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Résumé

L'étude des systemes d’auto-triage, notamment leur comportement sous controle cinétique,
pourrait ouvrir la voie a une meilleure compréhension des propriétés intrinseques et de
l'intrication de la maticre. Cette thése est centrée autour de l'étude des caractéristiques
cinétiques et thermodynamiques dans les systémes d’auto-triage de macrocycles de
polyimines et de cages macrobicycliques. Les forces motrices de chaque distribution,
obtenues a la fois a des temps de réaction courts et apreés avoir atteint 1'équilibre, ont été
¢tudiées dans un premier temps. Ces résultats mettent en évidence le role essentiel du choix
judicieux des composants initiaux, qui permet 1’évolution des DCLs (initialement composées
des produits cinétiques hors équilibre) vers des états thermodynamiquement favorisés. Dans le
dernier chapitre, les interconnexions isomériques entre les constituants ont été évaluées afin
d’explorer une nouvelle approche pour le développement de DCLs d’une plus grande
complexité.

Mots cles : chimie covalente dynamique, bibliothéque covalente dynamique, triage
automatique dynamique, macrocycles, cages moléculaires, systemes hors équilibre,
commutation cinétique

Abstract

The study of self-sorting systems, especially their behaviour under kinetic control, may pave
the way to understand the intrinsic properties and intricacy of matter. This thesis focuses on
the study of kinetic and thermodynamic features in self-sorting systems of polyimine
macrocycles and macrobicyclic cages. The driving forces for each distribution obtained at
both short reaction times and after reaching the equilibrium were firstly investigated. The
results highlight the essential role of an appropriate design of initial components, which
allows the evolution of DCLs from out-of-equilibrium kinetic products to thermodynamically
favoured states. In the last chapter, isomeric interconnections between constituents were
evaluated in order to provide a new aspect for developing DCLs of higher complexity.

Key words: dynamic covalent chemistry, dynamic covalent library, dynamic self-sorting,
macrocycles, molecular cages, out-of-equilibrium systems, kinetic switching
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RESUME DE LA THESE DE DOCTORAT

1) Introduction

Le développement actif de la chimie covalente dynamique (DCC pour dynamic covalent
chemistry) offre un outil puissant aux chimistes pour générer des architectures organiques
discréetes a partir d'un mélange de composants, liées par des liaisons covalentes réversibles. En
particulier, de nouvelles architectures dynamiques macrocycliques et macrobicycliques—
assemblées par la formation de multiples liaisons imines réversibles (entre des amines et des
composés carbonylés) —ont ét¢ développées. Des structures telles que les tétraimino-
macrocycles et les cages moléculaires de type cryptand macrobicyclique hexaimino en sont de
parfaites illustrations. Comme c'est le cas pour leurs analogues non dynamiques, la cavité
intramoléculaire de ces structures bien définies peut conduire a des applications telles que la
détection’ et la catalyse.

Du point de vue de leur méthodologie synthétique, les structures assemblées
dynamiquement permettent d’accéder a de nouveaux comportements comme 1’auto-triage et
I’adaptabilité. Les systémes d'auto-sélection (que 1’on peut aussi appeler auto-triage) basés sur
des bibliotheques covalentes dynamiques (DCL pour dynamic covalent libraries) générées par
la DCC fonctionnent par incorporation, décorporation et ¢change de composants, suivant les
relations agonistes et antagonistes entre les constituants. La formation sélective d'architectures
résultantes de combinaisons spécifiques parmi les différentes possibilités dans la DCL via
l'auto-triage est particulierement intéressante. La génération d'architectures bien définies par
l'auto-triage des composants a partir de DCL multi-composants implique une compétition
entre la formation: i) d’entités auto-triées homoleptiques discrétes (homo-auto-tri); ii)
d’entités auto-triées hétéroleptiques d'assemblages mixtes (hétéro-auto-tri) possédant
différents blocs de construction; iii) de mélanges statistiques de résultats désordonnés. L'enjeu
est de controler rationnellement le systtme de mani¢re a ce que l'augmentation de la
complexité moléculaire (augmentation du nombre de composants et de groupes réactifs sur un
seul composant) n'entraine pas des connexions aléatoires résultant de condensations
indésirables ou de formation de polymeéres dues a la similitude des énergies de liaisons. Pour

relever ce défi, il est crucial de décrypter le mécanisme d'auto-triage et d'en tirer profit.
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Cependant, assez peu d'études ont traité du mécanisme des processus d'auto-assemblage et
d'auto-triage basés sur la chimie covalente dynamique. Cela est dii en grande partie a la
difficult¢ d'analyser la formation de combinaisons potentielles de produits intermédiaires
générés de maniére transitoire au sein d'une méme DCL. Le suivi de formation des produits et
la compréhension de la conversion des intermédiaires présentent un intérét particulier et

seront utiles pour la prédiction des résultats d'auto-triage.

2) Résultats et discussions

2.1. Les processus d'auto-sélection des macrocycles [2+2] et des cages macrobicycliques

[3+2]

Dans ce chapitre, nous nous sommes concentrés sur les multiples processus de
condensation d'imines et les mécanismes d'auto-sélection entre les composants qui se
déroulent dans ces macrocycles et cages macrobicycliques. D’aprés les investigations
cinétiques réalisées, un mécanisme plausible d'assemblage a trois voies vers la formation de
macrocycles organiques covalents [2+2] a été suggéré (Schéma 1). Le processus de formation
des cages macrobicycliques est plus compliqué que celui des macrocycles. Lorsque les cages
macrobicycliques sont mises en ceuvre dans un systeme d'auto-sélection a trois composants,
au moins quarante-trois especes et de nombreuses réactions internes peuvent étre générées.
Une caractéristique importante de ces processus réside dans le comportement d'auto-
correction qui se produit sur la base de condensations d'imines réversibles. Les résultats ont
indiqué que les intermédiaires hétéroleptiques générés aléatoirement au cours de ce processus
peuvent étre corrigés par dissociation et recombinaison, a savoir le processus d'auto-
correction, conduisant a la génération parallele d'espéces homoleptiques. En outre, les
différences entre la longueur de la chaine des ¢léments constitutifs et le rapport

stoechiométrique des substrats sont confirmés comme étant les deux facteurs clés pour la mise

en ceuvre d'un auto-triage de haute-fidélité.
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Schéma 1. Présentation schématique des possibles voies d’auto-triage des cages

macrobicycliques dynamiques covalentes a base d’imines.

2.2 Auto-sélection et commutation cinétique dans deux ordres cycliques : macrocycles et

cages

La construction de systémes d'auto-triage covalents dynamiques organiques purs
contenant des structures multi-topologiques est une méthode judicieuse pour augmenter la
multiplicité et la diversité des systemes chimiques. Des réseaux dynamiques constitutionnels
[2 x 2] (CDN pour constitutional dynamic networks) ont été obtenus soit a partir de DCLs a

quatre composants dont une diamine, une triamine et deux dialdéhydes, soit a partir de
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mélanges préformés de macrocycles et de cages (Schéma 2). En opérant a la fois par des
propriétés cinétiques et thermodynamiques, les systemes d'auto-triage révelent l'apparition
d'une commutation cinétique via l'échange de composants au cours de la formation de
macrocycles et de cages macrobicycliques. Ce comportement confére une amplification
dépendante du temps et une commutation orthogonale entre les constituants dans la diagonale
de leur CDN [2 x 2] associée. Ce chapitre a révélé l'apparition de commutations cinétiques
par échange de composants au cours de la formation de macrocycles et de cages

macrobicycliques par auto-triage.
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Schéma 2. (a) La structure des composants et des constituants au sein de la CDN. (b) La
commutation orthogonale des constituants et une distribution cinétique a une distribution

thermodynamique, sur une période de 18 jours
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2.3 Transformation cinétique du tri aux macrocycles non triés

Nous avons exploit¢ le comportement d'auto-triage en mélangeant la 2,6-
pyridinedicarboxaldehyde (Py) avec deux diamines de longueur similaire, NON et NNN dans
un rapport 2: 2: 2. Lors du mélange des composants, le macrocycle homoleptique Py2(NNN):
a culminé a 61 % de rendement au début du processus. Au fil du temps, une quantité partielle
de Py2(NNN); a progressivement €té décomposée et les deux autres macrocycles Py2(NON)z,
Py2(NON-NNN) se sont formés en continu. Enfin, 1'équilibre de la réaction a été atteint en
780 min, résultant en un mélange presque statistique avec 25% de Py2(NNN)2, 23% de
Py2(NON)2, 43% de Py2(NON-NNN), accompagné de 7% de mélanges intermédiaires.

