2θd2θ

(
ξV + Φ+e

2eV Φ+ + Φ−e
−2eV Φ−

)
+m

∫
d2θΦ+Φ− + c.c. .

(5.56)
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The F-term and D-term equations are

F± = mφ∓ = 0, (5.57)

D = −1

2

[
ξ + 2e(|φ+|2 − |φ−|2)

]
= 0. (5.58)

Both equations cannot be satisfied if ξ 6= 0, and hence supersymmetry is broken.

Pseudo-moduli spaces and Coleman–Weinberg potential.

Both the Polonyi model with canonical Kähler potential and the O’Raifeartaigh model have a continuum
of vacua at which the scalar potential has a strictly positive constant value. These are called pseudo-
moduli spaces of vacua, and there is (at least) one massless scalar mode at each of these vacua which
implement motion along these flat directions. This mode is called pseudo-modulus.

These classical non-supersymmetric flat directions in field space are in general lifted by quantum
corrections, i.e. the pseudo-modulus gets a mass, while this is not the case for supersymmetric flat
directions because of the non-renormalization theorems: since the superpotential in a supersymmetric
theory is tree-level exact the F-term equations are not modified by loop corrections. As far as D-terms
are concerned, Fayet–Illiopoulos terms do not renormalize if the theory does not suffer gravitational
anomalies. When the gauge group of the theory does not have any U(1) factor one can shown from
general grounds [Wit82, FNP+81] that D-terms cannot lift a zero-energy state.

5.4 N = 1 quantum dynamics: SQCD and Seiberg duality.

Super Quantum ChromoDynamics (SQCD) will be our prototypical example of a one dimensional gauge
theory with matter: it is an SU(N) gauge theory (N ≥ 3) with F flavors, that is, F pairs of chiral fields

(Qi, Q̃i) which transform in ( , ) of SU(N), and Lagrangian density:

L =
1

32π
Im

(
τ

∫
d2θTrWαWα

)
+

∫
d2θd2θ

(
Qie

2VQi + Q̃ie−2V Q̃i

)
, (5.59)

The classical global symmetry of SQCD when F ≥ 1 is SU(F )L× SU(F )R×U(1)A×U(1)B ×U(1)R,
where the charges of the chiral fields are:

SU(F )L SU(F )R U(1)A U(1)B U(1)R
Q 1 1 1 F−N

F

Q̃ 1 1 −1 F−N
F

(5.60)

The ABJ anomaly coefficient corresponding to U(1)A is 2F , hence the U(1)A factor is anomalous.
The U(1)B and U(1)R factors however, are not. For example:

AU(1)R = F

(
F −N
F

− 1

)
1

2
+ F

(
F −N
F

− 1

)
1

2
+N = 0 . (5.61)

Note that when F = 0 the U(1)R symmetry in fact is anomalous and only Z2N survives at the quantum
level, while SU(F )L, SU(F )R, U(1)A and U(1)B simply do not exist. It seems legitimate to study the
case F = 0 on its own. In analogy with usual QCD the gauge fields will be often referred to as gluons
and their fermionic partners as gluinos, while the chiral fields with be referred to as quarks.

Super Yang–Mills theory.

SQCD with F = 0 is simply SU(N) super Yang–Mills (SYM) theory. The only quantum global symmetry
of the theory is a discrete Z2N R-symmetry. The running of the holomorphic gauge coupling is given by

τ =
3N

2πi
log

Λ

µ
, (5.62)

where Λ = µe2πiτ/3N is the holomorphic dynamical scale. SYM theory confines as the non-supersymmetric
non-abelian pure Yang–Mills theories, and assuming that SYM has a mass gap the effective Lagrangian
should only depend on τ , which implies that the effective superpotential must be of the form:

Weff = NΛ3 (5.63)
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One can show that the gaugini condensate:

〈λλ〉 = Λ3ei
2kπ
N (5.64)

with k = 0, . . . , N − 1, which breaks the R-symmetry spontaneously to Z2 and leaves N distinct isolated
vacua labeled by the phase of the gaugino condensate.

Adding flavors.

Let us now assume that F ≥ 1, for which SQCD has a quantum global symmetry group SU(F )L ×
SU(F )R ×U(1)B ×U(1)R, where the charges of the chiral fields are:

SU(F )L SU(F )R U(1)B U(1)R
Q 1 1 F−N

F

Q̃ 1 −1 F−N
F

(5.65)

The chiral superfields Qia and Q̃aj , where a = 1, . . . , N is a color index and i, j = 1, . . . , F are flavor
indices, can be seen as F×N and N×F matrices, respectively. On the moduli space the D-term equations

DA = Q
b

i (T
A)cbQ

i
c − Q̃bi (TA)cbQ̃

i

c = 0 , (5.66)

must be satisfied, with A = 1, . . . , N2 − 1 and (TA)cb := (TAN)cb = −(TA
N

)cb.
The classical moduli space is parameterized by single-trace gauge invariant operators. Many are

obtained as the elements of the F × F meson matrix:

M i
j = QiaQ̃

a
j . (5.67)

We need to distinguish two cases.

• Either F < N , in which case the meson matrix M is generically of maximal rank F , hence the
moduli space has complex dimension F 2. At a generic point the gauge group is broken to SU(N−F ),
which is consistent with the counting of degrees of freedom:

2FN − {N2 − 1− [(N − F )2 − 1]} = F 2 (5.68)

where FN is the total degrees of freedom of UV chiral fields, N2−1−[(N−F )2−1] is the number of
chiral fields ‘eaten’ by massless vector superfields in the super Higgs mechanism, and the difference
F 2 is the number of left-over degrees of freedom of massless chiral superfields which parametrize
the moduli space,

• Or F ≥ N , in which case the meson matrix is generically of non-maximal rank N . Moreover there
are additional single trace gauge invariant operators: baryons. Writing k = F −N :

Bi1...ik = εi1...ikj1...jN ε
a1...aNQj1a1

. . . QjNaN , (5.69)

B̃i1...ik = εi1...ikj1...jN εa1...aN Q̃
a1
j1
. . . Q̃aNjN . (5.70)

There are classical relations between the mesons and the baryons. Since F ≥ N at a generic point
of the moduli space the gauge group G is fully broken, and hence one expects the dimension of the
moduli space to be 2NF − (N2 − 1).

Now we wish to understand the quantum dynamics of SCQD and, in particular, whether an effective
superpotential is generated by dynamical effects. This was done in [Sei94, Sei95].

The case F < N: the ADS superpotential.

An effective superpotential called the Affleck–Dine–Seiberg (ADS) superpotential is generated:

WADS = (N − F )

(
Λ3N−F

detM

) 1
N−F

. (5.71)

It induces a runaway behaviour: the scalar potential has minimum energy at infinity in field space, and
the theory does not admit a vacuum a finite vacuum expectation values for the chiral fields.
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The case F = N.

The classical moduli space is parameterized by the elements of the meson matrix as well as two baryons
B and B̃. There is a classical relation between the gauge invariant operators:

detM −BB̃ = 0 . (5.72)

One can show that this relation is deformed by quantum effects to

detM −BB̃ = Λ2N , (5.73)

and the quantum moduli space defined by this last equation is smooth. The gauge group is fully broken
everywhere contrarily to what one naively expects from the classical analysis. The global chiral symmetry
is also broken, and how much as well as how it breaks depends on where one sits on the quantum moduli
space. On the mesonic branch defined by BB̃ = 0 and detM = Λ2N the global SU(F )L × SU(F )R is
broken to its diagonal subgroup, whereas on the baryonic branch defined by M = 0 and BB̃ = −Λ2N it
is instead the global U(1)B which breaks spontaneously.

The case F = N + 1.

When F = N+1 the moduli space is classically exact: there is no quantum correction to the Kähler metric
whatsoever. In particular, the moduli space is still singular at its origin. However the interpretation of
the singularity differs: classically it translates the presence of massless gluons and quarks since the gauge
group is unbroken, however quantum mechanically this description cannot hold since the gauge theory is
strongly coupled near the origin of the moduli space and confines. The new massless degrees of freedom
which appear at the origin of the moduli space are more likely new massless mesons and baryons which
are there because of the fact that the classical relations between mesons and baryons are trivially satisfied
at the origin.

Moreover, the chiral symmetry is unbroken at the origin of the moduli space and hence SQCD with
F = N + 1 exhibits s-confinement there, i.e. confinement without chiral symmetry breaking.

The case F > N + 1. Seiberg duality.

When F ≥ N + 2 the moduli space of SQCD is also classically exact and hence contains singularities.
However, as in the F = N + 1 case the interpretation of the singularities is different than in the quantum
theory. Away from the origin the gauge group is higgsed: at a point where the meson matrix has rank
k and where the baryons have zero expectations values, SU(N) with F flavors breaks spontaneously to
SU(N − k) with F − k flavors. Hence everything boils down to understanding what happens near the
origin of the moduli space: unlike when F = N+1 the singularity at the origin cannot correspond to new
massless mesons and baryons anymore – for example, ’t Hooft anomalies conditions cannot be satisfied
with such an assumption.

Seiberg’s proposal in [Sei95] is that SU(N) SCQD with F > N + 1 is in a non-abelian Coulomb phase
near the origin of the moduli space, so that there are massless quarks and gluon fields in the low energy
effective field theory. This is clearly the case when F ≥ 3N since the effective low-energy theory in that
case is a free theory of massless gluons and quarks (for SQCD in that regime is IR free).

When 3N/2 < F < 3N one can argue that the low-energy effective field theory at the origin of the
moduli space is an interacting SCFT which has two dual descriptions: the original one as an SU(N)
gauge theory with F flavors, and another as an SU(F −N) gauge theory with F flavors and additional
gauge invariant massless fields. We will use mSQCD (m stands for magnetic) to denote for the latter
theory. More precisely, it is an SU(F −N) gauge theory with F flavors qi and q̃j (where i, j = 1, . . . F )
transforming in the fundamental and anti-fundamental representation of SU(F −N) respectively, as well
as gauge singlets Φij where again i, j = 1, . . . F . There is also a superpotential:

W = hqiΦ
i
j q̃
j , h ∈ C. (5.74)

The fact that ’t Hooft anomaly matching conditions hold is a strong argument in favor of this duality
besides the fact that the two theories has the same global symmetry group and the same number of
infrared degrees of freedom. Seiberg duality is involutive: mmSQCD = SQCD. Moreover if Λel is the
dynamical scale of SQCD and if Λm is the dynamical scale of mSQCD then

Λ3N−F
el Λ3(F−N)−F

m = (−1)F−NµF , (5.75)
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where µ is an arbitrary matching scale, needed to identify the IR SQCD and mSQCD degrees of freedom.
This latter relation imply that the more strongly coupled SQCD, the more weakly coupled mSQCD:
Seiberg duality resembles electric-magnetic duality (hence the notation). The quarks and gluons in one
description can be thought of as solitons of the quarks and gluons in the other theory. This description
of the physics near the origin of the moduli space of SQCD in terms of the dual mSQCD theory actually
holds for every F ≥ N + 2.

• When N + 1 < F < 3N/2, the low-energy effective field theory of SQCD near the origin of the
moduli space is better understood in mSQCD, since it is IR free in this regime: the massless low-
energy fields are the dual gluons of SU(F −N) as well as the massless fields qi, q̃

j and Φij : this is
the magnetic free phase. In that case one can choose µ = Λel = Λm, mSQCD is naturally though of
as an effective theory defined up to the UV scale Λm and SCQD as a UV completion of mSQCD.

• The range 3N/2 < F < 3N is called the conformal window of SQCD for the reason given above.
The map N → N ′ = F −N preserves the conformal window.

• When F ≥ 3N , SCQD is infrared-free: this is the electric free phase. Correspondingly, mSQCD is
in a confining phase. In that case one can again choose µ = Λel = Λm, SQCD is naturally thought
of as an effective theory defined up to the UV scale Λel and mSCQD as a UV completion of SQCD.

The analysis of the quantum dynamics of SQCD with N fixed as a function of F is schematically
depicted in Figure 5.2.

Figure 5.2: The phases of SQCD as a function of F .

5.5 Dynamical supersymmetry breaking

The supersymmetric non-renormalization theorems imply that if supersymmetry is unbroken at tree level
it can only be broken by non-perturbative effects. Tree-level supersymmetry breaking occurs at scale
MS of the same magnitude as the natural mass scale of the theory. If MS scale is much lower than that
in our universe we need a theory in which supersymmetry is broken not at tree level but by very small
quantum effects, as argued in [Wit81]. The dynamics of gauge theories provide a good way to obtain
tiny quantum corrections thanks to dimensional transmutation: the renormalization group flow induces
an exponential hierarchy of scales:

Λ ∼ e−
#

g2(MX ) �MX , (5.76)

where MX is a scale at which the theory is weakly coupled.
This analysis calls for a gauge sector which breaks supersymmetry dynamically, dubbed the hidden

sector . Supersymmetry breaking would be transmitted to any of the supersymmetric extension of the
Standard Model via gravitational interactions, gauge interactions or gravitational anomalies.

Much information concerning the phenomenological implementation of supersymmetry breaking in
supersymmetric extensions of the Standard Model can be found in [Lut05].
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Consider a theory defined by an action Sµ0 at some scale µ0 and let 0 < µ < µ0 be another energy
scale. The Wilsonian action Sµ at µ is defined by integrating out all fluctuations whose momentum is
greater than µ:

eiS =

∫

φ(p),|p|>µ
[Dφ]eiS0 . (5.77)

It is the action which describes the physics at the scale µ by its classical couplings.
In a supersymmetric theory any parameter in the Lagrangian can be though of as the VEV of a so-

called spurious superfield, and in particular the couplings appearing in F-terms. Hence F-terms are not
only holomorphic in the chiral superfields but also in the couplings. Subsequently the (F-terms of the)
Wilsonian action at the scale µ is also holomorphic in the coupling constants: the couplings appearing
in Sµ are holomorphic quantities of the coupling constants at µ0. This provides severe constraints on
effective actions of supersymmetric quantum field theories.

We will focus on dynamical supersymmetry breaking in stable vacua i.e. absolute minima of the scalar
potential. Methods to study dynamical supersymmetry breaking as well as many examples are given in
[ADS85].

It is a good idea to consider theories without flat directions because the latter lead in general to
runaways, through a dynamically generated superpotential which slopes to zero at infinity. The interplay
between the perturbative and non-perturbative contributions to the scalar potential tends to produce non-
supersymmetric stable vacua, i.e. dynamical supersymmetry breaking at finite distance in configuration
space. This is displayed schematically in Figure 5.3.

Figure 5.3: Interplay between perturbative and non-perturbative contributions to the scalar potential.

The energy of the scalar potential at the stable supersymmetry breaking vacuum is related to the
supersymmetry breaking scale MS as in Figure 5.3.

After having proven the existence of a stable supersymmetry breaking vacuum one would like to
study the low-energy effective field theory around it. This might be difficult depending on the location
of this vacuum in configuration space and on how the minimal value of the scalar potential compares
with the dynamical scale of the theory (assuming there is a single one). The further away from the origin
of configuration space the DSB vacuum, the more weakly coupled the effective theory is. Moreover,
if the energy of the scalar potential at the vacuum is smaller than the dynamical scale of the original
theory gauge degrees of freedom are integrated out in the effective theory and the latter is a theory of
chiral superfields only, which resembles very much O’ Raifeartaigh-like models with non canonical Kähler
potentials. One can distinguish three different scenarios:

• it may be impossible to compute both the effective superpotential and the Kähler potential, in which
case one cannot say much more than the mere fact that supersymmetry is dynamically broken,

• it may be that one can compute the effective superpotential but not the Kähler potential, in which
case it is possible to determine the low-energy degrees of freedom but not their dynamics; one
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speaks of non-calculable models,

• or one can compute both the effective superpotential as well as the Kähler potential, in which case
one has access to lots of properties of the low energy effective field theory. One speaks of calculable
models.

5.5.1 Supersymmetry-breaking criteria

It is of interest to determine criteria that show in some situations that supersymmetry is broken without
a direct analysis of D-term and F-term equations.

Proposition 5.3. In a four-dimensional N = 1 supersymmetric quantum field theory with a sponta-
neously broken global symmetry and without any non-compact classical flat direction, supersymmetry is
generally broken.

Proof. The Goldstone boson associated with the breaking of the global symmetry is a massless real boson
without potential. Were supersymmetry unbroken it would have a partner real boson such that the two
together would form the complex scalar of a chiral supermultiplet. Being in the same multiplet it would
also be massless and without potential. In general the partner of a Goldstone boson corresponds to a
non-compact classical flat direction and that contradicts the fact that there is no non-compact classical
flat direction.

Proposition 5.4. In a four-dimensional N = 1 supersymmetric quantum field theory containing chiral
superfields only and a generic superpotential W there are supersymmetric vacua.

Proof. There are as many chiral superfields as conditions defining supersymmetric vacua coming from
F-terms, and hence if W is generic there exist solutions to the F-term equations.

In general if the superpotential preserves a global symmetry one can show that it does not change the
conclusion of the previous proposition, since the number of independent variables is diminished by the
same amount as the number of independent F-term equations.

Proposition 5.5 (Nelson–Seiberg [NS94]). In a 4d N = 1 supersymmetric quantum field theory with
generic superpotential W and such that the low-energy effective theory is a supersymmetric theory of
chiral superfields only, the existence of an R-symmetry is a necessary condition for supersymmetry break-
ing. The fact that the R-symmetry is spontaneously broken in any vacuum is a sufficient condition for
supersymmetry breaking.

Proof. Let Φ1, . . . ,ΦF denote the low-energy chiral superfields and for all i = 1, . . . , F let R(Φi) = ri.
There is at least one field – say Φ1 – charged under the R-symmetry: r1 6= 0. One can write:

W = (Φ1)
2
r1 f(Xi) with Xi = Φi(Φ1)

−ri
r1 ∀ i = 2, . . . , F (5.78)

The F-term equations read:

∂W

∂φj
= (φ1)

2−rj
r1

∂f

∂Xj
= 0 when j 6= 1 (5.79)

∂W

∂φ1
=

2

r1
(φ1)

2−r1
r1 f(Xi) + (φ1)

2
r1

∂f

∂Xj

∂Xj

∂φ1
= 0 . (5.80)

If φ1 is finite and non-zero the first set of equations imply ∂f/∂Xj = 0 and hence the F 1 term becomes

∂W

∂φ1
=

2

r1
(φ1)

2−r1
r1 f(Xi) = 0 . (5.81)

In terms of the new function f there are now only F − 1 independent variables X2, . . . , XF but still F
equations which are independent generically. Hence this system does not admit solutions and supersym-
metry is broken. Because of the remark above the proposition, the existence of an R-symmetry in this
class of theories is indeed a necessary condition for supersymmetry breaking. Moreover R-symmetry is
spontaneously broken if and only if φ1 is finite and non-zero, which implies supersymmetry breaking.
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Let Φ = (φ, ψ, F ) be a chiral superfield in a supersymmetric gauge theory such that Φ does not appear
in the superpotential but where there is however not any non-compact direction in the moduli space. The
so-called Konishi anomaly implies in that case that

{Q,ψφ} ∼ λAλA , (5.82)

where λ is the gaugino in the vector supermultiplet of the gauge group under which Φ is charged. Hence
the vacuum energy is proportional to 〈Trλλ〉 and:

Proposition 5.6. If the gaugino condensate 〈Trλλ〉 forms then supersymmetry is broken.

This criterion is a special case of the Nelson–Seiberg one when theories which have an R-charge, since
the gaugino condensate necessarily breaks the latter.

The Witten index IW is a topological index which counts the difference between the number of bosonic
modes and the one of fermionic modes of zero energy in a supersymmetric theory. The Witten index does
not change as one varies the parameters of the theory and therefore in can be computed in a convenient
corner of the parameter space, for example at weak coupling. More precisely, the Witten index does
not change under a variation of the parameters which do not modify the asymptotic behaviour of the
potential: if a non-zero parameter is varied to another non-zero value one does not expect the Witten
index to change. It might however if a formerly zero parameter is turned on, or if a non-zero parameter
is set to vanish.

Proposition 5.7. When the Witten index is non zero then there exists a zero-energy state in the theory,
and hence supersymmetry is unbroken.

5.5.2 Two DSB Models

The SU(5) model.

The SU(5) model is the supersymmetric gauge theory with gauge group G = SU(5), a chiral superfield
T in the antisymmetric 10 representation of G and a chiral superfield Q̃ in the antifundamental 5
representation of G [ADS84]. It is asymptotically free (the one-loop beta function coefficient is b1 = 13).

One cannot construct gauge invariants out of T and Q̃ and hence the theory does not have any flat
direction. For the same reason there cannot be any superpotential. Hence the classical moduli space of
the theory is merely the origin of the configuration space which is a supersymmetric vacuum, where G is
unbroken.

The theory has a non-anomalous global symmetry U(1) × U(1)R, where the chiral superfields have
charges

U(1) U(1)R
T −1 1

Q̃ 3 −9
(5.83)

fixed by the cancellation of the ABJ anomalies. Assuming that the theory confines at the origin of field
space, the massless gauge invariant fields Xi with charges that appear as low-energy degrees of freedom
must reproduce the ’t Hooft anomalies for U(1)3, U(1)2U(1)R, U(1)U(1)2

R and U(1)3
R in the UV theory.

It was shown in [ADS84] that one needs at least five low energy fields Xi to satisfy ’t Hooft anomaly
matching conditions with complicated charges, and hence the breaking of U(1) × U(1)R seems very
plausible. If the global symmetry group indeed breaks spontaneously in the vacuum then supersymmetry
is also broken as follows from Proposition 5.3.

There are other compelling arguments for the fact that this model breaks supersymmetry dynamically.
One may prove that the gaugino condensate has a non-zero vacuum expectation value [MV84], which
allows to conclude thanks to Proposition 5.6. One can also add fields charged under the SU(5) gauge
group so that the new theory has flat directions on which more classical arguments can be used to prove
that it breaks supersymmetry if these new fields have a mass [Mur95]. Sending this mass to infinity gives
back the original theory and one can show that this does not change the Witten index, for example.

The SU(5) model admits a generalization introduced in [ADS85] as an SU(N) gauge theory with an

antisymmetric chiral superfield Aij and (N−4) antifundamental chiral superfields F fi where i = 1, . . . , N
and f = 1, . . . , N − 4. This model most likely breaks supersymmetry if N ≥ 7 is odd.
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The 3− 2 model.

The 3 − 2 model is a theory with gauge group SU(3) × SU(2), chiral superfields Qαi in (�3,�2), U
i

and D
i

in �3 and Lα in �2 where i (resp. α) is an index for SU(3) (respectively SU(2)), and tree-level
superpotential

Wtree = λQDL = λεαβQαiD
i
Lβ . (5.84)

Up to overall normalization there is a single global non-anomalous non-R charge Y , and a non-
anomalous R-charge. Local and global charges for the chiral fields in the model can be summarized as
follows:

SU(3) SU(2) U(1)Y U(1)R
Qαi 3 2 1/3 1

U
i

3 − −4/3 −8

D
i

3 − 2/3 4
L − 2 −1 −3

(5.85)

There are six single trace gauge invariant operators that can built from the four chiral superfields and
the superpotential lifts all the corresponding D-flat equations.

In a regime where λ� 1 and Λ2 � Λ3 and at energy scales Λ2 � µ� Λ3 the group SU(2) is weakly
coupled while SU(3) is strongly coupled and we can consider SU(2) as a global symmetry. Then the
SU(3) gauge theory is an SU(3) super quantum chromodynamics (SQCD) with 2 = F − 1 flavors. Hence
a dynamical ADS superpotential is generated:

Wnp =
Λ7

3

Y
, (5.86)

where Y = εαβ
(
QαiU

i
QβjD

j −QαiD
i
QβjU

j
)

. The full quantum superpotential is

Wtree +Wnp (5.87)

and the minimum of the scalar potential must be at a non-zero vacuum expectation value for Y . Since
Y has R-charge −2, R-symmetry is broken, which implies that supersymmetry is broken as follows from
Proposition 5.3. In this regime the minimum is moreover in a weakly-coupled region, and one can compute
the Kähler potential in the stable vacuum as well as the following estimate:

M4
S ∼ Λ4

3λ
10
7 . (5.88)

In the regimes where Λ2 � Λ3 and Λ2 ∼ Λ3 one can show that supersymmetry is still broken by
dynamical effects, however the model is now uncalculable.

5.6 N = 2 quantum dynamics: Seiberg–Witten theory

There are two supermultiplets of the N = 2 super-Poincaré algebra in dimension 4 which describe
excitations of spin smaller than one only:

• the N = 2 vector multiplet , which consists of an N = 1 vector multiplet and an N = 1 chiral
multiplet with the same internal charges V = (λα, aµ, D)⊕ (φ, ψα, F ). In particular (φ, ψα, F ) is in
the adjoint of the gauge group corresponding to (λα, aµ, D).

• the N = 2 hypermultiplet , which consists of an N = 1 chiral multiplet and an N = 1 antichiral

multiplet H = Q⊕ Q̃ = (q, ψ, F )⊕ (q̃, ψ̃, F̃ ), so that (q, ψ, F ) and (q̃, ψ̃, F̃ ) have of opposite charges
under internal symmetries. When a hypermultiplet is an a real or pseudo-real representation of

a gauge group one can impose a constraint linking (q, ψ, F ) to (q̃, ψ̃, F̃ ) which respects N = 2
supersymmetry. The result is called half-hypermultiplet.

We will assume that the R-symmetry group of our N = 2 supersymmetry algebras is always SU(2)R.
The most general Lagrangian density respecting N = 2 supersymmetry and expressed in N = 1 language
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is of the form:

1

32π
Im

(
τ

∫
d2θTrWαWα

)
+

∫
d2θd2θTr Φe2gV Φ +

∫
d2θd2θ

(
Q
i
e2gVQi + Q̃ie−2gV Q̃i

)

+

∫
d2θ

(√
2gQ̃iΦQ+ µiQ̃

iQi

)
+ c.c. (5.89)

The moduli space of vacua M of an N = 2 theory is the space of solutions to D-terms and F-terms,
exactly as in the case of N = 1 theories. At a generic point in the moduli space both the scalars in
the vector multiplets and the ones in the hypermultiplets can have non-zero vacuum expectation values.
Interesting subvarieties of the moduli space can be defined:

• The Coulomb branch MV , which is a special Kähler manifold on which the scalar in the hypermul-
tiplets are required to have a zero vacuum expectation value. It is described by

[Φ,Φ] = 0 . (5.90)

The low-energy effective theory on the Coulomb branch is an abelian gauge theory generally, since
Φ is in the adjoint of G and hence the latter can at most be higgsed to U(1)rg(G). The metric on
the Coulomb branch is modified by quantum effects.

• The Higgs branch MH , which is a hyper-Kähler manifold defined only when the mass terms for
the hypermultiplets are zero and on which the scalar in the vector multiplets are required to have
a zero vacuum expectation value. It is described by

(QiQ
i
+ Q̃iQ̃

i)traceless = 0 , (5.91)

(QiQ̃
i)traceless = 0. (5.92)

This Higgs branch is always classically exact.

Locally the full moduli space is a direct productMV ×MH . At a generic point the low energy effective
action is completely determined by the knowledge of the Kähler potential on the Higgs branch (which
can be determined classically) and by the data of the Kähler potential and the matrix of complexified
gauge couplings for U(1)rg(G) on the Coulomb branch. Both the Kähler potential and this matrix of
complexified couplings on the Coulomb branch are determined by a single holomorphic function F of the
chiral superfields in the vector multiplet, dubbed prepotential. Hence solving the quantum dynamics of
N = 2 theories amounts to computing the prepotential. More precisely, if ai are the bosonic fields in the
low energy N = 2 U(1) vector multiplets, the matrix of complexified gauge couplings can be expressed
as:

τ ij =
∂2F
∂ai∂aj

(5.93)

while for:

aiD =
∂F
∂ai

, (5.94)

the Kähler potential is:
K = i(aiDai − aiaiD) . (5.95)

BPS states.

In a 4d N = 2 super-Poincaré algebra the odd generators satisfy the relations of Equations (5.9) to (5.11)
that we reproduce here for convenience. Here I, J = 1, 2, and Z is a complex central charge:

[
QIα, Q

J

β̇

]
= 2σµ

αβ̇
Pµδ

IJ ,

[Q1α, Q2β ] = − [Q2α, Q1β ] = εαβZ ,
[
Q

1

α̇, Q
2

β̇

]
= −

[
Q

2

α̇, Q
1

β̇

]
= εα̇β̇Z

∗ .

Any massive state |ψ〉 in the theory always satisfy the bound

M|ψ〉 ≥ |Z|ψ〉| (5.96)
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called the BPS bound 2, and the states which saturate it are said to be BPS states. These are more
rigid representation of the N = 2 super Poincaré algebra, and hence there are robust under generic
perturbations of the theory. When the low-energy theory is a weakly coupled U(1)rg(G) gauge theory the
central charge Z is a linear combination of the electric charges ni, the magnetic charges mi and the flavor
charges f j where i = 1, . . . , rg(G) and j = 1, . . . , F for some F ≥ 0:

Z = ain
i + aiDmi +

F∑

j=1

µjf
j . (5.97)

When the theory is weakly coupled the coefficients ai, a
i
D and µj admit a natural interpretation in terms

of what enters the Lagrangian in Equation (5.89), but at strong coupling the latter relation should instead
be thought of as a definition of these coefficients.

Seiberg–Witten theory.

Seiberg and Witten have studied the quantum dynamics of N = 2 SU(2) gauge theory with F = 0, 1, 2, 3
and 4 hypermultiplets in two seminal papers [SW94a, SW94b]. Let us study is some details the F = 0
case for concreteness – we follow the conventions of [Tac13].

In N = 2 SU(2) gauge theories the Coulomb branch MC of the moduli space is parameterized by
vacuum expectation values for the adjoint chiral field Φ satisfying Equation (5.90), the solutions of which
being φ = Diag(a,−a) for a ∈ C. At any a 6= 0 on the Coulomb branch the gauge group breaks
spontaneously to U(1)×Z2 where Z2 exchanges a and −a, so that the Coulomb branch is parameterized
by u := a2. Classically, there is a singularity at a = 0 since the gauge group is unbroken at that point.

When |u| is large the SU(2) gauge theory is still weakly coupled when the breaking to U(1) occurs, and
hence the coupling of the low-energy theory (which does not run) can be obtained from the perturbative
running of the SU(2) theory and depends on the choice of a ∈MC as:

τ(a) = − 8

2πi
log

a

Λ
+ . . . (5.98)

where Λ is the strong coupling scale of the theory. From Equations (5.93) and (5.94) and integrating this
last equation once one obtains

aD = − 8a

2πi
log

a

Λ
+ . . . (5.99)

and hence the pair (a, aD) has a monodromy M∞ : (a, aD)→ (−a,−aD + 4a) at infinity in MC . In this
weakly coupled region of MC defined by |a| >> |Λ| the semi-classical analysis is enough to account for
the quantum corrections to the classical moduli space.

In the strongly coupled region of MC however, when |a| . |Λ| one expects more drastic quantum
corrections. One can argue that one needs in fact two singularities at ±Λ2 ∈ MC instead of the unique
classical one, with monodromies M−Λ2 and MΛ2 for a and aD prescribed (in particular) by the consistency
condition M−Λ2MΛ2 = M∞. A solution is M−Λ2 : (a, aD) → (−a − aD, 4a − 3aD) and MΛ2 : (a, aD) →
(a− aD, aD).

One way to solve this Riemann-Hilbert problem is by considering a and aD as period integrals on a
surface Σ, defined by the equation

(Σ) : Λ2z +
Λ2

z
= x2 − u . (5.100)

It is a two-folds ramified cover over the sphere P1(C) parameterized by z with four simple branch points,
and it is endowed with a differential λSW = xdz/z. One chooses of symplectic basis (A,B) of H1(Σ,Z)
and declares that

a =
1

2πi

∫

A

λSW, aD =
1

2πi

∫

B

λSW. (5.101)

When u = −2Λ2 (resp. u = 2Λ2) a cycle in Σ shrinks. This defines a singularity in the Coulomb
branch, and the monodromy around it can be computed from the Picard–Lefschetz monodromy formula.
The singularity is interpreted as a BPS excitation of charges given by the coefficients of the shrinking
cycle in the basis (A,B) becoming massless.

2BPS stands for Bogomol’nyi–Prasad–Sommerfeld.
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More generally any BPS state of (electric, magnetic) charges (ne, nm) in the low-energy effective field
theory correspond to a cycle γ in Σ whose coefficients in the basis (A,B) are (ne, nm). The central charge
of such a BPS state is easily computed as

Zγ =
1

2πi

∫

γ

λSW , (5.102)

from which one deduces its mass as follows from the BPS formula of Equation (5.96).
From the knowledge of the Seiberg–Witten curve one can even compute the instantonic non-perturbative

corrections to the coupling constant, i.e. compute the coefficients ck in

τ(a) = − 8

2πi
log

a

Λ
+

∞∑

k=0

ck

(
Λ

a

)4k

. (5.103)

These coefficients agree with the ones that are computed directly from an instanton calculation [Nek03].
In general in an N = 2 gauge theory with gauge group G, the quantum ai, a

i
D and µj appearing in

the BPS formula of Equation (5.97) are completely encoded in the data of a Riemann surface Σ called the
Seiberg–Witten curve which is a ramified covering of another Riemann surface C dubbed the UV curve:
in an asymptotically free N = 2 gauge theory with gauge group G and F flavors, the Seiberg–Witten
curve Σ has genus rk(G) and F punctures and it is endowed with a meromorphic one-form λSW, the
periods of which in a symplectic basis B = (A1, . . . , Ag, B1, . . . , Bg, C1, . . . , CF ) of H1(Σ,Z) are

ai =
1

2πi

∫

Ai

λSW, aiD =
1

2πi

∫

Bi

λSW, µj =
1

2πi

∫

Cj

λSW . (5.104)

The equation defining Σ depends on a choice of point on MC . Generically Σ is smooth but there
are special points on MC where at least one cycle in Σ shrinks. These points are singularities of the
quantum Kähler metric: some excitations (in fact, BPS states) in the low-energy effective theory become
massless. In general, a homology class γ ∈ H1(Σ,Z) corresponds to a BPS state whose electric, magnetic
and flavor charges are the coefficients of γ in B, whose central charge is given by the integral of λSW

along γ, and hence whose mass is:

M =

∣∣∣∣
1

2πi

∫

γ

λSW

∣∣∣∣ . (5.105)

5.7 N = 4 super Yang–Mills

There is only one supermultiplet of the N = 4 super Poincaré algebra (of which the R-charge is assumed
to be SU(4)R) in four dimensions which contains excitations of spin smaller than one only, called the
N = 4 vector multiplet. In N = 1 language it is:

V = (λα, vµ, D)⊕
3⊕

A=1

(φA, ψAα , F
A) . (5.106)

The most general N = 4 invariant Lagrangian expressed in N = 1 superspace is:

1

32π
Im

(
τ

∫
d2θTrWαWα

)
+

∫
d2θd2θTr

∑

A

ΦAe
2gV ΦA −

∫
d2θ
√

2gTr Φ1[Φ2,Φ3] + c.c. (5.107)

The supersymmetric non-renormalization theorems imply that the gauge coupling N = 4 super Yang–
Mills theory does not renormalize at all orders in perturbation theory, as well as when non-perturbative
effects are taken into account. This hints to a superconformal invariance, which is indeed the case for
N = 4 super Yang–Mills: the superconformal group SU(2, 2|4) is an exact symmetry of the theory at the
origin of the moduli space.

There is a remarkable duality of N = 4 super Yang–Mills theories known as Montonen–Olive duality
[MO77] under which the complexified gauge coupling τ is acted on by SL2(Z) as:

[
a b
c d

]
· τ =

aτ + b

cτ + d
, (5.108)
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while dyonic particles in the low-energy effective theory at some point on the Coulomb branch of
(electric, magnetic) charges (nie, n

m
i )i=1,...,rk(G) are mapped to particles of charges (anie − bnmi ,−cnie +

dnmi )i=1,...,rk(G). More intrinsically, N = 4 super Yang–Mills with gauge group G and complexified

coupling τ is dual to N = 4 super Yang–Mills with gauge group G̃ and complexified coupling on the
right-hand side of Equation (5.108). Here G̃ is either G and its Langlands dual GL, depending on the
decomposition the corresponding element in SL2(Z) in the generators S and T of SL2(Z), where

S =

[
0 1
−1 0

]
, T =

[
1 1
0 1

]
. (5.109)

N = 4 super Yang–Mills is the prototypical example of conformal field theories which appear in the
AdS/CFT correspondence that we will review in Chapter 8.

∗ ∗ ∗ ∗ ∗ ∗ ∗

We have studied various aspects of supersymmetry in four dimensions. Quantum field theories that
enjoy supersymmetries are better-behaved than generic theories, as far as renormalization is concerned.
This fact makes such theories ideal candidates to study strong-coupling dynamics as well as their space
of vacua.

If supersymmetry breaking occurs perturbatively, then it does at tree level either through D-terms
or F-terms. Dynamical supersymmetry breaking relies on non-perturbative effects and allows for an
exponential separation between the supersymmetry breaking energy scale and the natural scale of the
theory.

We have presented the vacuum structure of N = 1 super Quantum Chromodynamics, and Seiberg
duality, which links SQCD with N colors and F flavors (and F > N + 1) to ‘SQCD’ with F −N colors,
F flavors and a superpotential term. The dynamics of these SQCD theories will be our fundamental
example of N = 1 dynamics in four dimensions, and we will strongly rely on it when studying more
complicated N = 1 theories obtained in the worldvolume of branes at singularities in Chapters 7 and 8
and in Parts III and IV.

As soon as N > 1, quantum field theories are necessarily non-chiral. One can study N = 2 super
Yang–Mills theories with the techniques developed by Seiberg and Witten which allow for a description
of the low-energy dynamics on the Coulomb branch as well as of the BPS states. Besides, N = 4
super Yang–Mills theories enjoy Montonen–Olive duality, which puts on firm grounds the mysterious
electric-magnetic symmetry of Maxwell’s equations in the vacuum.



Chapter 6

String theory

String theory is a set of theories and techniques aiming to describe gravity together with the three mi-
croscopic forces we are aware of at the quantum level and in a unifying framework. Its name comes from
the fact that the elementary microscopic objects the theory describes are strings rather than point-like
particles. In the perturbative approach to string theory, the latter contains only two fundamental objects:
an open string, and a closed string (it is also possible to consider theories of a closed string only). If their
typical size is tiny, one would need an astonishing energy to resolve the fact that they are not point-like
objects, or equivalently, at energies lower than that these strings would just appear as point-like particles.
However, it is crucial that strings can vibrate. The Fourier modes of the vibrations form a tower of states
with constant energy gap. The energy of a mode appears macroscopically as a contribution to the mass
of what seems to be a point particle, and hence a quantum theory of strings naturally yields a tower of
states, which opens-up the possibility to explain the zoology of elementary particles we observe in our
universe, in a natural way. Actually, string theory was originally studied as a candidate theory to describe
the strong nuclear interaction, before being demoted in profit of quantum chromodynamics. However, it
was realized in 1974 that every quantum relativistic string theory contains spin-2 excitations with the
correct Ward identities to be gravitons, hence allowing string theories to be plausible descriptions of
quantum gravity [Yon74]. String theory as formulated on the world-sheet is a two-dimensional quantum
field theory whose fields are the coordinates of a map from a surface to a metric target space X.

One generally speaks of two revolutions that occurred in the history of string theory. The first was
triggered in 1984 by a famous paper by Green and Schwarz [GS84] showing anomaly cancellation in some
string theories with gauge groups SO(32) and E8 × E8 in 10 dimensions, hence proving that there exist
consistent, anomaly-free string theories. Supersymmetry is needed in these consistent string theories,
which are therefore dubbed superstring theories. In order to cancel the so-called conformal anomalies of
the worldsheet, the fields in the 2d quantum field theory must satisfy some conditions. The simplest way
to satisfy them is to fix the dimension of the target space to ten, hence every superstring theory induces
a 10-dimensional quantum field theory in the target space. The target space is usually interpreted as
space-time, and we will use these two terms interchangeably. Five superstring theories were discovered
and studied afterwards.

• Type I superstring theory has N = 1 supersymmetry in 10 dimensions and describes oriented and
unoriented open and closed strings, perturbatively. The endpoints of open strings are associated
with an SO(32) gauge symmetry.

• Type IIA superstring theory has N = (1, 1) supersymmetry in 10 dimensions and describes oriented
closed strings only, perturbatively. It is chiral on the world-sheet and non-chiral in target space.

• Type IIB superstring theory has N = (2, 0) supersymmetry in 10 dimensions and describes oriented
closed strings only, perturbatively. It is non-chiral on the world-sheet and chiral in target space.

• Heterotic SO(32) theory (HO) has N = (1, 0) supersymmetry in 10 dimensions and describes
oriented closed strings only, perturbatively. It is chiral and has an SO(32) gauge symmetry.

• Heterotic E8 × E8 theory (HE) has N = (1, 0) supersymmetry in 10 dimensions and describes
oriented closed strings only, perturbatively. It is chiral and has an E8 × E8 gauge symmetry.

173
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The second revolution happened in 1995 after years of working out many dualities between these
five superstring theories. Witten suggested that the strong coupling limit of type IIA superstrings is an
11−dimensional theory which in fact does not describe any strings at all, bur membranes [Wit95], dubbed
M -theory1. Because of various dualities, M -theory in fact appears as a unifying framework for all the
string theories. At low energies M -theory is well approximated by 11-dimensional supergravity, yielding
the famous picture in Figure 6.1: S stands for S-duality, T for T-duality. One can obtain type I string
theory as an orientifold of type IIB as we will review later, and 11-dimensional supergravity compactified
on S1 (resp. S1/Z2) yields the low-energy limit of type IIA (resp. heterotic E8 × E8).

Figure 6.1: A web of theories in 10d and 11d.

One can argue that string theory is the more successful attempt to study quantum gravity and the
unification of fundamental physics, as of today. Quantum gravity set aside, string theory also provided a
lot of insight into quantum field theories and especially at strong coupling, as it gradually became clear
that quantum field theories are ubiquitous in string theories. This will be one of our main interests: we
will present tools and techniques allowing for the construction of complicated gauge theories with the
help of string theories or M-theory (this is usually referred to as gauge engineering) and the study of
their dynamics.

In what follows we will mostly be interested in type II string theories and M-theory. We will first
present the perturbative definition of type II string theories in Section 6.1. The Section 6.2 presents
extended objects known as branes, which arise non-perturbatively in type II string theories. Branes will
be among our main characters in what follows. Then we introduce string dualities and M-theory in
Section 6.3, together with its extended objects known as M2-branes and M5-branes. Lastly, Section 6.4
sketches the construction of supersymmetric gauge theories in 3, 4, and 5 dimensions from branes and
the study of their dynamics.

6.1 Perturbative type II string theories

In the Raymond–Neveu–Schwarz formalism one starts with the world-sheet action

S =
1

4πα′

∫

WS

d2σ
(
∂αX

µ∂
α
Xµ + ψ

µ
/∂ψµ

)
, (6.1)

1There is not universal consensus on what M stands for. Common hypotheses are Mother, Membrane, Matrix, Mystery
or Magic.
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where the world-sheet WS is a two-dimensional surface. Let assume for now that it is a cylinder (σ0, σ1)
with σ1 ∼ σ1 + 2π and Lorentzian metric ds2 = −dσ2

0 + dσ2
1 . The two-dimension gamma matrices are

ρ0 = iσ2 and ρ1 = σ1 where σi are the usual Pauli matrices (and as usual /∂ = ∂αγ
α). The fields Xµ

(resp. ψµ) are bosonic (resp. Majorana-Weyl fermionic) fields on the worldsheet but both are vectors in
target space X of dimension D. The constant α′ is called the Regge slope and α′ = l2s where ls is the
string length.

The periodicity condition for the bosonic fields is Xµ(σ0, σ1 +2π) = Xµ(σ0, σ1) while for the fermionic
fields there are two possibilities:

Neveu–Schwarz (NS) : ψµ(σ0, σ1 + 2π) = −ψµ(σ0, σ1), (6.2)

Ramond (R) : ψµ(σ0, σ1 + 2π) = ψµ(σ0, σ1), (6.3)

hence there are four different sectors for closed superstrings: NS–NS, NS–R, R–NS and R–R, since the
periodicity conditions are independently set on the left and right movers. In order to study the spectrum
one decomposes each given left-moving or right-moving fermion into Fourier modes. For example, in the
right moving sector one obtains:

ψµNS = i−1/2
∑

r∈Z+ 1
2

ψµr e
ir(σ0−σ1), ψµR = i−1/2

∑

r∈Z
ψµr e

ir(σ0−σ1). (6.4)

In order to quantize the closed superstring in a consistent way one needs to cancel the central charge
of the super Virasoro algebra. The easiest way to do so is to fix the dimension of the target space to be
d = 10: this is the critical dimension.

Let us assume for now that the space-time X is the flat Minkowski space R1,9, so that physical states
transform in representations of the little group SO(8). The number of left and right movers is constrained
by the so-called mass-shell condition.

One defines the ground state in each sector to be a state annihilated by all the r > 0 modes. In an
NS sector there is not much more to say, while in an R sector the ground state is degenerate due to the
ψµ0 ’s. The latter satisfy the Dirac gamma matrix algebra in 9 + 1 dimensions:

Γµ =
√

2ψµ0 , (6.5)

and hence the ground states in an R sector form the Dirac representation 32 of this algebra. This
representation is reducible to two chiral Weyl representations 16 + 16′ distinguished by their eigenvalue
under Γ = Γ0 · · ·Γ9 and this extends to the whole string spectrum. Under SO(9, 1)→ SO(1, 1)× SO(8):

16→ (
1

2
,8) + (−1

2
,8′), (6.6)

16′ → (
1

2
,8′) + (−1

2
,8). (6.7)

Let exp(πiF ) (resp. exp
(
πiF̃

)
) be the world-sheet fermion number mod 2 in the right (resp. left) moving

sector. The Dirac equation leaves an 8 with exp(πiF ) and an 8′ with exp(−πiF ), and likewise in the
left moving sector. In the left moving or right moving NS sector physical states transform in the SO(8)
vector representation 8v when exp(πiF ) = 0 and in the trivial representation 1 when exp(πiF ) = 1.
One still needs to impose the mass-shell level condition, and this leaves 16 different sectors: (NS+,NS+),
(NS−,R+), . . . . The Gliozzi–Scherk–Olive projection [GSO77] ensures that the resulting closed string
theory is consistent, i.e. that operator product expansions close, that one-loop amplitudes are modular
invariant and that all pairs of vertex operators are mutually local. The idea is to keep only some of the
above-mentioned sectors. One finds two independent closed superstring theories which are supersym-
metric in space-time R1,9 (and hence which do not have any tachyonic states), that can for example be
obtained as:

IIA : (NS+,NS+) (R+,NS+) (NS+,R−) (R+,R−), (6.8)

IIB : (NS+,NS+) (R+,NS+) (NS+,R+) (R+,R+). (6.9)

The lowest energy states have zero energy. They are bosonic in the NS–NS and R–R sectors, and
fermionic in the NS–R and R–NS sectors. In type IIA they are:

[8v ⊕ 8]⊗ [8v ⊕ 8′]

= [1⊕ 28⊕ 35]NS−NS ⊕ [8⊕ 56′]NS−R ⊕ [8′ ⊕ 56]R−NS ⊕ [8v ⊕ 56t]R−R , (6.10)
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and in type IIB:

[8v ⊕ 8]⊗ [8v ⊕ 8]

= [1⊕ 28⊕ 35]NS−NS ⊕ [8⊕ 56]NS−R ⊕ [8⊕ 56]R−NS ⊕ [1⊕ 28⊕ 35+]R−R . (6.11)

The target space interpretation of these massless degrees of freedom is as follows.

• The NS–NS sectors in type IIA and type IIB are identical and contain three fields: a dilaton φ
transforming in 1, a 2-form (B2)µν which transforms in the 28 and a graviton Gµν i.e. a traceless
symmetric rank–2 tensor field which transforms in the 35.

• The NS–R and R–NS sectors describe target space fermions: two dilatinos which are in the same
N = 2 supermultiplet as the dilaton and two gravitinos which are in the same N = 2 supermultiplet
as the graviton. Type IIA (resp. type IIB) has N = (1, 1) (resp. N = (2, 0)) supersymmetry in 10
dimensions and hence dilatinos and gravitinos have opposite (resp. the same) chirality: the dilatinos
λ1 and λ2 transform in the 8 and 8′ (resp. in the 8) and the gravitinos ψ1

µ and ψ2
µ transform in

the 56′ and 56 (resp. in the 56).

• The R–R sector describe p-forms in target space. In type IIA there a one-form (C1)µ transforming
in the 8v and a three-form (C3)µνρ transforming in the 56t. In type IIB there is a zero-form (C0)
transforming in the 1, a two-form (C2)µν transforming in the 28 and a self-dual four-form (C4)(4)

transforming in the 35+.

The spectrum of string theories splits, and the difference in energy between consecutive levels is of
order α′−1. The low-energy limit of superstring theories is α′ → 0, in which the dynamics is given in
terms of a low-energy effective action for the zero energy states: supergravity theories.

In 10 dimensions it is known that there are only two supergravity theories with two supersymmetries,
called type IIA and type IIB supergravities. They are respectively the low-energy limit of type IIA and
type IIB string theories.

The bosonic part of the action in type IIA supergravity (in the string frame) is:

SIIA =
1

2κ2
0

∫
d10x
√
−G

{
e−2φ

[
R+ 4∂µφ∂

µφ− 1

2
|H3|2

]

− 1

2
|F2|2 −

1

2
|F̃4|2

}
− 1

4κ2
0

∫
B2 ∧ F4 ∧ F4 , (6.12)

where Gµν is the metric, φ is the dilaton, H3 = dB2 is the NS–NS three-form field strength, F2 = dC1 is

the field strength of the R–R 1-form, F4 = dC3 is the one of the R–R 3-form, and F̃4 = dC3 + C1 ∧H3.
The bosonic part of the type IIB supergravity action in the string frame is:

SIIB =
1

2κ2
0

∫
d10x
√
−G

{
e−2φ

[
R+ 4∂µφ∂

µφ− 1

2
|H3|2

]

− 1

2

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)}
− 1

4κ2
0

∫
C4 ∧H3 ∧ F3 , (6.13)

where now F1 = dC0, F3 = dC2, F3 = dC5, F̃3 = F3 − C0H3 and

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (6.14)

The fields equation are compatible with the self-duality of the four-form: F̃5 = ?F5 but they do not imply
it. This constraint has to be imposed as an added constraint on the solutions of the action.

Both actions can be re-expressed in the Einstein frame under a redefinition of the metric G → GE

and the dilaton φ, in which the Einstein–Hilbert part of the action has its standard form. One can then
read the expression of the 10-dimensional Newton constant GN :

16πGN = 2κ2 = 2κ2
0g

2
s = (2π)7α′4g2

s , (6.15)

where the last equality can be derived by computing a graviton scattering.
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The asymptotic value φ0 of the dilaton field at infinity sets the string coupling constant:

gs = eφ0 . (6.16)

Both theories are invariant under (higher) gauge transformations. The first is

B2 → B2 + dΛ1 (6.17)

where Λ1 is a one-form. Fundamental strings are the electric charges for such a gauge symmetry, since
B2 couples to the worldsheet as

1

2πα′

∫

WS

B2 . (6.18)

The second class of gauge transformations is

Cp → Cp + dΛp−1 (6.19)

where Λp−1 is a (p − 1)-form, and where p = 1, 3 in type IIA and p = 0, 2, 4 in type IIB. These higher
gauge symmetries have D-branes as non-perturbative electric and magnetic sources.

6.2 Branes

D-branes were introduced in [DLP89] as submanifolds of the target space R1,9 on which open strings can
end. Perturbatively, type II superstrings do not describe open strings however D-branes are intrinsically
non-perturbative objects: type II superstrings contain open strings in their non-perturbative spectrum.

The simplest occurrence of a D-brane is as one considers an open superstring (i.e. a map from a
strip R × [0, π] into R1,9) such that the first p coordinates satisfy the Neumann boundary conditions
and the remaining 10 − p satisfy the Dirichlet boundary conditions. Quantizing the open string with
such boundary conditions yields (at low energies α′ → 0) a (p + 1)-dimensional U(1) super Yang–Mills
theory on the world volume of the D-brane, obtained by dimensional reduction of N = 1 U(1) super
Yang–Mills theory in 10 dimensions. In general, Dp-branes for p = 0, . . . , 9 are (p + 1)-dimensional
Lorentzian submanifolds in space-time, and the gauge theory massless degrees of freedom which arise
in the worldvolume of such a D-brane correspond to the endpoints of open strings attached to it. The
Lorentzian submanifold on which a D-brane lies is called the worldvolume of that D-brane.

The GSO projection on this open string sector constrains the spatial dimension of D-branes to be
even (resp. odd) in type IIA (resp. type IIB) superstring theory: type IIA contains D0, D2, D4, D6 and
D8-branes while type IIB contains D1, D3, D5, D7 and D9-branes. It might also be the case that such a
D-brane is not a Lorentzian submanifold of the target space but a Euclidean submanifold. In that case
one speaks of euclidean D-branes. Type IIA contains ED1, ED3, . . . euclidean D-branes and type IIB
ED2, ED4, . . . .

The dynamics of the U(1) gauge theory on the worldvolume of a D-brane and how it couples to
background NS–NS fields is encoded in the Dirac–Born–Infeld action (DBI action):

SDBI = −TDp

∫

WV

dp+1ξ
√
−det(G+B + 2πα′F ) , (6.20)

where F is the field strength of the abelian gauge field on the worldvolume WV, and where:

TDp =
1

(2π)pα′
p+1

2 gs
(6.21)

is the Dp-brane tension, computed from the exchange of a closed string between two D-branes.
One can label the ends of open strings with non-dynamical Chan–Paton factors 1, . . . , N . These can

be thought of as arising from N coincident D-branes located somewhere in target space, they keep track
of to which D-brane of the stack an endpoint of an open string belongs. Quantizing open strings with
Chan–Paton factors shows that a stack of N coincident D-branes supports a U(N) gauge theory on their
worldvolume. The Dirac–Born–Infeld action can be generalized to such a non-abelian gauge theory.

At leading order in α′ the term containing F in the expansion of the (non-abelian) DBI action at low
energies is:

Sα
′→0

DBI = −TDp(2πα
′)2

4

∫
dp+1σ

√
−GTrFµνFµν (6.22)
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from which the gauge coupling gYM of the low-energy super Yang–Mills theory on a stack of branes can
be expressed as:

g2
YM = T−1

Dp (2πα′)−2 = (2π)p−2α′
p−3

2 gs . (6.23)

D-branes preserve one-half of the supersymmetry: they are BPS states of the 10 dimensional super-
symmetric string theory in R1,9. If QL and QR are the two Majorana-Weyl supercharges, a flat Dp-brane
extending along x0, . . . , xp preserves the linear combination

εLQL + εRQR (6.24)

with εL = Γ0 · · ·ΓpεR and hence they carry conserved charges, which are nothing else than the antisym-
metric R–R charges of the closed string theory:

• In type IIA theory D0-branes (resp. D2-branes) are electrically charged under C1 (resp. C3) while
D6-branes (resp. D4-branes) are magnetically charged under C1 (resp. C3). The D8-branes are
electrically charged under a non-dynamical 9-form.

• In type IIB theory D1-branes (resp. D3-branes) are electrically charged under C2 (resp. C4) while
D5-branes (resp. D3-branes) are magnetically charged under C2 (resp. C4). The D7-branes are
magnetically charged under C0 for which there also exist electrically charged objects known as
D-instantons (they are D(−1)-branes). The D9-branes couple to an R–R 10-form.

Electric–magnetic duality is Hodge duality, as in Maxwell theory. For example, in type IIB D1-branes
couple electrically to C2 whose field strength F2 = dC2 is a three-form. The magnetic dual of the latter
is ?dC2 which is a seven-form and the field strength of a six-form potential, to which D5-branes couple
naturally. Hence D1-branes couple electrically to C2 while D5-branes couple magnetically to it.

The coupling between a Dp-brane and an R–R (p+ 1)-form potential Cp+1 is described by

S = TDp

∫

WV

Cp+1 (6.25)

at leading order in α′ as α′ → 0. Hence the charge of the Dp brane is nothing else than (gs times) its
tension. This translates the fact that the attraction between two Dp-branes from the exchange of NS–NS
fields compensate exactly the repulsion from the exchange of R–R fields, consistently with the fact that
D-branes are stable, BPS objects in the theories.

Because D-branes have a tension they are gravitational sources and backreact by deforming the
ambient metric. This backreaction is controlled by the product TDpGN . At weak string coupling however
something interesting happens: the tension of a Dp-brane grows as ∼ g−1

s whereas the 10-dimensional
Newton constant vanishes as g2

s , hence the product TDpGN ∼ gs is small when gs is small. This is very
useful in that D-branes can be used as probes of the geometry: at weak string coupling gs → 0 and low
energies α′ → 0 the quantum geometry of type II string theory can be explored from the perspective of
the world-volume theory of a D-brane, setting aside the gravitational back-reaction of the D-brane.

More precisely, the gravitational backreaction of a N Dp-brane at low energy is well approximated by
the corresponding extremal black Dp-brane solution of type II supergravity theories. In the string frame:

ds2 = f−1/2
p (r)dx·dx+f1/2

p (r)dy ·dy, eφ(r) = gsf
(3−p)/4
p (r), dCp+1 = df−1

p (r)∧dx0∧· · ·∧dxp, (6.26)

where x stands for the p+1 coordinates in the worldvolume of the Dp-brane and y for the 9−p transverse
coordinates, and where

fp(r) = 1 +
(rp
r

)7−p
(6.27)

with (
rp
ls

)7−p

= (2
√
π)5−pΓ

(
7− p

2

)
gsN . (6.28)

The extremal black Dp-brane solution of above is a solution of type IIA supergravity if p is even and
type IIB supergravity is p is odd. The dilaton approaches a constant as r →∞, which defines the string
coupling constant gs. For p = 3, the dilaton is actually constant everywhere in space-time.

One sees from Equation (6.28) that when gs → 0 one also has rp → 0, and hence that Hp → 1: this
is the probe limit.
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NS5-branes.

This analysis calls for another: both in type IIA and type IIB superstring theories there is the massless
NS–NS B2-field, which is a two-form and to which the worldsheet couples naturally. The magnetic
potential dual to B2 is a six-form in target space. Hence there is again another type of extended solitonic
object in type II theories known as the NS5-brane, for it is a (5 + 1)-brane and couples magnetically to
the NS–NS two-form. Its tension is

TNS5 =
1

(2π)5α′3g2
s

, (6.29)

and the fact that it scales as g−2
s in terms of gs is much more familiar than the scaling of the D-brane

tensions, since solitons in gauge theories usually scale as g−2, where g is the coupling constant.
Even if both type IIA and type IIB string theories have NS5-branes which have the same tension, it

must be emphasized that type IIA NS5-branes are not the same as type IIB NS5-branes. In particular,
the worldvolume theories on NS5-branes differ whether one is in type IIA or type IIB string theory:
in type IIB the worldvolume theory of an NS5-brane is a usual U(1) super Yang–Mills theory with
N = (1, 1) supersymmetry, while in type IIA the worldvolume theory of an NS5-brane has N = (0, 2)
supersymmetries and describes an anti self-dual tensor multiplet.

The NS5-brane also corresponds to an extended object in type II supergravities, at low energies: an
extremal black NS5-brane. In the string frame in type IIA supergravity for example, it is given by:

ds2 = dx · dx+ f(r)dy · dy, eφ(r) = f1/2(r), (C3)µνρ = εµνρσ∂qf(r), (6.30)

where

f(r) = 1 +
Nα′

r2
. (6.31)

An NS5-brane in type II string theories is also an half-BPS object. If it is extended along x0, . . . , x5

it preserves the combination
εLQL + εRQR (6.32)

with εL = Γ0 · · ·Γ5εR and εR = −Γ0 · · ·Γ5εL.

6.3 String dualities and M-theory

T-duality is a perturbative duality of type II superstring theories which maps type IIA theory to type
IIB theory. Let us assume for concreteness that the 10-dimensional space-time is R1,8 × S1

R with the flat
Lorentzian metric and where S1 has length R. T-duality along the compact direction asserts that type
IIA theory in R1,8 × S1

R is dual to type IIB theory in R1,8 × S1
α′/R, where:

• Kaluza–Klein modes and winding modes of closed strings along the compact direction have been
exchanged,

• the boundary conditions for open strings (Neumann and Dirichlet) along the compact direction
have been exchanged,

• the new string coupling in terms of the old one gs is

gs →
√
α′

R
gs, (6.33)

• In a trivial NS–NS background, the R–R sector mixes as:

Type IIA Type IIB
(C1)a (C2)9a

(C1)9 C0

(C3)abc (C4)9abc

(C3)9bc (C2)bc

(6.34)

• In the NS–NS sector the metric G and the B field mix according to Buscher’s rules [Bus88, Bus87].
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Under a T-duality in a direction transverse to the worldvolume of a Dp-brane the latter is mapped to
a D(p+ 1)-brane whose worldvolume is the one of the Dp supplemented by the direction of the T-duality.
Under a T-duality in a direction parallel to the worldvolume of a Dp-brane the latter is mapped to a
D(p− 1)-brane whose worldvolume is the one of the Dp but the direction of the T-duality.

As far as NS5-branes are concerned, T-dualizing in a direction parallel to the worldvolume of an NS5
yields another NS5 (however not of the same type and hence whose worldvolume theory is different),
whereas T-dualizing in a direction perpendicular to the NS5 exchanges the brane for pure geometry (this
comes from the exchange of the NS–NS fields G and B under T-duality) [EJL98]. For example a stack
of NS5-branes under a perpendicular T-duality is mapped to a multi-centered Taub–Nut space.

Let us now restrict to type IIB theory in order to discuss S-duality, which is a non-perturbative
SL2(Z) duality symmetry. The type IIB supergravity action in the Einstein frame is invariant under
SL2(R) which acts as [

a b
c d

]
·
[
B2

C2

]
=

[
aB2 + bC2

cB2 + dC2

]
(6.35)

on the NS–NS and R–R 2-forms, as

[
a b
c d

]
· τ =

aτ + b

cτ + d
, (6.36)

where τ = C0 + ieφ is the axion-dilaton field, whereas SL2(R) acts trivially on the Einstein frame metric
GE and on C4. In the quantum theory where Dirac quantization condition has to be imposed on charged
states, the whole group SL2(R) is not a symmetry anymore, but only its subgroup SL2(Z) which is an
exact duality symmetry of type IIB superstring theory.

S-duality of type IIB theory is another name for the action of

S =

[
0 1
−1 0

]
. (6.37)

Under it: B2 → C2, C2 → −B and τ → −1/τ (when C0 = 0, this amounts to gs → g−1
s ) i.e. S-duality is

a strong-weak duality.
Because of how S-duality acts on the fields one sees that a fundamental string F1 which couples

electrically to B is S-dual to a D1-brane which couples electrically to C2, and vice-versa; an NS5-brane
which couples magnetically to B is S-dual to a D5-brane brane which couples magnetically to C2.

There are in fact two utterly important consequences of this SL2(Z) duality symmetry of type IIB
superstring theory. First, under the action of

S =

[
p q
a b

]
∈ SL2(Z) , (6.38)

a fundamental string is mapped to a string-like object coupling to B2 like p fundamental strings and to
C2 like q D1-strings. Because this action of SL2(Z) is an exact duality symmetry of type IIB superstring
theory, this object which behaves as a bound state of p F1s and q D1s is as elementary and stable as a
fundamental string. It is called (p, q)-string. Likewise, the fact that SL2(Z) is an exact duality symmetry
implies the existence of elementary and stable (p, q) 5-branes (or fivebranes) which are bound states
of p D5’s and q NS5’s (note the change of convention with respect to (p, q)-strings). The tension of a
(p, q)-fivebrane is given by [BBS06]:

T(p,q) = |p+ τq|TD5 . (6.39)

Independently, D3-branes are preserved by S-duality however from Equation (6.23) one sees that the
Yang–Mills coupling of the theory on the worldvolume of D3-branes transforms as:

gYM → g−1
YM . (6.40)

The worldvolume theory on a stack of N D3-branes in four-dimensional N = 4 U(N) super Yang–Mills
theory, and hence the S-duality symmetry of type IIB superstrings descend to the Montonen–Olive duality
of N = 4 SYM in four dimension presented in Section 5.7.

Second, fundamental strings can end on D-branes, by definition. Consider for definiteness a funda-
mental string streching between two D1’s. Under an S-duality this amounts to a D1 streching between
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two F1’s, hence D1-branes can end on fundamental strings! By electric-magnetic duality this implies in
turn that D5’s can end on NS5’s. Repeated applications of T-duality and S-duality on configurations
of branes and fundamental strings tell us that open branes exist [Str96]. For example, consider a D5
streching between two NS5’s:

0 1 2 3 4 5 6 7 8 9
D5 − − − − − − 0 0 0 0

NS51 − x − − − − − 0 0 0
NS52 − x′ − − − − − 0 0 0

(6.41)

After T-dualities in the directions 4 and 5 which are in the worldvolume of the NS5’s and of the D5
one obtains a D3-brane stretching between two NS5’s:

0 1 2 3 4 5 6 7 8 9
D3 − − − − 0 0 0 0 0 0

NS51 − x − − − − − 0 0 0
NS52 − x′ − − − − − 0 0 0

(6.42)

and this is S-dual to a D3 stretching between two D5s: we just learned that a D3 brane can end on D5s
(actually, on any (p, q) 5-brane)! These successive dualities are represented in Figure 6.2.

Figure 6.2: A chain of exact string dualities and their action on branes.

M-theory.

Consider D0-branes in type IIA theory. Their tension is given in Equation (6.21):

TD0 = (lsgs)
−1 . (6.43)

It is tempting to interpret this as the first Kaluza–Klein excitation of a massless supergravity multiplet in
11 dimensions (as we will see later there is a unique supergravity theory in 11 dimensions) compactified
on a circle of radius

R11 = lsgs . (6.44)

Likewise, a bound state of N D0-branes can be interpreted as the N -th Kaluza-Klein mode of the same
supermultiplet. The radius of the compactification circle goes as the string coupling constant, and one
expects that the strong coupling limit of type IIA superstring theory is described by an 11-dimensional
theory.

There is another hint that type IIA might be described as the compactification of an 11-dimensional
theory. The worldvolume theory of a type IIA NS5-brane describes an anti-self dual tensor multiplet,
as well as five scalars. Four of the latter can be interpreted as describing the position of the NS5 in the
transverse directions through their vacuum expectation values, and the fifth again hints for an additional
hidden direction.

All this is supported by the existence of a unique 11-dimensional N = 1 supergravity theory, whose
bosonic action is:

S =
1

2κ2
11

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4 , (6.45)
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where R as usual is the scalar curvature, F4 = dA3 is the field strength of a three-form and where κ11 is
the eleven-dimensional gravitational coupling constant. The eleven-dimensional Newton constant is

16πG11 = 2κ2
11 =

1

2π
(2πlp)

9 , (6.46)

where lp is the eleven-dimensional Planck length.
The theory which describes the strong coupling limit of type IIA superstring theory and which has

eleven-dimensional supergravity as its low-energy limit is called M-theory. It does not contain any strings,
and it cannot be defined perturbatively which makes it harder to handle than the type II theories. Since
there is a 3-form one expects that there are 2-branes and 5-branes in the theory, dubbed M2- and M5-
branes, respectively. Fundamental strings in type IIA string theory must arise from M2-branes wrapping
the circular additional dimension of M-theory. They have tension

TF1 =
1

2πl2s
, (6.47)

and if it is a wrapped M2-brane it must be that TF1 = 2πR11TM2. Hence one deduces the tension of an
M2-brane from Equation (6.44) and lp = (gs)

1/3ls:

TM2 =
2π

(2πlp)3
. (6.48)

Likewise one expects D4-branes in type IIA theory to be M5-branes wrapped on the circular 11-th
direction, from which one deduces that:

TM5 =
2π

(2πlp)6
. (6.49)

D2-branes are identified with M2 branes not wrapping the circular direction and type IIA NS5 branes
are identified with unwrapped M5-branes. D6-branes however cannot be related to M2 or M5 branes in
any simple way; it corresponds instead to a Kaluza-Klein monopole in M-theory. Similarly to D-branes
and NS5-branes in type II superstrings, at low energies M2 and M5 branes correspond to black brane
solutions of 11-dimensional supergravity.

6.4 Supersymmetric quantum field theories from brane config-
urations

In [HW97a] Hanany and Witten considered configurations of NS5-branes, D5-branes and D3-branes in
type IIB string theory in R1,9, where the D5-branes are extended along x0, x1, x2, x7, x8 and x9, the
NS5-branes along x0, x1, x2, x3, x4 and x5 and the D3-branes along x0, x1, x2 and x6:

0 1 2 3 4 5 6 7 8 9
D5 − − − x3

j x4
j x5

j zj − − −
NS5 − − − − − − ti x7

i x8
i x9

i

D3 − − − × × × − × × ×
(6.50)

The D3s are finite (or semi-infinite) and end on the NS5s if some conditions on the coordinates of the
branes are satisfied. An example of such a brane setup is shown in Figure 6.3. The horizontal direction
in the Figure stands for the direction 6 whereas the vertical one stands for 3,4 and 5. The directions
7,8,9 of space-time are depicted transversely to the plane of the figure, where the directions 0, 1 and 2
are swept by all the branes in this setup and hence they are not represented. With these conventions,
NS5-branes are vertical lines, D3-branes are horizontal segments of half-line ending on NS5’s, and they
can stack-up: for example, there is a stack of three D3-branes streching between the two left-most NS5’s
in Figure 6.3. D5-branes extend along the directions 0,1,2 and the ones transverse to the plane of the
figure only, and hence they appear as dots. D3-branes can also end on D5’s, provided their coordinate
along 3,4 and 5 coincide. This happens between the two right-most NS5’s in Figure 6.3. A D3-brane
streching between two NS5’s can also slide in the directions 3,4 and 5 since the NS5’s are extended along
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Figure 6.3: A Hanany-Witten brane setup.

them, and hence a stack of D3-branes streching between two NS5’s can split, as the one between the two
right-most NS5-branes.

Such brane system preserves one fourth of the 32 supercharges of type IIB theory, i.e. 8 real super-
charges. Since the fivebranes extend along two directions not shared by the D3-branes they are much
heavier than the latter, and one can think the parameters describing the position of the fivebranes as
being fixed, and study the quantum dynamics of the worldvolume theory on the D3s only. At low energies
this yields a N = 4 quantum field theory in 2 + 1 dimensions. By dimensional reduction, each stack of
N D3-branes extending between two NS5s located at x6

i and x6
i′ gives rise to an U(N) gauge group with

gauge coupling

1

g2
∼ |x6

i − x6
i′ | , (6.51)

where the proportionality factor is universally determined by the coupling gs of type IIB superstring
theory. Semi-infinite D3-branes are infinitely more massive than the finite ones and they give rise to
flavor groups in the low energy theory. Open strings attached to the stack of D3s on the left of an NS5
and to the stack of D3s on the right of the same NS5 gives rise to a bifundamental field in the worldvolume
theory of the D3s, which is massless if the x3, x4 and x5 coordinates of the two stack of D3s coincide.
Open strings streching between D3s and D5s give rise to flavor fields in the low-energy effective theory
in the fundamental representation of the gauge group on the D3s which are massless if the x3, x4 and x5

coordinates of the D3 and the D5 coincide.

From the point of view of the NS5-branes, the endpoint of a D3 is a magnetic monopole. Such an
insertion on the worldvolume of an NS5 bends it, hence taking that into account the position of the NS5
along x6 now becomes a function of the transverse direction to the D3-endpoint within the NS5. Away
from the endpoints, it satisfies

∇2x6(x3, x4, x5) = 0 (6.52)

while the endpoint itself acts like a Dirac source, but it is difficult to describe quantitatively such a
singularity. The Green function of the Laplacian in three dimensions being ∇2δ(~0) = |~x|−1, the x6 value
of the NS5 tends to a constant at infinity in the three-dimensional (x3, x4, x5) space. In Equation (6.50)
if one uses x6 values at infinity of NS5 branes on the right-hand side, the left hand side corresponds to
the bare value of the coupling constant; in general µ = |(x3, x4, x5)| is interpreted as an energy scale at
which the coupling satisfies g2(µ)−2 = |x6

i (µ)− x6
i′(µ)|.

Hanany–Witten transitions.

When an NS5 passes through a D5 a three-brane connecting them is created, as explained in [HW97a]:
otherwise one finds a discrepancy between the analysis of the brane configuration and known results
about the moduli space of the low-energy field theory. This is depicted in Figure 6.4, where we have
taken into account the backreaction of the D3-endpoint on the worldvolume of the NS5, so that the NS5
has the asymptotic shape x6(~w) = |~w − ~wi|−1.
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Figure 6.4: The Hanany–Witten effect

An NS5-brane is a magnetic source for the B2 field in type IIB superstring theory, i.e.:

∫

S

H3

2π
= 1 , (6.53)

with H3 = dB2 as usual, and where S is a three-sphere wrapping once around the NS5. Likewise, a D5
is a magnetic source for the C2 field: ∫

S′

F3

2π
= 1 , (6.54)

with F3 = dC2 as usual and where S′ is a three-sphere wrapping once around the D5. The linking number
of the worldvolumes of the NS5 and the D5 inside T = R7

3,4,5,6,7,8,9 is

L =

∫

YD

H3

2π
=

∫

YNS

F3

2π
, (6.55)

evaluated at any point in R3
0,1,2. In the last equation YD (resp. YNS) is the projection of the worldvolume

of the D5 (resp. NS5) in T . As a D5 passes through an NS5 this linking number changes and that must
be compensated by the addition of a D3 brane stretching between the D5 and the NS5. It is indeed
argued in [HW97a] that the total linking number (which also receives a contribution from the D3 brane)
should not change as a brane is passed through another.

6.4.1 Four-dimensional theories with eight supercharges

Under a T -duality along x3 the setups of the previous subsubsection becomes brane configurations in
type IIA superstring theory studied in [Wit97]. Their properties matches the known quantum behaviour
of four dimensional N = 2 field theories, and the lift to M-theory even allows a direct calculation of
Seiberg-Witten curves (which we introduced in Section 5.6). For simplicity and conciseness we will only
consider configurations without D6 branes. The classical setup is:

0 1 2 3 4 5 6 7 8 9
NS5 − − − − − − × 0 0 0
D4 − − − − × × − 0 0 0

, (6.56)

where the ×s mean that each corresponding brane has a fixed position along that direction.
Let v = x4+ix5. The low-energy effective theory on the fourbranes is an N = 2 supersymmetric gauge

theory in four dimensions: for example, the low-energy theory on the D4s corresponding to the classical
brane configuration shown in Figure 6.5 can be described as the quiver shown below on the same figure,
where circles are gauge groups, squares are flavor groups and edges are bifundamental hypermultiplets.

At low energies any such brane setup describes a four dimensional theory along x0, x1, x2 and x3

whose gauge group is ∏

α

SU(kα) , (6.57)

where α labels the NS5s from left to right, and where kα is the number of open D4s between NS5α and the
NS5α+1. The gauge factors are SU(N)s rather than U(N)s because there is a constraint on the position
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¨

Figure 6.5: A four-dimensional N = 2 gauge theory as the low energy theory on a brane setup in type
IIA.

of the D4 endpoints in the worldvolume of each NS5 brane. The coupling constant of a factor SU(kα)
should be given by an expression of the form

1

g2
α

=
|x6
α+1 − x6

α|
gs

(6.58)

however g2
α is a function of v because of the backreaction of the D4s endpoints on the NS5s. Crucially,

in this case x6 is the solution of a two dimensional Laplace equation (away from the D4 endpoints):

∇2x6(v) = 0 . (6.59)

Since the Green function of the Laplacian in two dimensions is logarithmic in |v|, the x6 coordinate of an
NS5 does not tend to a definite x6 value at infinity in v in general. This translates the logarithmic one-
loop running of the coupling constant in four-dimensional non-abelian gauge theories, with the absolute
value |v| interpreted as a mass scale.

At each NS5α there is a hypermultiplet in the bifundamental representation of the gauge groups
describing the D4 brane stacks on each side, whose mass can be expressed easily in terms of the position
of the D4 endpoints.

In the low-energy four dimensional theory x6 is the real part of a complex field in a vector multiplet.
Its imaginary part is a scalar field which propagates on the five-brane (the fifth scalar on the worldvolume
of type IIA NS5 branes), better interpreted in M theory instead of type IIA. Let x10 ∼ x10 + 2πR be
the coordinate on the M-theory circle, with R = lsgs. With it Equation (6.58) can be rewritten as an
equation for the complexified gauge coupling of the factor SU(kα) at the energy scale |v|:

− iτα(v) = sα(v)− sα−1(v) , (6.60)

where Rsα(v) = x6
α(v) + ix10

α (v) is the coordinates of NS5α along x6 and x10 in M-theory units.
The D4s and NS5s in type IIA both descend from M5 branes, and the type IIA setups that we are

considering can be reinterpreted as a configuration of a single smooth M5 brane in R1,9 × S1:

0 1 2 3 7 8 9 4 5 6 10
M5 − − − − 0 0 0 · · · · · ·Σ · · · · · · (6.61)

where Σ is a surface in Q = R3
4,5,6 × S1

10. This has the nice consequence of (generically) smoothing out
the singularities of the type IIA setups, which are difficult to understand quantitatively, as is usual with
singularities.

The M5 brane corresponding to a given configuration of D4s and NS5s in type IIA should give the
latter back in the limit where R becomes small, and if one forgets about the circle coordinate x10.
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Moreover, in order for the M5 brane to preserve one-fourth of the 32 supersymmetries in M-theory so
as to obtain a 4d N = 2 theory at low energies, Σ has to be a Riemann surface in Q in the complex
structure in which x4 + ix5 and x6 + ix10 are holomorphic.

The surface Σ is hence given by an equation F (t, v) = 0 in Q, where t = exp
(
x6 + ix10

)
. The degree

of F in t and v are related to the number of fourbranes and fivebranes in the type IIA configuration. The
very nice outcome of all this construction is that these Riemann surfaces are nothing but the Seiberg–
Witten curves introduced in Section 5.6, which contain much information about the low-energy effective
field theory on the Coulomb branch of the D4 worldvolume theory. Some examples from [Wit97] are given
in Figure 6.6, where e and f are constants (that can be removed by rescaling t and v) and where µ and
the µis are the v-positions of the semi-infinite D4 branes, i.e. the masses of the flavor hypermultiplets in
the language of field theory.

Figure 6.6: Type IIA brane setups and equations of the corresponding M-theory curve.

6.4.2 Five-dimensional theories with eight supercharges

Let us now consider configurations of fivebranes in type IIB theory studied in [AH97, AHK98]:

0 1 2 3 4 5 6 7 8 9
D5 − − − − − − × 0 0 0
NS5 − − − − − × − 0 0 0

(6.62)

It preserves one-fourth of the original 32 supersymmetries of type IIB theory and everything that matters
about the setup is described in the 56-plane. One can also add (p, q)-fivebranes to such a configuration
(which are bound states of p D5s and q NS5s) without breaking further the supersymmetry, provided
that a (p, q)-fivebrane has slope [p : q] in the 56-plane.

D5 branes can end on NS5s however if they do their endpoints bend the NS5s. The relevant equation
describing the backreaction is now a one-dimensional Laplace equation and hence the brane configuration
remains piece-wise linear. An example of such a backreaction induced by the endpoint of a (1, 0) brane
inside a (0, 1) brane is shown in Figure 6.7: there is a half-infinite (1, 1) fivebrane emanating out of
the vertex. Actually, any junction of arbitrary (pi, qi)-fivebranes is allowed if it preserves the fivebrane
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charges: ∑

i

pi +
∑

i

qi = 0 ; (6.63)

they do not break the supersymmetry further.

Figure 6.7: The back reaction of a D5 endpoint inside an NS5 (as seen in the 56 plane).

The projection of such a fivebrane configuration in the 56-plane is called a (p, q)-web. At low energies
the worldvolume theory on the D5s is a five-dimensional gauge theory with N = 1 supersymmetry. One
can study the Coulomb branch of the moduli space and the low-energy BPS states on it using (p, q)-
webs [AHK98], as well as the Higgs branches (to a lesser extend). More recent work has focused on
Higgs branches of such theories and generalizations, starting with [CHS19, BCG+20]. Three examples
of (p, q)-webs are displayed in Figure 6.8. The D5 worldvolume theory on the leftmost (resp. the one in
the middle, the rightmost) diagram describes a point on the Coulomb branch of a 5d N = 1 pure SU(2)
(resp. SU(2) with 3 flavors, SU(2)× SU(3) gauge theory with 3 flavors) gauge theory.

The geometry of these diagrams can be linked to the parameters in the Lagrangian of the corresponding
field theory. For example, in the left-most diagram in Figure 6.8 mW is the mass of the W -boson while
m0 = g−2

0 with g0 the bare gauge coupling.

Figure 6.8: Some (p, q)-webs (as seen in the 56 plane).

With the hope of smoothing the singularities at the vertices one can look for an M-theoretic lift of
(p, q)-webs. By combining a T-duality with the M-theory limit of type IIA theory one obtains a duality
between type IIB theory compactified on a circle of length LB and M-theory compactified on a torus
with a base of length 2πLt and modular parameter τ = τIIB the axion-dilaton field of type IIB theory.
Then:

1

2πl2s
= 2πLtTM2 , LB =

1

2πL2
t Im(τ)TM2

, (6.64)

with TM2 the M2-brane tension given in Equation (6.48). Let xt and yt be the coordinates on the M-
theory torus. The (p, q)-web lifts in M-theory to a single M5-brane wrapping a Riemann surface Σ in the
complex split torus (C×)2 parameterized by

s = exp

(
x5 + ixt
Lt

)
, t = exp

(
y6 + iyt
Lt

)
. (6.65)

As before, the fact that Σ is a complex curve ensures that 8 supercharges are preserved. Moreover, the
analytic expression of Σ can be read easily from the (p, q)-web. The latter can indeed be considered as
the dual graph of a triangulated lattice polygon, which is the Newton polygon of the analytic expression
of Σ: this is shown on the left of Figure 6.9 for the web in the middle of Figure 6.8. Doing the same for
the web on the left of Figure 6.8 yields the following expression for the M-theory curve:

(Σ) : P (s, t) = As+ t+ABst+Ast2 + s2t = 0 , (6.66)
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where the coefficients are linked to the physical parameters of the theory as:

A ∼ 2 exp

(
LB
2g2

0

)
, B ∼ 2 exp

(
mWLB

2

)
. (6.67)

Figure 6.9: The lattice polygon dual to a (p, q)-web and the amoebae of a complex curve in (C×)2.

The link between the M-theory curve and its corresponding web diagram can be formalized as follows.
Given any affine complex curve defined by a polynomial P (s, t) = 0 in (C×)2

s,t, its amoeba projection is
its image under the map

(C×)2 −→ R2

(s, t) 7−→ (ln |s|, ln |t|) .
(6.68)

These projections of complex curves onto a real plane have a characteristic shape explaining the name
amoeba: the amoebae projection of the curve of corresponding to the web in the middle of Figure 6.8 is
shown in blue on the right of Figure 6.9 (for some wise choice of parameters).

Since ln |s| = L−1
t x5 and ln |t| = L−1

t x6, the amoeba can be considered as a subspace of the 56-plane
in type IIB theory. Drawing the original (p, q)-web on top of the amoeba makes it clear that the latter
is a fattened version of the former: the M-theory curve indeed smooths the (p, q)-web.

As Lt → 0 (which corresponds to LB → ∞) the amoeba shrinks to the (p, q)-web, which is to be
identified with the tropicalization of Σ, i.e. the non-smooth locus of:

(Σt) : max

(
1

2g2
0

+ x5, x6,
1

2g2
0

+
mW

2
+ x5 + x6,

1

2g2
0

+ x5 + 2x6, 2x5 + x6

)
. (6.69)

The lift of the (p, q)-web to M -theory is an incarnation of Maslov dequantization, discussed at the end
of Section 1.3.