L'évolution en fonction du temps pourrait étre affectée par la variation de température, la
présence des ions métalliques et le type de solvants. De plus, cet auto-triage transitoire
controlé cinétiquement peut é&tre réalis¢é dans des DCL contenant trois diamines
structurellement similaires. Dans I'ensemble, en raison d’une différente réactivité, ainsi que
d’une structure similaire des composants, une évolution unique se déroule et passe d'un état

auto-trié¢ cinétiquement pi¢gé a des mélanges presque statistiques non triés.
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Schéma 3. Evolution cinétique des produits générés a partir de (a, ¢c) Py + NNN + NON et (b,
d) Py + NNN + NON + Cd(II) en fonction du temps.
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2.4 Perturbation des DCLs via un processus d'auto-triage

Nous avons synthétisé des cages organiques avec des ligands pontants asymétriques pour
réaliser le phénomeéne d'auto-triage. Aprés mélange des réactifs de départ, deux
diastéréoisomeres, Cage bbb et Cage bbp ont ¢été obtenus. Exploitant les propriétés de
réversibilité dynamique et de coordination en présence de Zn(Il), la cage bbp se transforme
progressivement en Cage bbb-Zn, le Zn(Il) préférant former une géométrie de coordination
octaédrique. Cette étude nous a permis de déterminer les facteurs qui influencent la fiabilité
des processus d'auto-triage, parmi lesquels les propriétés électroniques des composants
organiques ainsi que la nature des cations métalliques. Dans des conditions appropriées, les
deux cages organiques peuvent étre séparées. De plus, 1'unité structurelle asymétrique fournit
deux environnements chimiques différents a Il'intérieur des cages organiques. Ces
environnements peuvent étre utilisés pour la coordination avec des différents métaux afin
d'obtenir des cages organiques qui contiennent du centre bimétalliques hétéronucléaires.

L'utilisation de ligands dissymétriques pour la synthése de nouvelles cages organiques
grace a la stratégie de simplification auto-triée a fourni de nouvelles idées pour la conception
et la synthése de nouveaux types de cages covalentes organiques.

N N

g g uzn'--;';.} \ Z'}JTH
DGO LE NashMeek
)(N( * j( ( m )(N( + j( (

N y N

83% ™ 0% 90%

Schéma 4. Génération de deux cages isomeres a partir du ligand Py-Ph et T, ainsi que leur

conversion dynamique en présence de triflate de Zn(II).

3) Conclusion générale

En conclusion, la présente thése illustre 1'utilisation de liaisons covalentes dynamiques de
type imine comme outils utiles dans la construction de systémes d'auto-sélection/triage. Les

propriétés d'auto-triage ont été démontrées en utilisant des macrocycles et des cages
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macrobicycliques comme modeles sous plusieurs aspects : mécanistique, du comportement de
commutation cinétique, ainsi que les états hors équilibre. Comprendre le principe du triage est
utile pour concevoir et mettre en ceuvre des bibliothéques dynamiques constitutionnelles
impliquant une grande diversité de composition et un ordre de complexité plus élevé.

Il est d'une grande importance de comprendre les facteurs qui conduisent a I’auto-triage
ainsi que les propriétés cinétiques et thermodynamiques des constituants et des DCLs. Les
systemes dynamiques constitutionnels qui passent en fonction du temps d’un état hors-
équilibre vers son état d’équilibre, jouent un role fondamental dans la compréhension de la

complexification de la maticre.



Chapter 1. General Introduction

Chapter 1. General Introduction

1. Constitutional Dynamic Chemistry

1.1. Background

Supramolecular chemistry focusing on the study of weak, reversible non-covalent
intermolecular forces has been rapidly developed over the past decades.'™ Emanating from
basic research on molecular recognition, supramolecular chemistry has been defined as
“chemistry beyond the molecule”,! where molecules interact with each other by means other
than covalent bonds. The development by Emil Fischer of the “lock and key model" for
complementary enzyme-substrate interactions was a forerunner of this realm.’ As biological
behaviours such as enzyme binding, DNA replication, and protein folding, can often be
interpreted in terms of supramolecular interactions, supramolecular chemistry can be seen as
a powerful toolkit for the generation of highly complex, self-organized and functional
chemical systems.

Labile intermolecular interactions such as van der Waals (dispersion) forces, m—n
stacking, hydrogen bonding, and acceptor—donor interactions have been widely exploited in
attempts to mimic self-organization in Nature, and one of the most successful approaches has
been based on metal-ion-ligand binding (coordination template effect). Fascinating examples
of the chemistry generated through this approach can be found in the self-assembly of
metallosupramolecular circular helicates,®’ grids,®’ catenanes and rotaxanes,!®!! Borromean
rings,'? and cages'*~"°.

The key feature of most supramolecular architectures is their intrinsically dynamic (or
adaptive) nature, which enables them to adapt and rearrange their structures or constitutions
in response to external stimuli.'® For example, the reversible adaptation of a coiled ligand to
uncoiled form could be controlled by metal ions.”!” In the absence of Pb(Il), a (hydrazone-
pyrimidine)io ligand Hioe exhibited a helical conformation. Instead, the addition of 10 equiv.
of Pb(Il) to the system resulted in the formation of a linear complex LPbio. Subsequent
removal of Pb(II) allowed to liberate the ligand Hio and brought back the ligand to its helical

conformation. Based on the adaptive feature of responding to external stimuli,

supramolecular chemistry is also known as Dynamic Non-Covalent Chemistry (DNCC).



Chapter 1. General Introduction

UNFOLDING
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Figure I-1. A representation of reversible extension/contraction motion of a coiled hyz-pym ligand

Hj, into uncoiled complex in response to Pb(II) (Figure reproduced from reference'”).

A widening understanding of supramolecular chemistry has driven chemists to
incorporate dynamic features into molecular chemistry, even though covalent bonding is
considered to be stronger than supramolecular interactions. The development of molecular
assemblies with the ability to adapt in response to external effectors requires the use of
dynamic covalent reactions. In line with supramolecular interactions, dynamic covalent
reactions allow the formation and breakdown of covalent bonds under thermodynamic
control. Within this context, the concept of Dynamic Covalent Chemistry (DCC or DCvC)

was born. 320

DyNAMIC DyNAMIC
COVALENT NONCOVALENT
CHEMISTRY CHEMISTRY

(DCC sometimes DCvC) (DNCC)
Molecular Chemistry Supramolecular Chemistry

DYNAMIC COMBINATORIAL CHEMISTRY
(DCC)
combinatorial point of view
Figure 1I-2. Conceptual representation of Dynamic Combinatorial Chemistry (DCC) and

Constitutional Dynamic Chemistry (CDC) (Figure reproduced from reference?').

The selective regulation of constituents by means of recombination of components at
both the molecular and supramolecular levels defines the domain of Dynamic Combinatorial

Chemistry (DCC).?>?* On the other hand, the resulting constitutional variations also implicate
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the realm of Constitutional Dynamic Chemistry (CDC).*** The former emphasizes the
dynamic interconnection of different chemical entities from the combinatorial point of view.
In contrast, the latter is rather focused on the essential characteristics of chemical entities
from the compositional point of view. The full collection of all possible constituents really or
virtually generated via reversible connection defines a dynamic combinatorial library (DCL)
or constitutional dynamic library (CDL).2%*” When a DCL is subjected to external stimuli,
these constituents engage in appropriate (positive and negative) feedbacks in response to the
external factors to up- or down-regulate the composition of constituents. In full, a DCL
features the following characteristics:*®

v Conversion, the overall number of constituents regarding their initial components;

v' Composition, the distribution or relative abundance of different constituents, as well

as the selectivity of the system;

v Expression, the defined constituent which originates from conversion and selectivity.

The principle of regulating the composition of a DCL relies on various thermodynamic
or kinetic properties of each constituent.””° Examples of molecular recognition driven
selection and amplification of the thermodynamically favoured constituents can be found in
the “lock and key model”.?>?” A mixture of fragments(components) can generate a DCL
containing a set of all the possible potential keys (constituents) under thermodynamic control.
When this DCL is treated with a lock (an external effector), one (or more) key that fits best
with the lock will be bound preferentially. This selection could either be thermodynamically
controlled, through which the key that exhibits the strongest interaction with the lock will be
produced, or be kinetically controlled, through which the key that forms fastest within the
lock will be produced. This idea of fast screening the most complementary compounds in the

presence of targets (receptors) has been specially developed in the field of drug discovery.’!~
33
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Figure I-3. Schematic representation of the concepts behind dynamic combinatorial chemistry and

virtual combinatorial libraries. (Figure reproduced from reference?®)
1.2. Constitutional dynamic networks

In 2006, the interconnectivity of constituents was first represented in a square graph,
termed a constitutional dynamic network (CDN) by Giuseppone and Lehn.** Basically, a
DCL of four constituents AB, AB’, A’B, and A'B’, can be generated by dynamic reversible
connections of components A, A’, B, and B'. The interconnections of the four constituents
can be represented by a [2 x 2] square graph. The constituents that share one component and
are therefore involved in antagonistic interactions (e.g., AB and AB’ or A'B and A'B’) are
placed on the edges of the square, whereas constituents having no common component and
exhibiting agonistic correlations (e.g., AB and A'B’ or A’B and AB’) are connected by the
diagonals.

If the thermodynamic stabilities of four constituents AB, A'B, AB’ and A’B’' are similar,
the concentration of each constituent in an equilibrated DCL should be similar as well. Such a
distribution is defined as a statistical distribution (Figure I-4 left). This equilibrated DCL is
able to regulate its constitutional distribution in response to external effectors (E) through
component recombination, therefore increasing one pair of the agonistic constituents and
giving rise to a biased distribution (or enforced distribution, Figure I-4 right). The external
stimuli could be physical factors (e.g., light,*3temperature,’’ electric field,***® or

mechanical pressure*! ) or chemical factors (e.g., metal ions,”*** pH**"). Overall, the
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stimuli induced DCL re-equilibrium not only underlines the selection of the fittest constituent,
but also the up-regulation of the least fit agonistic constituent. Several specific examples of

DCLs adapted to different effectors are described below in detail.

CONSTITUTIONAL DYNAMIC NETWORKS

Unorganized State =~ SELF-ORGANIZATION Organized State
Statistical Distribution Enforced Distribution
o . e ;
‘?E ““““““ ’?‘B Component SELECTION E";\B ““““““ v
i Constituent AMPLIFICATION { [
! D | driven by EFFECTOR E | D |
! @ | ADAPTATION i @ |
1 1 i
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e AGONISTIC ~ ANTAGONISTIC = © NE

% SELECTION driven by PHYSICAL STIMULUS or CHEMICAL EFFECTOR
% AMPLIFICATION of AGONISTS : BOTH AB AND A’B’

==p Amplification of AB (« fittest ») drives amplification of A’B’ (« unfittest »)
==p SELECTION under SELF-ORGANIZATION PRESSURE

mmp Significance for PREBIOTIC EVOLUTION of MATTER

==p ADAPTIVE NETWORKS

Figure I-4. Schematic representation of interconnectivities of constituents and their adaptation

behaviour in response to effector E in a [2 x 2] CDN. (Figure reproduced from reference*®)

1.2.1. Adaptation to metal ions

In general chemical synthesis, metal ions have many uses, most importantly through
selective coordination of one product within a mixture and through catalysis of product
formation.* Both roles are particularly important in the chemistry of imines and related
species such as hydrazones.’® In the metallosupramolecular chemistry of C=N donor ligands,
rational use of metal ions has led to specific adaptation behaviour of DCLs involving
amplification of a responsive constituent and its agonist, with the concomitant reduction of
the concentrations of their antagonists*>°!.

An elegant illustration of the regulation of distributions of DCLs by metallo-selection
was achieved by Men and Lehn (Figure I-5).>> A DCL of nine constituents was generated
from three aldehydes (A4, As and A7) and three different amines (D3, D4 and Cy), for which
the interconnections can be represented by a [3 x 3] CDN (Figure 5). Upon addition of two

metal cations (Fe(II) and Cu(I)) simultaneously or sequentially (Fe(II) then Cu(I)) to the pre-
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equilibrated incomplete CDN NE, the [3 x 3] CDN underwent a coordination controlled
perturbation. The addition of Fe(II) resulted in the amplification of a single Fe(Il) complex
associated with its agonistic [2 x 2] sub-network. Subsequent addition of Cu(I) re-
equilibrated the [2 X 2] sub-network, leading to the selective formation of a Cu(I) complex
and its agonist. It is interesting to note that the DCL was destroyed by the first addition of
Cu(I) because component D4 caused the oxidation of Cu(I) to Cu(Il). This work demonstrated
that system complexity can be heightened by introducing additional effectors to a DCL but
that this may result in a high level of selection and simpler outputs through the recombination

of constituents.
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Figure I-5. Adaptation of the [3 x 3] CDN of a DCL of nine constituents formed from a mixture of

six components (Figure reproduced from reference’?).

Recently, adaptation to metal ions was analysed in terms of a “dynamic fingerprint” by
Osypenko and Lehn for a biphasic system of immiscible solvents (Figure 1-6).?! DCLs

containing imine constituents were pre-constructed as receptor library for metal cations in a
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solvent mixture of chloroform and water. The key aspect of this “dynamic fingerprint” system
is that adding metal cations into the water phase (information writing) resulted in distribution
changes of constituents in the organic phase (information reading) via components
reconstruction across the interface between two solvents. Chemical information written in
one space domain affected the constitution of the chemical entities in the other domain,

revealing a manner to deliver messages without a messenger.

IN Effector @ IN Effector @ IN

Phase

Phase Phase
Adaptation Adaptation
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5 ; . ; ; i
% 3 %
g 2 g
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Figure I-6. Schematic representation of the generation of “dynamic fingerprint”: addition of a
particular effector E1 or E2 into the aqueous IN-phase, leads to the compositional variation of the

organic OUT-phase. (Figure reproduced from reference?').

1.2.2. Adaptation to light

Compounds with C=N double bond, for example, imines, oximes or hydrazones, are a
class presenting tunable photo/thermo-switches which display photo/thermo- responsive E/Z
configurational isomerization via rotation about the C=N double bonds.”® This switching
between E/Z isomers can also be induced by metal cations. Supramolecular assemblies made
through interactions with C=N double bonds can show reversible photo- and coordination-
controlled ion release, phase separation®®, morphological change®* and sol-gel transitions™.

In 2014, Vantomme and Lehn investigated photo-induced isomerization and constituents
redistribution of a DCL composed of acylhydrazone constituents E-'A'C, 'A3C, 2A'C, and
2A3C (Figure I-7).* Irradiation resulted in photoisomerization of constituent E-'A'C from its

E conformation to the Z conformation (Z-'A'C). Since intramolecular hydrogen bonding can
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further stabilize the Z configuration, more Z-'A'C as well as its agonist 2A3C were generated.
Subsequently, an informational double entry CDN matrix based on four DCLs that are
adaptive to both physical (light) and chemical (metal ions) dual stimuli was reported.>® These
studies illustrated the potential uses of DCLs as devices for information storage by means of

distribution changes.
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Figure I-7. Adaptation of a [2 X 2] DCL of four pyridylacylhydrazone constituents under
metalloselection on addition of Zn(II) and photoselection by photoisomerization of E-'A'C into Z-

'A'C on light irradiation (Figure reproduced from reference**)

1.2.3. Adaptation to morphological change

Integrating stimulus induced isomerization into dynamic materials can result in
morphological changes. For example, Ulrich and Lehn studied metal cation-induced
reversible switching from linear polymeric to macrocyclic forms of diimines derived from a
dialdehyde functionalized to provide metal ion chelation sites (Figure I-8a).>* In the absence
of metal ions, the core dialdehyde adopted a W shape with the aldehyde groups in a divergent
array and formed linear oligomers or polymers by condensation with diamines. The addition
of metal ions led to their binding to the tridentate (NNN donors) core of the dialdehyde and a
conformational change placing the two aldehyde substituents in a close (near parallel) array
suited to bridging by diimine formation with diamines of appropriate length and the

formation of mononuclear macrocyclic ligand complexes. A similar methodology of metal
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ion-controlled isomerization has been applied to achieve self-sorting and component selection
in a competitive dynamic system containing two different amines.’

In combining both the metallo-selection and photo-selection behaviour of the same
acylhydrazone as that of the Ulrich-Lehn study, dynamic systems featuring dual responses to
both light and metal ions were reported by Vantomme and Lehn in 2014 (Figure 1-8b).> This
system demonstrated adaptive behaviour in three states: a non-selective oligomeric state, a

metallo-selective macrocyclic state and a photo-selective macrocyclic state.
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Figure I-8. Reversible switching from linear polymeric to macrocyclic states through component
allosteric switching from W shape to U shape under (a) metallo-selection or (b) metallo-selection and

photo-selection ((a) Figure reproduced from reference™, (b) Figure reproduced from reference’”)

1.2.4. Adaptation to self-assembly and temperature

DCLs can be obtained by using well-known readily reversible reactions such as
amine/carbonyl condensation, disulfide exchange, peptide exchange, olefin metathesis, and
Diels—Alder condensation. Another reversible reaction of interest is the C=C/C=N organo-
metathesis reported by Kulchat and Lehn.>® The component recombination here took place
between Knoevenagel (Kn) compounds derived from 1,3-dimethylbarbituric acid and imines
through the formation of a four-membered azetidine intermediate.>

Temperature and self-assembly controlled triply dynamic DCLs were characterized by
Gu and Lehn, on the basis of C=C/C=N organo-metathesis Kn double-step assemblies

(Figure 1-9).°° Kn compounds can readily form supramolecular polymeric stacks in two
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steps of a self-assembly pathway, i.e., self-assembly of Kn compounds into macrocyclic
hexameric rosette by hydrogen bonding and self-assembly of the rosettes into supramolecular
polymers by stacking. They designed DCLs with components containing adamantane groups
to inhibit the polymeric stacking of rosettes. For example, a DCL was constructed by mixing
equimolar concentrations of agonistic constituents, Knl and imine A3. Upon heating, the
DCL underwent C=C/C=N exchange and resulted in a statistical distribution of four
constituents (Knl, Kn3, Al, A3). Although both Knl and Kn3 can assemble into
macrocyclic hexameric rosettes by hydrogen bonding, the adamantane group of Kn1 inhibits
its stacking, leading to its forming less stable supramolecular polymeric stacks. Hence,
cooling of the DCL induced the generation of supramolecular polymeric stacks (SP) by Kn3
and led to the selective amplification of Kn3 and A1 through C=C/C=N organo-metathesis.
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Figure 1-9. Reversible adaptation of DCLs generated by Knoevenagel constituents and imines

through C=C/C=N organo-metathesis (Figure reproduced from reference®).