6.4.3 Four dimensional theories with four supercharges

As a last example of how brane configurations can be used to study the quantum behaviour of supersym-
metric field theories, let us consider the following setup in type IIA theory as in [EGK97b, EGK+97a]:

0 1 2 3 4 5 6 7 8 9
NS5 − − − − − − x6

1 0 0 0
N D4 − − − − 0 0 − 0 0 0
F D6 − − − − x4

j x5
j x6

j − − −
NS5′ − − − − 0 0 x6

2 0 − −

(6.70)

An example is shown in Figure 6.10.
This configuration preserves one eighth of the 32 supersymmetries of type IIA, and hence the world-

volume theory on the D4-branes at low energies is an N = 1 four-dimensional quantum field theory.
In Figure 6.10 the N D4s stretching between the NS5 and the NS5’ give rise to an SU(N) gauge group

with gauge coupling g. The separation between the two NS5-branes along the x6 direction is proportional
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Figure 6.10: A configuration of branes in type IIA string theory.

to g−2. Each D6 brane gives rise to a flavor of quarks, i.e. a pair of chiral multiplets in the fundamental
and antifundamental representations of SU(N). The distance between a D6 and the stack of D4-branes is
proportional to the bare mass of the corresponding flavor, and hence when the F D6-branes are located
at x4 = x5 = 0 the low-energy theory on the N D4s is (massless) SQCD with N colors and F flavors.

If brane setups are a good tool to study the quantum dynamics of supersymmetric field theories, we
should be able to understand Seiberg duality in terms of branes, and it is the case. To this end, let us
emphasize that when a stack of D6 branes is at x4 = x5 = 0 between the NS5 and the NS5’, it is possible
to split the stack of D4 branes on the D6s and move the part between the D6s and the NS5’ along x8

and x9. This corresponds to giving a non-zero vacuum expectation value to one or more quarks in the
low-energy effective field theory.

Figure 6.11: Seiberg duality from branes.

Seiberg duality is described in five successive steps displayed in Figure 6.11. For F > N :

1. In the starting configuration, there are N D4s stretching between the NS5 and the NS5’, as well as
F D6s at x4 = 0, x5 = 0 and some x6 such that x6

1 < x6 < x6
2.

2. One moves the NS5-brane along x6 and through the F D6s. This creates F D4s stretching between
the D6s and the NS5 (this is the Hanany-Witten effect).

3. One splits the stack of D4s along x8 and x9. There are now N D4s at some non-zero (x8, x9)
stretching between NS5’ and the D6s, and F − N D4s at (x8, x9) = (0, 0) stretching between the
D6s and the NS5.

4. One moves the latter set of F −N D4s and NS5 along x7, keeping the D4s attached to the F −N
D6s. Now that NS5 and NS5’ are separated in x7, one can move NS5 along x6 to the right of NS5’
in a smooth way since the branes do not intersect at any point, and then move back the stack of
F −N D4s and NS5 back to their initial x7 position.

5. Lastly, one moves back the stack of N branes between the N D6s and NS5’ to their initial x6

position. The F −N D4s between NS5 and the D6s split on NS5’, and one is left with F −N D4s
stretching between NS5’ and NS5, and F D4s streching between the F D6s and NS5’. This latter
stack of D4s can move along x8 and x9, and this gives rise to F 2 gauge neutral fields Φij in the
low-energy theory. World-sheet instantons induce the superpotential of the magnetic theory.
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∗ ∗ ∗ ∗ ∗ ∗ ∗

Type II string theories can be defined perturbatively in flat, ten-dimensional space-time R1,9. Type
IIA (resp. IIB) theory is non-chiral (resp. chiral) in space-time, and its massless modes describe a dilaton,
a graviton and a 2-form in the NS–NS sector, two gravitinos in the NS–R and R–NS sectors, as well as
differential forms of odd degree (resp. even degree) in the R–R sector. At low-energies, type II superstring
theories are well-described by type II supergravity theories.

Type II string theories describe branes, which are of a non-perturbative nature. D-branes naturally
couple electrically and magnetically to the R–R fields of the theory. Therefore type IIA theory describes
D0, D2, D4, D6 and D8-branes, whereas type IIB contains D(−1), D1, D3, D5, D7 and D9-branes. Both
type II theories contain NS5-branes which couple magnetically to the NS–NS 2-form. Moreover, both
theories are related through T-duality when compactified on a circle. Type IIB theory is auto S-dual,
which notably implies the existence of bound states of 1-branes and 5-branes known as (p, q)-strings and
(p, q)-fivebranes. Analyzing type IIA theory suggests that at strong coupling it is better described as
an eleven-dimension theory known as M-theory. At low energies, the latter is well described by eleven-
dimensional supergravity, whose bosonic degrees of freedom are a graviton and a three-form. This points
towards the existence of M2-branes and M5-branes in M-theory.

Branes are of prime interest since string theory implies the existence of massless fields in their world-
volume. In particular, D-branes hosts supersymmetric Yang–Mills theories with 16 supercharges. One
can consider brane configurations which preserve supersymmetries; this allows the engineering of arbitrar-
ily complicated supersymmetric quantum field theories in various dimensions. The quantum dynamics of
the latter can be studied through the geometry of the corresponding brane configurations.



Chapter 7

String geometry

We are now going to study type II string theories and M-theory in non-trivial space-times. There are
two main reasons why one would want to do this.

• In order to connect string theories and M-theory to the real world which appears to be four-
dimensional at low energies, one can assume that the critical dimensions of superstring theories
or M-theory are shaped as R1,3 ×X6 for string theories or R1,3 ×X7 for M-theory, where X6 and
X7 are compact metric spaces of typical size lX . The physics at energies smaller than l−1

X is then
effectively four-dimensional: one speaks of compactification. In order to keep some control on the
low-energy theory it is of interest to preserve some of the supersymmetries. This imposes stringent
constraints on X6 or X7: for example X6 needs to be a Calabi–Yau threefold . Since superstring
theories and M-theory are well approximated at low energies by supergravity theories which have
differential forms as dynamical fields, one might either consider compactifications in which these
forms are trivial (Section 7.1), or not (Section 7.2).

• The massless spectrum of open strings on D-branes at singularities can be very rich. By choosing the
singularity appropriately one can construct complicated gauge theories and study their dynamics
using string/M theory, which is usually referred to a geometric engineering. Again, it is of interest to
preserve some supersymmetries, in which case the gauge theories one obtains are supersymmetric.
In Section 7.3 we first study how the worldvolume theory on D3 branes changes under the mild
replacement of the transverse flat space C3 that they have in flat space with Calabi–Yau orbifolds
of C3. Section 7.4 presents some aspects of toric geometry and the construction of (complex) three-
dimensional affine toric Calabi–Yau singularities. The worldvolume theory of D3-branes whose
transverse space is an affine toric CY3 singularity is derived in Section 7.5 with the help of brane
tilings. Lastly, we introduce orientifolds in Section 7.6.

7.1 Compactifications without fluxes

Let us assume that the ten-dimensional target space M10 of a superstring theory is the direct product:

M10 = M4 ×M6 . (7.1)

We require M4 to be a maximally symmetric i.e. homogeneous and isotropic four dimensional Lorentzian
space-time (which implies in particular that the curvature tensor is proportional to the scalar curvature)
and M6 to be a six-dimensional Riemannian spin manifold. Let us also assume that the NS–NS three-form
field as well as the dilaton field vanish identically, both in M4 and M10. The metric also splits as:

ds2
M10

= ds2
M4

+ ds2
M6

(7.2)

If one believes that physics is supersymmetric above some energy scale Λ�MP where MP is the Planck
scale, it is of interest to investigate the conditions that M4 and M6 must satisfy in order to preserve some
of the supersymmetries of string theories in flat space-time. However, as we saw in Chapter 5: the more
supersymmetric a model is, the less phenomenological.

191
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A vacuum state is supersymmetric if and only if the SUSY variations of the fermionic fields vanish.
The low-energy supergravity approximation always contain a gravitino, whose SUSY variation when the
NS–NS three-form is zero can vanish only if there exists a covariantly constant spinor ε in M10:

∇M10
ε = 0 . (7.3)

Since we have assumed that M10 is a direct product, a covariantly constant spinor ε can be written as a
tensor product ζ ⊗ η with ζ on M4 and η on M6.

The fact that the maximally symmetric space M4 has a covariantly constant spinor implies that it is
flat, and hence that M4 = R1,3. As far as M6 is concerned, the existence of a covariantly constant spinor
implies that:

1. The holonomy of M6 must be in an SU(3) subgroup of Spin(6) ' SU(4),

2. M6 must be a complex manifold, with complex structure

Jnn = iη†+γ
n
mη+ , (7.4)

where (η+, η−) are the two chiral spinors constituting η and where the γm are the gamma matrices
on M6, which implies that M6 is in fact a Kähler manifold,

3. The three-form

Ω =
1

6
Ωabcdz

a ∧ dzb ∧ dzc (7.5)

is a nowhere vanishing holomorphic three-form on M6.

One says that M6 is a Calabi–Yau threefold (CY3). When M6 is compact, it follows from the Calabi
conjecture proved by Yau in 1977–19781 that if ω is a Kähler form on M6 there exists a unique Ricci-flat
Kähler metric whose Kähler form is in the same cohomology class as ω.

In general one says that a compact Kähler manifold X of complex dimension n is Calabi–Yau is the
following equivalent assumptions hold:

• X has a trivial canonical bundle,

• X has a nowhere vanishing holomorphic n-form,

• X has a Kähler metric with global holonomy in SU(n).

This implies that X has a Kähler metric with vanishing Ricci curvature.
Calabi–Yau manifolds have been studied extensively since it became clear that they play a central role

in string theory compactifications. The CY3 studied in string theory are usually assumed to be simply
connected, and this together with Serre duality, complex conjugation and Poincaré duality implies that
the Hodge diamond of a compact CY3 is of the form:

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

, (7.6)

i.e. only depends only on h1,1 and h2,1. One way to construct many compact Calabi–Yau threefolds is by
using Batyrev’s construction [Bat94] in toric geometry. It implies in particular that one can construct a
compact CY3 for each four-dimensional lattice reflexive polyhedron. These have been classified modulo
SL4(Z) [KS00b]: there are 473, 800, 776 such polyhedra. This gives a lower bound on the number of
topologically distinct compact CY3, however examples of non-toric compact CY3 are also known. We
refer to [BHHP20] for a tour in the beautiful landscape of Calabi–Yau threefolds.

1He was awarded the Fields medal in 1982 in part for this proof.
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Any compact CY3 X has a moduli space which is locally a product:

M =M2,1 ×M1,1 , (7.7)

where M2,1 is the moduli space of complex structures on X, and M1,1 the moduli space of Kähler
structures on X. Compactifying either type II string theory on such a compact CY3 yields an effectively
four dimensional N = 2 supersymmetric theory with moduli fields which parametrize flat directions in
the moduli space. Compactifying type IIA theory on X yields h1,1 abelian N = 2 vector multiplets
moduli and (h2,1 + 1) hypermultiplets moduli. Conversely, compactifying type IIB theory on X yields
h2,1 abelian vector multiplets moduli and h1,1 + 1 hypermultiplets moduli. This lead to the mirror
symmetry conjecture: for each compact CY3 X with Hodge numbers h1,1

X and h2,1
X there exists a compact

CY3 Y such that h1,1
Y = h2,1

X and h2,1
Y = h1,1

X , and such that type IIA string theory compactified on X is
equivalent to type IIB string theory compactified on Y . A famous piece of evidence for the conjecture is
the manifest reflection symmetry of Figure 1 in [CLS90] showing the plot of h1,1+h2,1 versus 2(h1,1−h2,1)
for a large family of Calabi-Yau threefolds.

A deep generalization of this original mirror symmetry conjecture was proposed by Kontsevich in
[Kon95]: for any 2n symplectic variety (V, ω) and its mirror W (an n-dimensional complex manifold),
the derived Fukaya category F (V ) on V should be equivalent to the derived category of coherent sheaves
on W . This conjecture can be expressed in physical terms (when V = X and W = Y are Calabi–Yau
manifolds) as the correspondence between euclidean BPS branes on X in type IIA and euclidean BPS
branes on Y in type IIB. These BPS branes are well described by the topological string models B and A.
B-branes on X are described by the derived category on coherent sheaves on X while A-branes on Y are
described by the Fukaya category on Y [Dou00, Dou01, AL01, Laz01, Dia01, Asp04].

Another conjecture (or philosophy) has been proposed by Strominger, Yau and Zaslow in [SYZ96]. It
explains mirror symmetry between compact Calabi–Yau n-folds as a sequence of n T-dualities.

Riemannian manifolds of dimension greater than three with restricted holonomy are also potentially
useful to construct string compactifications. Seven dimensional manifolds with G2 holonomy break one
eight of the 32 supersymmetries of M-theory in flat space-time, so that M-theory compactified on such
a manifold yields a four dimensional N = 1 quantum field theory. Eight dimensional manifolds with
Spin(7) holonomy break one sixteenth of the 32 supersymmetries of M-theory in flat space-time, so that
M-theory compactified on such a manifold yields a three dimensional N = 1 quantum field theory.

7.2 Flux compactifications

Compactifications of string theories or M-theory on manifolds with restricted holonomy always yield
moduli, i.e. massless scalar fields without potential in the low-energy effective field theory. This is
problematic from a phenomenological point of view, in particular because physical parameters of the
low-energy effective field theory such as the couplings depend on the value of these moduli.

One possible approach towards the resolution of such an issue is to consider warped compactifications
of string theories or M-theory. For definiteness we will discuss type IIB superstrings on backgrounds
which are locally of the form:

M10 = M4 ×M6 , (7.8)

with a compact M6 and a warped Einstein frame metric:

ds2
M10

= e2A(y)ηµνdxµdxν + e−2A(y)g̃mndymdyn , (7.9)

where xµ are the coordinates on M4 and ym the ones on M6, and where ηµν is the four-dimensional
Minkowski metric. The warp factor A(y) only depends on the coordinates on the internal manifold; this
is a consequence of requiring 4d Poincaré invariance. A no-go theorem [MN01] shows that without sources
as branes or singularities in the internal geometry, any flat space solution has its warp factor constant
and vanishing fluxes. Moreover, de Sitter solution are even completely excluded under these hypotheses.
This comes from considering the external part of the ten dimensional Einstein equation, which in the
warped metric ansatz of Equation (7.9) leads to an equality between the Lagrangian of e4A and a sum of
positive-definite terms, which thus have to vanish.

More precisely, let us write the type IIB supergravity action in the Einstein frame as in [GKP02]:

SIIB =
1

2κ2

∫
d10x
√
−G

[
R− |∂τ |2

2(Imτ)2
− |G3|2

2Imτ
− |F̃5|2

4

]
+

1

8iκ2

∫
C4 ∧G3 ∧G3

Imτ
+ Sloc , (7.10)
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where G3 = F3 − τH3 is the combined three-flux, τ = C0 + ie−φ is the axion-dilaton field,

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 , (7.11)

and where Sloc is the action of localized objects. Poincaré invariance and the Bianchi identity impose

F̃5 = (1 + ?10)
[
dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
, (7.12)

with α a function on M6. From the ten dimensional Einstein equation one obtains:

∆
(
e4A − α

)
=

1

6Imτ
e8A |iG3 − ?6G3|2 + e−4A

∣∣∂(e4A − α)
∣∣2 + 2κ2e2A(Jloc − T3ρ

loc
3 ) , (7.13)

where

Jloc =
1

4

(∑

m

(
T loc

)m
m
−
∑

µ

(
T loc

)µ
µ

)
(7.14)

with T loc the energy-momentum tensor associated with the localized sources and ρ3 the D3 charge density
from localized sources. Moreover fluxes are quantized, because of the generalized Dirac quantization
conditions. Working out the conditions for supersymmetric solutions yields the following constraints:

• G3 is an imaginary-self dual ?6G3 = iG3 primitive (2, 1)-form,

• The warped factor and the four-form potential are related through e4A = α,

• The localized sources saturate the bound J loc ≥ T3ρ
loc
3 .

The authors of [GKP02] provide explicit examples of this construction and show that one can obtain
hierarchies of scales in these warped compactifications, generalizing the brane-world models of Randall
and Sundrum [RS99a, RS99b].

One of the nice outcomes of these compactifications with non-trivial fluxes is that the latter generate a
superpotential for some number of moduli fields, which leads to their stabilization. This is a step towards
building phenomenologically interesting compactifications of string theories. Moreover this construction
can even lead to four dimensional de Sitter space-times as shown by the KKLT construction [KKLT03],
and with a cosmological constant small enough so that it is compatible with Weinberg’s anthropic bound
[Wei87]:

− 10120M4
P < Λ < 10−118M4

P , (7.15)

as shown in [BP00]. This leaves however a huge number of possible compactifications with fluxes – at
least 10500 for type IIB superstrings on some Calabi–Yau manifolds, which form the so-called landscape of
string vacua. One speaks of a discretuum of vacua. The statistical study of the landscape [BP00, Dou03]
has shed much light on deep questions such as the fate of supersymmetry (see [DOS05] for example) and
also the status of intelligent design and anthropic principles (with popularization books such as [Sus05]).

The swampland program.

The string theory landscape contains quantum field theories which by definition can be UV-completed
to consistent theories of quantum gravity, since they are effective field theories obtained as flux com-
pactifications of string theories. In contrast, the swampland program [Vaf05] aims to derive criteria that
quantum field theories must satisfy in order to be compatible with quantum gravity. More prosaically,
the question is: given some quantum field theory considered as an effective theory, is it compatible at all
with the precepts of quantum gravity?

There are many swampland conjectures, most of which were derived from string-independent lines
of thought based on developments on quantum black holes and black holes evaporation, but which were
tested in many non-trivial ways in the framework of string theory, which is the better developed theory
of quantum gravity at hand, up to today. Some early examples of the swampland conjectures are:

• There is no global symmetry in quantum gravity [BD88, BS11],

• A gauge theory coupled to gravity contains all the states allowed by Dirac quantization [Pol04],
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• In a theory with gauge group U(1) and gauge coupling g coupled to gravity, there must exist a
particle in the theory with mass m and charge q such that m ≤

√
2gqMP , where MP is the Planck

mass. Moreover, the cutoff scale of the theory satisfies Λ ≤ gMP [AHMNV07].

Other conjectures were proposed more recently such as the distance conjecture [OV07], the non-
supersymmetric AdS conjecture [OV17], the dS conjecture [OOSV18] or the cobordism conjecture [MV19].

The status of string theory in such conjectures being central was erected as the string lamppost prin-
ciple [MV21], and it is a question of interest to understand to what extent string theory is universal, i.e.
is able to describe every consistent quantum gravity theory.

Let us note before closing this section that the KKLT construction of de Sitter vacua in string theory
has led to many debates concerning its validity, and two decades after [KKLT03] there is still no global
consensus nowadays on whether it is possible at all to construct de Sitter vacua in string theory [DVR18].

7.3 Branes at abelian Calabi–Yau orbifolds of C3

Now that we are into studying superstring theories in topologically non-trivial backgrounds, let us discuss
D-branes at non-compact Calabi–Yau singularities. These backgrounds and non-compact and hence
cannot be used as the internal manifolds of the previous section however they play a tremendous role
in brane-world models and in holography, as we will see in the next chapter. Here we mainly follow
[DM96, DGM97] as well as [Ber03, Chapter 1]. Since we are primarily interested in four-dimensional
gauge theories we will focus on D3-branes at singularities in type IIB superstring theory.

7.3.1 Regular D3-branes

We will begin with arguably the simplest orbifold of C3, namely C2/Z2 ×C, which is the quotient of C3

with its flat metric under the following action of Z2 = {1, g}:

g · (z1, z2, z3) = (−z1,−z2, z3) , (7.16)

where (z1, z2, z3) = (x4 + ix5, x6 + ix7, x8 + ix9). The points (0, 0, z3) with z3 ∈ C are singular, and so
would be a ten dimensional quantum field theory in R1,3×C2/Z2×C. String theory however is different
in that its extended objects (strings) can wind around singular points. We will be particularly interested
in the spectrum of branes at singularities, hence let us consider a single ordinary D3-brane extended
along R1,3 and placed at (0, 0, 0) ∈ C2/Z2 × C.

While the Chan–Paton factors for open string states ending on single D3 brane in flat space C3 would
be trivial, when the D3 brane is placed at (0, 0, 0) ∈ C2/Z2 × C, an open string state can begin and end
on the D3 in different ways: either it winds once around (0, 0) ∈ C2/Z2 or it does not. In order to study
this is is convenient to move the D3 a tiny bit away from the singular points and to view the resulting
configuration not in C2/Z2 × C but in the universal cover C3, in which there are now two D3-branes D
and D′ identified under the action of Z2 [DM96]. Open strings can then be assigned Chan–Paton factors
which are 2× 2 matrices and which describe open-string states in the following way:

λ =

(
D −D D −D′
D′ −D D′ −D′

)
. (7.17)

The non-trivial element g of Z2 naturally acts exchanges the branes D and D′, and hence:

ρreg(g) ·
(
D +D′

D −D′
)

=

(
1 0
0 −1

)(
D +D′

D −D′
)
, (7.18)

so that the vector space spanned by D and D′ is the regular representation of Z2. The Chan–Paton
factors transform as λ→ ρ(g)λρ(g)−1 [GP96, DM96]. In order to preserve supersymmetry, Z2 must act
on the world-sheet fermions exactly as on the bosons: g maps ψµ to ψµ when µ = 0, 1, 2, 3, 8, 9 and to
−ψµ when µ = 4, 5, 6, 7.

An open string state λψµ |k〉 is preserved by the orbifold projection if the combined action of Z2 on
λ and on ψµ is the identity. In the case at λψµ |k〉 is preserved with diagonal Chan-Paton factors when
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µ = 0, 1, 2, 3, 8, 9 and anti-diagonal ones when µ = 4, 5, 6, 7. Placing back the D3 brane at (z1, z2, z3) =
(0, 0, 0), the massless Neveu–Schwarz open string states thus write:

Aµ =

(
Aµ1 0
0 Aµ2

)
, Φ3 =

(
Z11 0
0 Z22

)
, Φ1 =

(
0 X12

X21 0

)
, Φ2 =

(
0 Y12

Y21 0

)
, (7.19)

and the Ramond sector furnishes the corresponding space-time fermions so as to have supersymmetry.
The worldvolume theory of stack of N D3 branes at C2/Z2 × C is a four dimensional N = 2 gauge

theory with gauge group U(N)1 × U(N)2 and two hypermultiplets (X12 ⊕ Y21) and (Y12 ⊕ X21) in the

representations ( 1, 2) and ( 2, 1). More precisely, the low-energy effective theory has gauge group
SU(N)1 × SU(N)2: the diagonal U(1) factor corresponds to the center-of-mass mode of the stack of
D-branes and is completely decoupled in the infrared, while the anti-diagonal one is infrared-free and
becomes a global U(1)-symmetry of the low-energy theory. There is a low-energy superpotential which
descends from the one of the world-volume theory of D3-branes in flat space:

Wflat = Φ3[Φ1,Φ2] . (7.20)

Plugging in the expression the fields of Equation (7.19) one obtains:

W = Z11X12Y21 − Z11Y12X21 + Z22X21Y12 − Z22Y21X12 . (7.21)

The (mesonic) moduli space of this gauge theory when N = 1 and without Fayet–Illiopoulos parame-
ters is exactly the singularity C2/Z2×C. The vacuum expectation values of the scalar fields Z11 and Z22

in the vector multiplet are associated with displacements along the flat directions x8 and x9, whereas the
vacuum expectation values of the single trace mesonic operators formed out of the Xij and Yij are asso-
ciated with displacements along the orbifold directions x4, . . . , x7: the F-terms impose X12Y21 = Y12X21

and one can choose a = X12X21, b = Y12Y21 and c = X12Y21 as a set of independent mesonic operators.
One sees that ab = c2, which is the equation defining C2/Z2 in C3.

This generalizes straightforwardly to any Calabi–Yau abelian orbifold of C3: let us consider the
example of C3/Z5 with the following action of a generator g5 of Z5:

g5 · (z1, z2, z3) = (g5z1, g
2
5z2, g

2
5z3), g5 = e

2πi
5 . (7.22)

Under the action of g5 one has ψ0,1,2,3 → ψ0,1,2,3, ψ4,5 → g5ψ
4,5 and ψ6,7,8,9 → g2

5ψ
6,7,8,9. The Chan-

Paton factors now form a 5× 5 matrix on which the diagonalized ρreg(g5) acts as:

λ −→




1
g5

g2
5

g3
5

g4
5



λ




1
g5

g2
5

g3
5

g4
5




−1

. (7.23)

The massless Neveu–Schwarz open string states which survive the orbifold projection writes:

Aµ =




Aµ1
Aµ2

Aµ3
Aµ4

Aµ5




, Φ1 =




X12

X23

X34

X45

X51




, (7.24)

Φ2 =




Y13

Y24

Y35

Y41

Y52




, Φ3 =




Z13

Z24

Z35

Z41

Z52




. (7.25)

The low-energy worldvolume theory on a stack of N D3-branes at a C3/Z5 singularity is a four dimen-
sional N = 1 SU(N)1 × SU(N)2 × SU(N)3 × SU(N)4 × SU(N)5 gauge theory with chiral multiplets Xij ,

Yij and Zij in the bifundamental representation ( i, j) for some values of i and j, and superpotential:

W =Z13X34Y41 − Z13Y35X51 + Z24X45Y52 − Z24Y41X12 + Z35X51Y13 − Z35Y52X23

+Z41X12Y24 − Z41Y13X34 + Z52X23Y35 − Z52Y24X45 . (7.26)
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The moduli space of this theory is parameterized by gauge invariant mesonic operators built out of the
Xij , Yij and Zij , and one can check that modulo F-terms it is a copy of C3/Z5.

The matter content of worldvolume theories of D3-branes at such singularities is conveniently encoded
in a quiver, i.e. an oriented graph: nodes represent gauge groups, and an arrow from node i to the j
encoded a bifundamental chiral superfield in the representation ( i, j). The quivers corresponding to
the examples we have presented are given in Figure 7.1.

Figure 7.1: The quivers corresponding to D3 branes at C2/Z2 × C (left) and C3/Z5 (right).

An orbifold of C3 by a discrete group G is Calabi–Yau if and only if its holonomy is in SU(3). Since the
holonomy of C3 is trivial, an orbifold C3/G is Calabi–Yau if and only if G is a discrete subgroup of SU(3):
G can for example be the abelian group Zn generated by gn acting as (z1, z2, z3)→ (ganz1, g

b
nz2, g

c
nz3) at

the condition that a+ b+ c = 0 mod n. When C3/G is Calabi–Yau, the low-energy worldvolume theory
on a stack of D3-branes at the singularity is a four dimensional N = 1 gauge theory – actually, it is even
a four dimensional N = 1 superconformal theory, as one can check by computing the beta functions of
the gauge couplings. When the holonomy is not only a discrete subgroup of SU(3) but of SU(2), the
low-energy effective theory has N = 2 supersymmetry. Moving a D3-brane out of the singularity i.e.
from (z1, z2, z3) = (0, 0, 0) to a non-zero (z1, z2, z3) amounts to giving a vacuum expectation value to a
meson, which breaks the gauge group to the diagonal SU(N) factor, in general: the low-energy theory is
then the same as the one of D3-branes in flat space C3.

When the theory has only N = 1 supersymmetry, the moduli space of a single D3-brane is pa-
rameterized by gauge invariant mesonic operators and can be naturally identified with C3/G when the
Fayet–Illiopoulos parameters vanish. The latter parameterize resolutions of the orbifold [DGM97].

Translating the string theory orbifolding procedure into the gauge theory language, general rules
describing directly any orbifold of four-dimensional N = 4 U(N) super Yang–Mills were derived in
[KS98, LNV98, BKV98, Kak98].

7.3.2 Fractional D3-branes

In contrast to regular D3-branes at singularities C3/G defined as the endpoint locus of open strings whose
Chan–Paton factors transform in the regular representation of G, fractional branes are the endpoint locus
of open strings whose Chan–Paton factors transform in a representation of G smaller than the regular
one (hence the name).

The low-energy theory on a fractional D3-brane at a Calabi–Yau orbifold C3/G is a gauge theory
which is easily described on the quiver corresponding to a regular D3 brane at the singular point. Let
us describe this quiver as Q = (V0, V1) where V0 is the set of nodes and V1 ⊂ V 2

0 the set of arrows: if
v, v′ ∈ V0 the pair (v, v′) ∈ V 2

0 describes an arrow from v to v′. The low-energy worldvolume theory on

a fractional brane is described as a rank assignment (Nv)v∈V0 ∈ (Z≥0)
V0 on the nodes of the quiver such

that:

1. it is not constant, i.e. there exist v, v′ ∈ V0 such that Nv 6= Nv′ ,

2. it is simple, i.e. it there is no k ≥ 2 such that Nv/k ∈ Z≥0 for all v ∈ V0,
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3. at least one node has rank 0.

If the rank assignment is constant one is describing a stack of regular branes, and if it is not simple it
corresponds to some bound state of fractional branes (and possibly regular ones).

All possible rank assignment are however not allowed, since the gauge theory described in this way may
suffer gauge anomalies and hence be inconsistent quantum mechanically. The gauge anomaly cancellation
is easily written in quiver language:

∀v ∈ V0 ,
∑

v′→v
Nv′ −

∑

v→v′
Nv′ = 0 . (7.27)

Any rank assignment on the quiver satisfying Equation (7.27) is a bound state of regular and fractional
D3 branes at the singularity at hand.

For example, any rank assignment on the nodes of the quiver on the left of Figure 7.1 satisfies
Equation (7.27) (and hence there are two fractional branes corresponding to (N1, N2) = (1, 0) and
(N1, N2) = (0, 1)), whereas the only anomaly-free rank assignments in the quiver corresponding to C3/Z5

are constant, i.e. there are no fractional branes on C3/Z5.
In general the low-energy effective theories on fractional D3-branes are non conformal N = 1 gauge

theories, which makes fractional branes very interesting in order to study non-conformal gauge–gravity
correspondences, as we will review in the next chapter.

On an orbifold C3/G closed strings excitations can also wind non-trivially around the singular point(s),
and hence one decomposes them into twisted and untwisted sectors. Modular invariance imposes the
introduction of the twisted sectors in order to obtain a consistent anomaly-free string theory [DHVW85,
DHVW86]. Regular branes couple only to the untwisted sector, while fractional branes couple to both.
In the twisted sector one finds in particular R–R p-forms which are the zeroth Kaluza–Klein modes of
R–R (p + 2)-forms compactified on vanishing 2-cycles of the orbifold, if any. Hence one can wonder
whether fractional D3-branes may be higher D-branes in disguise, and this turns out to be exactly
the case: fractional D3-branes are D5-branes wrapped on vanishing 2-cycles (so that they are effectively
threebranes). However not every 2-cycle is allowed: a D5-brane wrapped on a vanishing 2-cycle C sources
the R–R four-form and hence the flux of the latter is non zero on the 4-cycle dual to C. In order for the
theory to be consistent, R–R tadpoles must vanish and it turns out that they do only when this 4-cycle
is non-compact. This condition is actually exactly equivalent to Equation (7.27).

7.4 Toric Calabi–Yau singularities

Generalities.

A complex toric variety X of dimension n is a complex algebraic variety of dimension n which contains
the algebraic split torus (C×)n as an open dense subset and such that the natural action of (C×)n on
itself extends to X. For a first quick example, note that P2(C) is a toric variety of dimension 2: if
it is parameterized by homogeneous coordinates [x : y : z], the torus (C×)2 is the open dense subset
{[x : y : z] | x, y, z 6= 0} with (α, β) ∈ (C×)2 corresponding to [α : β : 1], and the action of (C×)2 on itself
extends on P2(C) in such a way that (α, β) ∈ (C×)2 acts as:

[x : y : z]→ [β−1x : α−1y : α−1β−1z] . (7.28)

Any toric variety can be defined from the combinatorial data of a fan, to be defined very soon. Conversely
the action of the torus on any toric variety defines a fan. We will briefly review the construction of toric
varieties from fans and give some of their properties without proof. We refer to [Ful16, CLS11, Clo09]
for more details.

Affine complex toric varieties of dimension n are conveniently described in terms of cones in L = Zn.
A strongly convex rational polyhedral cone in LR = L⊗Z R is a subset

σ = {r1v1 + . . . rsvs ∈ LR | r1, . . . , rs ∈ R≥0} ⊂ LR , (7.29)

where {v1, . . . , vs} is a finite set of vectors in L, and such that σ does not contain any line through the
origin of LR. In the following, strongly convex rational polyhedral cones will be referred to as cones, for
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short. Let now L∨ = Hom(L,Z) be the dual module of L and let L∨R = L∨ ⊗Z R. The dual σ∨ of a cone
σ is the set

σ∨ = {w ∈ L∨R | 〈w, v〉 ≥ 0 ∀v ∈ LR} ⊂ L∨R . (7.30)

By Farkas’ theorem, σ∨ is a convex polyhedral cone in L∨R . Moreover, Gordon’s lemma asserts that
Sσ = σ∨ ∩ L∨ is a finitely generated semi-group; let Aσ = C[Sσ] be the complex commutative algebra
determined by Sσ. The affine toric variety corresponding to a cone σ is

Xσ = Spec Aσ . (7.31)

Two examples of cones in L = Z2, their dual in L∨, the corresponding complex commutative algebras
and their affine toric varieties are shown in Figure 7.2. A choice of generators in σ∨1 and σ∨2 is shown as
double circles.

Figure 7.2: Two examples of cones, their dual and the corresponding affine toric variety.

A face of a cone σ is the intersection of σ with any hyperplane in LR. The faces of a cone are also
cones. A fan ∆ in L is a finite set of cones in LR such that for each σ ∈ ∆ the faces of σ are in ∆,
and such that for each σ, σ′ ∈ ∆ the intersection σ ∩ σ′ is a face both of σ and of σ′. The toric variety
X∆ corresponding to a fan ∆ in L is obtained by gluing the affine toric varieties corresponding to each
higher-dimensional cone in ∆ together, along the open dense subsets defined by the lower dimensional
cones. The toric variety corresponding to the 0-dimensional cone consisting of the origin of L is always
(C×)n. Since every cone in L contains it, every toric variety constructed from a fan in L = Zn has (C×)n

as an open dense subset.
The example of P2(C) is given in Figure 7.3. The fan consists of three 2-dimensional cones σ1, σ2

and σ3, three 1-dimensional cones on which the 2-dimensional cones intersect and one 0-dimensional
cone, which is the origin in L. The diagram on the right shows how each commutative semi-group
algebra corresponding to a 2-dimensional cone injects into the semi-group algebras corresponding to the
faces along which it intersects other 2-dimensional cones. These monomorphisms are dual to open dense
embeddings of the spectrum of the latter into the spectrum of the former.

The affine varieties Xσ1
, Xσ2

and Xσ3
are the standard affine charts on P2(C), the toric varieties cor-

responding to one-dimensional cones in ∆ are the open dense subsets of P2(C) on which two of the three
homogeneous coordinates are non-zero, and the toric variety corresponding to the unique 0-dimensional
cone in ∆ is the open dense subset of P2(C) on which neither of the homogeneous coordinate is zero, i.e.
it is (C×)2.

A few important geometric properties of toric complex varieties are the following [Ful16].

Proposition 7.1. Let X∆ be the complex toric variety defined by a fan ∆ in L. Then:

1. X∆ is normal,

2. X∆ is Cohen-Macaulay,

3. X∆ is non-singular if and only if every cone in ∆ is generated by part of a basis of L,
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Figure 7.3: Two examples of cones, their dual and the corresponding affine toric variety.

4. X∆ is compact if and only if the support |∆| of ∆ is the whole space L (with the obvious definition
of the support of a fan).

Because of the 4. in Proposition 7.1, the fan ∆ corresponding to any compact two-dimensional toric
variety (i.e. toric surface) corresponds to a lattice polygon P . The latter is defined by its vertices, which
are the generators of the semi-groups defined by each 1-dimensional cone in ∆. Four examples are shown
in Figure 7.4.

Figure 7.4: Fans from polygons.

The toric surface defined by the left-most fan is called the zeroth Hirzebruch surface and denoted F0;
it is P1(C) × P1(C). The one to its right defines the first del Pezzo surface dP1 (which is also the first
Hirzebruch surface). It is a non-trivial P1 bundle over P1, and can be equivalently described as P2(C)
blown-up at one generic point. The second and third del Pezzo surfaces (respectively dP2 and dP3) on
the right of the same figure can similarly be defined as P2(C) blown-up at respectively 2 and 3 generic
points. Consistently, P2(C) is sometimes denoted dP0.

The homogeneous coordinate ring of a toric variety.

There is another equivalent construction of toric varieties from fans introduced in [Cox93] which is very
convenient in practice. Let ∆ be a fan in L = Zn and let λ1, . . . , λm be the one-dimensional cones in
∆. For each i = 1, . . . ,m let li be the generator of the semi-group λi ∩ L. If m ≥ n there are m − n
independent linear relations among the li that we can write as an m× (m− n) matrix:

m∑

i=1

Qikli = 0, k = 1, . . . ,m− n . (7.32)
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Without loss of generality one can assume that the Qik are integers. Let us define an action of (C×)m−n

on Cm such that (α1, . . . , αm−n) acts as:

(z1, . . . , zm) −→
(
m−n∏

k=1

α
Q1
k

k z1, . . . ,

m−n∏

k=1

α
Qmk
k zm

)
. (7.33)

Now, for every set S = {li1 , . . . , lij} which does not generate a cone in ∆ let VS = {zi1 = · · · = zij =
0} ⊂ Cm, and let

Z∆ =
⋃
VS , (7.34)

where the sum runs over all such sets. Then:

X∆ =
Cm − Z∆

(C×)m−n × Γ
, (7.35)

where Γ is the discrete group L/L′ with L′ the lattice generated by the li.
For example, the fan on the left of Figure 7.3 is such that Z∆ = {(0, 0, 0)}, and there is only one

relation among the 1-dimensional cone which defines the action (z1, z2, z3)→ (αz1, αz2, αz3): in that case
Equation (7.35) yields exactly the definition of P2(C) as the set of complex lines in C3.

Consider now the fan consisting of a 3-dimensional cone in L = Z3 generated by (0, 0, 1), (0, 1, 1),
(1, 1, 1) and (1, 0, 1) and its faces. One can check in that case that Z∆ = {z1 = z3 = 0} ∪ {z2 = z4 = 0},
and one needs to consider the action of (C×) on (z1, z2, z3, z4) given by

(z1, z2, z3, z4)→ (αz1, α
−1z2, αz3, α

−1z4) . (7.36)

The corresponding toric variety defined as

C0 =
C4 − Z∆

C×
(7.37)

is known as the conifold [CdlO90]. The ring of regular functions over C0 is generated by monomials
zn1

1 zn2
2 zn3

3 zn4
4 with n1, n2, n3, n4 ≥ 0, that are invariant under the action of C×, i.e. those such that

n1 − n2 + n3 − n4 = 0. A set of monomial generators is u = z1z2, v = z3z4, w = z1z4 and x = z2z3, and
there is one relation among them uv = wx, so that the ring of regular function over C0 is

OC0 =
C[u, v, w, x]

uv − wx . (7.38)

This ring can also be interpreted as the one defining the projective surface in P1(C3) which describes a
ordinary double point at (0, 0, 0), and hence C0 is the affine cone over it.

This holds in general: let σ be a top-dimensional cone in L viewed together with its faces as a cone
∆, and let X∆ be the corresponding affine toric variety defined as in Equation (7.35). The ring of
regular functions OX∆ is generated by the monomials zn1

1 . . . znmm which are invariant under the action
of (C×)m−n, i.e. those such that n1, . . . , nm ≥ 0 and (n1, . . . , nm) ·Q = 0. These conditions identify the
monomials in OX∆

with the integral elements of the cone σ∨ dual to σ defined in Equation (7.30). For
every x ∈ σ∨ ∩ L∨:

ni = 〈x, vi〉 . (7.39)

Hence the ring of regular functions OX∆ can equivalently be expressed as

OX∆
= C[σ∨ ∩ L∨] . (7.40)

If ∆ is any fan in L each top-dimensional cone in it corresponds to an affine chart on X∆ whose ring of
regular function is given by Equation (7.40).

Let us now again consider a top-dimensional cone σ in L, and let {w1, . . . , wp} be a set of generators
of the dual cone σ∨∩L∨. For each i = 1, . . . , p let (w1

i , . . . , w
n
i ) be the coordinates of wi in L∨ and assign

the weight wni to wi. The ring of regular functions on X∆ (where again ∆ consists of σ and its faces) can
be written as

OX∆
=

C[x1, . . . , xp]

I , (7.41)
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where for each i = 1, . . . , p the variable xi corresponds to wi and the additive semi-group relations between
the wi transpose into multiplicative relations between the xi which generate the ideal I. The latter is
homogeneous for the weights we have assigned to the wi: the same polynomial ring defines a complete
variety in the weighted projective space P(wn1 ,...,w

n
p )(C) and X∆ is the affine cone over it.

This definition of a toric variety is nearly identical to the Gauged Linear Sigma Model (GLSM)
introduced in [Wit93]: the relationship between the two approaches is given by the Kempf-Ness theorem
[KN79]. The GLSM approach defines the toric variety as the supersymmetric moduli space of an N = 2,
U(1)m−n gauge theory in two dimensions. One can even describe the resolutions of a given toric variety
by turning on Fayet-Illiopoulos terms for the U(1) factors in the gauge group.

The Calabi–Yau condition and toric diagrams

The toric divisors in a toric variety are easily expressed in terms of the homogeneous coordinates
z1, . . . , zm. There is one toric divisor for each i = 1, . . . ,m:

Di : {zi = 0} ∩X∆ . (7.42)

The canonical bundle on X∆ is given by

KX∆ = O
(
−

m∑

i=1

Di

)
, (7.43)

for a proof of which we refer to [Clo09]. We have also the following result:

Proposition 7.2. The canonical bundle KX∆ is trivial (i.e. X∆ is Calabi–Yau) if and only if

m∑

i=1

Qik = 0, ∀k = 1, . . .m− n , (7.44)

if and only if all the vectors li defined as before all lie on the same hyperplane in L.

We are especially interested in three-dimensional Calabi–Yau varieties with the aim to construct
non-trivial backgrounds for type IIB superstrings and study the worldvolume theory on D3-branes at
Calabi–Yau singularities. In that case the condition of Proposition 7.2 translates into the fact that ∆
needs to be generated by vectors all lying in a single 2-plane in L = Z3. Up to an SL3(Z) change of
basis in L = Z3 one can assume that this plane is defined by the equation z = 1: a toric CY3 variety is
thus entirely defined by some planar data. Note that this implies that a toric CY3 cannot be compact,
because of 4. in Proposition 7.1. When the fan ∆ defining a CY3 contains a single 3-dimensional cone, it
is equivalently given by the data of a planar lattice polygon dubbed the toric diagram of the toric CY3.
The subgroup of SL3(Z) fixing the hyperplane z = 1 is isomorphic to SL2(Z) and acts on the hyperplane
z = 1 as changes of basis. Hence, a toric diagram is only defined up to the action of this SL2(Z) group.

Examples and computations.

Let us consider the toric diagram on the left of Figure 7.4, dubbed F0. It defines a fan in L = Z3 which
contains a single 3-dimensional cone σ generated by (1, 0, 1), (0, 1, 1), (−1, 0, 1) and (0,−1, 1). A set of
generators for the dual cone σ∨ in L∨ is








1
−1
1


 ,




0
1
1


 ,



−1
−1
1


 ,




0
−1
1


 ,




1
0
1


 ,



−1
0
1


 ,




0
0
1


 ,




1
1
1


 ,



−1
1
1





 . (7.45)

For each i = 1, . . . , 9 let as before xi be the coordinate corresponding to wi. Let I be the ideal of relations
among the xi; one can show that a minimal set of generators for such relations contain 20 polynomials.
Thus:

OXF0
=

C[x1, . . . , x9]

I . (7.46)

The same polynomial ring defines a projective surface in P1(C9) which is the zeroth Hirzebruch surface
F0. The toric CY3 defined by Equation (7.46) is the affine cone over F0.
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Figure 7.5: Toric diagrams for the conifold C0, the orbifold C3/Z3 and PdP3.

Let us now consider the toric diagram on the left of Figure 7.5. It defines a 3-dimensional cone σ in
L = Z3 generated by (0, 0, 1), (1, 0, 1), (1, 1, 1) and (0, 1, 1). The dual cone σ∨ is generated by (0, 1, 0),
(−1, 0, 1), (−1, 0, 1) and (1, 0, 0). The ring of regular functions over the corresponding toric CY3 is

C[x1, x2, x3, x4]

〈x1x3 − x2x4〉
, (7.47)

i.e. the corresponding toric CY3 is the conifold C0.
The toric diagram in the middle of Figure 7.5 defines a three-dimensional cone σ in L = Z3 generated

by (1, 0, 1), (0, 1, 1) and (−1,−1, 1). The dual cone σ∨ is generated by:







−1
2
1


 ,




0
1
1


 ,



−1
−1
1


 ,




1
0
1


 ,




0
−1
1


 ,



−1
0
1


 ,




1
−1
1


 ,




0
0
1


 ,



−1
1
1


 ,




2
−1
1





 .

(7.48)
Let x1, . . . , x10 be the corresponding variables. The ideal of relations I among them is minimally

generated by 25 polynomials. The variety defined by its ring of regular functions C[x1, . . . , x10]/I embeds
into the affine space C10 and is the affine cone over a projective curve in P1(C10). Using now the definition
of Equation (7.35) yields directly that this toric variety is C3/Z3.

In general if σ is a 3-dimensional cone in L = Z3 one may wonder 1) how one can compute the dual
cone σ∨, 2) how one can compute a minimal set of generators of the latter, 3) how one can compute
a minimal set of generating relations among the generators of σ∨ found in 2). These three quests are
in general difficult to handle by hand, even if if is reasonably doable for small toric diagrams. However
there exist general algorithms to do this, and using a software like Macaulay2 [GS] is in any case quicker
and safer than computing by hand. In order to exemplify the procedure we will show explicitly the
computation for the toric diagram on the right of Figure 7.5.

1) Regarding the computation of the dual cone, this is easily done using a Package of Macaulay2
called Polyhedra:

loadPackage "Polyhedra"

M = matrix{{-1,0,1},{0,-1,1},{1,0,1},{1,1,1},{0,1,1},{-1,1,1}}

Mt = transpose M

C = posHull Mt

Cv = dualCone C

2) Let C be a polyhedral cone in Rd, i.e. the positive hull of a finite set of points in Rd. There exists
a set HZd(C) ⊂ C ∩ Zd such that:

1. each z ∈ C ∩ Zd is a positive integer combination of elements of HZd(C), i.e. for each h ∈ HZd(C)
there exists zh ∈ N such that z =

∑
h∈HZd (C) zhh.

2. HZd(C) has minimum cardinal among all subsets of C ∩ Zd for which 1. holds.

Such a set is said to be a Hilbert basis of C [Hil90, HW97b, Sch98]. That is exactly what we have in
mind when speaking of a minimal set of generators for a cone. There exist algorithms to compute Hilbert
bases of polyhedral cones [Hem02]. Typing:
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hilbertBasis Cv

in Macaulay2 after the previous lines yield the set of column vectors:








1
0
1


 ,




0
1
1


 ,



−1
0
1


 ,




0
−1
1


 ,




0
0
1


 ,




1
1
1


 ,



−1
1
1





 , (7.49)

which form indeed a Hilbert basis for the dual cone σ∨. The command

rays Cv

yields the extremal generators of σ∨ instead, which are in one-to-one correspondence with the sides of
the toric diagram. The extremal generators are contained in any Hilbert basis of σ∨.

3) The relations between the generators of the ring of regular functions on the toric variety can be
obtained as follows:

S = QQ[x_1,x_2,x_3,x_4,x_5,x_6,x_7]

Q = QQ[a,a’,b,b’,c,c’]

A = ideal(a*a’-1,b*b’-1,c*c’-1)

R = Q/A

g = map(R,S,{a*c,b*c,a’*c,b’*c,c,a*b*c,a’*b*c})

This last line encodes how the generators x1, . . . , x7 of the ring of regular functions are related to
the generators of the dual cone σ∨: the additive semi-group structure on σ∨ becomes a multiplicative
semi-group structure on the monomial in the ring of regular functions, and hence:

OX =
C[x1, . . . , x7]

ker g
. (7.50)

I = kernel g

mingens I

yields nine polynomial relations: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x3x6 − x1x7

x3x5 − x4x7

x2x5 − x1x7

x1x5 − x4x6

x2x4 − x2
5

x2x3 − x5x7

x1x3 − x2
5

x2
2 − x6x7

x1x2 − x5x6

, (7.51)

which indeed form a minimal generating set for the ideal of relations in the case at hand. One can
also compute the relation between relations in a similar way, the relations between relations between
relations ... In fact there is a built-in function in Macaulay2 which computes the free resolution of a ring
or an ideal. For example,

res I

yields the chain complex

R1 ←− R9 ←− R16 ←− R9 ←− R1 ←− 0 , (7.52)

and one can obtain the explicit expression of the maps in this complex via the commands Res.dd_1,
Res.dd_2, ...
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Triangulations and resolutions

Let ∆ be a fan in Z3 defined by a toric diagram and consisting of a single 3-dimensional cone σ generated
by the vertices of the toric diagram together with the faces of σ. The 3. of Proposition 7.1 implies that
X∆ is in singular except if the toric diagram is an elementary triangle, and hence one speaks of affine
toric CY3 in these cases. A natural way to resolve the singularity is to fix a triangulation of the toric
diagram: the new fan ∆T now contains as many 3-dimensional cones as the number of triangles in the
triangulation of the toric diagram, and each such 3-dimensional cone defines a non-singular affine chart
on X∆T

, so that X∆T
itself is non-singular.

Let us consider the case of the conifold first. The two possible triangulations of the toric diagram
are shown on the left and in the middle of Figure 7.6. Let σ1 and σ2 (resp. σ3 and σ4) be the two 3-
dimensional cones appearing in ∆T for the leftmost (resp. rightmost) triangulation of the toric diagram
of the conifold, read from left to right. Then in the case of the leftmost triangulation:

σ∨1 =

〈


1
0
0


 ,




0
−1
1


 ,



−1
1
0



〉
, σ∨2 =

〈


0
1
0


 ,



−1
0
1


 ,




1
−1
0



〉
, (7.53)

so that the first affine chart is Spec (C[x1, y1, z1]) and the second Spec (C[x2, y2, z2]), with the transition
function

z1 = z−1
2 ,

x1

y1
=
x2

y2
, x1z1 = x2, y1z1 = y2 (7.54)

on the overlap of the two charts, as follows from the integral relations between the vectors in L∨.

Figure 7.6: Triangulations of toric diagrams.

In the case of the other triangulation:

σ∨3 =

〈


1
0
0


 ,




0
1
0


 ,



−1
−1
1



〉
, σ∨4 =

〈


0
−1
1


 ,



−1
0
1


 ,




1
1
1



〉
, (7.55)

so that the first affine chart is Spec (C[x1, x2, w1]) and the second Spec (C[y1, y2, w2]), with the transition
function

w1 = w−1
2 ,

x1

x2
=
y1

y2
, x1w1 = y2, x2w1 = y2 (7.56)

on the overlap of the two charts, as follows from the integral relations between the vectors in L∨.
In both case when x1, x2, y1 and y2 are not zero the zi or the wi are determined by the xi and the yi

however it is not the case when x1 = x2 = y1 = y2 = 0, in which case the zi or the wi parameterize a copy
of P1(C) that resolves the conifold singularity. The so-called resolved conifold is the total space of the
plane bundle O(−1)⊕O(−1)→ P1(C). As one can see from two rightmost relations in Equation (7.54)
and Equation (7.56) these two resolutions are not equivalent: they are related by a flop.

Regarding the rightmost diagram in Figure 7.6, the consequence of the triangulation is most easily
seen if one writes the variety as in Equation (7.35):

C4 − {z1 = z2 = z3 = 0}
C×

(7.57)

where C× 3 α : (z1, z2, z3, z4) → (αz1, αz2, αz3, α
−3z4). The first three coordinates parameterize P2(C)

and the last one parametrizes a line bundle over it which is O(−3)→ P2(C). Hence the triangulation in
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this case corresponds to the blow-up




O(−3)
↓

P2(C)



 −→ C3/Z3 . (7.58)

The torus fibration, (p,q)-webs and the topology of affine toric CY3.

By definition any toric variety X of dimension n contains the complex split torus (C×)n as an open dense
subset, and the action of (C×)n on itself extends to X. Therefore there is an action of U(1)n on X, which
degenerates at some locus if X is not exactly (C×)n. It is interesting to study how this happens [LV98].

In order to built ourselves some intuition let us study two-dimensional examples first. The toric
variety C2 is parameterized by (z1, z2) = (eiθ|z1|, eiφ|z2|) and hence it is a torus fibration over the upper-
right quadrant in the real plane parameterized by |z1| and |z2|. Over the horizontal axis the θ circle S1

θ

vanishes, while S1
φ shrinks over the vertical axis. This is depicted on the left of Figure 7.7. The toric

variety P2(C) can be described as the set of (z1, z2, z3) ∈ C3 such that |z1|2 + |z2|2 + |z3|2 = 1 and modulo
an overall U(1) action: (z1, z2, z3) → eiα(z1, z2, z3). Thus P2(C) is parameterized by (|z1|2, |z2|2, φ, θ)
where (z1, z2) = (eiθ|z1|, eiφ|z2|) and it is a torus fibration over the triangle |z1|2 + |z2|2 ≤ 1 in the real
plane parameterized by |z1|2 and |z2|2. Over the segment |z2|2 = 0 the circle S1

φ shrinks, over the |z1|2 = 0

the circle S1
θ shrinks and over |z1|2 + |z2|2 = 1 the circle S1

θ+φ vanishes. This is depicted on the right of
Figure 7.7.

Figure 7.7: Two-dimensional toric varieties are torus fibrations over real surfaces.

The same holds for three-dimensional toric varieties. Let us consider the projections studied in
[AKMV05] and reviewed in [Mar05] in two simple examples, namely flat space C3 and the resolved
conifold2. Let z1, z2 and z3 be the coordinates on C3, and let us consider the functions

r1(z) = |z1|2 − |z2|2, (7.59)

r2(z) = |z1|2 − |z3|2, (7.60)

r3(z) = Im(z1z2z3) . (7.61)

The functions r1, r2 and r3 generate Hamiltonian flows on C3 endowed with its canonical symplectic form
ω =

∑
dzi ∧ dzi. These give us the fibration we are looking for: the base is parameterized by the values

of the Hamiltonians r1, r2 and r3, the flows corresponding to r1 and r2 correspond to

(z1, z2, z3)→
(
ei(α+β)z1, e

−iαz2, e
−iβz3

)
(7.62)

and generate circles, and the one corresponding to r3 generates a real line. One finds that the circle
actions parameterized by α and β degenerate along the graph shown on the left of Figure 7.8, where the
cycle denote (p, q) corresponds to the action of pα− βq.

2In this case the toric varieties are presented as T 2×R1 fibrations over an R2×R2 base instead of T 3 fibrations over an
R3 base, but the T 2 fiber appearing in T 2 × R is exactly the one we are interested in and which leads to the (p, q)-web.
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Figure 7.8: Degeneration of the torus fibrations in the case of C3 and the resolved conifold.

The case of the resolved conifold C̃0 works in a similar way. Let z1, z2, z3, z4 be complex coordinates
such that |z1|2 + |z4|2 − |z2|2 − |z3|2 = t and up to the U(1) action

(z1, z2, z3, z4)→ (eiαz1, e
−iαz2, e

−iαz3, e
iαz4) . (7.63)

The variables z1 and z4 can be taken as homogeneous coordinates on P1(C) of which t parameterize the
size, whereas the variables z2 and z3 parameterize the fibers of the bundle O(−1)⊕O(−1)→ P1(C). One
can consider a first affine C3 chart on C̃0 defined by z4 6= 0 and parameterized by z1, z2 and z3. Then the
Hamiltonians

r1(z) = |z1|2 − |z2|2 (7.64)

r2(z) = |z1|2 − |z3|2 (7.65)

yield just as before the bottom left part of the figure on the right of Figure 7.8. On the other C3 patch
on C̃0 defined by z1 6= 0 and parameterized by z2, z3 and z4, the Hamiltonians rewrite as

r1(z) = |z3|2 − |z4|2 + t (7.66)

r2(z) = |z2|2 − |z4|2 + t (7.67)

and they give rise to the top right part of the figure on the right of Figure 7.8.

This method can be applied to any resolved toric CY3: starting with a triangulated toric diagram
the piecewise linear graph in the (r1, r2) plane is the graph dual to the triangulated toric diagram. It
is called (p, q)-web because of the analogy with the diagrams we have presented in Section 6.4.2. The
examples of (p, q)-webs corresponding to resolutions of the affine toric CY3 F0 and PdP3 are shown in
Figure 7.9. The corresponding toric diagrams are shown on the left of Figure 7.4 and on the right of
Figure 7.5. Over an affine segment of the (p, q)-web of slope (p, q) in the (r1, r2)-plane the cycle (p, q) of
the T 2 fibers degenerates.

The (p, q)-webs of fully resolved toric CY3 teach us a lot of information about the topology of the
corresponding affine toric CY3. Consider the (p, q)-webs corresponding to a resolution of PdP3 shown on
the right of Figure 7.9. Bounded faces correspond to compact 4-cycles (which are the exceptional divisors
of the resolution), unbounded faces correspond to non-compact 4-cycles whereas finite segments of the
(p, q)-web correspond to compact 2-cycles. The singular limit of the resolution corresponds to shrinking
all the segments and bounded faces appearing in the (p, q)-web, and hence the compact 2-cycles, compact
4-cycles and non-compact 4-cycles in the resolution vanish in the singular limit. Hence the knowledge of
any (p, q)-web teaches us about the vanishing cycles at the singularity [Ber].

The fact that these diagrams resemble (p, q)-webs is not a mere coincidence [LV98, AKMV05]. M-
theory compactified on a torus is dual to type IIB superstring theory compactified on a circle. Moreover
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Figure 7.9: The (p, q)-webs of resolutions of F0 and PdP3.

when compactifying M-theory on an affine toric CY3 singularity the low-energy effective field theory is
a 5d N = 1 theory since the CY3 breaks one fourth of the 32 supersymmetries of M-theory. As we
have reviewed an affine toric CY3 singularity can be seen as a T 2 fibration over R4, so that M-theory
compactified on it is dual to type IIB theory in flat space compactified on a circle. Under the T-duality
between type IIA theory and type IIB theory needed on the way from the M-theory description to the
type II theory description, the degeneration of the T 2 fibration over R4 in the CY3 yields NS5 branes in
the IIB picture.

7.5 Brane tilings

7.5.1 Generalities

We have seen in Section 7.3 that when a stack of D3 branes is placed at the singular point of an abelian
Calabi–Yau orbifold C3/G of flat space, its worldvolume theory is a four-dimensional N = 1 quiver gauge
theory with a superpotential. We have also seen in Section 7.4 that abelian Calabi–Yau orbifolds of C3

are special cases of affine toric CY3 singularities, hence the question: what is the worldvolume theory on
a stack of D3 branes extending along x0, x1, x2, x3 and placed at the singular point of an affine toric CY3
singularity?

In order to answer this question, it is very convenient to introduce combinatorial objects known as
brane tilings, which encode both the quiver describing the low-energy worldvolume theory as well as
the superpotential. Brane tilings describe worldvolume theories which satisfy an additional assumption
dubbed toricity: a four-dimensional N = 1 quiver gauge theory is said to be toric if every chiral field
appears exactly twice in the superpotential: once in a monomial with a positive coefficient and the other
in a monomial with a negative coefficient.

Definition and a first example.

A bipartite graph is a graph (V,E) with V the finite set of vertices and E the finite set of edges, such
that each vertex is either black or white and such that each edge links a black vertex to a white one.

Definition 7.3. A brane tiling (or dimer model) is a bipartite graph Γ embedded in a topological surface
S, and whose faces (i.e. the connected components of the complement of Γ in T 2) are topological disks.

A brane tiling encodes a four-dimensional toricN = 1 gauge theory in the following way: the faces of Γ
correspond to the simple factors of the gauge group of the theory, edges are in one-to-one correspondence
with chiral multiplets and nodes correspond to the monomials in the superpotential: those with a positive
(resp. negative) coefficient give rise to white (resp. black) nodes.

As a first example, let us consider the low-energy worldvolume theory on D3 branes at the Calabi–
Yau C3/Z5 orbifold that we have derived in Section 7.3. It is toric: the quiver is shown on the right of
Figure 7.1 and the superpotential is:

W =Z13X34Y41 − Z13Y35X51 + Z24X45Y52 − Z24Y41X12 + Z35X51Y13 − Z35Y52X23

+Z41X12Y24 − Z41Y13X34 + Z52X23Y35 − Z52Y24X45 . (7.68)
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The brane tiling corresponding to this theory is presented in Figure 7.10. It is drawn on the fundamental
cell of a torus: the red and blue edges on the boundary are identified with the orientation prescribed by
the arrows on it. There are five faces on the brane tiling labeled 1, 2, 3, 4, 5 consistently with the fact that
the worldvolume theory has gauge group SU(N)1× SU(N)2× SU(N)3× SU(N)4× SU(N)5. The matter
content of the theory consists of the chiral multiplets Xij , Yij and Zij where j = i + 1 (mod 5) for the
X’s and j = i + 2 (mod 5) for the Y ’s and the Z’s. These are in one-to-one correspondences with the
edges of the brane tiling as follows. Since the brane tiling is a bipartite graph, its edges are oriented: one
might for example agree on the fact that an arrow transverse to an edge in Γ always has the black end of
this edge to its left. The diagram on the right of Figure 7.10 shows how such arrows crossing the edges
of the brane tiling perpendicularly are associated to the chiral multiplets in the theory. For example the
dashed arrow going from the face 1 to the face 2 on the left of Figure 7.10 corresponds to X12. It is easy
to check that the chiral multiplets are indeed in one-to-one correspondence with the edges of this brane
tiling. The quiver dual to the brane tilings is hence exactly the quiver we have derived for a stack of
D3-branes on C3/Z5 shown on the right of Figure 7.1.

As already emphasized, the brane tiling also encodes the superpotential of the theory: each black
(resp. white) node corresponds to a term coming with a negative (resp. positive) coefficient in the
superpotential. One considers the elementary sequence of arrows transverse to the edges of Γ which
circles around a node. The orientation of this loop is counterclockwise at black nodes and clockwise
at white nodes. The trace of the product of chiral multiplets corresponding to the arrows in the loop
taken in the same order as the latter is the corresponding monomial in the superpotential (with a ± sign
depending on the color of the node). For example, the two loops of dashed arrows shown on the brane
tilings on the left of Figure 7.10 yields

W = −Z24Y41X12 + Z41X12Y24 , (7.69)

where the trace implied.

Figure 7.10: The brane tiling encoding the worldvolume theory on D3 branes at C3/Z5.

It is clear that any toric quiver gauge theory can be encoded in such a brane tiling. However it is not
obvious whether any such bipartite graph on a surface S encodes the low-energy worldvolume theory on
a stack of D3 branes at a singularity, and indeed there are some constraints elucidated in [HV07].

Consistency conditions for brane tilings and combinatorial tools.

The AdS–CFT correspondences that we will review in Chapter 8 implies that one expects the low-energy
worldvolume theory on a stack of D3 branes at a general toric singularity to flow to a four-dimensional
N = 1 superconformal field theory (SCFT) [Mal99, Wit98a, AGM+00]. The global symmetry of such
an SCFT contains a U(1)R-symmetry which can be determined via the so-called a-maximization [IW03],
where a is the SCFT central charge. It can be expressed in terms of the U(1)R ’t Hooft anomalies as
in Equation (5.45). Let Ri be the R-charge of any UV field i in the theory i.e. any edge i in the brane
tiling. One must have:

∑

i

Ri = 2 at each node,
∑

i

(1−Ri) = 2 at each face, (7.70)

where the first sum runs over all edges of the brane tiling incident to a given node, and the second
over all edges on the boundary of a given face. The first condition comes from the requirement to the
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superpotential has R-charge 2, and the second translates the vanishing of the NSVZ beta function 5.40
at the superconformal fixed point of the renormalization group flow.

Let V , E and F be the set of nodes, edges and faces of a brane tiling on a closed surface S. Summing
the first equation in Equation (7.70) over all nodes and the second over all faces yields:

2
∑

i∈E
Ri = 2#V , 2#E − 2

∑

i∈E
Ri = 2#F . (7.71)

Thus #F −#E + #V = 0, and since the brane tiling is a cell decomposition of S:

Proposition 7.4. A brane tiling on a closed surface S whose Euler characteristic is non-zero cannot
describe a theory which flows to a superconformal fixed point at low energies.

Hence S, if closed, must be either a torus T 2 or a Klein bottle. Let us assume for now that S = T 2,
so that it is oriented.

Let us now introduce again another combinatorial object which will be of fundamental interest to us.

Definition 7.5. A zig-zag path (ZZP) on a brane tiling Γ is an oriented path of edges of Γ which turns
maximally right at each black vertex, and maximally left at each white one. One can equivalently represent
zig-zag paths as strands crossing edges at their middle.

The three ZZPs in the brane tiling of C3/Z5 are shown in Figure 7.11.

Figure 7.11: The ZZPs in the brane tiling of C3/Z5.

After reinterpreting (π times) the R-charges of chiral fields in a brane tiling Γ as angles in an isoradial
embedding [Duf68, Mer01, Ken03], the authors of [HV07] show that some conditions must be imposed
on the ZZPs of a brane tiling in order for it to be consistent. Other conditions were worked out later
[Bro12, IU10] and can be summarized as follows.

Proposition 7.6. A brane tiling is consistent if there is no homologically trivial ZZP, if no ZZP has a
self-intersection in the universal cover and if no pair of ZZP intersect each other on the universal cover in
the same direction more than once. In what follows, we will always assume brane tilings to be consistent.

Bipartite graphs form an interesting class of combinatorial models on which one can study the sta-
tistical mechanics of so-called dimer models. In fact, dimer models were first introduced in chemistry in
order to model the adsorption statistics of diatomic molecules on the surface of crystals. Let us briefly
introduce the main characters of dimer models as well as the so-called Kasteleyn matrix .

Definition 7.7. Let Γ = (V,E) be a bipartite graph. A perfect matching PM on Γ is a subset of E such
that each vertex in V belongs to exactly one edge in PM.

All the perfect matchings on a (consistent) bipartite graph on T 2 are shown in Figure 7.12. In each
case, the edges in the perfect matching are plain whereas the ones not in the perfect matching are dashed.

When Γ is embedded on an oriented closed surface S one can distinguish the perfect matchings
according to their height. One first needs to choose a fundamental cell (this is implicitly already done
in Figure 7.12). Let us assume for concreteness that S = T 2 and that the fundamental cell is a square
with up, bottom, left and right sides. Since Γ is bipartite, every edge is oriented, for example from black
to white. Then, one declares that each edge exiting the fundamental cell through the top (resp. bottom,
left, right) is assigned the weight ±y (resp. ±y−1, ±x−1, ±x), where the sign is given by the Pfaffian
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Figure 7.12: All the perfect matchings in a bipartite graph on T 2.

orientation of this edge. All other edges are assigned a weight ±1, depending on their Pfaffian sign. The
height of a perfect matching if the exponent in x and y of the product of these weights on all edges
appearing in the perfect matchings. The height of each perfect matching is shown in Figure 7.12.

The Kasteleyn matrix is a convenient tool to count all the matchings on a bipartite graph Γ. In order
to so, one first needs to choose a Pfaffian orientation of Γ, i.e. a choice of sign on each edge such that
the number of − signs as one go along a face of Γ is odd (resp. even) if the number of edges on the
boundary of this face is 0 mod 4 (resp. 2 mod 4). In the example of Figure 7.12, one possible choice is
to assign a − sign to the two edges shown in red in the top left figure, and a + sign to all the others.
Let VW (resp. VB) be the set of white (resp. black) vertices in Γ. The Kasteleyn matrix K is the
#VW ×#VB weighted adjacency matrix of Γ, supplemented with the weights of before. The determinant
of the Kasteleyn matrix counts perfect matchings with heights: the absolute value of the coefficient in
front of the monomial xayb in it is the number of perfect matchings of height (a, b).

For example, the Kasteleyn matrix of the bipartite graph of Figure 7.12 is

K =

[
−1− y−1 1 + x
1 + x−1 1 + y

]
, (7.72)

where we have numbered black and white vertices from left to right. We obtain

detK = −x− y − 4− x−1 − y−1 , (7.73)

which is consistent with our listing in Figure 7.12.

7.5.2 Forward and inverse algorithms

Motivated by groundbreaking articles on the AdS/CFT correspondence at the dawn of the 21st century –
see Chapter 8, a lot of effort was put into the calculation of low-energy worldvolume theories on D3-branes
at the tip of toric singularities, as a generalization of the simpler examples of the orbifolds of flat space
[KS98, HU98] and of the conifold [KW98].

A method was proposed in [FHH01a] to derive the low-energy worldvolume theories on a D3 brane
probing ‘small’ toric singularities, using partial resolution. One starts with the toric diagram describing
the toric singularity of interest and one embeds it into the toric diagram of an abelian orbifold of C3, for
which the low-energy worldvolume theory on a probe D3-brane is known from a perturbative analysis
as in Section 7.3. By considering non-zero Fayet–Illiopoulos terms for some of the gauge groups in the
latter theory, one partially resolves the abelian orbifold, and hence the worldvolume theory on the probe
D3-brane is higgsed into a theory with less gauge groups and different matter content, which corresponds
to the worldvolume theory on a probe D3-brane at a toric singularity whose toric diagram is strictly
smaller than the one of the abelian orbifold of C3. It is possible to control how the toric diagram changes
during this process, and hence one can obtain the worldvolume theories on probe D3-branes at any toric
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singularity – at least in principle, since the algorithm is computationally very hard. In practice, it works
well for affine toric CY3 singularities whose toric diagrams are small enough: in [FHH01a] the authors
exhibit for example the quiver and the superpotential of the theories corresponding to the affine cones
over F0, dP1, dP2 and dP3 whose toric diagrams are the lattice polygons displayed in Figure 7.4.

An interesting observation in [FHH01a] is that this procedure to determine the worldvolume theories
on a D3-brane at a general affine toric CY3 singularity depends in general on choices which are such that
the results are not unique: there are in general different theories corresponding to the same singularity.
This phenomenon was dubbed toric duality . Shortly after it was proved that in fact toric duality is
actually Seiberg duality in disguise [BP01, FHHU01].

The authors of [HK05] emphasized the connection between perfect matchings in dimer models and
fields in the GLSM description of affine toric CY3 singularities (a mathematical proof of the corre-
spondence was later given in [FV06]), and this motivated in turn the introduction of brane tilings
[FHK+06, FHM+06]. Many examples were given in this article, such as the ones displayed in Figure 7.13.

Figure 7.13: Brane tilings corresponding to the affine cones over dP1 (left), dP2 (middle) and dP3 (right).

An important observation of [HV07] is that in all the examples of brane tilings known at that time,
the zig-zag paths in the tilings are in one-to-one correspondence with the external legs of the (p, q)-web
associated with the toric diagram, i.e. the outward pointing integral vectors normal to the sides of the
toric diagram. The homology of a ZZP expressed in the symplectic basis of H1(T 2,Z) determined by
our choice of fundamental cell is a pair of integers (a, b), which is the coordinates of the corresponding
integral vector in the lattice of the toric diagram. An example of this is shown in the middle of Figure 7.13.
This holds in general; it provides a very efficient way to compute the toric diagram of the singularity
corresponding to a given brane tiling. Finding the affine toric CY3 singularity corresponding to a quiver
gauge theory with superpotential is usually referred to as the forward algorithm.

Former forward algorithms consisted of computing the moduli space of the theory (which is very
lengthy) or computing the determinant of the Kasteleyn matrix corresponding to the brane tiling which
is a Laurent polynomial in x and y as in Equation (7.73), as introduced in [FHK+06]. The Newton
polynomial of this determinant is exactly the toric diagram of the singularity. Let us note here that
computing the determinant of the Kasteleyn matrix provides a quick consistency check for a brane tiling,
for the multiplicities corresponding to the lattice points on the boundary of the toric diagram are severely
constrained by the consistency conditions: the vertices of the toric diagram must have multiplicity one,
while the lattice points in the sides of the toric diagram must have multiplicities satisfying Pascal’s
triangle. For instance, the multiplicities of the perfect matchings on the brane tiling corresponding to
dP3 on the right of Figure 7.13 are shown directly on the toric diagram below; they satisfy these conditions
and hence the brane tiling passes this consistency check.

The link between ZZPs in brane tilings and the external legs of the corresponding (p, q)-web also
provides a way to construct brane tilings from a given affine toric CY3 singularity. This is usually called
the inverse algorithm, and the specific inverse algorithm using ZZPs and proposed in [HV07] is dubbed
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the fast inverse algorithm, in contrast to the more complicated and computationally expensive method of
partial resolutions on abelian orbifolds of C3. The fast inverse algorithm is based on the observation that
white vertices (resp. black vertices) of the brane tiling are in one-to-one correspondence with connected
components of the complement of the zig-zag paths in the torus T 2 whose sides are oriented clockwise
(resp. counterclockwise). Faces of the brane tiling correspond in turn to connected components such that
the orientation of their boundary alternates. See again the brane tiling in the middle of Figure 7.13 for
an example. Hence starting with a set of simple closed curves on T 2 with homologies the coordinates
of the outward pointing integral vectors normal to the sides of the toric diagram, one can look for an
arrangement of these curves up to homotopy such that the connected components of the complement
have their boundary which is either oriented clockwise, or counterclockwise, or such that its orientation
alternate. Such a configuration is then dual to a brane tiling corresponding to the singularity we started
with. This shows that the lattice to which the vertices of the polygon belong can be naturally identified
with the integral first homology group of the torus which supports a brane tiling. The action of SL2(Z)
on this lattice translates into choices of fundamental cells for the torus.

More on brane tilings can be found in general introductions such as [Ken07, Yam08, FHSX17]. Dimer
models also appear in other fields of mathematics and physics – for instance crystal melting and topological
strings [IVNO08].

7.5.3 Some properties of brane tilings.

Massive fields and Seiberg duality.

There are two transformations of brane tilings that are of interest. The first is the contraction of 2-valent
nodes as shown on the left of Figure 7.14. Physically, a 2-valent node represents a mass term m2ΦijΦji
in the lagrangian of the theory. Since we are mostly interested in the low-energy effective theory in the
far IR, the corresponding chiral multiplets can be integrated out of the lagrangian, as happens effectively
at energies smaller than m. The second is a combinatorial transformation known as urban renewal ,
displayed on the right of Figure 7.14. It encodes Seiberg duality at the corresponding face as explained in
[FHK+06], following the ideas developed in [Sch99]: in terms of the quiver, Seiberg duality is a mutation
exactly as in Section 1.2. The superpotential varies in a way which has been formalized in [DWZ08]
and which we have presented in Section 1.2.3. If the quiver with potential is represented as a brane
tiling, Seiberg duality takes the form shown on the right of Figure 7.14. In terms of the spider moves
ubiquitous in Part I, a urban renewal is a sequence of two spider moves possibly combined with additions
or contractions of 2-valent vertices. Note that in order to preserve toricity so that the result of doing a
Seiberg duality on a brane tiling is again a brane tiling, Seiberg duality can only be done on square faces.

Figure 7.14: Contracting 2-valent vertices (left) and urban renewal (right).

Drawing the ZZPs which appear on the right of Figure 7.14 makes it clear that the set of ZZPs in a
dimer model together with their homology is preserved under Seiberg duality. Hence two Seiberg dual
brane tilings correspond to the same singularity, as expected.
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Brane tilings as brane setups.

A important fact emphasized in [FHK+06] and developed in [FHKV08a] is that brane tilings are not
merely combinatorial tools: they are in fact physical brane setups similar to the ones presented in
Section 6.4. One starts with type IIB string theory in space-time R1,3 × R8 × T 2, with x4 and x6

the coordinates along the two circle directions and where all other coordinates x0, . . . , x3, x5, x7, x8, x9

parameterize a copy of R. Let z = exp
(
x5 + ix4

)
and w = exp

(
x7 + ix6

)
be C× coordinates. The brane

configuration is made of one NS5 brane extending along 0123 and wrapping a complex curve Σ defined
by P (z, w) = 0 in the complex plane parameterized by z and w, and of a stack of N D5s extending
along 012346. The brane tiling is the projection of this setup on the torus parameterized by x4 and x6.
Faces correspond to D5 branes suspended between the NS5, edges correspond to chiral multiplets in the
bifundamental representation of their adjacent faces while nodes are exactly the superpotential terms
coming from the worldsheet instantons.

This brane configuration is actually dual under to T-dualities to a stack of D3 branes at an affine
toric CY3 singularity. We have seen in the last section that such singularities are T 2 fibrations over an
R4 base, and under T dualities along both directions of this T 2 the D3 branes (which are transverse to
the singular toric CY3) are mapped to D5 branes wrapping the dual T 2 while the singularities in the
torus fibration of the toric singularity are mapped to NS5 branes. More precisely, in the situation we are
currently interested in, the affine toric CY3 singularity extends along the transverse space to x0, . . . , x3.
We take the directions corresponding to the T 2 to be parameterized by x4′ and x6′ , and the R4 base of the
T 2 fibration, by x5, x7, x8, x9. T-dualizing along S1

4′ and S1
6′ yields new circles S1

4 and S1
6 parameterized

by x4 and x6. The brane tiling is drawn on the torus S1
4 × S1

6 . This is depicted schematically on the left
of Figure 7.15.

Figure 7.15: From D3 branes at a singularity to the mirror through brane tilings.

Let now ω = x8 + ix9 = eiφ|ω|. The circle S1
φ is the last independent circle in the toric affine CY3

singularity. T-dualizing along it yields a space-time with again another topology, which is the mirror of
the one we started with as follows from the SYZ approach to mirror symmetry [SYZ96]. Mirror symmetry
in the context of affine toric CY3 singularities is known as local mirror symmetry [HV00, HIV00], and
works as follows: the mirror to an affine toric CY3 singularity X described by a toric diagram ∆ is the
3-dimensional complex subspace of C×z × C×w × Cu × Cv defined by

P (z, w) = uv , (7.74)

where P is the Laurent polynomial whose Newton polygon is ∆. The surface defined by P (z, w) = 0 in
the zw-plane is known as the mirror curve of X. The mirror geometry can be seen as a double fibration
over a complex plane, which is why it is depicted as it is on the right of Figure 7.15. The T-duality along
S1
φ preserves the surface Σ wrapped by the NS5 in the brane tiling setup [FHKV08a], however since the

direction of the T-duality is not in the worldvolume of the NS5, the latter becomes pure geometry. Thus,
the surface Σ wrapped by the NS5 in the brane tiling is identified with the mirror curve of the original
affine toric CY3 singularity. The D5 branes in the brane tiling picture become D6 branes wrapping
singular 3-cycles of the mirror geometry.

The surface Σ can be derived directly from the brane tiling via the untwisting map [FHKV08a]. The
bipartite graph Γ of the brane tiling also embeds naturally in Σ, however the cyclic orientation of the set
of edges incident to each nodes (induced by the orientation of the underlying surface) differs for one type
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of nodes, e.g. the black ones. Under this untwisting map ZZPs in the brane tiling are mapped to faces
of the bipartite graph embedded in Σ, and vice-versa.

Brane tilings as a generalization of the McKay correspondence.

Let G be a discrete group and let Vi, i = 1, . . . , r be the set of irreducible representations of G. Let also
V be the regular representation of G, and for all i = 1, . . . , r let:

V ⊗ Vi =

r⊕

j=1

ajiVj . (7.75)

The McKay quiver of the pair (G,V ) is the quiver with r nodes, one for each irreducible representation
Vi and aij arrow from the i-th node the the j-th one. McKay’s observation of [McK80] when G is a
discrete subgroup of SU(2) is that the McKay quiver of (G,V ) is an affine Dynkin diagram of type
ADE. The latter famously also appear in the resolutions of the simple surface singularities C2/G where
G < SU(2): in that case nodes correspond to the exceptional divisors and the edges, and edges are given
by the intersection numbers between them. The results of [BKR99] imply that the derived category of
coherent sheaves on any smooth resolution of C2/G (which is exactly the category of B-branes on C2/G)
is equivalent to the derived category of representations of the McKay quiver (with relations) [Asp04].

The McKay graphs which appear in resolutions of simple singularities C2/G has a physical imple-
mentation in Hanany–Witten brane setups: the quiver encoding the low-energy four-dimensional N = 2
theory in the worldvolume of D4 branes stretching between N NS5 branes on a circle is the affine Dynkin
quiver of type ÂN1

, and the brane configuration is T-dual to D3 branes at the AN−1 singularity C2/ZN .
Under another T-duality in the worldvolume of the NS5 branes the configuration is mapped to a brane
tiling, whose dual graph is again the affine Dynkin quiver of type ÂN1

. The Hanany–Witten setup, the
brane tiling as well as the corresponding quiver are displayed in Figure 7.16

Figure 7.16: D4 branes streching between NS5s on a circle and the corresponding quiver.

General brane tilings can thus be seen as generalizations of the original McKay correspondence for
discrete subgroups G of SU(3) when the brane tiling corresponds to a toric Calabi–Yau C3/G orbifold,
as well as for general affine toric CY3 singularities [FHK+06].

Brane tilings and geometry

The gauge invariant BPS mesonic operators in a four-dimensional N = 1 quiver gauge theory correspond
to closed loops in the quiver. When the theory is encoded in a brane tiling, these operators are naturally
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defined on the latter as oriented strands crossing edges transversely and in a way compatible with the
orientation of the edges of the dimer model. The geometry transverse to a D-brane is identified to the
mesonic moduli space of its worldvolume theory [DM96, DGM97], and the gauge invariant BPS mesonic
operators of a theory (modulo F-terms) are by definition well-defined algebraic functions on the mesonic
moduli space.

When the geometry transverse to a D-brane is an affine toric CY3 singularity X defined by a cone
σ ⊂ Z3, the ring of regular functions on X is a complex polynomial vector space generated by monomials
in one-to-one correspondence with the lattice points in the dual cone σ∨. Hence the gauge invariant
BPS mesonic operators in a theory described by a brane tiling corresponding to a singularity X are in
one-to-one correspondence with the monomial generators of OX , i.e. with the lattice points in σ∨.

A Hilbert basis of σ∨ (or equivalently, a set of monomials generating OX as a ring) hence admits an
equivalent in terms of gauge invariant BPS mesonic operators: the mesonic operators modulo F-terms
corresponding to the elements of a Hilbert basis of σ∨ are dubbed fundamental mesonic operators in
[FHK+07]. Since any Hilbert basis of σ∨ contains the extremal generators which correspond to the sides
of the toric diagram of the singularity X, i.e. to the ZZP in the brane tilings, the ZZPs are always
fundamental mesons. However, there might be more: the example of the fundamental mesonic operators
(modulo F-terms) on a brane tiling corresponding to the affine cone over dP1 is presented in Figure 7.17.
The plain paths are ZZPs are they correspond to extremal generators of σ∨ while the dashed one are
non-extremal generators.

Figure 7.17: The fundamental mesons in a brane tiling corresponding to dP1.

The paths corresponding to gauge invariant BPS mesonic operators modulo F-terms are entirely
described in terms of their homology numbers since the F-term relations acts on the paths at each edge
of the tiling as shown in Figure 7.18.

Figure 7.18: F-term relations seen as an equivalence relation between paths on the tiling.
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The homologies of the paths corresponding to the 9 fundamental mesons shown in Figure 7.17 are:

h1 =

(
−1
1

)
, h2 =

(
−1
−1

)
, h3 =

(
2
−1

)
, h4 =

(
0
1

)
, h5 =

(
−1
0

)
,

h6 =

(
1
−1

)
, h7 =

(
0
−1

)
, h8 =

(
1
0

)
, h9 =

(
0
0

)
. (7.76)

and one can show (with Macaulay2 for example) that

h1 =



−1
1
1


 , h2 =



−1
−1
1


 , h3 =




2
−1
1


 , h4 =




0
1
1


 , h5 =



−1
0
1


 ,

h6 =




1
−1
1


 , h7 =




0
−1
1


 , h8 =




1
0
1


 , h9 =




0
0
1


 . (7.77)

is a Hilbert basis of the dual cone corresponding to dP1.
Isometries of the geometry transverse to a D-brane translate in general into global symmetries of

its worldvolume theory. In the cases that we are interested in, the geometry X is an affine toric CY3
singularity and hence its Calabi–Yau metric admits a U(1)3 isometry.

Therefore the four-dimensional N = 1 gauge theories encoded in brane tilings have a distinguished
U(1)3 global symmetry. It decomposes into U(1)2

F ×U(1)R, where each factor in U(1)2
F is dubbed flavor

mesonic symmetry. The charges of any gauge invariant mesonic operator in the brane tiling are easily
read as the coordinates of the corresponding lattice point in the dual cone defining X [FHK+07].

7.5.4 Cluster integrable systems

A class of interesting algebraic integrable systems constructed out of bipartite graphs on T 2 satisfying
exactly the same conditions as brane tilings (Proposition 7.6) has been constructed in [GK11].

The phase space admits (C×)n-charts glued along birational isomorphisms. Let us describe one such
chart before explaining how they are glued together. Let Γ = (V,E) be a consistent bipartite graph on
T 2 and let w : E → C× be a weight function on its edges. Each perfect matching D on Γ is assigned is
energy:

Ew(D) =
∏

e∈D
w(e) . (7.78)

Having chosen a Pfaffian orientation for Γ one writes the Kasteleyn matrix K(Γ, w) as before but taking
the weight of each edge supplemented by the weight function w. Let D0 be a perfect matching corre-
sponding to one corner of the Newton polygon corresponding to Γ. The normalized partition function of
the dimer model is

Z ′D0
=

detK(Γ, w)

Ew(D0)
. (7.79)

The normalized partition function is (as the determinant of the Kasteleyn matrix) a Laurent polynomial
in two variables x and y with Newton polygon ∆ the one corresponding to Γ. Diving the determinant
of the Kasteleyn matrix by Ew(D0) has the nice consequence that the normalized partition function is
independent of the choice of fundamental cell for T 2. One can rewrite Z ′D0

as:

Z ′D0
=
∑

a,b∈Z

∑

(a+a0,b+b0)

Ew(D)

Ew(D0)
xayb =

∑

a,b∈Z
cab(w)xayb , (7.80)

where the second sum runs over all dimer configurations D whose height is (a + a0, b + b0). Each term
Ew(D)Ew(D0)−1 in the sum can be rewritten as E(D − D0) where D − D0 is the union of paths on Γ
obtained by taking all edges in D with their standard orientation (from black to white) and all edges
in D0 with the opposite one. These paths form naturally oriented loops on Γ. For example, taking
the reference perfect matching to be the left-most one in the bottom row in Figure 7.12 yields what is
displayed in Figure 7.19. The pair of integers below each case is now the homology of the corresponding
oriented loops on Γ.
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Figure 7.19: Union of closed loops from perfect matchings.

The weight function w is a 1-cochain on Γ. It is easy to check that the normalized partition function
does not depend on w itself but merely on its cohomology class [w] ∈ H1(Γ,C×). The space H1(Γ,C×)
is the chart LΓ on the integrable system, corresponding to Γ. If one chooses two oriented loops γx and
γy on Γ with homology (1, 0) and (0, 1) on T 2, then H1(Γ,C×) is exactly given by the data of the C×-
monodromy along γx, γy and all the faces of Γ but one: LΓ ' C×x ×C×y × (C×)#F−1. One can show that
the number of faces #F of Γ on T 2 is always twice the area of the lattice polygon ∆.

The Poisson structure on LΓ is induced from the intersection pairing on the mirror curve: every closed
loop on Γ can either be considered as a closed loop on T 2 or as a closed loop on Σ which is obtained
from Γ via the untwisting map: starting from the bipartite fat graph Γ with the fat structure induced
by the orientation of T 2 one inverts the cyclic orientation of the edges incident to each black vertex
and reconstruct the corresponding surface with cusps Σ. The space of C×-valued (algebraic) functions
on H1(Γ) is naturally identified with H1(Γ,C×), and hence the intersection pairing on H1(Σ) induces a
Poisson bracket {·, ·} on LΓ.

The coefficients cab(w) in the normalized partition function of Equation (7.80) are also naturally
functions on LΓ. It is shown in [GK11] that the ones corresponding to lattice points on the boundary of
∆ are Casimirs of the Poisson bracket, while the ones corresponding to lattice points in the interior of
∆ are not Casimirs but mutually commute for the Poisson bracket: they form a family of independent
Hamiltonians on (LΓ, {·, ·}).

The Pick theorem [GS93] asserts that

2A(∆) = 2i(∆) + e(∆)− 2 , (7.81)

where A(∆) is the area of ∆, i(∆) the number of lattice points in the interior of ∆ and e(∆) the number
of lattice points on the boundary of ∆. The number e(∆)−2 is exactly the dimension of the center of the
Poisson algebra, and hence Pick theorem implies that the family of Hamiltonians of before is maximal:
(LΓ, {·, ·}) is an algebraic integrable system.

Theorem 4.7 in [GK11] shows that the rational transformations of the face weights appearing in
LΓ =' C×x ×C×y × (C×)#F−1 which preserve the modified partition function are uniquely determined to
be sequences of the maps in Figure 7.20.

The underlying transformation of Γ is a spider move as introduced in Section 1.2.3. Under such
elementary transformations of Γ one can keep track of the paths γx and γy, and one can glue the
(C×)#F−1 parts of LΓ together along the birational transformation of Figure 7.20. The Poisson bracket
as well as the Hamiltonians glue well under such identification and hence one can declare the total space
of the integrable system corresponding to Γ to be the union of all LΓ′ where Γ′ can be obtained from Γ
via a sequence of spider moves, and with the identification provided by the cluster X mutations.

Attempts have been made to link these dimer integrable systems to brane tilings [Fra11, EFS12,
FGH12, AFM12]. Dimer integrable systems have been generalized to integrable systems on double Bruhat
cells of affine Lie groups in [FM16b]: dimer models encode double Bruhat cells in the affine Poisson-Lie
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Figure 7.20: Elementary rational transformations of the face weights which preserve the partition function.

groups P̂GL(N) [FM16a].

Brane tilings are a very efficient way to encode the geometry of an affine toric CY3 singularity X:
they are the result of two T-dualities in the T 2 fiber of X above R4 as in the previous section. They can
also be used to study the worldvolume theory of M2 branes at the singular point of X, as initiated in
[HZ08, HVZ09, DHMT09]. These M2 worldvolume theories are interesting generalizations of the ABJM
theory introduced in [ABJM08]. Developments in the study of such three dimensional supersymmetric
Chern–Simons theories have led to a conjecture for the exact quantization conditions of the integrable
systems of Goncharov and Kenyon [HM16, FHMn16].

7.5.5 Fractional branes revisited

Fractional branes in dimer models admit a convenient combinatorial description in terms of zig-zag paths
as first described in [But06]. Here we will refer to as fractional brane any bound state of regular and
fractional branes, i.e. a rank assignment on the faces of Γ such that there is no gauge anomaly. For all
face f of Γ let Nf ∈ Z≥0 the rank assigned to it. A rank assignment is a fractional brane if

∀f ∈ F,
∑

f ′→f

Nf ′ −
∑

f→f ′
Nf ′ = 0 , (7.82)

where the arrows refer to the quiver dual to the brane tiling. This last equation is a generalization of
Equation (7.27). Examples of fractional branes ot the singular point of the affine cone over dP2 are shown
on the two left-most brane tilings in Figure 7.21.

Figure 7.21: Fractional branes at the singular point of the affine cone over dP2.

One can obtain all fractional branes as follows: let us consider an affine toric CY3 singularity described
by its toric diagram, and label all outgoing integral normal vectors to the sides of the toric diagram
corresponding to a singularity by a, b, c, . . . . Recall that the zig-zag paths in any brane tiling corresponding
to this singularity are in one-to-one correspondence with these outgoing integral normal vectors. Let us
now fix a brane tiling associated with the singularity at hand, and assign the rank 0 to one of its faces.
As one goes from this face to any of the adjacent ones, one has to cross two ZZPs going in opposite
directions: the intersection between the arrow from the original face to the target and one of the ZZP
is positive while the other is negative. Hence one can assign the formal difference of two ZZPs to the
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target face. One can repeat this procedure again and again until all faces of the brane tiling are assigned
a linear combination of ZZPs with integer coefficients, and such that the sum of all coefficients is zero.
This is displayed on the right of Figure 7.21 for a brane tiling corresponding to the affine cone over dP2.

Since any ZZP crossing an edge of the brane tiling in the boundary of a given face actually crosses two
edges in the boundary of this face with opposite orientation, assigning integer weights Na, Nb, Nc, . . . to
the outgoing integral normal vectors in the toric diagram always yields a rank assignment on the faces of
the brane tiling such that the anomaly cancellation condition of Equation (7.82) holds. There are however
constraints coming from the fact that the rank assignment on the faces of the brane tiling must be well
defined: there must be no monodromy as one circles around the torus. Note that since ZZPs are closed
loops on T 2, as one goes around the torus along a loop of homology (n,m) in some basis of H1(T 2,Z),
one crosses a ZZP of homology (n′,m′) exactly nm′ −mn′ times, where intersections are counted with
sign. Hence the conditions in order to have well defined rank assignments can be read directly from the
toric diagram since the coordinates (a1, a2), (b1, b2), (c1, c2), . . . of the outgoing integral normal vectors
are the homology of the corresponding ZZPs. One must have:

∑

k=a,b,c,...

k1Nk = 0 ,
∑

k=a,b,c,...

k2Nk = 0 . (7.83)

For example, in the case of the affine cone over dP2 displayed on the right of Figure 7.21 these conditions
become:

Na +Ne −Nb −Nc = 0 , Ne +Nd −Na −Nb = 0 . (7.84)

Considering integer assignments to a, b, c, d, e satisfying these conditions ensures that

Na −Nc +Ne −Nd = Nb −Nd , Na −Nd +Nb −Nc = Ne −Nc , (7.85)

so that the rank assignment is indeed well-defined.
One result of [But06] is that assignments of integers to the outgoing integral normal vectors to the

sides of a toric diagram satisfying Equation (7.83) correspond exactly to anomaly-free rank assignments
on the faces of any brane tiling associated with this toric diagram.

Note however that this method 1) may yield faces with negative rank, which is unphysical 2) is blind
to a global shift of the ranks on the faces, i.e. to regular branes. One can use the second point to shift
the rank on all faces of the brane tiling to positive values. If one does that in a minimal way so that
at least one face has rank zero after the shift, one obtains a purely fractional brane. On the contrary, if
all the faces of the brane tiling have strictly positive rank, the configuration describes a bound state of
purely fractional branes with regular ones.

7.6 Orientifolds

7.6.1 Generalities

Orientifolds of type II theories are perturbative quotients of some type II superstring theory in Calabi–
Yau backgrounds under a symmetry group which contains the world-sheet parity reversal operator ω
(hence the name). More precisely [IU12], let us consider one of the two type II superstring theories on
R1,3×X6, where X6 is a Calabi–Yau threefold (either compact or non-compact) with complexified Kähler
form J and nowhere vanishing holomorphic three-form Ω3.

A type IIA orientifold is defined by an action of the form

ωR(−1)FL , (7.86)

where R(−1)FL is needed in order for this action to be an involution, and where since type IIA is chiral
on the worldsheet one requires R to be an antiholomorphic involution of X6, i.e.

R∗J = −J , and R∗Ω3 = Ω3 . (7.87)

A type IIB orientifold is defined by an action of the form

ωR(−1)FL , (7.88)
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where R(−1)FL is needed in order for this action to be an involution, and where since type IIB is non-chiral
on the worldsheet one requires R to be an holomorphic involution of X6.

The fixed locus of R in R1,3×X6 is, by definition, an orientifold plane. Similarly to D-branes, we will
say an orientifold is an Op-plane when its world-volume is a (p+ 1)-dimensional Lorentzian manifold. In
type IIA orientifolds one typically obtains O6 planes, whereas type IIB orientifolds might yield O3, O5,
O7 and O9 planes. In general an Op-plane couples to the R–R (p+ 1)-form potential Cp+1 and its charge
can be computed through the calculation of the amplitude of the emission of an R–R closed string, in the
zero momentum limit. This charge might yield to non-zero R–R tadpole diagrams, which must cancel
for the consistency of the theory. This is achieved by adding some number of Dp-branes on top of the
Op-plane.

The typical example is the construction of type I superstring theory as an orientifold of type IIB in
R1,3 × C3 [Dab97]. The orientifold action is given by ωR(−1)FL where R acts as the identity on C3, so
that one is left with an O9-plane. The closed string sector of the orientifold theory contains unoriented
closed strings which are invariant under ω, and the massless bosonic spectrum consists of the graviton
field Gµν , the dilaton φ, the R–R 2-form C2 and the symmetric product of the two gravitini. Type I
superstring theory has indeed N = 1 in ten dimensions.

The O9-plane has −32 units of charge with respect to the (non-dynamical) 10-form potential of type
IIB, and hence the R–R tadpoles cancel provided one introduces 32 D9-branes on top of the O9. These
additional branes induce an U(32) gauge symmetry in space-time, of which only the SO(32) subgroup is
invariant under the action of ω.

In general in orientifolds of type IIB superstring theory on R1,3 ×X6, depending on the dimension of
the fixed locus of R in X6 one may end up with O3/D3, O5/D5, O7/D7 or O9/D9 brane systems. In
O3/D3 or O7/D7 systems the geometric involution R is such that R∗J = J and R∗Ω3 = −Ω3 whereas
in O5/D5 and O9/D9 systems one has rather R∗J = −J and R∗Ω3 = Ω3 [IU12]. Moreover, O3 and O7
branes preserve the same supersymmetries as D3 branes and hence one interesting way to generalize even
more the gauge engineering techniques described so far is to consider configurations of D3 branes at the
singular point of an affine toric CY3 singularity together with O3/O7 orientifolds and their companion
D3/D7 branes needed to cancel the R–R tadpoles.

7.6.2 Orientifolds of brane tilings

Since the low-energy worldvolume theory on D3 branes at toric CY3 singularities are nicely encoded in
brane tilings, it is of interest to understand how orientifolds can be implemented in brane tilings. This
has been first studied in the seminal article [FHK+07].

Starting with a brane tiling describing the low-energy worldvolume theory on a D3 brane at an
affine toric CY3 singularity, the orientifolded theory is obtained by a Z2 identification of gauge groups,
chiral multiplets and superpotential terms. This identification must therefore correspond to an involutive
automorphism of the brane tiling, seen as a bipartite map on T 2. This automorphism may have a non-
empty fixed locus, and each connected component of it can be assigned a sign ±. Faces of the tiling might
either be identified pairwise or self-identified under the Z2 automorphism. In the first case, let us fix one
face of each pair and denote them a, b, . . . , and their image: a′, b′, . . . . Let also the self-identified faces be
denoted k, l, . . . . The theory after orientifold can be described as in [FHK+07] and in the following way.

• Each selected face of the first type a, b, . . . gives rise to a gauge factor U(Na),

• Each self-identified face k, l, . . . gives rise to a gauge factor SO(Na) (resp. Sp(Na/2)) if it lies on a
connected component of the fixed locus carrying a + (resp. −) sign,

• A pair of bifundamental chiral multiplet ( a, b) and ( a′ , b′) with a 6= b′ gives rise to a bifun-

damental chiral multiplet ( a, b),

• A bifundamental chiral multiplet ( a, b′) together with its image give rise to a bifundamental

( a, b). Similarly, ( a′ , b) and its image give rise to ( a, b),

• A bifundamental chiral multiplet ( a, a′) gives rise to a chiral multiplet in the symmetric a

(resp. antisymmetric a) representation of SU(Na) if it lies on a connected component of the fixed
locus with a + (resp. −) sign.
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These rules make it clear that it is the fixed locus of the Z2 symmetry of a brane tiling which gives rise
to non-unitary SO or Sp gauge groups as well as matter in rank-2 tensor representations. Being able to
construct models with non-unitary gauge groups and matter in tensor representations is very interesting
from a gauge engineering perspective, and hence the authors of [FHK+07] focused on three types of torus
involutions which have a non-empty fixed locus, listed below.

• The π-rotation of the fundamental cell about a fixed point. It is always possible to choose the unit
cell of the dimer in such a way that its corners coincide with a fixed point. Additionally, due to the
dimer’s toroidal periodicity, there will also be fixed points at the center of the boundaries of the
unit cell, and in the center of the unit cell itself, see Figure 7.22.

Figure 7.22: A schematic representation of a dimer unit cell with orientifold fixed points. The shaded
points are the periodic images of the four basic ones.

• The reflection through a vertical or horizontal line: the unit cell of the dimer can be taken to be
rectangular, and the dimer is invariant under a reflection leaving fixed the lines going along one of
the boundaries of the unit cell. By the periodicity of the dimer, there must be a second fixed line
parallel to the first one, and going through the middle of the unit cell. Vertical and horizontal fixed
lines will be considered on the same footing here. This is depicted on the left of Figure 7.23.

• The reflection through a single diagonal line: the unit cell can be taken to have the shape of a
rhombus, and the dimer is invariant under reflections about a fixed line which goes along one of the
diagonals of the rhombus. The periodicity of the dimer does not imply the presence of other fixed
lines in the unit cell. Again, we will not make the distinction between the two diagonals. This is
depicted on the right of Figure 7.23.

Figure 7.23: A schematic representation of orientifold fixed lines going through the dimer unit cell: two
fixed lines on the left, a single fixed line on the right.

These involutions respectively have four fixed points, one fixed line or two fixed lines. In the following,
we will use the two nomenclatures “double and single” or “horizontal/vertical and diagonal fixed lines”
interchangeably. One example of each such involutions is displayed in Figure 7.24, with the toric diagram
corresponding to the unorientifolded brane tiling and the quiver of the orientifold theory.

Some rules constraining possible involutions or the parity of mesonic operators under the orientifold
have been worked out in [FHK+07]. For example, involutions with fixed points must map nodes of the
tilings to nodes of the opposite color, while involutions with fixed lines must map nodes of the tiling to
nodes of the same color (this comes from the perturbative definition of the orientifold only). Moreover,
mesonic operators appearing in the superpotential must be odd under the orientifold action, in order for
the orientifold to preserve N = 1 supersymmetry. In the case of orientifold projections with four fixed
points, the signs assigned to the fixed points must satisfy the sign rule: their product must be (−1)nW /2

where nW is the number of superpotential terms [FHK+07].
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Figure 7.24: Orientifolds as Z2 involutions of dimers.

The signs carried by the connected components of the fixed locus of the torus involutions can be
related to the charge of the corresponding O-planes [IKY08].

Constraints on the toric diagram

The existence of brane tilings admitting a given involution of one of the types of above puts constraints
on the toric diagram of the corresponding singularity, as studied in [RU16b]. Under an involution of the
torus underlying a brane tiling, the following holds:

• if the involution is a π-rotation, a ZZP of winding (p, q) is mapped to a ZZP of winding (p, q).

• if the involution is the reflection through a fixed diagonal line, a ZZP of winding (p, q) is mapped
to a ZZP of winding (−q,−p) or (q,−p), depending on the orientation of the fixed line.

• if the involution has two fixed horizontal (resp. vertical) lines, a ZZP of winding (p, q) is mapped
to a ZZP of winding (−p, q) (resp. (p,−q)).

Hence, in order to possibly admit a brane tiling symmetric with respect to a diagonal (resp. horizontal,
vertical) line, an affine toric CY3 singularities must admit a toric diagram symmetric with respect to a
diagonal (resp. vertical, horizontal) line. This is not an equivalence: there exist toric diagrams with the
good properties to possibly admit a brane tiling with a prescribed symmetry, but for which one can in
fact prove that the latter cannot exist. We will present the general reasoning leading to this result as
well as an explicit example in Section 10.3.
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∗ ∗ ∗ ∗ ∗ ∗ ∗

In order to make contact with real-world macroscopically-four-dimensional physics, one needs to come
up with ways to go from the ten dimensions of string theory to four dimensions.

One way to do so is to compactify string theory on six-dimensional Riemannian manifolds. The
condition to preserve some amount of supersymmetry below the compactification scale, which is an
appealing assumption both phenomenologically and technically, translates into the Riemannian manifold
being a Calabi–Yau manifold. One can turn on quantized fluxes as one compactifies, which provides ways
to obtain fully-fledged stable string vacua with few or none massless moduli.

Another way to obtain four-dimensional physics from type IIB string theory is to consider D3-brane
worldvolume theories. When the branes are placed at the singular points of Calabi–Yau varieties, their
worldvolume hosts a four-dimensional (non-gravitational) quantum field theory with N = 1 supersym-
metry. Among the simplest examples of such setups are the Calabi–Yau orbifolds of C3, for which the
worldvolume theory of branes at their tip can be computed perturbatively. Another interesting singularity
is the conifold, which is defined by the polynomial equation xy − zw in C4.

These examples are special cases of the more general class of affine toric Calabi–Yau singularities,
which can be conveniently described with the tools of toric geometry. The worldvolume theory of D3-
branes at such a singular point is a four-dimensional N = 1 quiver gauge theory, with the quiver encoding
the simple gauge factors and the chiral matter fields of the theory. The latter is actually entirely described
by its quiver and its superpotential, which is a polynomial in the matter fields. When the theory satisfies
the toricity assumption, both the quiver and the superpotential can be encoded as a bipartite graph on
the torus T 2. This graph is the dimer model – or brane tiling – of the theory.

There are, in general, many brane tilings corresponding to a given affine toric Calabi–Yau threefold.
They describe the different toric phases of the theory on D3-branes transverse to this singularity. Any
two such toric phases can be related through a finite sequence of Seiberg dualities, which in terms of
brane tilings correspond to urban renewals or spider moves, with the ranks on the faces transforming
according to the tropical A-mutation formula.

Lastly, one can describe orientifolds of brane tilings as involutions of the bipartite maps. Those with
a non-empty fixed locus display either a fixed line, two fixed lines or four fixed points in the brane tiling.
This in turn opens up the possibility of describing orthogonal or symplectic gauge factors, as well as
chiral matter fields in rank-2 tensor representations of the gauge factors. Therefore, it enlarges a great
deal the class of four-dimensional N = 1 theories which can be given such a stringy ascendancy.



Chapter 8

Holography and gauge–gravity
dualities

The idea of holography arose after it was understood that the area of classical black holes – e.g.
Schwarzschild ones – behaves in a very similar way to the entropy of thermodynamic systems since
it can only increase, which happens when matter falls inside the black hole. Bekenstein viewed this fact
as something deeper than a mere analogy: the entropy of a black hole should – just as in classical thermo-
dynamics – count the possible microstates of some sort corresponding to a given macroscopic black hole
[Bek73, Bek74]. The (classical) general relativity “no-hair” theorem states that black holes are entirely
described by their mass, their electric charge and their angular momentum. Therefore in order to speak of
black hole microstates it is necessary to use a theory of quantum gravity. Even without a full knowledge
of the latter, investigating the thermodynamics of black holes led to compelling yet highly paradoxical
pictures.

What has been learned from the deep insights of Bekenstein and Hawking [Haw75, Haw76] is that
black holes have an entropy and a temperature. For example the entropy of a Schwarzschild black hole
of mass M is

SBH(M0) =
kBAc

3

4G~ , (8.1)

which is one fourth of the area A = 4πr2
S of the horizon (where rS = 2GM) measured in Planck units,

and its temperature is

TH =
~c3

8πkBGM
. (8.2)

One of the main point of Bekenstein and Hawking is that the entropy of Equation (8.1) is the maximal
amount of entropy that a region of space-time of radius rS can contain. Interestingly, this entropy scales
as r2

S and not as r3
S as one would ingenuously expect.

Since black holes have a temperature, they radiate energy away (if their surroundings are colder):
this process is called black hole evaporation. For a solar mass black hole, the entropy is huge (around
1060 erg ·K−1, to be compared with the entropy of the sun which is of 1042 erg ·K−1 [Bek73]) and the
temperature tiny (∼ 10−7 K, whereas the temperature of the cosmic microwave background is ∼ 2.73 K).
Were a solar black hole in empty space (without cosmic microwave background), it would take around
1066 years to evaporate completely.

Black hole evaporation leads to the black hole information paradox . Hawking’s calculation seems to
show that the entanglement entropy of the radiation emitted away by the black holes increases mono-
tonically with time since the radiation seems to be emitted in a thermal state. If this indeed holds, after
the full evaporation of a black hole one is left with a final state which has a huge non-zero entanglement
entropy. If the black hole has been created by the collapsing of a pure quantum state (whose entanglement
entropy is zero), this seems to go against the fact that quantum evolution is unitary. Three options have
been considered to explain this phenomenon:

1. Either the black hole does not completely disappear after the evaporation process and one is left
with a Planck-sized remnant which has also a huge non-zero entropy, so that the total entanglement
entropy of the system is zero. This is not satisfactory since it violates the Bekenstein–Hawking
entropy bound.
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2. Or the final state after the black hole creation from a pure quantum state and its evaporation is
not a pure state, i.e. it has non-zero entanglement entropy. This is not satisfactory since it violates
the unitarity of quantum evolution.

3. Or Hawking’s formula for the entanglement entropy of the outgoing radiation when the black hole
evaporates is valid in a coarse grained sense, i.e. the radiation does not come out as a mixed
state exactly. This is not satisfactory since it is in contradiction with Hawking’s calculation, which
seemingly relies on very consensual principles.

’t Hooft [tH93] and Susskind [Sus95] impulsed the scrutiny of option 3. and proposed that the
degrees of freedom of the four-dimensional black hole are equivalently encoded on the three-dimensional
(stretched) horizon, motivated by the fact that bits of hidden information making the black hole’s entropy
seem to correspond to elementary (Planckian) units of surface on the black hole’s horizon. Since an optic
hologram stores the data of a three-dimensional image on a two-dimensional holographic film, this was
dubbed the holographic principle. The idea is that the quantum-gravitational theory describing the black
hole should be equivalent to a non-gravitational quantum theory in one-dimension less, and that the
evolution of the latter theory should describe the black hole’s evaporation in a manifestly unitary way.
The holographic principle found its first explicit incarnation in the AdS–CFT correspondence proposed
by Maldacena in [Mal99], as we will review in the next section.

The developments that led to the holographic principle are reviewed in a popularized way in [Sus08].
More on black hole information with a view towards the AdS–CFT correspondence can be found in
[Har16, Har18].

Another idea that was realized through AdS–CFT correspondences, or more generally through string–
gauge correspondences, was the expectation that large N expansions of gauge theories were somehow
related to string theories [tH74, Col80, Pol98]. Consider for example the generalization of QCD to the
gauge theory with gauge group SU(N) and N flavors of quarks in the (anti)fundamental representation
of the gauge group. Denoting λ = g2

YMN the ’t Hooft coupling of the theory, the smaller λ, the better
the perturbative description of the theory via Feynman diagrams. The large N expansion is the limit
where N →∞ while λ is kept to a fixed value.

Assuming that λ is small, each Feynman diagram can be represented as a fat graph, i.e. a graph with
a cyclic ordering of the set of edges incident to each vertex, provided each gluon propagator is represented
as a double line. Fat graphs have vertices V , edges E and faces F , i.e. they can be naturally embedded
on surfaces. This is the so-called ’t Hooft double-line representation. Each diagram is associated with a
power of N , and in the large N expansion the higher this power the more a diagram contributes. ’t Hooft
noticed that the power of N of a graph is F − E + V , which is the Euler characteristic of the surface
corresponding to the fat graph under consideration. Therefore, the amplitude of a process described by
the theory can be written as a genus expansion which is very reminiscent of the one of string theories.

We present the original AdS–CFT correspondence in Section 8.1, its generalizations to more general
geometries in Section 8.2 and to non-conformal gauge–gravity correspondence in Section 8.3.

8.1 AdS5 × S5 / N = 4 d = 4 super Yang–Mills correspondence.

The idea in [Mal99] is to consider a stack of branes in type II string theory of M-theory whose worldvolume
theory is a conformal field theory (CFT). The three original examples consist of stacks of D3-branes in
type IIB string theory, M2-branes or M5-branes in M-theory. We will be mostly interested in the type
IIB case, and hence we will restrict to it from now on. We follow the presentation of [AGM+00] and
[BBS06].

Let us consider a stack of N coincident D3-branes in type IIB string theory in R1,9, extending along
x0, x1, x2, x3 and localized along x4, . . . , x9. At low energies α′ → 0, the stack of branes is well approxi-
mated by the extremal black 3-brane solution of type IIB supergravity given in Equation (6.26), with N
units of charge. The metric is:

ds2 = f
−1/2
3 dx · dx+ f

1/2
3 dy · dy , (8.3)

where x stands for the coordinates along the branes and y for those along the transverse space R6. Let
us also introduce spherical coordinates in transverse space: dy · dy = dr2 + r2dΩ2

5. The function f3 only
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depends on r, and:

f3(r) = 1 +

(
R

r

)4

, R4 = 4πα′2gsN . (8.4)

The dilaton is constant and hence there is no ambiguity in the definition of the string coupling constant.
The R–R field strength is

F5 = N(ω5 + ?ω5) , (8.5)

where ω is the volume form on the 5-sphere at constant radius in transverse space. The metric of
Equation (8.3) has a horizon at r = 0. In the near-horizon limit i.e. when r is small, the metric takes
the form

ds2 =
( r
R

)2

dx · dx+
( r
R

)2

dr2 +R2dΩ2
5 , (8.6)

which can be rewritten with the new variable z = R2/r as:

ds2 = R2 dx · dx+ dz2

z2
+R2dΩ2

5 . (8.7)

Hence near the horizon the geometry is AdS5 × S5, where both AdS5 and S5 have radius R. The
supergravity approximation is justified when stringy effects can be neglected: R� ls, which is equivalent
to gsN � 1 because of Equation (8.4).

As for usual four-dimensional black holes there is a potential barrier separating the near-horizon region
and the exterior one. It has been computed in [GKT97, Kle97] that the absorption cross-section at low
energies goes like ∼ ω3R8, where ω is the energy of a mode send from infinity towards the black brane.
Hence at low energies the system of massless modes outside the potential barrier (i.e. in flat space) and
the one of massless modes close to the horizon (i.e. in AdS5 × S5) decouple, and the physics at low
energies is schematically:

Free gravitons in flat space ⊕ type IIB supergravity on AdS5 × S5. (8.8)

The limit we have loosely referred to as low-energy limit is more precisely described as the decoupling
limit [Mal99]. If one considers a stack of D3-branes separated by a distance r, the decoupling limit is
the one in which α′ → 0 while r is modified accordingly, so that the masses of strings streching from one
brane to one of its neighbors are fixed, i.e. r/α′ is constant.

The stack of D3-branes in flat space can also be considered from the perspective of string theory, in
which open strings end on the D3’s and induce a low-energy four-dimensional N = 4 super Yang–Mills
theory on their worldvolume. Closed string excitations couple to the D3-branes but are free to move away
from them i.e. in the bulk . There are interaction terms between the open string modes and the closed
string modes, but they vanish in the low-energy limit. Hence the physics at low energies is schematically:

Free gravitons in flat space ⊕ d = 4, N = 4 U(N) super Yang–Mills. (8.9)

Comparing Equation (8.8) and Equation (8.9) leads to the conjectural AdS–CFT correspondence:

Type IIB supergravity on AdS5 × S5 ←→ N = 4 super Yang–Mills in four dimensions.

This is the weakest formulation of the AdS–CFT correspondence. In fact, as argued in [Mal99], the
duality should hold beyond the supergravity approximation:

Type IIB superstrings on AdS5 × S5 ←→ N = 4 super Yang–Mills in four dimensions.

It turns out that as one considers a stack of N D3-branes the U(1) subgroup of U(N) does not partic-
ipate in the duality, which is therefore refined to a duality between type IIB supergravity or superstrings
on AdS5 × S5 and N = 4 SU(N) super Yang–Mills in four dimensions. On the gravity side there are N
units of F5 flux through the sphere S5.

It is known that N = 4 SU(N) super Yang–Mills in four dimensions is a UV-finite superconformal
field theory. The gauge coupling gYM does not run, and perturbation theory is justified when the ’t Hooft
coupling

λ = g2
YMN (8.10)
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is small. From Equation (6.23) one knows that g2
YM = 2πgs and hence

λ =
R4

2l2s
. (8.11)

The supergravity approximation on the gravity side of the correspondence is justified when the ’t Hooft
coupling of the super Yang–Mills theory is large, i.e. when the gauge theory is in a non-perturbative
regime. Conversely, when the gauge theory is in a perturbative regime the dual gravitational theory is
strongly coupled and is in a stringy regime. It is believed that N = 4 SU(N) super Yang–Mills in four
dimensions provides a non-perturbative definition of type IIB superstrings in AdS5 × S5.

Sending N to infinity while keeping λ fixed is known as the large N expansion of the gauge theory
and can be studied through the so-called 1/N expansion [Col85]. On the gravity side since

λ

2πN
= gs , (8.12)

this limit corresponds the perturbative limit of type IIB superstrings, i.e. the large N expansion of N = 4
SU(N) super Yang–Mills in four dimensions at fixed ’t Hooft coupling corresponds to the perturbative
genus expansion in string theory, echoing some deep old ideas [tH74].

Both sides of the duality enjoy a PSU(2, 2|4) symmetry. On the string theory side the bosonic
part of this supergroup is the universal cover SU(2, 2) × SU(4) of the isometry group SO(4, 2) × SO(6)
of AdS5 × S5, and the fermionic part comes from the conserved supercharges which transform in the
representation (4,4) + (4,4) of SU(2, 2) × SU(4). The generators of PSU(2, 2|4) are the Killing vectors
and Killing spinors of the geometry. On the gauge theory side the bosonic part of PSU(2, 2|4) comes from
the conformal group SO(4, 2) in four dimensions together with the R-symmetry SU(4), and PSU(2, 2|4)
is the complete superconformal group of symmetries of the theory.

The holographic correspondence.

The metric on AdS5 in the Poincaré patch is given by

ds2 = R2 dx · dx+ dz2

z2
, (8.13)

however the AdS–CFT correspondence is better understood in the universal cover of AdS5, sometimes
denoted CAdS5 [BBS06]. The space CAdS5 has the topology of a solid cylinder B4 × Rt with boundary
S3×Rt. It is sometimes cleaner to work in the Euclidean version EAdS5 of AdS5, which can be described
as the hypersurface in Rd+1,1 defined by

y2
1 + · · ·+ y2

d − t21 + t22 = −R2 . (8.14)

The metric on EAdS5 space can be described as

ds2 = 4

∑
du2

i

(1−∑u2
i )

2
,

5∑

i=1

u2
i ≤ 1 , (8.15)

i.e. EAdS5 is the hyperbolic 5-space.
The AdS5 or EAdS5 space is called the bulk , whereas the cylinder S4×Rt at infinity is the boundary .

A point of coordinates (xµ, z) in the bulk (in the notation of Equation (8.13)) corresponds to a point of
coordinates xµ on the boundary. The radial coordinate z = R2/r in the bulk is identified with the energy
scale on the gauge theory side: four-dimensional N = 4 SU(N) super Yang–Mills theory at the energy
scale E (in the Wilsonian sense) ‘lives’ on the cylinder defined by z ∼ E−1 inside the bulk. The gauge
theory in the extreme UV without any degrees of freedom integrated out is considered to be located on
the boundary at infinity r →∞.

A precise correspondence between the observables of the gauge theory and those of the gravity theory
has been proposed in [GKP98, Wit98a]. Building on this one can establish an AdS–CFT dictionary which
links physical quantities on both sides of the correspondence: for example, masses of excitations on the
gravity side correspond to dimensions of operators on the gauge side.
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8.2 Conical singularities and toric geometry

The ideas of [Mal99, Wit98a] suggest that Maldacena’s original AdS–CFT correspondence can be extended
to other backgrounds of type IIB string theory of the form AdS5×X5 with X5 a five-dimensional Sasaki–
Einstein manifold bearing F5-flux. A Sasaki–Einstein manifold is a Riemannian manifold (S, g) such that
the metric cone over S (with metric ds2 = dr2 + r2d2

S) is Kähler (this is what is meant by Sasakian) and
such that the Ricci curvature on S is a constant times the metric (this is what is meant by Einstein)
[Spa11]. Type IIB superstrings on AdS5 × X5 should be dual to conformal field theories generalizing
four-dimensional N = 4 super Yang–Mills.

Type IIB superstrings on the background AdS5 × X5 with X5 = T 1,1 has been studied in [KW98].
The manifold T 1,1 is a homogeneous space

T 1,1 = (SU(2)× SU(2))/U(1) , (8.16)

with U(1) a diagonal subgroup of SU(2)× SU(2). Equivalently, T 1,1 is a U(1) bundle over S2 × S2 with
Sasaki–Einstein metric

ds2
T 1,1 =

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 +

1

6

2∑

i=1

[
dθ2
i + sin2 θidφ

2
i

]
, (8.17)

where (θ1, φ1) and (θ2, φ2) parameterize each S2 while ψ ∈ [0, 4π[ parametrizes the U(1) fiber.

Figure 8.1: The brane tiling encoding the theory dual to type IIB on AdS5 × T 1,1.

It is argued in [KW98] that the gauge theory dual to type IIB superstrings on AdS5 × T 1,1 is a four-

dimensional N = 1 gauge theory with gauge group SU(N)1× SU(N)2, two fields A1 and A2 in ( 1, 2),

two fields B1 and B2 in ( 2, 1), and a superpotential

W =
λ

2
εijεkl TrAiBkAjBl . (8.18)

This gauge theory is conveniently encoded in the brane tiling shown on the left of Figure 8.1. Even if it
is anachronous to do so, one can use the forward algorithm to see easily that this brane tiling describes
the worldvolume theory on D3 branes probing the conifold singularity, whose toric diagram is shown on
the right of Figure 8.1.

The Klebanov–Witten generalization of the AdS–CFT correspondence can be obtained through the
same reasoning as Maldacena’s, except that one needs to consider D3-branes at the tip of the conifold
singularity instead of in flat space.

This construction can be generalized to any arbitrary conical singularity Y6 with metric

ds2 = dr2 + r2gijdx
idxj , (8.19)

where gij is the metric on a five-dimensional Sasaki–Einstein manifold X5, so that Y6 is Calabi–Yau and
hence the worldvolume theory on D3-branes at the singularity preserves a certain amount of supersym-
metries, which is crucial to keep some control on the AdS–CFT correspondence. It is however of interest
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to lower the number of preserved supersymmetries as much as possible, since many interesting physical
phenomena cannot exist in four-dimensional gauge theories with N > 1.

Let us consider type IIB superstring theory on R1,3 × Y6 with a stack of N D3-branes extending
along R1,3 and placed at the singular point of Y6. At low energies the gravitational backreaction of the
D3-branes is encoded in the metric:

ds2 = f
−1/2
3 (r)[−dt2 + d~x2] + f

1/2
3 (r)(dr2 + r2gijdx

idxj) , (8.20)

with

f3(r) = 1 +

(
R

r

)4

, R4 = 4πα′2gsN . (8.21)

The geometry has a horizon at r → 0, and in the near horizon limit the geometry is AdS5 ×X5. These
setups have also been studied in [MP99].

A rich playground to study such extensions of the AdS–CFT correspondence is the set of affine toric
CY3 singularities. All of them are metric cones over five-dimensional Sasaki-Einstein manifolds, and the
worldvolume theory on D3-branes at the singular point of the CY3 singularity is easily computed using
brane tiling techniques. Even if in general it is very hard to derive the Sasaki-Einstein metric on X5 (or
equivalently, the Calabi–Yau metric on the singularity) explicitly, infinite countable families were found in
[GMSW04b, GMSW04a, GMSW04c, CLPP05, CLPP09]. One family contains Sasaki–Einstein manifolds
which are usually denoted Y p,q with q < p positive integers, and the second contains Sasaki–Einstein
manifolds denoted Lp,q,r with p ≤ q and r < p+ q with p, q, r positive integers. All these manifolds have
topology S2×S3. The corresponding Calabi–Yau cones are toric [MS06a, MS05], and the toric diagrams
of Y p,q and Lp,q,r are shown in Figure 8.2, following [FHM+06]. The Y p,q gauge theories were derived in
[MS06a, BFH+05], and brane tilings encoding the worldvolume theory on D3-branes at Y p,q and Lp,q,r

are given in [FHM+06].

Figure 8.2: The toric diagrams of the metric cones over Y p,q and Lp,q,r (with rk + ql = 1).

These infinite families of holographic dual pairs have been used to test and extend the AdS–CFT
dictionary. An important point is the volume minimization of [MSY06, BZ05] which is dual to the a-
maximization of [IW03]. The holographic dual to the central charge a of the CFT living on the boundary
of AdS5 ×X5 is the volume of X5:

a =
π3

4Vol(X5)
, (8.22)

and hence the gravity dual of a-maximization is the minimization of Vol(X5).

8.3 More general gauge–gravity correspondences

We have seen in the previous section that Maldacena’s original AdS–CFT correspondence could be
generalized to less supersymmetric setups by studying stacks of D3-branes at general affine toric CY3
singularities, in which case one obtains a duality between type IIB superstring theory on AdS5 × X5

with X5 some Sasaki–Einstein 5-manifold and a four-dimensional N = 1 conformal field theory. The
AdS–CFT dictionary related the geometry of X5 to field theoretic quantities of the CFT.

It is also of great interest to study generalizations of these AdS–CFT correspondences to non-conformal
setups. Then, the (non-conformal) gauge theory is dual to type IIB string theory in some background
which is not a direct product AdS5 × X5 but a more general warped geometry. Instead of referring
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to such dualities as AdS–CFT correspondences, one rather speaks of gauge–gravity dualities. A great
introduction to some techniques that can be used to study such correspondences is [Ber03].

Starting from a stack of N D3-branes at the singular point of a toric affine CY3 singularity, there are
different ways to break the conformal invariance of the worldvolume theory on the D3-branes. One can for
example add fractional branes, and since these are easily implemented in brane tilings we will concentrate
on this approach. Besides, most of these seemingly different ways to break conformal invariance are
mutually dual [Ber03].

8.3.1 Branes at the conifold and the duality cascade

We have reviewed the AdS–CFT correspondence between type IIB superstrings on AdS5×T 1,1 and a four-
dimensional N = 1 gauge theory with gauge group SU(N)1× SU(N)2, two fields A1 and A2 in ( 1, 2),

two fields B1 and B2 in ( 2, 1), and a superpotential given in Equation (8.18). The correspondence
is obtained by considering a stack of N D3-branes at the conifold in two different ways. The conifold
is the metric cone over T 1,1 ' S2 × S3, and hence there is one vanishing 2-cycle and one vanishing
3-cycle at the singularity, on which branes can be wrapped. In particular one can wrap a D5-brane on
the vanishing 2-cycle, equivalently described as a fractional D3-brane at the singularity. From the brane
tiling of Figure 8.1 one sees that the ranks of the two gauge groups can be chosen arbitrarily, i.e. there
is one independent fractional brane on the conifold, consistently with the analysis of Section 7.5.5.

Since fractional D3-branes are wrapped D5-branes, the 3-cycle dual to the 2-cycle in T 1,1 on which
the D5s are wrapped carries M units of R–R 3-form flux. If one considers N regular branes and M
fractional branes at the conifold in the limit N → ∞ with M fixed, one expects the geometry on the
gravity side of the correspondence to be the one corresponding to N regular branes at the conifold with
sub-leading corrections in M/N [KN00, KT00]. It is shown in [KN00] that the R–R 3-form flux through
the 3-cycle of T 1,1 induces a radial variation of the NS–NS 2-form potential:

B2 = eφf(r)ω2 , (8.23)

where ω2 is the volume form on the 2-cycle of T 1,1.
The gauge theory on the worldvolume of N regular and M fractional D3-branes at the singular point

of the conifold is the four-dimensional N = 1 gauge theory with gauge group SU(N+M)1×SU(N)2, two

fields A1 and A2 in ( 1, 2), two fields B1 and B2 in ( 2, 1), and the superpotential of Equation (8.18).
This quantum field theory does not flow to an interacting conformal fixed point anymore, and:

1
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− 1

g2
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(∫

S2
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1

2

)
, (8.24)

as emphasized in [KW98, MP99]. Hence:

The radial dependence of the NS–NS two-form B2 is (holographically) dual to the running of the
difference of the (inverse) gauge couplings along the renormalization group flow.

Near the conformal fixed point of the renormalization group flow one expects in the limit M/N → 0,
one has:
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and moreover:
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On the gravity side, the dilaton of type IIB supergravity is constant at leading order in 1/N . Taking
the R–R 0-form to vanish and the R–R 3-form field strength as induces by the presence of the fractional
D3-branes, one finds:

f(r) ∼M log(r/r0) (8.27)

at leading order in M/N [KN00] for the function f appearing in Equation (8.23). This reproduces the
logarithmic running of Equation (8.25).

Again another step was made in [KT00], where the supergravity solution corresponding to N regular
and M fractional D3-branes (with M � N) at the conifold was computed to all order in M/N , taking
into account the backreaction of the fluxes H3 and F3 on other fields. The main features of the Klebanov–
Tseytlin solution are that:
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• The dilaton field eφ = gs is exactly constant,

• The field strengths are F3 = Mω3 on the one hand, B2 = 3gsMω2 ln(r/r0) and H3 = dB2 =
3gsMr−1dr ∧ ω2 [KS00a],

• The ten-dimensional metric is:

ds2
10 = h−1/2(r)dx · dx+ h1/2(r)(dr2 + r2ds2

T 1,1) , (8.28)

with warp factor

h(r) = b0 + 4π
gsN + a(gsM)2 ln(r/r0) + a(gsM)2/4

r4
(8.29)

where a and b0 are constants,

• The F5 = dC4 +B2 ∧F3 = F5 + ?F5 flux of the supergravity solution acquires a radial dependence:

F5 =
(
N + agsM

2 ln(r/r0)
)

Vol(T 1,1) , (8.30)

i.e. the flux decreases as r becomes smaller, until some r = r̃ where the F5 flux vanishes. This was
dubbed RG cascade in [KS00a] since it implies that the ranks of the gauge groups in the dual gauge
theory decrease monotonically along the renormalization group flow.

As argued in [KS00a] one needs b0 = 0 in order to have the good behaviour in the UV, i.e. at large r.
This implies however that there is a naked singularity at some r = rs where h(rs) = 0. As r decreases,
the cascade must stop at r = r̃ since the rank of gauge groups cannot be strictly negative. The gauge
dual to the RG cascade is called duality cascade [KS00a, Str05], and it is well described in brane tilings
language, as displayed in Figure 8.3.

Figure 8.3: Two steps of the duality cascade.

Starting with the four-dimensional N = 1 gauge theory described by the brane tiling on the left of
this figure, the holomorphic beta functions for both gauge groups are

β1 ∝ N + 3M , β2 ∝ N − 2M , (8.31)

so that the first gauge group of rank N +M flows to strong coupling faster than the second, of rank N .
As the dynamical scale of the first gauge group one can use Seiberg duality to extend the description of
the RG flow in terms of another dual theory, which is presented in the middle of Figure 8.3. Then the
story repeats: one dualizes the gauge group SU(N) which flows to strong coupling faster than the one
of rank SU(N −M); this yields the brane tiling on the right of Figure 8.3, and so forth, and so on. If
one started with M fractional and N = kM regular D3-branes, the cascade brings the gauge theory to a
SU(2M)×SU(M) theory after some number of steps, and this theory is in turn dual to four-dimensional
N = 1 SU(M) super Yang–Mills theory with no chiral flavor, which is known to confine in the IR as we
have reviewed in Section 5.4.

The duality cascade is also well described in the type IIA picture of Seiberg duality, in the spirit of
the brane setups of Section 6.4. The worldvolume theory of N regular and M fractional D3-branes at the
conifold is described by N D4-branes on a circle with an NS5 brane and an NS5’ brane in perpendicular
directions, together with M open D4-branes streching between the NS5 and the NS5’.

0 1 2 3 4 5 6 7 8 9
D4 − − − − 0 0 − 0 0 0
NS5 − − − − − − × 0 0 0
NS5′ − − − − 0 0 × − − 0

(8.32)
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The backreaction of the D4-endpoints in the NS5 worldvolume bends the latter, because there are M
open D4-branes which create an unbalance on each side of the NS5 and the NS5’. Since both NS5 branes
extend in perpendicular directions the bending does not force them to intersect, however their positions
along the circle direction coincide at some point. This is interpreted as the fact that the gauge coupling
of the SU(N +M) gauge group diverges, since g−2

1 ∝ |x6
NS5 − x6

NS5′ |.
In order to remove this divergence one may move one of the NS5 brane around the circle once, in

the direction prescribed by the bending. Because of the Hanany–Witten effect this leaves N −M D4’s
wrapping the circle and M open D4’s streching between the two NS5 branes. Doing this over and over
again decreases the rank of each gauge group by N every two turns. This is depicted in Figure 8.4.

Figure 8.4: The duality cascade as seen from a IIA brane setup.

Something drastic might happen when the ranks of both gauge groups become of order M , and it
does [KS00a]: the space-time geometry is modified by the strong coupling dynamics of the gauge theory.
Studying the moduli space of a probe D3-brane one learns that the M fractional D3-branes deform the
geometry: the conifold is to be replaced by the deformed conifold, defined by:

z2
1 + z2

2 + z2
3 + z2

4 = ε2 , (8.33)

with ε = r
3/2
s : the naked singularity at r = rs is resolved.

The presence of the fractional branes on top of the regular ones induces an anomaly for the R-
symmetry of the gauge theory and only a Z2M non-anomalous R-symmetry is preserved. The gaugino
condensate in the super Yang–Mills theory determines the choice of vacuum among the M possible ones
and further breaks the R-symmetry to Z2: the chiral Z2M R-symmetry is spontaneously broken on the
moduli space. This chiral symmetry breaking is dual to the deformation of the geometry on the gravity
side of the correspondence: the U(1) isometry of the conifold (which is a gauge symmetry is supergravity)
is spontaneously broken to Z2M by the non-zero R–R 2-form C2. The deformation of the geometry further
breaks this discrete isometry group to Z2.

It is the fractional branes, i.e. the D5-branes wrapped on the vanishing 2-cycle of the conifold, which
have triggered a deformation of the latter in which the dual 3-cycle in T 1,1 has acquired a non-zero size,
of order

√
gsM [KS00a].

8.3.2 Fractional branes of different kinds

Studying the holographic duality induced by the presence of regular and fractional D3-branes at general
affine toric CY3 singularities yields a classification of fractional branes according to the low-energy dy-
namics they trigger, as review in [FHK+06]. Using the correspondence between fractional branes and
integer-value assignments to the ZZPs of the geometry as explained in Section 7.5.5, these different kinds
of fractional branes can be nicely characterized directly on the toric diagrams of the singularity.

• N = 2 fractional branes induce flat directions in the moduli space of the corresponding worldvol-
ume theories, on which the dynamics reduces to a four-dimensional N = 2 theory and can be de-
scribed with the associated Seiberg–Witten curve introduced in Section 5.6. In the dual supergravity
picture they lead to enhançon-like backgrounds [JPP00, BDVF+01, GKMW01, PRZ01, BBCC09].
The moduli along such a flat direction is a mesonic operator in the corresponding brane tiling which
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does not appear in the superpotential. It corresponds to a collection of faces forming a stripe, hence
giving rise to a closed loop in the dual quiver, which is the mesonic operator we are speaking of.
Only non-isolated affine toric CY3 singularities can host N = 2 fractional branes, in which case
there are at least two parallel ZZPs in any brane tiling corresponding to such a non-isolated singu-
larity. The N = 2 fractional brane defined by this pair of ZZPs corresponds to assigning the value
+1 to one of them and −1 to the other. An example of an N = 2 fractional brane at the affine
cone over PdP4 is displayed in Figure 8.5. The ZZPs are shown in red and blue, and the mesonic
operator which is the moduli on the N = 2 flat direction corresponding to this fractional brane
is the dashed black oriented path. Geometrically, N = 2 fractional D3-branes arise as D5-branes

Figure 8.5: An N = 2 fractional brane at PdP4 and the corresponding value assignment to the ZZPs.

wrapped on a vanishing 2-cycle at the non-isolated singularity which exist at every point along the
complex curve of singularities. In the case of non-isolated toric singularities, the latter is always
locally of the form C2/Zn for some n ≥ 2, which translates into the fact that the corresponding
toric diagram has an edge of its boundary with n− 1 internal points.

• Deformation fractional branes generalize the fractional branes on the conifold we have dealt
with: at low energy they trigger a deformation of the geometry in which the 3-cycle in the Sasaki–
Einstein manifold dual to the 2-cycle wrapped by these D5-branes wrap, acquires a non-zero minimal
size. Versal deformations of affine toric CY3 singularities have been studied in [Alt94]: there
is one possible deformation for each sub-web in equilibrium of the (p, q)-web corresponding to
the singularity (strictly speaking, this is only the case for isolated singularities). A sub-web in
equilibrium is a set of external legs in the (p, q)-web whose outgoing simple vectors sum to zero.
The deformation of the geometry can be understood in the R2 base of the T 2-fibration of the
geometry as in Section 7.4: given one such sub-web in equilibrium the deformation corresponds
to moving this sub-web in a direction transverse to base plane of the T 2 fibration. Under this
deformation a vanishing 3-sphere S3 at the singularity grows [Mar05]. An example of deformation
fractional brane at the singular point of the affine cone over dP2 is displayed in Figure 8.6. The
sub-quiver in a brane tiling corresponding to deformation fractional branes consists of decoupled
nodes and closed loops appearing in the superpotential of the dimer model. Many examples of
deformation fractional branes have been studied in [FHU05, FHSU06].

Figure 8.6: A deformation fractional brane at dP2 and the corresponding value assignment to the ZZPs.

• DSB fractional branes (DSB stands for dynamical supersymmetry breaking, as in Section 5.5)
are all the fractional branes which are not of the previous two kinds. In general the worldvolume
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theory on such fractional branes contain gauge groups of different ranks and bifundamental matter,
and the dynamics of at least one of these gauge groups develops an ADS-like superpotential at strong
coupling. This dynamical superpotential is runaway and hence if there are classical flat directions in
the moduli space, the theory does not admit stable vacua at finite distance in configuration space.
The constraints on the ZZP value assignments needed for N = 2 or deformation fractional branes
define sublattices of strictly positive codimension in the lattice of ZZP value assignments satisfying
the constraints of Equation (7.83), and hence a fractional brane is generically DSB [FHSU06].

Figure 8.7: A DSB fractional brane at dP2 and the corresponding value assignment to the ZZPs.

With view towards understand the low-energy dynamics of a gauge theory through the gauge gravity
correspondence, it is of interest to embed a given gauge theory in a duality cascade, obtained for example
by considering a large number N of regular D3-branes and M � N fractional branes of some type at
an affine toric CY3 singularity, i.e. a brane tiling with N regular and M fractional branes. The hope to
analyze and understand stable1 dynamical supersymmetry breaking from a dual supergravity perspective
has proved very difficult, since when the fractional branes are of DSB type the theory develops runaway
directions under the addition of regular branes [BHOP05, FHSU06, BBC05, IS06, BF06, AC07]. It is
therefore of interest to construct models exhibiting dynamical supersymmetry breaking on a deformation
fractional brane.

The gauge–gravity correspondence induced by regular D3-branes together with different kinds of
fractional D3-branes at affine toric CY3 singularities has also been studied [ABB+08], as well as duality
cascades and infrared dynamics at orientifolded singularities with or without fractional branes [IY02,
AB18]. In general, orientifolds break conformal invariance, just as fractional branes. They are interesting
objects to consider with views towards gauge–gravity correspondences, for as discussed at the end of the
previous chapter, they enrich a great deal the diversity of gauge theories that can be obtained on the
worldvolume of branes at singularities.

1Understanding metastable supersymmetry breaking from branes at singularities has also catalyzed much effort, see e.g.
[ABFK07a, ABFK07b, ABFK07c].
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∗ ∗ ∗ ∗ ∗ ∗ ∗

We have discussed the correspondence between type IIB superstrings on AdS5×S5 and N = 4 super
Yang–Mills, as well as two generalizations of great physical significance. One the one hand, one can obtain
a huge class of N = 1 AdS–CFT correspondences by considering D3 branes at affine toric CY3 singular-
ities. There are infinite families of the latter for which the explicit Calabi–Yau metric is known, which
allows for direct tests of these AdS–CFT correspondences. On the other hand, considering fractional
D3-branes together with regular ones breaks the conformal invariance of the world-volume theory. Such
non-conformal quiver gauge theories have a rich dynamics, described dually as warped throats solutions
of type IIB supergravity.

In the next part of this dissertation, we will address the following question: given some quiver gauge
theories of interest, which in our case will be the SU(5) and 3 − 2 DSB models, can they possibly be
engineered as the worldvolume theory of a deformation fractional brane at a toric affine CY3 singularity?
In fact, orientifold CY3 singularities hosting these theories are known since [FHK+07]. However, it was
shown more recently that all previously known such completions were actually always spoiling the stable
vacuum of the SU(5) and 3− 2 DSB models, ultimately because the corresponding singularities were not
isolated. Therefore, we will be interested in a refinement of the question of above: can the SU(5) and
3− 2 DSB models be engineered as the worldvolume theory of a deformation fractional brane at a toric
affine CY3 singularity satisfying come constraints (for example, that it is isolated)?

A negative answer to this question would point towards the possibility that these theories, and maybe
all DSB models, might be intrinsically incompatible with quantum gravity or at least some string theories.
Such a result would have tremendous implications, however it is also probably tremendously hard to
obtain in all generality. Nevertheless, a negative answer to our problematic would be a step towards such
a swampland theorem.

Conversely, a positive answer would provide an example of an implementation of such DSB models
on branes at singularities, and therefore prove that they can be UV-completed in string theory without
spoiling their DSB nature. Moreover, the obtained setup would open a window on the possibility of
describing dynamical supersymmetry breaking in terms of a dual gravitational theory.

We will be using dimer models extensively, for they are a very convenient tool to describe and work
with worldvolume gauge theories of branes at toric affine CY3 singularities.
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Since the early days of the AdS/CFT correspondence [Mal99, Wit98a, GKP98] and its non-conformal
extensions, the possibility of describing, holographically, supersymmetric gauge theories enjoying different
IR behaviors has been thoroughly investigated. This has been a rich and lively arena in the field and
remarkable results have been obtained in the last two decades. The correspondence between geometry
and gauge theory is particularly well understood in the case of 4d N = 1 gauge theories on D3-branes
probing toric Calabi-Yau (CY) 3-folds, for which the map is significantly streamlined by brane tilings
(equivalently known as dimer models) [HK05, FHK+06, FHM+06].

Orientifolds [Sag87, PS89, Hor89, DLP89, BS90, BS91] of such singularities are extremely interesting
for a variety of reasons. Among them, they expand the possible spectrum [GP96, DM96, FHK+07] (gauge
groups and matter fields representations), break conformal invariance [AB18], play an important role in
models with non-perturbative effects due to D-brane instantons [ABF+07, BFM07, BCKW09] and are
a key ingredient in certain models of phenomenological interest, including ones leading to metastable
dynamical supersymmetry (SUSY) breaking [ABFK07b].

While conformal phases, confinement, generation of a mass gap, Coulomb and Higgs-like branches and
more generally any supersymmetry preserving dynamics were reproduced in a plethora of examples, not
surprisingly (dynamical) supersymmetry breaking has proven to be much harder to achieve. Known exam-
ples describe supersymmetry breaking into metastable vacua (see [KPV02, FU06, ABFK07a, ABFK07b]
and many other constructions thereafter) or runaway behavior, where the theory breaks supersymmetry
dynamically but it does not enjoy a vacuum at finite distance in the space of field VEVs [BHOP05,
FHSU06, BBC05, IS06], very much like massless SQCD with a small number of flavors. No models were
known, until recently, that enjoy dynamical supersymmetry breaking (DSB) into stable vacua. This has
proven to be a harder problem to engineer with D-branes at singularities. This is partly due to the
scarcity of known gauge theories that display such a non-supersymmetric vacuum.

Finding models of this kind could be of great relevance both in the context of the gauge/gravity
duality and, even more interestingly, in string compactifications. In this latter setup they could be used
for model building in GKP-like constructions [GKP02]. Eventually, they might also have an impact on
the swampland program [Vaf05, BCV17, Pal19] and recent related conjectures such as [BGVU19].

Recently, a series of papers renewed the interest in models of D-branes at Calabi-Yau (CY) singularities
leading to dynamical supersymmetry breaking. This originated from [FHK+07] where an existence proof
for a possibly stable DSB model obtained by considering fractional branes at orientifold singularities was
given. These results were generalized in [ABMP19], where it was shown that a large class of orientifolds
admit fractional D-brane configurations realizing some of the most popular and simple DSB models,
namely the incalculable SU(5) [ADS84] and/or 3− 2 [ADS85] models.

In this same work [ABMP19], however, by generalizing previous results of [BGVU19], it was shown
that in the decoupling limit [Mal99], in which the DSB fractional D-brane bound state becomes part of
a UV complete large N D-brane model and gravity is decoupled, all models display an instability. This
instability turned out to have a common, model-independent geometric origin in terms ofN = 2 fractional
branes probing the singularity.2 More drastically, a no-go theorem was proven in [ABMP19] which implies
that whenever N = 2 classical flat directions exist at a singularity which admits such DSB models, the
quantum behavior of the latter is such that the flat directions are tilted and supersymmetry preserving
vacua exist. All of this was mounting evidence for what could be interpreted as the impossibility of
engineering stable DSB with D-branes at singularities.

An obvious way to circumvent this no-go theorem and avoid the unwanted slide towards supersym-
metric vacua is to look at singularities free of N = 2 fractional branes to start with, and see whether
stable DSB models of the type above can be engineered there. Or, alternatively, a stronger no-go theorem
should exist which excludes such a possibility altogether. This is what we will be concerned with in this
part of the manuscript3. More precisely, our main goal will be to answer the following question:

Is it possible to get a DSB model, more specifically the SU(5) or the 3-2 models, from
D-branes at a Calabi-Yau singularity which is free of any (known) instability?

In more dramatic words, could stable DSB be in the swampland? Quite surprisingly, the answer will
be affirmative! In this part of the dissertation we argue that stable DSB is still in the landscape.

2N = 2 fractional branes arise whenever a Calabi-Yau singularity can be partially resolved to display, locally, a non-
isolated C2/Zn singularity and a Coulomb-like branch associated to it.

3In the same vein as in [FHK+07, BGVU19, ABMP19], we will not consider configurations where non-compact flavor
branes are added. We note that metastable DSB can be engineered in this way [FU06], and further investigating if stable
DSB is possible in these constructions is an interesting problem that we do not address here.
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In Chapter 9 we will first carry out a comprehensive investigation that shows that in the minimal
realizations of the SU(5) and 3-2 models at orientifolds of singularities, the instability associated to N = 2
fractional branes is unavoidable. Remarkably, this result ties the ability to engineer these models to basic
geometric features of the underlying singularity: the presence of non-isolated C2/Zn singularities. This is
yet another example of the connection between geometry and features or dynamics of the corresponding
quantum field theories, such as e.g. confinement and complex deformations [KS00a] or runaway DSB
and the absence of complex deformations [BHOP05, FHSU06]. These general results will then guide our
search of models without instabilities. We will show that a simple variant of the SU(5) model, that
we dub twin SU(5), can be realized as a local structure which does not directly imply the presence of
N = 2 fractional branes. This lets one hope for a possible implementation of the twin SU(5) model on a
configuration of branes at the orientifold of an isolated toric CY3 singularity. Our analysis, which is done
exploiting dimers techniques [FHK+06, FHM+06], relies also on results obtained in [ABF+21a], where a
thorough investigation of consistent, anomaly free, D-brane models at orientifold singularities has been
performed.

In Chapter 10 we will introduce combinatorial tools known as triple diagrams that will be of great
help to build dimer models satisfying symmetry constraints and containing the substructure hosting the
twin SU(5) model. Using these methods it is possible to construct phases of worldvolume theories on
D3-branes at isolated singularities which admit an orientifold projection with a diagonal fixed line in the
brane tiling, and with the required substructure. We will present two examples of such dimer models,
hence showing in a direct way that the twin SU(5) model can be implemented at isolated singularities.
However, these orientifold theories are always plagued with gauge anomalies. This called for a general
analysis of gauge anomalies in orientifolds of brane tilings, in order to understand when it is possible to
expect to obtain consistent quantum gauge theories in this way.

The ranks of the gauge groups on theories realized at D-branes at a singularity correspond to num-
bers of (wrapped) D-branes in the configuration. Roughly speaking, the cancellation of local anomalies
in the gauge theories correspond to the cancellation of tadpoles in the string construction [LR99, BM00].
When orientifolds are included, in some cases anomaly cancellation can only be achieved upon the ad-
dition of non-compact flavor D7-branes (see e.g. [FHK+07, BIMRP14, FRU15, AB18]), which give rise
to (anti)fundamental matter, but there are instances where it is possible to cancel the anomalies even in
the absence of extra flavors [FHK+07] (see e.g. [PRU00b, BBMR20] for some further examples).

Chapter 11 is devoted to the study of anomalies in gauge theories coming from D-branes at orientifolds
of toric singularities, in the absence of flavor branes. We will introduce a new geometric algorithm for
constructing anomaly-free theories and identify geometric criteria for the existence of such solutions.
Remarkably, our results allow us to determine whether an orientifold singularity can admit anomaly-free
D-brane gauge theories just by analyzing its geometric structure and avoiding any case-by-case analysis,
which has been so far the only known approach for this class of theories. This geometric criterion is
therefore a new addition to the list of connections between the geometry of singularities and general
properties of the resulting gauge theories, some of which were mentioned above.

The results of Chapter 11 are then used to further refine our search for isolated singularities hosting
the twin SU(5) model and without gauge anomalies. Building on the techniques of Chapter 10 we will
show in Chapter 12 that the twin SU(5) can be realized by D-branes at an orientifold of a toric CY,
the Octagon. This provides a counter-example to what could have been conjectured, namely that DSB
models were possible only in singularities admitting N = 2 fractional branes, and hence, following the
no-go theorem presented in [ABMP19], unstable towards supersymmetric vacua.

While we do not prove nor exclude the existence of other, more involved models sharing the same
properties, the example we provide shows that stable DSB can be engineered by brane configurations
at CY singularities. Given the implications that this might have in different contexts, including im-
provements in our understanding of the string landscape and the swampland, it is worth investigating
these D-brane constructions further. On a more technical side, the results presented here as well as in
[ABF+21a] show, once again, the power of dimer techniques in understanding the properties of D-branes
and more generally string theory at CY singularities.

The results presented in this part were obtained during my PhD in collaboration with Riccardo
Argurio, Matteo Bertolini, Sebast́ıan Franco, Eduardo Garćıa Valdecasas, Shani Meynet and Antoine
Pasternak. They were published in [ABF+21b, ABF+21c, ABF+21a] – this is the content of Chapters 9,
11 and 12, while the tools and techniques of Chapter 10 were presented in [Tat21].



Chapter 9

Dynamical Supersymmetry Breaking
on branes at toric affine CY3

The study of D-branes at singularities (and in particular affine toric CY3 singularities) provides very
fruitful extensions of the original AdS–CFT correspondence, as we have reviewed in Chapter 8. It is
particularly interesting to consider fractional branes on top of regular branes, since they lead to rich
dynamics at low energies. The DSB models that we have presented in Section 5.5 are fascinating theories
with a low-energy dynamics of theoretical and phenomenological interest, and it is natural to wonder
whether they can be obtained as the worldvolume theory on a bound state of branes at a singularity.

This question finds echo in the swampland program: are DSB models compatible at all with quantum
gravity? A full answer to this would have tremendous implications. Even partial answers such as a
proof that it is impossible to implement some known DSB models, or on the contrary showing that an
explicit model hosting a DSB model exist, would be of great theoretical interest, both in the context of
branes at singularities where holographic dualities are at their cleanest, and in the context of true string
compactifications, in order to build phenomenological models.

In Section 9.1.1 we present some of the first examples of brane tilings hosting either the SU(5) or
the 3− 2 models, that were provided in [FHK+07]. Many more such examples were given in [ABMP19].
However it was shown in [BGVU19] that the UV completion of such DSB models provided by one of
these brane tilings actually spoiled the dynamical breaking of supersymmetry, ultimately because the
corresponding singularity was not isolated. This was generalized into a no-go theorem in [ABMP19],
proving that it is never possible to obtain stable DSB vacua on the worldvolume of bound states of
branes at non-isolated singularities. We will review this in Section 9.1.2.

Then, we study possible brane tiling implementations of the SU(5) model in Section 9.2, and of the
3 − 2 model in Section 9.3. We will see that all cases imply the presence of N = 2 fractional branes at
the singularity, i.e. that the singularity is not isolated, but one. This last case is a hexagonal cluster of
faces sitting on an orientifold fixed line, which host a twin version of the SU(5) model. Moreover, this
hexagonal cluster should belong to a deformation fractional brane and not a DSB fractional brane, in
order to ensure the low-energy stability of the theory on the worldvolume of this fractional brane. We
can thus wrap-up the results of this chapter as follows:

The only possible way to embed either the SU(5) or the 3 − 2 models in brane tilings, without the
instability that the presence of N = 2 fractional branes creates, is to have a (consistent) dimer model
containing the hexagonal cluster of interest on a deformation fractional brane, such that there exist
an orientifold projection of the brane tiling with a fixed line going through the hexagonal cluster.
The orientifold of this dimer model with the good fixed line hosts a twin version of the SU(5) DSB
model.

This chapter consists of all of [ABF+21b] but the last section, the presentation of which we defer to
Chapter 12.

241
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9.1 Introduction

9.1.1 Review of previous implementations of DSB models in brane tilings

The matter fields in orientifolds of dimer models can be either in bifundamental representations of the
gauge groups, or in (anti)symmetric representations, i.e. they sit in tensor representations of rank at
most 2. If DSB models are to be UV completed in orientifolds of dimer models, it is hence natural to
restrict to the study of the SU(5) and 3− 2 models, whose matter fields are in tensor representations of
rank at most 2 of the gauge groups.

The first examples of such orientifolds of brane tilings were presented in [FHK+07]. Let us for example
consider a brane tiling corresponding to the affine toric CY3 singularity C3/Z′6, where the generator
ζ = exp(2πi/6) of Z′6 acts on the coordinates of C3 as

ζ : (z1, z2, z3) −→ (ζz1, ζ
2z2, ζ

−3z3) . (9.1)

We follow the presentation of [ABMP19].
The brane tiling of our interest in depicted in Figure 9.1. It admits an orientifold projection with four

fixed points, also displayed on the figure as the four red crosses.

Figure 9.1: The brane tiling of C3/Z′6 hosting the SU(5) DSB model after orientifold.

The orientifold theory described by the brane tiling of Figure 9.1 has gauge group SO(N0)×SU(N1)×
SU(N2)×USp(N3) and matter content:

X1 = ( 0, 1) , X2 = ( 0, 2) , X3 = ( 0, 3) ,

Y1 = ( 0, 3) , Y2 = ( 2, 3) , Z1 = ( 1, 2) , Z2 = ( 1, 2) ,

W = ( 1, 2) , A = 2 , S = 1 . (9.2)

The anomaly cancellation conditions for the two unitary gauge groups both read

N0 +N1 −N2 −N3 + 4 = 0 . (9.3)

The quadruplet (N0, N1, N2, N3) = (1, 0, 5, 0) is a solution of this anomaly cancellation condition, and
the corresponding theory corresponds to the quiver depicted on the left of Figure 9.2.

Figure 9.2: Quivers for the SU(5) and 3− 2 DSB models.

Another interesting solution of the anomaly cancellation condition is (N0, N1, N2, N3) = (1, 0, 3, 2),
in which case one finds the quiver on the right of Figure 9.2. Since USp(2) = SU(2) and since the
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antisymmetric representation of SU(3) is also the antifundamental one, one finds a gauge theory with
gauge group SO(1)× SU(3)× SU(2), matter content

X2 = ( 0, 2) , X3 = ( 0, 3) , Y2 = ( 2, 3) , A = 2 = 2 , (9.4)

and superpotential
W = X2Y2X3 , (9.5)

i.e. it is exactly the 3− 2 DSB model.
Hence the C3/Z′6 singularity with the orientifold projection described above is particularly interesting,

since there is an anomaly-free rank assignment which yields the SU(5) DSB model, and another, the 3−2
DSB model.

The PdP4 singularity is studied as well in [FHK+07, ABMP19]; it also hosts both the SU(5) and
the 3 − 2 DSB models. Many more singularities were studied in [ABMP19], and it was shown that an
important fraction of them implement either the SU(5) model, or the 3− 2 model, or both. They can be
engineered by bound states of fractional D3-branes which can arise at the end of complicated RG-flows
(often described by a duality cascade [KS00a]) or on the N = 4 Coulomb branch of regular D3-branes,
depending on the singularity structure. However, each of the ones hosting at least one of the two DSB
models is non-isolated. Equivalently, they admit N = 2 fractional branes. The latter are related to a
partial resolution of the singularity displaying a non-isolated C2/Zn singularity and an N = 2 Coulomb
branch associated to it. We will review in the next section how this destabilizes the DSB vacuum, hence
spoiling the hope to construct a stable supersymmetry breaking vacuum on branes at these singularities.

Before that, let us remark that this piece of evidence, together with a exhaustive scan of all dimer
models with at most eight faces (as listed in [FHSX17]), led to the conjecture that the SU(5) and 3−2 DSB
models can only exist on branes at non-isolated singularities without flavor D7-branes, and furthermore
that it is impossible to engineer DSB models in this way [ABMP19]. The goal of this chapter and the next
three is to show that this intuition turns out to be wrong, since an explicit dimer model corresponding to
an isolated singularity and hosting a twin version of the SU(5) model on a deformation fractional brane
was constructed and presented in [ABF+21b, ABF+21c].

Now that we know that such a model can be obtained, it might as well be possible to implement
such DSB models in brane tilings more easily if one allows for flavor D7-branes, described for example in
[Yam08]. We might as well have embraced this option from the start; considering brane tilings without
D7-branes was a working hypothesis more than a physical-motivated assumption. Nevertheless, this
parsimonious approach – now that we know that a model without flavor D7-branes exists, lets one hope
for less complicated, cleaner geometric duals in the context of gauge–gravity correspondences, if possible
at all to tackle such questions.

9.1.2 N = 2 Fractional Branes Decay

The swampland program that we alluded to at the end of Section 7.2 has been widely used to constraint
phenomenological string models. In particular, applying a refined version of the Weak Gravity Conjecture
of [AHMNV07] to the near horizon limits of systems of branes led to the conjectural statement that stable
non-supersymmetric AdS vacua are incompatible with Quantum Gravity [OV17]. This was shown to be
in agreement with the study of decays of non-supersymmetric AdS vacua in string theory via bubbles of
nothing [OS17].

A local statement of this conjecture was proposed in [BGVU19], motivated by the study of the near-
horizon limit of branes at singularities. A system of N regular and M fractional D3-branes at a toric affine
CY3 singularity Y6 which is the metric cone over a five-dimensional compact Sasaki–Einstein manifold
X5, yields a near-horizon geometry of a warped form generalizing Equation (8.28):

ds2 = h−1/2(r)dx · dx+ h1/2(r)[dr2 + r2ds2
X5

] , (9.6)

at least asymptotically since more drastic behaviors can happen near the tip of the throat, as in [KS00a].
This background is locally AdS in the sense that it is arbitrarily close in r to an AdS5 ×X5 background,
but with the AdS radius varying in r. The local anti de Sitter – Weak Gravity Conjecture (AdS–WGC)
of [BGVU19] is that in consistent theories of quantum gravity, stable non-supersymmetric solutions with
asymptotics given by local AdS backgrounds defined above are forbidden. In particular, the existence of
a warped throat with asymptotic metric as in Equation (9.6) and such that near the tip of the throat the
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geometry breaks supersymmetry in a stable way1, translating the stable dynamical breaking of super-
symmetry in the dual gauge theory, is forbidden by the local AdS–WGC.

Evidence for the latter was provided by considering known configurations of regular and fractional
D3-branes at toric affine CY3 singularities:

• If one considers N regular and M deformation fractional branes at an affine toric CY3 singularity,
in the supergravity limit M � N → ∞ the classical singularity at the tip of the warped throat
is resolved by the growing of the 3-cycle dual to the 2-cycle on which the fractional branes are
wrapped as in [KS00a, FHU05]. The background preserves supersymmetry, and hence it does not
contradict the AdS–WGC.

• When the M fractional branes are of DSB type, the deformation of near the tip of the throat dual
to the strong coupling dynamics of the worldvolume theory cannot preserve supersymmetry, and
hence the local AdS–WGC predicts that these warped throats are unstable. Consistently with this
conjecture, plenty of evidence has been built showing that the would-be DSB vacuum in these cases
is actually unstable [FHSU06, BHOP05, BBC05, IS06, AC07].

A last class of examples considered in [BGVU19] is of particular interest to us, and we now quickly
review the argument. Let us consider the dimer model presented in Figure 9.1 and corresponding to
the singularity C3/Z′6. We have seen that the rank assignment (N0, N1, N2, N3) = (1, 0, 5, 0) satisfies
the anomaly cancellation condition of Equation (9.3), which can be equivalently stated at the anomaly
of compact RR tadpoles at this singularity and with the corresponding choice of fractional branes and
orientifold plane. The theory described by this rank assignment is the SU(5) DSB model, which is believed
to break supersymmetry dynamically in a vacuum at which the scalar potential is of order |Λ|4, where Λ
is the strong coupling scale of the SU(5) gauge group.

In order to embed this model in a locally AdS warped throat one adds N � 1 regular D3-branes at the
singularity, so that the gauge group of the theory becomes SO(N+1)×SU(N)×USp(N+5)×SU(N). The
DSB sector of this theory, which contains both the orientifold plane together with O(1) fractional branes,
is sub-leading in 1/N and hence the supergravity dual to the large N limit of this theory is expected to be
of the form AdS5×X5 at leading order, where X5 is an orientifold of the S5/Z′6. When sub-leading 1/N
effects are taken into account, the strong coupling dynamics of the gauge theory triggers a dynamical
breaking of supersymmetry, hence yielding a non-supersymmetric locally AdS warped throat. Motivated
by the local AdS–WGC, the authors of [BGVU19] have found a new mechanism implying that the DSB
vacuum of the low-energy SU(5) theory is actually unstable and hence cannot be used as a way to do
de Sitter uplifts in flux compactifications, in place of anti D3-branes as proposed in [RU16a], in the spirit
of the construction of [KKLT03].

The moduli space of bound states of regular and fractional D3-branes at singularities always contain
a so-called N = 4 Coulomb branch, which corresponds to the displacement of regular D3-branes away
from the singular point. The bubble-of-nothing instabilities of [OS17] would correspond to instabilities
of the supersymmetry-breaking vacuum of the SU(5) model along this N = 4 Coulomb branch, however
the running of the holomorphic couplings in the UV SU(N +5) theory and in the IR SU(5) theories read:

8π2

g2
SU(N+5)(µ)

=

[
3(N + 5)− 1

2
(6N + 4)

]
ln

(
µ

ΛUV

)
= 13 ln

(
µ

ΛUV

)
, (9.7)

8π2

g2
SU(5)(µ)

=

[
15−

(
1

2
+

3

2

)]
ln
(µ

Λ

)
= 13 ln

(µ
Λ

)
, (9.8)

since the fields do not acquire anomalous dimensions at the superconformal fixed point, because C3/Z ′6
is an orbifold of C3, and hence the gauge theory is an orbifold projection of N = 4 SYM.

Assuming that the Higgsing of the gauge theory inducing the breaking SU(N + 5) → SU(5) occurs
at a scale v, and matching the above two expressions at µ = v, yields Λ = ΛUV. This implies that the
DSB brane sector does not exert any force on the regular branes at the singularity, and hence that the
low-energy SU(5) DSB theory is stable along the N = 4 Coulomb branch.

Now, the story is different along the so-called N = 2 Coulomb branch of the worldvolume theory on
the bound state of branes at the tip of C3/Z′6. This singularity is non-isolated; in particular there is
a complex line of C2/Z2 singularities going through the singular point. Fractional N = 2 branes can

1The local AdS–WGC does not forbid meta-stable supersymmetry breaking warped throats.
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Figure 9.3: Two N = 2 strips in the dimer model of the C3/Z′6 singularity.

move along this complex line of singularities, and the displacement along this line is parameterized by
the corresponding strip operator in the dimer model, characteristic of N = 2 fractional branes.

As we have seen in Chapter 8, N = 2 fractional branes correspond to sides of the toric diagram
which have lattice points in their interior. A side with n interior points corresponds to a line of C2/Zn+1

singularities going through the tip of the Calabi–Yau cone.
In the case of the brane tiling corresponding to the C3/Z′6 singularity as before and displayed once

more on the left of Figure 9.3, the two colored strips are N = 2 fractional branes. They correspond
to the two zig-zap paths drawn in red and reproduced on the toric diagram, on the right of the same
figure. These N = 2 fractional branes are of particular interest since they are preserved under the
orientifold involution, and hence they project to two N = 2 fractional branes in the orientifold theory.
Each fractional brane corresponds to a mesonic operator represented as a closed path in the quiver dual
to the dimer model. Let v and v′ be the vacuum expectation values of these mesonic operators. The
N = 4 Coulomb branch of the theory is parameterized by v = v′, while the N = 2 Coulomb branch is
parameterized by arbitrary values of v and v′.

Assuming that v � v′, this choice of vacuum expectation values lead to the following Higgsing pattern:

SO(N + 1)× SU(N)× SU(N + 5)×USp(N)
v // SO(1)× SU(N)× SU(5)×USp(N)

v′ // SO(1)× SU(5) . (9.9)

Let gSU(N+5), gSU(5)N and gSU(5) be the respective holomorphic gauge couplings of the SU(N + 5)
gauge group at scales µ � v, of the SU(5) gauge group at scales v � µ � v′ and of the SU(5) gauge
group at scales v′ � µ. Let also ΛUV, ΛN and Λ be the respective strong coupling scales of these gauge
groups. The running of these couplings with the scale are:

8π2

g2
SU(N+5)(µ)

=

[
3(N + 5)− 1

2
(6N + 4)

]
ln
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µ

ΛUV

)
= 13 ln
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µ

ΛUV

)
, (9.10)
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Scale matching at µ = v yields the relation Λ13−2N
N = v−2NΛ13

UV and at µ = v′, the relation Λ13−2N
N =

(v′)−2NΛ13. Hence:

Λ13 =

(
v′

v

)2N

Λ13
UV . (9.13)

Contrarily to what happens on the N = 4 Coulomb branch, one sees that on the N = 2 Coulomb branch
the DSB sector exerts a force which tends to minimize Λ by bringing v′ to zero while keeping v at a finite
value. This effect destabilizes the supersymmetry breaking vacuum. Hence, the UV completion of the
SU(5) DSB model via the orientifold of the brane tiling displayed on the left of Figure 9.3 in a warped
throat is unstable, which goes along the line with the local AdS–WGC.
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The same reasoning holds as one considers the way to obtain the 3 − 2 DSB model in the same
orientifold of the C3/Z′6 singularity that we have described in the previous section, and it was shown
in [ABMP19] that it is in fact completely general. Let us consider a DSB model which emerges in the
decoupling limit of a vacuum configuration of a (possibly intricate) system of regular and fractional D-
branes, with the vacuum energy depending on the VEVs of the scalar fields. The N = 4 Coulomb branch
is parameterized by regular branes. If an N = 2 fractional brane direction exists, there is in addition
an N = 2 Coulomb branch. By scale matching, one can show that the energy of the supersymmetry
breaking vacuum is related to the strong coupling scale Λ of the SU(5) or SU(3) × SU(2) gauge groups
as follows2

Evac =

(
v′

v

)α
Λ , α ∈ R , (9.14)

where the exponent α is given by a ratio of beta functions and v and v′ are the VEVs on the Coulomb
branches associated to the N = 2 fractional brane and its complement, respectively. Fractional branes
are defined modulo regular branes, so that a fractional brane and its complement combine into a regular
brane. The case v = v′ then corresponds to the N = 4 Coulomb branch.

From Equation (9.14), it follows that on the N = 4 Coulomb branch the vacuum energy equals Λ and
the supersymmetry breaking vacuum is hence preserved. On the N = 2 Coulomb branch, instead, where
v 6= v′, the vacuum energy relaxes to 0, with a moduli space parametrized by v at v′ = 0 or vice-versa,
depending on the sign of α. Geometrically, this corresponds to a supersymmetric configuration described
by the N = 2 fractional branes associated to v located at a finite distance along the non-isolated C2/Zn
singularity describing its Coulomb branch, and their complement sitting at the origin.

The only possibility for evading this decay mechanism of the supersymmetry breaking vacuum is that
α = 0. Using some basic properties of Calabi-Yau’s and the fact that fractional branes are described by
a non-conformal field theory at low energy, it is shown in that α 6= 0 [ABMP19]. The upshot is that all
DSB D-brane models constructed in [BGVU19, ABMP19] are actually unstable since, as anticipated, all
of them admit N = 2 fractional branes. At most they can be metastable.