1.2.5. Modulated adaptation to enzyme human carbonic anhydrase II (CA II)

In biology, carbonic anhydrases (CAs) are essentially Zn-based metalloenzymes that are

engaged in the reversible hydration reaction between CO: and bicarbonate. Recently, studies

7107
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in the drug design area have targeted these CAs as they are involved in multiple physiological
processes in cells such as the generation and regulation of proton gradients and ion
exchanges.®’ While DCLs have gained prominence in tuning the catalytic functionality of
various metalloenzymes, this is especially the case for CAs.26:6%:63

On this behalf, Casciuc and Lehn evaluated predicting and modelling the distributional
variations of imine-based DCLs adapted to carbonic anhydrase II (CA II) using a

cheminformatics model.**

Employing the constants of formation and affinities to CA II of
nearly 60 000 imines, the perturbation of CA II by DCLs consisting of n aldehydes x m
amines was predicted. Although the ideal selection and adaptation behaviours were not
achieved in the current DCLs, the prediction model is still considered to evaluate and

optimize promising agents in early drug discovery stages.

2. Dynamic Covalent Macrocycles and Cages

Many biological reactions are carried out in a confined region, such as the replication
and transcription of DNA in the nucleus of the nucleoskeleton. The spatially restricted effect
provides a special chemical environment that allows effective control of biochemical
reactions. To mimic this phenomenon in nature, chemists have designed and synthesized
various kinds of covalent organic macrocycles and cages with defined cavities. Such

macrocycles and cages have shown promising applications in gas storage and separation,®>-®

67,68 69,70

catalysis,®”®® sensing,*>’* and biomedicine.”!

The study of covalent macrocyclic and particularly macrobicyclic (cage-like) structures
began to flourish in the 1960s following the seminal work of C. J. Pedersen,’>” D. J. Cram,”*
and J.-M. Lehn""® on polyether systems and a landmark in the field was that Cram, Lehn and
Pedersen were awarded jointly the Nobel Prize in Chemistry in 1987, due to “their
development and use of molecules with structure-specific interactions of high selectivity”.
The structure of macrocycles and cages made by covalent bonds are robust, however, and do
not respond substantially to external environmental changes. An efficient way of endowing
such covalent macrocycles and cages with dynamic and adaptive features is to link building
blocks through reversible dynamic covalent connections. During the past decades, dynamic
covalent reactions, such as imine formation, alkyne metathesis, disulfide exchange, and

boronic acid condensation, have been widely used in the synthesis of dynamic macrocycles
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and cages.'® Here, this section is mainly focused on dynamic covalent macrocycles and cages
generated by imine condensation. Many biological reactions are carried out in a confined
region, as for instance the replication and transcription of DNA in the nucleus of the
nucleoskeleton. The spatially restricted effect provides a special chemical environment that
allows effective control of biochemical reactions. To mimic this phenomenon in nature,
chemists have designed and synthesized various kinds of covalent organic macrocycles and

cages with defined cavities. Such macrocycles and cages have shown promising applications

65,66 67,68 69,70

in gas storage and separation, catalysis, sensing, and biomedicine.”!

The study of covalent macrocyclic and macrobicyclic (cage-like) structures began to
flourish in the 1960s following the seminal work of C. J. Pedersen,’>"* D. J. Cram,” and J.-M.
Lehn on polyether systems."”> A landmark in the field was that Cram, Lehn and Pedersen
were jointly awarded the Nobel Prize in Chemistry in 1987, due to “their development and
use of molecules with structure-specific interactions of high selectivity”. The structures of
macrocycles and cages made by covalent bonds are quite robust and do not substantially
respond to external environmental changes. An efficient way of endowing such covalent
macrocycles and cages with dynamic and adaptive features is to link building blocks through
reversible dynamic covalent connections. During the past decades, dynamic covalent
reactions, such as imine formation, alkyne metathesis, disulfide exchange, and boronic acid
condensation, have been widely used in the synthesis of dynamic macrocycles and cages.!®
This section below is mainly focused on dynamic covalent macrocycles and cages generated

by imine condensation.

2.1. Dynamic covalent polyimine macrocycles

A large number of imine macrocyclic compounds, which were mainly obtained by [1+1],
[2+2], [3+3] or even [4+4] imine condensations (Figures I-10),”°7° has been reported. The
condensation reaction involves only two reactants, one dicarbonyl compound and one
diamine. As a benefit due to the dynamic nature of a DCvC, external templates can efficiently

help to select the size and improve the yield of a certain macrocycle from the DCLs.
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Figure I-10. Schematic representation of dynamic covalent macrocycles obtained by imine

condensation

The use of metal ions as templates for synthesizing macrocycles has been intensively
studied.* One of the pioneering studies was reported in the 1960s on the synthesis of
polyamine-imine macrocycles. Curtis found that by reaction with appropriate diamine

complexes and carbonyl compounds coordinated macrocyclic complexes could be obtained

(Figure I-11).%°

h @
o YK
|

HN

NH

e .
M _ M
7~ AR

NH2  H,N N

s lan

Figure I-11. The synthesis of hexamethyl tetra-azacyclotetradecadiene complex.

Lisowski et al. demonstrated that the size of the obtained macrocycles could be affected
by the stoichiometry of the reaction mixture.®! Without metal ions or in the presence of 0.5
equivalents of Zn*", the reaction of 4-tert-butyl-2,6-diformylphenol with (1R,2R)- or (1S,2S)-
1,2-diaminocyclohexane produced mainly the [3+3] macrocycle. When 1 equivalent of Zn?*
was present in the system, the main product shifted to [2+2] macrocycle zinc complex.

In addition to metal ions, organic cations can also be used as templates. Jiang and co-

workers reported the compositional and configurational modulation of syn/anti macrocycles
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by quaternary ammonium cations (Figures I-10).%2 After mixing a bis-naphthalene
dialdehyde and its analogous diamine, a DCL containing numerous constituents including
[2+2] condensed isomers of syn and anti-forms resulted. With the addition of quaternary
ammonium cations, only one specific [2+2] condensed macrocycle, either syn or anti isomer,
was selectively produced. An adaptive anti-syn-anti structural reconfiguration was also

performed by the sequential addition of three different quaternary ammonium cations.
(0] o
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Figure I-12. Guest-controlled reconfiguration of macrocyclic syn/anti isomers

2.2. Dynamic covalent polyimine cages

In 1987, Jazwinski and Lehn et al,® reported a class of polyaza macrobicycles obtained
from dialdehydes and a triamine (tren) via [3+2] condensation reactions (Figures I-13)
without the use of a template. A year later, using an approach of this type MacDowell and
Nelson extended the family members of such macrobicyclic cages.*® Their pioneering
research laid a robust foundation for the rapid development of polyimine covalent cages. As
in the case of macrocycles, the reversible nature of the imine bonds also conferred the imine
cages with unique stimulus responsive behaviours. Various cages with interesting topologies

and functions can be obtained using different polyaldehyde and polyamine compounds.~38
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As for their macromonocyclic relatives, these cages are dynamic and are able to adapt in

response to environmental changes.

O\
(NHz NT o Y
P+ () — 2D
(. i/_N/ \N_j7
NH, o NFOJN

Figure I-13. Synthesis strategy of [3+2] imine macrobicyclic cages

2.2.1 Transformation from Monomeric Cages to Interlocked Cages

As indicated in a paper published in 2006 by Liu and Warmuth, the cage structures
obtained from imine condensations are subject to solvent effects.”® They found that for the
condensation reaction of a tetraformylcavitand with ethylenediamine, a [4+8] organic cage
was obtained in THF in 35% yield, a [6+12] organic cage (82% yield) in chloroform while
the largest cage was formed in DCM as an [8+16] species (65% yield).

Cooper and co-workers reported the synthesis of three [4+6] tetrahedral porous organic
cages produced through imine condensation of 1,3,5-triformylbenzene with a series of 1,2-
ethylenediamine derivatives in 2009.°' The solid [4+6] cage is stable for many months, but in
appropriate solvents could be converted into triply interlocked catenanes even in the absence
of acid.?’ Thus, after 50 days in a dichloromethane/p-xylene mixture, a dimeric triply
interlocked catenane crystallised out. Crystallographic analyses indicated that the z-7
stacking interaction between two encapsulated arenes may have helped to stabilize the
interlocked cage. The low solubility of the catenane may also have been a factor determining

its isolation.
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Figure I-14. Formation of [4+6] monomeric cages and dimerization into triply interlocked catenanes.

In 2018, the same group subsequently characterized 33 pure discrete [4+6] cages
obtained from 78 independent reaction mixtures involving the permutation of 3 candidate
triamines and 26 candidate dialdehydes or trialdehydes (Figures I-15).°> More importantly,
the recrystallisation of [4+6] cages led to the generation of a new topology of doubly bridged
triply interlocked [8+12] cage catenanes. DFT calculations confirmed the lower formation

energy of interlocked [8+12] cage catenanes than that of the [4+6] cages.
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c21 Tri’Di® c21 Tri'Di®

ca3

Catenane Bridged-catanane

Triply interlocked Doubly bridged, triply interlocked
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Figure I-15. Crystal structures of [4+ 6] cages and [8 + 12] covalently bridged, triply interlocked

cage catenanes.’” (Figure reproduced from reference’?)