Let us schematically discuss what occurs to the gauge theory in this process. We denote G���SUSY the
SUSY breaking model, namely its gauge group (and possibly flavor group), matter fields and interactions.
When N regular D3-branes are added, the SUSY breaking sector extends to

G���SUSY
+ N regular−−−−−−−−−→

branes
G���SUSY+N ×G′N , (9.15)

where G���SUSY+N indicates that the ranks of the gauge and flavor groups are increased by N . G′N denotes
the theory associated to the complement. The subindex indicates that all gauge groups in this sector
have rank N . In addition, there is matter connecting the G���SUSY+N and G′N sectors. Along the N = 2
Coulomb branch, the theory is higgsed down to

G���SUSY+N ×G′N
v 6= v′−−−−−→ G���SUSY ×G′N , (9.16)

We are left precisely with the original SUSY breaking theory of interest, but now coupled to G′N . This
extension of the theory spoils supersymmetry breaking.

The only way to avoid this decay mechanism is to look for singularities that admit supersymmetry
breaking D-brane configurations and are free of local C2/Zn singularities. Whether such geometries exist
or not was an open question at the time of [ABMP19]. Answering this question has been one of the main
motivations for the work presented in this chapter and the next three. The remainder of this chapter
consists of the study of substructures of brane tilings that can possibly lead to the SU(5) or 3−2 models,
and whether they require the presence of N = 2 fractional branes, or not.

9.1.3 Holes in brane tilings and zig-zag paths

To conclude this introduction we present a technical argument forbidding the presence of holes of reduced
rank inside a specific sub-dimer. We will use this result below to rule out different twin models. We rely on
ZZP techniques for anomaly cancellation developed in [ABF+21a, But06] and reviewed in Section 7.5.5.
One associates a value vi to every ZZP in the dimer and then assigns an arbitrary rank to a given face

2In the 3-2 model, Λ refers to the scale of the gauge group factor, either SU(3) or SU(2), that dominates the dynamics.
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in the dimer. The remaining ranks are set by requiring that the rank differences between two adjacent
faces m,n obey Nm −Nn = vi − vj where i, j are the ZZP separating them.

Consider a ring-shaped sub-dimer of rank N +O(1). We assume that as we go along it, from one of
its faces to another, we only cross edges with identical orientation, see Figure 9.4a. We now show that
the region inside the ring, the “hole”, is inconsistent if of reduced rank.

(a) (b)

Figure 9.4: (a) Generic ring of rank N +O(1) surrounded by faces of rank O(1) with a hole of rank O(1).
(b) Face 2 edges with zig-zag paths.

Consider a face of the ring, as face 2 in Figure 9.4b. The intersections between the ZZP 1, 2, 3 and 4
yield

N1 −N2 = v1 − v2 ∼ 0 , N2 −N3 = v4 − v3 ∼ 0 , (9.17)

where ∼ means “equal up to O(1)”. Since the hole is supposed to be of rank O(1), the intersections with
Zig-Zags that separate it from the ring give

N ∼ v2 − vd, −N ∼ vd − v4, ⇒ v2 ∼ v4 . (9.18)

Changing the number of edges between face 2 and the hole can only be done by adding/removing pairs
of edges and will not change the fact that

v1 ∼ v2 ∼ v3 ∼ v4 and vd ∼ v1 −N , (9.19)

where vd is understood as any ZZP that comes with the pair of edges added between the hole and face
2. One can repeat the reasoning for every face of the ring and find that its internal edges will be always
produced by ZZP ∼ v1. This is in contradiction with the presence of ZZP vd ∼ v1−N since there are only
ZZP ∼ v1 entering the hole. It implies that vd is circular or not present. The first option is forbidden in
dimer models and the second spoils the presence of the hole itself. Hence the presence of an anomaly-free
hole inside such a ring is inconsistent.

As a comment, let us notice that to reach this conclusion we did not assume anything about the
exterior of the ring. If one does not look at the hole but asks that the exterior has a reduced rank, it
implies that ZZP va on its border, see Figure 9.4b, will satisfy

va ∼ v1 +N ∼ v3 +N , (9.20)

and thus we recover the result of Equation (9.18) using Equation (9.17). Again, it can be shown that
this result does not depend on the number of edges in contact with the exterior of the ring. The cluster
(hexagonal or otherwise) is now viable only with ranks N +O(1), because it is made only of ZZP ∼ v1.

9.2 SU(5) Models

Let us first consider the SU(5) model. This theory has an SU(5) gauge group and one GUT-like chiral

family ⊕ . The presence of the antisymmetric representation implies that if one wants to engineer such
a model by D-branes at a CY singularity, an orientifold projection with non-empty fixed locus is necessary.
Moreover, one has to consider two gauge groups in order to get the antifundamental representation ,
which can be generated by either an SU(1) or an SO(1) flavor group [ABMP19].
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Using the dimer formalism, there are three classes of orientifolds which possibly lead to chiral fields
in antisymmetric representations of the gauge groups, depending on whether they have fixed points, a
single fixed line or two fixed lines [FHK+07]3. We will analyze them in turn.

9.2.1 Fixed Point Orientifolds

Let us remind that fixed point orientifolds are associated to dimers which enjoy a point reflection.

As we now review, we not only need a fixed point on one edge of the SU(5) face, but a second fixed
point is needed to avoid anomalies in the face providing the (anti)fundamental matter field.

The first possibility is to directly avoid the anomaly in the flavor group by having it SO or USp. USp
is ruled out since it would give always an even number of antifundamentals, hence more than one. We
are then left with SO(1).

• SO flavor group

Figure 9.5 shows the generic structure of a local configuration of a dimer leading to the SU(5)
model, including the signs for the two relevant fixed points. The dotted lines and nodes represent
a completely general configuration for the rest of the dimer, only constrained by its compatibility
with the point reflections. The blue dotted line indicates that it is possible to choose the unit
cell such that the two fixed points live on one of the four segments that form its boundary. This
comment will be relevant later.

× × × 
1 1’ 2 2 

+ + - 

Figure 9.5: Fixed point orientifold realizing the SU(5) model with SO(1) flavor group. The dotted part
of the graph indicates the rest of the dimer, which is completely general and not necessarily hexagonal
as shown.

Assigning arbitrary ranks to the gauge groups, Ni for face i in the dimer, the anomaly cancellation
conditions (ACC) have a solution in which N1 = N1′ = 5, N2 = 1 and the rest of the faces are
empty.4 This choice leads exactly to the SU(5) model. Face 1 becomes the SU(5)1 gauge group.
Since face 2 has a fixed point with a positive sign on top of it, becomes the SO(1)2 flavor group.

A second possibility is that the flavor group is of SU type, with its anomaly (when regular branes are
added) being canceled by the presence of symmetric matter on a different edge of the face.

• SU flavor group with symmetric

Figure 9.6 shows the local configuration of a dimer leading to another realization of the SU(5)
model in a fixed point orientifold. Once again, the ACC have a solution in which N1 = N1′ = 5,
N2 = N2′ = 1 and the rest of the faces are empty. The resulting theory is the SU(5) model, plus
a decoupled singlet corresponding to the symmetric associated to the edge between face 2 and its
image.

Note that the SU(1) group has no anomaly, but the symmetric is necessary to cancel the anomaly
when all the ranks are increased by N (corresponding to the addition of N regular D3-branes which

3Z2-involutions of the dimer without fixed loci will be studied in Chapter 13.
4Of course whether the ACC of the empty nodes are also satisfied depends on the details of the boundary of the cluster

of faces under consideration. This observation also applies to the examples that follow.
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× × × 
1 1’ 2 2’ 

+ + - 

Figure 9.6: Fixed point orientifold realizing the SU(5) model with SU(1) flavor group.

populate the dimer democratically). By construction, the additional (white) faces with rank N will
not contribute to the anomaly. In order to cancel the N + 5 antifundamentals coming from face 1,
we need to have a symmetric of SU(N + 1) at face 2. It reduces to a decoupled singlet when N = 0.

A third possibility is that the flavor group is of SU type, and its anomaly (when regular branes
are added) is canceled by 5 fundamentals attached to an SO(5) group. This configuration is shown in
Figure 9.7. The low-energy theory of this configuration is an SU(5) model together with a decoupled
SO(5) SQCD with one flavor. The latter theory develops an ADS superpotential [ADS85], so that we
have a runaway behavior (on top of the DSB of the SU(5) model), and hence no true vacuum. We thus
discard this possibility since it is already unstable at this low-energy field theory level.

× 
3 

+ × 
1 1’ 2 2’ 

- × 
3 

+ 

Figure 9.7: Fixed point orientifold realizing the SU(5)1 model with SU(1)2 flavor group and an additional
SO(5)3 factor. SO(5)3 develops an ADS superpotential and leads to a runaway behavior.

A fourth possibility is that the flavor group is again of SU type, but now its anomaly is canceled by
the presence of a replica of the SU(5) group with its own antisymmetric. We will call this possibility twin
SU(5) model.

• SU flavor group with twin SU(5)

Figure 9.8 shows the local configuration of a dimer leading to yet another realization of the SU(5)
model in a fixed point orientifold. The ACC have a solution in which N1 = N1′ = 5, N2 = N2′ = 1,
N3 = N3′ = 5 and the rest of the faces are empty. The resulting theory corresponds to two SU(5)
models sharing one and the same SU(1) flavor group which provides their (anti)fundamentals.
Since SU(1) is actually empty, and in any case no chiral gauge invariants can be written for each
SU(5) model, the twins are effectively decoupled and thus their low-energy dynamics is completely
independent.

In principle, we could go on with further possibilities. Indeed, the anomaly of the second SU(5)
gauge group at face 3 can be canceled with a fundamental, instead of an antisymmetric. The simplest
possibility is that the fundamental is attached to an SO(1) face, however it could also be an SU(1) with
a symmetric, or further an SU(1) with 5 antifundamentals given by an SO(5), or another SU(5). The
possibilities already discussed above repeat themselves. What is important to notice is that the gauge
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Figure 9.8: Fixed point orientifold realizing the twin SU(5) model.

theory on face 3 would always be an SU(5) with one flavor, hence developing an ADS superpotential and
leading to runaway behavior.

We thus conclude that the only possibilities to engineer an SU(5) model, which is stable at low-
energies, in a dimer with fixed points are the three bullets above: SO flavor group, SU flavor group with
a symmetric and SU flavor group with twin SU(5).

An important remark is that in all the examples above the following holds: there can be a long chain
of gauge groups to eventually cancel the anomaly of the initial SU(5) gauge group, but it always ends
with an orientifold fixed point.5 As a consequence, we do not have to look far in order to identify an
N = 2 fractional brane in these dimers. Remarkably, in all cases the SU(5) model is fully supported on
a set of faces that corresponds to an N = 2 fractional brane in the parent (i.e., non-orientifolded) theory.
From Figure 9.5, Figure 9.6 and Figure 9.8 we see that in all cases the SU(5) model indeed lives on a
stripe that gives rise to a gauge invariant not contained in the superpotential. The expectation value of
such operator parametrizes the corresponding Coulomb branch.

We conclude that an SU(5) model cannot be obtained for this class of orientifolds if the parent theory
does not contain line singularities, i.e. N = 2 fractional branes.6 The previous discussion implies that
the no-go theorem in [ABMP19] cannot be avoided for this class of orientifolds.

Let us discuss how the instability explained in Section 9.1.2 is realized in these models in more detail.
We start with the model with SO flavor, Figure 9.5. After adding N regular D3-branes, the relevant
gauge group becomes

SU(N + 5)1 × SO(N + 1)2 . (9.21)

Let us denote
A = 1 , Q = ( 1, 2) (9.22)

where A corresponds to the edge in the dimer between face 1 and its orientifold image and Q corresponds
to the edge between faces 1 and 2. The Coulomb branch is parameterized by the expectation value of
the gauge invariant going around the stripe. In principle we can build an SU(N + 5)1 gauge invariant as

φSO
ab = Q

i

aQ
j

bAij , (9.23)

where i, j are fundamental indices of SU(N + 5)1 and a, b are fundamental indices of SO(N + 1)2. Note
that it is in the antisymmetric representation of SO(N + 1)2, hence it does not exist for N = 0, and it
has vanishing trace for N ≥ 1.

As discussed in [ABMP19], we actually need to go twice around the stripe in order to have a non-
vanishing gauge invariant given by

〈δacδbdφSO
ab φ

SO
cd 〉 , (9.24)

parametrizing the Coulomb branch. That the gauge invariant still vanishes automatically for N = 0,
is consistent with the fact that the SU(5) model does not have a moduli space and that the additional
regular branes are necessary for the instability.

5We are ignoring more ramified possibilities. For instance, for an SU(1) flavor at face 2, we could imagine providing the
5 fundamentals from more than one SO gauge group. That would lead to the need of more than one extra fixed point. The
other cases can be treated similarly. Thus a more precise statement is that we always need at least another fixed point to
cancel the anomaly of the SU(5) at face 1.

6This result is consistent with an observation made in [RU16b], namely that singularities with deformation branes are
incompatible with point projections.
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We now consider the case with SU flavor and a symmetric, Figure 9.6. After adding N regular
D3-branes, the gauge group becomes

SU(N + 5)1 × SU(N + 1)2 . (9.25)

We denote
A = 1 , Q = ( 1, 2) , S = 2 (9.26)

where now S corresponds to the edge between face 2 and its image under the second fixed point. The
SU(N + 5)1 gauge invariant is

φSU
ab = Q

i

aQ
j

bAij , (9.27)

where now a, b are fundamental indices of SU(N + 1)2. It is in the antisymmetric representation of

SU(N + 1)2, hence again it does not exist for N = 0, and for N ≥ 1 it cannot be contracted with S
ab

which is symmetric. A non-vanishing gauge invariant is given by

〈SacSbdφSU
ab φ

SU
cd 〉 , (9.28)

which now parametrizes the Coulomb branch. The same remarks as in the previous case apply.
Finally, let us discuss the last case of the twin SU(5), where the gauge group becomes

SU(N + 5)1 × SU(N + 1)2 × SU(N + 5)3 . (9.29)

We denote

A = 1 , Q = ( 1, 2) , P = ( 2, 3) , A = 3 (9.30)

where now P corresponds to the edge between faces 2 and 3, and A to the edge between face 3 and its
image under the second fixed point. The SU(N + 5)1 and SU(N + 5)3 gauge invariants are

φab = Q
i

aQ
j

bAij , φ
ab

= P
a

αP
b

βA
αβ

, (9.31)

where α, β are fundamental indices of SU(N + 5)3. They are in the antisymmetric and conjugate anti-
symmetric representation of SU(N + 1)2, respectively. They do not exist for N = 0, but for N ≥ 1 the
simplest gauge invariant is given by

〈φabφ
ab〉 , (9.32)

which parametrizes the Coulomb branch in this case. The same remarks as in the previous cases apply.
Further, note that this last case allows for a simpler gauge invariant parametrization of the Coulomb
branch because it is the only one where the two fixed points (giving rise to A and A) have the same sign,
see Figure 9.8. In the two previous cases the fixed points have opposite signs, and we have to take the
loop twice.

Double SU(5) Models

In some cases, the structure of the dimer is such that it could be possible to use all four fixed points to
generate a pair of SU(5) models. Figure 9.9 shows the general structure for a dimer giving rise to two
SU(5) models with SO(1) flavor nodes. Other possibilities, for instance two models with SU(1) flavor
nodes, an SU(1)/SO(1) combination or two twin SU(5) models, are also feasible. The same logic of
previous examples applies to each of the two stripes of blue faces, so we conclude that each of these
models contain N = 2 fractional branes and hence are not stable.

The different cases considered so far illustrate the general strategy that we will apply to most of
the other models we will be considering. While the DSB models under consideration are relatively
simple, we are considering here their embedding into arbitrarily complicated toric singularities. Therefore,
establishing the existence of N = 2 fractional branes (which implies the instability of the DSB model)
might naively seem an intractable problem since, generically, the majority of the dimer model will be
unknown. However, as it occurred in the previous examples, the necessary interplay between the region
of the dimer that makes up the DSB model and the orientifold fixed points (or fixed lines, as we will see
shortly), implies that we fully know the dimer model along a “short direction” of the unit cell. This is
sufficient to identify an N = 2 fractional brane. In even simpler terms, in these cases the DSB models
are actually supported on faces of the dimer that define an N = 2 fractional brane. We will see that
there is only one specific way to circumvent this argument.
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Figure 9.9: General structure of a fixed point orientifold realizing a double SU(5) with SO(1) flavor group
model.

9.2.2 Fixed Line Orientifolds

DSB Models between Two Fixed Lines

The cases with two fixed lines are basically identical to the orientifolds considered in the previous section,
with the exchange of fixed points for fixed lines. We therefore present them succinctly.

• SO flavor group

Figure 9.10 shows the local configuration realizing the SU(5) model with SO(1) flavor group, in-
cluding the signs of the fixed lines. This is achieved by setting N1 = N1′ = 5, N2 = 1 and vanishing
ranks for all other faces. Since the two lines have opposite signs, this configuration is only possible
in orientifolds with two independent fixed lines.

1 1’ 2 2 
+ + - 

Figure 9.10: Two fixed lines orientifold realizing the SU(5) model with SO(1) flavor group.

• SU flavor group with symmetric

Figure 9.11 shows the local configuration realizing the SU(5) model with SU(1) flavor group and
a symmetric. This corresponds to N1 = N1′ = 5, N2 = N2′ = 1 and vanishing ranks for all other
faces. Since the two lines have opposite signs, this configuration is only possible in orientifolds with
two independent fixed lines.

• SU flavor group with twin SU(5)

Figure 9.12 shows the local configuration realizing the SU(5) model with SU(1) flavor group and a
twin SU(5) model. This corresponds to N1 = N1′ = 5, N2 = N2′ = 1, N3 = N3′ = 5 and vanishing



9.2. SU(5) MODELS 253

1 1’ 2 2’ 
+ + - 

Figure 9.11: Two fixed lines orientifold realizing the SU(5) model with SU(1) flavor group.

ranks for all other faces. In this case the two lines have the same sign, hence it is possible to find
this configuration both in orientifolds with two independent fixed lines or with a single diagonal
fixed line. Note that in the latter case, we have to consider the situation in which the strip goes
from one line to a second one, in a contiguous unit cell.

3’

-

1 1’2 2’

-

3

-

Figure 9.12: Two fixed lines orientifold realizing the twin SU(5) model.

Using the same arguments as for the fixed point orientifolds in Section 9.2.1, we conclude that in all
these cases the models are supported on a stripe of faces of the dimer that define an N = 2 fractional
brane.

Multiple SU(5) Models

We previously saw that fixed point orientifolds can give rise to double SU(5) models. Similarly, orientifolds
with fixed lines can produce multiple SU(5) models, as shown in Figure 9.13. In this case, the number of
models is not restricted to two. It is important to note that, unlike in the example shown in the Figure,
it is possible for different stripes to use the two fixed lines in different ways, for instance simultaneously
leading to models with both SO(1) and SU(1) flavor groups, when the two lines have opposite signs. Once
again, our general discussion applies to each individual stripe of blue faces, so we conclude that N = 2
fractional branes exist for each individual stripe and hence the models are not stable.

DSB Models on a Single Fixed Line: the Twin SU(5)

There is one additional way in which an SU(5) model could be engineered. This is when both the
projection needed for the antisymmetric of SU(5) and the one for canceling the anomaly due to the
antifundamental, are provided by the same fixed line. This could be realized both in orientifolds with a
diagonal fixed line, and in orientifolds with two fixed lines. What is important is that only one line is
needed to define the relevant cluster of faces.

Importantly, since the orientifold line cannot change sign along the dimer, this possibility is effective
only when the two projections have the same sign. Then the only case that fits the bill is the twin SU(5)
model, as the one in Figure 9.12.

Basically, the chain of gauge groups represented by faces 1, 2 and 3 has to bend and end on the same
line. There are now two possibilities. Either all the black nodes at the bottom of the edges between faces
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Figure 9.13: An example of the general structure of a portion of a dimer with two fixed lines giving rise
to multiple SU(5) models.

1, 2 and 3 are one and the same, or the chain 1-2-3 and their images enclose some (unoccupied) faces of
the dimer. The latter case is inconsistent from the dimer point of view, as shown in Section 9.1.3: such
a chain cannot be a fractional brane in the parent theory. We are thus left with the former case, which
in the dimer corresponds to a hexagonal cluster of faces around a node, as depicted in Figure 9.14.

1 1’

2

3 3’

2’

Figure 9.14: The hexagonal cluster with six faces on an orientifold line. All faces are here depicted with
four edges, but some of them could have more.

Interestingly, such a collection of faces surrounding a node corresponds to a deformation fractional
brane in the classification of [FHSU06]. It is reassuring that unlike in the cases with fixed points,
deformation branes are compatible with line orientifolds [RU16b].

The analysis of this case is similar to what we carried out for the twin SU(5) model previously, leading
to a gauge group

SU(N + 5)1 × SU(N + 1)2 × SU(N + 5)3 . (9.33)

The difference is that now the node at the center of the hexagonal cluster corresponds to a sextic super-
potential term. Using the same notation as in Equation (9.30), we have

W = trAQPAP
t
Q
t

= trφφ . (9.34)

For N = 0, the superpotential vanishes and we are left with two SU(5) models sharing an SU(1) flavor
node, in which both surviving SU(5) factors break supersymmetry dynamically into a stable vacuum.
Unlike the other realizations of the twin SU(5) model, in the present one there is no indication that the
dimer must contain an N = 2 fractional brane.
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Combining the analysis in Section 9.2.1 and Section 9.2.2, we conclude that engineering a single
SU(5) DSB model without instabilities at an orientifold of a toric singularity is impossible. Conversely,
our analysis implies that engineering a minimal SU(5) model requires non-isolated singularities with
curves of C2/Zn singularities passing through the origin, which in turn result in the instability. This
means that the toric diagram must contain internal points on its boundary edges. On the other hand,
our analysis shows that an instance of a DSB model, the twin SU(5) model, which is compatible with an
orientifold projection with fixed line(s), may exist. We should now understand whether such sub-dimer
can actually be embedded into a consistent dimer and, if so, whether such dimer can be free of N = 2
fractional branes. We will investigate these questions in the next three chapters.

9.3 3− 2 Models

Let us now turn to the 3− 2 model, another prominent example of DSB that was recovered within brane
setups at orientifold singularities in [ABMP19]. The model has gauge group SU(3) × SU(2). Its matter
content is reminiscent of one SM generation:

Q = ( 3, 2) , U = 3 , D = 3 , L = 2 , (9.35)

where the subindices indicate the corresponding gauge group in an obvious way. In addition, the theory
has the following superpotential

W = DQL . (9.36)

In principle, the above field content (SU gauge groups, (bi)fundamental matter, together with a cubic
superpotential) does not seem to require an orientifold projection. As it will become clear in the following,
such a projection is nevertheless necessary in order to allow for a fractional brane (i.e. an anomaly free
configuration) with the desired ranks for the gauge groups.

9.3.1 General Features

Let us think more carefully about the basic features of the D-brane realization of this model. In this
subsection we enumerate all different ways to recover the 3 − 2 model from fractional branes at an
orientifold singularity. The structure of these models is more intricate than that of the SU(5) model, so
it is convenient to draw the corresponding quivers.

The candidate models are presented in Figure 9.15. In the figure, we have kept the ranks of the
gauge group general by introducing Ni, i = 1, . . . , 4. These additional integers account for more general
configurations of D-branes at the singularity, e.g. the addition of regular or fractional D3-branes, and
we posit that anomaly cancellation must hold even in those cases. The 3 − 2 model arises when all Ni
and the ranks of additional gauge groups, which depend on the specific singularity and are not shown in
these quivers, vanish.

1

SO(N1+1) SU(N2+2)SU(N3+3)SO(N4+1)

×

1

SO(N1+1) USp(N2+2)SU(N3+3)

×

or or
𝑈"

𝐷" 𝐿

𝑄

𝑈"
𝐷" 𝐿

𝑄
𝐴̅!

Figure 9.15: Four quivers giving rise to the 3 − 2 model when all Ni = 0. All these models use three
orientifold fixed loci.
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For similar reasons as in the case of the SU(5) model, we need at least an additional gauge group
factor, which we will call node 1, to serve as a flavor group providing the D and L fields. Both D and
L should be connected to the same node for the superpotential Equation (9.36) to be possible. In dimer
terminology, we identify the smallest building block of a 3−2 model as three faces connected by a trivalent
vertex. In this sense 3−2 model realizations are necessarily more involved than SU(5) model realizations,
since the latter only required a building block of two faces.

The quivers in Figure 9.15 should be interpreted as follows. For each of the two endpoints of the
quiver, we have presented two possibilities. The two options on the left correspond to realizing U as an
antisymmetric of node SU(3) or via a fourth gauge group acting as a flavor node. The two options on
the right correspond to the fact that node 2 can be either USp(2) or SU(2). All possible combinations of
these endpoints realize the desired 3− 2 model, therefore Figure 9.15 accounts for four models.

In principle, the flavor nodes 1 and 4 in Figure 9.15 could be SU or SO. However, if these nodes
were of SU type, their ACC in the case of general ranks would require additional nodes, that come to
life when regular D-branes are added. Generically, these gauge groups will give rise to new matter fields
charged under the nodes of the original quiver. Such fields would contribute to and potentially help in
the cancellation of anomalies. However, for N regular D3-branes, it is easy to show that for neither node
the anomaly would cancel, as there would still be an imbalance of one or three units for nodes 1 and 4,
respectively. In order to cancel the anomalies there are then only two options. The first is to introduce
an orientifold projection. It turns out that setting both nodes to be SO is the simplest such option, and
without loss of generality we will stick to it in the following. The second option is to compensate the
anomaly by a mirror construction. We defer the treatment of the latter possibility to the last subsection.

It is worth noting that in two of the four models described by Figure 9.15, those for which the second
gauge group is SU(N2 + 2), we have also introduced an antisymmetric tensor Ā2. This field is necessary
for satisfying the ACC for the more general ranks that arise when regular D3-branes are added, as we
will see below. It becomes a singlet when N2 = 0, so it decouples and does not affect the IR physics.

A final option is to get the two antifundamentals of the SU(3), U and D from the same flavor SO(1)
group. However, in order to realize the 3−2 model, the structure of the dimer model should be such that
a UQL term is not present in the superpotential. This possibility is then obtained by simply identifying
nodes 1 and 4 in Figure 9.15.

We thus reach the conclusion that we need no less than three orientifold projections to realize a 3− 2
model: one for the SO(1) flavor group (thus with a + sign), one for node 2 which is either USp(2) or SU(2)
with an antisymmetric (in both cases, with a − sign), and one for node 3, either with an antisymmetric
(− sign) or with the SO(1) flavor node 4 (+ sign). Of course some of these projections can be given by
the same object, in the case of an orientifold line, provided they require the same sign.7

All quivers described by Figure 9.15 are viable as stand-alone gauge theories. However, as for the
SU(5) model, we need to verify whether the theories remain anomaly free upon the addition of regular
and/or fractional D3-branes. It turns out that the SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3)× SO(N4 + 1)
model does not pass this test, as we show now.

Below we summarize the ACC for each of these models. Our calculations also motivate the choice of
the antisymmetric tensor A2 to satisfy the ACC. For completeness, we added here as different cases also
the two models where node 1 and 4 are identified.

• SO(N1 + 1)×USp(N2 + 2)× SU(N3 + 3) with 3:

Node 3: (N3 + 3− 4)− (N1 + 1) + (N2 + 2) = 0 . (9.37)

• SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3) with 3:

Node 2: −(N2 + 2− 4) + (N1 + 1)− (N3 + 3) = 0 ,
Node 3: (N3 + 3− 4)− (N1 + 1) + (N2 + 2) = 0 .

(9.38)

Note that the choice of conjugate representation for the antisymmetric tensor of SU(N2 +2) is fixed
by the first equation, in order to satisfy it when all Ni = 0.

For these two first models, the ACC reduce to

N1 = N2 +N3 . (9.39)
7It is worth noting that in all the realizations of the 3-2 model found in [ABMP19], node 3 has an antisymmetric, node

1 is of SO type, while node 2 is USp(2) in the Z′
6 orbifold and in PdP4, and SU(2) with an antisymmetric in PdP3c, PdP4b

and the Z3 × Z3 orbifold.
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• SO(N1 + 1)×USp(N2 + 2)× SU(N3 + 3)× SO(N4 + 1):

Node 3: − (N1 + 1) + (N2 + 2)− (N4 + 1) = 0 . (9.40)

In this case, N3 is not constrained by the ACC, which can be rewritten as

N2 = N1 +N4 . (9.41)

• SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3)× SO(N4 + 1):

Node 2: −(N2 + 2− 4) + (N1 + 1)− (N3 + 3) = 0 ,
Node 3: −(N1 + 1) + (N2 + 2)− (N4 + 1) = 0 .

(9.42)

This translates to the two conditions

N1 = N2 +N3 ,
N2 = N1 +N4 ,

(9.43)

implying N3 = −N4. This in turn sets N3 = N4 = 0, since all Ni must be positive and potentially
large. In principle this issue does not rule out the possible engineering of these models, since the
corresponding dimers might give rise to additional gauge groups and fields when regular D3-branes
are added, in a way that anomalies are canceled. Assuming however that at least some fractional
branes are needed in order to turn on all the ranks of the 3-2 model (i.e. even for Ni = 0), then
such models are excluded.

• SO(N1 + 1)×USp(N2 + 2)× SU(N3 + 3) with 2( 3, 1):

− 2(N1 + 1) + (N2 + 2) = 0 , (9.44)

which is simply

N2 = 2N1 . (9.45)

• SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3) with 2( 3, 1):

Node 2: −(N2 + 2− 4) + (N1 + 1)− (N3 + 3) = 0 ,
Node 3: −2(N1 + 1) + (N2 + 2) = 0 .

(9.46)

This can be simplified into

N2 = 2N1 ,
N3 = −N1 ,

(9.47)

which has no solution beyond Ni = 0 in the absence of additional ingredients coming from the full
dimer.

The results of this appendix can be summarized in the following table:

Gauge groups ACC

SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3) with 3 3

SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3) with 3 3
SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3)× SO(N4 + 4) 3
SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3)× SO(N4 + 4) 7
SO(N1 + 1)× USp(N2 + 2)× SU(N3 + 3) with 2( 3, 1) 3
SO(N1 + 1)× SU(N2 + 2)× SU(N3 + 3) with 2( 3, 1) 7

In the next subsections we investigate the realization of these models in terms of fixed point and fixed
line orientifolds.
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9.3.2 Fixed Point Orientifolds

Interestingly, for the purpose of establishing the existence of an N = 2 fractional brane, and hence the
instability of the supersymmetry breaking vacuum, it is sufficient to focus on a very small part of all
these theories. In particular, all of them contain one of the following two subsectors:

• SO(N1 + 1)×USp(N2 + 2).

• SO(N1 + 1)× SU(N2 + 2) with the tensor A2.

Knowledge of the dimer around gauge groups 1 and 2 will be enough for our purposes. Let us consider
the general structure of the dimers associated to these two possibilities.

• SO(N1 + 1)×USp(N2 + 2) ⊂ 3− 2 model

Figure 9.16 shows the general structure of the relevant part of the dimer model. The edge between
faces 1 and 2 represents the L field. Clearly, faces 1 and 2 define a stripe that winds around the
unit cell of the parent dimer, giving rise to a gauge invariant that is not in the superpotential.
Therefore, they correspond to an N = 2 fractional brane.

× ××
2 11

+ +-

Figure 9.16: A piece of the dimer for a fixed point orientifold realizing the 3− 2 model with an SO(N1 +
1)×USp(N2 + 2) subsector.

• SO(N1 + 1)× SU(N2 + 2) with A2 ⊂ 3− 2 model

Figure 9.17 shows the part of the dimer that we are interested in. The edge between faces 1 and
2 corresponds to L, while the one between face 2 and its image gives rise to A2. Once again, we
see that faces 1, 2 and 2’ define an N = 2 fractional brane in the parent dimer. It is interesting to
note that this picture is identical to Figure 9.5 for the SU(5) model.

× ××
2 2’1 1

+ +-

Figure 9.17: A piece of the dimer for a fixed point orientifold realizing the 3-2 model with an SO(N1 +
1)× SU(N2 + 2) with A2 subsector.

From the previous discussion, we conclude that all realizations of the 3 − 2 model at fixed point
orientifolds suffer from an N = 2 fractional brane instability.
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Models with more than one type of N = 2 fractional branes

Before moving on, let us consider the models in Figures Figure 9.16 and Figure 9.17 in further detail. As
we have already mentioned, in all these cases the portion of the dimer realizing the 3− 2 model involves
three fixed points. For concreteness, let us focus on the case in which U is an antisymmetric of node
3 and node 2 if of USp type. All other combinations are analogous and lead to the same conclusions.
Figure 9.18 shows the general structure of the dimer model. Interestingly, in this case we can identify
yet another N = 2 fractional brane, in addition to the one covered by our previous analysis. This new
fractional brane corresponds to faces 1, 3 and 3’ in the parent dimer and is shown in pink in Figure 9.18.
We conclude that when sub-dimers as in Figures 9.16 and 9.17 are embedded in a complete dimer model,
the corresponding toric singularity has at least two different types of N = 2 fractional branes. Explicit
models illustrating this phenomenon were constructed in [ABMP19].

3’

3

3’

3

××
2 11

+ +-

× ××
2 11

+ +-

×-

×

×-

Figure 9.18: General structure of the dimer model for one of the models in Figure 9.15. This model
contains two different N = 2 fractional branes. They are shown in blue and pink, with the striped face
belonging to both of them.

Another interesting fact we would like to notice has to do with the intertwining between SU(5) and
3 − 2 models realizations. Figure 9.18 shows that in any such configuration realizing a 3 − 2 model, an
SU(5) model can also be realized, by simply turning off the rank of node 2, while pumping up the rank of
node 3 to SU(5). Even more, 3−2 model realizations like the one of Figure 9.17 allow for two alternative
SU(5) model realizations, the other one being by turning off node 3 and setting node 2 to SU(5), as
already noticed when commenting the figure. Multiple explicit examples of this connection can be found
in [ABMP19]. The only realization of a 3 − 2 model that does not lead directly to a realization of the
SU(5) model would be one with USp(2) at node 2 and a node 4 to compensate the anomaly of node 3.
Unfortunately, no examples of this exist in the literature, and it is beyond our scope to find one here, as
we have in any case shown that it would be afflicted by an N = 2 fractional brane instability.

Double 3− 2 Models

It is natural to ask whether fixed point orientifolds can lead to a pair of 3 − 2 models. In this case,
each of the models should use two of the four fixed points. However, all the models of Figure 9.15 need
three different projections, and thus three different fixed points. One could still think about the case
where nodes 1 and 4 are identified, where only two identifications are actually required. However in order
for node 3 to have two different connections with node 1, the faces corresponding to this 3 − 2 model
realization end up being spread across all the unit cell, so that again two such models cannot coexist.8

9.3.3 Fixed Line Orientifolds

We now consider the realization of the 3− 2 models in orientifolds with fixed lines.

8It would be interesting to investigate whether such model can actually be engineered in terms of dimers. Again, since
we have already proven that all realizations of the 3 − 2 models at fixed point orientifolds are unstable, we do not pursue
this challenging question any further.
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The analysis in the case in which the 3− 2 model uses two different orientifold fixed lines is identical
to the one for fixed points. In particular, it is sufficient to focus on faces 1 and 2. We simply need to
replace fixed points by fixed lines in the previous discussion.

• SO(N1 + 1)×USp(N2 + 2) ⊂ 3− 2 model

Figure 9.19 shows the relevant part of the dimer. We immediately identify an N = 2 fractional
brane in the parent dimer consisting of faces 1 and 2.

2 11

+ +-

Figure 9.19: A piece of the dimer for an orientifold with two fixed lines realizing the 3− 2 model with an
SO(N1 + 1)×USp(N2 + 2) subsector.

• SO(N1 + 1)× SU(N2 + 2) with A2 ⊂ 3− 2 model

Figure 9.20 shows the part of the dimer that we focus on. Faces 1, 2 and 2’ form an N = 2 fractional
brane in the parent dimer.

+ +-

1 12 2’

Figure 9.20: A piece of the dimer for an orientifold with two fixed lines realizing the 3− 2 model with an
SO(N1 + 1)× SU(N2 + 2) with A2 subsector.

Multiple 3− 2 Models

Orientifolds with fixed lines can in principle give rise to multiple 3− 2 models, stacking them as we did
in Figure 9.13 for SU(5). In this case, the projection needed for node 3 can be provided either by the line
with a − sign, in case of an antisymmetric, or by the line with a + sign, in case of a flavor node 4. Our
previous arguments show that each of these models contain (at least) an N = 2 fractional brane and are
hence unstable.

Mixed SU(5) — 3− 2 Models

At this point it is interesting to point out that our arguments for multiple models, in the case of fixed
lines, indicate that we can also have models that realize a combination of SU(5) and 3− 2 models. Once
again, our arguments from Section 9.2 and this section show that each DSB sector would be independently
unstable.
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9.3.4 Twin 3− 2 models?

We are now left to investigate the possibility that the anomalies of the 3−2 model are canceled in a twin
realization, along the lines of what was done for the SU(5) model in Figures 9.8 and 9.12. Further, we
would like to know if there is a realization similar to the one of Figure 9.14, i.e. on a single fixed line,
which would not automatically imply the presence of N = 2 fractional branes.

As already alluded to, we can cancel the anomalies of a node 1 of SU nature, and/or node 4, if in the
configuration there is a twin copy of the 3-2 model sharing the SU(1) node. Note that in compensating
the anomaly with a twin, it is important that the two models are decoupled. If we were to use the same
mechanism to compensate the anomaly of node 2, the non-zero coupling of node 2 itself would couple
the twins and alter the low-energy physics of the models (typically destroying the stable supersymmetry
breaking dynamics). Hence whatever we do, node 2 will always require a projection. As a consequence,
if such twin model is realized in a way that it extends between two different fixed points or fixed lines, by
the same arguments used around Figures 9.8 and 9.12, there will be N = 2 fractional branes that render
the DSB model eventually unstable. We will thus refrain from investigating further the feasibility of such
a configuration.

Finally, we would like to see if it is possible to realize a twin 3− 2 model on a single fixed line. Given
that node 2 and its twin require a − sign, in principle we have two options. Either both node 3 and its
twin have an antisymmetric by ending-up on the same fixed line, or they compensate the anomaly by
sharing an SU(1) node 4. It is easy to draw the minimal requirements for the portion of the dimer that
would translate these properties, see respectively Figures 9.21 and 9.22.

Figure 9.21: A tentative sub-dimer for a twin 3− 2 model where the SU(3) faces have an antisymmetric
flavor.

Figure 9.22: A tentative sub-dimer for a twin 3− 2 model where the SU(3) faces share a flavor SU(1)4.

Naively, these configurations look consistent and one can find a choice of ranks satisfying the ACC.
These are the following. For Figure 9.21, N3 = N3′ = N3̄ = N3̄′ = M3+3, N2 = N2′ = N2̄ = N2̄′ = M2+2
and N1 = N1′ = M2 + M3 + 1. For Figure 9.22, N3 = N3′ = N3̄ = N3̄′ = M3 + 3, N1 = N1′ = M1 + 1,
N4 = N4′ = M ′1 + 1 and N2 = N2̄ = M1 +M ′1 + 2.

Assuming that in the parent theory every rank parametrizing the solutions above can be taken inde-
pendently large, we observe that both situations would imply the existence of a fractional brane described
by a ring of faces with equal ranks (up to the usual O(1) corrections) surrounding a hole. These are ob-
tained by setting M2 = 0 in Figure 9.21, and M1 = 0, M ′1 = M3 in Figure 9.22. The ring-shaped would-be
fractional brane is depicted in both figures by the yellow-shaded faces. As shown in Section 9.1.3, this is
an inconsistent dimer. We conclude that unlike the SU(5) model, there is no way to build a stable twin
version of the 3− 2 model on a single orientifold line.
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Chapter 10

Inverse algorithm and triple
diagrams

In Section 9.2 and Section 9.3 we have shown that the only alternative for an a priori consistent realization
of a DSB model which does not automatically imply the presence of an N = 2 fractional brane, and hence
is potentially stable in the decoupling limit, is the twin SU(5) living on a single fixed line of an orientifold.
The twin SU(5) model is described by the hexagonal cluster depicted in Figure 9.14. Now we want to
understand if such cluster can be embedded in a fully consistent dimer and if such dimer can be free of
N = 2 fractional branes.

Let us first argue that in the full theory the hexagonal cluster is associated to a fractional brane.
Figure 9.14 shows that the ACC are satisfied for N1 = N3 = N + 4 and N2 = N . Namely, we are free to
choose any value of N while all other faces of the dimer sharing an edge with the faces of the hexagonal
cluster have vanishing rank. This freedom is associated to the presence of a fractional brane. The twin
SU(5) is obtained for N = 1, i.e. a single fractional brane.

Now we can ask whether this fractional brane is of deformation or runaway DSB type, in the parent
theory (we already know we do not want it to be of N = 2 type). If it were a runaway DSB brane
some other regions of the dimer, besides the hexagon, would be populated and the corresponding faces
would have ranks with different multiples of N [FHSU06, BBC05]. This is the key ingredient to generate
an ADS superpotential and hence a runaway behavior, and this will still be true after orientifolding.
Thus a runaway DSB brane in the parent theory, if it survives the orientifold, will still be of runaway
type. Populating the dimer with regular branes, the runaway sector will communicate with the twin
SU(5) sector, destabilizing the vacuum. The other possibility is that the hexagonal cluster corresponds
to a deformation brane in the parent theory and that it survives the orientifold projection. This has no
instability in the parent theory, and thus we expect it to remain stable also upon orientifolding.

We are therefore looking for a dimer containing a six-valent node inside a cluster of faces, and hence
the corresponding toric diagram must contain at least 6 edges whose associated ZZP are ordered around
the relevant node [Gul08, IU10]. Those edges need to be in equilibrium in order for the hexagonal cluster
to be on a deformation fractional brane as we have seen in Section 8.3.2, and once removed the rest of the
(p, q)-web must be in equilibrium, too. This implies that we need at least two extra ZZP in equilibrium,
for a total of eight. Absence of N = 2 fractional branes in the dimer further requires that there cannot
be more than one ZZP with a given winding (p, q) of the unit cell. This corresponds to toric diagrams
with no more than two consecutive points which are aligned on an external edge.

In summary, we want to understand whether it is possible to find an orientifold of a dimer model
satisfying the following conditions.

1. There is no N = 2 fractional brane, or equivalently, the corresponding affine toric CY3 singularity
is isolated,

2. The hexagonal cluster shown in Figure 9.14 must line on a fixed line of the orientifold involution,

3. The hexagonal cluster must be isolated on a fractional brane of deformation type,

4. There must exist solutions to the anomaly cancellation conditions in the orientifold theory.

263



264 CHAPTER 10. INVERSE ALGORITHM AND TRIPLE DIAGRAMS

Below, we will refer to these conditions as 1, 2, 3 and 4. Note that none of them holds a priori: it
could indeed be the case that not the hexagonal cluster of faces of Figure 9.14 itself, but its consistent
embedding in a brane tiling, requires N = 2 fractional branes, for example.

In this chapter we will introduce a combinatorial tool called triple diagram, introduced in [Thu17],
which allows to systematize the fast inverse algorithm, as well as built brane tilings satisfying symme-
try constraints and containing particular substructures such as the hexagonal cluster in which we are
interested.

Let us first and foremost recall some important characters of brane tilings from Section 7.5, and that
we will need below. A zig-zag path (ZZP) on Γ is an oriented path of edges of Γ which turns maximally
right at each black vertex, and maximally left at each white one. Zig-zag paths can be equivalently
represented as strands crossing edges at their middle. A zig-zag path and the corresponding strand are
displayed respectively in the middle and on the right of Figure 10.1. Note that this ZZP has a non-trivial
winding around the torus: in the basis of homology induced by our choice of fundamental cell, its winding
is (1, 1).

A dimer model is consistent if 1) there is no topologically trivial ZZP 2) no lift of ZZP in the universal
cover R2 of the torus self-intersects 3) any two distinct lifts of ZZPs in the universal cover of the torus
never intersect more than once in the same direction. These technical conditions are equivalent to the
existence of (possibly degenerate) isoradial embeddings of Γ in T2 [HV07, Bro12, IU10]. Recall that we
always assume dimer models to be consistent.

Figure 10.1: A dimer model, a zig-zag path and a zig-zag strand.

Each affine toric CY3 singularity is in one-to-one correspondence with a class of lattice convex polygons
(also called toric diagrams) up to SL2(Z), hence dimer models are also associated with lattice convex
polygons up to SL2(Z). This last correspondence is purely combinatorial and can be explained without
having to invoke non-compact Calabi–Ay threefolds at all, as follows. Since each edge of a dimer model
belongs exactly to two ZZPs going in opposite directions, the sum of windings of all ZZPs in a brane tiling
is always zero. Ordering the windings according to their slope, one builds the sides of a convex lattice
polygon. The choice of a fundamental cell for T2 translates as the action of SL2(Z) on the corresponding
polygon, and that the lattice to which the vertices of the polygon belong can be naturally identified with
the integral first homology group of the torus H1(T2,Z) ' Z2.

There are, in general, multiple dimer models corresponding to the same affine toric CY3 singularity.
Going from a dimer model to the class of lattice polygons up to SL2(Z) is the forward algorithm and it is
in general not injective; going in the opposite direction and building consistent dimer models from a class
of toric diagrams can be done via the inverse algorithm which is one-to-many in general [FHKV08b].
Even if the fast-inverse algorithm [HV07, FHKV08b] presented in Section 7.5.2 is a great improvement
with respect to the partial resolution techniques used in the first place, it remains a set of instructions
which has to be carried out case-by-case with a deft hand. The goal of this chapter is to explain how
triple diagrams improve this by providing a loyal fast inverse algorithm.
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10.1 Triple diagrams and fast-inverse algorithm

10.1.1 Generalities

Triple diagrams have been introduced by D. Thurston in [Thu17]. A triple diagram is a collection of
oriented dimension-one manifolds with boundary, mapped smoothly into a disk (the image of a connected
component is called a strand) such that:

1. Exactly three strands cross at each intersection point,

2. The endpoints of strands are distinct points on the boundary of the disk and no other point is
mapped to the boundary,

3. The orientations of the strands induce consistent orientations on the complementary regions.

Moreover, triple diagrams are considered up to isotopy. An example is shown in Figure 10.2. Note that
the orientation of the strands indeed induce consistent orientations for the complementary regions.

Figure 10.2: A triple diagram consisting of five strands.

Theorem 3 of [Thu17] states that given a disk with 2n points on the boundary labeled ‘in’ or ‘out’,
and such that the labels alternate as one goes around the boundary, any matching (bijection) between
‘in’ and ‘out’ points can be realized by a triple diagram. Two examples of triple diagrams realizing a
pairing of 5 ‘in’ points labeled i1, . . . , i5 and 5 ‘out’ points o1, . . . , o5 on the boundary of the disk (such
that for each j = 1, . . . , 5, the pairing maps ij to oj) are shown in Figure 10.3.

Figure 10.3: Two triple crossing diagrams realizing pairings of ‘in’ and ‘out’ points.
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From a triple diagram one can always obtain a bipartite graph on the disk as follows. First, one
deforms each triple intersection into a small triangle with sides oriented counterclockwise. The fact that
triple diagrams are such that the complementary regions have a consistent orientation implies that after
this deformation, the complementary regions can be classified in three different types.

• Either the boundary is oriented counterclockwise ; such a region is said to be black.

• Either the boundary is oriented clockwise ; such a region is said to be white.

• Or the boundary is such that as one goes along it, the orientation of the strands alternate ; such a
region is a face.

The counterclockwise deformation of the triple diagram on the right of Figure 10.3 is shown on the left
of Figure 10.4. White regions are displayed in white, black regions in black white faces are stripped.

Figure 10.4: Bipartite graphs from triple diagrams.

From this, a bipartite graph is easily obtained by taking one black (resp. white) vertex for each
black (resp. white) region, and connecting vertices together according to the adjacency of the regions
in the deformed triple diagram. The bipartite graph corresponding to the deformed triple diagram of
Figure 10.4 is displayed on the right of the same figure.

There is an elementary transformation of triple diagrams which involves six strands and which is
called 2 ↔ 2 move [Thu17]. A 2 ↔ 2 move is displayed schematically in Figure 10.5. Given a disk with
a pairing of ‘in’ and ‘out’ points on its boundary, one can restrict oneself to triple diagrams realizing the
pairing and with the minimal number of faces. These are called minimal triple diagrams. It is proved
in [Thu17] that given any two minimal triple diagrams realizing the same pairing, there always exists a
finite sequence of 2↔ 2 moves linking the two together. The 2↔ 2 moves of triple diagrams correspond
to spider moves of bipartite graphs.

10.1.2 Consistent dimer models from triple diagrams

Triple diagrams can be used to systematically construct consistent dimer models from lattice polygons,
as reviewed in [GK13]. One considers the simple outgoing normal vectors to the sides of a convex lattice
polygon and for each of them one draws a straight line on a torus with winding the coordinates of the
vector, such that the induced ‘in’ and ‘out’ points on the boundary alternate (it is always possible to do
so [GK13]). This is depicted in Figure 10.6 for the toric diagram of the affine cone over dP1.

After having done this, one needs to keep the boundary data together with the pairing between ‘in’
and ‘out’ points only. Forgetting momentarily the identifications between opposite sides of the square, one
obtains a topological disk, boundary data and a pairing as in the hypotheses for theorem 3 of [Thu17].
Thus, one can construct a minimal triple diagram realizing the pairing, deform its vertices into tiny
counterclockwise triangles, and construct the corresponding bipartite graph. By construction, one is left
with a consistent dimer model on a torus that corresponds to the lattice polygon we started with. It
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Figure 10.5: A 2↔ 2 move.

Figure 10.6: Outgoing normal vectors to the side of toric diagrams as geodesics on the torus.

might be the case that there are two-valent vertices in the resulting dimer model, which may as well be
removed since they correspond to mass terms in the gauge theory described by the tiling. These two
steps for the toric diagram corresponding to the cone over dP1 are displayed in Figure 10.7. The dimer
model obtained on the right of Figure 10.7 famously corresponds to dP1 [FHV+06], as expected.

Figure 10.7: Constructing a consistent dimer model for dP1 with triple diagrams.

This construction is particularly nice since if one starts with a toric diagram that has a particular
symmetry, one can hope to preserve this symmetry during the whole process so that one obtains a dimer
model also satisfying it. However, we will see in Section 10.3 that it is not always possible to do so.
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10.2 Implementation of symmetries and substructures

Let us contemplate back our goal described in the introduction of this chapter: we are trying to embed
the hexagonal cluster of faces describing the twin SU(5) model in a (consistent) brane tiling, such that
conditions 1 to 4 of page 263 hold. Condition 4 will be analyzed at length in Chapter 11; let us for now
concentrate on the first three. Our strategy is as follows.

1. In order to ensure that a dimer model does not contain N = 2 fractional branes, it is enough to
start with an isolated singularity, i.e. whose toric diagrams do not have any side containing lattice
points in their interior. Doing as in the previous section yields a square with ‘in’ and ‘out’ insertion
points on the boundary, together with a pairing of these insertions.

2. The brane tiling must contain the hexagonal cluster of our interest on a fixed line of the orientifold
involution. We will first analyze the local arrangement of the strands induced by the hexagonal
cluster and then embed it in the solid square found in the previous section. Imposing the symmetry
of the brane tiling to be constructed under the orientifold involution amounts to constructing a
triple diagram in one half of the fundamental cell only, and copying was has been done in the other
half, in a symmetric way.

3. Imposing that the hexagonal cluster lies on a deformation fractional brane amounts to choosing
wisely the strands defining the cluster. We will see below how to do this explicitly in examples.

10.2.1 The local structure of the hexagonal cluster

The local structure of the strands induced by the 6-valent vertex in the hexagonal cluster is displayed
in Figure 10.8. The fixed line of the orientifold involution we need in order for the hexagonal cluster of
faces to possibly implement the twin SU(5) model is displayed in dashed red. From the ideas presented
in the last section we known that the data of ‘in’ and ‘out’ points of the circle surrounding the 6-valent
vertex is enough to ensure that it is possible to have the 6-valent vertex inside the disk. Hence we will
only keep the boundary data, and try to embed the circle with this data in a square representing the
fundamental cell of a dimer model on a torus corresponding to a given class of toric diagrams.

Figure 10.8: The local strand structure induced by a hexagonal vertex.

Note that we have only encoded the structure around the 6-valent vertex in the most parsimonious
possible way in Figure 10.8. It might be the case that one needs more, for example to ensure that
the hexagonal cluster is isolated on a fractional brane, so that the neighboring faces do not impact the
anomaly cancellation conditions on the faces of the (orientifolded) hexagon, which are necessary for the
twin SU(5) model to exist. We will refine the local structure we ask for, later on.
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10.2.2 An example

The consistency conditions for brane tilings guides us towards considering the six ZZPs appearing in
Figure 10.8 to be different. It might seem possible for e.g. the strands i1− o1 and i4− o4 to be identified
in the full brane tiling, however this is likely to be forbidden for the hexagonal cluster to be isolated on
a fractional brane. Thus, we will consider this six strands as six different ZZPs.

Since the six faces forming this hexagonal cluster must lie on a deformation brane, we need to start
with a toric diagram with strictly more than six sides, and such that the latter form a sub-web in
equilibrium, i.e. they can be assembled into a fine lattice polygon on their own.

It appeared experimentally that orientifolds with a single, diagonal fixed line were easier to construct
than the ones two horizontal or vertical fixed lines. The first example we are going to present corresponds
to a singularity whose toric diagram is displayed on the left of Figure 10.9. Note that since it has no side
with lattice points in its interior, the corresponding singularity is isolated and there will be no N = 2
fractional branes in the dimer model.

The first step of the construction consists of drawing straight geodesics on the fundamental cell of a
torus, with homology prescribed by the outgoing normal vectors to the sides of the toric diagram, in such
a way that it yields a set of ‘in’ and ‘out’ points on the boundary of the fundamental cell, such that ‘in’
and ‘out’ points alternate. The symmetry we are looking for needs to be implement at this step already:
we ensure that the geodesics are placed in a symmetric way with respect to the reflection to the dashed
red diagonal line. The result is shown on the right of Figure 10.9, and one can check that the resulting
‘in’ and ‘out’ insertions are distinct and alternate, as required.

Figure 10.9: Towards a first implementation of the hexagonal cluster.

In the construction described in Figure 10.9 we have anticipated the fact that some of the strands will
be the ones defining the hexagonal vertex we are aiming to. As already emphasized, we also need them
to be in equilibrium. We have chosen these six strands to be the six plain ones, while the remaining three
dotted-dashed ones will not contribute to the six-valent vertex directly.

Now that this is done, we can add the disk on the right of Figure 10.8 inside the fundamental cell,
on top of the dashed diagonal red symmetry line. We will make some hypotheses on the local structure
close to the 6-valent vertex, so that we refine the diagram on the left of Figure 10.8 to the one on the left
of Figure 10.10. One can then embed this circle together with its boundary data in the rectangle on the
right of Figure 10.9, and encode in another pairing the way we want the endpoints of all the strands to
connect. This is depicted on the right of Figure 10.10.

Each half of the complement of the disk in the square is a topological disk with alternating ‘in’ and
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Figure 10.10: The local structure we want to implement (left) and the resulting boundary data (right).

‘out’ insertions on the boundary, and together with a pairing. Hence one can construct a triple diagram
in each of these two regions, in a symmetric way. The resulting triple diagram with the interior of the
disk restored, is shown on the left of Figure 10.11. The black, white and shaded regions resulting from
a counterclockwise resolution of the vertices are also shown on this figure. One obtains in this way in
dimer model on the torus, which is shown on the right of Figure 10.11 under a nice guise, and after the
contraction of 2-valent vertices. Some faces are colored in order to emphasize the fact that they do not
end on the boundary of the fundamental cell.

Figure 10.11: The resulting triple diagram and its corresponding dimer model.

This dimer model satisfies the condition 1 of page 263 by construction, as well as the conditions 2
and 3 One can check that this brane tiling is consistent: first of all, it has 21 faces, which is twice the area
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of its toric diagram, as expected. Moreover, for some Pfaffian orientation one finds that the determinant
of its Kasteleyn matrix is

x−2y−2
(
y4x4 + x4y3 + x3y4 − 86x3y3 + 57x3y2 − x3y + 57y3x2 + 555x2y2 + 86x2y + x2

−y3x+ 86y2x− 81y2x+ x+ y2 + y
)
. (10.1)

and the coefficients corresponding to the vertices of the toric diagram have absolute value 1, which is in
agreement with the fact that the dimer model is consistent.

Concerning the condition 3., the hexagonal cluster of faces will lie on a deformation fractional brane if
the ZZPs defining its hexagonal node form a sub-web in equilibrium in the toric diagram. In Figure 10.12
the hexagonal cluster of faces is indeed isolated on a deformation fractional brane.

Figure 10.12: The deformation fractional brane on which the hexagonal cluster lies.

Unfortunately, and despite the fact that conditions 1 to 3 are satisfied in this dimer model, condition
4 does not hold: there is no solution to the anomaly cancellation conditions in the orientifold theory, if
no flavor D7-branes are added on top of the regular and fractional D3-branes. Since it is our working
hypotheses, this model thus has to be discarded. This is more precisely stated by saying there is no
solution to the system of affine equations:

(N1 − 4)−N4 +N8 −N2 = 0
N1 −N8 +N10 −N3 = 0

−(N3 − 4) +N2 −N5 +NA = 0
N1 −N8 +N6 − (N4 − 4) = 0

N3 −NA +N6 −N7 +N8 −N10 = 0
NA −N4 +N7 −N5 = 0
N5 −N6 +N9 −N8 = 0

N7 −N5 +N9 −N4 +N1 −N2 +N10 = 0
N10 − 2N8 +N7 = 0

N8 −N2 +N5 −N9 = 0

(10.2)

One might think that it would be possible to reach some phase of the orientifold theory which admit
solutions to the ACC, after Seiberg-dualizing some faces. However it has not been the case for any of the
Seiberg-dual phases for which these ACC were computed, and we will see in the next chapter that this
is in fact general for orientifold theories obtained as the quotient under the reflection through a diagonal
line in a dimer.

Nevertheless, this model is interesting for it proves in a direct way that it is possible to embed the
hexagonal cluster of the twin SU(5) model in a dimer model symmetric with respect to the reflection
through a line, and such that this hexagonal cluster of faces is isolated on a deformation fractional brane.
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10.2.3 Another example

Another interesting example is the one displayed in Figure 10.13, for the deformation fractional brane on
which the six-valent node lies consists only of the hexagonal cluster and isolated faces, all of them having
rank 1 (there is no face of rank −1, as was the case in Figure 10.12).

Figure 10.13: Another example

The determinant of the Kasteleyn matrix corresponding to some Pfaffian orientation is:

x−2y−2(x2y+x3y+xy2−26x2y2 + 25x3y2−x4y2−x4y2 +xy3 + 25x2y3 + 26x3y3 +x4y3−x2y4 +x3y4) ,
(10.3)

and hence is in agreement with the fact that this dimer model is consistent. It has 14 faces and is minimal
since 14 is also twice the area of the octagon displayed on the left of Figure 10.13. This model however
is plagued with the same issue as the previous one, namely: the anomaly cancellation conditions in the
orientifold theory do not have any solution. They write:

N2 + 4−N1 +N4 −N7 = 0
N3 −N1 +N7 −N8 = 0

N3 − 4 +N7 −N2 −N5 = 0
N7 −N8 −N4 +N5 = 0

N1 −N2 +N8 −N6 −N5 +N3 = 0
N2 −N6 −N7 +N5 = 0

(10.4)

One can check directly that they admit no solution indeed.

It would be very interesting to criteria telling when a brane tiling orientifold possibly admits solutions
to the anomaly cancellation conditions (without the use of fractional branes), already at the level of the
toric diagram. It might very well be possible that this constraint coming from the ACC ultimately forbids
the implementations of the hexagonal cluster of the twin SU(5) model with the properties that we are
after. This will be the aim of the next chapter.

10.3 Reflection symmetries in dimer models

In this last section we will present a precise result, under the form of an example, which shows that
orientifolds of brane tilings with fixed horizontal (equiv. vertical) lines are more severely constrained
than the ones with a single diagonal fixed line. This is the reason why the examples we have presented
so far consist of diagonal line orientifolds only. Ultimately, these additional constraints come from the
implementation of the symmetry itself: when placing ZZP on the square in the first step of the loyal



10.3. REFLECTION SYMMETRIES IN DIMER MODELS 273

fast inverse algorithm, imposing the symmetry with respect to fixed horizontal (equiv. vertical) lines
often implies ZZP crossings on the boundary of the fundamental cell, while this is not the case for the
symmetry with respect to a diagonal fixed line.

Figure 10.14: The dimer vertical line symmetry leads to a horizontal line symmetry of the toric diagram.

If a brane tiling admits a symmetry for some choice of fundamental cell, the zig-zag paths defined by
the dimer model are mapped one to another under this symmetry. Since zig-zag paths are identified with
outgoing normal vectors to the sides of the toric diagram, the latter also enjoys a symmetry related to
the one of the brane tiling. This has been first studied in [RU16b] for orientifold projections with fixed
point and fixed line(s), and we will come back to this while discussing other orientifold projections in
Chapter 13. For example, the case of a brane tiling corresponding to the affine cone over the Hirzebruch
surface F0 is displayed in Figure 10.14: the vertical line symmetry of the brane tiling induces a reflection
symmetry with respect to a horizontal line in the toric diagram.

One may then wonder: since some symmetry of the toric diagram is a necessary condition for the
existence of a corresponding symmetry in a brane tiling, is it also a sufficient condition? In this section
we prove that it is not the case when the symmetry in the dimer model is a reflection through a fixed
horizontal (equiv. vertical) fixed line.

Let us consider the toric diagram on the left of Figure 10.15, from which it appears that no ZZP is
mapped to itself under the reflection with respect to the dashed red line. Hence there must be edges on
each symmetry axis in the dimer model, and subsequently it is always possible to choose a symmetric path
as the thick black one displayed on the right of Figure 10.15, such that the total number of intersections
(counted with signs) between this path and ZZPs in the left half of the cell is zero. Let ni ∈ Z, i = 1, . . . , 6
be the number of intersections (with signs) between the black path and the i-th ZZP in the left bluish half
of the fundamental cell – and remember that we have chosen the path so that

∑
ni = 0. For example,

on the schematic tiling on the right of Figure 10.15 one has n1 = n2 = 1 and n4 = n6 = −1.

If the dimer model under consideration is symmetric with respect to the dashed red lines, then the black
path intersect (with signs)−n6 times the ZZP (1) on the right half of the cell since the ZZPs (1) and (6) are
exchanged under the symmetry. Then, from the toric diagram one infers that n1−n6 = 1 = (1, 0)∧ (1, 1)
since the winding of the black path is (1, 0) and hence as it loops around the torus it crosses once
(with sign) the ZZPs (1) whose winding is (1, 1). Similarly, n2 − n5 = 1 and n3 − n4 = 1. Hence∑
ni = 2(n4 + n5 + n6) + 3, which can not be zero since the ni’s are integers, and we are led to the

conclusion that there can not be any symmetric dimer model corresponding to this toric diagram and this
symmetry. The example of above can be generalized straightforwardly to many other toric diagrams, and
answers negatively the question of whether there always exist symmetric dimer models when the toric
diagram is compatible with this symmetry. It might be that one needs intrinsically non-perturbative
sectors [GEH15] to describe the corresponding orientifolds, if any.
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Figure 10.15: From a polygon to a consistent dimer model through triple crossing diagrams.

As one wonders about the existence of constrained dimer models, ZZPs-based arguments provide in
general merely necessary criteria – such as the one we just derived, whereas the existence theorems for
triple point diagrams let one hope for sufficient conditions. The knowledge of these would certainly
deepen our understanding of orientifolds of affine toric CY3 singularities.



Chapter 11

Dimers orientifolds and anomalies

This chapter is essentially [ABF+21a]. Our presentation is organized as follows. In Section 11.1 we review
the dimer model description of gauge theories on D-branes at toric singularities and the role of zig-zag
paths in solving anomaly cancellation conditions. In Section 11.2, we consider the more involved case of
orientifolds, for which anomaly cancellation conditions generically correspond to non-homogeneous linear
systems of equations due to the presence of tensor matter. In Section 11.3, we generalize the algorithm for
solving anomaly cancellation conditions based on zig-zag paths to the case of orientifolds. This analysis
will lead to the main result of the paper, which we present in Section 11.4: a purely geometric criterion for
anomaly cancellation conditions in orientifold field theories just based on the toric data of the singularity.
Section 11.5 contains a summary of our results and an outlook.

11.1 Gauge anomalies and dimer models

Brane tilings substantially streamline the connection between the probed toric CY 3-folds and the cor-
responding quiver theories thanks to powerful combinatorial tools, such as perfect matchings and zig-zag
paths (ZZPs) [FHK+06, HV07, FHKV08a, FV06]. We will be particularly interested in ZZPs, which we
recall to be oriented paths on the dimer that go along edges and turn maximally right (resp. left) when
they meet a white (resp. black) node. These paths close forming loops with no self-intersections that
have non-zero homology around the T2 in which the diagram is embedded. The two homologies are called
mesonic charges, and are associated to two of the three U(1) toric actions of the toric CY 3-fold, the
remaining one being the U(1)R R-symmetry. Remarkably, ZZPs are in one-to-one correspondence with
legs in the (p, q) web diagram [HV07, FHKV08a] (equivalently, the outward pointing vectors normal to
the external edges of the toric diagram), where their (p, q) labels are exactly the homology charges of the
ZZPs.

The ranks Ni of the gauge groups associated to faces in the dimer reflect the configuration of branes
at the singularity. These branes include both regular and fractional D3-branes. The latter correspond to
higher dimensional branes wrapped on vanishing compact cycles [DDG98]. D-branes source RR tadpoles
that must be canceled, this being the geometric counterpart of anomaly cancellation in the dual gauge
theory. Tadpole cancellation amounts to cancelling the flux sourced by the branes in compact homology.
The configuration Ni = N corresponds to having N regular D3-branes and no fractional branes. This
configuration is always tadpole free since the CY is non-compact and the RR flux sourced by regular
D3-branes can escape all the way to infinity. Configurations with unequal ranks are obtained by adding
fractional branes. The number of independent, anomaly-free fractional brane configurations is in one-to-
one correspondence with the number of compact 2-cycles whose Poincaré duals in the CY are non-compact
4-cycles. Indeed, D5 branes wrapped on these (and only these) 2-cycles are tadpole free since the RR flux
can again escape to infinity. The number of non-compact 4-cycles, hence of consistent fractional branes,
can be related to the number of ZZPs [But06],

#ZZPs− 3 = #Fractional Branes . (11.1)

Note, in passing, that tadpole cancellation is equivalent to cancellation of non-abelian gauge anomalies
even formally for gauge groups with zero rank [Ura01].

275
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In this work we will use anomaly cancellation conditions (ACC) and tadpole cancellation interchange-
ably. In fact, some U(1) factors can be anomalous and become massive through a generalization of the
Green-Schwarz mechanism. Even some of the non-anomalous U(1)’s can become massive, see [IRU99]. In
the following, we will only consider the anomaly of the non-abelian part of the gauge groups. Henceforth
we will often denote them as just SU(N).

Cancellation of anomalies at a given node of the quiver corresponds to having the same number of
incoming and outgoing arrows (weighted by the ranks of the nodes at their other endpoints). This is
encoded in the (antisymmetric) exchange matrix A defined as A = Ã − ÃT , where Ã is the adjacency
matrix of the quiver. The latter is a matrix whose elements Ãij count the number of bifundamental chiral
superfields (�i,�j) charged under the gauge group i and the gauge group j. With an abuse of language
in the following we will call A the adjacency matrix, for simplicity. The matrix A is only sensitive to
the chiral content of the theories (e.g. it is zero for the conifold). Cancellation of anomalies amounts to
solving the homogeneous system of equations defined by this matrix, that is, finding Ker(A). Integral
vectors in Ker(A) encode the ranks associated to regular and fractional branes. In this chapter we will
investigate how these conditions are modified once orientifold planes are introduced, following [ABF+21a]
closely.

11.1.1 Anomalies and Zig-Zag Paths

Throughout this paper, we will find ZZPs to be particularly useful for our purposes. With this in mind,
we now review a method for finding anomaly-free rank assignments of dimers based on ZZPs [But06].

We can regard every ZZP as defining an “anomaly-free wall” on the dimer. This is because, due to its
definition, every time a ZZP overlaps with a face in the dimer, it does so over exactly a pair of consecutive
edges.1 These two consecutive edges correspond to an incoming and an outgoing arrow in the quiver for
the gauge group associated to the face under consideration.2 This implies that if we add some constant
to the ranks of all the faces on one side of the ZZP, the ACC of the faces on the other side of the ZZP
do not change, as illustrated in Figure 11.1.

Figure 11.1: A ZZP as an anomaly wall.

With this insight, one recovers the algorithm to construct anomaly-free rank assignments for dimer
models outlined in [But06]:

1. The set of ZZPs is given by {(pΓ, qΓ)|Γ = 1, . . . , n}, where pΓ and qΓ are the winding numbers of
the ZZP Γ, with respect to a fixed unit cell. To every (pΓ, qΓ) assign an integer coefficient vΓ.

2. Choose one face and assign rank zero to it.

3. In going from face a to an adjacent face b, the rank of the latter will be

Nb = Na + vΓ − v∆ , (11.2)

1By overlapping with a face, we mean sharing an edge with it, not just touching it at a node.
2More generally, a ZZP might overlap with a given face more than once. Every overlap involves a pair of consecutive

edges, so the previous discussion still applies. For an explicit example of this situation, see the yellow ZZP in the dP1 dimer
model shown in Figure 11.2a.
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where vΓ is the coefficient of the ZZP moving to the left with respect to the path from a to b, and
v∆ is the one in the opposite direction. This operation is well defined since we are working on an
oriented surface, which implies that we can consistently speak of “right” and “left” of a ZPP.

4. Finally, one must impose two constraints which ensure that the rank assignment is single valued.
Consider, for instance, moving along a loop along one of the two cycles of the fundamental cell.
When returning to the initial face, the rank should be unchanged. This is granted by imposing

Λ =
∑

Γ

vΓpΓ = 0, M =
∑

Γ

vΓqΓ = 0 . (11.3)

We will refer to these two conditions as the Λ and M topological constraints.

Every choice of values for the vΓ’s consistent with the topological constraints Equation (11.3) gives rise
to an anomaly-free rank assignment. Moreover, notice that, by construction, every rank assignment is
invariant under a global shift vΓ → vΓ + k. One may use this freedom to fix one of the vΓ’s (equivalently,
one of the ZZPs is not independent). There are thus two constraints and one redundancy to be fixed,
reproducing the expected number of fractional branes in Equation (11.1). In other words, this construction
can account for the most general anomaly-free rank assignment, up to an overall shift of the ranks
(i.e. regular branes). Generically, this algorithm can produce negative ranks for some faces, which cannot
be directly interpreted as ranks of gauge groups. Of course, one may always add regular branes until all
ranks are positive.3

11.1.2 Examples

Let us illustrate the algorithm in Section 11.1.1 with two examples, to which we will return when discussing
orientifolds.

dP1

Consider the toric phase of the complex cone over dP1, or dP1 for short, which is shown in Figure 11.2.
Let us apply the method described above for the computation of the fractional branes.

(a) (b)

Figure 11.2: (a) Dimer diagram for dP1. We show the ZZPs and the rank assignments coming from them.
(b) The toric/web diagram.

3It is worth noting that this procedure is closely related to the algorithm for constructing fractional brane rank assign-
ments introduced in [BHK05], in which the difference in the ranks between two nodes in the quiver is proportional to the
baryonic U(1) charge of the bifundamental field connecting them, with one independent vector for each baryonic U(1). The
relation between the two methods is through the correspondence between baryonic U(1) symmetries and extremal perfect
matchings [BZ06] or, equivalently, ZZPs (which correspond to differences between consecutive external perfect matchings).
Our procedure is also equivalent to the one for labeling cluster variables associated to plabic (i.e. planar bicolored) graphs
using ZZPs [Sco06], and to the even more similar one in the context of cluster integrable systems [GK13] that associates a
divisor at infinity on the spectral curve, to each face of the bipartite fat graph under consideration [Foc15].
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Let us choose N2 = 0. Applying the algorithm, the other faces are assigned the following ranks:

N1 ↔ v4 − v1

N2 ↔ 0
N3 ↔ v3 − v4

N4 ↔ v4 − v3

(11.4)

From the toric diagram we read the two topological constraints:

{
Λ = −v2 − v3 + 2v4 = 0

M = v1 + v4 − 2v3 = 0
⇔

{
v1 = 2v3 − v4

v2 = −v3 + 2v4

(11.5)

We can further use a global shift of the vi to set v4 = 0 and find the following rank assignment:

(v1, v2, v3, v4) ≡ v = (2,−1, 1, 0)v3 ,
(N1, N2, N3, N4) ≡ N = (−2, 0, 1,−1)v3 .

(11.6)

These ranks correspond to a well-known dynamical SUSY breaking fractional brane of dP1 [BHOP05,
FHSU06, BBC05]. We will return to dP1 in Section 11.3.1.

PdP4

As a slightly more complicated example, let us study the case of the PdP4 singularity [FFHH03] in the
toric phase considered in [ABMP19] and given in Figure 11.3.

(a) (b)

Figure 11.3: (a) Dimer diagram for PdP4. We show the ZZPs and the rank assignments coming from
them. (b) The toric/web diagram.

From the toric diagram we read:

{
Λ = v6 + v7 − v3 − v4 = 0

M = v5 + v4 − v1 − v2 = 0
⇔

{
v3 = v6 + v7 − v4

v5 = v1 + v2 − v4

(11.7)

Since a global shift in the vi does not change the rank assignments, we can impose v4 = 0. We then find
the following rank assignment,

v = (v1, v2, v6 + v7, 0, v1 + v2, v6, v7) → N = (−v7, v2, v6 − v1,−v1, v6, v2 − v7, 0) . (11.8)

We will return to this example in Section 11.3.1 upon orientifolding it.

11.2 Anomaly Cancellation Conditions in Orientifolds

Determining whether an orientifolded theory admits anomaly-free solutions and, if so, finding them is a
relatively straightforward task in a case by case basis. Indeed, writing down the set of anomaly equations
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for every gauge group and looking for solutions is not more complicated than for non-orientifolded models.
In this section we systematize this calculation, introducing an algorithm for finding anomaly-free solutions
in the presence of orientifolds. This, in turn, will allow us to relate the calculation to the one in the
unorientifolded theory and, at a later stage, to extend the geometric determination of solutions in terms
of zig-zag paths to orientifolds.

In what follows, we will refer to the original, unorientifolded theory as the mother theory. Simi-
larly, we will dub the orientifolded theory the daughter theory. As described in Section 11.1 finding an
anomaly-free rank assignment for the mother theory amounts to finding the kernel of its adjacency matrix
(more precisely of the matrix A = Ã − ÃT , with Ã the proper adjacency matrix, see the discussion in
Section 11.1). Tensor matter in the daughter theory modifies the ACC, dovetailing the contribution of
the O-planes to the RR-charges that must cancel in compact homology. In general, the anomaly/tadpole
problem of orientifolded theories corresponds to a non-homogeneous linear system of the form:

Ā ·N = f , (11.9)

where Ā is the adjacency matrix of the daughter theory, and f stands for the additional contribution of
tensor matter. The difference between two solutions of the system Equation (11.9) is a solution of the
corresponding homogeneous one, i.e. it is in the kernel of Ā. If one knows a particular solution Npart of
Equation (11.9), every solution N can be expressed as:

N = Nhom +Npart , (11.10)

where Nhom is a solution of the homogeneous system Ā ·N hom = 0.
Remarkably, we will show that whether Equation (11.9) has solutions or not can be directly determined

from the toric diagram of the singularity under consideration. In other words, we will establish a geometric
criterion for the satisfiability of the ACC in orientifolded theories.

11.2.1 Dimers and Orientifolds

Before proceeding let us recall a few basic features of orientifolds in dimer language from Section 7.6.
More details can be found in [FHK+07]. Related works include [IKY08, GEH15, GEH17].

The operation of orientifolding has been studied as a Z2 involution of the dimer diagram, leaving
either fixed points or fixed line(s).4. Examples of both possibilities are shown in Figure 11.4. The fixed
points or fixed line(s) are assigned signs, which control the projection to the orientifolded theory.

1

2

2
2

3

3
3

(a)

1

2 2

1

(b)

Figure 11.4: (a) Orientifold of C3/Z3 with fixed points. (b) Orientifold of the conifold with fixed lines.

Fixed Points. In an orientifold of this type, there are four fixed points in a unit cell (see [FHK+07]).
In order to preserve SUSY, their four signs must satisfy the so-called sign rule: their product must be
(−1)nW /2 where nW is the number of superpotential terms. Faces that sit on top of a fixed point are
mapped to themselves and become SO(Ni) or USp(Ni) groups for + and − signs, respectively. Similarly,
edges that sit on top of fixed points correspond to self-identified matter fields that are projected to
symmetric (resp. antisymmetric ) for + (resp. −) signs. For faces and edges that are not
self-identified, we keep any of the two mirror images in the projected theory. They correspond to SU(N)
gauge groups and bifundamental/adjoint matter.

4The possibility of Z2 involutions without fixed loci had not been explored in the literature yet. We will present our
findings about this in Chapter 13.
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For illustration, let us consider the fixed point orientifold of C3/Z3 shown in Figure 11.4a. The
superpotential is the sum of six monomials, so the product of the signs for the four fixed points must
be −. For concreteness, let us consider the signs (+,−,−,−), where we have ordered them running
counter-clockwise starting at the origin. The gauge symmetry and matter content of the orientifolded
theory is

USp(N1)1 × SU(N2)2 with 2 2 + 2 + 3(�1,�2) . (11.11)

The superpotential results from the projection of the original superpotential (see [FHK+07] for details
and examples).

Fixed Lines. Depending on the symmetry of the unit cell, there might be a single diagonal or two
parallel fixed lines. We will often refer to the case of two parallel lines as horizontal/vertical lines due to
their orientation. In either case, the signs of the fixed lines are unconstrained and can be chosen freely.
The rule for projecting faces and fields is the same as with fixed points.

As an example, let us consider the fixed line orientifold of the conifold shown in Figure 11.4b. Faces
1 are 2 are mapped into themselves, so both of them become either symplectic or orthogonal, depending
on the signs of the fixed lines. In addition, the matter content consist of two bifundamentals (�1,�2).5

As in the previous case, it is also straightforward to determine the projected superpotential.

11.2.2 The Adjacency Matrix of Orientifolded Theories

Consider a toric singularity and a corresponding dimer admitting a Z2 involution. We can divide the
ng gauge groups of the mother theory into two sets: pairs of faces identified under the involution, and
self-identified ones. Therefore, the adjacency matrix of the mother theory, AIJ with I, J = 1, . . . , ng, can
be suitably rearranged as follows:

A =




B11 B12 B13

B21 B22 B23

B31 B32 B33

︸ ︷︷ ︸
j

︸ ︷︷ ︸
j + k

︸ ︷︷ ︸
b




}
i

}
i+ k

}
a

. (11.12)

Here faces i, j = 1, . . . , k are the surviving ones out of those in the pairs of faces that are mapped into
each other (for every pair, we are free to keep any of the two faces). Faces i+k, j+k, with i, j = 1, . . . , k,
are their images. Finally, the remaining faces a, b = 1, . . . , ng − 2k are those that are self-identified. The
B matrices are the adjacency matrices between these different subsets. For example, B13 is the adjacency
matrix between surviving faces and self-identified faces, while B23 is the adjacency matrix between the
image faces and the self-identified ones. The matrix A is antisymmetric by definition, which in terms of
the submatrices B implies that

B11 = −BT11 , B22 = −BT22 , B33 = −BT33 ,

B12 = −BT21 , B13 = −BT31 , B23 = −BT32 .
(11.13)

The Z2 symmetry of the phase under consideration endows it with further symmetry properties. The

5Since the representations of SO(N) and USp(N) are self conjugate, there is no distinction between fundamental and
antifundamental representations.
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Z2 projection acts on the bifundamental fields as follows:

Mother theory Daughter theory

(�i,�j), (�j+k,�i+k) → (�i,�j)
(�i,�j+k), (�j ,�i+k) → (�i,�j)
(�i+k,�j), (�j+k,�i) → (�i,�j)
(�a,�i), (�i+k,�a) → (�a,�i)
(�i,�a), (�a,�i+k) → (�a,�i)
(�a,�b), (�b,�a) → (�a,�b)

. (11.14)

These projections imply that:

B11 = BT22 , B12 = BT12 , B21 = BT21 ,

B31 = BT23 , B13 = BT32, B33 = BT33 .
(11.15)

We can apply Equations (11.13) and (11.15) together to find further relations between the B’s,

B11 = −B22 , B12 = −B21 ,

B13 = −B23 , B31 = −B32 , B33 = 0 ,
(11.16)

so that eventually the adjacency matrix is entirely determined by B11, B12 and B13:

A =




B11 B12 B13

−B12 −B11 −B13

−BT13 BT13 0


 . (11.17)

In order to illustrate these relations, let us consider the complex cone over PdP3b, as studied in
[ABMP19]. The dimer, which is shown in Figure 11.5, admits a Z2 symmetry with two fixed lines. The

Figure 11.5: Dimer diagram for PdP3b with two horizontal fixed lines (dotted red).

numbering of the faces has already been chosen such that the adjacency matrix reads

A =




0 1 −1 0 1 −1
−1 0 0 1 1 −1
1 0 0 −1 −1 1
0 −1 1 0 −1 1
−1 −1 1 1 0 0
1 1 −1 −1 0 0



, (11.18)

which showcases the general structure in Equations (11.13), (11.15) and (11.16).
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Let us now turn our attention to the daughter theory. To compute the ACC for the orientifolded
theory we first note that SO/USp groups are automatically anomaly-free and play no role6. Further, for
the ACC of the non-self-identified faces we have to take into account both the contributions from fields
such as (�i,�j), that are counted by B11, and fields such as (�i,�j) and (�i,�j) that are counted by
B12, see Equation (11.14). This leads to the homogeneous ACC for the projected theory given by

A =


 B11 +B12 B13


 . (11.19)

Applying this to the PdP3b example we get

A =

(
−1 1 1 −1
−1 1 1 −1

)
. (11.20)

11.2.3 The Homogeneous Problem

In the previous section, we have constructed the homogeneous part of the ACC for an orientifolded theory.
We now show how solutions to the homogeneous problem, namely elements of ker(A), are obtained from
symmetric rank assignments of the mother theory, which form a subspace of ker(A). This will allow us
to extend the method explained in Section 11.1.1 to the homogeneous problem of orientifolded theories.

We say that a rank assignment of the mother theory NS
I is symmetric with respect to the Z2 involution

if it satisfies
NS
i = NS

i+k , NS
a free . (11.21)

If this rank assignment is anomaly-free in the mother theory (i.e. if it is in the kernel of A), we have

AIJN
S
J = 0 , (11.22)

where here and henceforth, summation over repeated indices is understood.
Expanding this equation in terms of the B matrices and exploiting the symmetry properties given in

Equation (11.21), it becomes

(B11 +B12)ijN
S
j + (B13)iaN

S
a = 0 ,

(B21 +B22)ijN
S
j + (B23)iaN

S
a = 0 ,

(B31 +B32)ajN
S
j + (B33)abN

S
b = 0 .

(11.23)

From Equation (11.16), we conclude that the first two equations are actually one and the same, while
the third equation is trivially satisfied for any symmetric rank assignment. From the first two equations
we learn that any symmetric rank assignment NS

I in the mother theory which satisfies the ACC, defines
a solution of the homogenous ACC system of the daughter theory given in Equation (11.9):

Nhom = (NS
i |NS

a ) . (11.24)

Equation (11.23) indeed implies that such a vector satisfies:

A ·Nhom = 0 . (11.25)

Conversely, if one starts with a vector (NS
i |NS

a ) satisfying Equation (11.25), the vector (NS
i |NS

i+k|NS
a )

is a symmetric rank assignment of the mother theory. The definition of A in Equation (11.19) implies
that the equations in Equation (11.23) hold for (NS

i |NS
i+k|NS

a ), i.e. that the latter satisfies the ACC of
the mother theory. Hence, we have proved the following:

Proposition 11.1. Rank assignments in the daughter theory which satisfy the homogeneous ACC are in
one-to-one correspondence with symmetric rank assignments in the mother theory which satisfy the ACC.

In the special case where tensors are absent from the daughter theory, the ACC are actually a homoge-
neous problem and the symmetric rank assignments in the mother theory provide directly the orientifold
solutions. The regular brane is such a solution that always exists, and thus guarantees that an orientifold
without tensors always admits a non-anomalous solution.

6There could have been, however, Witten anomalies à la SU(2) in SO/USp groups. Yet, as discussed in [IKY08],
cancellation of local anomalies ensures that the number of fermions is even and the Witten anomaly vanishes.
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11.2.4 The Non-Homogeneous Problem

Finding solutions to the ACC in orientifolded theories with tensors is not trivial because their very
existence is not guaranteed, since the full system of ACC given in Equation (11.9) has a non-homogeneous
part coming from the tensor matter. The Rouché-Capelli theorem gives us a criterion for its solvability:
a non-homogeneous system,

Ā ·N = f , (11.26)

admits a solution if and only if

rank(Ā) = rank(Ā|f) , (11.27)

where (Ā|f) is the matrix obtained by appending the column f to the matrix Ā. For us f encodes the
contribution to the ACC of the tensor matter, i.e. of the self-identified chiral fields.

In other words, every set of numbers ri such that

riĀiJ̄ = 0 (11.28)

holds for all J̄ = j, a, must satisfy

rifi = 0 (11.29)

for the system to be solvable. In this section we show that the coefficients ri which satisfy Equation (11.28)
correspond precisely to the antisymmetric rank assignments of the mother theory.

Suppose that some coefficients ri satisfying Equation (11.28) exist. Using Equation (11.16) for J̄ = j,
one can show that it implies

ri(B11)ij − ri(B21)ij = 0 . (11.30)

Using Equation (11.16), this is equivalent to

ri(B12)ij − ri(B22)ij = 0 . (11.31)

For J̄ = a, using Equation (11.16), we find that

ri(B13)ia − ri(B23)ia = 0 . (11.32)

We write

NA
I = (ri| − ri|0) , (11.33)

and equations Equation (11.30) to Equation (11.32) can be expressed as

NA
I AIJ = 0 = AJIN

A
I , (11.34)

where the second equality merely uses the antisymmetry property of A. Hence, we have proved that any
set of ri satisfying Equation (11.28) defines an antisymmetric rank assignment NA

I of the mother theory,
which satisfies the mother ACC.

Conversely, starting with an antisymmetric rank assignment NA
I in the mother theory

NA
i = −NA

i+k, NA
a = 0 , (11.35)

which satisfies the ACC, one can use equations Equation (11.30) to Equation (11.32) backwards, and
thus obtain a set of ri such that Equation (11.28) holds for all J̄ = j, a.

Let us emphasize that while symmetric rank assignments in the mother theory are in one-to-one
correspondence with solutions of the homogeneous system of ACC in the daughter theory (which by
definition form the kernel of A), the antisymmetric rank assignments in the mother theory correspond
rather to the elements of the cokernel of A, that we will see merely as technical tools. They are useful for
determining whether a given daughter theory admits an anomaly-free rank assignment, since the elements
in the cokernel of A encode the relations between the lines of A, from which one can row-reduce A.

Proposition 11.2. Coefficients of trivial linear combination of lines of A are in one-to-one correspon-
dence with the anomaly-free antisymmetric rank assignments in the mother theory.
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To rephrase what we wrote at the beginning of the section, there are anomaly-free rank assignments
in the daughter theory if and only if

NA
i fi = 0 (11.36)

for every antisymmetric solution NA
I of the mother theory, where f is easily computed from the dimer

and its orientifold. We call this the “Rouché-Capelli condition.”
In general, note that any rank assignment NI can be split into a symmetric and an antisymmetric

component,

(Ni|Ni+k|Na) =
1

2
(Ni +Ni+k|Ni+k +Ni|2Na) +

1

2
(Ni −Ni+k|Ni+k −Ni|0) . (11.37)

Both parts are then half-integer valued. Multiplying such a possibly unphysical (in the case it is
half integer-valued) rank vector by an even number yields a physical rank vector with the required
(anti)symmetry. All of the reasoning of the last two subsections is pure linear algebra, and does not know
about the need of integrality for rank assignments, which comes entirely from physics.

11.3 A Zig-Zag Algorithm for Orientifolds

We will now generalize the procedure discussed in Section 11.1.1 to find (anti)symmetric rank assignments
in orientifolded theories. The precise details of the algorithm depend on whether the Z2 involution leaves
fixed lines or points. This difference comes from the fact that involutions with fixed lines map nodes to
nodes of the same color, while involutions with fixed points map nodes to nodes with opposite color.

We illustrate this difference in Figure 11.6. There we can see that ZZPs around a node make a
clockwise or counterclockwise loop. If a node is mapped to a node of the same color it means that
the orientation of the loop is preserved, while, in the opposite case, it is reversed.7 This observation
will become crucial when we define (anti)symmetric rank assignment in both the case of fixed lines and
points.

(a) (b)

Figure 11.6: The orientifold actions with fixed points (a) and fixed lines (b). p is a path from one face to
an adjacent one, and p′ its image. In (a) the red and blue ZZPs are self-identified, while the green ones
are mapped into each other. In (b), the red and blue ZZPs are mapped into each other, and the green
ones are self-identified.

For the forthcoming analysis, we find it useful to introduce the notation {Γ} = {α, α,Γ} to describe
the set of ZZPs: every pair (α, α) corresponds to ZZPs mapped into each other under the orientifold
projection, while Γ labels self-identified ZZPs.

11.3.1 Fixed Line Orientifolds

Due to how they act on ZZPs, orientifolds with fixed lines in the dimer correspond to toric diagrams
with axes of Z2 reflection symmetry.8 Figure 11.7 illustrates the general structure of such axes and

7We recall that under both involutions, a dimer is sent to a dimer with all ZZPs going in the opposite direction. The
map between ZZPs is understood after additionally reversing the direction of every ZZP, as in [RU16b].

8We will refer to such lines of reflection symmetry in the toric diagram as axes in order to avoid confusion with the fixed
lines in the dimer (which we also call O-lines).



11.3. A ZIG-ZAG ALGORITHM FOR ORIENTIFOLDS 285

the map between a ZZP and its image in the cases of orientifolds with diagonal and horizontal O-
lines (which is analogous to the case with vertical O-lines). Let us elaborate on this kind of figure.
Naively, the orientation of the reflection axis in these toric diagrams can be modified by an SL(2,Z)
transformation, potentially eliminating the distinction between the diagonal and vertical/horizontal O-
line cases. However, the toric diagram after such SL(2,Z) transformation would no longer be symmetric
with respect to the axis. Alternatively, we can think about the toric diagrams with reflection axes as
coming from specific dimers with fixed lines. In this context, an SL(2,Z) transformation translates into a
change of the unit cell of the dimer. But the unit cell is fixed by the specific orientifold under consideration:
not any SL(2,Z) transformation is permitted once we have chosen an orientifold identification. In other
words, the orientifold obstructs SL(2,Z) transformations.

(a) (b)

Figure 11.7: The toric diagrams for fixed line orientifolds have an axis of reflection symmetry. The
corresponding axes for: (a) diagonal and (b) horizontal O-lines. In both cases we show in blue a generic
ZZP and its image.

Symmetric rank assignments. For Z2 involutions with fixed lines, symmetric rank assignments
correspond to symmetric ZZP value assignments:

vα = vα, vΓ free (11.38)

First, recall from Section 11.1.1 that the difference between the ranks of any two faces in the dimer
is equal to a sum (with signs) of the values of the ZZPs one crosses as one goes between the two faces.
ACC at each face of the dimer ensure that the value of this sum is invariant under smooth (homological)
deformations of the path one follows. Furthermore, the topological constraints guarantee that the value
of the sum is independent of the homology class of the path on the torus.

Consider two faces i and j and a path p connecting them, and i′, j′ and p′ their respective images under
the Z2 symmetry. Every time p crosses a ZZP α, its image p′ crosses α′, and these two crossings have
the same sign, since the orientation is preserved. From this, it is clear that, if the ZZP value assignment
is symmetric, the rank assignment generated by the method in Section 11.1.1 is also symmetric.

Proposition 11.3. In the case of dimer models with involutions fixing lines, symmetric rank assignments
correspond bijectively to symmetric ZZP value assignments (up to the global shift in the values, and such
that the topological constraints are satisfied).

For symmetric value assignments, the topological constraints read:

• Diagonal line (pᾱ = −qα, qᾱ = −pα):

0 = Λ =
∑

α

vα(pα − qα) +
1

2

∑

γ

vγ(pγ − qγ) = −M = 0 . (11.39)
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• Vertical lines (pᾱ = −pα, qᾱ = qα):

M = 2
∑

α

vαqα +
∑

γ

vγqγ = 0 ,

Λ = 0 , (11.40)

The case of horizontal lines follows exchanging pΓ with qΓ and Λ with M .

We can now compute the total number of symmetric rank assignments. If the dimer under consid-
eration has n ZZPs, symmetric rank assignments correspond to a choice of vΓ, such that vα = vα, and
such that topological constraints hold. We also have the freedom to shift the rank of all gauge groups,
since regular branes respect the required symmetry. Putting all this together, the number of independent
symmetric rank assignments modulo some (possibly half-integer) number of regular branes is

dim(ker(A))− 1 =
1

2
(n+ ns)− 2 , (11.41)

where ns is the number of self-identified ZZPs.

Antisymmetric rank assignments. Antisymmetric rank assignments are found in a similar fashion,
by imposing the antisymmetry explicitly on the ZZP values, i.e. vΓ = −vΓ, or equivalently

vα = −vα, vΓ = 0 . (11.42)

This follows from the same reasoning as in the symmetric case: due to the geometric action of the symme-
try, it is clear that antisymmetric ZZP value assignments lead to antisymmetric rank assignments in the
dimer. Furthermore, if the ZZP value assignment is not antisymmetric up to a shift, it is straightforward
to see that the rank assignment cannot be antisymmetric either.

In this case there is a subtlety that was not present in the symmetric case. First, the ZZP value method
only knows about differences of ranks in the dimer. Equivalently, it only describes anomaly-free rank
assignments up to some (half-integer) number of regular branes. The relevant point here is that regular
branes are not antisymmetric. Hence, starting from an antisymmetric value assignment, it can well be
that the rank assignment one constructs is not antisymmetric per se, but merely antisymmetric after
having added some number of regular branes (we will see examples of this later). Then, in the method of
Section 11.1.1, a global shift of the ZZP values does not change the resulting rank assignment. The global
shift does not preserve antisymmetry, so among the family of value assignments corresponding to a given
rank assignment (modulo regular branes), there is a special representative which is an antisymmetric value
assignment. Thus instead of focusing on the bijection between the set of antisymmetric rank assignments
up to a (half-integer) number of regular branes, and the set of ZZP value assignments which satisfies the
topological constraints, and which can be transformed into antisymmetric value assignments thanks to
the global shift, one can consider the only representative of such a class of ZZP value assignments, which
is antisymmetric. We have proven the following:

Proposition 11.4. In the case of dimer models with involutions fixing lines, antisymmetric rank as-
signments correspond bijectively to antisymmetric ZZP value assignments which satisfy the topological
constraints.

When combined with Equation (11.42), the topological constraints Λ = M = 0 again merge into
a single constraint, regardless of the type of fixed line orientifold. The surviving combination however
depends on the nature of the fixed lines:

• Diagonal line:

Λ =
∑

α

vα(pα + qα) = −M = 0 . (11.43)

• Vertical lines:

Λ = 2
∑

α

vαpα = 0 ,

M = 0 . (11.44)

For horizontal lines we merely need to exchange pα with qα, and Λ with M .
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The number of antisymmetric rank assignments is easily computed to be

dim(coker(A)) =
1

2
(n− ns)− 1 (11.45)

Adding Equation (11.41) and Equation (11.45), we find that the total number of independent either
symmetric or antisymmetric anomaly-free rank assignments is n− 3, as should be the case since it is the
number of anomaly-free rank assignments in the mother theory, up to (half) regular branes.

Below we illustrate these ideas with a few explicit examples, containing both diagonal and verti-
cal/horizontal fixed lines.

No Anomaly-Free Solution: dP1 with Diagonal Fixed Line

Consider the complex cone over dP1, which we discussed in Section 11.1.2 as an example of the ZZP
method for the mother theory. It admits a Z2 involution with a fixed line, as shown in Figure 11.8.

(a) (b)

Figure 11.8: (a) Dimer diagram for dP1 with a diagonal fixed line (dotted red). We show the ZZPs and
the rank assignments coming from them. (b) The toric/web diagram with the corresponding symmetry
axis.

Adjacency matrices. The adjacency matrix of the mother theory is easily read from the dimer, and
it is given by

A =




0 2 −1 −1
−2 0 −1 3
1 1 0 −2
1 −3 2 0


 (11.46)

For concreteness, let us consider the case of a positive O-line. The adjacency matrix for the orientifolded
theory is found using Equation (11.19). It is supplemented with the inhomogeneous part and becomes

(Ā|f) =

(
−1 1 +4
−3 3 −4

)
. (11.47)

We will later discuss how to determine systematically the fi’s. Here it is sufficient to see that since the
O-line has a + sign, both tensors are symmetric. The sign of fi = ±4 has to be correlated with the sign
of the diagonal elements of Ā, so that in the ACC we eventually find ±(Ni + 4) for symmetric tensors
and ±(Ni − 4) for antisymmetric ones (recall that f is on the right hand side of the ACC equations
Equation (11.9)).

One may directly solve the simple system Equation (11.47), but we will rather use the algorithm we
developed. In the dimer in Figure 11.8a we indicate the linear combination of ZZPs that corresponds to
every face (we have chosen face 2 to have rank 0). In Section 11.1.2 we studied the anomaly-free rank
assignments in the mother theory and found a one parameter family (besides the regular brane):

N = (−2, 0, 1,−1)v3 , (11.48)
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which can be decomposed into symmetric and anti-symmetric parts,

(−2, 0, 1,−1)v3 = −1

2
(1, 1, 1, 1)v3 +

1

2
(−3, 1, 3,−1)v3 (11.49)

We see that there is one antisymmetric rank vector (−3, 1, 3,−1) and no symmetric one (except the
regular brane). We now show how to find them directly from the ZZPs.

The antisymmetric rank vector is found by imposing v1 = −v2 and v3 = −v4. We cannot use the
global shift, since it is not antisymmetric. The periodicity constraints are Λ = M = v1 − 3v3 = 0. We
thus find the antisymmetric rank assignment N = (−3, 1, 3,−1)v3. In the daughter theory this vector is
N = (−3, 1)v3. However, it is not in ker(A), but in the cokernel. We can use it to row reduce A and
study whether the linear system (A|f) has solutions. Denote f = (+4,−4)T the inhomogeneous part of
(A|f). If N · f 6= 0, the theory is anomalous. This is indeed the case in this example, so we conclude that
the daughter theory does not admit an anomaly-free solution.

No Anomaly-Free Solution: PdP4 with Diagonal Fixed Line

Consider now PdP4, which we previously discussed in Section 11.1.2. Figure 11.9 shows the dimer and
toric diagram for the orientifold under consideration. In Section 11.1.2 we saw that anomaly-free rank
assignments of the mother theory are given by:

N = (−v7, v2, v6 − v1,−v1, v6, v2 − v7, 0) . (11.50)

The topological constraints are:

Λ : v4 + v3 = v6 + v7 , (11.51)

M : v4 + v5 = v1 + v2 . (11.52)

(a) (b)

Figure 11.9: (a) Dimer diagram for PdP4 with a diagonal fixed line (dotted red). We show the ZZPs and
the rank assignments coming from them. (b) The toric/web diagram with the corresponding symmetry
axis.

Adjacency matrices. The adjacency matrices of the mother and daughter theories are:

A =




0 0 1 −1 −1 0 1
0 0 1 −1 −1 0 1
−1 −1 0 0 0 1 1
1 1 0 0 0 −1 −1
1 1 0 0 0 −1 −1
0 0 −1 1 1 0 −1
−1 −1 −1 1 1 1 0




, (Ā|f) =



−1 −1 1 1 −4
−1 −1 1 1 −4
−1 −1 1 1 +4


 , (11.53)

where, for concreteness, we have assumed that the sign of the orientifold line is negative.
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Symmetric rank assignments. Impose v3 = v5, v2 = v6, v1 = v7. The constraints M = 0, Λ = 0
combine into v4 = v1 + v2 − v3. We can use the global shift freedom to set v4 = 0, which leads to
vS = (v1, v2, v1 + v2, 0, v1 + v2, v2, v1). The resulting symmetric rank assignments in the mother and
daughter theories are

NS = (−v1, v2, v2 − v1,−v1, v2, v2 − v1, 0)

N
S

= (−v1, v2, v2 − v1, 0) .
(11.54)

Note that N
S

should be understood as the column vector whose first three elements refer to the faces 1–3
that have an image, while the last refers to the self-identified face 7. When considered as a row vector,
one should drop the last element.

Antisymmetric rank assignments. Impose v1 = −v7, v2 = −v6, v3 = −v5 = 0, v4 = 0. We also need
to impose the constraint v1 +v2 = −v3 with no global shift freedom. We then find a two-parameter family
of antisymmetric assignments for the vΓ, vA = (v1, v2,−v1− v2, 0, v1 + v2,−v2,−v1). The corresponding
antisymmetric rank assignment is

NA = (v1, v2,−v1 − v2,−v1,−v2, v1 + v2, 0) . (11.55)

In the daughter theory, this rank assignment gives rise to the two row vectors

N
A

1 = (1, 0,−1)v1, N
A

2 = (0, 1,−1)v2 (11.56)

Let us denote by f = (−4,−4, 4)T the inhomogeneous part of (A|f). We find N
A

1 ·f = −8 and N
A

2 ·f = −8.
We conclude that anomalies cannot be cancelled in this theory.

This example and the previous one consist of orientifolds with a diagonal fixed line. Both cases turned
out to lead to theories in which anomalies cannot be cancelled. In Section 11.4.1 we will present a more
detailed general analysis and discuss under which conditions such orientifolds can admit anomaly-free
solutions.

An Anomaly-Free Example: PdP3b with Two Fixed Lines

Figure 11.10 shows the dimer and toric diagram for an orientifold of PdP3b with two fixed lines. This
theory was studied in [ABMP19], where it was shown that the daughter theory admits an anomaly-free
rank assignment if the two O-lines have opposite signs. Note that the horizontal fixed lines in the dimer
correspond to a vertical axis of symmetry in the toric diagram.

(a) (b)

Figure 11.10: (a) Dimer diagram for PdP3b with two horizontal fixed lines (dotted red). We show the
ZZPs and the rank assignments coming from them. (b) The toric/web diagram with the corresponding
symmetry axis.
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Adjacency matrices. The adjacency matrices of the mother and daughter theories are:

A =




0 −1 1 0 −1 1
1 0 0 −1 −1 1
−1 0 0 1 1 −1
0 1 −1 0 1 −1
1 1 −1 −1 0 0
−1 −1 1 1 0 0



, (Ā|f) =

(
1 −1 −1 1 −4 · sign(B)
1 −1 −1 1 +4 · sign(A)

)
, (11.57)

where sign(A), sign(B) are the signs of the two O-lines. Let us now turn to the study of symmetric and
antisymmetric rank assignments.

Symmetric rank assignments. Let us impose v2 = v1, v6 = v3. The constraint Λ = 0 is trivially
satisfied, while M = 0 becomes (keeping v1 and v3):

2v1 − v4 = v5 . (11.58)

Setting v4 = 0, we get
vS = (v1, v1, v3, 0, 2v1, v3) , (11.59)

giving in turn
NS = (−v3,−v1,−v3,−v1, v1 − v3, 0) . (11.60)

Projecting down this vector, we obtain the solutions to the homogeneous problem in the daughter theory.

Antisymmetric rank assignments. We now impose v2 = −v1, v3 = −v6, v4 = v5 = 0. As expected,
M is trivially satisfied and one just needs to impose Λ = 0, which reads v3 = v1. Remember that the
global shift has already been fixed. We then find a one-dimensional family of antisymmetric assignments
for the vΓ:

vA = (v1,−v1, v1, 0, 0,−v1) . (11.61)

The corresponding antisymmetric rank assignment is NA = (v1,−v1,−v1, v1, 0, 0). In the daughter

theory this rank assignment gives N
A

= (1,−1)v1. One may now use it to row reduce A. Denote by

f = (−4·sign(B),+4·sign(A))T the inhomogeneous part of (A|f). We find N
A·f = −4·sign(B)−4·sign(A).

If N
A · f 6= 0, the theory is anomalous, so we need sign(A) = −sign(B), as anticipated.

Anomaly-free rank assignments. As explained in the introduction of the current section, since we
have a parametrization of the symmetric rank assignments, we merely need a single solution of the
tadpole-cancellation system to write all of them.

Looking at the adjacency matrix of the daughter theory in Equation (11.57) with sign(A) = + and
sign(B) = −, a straightforward solution to the rank assignment is N1 = 4 and N2 = N5 = N6 = 0 (in the
daughter theory we keep faces 1, 2, 5 and 6). This gives the following three-parameter family of solutions
to the ACC, where we have added N + v1 + v3 regular branes:





N1 = N + v1 + 4
N2 = N + v3

N5 = N + 2v1

N6 = N + v1 + v3 .

(11.62)

11.3.2 Fixed Point Orientifolds

In orientifolds with fixed points, every ZZP is mapped to a ZZP with the same winding numbers [RU16b].
The image of a ZZP can therefore be either itself or another ZZP, if more than one ZZP with the same
winding numbers exist.

Contrarily to the cases with fixed lines, in fixed point orientifolds nodes in the dimer are mapped to
nodes of the opposite color. In analogy with the case of line orientifolds, let us consider a path p going
from a face i to a face j, and its image p′ going from the image of i to the image of j. If p crosses a
ZZP α, then p′ crosses its image α′, but since the color of the nodes is inverted in the image, the signs of
the crossings are opposite. This implies that a symmetric, respectively antisymmetric, rank assignment
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is associated to an antisymmetric, respectively symmetric, value assignment for the ZZP. We therefore
have:

Proposition 11.5. In dimer models with fixed point involutions, symmetric rank assignments up to
(half)-regular branes correspond bijectively to antisymmetric ZZP value assignments which satisfy the
topological constraints. Similarly, antisymmetric rank assignments correspond bijectively to symmetric
ZZP value assignments which satisfy the topological constraints and up to a global shift.

We have seen that in the cases of fixed point orientifolds, symmetric rank assignments correspond to
ZZP value assignments such that:

vα = −vα, vΓ = 0 . (11.63)

One can easily verify that the topological constraints are always satisfied by this choice of vΓ, hence the
number of symmetric rank assignment is:

dim(ker(A)) =
1

2
(n− ns) . (11.64)

Antisymmetric rank assignments, conversely, correspond to:

vα = vα, vΓ = free . (11.65)

In this case both topological constraints Λ and M are not trivial:





Λ =
∑

α

pαvα +
∑

α

pαvα +
∑

γ

pΓvγ = 2
∑

α

pαvα +
∑

Γ

pΓvΓ = 0

M =
∑

α

qαvα +
∑

α

qαvα +
∑

γ

qΓvγ = 2
∑

α

qαvα +
∑

γ

qΓvγ = 0
(11.66)

This leads to:

dim(coker(A)) =
1

2
(n+ ns)− 3 . (11.67)

Upon summing the contributions of symmetric and antisymmetric rank assignments, we retrieve the
total number of fractional branes, n− 3, modulo regular branes.

An Example: PdP3b

Let us return to PdP3b, already studied in Section 11.3.1 but now with fixed points instead of lines. The
dimer is shown in Figure 11.11. Note that we have changed the unit cell and face numbering with respect
to Figure 11.10 to make it consistent with fixed point reflections.

Figure 11.11: Dimer diagram for PdP3b with fixed points. We show the ZZPs and the rank assignments
coming from them.
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Adjacency matrices. The adjacency matrices of the mother and daughter theories are:

A =




0 1 −1 −1 0 1
−1 0 1 0 1 −1
1 −1 0 1 −1 0
1 0 −1 0 −1 1
0 −1 1 1 0 −1
−1 1 0 −1 1 0



, (Ā|f) =



−1 1 0 +4 · sign(C)
−1 1 0 −4 · sign(B)
2 −2 0 −4 · sign(A) + 4 · sign(D)


 ,

(11.68)
where sign(A) to sign(D) are the signs of the O-points. Note that the ZZPs 4 and 5 are interchanged
by the projection, while all other ZZPs are mapped to themselves. Let us now turn to the study of
antisymmetric and symmetric rank assignments.

Symmetric rank assignments. This time we start with antisymmetric ZZP assignments, since for
point orientifolds they provide symmetric rank assignments. Let us impose v4 = −v5, v1 = v2 = v3 =
v6 = 0. As already said, the topological constraints are both trivially satisfied. Note that there is no
global shift to fix. We obtain a one-parameter family of vΓ assignments:

(0, 0, 0, 1,−1, 0)v4 . (11.69)

The corresponding rank assignment is:

NS = (1, 1, 0, 1, 1, 0)v4 , (11.70)

which is symmetric, as expected. Projecting down this vector, one obtains the solutions to the homoge-
neous problem in the daughter theory.

Antisymmetric rank assignments. We now turn to symmetric ZZP assignments, responsible for the
antisymmetric rank assignments. We only need to impose v4 = v5. We further fix the global shift by
choosing v4 = 0. The topological constraints become:

Λ : v3 = v1 − v2 + v6 ,

M : v2 = −v1 .
(11.71)

We find a two-dimensional family of symmetric assignments for the vΓ:

(1,−1, 2, 0, 0, 0)v1 + (0, 0, 1, 0, 0, 1)v6 . (11.72)

The corresponding antisymmetric rank assignments are:

NA = (0,−2,−1,−1, 1, 0)v1 + (−1,−1,−1, 0, 0, 0)v6 . (11.73)

Which, up to half regular branes is equal to:

NA = (1,−3,−1,−1, 3, 1)
v1

2
+ (−1,−1,−1, 1, 1, 1)

v6

2
, (11.74)

which is antisymmetric, as expected. Let us split it into two vectors and project them down to the
daughter theory to obtain,

N
A

1 = (1,−3,−1)
v1

2
, N

A

2 = (−1,−1,−1)
v6

2
. (11.75)

Again, let us use these rank assignments to row reduce A by denoting f = (+4 · sign(C),−4 · sign(B),−4 ·
sign(A)+4 ·sign(D))T . One finds that, for the theory to admit non-anomalous solutions, one must satisfy,

N
A

1 · f =
v1

2
(sign(C) + 3sign(B) + sign(A)− sign(D)) = 0 ,

N
A

2 · f =
v6

2
(−sign(C) + sign(B) + sign(A)− sign(D)) = 0 .

(11.76)
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Anomaly-free rank assignments. The solution to Equation (11.76) depends on the sign choices for
the four fixed points. Consider for example

sign(A) = sign(C) = +, sign(B) = sign(D) = − , (11.77)

which is consistent with the sign rule for fixed point orientifolds. In this case, we go back to Equa-
tion (11.68) to find a two-parameter family of solutions:





N1 = N + v4

N2 = N + v4 + 4
N3 = N .

(11.78)

11.4 General Criteria for Anomaly-Free Orientifolds

In this section we present a general study of the solutions to the non-homogeneous system of ACC of
the daughter theory. Remarkably, we can exploit the algorithm of the previous section to determine the
existence of such solutions directly from toric data, regardless of the particular phase of the theory. This
gives a purely geometric criterion determining whether an orientifolded theory may admit a toric phase
with non-anomalous rank assignments.

11.4.1 Diagonal Line Orientifolds

Let us consider orientifolds with a diagonal fixed line. Without loss of generality, we assume that the fixed
line has winding numbers (1, 1) in the fundamental cell of the dimer. The mapping of ZZPs in this kind
of orientifolds has been studied in [RU16b] and we presented a preliminary discussion in Section 11.3.1.
The diagonal fixed line in the dimer translates into a reflection symmetry axis in the toric diagram with
slope −1, as we already illustrated in Figure 11.7a. This 90◦ rotation of the symmetry axis of the toric
diagram with respect to the fixed line in the dimer was explained in [Yam08].

Reflection with respect to the axis of the toric diagram maps a ZZP with winding (p, q), to a ZZP
with winding (−q,−p). Figure 11.12 shows an example of a generic toric diagram with a diagonal line
orientifold.

• Let l be the number of pairs {vα, vα} ,with α = 1, .., l, of ZZPs mapped one to another, which are
not parallel to the symmetry axis of the toric diagram.

• Let l‖ be the number of self-identified ZZPs {vγ} for γ = 1, ..., l‖, which are parallel to the symmetry
axis of the toric diagram.

Figure 11.12: A generic toric diagram with a diagonal axis symmetry.

From the previous section, we know how to produce the coefficients of the trivial linear combinations
of rows. They are the ranks of the projected SU groups that result from imposing the following conditions
on the vΓ:

vα = −vα ,
vγ = 0 (11.79)
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for all α and γ’s. The topological constraints Λ and M are given by:

Λ =
∑

α,α

(vαpα + vαpα) =
∑

α

vα(pα + qα) = −M (11.80)

where we used pα = −qα.
We now recall the Rouché-Capelli theorem: A non-homogeneous linear system has solution iff the

rank of the associated homogeneous matrix is equal to the rank of the matrix associated to the full
system. A trivial linear combination of rows of the homogenous matrix is still trivial when considering
the matrix associated to the full system. This can be stated as:

∑

i

Nifi = 0 (11.81)

where fi is the non-homogeneous contribution to the ACC matrix of the orientifolded theory, coming
from the tensor matter.

We now need to derive an expression for Ni in terms of the vΓ. The Rouché-Capelli theorem tells us
that the ACC system admits a solution iff Equation (11.81) holds for every value of vΓ consistent with
the topological constraints.

Faces with at Most One Tensor

Let us first focus on the simpler case where every gauge group has at most one tensor field. This result
will be easily extended later to cases with more tensors. Consider a face of the mother theory with an
edge on top of a fixed line. The rank assignment providing the coefficients for row reduction is given by
the condition Ni = −Ni+k, vα = −vα, and the difference between the ranks of two adjacent faces is given
by Ni −Ni+k = vα − vα. Combining these two results, we obtain

2Ni = Ni −Ni+k = vα − vα = 2vα . (11.82)

Let us now determine the fi from the toric data. The method we are going to discuss below can be
regarded as a generalization to orientifolds of the algorithm for finding the (minimal) matter content of a
quiver in terms of basic knowledge of the (p, q) winding numbers of its ZZPs (equivalently of the external
legs of the (p, q) web dual to the toric diagram). The intersection number between a given ZZP and the
fixed line is

det

(
p 1
q 1

)
= p− q . (11.83)

At every such crossing this ZZP, if not self-identified, will intersect its image on the line. The edge on
which they cross will produce a tensor or conjugate tensor field, depending on the orientation of the
crossing. This is depicted in Figure 11.13.

Figure 11.13: Crossing between a ZZP (and its image) over an edge on top of a diagonal fixed line. We
show the corresponding bifundamental field in the mother theory.

From the discussion above, it is clear that the non-vanishing components of fi are exactly those
corresponding to the faces with a tensor, for which we have just determined the rank in terms of the ZZP
values. Taking into account that the same ZZP can be related to pα − qα tensors, this allows us to write
Equation (11.81) as ∑

i

Nifi = (±4)
∑

α

vα(pα − qα) = 0 , (11.84)
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where we have factorized the choice of sign for the diagonal O-line.
It is worth noting that the intersection with sign is a topological quantity that counts the minimal

number of intersections of the ZZP with the fixed line in the dimer. This is, in fact, a homological
invariant. In principle, more intersections are allowed, but they will come in pairs, one with positive
and one with negative intersection, as shown in Figure 11.14. When computing the total contribution
they cancel, leaving us with Equation (11.84), which does not depend on the particular phase we are
considering.

Figure 11.14: When ZPPs are deformed, additional intersections are added in pairs. We show the
corresponding bifundamental fields in the mother theory.

We use the topological constraint Equation (11.80) to express the value assigned to v1, as

v1 = − 1

p1 + q1

∑

α6=1

vα(pα + qα) . (11.85)

Plugging this expression into (11.84) and rearranging the terms, we reach the following equality:

∑

α6=1

vα (pαq1 − p1qα) = 0 . (11.86)

Then, the Rouché-Capelli theorem can be satisfied for generic vα iff

pαq1 − p1qα ≡ det

(
pα p1

qα q1

)
= 0 , (11.87)

which implies that pα = p1, qα = q1 for every α. This implies that the toric diagram has a maximum of 4
edges, 2 of which are orthogonal to the symmetry axis. We dub the corresponding class of toric diagrams
the trapezoids. An example of such a trapezoid is shown in Figure 11.15. Among trapezoids, we of course
include also triangles.

Note also that there is a subset of trapezoids for which (11.84) is trivially satisfied. They have pα = qα
for every α so we refer to them as the rectangles, and describe orbifolds of F0. See Figure 11.16 as an
example. We remark that rectangles are the toric diagrams that give rise to line orientifolds without
tensors in the spectrum. Thus, we recover the result that the latter always admit a non-anomalous
solution.

Preliminary result for diagonal line orientifolds: Unless the toric diagram of the singularity under
consideration is a trapezoid, any orientifold theory obtained from a dimer symmetric with respect to its
diagonal, and in which every face has at most one edge along this diagonal, does not admit anomaly-free
solutions.

Faces with Multiple Tensors

Faces with multiple tensors arise in examples as simple as the conifold or C2/Z2n+1 orbifolds, upon
orientifolding with respect to a diagonal line. We now discuss how the previous discussion is extended
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Figure 11.15: An example of a trapezoid for which you can find a non-anomalous diagonal line orientifold.

Figure 11.16: An example of a rectangle toric diagram with its diagonal axis of symmetry.

to these cases. We start by considering how multi-tensor faces may be embedded in the dimer. We will
see that there are restrictions on the number of tensors a face can have. Moreover, their existence is
non-trivial and imposes constraints on the toric diagrams. The analysis of this case is slightly different
from the one in the previous section but will lead to the same result.

Interestingly, it is possible to find an upper bound on the number of tensors a face in the dimer can
have. Figure 11.17 shows a face with two self-identified edges on the same side of the O-line. If they were
adjacent, they would be connected at a 2-valent node, which corresponds to a mass term and then they
could be integrated out. Naively, we might imagine that this can be avoided by introducing additional
structure between the two edges, which is represented as a blob in Figure 11.17. But the ZZPs generating
the edges on the line are the only ones that participate in the blob. In other words, the orange and purple
ZZPs in Figure 11.17 must be identified with the blue and green ZZPs, with the precise identification
depending on the number of intermediate edges. Therefore, the blob can only correspond to a sequence
of edges connected by mass terms. After integrating them out, we are left with either zero or one tensor
for an even or odd number of edges, respectively. This implies that a given face can only support more
than one tensor in two cases: if they belong to different O-lines or if they belong to the same O-line but
are coming from different copies of the unit cell as illustrated in Figure 11.18. In both cases, the previous
analysis applies to each instance that the face touches a fixed line, so we conclude that the maximum
possible number of tensors at a given face is two. The total number of tensors in the full theory is,
however, unrestricted.

From Figure 11.18, we see that there can be three types of ZZPs: ZZPs parallel to the fixed line,
which are forbidden since they would have to go through the face with two tensors, spoiling its very
existence; ZZPs orthogonal to the fixed line, i.e. self-identified ZZPs, which do not give rise to tensors;
finally, ZZPs which intersect in pairs on self-identified edges giving rise to tensors. Thus, the singularity
can only have self-identified ZZPs, those of the Γ kind, and at most two couples of ZZPs of the α kind.
Moreover, the (p, q) numbers of the latter are also subject to constraints. They cannot cross faces i and
i′ otherwise than passing by the O-lines, so they can intersect the grey dotted axis in Figure 11.18 at
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Figure 11.17: Two edges of a given face on a fixed line, separated by a general structure.

Figure 11.18: Faces with edges on top of the fixed line at different copies of the unit cell.

most twice if only one couple of ZZPs α is involved:

|pα + qα| ≤ 2 for α = 1 , (11.88)

and once in the case of two couples:

|pα + qα| = 1 for α = 1, 2 . (11.89)

Those relations apply both for ZZPs α and ᾱ, for which the sums are respectively negative and positive.
If there is only one couple, the singularity corresponds to a trapezoid as the ones discussed in the

previous section. Indeed, we have only one couple of ZZPs of the α kind and the topological constraint
imposes v1 = 0 for them, turning the RC condition into a trivial equation.

For two couples, the topological constraints and (11.89) impose

v1 = −v2 . (11.90)

This is the counterpart of the fact that faces i and i′ in Figure 11.18 have to be of opposite ranks, following
(11.82). Now, we can write the RC condition allowing faces to support one or two tensors in terms of v1

only: ∑

i

Nifi = (±4)(v1(p1 − q1)− v1(p2 − q2)) = 0 . (11.91)

Knowing (11.89), the only solution is (p1, q1) = (p2, q2) so that we recover trapezoids. Let us note that
the last equation considered with (11.90) can be brought to the form of (11.86) for two couples of ZZPs
α, hence it is not surprising that a subset of trapezoids appears again as solutions in this context. For
instance, the conifold does not provide a non-anomalous diagonal line orientifold while C2/Z2n+1 orbifolds
do.

We conclude with a general result for diagonal line orientifolds:
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Proposition 11.6 (Diagonal line orientifolds). Unless the toric diagram of the singularity is a trapezoid,
any orientifold theory obtained from a dimer with a diagonal O-line is anomalous.

See Figure 11.19 for more examples.

Figure 11.19: Examples of trapezoids, which admit anomaly-free fixed line orientifolds.

11.4.2 Horizontal/Vertical Line Orientifolds

In this section we consider horizontal fixed lines. The case of vertical lines is trivially related by rotation.
The reasoning is essentially the same as the one described previously for the case of diagonal lines. This
allows us to go fast to the main result for this class of orientifolds. In particular, we will not comment
here about rectangles and faces with many tensors since the previous results are easily generalized.

Horizontal symmetry lines in the dimer correspond to a vertical symmetry in the toric diagram. The
Z2 action maps a ZZP with winding (p, q) to a ZZP with winding (−p, q). Again, we distinguish two
different types of ZZPs:

• Pairs of ZZPs {vα, vα} for α = 1, ..., l, where vα and vα are exchanged under the symmetry, thus
not parallel to the axis of symmetry.

• Self-identified ZZPs {vγ} for γ = 1, ..., l‖, with winding numbers (0, 1) or (0,−1).

A general illustration of this is depicted in Figure 11.20.

Figure 11.20: A generic singularity with a vertical axis symmetry.

In order to find the antisymmetric solutions to the ACC, we need to look at the antisymmetric value
assignments of the ZZPs and impose the topological constraint

Λ = 2
∑

α

vαpα = 0 . (11.92)
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Let us now consider the Rouché-Capelli condition. A ZZP of type α with winding numbers (p, q) crosses
both fixed lines −q times, counted with sign. The Rouché-Capelli condition can be expressed as

∑

i

Nifi = −
∑

α

vαqα(4 sign(A) + 4 sign(B)) = 0 , (11.93)

where sign(A) and sign(B) indicate the signs of the two fixed lines. Unlike the case of diagonal lines, the
Rouché-Capelli condition in (11.93) becomes trivial as soon as sign(A) and sign(B) are different. In that
case, the orientifold theory is always anomaly-free.

If the two fixed lines have the same sign, (11.92) allows us to express v1 in terms of the remaining vα,
as in the case of diagonal lines. Plugging this expression into Equation (11.93) leads to

∑

α6=1

vα (pαq1 − p1qα) = 0 . (11.94)

With the same analysis of the previous section, we find that singularities with two horizontal lines of the
same sign admit a solution to the ACC only if they are trapezoids, just as in the case of diagonal lines.
See Figure 11.21 for examples.

Proposition 11.7 (Horizontal/vertical line orientifold). Toric diagrams symmetric with respect to a
horizontal/vertical axis always lead to anomaly-free orientifold theories when the two O-lines have opposite
signs. When the signs are the same, instead, in order to yield a non-anomalous orientifold theory the
toric diagram of the singularity must be a trapezoid.

Figure 11.21: Examples of trapezoids, which admit anomaly-free horizontal fixed line orientifolds.

11.4.3 Fixed Point Orientifolds

Finally, we address the case of fixed point orientifolds. We should state right away that the results in
this case are less conclusive than for fixed lines. Indeed, one can easily anticipate that having a larger
number of signs to fix (at the four fixed points), it will be straightforward to satisfy the ACC just by
a wise choice, similarly to the case with horizontal/vertical line. On the other hand, if one sticks with
a ‘wrong’ choice, the restriction on the allowed geometries cannot be characterized as nicely as in the
previous cases.

As already explained in Section 11.3, the action of the orientifold on every ZZP is to map it either to
itself or to another ZZP with the same winding numbers. We thus divide the ZZPs into two sets:

• Pairs of distinct ZZPs {vα, vα} for α = 1, · · · , k that are exchanged.

• Self-identified ZZPs {vγ}, for γ = 1, · · · , l.

The total number of ZZPs is n = 2k + l.
In this kind of orientifolds, tensors arise whenever a pair of self-identified ZZPs intersect over a fixed

point. Moreover, a ZZP going through a fixed point necessarily goes through a second fixed point [RU16b].
As a result, it is easy to convince oneself that the number of tensors, if present at all, must be between
2 and 4, and it coincides with the total number of self-identified ZZPs that cross a fixed point.
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In order to find the antisymmetric solutions to the ACC, we need to consider symmetric value assign-
ments for the ZZPs, as explained in Section 11.3, subject to the topological constraints

Λ = 2
∑
α vαpα +

∑
γ vγpγ = 0 ,

M = 2
∑
α vαqα +

∑
γ vγqγ = 0 .

(11.95)

The RC equation becomes ∑

i

Nifi =
∑

γ 6=γ′
(vγ − vγ′)(±4) = 0 . (11.96)

where the sum in the middle runs over the tensors. The signs depend on the sign of the fixed points and
on the orientations of the self-identified edges. Depending on which of the two faces adjacent to the edge
we preserve in the projection, we get tensors or their conjugates, contributing with opposite signs to the
ACC.

We recall that the signs of the fixed points, in contrast with fixed lines, are constrained by the sign
rule [FHK+07]. The rule prescribes that the product of the four signs is (−1)nW /2, with nW the number
of superpotential terms.9

We now consider the different possibilities, i.e. l = 2, 3 and 4 tensors. Our analysis is general and
does not distinguish between faces with single or multiple tensors.

• l = 2: In this case we have two tensors, meaning that two ZZPs cross each other on two fixed
points. Equation (11.96) reads

(v1 − v2)(±14)± (v1 − v2)(±24) = 0 , (11.97)

where the ±i indicate the signs of the fixed points, while the additional ± signs depends on whether
the tensors are conjugated or not.

Since only two fixed points are involved in this case, their signs can always be chosen such that this
equation is trivially satisfied, while satisfying the sign rule. However, it is interesting to consider
whether there are other ways to satisfy this constraint. We can impose v1 = v2 using the two
equations of the topological constraint. Expressing v1 and v2 as function of the other vα’s we get

v1 =
2

p1q2 − p2q1
(p2

∑

α

vαqα − q2

∑

α

vαpα) ,

v2 =
2

p1q2 − p2q1
(q1

∑

α

vαpα − p1

∑

α

vαqα) , (11.98)

where we have assumed p1q2 − p2q1 6= 0. Equating v1 and v2, we obtain
∑

α

vα(pα(q1 + q2)− qα(p1 + p2)) = 0 . (11.99)

Since this equation must hold for all vα, the only possibility is that all terms in the summation
vanish, thus pα(q1 + q2) = qα(p1 + p2) for all α. Solutions are of the form p1 = −p2 and pα = 0,
up to SL(2,Z) transformations. Those correspond to trapezoids (not necessarily symmetric with
respect to any axis) with an even number of ZZPs on each base and only one ZZP on each side.

If p1q2 − p2q1 = 0, it means that (p1, q1) = −(p2, q2), since the two ZZPs are parallel and, in
order to intersect in a consistent way, they must have opposite winding numbers. In this case,
the topological constraint imposes v1 = v2 if pαqα′ − qαpα′ = 0 where α 6= α′. It means that all
non self-identified ZZPs have to be either parallel or anti-parallel to each other. This condition is
satisfied by all toric diagrams with the shape of a rectangle or a parallelogram where there is an
even number of non self-identified ZZPs. Together with the solutions of the previous paragraph,
they constitute a class of trapezoids for which any sign assignment for the fixed points leads to an
anomaly free theory when two tensors are involved.

As an illustration, consider fixed point orientifolds of C3/Z6 with actions (1,1,4) and (1,2,3), whose
toric diagrams are shown in Figure 11.22. Both of them admit an orientifold with two tensors. Our
analysis implies that only the first one admits tensors with any sign, as it can easily be checked by
explicitly solving the ACC.

9Generically, it is not known whether the parity of nW /2 can be deduced from the toric diagram.



11.4. GENERAL CRITERIA FOR ANOMALY-FREE ORIENTIFOLDS 301

(a) (b)

Figure 11.22: The toric diagrams for the C3/Z6 orbifolds with actions: (a) (1,1,4) and (b) (1,2,3).

An interesting scenario is when tensors arise from the orientifold projection of adjoints in the mother
theory, namely from edges separating self-identified faces. In this case, the ACC of the self-identified
gauge group is trivially zero, since it is either SO or USp. In this situation, the two self-identified
ZZPs intersect all other ZZPs only once. This can be understood as follows. Let us consider a
line passing through the fixed points under consideration. All the non self-identified ZZPs must
be parallel to this line, since otherwise their intersections with the line would imply that they go
through the self-identified face, which in turn would spoil the fact that it is self-identified. The
C2/Z2m orbifolds are examples in this class, see Figure 11.23.

Figure 11.23: The toric diagram of C2/Z6, as an example of the C2/Z2m family.

• l = 3: In this case we have three tensors, i.e. three ZZPs intersecting on three fixed points.
Equation (11.96) reads

(v1 − v2)(±14)± (v2 − v3)(±24)± (v3 − v1)(±34) = 0 . (11.100)

Since only three of the fixed points are involved, it is possible to pick their signs such that this
equation is trivially satisfied. These choices in turn determine the sign of the fourth fixed point due
to the sign rule.

If instead we have a different combination of signs, we end up with an equation of the form

vγ − vγ′ = 0 , (11.101)

with γ and γ′ two of the three ZZPs above. The missing vγ′′ in the previous equation depends
on the choice of fixed point signs in Equation (11.100). Therefore, in order to have a solution for
all possible fixed point sign assignments we need to impose v1 = v2 = v3 with the topological
constraint. This means that the ZZPs have winding numbers of the form (p1, 0), (−p1, q2) and
(0,−q2), up to SL(2,Z) transformations. The only solution is p1 = q2 = 1, corresponding to C3,
i.e. flat space.

A face with multiple tensors imposes constraint(s) of the form v1 − v2 = ±(v2 − v3), leading to an
RC constraint of the form

(v1 − v2)(±14)± (v1 − v2)(±24)± (v3 − v1)(±34) = 0 . (11.102)

Again, the existence of solutions depends on the signs of the fixed points. Solutions for generic
signs can be obtained only when v1 = v2 = v3, i.e. for flat space.



302 CHAPTER 11. DIMERS ORIENTIFOLDS AND ANOMALIES

• l = 4:

This case, in contrast with the previous ones, does not always admit a solution to the ACC. The
reason for this is that the four fixed points are used, their signs are constrained by the sign rule
and we no longer have the freedom of unused fixed points.

The RC equation can take two different forms, depending on the ZZP intersections:

(v1 − v2)(±14)± (v2 − v3)(±24)± (v3 − v4)(±34)± (v4 − v1)(±44) = 0 ,

(v1 − v2)(±14)± (v1 − v2)(±24)± (v3 − v4)(±34)± (v3 − v4)(±44) = 0 . (11.103)

Since the signs of the fixed points are constrained, it is not always possible to trivially solve the RC
equation.

Moreover, it is also impossible to find general non-trivial solutions by using the topological constraint
to force some of the vi to be equal. For the first equation, we need all the vi to be equal. To do so,
we need at least three equations, but the topological constraint provides only two. In the second
case, we can impose v1 = v2 and v3 = v4 with the following ZZPs: (1, 0), (−1, 0), (0, 1) and (0,−1),
which define the conifold singularity. Unfortunately, the conifold gives rise to an RC of the first
kind, not of the second one.

To conclude, this partial analysis retained only one toric diagram that can accommodate any signs
for its fixed points: flat space. We eventually found some particular trapezoids for which we can freely
chose the signs of the tensors when only two are present, but those singularities also allow in principle
for fixed point orientifolds with four tensors, where our analysis showed its limits. Thus, we cannot say
in general that they provide every kind of anomaly-free orientifolds. As an illustrative example, one can
check that the orientifold of Figure 11.22a with four tensors does not allow for every combination of signs
satisfying the sign rule, although it does with only two tensors.

It would be interesting to investigate further whether it is possible to determine the solvability of the
ACC from the toric diagram. We leave this question for future work. In the meantime, orientifolds with
four self-identified ZZPs need to be studied in a case by case basis.
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11.5 Conclusions

In this paper we studied anomalies in gauge theories living on D-branes probing orientifolds of toric
singularities, focusing on pure D3-brane theories, namely without the addition of extra flavors.

We introduced a new, geometric algorithm for finding anomaly-free solutions based on zig-zag paths.
The main virtue of this procedure is not so much its practicality over the direct solution of the ACC in
explicit examples, but the fact that it allows us to make general statements regarding anomalies directly
from geometry. Indeed, we managed to derive stringent no-go theorems that establish the conditions
for anomaly-free solutions in these orientifolds. Such results are extremely useful, since until now the
cancellation of anomalies in this class of theories was analyzed on a case-by-case basis.

We can summarize our findings as follows, from the most stringent case to the less conclusive one:

• For orientifolds with a fixed diagonal line, for which one has to choose only one sign, we find that
only singularities whose toric diagram is a trapezoid with respect to the diagonal axis of symmetry
allow for a non-anomalous D-brane gauge theory.

• For orientifolds with fixed horizontal lines, we have two signs to choose. All singularities lead to
anomaly-free theories if the two signs are chosen to be opposite to each other. If the singularity has
a toric diagram which is a trapezoid with respect to the vertical axis of symmetry, then the theory
is non-anomalous also for equal signs.

• For orientifolds with fixed points, there are four signs to choose, up to a constraint on their product.
Moreover, the relation between the fixed points in the dimer and the toric diagram of the singularity
is less direct. Because of these two facts, it is more difficult to summarize the few instances where
a restriction is indeed obtained on the singularities that lead to non-anomalous theories. The
particular cases have been detailed in Section 11.4.3.

As an illustration of the power of the ideas introduced in this work, they were exploited in [ABF+21c,
ABF+21b] to guide the search of models of D-branes at singularities that display dynamical supersym-
metry breaking. Such models necessarily involve orientifolds, but have a potential instability as soon as
the singularity allows for a partial resolution which is non-isolated (in D-brane jargon, this translates to
the presence of N = 2 fractional branes [BGVU19]). In terms of the toric diagram, this property mani-
fests itself through points within the external edges of diagram, or in other words, parallel ZZPs10. It is
straightforward to see that toric diagrams that fall in the class of trapezoids always include such points
on the boundary, except for few very simple cases (namely F0 and orbifolds with a toric diagram which
is an isosceles triangle with a unit base). As a consequence, if one is to look for fixed line orientifolds
which allow for anomaly free D-brane configuration, and with no non-isolated partial resolution, the only
option one is left with is horizontal/vertical fixed lines with opposite signs. The octagon singularity
[ABF+21c], which is the subject of the next chapter, is the simplest non-trivial singularity that satisfies
these requirements.

10In [BCH+14, BBMR20] the existence of such flat directions in moduli space was exploited to add relevant mass
deformations in dimers with and without orientifolds.
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Chapter 12

The Octagon

Let us now come back to our original quest, that is, the study of whether it is possible at all to implement
the SU(5) DSB model in brane tilings corresponding to isolated singularities. The ideas presented in
the last chapter taught us a posteriori why the diagonal line orientifolds presented in Figure 10.11 and
Figure 10.13, which incarnated the most parsimonious hope to embed the hexagonal cluster of faces
describing the twin SU(5) model in consistent brane tilings corresponding to isolated singularities, were
doomed from the start and cannot admit anomaly-free rank assignments without flavor D7-branes. More
precisely, the results of Chapter 11 imply that in order to embed the hexagonal cluster of the twin SU(5)
model in a brane tiling orientifold without N = 2 fractional branes, one must do so in an orientifold with
two vertical or horizontal fixed lines carrying opposite signs.

Despite the result of Section 10.3 which show that orientifolds with two fixed lines are constrained by
topological obstructions, it turns out that it is possible to achieve our goal: we will present a dimer model
with two vertical fixed lines, corresponding to an isolated singularity, and containing the hexagonal cluster
of the twin SU(5) model. Provided the instabilities known as of today are the only ones from which DSB
models embedded in warped throats can suffer, this model describes a configuration of fractional branes at
a singularity that dynamically breaks supersymmetry in a stable vacuum. The first section of this chapter
describes the construction of this distinguished dimer model using the ideas of Chapter 10 as in [Tat21],
while the second is the analysis of the model hence obtained, along the lines of [ABF+21c, ABF+21b].

12.1 The rise of the Octagon

We reproduce for convenience the hexagonal cluster of faces corresponding to the twin SU(5) DSB model
on the left of Figure 12.1. The local ZZP structure near such a 6-valent vertex is displayed in the middle
of the same figure, of which we need only to keep the boundary data, displayed on the right.

Figure 12.1: The hexagonal cluster hosting the twin SU(5) model.

Our goal is to embed this circle (with in/out points and pairing) inside a consistent dimer model with
the constraints listed above. One can show that a polygon that can possibly work must have at least 8
sides; the octagon shown on the left of Figure 12.2 is a parsimonious choice. One places straight lines on
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a fundamental cell as before, in a symmetric way with respect to the dashed vertical axis. This is shown
in Figure 12.2.

Figure 12.2: The outgoing normal vectors of the octagon as straight geodesics on a torus.

One needs to deform the boundary of the fundamental cell so that endpoints of strands are distinct
and such that the ‘in’ and ‘out’ insertions alternate. This is shown on the left of Figure 12.3. Keeping the
boundary data only, one can insert the circle corresponding to the hexagonal cluster on the symmetry
axis in the middle of the cell. The resulting diagram is displayed on the right of Figure 12.3.

Figure 12.3: Deforming the fundamental cell and embedding the hexagonal cluster.

The bluish and greenish parts of the deformed fundamental cell on the left of Figure 12.4 are topo-
logical disks with boundary data and pairing satisfying Thurston’s conditions, hence one can construct a
symmetric triple crossing diagram realizing the boundary data, shown on the right of the same figure.

Running the algorithm as before yields a dimer model dubbed the Octagon, because of its toric
diagram. It is presented under a fancy guise on the right of Figure 12.5.

This dimer model remarkably satisfies all the constraints listed in the introduction of Chapter 10:
1 the octagon singularity is obviously isolated, 2 the hexagonal cluster of the twin SU(5) model does lie
on a fixed line of the orientifold projection, 3 it is isolated on a fractional brane (consisting of the faces
1, 2, 3, 7, 12, 13 and 14) which is preserved by the orientifold projection, 4 there exist solutions to the
anomaly cancellation conditions in the orientifold theory.

The determinant of the Kasteleyn matrix corresponding to some Pfaffian orientation is

det(K) = w3z2 + w3z + w2z3 − 24w2z2 + 26w2z − w2 + wz3 + 24wz2 + 26wz + w − z2 + z . (12.1)

One may compute the Newton polygon of the above expression, and it corresponds to the octagon toric
diagram, as expected [HK05]. There is a single perfect matching for each of its external points, thus
ensuring that the dimer meets a necessary condition of minimality.



12.1. THE RISE OF THE OCTAGON 307

Figure 12.4: From the boundary data to a symmetric triple diagram.

+ -
Figure 12.5: The octagon dimer model.

Let us look at the orientifold gauge theory more closely. The orientifold projection identifies faces
(1, . . . , 6) with faces (14, . . . , 9) while faces 7 and 8 are self-identified. Hence, D-branes at such orientifold
singularity are described by a matter coupled supersymmetric gauge theory with six SU factors, one SO
and one USp factors. The twin SU(5) model is given by the rank assignment SU(5)1×SU(1)2×SU(5)3

with all other faces being empty but face 7 which is a decoupled pure SYM with gauge group SO(5) and
hence confines on its own. ACC and self-consistency of such rank assignment follow the general discussion
in Section 9.2. This model represents a concrete example of an orientifold singularity which allows DSB
by a D-brane bound state which is free of any known instability, in particular the N = 2 fractional brane
decay channel or the runaway behavior typical of DSB branes. The absence of N = 2 fractional branes
is clear from the octagon toric diagram, which does not have internal points on boundary edges. This
model therefore provides a realization (the first, to our knowledge) of stable DSB with D-branes at CY
singularities and suggests for an extension of the string theory landscape as it is currently known.

The Octagon emerges as the simplest possible dimer having all required properties to admit, upon
orientifolding, stable DSB D-brane configurations. One might ask whether less minimal models exist
which share the same properties. We do not have an answer to this question, yet. Still, dimer techniques
have (once again) proven to be a very powerful tool to provide a direct link between geometry and gauge
theories dynamics, both in finding no-go theorems, like the one presented in [ABMP19] or the connection
between minimal SU(5) and 3-2 models and the presence of N = 2 fractional branes established in this
paper, as well as in unveiling concrete ways to evade them. Therefore, we cannot exclude that further
surprises are possible and generalizations of the Octagon model will eventually be found.
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12.2 Analysis of the model

Before performing the orientifold projection, it is straightforward to see that the following rank assignment
is anomaly free: faces 1, 2, 3, 7, 12, 13 and 14 have gauge group SU(N+M), and all the others have gauge
group SU(N). Setting N = 0, one has only seven SU(M) gauge groups: one isolated Super-Yang-Mills
(SYM) on face 7 and the six others forming a loop whose links are bi-fundamentals, together with a
sextic superpotential proportional to the only gauge invariant (it is represented by the white dot in the
center of the unit cell). This rank assignment corresponds to the worldvolume theory on a stack of M
deformation fractional branes of our interest. One can easily see that such a gauge theory eventually
leads to a confining behavior just like SYM. This can be naturally UV completed starting from a system
of N regular and M fractional D3-branes which trigger a RG-flow that can be described by a duality
cascade, similar to [KS00a] and many other examples that were found since then. The effective number
of regular branes diminishes along the flow and the deep IR dynamics is described by fractional branes
only.

In the presence of the orientifold projection (choosing opposite signs for the two fixed lines), one can
see that there is a rank assignment which is anomaly free: SU(N +M + 4) for faces 1 and 3, SU(N +M)
for face 2, SO(N +M + 4) for face 7, SU(N) for faces 4, 5 and 6, and USp(N) for face 8. Setting N = 0
we obtain a gauge theory with an isolated SO(M + 4)7 SYM theory, which confines on its own, together
with a quiver gauge theory based on the group SU(M + 4)1×SU(M)2×SU(M + 4)3 with matter fields
and a superpotential that we proceed to analyze.

The DSB model The gauge theory

SU(M + 4)1 × SU(M)2 × SU(M + 4)3 (12.2)

has matter content

A1 = 1, X12 = ( 1, 2), X23 = ( 2, 3), A3 = 3 (12.3)

and superpotential
W = A1X12X23A3X

t
23X

t
12 . (12.4)

The superpotential can be interpreted as follows. The gauge invariant Xt
12A1X12 of group 1 and the

gauge invariant X23A3X
t
23 of group 3 are respectively in the 2 and 2 of gauge group 2, with W

above providing a bilinear in these two invariants, thus akin to a mass term. It is obvious that the
antisymmetrics of SU(M)2 can exist as such only if M ≥ 2. In this case, one can show that strongly
coupled dynamics generates superpotential terms that, together with the tree level one, eventually lead to
supersymmetric vacua. For M = 0 one gets instead two decoupled theories at faces 1 and 3 both having
gauge group SU(4) and one chiral superfield in the antisymmetric, which have a runaway behavior. The
case of interest is M = 1.

For M = 1 node 2 becomes trivial (SU(1) is empty) and, more importantly, the superpotential actually

vanishes. Indeed, both nodes 1 and 3 are SU(5) gauge theories with matter in the ⊕ representations,
and there is no chiral gauge invariant that can be written in this situation [ADS84]. Hence the two gauge
theories are effectively decoupled, and their IR behavior can be established independently. Both happen
to be the SU(5) model for stable DSB. Since the SO(5) SYM on node 7 just confines, we thus determine
that this configuration displays DSB in its vacuum. Quite interestingly, this DSB vacuum may then arise
at the bottom of a duality cascade (possibly more complicated with respect to the simpler unorientifolded
case, due to the orientifold projection which would modify it, see [AB18]), hence within a stringy UV
completed theory.

Stability Is this DSB vacuum stable? There can be different sources of potential instabilities.
First, one could be concerned about stringy instantons, whose presence may affect the low energy

dynamics. Indeed, the D-brane configuration giving rise to the twin SU(5) DSB model, N = 0,M = 1,
contains both a USp(0) and an SU(1) factor coupling to the SU(5) gauge groups. These are the two
instances where contributions to the low-energy effective superpotential are allowed (see [ABF+07] and
[Pet08], respectively). However, no such contributions can be generated in our model simply because
there are no chiral gauge invariants that can be written which can contribute to the superpotential. We
thus conclude that stringy instantons cannot alter the DSB dynamics.
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A second source of instability is the one discussed in [BGVU19, ABMP19]. However, since by con-
struction there are no N = 2 fractional branes, there is no vacuum expectation value on which the energy
of the DSB vacuum can depend on, or equivalently there is no Coulomb branch along which the energy
can slide to zero value.

A third source of instability may come from the N = 4 Coulomb branch represented by regular
D3-branes. As in the previously analyzed cases [BGVU19, ABMP19], one can easily show that this is a
non-supersymmetric flat direction, essentially because of the conformality of the parent (non-orientifolded,
large N) gauge theory. Therefore, there are no supersymmetric vacua along this branch 1.

Lastly, one could in principle wonder whether N = 2 fractional branes could be reintroduced in partial
resolutions of the octagon singularity that could arise in some limits, thus potentially destabilizing the
DSB vacua or at least making it metastable instead of stable.

We list in Figure 12.6 the first partial resolutions of the Octagon that allow for the presence of
dangerousN = 2 fractional branes and in principle can accommodate the orientifold projection. Following
[RU16b], the latter criterion means that the resulting toric diagram has to remain symmetric with respect
to the orientifold line. Further partial resolutions consistent with the orientifold projection inexorably
lead to orbifolds of the conifold, for which our comments on the case of Figure 12.6c will remain valid.

(a) (b) (c)

Figure 12.6: First partial resolutions of the orientifolded Octagon admitting N = 2 fractional branes.

The corresponding dimer diagrams are obtained following the methods of [GESU06, Gul08] and are
presented in Figure 12.7. The algorithm operates the partial resolution by merging some zig-zag paths
in the dimer on the right of Figure 12.5. This action is equivalent to assigning a VEV to the edges on
which these zig-zag paths cross each other.
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Figure 12.7: Dimer diagrams after partial resolutions.

In the cases of Figure 12.7a and Figure 12.7b, we find that the partial resolution is in obstruction with
the very nature of our deformation brane because it implies the fusion of faces of different ranks already at
the level of the non-orientifolded theory. This is the gauge theory counterpart of having blown-up cycles
wrapped by the deformation brane in the singular geometry, which are forbidden following [GESU06]. In

1Flat directions are usually not expected in a non-supersymmetric vacuum. Subleading 1/N corrections to anomalous
dimensions of matter fields, which could lift such flat direction, are not easily calculable, particularly in a complicated
singularity such as the Octagon. However, they should neither change the number of supersymmetric vacua nor modify the
behavior of the potential at infinity, at least for sufficiently large N .
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the case of Figure 12.7c, the partial resolution is obstructed because it gives a VEV to edges separating
faces of ranks that differ by the orientifold charge, for example the edge separating faces 1 and 2.

∗ ∗ ∗ ∗ ∗ ∗ ∗

The Octagon dimer model is the first instance, to our knowledge, of a stable DSB configuration of
fractional branes. As an existence proof of such configurations, this is enough. However, it is not by
chance that this particular singularity has been found, rather one can be led to it by a series of arguments
from the previous chapters. The octagon CY3 is most likely the simplest singularity allowing for stable
DSB, however more complicated singularities may probably do so as well, though always through the
twin SU(5) model. This is the reason why the simplest occurrence of this phenomenon is a singularity
corresponding to a quiver with no less than 14 gauge groups.

With this example, we have shown that stable DSB can still be engineered by brane configurations at
Calabi-Yau singularities. Of course, this statement relies on the belief that there is no other instability
channel for stringy UV completions of DSB models. However even there is, the study of the Octagon
will still prove very interesting, since if it is unstable it can only be so through these yet-to-be-discovered
instabilities.

Given the remarkable properties of this family of models, we consider it important to study them in
further detail.



Part IV

New orientifolds of brane tilings
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D-branes at singularities extend the original N = 4 SYM AdS/CFT correspondence [Mal99, Wit98a]
to theories without conformal invariance and/or reduced supersymmetry [KW98, KN00, KT00, KS00a].
These setups have enriched our understanding of both QFT and String Theory by providing a geometric
understanding of gauge dynamics and dualities while giving tools to tackle brane dynamics through field
theory computations [FHH01a, FHH01b, BP01, FHHU01, KS00a, BHOP05, FHSU06, BBC05, IU08,
GVTU17]. Furthermore, these setups allow for bottom-up constructions in string phenomenology where
most features of the gauge theory depend only on the local features of the compactification [AIQU00,
BJL02, VW07]. More recently, warped throats have been used in trying to uplift to de Sitter vacua
[FGRU15, RUW15] and in the search for SUSY breaking vacua in quantum gravity [FHSU06, BHOP05,
ABFK07b, BGVU19, ABMP19, ABF+21c, ABF+21b].

The correspondence is particularly sharp when one considers 4d N = 1 gauge theories arising in
D3-branes probing singular, non-compact toric CY3 varieties. The problem of finding the gauge theory
given the CY3 was solved by brane tilings, also dubbed dimer models [HK05, FHM+06, FHK+06], where
all the informations of the gauge theory are encoded in a bipartite graph on a torus.

Besides propagating strings on singular backgrounds, one can consider a particular gauging of a Z2

isometry of space together with worldsheet parity, that is, an orientifold [PS89, Hor89, DLP89, BS90,
BS91]. Its projection on the open string spectrum opens the D-brane/gauge correspondence to new
possibilities. For instance, they extend the available gauge and matter fields, which may break conformal
invariance, and allow non-perturbative contributions to the superpotential through instantons [IU07,
ABF+07, BCKW09]. While direct construction in string theory is in practice only feasible for some
orbifold theories, they may be constructed directly in the dimer model [FHK+07] by identifying gauge
groups and fields according to a suitable involution of the graph and possibly assigning some signs to the
fixed loci in the dimer, corresponding to the different choices in the orientifold projection. This makes
possible for toric singularities to be orientifolded. In the same paper, orientifolds were classified in two
groups, depending on the involution, those that leave four fixed points and those that leave a single or two
fixed lines, in the dimer. Interestingly, these correspond to three of the five possible smooth involutions
on the torus [Dug19], the remaining ones corresponding to a shift of the fundamental cell and a glide
reflection, i.e. combining a shift and a reflection.

This part of the dissertation presents results towards the study the two last cases, that leave no fixed
loci and assess whether they correspond to sensible orientifolds in string theory. It consists of a single
chapter that was published as [GVMPT21], in collaboration with Eduardo Garćıa-Valdecasas, Shani
Meynet and Antoine Pasternak. We will argue that only the glide reflection leads to SUSY preserving
orientifolds, while the shift is always breaking it. Moreover, we will show how the orientifold projection
corresponding to a glide reflection has remarkable properties. Not only, the projected theory always has
a conformal fixed point, but also admits, in some cases, a non-trivial RG-flow described by a cascade of
Seiberg dualities, analogous to the one of the conifold [Sei95, KS00a].

Figure 12.8: The Franklin graph

The orientifold theories described as the quotient of a brane tiling by a glide reflection correspond to
bipartite maps on the Klein bottle, thus answering the question of their significance [FV06]. In particular,
the Franklin graph depicted above and advertised in [FV06] as one of the simplest example of such a
bipartite map on the Klein bottle has a natural interpretation as a glide orientifold of a C3/Z12-singularity.
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Chapter 13

Dimers in a bottle

The organization of this chapter is as follows. In Section 13.1 we review the basic tools of dimer models
and orientifolds, putting them in the context of torus involutions to find the missing cases. In Section 13.2
we describe glide orientifolds starting from orbifolds and describing their general properties. The absence
of fixed loci is tackled in Section 13.3, where we understand it to be dual to a pair of opposite sign
orientifold planes and use T- and mirror duality to give a global picture. Finally, in Section 13.4 we study
the action on the toric geometry through the Zig-Zag paths, allowing the study of fractional branes in the
orientifolded theory. A proof of the non-existence of SUSY preserving shift orientifolds is also provided.

13.1 Torus involutions and Orientifolds

13.1.1 Orientifold projections and Dimers

String Theory admits sensible propagation on singular backgrounds. Most notable are orbifolds and
orientifolds. These arise as suitable projections on the theory propagating in a smooth background. Such
involutions are readily described in dimer models [FHK+07].

Let us focus on orientifold projections in our setup of D3-branes in type IIB, defined by modding
out by the action ΩR(−1)FL , Ω being worldsheet parity, R a geometric Z2 isometry of the CY3 and FL
the left-moving fermion number in spacetime. Extended objects are located at the fixed point of the
R action, the O-planes. They are non-dynamical objects with a tension and an RR charge as the ones
of D-branes. The Z2 symmetry acts holomorphically on the internal coordinates, and as follows on the
Kähler form J and the holomorphic 3-form Ω3:

J → J and Ω3 → −Ω3 , (13.1)

where the − sign is necessary in order for the O-plane to preserve some common supercharges with the
D3-branes. The resulting gauge theory is obtained by looking at the projected open string spectrum.
The orientifold projection on Chan-Paton factors is essentially free. Denote by λ the Chan-Paton matrix,
the orientifold acts with a unitary matrix γΩ:

Ω : λ→ γΩλ
T γ−1

Ω . (13.2)

Orientifold projections on D-branes at singularities and their description on dimers were studied in
[FHK+07]. In this framework, the orientifold projection corresponds to a Z2 involution acting on the
torus that identifies faces, edges and vertices in an appropriate way, equivalently it can be described as
an involution of the brane tiling seen as a bipartite map. The authors studied involutions with fixed loci
(see Figure 13.1 for examples) resulting in a set of rules needed to construct the projected theory that
we have already described in Section 7.6, and that we now summarize quickly.

1. Self-identified faces project to SO/USp groups, depending on the O-plane charge, + or − respec-
tively. All other faces are identified with their image, merging to one SU group.

2. Every edge on top of a fixed locus becomes a symmetric or antisymmetric tensor (or their conjugate),
depending on the O-plane charge, + or − respectively. The remaining edges are identified with
their images, merging to bifundamental fields. More concretely, bifundamentals are identified as
( i, j) ∼ ( j′ , i′)→ ( i, j), where i′, j′ are the images of gauge groups i, j.
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Figure 13.1: (a) Orientifold of C2/Z2 with fixed points. (b) Orientifold of C2/Z2 with fixed lines.

3. The superpotential is found upon projection of the fields.

Before moving on to the next section, we present in detail two examples of orientifold projections.

Fixed Points. In an orientifold of this type, there are four fixed points in a unit cell. In order to
preserve SUSY, their signs must satisfy the so-called sign rule: their product must be (−1)nW /2 where
nW is the number of superpotential terms.

In the example of Figure 13.1a, we chose the signs (− + −+), starting with the fixed point at the
origin of the unit cell and going clockwise. We have that face 1 is identified with face 2, meaning that
the resulting theory will have only one gauge group SU(N). The bifundamental fields are identified as
follows

Y12 ∼ Y12 → , X21 ∼ X21 →
Y21 ∼ Y21 → , X12 ∼ X12 →

Z11 ∼ Z22 → Adj .

and the superpotential is given by

W = X12Y21Z11 −X21Y12Z11 , (13.3)

where we implicitly take a trace over gauge indices.
To be sure that this projection preserves some supersymmetry, we need to check the action of the

involution on Ω3. To do so, we compute the mesonic moduli space of our theory, which correspond to
the singularity D3-branes are probing. Mesonic operators are given by

x = X12X21 , y = Y12Y21

w1 = Y12X21 , w2 = Y21X12

z1 = Z11 , z2 = Z22 .
(13.4)

F-term equations impose w1 = w2 = w and z1 = z2 = z, and the classical relation between the fields
gives xy = w1w2 = w2. Thus, the mesonic moduli space is the symmetric product of N copies of the
A1 singularity, xy = w2, where N is the number of probe D3-branes. The three form, Ω3, can be easily
computed using the Poincaré residue formula:

Ω3 = Res
dx ∧ dy ∧ dw ∧ dz

w2 − xy =
dx ∧ dy ∧ dz

2w
. (13.5)

Under the involution, the fields are mapped in the following way

x→ x , y → y ,

w → −w , z → z ,

where the sign taken by a meson is given by the product of the fixed point charges it crosses. The
orientifold action on the holomorphic 3-form is thus odd, Ω3 → −Ω3, meaning that the O-plane in
compatible with the supersymmetry charges preserved by the D3-branes. It is easy to see that sign
configuration not respecting the sign rule are not supersymmetric.
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Fixed Lines. In the example of Figure 13.1b, we have two fixed lines, each one coming with a sign, +
or −, which is unconstrained. We chose to assign − to the bottom line and + to the other. The faces are
self-identified, leading to a gauge group USp(N1)× SO(N2). The identification of fields gives

Y12 ∼ X21 → Q1
12 , X12 ∼ Y21 → Q2

12

Z11 ∼ Z11 → , Z22 ∼ Z22 → . (13.6)

and the superpotential is given by

W = (Q2
12Q

2T
12 −Q1

12Q
1T
12 )Z11 + (Q2T

12 Q
2
12 −Q1T

12 Q
1
12)Z22 . (13.7)

The mesons are the same as in the previous example, since the geometry is the same, but the action
of the orientifold is different and given by

x↔ y ,

w → −w , z → −z ,

where the fixed line exchanges two mesons and introduces a sign to the self-mapped mesons given by the
product of the signs of the two fixed lines crossed. We can again see that the SUSY condition is respected

Ω3 =
dx ∧ dy ∧ dz

2w
→ dy ∧ dx ∧ dz

2w
= −Ω3 . (13.8)

In particular, we see that the signs of the fixed lines play no role in the last relation.

13.1.2 Torus involutions

There are five inequivalent non-trivial smooth involutions [Dug19], i.e. involutive diffeomorphisms, on
a torus1. Three of them have a fixed locus and the two others do not. To list all of them we consider
a square torus, with complex structure2 τ = i. We take z as the complex coordinate on the torus, the
periodicity condition is z ∼ z +m+ ni, with m,n ∈ Z. The involutions are given by:

1. Two fixed lines: z → z̄. The fixed loci are two parallel lines located at Im(z) = 0, 1/2 along the
real axis. Under this involution the torus is projected to an annulus.

2. Single fixed line: z → iz̄. The fixed line is Re(z) = Im(z), corresponding to a diagonal line of the
unit cell. The resulting surface is a Moebius strip.

3. Fixed points: z → −z. In this case we have four fixed points, z = 0, 1/2, i/2 and (1 + i)/2. The
resulting topology is that of a sphere with four orbifold half-points.

4. Glide reflection: z → z̄ + 1/2. There are no fixed locus. The resulting topology is that of a Klein
bottle.

5. Shift: z → z + 1/2. Again, the involution has no fixed locus. The torus is projected to another
torus.

As already mentioned, 1, 2 and 3 are involutions with fixed loci correspond to orientifold operations
already studied in the literature. In this paper, we will focus on 4, the glide reflection, studying the
consistency of such projection and its properties. Regarding involution 5, we will show that the shift is
not compatible with the required properties to preserve supersymmetry.

Let us conclude this section with few comments. First, involutions with fixed loci teach us that if the
involution is holomorphic, z → f(z), nodes in the dimer are mapped to nodes of opposite color, while
if it is antiholomorphic, z → f(z̄), nodes are mapped to nodes of the same color. This is a requirement
from the orientifold mapping of chiral superfields. It gives us a hint for the unexplored involutions.
Indeed, we expect 5 to be consistent with an orientifold identification only if nodes are mapped to nodes
of the opposite color, while 4 would be consistent only if the mapping is between vertices of the same

1They are classified by the topology of their orbit set which is always one of the parabolic 2-orbifolds listed in [Thu02].
2We are interested only in smooth involutions, the complex structure doesn’t play any role in the analysis, thus we fixed

it to a handy value. The use of complex coordinates will be useful for later observations.
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color. Second, we stress that the involution should be not only a symmetry for the torus, but also for
the embedded dimer model, i.e. an involution symmetry of the bipartite map. In particular, a generic
fundamental cell for a dimer model has the shape of a parallelogram. The symmetry may be present in
the abstract graph, but in order to be shown explicitly, consider the case of say 2, one has to deform the
embedding in such a way that the resulting fundamental cell is now a rhombus, displaying a symmetry
with respect to one of the diagonals. From this observation we conclude that in order to display a glide
symmetry, the fundamental cell must be a rectangle. Third, a Z2 glide reflection with diagonal axis is
described by the map z → iz̄ + (1 + i)/2 which has Re(z) = Im(z) + 1/2 as fixed line, hence they are
nothing else than reflections about a diagonal axis. In particular, they do not correspond to a class of
smooth involutions not listed above.

Even if we can deform the embedding to make the involution explicit, it is possible that the model can
be endowed with extra structures, capturing some physical properties. For example, isoradial embeddings
described in [HV07] encode the R-charges of the fields. In this paper, though, we are not interested in
these particular cases.

13.2 Glide Orientifolds

In this section we investigate glide reflection orientifolds. We start with orbifold examples, motivating
our results in the dimer from the open string projection on the Chan-Paton indices. We also explicitly
check that it preserves supersymmetry, in particular, it acts on the CY 3-form as Ω3 → −Ω3. We extend
our results to orbifolds of the conifold, considering the cascade in the presence of deformation fractional
branes. Finally, we discuss anomalies, or rather their absence, and conformality in the presence of these
orientifolds.

13.2.1 Orbifold C2/Z2

We consider the recipe directly applied in the dimer and then check that it is indeed predicted by open-
string computation.
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Figure 13.2: (a) Dimer diagram for the orbifold C2/Z2 × C. The unit cell and the reflection axis are
depicted in blue and red respectively. (b) The Klein bottle we obtain with the orientifold projection.

Projection on the dimer model. We present in Figure 13.2 the dimer for the orbifold C2/Z2 where
the glide reflection is a combined operation of a horizontal shift by one half of the length of the unit cell
followed by a reflection with respect to the dashed red horizontal axis. Nodes are mapped to nodes of the
same color, as we want from the analysis in Section 13.1.2. Note that this operation leaves no fixed loci
in the unit cell. The projected theory is embedded in a Klein Bottle drawn on one half of the original
unit cell, as illustrated in Figure 13.2b.

The edge X12 is identified with Y12, X21 with Y21 and Z11 with Z22. Following the rules summarized
in Section 13.1, the resulting theory has gauge group SU(N)1 with matter content given by two tensors3

3The two tensors are of the form ( 1, 1) and ( 1, 1).
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and one adjoint field. Note that the tensor fields are not in an irreducible representation, so we split
them in their symmetric and antisymmetric parts;

XS,A = 1, 1 ,

YS,A = 1, 1 , (13.9)

Z = Adj1 .

The superpotential is obtained by explicitly projecting the original one and keeping half of the terms,

W = XYZT − YXZ = XAYSZ − XSYAZ . (13.10)

In a SUSY-preserving orientifold in type IIB, the holomorphic 3-form must map to minus itself. This
is easy to check by noting that the orientifold action on the mesons is

x↔ y w → w z → z . (13.11)

The action on the 3-form is then

Ω3 =
dx ∧ dy ∧ dz

2w
→ dy ∧ dx ∧ dz

2w
= −Ω3 . (13.12)

It is also clear from the matter content and the first equality of Equation (13.10) that the gauge theory
preserves N = 2 supersymmetry4.

It is worth noting that the theory, unlike many examples of projections with fixed loci, is free from
any local gauge anomaly, regardless of the gauge group rank. Although this example is rather trivial, we
will see that this feature is general and related to tensor fields being absent or coming in pairs, symmetric
and antisymmetric, cancelling each other’s contribution to the anomaly cancellation conditions (ACC).
We also note that the projected theory is actually conformal. Indeed, the β-function of the gauge group
can be shown to be zero. The fact that these orientifolds naturally lead to SCFT’s will be discussed in
Section 13.2.4.

Open string projection. We now consider the orientifold projection on the Chan-Paton indices of the
open string spectrum. For D-branes localized on the C2/Z2 × C singularity the open string spectrum is
obtained by promoting the flat space one to 2N × 2N matrices with a restricted set of non-zero entries:

Aµ =

(
A1µ 0

0 A2µ

)
, Φ1 =

(
0 X12

X21 0

)
, Φ2 =

(
0 Y12

Y21 0

)
, Φ3 =

(
Z11 0
0 Z22

)
,

(13.13)
where the gauge group is SU(N)1×SU(N)2 and matther fields transform in the following representations,

Xij , Yij = ( i, j), Zii = Adji . (13.14)

Decomposing the C3 fields the orbifold superpotential becomes,

W = [Φ1,Φ2] Φ3

= X12Y21Z11 − Y21X12Z22 +X21Y12Z22 − Y12X21Z11 , (13.15)

where an overall trace over gauge indices is understood.
A general orientifold projection on the C3 fields acts as,

Aµ = −γΩA
T
µγ
−1
Ω , (13.16)

Φi = RijγΩΦTj γ
−1
Ω , (13.17)

where γΩ is a 2N ×2N matrix acting on gauge group (Chan-Paton) indices and Rij acts on space indices
i, j running from 1 to 3. Different choices for these matrices lead to different orientifold projections. In
order to reproduce the glide reflection orientifold, we specifically choose

γΩ =

(
0 1N

1N 0

)
, and R =




0 1 0
1 0 0
0 0 1


 , (13.18)

4The attentive reader might have noticed that this orientifolded theory is identical to the one obtained with fixed points
in Section 13.1.1, although the involution acts differently on the coordinates. This is however an artifact of the orbifold
C2/Z2 since glide reflections will not provide tensors in general.
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so that Φ1 and Φ2 coordinates are exchanged by the orientifold. Equation (13.16) translates into

A1µ = −AT2µ , (13.19)

which tells us that the two gauge groups are now identified as one SU(N)1 in the orientifolded theory.
Equation (13.17) maps the superfields in the following way:

X12 = Y T12 ≡ XA,S ,
Y21 = XT

21 ≡ YA,S ,
Z11 = ZT22 ≡ Z .

(13.20)

We recognise the same field content of the theory obtained with the dimer technique. It is easy then to
show that we recover the superpotential advertised in Equation (13.10) (up to an irrelevant numerical
factor). We thus conclude that the glide reflection on the dimer reproduces the orientifold projection we
just computed in string theory.

In the following, we discuss the dimer construction in more involved examples. It is clear that not
all dimer models have the required symmetry, and in Section 13.4 we provide a necessary condition for a
given toric CY3 to admit a glide reflection directly from its toric diagram.

13.2.2 More orbifold examples

The previous example has so much symmetry that it could be misleading. Let us start our journey to
less symmetric theories by considering C2/Z4, whose dimer model and relevant involution we present in
Figure 13.3.

1

1

3

3

2

2

1

1

4

4

Figure 13.3: Dimer diagram for the orbifold C2/Z4. The unit cell is depicted in blue and we show in red
the Klein bottle obtained from the orientifold projection.

From the four initial gauge groups, only two of them are kept after the projection, SU(N1)1×SU(N2)2.
The surviving fields are

X12 = ( 1, 2) , X21 = ( 2, 1) , Y21 = ( 2, 1) ,
Y12 = ( 1, 2) , Z11 = Adj1 , Z22 = Adj2 .

(13.21)

and the resulting superpotential is found to be

W = X12Y21Z11 − Y21X12Z22 + X21Y12Z22 − Y12X21ZT11 . (13.22)

Note that despite its similarities with the orbifold C2/Z2 (without orientifold), this model has a different
matter content, which cannot be obtained from dimer models.