2.2.1. Guest-induced assembly and disassembly

A guest may have an influence on both the formation and decomposition of a cage. In
2017, Zonta et al. reported the assembly and disassembly study of an imine cage which was
synthesized via [2+3] imine condensation of a (TPMA)Zn(II) complex with ethylenediamine
(Figures 1-16).” In the presence of a single alkyl chain dicarboxylic acid of the C4-C14
series, the trialdehyde complex bound to the diacid and accelerated the formation rate of the
imine cage as a template. Without the addition of the diacid, the imine cage formed slowly.

Of all the diacids used, the C8 diacid exhibited the best binding ability with the imine cage.
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The authors also studied the hydrolysis kinetics of this imine cage and concluded that the rate
of hydrolysis was correlated with the size/length of the diacid rather than the binding
constants of the cage with diacid guests. This was explained by postulating that the diacids
bridged the two Zn(II) sites within the cage, with the short-chain diacids (C4-C6) drawing the
Zn(IT) centres together and retarding hydrolysis, while the long-chain diacids (C10-C14)
would have to twist and fold to form the internal bridge, thus creating compression which
would be relieved by the hydrolysis. Therefore, the hydrolysis experiments indicated that the
disassembly rate of an imine cage could be influenced the by strain release of a guest.

In a further study, the same authors described a DCL of imine cages produced by
reaction of the (TPMA)Zn(IT) complex with a mixture of diamine blocks of different sizes
for efficiently sensing dicarboxylate anions of C5-C14 chain length.”* The DCL of imine
cages behaved differently as a function of the different lengths of the C5-C14 diacids. Briefly,
the composition of the principal constituents in the DCL responds similarly to longer

dicarboxylates.

‘l - Fast i
Disassembly

(TPMA)Zn(I1) complex I
Slow

Small Guest
— Disassembly

Figure 1I-16. Assembly and disassembly of an imine cage generated by condensation of
(TPMA)Zn(II) complex with diamine in the presence of long-chain diacids C4-C14 (Figure

reproduced from reference’).

2.2.2. Exchange of building blocks

Due to the coordination ability of nitrogen atoms in imine bonds, aldimines can be used
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in the synthesis of metal organic cages. This sort of cage-like architecture containing both
non-covalent and dynamic covalent connections possesses good dynamic features.

Nitschke et al. studied the imine exchange behaviour at the vertices of Fe(Il)sLe imine
based tetrahedral metal organic cages (Figures I1-17).% In the presence of Fe(I) ions, metal-
organic cage 2 arose by condensation of p-chloroaniline with 3,3'-bipyridine-6,6'-
dicarbaldehyde. Subsequently, due to the large difference in electronic properties of the two
electron-rich substituents p-methylaniline (¢ = -0.17) and p-methoxyaniline (¢ = -0.27)
compared to the electron-deficient p-chloroaniline (¢ = +0.23), cages 3 and 4 were obtained
by quantitative exchange of p-chloroaniline units with p-methylaniline and p-methoxyaniline,
respectively. The electronic properties of p-methylaniline (¢ = -0.17), and p-methoxyaniline
(o =-0.27) are less different, so the conversion from cage 3 to 4 was achieved in only 79%
yield. ESI-MS demonstrated that when p-chloroaniline, p-bromoaniline, and p-iodoaniline (4
equivalents each) were mixed with 3,3'-bipyridine-6,6'-dicarbaldehyde (6 equivalents) in the
presence of Fe(Il) ions, a DCL containing 91 constituents can be generated. Upon adding 12
equivalents of the more electron-rich p-methoxyaniline, all of these 91 constituents were

converted to the homonuclear cage 4.

Figure I-17. Component exchange in the tetrahedral Fe(Il) cages driven by electronic-rich anilines.

(Figure reproduced from reference’).
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2.2.3. Dissipative transimination

In nature, chemical fuels, such as ATP, are continuously converted into high-energy
species to allow the operation of dissipative self-assembly behaviour. Artificial dissipative
systems mimicking these natural phenomena have attracted increasing attention in recent
years.”%7

The concept of dissipative self-assembly can indeed be applied in the case of
transimination reactions. A recently reported example of dissipative transimination involved
the transition between two imine cages from a DCL of a pre-formed cage and a free aromatic
polyamine (Figures 1-18).°® By the addition of tribromoacetic acid as a chemical fuel, the
initially formed [I1+1] cage 6 disintegrated immediately due to the protonation and
precipitation of the aliphatic amine 7, while the [4+4] cage CBC 5 gradually formed. As
tribromoacetic acid decomposed to CO> and CHBr3 over time, [7-Hz]" was deprotonated and
re-dissolved into the solution, inducing a second cage-to-cage transformation process with the
re-formation of [1+1] cage 6. This work illustrates a path towards the design and preparation
of dissipative, temporal materials through the dynamic covalent chemistry strategy,

demonstrating a way to regulate the composition of constituents and achieve a dissipative oft-

equilibrium state of a DCL.
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Figure I-18. Dissipative Cage-to-cage transformation via transimination (Figure reproduced from

reference’).
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3. Self-Sorting in Constitutional Dynamic Chemistry

3.1. The concept of self-sorting

The term of "self-sorting" is defined as the selective formation of substructures by a
species with a high ability to distinguish itself from non-self in complex systems. It is
relevant to most biological processes and is essential for ensuring the realization of
sophisticated functions in biological systems. For example, the formation of microtubules
requires the self-sorting of a-tubulin and B-tubulin to form tubulin dimers, and the self-
sorting of tubulin dimers to generate the orthogonal supramolecular assembly. In living cells,
proteins are delivered to their appropriate destinations using a self-sorting process known as
protein targeting. Self-sorting also plays a crucial role in the assembly of adenine-thymine
(A-T) and cytosine-guanine (C-G) in a certain sequence.

Self-sorting behaviours may provide important clues for understanding the origin of life
and for improving the design of artificial biomimetic systems. To better understand the self-
sorting phenomenon of living systems in nature, chemists have been working on the
construction of artificial self-sorting systems to imitate the highly organized behaviour in
competing environments at the supramolecular and molecular levels.

The first actual contact with self-sorting in chemistry was probably Pasteur’s discovery
of "spontaneous resolution", the separation by crystallisation of optical isomers of sodium
ammonium tartrate from its racemic mixture in the 19th century.”” The simultaneous
cogeneration of highly ordered self-organized complex systems (artificial self-sorting system)
in solution, was reported by Lehn in the 1990s.!° It was found that under appropriate
conditions, mixing two different tris-bipyridine ligands with 3 equivalents of Cu(I) and 3
equivalents of Ni(Il), the two ligands coordinated to Ni(Il) or Cu(I) simultaneously and
orthogonally from one another, which led to the simultaneous formation of triple or double
helix structures, respectively (Figures I-19). No other assemblies could be detected by either
fast atom bombardment mass spectrometry or '"H NMR. This self-sorting or self-recognition
allowed the preferential binding of complementary ligand chains on the metal ion templates
regardless of other ligands in the same solution, thus enabling the spontaneous discrimination
and self-organization of target molecules from a multi-component mixture at the

supramolecular level.
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Figure I-19. Cogeneration of triple or double helix assemblies via highly selective self-organization

process (Figure reproduced from reference'®’).

Since then, numerous examples have confirmed the precise assembling behaviour of

supramolecular architectures in competitive conditions by dynamic non-covalent interactions

101-103 104-106

such as hydrogen bonding, metal-ligand interactions, and electrostatic
interactions'%’. In 1997, Sanders and co-workers first introduced the term of self-sorting in
their study of macrocyclization via intermolecular transesterification.!®

Wu and Issac defined self-sorting as the efficient distinction between imprecise and
precise structures, and introduced the concepts of "thermodynamic self-sorting" and "kinetic
self-sorting".!” Thermodynamic self-sorting refers to the self-classification phenomenon that
occurs at thermodynamic equilibrium, while other non-thermodynamic equilibrium systems
controlled by kinetics are classified as kinetic self-sorting systems. Most of the currently
published works on self-sorting can be regarded as thermodynamically controlled systems.
They also distinguish self-categorization systems as "narcissistic self-sorting" and "social
self-sorting ". The former refers to the case where a particular kind of molecule has a high
affinity with itself (Figure I-20, pathway B), while the latter is defined as the case where one
kind of molecule exhibits a high affinity toward a different kind of molecule (Figure I-20,
pathways A, C and D). "Narcissistic self-sorting" is also called " homoleptic self- sorting"
and "social self-sorting" is also known as "heteroleptic self-sorting".

Schalley et al. also categorized self-sorting as "integrative" and "non-integrative".'!%!!!
Through integrative self-sorting, a mixture of all initial components can assemble into only

one assembly. In contrast, by non-integrative self-sorting, all substrates are able to assemble
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into a mixture but one that is smaller than the possible set of discrete assemblies at the same

time, as shown in pathways B and C of Figure I-20.
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Figure I-20. Classification of self-sorting systems (Figure reproduced from reference''?)