The perturbative string computation goes as follows. The open sector of strings on the orbifold before
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the orientifold projection is:

Aµ =




A1µ 0 0 0
0 A2µ 0 0
0 0 A3µ 0
0 0 0 A4µ


 , Φ1 =




0 X12 0 0
0 0 X23 0
0 0 0 X34

X41 0 0 0


 ,

Φ2 =




0 0 0 Y14

Y21 0 0 0
0 Y32 0 0
0 0 Y43 0


 , Φ3 =




Z11 0 0 0
0 Z22 0 0
0 0 Z33 0
0 0 0 Z44


 .

(13.23)

The appropriate orientifold projection, defined as in Equations (13.16) and (13.17), is given by

γΩ =




0 0 1N 0
0 0 0 1N

1N 0 0 0
0 1N 0 0


 , and R =




0 1 0
1 0 0
0 0 1


 . (13.24)

It gives the following identification of gauge bosons

A1µ = −AT3µ and A2µ = −AT4µ , (13.25)

the resulting gauge group is SU(N)1 × SU(N)2. The matter content follows from

X12 = Y T43 ≡ X12 ∈ ( 1, 2) ,
X23 = Y T14 ≡ X21 ∈ ( 2, 1) ,
Y21 = XT

34 ≡ Y21 ∈ ( 2, 1) ,
Y32 = XT

41 ≡ Y12 ∈ ( 1, 2) ,
Z11 = ZT33 ≡ Z11 ∈ Adj1 ,
Z22 = ZT44 ≡ Z22 ∈ Adj2 .

(13.26)

One can check that the superpotential is the one advertised in Equation (13.22).

The mapping of the mesons is the same as for C2/Z2 so that the holomorphic 3-form transforms as
follows:

Ω3 =
dx ∧ dy ∧ dz

4w3
→ dy ∧ dx ∧ dz

4w3
= −Ω3 , (13.27)

and hence suggests that our projection is indeed supersymmetric and the resulting gauge theory preserves
N = 2 supersymmetry. Note that the usual orientifold techniques in the dimer, fixed points and line(s),
are not able to reproduce it.

Our observations make it clear that any orbifold C2/Z2n × C will admit a glide reflection, for any
integer n. More general orbifolds, such as C3/Zn or C3/Zp × Zq, can also enjoy the glide reflections, see
an example in Figure 13.6a. In Section 13.4 we will discuss the general geometric condition a singularity
should meet in order to admit such orientifold.

N = 2 fractional branes. Let us briefly comment on the fractional branes of the orientifolded theory
[FHSU06]. The glide orientifold of C2/Z4 is free of local gauge anomalies for any rank N1 and N2. Hence,
it has a fractional brane. We find that it is an N = 2 fractional brane corresponding to a subset of the
N = 2 fractional branes of the parent theory. In Section 13.4.2 we will discuss this fact in detail.

13.2.3 Conifold-like singularities

As we will explain in Section 13.4, the conifold C itself does not admit a glide reflection, but conifold-like
singularities like its orbifold C/Z2 or the zeroth Hirzebruch surface F0 do. We now study those examples
in turn.
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Figure 13.4: Dimer diagram for the orbifold of the conifold C/Z2. The unit cell is depicted in blue and
we show in red the Klein bottle obtained from the orientifold projection.

Non-chiral orbifold of the conifold C/Z2. The dimer model and the glide orientifold of C/Z2 are
shown in Figure 13.4.

The resulting gauge theory has gauge group SU(N1)× SU(N2) with matter content given by

A = ( 1, 2) , B = ( 1, 2) ,
C = ( 1, 2) , D = ( 1, 2) ,

(13.28)

Note in passing that the ACC do not impose any constraint on the ranks, so that N1 and N2 may be
chosen independently. The superpotential reads

W = ABCD −BACTDT . (13.29)

The more detailed computation runs as follows. Consider a non-chiral orbifold of the conifold such as
C/(Zl × Zm). The general action is given by

γgV1,2γ
−1
g = V1,2

γgA1γ
−1
g = e2πi/lA1 , γgA2γ

−1
g = A2 (13.30)

γgB1γ
−1
g = e−2πi/lB1 , γgB2γ

−1
g = B2 ,

and

γgV1,2γ
−1
g = V1,2

γgA1γ
−1
g = e2πi/mA1 , γgA2γ

−1
g = A2 (13.31)

γgB1γ
−1
g = B1 , γgB2γ

−1
g = e−2πi/mB2 ,

where V1,2 are the two adjoint vectors related to the gauge groups. In the case of our first example, C/Z2,
the action gives the following fields

V1 =

(
V1 0
0 V3

)
, V2 =

(
V2 0
0 V4

)
, A1 =

(
0 A14

A32 0

)
,

A2 =

(
A12 0
0 A34

)
, B1 =

(
B21 0
0 B43

)
, B2 =

(
0 B23

B41 0

)
,

(13.32)

with a superpotential given by

W = A1B1A2B2 −A1B2A2B1 . (13.33)

We consider the following orientifold projection in order to reproduce the glide projection.

V1,2 = −γΩV
T
1,2γ

−1
Ω ,

A1,2 = γΩB
T
1,2γ

−1
Ω , (13.34)
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with

γΩ =

(
0 1N

1N 0

)
. (13.35)

The action on mesons, x = (A1B1)2 y = (A2B2)2, z = A1B2 and w = A2B1, is

x↔ y , z → z , w → w ,

Ω3 =
dx ∧ dy ∧ dz

2wz2
→ Ω′3 =

dy ∧ dx ∧ dz

2wz2
= −Ω3 (13.36)

which means that the action preserves supersymmetry on the branes.

The gauge group is SU(N1)1 × SU(N2)2 and matter content given by

A14 = BT23 ≡ A = ( 1, 2) ,
B41 = AT32 ≡ B = ( 1, 2) ,
A12 = BT43 ≡ C = ( 1, 2) ,
B21 = AT34 ≡ D = ( 1, 2) ,

(13.37)

with superpotential

W = ABCD −BACTDT . (13.38)

Zeroth Hirzebruch surface F0. We show the dimer model and the glide orientifold of F0 in Fig-
ure 13.5.

2

1

2 3

4 4

33

3

Figure 13.5: Dimer diagram for the Hirzebruch surface F0. The unit cell is depicted in blue and we show
in red the Klein bottle obtained from the orientifold projection.

We take the following actions on the fields

γgV1,2γ
−1
g = V1,2 (13.39)

γgA1γ
−1
g = −A1

γgA2γ
−1
g = −A2

γgB1γ
−1
g = B1

γgB2γ
−1
g = B2 ,

leading to

V1 =

(
V1 0
0 V3

)
, V2 =

(
V2 0
0 V4

)
, A1 =

(
0 A1

14

A1
32 0

)
,

A2 =

(
0 A2

14

A2
32 0

)
, B1 =

(
B1

21 0
0 B1

43

)
, B2 =

(
B2

21 0
0 B2

43

)
.
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The orientifold action maps 1→ 4 and 2→ 3, it can be summarized as

V1,2 = −γΩV
T
1,2γ

−1
Ω ,

A1 = γΩA
T
2 γ
−1
Ω , (13.40)

B1 = γΩB
T
2 γ
−1
Ω ,

with

γΩ =

(
1N 0
0 1N

)
. (13.41)

The resulting gauge group is SU(N)1 × SU(N)2 and the matter content is given by

A1
14 = A2T

14 ≡ US,A = 1, 1 ,

A2
32 = A2T

32 ≡ ZS,A = 2, 2 ,
B1

21 = B2
43 ≡ X = ( 1, 2) ,

B2
21 = B1

43 ≡ Y = ( 1, 2) ,

(13.42)

with the following superpotential,

W = XUSY
TZA −XTZSY UA . (13.43)

In order to compute the action the 3-form, we compute the equations defining the singularity using the
geometrical approach described in Section 13.4.3. The singularity is described by the following equations
in C9

z1z3 = z2z4 = z2
0 ,

z1z2 = z2
5 , z2z3 = z2

7 , (13.44)

z1z4 = z2
6 , z3z4 = z2

8 .

The action on mesons is

z1 ↔ z2 , z3 ↔ z4 , z6 ↔ z7 (13.45)

while all other coordinates are invariant. The action on the 3-form is

Ω3 = Res
dz1 ∧ dz2 ∧ dz3 ∧ dz4 ∧ dz5 ∧ dz6 ∧ dz7 ∧ dz8 ∧ dz0∏

i Pi
→ −Ω3 , (13.46)

since the polynomials are invariant and in the numerator we are exchanging three pairs of coordinates,
resulting in an overall minus sign.

Deformation fractional branes. We have seen that the C/Z2 glide reflection admits fractional brane
since the ranks of the two gauge groups may be chosen freely. It is in fact a deformation brane [FHSU06,
But06] of the parent theory that survives the orientifold projection, in the precise sense described in
[ABF+21a]. A natural question is whether such fractional branes may trigger a non-trivial RG-flow
giving rise to a cascade of Seiberg dualities [Sei95, KS00a], and it turns out it does.

For a generic choice of ranks, SU(N+M)1×SU(N)2, one finds that the gauge theory has a non-trivial
RG-flow and SU(N + M)1 goes more rapidly to strong coupling as we approach the infrared regime of
the theory:

β1 = 3M , β2 = −3M . (13.47)

The mesons of the first gauge group are

M1 = BA M2 = BC , M3 = CTDT and M4 = DA , (13.48)

and one thus finds that this gauge theory is Seiberg dual [Sei95] to SU(N−M)1×SU(N)2 with a matter
content given by the mesons M1,M2,M3 and M4 in addition to the following list of bifundamental fields:

a = ( 1, 2) , b = ( 1, 2) , c = ( 1, 2) and d = ( 1, 2) . (13.49)
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The superpotential is given by

W = M2M4 −M1M3 +M1ab+M2cb+M3d
T cT +M4ad

= abdT cT − badc (13.50)

where the mesons have been integrated out using F-term relations.
The new gauge theory SU(N −M)1 × SU(N)2 ends up with the same matter content and superpo-

tential (up to an overall sign) as the initial SU(N + M)1 × SU(N)2. This can be seen easily with the
following mapping:

A→ b , B → a , C → d and D → c . (13.51)

The M deformation branes thus trigger a cascade of Seiberg dualities à la Klebanov-Strassler [KS00a]. In
particular, for N being an integer multiple of M , we expect the cascade flow down to SU(2M)×SU(M)
where the physics should the same as for the deformed conifold. Indeed, we can schematically define

baryonic operators B̄ =
[
ACT

]M
, B =

[
BDT

]M
, and a 2M × 2M squared matrix M in terms of the

mesonic operators of Equation (13.48) that should obey a relation of the form

detM− B̄B = Λ4M
2M , (13.52)

where Λ2M is the strong coupling scale of SU(2M). Going on the baryonic branch B̄ = B = iΛ2M
2M ,

one finds that the mesons decouple, leaving a SYM SU(M) dynamics displaying confinement and chiral
symmetry breaking.

We will see later that it is a fact that the orbifolds of the conifold C/Zm × Zn compatible with the
glide projection preserve some of their deformation branes. The compatibility of fractional branes of the
parent theory with the glide reflection is discussed in Section 13.4.

13.2.4 General properties

As we have seen, and since the glide reflection leaves no fixed loci, we don’t expect any self-identified face
(i.e. SO or USp gauge group) to show up in the dimer projection. This restricts the number of gauge
groups of the parent theory to be even. A further consequence of not having fixed loci is that there are
no self-identified bifundamentals, therefore, tensor matter, if present, always comes in antisymmetric-
symmetric pairs, cancelling the contributions to the chiral anomaly. This is precisely what happens in
the C2/Z2 orbifold, where two edges, charged under two identified groups, are identified, leading to a
reducible two index tensor, which splits into the sum of a symmetric and an antisymmetric one. We
now see how these facts translates in the absence of non-homogenous terms in the anomaly cancellation
conditions, allowing always a solution to the latter, and how such projected theories are actually SCFTs.

Borrowing the notation of [ABF+21a], we know that the ACC matrix of the projected theory is
deduced from that of the parent theory. Denote the latter as,

A =




B11 B12 B13

B21 B22 B23

B31 B32 B33

︸ ︷︷ ︸
j

︸ ︷︷ ︸
j + k

︸ ︷︷ ︸
b




}
i

}
i+ k

}
a

, (13.53)

where indices i, j = 1, . . . , k label the gauge groups surviving the orientifold projection and the corre-
sponding entries represent the anomaly contribution of the field between faces i and j. Indices i+ k and
j + k represent gauge groups that are identified with i and j under the orientifold action, respectively.
The a, b indices label the self identified gauge groups. Finally, the ACC system takes the form

A ·N = 0 , (13.54)
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where N is a vector whose entries, N(j|j+k|a) are the ranks of the corresponding gauge group.

From what we said earlier, we know that B?3 = B3? = B33 = 0, since there are no self-identified gauge
groups. Furthermore, we have no net contributions from tensors to the ACC, meaning that there are
no non-homogenous terms in the projected theory ACC. From [ABF+21a], we know that the projected
ACC can be written as

A ·N =
(
B11 +B12

)
·N = 0 . (13.55)

It is then easy to see that the all-equal-rank solution in the parent theory is still a solution. Indeed, a
general solution for the orientifolded theory has a trivial part, corresponding to a stack of regular branes
in the parent theory, and a non-trivial part, corresponding to “symmetric” fractional branes of the parent
theory.

Fixed loci orientifolds have the remarkable property of producing, in general, non-conformal theories.
However, this is not true for glide orientifolds. The theory they describe is an SCFT when the ranks of
the gauge groups are all the same. This fact can be seen as follows, consider the β-function of the parent
theory with N probes D-branes,

βSU(N)i = 3N −
n∑

i=1

N

2
(1− γi) = 0 , (13.56)

where γi are the anomalous dimensions of the matter fields5. From this we can read the β-function of
the projected theory whose general form is

βSU(N)i = 3N −
n∑

i=1

N + bi
2

(1− γi) , (13.57)

where the coefficients bi vanish for fundamental fields and are ±2 for, respectively, symmetric or anti-
symmetric fields. If we assume that the anomalous dimensions of the fields are the same up to 1/N
corrections and, since all tensors come in pairs of opposite parity, we see that the β-function of the gauge
groups of the projected theory vanishes as long as all ranks are equal. This dovetails the fact that a Klein
Bottle has zero Euler characteristic and, as explained in [FV06], such surfaces may embed a dimer model
describing an SCFT6. Franco and Vegh pointed out that the Franklin graph would be a good candidate
to be embedded in a Klein Bottle and host a SCFT not embedded in a torus. Indeed, it can be readily
found via a glide reflection of C3/Z12, see Figure 13.6. This not only confirms their intuition, but it is,
to the best or our knowledge, the first instance of such a construction within string theory.
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Figure 13.6: (a) Dimer diagram for the orbifold C3/Z12 with action (1, 5, 6). The unit cell and the Klein
bottle are depicted in blue and red respectively. (b) The Franklin graph.

5We consider Adj fields as couple of anti-fundamentals fields charged under the same gauge group.
6Other kind of surfaces obtained from orientifolds with fixed loci were found to accommodate SCFTs in [IY02, AMR20].
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13.3 T-duals of the Glide Orientifold

13.3.1 Type IIA picture and the brane tiling

Fixed loci in the dimer have been related to actual orientifold planes in the physical realization of the
dimer [FHK+06, IKY08]. In fact, one may consider the D3-branes probing a singularity with an orientifold
and track the position of the orientifold in the ambient space to the fixed loci in the dimer through T-
dualities. An immediate puzzle arises in the case of glide orientifolds, since there are no fixed loci on the
torus, i.e. in the brane tiling. In this section we look at C2/Z2 and argue that these orientifolds, which
have 8-dimensional fixed loci in the D3 picture (they are O7-planes), don’t have a fixed locus in the tiling
in the precise sense of [DP96, Wit98b]. In the latter reference, the shift action is deduced to be T-dual
to a pair of opposite charge O-planes on a circle.

Let us again consider N D3-branes at the tip of a singular toric CY3. As reviewed in the introduction,
the dimer presented in Figure 13.2 is physically realized as a web of D5 and NS5-branes. It is obtained by
T-duality along two of the three toric cycles of the toric variety. In particular along those corresponding
to mesonic symmetries in the field theory, rather than R-symmetry. Focusing on the case at hand,
C2/Z2 × C, one may take local coordinates such that x7, x9 correspond to the two toric cycles that are
to be T-dualized. The D-brane configuration is then as in Table 13.1 which, after two T-duality should
become that of Table 13.2. Note that we have avoided including an orientifold plane in the T-dual, as
the dimer shift seems to suggest.

After T-duality one finds D5-branes wrapping the dual cycles with local coordinates x′7, x
′
9. These are

in turn identified as the coordinates of the torus T2 where the 5-brane web lives.

0 1 2 3 4 5 6 7 8 9

C2/Z2 × × × ×
D3 × × × ×
O7 × × × × × × × ×

Table 13.1: D3-branes sitting at the tip of C2/Z2 in the presence of O7-planes.

0 1 2 3 4 5 6 7′ 8 9′

NS5 × × × × − − Σ − −
D5 × × × × × ×

Table 13.2: The brane tiling. Σ is the holomorphic curve in the 67′89′-space wrapped by the NS5-brane.

To study the location of the O-plane in the singular geometry, let us introduce the coordinates z1, z2

and z3 of flat space C3. We define the coordinates of the variety transverse to the D3-branes, C2/Z2×C,
by constructing invariants under the orbifold action:

x = z2
1 , y = z2

2 , w = z1z2, and z = z3 , (13.58)

with the following relation holding,

xy = w2 . (13.59)

As explained in Section 13.2.1, the orientifold action on the dimer implies that it acts on z1, z2, z3 as
z1 ↔ z2,. In terms of the orbifold invariant coordinates the orientifold action is then,

x↔ y , w and z fixed. (13.60)

Thus, the orientifold plane extends on the surface defined by x = y = t, t2 = w2. From Equation (13.59)
we read two toric U(1) isometries of the orbifold:

U(1)α : x→ eiαx , y → e−iαy , w → w ,
U(1)β : x→ eiβx , y → eiβy , w → eiβw .

(13.61)
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We can think about these two isometries as generators of two 1-cycles, α, β. We can introduce local
coordinates parametrizing these cycles, defined whenever they are non-singular,

θα ≡
1

2
(Arg(x)−Arg(y)) (13.62)

θβ ≡
1

2
(Arg(x) + Arg(y)) (13.63)

We can now identify these two coordinates in terms of the coordinates in Table 13.1: (θα, θβ) ∼
(x7, x5). The action of the orientifold on these two cycles, T-dual to the physical torus, are just θα → −θα,
θβ → θβ . We thus learn that the orientifold plane spans x5 and is located at x7 = 0, π. In fact, there are
two orientifold planes of opposite charge such that the total flux cancels with no further sources. One
may also argue for the signs being opposite by noting the absence of net RR-charges coming from the
O-planes in the dimer picture. This can be seen in the absence of SO/USp groups and the corresponding
lack of non-homogeneous terms in the ACC, which can be thought of as Gauss law for compact cycles.
Quite remarkably, the T-dual of such a cycle with opposite-charge O-planes, is known to be precisely an
orientifold acting as a shift on the T-dual cycle. The absence of fixed loci for this action translates into
the absence of O-plane in the dual geometry. This is described in [Wit98b] where T-duality acts as a sort
of Fourier transform: the O-planes of opposite charge are related to delta function whose transform are
constant and opposite, cancelling each other. This interpretation nicely match the Gauss law analogy we
presented earlier.

After one T-duality along x7, the T-dual Type IIA construction is analogous to the ones studied in
[PU99, PRU00a, Ura00, ELNS00, FHKU01]. The relevant information is encoded in a cycle x′7 where
D4-branes are suspended between two NS5-branes. As we explained before, the orientifold action acts
now as a shift, rotating halfway the configuration, see Figure 13.7. This action is consistent with the
mapping of gauge groups and matter fields on the dimer model.

π

7′
D4’s

NS5

NS5

8, 9

Figure 13.7: Type IIA picture with the orientifold mapping given by a π rotation along x′7 (in green).

Finally, if we further T-dualize along the direction spanned by NS5-branes x9, we get to the tiling
picture. After the last T-duality, the orientifold acts on x′9 as a reflection7. Together with the shift on
x′7, these actions reproduce the glide reflection that we see on the tiling.

13.3.2 The mirror picture

One further T-duality on the remaining toric cycle brings us to the mirror setup of our starting point
[FHKV08a] (D3-branes at singularities). The mirror geometry is fully specified by a Riemann surface
Σ0 in which D6-branes, wrapping 1-cycles, give rise to the appropriate field theory8. Gauge fields are

7This is a standard fact of orientifolds. Upon T-duality along a direction spanned by the O-plane, an Op-plane is mapped
to an O(p− 1)-plane, with action θ → −θ on the dual cycle.

8These 1-cycles are associated to 3-cycles in the full geometry.
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associated to different 1-cycles, where D6 are wrapped, matter fields to intersections among these cycles
and superpotential terms arise from open string worldsheet instantons supported at disks in this Rie-
mann surface. In fact, this Riemann surface can be seen as the “fattened” version of the web diagram.
Furthermore, one can embed the dimer graph on a planar version of it and read immediately both the
geometry and the field theory from it. This diagram has been called the shiver. The shiver and the dimer
are related by an untwisting procedure [FHKV08a]. The physical interpretation is now as follows.

• Faces in the shiver correspond to ZZPs in the dimer, and represent punctures in Σ0 with (p, q)
charge given by the winding numbers of the ZZP.

• ZZP on the shiver correspond to faces on the dimer, and represent the 1-cycles (Special Lagrangian
3-cycles in the full geometry) where D6-branes wrap. They are hence representing gauge groups.

• ZZP intersections represent brane intersections where open string massless bifundamental fields are
located.

• Disk on the surface are euclidean disks in the full geometry where open string worldsheet instantons
may arise. These generate the superpotential (albeit non-perturbatively!).

In Figure 13.8 we show the prototypical example, the conifold.

(a) (b) (c) (d)

Figure 13.8: a) Conifold web diagram. b) shows the actual surface describing the mirror geometry. The
Zig-Zag paths in blue and red are 1-cycles where D6-branes may wrap. c) Tiling of the mirror Riemann
surface Σ0 giving rise to the conifold gauge theory. d) Orientifold of the conifold. Orange segments and
dots denote O-planes and punctures where they end, respectively.

Already in [FHK+07], orientifolds were partially understood in this framework. It was noted that
the O6-planes should be viewed as stretching between the different punctures. Different pieces of the
O-plane would there be assigned different signs. A full understanding of the available sign choices was
not achieved and we will not pursue it here. An orientifold of the conifold is shown in Figure 13.8d.

A simple example: C2/Z2 × C. In this section we explicitly map all orientifolds in the dimer with
those in the T-dual and mirror picture. While we are not able to derive matter field projections on the
T-dual nor the mirror, we hope to convey a unifying picture. We will focus on C2/Z2 × C for several
reasons. It admits all kinds of orientifolds (fixed points, lines and glide reflections), a simple T-dual
set-up and its mirror Σ0 has genus zero, making it amenable to discussion. Orientifolds in the dimer can
be classified in 4 groups, depending on the fixed loci. There are 2 different fixed point orientifolds, shown
in Figures 13.9b and 13.9c and a fixed line orientifold, in Figure 13.9d. These were already discussed in
[FHK+07]. Different sign assignments, possibly respecting the sign rule, yield the different field contents.
Finally, as discussed in Section 13.1, a glide orientifold is realized in the dimer as shown in Figure 13.9e.

A complete classification, up to sign permutations and anomaly cancellation, is shown in Table 13.3.
In Section 13.3.1, we have discussed the setup T-dual to the glide orientifold, shown again in Fig-

ure 13.10e. The orientifolds in Figures 13.10b to 13.10d have been discussed in the literature [EJS97,
FHKU01, IY02]. One can easily identify these three orientifolds in the dimer setup as Figures 13.9b
to 13.9d, respectively. It is worth mentioning that the fixed lines orientifold with the same sign cor-
respond to the O4-plane in the T-dual, while the case with opposite signs is mapped to an O8-plane.
Finally, the glide orientifold, Figure 13.9e is identified with Figure 13.10e.

The shiver is shown in Figure 13.11a. It is essentially the same as the T-dual with punctures A and
D sitting at the NS5 locations. This was to be expected, since the S1 in the T-dual is kept in Σ0. This
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1 1

2

(a)

1 1

2

(b)

1 1

2

(c)

1 1
2

(d)

1 1

2

(e)

Figure 13.9: a) Dimer model unit cell of C2/Z2 × C. Three possible orientifold actions with fixed loci
are shown in b), c) and d). b) and c) correspond to fixed points, while d) is a fixed line. e) is a glide
orientifold with no fixed loci.

O-Type Figure Signs Group Tensor Content

Fixed Points

Figure 13.9b

(+ + ++)

SU

Adj + 2 + 2

(+ +−−) Adj + + + +

(+−−+) Adj + 2 + 2

(−+ +−) Adj + 2 + 2

(−−−−) Adj + 2 + 2

Figure 13.9c

(+ + ++) SO × SO 1 + 2

(+ +−−) SO × USp 1 + 2

(−−++) USp× SO 1 + 2

(+−+−) SO × SO 1 + 2

(−+−+) USp× USp 1 + 2

(+−−+) SO × USp 1 + 2

(−+ +−) USp× SO 1 + 2

(−−−−) USp× USp 1 + 2

Fixed Lines Figure 13.9d

(++) SO × SO 1 + 2

(+−) SO × USp 1 + 2

(−+) USp× SO 1 + 2

(−−) USp× USp 1 + 2

Glide Figure 13.9e SU Adj + + + +

Table 13.3: Different orientifold projections on the dimer.

(a) (b) (c) (d) (e)

Figure 13.10: a) T-dual to C2/Z2 ×C. Three possible orientifold actions with fixed loci are shown in b),
c) and d). b) and c) correspond to fixed points, while d) is a fixed line. e) is a shift (glide reflection) with
no fixed loci.

makes it particularly easy to find the orientifold actions on this surface9. The four types are shown in
Figure 13.11 with labels matching those of Figures 13.9 and 13.10. Note, in particular, that the glide
reflection, in Figure 13.11e consists on a π rotation and a reflection with respect to the dotted orange
circle. The total action thus exchanges punctures B and C, for instance. Unlike the other orientifold
actions, there are no fixed loci in this case. While the field content can be deduced from the drawings by
assigning a sign to every O-plane piece and assigning the matter projection individually (as in the open
string computation), it is not clear how to enforce SUSY in this picture. Without further knowledge it
is not obvious which projections are SUSY-preserving.

9Otherwise one would need to think about the field content on the dimer or the alga map [FHKV08a].
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(a) (b) (c)

(d) (e)

Figure 13.11: a) Tiling of the mirror Riemann surface Σ0 of C2/Z2×C. Three possible orientifold planes
are shown in b), c) and d). The orientifold plane is shown in orange and its different pieces are labelled
using orange numbers. In the dimer b) and c) correspond to fixed points, while d) is a fixed line. e) is a
shift orientifold with no fixed loci.

13.4 Involutions and Zig-Zag Paths

In this section, we first develop, in Section 13.4.1, a condition the toric diagram (or equivalently, the
ZZP’s) of a singularity must satisfy to be compatible with the glide reflection. This enlarges the dictionary
between orientifold projections of a given toric singularity and its ZZPs content, as initiated by [RU16b].
Secondly, and with the help of ZZP techniques [But06], we show in Section 13.4.2 how to detect the
presence of fractional branes in the orientifolded singularity. Finally, in Section 13.4.3, we give a general
proof that the “would be” shift orientifold projection is incompatible with the requirement to preserve
SUSY.

13.4.1 Glide Orientifold from the Toric Diagram

A glide reflection can be seen as a combination of a shift and a reflection in the dimer model, even if each
of them is not a symmetry per se. Starting from what we learned in our examples and using this simple
observation, we can understand how this involution acts on the ZZP content of the toric diagram.

First of all, we notice that the shift and the reflection are performed along the same axis. Consider,
for instance, a horizontal shift and axis of reflection as in Figure 13.12. The action of the glide reflection
reverts the horizontal component of each ZZP. Actually, the glide reflection leaves no fixed ZZPs, since
even those perpendicular to the axis are mapped among themselves because of the shift part of the glide
reflection.

Putting the two observations together we can say that: if the glide reflection is composed by a
horizontal shift and a reflection axis, directed as (1, 0) in the dimer, ZZPs are mapped as follows: (p, q)
is sent to (−p, q) when p 6= 0, while all other ZZPs of the form (0,±1) are mapped to one another,
preserving the orientation, meaning that they come in even numbers. In our example of Figure 13.13, the
orange (1, 1) and purple (−1, 1) ZZPs are interchanged. The same is true for the blue and green ZZPs of
the (0,−1) type.

Similarly, in order to construct a Klein bottle with a vertical shift and reflection axis, the toric diagram
should have ZZPs (1, 0) and (−1, 0) in even numbers, possibly different, and ZZPs (p, q) with q 6= 0 paired
with ZZPs (p,−q).
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1

2

3

1'
2'

3'

Figure 13.12: The glide orientifold maps together nodes of the same color. The dashed blue line delineates
the unit cell of the parent theory, while the red frame represents the orientifold. The ZZPs 1, 2, 3 are
mapped to 1′, 2′, 3′ respectively.

1

1

1

1

2

2

Figure 13.13: The Klein bottle obtained from the dimer of C2/Z2 × C and the corresponding ZZPs.

These statements can be summarized by saying that the toric diagram should be symmetric with
respect to a vertical or horizontal axis. Moreover, each ZZP has to be mapped to another one, imposing
that each kind of ZZP parallel to the axis of reflection in the toric plane should come in even numbers.
We show in Figure 13.14 that our examples of Section 13.2 satisfy this criterion.

(a) (b) (c)

Figure 13.14: Toric diagrams for singularities that satisfy our necessary criterion to admit one (with an
axis of reflection in red) or two (with the second axis of reflection in blue) glide projections: (a) orbifold
C2/Z4, (b) conifold-like C/Z2, and (c) zeroth Hirzebruch surface F0.
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Lastly, an important remark is that this condition may not be satisfied in some of the SL(2,Z)
“frames” of the toric diagram, or equivalently, the unit cell in the dimer model may not be symmetric
with respect to the glide reflection. Thus, we should state that a generic toric diagram can admit a glide
orientifold if it satisfies the conditions above up to a SL(2,Z) action that can bring its unit cell to a
symmetric form with respect to the glide.

1

1

1

1

2

2

(a)

(b) (c)

Figure 13.15: (a) Dimer diagram of the orbifold C2/Z2 × C. The direction of the shift is given in red,
and the ZZPs are illustrated in other colours. (b) Toric diagram for the orbifold C2/Z2 × C. (c) Toric
diagram for the flat space C3.

13.4.2 Fractional branes

As already mentioned in Section 13.2.4, these orientifolded theories may admit non-trivial rank assign-
ments, i.e. fractional branes. Their presence can be deduced from the symmetries of the toric diagram
and they can be seen as inherited from the “parent” theory. Following [But06, ABF+21a], in what we
dub “Butti’s Algorithm”, we can assign a value vΓ to each of the n ZZPs of the toric diagram. These
values give rise to anomaly free rank assignments, given that they satisfy the following constraints,

{∑
Γ vΓpΓ = 0∑
Γ vΓqΓ = 0

, (13.64)

where the (pΓ, qΓ) are the winding numbers of the ZZP associated to vΓ.
Since we know how the glide reflection acts on the ZZPs, we may follow the procedure of [ABF+21a] to

see which fractional branes survive the projection. As explained there, only symmetric fractional branes
survive, in the sense that, given two ZZPs vα and vᾱ mapped to each other under the glide reflection,
only rank assignments satisfying the following identification survive,

vα = vᾱ . (13.65)
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The orientifold projection thus reduces the number of variables vΓ to the subset of vα. Moreover, one
can check that Equation (13.64) leaves only one non-trivial relation:

∑

α

vαqα = 0 . (13.66)

Butti’s algorithm has a redundancy that allows to perform a global shift on the vα without affecting the
ranks of the gauge groups. Hence, we end up with

#fractional branes = n/2− 2 (13.67)

in the orientifolded theory.
Butti’s algorithm also tells how to construct different kind of fractional branes in the parent theory

by specifying a set of vΓ. We now apply this method to theories with a glide reflection orientifold to see
when may N = 2 and deformation fractional branes arise.

• N = 2 fractional branes: The parent theory admits such fractional branes whenever the toric
diagram hosts k > 1 ZZPs with the same winding numbers, say (pµ, qµ). They are turned on
whenever only some of these vµ, among the whole set of ZZPs {vΓ}, are non-vanishing. Following
Equation (13.64), one has

k∑

i=1

vµi = 0 , and vν = 0 if (pν , qν) 6= (pµ, qµ) . (13.68)

This condition is compatible with Equation (13.65) only if the k ZZPs are sent to ZZPs with
the same winding numbers by the glide reflection, restricting to (0, 1) or (0,−1) when (p, q) is
mapped to (−p, q). Moreover, k should be a multiple of 4, since for each couple of ZZPs with a
symmetric assignment v, we need a second couple with assignment −v in order to satisfy the sum
in Equation (13.68). In the examples of Section 13.2, we found that the singularity C2/Z4 satisfies
this criterion, see Figure 13.16a.

• Deformation fractional branes: The parent theory will have a deformation fractional brane if there
is a subset of m ZZPs in equilibrium {vσ} ⊂ {vΓ}:

m∑

i=1

(pσi , qσi) = 0 . (13.69)

The deformation brane is turned on whenever all vσ have the same non-zero value and all other
vτ /∈ {vσ} are vanishing. A glide reflection orientifold theory will have a deformation brane if there
is a subset of m ZZPs in equilibrium where each ZZP is accompanied by its image under the glide
action, and where m is smaller than n. In the examples of Section 13.2, we found that C/Z2 satisfies
this criterion while the zeroth Hirzebruch surface F0 does not, see Figure 13.16b and Figure 13.16c.

13.4.3 Shift Orientifolds

So far we have only considered orientifolds acting as glide reflections on the dimer. Now we address
those acting as a simple shift. We have not discussed these orientifolds earlier because they always break
supersymmetry, as we show in the following. In particular, we will see that the holomorphic 3-form Ω3

is even under such an orientifold action, contradicting the rule of thumb that it should be odd.
As we observed in Section 13.1.2, the shift involution must identify nodes of opposite colors on the

dimer, in order to be consistent with the orientifold identification rules. Under such a shift, each ZZP
is mapped to a ZZP of opposite winding numbers, (p, q) → (−p,−q). This can be easily deduced from
Figure 13.17.

From the toric diagram, it is possible to obtain the equations defining associated toric variety probed
by the D-branes. To do so we need to compute the integer generators of the dual cone to the toric
diagram. This procedure is standard in toric geometry and we refer to [CLS11] for all the details. From
the lattice vertices on the boundary of the toric diagram (ri, si), we obtain the generators of the cone
given by mi = (ri, si, 1). The dual cone is then given by

S∨ = {n ∈ R3|mi · n ≥ 0} , (13.70)
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Figure 13.16: Symmetric fractional branes in the parent theory lead to fractional branes in its glide
orientifolded version. Couples of ZZPs paired by the glide action are drawn in the same color. (a) N = 2
fractional brane in C2/Z4, (b) deformation fractional brane in C/Z2, and (c) the zeroth Hirzebruch surface
F0 admits only the regular brane as a symmetric fractional brane.

1 1'

2

3

3'

2'

Figure 13.17: The shift orientifold maps white nodes to black nodes, and vice-versa. The dashed blue
line delineates the unit cell of the parent theory, while the red frame represents the orientifold. The ZZPs
1, 2, 3 are mapped to 1′, 2′, 3′ respectively.

from which it is easy to see that the vectors n are of the form (p, q, a), where (p, q) are the windings of
the ZZPs and a is an integer. Indeed, the generators of the dual cone are nothing but the inward pointing
vectors, normal to the faces of the cone generated by the mi. We now need to add the extra generators
to span the dual integer cone, σ∨ = S∨ ∩ Z3. This is achieved by computing linear combinations of the
generators with positive rational coefficient and adding all integer vectors we obtain this way. Finally,
the equations defining our singularity are given by associating complex coordinates to the generators of
the integer dual cone and the relations among them are obtained with the following identification,

n1 + n2 + · · · = n4 + n5 + · · · → z1z2 · · · = z4z5 · · · . (13.71)

For example, let us consider the toric diagram of the conifold, which we place in Z2 as the square
with vertices (0, 0), (0, 1), (1, 1), (0, 1). The associated cone is

σ =

〈


0
0
1


 ,




0
1
1


 ,




1
1
1


 ,




1
0
1



〉
⊂ R3 , (13.72)

and its dual is

σ∨ = 〈n1 = (1, 0, 0), n2 = (0, 1, 0), n3 = (−1, 0, 1), n4 = (0,−1, 1)〉 ⊂ (R3)∗ , (13.73)

from which it is easy to read the equation defining the singularity:

n1 + n3 = n2 + n4 → z1z3 = z2z4 . (13.74)
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(0,0,1)

(0,1,1) (1,1,1)

(1,0,1)

Figure 13.18: The toric diagram of the conifold.

As a second example let us consider the toric diagram of dP3 and the cone it generates:

σ =

〈


0
−1
1


 ,




1
−1
1


 ,




1
0
1


 ,




0
1
1


 ,



−1
1
1


 ,



−1
0
1



〉
⊂ R3 . (13.75)

It is dual to σ∨ which is the cone:

〈n1 = (0, 1, 1), n2 = (−1, 0, 1),n3 = (−1,−1, 1), n4 = (0,−1, 1),

n5 = (1, 0, 1), n6 = (1, 1, 1), n0 = (0, 0, 1)〉 , (13.76)

where we added the vector n0 = (0, 0, 1) since n1 + n4 = 2n0, meaning that we where missing an integer
generator.

(-1,1,0)

(-1,0,1)

(0,-1,1) (1,-1,0)

(1,0,1)

(0,1,1)

Figure 13.19: The toric diagram of dP3.

The equations of the variety are

z1z4 = z2z5 = z3z6 = z2
0

z1z3z5 = z2z4z6 . (13.77)

We can use the fact that under the shift involution each ZZP is mapped to a ZZP of opposite winding,
hence the corresponding toric diagram must be symmetric under the reflection about its center of mass.
Such center of mass has, in general, half-integer coordinates (α, β). Under such a reflection, a generic
point in the lattice with coordinates (r, s) ∈ Z2 is sent to (2α − r, 2β − s). Under this operation, the
generators of the cone are mapped according to

m′ =



−1 0 2α
0 −1 2β
0 0 1


 ·m (13.78)
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which maps a generator m = (a, b, 1) to m′ = (2α − r, 2β − s, 1). The dual cone S∨ is in turn invariant
under the (right) action of that matrix, which acts as

n′ =



−1 0 0
0 −1 0

2α 2β 1


 · n , (13.79)

or simply,

n = (p, q, a) → n′ = (−p,−q, 2αp+ 2βq + a) . (13.80)

From these observations, we deduce the following properties:

1. All generators of the dual cone, obtained via Equation (13.70), ni = (pi, qi, a), come paired with
another generator n′i = (−pi,−qi, a′), for some integer a while a′ is obtained via Equation (13.80).

2. Given a generator ni = (pi, qi, a) and its shift image n′i = (−pi,−qi, a′), we see that a new integer
generator that we were missing can be added n0 = (0, 0, 1), since

ni + n′i = (a+ a′)n0 . (13.81)

This generator is invariant under the shift.

3. All other extra generators come in pairs. Given an extra generator nl such that

ni + · · ·+ n′j + · · · = b nl , (13.82)

with b integer, by a symmetry argument, we also need to add n′l, since we have10

n′i + · · ·+ nj + · · · = b n′l . (13.83)

We now rearrange the generators into two sets: the set of ni with i = 1, ..., k and the set ni+k = n′i of
their images under the shift. Moreover we have n0 which is the invariant generator. To each generator
ni we associate a complex coordinate zi. We have 2k+ 1 of them, related by 2k− 2 relations, that define
the toric 3-fold. We divide these relations in two kinds. The k first kind relations are of the form

zizi+k − za+a′

0 = 0 , (13.84)

and come from Equation (13.81). We use it to relate every image zi+k to its partner zi and to z0. The
second kind relations relate all remaining zi and z0 together. For example, they may look like

zizjz
b
h − zlzmzc0 = 0 , (13.85)

for some integers b and c.
Under the shift, relations of the first kind are invariant, those of the second kind are not. However,

we can build more symmetric expressions for the latter. As we did when going from Equation (13.82) to
Equation (13.83), Equation (13.85) becomes, under the shift,

zi+kzj+kz
b
h+k − zl+kzm+kz

c
0 = 0 . (13.86)

We can now multiply Equation (13.85) by a term (zi+kzj+kz
b
h+k) and use the last equation to find

(zizjz
b
h)(zl+kzm+k)zc0 − (zlzm)(zi+kzj+kz

b
h+k)zc0 = 0 , (13.87)

which is now symmetric up to a sign under the shift. We dub these relations the symmetrized second
kind relations.

To describe our Calabi-Yau 3-fold, we start with 2k + 1 variables. From the equations of the first
kind we can express all the zi+k in terms of the zi and z0, fixing k variables. Then we can use the
symmetrized second kind relations to fix k − 2 equations, leaving us with only 3 independent variables.

10The transformation law in Equation (13.80) acts linearly on Equation (13.82) such that we obtain Equation (13.83).
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Now, the non-vanishing holomorphic 3-form Ω3 is obtained as the Poincaré residue along the CY3 of the
meromorphic (2k + 1)-form in the ambient space C2k+1:

Ω3 = Res
dz1 ∧ ... ∧ dzk ∧ ... ∧ dz2k ∧ dz0(

k∏

i=1

Pi

k−2∏

i=1

Qi

) , (13.88)

where the Pi are equations of the first kind, while Qi are of the symmetrized second one.
Under the action of the shift, the numerator of the 3-form is multiplied by (−1)k, since the shift acts

on the coordinates exchanging them in pairs. From the denominator we get a factor (−1)k−2 coming from
the symmetrized second kind equations, cancelling the factor at the numerator and leaving the 3-form
invariant. This means that such orientifold projection does not preserve the same supersymmetry as the
D3-branes.

Let us finish this section working out an explicit example. In the case of dP3, one has k = 3, and the
holomorphic 3-form is the residue of the meromorphic 7-form.

Ω3 = Res
dz1 ∧ ... ∧ dz6 ∧ dz0

(z1z4 − z2
0)(z2z5 − z2

0)(z3z6 − z2
0)(z1z3z5 − z2z4z6)

. (13.89)

Under the involution, the numerator is multiplied by (−1)3. The first three relations are invariants while
for the fourth one takes a minus sign. In the end, Ω3 is even under the symmetry, and hence there cannot
be any supersymmetric shift orientifold of dP3.
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13.5 Conclusion

In this chapter we have studied orientifolds on D3-branes at toric CY3 singularities using dimer models.
We established a classification in terms of smooth involutions of the dimer torus, which allowed us to find
the last supersymmetric possibility, the glide reflection orientifold. This possibility may also be reached
by directly performing the orientifold projection on the open string spectrum. A last possibility existed,
a shift orientifold, but it breaks all supersymmetries, as explicitly argued by studying its action on the
holomorphic 3-form. Note that these two cases, not considered before, leave no fixed loci. This exhausts
the possible orientifolds acting smoothly on the dimer torus.

Given a toric gauge theory and its associated dimer, one may find the projected theory with the
same dictionary as orientifolds with fixed loci. The resulting theories have properties strikingly similar
to non-orientifolded theories.

• Unlike orientifold theories with fixed loci, glide reflection orientifolds are guaranteed to satisfy
the anomaly cancellation conditions for some rank assignment. In fact, these theories are non-
chiral. This fact is non-trivial, see [ABF+21a], and granted by the absence of fixed loci in the glide
orientifold that would give raise to tensor matter that could spoil the ACC. From the geometric
point of view this boils down to the absence of net RR fluxes sourced by these orientifolds, as there
are no fixed loci that can be interpreted as an O-plane. T-duality sheds further light, since the glide
orientifold turns to a pair of oppositely charged O-planes on a circle, in the sense of [DP96, Wit98b].

• Again contrary to intuition, these theories are conformal, as shown by explicit computation of the
one loop β-function, that vanishes identically.

• Some of these theories admit N = 2 or deformation fractional branes. The latter trigger a cascade
of dualities à la Klebanov-Strassler, with a constant step that allows for a UV completion purely
in terms of field theory. This is unlike the orientifolds with fixed loci in the literature [AB18] and
opens up the possibility of a simple supergravity dual.

• The glide reflection orientifold may be understood in the T-dual and mirror picture, at least for
C2/Z2, providing a unifying picture.

This the analysis of orientifolds of brane tilings, or at least those acting as smooth involutions on the
torus. However, one may consider other kinds of involutions. For example, involutions not respecting
the color mapping presented in Section 13.1.2 or non smooth involutions, can lead to new projections
of the tiling, different from the usual orientifold. One may also look for quotients of higher order, in
the spirit of what has been done with S-folds [GER16, AT16], and their connection with dimer models.
These directions are yet to be explored.

Orientifolds have found extensive use in phenomenological applications by allowing for non-perturbatively
generated superpotentials or opening the door to SUSY breaking, for instance. We hope our results may
shed light in these and related issues.
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Chapter 14

Towards higher laminations

We have seen in Chapter 3 that Thurston’s laminations are important characters in the Teichmüller theory
of surfaces: in particular, transverse measured laminations provide a spherical compactification of the
Teichmüller space to which the natural action of the mapping class group extends. Rational laminations
on a surface S naturally correspond to systems of pairwise non-intersecting and non-selfintersecting curves
on S with rational weights, up to isotopy. When S is a ciliated surface, rational laminations come in
two different flavors depending on what their behaviour at the boundary ∂S of S is: laminations of type
A and of type X . The spaces of rational laminations of type A and X on S are respectively denoted
Ta(S,Q) and Tx(S,Q). Any triangulation Γ of S defines a chart on Ta(S,Q) and on Tx(S,Q):

φΓ :

{
Ta(S,Q) −→ Q|E(Γ)|

Tx(S,Q) −→ Q|Ei(Γ)| , (14.1)

where E(Γ) (resp. Ei(Γ)) is the set of edges (resp. internal edges) of Γ and where |X| denotes the cardinal
of any finite set X. Under the flip of an internal edge of Γ, the coordinates describing an A-lamination
(resp. X -lamination) transform according to the tropical cluster mutation formulae of type A (resp. X ),
and hence rational laminations of type A (resp. X ) are naturally interpreted as the rational tropical
points AS,SL2

(Qt) and XS,PGL2
(Qt) of the corresponding cluster varieties. The metric completion of

AS,SL2
(Qt) is naturally identified with Thurston’s laminations on S [FG06, Corollary 12.1].

A natural subset of each rational lamination space consists of integral laminations, i.e. those lami-
nations whose coordinates are integers in one (equivalently, every) chart. They form the sets AS,SL2(Zt)
and XS,PGL2

(Zt). Integral laminations are systems of pairwise non-intersecting and non self-intersecting
curves on S up to isotopy, and thus they provide functions on the corresponding Teichmüller spaces.
More precisely, there are pairings between laminations of type A (resp. X ) on S and the X - (resp. A-)
Teichmüller space of S that we have reviewed in Section 4.2.4. The duality conjectures state that the
functions obtained in this way are the generators of the cone of universally positive Laurent polynomials
on the dual cluster variety.

The classical Teichmüller spaces AS,SL2
(R>0) and XS,PGL2

(R>0) of S admit generalizations when SL2

is replaced by any reductive algebraic split group G. These higher Teichmüller spaces are the R>0-points
of cluster varieties: AS,G(R>0) when G is simply connected (e.g. G = SLN ) and XS,G(R>0) when G
has trivial center (e.g. G = PGLN ). Integral higher laminations can be defined formally as the integral
tropical points AS,G(Zt) and XS,G(Zt), and the duality conjectures extend to these cases. However, the
generalization of Thurston’s rational laminations as combinatorial objects remains to be found.

This quest is part of a more general one which aims to the generalization of all the notions that
appear in the classical Teichmüller theory – such as complex structures or the mapping class group – to
the higher setting. In 2018, Fock and Thomas introduced a notion of higher complex structure [FT21],
which is defined in terms of the punctual Hilbert scheme of the plane [Tho22, Tho21, Nol22].

The goal of this chapter is to present some thoughts towards such a generalization worked out with
Vladimir Fock and Alexander Thomas.

Disclaimer:

Since we do not have a complete picture yet, the reader should be warned that the exposition below is
more a cast of the characters that we think should be involved – as well as ideas on how they should inter-
connect – rather than a fully-fledged pedagogical presentation of a complete theory. The most prominent
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novel feature of our approach is the introduction of affine Hecke algebras.

In Section 14.1 we explain how A-laminations parametrize a basis of regular functions on the dual
Teichmüller space XG,S . This perspective will guide us through the rest of the chapter. In Section 14.2
we discuss the hives of Knutson and Tao, through which Littlewood–Richardson for representations of
GLN and SLN can be computed, as well as the related honeycombs. In Section 14.3 we introduce the
Satake correspondence, which motivates the appearance of affine Hecke algebras in higher laminations.
We discuss specifically the conjectural combinatorial higher laminations in Section 14.4, which resembles
spectral networks that we present briefly in Section 14.5. Eventually, we relate our putative definition of
higher laminations to ramified covers of the surface S in Section 14.6.

14.1 A-laminations as a basis of regular functions

14.1.1 Regular functions on moduli stacks of local systems

In order to meaningfully generalize A-laminations to the higher setting, one needs to understand how
the algebraic definition of higher laminations can translate to combinatorics. Our starting point is the
following result of [FG06, Section 12.5]. Let G be a reductive algebraic group and R(G) the set of
isomorphism classes of its finite-dimensional representations. Let L(G,S) be the moduli space of G-local
systems on a punctured surface S, with the notation of Chapter 4. Let also Γ be a triangulation of S.

Definition 14.1. Let
−→
E (Γ) be the set of oriented edges of Γ. Then C(R(G),Γ) is the set of maps

λ :
−→
E (Γ)→ R(G) (14.2)

such that if −→e and ←−e are the two orientations of the same edge, λ(−→e ) is contragradient to λ(←−e ), i.e.
for all g ∈ G one has λ(−→e )(g) = λ(←−e )(g−1)∗.

Proposition 14.2. One has:

O (L(G,S)) =
⊕

λ∈C(R(G),Γ)

⊗

∆∈F (Γ)


 ⊗

−→e ∈∂∆

Vλ(−→e )



G

, (14.3)

where F (Γ) is the set of faces of Γ and −→e ∈ ∂∆ denotes an edge on the boundary of ∆, oriented
counterclockwise.

Proof. The trivalent graph Λ dual to the triangulation Γ is a deformation retract of S, and hence L(G,S)
is isomorphic to the moduli space L(G,Λ) of G-local systems on Λ. Now:

O(L(G,Λ)) '
(
O(G)E(Λ)

)GV (Λ)

, (14.4)

where E(Λ) (resp. V (Λ)) is the set of edges (resp. vertices) of Λ. This last isomorphism stems from the
fact that a G-local system on Λ can be expressed as parallel transport, i.e. the data of elements of G on
the edges of Λ, provided an orientation has been chosen for the latter, after having trivialized the local
system at the vertices of Λ. Changing the trivialization amounts to an action of GV (Λ) on O(G)E(Λ).
The Peter–Weyl theorem implies that

O(G) '
⊗

λ∈R(G)

Vλ ⊗ V ∗λ . (14.5)

Combining this with Equation (14.4) yields

O(L(G,Λ)) '


 ⊕

{λ:E(Λ)→Ĝ}

⊗

e∈E(Λ)

Vλ(E) ⊗ V ∗λ(E)



GV (Λ)

. (14.6)
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Let C(R(G),Λ) be, as in Definition 14.1, the set of maps from oriented edges of Λ to R(G) such
that changing the orientation of an edge is accompanied with the replacement of the corresponding
representation with the contragradient one. For any v ∈ V (Λ) let v ← e denote an edge of Λ incident to
v and oriented towards v. One can then rewrite Equation (14.6) as:

O(L(G,Λ)) '
⊕

λ∈C(R(G),Λ)

⊗

v∈V (Λ)


 ⊗

{v←e}

Vλ(v←e)



G

, (14.7)

which, when translated in terms of the triangulation Γ, yields the proposition.

Since Γ is a triangulation, every term which appears in the decomposition of O(L(G,S)) in Proposi-
tion 14.2 is a tensor product of terms of the form

(Va ⊗ Vb ⊗ Vc)G , (14.8)

where Va, Vb, Vc are three finite-dimensional irreducible representations of G. The space of such G-
invariants is a vector space of finite dimension. Let

nabc = dim(Va ⊗ Vb ⊗ Vc)G . (14.9)

Equivalently, nabc is the number of times the irreducible representation V ∗c appears in the product Va⊗Vb,
and one can write

Va ⊗ Vb =
⊕

c

nabc V
∗
c . (14.10)

The nabc are called Littlewood–Richardson coefficients. We will introduce hives, through which they can
be computed, in Section 14.2.

It is proved in [FG06, Section 12.5] that O(XG,S) is a free O(L(G,S))-module of rank |W |n where
n is the number of punctures of S. More precisely, the moduli space XG,S can be naturally seen as a
fibered product:

XG,S

zz $$
LG,S

$$

Hn

zz
(H/W )n

(14.11)

where H is a Cartan subgroup of G and W = Norm(H)/H is the Weyl group. Chevalley restriction
implies that Q[H] is a free Q[H]W -module of rank |W | and hence

O(XG,S) = O(LG,S)⊗O((H/W )n) O(Hn) (14.12)

is a free O(LG,S)-module of rank |W |n, with a set of generators obtained by pullback of the generators
of Q[Hn] as a free Q[(H/W )n]-module.

14.1.2 Classical A-laminations for G of type A1

In this subsection we consider the cases where G is split real of type A1, i.e. G = PSL2(R) in the adjoint
form and G = SL2(R) in the simply-connected form.

Let us first consider G = SL2(R). The isomorphism classes of finite dimensional irreducible represen-
tations of SL2(R) are in one-to-one correspondence with 1

2Z≥0, i.e. the elements of the weight lattice 1
2Z

in the fundamental Weyl chamber. The irreducible representation with highest weight n
2 ∈ 1

2Z≥0 is:

Vn
2

= Cn[x, y] = Vect
(
xn, xn−1y, . . . , xyn−1, yn

)
, (14.13)

where SL2(R) acts regularly on the vector space of pairs (x, y), i.e. V 1
2

is the regular representation.

Let now a ≥ b ∈ 1
2Z≥0 two highest weights. The Clebsch–Gordan decomposition reads:

Va ⊗ Vb ' Va−b ⊕ Va−b+1 ⊕ · · · ⊕ Va+b , (14.14)



346 CHAPTER 14. TOWARDS HIGHER LAMINATIONS

which can be found in [FH13] for example. For all a ∈ 1
2Z≥0 one has V ∗a = Va. Thus if a, b, c ∈ 1

2Z≥0:

(Va ⊗ Vb ⊗ Vc)SL2(R) =

{
1 if a+ b+ c ∈ Z and a, b, c satisfy the triangle inequalities
0 otherwise

, (14.15)

where a, b, c satisfy the triangle inequalities if a+ b ≥ c, b+ c ≥ a and c+ a ≥ b.
Recall the reconstruction of classical A-laminations on ciliated surfaces described in Section 3.2.2:

consider a triangle ∆ of the triangulation Γ of S and λ ∈ C(R(G),Γ). Let Va, Vb and Vc be the rep-
resentations that λ associates to the edges on the boundary of ∆ oriented counterclockwise, as shown
in Figure 14.1. One needs to draw 2a, 2b and 2c insertions on the edges of the boundary according to
the representation of SL2(R) they correspond to. It is possible to connect these insertions with a set
of disjoint non-self-intersecting and pairwise non-intersecting curves in the triangle, and such that no
insertion is paired with another on the same edge, if and only if nabc 6= 0. Moreover, there is a unique
way to do it, which translates the fact that nabc = 1.

Figure 14.1: There is a unique way to construct an A-lamination if and only if nabc 6= 0.

Thus each integral classical lamination of type A in ∆ naturally corresponds to a generator of
O(L(G,∆)). More generally, one concludes that the elements of Ta(S,Z) are in one-to-one correspondence
with the generators of O(L(G,S)).

An integral lamination l ∈ AL(S,Z) can be decomposed as

l =
∑

α

nαα , (14.16)

where the sum runs over a set of non-homotopic representatives of the simple closed loops α in S which
appear in l, and where nα is the sum of weights of the curves in l homotopic to α. We have seen in
Section 3.3.3 that such an integral A-lamination provides a function on the X -Teichmüller space T x(S)
of S through the multiplicative pairings:

IA(l) =
∏

α

Tr(Mnα
α )

∏

β

λ
nβ
β , (14.17)

where the first product runs over the curves α not surrounding punctures withMα is the monodromy along
α, whereas the second product runs over the curves β surrounding punctures with λβ the distinguished
eigenvalue of the monodromy along β determined by the framed structure.

In coordinates, an element of AL(S,Z) is described by the data of half-integers on the edges of Γ such
that the sum of the coordinates on the edges of any triangle of Γ is an integer. Hence:

ASL2,S(Zt) ⊂ AL(S,Z) ⊂ ASL2,S(
1

2
Zt) . (14.18)

Let A0
L(S,Z) ⊂ AL(S,Z) be the subset consisting of all laminations whose curves (including the

special ones bounding punctures) have positive integral weight. An element l ∈ AL(S,Z) belongs to
A0
L(S,Z) if and only if nα > 0 for all α appearing in the sum in Equation (14.16). Let

I0
A(l) =

∏

α

Tr(Mnα
α ) ∈ O(LSL2,S) , (14.19)
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where Mα is the monodromy along α seen as a function on LSL2,S . Let also

A0
SL2,S(Zt) = ASL2,S(Zt) ∩ A0

L(S,Z) . (14.20)

Proposition 14.3 (12.2 in [FG06]). The map I0
A provides isomorphisms:

I0
A : Q{A0

L(S,Z)} −→ O(LSL2,S) ; I0
A : Q{A0

SL2,S(Zt)} −→ O(LPGL2,S) . (14.21)

Proof. Any element in A0
L(S,Z) can be described, in coordinates, as a set of non-negative half-integers

{ae}e∈E(Γ) on the edges of the triangulation Γ of S. Since

(Vae1 ⊗ Vae2 ⊗ Vae3)SL2(R) =

{
1 if ae1 + ae2 + ae3 ∈ Z and triangle inequalities hold
0 otherwise

, (14.22)

the set {ae}e∈E(Γ) gives rise to functions on the moduli space LG,S . A first way to do so consists
of assigning the representation Vae to each edge e of Γ, and of considering the tensor product over
F (Γ) of the invariants Sae1,ae2,ae3 given by Equation (14.22). It follows from Proposition 14.2 that this
construction indeed provides a function on LG,S , denoted S{ae} in [FG06]. Moreover it is clear that the
collection of S{ae} for all possible sets {ae}e∈E(Γ) forms a basis of the functions on LG,S .

Another way to construct a function on LG,S from the data {ae} consists of assigning the (reducible)
representation V ⊗2ae

1/2 to each edge e ∈ E(Γ), and to construct an invariant in V ⊗2ae1
1/2 ⊗ V ⊗2ae2

1/2 ⊗ V ⊗2ae3
1/2 ,

where e1, e2 and e3 are the edges on the boundary of a face ∆ ∈ F (Γ), as follows. First, one reconstructs
a lamination in ∆ corresponding to the boundary data ae1, ae2, ae3, and assign the representation V1/2

to each end of the strands of the lamination. There is a unique SL2-invariant in V1/2 ⊗ V1/2 which can
be associated to each strand of the lamination. Taking the tensor product over all strands yields an
SL2-invariant Tae1,ae2,ae3 ∈ V ⊗2ae1

1/2 ⊗V ⊗2ae2
1/2 ⊗V ⊗2ae3

1/2 , and the tensor product of these invariants over all

faces of Γ yields a function T{ae} on LG,S as follows from Proposition 14.2.
The invariants Tae1,ae2,ae3 are linear combinations of the Sae1,ae2,ae3 and vice-versa, and hence the

T{ae} are linear combinations of the S{ae} and vice-versa. This implies that the T{ae} forms a basis of
functions on LG,S .

A third way to construct a function on LG,S from {ae} is to reconstruct the lamination corresponding
to {ae} and take the product of the Tr(Mα) over all curves α of the lamination. This yields a function
T ′{ae}:

T ′{ae} =
∏

α

(Tr(Mα))
nα . (14.23)

Since
(
(λ+ λ−1)n

)
n∈Z≥0

and ((λn + λ−n))n∈Z≥0
both form a basis of the Laurent polynomials in λ in-

variant under the involution λ→ λ−1, the functions I0
A(l) of Equation (14.19) are linear combinations of

the T ′{ae} and vice-versa, which proves that the I0
A(l) forms a basis of LG,S as well.

The case of LPGL2,S works similarly, except that the representations of PGL2 are the Va for a ∈ Z≥0

only, so that the requirement that ae1 + ae2 + ae3 ∈ Z in Equation (14.22) can be dropped. This yields
the second isomorphism of the proposition.

Theorem 14.4 (12.3 in [FG06]).

1. The functions IA(l) when l ∈ ASL2,S(Zt) provide a basis of O(XPGL2,S).

2. The functions IA(l) when l ∈ AL(S,Z) provide a basis of O(XSL2,S).

Proof. Note that pairing IA of Equation (14.17) differs from I0
A in the treatment of the boundary curves

only: if β is a curve bounding a boundary component of S and if λβ is the monodromy along β restricted
to the invariant one-dimensional subspace defined by the framing, seen as a function on XPGL2,S , then
I0
A(nα) = λn + λ−n whereas IA(nα) = λn. The theorem follows from the fact that Q[λ, λ−1] is a free
Q[λ, λ−1]Z/2Z-module of rank two with generators 1 and λ, where Z/2Z acts as λ → λ−1. Hence the
products of I0

A(α) over some of the boundary components provide all the generators of the O(LPGL2,S)-
module O(XPGL2,S). Similarly, the products of I0

A(α) over some of the boundary components provide all
the generators of the O(LSL2,S)-module O(XSL2,S).
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14.1.3 G-higher A-laminations

One statement of the duality conjectures of [FG06, FG09] is that the algebra of regular functions on an
X -cluster variety should have a basis parameterized by the integral tropical points of the corresponding
A-cluster variety. While this has been shown not to hold in general in this form [GHK15], the authors
of [GHKK18] have provided a refined version of the statement as well as a proof of it. However we will
not discuss these issues further, since the aim of this chapter is to explain the general philosophy of one
approach to higher laminations in a somewhat informal way. Besides, a full understanding of the details
of our approach still requires some work.

Let us therefore assume that G-higher A-laminations on S, i.e. points of AG,S(Zt), parameterize a
basis of O(XG,S). Our main quest is to define precise combinatorial objects generalizing disjoint unions
of pairwise non-intersecting and non-self-intersecting curves on S up to equivalence. As we will explain
with more details soon, what these combinatorial objects should be is rather clear, however the details
of the equivalence relation are not. The analysis of above suggests the following.

1. Since the ring of regular functions on L(G,S) splits as a direct sum over C(R(G),Γ) (defined in
Definition 14.1), the set of higher laminations should itself split as a disjoint union over C(R(G),Γ).
Moreover if λ ∈ C(R(G),Γ), the number of distinct laminations corresponding to λ should be

∏

∆∈F (Γ)

n∆(λ) , (14.24)

where F (Γ) is the set of faces of Γ and n∆ is the number nabc(λ) corresponding to it. The split-
ting of Proposition 14.2 further suggests that higher laminations can be entirely constructed in
triangles ∆, provided that finite-dimensional irreducible G-representations are associated to the
counterclockwise-oriented boundary of ∆, and then glued together as a G-higher lamination on S
according to a triangulation Γ of S.

2. The Littlewood–Richardson coefficients for SLN and PGLN can be computed via the hives of
Knutson and Tao, which we are going to review in Section 14.2. Hives are rational assignments to
the vertices of a triangle with an (N − 1)-subtriangulation satisfying some inequalities generalizing
the triangle inequalities of Equation (14.22) that appear in Littlewood–Richardson coefficients for
the representations of SL2 and PGL2. Moreover, computing a Littlewood–Richardson coefficient
nabc amounts to counting the hives with boundary data prescribed by the highest weights a, b and c.
We expect nabc non-equivalent G-higher laminations in a triangle ∆ with boundary representations
Va, Vb and Vc, and hence there should be a one-to-one correspondence between hives and higher
laminations.

3. The Satake correspondence, which we will discuss in Section 14.3, links the ring of finite-dimensional
irreducible representations of G to the spherical Hecke algebra of the Langlands dual group GL.
Therefore we expect these spherical Hecke algebras to play a role in the definition of G-higher lam-
inations. Iwahori–Hecke algebras (referred to as Hecke algebras in what follows) are deformations
of the group algebras of Coxeter systems (W,S) depending on a parameter q, and as algebras they
admit a basis parameterized by the set of simple reflections S, while the multiplication is only con-
strained by braid relations which are the same as in C[W ] and quadratic relations which for s ∈ S
read:

h2
s = (q − 1)hs + q (14.25)

in the so-called standard basis (hs)s∈S . Even if this definition of Hecke algebras does not include
spherical Hecke algebras, this points towards the following generalization of Thurston’s laminations.

Conjecture 14.5. A G-higher lamination is a union of curves on S colored with the positive simple
roots of the affine group ĜL corresponding to GL, with vertices of some type determined by the braid
and quadratic relations in the (spherical) Hecke algebra of GL.

Two examples of such vertices are shown in Figure 14.2. The edges corresponding to a positive
simple root σ1 (resp. σ2, σ3) are shown in red (resp. blue, green). We assume that there is a single
edge between the nodes in the corresponding Dynkin diagram associated with σ1 and σ2, and a
double edge between the ones associated with σ2 and σ3.
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Figure 14.2: Vertices of higher laminations.

The vertices corresponding to the braid relations are such that if one takes a small loop around
one of them, the monodromy along it is trivial because it corresponds to a braid relation. The
vertices corresponding the the quadratic relations, on the other hand, are specific to Hecke al-
gebras compared to Coxeter group algebras, and encode the fact that the product h2

s contains a
term proportional to hs. We will provide more examples of these would-be higher laminations in
Section 14.4.

4. The spectral networks of Gaiotto, Moore and Neitzke [GMN13b] are graphs on surfaces of the same
kind. They can therefore be used as a guide to construct higher laminations, which despite the
similarity with spectral networks cannot be exactly identical: spectral networks encode complex
ramified covers of S whereas higher lamination should rather correspond to ramified Lagrangian
covers in T ∗S. We will discuss spectral networks in Section 14.5.

5. Eventually, the definition of higher laminations of Conjecture 14.5 suggests that there is a link with
some ramified covers of the surface S of some sort. We will explore this connection in Section 14.6.

Let us also mention the approach of [Le16] towards higher laminations which involves affine buildings.
Precisely, a G-higher integral A-lamination, i.e. a point in AG,S(Zt), is associated to a virtual positive
configuration of points in the affine building of G parameterized by the cyclic set at infinity of the surface
S. Le also proposes a similar definition of G-higher integral X -lamination. This is in line with the work
of [MS84, Ale08, Par12] which culminate with Parreau’s result that spaces of representations of finitely
generated groups into a semi-simple group has a compactification in terms of actions on buildings. This
is further developed in the groundwork [BP17] which fueled the study of real spectrum compactifications
of character varieties [Bru88, BIPP21].

There are known links between affine buildings and spherical Hecke algebras [Par06, FKK13], which
could bridge the gap between the approach developed in [Le16] and ours.

Transverse though not uncorrelated is the approach of [Xie13], which relies and builds on the ideas
of [DMO09, GMN13c, GMN13a]. We will come back to this in Section 14.5. The approach of [Xie13]
together with the ideas of [Kup96] and [GS15] inspired in particular [Dou20, DS20] which study a specific
basis of the algebra of regular function on the SL3(C) character variety of a finite-type surface S.

14.2 Littlewood–Richardson coefficients from hives

14.2.1 The saturation conjecture

Let λ = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, µ = µ1 ≥ · · · ≥ µn ≥ 0 and ν = ν1 ≥ · · · ≥ νn ≥ 0 be three partitions,
and let Vλ, Vµ and Vν be the irreducible representations of GLn(C) with respective highest weight λ, µ
and ν. An old question in the representation theory of GLn(C) is: what conditions need to be satisfied
by λ, µ and ν in order for the representation Vλ⊗Vµ⊗Vν to contain a non-zero GLn(C)-invariant vector?
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Let nνλµ be the Littlewood–Richardson coefficients:

Vλ ⊗ Vµ =
∑

ν

nνλµVν . (14.26)

The question can then be reformulated as: what are the conditions on λ, µ, ν for nνλµ to be strictly positive?
Note that in passing from the first formulation of this problem to the second, the representation Vν needs
to be dualized.

The fact that nνλµ > 0 can be interpreted combinatorially as the existence of a Littlewood–Richardson
skew tableau of shape ν/λ and content µ [LR34], or geometrically as the fact that the intersection of
Schubert cells is non-empty (see e.g. [Ful98]). Following [Zel99], let

Pr = {λ = (λ1, . . . , λr) ∈ Zr | λ1 ≥ · · · ≥ λr ≥ 0} (14.27)

be the semi-group of partitions of length smaller than r, and let

LRr =
{

(λ, µ, ν) ∈ Pr | nνλµ > 0
}
. (14.28)

The set LRr is a finitely generated sub-semigroup of P 3
r ⊂ Z3r. This fact is as a particular case of a

theorem holding for all reductive groups [Éla92], whose proof is attributed to Brion and Knop. Let:

LRr = {(λ, µ, ν) ∈ Pr | ∃N ∈ Z>0, (Nλ,Nµ,Nν) ∈ LRr} (14.29)

be the saturation of LRr. Klyachko provided a description of LRr [Kly98], in terms of inequalities coming
from Schubert calculus, of the form:

∑

k∈K

λk ≤
∑

i∈I
λi +

∑

j∈J
λj , (14.30)

for some triples of subsets I, J,K ⊂ {1, . . . , n} of the same cardinality. The main result is the following
theorem:

Theorem 14.6 (Theorems 1.2 and 2.2 in [Kly98]).

1. If nνλµ > 0 then λ, µ and ν satisfy the above-mentioned system of linear inequalities,

2. Conversely, if λ, µ and ν satisfy the above-mentioned system of linear inequalities then there exists
N ∈ Z>0 such that nNνNλ Nµ > 0.

The saturation conjecture, also stated in [Kly98], is that the converse statement in Theorem 14.6 holds
in general and not only asymptotically, i.e.:

Conjecture 14.7. If λ, µ and ν satisfy the above-mentioned system of linear inequalities then nνλµ > 0.

This conjecture was proved by Knutson and Tao in [KT99] using combinatorial tools dubbed tinker-
toys, honeycombs and hives. We refer to [Ful98, Zel99, Buc00, Sak12] for more detailed introductions,
connections and historical context.

14.2.2 Hives

Hives can be used to determine the Littlewood–Richardson coefficients for representations of GLn(C),
SLn(C) and PGLn(C). They encode Berenstein–Zelevinsky polytopes [BZ92] in a combinatorial way.

One starts with a triangle with n+ 1 vertices on each side as shown in Figure 14.3, and triangulated
in the way depicted on the same figure. This triangle will be denoted Hiven.

Let us consider the labeling of the vertices of a hive triangle by real numbers. Each elementary
rhombus appearing in the hive triangle gives rise to an inequality demanding that the sum of the labels
at the obtuse vertices is greater than the sum of the labels at the acute vertices, as depicted in Figure 14.4.
A hive is a labeling of the vertices of a hive triangle which satisfies all of these inequalities. A hive is said
to be integral if its labeling is integral.

Let us first consider the case of GLn(C) following [Buc00]. Let λ, µ, ν be three partitions with
|λ| + |µ| = |ν|, and use them to label the vertices on the boundary of a hive as in Figure 14.3. The
following theorem was proved by Knutson and Tao [KT99].
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Figure 14.3: The hive triangle Hive4 (left) and a assignment of border labels (right).

Figure 14.4: The rhombus inequalities appearing in hives.

Theorem 14.8. The Littlewood–Richardson coefficient cνλµ is the number of integral hives with border
labels constructed from λ, µ and ν.

An example is given in Figure 14.5. The partitions λ = µ = (2, 1) and ν = (3, 2, 1) correspond to
irreducible representations of GL3(C), respectively denoted Λ(2,1) and Λ(3,2,1). If one wonders about the
multiplicity of Λ(3,2,1) in the tensor product Λ(2,1) ⊗ Λ(2,1), Theorem 14.8 implies that it is enough to
count the number of integral hives with boundary data determined by λ, µ and ν. There is a single label
x which is not fixed by the boundary data, which is the one on the inner vertex of the hive triangle. The
right-most rhombus implies that the x+ 6 ≤ 5 + 6 i.e. x ≤ 5, and the adjacent one with labels x, 5, 6, 5
demands that x + 6 ≥ 5 + 5, i.e. x ≥ 4. One can easily see that these constraints on x are sharp, and
hence this leaves two possibilities: x = 4 and x = 5, yielding the two hives displayed in Figure 14.5.

Figure 14.5: Two distinct integral hives on Hive3 corresponding to the same boundary data.

This result can be extended to compute Littlewood–Richardson coefficients for SLn(C) and PGLn(C)
(actually, for any quotient of SLn(C) by a subgroup of its center, even if we are not going to present the
method in this very general setting here).
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Finite dimensional irreducible representations of SLn(C) are labeled by a (n−1)-tuple of non-negative
integers (a1, . . . , an−1) encoding their highest weight (a1 + · · · + an−1)L1 + (a2 + · · · + an−1)L2 + · · · +
an−1Ln−1 with the notation of [FH13]. The corresponding representation will be denoted Γa1,...,an−1

as
in [FH13], so that Γ1,0,...,0 is the fundamental representation V , Γ0,1,0,...,0 is ∧2V , and so forth, and so
on, so that in general Γa1,...,an−1

is the one appearing in

V ⊗a1 ⊗ (∧2V )⊗a2 ⊗ · · · ⊗ (∧n−1V )⊗an−1 . (14.31)

The Cartan matrix of sln(C) is:

CAn−1
=




2 −1 0 . . . . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0
...

...
. . .

. . .
. . . . . . 0

0 . . . 0 −1 2 −1 0
0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 −1 2




∈Mn−1(Q) , (14.32)

and from (a1, . . . , an−1) we built the following (n− 1)-tuple:

(c1, . . . , cn−1)T = C−1
An−1

· (a1, . . . , an−1)T . (14.33)

For example in the case n = 3 the fundamental representation V = Γ1,0 corresponds to (c1, c2) =
( 2

3 ,
1
3 ), the antisymmetric representation ∧2V = V ∗ = Γ0,1, to (c1, c2) = (1

3 ,
2
3 ), the adjoint representation

is Γ1,1 and (c1, c2) = (1, 1) while the trivial representation Γ0,0 has (c1, c2) = (0, 0).

Computing Littlewood–Richardson coefficients in that case using hives consists of assigning the labels
c1, . . . cn on the boundary vertices of the hive triangle as follows. Assume that we are interested in
computing the multiplicity of Γaν1 ,...,aνn−1

in the tensor product Γaλ1 ,...,aλn−1
⊗ Γaµ1 ,...,a

µ
n−1

. One starts by

assigning 0 to the vertices of the hive triangle Hiven. The labels cλ1 , . . . , c
λ
n−1 are assigned to the remaining

vertices on the left side of Hiven clockwise, cµ1 , . . . , c
µ
n−1 are assigned to the remaining vertices on the right

side of Hiven clockwise, and cν1 , . . . , c
ν
n−1 are assigned to the remaining vertices on the bottom side of

Hiven counterclockwise. This is depicted for n = 4 in Figure 14.6.

Figure 14.6: Boundary data in the SLn(C)-case.
.

Note that in this case the border labels are not integers, but belong to 1
nZ≥0. The result in this case

is the following (the specific case of G = SL3 is discussed in [Dou20]).

Theorem 14.9. The Littlewood–Richardson coefficient cνλµ is the number of hives with labels in 1
nZ≥0,

border labels constructed from λ, µ and ν as explained above, and such that for each elementary rhombus
b+ d− a− c ∈ Z≥0, with the notation of Figure 14.4.



14.2. LITTLEWOOD–RICHARDSON COEFFICIENTS FROM HIVES 353

For example, one can check that the representation Γ1,0 ⊗ Γ2,1 of SL3(C) splits as:

Γ1,0 ⊗ Γ2,1 = Γ3,1 ⊕ Γ1,2 ⊕ Γ2,0 (14.34)

by verifying that there is a single hive with labels in 1
3Z≥0 with boundary labels (cλ1 , c

λ
2 ) = ( 2

3 ,
1
3 ),

(cµ1 , c
µ
2 ) = (5

3 ,
4
3 ) and (cν1 , c

ν
2) either (7

3 ,
5
3 ), ( 4

3 ,
5
3 ) or (4

3 ,
2
3 ). These hives are given in Figure 14.7. In each

case we display in red a rhombus which imposes that the label in the central vertex is smaller than 6
3 = 2,

and in blue a rhombus which imposes that the same label is greater than 6
3 = 2. All other rhombi give

rise to equivalent or weaker constraints.

Figure 14.7: The hives appearing in the decomposition Γ1,0 ⊗ Γ2,1 = Γ3,1 ⊕ Γ1,2 ⊕ Γ2,0.
.

The rules to compute the Littlewood–Richardson coefficients in the case of PGLn(C) are readily
obtained by restricting the rules for SLn(C) since the highest weights of the irreducible representations
of PGLn(C) belong to the Weyl chamber in the root lattice of SLn(C), which is a subset of its weight
lattice.

The hive conditions that we have discussed were shown in [GS15] to correspond to the tropicalization
Wt of a remarkable rational positive function W on AG,S dubbed potential.

14.2.3 Honeycombs and Horn’s conjecture

In this subsection we follow [KT01] – see also the review [Ful98].
The spectrum of an n× n Hermitian matrix can be written as a weakly decreasing sequence of n real

numbers λ = (λ1 ≥ · · · ≥ λn). In 1912, Hermann Weyl asked for the conditions on three such spectra
λ, µ, ν ensuring the existence of Hermitian matrices Hλ, Hµ and Hν with respective spectrum λ, µ and
ν such that Hλ +Hµ +Hν = 0 [Wey12].

Some necessary conditions are immediate. For example, taking the trace of Hλ +Hµ +Hν = 0 yields

n∑

i=1

λi +

n∑

j=1

µj +

n∑

k=1

νk = 0 . (14.35)

The sum of the largest eigenvalues of Hλ, Hµ and Hν also obviously needs to be greater than zero:

ν1 + λ1 + µ1 ≥ 0 . (14.36)

Weyl found a list of such necessary conditions, that are all inequalities of the form of Equation (14.36)
apart from the trace condition of Equation (14.35). This fact was explained by Horn [Hor62], who also
conjectured an exhaustive list of these inequalities, i.e. a set of necessary and sufficient conditions for
Weyl’s original problem.

Honeycombs were introduced in [KT99] in order to prove Klyachko’s saturation conjecture, which in
turn implies Horn’s conjecture. We will not explain the proof here and rather refer to [KT99, KT01],
however let us now define honeycombs and the statement of Knutson and Tao’s main result.

Let us consider the plane

Π =
{

(x, y, z) ∈ R3 | x+ y + z = 0
}
⊂ R3, (14.37)



354 CHAPTER 14. TOWARDS HIGHER LAMINATIONS

with the six cardinal directions (0, 1,−1), (−1, 1, 0), (−1, 0, 1), (0,−1, 1), (1,−1, 0) and (1, 0,−1) drawn
pointing Northwest, North, Northeast, Southeast, South and Southwest as in Figure 14.8.

A diagram is defined as a configuration of possibly half-infinite line segments in Π with each edge
parallel to one of the six cardinal directions and labeled with a multiplicity, i.e. a number in Z>0.
Line segments can intersect at vertices, and a vertex is a zero-tension point if the sum of the vectors
corresponding to the cardinal directions of the rays emanating from it, weighted by their multiplicity, is
zero.

A honeycomb is a diagram with finitely many vertices which all are zero-tension points, and such that
the cardinal directions of the semi-infinite lines are Northwest, Northeast or South. An example of a
honeycomb is displayed in Figure 14.8, where only multiplicities greater than 2 are shown.

Figure 14.8: The six cardinal directions in Π (left) and a honeycomb (right).
.

Half-infinite lines are aligned with either the NW, NE or S cardinal directions and hence they all
correspond to a constant real coordinate. Let them be denoted λ1, . . . , λn, µ1, . . . , µn and ν1, . . . , νn as
in Figure 14.8.

Theorem 14.10 ([KT01]). There exist Hermitian n×n matrices Hλ, Hµ and Hν with respective spectrum
λ, µ and ν such that Hλ + Hµ + Hν = 0 if and only if there exists a honeycomb with boundary values
(λ, µ, ν).

Honeycombs resemble the (p, q)-webs introduced in Section 6.4.2 very much. This calls for a dictionary
between five-dimensional quantum field theories with eight supercharges and Horn’s conjecture. I am not
aware of any research work going in that direction, however such a program might fit very nicely within
the ideas developed in [BGH+21]. The next section will hopefully provide another piece of evidence for
such an alignment.

14.3 The Satake correspondence and Hecke algebras

14.3.1 Hecke algebras

Generalities. The notion of Hecke ring or Hecke algebra first appeared in [Shi59] (see also the review
[Ver61]) as l’algèbre des transformations. Subsequently, Iwahori [Iwa64] and Matsumoto [IM65] general-
ized this notion, building on Chevalley’s construction of finite simple groups from reductive Lie groups
[Che55]. In this subsection we follow closely the presentation of [Iwa64].

Roughly speaking, if G is a group and H a subgroup of G, the Hecke algebra H(G,H) is the algebra
of functions on H\G/H with multiplication given by the convolution.

More precisely, one needs to assume that for all x ∈ G, the subgroup H is commensurable with
xHx−1, i.e.:

[H : H ∩ xHx−1] <∞ . (14.38)
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Let M be the set of all H-left invariant subsets of G, and let µ be the measure on M such that if
A ∈ M, the measure µ(A) is the cardinal |H\A|. Note that µ is right-invariant, i.e. for all g ∈ G, one
has µ(Ag) = µ(A). Let now L(G,H) be the set of all complex-valued, M-measurable and µ-summable
functions on G such that:

• for any g ∈ G and h, h′ ∈ H, one has f(hgh′) = f(g),

• µ(S(f)) <∞, where S(f) = {x ∈ G | f(x) 6= 0}.
The set L(G,H) has naturally the structure of a complex vector space, and moreover it can be endowed
with the convolution product:

(f1 ? f2)(x) =

∫

G

f1(xy−1)f2(y)dµ(y) , f1, f2 ∈ L(G,H), x ∈ G. (14.39)

The fact that µ is H-right invariant implies that L(G,H) is an associative algebra. The assumption of
Equation (14.38) implies that for any a ∈ G, the characteristic function χA of the double coset A = HaH
is in L(G,H). The set (χA)A∈H\G/H is a base of L(G,H).

Definition 14.11. The Iwahori–Hecke algebra (or Hecke algebra, for short) H(G,H) is the free Z-module
defined as the Z-submodule of L(G,H) generated by the (χA)A∈H\G/H .

Proposition 14.12 (1.1 in [Iwa64]). The Hecke algebra H(G,H) is a sub-ring of L(G,H), i.e. it is an
algebra. Moreover H(G,H)⊗Z C = L(G,H).

Hecke algebras of Chevalley groups over finite fields with respect to a Borel subgroup. The
sequel of [Iwa64] mostly revolve around the particular cases of H(G(Fq), B(Fq)) where q = pα is a prime
power, Fq is the finite field with q elements, G(Fq) is a semi-simple algebraic group over Fq and B(Fq) is
a Borel subgroup of G(Fq). Let us denote the corresponding Hecke algebra Hq(G,B). The main result
of [Iwa64] is an explicit description of Hq(G,B) in terms of generators and relations.