3.2. Self-sorting under metallosupramolecular interactions

Schmittel and co-workers reported a metal-ligand coordinated self-sorting system
generated by phenanthroline (1) and pyridinediyl aldehyde (2) (Figure I-21) in the presence
of Cu(I).!"® Due to the different number of electron-donor atoms of phenanthroline and
pyridine units, the geometric configuration of the produced metallo-supramolecular
architectures was affected by the stoichiometry of the metal ion. The 1:1:1 ratio of 1: 2: Cu(l)
resulted in an incomplete homoleptic self-sorting state with grid S and free 2; when 1:1:1.5
ratio was used, an incomplete heteroleptic self-sorting state with triangle T and half amounts
of 2 was obtained; while a 1:1:2 ratio led to the completive heteroleptic self-sorting of grid R.
More interestingly, by adding or removing appropriate amounts of Cu(l), fully reversible
interconversion between these three distinct self-sorting states was achieved. Thus, a metal-

stoichiometry-controlled dynamic switchable self-sorting system was achieved.
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Figure 1-21. Three-state cyclic interconversion of the metallosupramolecular complexes S, T and R

depending on the Cu+ amount (equiv. refer to the amount of 1) (Figure reproduced from reference''?)

The group of Reinhoudt characterised a supramolecular self-sorting system based on
hydrogen bonding (Figure I-22).!'"* They reported the co-assembly of bis(melamine)-
calix[4]arenes (b-Calix) and barbituric acids (B) into stable double layer rosette box
structures (b-Calix)3(B)s connected through 36 hydrogen bonds. Furthermore, a tetra-layer
rosette box involving 72 hydrogen bonds could be obtained by replacing bis(melamine)-
calix[4]arenes with their dimerized (through bridge X) tetramelamine derivatives (t-Calix).
Competitive experiments showed that free b-Calix caused the disassembly of the tetra-layer
rosette box (t-Calix)s(B)12 and led to the generation of a double layer rosette box. Thus, the
double layer rosette box is more stable than the tetra-layer one. Thereafter, self-sorting
experiments confirmed the efficient simultaneous formation of these two assemblies by
mixing b-Calix and t-Calix in a ratio of 2:1 with a slightly excess of B. However, mixing
equal amounts of tetramelamine t-Calix derivatives (bridge X = -(CHz)s- or -CHz(m-
CsH4)CH2-) with B resulted in scrambling and generation of various heteromeric assemblies

containing both tetramelamines.
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Figure I-22. Schematic representation of the self-assembling of double layer rosette box and self-

sorting of double layer and tetra-layer rosette box. (Figure reproduced from reference'').

Recently, in a similar manner, Gu and Lehn described a hierarchical two-level self-
sorting from a DCL of two Knoevenagel derivatives with two imino-derivatives.’ This
system achieved self-sorting in two levels, self-sorting of constituents into two kinds of
discrete hexameric rosettes by hydrogen bonding, and self-sorting of one of the rosettes into a

cylindrical supramolecular polymer by stacking (see Figure I1-9).
3.3. Self-sorting under dynamic covalent chemistry

Self-sorting systems dependent upon the operation of dynamic covalent bonds have also
been widely studied. Reversibility of dynamic covalent bonds permits the erasure of
undesired intermediates (error correction) through the exchange of components and results in

the most thermodynamically stable structures from DCLs.
3.3.1. Metal-imine coordination

The coordination of metal-imine bonds can be used to construct supramolecular
structures as well as to produce self-sorting systems.!!>"!!7 Nitschke et al. found that the
mixing of two pyridine monoaldehydes and two amines (a triamine and a monoamine) in
water resulted in a DCL containing 11 imine constituents (Figure 1-23).!"® Mixing two metal
ions, Cu(l) and Fe(Il), into this DCL drove the re-equilibration of the constituents and
eventually to the simultaneous formation of only two discrete imine complexes. Although the

aldehyde substrates structurally differ by only one methyl group, the Cu(l) ion exhibited a
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higher selectivity for the more electron-rich methylpyridine, while Fe(II) selectively bonded

the pyridine without methyl to reduce unfavourable spatial interactions in the hexadentate

imine complex.
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Figure 1-23. Coordination driven selection and self-sorting from a DCL of 11 possible imine

constituents

3.3.2. Self-sorting resulting in similar structures

Self-sorting can also be achieved in systems without the involvement of metal templates,
by taking advantage of the thermodynamic selectivity of imine bonds. Sanders et al. first
introduced the term self-sorting into chemical systems and reported a thermodynamically
controlled self-sorting system based on a transesterification reaction (Figure 1-24).'% Two
hydroxy esters were mixed and heated at reflux in toluene with a methoxide ion catalyst
(MeOK/18-crown-6). In the equilibrium state, one formed a trimer through a three-molecule
condensation reaction, while the other one condensed to form a dimer, with only minor
amounts of heteroleptic structures present. This work laid the foundation for the construction

of thermodynamically controlled self-sorting systems by reversible covalent bonds.
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Figure I1-24. Self-sorting based on transesterification reaction (from reference 104).

The group of Mukherjee has obtained a series of interesting results in the self-sorting of
imino-cages.!!*'>! As shown in Figures I-25, when two bent dialdehydes A and B were
mixed with two triamines X and Y, in the molar ratio of 3:3:2:2, a self-sorted output was
generated among the four components, which eventually yielded only two [3+2] homoleptic
cages. After independent synthetic studies of four homogeneous cages and careful analysis by
DFT calculations, they concluded that the whole self-sorting process of producing two
homoleptic cages is thermodynamically controlled. Under thermodynamic control, they
achieved the conversion of a thermodynamically less stable cage into one with greater
stability by introducing another dialdehyde or triamine to replace the disfavoured cage

building unit.

(a) Four-component self-sorting in organic cages

\
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HN ‘f%rum
N
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(b) Cage-to-cage transformation

Figure 1-25. (a) self-sorting of [3+2] homoleptic cages via imine condensation and (b) cage-to-cage

transformation through component exchange (Figure reproduced from reference'?").
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Similarly, Lehn et al. reported a selective self-sorting behaviour of imine cages within

competitive conditions of two dialdehydes with triamine in a molar ratio of 3:3:2 (3 for each

dialdehyde and 2 for triamine).!*
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Figure I-26. Incomplete self-sorting and component exchange of imine cages.

3.3.1. Self-sorting resulting in distinct structures

Most known self-sorting systems involve discrimination between similar structures. The
generation of distinct structures via self-sorting processes is less common and warrants
specific consideration.

In 2020, Lehn et al. obtained a [2 x 2] grid-like complex and a linear double helix
structure simultaneously in DCLs that were generated from two monoamines, two
dialdehydes, and two metal ions, as shown in Figure I-27.!2* This system demonstrated
impressive examples of self-sorting of two distinct supramolecular assemblies at three levels.
Firstly, at the molecular level, the self-sorting led to the generation of only two imine bonded
ligands. Secondly, at the supramolecular level, the self-sorting of metals and imine ligands
was brought about by selective coordination interactions. Finally, the self-sorting of two
discrete supramolecular assemblies was obtained by selective self-organization of
constituents. This study also demonstrated that the resulting output from DCLs could be
influenced by both coordination and structural/conformational characteristics of the initial

components.

7287



Chapter 1. General Introduction

Figure I-27. Self-sorting of a [2 x 2] grid-like complex and a linear double helix (Figure reproduced

from reference'*).

Otto et al. studied by HPLC-MS the formation kinetics of a self-sorting system
generating foldamers and self-replicators in 2021.'?* The authors found that with
different molar ratios of the building blocks, the self-sorting outputs were different.
When the molar ratio of 1b:2 (see Figure I-28) was less than 6:4, co-generation of
self-replicator (1b);22; and foldamer 2is was observed. The kinetics revealed that
foldamer 215 was not generated until all of 1b was consumed. When the molar ratio of
1b:2 was less than 7:3, no foldamer was detectable and only two self-replicators (1b)4
and (1 b)22; were present. The kinetics revealed that self-replicator (1 b)s was kinetically
favoured, reaching its maximum abundance in a relatively short reaction time, during which a
little amount of (1 b)221 was produced. Thereafter, the amount of (1 b)4 slightly decreased
and promoted the formation of (1 b)221. The results revealed that the molar ratio of the

substrates could affect the self-sorting reaction process, and lead to various outputs.
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Figure 1-28. Self-sorting of foldamers and self-replicators. (Figure reproduced from reference.'**)

3.4. Kinetically controlled self-sorting systems

Self-sorting systems under kinetic control remain a challenge but they are expected to be
important models for non-equilibrium biological systems.!?’

Lehn et al. carried out a kinetic study on the metal-imine coordinated self-sorting system
shown in Figure 1-29.'?° They found that in a DCL composed of two 2-formylpyridines (A,
C) and two amines (B, D) at a concentration lower than 3.6 mM, homoleptic complex
[Fe(A,B)2]*" and an almost equal molar amount of heteroleptic complex [Fe(A,B)(C,D)]*", as
well as another homoleptic complex [Cu(C,D).]" were produced after heating at 60 °C for 18
h. After 20 days of heating at 60 °C, the ratio of homo-to heteroleptic Fe(Il) complex
increased to 1:0.25, showing that the heteroleptic complex was a kinetic product, and the
formation of which led the system to be trapped out-of-equilibrium. The authors also found
that by controlling the concentration, electronic and steric parameters of the components, as

well as the coordination preferences of the metal cations in the DCL, such kinetically trapped
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out-of-equilibrium states could be inhibited.
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Figure I-29. Kinetically controlled self-sorting of complexes [Cu(C,D),]" and [Fe(A,B).]*" via imine

condensation of initial reactants (A, B, C, D).

One of the objectives of the use of kinetic self-sorting is the elimination of the products
from the reversible chemical equilibrium. Allowing the kinetic products to undergo additional
irreversible reactions, for instance by the addition of an oxidant I», is one of the chemical
methods to remove the kinetic products from the reversible equilibrium and thus push the
reaction equilibrium towards the formation of the kinetic product.'?’ It is also possible to
separate the kinetic products by physical methods, such as distillation and precipitation. 2813
Miljani¢ et al. reported that by sequentially exploiting irreversible stimuli like chemical
oxidation, column chromatography, and distillation methods, it was possible to isolate six
constituents from a [10 x 10] DCL containing up to 100 imino constituents.'3! As a result, the

[10 x 10] DCL was iteratively simplified to a [6 % 6] matrix and the concentration of

remaining constituents was amplified more than three times (Figure 1-30).
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Figure 1-30. Simplification of a multi-responsive [10 x 10] DCL via slow addition of iodine, column

chromatography, and slow distillation, sequentially.

4. Aim of the thesis

This thesis is intended to provide plausible mechanistic insights into the self-sorting

behaviour of dynamic covalent macrocycles and macrobicyclic cages. It includes three major

experimental parts which are:

1. The study of self-sorting processes related to the basic laws of rational design of a

thermodynamically controlled system.

2. The study of kinetically-controlled self-sorting systems from out-of-equilibrium to

equilibrium states, and the time-dependent transition of product distributions from

kinetic to thermodynamic forms.

3. Study of the constitutional regulatory behaviour of self-sorting systems in producing

isomeric entities from dynamic covalent libraries.
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Chapter I1. Rules of Self-Sorting

1. Introduction

In recent years, supramolecularly-driven self-sorting processes have attracted much
attention and intensive research efforts.!%1%%132 Nonetheless, self-sorting systems constructed
by reversible condensation reactions with covalent bonds still need to be thoroughly
investigated. This becomes evident if one considers the following features: (i) complex
systems generally lead to low selectivities; (ii) reversible self-sorting processes usually
generate a wide range of intermediates, which hampers the correct analysis of the whole
system. Therefore, the study of the mechanism of reversible covalent self-sorting processes is
of great importance for understanding and designing such self-sorting systems. Highly-
fidelity self-sorting behaviour for imine bonded 3D molecular cages has been reported by
several groups.'?! These preorganized discrete structures obtained by imine condensation
reactions from multicomponent DCLs were shown to give self-assembled products reflecting
either: 1) homoleptic self-sorting;!!® 2) heteroleptic self-sorting;'** or 3) statistical mixing of
disordered assemblies.'?!

Currently, there is still the necessity to solve the problem of how to rationally control
self-sorting systems so that the complexity of molecular libraries increases without leading to
untreatable mixtures of compounds as a result of similar energetic distributions. Hence,
studying the process of the self-sorting behaviour of dynamic covalent bonds becomes crucial.
Rather few studies have focused on the study of self-assembly / self-sorting mechanisms
based on dynamic covalent chemistry.!?® When a substrate has multiple reaction sites, a large
number of transient intermediates can be generated in the DCL. This can be due to the
competition between intra- and intermolecular reactions within the same DCL, increasing the
complexity of gathering representative data. To find a means to avoid this potential issue,
rational design of the precursors and monitoring of the component abundance at different
reaction times should enable the prediction of self-sorting outcomes. This hypothesis
motivated us to investigate the self-sorting processes based on dynamic covalent bond

formation in the synthesis of compounds containing well-defined cavities.
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2. Results and Discussion

Previous work from the Lehn group has described the synthesis and characterization of
macrocyclic and macrobicyclic cryptand-type structures, as well as their self-sorting
behaviour.'”? As the subject of this thesis, these studies have now been extended to the
elucidation of the self-sorting mechanisms of homoleptic macrocycles and macrobicyclic
cages through dynamic imine bonds. The formation of the Ci-symmetric tetraimino
macrocycles and Ds;-symmetric hexaimino macrobicycles shown in Scheme II-1 was the
focus of the initial work. The presence of the desired cyclic structures was confirmed by both

nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry
(HRMS).

<—N/ \N—> (N%N3

Macrocycle Xa(NON),  Macrobicyclic Cages X3T,

)
o:bdd 38§

Component X

pPh Py Py  BiPh TriPh E F
Scheme I1-1. Molecular structures of the components (bottom; in italics) and of the homoleptic imine-

based [2 + 2] macrocycles and [3 + 2] macrobicyclic cages (top) studied in the present work.

2.1. Formation of macrocycle pPh2(NON);

2.1.1. "H NMR monitoring

<=
CHO N N
CDCI;, 23 °C ( w
+ HzN\/\o/\/NHz _— 0 o
CHO &N NJ
<o
pPh NON
2 equiv. 2 equiv. pPh,(NON),

Scheme II-2. Synthesis of macrocycle pPhy(NON), via [2+2] imine condensation
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The multiple condensation reactions involved in the formation of compounds containing
several imino groups often lead to the generation of numerous transient intermediates that
complicate the monitoring of the generation of the macrocyclic compounds by 'H NMR
spectroscopy.

The expected formation of macrocycle pPh2(NON)2, using terephthalaldehyde (pPh)
and 2,2'-oxybis(ethylamine) (NON) as precursors, was first studied. To better follow the
initiation of the reaction and the conversion of intermediates, the reaction rates were kept to a
minimum by treating the chloroform solvent with basic aluminium oxide to remove any traces
of acid. As a result, more than a week at room temperature was required before any changes
in the spectrum fell below the level of detection (Figure II-1). After this time, the two
singlets due to the symmetrical terephthalaldehyde reactant had disappeared and two singlets
at a higher field consistent with the formation of a symmetrical terephthalaldimine unit as in
the macrocyclic structure were the only detectable signals. That the final product was indeed
the 2:2 macrocycle was subsequently confirmed by mass spectrometry.

During the '"H NMR measurements, signals assigned to several intermediates were
observed. After 120 min of reaction, two singlets at 10.06 and 8.38 ppm, and an AB doublet
pair at 7.94 and 7.89 ppm were prominent new features (Figure II-1). Some other extremely
weak peaks indicated that other species were present but their concentrations never became
sufficient to allow characterisation. Signals due to the first detected intermediate rose in
intensity up to about 900 min, then declined as new intermediate signals appeared, with the
spectrum at 720 min showing two new singlet peaks at 10.03 ppm and 8.30 ppm associated
with a doublet pair at 7.86-7.84 ppm and 7.80-7.78 ppm, along with two very weak singlets at
8.33 ppm and 7.78 ppm. In turn, these signals declined as the final product appeared.

While it is possible that the reaction of difunctional molecules in a 1:1 molar ratio could
simply give rise to linear polymers, the fact that the final product of the present reaction is the
2:2 macrocycle indicates that polymerisation is not favoured under the given conditions and
indeed the NMR spectral changes can be explained in terms of just three simple acyclic
intermediates, namely [pPh+NON], [pPh+2NON], and [2pPh+NON], being on the pathway
to the macrocycle. No matter what the final reaction state, the [1+1] unsymmetrical
[pPPh+NON] intermediate must form first and its 'H NMR spectrum should show one
aldehyde signal, one imine signal, and a doublet pair in the aromatic area. These expected

spectroscopic features (including peak integrals) correlate well with the green peaks in Figure
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II-1. This intermediate can react with either another molecule of terephthalaldehyde to give
[2pPh+NON], where the aromatic ring has an unsymmetrical environment, or another
molecule of the diamine to give [pPh+2NON], where the aromatic ring has a symmetrical
environment. Thus, the orange peaks shown in Figure II-1 were assigned to the former and
the two red singlets to the latter. The time evolution of the reaction mixture composition is
plotted in Figure II-2. It can be seen that the concentration of intermediate [pPh+NON] (see
Figure S-II-19 in Chapter VII) significantly increased with time from 7 to 900 min, reaching
30% abundance after ca. 1000 min of reaction. The concentration of this intermediate
smoothly decreased for the subsequent 4000 min. The smaller quantities of [2pPh+NON] and
[pPh+2NON] detected showed a similar but somewhat slower time dependence. Significantly,
although an acyclic, unsymmetrical intermediate of composition [2pPh+2NON] must be a
precursor to the final product, no peaks assignable to such a species were evident, indicating

that this species, once formed, must rapidly cyclise.