Let g be the complex semi-simple Lie algebra corresponding to G and h a Cartan subalgebra of g. Let
∆ be the root system corresponding to (g, h) and let Π = {α1, . . . , αl} be the set of positive simple roots
given by the choice of an ordering of the roots of g. Let θij be the angle between αi and αj . Let w1, . . . , wl
be the reflections in W corresponding to the elements of Π. The Weyl group W of g is generated by
w1, . . . , wl with the following relations:

{
w2
i = 1 ∀ i = 1, . . . , l

(wiwj)
k = 1 if θij = (k − 1)π/k

. (14.40)

Let now H be the Cartan subgroup of G corresponding to h. The Weyl group W can be naturally
expressed as

W = Norm(H)/H . (14.41)

Let ω1, . . . , ωl be representatives of w1, . . . , wl ∈ W in G. The Hecke algebra Hq(G,B) is generated by
the cosets Si = BωiB for i = 1, . . . , l with the following relations:

{
S2
i = (q − 1)Si + q ∀ i = 1, . . . , l

(SiSj)
k = 1 if θij = (k − 1)π/k

. (14.42)

Comparing Equation (14.40) and Equation (14.42) makes it clear that the Hecke algebra Hq(G,B) is
an associative, non-commutative (in general) deformation of the group ring C[W ] of the Weyl group W .

The Bruhat decomposition
W ' B\G/B , (14.43)

makes the link between the Hecke algebras Hq(G,B) and functions on the Weyl group intuitive. Actually,
the Hecke algebras Hq(G,B) are free Z[q±1]-modules, with a standard basis whose elements hw are in
one-to-one correspondence with the elements w ∈W . Hence every element h ∈ Hq(G,B) can be written
as:

h =
∑

w∈W
cwhw , (14.44)

where for all w ∈W , one has cw ∈ Z[q±1].

Let us now briefly discuss a general property of Hecke algebras which will be central in the next
chapter.
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Definition 14.13 (7.1.7 in [GP00]). Let A be any associative ring, and let H be a finitely generated free
associative A-algebra. A trace function on H is an A-linear map τ : H → A such that for all h, h′ ∈ H
one has τ(hh′) = τ(h′h). The set of trace functions on H is an A-module. A trace on H is said to be
symmetrizing if the bilinear form

H ×H → A
(h, h′) 7→ τ(hh′)

(14.45)

is non-degenerate. The algebra H endowed with a symmetrizing trace is said to be a symmetric algebra.

Hecke algebras Hq(G,B) are naturally symmetric algebras, with their standard symmetrizing trace
coming from the characteristic function on {1} ⊂W :

τ : Hq(G,B) → Z[q±1]∑

w∈W
hwSw 7→ he , (14.46)

where e ∈ W is the neutral element of the group W . Because Hecke algebras are symmetric algebras,
their representation theory is well behaved – see [GP00] for example. We will come back to this in
the next chapter. Hecke algebras have been generalized in many ways and the representation theory
of these generalizations has been studied a lot in the last decades [Chl16]. Let us now present a slight
generalization of Iwahori–Hecke algebras which will plays a prominent role in the Satake correspondence.

Affine Hecke algebras. The affine Hecke algebras which are the most in the spirit of the Iwahori-
Hecke algebras presented in the last paragraph are obtained by replacing the finite field Fq by the
non-Archimedian local field Fq((t)) of formal Laurent series over Fq. In that case the Hecke algebra

Ĥq(G,B) := H(G(Fq((t))), B(Fq((t)))) has a set of generators in one-to-one correspondence with the

generators of the affine Weyl group Ŵ corresponding to G, i.e. with the nodes of the associated affine
Dynkin diagram, whereas the relations are again provided by the adjacency in the Dynkin diagram. For
example, Ĥq(SLn, B) can be presented as:

〈
S0, . . . , Sn | S2

i = (q − 1)qi + q,

[
SiSjSi = SjSiSj for i, j ∈ Z/nZ, |j − i| = 1
SiSj = SjSi otherwise

〉
(14.47)

as a Z[q±1]-algebra, to be compared with the affine Dynkin diagram Ân which is a necklace of length
n+ 1.

Instead of considering Hecke algebras of a general semi-simple algebraic group with respect to a Borel
subgroup, one can study Hecke algebras with respect to a parabolic subgroup P . Let Π− be the set of
negative simple roots opposite to Π, and for all Θ ⊂ Π− let PΘ be the parabolic subgroup of G generated
by Π∪Θ, so that P∅ = B and PΠ− = G. When Θ consists of all elements of Π− but one, the corresponding
parabolic subgroup of G is said to be maximal. The Bruhat decomposition of Equation (14.43) transforms
into

PΘ\G/PΘ 'WΘ\W/WΘ , (14.48)

where WΘ is the subgroup of W generated by the positive simple roots whose opposites belong to Θ,
and hence the Hecke algebras Hq(G,PΘ) are the space of functions over WΘ\W/WΘ endowed with the
convolution product.

In this affine case, there is a distinguished maximal parabolic subgroup: the affine one. In going from
a finite-dimensional semi-simple Lie algebra g to its affine counterpart ĝ, one adds a new positive simple
root dubbed the affine root and completes the root system accordingly. With the notation of above i.e.
the positive simple roots being Π = {α1, . . . , αl}, let α0 be the affine root of the affine lie algebra ĝ and

let Π̂ = Π ∪ {α0}. Let Π̂− = {α0, α1, . . . , αn}. The choice Θ = {α1, . . . , αn} determines the maximal

affine parabolic subgroup P̂ of Ĝ. If the affine group Ĝ is considered as G(Fq((t))), the maximal affine

parabolic P̂ is G(Fq[[t]]), where Fq[[t]] is the ring of formal power series over Fq.
In the following subsection the Hecke algebras

Ĥsph
q (G) := H(G(Fq((t))), G(Fq[[t]])) , (14.49)

called spherical Hecke algebras, will make a natural appearance through the Satake correspondence. They
are algebras of functions over W\Ŵ/W endowed with the convolution product as above, and satisfy the
special property of being commutative.
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14.3.2 The Satake isomorphism

The classical Satake correspondence introduced in [Sat63] is an isomorphism between the spherical Hecke
algebra of a split reductive group G and the representation ring of the (Langlands) dual group GL.

We follow the presentation of [Gro98]. Let F be a local field and let A be the ring of integers of F ;
for example F = Fq((t)) is the field of Laurent series in an indeterminate over Fq and A = Fq[[t]] is the
ring of formal series in an indeterminate t over Fq. Let G be a connected reductive split algebraic group
over F . Let B be a Borel subgroup of G and let T ⊂ B a maximal torus, both defined over A. Let
W = Norm(T)/T be the Weyl group of G. Let

X∗(T ) = Hom(T,Gm), (14.50)

X∗(T ) = Hom(Gm,T) (14.51)

be respectively the character and cocharacter groups of T. The roots of G are in X∗(T) while the coroots
are in X∗(T). A choice of ordering of the set of roots Φ defines the subsets Φ+ of positive roots and Φ−

of negative roots. Let ∆ ⊂ Φ+ be the set of positive simple roots.
Let

P+ = {λ ∈ X∗(T) | 〈λ, α〉 ≥ 0, ∀α ∈ ∆} ⊂ X∗(T) (14.52)

be the positive Weyl chamber defined by ∆. Let GL be the complex group (Langlands) dual to G. It
is the group whose root lattice is the weight lattice of G, and vice-versa. Upon the choice of a maximal
torus inside a Borel subgroup in GL, i.e. TL ⊂ BL ⊂ GL, one has the isomorphism

X∗(TL) ' X∗(T) , (14.53)

and hence the elements of P+ ⊂ X∗(TL) index the finite-dimensional irreducible representations of GL.
Let λ ∈ P+ and let Vλ be the corresponding irreducible representation of GL. Let χλ = Tr{|Vλ} be the
character of Vλ. Then

χλ ∈ R(GL) = Z
[
X∗(TL)

]W
, (14.54)

and R(GL) is the representation ring of GL.

The Hecke ring in which we are interested in here is H(G,K) where G = G(F ) and K = G(A), as
advertised in the previous section. It is the ring of locally constant, compactly support K-biinvariant
functions on G, with multiplication given by the convolution on G. A basis of H(G,K) is provided by
the characteristic functions on the elements of K\G/K.

Proposition 14.14 (2.10 in [Gro98]). The Hecke ring H(G,K) is commutative.

The Satake transform is a map

H(G,K) −→ R(GL)⊗ Z[q1/2, q−1/2]
f 7−→ Sf

, (14.55)

for the definition of which we refer to [Sat63, Gro98]. The result of our interest in the following.

Proposition 14.15 (3.6 in [Gro98]). The Satake transform yields an isomorphism of rings:

H(G,K)⊗ Z[q1/2, q−1/2] ' R(GL)⊗ Z[q1/2, q−1/2] . (14.56)

There exists a sheaf-theoretic generalization of the Satake correspondence, dubbed the geometric
Satake correspondence, introduced in [Gin95].

The philosophy we take out of this correspondence is that the spherical Hecke algebra corresponding
to GL should play a role in the description of G-higher laminations. According to what we have
presented in Section 14.1, G-higher laminations correspond to assignments of G-representations to
the edges of a triangulation of the surface under consideration. The ring structure on the space of
regular functions on LG,S corresponds to the one on R(G), which is related to the spherical Hecke
algebra of GL.
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14.4 Wiring diagrams and higher laminations

14.4.1 Wiring diagrams on the cylinder

Since the elements of H(G,K) are functions over W\Ŵ/W , it is of interest to describe the elements of

Ŵ and of W\Ŵ/W in terms that can lead to a generalization of laminations as equivalence classes of

curves on S. To this end we will represent the elements of Ŵ as a wiring diagram on a cylinder, as in
[FM16a]. Let us assume that G = SLN , so that its affine Weyl group admits the presentation

ŴAN−1
=
〈
σ0, . . . , σN−1 | σ2

i = 1, (σiσj)
3 = 1, i, j ∈ Z/NZ, |i− j| = 1

〉
. (14.57)

Starting with a horizontal cylinder with N vertices marked on each side and labeled 1, . . . , N as
in Figure 14.9, one can associate each generator of ŴAN−1

to an elementary wiring diagram in which
strands connect the N vertices on the left end of the cylinder to the N vertices on the right end. For
every i = 1, . . . , N − 1, the generator σi corresponds to the set of strands which maps i (resp i + 1)
on the left to i + 1 (resp. i) on the right and any k 6= i, i + 1 to itself, as shown in Figure 14.9. The

generator σ0 is associated to the affine root of ŴAN−1
and corresponds to the rightmost winding diagram

in Figure 14.9 where strands connect each k 6= 1, N to itself, and where 1 and N are exchanged from
behind the cylinder.

Figure 14.9: The generators of ŴSLN as elementary wiring diagrams.

Any element of ŴAN−1
can be obtained by assembling these elementary cylinders together. Relations

in the affine Weyl group are encoded as homotopies in the wiring diagram relatively to the boundaries.
For example, the relation σ1σ2σ1 = σ2σ1σ2 is shown as a homotopy equivalence of two wiring diagrams
in Figure 14.10.

Figure 14.10: Relations in the Weyl group as homotopies of wiring diagrams.

The affine Weyl group ŴAN−1
admits a central co-extension (see [Kac90] and [FM16a] for the specific

case we are interested in) Ŵ#
AN−1

= ŴAN−1
o Z/NZ with presentation:

〈
σ0, . . . , σN−1,Λ | σ2

i = 1, (σiσj)
3 = 1,Λσi+1 = σiΛ, ΛN = 1, i, j ∈ Z/NZ, |i− j| = 1

〉
. (14.58)

The elementary wiring diagram corresponding to Λ maps each i ∈ Z/NZ to i + 1, as shown on the
left of Figure 14.11. The additional relation Λσi+1 = σiΛ is also readily described in terms of wiring
diagrams (an example is shown in Figure 14.11) while ΛN = 1 admits an obvious equivalent as the wiring
diagram of ΛN .
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Figure 14.11: The new generator and relations in W#
AN−1

.

14.4.2 The Satake correspondence revisited

The Satake correspondence introduced in Section 14.3 lets one expect a one-to-one correspondence be-
tween wiring diagrams corresponding to the elements of W\Ŵ/W and isomorphism classes of irreducible
representations of PGLN (C) on the one hand, as well as the ones corresponding to the elements of

W\Ŵ#/W and the isomorphism classes of irreducible representations of SLN (C) on the other hand.
This goes as follow.

Isomorphism classes of irreducible representations of SLN (C) are labeled by their highest weight
a1ω1 + · · ·+ aN−1ωN−1, with ω1, . . . , ωN−1 the fundamental weights of SLN (C) and a1, . . . , aN−1 ∈ Z≥0.
The root lattice is contained in this weight lattice, and its intersection with the fundamental Weyl chamber
consists of the weights a1ω1 + · · ·+ aN−1ωN−1 such that a1 + 2a2 + · · ·+ (N − 1)aN−1 ≡ 0 [N ].

Consider an arbitrary wiring diagram on the cylinder connecting N points on the left end to N points
on the right end, labeled 1, . . . , N as before. This wiring diagram can be considered as an element of
Ŵ#
AN−1

. Since we are interested in the elements of WAN−1
\Ŵ#

AN−1
/WAN−1

rather than those of Ŵ#
AN−1

,
we can append any wiring diagram representing a product of σ1, . . . , σN−1 on the left, and similarly on
the right. This freedom always allows us to consider wiring diagrams such that the i-th marked point
on the left is linked to the i-th marked point on the right. The strand connecting these two marked
points can wind around the cylinder. Let ki ∈ Z be this winding. Eventually, any (equivalence class

of a) wiring diagram corresponding to an element of WAN−1
\Ŵ#

AN−1
/WAN−1

yields a n-tuple of integers

(k1, . . . , kN ) ∈ ZN . An example of this procedure for N = 4 is shown in Figure 14.12.

Figure 14.12: From a wiring diagram to a tuple of integers.

Actually, in order to obtain anN -tuple of integers it is enough to consider the quotient set Ŵ#
AN−1

/WAN−1

as we have done in Figure 14.12. Considering the double cosets WAN−1
\Ŵ#

AN−1
/WAN−1

allows to further
assume that k1 ≥ k2 ≥ . . . kN . Now one can define

(a1, . . . , aN−1) = (k1 − k2, . . . , kN−1 − kN ) ∈ ZN−1
≥0 . (14.59)

Hence we have obtained a correspondence between equivalence classes of wiring diagrams describing
the elements of WAN−1

\Ŵ#
AN−1

/WAN−1
and isomorphism classes of irreducible finite-dimensional repre-

sentations of SLn(C).

In order to obtain the representations of PGLN (C) only, one needs to consider not all the wiring
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diagram but only those such that
N∑

i=1

ki ≡ 0 [N ] . (14.60)

This follows from the fact that

N−1∑

i=1

iai =

N−1∑

i=1

i(ki − ki+1) =

N∑

i=1

ki . (14.61)

Using relations in Ŵ#
AN−1

, any element can be written as a word in σ0, . . . , σN−1 times a power of Λ.
Since every σi contributes equally to the winding of a strand in one direction and of another in the other
direction, the power of Λ of a word in Ŵ#

AN−1
is
∑
i ki. Our claim hence follows from the relation ΛN = 1

in Ŵ#
AN−1

. For example, the diagram in Figure 14.12 corresponds to the representation of PGL4(C)
whose highest weight is

ω1 + ω3 . (14.62)

The i-th fundamental representation of SLN (C) (whose highest weight is ωi) can be easily obtained
by considering a wiring diagram such that k1 = · · · = ki = 1 and ki+1 = · · · = kN = 0. An example for
the fundamental representation with highest weight ω2 for SL4(C) is shown in Figure 14.13.

Figure 14.13: A wiring diagram corresponding to the representation ω2 of SL4(C).

Note that the product σiσi+1 . . . σi+j−1 maps i to i+ j, and every k ∈ [|i+ 1, i+ j|] to k − 1. Hence,
the wiring diagram associated to:

(σiσi+1 . . . σN−1)(σi−1σi . . . σN−2)(σi−2 . . . )(σi−3 . . . ) . . . (σ1 . . . σN−i)Λ
i (14.63)

corresponds to the N -tuple (k1, . . . , kN ) such that k1 = · · · = ki = 1 and ki+1 = · · · = kN = 0, i.e. to the
fundamental representation with highest weight ωi of SLn(C).

14.4.3 Higher laminations in triangles from spherical Hecke algebras

In this subsection we will show how computations in the spherical Hecke algebra give rise to higher
laminations in triangles. We will study an example in a detailed way, which hopefully will clarify the
philosophy of our construction.

Let us consider the words σ0σ1σ2σ1 and σ1σ2σ1σ0 in ŴA2
, considered as representatives of two

classes in WA2\ŴA2/WA2 ⊂WA2\Ŵ#
A2
/WA2 . Using the techniques of the previous subsections, one sees

that these two words correspond to the representation Γ1,1 of SL3(C), which is also a representation of
PGL3(C). Let us compute their product in the affine Hecke algebra of SL3(C).

(hσ0
hσ1

hσ2
hσ1

)(hσ1
hσ2

hσ1
hσ0

) = (q − 1)hσ0
hσ1

hσ2
hσ1

hσ2
hσ1

hσ0
+ qhσ0

hσ1
hσ2

hσ2
hσ1

hσ0

= (q − 1)hσ0
h2
σ1
hσ2

h2
σ1
hσ0

+ q(q − 1)hσ0
hσ1

hσ2
hσ1

hσ0
+ q2hσ0

h2
σ1
hσ0

= (q − 1)3hσ0hσ1hσ2hσ1hσ0 + q(q − 1)2hσ0hσ1hσ2hσ0 + q(q − 1)2hσ0hσ2hσ1hσ0

+ q(q − 1)hσ0
hσ1

hσ2
hσ1

hσ0
+ q2(q − 1)hσ0

hσ1
hσ0

+ q3(q − 1)hσ0
+ q4 , (14.64)
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where the first equality comes from the quadratic relation h2
σ1

= (q − 1)hσ1 + q, while in going from the
first line to the second we have used the braid relation hσ2hσ1hσ2 = hσ1hσ2hσ1 in the first term and the
quadratic relation h2

σ2
= (q − 1)hσ2

+ q in the second.
The computation can be described as seven (since there are seven terms in Equation (14.64)) SL3-

higher laminations in a triangle, displayed in Figure 14.14. One starts by assigning the word σ0σ1σ2σ1 to
the left edge oriented clockwise, and σ1σ2σ1σ0 to the right one, also oriented clockwise. In Figure 14.14,
red (resp. blue, green) edges correspond to the positive simple root σ0 (resp. σ1, σ2) of SL3. These
diagrams encode the steps of the computation from bottom to top. For example, the first term in
Equation (14.64) is obtained by using the quadratic relation for hσ1

first, keeping the term proportional
to hσ1 , and then the braid relation hσ2hσ1hσ2 = hσ1hσ2hσ1 . As for the fourth term, it arises after using
the quadratic relation for hσ1 first, keeping the term proportional to the unit in the Hecke algebra, and
then the quadratic relation for hσ2

, keeping the term proportional to hσ2
. Lastly, note that the power of

(q − 1) in front of each term equals the number of trivalent vertices in the corresponding diagram, while
the power of q can be related to the ‘horizontal’ curves.

Figure 14.14: A graphical representation of computations in Hecke algebras.

The methods of the previous subsections allow one to associate a representation of SL3 to each term of
the result in Equation (14.64). These respectively correspond to Γ2,2,Γ3,0,Γ0,3,Γ2,2,Γ1,1,Γ1,1 and Γ0,0.
This shows that this definition of higher laminations is on the right track: the representation Γ1,1 ⊗ Γ1,1

splits as

Γ1,1 ⊗ Γ1,1 = Γ2,2 ⊕ Γ3,0 ⊕ Γ0,3 ⊕ Γ1,1 ⊕ Γ1,1 ⊕ Γ0,0 , (14.65)

as can be verified using hives, for example. In terms of dimensions this yields

64 = 27 + 10 + 10 + 8 + 8 + 1 . (14.66)

There is one issue however: in the affine Hecke algebra computation we have obtained two terms
corresponding to Γ2,2, while there is only one in the decomposition of Γ1,1⊗Γ1,1. This raises the question
of the equivalence relation to be imposed on such diagrams. Just as classical laminations on a surface S are
equivalence classes of systems of curves on S, G-higher laminations should also be defined as equivalence
classes of diagrams appearing in Figure 14.14. Isotopy surely is part of the equivalence relation, but there
must also be more, as this example demonstrates. Of course the two diagrams corresponding to Γ2,2

should be equivalent when considered in the spherical Hecke algebra instead of the affine one; however
an explicit and complete description of the equivalence relation remains elusive.

Last, let us note that Λ can also be represented as a curve in diagrams in a triangle. However
contrarily to the ones corresponding to the σi the curve representing Λ needs to be oriented, since
Λ 6= Λ−1 in general.
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14.4.4 Classical laminations from the spherical Hecke algebra of SL2

Let us explain very shortly the rough idea of how classical laminations can be retrieved by considering
higher laminations as defined above, for G = SL2.

Consider the SL2-higher laminations in Figure 14.15. All of them are obtained as describing the terms
appearing in the following computation in ŴA1

:

hσ0
hσ1

hσ0
hσ1

hσ0
hσ1
· hσ1

hσ0
= (q − 1)hσ0

hσ1
hσ0

hσ1
hσ0

hσ1
hσ0

+ qhσ0
hσ1

hσ0
hσ1

hσ0
hσ0

=(q − 1)hσ0hσ1hσ0hσ1hσ0hσ1hσ0 + q(q − 1)hσ0hσ1hσ0hσ1hσ0 + q2hσ0hσ1hσ0hσ1 (14.67)

Figure 14.15: Three SL2-higher laminations.

Removing the singular curve in each case yields three classical A-laminations in a triangle, corre-
sponding to the decomposition

V3/2 ⊗ V1/2 = V2 ⊕ V1 ⊕ V0 (14.68)

of SL2-representations. Note however that according to the correspondence between words W\W#/W
and representations of the Langlands dual group presented in the previous subsections, the diagrams in
Figure 14.15 rather correspond to the decomposition

V3 ⊗ V1 = V4 ⊕ V3 ⊕ V2 . (14.69)

This discrepancy is likely not uncorrelated with the fact that one needs to consider twice the integral
tropical coordinates in the reconstruction of classical A-laminations; it needs to be investigated further.

14.5 Spectral networks

Spectral networks have been introduced by Gaiotto, Moore and Neitzke in their work on BPS counting
in theories of class S [GMN10, GMN13c, GMN13a, GMN12, GMN13b, GMN14]. Spectral networks –
as well as other combinatorial objects appearing in the theory – resemble higher laminations (as defined
in Conjecture 14.5) very much. Spectral networks have been a guideline throughout our quest towards
higher laminations, and it is likely that much more can be learned in higher Teichmüller theory from this
perspective. The goal of this section is to provide a very brief overview of the physical ideas appearing
in this field.

14.5.1 Theories of class S

We have discussed Lagrangian four-dimensional N = 2 theories in Section 5.6 as well as Seiberg–Witten
theory. Moreover, we have reviewed in Section 6.4.1 how Seiberg–Witten curves could be constructed by
lifting a configuration of D4- and NS5-branes to M-theory.

The low-energy dynamics of a large class of four-dimensional N = 2 theories can be described via
brane configurations. For example, superconformal theories described by linear quivers can be obtained by
considering K infinite D4-branes intersecting n+1 NS5-branes, which yields a theory with SU(K)n gauge
group and whose matter is encoded in the linear quiver of n nodes with K fundamental hypermultiplets
for the first and last simple gauge factors. The Seiberg–Witten (SW) curve in this case is computed in
[Wit97]; it is of degree K in v and n+ 1 in t. For instance, when K = 2 it can be written as:

v2tn+1 + c1(v2 − u1)tn + · · ·+ cn(v2 − un)t+ cn+1v
2 = 0 . (14.70)
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The ui’s parameterize the Coulomb branch of the moduli space, whereas the ci’s encode the gauge
couplings of the theory. Following [Gai12], when the hypermultiplets have a zero bare mass one can
rewrite the equation of the SW curve as

n∏

a=0

(t− ta)v2 = U(t)t (14.71)

where U(t) ∈ Cn−1[t]. The a-th gauge coupling for a = 1, . . . , n then writes

τa =
1

iπ
log

ta−1

ta
, (14.72)

while the Seiberg–Witten differential is:

λ = v
dt

t
. (14.73)

Again as in [Gai12] and before generalizing the description we will obtain, let us consider the case
K = 2 and n + 1 = 2, which corresponds to four-dimensional N = 2 SU(2) gauge theory with Nf = 4.
The equation of the SW curve in the form of Equation (14.71) reads:

(t− 1)(t− t1)v2 = ut . (14.74)

Upon the change of variables v = tx, this equation becomes

t(t− 1)(t− t1)x2 = u , (14.75)

while the Seiberg–Witten differential now writes λ = xdt. If one further does the replacements

t→ az + b

cz + d
, x→ (cz + d)2x (14.76)

for generic a, b, c, d ∈ C, the equation of the SW curve becomes

x2 =
u

∆4(z)
, (14.77)

where ∆4(z) is a degree-four polynomial in z. The t1 appearing in Equation (14.75) is the cross-ratio of
its roots.

The SW differential has become λ = xdz, and thus z can be considered as a coordinate on a sphere
S with four punctures, while x is a coordinate on the fibers of the cotangent bundle of that sphere. In
that picture, the differential λ is the restriction of the canonical Liouville 1-form on T ∗S to the degree-2
ramified cover of the base S in T ∗S defined by Equation (14.77).

This generalizes to arbitrary SU(2) linear quivers with gauge group SU(2)n, for which the equation
of the SW curve can be written as

x2 = φ2(z) , (14.78)

and the SW differential, as λ = xdz. One can naturally interpret φ2(z)dz2 as a quadratic differential on
the sphere with n+ 3 punctures S0,n−3, which has a simple pole at each puncture of S0,n−3. The space
of gauge couplings of the theory is identified with the classical Teichmüller space of S0,n−3, on which the
mapping class group acts as S-duality.

When mass parameters are included, they are encoded in the residues at the simple poles of the
Seiberg–Witten differential.

A new class of theories analyzed in [Gai12] are described by generalized quivers, constructed from
elementary building blocks. For example, generalized SU(2)-quivers are obtained by gluing together copies
of the elementary quiver encoding the N = 2 SU(2) gauge theory with four fundamental hypermultiplets,
depicted on the left of Figure 14.16. The four flavor SU(2) groups appear in the splitting of the SO(8)
flavor symmetry of the SU(2) gauge theory with Nf = 4 as:

SO(8)→ SO(4)× SO(4) ' SU(2)× SU(2)× SU(2)× SU(2) . (14.79)
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Figure 14.16: Generalized SU(2)-quivers: elementary building block (left) and one example (right).

An example of a generalized SU(2)-quiver is shown on the right of Figure 14.16. These graphs are
characterized by the number n of gauge groups and the number g of loops. Under successive S-dualities
at single nodes, one can transform a generalized quiver into any other with the same n and g. The fam-
ily of generalized SU(2) quivers with (n, g) fixed corresponds to a superconformal field theory denoted
Tn,g[A1]. Its parameter space of exactly marginal deformations is identified with the Teichmüller space
of the punctured surface Sg,n of genus g and n punctures, on which the mapping class group acts as
S-duality. The weak coupling limits of this theory correspond to degeneration limits of the Riemann
surfaces with topology Sg,n.

These theories can be constructed uniformly in M-theory. One starts by considering a Riemann surface
C = Sg,n of genus g with n punctures dubbed the UV curve, and a stack of two NS5-branes wrapped on it.
The worldvolume theory on a stack of two NS5-branes is the six-dimensional N = (2, 0) superconformal
theory of type A1, which if appropriately twisted when compactified on Sg,n yields a four-dimensional
quantum field theory with N = 2 supersymmetry.

The UV curve C is seen as the zero section of the cotangent bundle T ∗C. At each puncture one
considers a transverse NS5-brane localized on C at the puncture, and sweeping the fiber in T ∗C above it.
From the point of view of the six-dimensional N = (2, 0) A1 SCFT, these transverse NS5-branes appear as
codimension-two defects. The Coulomb branch of the corresponding four-dimensional theory corresponds
to normalizable deformations of this setup into a single M5-brane wrapping a complex ramified cover of
degree two Σ → C in T ∗Sg,n. This cover Σ is determined by the choice of a holomorphic differential
φ2(z)dz2 on C, and it is the SW curve of the theory at the point of the Coulomb branch corresponding
to φ2(z). As before, the SW differential is the restriction of the Liouville 1-form λ = xdz to Σ.

There is a six-dimensional N = (2, 0) SCFT for each finite-dimensional simply-laced Lie algebra g,
yielding via the same construction a four-dimensional N = 2 theory whose Coulomb branch is Crk(g).
These theories are said to be of class S (where S stands for six), and denoted S[g, C,D], where D is
denotes the defects data, as the transverse NS5-branes of before.

The six-dimensional SCFT corresponding to g of type AK is the worldvolume theory on a stack of
K + 1 coincident NS5-branes, and hence the theories S[AK , C,D] arise as the low-energy limit of a stack
of K + 1 coincident NS5-branes wrapped on C, together with the set of defects D. This construction is
developed thourougly in [GMN13c], in which it is shown that the Coulomb branch of such a theory can
be identified with the base of the Hitchin moduli space of SU(K + 1)-Higgs bundles on C. The whole
Hitchin moduli space appears as one compactifies S[g, C,D] further on S1, as the moduli space of the
resulting low-energy three-dimensional supersymmetric quantum field theory [GMN10].
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14.5.2 BPS states

BPS states at a point of the Coulomb branch of a theory of class S of type AK can be described
geometrically as M2-branes streching between the different leaves of the SW curve Σ within T ∗C [Mik98,
GMN13c]. In terms of the six-dimensional theory, the boundaries of M2-branes appear as strings with
variable tension [KLM+96] – see also [Tac13]. Away from the branching locus of the covering Σ → C,
these curves are locally labeled by a pair of numbers ij where i < j ∈ [|1,K + 1|]. This encodes that the
corresponding membrane ends on the i-th and the j-th sheets of Σ. The tension of an ij-string at p ∈ C
is λ(pi)− λ(pj), where pi and pj are the i-th and j-th lifts of p.

The central charge of a segment of ij-string extending along a curve c ⊂ Sg,n is

Z =
1

π

∫

c

λj − λj , (14.80)

where λi and λj are the restrictions of the Liouville 1-form to the i-th and j-th sheets of Σ respectively,
whereas the mass of such a segment is

M =
1

π

∫

c

|λj − λj | . (14.81)

The BPS bound M ≥ |Z| is thus saturated if and only if the phase eiθ of λj − λj is constant along c,
in which case Z = eiθM . BPS strings can begin and end at the punctures of C, branch points of Σ→ C,
and they can also close. Finite mass BPS states in the four-dimensional theory of class S correspond to
finite such BPS strings, or finite webs thereof. If a finite BPS string begins and ends at branch points
it describes a BPS hypermultiplet, whereas when it is closed it corresponds to a BPS vector multiplet.
When lifted to the Seiberg–Witten curve Σ, a web of finite BPS strings becomes a representative of a
class in H1(Σ,Z), which encodes its (electric, magnetic, flavor) charges under the low-energy symmetry
group U(1)K−1 ×U(1)F , where F is the rank of the global flavor symmetry group (encoded in D).

The moduli space of the low-energy effective three-dimensional theory obtained by compactifying the
theory of class S at hand on S1 is hyperkähler, with metric the naive semi-flat metric modified by quantum
corrections. The latter only depend on the four-dimensional BPS states that wind around S1, and are
weighted by the so-called second helicity supertraces Ω(γ;u), which are the indices of BPS particles of
charge γ ∈ H1(Σ,Z) at a point u of the Coulomb branch. The smoothness of the metric implies that the
BPS spectrum must jump along some codimension-one locus on the Coulomb branch [GMN10]: this is
the wall-crossing phenomenon. Wall-crossing can arise when the complex central charges Zγ and Zγ′ of
BPS states of charge γ and γ′ are aligned: when it is the case, the bound state of charge γ + γ′ is not
protected against decay into two BPS particles of respective charge γ and γ′.

Let us once more restrict to the case N = 1. Let λ = λ1 − λ2 and fix some θ ∈ R/2π. Following
[GMN13c], a WKB curve with angle θ is a curve on Sg,n such that if ∂t is a tangent vector along c:

λ · ∂t ∈ eiθR× , (14.82)

at all point of c. The union of WKB curves with angle θ forms the WKB foliation with angle θ. Near
a singularity on C, the local behaviour of the WKB foliation depends only on the sign of e−iθm, where
m is the mass parameter corresponding to this singularity. When e−iθm is purely imaginary, the WKB
curves with angle θ circle around the singularity while otherwise they spiral into it the latter (see Figure
23 in [GMN13c]).

As we have explained above, finite WKB curves correspond to finite-mass BPS states of the four-
dimensional theory, i.e. those states that matter for the computation of the hyperkähler metric on the
moduli space of the theory compactified on S1. Considering first angles θ for which there are no finite
WKB curves, it is shown in [GMN13c] that the leaves of the WKB foliation are either asymptotic in
both directions to a singular point, or asymptotic in one direction to a branch point and in the other
to a singular point. Thus the WKB foliation cuts the surface C in cells, which in turn define the WKB
triangulation of C. This triangulation has its vertices at the singularities of C – and it is possibly
degenerate. The triangulation is supplemented by a decoration, which is canonically defined by the point
under consideration of the four-dimensional Coulomb branch.

As θ varies the WKB triangulation does as well. Generically, the edges of the triangulation undergo
mere smooth deformations, however there are special values θ = θc at which the triangulation jumps, and
that hints for the presence of BPS states for which Z = eiθcM . An example is shown in Figure 14.17,
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reproducing Figure 27 in [GMN13c]. The singularities are depicted as black dots, the crosses are branching
points of Σ → C, and the edges of the WKB triangulation are dashed whereas the leaves of the WKB
foliation are shown as thin plain curves. Such a jump corresponds to a flip of the WKB triangulation.
Two other types of jumps exist, dubbed pops and juggles.

Figure 14.17: A jump in the WKB triangulation corresponding to a BPS hypermultiplet.

Central to the construction of [GMN10, GMN13c] is the family of so-called Darboux coordinates XRHγ
with γ ∈ H1(Σ,Z). They appear in the computation of the hyperkähler metrics on the moduli space of
the three-dimensional theory. The construction of [GMN13c] uses Fock–Goncharov coordinates: starting
with the WKB triangulation associated with an angle θ ∈ R/2π, one constructs the Fock-Goncharov
X -coordinates X θγ for the SL2(C)-connection corresponding to the point on the Coulomb branch under
consideration and the (decorated) WKB triangulation. More precisely, the connection

R

ζ
φ+A+Rζφ (14.83)

is flat if and only if (A, φ) is a solution of the Hitchin equations, i.e. corresponds to a point on the
Coulomb branch of the theory. Taking θ = arg(ζ), the X θγ are the Darboux coordinates XRHγ of interest.
This explains the name WKB triangulation: it comes from the fact that it arises as one applies the WKB
method to the Higgs field φ for small ζ.

Keeping the point on the base of the Hitchin fibration fixed, as one varies θ the WKB triangulation
undergoes flips, juggles and pops to which we alluded above. Under flips, Fock–Goncharov coordinates
transform according to the cluster mutation formulae of type X , which are a particular case of the
Kontsevich–Soibelman wall-crossing formula.

In order to compute the BPS spectrum of a four-dimensional theory of class S, one picks a θ and
keep track on how the decorated WKB triangulation varies as θ increases to θ + π. It turns out that
the two triangulations at θ and at θ+ π are related by a mere pop at all vertices, and the corresponding
transformation on the Darboux coordinate is uniquely expressed as

S =
∏

KΩ(γ;u)
γ , (14.84)

where Kγ are the Kontsevich–Soibelman transformations. Thus, computing S yields all the information
about the BPS spectrum at the point of the Coulomb branch under consideration.

This method allows for example to compute the BPS spectrum of N = 2 SU(2) super Yang–Mills
theory with Nf = 0, 1, 2, 3 (obtained in [FB96, BF96] via other methods), as well as the Argyres–Douglas
SCFTs [AD95] (see [Tac13] for a pedagogical review).

Spectral networks were introduced in [GMN13b], building on the previous work by the same authors.
It is a generalization of the picture in type A1 we have reviewed to the AK case, for general K.

A spectral network is a union of walls, which are oriented curves on the UV curve C labeled by a
pair of integers (ij) which, as at the beginning of this subsection, refer to the sheets of the cover Σ→ C
between which the M2-brane above a given curve is streching1. At a simple branch point of the cover

1In order to assign well-defined labels to the walls on C, one needs to choose branch cuts so as to trivialize the branched
covering Σ→ C.
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where the sheets i and j coincide, three walls of type (ij) emanate. Moreover, the crossing of walls of
type (ij) and (jk) generally creates a wall of type (ik). Thus, a spectral network looks very much like
the higher laminations proposed in Conjecture 14.5. We refer to [GMN13b] for a precise definition, as
well as examples.

An important application of spectral networks of a more mathematical nature is (non)abelianization
(see e.g. [GMN13b, HN16, Kid17]). A spectral network provides a canonical recipe to lift paths on C to
paths on Σ. Using this, it is possible to construct a GL(1)-connection on Σ from any GL(N)-connection
on C (this is called abelianization), and a GL(N)-connection on C from any GL(1)-connection on Σ (this
is the non-abelianization).

14.5.3 Wilson–’t Hooft operators and laminations

The study of supersymmetric Wilson–’t Hooft line operators [Mal98, RY01, KW07] was carried out in
[DMO09] for the theories described by the generalized SU(2)-quivers introduced in [Gai12] and reviewed
in Section 14.5.1. It is shown that there is a one-to-one correspondence between homotopy classes of
closed non self-intersecting curves on the UV curve C, and those BPS loop operators. This statement
was refined in [GMN13a] where the authors showed that as soon as one allows irregular singularities for
the Higgs field on C (as is the case for N = 2 SU(2) super Yang–Mills theories with Nf = 0, 1, 2, 3 flavors)
one needs to consider not only closed curves but also open curves ending at these singularities. It was
conjectured that line operators in theories of class S of type A1 are in one-to-one correspondence with
integral A-laminations.

This was further generalized to the AN case in [Xie13]. The space of UV line operators is identified
with the integral A-laminations on C corresponding to PGLN , whereas the space of IR line operators is
identified with the X -coordinates encoding SLN -local systems on C. The canonical map relates the UV
line operators to the IR ones. This picture is very appealing and deserves further study; the intuition
from physics is likely to provide hints and guidance towards the understanding of higher laminations
as defined in Conjecture 14.5, while conversely it would be interesting to see whether hives, the Satake
correspondence and affine Hecke algebras could be of some relevance in the physics of BPS line operators.

14.6 Higher laminations and ramified covers

14.6.1 Higher laminations as Lagrangian surfaces in T ∗S

Just as spectral networks are attached to a branched covering Σ → C, one can expect integral higher
laminations on a surface S to encode some ramified covers of S2. More precisely, we expect higher
laminations to encode Lagrangian ramified covers Σ̃ of S in T ∗S such that the class of the restriction of
the Liouville form λ to Σ̃ is in H1(Σ̃,Z). Let us briefly explain the line of reasoning leading to such a
picture. We will restrict to the case of split Lie groups of type A. How to generalize to other types of Lie
groups would be the next natural step after understanding precisely the theory for groups of type A.

Figure 14.18: The bipartite graphs corresponding to N = 2 and N = 4.

2Since the counting of unramified N -coverings of a surface S involves the symmetric group SN [LZ13], it is plausible
that the counting of ramified N -coverings of S involves a Hecke algebra associated to SN .
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As a starting point we are going to consider once more the algebraic definition of higher A-laminations
for a group G of type AN−1, i.e. as the integral tropical points of the cluster A-variety AS,G. Recall how
special coordinates on the cluster varieties ASLN ,G and XPGLN ,G were constructed in Section 4.3: one
first chooses a triangulation Γ of S, and construct a bipartite graph ΛB in each face of Γ. The coordinates
are naturally associated with the faces of ΛB . The example of ΛB in a triangle for N = 2 and N = 4 are
shown in Figure 14.18: the edges of the triangulation are the dashed red lines.

The G-higher Teichmüller spaces AS,G(R>0) and XS,G(R>0) are parameterized by assigning positive
real coordinates to the faces of ΛB and asserting that these change according to the A- (resp X -) mutation
rules. Similarly, the G-higher lamination spaces AS,G(Zt) and XS,G(Zt) are parameterized by assigning
integral coordinates to the faces of ΛB and asserting that these change according to the tropical A- (resp
X -) mutation rules.

The bipartite graph ΛB is fat graph, with the latter structure induced by the orientation of the surface
S. It can thus be understood as a dessin d’enfant [Gro84, JW16], i.e. as a quadruple (E, sW , sB , G) where
E is the set of edges of ΛB , sW (resp. sB) is the permutation in S(E) which maps each edge to the
next one in the clockwise (resp. counterclockwise) direction with respect to its white (resp. black) end,
and G = 〈sW , sB〉 < S(E) is the monodromy group. The untwisting map, to which we alluded in
Section 7.5, can be conveniently described as a morphism of dessins d’enfants which maps (E, sW , sB , G)
to (E, sW , s

−1
B , G), i.e. it reverses the cyclic orientation of the edges incident to each black vertex.

The untwisting map changes only the fat structure of ΛB , and does nothing to the underlying bi-
partite graph. Whereas the surface corresponding to the dessin d’enfant (E, sW , sB , G) is S, the one
corresponding to (E, sW , s

−1
B , G) is another surface Σ̃ on which ΛB is also embedded. This new surface

Σ̃ can naturally be seen as a ramified covering of S with simple ramification points at each black vertex.
For example, the untwisting of the bipartite graph in the triangle on the left of Figure 14.18 yields the
same bipartite graph embedded in a cylinder, shown on the right of Figure 14.19. The bipartite graph
on the cylinder is shown as the thick black lines, while the other two preimages of the one on the triangle
appear as thin pale lines and dots. We have added labels on the edges for convenience; the cylinder is a
ramified covering of the triangle of degree 3.

Figure 14.19: An example of the untwisting of a bipartite fat graph.

In general one can show (using the Riemann–Hurwitz formula) that the ramified covering of a triangle
obtained by untwisting the bipartite graph in it corresponding to a general N ∈ Z≥0 is of degree N + 1.
Moreover as one glues triangles together, hence forming the triangulation Γ of the surface S, the sheets
of the ramified coverings of each triangle can be identified and hence untwisting the bipartite graph on
S defined by Γ and N yields a ramified covering Σ̃ of degree N + 1 of S.

Note that in the dessin d’enfant approach, the faces of ΛB are in one-to-one correspondence with
the cycles appearing in the decomposition of the permutation xy−1 while zig-zag paths are in one-to-one
correspondence with the cycles appearing in the decomposition of xy. Therefore, the untwisting map
transforms faces into zig-zag paths, and vice-versa. Note that when S has cilia there are some open zig-
zag paths, which correspond to open faces in ΛB ⊂ Σ̃, and vice-versa. Each zig-zag path in Σ̃ corresponds
to some class in the first homology group of Σ̃ relative to the boundary, and hence the assignment of
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integral coordinates to the faces of ΛB ⊂ S corresponding to some point in AS,G(Zt) corresponds to

the assignment of integral coordinates to those homology classes in Σ̃. Because of this, it is natural to
conjecture the following.

Conjecture 14.16. Points of AS,G(Zt) are in one-to-one correspondence with ramified coverings Σ̃ of

S in T ∗S of some sort, such that the restriction of the Liouville 1-form λ to Σ̃ is integral, i.e.

λ|Σ̃ ∈ H1(Σ̃, ∂Σ̃,Z) , (14.85)

modulo some equivalence relation.

This is the point where our construction steps away from spectral networks slightly: there are not
enough complex ramified covers of S to account for all possible higher laminations. This can be explained
roughly as follows. Let us consider for simplicity S to be a closed surface of genus g, and let G = SLN (C).
On the one hand, the moduli space Hom(π1S,G)/G of flat G-connections on S has the same dimension
as the cotangent space T ∗HolG,S to the space of holomorphic G-bundles on S, and thus:

dimC T
∗HolG,S = dimCG · (2g − 2) . (14.86)

On the other hand, assuming that S is endowed with a complex structure as is the case in Hitchin’s
construction [Hit87, Hit92], the space of SLN (C)-spectral curves Σ→ S in T ∗S is parameterized by the
Hitchin base:

n⊕

i=2

H0(S,K⊗i) , (14.87)

where K is the canonical bundle on S. As usually done, the Riemann–Roch theorem implies that
dimCH

0(S,K⊗i) = (2m− 1)(g − 1) and hence

dimC

n⊕

i=2

H0(S,K⊗i) = (n2 − 1)(g − 1) . (14.88)

Hence one cannot expect the space of complex ramified coverings of S in T ∗S to parameterize regular
functions on Hom(π1S,G)/G. However, a related space has the right dimension and hence is a good
candidate: a generic SLN (C)-spectral curve Σ̃ on S has genus 2N2(g − 1) + 2, which implies that

dimC(H1(Σ̃)/H1(S)) = (n2 − 1)(2g − 2) . (14.89)

Thus, it seems of interest to consider the space of surfaces Σ̃ in T ∗S which are ramified coverings of S
of degree N parameterized by H1(Σ̃). It is not the space of SLN (C)-spectral curves, but rather the space
such surfaces which are Lagrangian subspaces of T ∗S, because the Lagrangian surfaces are exactly those
surfaces to which the restriction of the Liouville 1-form λ is closed. Generators of the ring of regular
functions on Hom(π1S,G)/G are parameterized by integral laminations, which presumably transposes
into an integrality condition on the restriction of λ.

Conjecture 14.16 can therefore be refined as follows:

Conjecture 14.17. Points of AS,G(Zt) are in one-to-one correspondence with ramified coverings Σ̃ of

S in T ∗S which are Lagrangian subspaces and such that the restriction of the Liouville 1-form λ to Σ̃ is
integral, i.e.

λ|Σ̃ ∈ H1(Σ̃, ∂Σ̃,Z) , (14.90)

modulo Hamiltonian diffeomorphisms preserving the zero section.
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14.6.2 From integral Lagrangian surfaces to combinatorial higher laminations

Let us now consider how one may construct a higher lamination on S as defined in Conjecture 14.5 from
the data of a Lagrangian cover Σ̃ ⊂ T ∗S of S, to which the restriction of the Liouville 1-form is in
H1(Σ̃,Z). Let b ∈ Σ̃ be an arbitrary base-point, and let z ∈ S be any regular point of the branched
covering Σ̃ −→ S. Let z1, . . . , zN be the π-preimages of z.

For all i = 1, . . . , N , choose a path γi from b to zi. Then

µi =

∫

γi

λ (14.91)

depends a priori on the choice of γi as a real number. However since λ|Σ̃ ∈ H1(Σ̃,Z), if one considers

instead µi as an angle in R/Z ' S1 after composing by the projection R −→ S1, it is independent of the
choice of γi. This is schematically depicted in Figure 14.20.

Figure 14.20: The construction of a higher lamination from an integral Lagrangian covering of S.

Hence this construction yields N maps µi : S\{branching locus} −→ S1, which can be considered
as N global sections of a topologically trivial S1-bundle P over S, as depicted in Figure 14.21. This
perspective connects with the wiring diagrams introduced in Section 14.4. The difference between SLN
and PGLN appears here as in Section 14.4: in the first case one has

N∑

i=1

µi = 0 ∈ S1 , (14.92)

whereas there is no restriction in the second.

Figure 14.21: The circle bundle over S1 together with its sections.
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Definition 14.18. Let i, j ∈ [|1, N |]. A regular point z ∈ S belongs to an (ij)-branch of the higher
lamination corresponding to (Σ̃, λ|Σ̃) if µi(z) = µj(z).

This is of course very reminiscent of spectral networks, and the union of all branches constructed in
this way is a higher lamination as defined in Conjecture 14.5. Just as spectral networks, one can expect
that near a branch point of S, a higher lamination consists of three edges with the same label emanating
from it.

The notion of (ij) branch for the higher lamination only makes sense when labels can be assigned to
the sheets of the covering Σ globally, for example after the choice of branch cuts on S. However, one may
choose a global section σ of the S1-bundle so that the edges of the laminations can always be assigned
simple reflections σ1, . . . , σN−1 as in [FM16a] as Section 14.4. This is for example shown in Figure 14.21.

∗ ∗ ∗ ∗ ∗ ∗ ∗

We have presented a conjectural definition of higher laminations on a ciliated surface S in Conjec-
ture 14.5, which generalizes Thurston’s integral laminations to higher-Teichmüller spaces. The definition
is based on the interpretation of integral A-laminations as generators of the ring of regular functions on
the corresponding X -cluster variety. The structure of that ring, investigated in Section 14.1, involves
Littlewood–Richardson coefficients which can be computed via the hives introduced in Section 14.2.
Moreover, the Satake correspondence presented in Section 14.3 points towards the introduction of spher-
ical Hecke algebras. In general, Hecke algebras are deformations of the group ring of Coxeter groups,
which is interpreted as evidence for a correspondence between higher laminations and ramified covers of
S, in the spirit of spectral networks reviewed in Section 14.5. These ramified covers should presumably
be the Lagrangian surfaces Σ̃ in T ∗S such that the restriction of the Liouville 1-form is in H1(Σ̃,Z).
From such a ramified cover over S and an integral 1-form on it, one can construct a higher lamination
on S.

In Figure 14.22, the plain arrows represent steps of the construction which are rather well understood,
whereas the dashed arrow corresponds to a correspondence which still has to be worked out. Moreover,
an important question which remains to be addressed is the description of the equivalence relations which
must appear in the space of Lagrangian covers, as well as in the space of higher laminations as defined in
Conjecture 14.5. Further studies of the aforementioned objects should hopefully guide us towards such
an understanding.
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Figure 14.22: The general structure of our approach towards higher laminations.



Chapter 15

Topological Quantum Field Theories
from Hecke algebras

Higher laminations as defined in the previous chapter are associated with spherical Hecke algebras. More
precisely, given a triangulation Γ of a surface S, an integral G-higher lamination on S should correspond
to the assignment of elements of the basis of the Hecke algebra to each edge of Γ, while what happens
inside each face of Γ should relate to computations in the spherical Hecke algebra. The goal of this chapter
is to study a kind of toy-model of higher laminations, in which the spherical Hecke algebra is replaced
by the Hecke algebra corresponding to a finite Coxeter system. These toy-models are simpler than the
higher laminations of the previous chapter because the latter type of Hecke algebra is finite dimensional,
contrarily to spherical Hecke algebras; however this comes at the cost of loosing commutativity.

This framework interestingly leads to the construction of two-dimensional non-commutative topo-
logical quantum field theories (TQFTs) associated to Hecke algebras of finite Coxeter systems. These
TQFTs associate an invariant to each ciliated surface, which is a Laurent polynomial for punctured sur-
faces. There is a graphical way to compute the invariant using minimal colored graphs, in the spirit of the
higher laminations defined in Conjecture 14.5. We give explicit formulas in terms of the Schur elements of
the Hecke algebra and prove positivity properties for the invariants when the Coxeter group is of classical
type, or one of the exceptional types H3, E6 and E7. The TQFTs are of open-closed nature, in that the
boundary of ciliated surfaces consist of a disjoint union of circles and segments. The invariant that they
associate to a ciliated surface depends on the labels on the boundary segments in a non-commutative
way, which is a specificity of this construction. This chapter is a copy of the article [FTT21].

15.1 Introduction

Iwahori–Hecke algebras (referred to as Hecke algebras in the sequel) are remarkable associative non-
commutative deformations of Coxeter groups depending on a parameter q. We use these Hecke algebras
to construct topological invariants of ciliated surfaces. This construction behaves nicely under gluing
along the boundary of the surfaces and hence defines a topological quantum field theory (TQFT).

The origin of this construction comes from the study of character varieties of surface groups. The
attempt is to generalize Thurston’s laminations which can be identified with a basis of the function space
of the SL2(C)-character variety. It turns out that one is led to consider affine Hecke algebras. The
question arose what happens if one uses a finite Hecke algebra. This led to the TQFT and the graphical
calculus for Hecke algebras presented in this paper.

Two-dimensional TQFTs can be classified by algebraic objects. Closed TQFTs are in bijection with
Frobenius algbras, and open-closed TQFTs with so-called Cardy–Frobenius algebras [LP08, AN07]. The
Hecke algebra is a particular example of a Cardy–Frobenius algebra. We see the main contribution of our
paper in the natural way the TQFT arises, in the diagrammatic calculus and in the positivity properties
of the constructed TQFT.

Let G be a finite-dimensional simple Lie group over Fq, where q = pα is the power of a prime number.
Let H be a Cartan subgroup, B a corresponding Borel subgroup and W ' Norm(H)/H the Weyl group.
As review in Section 14.3, the Hecke algebra HqG is the algebra of functions on G invariant under left
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and right shift by B, or equivalently the algebra of functions of the double coset B\G/B, with product
given by the convolution divided by the order of B. Since as a set the Weyl group W is in bijection with
B\G/B, the Hecke algebra HqG is a deformation of the group algebra C[W ].

The structure constants in the corresponding Hecke algebra HqG are related to the counting of Fq-
points of flag varieties associated to the corresponding algebraic group (see e.g. [Cur88]). In a judiciously
chosen basis the (modified) structure constants of HqG are Laurent polynomial in q invariant under cyclic
permutations of their indices. Subsequently, one can associate such a structure constant to an oriented
topological triangle with oriented sides labeled with the corresponding basis elements of HqG, without the
need to fix an initial edge. This construction extends naturally to the Hecke algebras corresponding to
finite Coxeter systems (W,S) which are not Weyl groups.

Now one can consider gluing two triangles along one of their edges if its orientation and labels coincide.
Summing over all possible labels for the edge along which the gluing is performed, that is over all basis
vectors of the Hecke algebra, yields a Laurent polynomial that only depends on the labels on the exterior
edges. Repeating this procedure one obtains a way to associate a Laurent polynomial P ∈ Z[v±1] to any
triangulated ciliated surface Σ1 whose boundary is labeled by elements of the Weyl group W :

PΣ,W (v) =
∑∏

f

cf (v) , (15.1)

where the sum runs over all labelings of the inner edges of the triangulation by elements of W , the product
runs over all faces f , and cf (v) ∈ Z[v±1] denotes the structure constant associated to a triangle f (see
Section 15.3 for the precise definition).

The definition of the polynomial P as a state sum uses a triangulation of the surface. Associativity
in the Hecke algebra gives (see Theorem 15.18):

Theorem 15.1. The polynomial invariant is independent of the triangulation. Hence it is a topological
invariant of the ciliated surface.

In Section 15.4, we introduce a diagrammatic way to compute the product in the Hecke algebra when
W is a Weyl group. From this we get a graphical calculus of our invariants using graphs with edges
labeled by simple reflections in W . These graphs are still called higher laminations, in a slight abuse of
notation. They emerge from the interpretation of the structure constants in the Hecke algebra in terms
of configurations of triples of flags. Figure 15.1 gives two examples of graphs for W = S3.

Figure 15.1: Examples of graphs for W = S3

Counting higher laminations with some weight gives a diagrammatic way to compute the polynomial
invariant (see Theorem 15.41):

Theorem 15.2. The polynomial invariant for a ciliated surface Σ and a Weyl group W is given by

PΣ,W (Q) =
∑

Γ

Qram(Γ)

where the sum runs over all higher laminations Γ of type W and Qram(Γ) is the weight associated to Γ.

As a consequence we get a symmetry in the invariant that for closed surfaces (see Proposition 15.43):

1In this chapter we denote ciliated surfaces using the letter Σ instead of S in order to avoid confusion with the set S of
simple reflections of the Coxeter system (W,S).
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Corollary 15.3. For a closed surface, the invariant is a polynomial in q, where Q = q1/2 − q−1/2,
invariant under the transformation q 7→ q−1.

In Section 15.5, we extend our construction to ciliated surfaces whose boundary is labeled by elements
of the Hecke algebra. Our main result is then the following (see Theorem 15.46):

Theorem 15.4. Our construction satisfies the axioms of a 2-dimensional2 TQFT as defined in [Ati88].

Hence we construct a family of TQFTs, one for each finite Coxeter system. The interesting feature of
these TQFTs is that they are non-commutative. This ultimately comes from the fact that the cobordisms
we consider are ciliated surfaces, whose boundary is a disjoint union of segments joining adjacent cilia.

Using the gluing property of a TQFT, we can decompose ciliated surfaces into elementary parts
(marked tori and marked cylinders). The center of the Hecke algebra plays a prominent role. Since the
structure of the latter is well understood we can derive an explicit expression for the invariant in terms
of the Schur elements of the Hecke algebra (see Theorem 15.58):

Theorem 15.5. For a ciliated surface Σ of genus g with k marked points and n boundary components
equipped with labels (h1, ..., hn) ∈ Hn, the polynomial invariant is:

PΣ,W (q) =
∑

λ

(dimVλ)ksλ(q)2g−2+k+nχλ(h1) · · ·χλ(hn) (15.2)

where the sum is taken over all irreducible representations Vλ of the Hecke algebra and where sλ are the
corresponding Schur elements.

From these explicit expressions and a thorough analysis of the Schur elements, carried out in Sec-
tion 15.8, we can derive positivity properties of the invariant (Theorem 15.60 and Corollary 15.63):

Theorem 15.6. The polynomial invariant has positive coefficients for all Coxeter groups of classical
type and in the exceptional types H3, E6 and E7. For all other types, the polynomial can have negative
coefficients.

In type A and for boundary labels with positive coefficients in the Kazhdan–Lusztig basis, the polyno-
mial invariant has positive coefficients.

Notations. We write Hecke algebra for an Iwahori–Hecke algebra for a finite Coxeter system. When
we speak about graphs, we always mean fat graphs, i.e. graphs embedded in some surface (planar graphs
for example). We say that a polynomial is positive if all its coefficients are positive. Furthermore, we use
the following notations:

Σg,k ciliated surface (see Section 15.2.3)
(W,S) Coxeter system with simple reflections S
H(W,S),H Iwahori–Hecke algebra of (W,S)
v, q,Q formal parameters in the Hecke algebra linked by

q = v−2 and Q = q1/2 − q−1/2

15.2 Preliminaries

We recall the definition of the Hecke algebra of a Coxeter system and introduce its standard and Kazhdan–
Lusztig bases following [EW16, Lib19], and then set our conventions and notations for ciliated surfaces
as in section 2 of [FG07].

15.2.1 Hecke algebras and their standard basis

Definition 15.7. Let S be a finite set, and for all s, t ∈ S let mst ∈ N ∪ {∞} with mss = 1. The
associated Coxeter group is defined as

W = 〈s ∈ S | (st)mst = id ∀s, t ∈ S〉 . (15.3)

2In the notation of Atiyah, we construct a one-dimensional TQFT. In modern language we speak about a d-dimensional
TQFT for d being the dimension of the bordisms, so 2 dimensions in our case.
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Let l : W → N≥0 be the length function which to each element of W associates the minimal length of its
representatives, and let ≥ be the Bruhat order on W , i.e. w ≥ w′ if w′ has a representative of minimal
length which is a subword of a representative of minimal length of w.

Let v be an indeterminate. The Hecke algebra H(W,S) corresponding to (W,S) as defined in [Iwa64]
is the associative Z[v±1]-algebra with generators {hs}s∈S and relations of two types, the quadratic ones:

h2
s = (v−1 − v)hs + 1 (15.4)

for all s ∈ S, and the braid ones:

hshr · · · = hrhs . . . (15.5)

for all s, t ∈ S such that mst <∞, in which case there are mst terms on each side.

Except when the explicit subscript (W,S) is needed for clarity or in explicit examples, we will drop
it in what follows and simply refer to the Hecke algebra corresponding to (W,S) as H.

Remark 15.8. An equivalent, but different, way to describe the Hecke algebra is to use generators (Ts)s∈S
which satisfy the same braid relations and where the quadratic relation is

T 2
s = (q − 1)Ts + q . (15.6)

for another indeterminate q. Apart from Section 15.4.1, we always use the the “normalized” version of
the Hecke algebra where the quadratic relations take the form of Equation (15.4) with v = q−1/2.

Let w̄ = s1 . . . sk be a reduced expression for some w ∈W in terms of s1, . . . , sk ∈ S, and set:

hw̄ = hs1 . . . hsk . (15.7)

By the famous result of Matsumoto [Mat64] that every reduced expression for w can be obtained from
w̄ using braid relations only, the element hw̄ does not depend on the choice of a reduced expression for
w and one can define hw := hw̄. Let also he := 1.

Lemma 15.9. The set {hw}w∈W is a basis of H as a free Z[v±1]-module, called the standard basis of H.

Let s ∈ S and w ∈W . The multiplication in H can be rewritten as:

hshw =

{
hsw if w ≤ sw
(v−1 − v)hw + hsw if sw ≤ w . (15.8)

Example 15.10. The Coxeter system of type A1 is (S2, {s}), where S2 is the group of permutations of
a set of two elements, and s is its generating involution. The corresponding Hecke algebra H(S2,{s}) has
basis (he, hs) as Z[v±1]-module, and the relations hshe = hehs and h2

s = (v−1 − v)hs + 1 hold.

Example 15.11. The Coxeter system of type A2 is (S3, {s, t}), where s and t are two transpositions gen-
erating S3. The standard basis of the Hecke algebra H(S3,{s,t}) as a Z[v±1]-module is (he, hs, ht, hst, hts, hsts).
However as a Z[v±1]-algebra, H(S3,{s,t}) is generated by he, hs and ht only, where he is in the center and
with the quadratic relations of Equation (15.4) for hs and ht, and the braid relation:

hshths = hthsht . (15.9)

Example 15.12. The Coxeter system of type B2 is (D4, {s, t}), where s and t are two transpositions
which generate the dihedral group D4. The standard basis of the corresponding Hecke algebra H(D4,{s,t})
is (he, hs, ht, hst, hts, hsts, htst, hstst) as a Z[v±1]-module. The multiplication is such that he commutes
with hs and ht, both hs and ht satisfy the quadratic relation of Equation (15.4), and there is the following
braid relation:

hshthsht = hthshths . (15.10)
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15.2.2 The Kazhdan–Lusztig basis

Let s ∈ S. One can check easily that the inverse of hs is hs + v − v−1 ∈ H. Since the set of all hs for
s ∈ S generates H as a Z[v±1]-algebra, it follows that for every w ∈W , the corresponding hw also admits
an inverse.

The morphism of Z-modules defined by

ι :




H → H
v 7→ v−1

hw 7→ (hw−1)−1
(15.11)

is a ring automorphism of H. A cornerstone of Kazhdan–Lusztig theory is the following theorem (see
[KL79, Theorem 1.1]):

Theorem 15.13 (Kazhdan–Lusztig). For all w ∈ W there exists a unique ι-self-dual element of H of
the form

bw = hw +
∑

z≤w

hz,whz (15.12)

where hz,w ∈ vZ[v]. Moreover the set {bw}w∈W is a basis of H as Z[v±1]-module.

The Kazhdan–Lusztig polynomial pz,w is defined as:

pz,w = vl(w)−l(z)hz,w . (15.13)

Example 15.14. For s ∈ S, the element bs = hs + v ∈ H is always self-dual under ι and moreover it
is of the form of Equation (15.12). It is clear that be = he = 1. Hence the Kazhdan–Lusztig basis of
H(S2,{s}) is the pair (be = 1, bs).

Positivity. The Kazhdan–Lusztig basis enjoys numerous positivity properties which have been shown
to be a consequence of a combinatorial Hodge theory in the category of Soergel bimodules [Wil16]. For
example the Kazhdan–Lusztig polynomials pz,w of Equation (15.13) are positive (meaning that pz,w ∈
Z≥0[v]), and the structure constants of the Hecke algebra are positive when expressed in the Kazhdan–
Lusztig basis: if one sets

bxby =
∑

µ z
xy bz , (15.14)

then µ z
xy ∈ Z≥0[v±1].

15.2.3 Ciliated surfaces

A ciliated surface is an oriented topological surface obtained as follows: remove n disjoint open disks
labeled 1, . . . , n out of the oriented surface of genus g with k punctures, for g, k, n ≥ 0. On the i-th
boundary circle add pi ≥ 1 marked points called cilia, for i = 1, . . . , n.

Topologically, a ciliated surface is determined by its genus, the integer k and the set {p1, ..., pn}. We
will denote such a surface Σg,k,{p1,...,pn} in general, and simplify the writing to Σg,k when it has no cilium,
and to Σg,{p1,...,pn} when it has no puncture. Let c =

∑
pi be the total number of cilia.

Figure 15.2: The ciliated surface Σ2,3,{2,2,1,1,3}.
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In the sequel we will only consider ciliated surfaces such that k + n ≥ 1, and such that when g = 0
either k + n ≥ 3 or k + n = 2 and c ≥ 1 or k + n = 1 and c ≥ 3, for such ciliated surfaces can be
triangulated. A triangulation T of Σ is a decomposition of Σ into triangles such that every vertex of
a triangle is either a cilium or a puncture. Edges of T belonging to the boundary of Σ are said to be
external and the others, internal. Let #F (T), #E(T), #E0(T) = c and #V (T) = k+c be respectively the
number of faces, edges (external and internal), internal edges and vertices of T. The Euler characteristic
of the closure Σ is

#F (T)−#E(T) + #V (T) = 2− 2g − n , (15.15)

and since T is a triangulation:

3#F (T) = 2#E(T)−#E0(T) . (15.16)

From Equation (15.15) and Equation (15.16) one deduces that:

#E(T) = 6g − 6 + 2c+ 3(k + n)
#F (T) = 4g − 4 + c+ 2(k + n)

. (15.17)

Except when g = 0 and (k, n) = (0, n) or (k, n) = (1, n) the number of triangulations of a ciliated
surface is infinite. However one can always reach any triangulation from a reference one in a finite number
of flips which consist of replacing the diagonal of a quadrilateral formed by two adjacent triangles with
the other diagonal.

In what follows we will speak of the boundary of a ciliated surface to refer to the disjoint union of the
boundary segments connecting two adjacent cilia.

15.3 Definition of the polynomial and first properties

We present our construction which associates Laurent polynomials to ciliated surfaces in a pedestrian
way. A more abstract viewpoint comes in Section 15.5.

15.3.1 On the standard structure constants in Hecke algebras

Let (W,S) be a Coxeter system and H the corresponding Hecke algebra. In Section 15.2.1 we introduced
the standard basis {hw}w∈W of H as a free Z[v±1]-module. Let H∗ be the free Z[v±1]-module dual to H
with standard dual basis {hw}w∈W .

By definition, the structure constants c z
xy are given by

c z
xy = hz(hx · hy) ∈ Z[v±1] (15.18)

for x, y, z ∈W . Let us set:

cxyz := c z−1

xy . (15.19)

The notation of Equation (15.19) can be understood through the standard trace in the Hecke algebra.

A trace on H is a Z[v±1]-linear map tr : H → Z[v±1] such that tr
(
hh
′
)

= tr
(
h
′
h
)

for all h, h
′ ∈ H. A

trace is said to be symmetrizing if the map h′ 7→ tr(hh′) is non-degenerate for all h 6= 0. The map

tr
(∑

w∈W cwhw
)

= he
(∑

w∈W cwhw
)

= ce (15.20)

is a symmetrizing trace on H called the standard trace [GP00, Proposition 8.1.1]. It is easy to see that
the standard trace on H satisfies:

tr(hxhy) = δx,y−1 . (15.21)

Proposition 15.15. For all x, y, z ∈W , one has

cxyz = tr(hxhyhz) . (15.22)

In particular, this implies that cxyz is cyclically symmetric: cxyz = cyzx = czxy.
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Proof. By definition of the structure constants one has:

hxhy =
∑

z′

cxyz′hz′−1 . (15.23)

Multiplying by hz, taking the trace and using Equation (15.21) yields:

tr(hxhyhz) =
∑

z′

cxyz′δz,z′ = cxyz , (15.24)

which concludes the proof.

15.3.2 An invariant for surfaces with punctures

Triangles and structure constants. Consider a triangle with oriented edges, labeled with elements
x, y, z ∈ W . Fix also an orientation of the triangle. We associate to the triangle the structure constant
cxaybzc ∈ Z[v±1] where a is 1 (respectively, −1) if the orientation of the edge labeled by x is induced by
the triangles orientation (respectively, if not), and mutatis mutandis for the two other edges. Figure 15.3
gives two examples.

Figure 15.3: We associate cxyz to the left-most triangle and cx−1y−1z to the right-most one.

Note that by Proposition 15.15 the quantity associated to the triangle is well-defined. In addition, it
does not depend on the chosen orientation of the triangle:

Proposition 15.16. The structure constants satisfy cxyz = cz−1y−1x−1 . Thus, the associated quantity to
a triangle is independent of its orientation.

Proof. Consider the following map σ on H, defined on the standard basis by

σ(hw) = hw−1 (15.25)

and extended by linearity. We claim that σ is an anti-involution ofH, i.e. that σ(hahb) = σ(hb)σ(ha) ∀a, b ∈
W . Indeed it is enough to check this on the basic relations: the quadratic relation is invariant under σ,
and for w = sw′ where s ∈ S and w′ is a reduced word, we have

σ(hshw′) = σ(hw) = hw−1 = hw′−1hs = σ(hw′)σ(hs) . (15.26)

By definition, we have

hxhy =
∑

z∈W
cxyzhz−1 . (15.27)

Applying σ gives

hy−1hx−1 =
∑

z∈W
cxyzhz . (15.28)

Hence cxyz = cy−1x−1z−1 . We conclude by cyclicity of cxyz.
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Gluing triangles into ciliated surfaces. Let T be a triangulation of the oriented topological surface
Σg,k of genus g and with k ≥ 1 punctures.

Definition 15.17. Let Pg,k,W,T be the Laurent polynomial:

Pg,k,W,T(v) =
∑∏

f∈T

cf (v) ∈ Z[v±1] , (15.29)

where the sum runs over all possible labelings of the edges of T by elements of W and the product over
all faces f of T, and where cf (v) is the structure constant associated to the face f of T as before.

More generally, we can define such a polynomial for any ciliated surface with triangulation T, as soon
as each boundary component is labeled with an element of W . The sum in Equation (15.29) runs in this
case over all possible labelings of internal edges of T.

In order to compute Pg,k,W,T one has to choose an orientation for the internal edges of T so that the
cf (v) are well defined. Since we are summing over all possible labels of the edges, the polynomial Pg,k,W,T
does not depend on these choices since changing the orientation amounts to replace w ∈W by its inverse.

The main point of our construction is the following:

Theorem 15.18. The polynomial invariant does not dependent on the triangulation T, hence it is a
topological invariant of the ciliated surface. Further, it is preserved under reversing the orientation of the
surface (and thus inverting all the boundary data).

We denote the invariant by PΣ,W for a ciliated surface Σ or by Pg,k,W in case of a punctured surface
Σg,k. The theorem follows from the associativity of the product in the Hecke algebra.

Proof. The second part is a direct consequence of Proposition 15.16 and the definition of Pg,k,W .
For the first part, let x, y, z ∈W . Then by definition:

hxhy =
∑

w∈W
cxywhw−1 , (15.30)

hence ∑

w,v∈W
cxywcw−1zvhv−1 = (hxhy)hz = hx(hyhz) =

∑

t,v∈W
cyztcxt−1vhv−1 , (15.31)

which implies ∑

w∈W
cxywcw−1zv =

∑

t∈W
cyztcxt−1v (15.32)

for all x, y, z, v ∈W . Equation (15.32) can be described graphically as in Figure 15.4.

Figure 15.4: A consequence of associativity in Hecke algebras.

Now since any two triangulations of Σg,k can be related via a sequence of flips, Equation (15.32)
implies the proposition.

Example 15.19. Let us give some examples of Pg,k,W . Later on we will come back to them and see how
to compute them.

• P0,3,S2(v) = P1,1,S2(v) = v2 + 2 + v−2.

• P0,4,S2
(v) = v4 + 2v2 + 2 + 2v−2 + v−4.
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• P0,3,S3(v) = v6 + 2v4 + 10v2 + 10 + 10v−2 + 2v−4 + v−6.

• P1,1,S3
(v) = v6 + 2v4 + 4v2 + 4 + 4v−2 + 2v−4 + v−6.

• P4x,y,z,W (v) = cxyz(v) where 4x,y,z stands for the triangle seen as the ciliated surface Σ0,0,{3} with
labels x, y, z ∈W on the exterior edges assigned counterclockwisely.

We give additional examples in Section 15.7 where we explain how to use Sage and the package
CHEVIE of Gap3 to compute these polynomials.

There are three remarkable observations to be done for punctured surfaces from these examples: the
polynomials are functions of v−2 = q, they are invariant under q 7→ q−1 and have positive coefficients.
The first two observations are actually properties that we will prove in Proposition 15.43, while we will
analyze the positivity in Section 15.6.4.

Remark 15.20. Jumping ahead a bit, since for punctured surfaces the invariant polynomial only depends
on v−2 = q we will use the variable q in this case instead of v to lighten the notation. For surfaces with
cilia we keep the use of v.

15.3.3 Gluing surfaces

The polynomial invariant behaves nicely under gluing of two surfaces Σ1 and Σ2 with same boundary
data D as in Figure 15.5. Schematically:

P (Σ1 ∪ Σ2) =
∑

D

P (Σ1, D)P (Σ2, D) , (15.33)

where P (Σ, D) denotes the polynomial invariant for the surface Σ with boundary data D.

Figure 15.5: Gluing ciliated surfaces.

We can use Equation (15.33) to compute recursively the polynomial. For Σ1 = Σ0,0,3 a triangle and
Σ2 = Σg,k,{3,...} a surface with a triangle boundary (that is, a circle component of its boundary with
three cilia), Equation (15.33) becomes:

P
(
Σg,k,{...}, D

)
=

∑

x,y,z∈W
cxyzP

(
Σg,k,{3,...}, D ∪ {x, y, z}

)
, (15.34)

where D is the boundary data of the ciliated surface Σg,k,{...} which may have non-empty boundary, and
D ∪ {x, y, z} is the boundary data of Σg,k,{3,...}. Note that we used Proposition 15.16.

For a ciliated surface with a triangle boundary carrying the labels x, y and z, the gluing can be used
to reduce the number of punctures. To do so, we use for Σ2 a quadrilateral with boundary z, x, x′−1, z′−1.
The surface after gluing is depicted in Figure 15.6. The polynomial invariant of this quadrilateral is given
by
∑
w cxx′−1wczw−1z′−1 . Hence we get from the gluing property:

P (Σg,k+1\4x,y,z) =
∑

x′,z′,w∈W
cxx′−1wczw−1z′−1P (Σg,k\4x′,y,z′) , (15.35)

with the obvious generalizations to the general cases.
Let us now study our invariants for q = 1 since the Hecke algebra specializes to the group algebra

C[W ] in that case.
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Figure 15.6: Reducing the number of punctures.

15.3.4 Invariants of punctured surfaces at q = 1

For q = 1 the Hecke algebra specializes to the group algebra C[W ].

Proposition 15.21. For a punctured surface Σg,k the value at q = 1 of the polynomial is:

Pg,k,W (1) = (#W )k−1 ×#{solutions in W to

g∏

i=1

[ai, bi] = 1} . (15.36)

In particular P0,k,W (1) = (#W )k−1 which is in accordance with Example 15.19.

Remark 15.22. The right-most term in the right-hand-side of Equation (15.36) can be expressed in
terms of the characters of W using Frobenius’ formula (see [LZ13, theorem A.1.10 in the Appendix by
Don Zagier]). This yields:

Pg,k,W (1) = (#W )2g−2+k ×
∑

χ

1

χ(1)2g−2
. (15.37)

Notice the similarity to Burnside’s formula for Hurwitz numbers (see [Gun16, Theorem 1.3] and the
original paper [Hur91]).

Our strategy to prove Proposition 15.21 is to develop the surface Σg,k as a 4g-gon and to count
explicitly the contributions.

Proof. We start with the case k = 1 and g > 0. The surface Σg,1 is obtained by gluing the sides of a
4g-gon as described on the left of Figure 15.7 in the case g = 2. We also show a triangulation T. Note
that the 4g vertices of the polygon correspond to a single point in Σg,1 which is the puncture.

Figure 15.7: Gluing of 4g-gon

The specializations of the structure constants cxyz of the Hecke algebra at q = 1 are equal to 1 if
xyz = 1 in W and to zero otherwise. In order to get non-zero contributions to the polynomial invariant
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specialized at q = 1, the label on a side of a face f of T is determined by the labels on the two other
sides of f . Let now a1, b1, ..., ag, bg ∈ W be the labels assigned to the edges of the 4g-gon. Let T
be a triangulation of the 4g-gon whose inner edges are all incident to a fixed vertex as on the left of
Figure 15.7. The labels on the inner edges of T are completely determined by the ai and bi, otherwise
the corresponding contribution to the invariant vanishes.

There is the following additional constraint:

g∏

i=1

[ai, bi] = 1 , (15.38)

which can be understood as the consequence of the fact that the products of labels assigned to each
triangle whose boundary is oriented counterclockwise has to be 1 if one considers all the triangles glued
together along edges as on the left of Figure 15.7.

Every solution of Equation (15.38) has contribution 1 to the polynomial, and all other choices of ai
and bi do not contribute. Therefore we get the proposition in the case k = 1.

For k > 1, we add in our picture k− 1 marked points in the middle of the polygon. We complete to a
triangulation as shown on the right of Figure 15.7. In particular there is a path of length k−1 connecting
all k punctures shown in red in Figure 15.7. To each edge of this path, we associate a new label xi ∈W .
One easily checks that these xi together with the aj and bj from above uniquely determines the labels
assigned to each edge of the triangulation. The only relation is Equation (15.38) from above. Having
fixed the data on the boundary of the 4g-gon we have (#W )k−1 free choices which contribute by 1 to
our polynomial.

Eventually for g = 0 we represent Σ0,k as the gluing of a 2k−2-gon with boundary a1, a
−1
1 , a2, a

−1
2 , ..., ak−1, a

−1
k−1

with a triangulation similar as the ones of Figure 15.7. The labels on the inner edges are determined
by the boundary data and the constraint on the boundary is always satisfied. So we get P0,k,W (1) =
(#W )k−1.

15.4 Graphical calculus

In this section, we present a diagrammatic interpretation of our polynomial. In particular we give a
graphical way to multiply elements in the Hecke algebra. In this section, we work with a Coxeter system
(W,S) associated to a Weyl group.

We start from the observation that the structure constants in the Hecke algebra are linked to config-
urations of flags. From that, we define graphs with labeled edges which count the contributions to our
polynomial.

15.4.1 Structure constants and flag counting

There is a well-known link between the structure constants in the Hecke algebra and triples of flags (see
e.g. [Cur88, Proposition 2.2]). We present a short way to get this link.

In Section 15.2.1, we introduced the Hecke algebra using generators and relations. However the
original definition by Iwahori [Iwa64] is geometric. Consider a finite field Fq, a simple Lie group G over
Fq and fix a Borel subgroup B of G. The Hecke algebra HqG is the algebra of functions on G invariant
under left and right shift by B. Multiplication is given by the convolution divided by the order of the
Borel subgroup #B. Note that the double quotient B\G/B is in bijection with W . This is why the
Hecke algebra has a basis (Tw)w∈W parameterized by the Weyl group. In this geometric approach the
generators (Ts)s∈S satisfy the braid relations and the quadratic relation reads:

T 2
s = (q − 1)Ts + q . (15.39)

The structure constants C z
xy are defined by

TxTy =
∑

z∈W
C z
xy (q)Tz . (15.40)

From the definition of the convolution product, it follows that

C z
xy (q) = #{h ∈ x | h−1g ∈ y}/#B , (15.41)
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where we interpret x, y and z as elements ofW ∼= B\G/B and where g is any representative of z ∈ B\G/B.
The quotient G/B is called the flag variety of G. For G = GLn(C) this is the space of complete flags

in Cn. Recall the isomorphism G\(G/B)2 ∼= B\G/B given by h 7→ (F0, hF0) where F0 ∈ G/B is the
class of the unit element in G. Combining this isomorphism with B\G/B ∼= W , we see that the relative
positions of two flags is described by the Weyl group. Using this isomorphism we can rewrite the formula
for the structure constants as

C z
xy (q) = #{h ∈ G | (F0, hF0) = x, (F0, h

−1gF0) = y}/#B
= #{h ∈ G | (F0, hF0) = x, (hF0, gF0) = y}/#B .

(15.42)

Taking into account that B acts freely on the right on the set {h ∈ x | h−1g ∈ y} and denoting gF0

by F2 and hF0 by F1, we finally get:

Proposition 15.23. The structure constants C z
xy (q) count the configuration of three flags with prescribed

relative positions:
C z
xy (q) = #{F1 ∈ G/B | (F0, F1) = x, (F1, F2) = y} , (15.43)

where (F0, F2) = z.

Example 15.24. Let G = SL(2). Then G/B = P1,W = {1, s | s2 = 1}, C 1
11 = 1, C s

11 = C 1
s1 =

C 1
1s = 0 and C s

1s = C s
s1 = 1 obviously. To compute C 1

ss (q), choose F0 = F2 = ∞. Then C 1
ss (q) =

#{p ∈ P1(Fq) | p 6= ∞} = q. To compute C s
ss (q), choose F0 = 0 and F2 = ∞. Then C s

ss (q) = #{p ∈
P1(Fq) | p 6= 0,∞} = q − 1.

15.4.2 Finite higher laminations for triangles

In this subsection, we present a graphical way to compute the product in the Hecke algebra in the standard
basis. Our graphs are very similar to the ones that appear in the article [EW16] by Elias–Williamson, in
the context of the categorification of the Hecke algebras in terms of Soergel bimodules.

Definition

We use the normalized version of the Hecke algebra where the quadratic relation reads h2
s = 1 + Qhs

where Q = v − v−1 = q1/2 − q−1/2.
The idea is to use the interpretation of the structure constants as triples of flags from the previous

subsection. The transition between two flags with given relative position is decomposed into elementary
moves. This corresponds to a decomposition of a product into elementary ones involving simple elements
only. For example the quadratic relation is graphically given by the following picture:

Figure 15.8: Graphical multiplication in Hecke algebra

More generally for x, y ∈ W the product hxhy is represented as a formal sum of graphs with edges
labeled by simple reflections. First one has to fix reduced expressions of x and y, using the simple
reflections. Each simple element hs is represented graphically by an edge labeled by s ∈ S. Elementary
computations in H are either braid or quadratic relations, hence the vertices of the graph are of two
types:

• trivalent with the three edges carrying the same label, called ramification point,

• of braid type at the crossing of edges carrying the labels s and t such that (st)m = e in W . In that
case there are m incident edges of type s and m of type t which alternate (the cases m = 2 and
m = 3 are drawn in the middle and on the right of Figure 15.9).
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Figure 15.9: Vertex types

Definition 15.25. A finite higher lamination of type (W,S) (in short, higher lamination) on a triangle
t is an equivalence class of planar graphs Γ ⊂ t with edges labeled by elements in S, and satisfying the
following criteria:

1. each vertex is either trivalent or of braid type,

2. the edges of Γ intersect the boundary of t transversally,

3. reading the labels along an edge of t gives a reduced word in W ,

4. the graph is minimal in the sense described below.

The equivalence class is generated by isotopy and the relations (1.1), (2.1), (2.2), (3.1) and (3.2) described
below in Section 15.4.2.

Remark 15.26. We call these graphs finite higher laminations because they generalize rational bounded
measured laminations as described in [FG07]. The rough idea is that one recovers rational bounded

measured laminations from the higher laminations for the affine Weyl group Â1 = 〈s, t | s2 = t2 = 1〉 after
removing the singular leaves. Details of this correspondence and higher laminations corresponding to affine
Coxeter systems will be discussed in details in a forthcoming publication. Aspects of higher laminations
as tropical points of higher Teichmüller spaces and generalizations of rational measured laminations have
been studied in [Xie13] and [Le16].

Minimality. Let Γ be an S-labeled graph on an oriented triangle t satisfying the first three conditions
of Definition 15.25, and let x, y, z be the elements of W corresponding to the reduced words on the sides
of t. A configuration of flags on t\Γ, one flag for each face, is called valid if the relative position of two
adjacent flags is given by the simple element which appears as the label on the edge between the two
corresponding faces.

Definition 15.27. The graph Γ is minimal if for all triple of flags, one flag for each vertex of t, there is
at most one valid configuration of flags on t\Γ which extends the triple of flags.

An example of a non-minimal graph is given in Figure 15.10: the flag corresponding to the inner
component of t\Γ is not uniquely determined by the flags around.

Figure 15.10: Example of a non-minimal graph
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Remark 15.28. A simple criterion to decide whether a graph is minimal or not is still lacking. In
particular, we would like to find a minimality criterion for general Coxeter systems (W,S) for which flags
are not defined.

Relations

Given a triple of flags, there might be several minimal labeled graphs realizing the configuration. In other
words, the decomposition into elementary moves between flags is not unique. For example, given two
flags in relative position w ∈W any reduced expression for w is a working decomposition into elementary
moves. Hence we have to quotient out by relations in order to count each triple of flags only once in
Proposition 15.23. We describe here a set of relations that we conjecture to be complete.

There are relations involving one, two and three different labels (also called “colors”). The one-color
relation is given by the following picture:

Figure 15.11: One-color relation

The two-color relations are of two kinds: the first states that one can simplify two neighbor vertices
when they are of the same braid type, as shown on the left of Figure 15.12 for m = 3 (for m = 2 this gives
the second Reidemeister move). The second relation describes how to glide a trivalent vertex through a
vertex of braid type and is shown on the center (resp. right) of Figure 15.12 for m = 2 (resp. m = 3).

Figure 15.12: Two-color relation

Eventually there is a three-color relation for each parabolic subgroup of rank 3 in W , displayed in
[EW16, Section 5]. Two examples are presented in Figure 15.13: the upper-one is the relation corre-
sponding to a subgroup of type A1 × A1 × A1 (it is the third Reidemeister move) and the lower-one
corresponds to a subgroup of type A3.

Figure 15.13: Three-color relation

Remark 15.29. All the relations of [EW16] which do not imply a loose end are relations for our higher
laminations. It seems there is a link between the graphical calculus in the Hecke algebra we introduced
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and the graphical calculus of Elias–Williamson describing morphisms between Bott–Samelson bimodules,
even we do not understand the correspondence yet.

Figure 15.14 shows the equivalence of two seemingly different graphs through these relations.

Figure 15.14: An example of applying relations

The two-color relation (2.1) and all three-color relations give a complete list of relations for reduced
expressions in W : two reduced expressions of an element of W can be related through a finite number of
these relations [Ron09, 2.5]. This is enough to show that the latter are all the relations we need in the
case of higher laminations without ramification points.

In general, we conjecture the following:

Conjecture 15.30. The relations of above are complete: two minimal labeled graphs corresponding to
the same triple of flags on the vertices of the triangle can be related through a finite sequence of them.

The conjecture seems reasonable since we only have to look for relations involving ramification points.
Our one-color relation describes how two ramification points interact and the two-color relation (2.2)
describes the interaction between a ramification point and a vertex of braid type. It does not seem too
presumptuous to expect that these are the only cases one needs to consider.

Existence

We show that we can associate a set of representatives Γ of higher laminations to any multiplication in the
Hecke algebra. The non-trivial part is to show minimality, that is, the existence of a unique configuration
of flags on the connected components of t\Γ (henceforth called the faces of Γ).

Let Γ be a representative of a higher lamination. Recall that an assignment of flags to the faces of Γ is
valid if the relative position of any two adjacent flags is the label of the edge between the corresponding
faces.

We start with some easy results, the proof of which is left as an exercise for the interested reader.

Lemma 15.31. Let v, w ∈W such that vw is not reduced. Then there are reduced expressions for v and
w of the form v = v′s and w = sw′ where s ∈ S is a simple reflection.

Corollary 15.32. For s, t ∈ S, consider a reduced expression for w ∈W of the form w = w′u where u is
a word in the letters s and t with maximal length. Denote by ū the word obtained from u by exchanging
s and t. Then w′ū is also reduced.

The two other lemmas concern the extension of flag configurations.

Lemma 15.33. Given two flags in opposite faces with respect to a vertex a braid type, and whose relative
position is compatible with the local structure around the vertex, there is a unique way to associate a valid
configuration of flags around the vertex extending the initial data.

In type A this can be verified easily by a computation in P2.

Lemma 15.34. Given two flags F0 and F1 in relative position w and a reduced word w = si1 · · · sik , there
is a unique sequence of flags F0 = Fi1 , Fi2 , ..., Fik+1

= F1 such that (Fil , Fil+1
) = sil for all l = 1, ..., k.

Any product hxhy in H of elements of the standard basis can be decomposed into elementary moves
which are either a quadratic relation or a braid relation, and we have diagrams for these. By juxtaposition
we get a collection of graphs corresponding to the product hxhy.

Proposition 15.35. The graphs obtained from expressing hxhy in the standard basis of H are represen-
tatives of higher laminations.
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Figure 15.15: Local structure around F1. Left: simple edge. Middle: ramification point. Right: braid
vertex.

Proof. Let x, y ∈ W and hx, hy be the corresponding elements in H. The latter can be written as a
product of the hsi corresponding to the elements in S. Let us fix such a decomposition for hx and hy.
As one computes the product hxhy in H, one uses braid relations and quadratic relations until all the
terms one obtains are products of hsi corresponding to reduced words in W . Each quadratic relation
increments the number of terms in the expression by one. Let us consider one of the terminal terms and
assume it corresponds to hz for z ∈ W . Let Γ be the corresponding graph on a triangle t whose sides
are respectively labeled by the reduced words corresponding to y, x and z−1 as one reads the boundary
counterclockwise.

By Proposition 15.23, we can associate a triple of flags (F0, F1, F2) to the vertices of t such that
(F2, F1) = y, (F1, F0) = x and (F2, F0) = z in G\(G/B)2.

The only non-trivial fact to check is that Γ is minimal, i.e. that we can extend the triple of flags to
a unique valid configuration. We prove this by induction on the number of faces of Γ. The initialisation
with one face is trivial since it corresponds to 1× 1 = 1.

In general, by Lemma 15.34 we have flags assigned to all boundary faces. We can assume that the
local configuration around the vertex with flag F1 is given by one of the three cases shown in Figure 15.15.
This is because away from that vertex, we can only apply braid relations (since x and y are reduced)
which amount to choose another reduced expression for x or y.

Case 1: There is a simple edge next to F1.

The region just this edge F1 already has an associated flag F ′1 since it is a boundary face. The restriction
of Γ to the triangle (F0, F

′
1, F2) has strictly less faces and we can choose the boundary of this new triangle

so that it is still a higher lamination: first one can clearly assume that Γ intersects the boundary of the
new triangle transversely and the sides chosen close to the sides of the original triangle so that the words
assigned to them are the words on the sides of the original triangle with the letter corresponding to the
edge between F1 and F ′1 removed. Thus we can apply the induction hypothesis.

Case 2: There is a ramification point next to F1.

As in case 1, the two flags below F1 are determined by Lemma 15.34. Let F ′1 be one of these flags. The
restriction of Γ to (F0, F

′
1, F2) has strictly less faces, we can again assume that it is a higher lamination

and hence apply the induction hypothesis.

Case 3: There is a braid vertex next to F1.

Since all boundary faces are already assigned a flag, there are two opposite faces around the braid vertex
carrying a a flag and this assignment is consistent with the local structure of Γ. By Lemma 15.33, we
can uniquely extend this configuration around all the regions around the braid vertex. Let F ′1 be the
flag below the braid vertex as shown on the right of Figure 15.15. Let us show that we can apply the
induction hypothesis to the restriction of Γ to the triangle formed by (F0, F

′
1, F2). The only non-trivial

fact to check is that the expressions induced on the edges (F0, F
′
1) and (F ′1, F2) are reduced. By changing

the reduced expression for x or y, we can assume that the number of incoming edges in the braid vertex
is maximal. The fact that the restriction of Γ is reduced then follows from Corollary 15.32.

Given a representative Γ of a higher lamination one wonders how many triples of flags modulo G
correspond to it. Let ram(Γ) be the number of trivalent vertices of Γ and recall that we denoted l : W → N
the Bruhat length on (W,S).
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Proposition 15.36. Let Γ be a representative of a higher lamination on a triangle t inducing the labels
x, y, z ∈ W on the sides, and F0, F2 two flags in relative position z. The number of flags F1 such that
(F0, F1, F2) extends to a valid configuration on t\Γ is:

Qram(Γ)q1/2(l(x)+l(y)−l(z)) . (15.44)

The proof is similar to the one for Proposition 15.35, with a distinction of the same three cases from
Figure 15.15. Note that by Proposition 15.35, any contribution from a triple of flags appears at most
once.

Proof. We reason by induction on the number of faces of Γ. The proposition is true for the empty graph.

Case 1: There is a simple edge next to F1.

The restriction Γ′ of Γ to the triangle (F0, F
′
1, F2) is a representative of a higher lamination with strictly

less faces. We have ram(Γ′) = ram(Γ), z′ = z, l(x′) = l(x)− 1 and l(y′) = l(y)− 1. The only restriction
on F1 is its relative position to F ′1 which is a simple reflection. If F ′1 is fixed this are q flags satisfying
this constraint. Using the induction hypothesis, the number of possible F1’s is:

q ×Qram(Γ′)q1/2(l(x′)+l(y′)−l(z′)) = Qram(Γ)q1/2(l(x)+l(y)−l(z)) . (15.45)

Case 2: There is a ramification point next to F1.

Let F ′1 be a flag in one of the regions below F1 (say on the boundary of y). The restriction Γ′ of Γ
to the triangle (F0, F

′
1, F2) is a representative of a higher lamination with strictly less faces. We have

ram(Γ′) = ram(Γ) − 1, z′ = z, x′ = x and l(y′) = l(y) − 1. If F ′1 is fixed the, by Lemma 15.34 the flag
F ′′1 next to F ′1 is uniquely determined. The only restriction on F1 is its relative position to F ′1 and F ′′1 .
Since these are the same simple reflection, there are q − 1 possible F1’s. Using the induction hypothesis
and the fact that Q = q1/2 − q−1/2, the number of possible F1’s is:

(q − 1)×Qram(Γ′)q1/2(l(x′)+l(y′)−l(z′)) = Qram(Γ)q1/2(l(x)+l(y)−l(z)) . (15.46)

Case 3: There is a braid vertex next to F1.

Let F ′1 be the flag assigned to the face of Γ below F1 as shown in Figure 15.15. The restriction Γ′ of Γ to
the triangle (F0, F

′
1, F2) is a representative of a higher lamination with strictly less faces (as follows from

the same reasoning as in the proof of Proposition 15.35). Furthermore, all parameters ram(Γ′), l(x′), l(y′)
and l(z′) are the same as the ones corresponding to Γ. If we know the flag F ′1, by Lemma 15.34 this
fixes all boundary flags of the triangle (F0, F

′
1, F2). In particular, this gives two flags in opposite regions

around the braid vertex. By Lemma 15.33, this determines uniquely F1. We conclude by the induction
hypothesis.

A consequence of this last proposition is that the number of ramification points ram(Γ) does not
depend on the representative of the higher lamination. One can easily check that all the relations of
Section 15.4.2 preserve the number of ramification points.

Product in the Hecke algebra

We now describe the graphical computation of a product hxhy in the Hecke algebra, for some x, y ∈W .
Let us choose reduced expressions for x and y and write them on the two upper sides of the triangle

following the counterclockwise orientation of the boundary. For each triple of flags appearing in the
product as described in Proposition 15.23 we choose a corresponding graph Γ. By Proposition 15.35,
these graphs represent higher laminations. On the last edge of the triangle we read a reduced expression
for some element hz(Γ) ∈ H.

Theorem 15.37. We have
hxhy =

∑

Γ

Qram(Γ)hz(Γ) , (15.47)

where the sum runs over all isotopy classes of graphs Γ coming from triples of flags associated to hxhy.
Assuming Conjecture 15.30, the sum can be taken over all higher laminations inducing x and y on the
two upper sides of the triangle.
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Proof. Recall the structure constants C z
xy of the Hecke algebra with quadratic relation T 2

s = (q−1)Ts+q.
Combining Proposition 15.23 with Proposition 15.36, we get

C z
xy = #{F1 ∈ G/B | (F0, F1) = x, (F1, F2) = y}

=
∑

Γz

Qram(Γz)q1/2(l(x)+l(y)−l(z)) , (15.48)

where the sum is taken over all graphs Γz which induce z on the third side of the triangle.
Let us now relate the structure constants of H in the basis (Tw)w∈W to those in the standard basis

(hw)w∈W . The two basis are linked by Tw = ql(w)/2hw. Hence:

c z
xy = q−1/2(l(x)+l(y)−l(z))C z

xy . (15.49)

Therefore, we get:

hxhy =
∑

z∈W
c z
xy hz =

∑

z∈W

∑

Γz

Qram(Γz)hz =
∑

Γ

Qram(Γ)hz(Γ) . (15.50)

Assuming Conjecture 15.30 we can uniquely associate a higher lamination to each triple of flags appearing
in hxhy.

Let us give a concrete example of the graphical interpretation of a product in the Hecke algebra
H(S3,{s,t}).

Example 15.38. Let us multiply hsts with hst in H(S3,{s,t}). The direct computation reads:

hstshst = hshth
2
sht

= hsh
2
t +Qhshthsht

= hs +Qhsht +Qh2
shths

= hs +Qhst +Qhts +Q2hsts ,

(15.51)

and it corresponds to the graphs of Figure 15.16.

Figure 15.16: The graphical analogue of the product hstshst.

Remark 15.39. To a higher lamination Γ on a triangle t with set R of ramification points, one can
associate a monodromy map π1(t\R) → W in the following way. To any based loop γ ∈ π1(t\R) which
intersects Γ transversely one associates the product of all labels of γ ∩ Γ following the orientation of γ.
It is easy to check that it only depends on the homotopy class of γ.

For higher lamination in type An, it is then possible to associate to Γ an n-sheeted cover with simple
ramification points at R and a trivialization over each connected component of t\Γ, such that the transition
between two adjacent regions is given by the label on the separating edge. This is why we call the trivalent
vertices of Γ ramification points.

15.4.3 Higher laminations for ciliated surfaces

We now define higher laminations on surfaces, which provides a diagrammatic way to compute our
polynomial invariant. This viewpoint gives a direct proof of the invariance under q 7→ q−1 for a closed
surface (this is Proposition 15.43 below).

Let us consider a ciliated surface Σ where each boundary component is labeled by an element of the
Weyl group, and fix a triangulation T of Σ. A higher lamination Γ on Σ is the gluing of representatives
of higher laminations on all triangles of T (their boundary data has of course to coincide).
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Remark 15.40. It should be possible to define higher laminations without using a triangulation as an
equivalence class of minimal labeled graphs inducing the elements of W on the boundary of Σ, mimicking
the definition for triangles. The non-trivial point is to define minimality.

Let us see how to compute our polynomial using the graphical calculus. Draw all possible higher
laminations on Σ compatible with the boundary data. Recall that ram(Γ) is the number of trivalent
vertices of Γ. As in Theorem 15.37 we fix representatives of the higher laminations associated to triples
of flags. Assuming Conjecture 15.30, this choice is irrelevant.

Theorem 15.41. The polynomial invariant for a ciliated surface Σ and a Weyl group W is given by

PΣ,W (Q) =
∑

Γ

Qram(Γ) , (15.52)

where the sum runs over all higher laminations of type W .

Proof. Let us consider a triangulation T of Σ and a higher lamination Γ. The latter allows to associate
elements of the standard basis hw to each edge of T. By Theorem 15.37 we know that for a triangle t
the contribution of Γ to the structure constant associated to t is given by Qmt where mt is the number
of ramification points in the triangle. We conclude by the definition of the polynomial invariant:

PΣ,W (Q) =
∑

e

∏

t

cxyz(Q) =
∑

e

∏

t

∑

Γe

Qram(Γ|t)

=
∑

e

∑

Γe

Qram(Γ)

=
∑

Γ

Qram(Γ) ,

(15.53)

where
∑
e is the sum over all possible labels of the edges of T by elements of W ,

∏
t is the product over

all faces t of T and
∏

Γe
is the product over all higher laminations compatible with the labels on the

edges of T.

Let us see how this works in a simple case:

Example 15.42. Let us consider the sphere with three holes Σ0,3 and the Hecke algebra associated with
the Coxeter group S2. The surface Σ0,3 is drawn as a triangle in the plane (together with a point at
infinity one gets the sphere). We look for all possible higher laminations.

The following pictures are possible:

Note that the higher lamination which goes around two vertices of the triangle is the same as the circle
around the third vertex, since we are on a sphere.

This shows that our polynomial is given by 4 +Q2 = q + 2 + q−1.

Proposition 15.43. For a punctured surface Σg,k, the invariant Pg,k,W is a polynomial in q = v−2.
Furthermore, it is invariant under the transformation q 7→ q−1.
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Proof. Using the graphical calculus, we have seen in Theorem 15.41 that

Pg,k,W (Q) =
∑

Γ

Qram(Γ) , (15.54)

where the sum runs over all higher laminations.
For a punctured surface, the only vertices of odd degree in a higher lamination are the ramification

points. Hence there is an even number of them. Therefore our polynomial is given by a polynomial
expression in Q2 = q − 2 + q−1 which is both a polynomial in q and invariant under q 7→ q−1.

Using the graphical calculus, we can compute the first example of an invariant for a Hecke algebra
corresponding to a Coxeter system other than S2.

Example 15.44. Let us consider Σ0,3 with S3.
If we use only one color, then we are reduced to the case S2, so the contributions from one color

higher laminations to our polynomial are given by 2(4 + Q2) − 1 (we have to subtract one in order to
count the empty higher lamination only once).

Using both colors, here are the possible pictures with their contributions:

The contribution of a picture is given by Q to the power the number of ramification points, times the
multiplicity. For example, the fifth picture has no ramification point and multiplicity 8 since for each
of the three dashed loops there are two possibilities (going around a vertex of the triangle or not). For
the sixth picture the dashed circles can be there or not with the only requirement that there must be at
least one otherwise it is a one-color diagram, hence there are 8− 1 = 7 possibilities. Then colors can be
exchanged, but this gives only 3 new possibilities.

Adding up all the terms, we get

36 + 27Q2 + 8Q4 +Q6 = q3 + 2q2 + 10q + 10 + 10q−1 + 2q−2 + q−3.

You see the weakness of the graphical calculus: there is no easy way to check whether all the possible
higher laminations have been found.

Remark 15.45. In Remark 15.39, we have seen that higher laminations are linked to ramified covers of
special type (some marking and a minimality condition). Our polynomial counts these ramified covers.
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15.5 Hecke topological quantum field theory

In this section we construct the invariants introduced above in a more intrinsic way. Given a Coxeter
system (W,S), we construct a 2-dimensional topological quantum field theory which associates a copy
of the Hecke algebra H or its dual H∗ to topological segments, while ciliated surfaces play the role of
cobordisms. Punctured surfaces define elements of the base ring Z[v±1] which are nothing else than the
invariants of Section 15.3.2.

15.5.1 Triangle invariants and gluing revisited

We redefine our construction in more intrinsic terms, showing in particular its independence from any
choice of basis in H and to allow boundary labels to be any elements in H and not only those of the
standard basis.

First, we notice that the non-degenerate pairing given by the trace gives a canonical isomorphism i
between H and H∗. In the standard basis this is given by

i :
∑
w∈W cwhw 7→

∑
w∈W cwh(w−1) . (15.55)

The isomorphism i is independent of a basis. To see this, take any basis (Aw)w∈W of the A-module H.
Denote by (Aw) the trace-dual basis, i.e. such that tr(AxA

y) = δyx for all x, y ∈W . Then

i :
∑
w∈W cwAw 7→

∑
w∈W cwA

w (15.56)

which is in accordance with Equation (15.55) since hw = hw−1 .
Second, we can redefine our construction for a triangle, with oriented edges. Choose an orientation of

the triangle. To the triangle, we associate the tensor c ∈ Ha⊗Hb⊗Hc which comes from the multiplication
in H. Here, a, b, c ∈ {1, ∗} depending on whether the orientation of the edge is in accordance with
the orientation of the triangle or not. Whenever the orientation of an edge is not consistent with the
orientation of the triangle, we can use the isomorphism i. For example, in Figure 15.17 we get a tensor
c ∈ H ⊗H⊗H∗ which to h, h′ ∈ H and g ∈ H∗ associates

c(h, h′, g) = g(hh′) = tr(hh′i(g)) .

Since cxyz = tr(hxhyhz) we get the link to our initial construction in Section 15.3.1.

Figure 15.17: Assigning a tensor to triangles.

Finally, when we glue two triangles along an edge with opposite orientations, we use the natural
pairing between H∗ and H. Consider for example the two triangles drawn on the left of Figure 15.18.
The upper-one corresponds to the tensor cu = c ∈ H∗1 ⊗H∗2 ⊗H∗3 which is the one of Equation (15.19),
and the lower-one, to the corresponding tensor cd ∈ H4 ⊗ H∗5 ⊗ H∗6. The indices tell to which edge the
copies of H or H∗ correspond. The edge 3 is positively oriented with respect to the upper triangle hence
is associated a copy of H while the edge 4 is negatively oriented with respect to the lower one and is
associated a copy of H∗. Hence we can glue the edges 3 and 4 together.

It is clear that the gluing does not depend on the orientation of the edge (since the isomorphism
i can be used to change this orientation). Since our redefinition is a linear extention of the construc-
tion of Section 15.3, the gluing does not depend on which diagonal of the quadrilateral we choose (by
Theorem 15.18).
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Figure 15.18: Gluing two triangles along an edge.

One can glue arbitrary ciliated surfaces together along edges in the same way. Since any ciliated
surface of our interest admits a triangulation, it is assigned a tensor invariant by gluing the invariants
corresponding to the faces of its triangulation. This tensor does not depend on the triangulation since
any two triangulations can be related by a finite sequence of flips, hence it is a topological invariant of
the ciliated surface.

15.5.2 Hecke topological quantum field theories

First we describe our category C of cobordisms: the objects are disjoint unions of oriented segments, and
the morphisms from an object A to another object B are the ciliated surfaces whose boundary is the
disjoint union of B and A with the orientation reversed.

Let us consider the functor

F : C → Z[v±1]−Mod (15.57)

which associates a copy of H to the positively oriented segment, a copy of H∗ to the negatively oriented
segment, and the proper tensor product of copies of H and H∗ to a disjoint union of oriented segments.
For A and B two objects in C and a ciliated surface Σ ∈ Hom(A,B), the morphism F (Σ) is the tensor
invariant constructed in Section 15.5.1 which is indeed in F (∂Σ). By Theorem 15.18, we know that this
tensor only depends on Σ and not on a triangulation.

Theorem 15.46. For any finite Coxeter system (W,S) the functor F satisfies the axioms of a topological
quantum field theory listed in [Ati88].

Proof. Our construction makes clear that F is invariant under orientation preserving diffeomorphisms of
ciliated surfaces and their boundary, that it is involutory, and that it is multiplicative.

Let Σ be a ciliated surface without cilia and hence without boundary. Then F (Σ) ∈ Z[v±1], that is,
it a Laurent polynomial in v. It clearly coincides with the invariant for punctured surfaces defined in
Section 15.3.

15.5.3 Invariants of n-gons

Since our construction is a TQFT, i.e. behaves well under gluing, we can decompose a ciliated surface
into elementary parts. Representing a surface as the gluing of the edges of a polygon, we get simple
expressions for the invariant.

Consider an arbitrary basis (Cw)w∈W of the A-module H and let (Cw)w∈W the trace-dual basis in H.
The tensor associated to a polygon is simply given by

Proposition 15.47. Consider a polygon with n edges, all oriented in the same way. Then the tensor cn
associated to the polygon is given by

cn = tr(Cw1 · · ·Cwn)Cw1 ⊗ · · · ⊗ Cwn . (15.58)

Note that this is equivalent to: the tensor of a polygon associates to (h1, ..., hn) ∈ Hn (one label for
each edge) the scalar tr(h1 · · ·hn) ∈ Z[v±1].
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Proof. We use induction on n. For n = 3 the formula is true by the definition of our invariant. For the
passage from n to n+ 1, decompose a (n+ 1)-gon into one triangle and an n-gon (see Figure 15.19. We
then get:

cn+1 =
〈

tr
(
Cw1 · · ·Cw′n

)
Cw1
⊗ · · · ⊗ Cw′n , tr

(
CwnCwn+1Cw′n

)
Cwn ⊗ Cwn+1

⊗ Cw′n
〉

= tr
(
Cw1 · · ·Cw′n

)
tr
(
CwnCwn+1Cw′′n

)
Cw

′
n(Cw′n)Cw1

⊗ · · · ⊗ Cwn ⊗ Cwn+1

= tr(Cw1 · · ·CwnCwn+1)Cw1 ⊗ · · · ⊗ Cwn ⊗ Cwn+1 ,

where we used the induction hypothesis in the first line, the gluing formula in the second, and the
contraction of indices property of tensors in the last line.

Figure 15.19: Decomposition of a polygon.

As a consequence, we get a simple formula for the invariant of a ciliated surface without boundary
components (only marked points):

Corollary 15.48. The polynomial invariant for a surface Σg,k (where k ≥ 1) is given by

Pg,k,W = tr (CwC
w)k−1(CxCyC

xCy)g . (15.59)

Proof. A surface Σg,k can be obtained as the gluing of a polygon with 4g+k−1 edges (like in Figure 15.7
for k = 1). The first 4g edges add handles, while the last k− 1 edges add cones (so a marked point). By
Proposition 15.47, the gluing property and contraction, we get the result.

Remark 15.49. There are lots of possible expressions, all equivalent, for a given surface Σg,k, one for
each gluing of a polygon giving Σg,k.

Example 15.50. Consider the sphere with three punctures, represented by the gluing of two triangles as
in Figure 15.20. Reading the picture yields a map Z[v±1]→ Z[v±1] given by

1 7→ tr(CxCyCz) tr(CxCzCy) = tr(CxXyCyCx) . (15.60)

This gives the same result as representing the sphere as the gluing of a square.

15.6 Explicit expression and positivity

In this section, we explicitly compute the polynomial invariant for ciliated surfaces and determine in
which cases positivity hold. The key observation is that for a punctured surface, the polynomial is the
trace of a central element in the Hecke algebra H. The structure of the center can be understood using
the Wedderburn decomposition of H. The polynomial is a sum of powers of Schur elements multiplied
by irreducible characters.

15.6.1 Schur elements and Wedderburn decomposition

The Hecke algebra with its standard trace is a specific example of a symmetric algebra, that is, an algebra
with a non-degenerate trace function. There is a general theory of these algebras which we present briefly
here. In particular we expose some general facts about Schur elements and the Wedderburn decomposition
for Hecke algebras. Main references are [GP00], Chapter 7 and 8 of [Chl16] and the article [Neu06].
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Figure 15.20: Reading off the polynomial

Symmetric algebras. Fix a commutative integral domain A. A symmetric algebra H is an A-algebra,
which is free and finitely generated over A, equipped with a symmetric trace τ : H → A. The fact that
τ is a trace means that τ(hh′) = τ(h′h) ∀h, h′ ∈ H, and that it is symmetric, that · → τ(·h) is non-
degenerate for all h ∈ H. The trace gives an isomorphism H ∼= H∗ = HomA(H,A) via h ∈ H 7→ τ(h . ).
Denote by B the associated quadratic form B(h1, h2) = τ(h1h2).

Denote by T (H) ' (H/[H,H])∗ the space of traces on H. Note that the space of traces T (H) is
canonically isomorphic to the center Z(H) of H (see for example [GP00, Proposition 7.1.7]).

We further assume H semi-simple. Note that if A = R and B is positive definite, the algebra H is
automatically semi-simple since an orthogonal complement to a left ideal of H is a right ideal and vice
versa.

Denote by Irr(H) the set of irreducible representations of H and for λ ∈ Irr(H) denote by the same
letter the map λ : H → End(Vλ). Then the semi-simplicity of H implies that

H =
⊕

λ∈Irr(H)

End(Vλ) . (15.61)

This is the Artin–Wedderburn decomposition, or a version of the Peter–Weyl theorem in this setting.
For any representation λ of H one can associate a trace called a character denoted by χλ ∈ T (H),

defined by χλ(h) = trλ(h) and a corresponding element Zλ of the center Z(H). The sets {χλ} and {Zλ}
for λ ∈ Irr(H) form orthogonal bases in the spaces T (H) and Z(H), respectively. Denote by sλ the
inverses the coefficients of the decomposition of unity in H with respect to the base of the Zλ:

∑
λ

1
sλ
Zλ = 1 . (15.62)

The sλ are called Schur elements. From Equation (15.62) we immediately get

τ =
∑
λ

1
sλ
χλ . (15.63)

Further, by Equation (15.61), we see that Zλ acts on Vλ as sλ id (which is the usual definition of the
Schur elements). The elements Zλ can be computed as follows:

Proposition 15.51. Let (Cw)w∈W be a basis of H and let (Cw) be its trace-dual basis in H. The central
element Zλ can be computed by

Zλ =
∑

w∈W
χλ(Cw)Cw . (15.64)

Proof. For h ∈ H, we compute (using Einstein summation convention):

τ(Zλh) = χλ(h) = χλ(τ(Cwh)Cw) = τ(Cwh)χλ(Cw) = τ(χλ(Cw)Cwh) (15.65)

where we used that h = τ(Cwh)Cw by definition of Cw. Hence the proposition follows by the non-
degeneracy of τ .
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There is another definition of Schur elements which will be useful in the sequel. Let ϕ : V → V ′ be
an A-morphism between right H-modules. Let I(ϕ) : V → V ′ be defined by:

I(ϕ) · v =
∑

w

ϕ(vCw)Cw . (15.66)

The morphism I(ϕ) does not depend on the choice of basis (Cw) and it is a morphism of H-modules
[GP00, Lemma 7.1.10].

For V = V ′ = Vλ an irreducible representation, we have [GP00, Theorem 7.2.1]:

Proposition 15.52. Let ϕ ∈ End(Vλ). Then:

I(ϕ) = sλ tr(ϕ) id . (15.67)

Hecke algebras. Now, we specialize to the Hecke algebra (H, tr) with its standard trace. By [GU89],
the Hecke algebra is semisimple over the localized ring A = Z[q±1]/P (q) where P is the Poincaré poly-
nomial of H. The Artin–Wedderburn theorem implies that

H '
⊕

λ∈Irr(H)

End(Vλ) . (15.68)

Remark 15.53. For Hecke algebras, the irreducible representations are all inside so-called left cell repre-
sentations. For type A, the left cell representations are all irreducible. The article [Neu06] by Neunhöffer
describes explicitly the adapted basis for type A, i.e. the matrix elements for each factor End(Vλ). We
will use these cell representations only for Proposition 15.62 below.

The decomposition of Equation (15.68) implies that the center of the Hecke algebra is given by diagonal
matrices.

Proposition 15.54. The elements (Zλ)λ∈Irr(H) form a basis of the center Z(H) such that:

ZλZµ = δλ,µsλZλ ∀ λ, µ ∈ Irr(H) . (15.69)

Proof. Since the characters form a basis of the space of trace functions, the Zλ’s form a basis of the center
Z(H). The Wedderburn decomposition implies that ZλZµ = 0 for λ 6= µ. Now, for all h ∈ H:

tr
(
Z2
λh
)

= χλ(Zλh) = χλ(sλh) = tr(sλZλh) . (15.70)

Hence Z2
λ = sλZλ.

There is a special symmetry in the Schur elements of Hecke algebras. Let γ be the Z[v±1]-algebra
homomorphism on H given by γ(hs) = −qh−1

s . For λ ∈ Irr(H) let λ∗ be the composition λ ◦ γ called the
dual representation. Proposition 9.4.3 in [GP00] states that:

Proposition 15.55. For λ ∈ Irr(H), we have

sλ∗(q) = sλ(q−1).

15.6.2 Central elements

Recall the expression of the invariant for punctured surfaces in terms of the standard trace of Equa-
tion (15.59):

Pg,k,W = tr (CwC
w)k−1(CxCyC

xCy)g.

For surfaces with boundary labeled by element in H, terms of the form CwhC
w arise.

Theorem 15.56. The elements of the form (CwC
w)k−1(CxCyC

xCy)g and CwhC
w (for h ∈ H) are in

the center of the Hecke algebra.
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Proof. For the first statement, let s = (CwC
w)k−1(CxCyC

xCy)g. By the non-degeneracy of the trace, it
is sufficient to show that

tr(sh1h2) = tr(h1sh2) ∀ h1, h2 ∈ H. (15.71)

The expression tr(sh1h2) is the invariant of a surface with two boundary components labeled by h1 and
h2. The same holds for tr(h1sh2) = tr(sh2h1) with h1 and h2 exchanged.

A π-rotation of the surface as shown in Figure 15.21 exchanges h1 and h2. Since it does not change
the topology, the invariants of the two surfaces coincide. This implies Equation (15.71) and thus the
theorem.

The second statement is analogous. The surface corresponding to the invariant

trCwhC
wh1h2 (15.72)

is a cylinder with one boundary labeled by h and another boundary with two cilia and labels h1 and h2.
Again a π-rotation exchanges h1 and h2.

Figure 15.21: Exchanging h1 and h2.

Note that the central elements CwC
w and CxCyC

xCy can be seen as Casimir elements of order 2 and
4 for the Hecke algebra.

From Proposition 15.54 we know that the Schur elements (Zλ)λ∈Irr(H) form a basis of the center
Z(H) of the Hecke algebra. We can determine the decomposition of the two building blocks CwhC

w and
CxCyC

xCy of expressions in the form of Equation (15.59) in this basis:

Proposition 15.57. For h ∈ H, we have:

CwhC
w =

∑
λ χλ(h)Zλ , (15.73)

and
CxCyC

xCy =
∑
λ sλZλ . (15.74)

Note that in particular (for h = 1), we get

CwC
w =

∑
λ dim(Vλ)Zλ . (15.75)

Proof. For the first assertion, take V = V ′ = Vλ and ϕh ∈ End(Vλ), the action induced by right
multiplication by h. Let h′ ∈ Vλ and write CxhC

x =
∑
µ eµZµ. On the one hand we have

h′CxhC
x = I(ϕh).h′ = sλ tr(ϕh)h′ = sλχλ(h)h′ (15.76)

thanks to Proposition 15.52, and on the other

h′CxhC
x =

∑
µ eµZµh

′ = eλsλh
′ (15.77)

since Zλh
′ = sλh

′ and 0 for other values of µ. Comparing coefficients we get eλ = χλ(h).

For the second assertion, consider the map ϕλ,x : Vλ → Vλ given by

ϕλ,x(v) = vCx . (15.78)

Thus:
I(ϕλ,x).v =

∑

y

ϕλ,x(vCy)Cy =
∑

y

vCyC
xCy , (15.79)
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and by Proposition 15.52:

I(ϕλ,x).v = sλ tr(ϕλ,x)v = sλ χλ(Cx)v (15.80)

where we have used the definition of the character χλ. Hence:

∑

y

vCyC
xCy = sλ χλ(Cx) v for v ∈ Vλ. (15.81)

Recall the Wedderburn decomposition

H ∼=
⊕

λ

End(Vλ) . (15.82)

Let (Bx) be an adapted basis of H given by the matrix coefficients in the factors of the decomposition,
and (Bx) its trace-dual basis in H. Let λ(x) be the unique λ such that Bx ∈ Vλ.

Since BxBy = 0 whenever λ(x) 6= λ(y), we know that Bx ∈ Span(By | λ(y) = λ(x)), and hence
BxBy = 0 for λ(x) 6= λ(y). Hence χλ(Ax) = 0 if λ 6= λ(x).

Equation (15.81) implies that:

∑

y

BxByB
xBy = sλ(x)χλ(x)(B

x)Bx , (15.83)

and eventually:

∑

x,y

BxByB
xBy =

∑

x

sλ(x)χλ(x)(B
x)Bx

=
∑

λ

sλ
∑

x |λ(x)=λ

χλ(Bx)Bx

=
∑

λ

sλ
∑

x

χλ(Bx)Bx

=
∑

λ

sλZλ

(15.84)

where we used that χλ(Bx) = 0 if λ 6= λ(x) and that Zλ =
∑
x χλ(Bx)Bx from Proposition 15.51. This

concludes the proof.

15.6.3 Explicit expression

We are now ready to compute the invariants for ciliated surfaces. We start with punctured surfaces.

Theorem 15.58. The polynomial invariant corresponding to a punctured surface is given by

Pg,k,W (q) =
∑

λ

(dimVλ)ksλ(q)2g−2+k . (15.85)

Proof. We have that:

Pg,k,W (q) = tr
(

(CwC
w)
k−1

(CxCyC
xCy)

g
)

= tr (
∑
λ dimVλZλ)

k−1
(
∑
λ sλZλ)

g

= tr
∑

λ

(dimVλ)k−1s2g−2+k
λ Zλ

=
∑

λ

(dimVλ)ks2g−2+k
λ ,

(15.86)

where the first equality is Equation (15.59), the second one comes from Proposition 15.57, the third one
from Proposition 15.54, and in the last one we used trZλ = χλ(1) = dimVλ.
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For example, let us consider the case W = S2. There are two Schur elements in HS2 , respectively
s1 = 1 + q and s2 = 1 + q−1. Hence the invariant corresponding to a genus g surface with k punctures is
given by

Pg,k,S2 = (1 + q)2g−2+k + (1 + q−1)2g−2+k . (15.87)

Looking at the explicit expression in Theorem 15.58, we observe several phenomena:

• We can evaluate the expression at k = 0, although we have no definition of our invariant for closed
surfaces. In view of Remark 15.39 this is not surprising since our polynomial seems to count special
ramified coverings over Σ.

• Specializing to q = 1 and using sλ(1) = |W |(dimVλ)−1 (in type A this is the hook length formula),
we recover the result of Equation (15.37).

• The invariance under q 7→ q−1 of our polynomial can be obtained from the explicit expression of
Theorem 15.58 and the duality property of Schur elements of Proposition 15.55. Interestingly, the
coefficients of each Schur element are symmetric as can be observed by a case-by-case study (see
Proposition 15.68). It would be nice to recover this property using the TQFTs developed in this
paper.

Let us turn to the case of a ciliated surface Σg,k,{p1,...,pn} of genus g, k ≥ 1 punctures and boundary
components with pi ≥ 1 cilia. Let hi ∈ H be the product of the elements along the i-th boundary
component following the orientation of Σ (hi per se is not well-defined but its conjugacy class is and it
is enough to write Theorem 15.59 unambiguously since characters are class functions).

Theorem 15.59. For a ciliated surface Σg,k,{p1,...,pn} with labels (h1, ..., hn) ∈ Hn, the polynomial in-
variant is:

PΣ,W (q) =
∑

λ

(dimVλ)ksλ(q)2g−2+k+nχλ(h1) · · ·χλ(hn) . (15.88)

Proof. We can suppose n ≥ 1 since the punctures case was already treated in Theorem 15.58. There is a
polygonal gluing yielding the ciliated surface Σ in the following way: start with a disc with one cilia on
the boundary. Then glue g handles to it, giving a term (CxCyC

xCy)g, then add k punctures, giving a
term (CwC

w)k, add other boundary components with labels h2 to hn, giving a term
∏n
i=2 CwhiC

w, and
finally add the label h1 to the initial boundary circle.

Hence, we get:

PΣ,W (q) = tr (CxCyC
xCy)g(CwC

w)k
∏n
i=2(CwhiC

w) h1

= tr (
∑
λ s

2g−1
λ Zλ)(

∑
µ(dimVµ)ksk−1

µ Zµ)
∏n
i=2(

∑
λi
χλi(hi)Zλi) h1

=
∑

λ

(dimVλ)ks2g−2+k+n
λ

∏n
i=2 χλ(hi) tr(Zλh1)

=
∑

λ

(dimVλ)ks2g−2+k+n
λ

∏n
i=1 χλ(hi) ,

(15.89)

where we used Equation (15.59), Proposition 15.54 and the equality tr(Zλh1) = χλ(h1).

Two remarks on the explicit expression:

• A puncture is equivalent to a boundary component labeled by 1 ∈ H, since dim(Vλ) = χλ(1).

• The compatibility of Theorem 15.59 with the gluing property of Equation (15.33) is ensured by the
orthogonality of the irreducible characters (see [GP00, Corollary 7.2.4]):

χλ(Cw)χµ(Cw) = δλ,µsλ dim(Vλ) . (15.90)
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15.6.4 Positivity properties

We now turn to the positivity properties of our invariants. For punctured surfaces this reduces to the
study of positivity properties of the Schur elements. For a ciliated surface, the characters of elements in
the Kazhdan–Lusztig basis appear.

In Section 15.8 we carry out the study of positivity properties of Schur elements, using a formula of
[Chl16]. We obtain the following theorem:

Theorem 15.60. The following positivity properties hold for punctures surfaces:

1. The polynomial invariant Pg,k,W (q) has positive coefficients for all classical W and for the excep-
tional types H3, E6 and E7.

2. For all other types, i.e. I2(m) for m ≥ 5, H4, F4 and E8, the invariants may have negative
coefficients.

The first part (apart from H3) is a direct consequence of the positivity of Schur elements, the second
is a case-by-case study. We are thankful to Sebastian Manecke for his contribution to the case H3.

Proof. By Theorem 15.67, the Schur elements have positive coefficients in all classical types and for E6

and E7. Hence Theorem 15.58 implies the positivity of the coefficients of the invariants for punctured
surfaces in those cases.

Let us now study the case H3. An explicit computation shows that there are only two Schur elements
with negative coefficients which only differ by a shift by q5. In other words, we can write these two
elements as some Laurent polynomial P and q5P . The corresponding irreducible representations of HH3

are 3-dimensional. There are two other Schur elements whose representation is 3-dimensional. These
are of the form Q and q5Q for some other Laurent polynomial Q. More explicitly let a = cos

(
2π
5

)
and

b = cos
(

4π
5

)
. Then:

P (q) = (2− 2b)q + (6− 6b) + (7− 2b)q−1 − 10aq−2

− 10aq−3 + (7− 2b)q−4 + (6− 6b)q−5 + (2− 2b)q−6

Q(q) = (2− 2a)q + (6− 6a) + (7− 2a)q−1 − 10bq−2

− 10bq−3 + (7− 2a)q−4 + (6− 6a)q−5 + (2− 2a)q−6 .

(15.91)

We are going to show that P l + Ql has positive coefficients for all l. This implies the positivity of the
coefficients of the invariants corresponding to H3 by the explicit formula of Theorem 15.58.

We note that the coefficients of Q are positive, and so are those of Ql for all l ≥ 1. We prove by
induction l 7→ l + 5 that P l has positive coefficients for l ≥ 5. This is checked by direct computation for
P 5 to P 9. Then P l+5 = P 5P l gives the induction heredity. For l ∈ {1, 2, 3, 4} one checks explicitly that
P l +Ql is positive.

To prove the second part, we note by explicit computation that in types G2, F4, H4 and E8, the
polynomial has negative coefficients for g = 0 and k = 3.

Consider now type I2(m) with m = 2l + 1 odd. Then by [GP00, Theorem 8.3.4], the Schur elements
are given by

s0 = 1 + 2q + 2q2 + ...+ 2qm−1 + qm

sl+1 = 1 + 2q−1 + ...+ 2q1−m + q−m

sj =
m

2− 2 cos
(

2πj
m

) (q − 2 cos
(

2πj
m

)
+ q−1) for 1 ≤ j ≤ l

(15.92)

where s0 and sl+1 correspond to 1-dimensional representations and all others to representations which
are of dimension 2. Hence the constant term of P0,3,W (q) is given by

2− 8m

l∑

j=1

cos
(

2πj
m

)

1− cos
(

2πj
m

) = 2− 8m


−l +

1

2

l∑

j=1

1

sin2(πjm )


 . (15.93)
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For l ≥ 5 we have π2

m2 <
2
5l (by analysis of the roots of a quadratic polynomial in l). Using sin(x) ≤ x we

obtain:

− l +
1

2

l∑

j=1

1

sin2(πjm )
> −l +

1

2

1

sin2( πm )
>
l

4
. (15.94)

Thus, the constant term is smaller than 2− 2ml which is strictly negative for l ≥ 5. For l = 3 and l = 4,
explicit computations also show negative constant terms. For l = 2, one checks that for g = 0, k = 4
there are negative coefficients in the polynomial.

Consider type I2(m) with m = 2l even. Then again by [GP00] Theorem 8.3.4, in addition to the
Schur elements given above (for 1 ≤ j ≤ l−1 for the 2-dimensional representations), there are two others
whose corresponding representation is 1-dimensional given by:

sε1 = sε2 = l(q + 2 + q−1) . (15.95)

Hence the constant term of P0,3,W (q) is given by

2 + 2m− 8m


−(l − 1) +

l−1∑

j=1

1

2 sin2(πjm )


 . (15.96)

The same techniques as for m odd apply and give that this constant term is negative for l ≥ 5. For
l = 3, 4, explicit computations show that the constant term is still negative. This concludes for the cases
I2(m) with m ≥ 5.

Remark 15.61. Recall that the invariants are traces of elements of the form

(CwC
w)k−1(CxCyC

xCy)g . (15.97)

These expressions are independent of the choice of basis (Cw), and hence we may choose the Kazhdan–
Lusztig basis (bw) to do the computations. Despite all the known positivity results concerning this very
special basis of the Hecke algebra, we are unable to deduce from that the positivity of our invariants because
of the appearance of the dual basis (bw). Theorem 15.60 can be seen as a family of positivity properties
in the center of the Hecke algebra indexed by punctured surfaces.

Let us analyze the case of a general ciliated surface with boundary components labeled by elements
of the Kazhdan–Lusztig basis (KL basis for short in the sequel).

Proposition 15.62. In type A, all irreducible characters evaluated at elements of the Kazhdan–Lusztig
basis are positive.

Proof. Fix an irreducible representation with character χλ. In type A, we know that this representation
is a cell representation for some left cell Λ. Further by [Neu06, Eq. 4] , we have

χλ(bw) =
∑

x∈Λ

tr bwbxb
x . (15.98)

Since the structure constants in the KL basis are positive, all tr bxb
xbw are positive.

Let H≥0 denote the set of elements in the Hecke algebra which have non-negative coordinates in the
KL basis.

Corollary 15.63. In type A, the invariant corresponding to a ciliated surface with boundary labels in
H≥0, has positive coefficients.

Proof. Let α be the product of the labels on the boundary following the latter according to the orientation
induced by the surface. Since H≥0 is stable under product, we get α ∈ H≥0. In type A both the
Schur elements and the characters χλ(bw) are positive, and we conclude with the explicit expression of
Theorem 15.59.

For all other types the characters χλ(bw) can have negative coefficients and hence the invariant can
have negative coefficients as well. It is for example the case for g = 2, k = 1,W = B2 and α = brsr.

Using the link between the standard trace and the expansion of an element in a given basis, we get:



15.7. COMPUTATION USING SAGE AND CHEVIE 403

Corollary 15.64. In type A, any expression of the form (CwC
w)k(CxCyC

xCy)g has positive coefficients
in the dual Kazhdan–Lusztig basis (bw).

Proof. The coefficient of g = (CwC
w)h(CxCyC

xCy)g along bw when expressed in the KL basis is tr bwg
which is positive by the previous corollary.

Example 15.65. For W = S2, the Hecke algebra is commutative and the invariant is given by tr
(
(C1C

1 + CsC
s)m
)

in any basis (C1, Cs). The dual KL basis is (b1, bs) = (h1 − q−1/2hs, hs). Using induction, one easily
checks that

tr
(
(b1b

1 + bsb
s)m
)

= ((1 + q)m−1 + (1 + q−1)m−1)b1 + q(m−1)/2(q1/2 + q−1/2)mbs . (15.99)

Each coefficient is indeed positive. Note that the first coefficient is P0,m+1,S2
(q).

If we use labels with positive coefficients in the basis adapted to the Wedderburn decomposition, we
get:

Proposition 15.66. Consider a ciliated surface with labeled boundary, such that the product of the
labels on each boundary component has positive coefficients in the Wedderburn-adapted basis. Then the
polynomial invariant is positive.

Proof. This follows from the explicit expression in Theorem 15.59 and the fact that the characters eval-
uated at the Wedderburn adapted basis are non-negative.

15.7 Computation using Sage and CHEVIE

In this section, we describe two ways to compute our invariants by computer, the first using Sage [S+21]
and the second using CHEVIE, a package of Gap3 (see [Mic15] and [GHL+96]).

15.7.1 Sage

We recommend the online platform SageMathCell where you can perform computations using Sage with-
out any installation. To compute the polynomial invariant, we use Equation (15.59). For example, a
possible code for computing the polynomial P1,3,A3

is:

k = 3

g = 1

R.<v> = LaurentPolynomialRing(QQ)

H = IwahoriHeckeAlgebra(’A3’, v, -1/v)

W = H.coxeter_group()

T = H.T();

S = (sum(T(i)*T(i.inverse()) for i in W))**(k-1)*(sum

(sum(T(i)*T(j)*T(i.inverse())*T(j.inverse()) for j in W)

for i in W))**g

Using the parameters v and −1/v for H corresponds to the normalized version of the Hecke algebra
in which (hs + v)(hs − 1/v) = 0. An H.T(w) for w in the Coxeter group is the standard basis element of
H corresponding to w, while H.Cp(w) is the element in the KL basis associated with w.

This code yields the sum (hwh
w)k−1(hxhyh

xhy)g. However we are interested in its trace, hence the
Pg,k,W is the coefficient of 1 in the result, in which one can replace v−2 by q. Here are some examples of
computations:

• P0,3,S3(q) = q3 + 2q2 + 10q + 10 + 10q−1 + 2q−2 + q−3.

• P1,1,S3
(q) = q3 + 2q2 + 4q + 4 + 4q−1 + 2q−2 + q−3.

• P0,4,S3
(q) = q6 + 4q5 + 8q4 + 10q3 + 24q2 + 36q + 50 + ...

• P0,3,S4(q) = q6 + 3q5 + 5q4 + 33q3 + 67q2 + 108q + 142 + ...

• P0,3,G2
(q) = q6 + 2q5 + 2q4 + 2q3 + 2q2 + 72q − 18 + ...

https://sagecell.sagemath.org/
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For a surface with one boundary component labeled by h one needs to multiply the big sum by h,
and expand the result in the standard basis (to read of the constant term). Here is an example for type
A3 and h an element in the KL-basis:

Cp = H.Cp()

r,s,t = W.simple_reflections()

T(Cp(r*s*t*r)*S)

15.7.2 CHEVIE

CHEVIE is a package of Gap3 (not included in Gap4). We recommend the installation from the webpage
of Jean Michel. The advantage of CHEVIE is that it knows the Schur elements and characters. So we
can use the explicit expression from Theorem 15.58 to compute our polynomial.

Here is a code computing P0,3,E8
:

g:=0;;

k:=3;;

W:= CoxeterGroup("E",8);;

v:=X(Cyclotomics);; v.name:="v";;

H:=Hecke(W,[[v,-v^-1]]);;

T:=Basis(H,"T");;

Cp:=Basis(H,"C’");;

schur:=SchurElements(H);;

list:=[1..Length(schur)];;

dim:=HeckeCharValues(T());;

Sum(list,i->dim[i]^k*schur[i]^(2*g-2+k));

Using the explicit formula from Theorem 15.58, we get the following general formula for type A2

where m = 2g − 2 + k:

Pg,k,S3
(q) = (1 + 2q + 2q2 + q3)m + (1 + 2q−1 + 2q−2 + q−3)m + 2k(q + 1 + q−1)m.

For type G2:

Pg,k,G2
(q) = (1 + 2q + ...+ 2q5 + q6)m + (1 + 2q−1 + ...+ 2q−5 + q−6)m

+ 2(3q−1 + 6 + 3q)m + 2k(6q − 6 + 6q−1)m + 2k(2q + 2 + 2q−1)m.

For a surface with one boundary component, we can compute the polynomial using Theorem 15.59:
one only need to change the last row of the code above to:

h:=Cp(1);;

Sum(list,i->dim[i]^(k-1)*schur[i]^(2*g-2+k)*HeckeCharValues(h)[i]);

One can of course change the value of h at will.

15.8 Positivity for Schur elements

We conclude this chapter with a detailed study of the coefficients of Schur elements associated to a
Iwahori–Hecke algebra and their positivity. The main tool is an explicit formula for the Schur elements
using generalized hook lengths from [Chl16] (see in particular Example 2.5 for more references).

Theorem 15.67. The Schur elements sλ(q) have positive coefficients for all Coxeter groups of classical
type and for the exceptional types E6 and E7.

Proof. For the exceptional types E6 and E7 an explicit computation using CHEVIE shows the positivity of
the Schur elements, while in all other exceptional types there are Schur elements with negative coefficients.

For the classical types we use the explicit formula from Theorem 4.3 in [Chl16] which was first
published in [CJ12]. We need to introduce some notations to state the formula. For classical types,
an irreducible representation λ is described by a set of Young diagrams (λ(0), ..., λ(l−1)) also called a

https://webusers.imj-prg.fr/~jean.michel/gap3/
https://webusers.imj-prg.fr/~jean.michel/gap3/
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multipartition (for Weyl groups we have l = 1 or l = 2). The generalized hook length at (i, j) ∈ λ with
respect to two Young diagrams λ and µ is

hλ,µi,j = λi − i+ µ′j − j + 1 , (15.100)

where λi denotes the length of the i-th row in λ and µ′ is the conjugated Young diagram. For λ = µ this
gives the usual hook length.

We can now state the explicit formula. The Schur element indexed by a multipartition λ = (λ(0), ..., λ(l−1))
of the integer n is given by

sλ(q) = (−1)n(l−1)q−N(λ̄)
∏

0≤s≤l−1

∏

(i,j)∈λ(s)


[hλ

(s),λ(s)

i,j ]q
∏

0≤t≤l−1,t6=s

(qh
λ(s),λ(t)

i,j QsQ
−1
t − 1)


 . (15.101)

Note that we have not introduced the notation N(λ̄) because we can ignore this part of the formula
for our purposes.

Type A corresponds to l = 1 hence the formula simplifies to:

sλ(q) = q−N(λ̄)
∏

i,j∈λ

[hλi,j ]q . (15.102)

The Schur element is thus a product of quantized hook lengths (modulo a shift). These quantum integers
are all positive, and hence is the Schur element sλ(q).

Type B corresponds to l = 2, Q0 = q and Q1 = −1. An irreducible representation is parameterized
by a pair of Young diagrams (λ, µ), which yields:

sλ,µ(q) = q−N(λ∪µ)
∏

(i,j)∈λ

[hλ,λi,j ]q(q
2+λi−i+µ′j−j + 1)×

∏

(i,j)∈µ

[hµ,µi,j ]q(q
µi−i+λ′j−j + 1) . (15.103)

Since the quantum integers are positive, the Schur element again has positive coefficients.
To obtain the results for type D, we have to use a link to type B which is established in [Chl09, Part

2.3] using Clifford theory. The result is that we can reduce type D to l = 2 with parameters Q0 = q and
Q1 = −q. An irreducible representation is given by an unordered pair of Young diagrams (λ, µ). If λ 6= µ
we get:

sλ,µ(q) =
1

2
q−N(λ∪µ)

∏

(i,j)∈λ

[hλ,λi,j ]q(q
λi−i+µ′j−j+1 + 1)×

∏

(i,j)∈µ

[hµ,µi,j ]q(q
µi−i+λ′j−j+1 + 1) . (15.104)

For λ = µ we get

sλ,λ(q) = q−N(λ∪λ)
∏

(i,j)∈λ

[hλ,λi,j ]2q(q
λi−i+µ′j−j+1 + 1)2 . (15.105)

In both cases the expressions show the positivity of the Schur elements.

Apart from the positivity, the coefficients of the Schur elements for Coxeter groups satisfy other
interesting properties. Call a sequence of integers (a1, a2, ..., an) symmetric if ai = an−i and call it
log-concave if a2

i ≥ ai−1ai+1 (taking the logarithm gives precisely the condition for a concave function).

Proposition 15.68. For any Coxeter group, the coefficients of the Schur elements are symmetric. In
type An, the coefficients are in addition log-concave.

The proof of the first part relies on a general formula for Schur elements in terms of cyclotomic poly-
nomials which are symmetric. The second part relies on Chlouveraki–Jacon’s formula and the observation
that log-concavity is multiplicative.

Proof. In [Chl16], Formula (2.2) gives the following expression of Schur elements:

sλ = ξλq
−aλ

∏

Φ∈Cycλ

Φ(qnλ,Φ) , (15.106)

where ξλ ∈ R, nλ,Φ ∈ Z>0 and Cycλ is a set of cyclotomic polynomials. This formula comes from a
case-by-case study.
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Since we are interested in the symmetry of the sequence of coefficients, we can ignore the prefactor
ξλq
−aλ . Furthermore, cyclotomic polynomials are known to be symmetric. Finally a product of symmetric

polynomials is still symmetric. This proves the first part.
In type An, we have seen above in Equation (15.102) that

sλ(q) = q−N(λ̄)
∏

i,j∈λ

[hλi,j ]q . (15.107)

The sequence of coefficients in a quantum integer is (1, 1, ..., 1) which is positive and log-concave. By
Proposition 2 in [Sta89], the product of positive log-concave sequences preserves these properties, thus
the coefficients of the Schur elements are log-concave.

15.9 Perspectives

Our construction can be generalized in different seemingly promising ways, that we list and comment
briefly.

Generalization to other symmetric algebras. Our construction of a 2-dimensional quantum field
theory for which cobordisms are ciliated surfaces seems to work for any symmetric finitely generated
algebra over nice rings, for example for cyclotomic Hecke algebras and Yokonuma–Hecke algebras [Chl16].
We believe that the explicit expressions of 15.58 and 15.59 stay true, but properties like the invariance
under q 7→ q−1, positivity or the interpretation via counting of higher laminations might not hold in
general.

Generalization to affine Hecke algebras. As already underlined in the introduction and in Re-
mark 15.26, our original motivation for the present work was to study the space of functions over charac-
ter varieties and its canonical basis: higher laminations. The Satake correspondence is expected to play
a role in this story. Since it identifies the spherical affine Hecke algebra corresponding to an algebraic
reductive Lie group G with the space of representations of the Langlands dual G∨, the generalization of
the TQFTs constructed above to spherical affine Hecke algebras should be related to the corresponding
character varieties. Since those symmetric algebras are not finitely generated anymore, the construction
of the TQFTs must involve some regularization of the infinite sums which then appear in the gluing
process. Higher laminations, which would generalize finite higher laminations to this new setup at least
in the case of affine Hecke algebras, would be very similar to the spectral networks of [GMN13b], calling
for a physical interpretation of our construction and possibly an understanding in terms of BPS states
counting in 4d N = 2 theories of class S.

Categorification. Hecke algebras are categorified by Soergel bimodules [Soe07]. Can our construction
also be expressed in term of these bimodules? Whereas it was tempting to look for such a categorified
version of our TQFTs to explain the positivity properties of the invariants we observed at the very
beginning of our study, we have seen that the positivity does not hold in all cases. We still expect a
possible categorification - maybe only for type A - which would explain the positivity properties of the
Schur elements of the Hecke algebras as described in Section 15.8, or the positivity properties of the
invariants corresponsing to punctured surfaces.



Chapter 16

Symmetric rings and TQFTs

In this chapter, we formalize the correspondence between symmetric rings and open-closed topological
quantum field theories. In particular, we will show how to construct a TQFT from a symmetric ring,
and conversely how a symmetric ring can be retrieved from a TQFT.

16.1 Introduction

16.1.1 Hecke algebras

Iwahori–Hecke algebras, referred to as Hecke algebras in the sequel, are associative non-commutative
deformations of Coxeter groups depending on a parameter q. They appear naturally in the representation
theory of simple Lie groups defined over finite fields Fq.

Geometrically, let G be a simple Lie group defined over Fq and B a Borel subgroup of G. The Hecke
algebra H(G, q) corresponding to G and q is the algebra of functions on the double coset B\G/B with
the convolution product.

More algebraically, let (W,S) be a Coxeter system and s, t ∈ S two simple reflections. Let mst ∈
N ∪ {∞} be the order of st in W . The Hecke algebra H(W, q) admits the following presentation as
Z[q±1]-algebra:

H(W, q) =

〈
(Ts)s∈S

∣∣∣∣
(Ts)

2 = (q − 1)Ts + q ∀s ∈ S
(TsTt)

mst = 1 ∀s 6= t ∈ S

〉
. (16.1)

Setting q = 1 yields the group algebra of W . For any reduced expression w = s1 · · · sn of a w ∈W , one
sets Tw = Ts1 · · ·Tsn . Matsumoto’s lemma implies that Tw does not depend on the reduced expression
for w. The Hecke algebra H(W, q) is then generated by (Tw)w∈W as Z[q±1]-module. The two definitions
of Hecke algebras coincide when one takes W to be the Weyl group of G.

16.1.2 Symmetric rings

A ring H over an integral domain A (we will be interested in cases where A is the ring of Laurent
polynomials Z[v±1] or a ring containing it) is said to be symmetric if it is free as a module over A
and endowed with a symmetrizing trace τ ∈ H∗. A trace function on H is a element τ ∈ H∗ such
that for all h, h′ ∈ H, τ(hh′) = τ(h′h). A trace function is said to be symmetrizing if the bilinear
form (h, h′) → τ(hh′) is non-degenerate. Equivalently, τ ∈ H∗ is a symmetrizing trace if its coproduct
∆τ ∈ H∗ ⊗H∗ is symmetric and invertible.

Let us denote the inverse of ∆τ by C = Cu ⊗ Cu ∈ H ⊗H, where {Cu} is any basis of H and {Cu}
is its dual with respect to ∆τ . Here and in the sequel we will omit the summation sign over repeated
indices. The fact that C is the inverse of ∆τ can be written as:

∀h ∈ H, τ(hCu)Cu = h , (16.2)

which is equivalent to
∀h1, h2 ∈ H, τ(h1Cu)τ(h2C

u) = τ(h1h2) . (16.3)

Here and below we denote by h or hi arbitrary elements of H and by z or zi arbitrary elements of it
center Z.

407
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Using C we can define two canonical elements of H – the so called Euler element E = m(C) = CuC
u

and the double Euler element G = m(C2) = CuCv ⊗CuCv, where m : H ⊗H → H is the multiplication
map. The element C is an analog of the quadratic Casimir for the semi-simple Lie algebras. Its main
property is given by the

Proposition 16.1. For any X ∈ H ⊗H
XC = CX ′, (16.4)

where we have denoted by X ′ ∈ H ⊗H the element X with the tensor factors interchanged.

Proof. Let h be an arbitrary element of H. Introduce the matrix Xu
w = τ(hCwC

u) = τ(CuhCw). The
identity (16.3) implies that for any h ∈ H we have h = τ(hCu)Cu = τ(hCu)Cu. Applying (16.2) to
hCw and to Cwh we get hCw = Xu

wCu and Cuh = Xu
wC

w. It implies that (h ⊗ 1)C = hCw ⊗ Cw =
(Xu

wCu)⊗ Cw = Cu ⊗ (Xu
wC

w) = Cu ⊗ Cwh = C(1⊗ h).

We show similarly that (1⊗ h)C = C(h⊗ 1) and therefore that (h1 ⊗ h2)C = C(h2 ⊗ h1).

This proposition has several useful consequences:

Corollary 16.2. CuhC
u ∈ Z(H) for any h ∈ H where Z(H) denotes the center of H.

Proof. For any h1 ∈ H we have h1CuhC
u = h1m((1 ⊗ h)C) = m((h1 ⊗ h)C) = m(C(h ⊗ h1)) =

m(C(h⊗ 1))h1 = CuhC
uh1.

This corollary implies that ι∗ : h 7→ CuhC
u maps to the center and that the map h 7→ CuhC

uE−1 is
a projection H → Z. Of course the latter is defined only if E is invertible.

Remark 16.3. By [Moo15, Section 14], we know that E is invertible if and only if H is semisimple.

Corollary 16.4. C2 ∈ Z ⊗ Z.

Proof. C2 = CuCv ⊗ CuCv = Cv ⊗ CuCvCu ∈ H ⊗ Z according to the previous corollary. Similarly we
can show that C2 ∈ Z ⊗H.

If the Euler element E is invertible we can define the trace on Z canonically induced by τ as τ◦(z) =
τ(zE−1) (τ◦ ∈ Z∗). The inverse element C◦ ∈ Z ⊗ Z is given by C◦ = C2. Indeed,

τ(z1CuCvE
−1)τ(z2C

uCvE−1) = τ(z1C
vE−1z2CvE

−1) = τ(z1z2E
−1) (16.5)

Corollary 16.5. Let U and V be two left H-modules. The A-linear maps HomA(U, V ) form a bimodule
over H. Then for any φ ∈ HomA(U, V ) we have CuφC

u ∈ HomH(U, V ).

Proof. The proof is almost the same as for the previous corollary. Abusing notation denote left and right
action maps m : H⊗HomA(U, V )→ HomA(U, V ) and m : HomA(U, V )⊗H → HomA(U, V ) by the same
letter as the multiplication map. For arbitrary h ∈ H we have hCuφC

u = hm((1⊗φ)C) = m((h⊗φ)C) =
m((1⊗ φ)C(1⊗ h)) = m(C(φ⊗ 1))h = CuφC

uh.

Corollary 16.6. For any h1, h2 ∈ H we have Cuh1h2C
u = Cuh2h1C

u.

This follows from the fact that:

Cuh1h2C
u = m((1⊗ h1h2)C)

= m((1⊗ h1)C(h2 ⊗ 1)) = Cuh2h1C
u . (16.6)

It implies in particular that the kernel of the map ι∗ : h 7→ CuhC
u coincides with the commutator

subalgebra [H,H] and thus H = Z ⊕ [H,H] as an A-module.
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16.1.3 Topological Quantum Field Theories

Here we will introduce the notion of the open-closed topological quantum field theory (TQFT) following
essentially [MS06b] and [AN07] in a slightly restrictive way which is sufficient for our needs.

As in Section 15.2.3, we define a ciliated surface to be an oriented compact two-dimensional smooth
surface with boundary and with marked points inside the surface as well as on the boundary. In order
to distinguish the two kinds of marked points we will call the former punctures and the latter cilia. The
connected components of the boundary of the underlying surface are called holes.

The boundary ∂Σ of a ciliated surface Σ is the collection of oriented intervals and circles obtained
by removing cilia from the boundary of the underlying surface. We do not include punctures in the
boundary. The boundary of a ciliated surface has an orientation induced by the one of the surface. Given
two connected components α and β of ∂Σ of the same type one can form another ciliated surface by
gluing them together along an orientation-reversing diffeomorphism α → β. We denote the resulting
surface by Σ/(α ∼ β). Observe that if α and β have one or two common ends, the resulting surface have
one or two additional punctures.

An (open-closed) TQFT over an integral domain A (in our case A = Z[q±1] and its localizations)
is a functor from a category of cobordisms whose objects are oriented circles and segments, and whose
morphisms are ciliated surfaces, to the category of A-modules. It associates a free A-module H(X) to
any collection X of oriented circles and intervals and an element cΣ ∈ H(∂Σ)∗ considered as a linear
form on H(∂Σ), to every ciliated surface. It must satisfy the following axioms:

1. Tensor structure : If X1 and X2 are two disjoint collections of open circles and intervals, H(X1 t
X2) = H(X1)⊗H(X2). This implies that for any collection X the space H(X) is a tensor product
of the modules H := H(interval) denoted by H and Z := H(circle). If Σ1 and Σ2 are two disjoint
ciliated surfaces, it must also be the case that cΣ1tΣ2 = cΣ1 ⊗ cΣ2 .

2. Non-degeneracy: The forms corresponding to a disc with two cilia c ∈ H∗ ⊗ H∗, the annulus
c ∈ Z∗ ⊗ Z∗ and the annulus with one cilium c ∈ H∗ ⊗ Z∗ are of maximal rank over A.

3. Gluing : Denote by C ∈ H⊗H the inverse of c and by C◦ ∈ Z⊗Z the inverse of c . If α and β are
two intervals in the boundary of Σ than cΣ/α∼β = 〈cΣ, C〉αβ . Similarly if α and β are two circles,
than cΣ/α∼β = 〈cΣ, C◦〉αβ . Here by 〈·, ·〉αβ we mean the substitution of the second argument into
the first to the places α and β.

4. Functoriality : The correspondence X → H(X) and Σ → cΣ is functorial with respect to the
diffeomorphisms. Namely, let S(X) is the group of (homotopy classes of orientation-preserving)
diffeomorphisms acting on X. This group acts on H(X) permuting the tensor factors. We require
that the subgroup of S(∂Σ) of classes of diffeomorphisms extensible to Σ leaves cΣ invariant.

16.2 TQFTs and symmetric rings

16.2.1 From a TQFT to a symmetric ring

Given a TQFT one can define the structure of an associative ring with unity and trace on the module H.
For this purpose it is convenient to extend the functor Σ → cΣ to ciliated surfaces whose boundary

components are oriented but not necessarily positively, i.e. according to the orientation of Σ. Denote the
positively and negatively oriented part of the boundary by ∂+Σ and ∂−Σ, respectively. For such surfaces
let cΣ ∈ H(∂+Σ)∗ ⊗ H(∂−Σ) be defined from the form cΣ̃ where Σ̃ is the same ciliated surface as Σ
except that its boundary is entirely positively oriented, by applying the isomorphism C : H∗ → H and
C◦ : Z∗ → Z to the factors of cΣ̃ corresponding to the negatively oriented components of the boundary
of Σ. The gluing axiom 3 implies that gluing boundary components with opposite orientations amounts
just to canonical pairing of the corresponding tensor factors. Such forms cΣ ∈ H(∂+Σ)∗ ⊗H(∂−Σ) can
equivalently be considered as maps H(∂+Σ)→ H(∂−Σ).

Pictorially we mark negatively oriented boundary components by thick lines. When it is convenient
to do so, we will also replace the forms cΣ(· · · ) by the picture of Σ with arguments attached to positively
oriented (thin) boundary components. The structure of the unital ring with trace on H is given by:

1. The trace is given by τ = c ∈ HomA(H,A).
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2. The unity is given by 1 = c ∈ H.

3. The product is c ∈ HomA(H ⊗H,H).

One can verify following for example [AN07] that the properties of the symmetric ring are satisfied.
The associativity of the produt follows from the fact that there are two ways of cutting a square into
triangles:

(h1h2)h3 =

h3

h2

h1

=

h3

h2

h1

= h1(h2h3) . (16.7)

By construction c ∈ HomA(H,H) is the identity map, and hence we can verify that c ∈ H is indeed

the unity, since: h · 1 = h = h = h. Similarly the identity τ(h1h2) = h1 h2 = h1 h2 =

h2 h1

= τ(h2h1) proves the trace property.

16.2.2 From a symmetric ring to a TQFT

Conversely, given a symmetric algebra (H, τ) over a commutative ring A one can construct a TQFT
provided the Euler element E is invertible.

To define a form cΣ for an arbitrary ciliated surface Σ let us describe its value on a decoration of
boundary segments of Σ by elements of H and boundary circles with elements of Z. Let the perimeter P of
a hole in Σ be the corresponding element of Z if it has no cilium, and the expression P = Cuh1 . . . hnC

u ∈
Z, where h1, . . . , hn are the elements of H attached to the segments between the cilia and taken in the
cyclic order, otherwise. It follows from Corollary 16.2 that the perimeter is always in the center of H and
Corollary 16.6 implies that it does not depend on the choice of the starting segment. Now let us define
the form cΣ by the explicit formula:

cΣ(decoration) =
∏

γ ∈ connected components of Σ

τ


GgγEkγ−1

∏

i hole in γ

Pi


 , (16.8)

where gγ , and kγ are respectively the genus and the number of punctures of the connected component
γ of Σ, each Pi is the perimeter of the corresponding hole, while E and G are respectively the Euler
element and double Euler element of (H, τ).

If we multiply the trace by a constant τ 7→ κτ all forms are multiplied by a power of κ called the
degree which is easy to compute. Obviously deg τ = 1, degC = degE = −1, degG = −2, degP = 0 for
an empty hole degP = −1 otherwise. One can easily deduce from (16.8) that the degree of an arbitrary
form is deg cΣ = χ(Σ), where by χ(Σ) we mean the Euler characteristic of the surface with marked points
removed and empty holes filled by disks.

In order to prove that the formula (16.8) indeed defines a TQFT we merely need to check the gluing
axiom since the others are obviously satisfied. This, in turn, is an easy consequence of the formulas (16.3)
and (16.5). For example, let Σ be the connected surface with one hole and perimeter P = Cuh1 · · ·hnCu,
and let us glue two non-adjacent intervals, say the first and the k-th. Then

〈cΣ, Cαβ〉 = τ(GγEk−1CuCvh2 · · ·hk−1C
vhk+1 · · ·hnCu)

= τ(GγEk−1Cuhk+1 · · ·hnCuCvh2 · · ·hk−1C
v) = cΣ/α∼β . (16.9)

The second equality follows from the fact that any perimeter belongs to the center.
Similarly, let us glue the 0-th interval of the hole of a connected surface with one hole with the n-th

interval of the hole of another connected surface with one hole, such that the perimeters of the single
hole of each surface are respectively P1 = Cuh0 · · ·hnCu and P2 = Cuhk+1 · · ·hnCu:

〈cΣ, Cαβ〉 = τ(Gγ1Ek1−1CuCvh2 · · ·hkCu)τ(Gγ2Ek2−1Cwhk+1 · · ·hn−1C
vCw)

= τ(Gγ1Ek1−1CuC
wGγ2Ek2−1Cwhk+1 · · ·hn−1h1 · · ·hkCu)

= τ(Gγ1+γ2Ek1+k2−1Cuh1 · · ·hn−1C
u) = cΣ/α∼β , (16.10)

where the third equality follows from Equation (16.3). The remaining cases are easily obtained in the
same way.
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Example 1: Let H be a matrix ring EndV , where V is a free A-module of rank n. Let the symmetrizing
trace be τ = s−1tr, where tr is the standard matrix trace and s some invertible element of the ring A.
The center Z of H can be identified with A. Given a basis of V one can choose the set of matrices
(Cu)u=(i,j)∈[|1,n|]2 as the basis of H, where C(i,j) = eij is the matrix with only zero components but a

1 at the i-th row and j-th column. Then the elements of the dual basis (Cu)u∈[|1,n|]2 are Cu = seji for
u = (i, j). The bilinear element C can be written as

C = s
∑

i,j

eij ⊗ eji . (16.11)

The map to the center is
CuhC

u = sejihe
i
j = s tr(h)IdV , (16.12)

where IdV is the identity n×n matrix (the unit in H), and thus the Euler element is E = (sdimV ) IdV .
The double Euler element is

G = s2eije
k
le
j
ie
l
k = s2δklIdV e

l
k = s2IdV , (16.13)

and perimeters are Pi = s tr (hi) IdV , where hi = hi,1 · · ·hi,ni is the product of the labels attached
between the cilia in a cyclic order. Therefore the forms for connected surfaces are given by

cΣ = s2g−2+k+m(dimV )k
m∏

i=1

tr (hi) . (16.14)

Example 2: Let H be a direct sum of matrix algebras:

H =
⊕

λ

EndA Vλ , (16.15)

with the symmetrizing trace τ =
∑

s−1
λ trλ. The Euler element is

E =
⊕

λ

sλ dimVλ Idλ , (16.16)

and therefore we see that the coefficients sλ are determined by the eigenvalues of the Euler element E.
The perimeters are

Pi =
⊕

λ

sλ trλ(hi) Idλ , (16.17)

where hi = hi,1 · · ·hi,ni as in the previous example. Hence the forms are given by

cΣ =
∑

λ

s2g−2+k+m
λ (dimVλ)k

m∏

i=1

trλ(hi). (16.18)

16.2.3 Application to the Hecke ring

Let H be the Hecke algebra corresponding to the Coxeter system (W,S). There is a symmetrizing trace
τ on H called the canonical trace since it corresponds to the canonical trace on the group algebra of the
finite group W when q = 1. It is the map H → Z[q±1] given by

∑
w∈W cwTw 7→ ce, where e denotes the

neutral element of W . The corresponding bilinear form C is C =
∑
q−l(w)Tw ⊗ Tw−1 and is well defined

even over Z[q±1]. The map H → Z given by h 7→ TwhTw−1 is the deformation of the summation over the
group acting by conjugation. The Euler element is thus given by

E =
∑

w

q−l(q)TwTw−1 . (16.19)

Its value in the trivial representation (the one where Tw 7→ ql(w)) is P (q) =
∑
w q

l(w). The polynomial
P (q) is called the Poincaré polynomial of the Hecke algebra. It can be considered as a q-analog of
the order of the group W . When W is a Weyl group the Poincaré polynomial of H can be written as
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P (q) =
∏
i[ei]q where the ei are the exponents of the corresponding Lie algebra, and where we used the

standard notation for q-numbers [n]q = (1− qn)/(1− q).
Given an irreducible representation of the Hecke algebra ρλ : H → EndVλ where Vλ is a free A-

module, one can define its character χλ ∈ H∗ by χλ(h) = tr(ρλ(h)). The generic degree dλ(q) is
defined by the identity dλ = P (q) dimVλ ρλ(E−1). The generic degrees are polynomials in q and for
the Weyl groups they are q-analogs of the dimensions of the irreducible representations given by q-
analogues of the hook length formulas. They are listed for all Weyl groups in [Car85] and for remaining
Coxeter groups in [AL82]. We will also use the Laurent polynomials sλ(q) called Schur elements given
by sλ(q) = P (q)/dλ(q) = dimVλ ρλ(E).

The Hecke algebra is not semi-simple over Z[q±1] but it becomes semi-simple over the localized ring
A = Z[q±1]/P (q) [GU89]. Therefore according to the Artin–Wedderburn theorem the corresponding
Hecke algebra can be decomposed as

(H, τ) =
⊕

λ

(EndA Vλ, s
−1
λ trλ), (16.20)

where λ runs over the set Irr(W ) of irreducible representations of the ring H which coincide with the set
of irreducible representations of the Coxeter group W . Observe that since sλ(q) = P (q)/dλ(q) the Schur
elements sλ are invertible in the ring A.

Comparing with the examples above we deduce the forms cΣ for the Hecke algebra in the cases of
connected surfaces:

cΣ =
∑

λ∈Irr(W )

s2g−2+k+m
λ (dimVλ)k

m∏

i=1

χλ(hi). (16.21)

Example 3: Let us consider a few particular cases of cΣ corresponding to surfaces Σ without boundary.
First, when Σ is a sphere, one has:

c = τ(E−1) = P−2
∑

λ

d2
λ . (16.22)

It is the only form which is not a Laurent polynomial in q. When Σ is a sphere with one puncture:

c = τ(1) = 1 =
∑

λ

s−1
λ dimVλ = P−1

∑

λ

dλ dimVλ , (16.23)

from which one deduces the identity
∑
λ dλ dimVλ = P . Adding more punctures on the sphere yields:

c = τ(E) =
∑

λ

(dimVλ)2 = dimH , (16.24)

c = τ(E2) =
∑

λ

sλ(dimVλ)3 , (16.25)

Now, in the cases of the torus and the torus with one puncture one obtains:

c = τ(GE−1) =
∑

λ

1 = dimZ , (16.26)

c = τ(G) =
∑

λ

sλ dimVλ . (16.27)

The Poincaré polynomial of the Hecke ring A1 is P = 1+q and the generic degrees are d = 1, d = q,

therefore the Schur elements are, respectively s = 1 + q, s = 1 + q−1. Therefore we get c = 1+q2

(1+q)2 ,

c = 1, c = c = q + 2 + q−1, c = c = 2.

The Poincaré polynomial of the Hecke ring A2 is P = [3]q! = 1 + 2q + 2q2 + q3 and the generic
degrees are d = 1, d = q3, d = q + q2 which yields the Schur elements s = q3 + 2q2 + 2q + 1,

s = 1 + 2q−1 + 2q−2 + q−3, s = q + 1 + q−1. Therefore:

c = 1+q2+2q3+q4+q6

(1+q)2(1+q+q2)2 , c = 1, c = q3 + 2q2 + 10q + 10 + 10q−1 + 2q−2 + q−3, c = q3 + 2q2 +

4q + 4 + 4q−1 + 2q−2 + q−3, c = 6, c = 3.
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parabolic isometry of H, 84
partial resolution, 211
perfect matching, 210
Pfaffian orientation, 211
physical gauge coupling, 157
Pick theorem, 218
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S-duality, 180
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seed pattern, 72
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spider move, 70, 213, 218
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stable Higgs bundle, 134
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string compactification, 191
string frame, 176
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superpotential, 69
superspace, 154
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T-duality, 179
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toric duality, 212
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twin SU(5) model, 253
twisted flag configuration, 102
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127
untwisting map, 214, 368
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UV curve, 171, 364

vector superfield, 154, 168, 171

wall-crossing phenomenon, 365
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Antoine Pasternak, and Valdo Tatitscheff. Dimers, Orientifolds and Stability of Supersymmetry
Breaking Vacua. JHEP, 01:061, 2021.

[ABF+21c] Riccardo Argurio, Matteo Bertolini, Sebastián Franco, Eduardo Garćıa-Valdecasas, Shani Meynet,
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Mathématique, 2(1):88–92, 1952.

[Wil16] Geordie Williamson. The Hodge theory of the Hecke category. arXiv preprint arXiv:1610.06246,
2016. arXiv:math/1610.06246.

[Wit81] Edward Witten. Dynamical Breaking of Supersymmetry. Nucl. Phys. B, 188:513, 1981.

[Wit82] Edward Witten. Constraints on Supersymmetry Breaking. Nucl. Phys. B, 202:253, 1982.

https://arxiv.org/abs/2111.07946
http://library.msri.org/books/gt3m/
http://library.msri.org/books/gt3m/
https://arxiv.org/abs/hep-th/0509212
https://arxiv.org/abs/hep-th/0509212
https://arxiv.org/pdf/1610.06246.pdf


BIBLIOGRAPHY 433

[Wit93] Edward Witten. Phases of N=2 theories in two-dimensions. Nucl. Phys. B, 403:159–222, 1993.

[Wit95] Edward Witten. String theory dynamics in various dimensions. Nucl. Phys. B, 443:85–126, 1995.

[Wit97] Edward Witten. Solutions of four-dimensional field theories via M theory. Nucl. Phys. B, 500:3–42,
1997.

[Wit98a] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253–291, 1998.

[Wit98b] Edward Witten. Toroidal compactification without vector structure. JHEP, 02:006, 1998.

[Xie13] Dan Xie. Higher laminations, webs and N=2 line operators. arXiv preprint, 2013. https://arxiv.
org/abs/1304.2390.

[Yam08] Masahito Yamazaki. Brane Tilings and Their Applications. Fortsch. Phys., 56:555–686, 2008.

[Yon74] Tamiaki Yoneya. Connection of Dual Models to Electrodynamics and Gravidynamics. Prog. Theor.
Phys., 51:1907–1920, 1974.

[Z+20] Piotr A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.

[Zel99] Andrei Zelevinsky. Littlewood–Richardson semigroups. New perspectives in algebraic combinatorics
(Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ, 38:337–345, 1999.

https://arxiv.org/abs/1304.2390
https://arxiv.org/abs/1304.2390


Les algèbres et variétés amassées se manifestent naturellement dans divers champs de la physique
mathématique, comme la théorie de Teichmüller de rang supérieur et l’étude des modèles de dimères.

D’une part, on étudie la généralisation des laminations de Thurston aux espaces de Teichmüller de
rang supérieur correspondant à des groupes réels déployés. Cela conduit notamment à l’introduction
de théories topologiques des champs quantiques liées aux algèbres de Iwahori–Hecke des groupes de
Coxeter finis. Celles-là associent un polynôme de Laurent entier à chaque surface épointée de type fini.

D’autre part, les modèles de dimères nous permettent de prouver l’existence d’une complétion ul-
traviolette stable du modèle SU(5) de brisure dynamique de supersymétrie. On dérive de plus des
résultats généraux quant à l’existence d’anomalies de jauge sur des D-branes transverses à des orien-
tifolds de singularités Calabi–Yau affines toriques. Enfin, on donne un sens physique aux modèles de
dimères sur la bouteille de Klein.

Par ailleurs, les deux parties introductives de ce manuscrit présentent de manière pédagogique la
théorie de Teichmüller de rang supérieur de Fock et Goncharov, puis les modèles de dimères en théorie
des cordes ainsi que leur emploi dans l’étude des correspondances holographiques.

Cluster algebras and varieties naturally appear in various fields of mathematical physics, such as
higher Teichmüller theory and dimer models – known as brane tilings in the context of string theory.

On the first hand, we study the generalisation of Thurston’s laminations to higher Teichmüller
spaces in the real split case. This guides us towards introducing topological quantum field theories
associated with the Iwahori–Hecke algebras of finite Coxeter groups. Those assign a Laurent polynomial
with integer coefficients to each punctured surface of finite type.

On the other hand, we use dimer models to prove the existence of a stable ultraviolet completion
of the dynamical supersymmetry breaking SU(5) model. Moreover, we derive general results on the
existence of gauge anomalies in the worldvolume of D-branes at orientifolds of affine toric Calabi–Yau
singularities. Lastly, we provide a physical interpretation of brane tilings on the Klein bottle.

Besides, the two preliminary parts of this dissertation are pedogogical invitations first to Fock and
Goncharov’s higher Teichmüller theory and then to the use of dimer models in string theory and in
holography.
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