\ N =~ N o =
o N —N N q
o o o o g P e
righ— e Hal \ f . 2 4 ) N\\‘_ F _:"e’N )
0¥ =" =

[PPh+NON] [PPh*2NON] [2 N [2pPh+2NON] PPh3(NON),

{not detected)
10510 min (> 7 days) L X i_L
2880 min , 3 l~ I W - ,_._J_L

lepPi‘:ﬁNON] [PPh+2NON]
l M 4 A

720 min g

120 min | ,[PPh+NON]
— A A

| |

)|

I )
1 |

pPh+NON,

7 min JL

pPh JL‘/pPh CDCIj
102 104 100 84 83 82 81 80 79 78 7775 714 1.3

Chemical Shift (ppm)
Figure II-1. Time evolution of the "H NMR spectra (500 MHz, CDCls, 23 °C) of a 1:1 mixture of pPh

and NON ([pPh]o= [NON]o = 3.6 mM) showing the formation of three intermediates and of the final

macrocycle pPha(NON),. Selected reaction times: 7 min, 120 min, 720 min, 2880 min and 10510 min.
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Figure II-2. "H NMR monitoring of the time evolution (over 10510 min) of the species generated in
the reaction between pPh and NON ([pPh]o= [NON], = 3.6 mM). Error in '"H-NMR signal integration:
+5%.

2.1.2. HRMS-ESI monitoring

Next, the evolution of intermediates was investigated using HRMS. Anticipating that LC
separation might involve further reactions of the intermediates, the direct injection method
was used. The ionization processes of different compounds are not identical, and the quantity
of ions they produce depends upon a variety of factors such as their ionization potential and
the detector sensitivity. Thus, differences in ion currents cannot be used to analyse the
concentration differences of different species. Nonetheless, although mass spectrometry is
used in most cases for non-quantitative analysis, the concentration of one given compound is
positively correlated with the amount of ions it produces.'**

For the convenience of analysis, the signals attributed to the substrates, intermediates,
and products that were observed during the whole assay process are listed in Table S-II-1
(Chapter VII). As can be seen in Figure II-3, the signals with m/z of 105.1025 (NON-+H")
and 221.1276 ([pPh+NON]+H") were observed at the initial stage of the reaction. With the
progress of the reaction, both nearly completely disappeared, while new signals with m/z of
405.2269 (pPh2(NON)2+H") and 427.2088 (pPh2(NON)2+Na") due to macrocyclic species

gradually increased.
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Figure II-3. Time evolution of the HRMS-ESI spectra showing the formation of intermediates and

macrocycle pPha(NON), after 10, 160, 440, 840, and 1820 min.
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Figure II-4. HRMS-ESI monitoring of the time evolution of the species generated during

pPh2(NON), formation from a 1:1 mixture of pPh and NON. NB: These data do not provide

quantitative information about the relative amounts of each species identified by its mass, but, taken

separately, they display the evolution of a given identified species during the course of the reaction.

The curves are added to guide the eye.

The evolution of their m/z peak intensities over time is plotted in Figure II-4. The

[pPPh+NON] (m/z = 221.1276, [M+H"]) intermediate was formed within 10 min, and it

reached its highest abundance after 200 min during the reaction process. Thereafter, its
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concentration gradually decreased, due to its conversion into other intermediates. Both the 'H
NMR and HRMS (Figures II-2 and 4) curves for the macrocyclization reaction revealed an
induction period, consistent with the formation of at least one intermediate species prior to the

cyclization step.!? (see also the formation of BiPh2(NON); in Chapter VII, Figures S-II-20 to
S-11-23)

2.1.3. Theoretical study

To gain additional insights into the reaction mechanism, theoretical calculations were
performed for estimating the free energies of formation of the species (in the gas phase)
detected in the synthesis of pPh2(NON),. For each compound, the lowest-energy
conformation was explored with molecular mechanics (Merck molecular force field - MMFF)
and density functional theory (DFT) calculations. The free energy of formation for each
optimized geometry was then calculated using a simplified MP2 level. The computational
results are summarized in Figure II-5. Interestingly, the free energy of formation of

[pPh+2NON] (-11.40 kJ/mol) is higher than that of [2pPh+NON] (-22.52 kJ/mol) and
[2pPh+2NON] (-36.94 kJ/mol).
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Figure I1-6. Free energy of formation (AG) at 25 °C (298K) for the different species detected in
the synthesis of macrocycle pPhy(NON),.
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2.1.4. Formation process of the macrocycle pPh2(NON):

Based on the above results, a possible self-assembly mechanism for such [2 + 2]
covalent organic macrocycles is shown in Scheme II-3. The most direct path to form
pPh2(NON); after the initial formation of the [1+1] intermediate [pPh+NON] would be the
dimerization of this species to give [2pPh+2NON], which could then undergo an
intramolecular cyclization step to yield the macrocycle. The observation of three
intermediates, however, shows that there must be at least three pathways for generating the
macrocycle, 1) one-step dimerization of two [pPh+NON] intermediates; ii) and iii):
condensation with an additional component (pPh or NON) to form intermediates [1 + 2] and
[2 + 1]; finally, intramolecular macrocyclization yielding macrocycle pPh2(NON),. It must be
mentioned that the transformation of the intermediates of odd stoichiometry, namely
[2pPh+NON] and [pPh+2NON], into the [2+2] macrocycle occurs at relatively slow rates
because the concentrations of free pPh and NON are now quite low compared to the initial

values.

>
el Int [2pPh+NON] N//—@_\\N o
A ol

+ _ } Pathway | 0 0 - 0 o}
NH,  NH Q_ _)
o) HNJ NH, N &N NJ
LY > >
Int [pPPh+NON]  \%,, o
e, C / Int [2pPh+2NON] Macrocycle pPh,(NON),
% 2 N
- "
o} o
NEVT

Int [pPh+2NON]

Scheme I1-3. Stepwise [2 + 2] imine condensation processes showing the intermediates formed in the

generation of the dynamic covalent macrocycle pPh2(NON)s.
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2.2. Self-sorting of macrocycles from a three-component DCL

2.2.1. "H NMR monitoring

The homo-self-sorting behaviour was investigated for a three-component mixture of two
dialdehydes of different lengths, namely pPh and BiPh (4,4'-biphenyldialdehyde), and NON
in a 2:2:4 ratio. Figure II-7 represents the corresponding '"H NMR spectra showing a
progressive formation of new species that were assigned to different intermediates. The initial
substrate mixture remained almost unchanged for 4 min. After about 720 min, a number of
minor peaks - which were difficult to integrate - were observed, but only a small amount of
macrocyclic products were formed. As the dialdehydes and NON were gradually consumed, a
series of intermediates were involved in the oligomerization and intramolecular cyclization
reactions leading to the ultimate production of the macrocycles pPh2(NON), and

BiPh2(NON); only.

CHO
CHO O N/’_©_‘\ ==
€DCly, 23°C { :} C _>
+ + H7N\/\°/\,NH7 —_— + o
HO O <—N\ N—) Q—N\ N—)
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2 equiv. 2 equiv, 4 equiv. pPhy(NON), BiPhy(NON),
BiPhy(NON); .pPh;(NON},
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Figure II-7. Time evolution of the partial "H NMR spectra (400 MHz, CDCls, 23 °C) for the reaction
2pPh + 2BiPh + 4NON ([pPh]o= [BiPh]o = 3.6 mM; [NON]o = 7.2 mM) over 9505 min. The two

bottom spectra correspond to the isolated macrocycle pPh2(NON); and BiPh2(NON);
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The consumption of pPh and BiPh as well as the generation of the two macrocycles are
plotted versus reaction time in Figure II-8. The formation of macrocycle pPh2(NON); was
faster than that of BiPh2(NON); and followed the faster initial consumption of pPh in
comparison with that of BiPh. The formation rate of pPh2(NON)2, BiPh2(NON); in the self-
sorting pPh:BiPh:NON system (half-consumption ti2f of pPh2(NON)2 = 1350 min, t12" of
BiPh2(NON); = 2000 min) was two-times faster than the one observed in their separated
formation (t12" of pPh2(NON)2 = 2200 min, t12F of BiPh2(NON)2= 4030 min). This may be
due to the doubled initial concentration of NON in the self-sorting system. The composition
of the system after 9505 min (158 h) was 51% of pPh2(NON)2, 49% of BiPh2(NON),, and
less than 1% of unreacted BiPh. The high yields attained for both macrocycles indicated the

high-fidelity of the self-sorting and confirmed the absence of heteroleptic macrocycles.
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Figure II-8. 'H NMR monitoring of dialdehydes pPh, BiPh and macrocycles pPh2(NON), and
BiPh,(NON); over 9505 min.

Focusing on the process of reaction, one can observe several signals belonging to neither
the identified intermediates of the pPh/NON reaction nor those of the BiPh/NON reaction
(Figure I1-9). They may be the result of the formation of several heteroleptic intermediates
(e.g., [pPh+BiPh+NON], [pPh+BiPh+2NON]). Unfortunately, the concentration of these
intermediates was rather low and their aromatic regions overlapped with the signals of other

intermediates, making it difficult to -elucidate their precise composition/structure.
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Notwithstanding, no heteroleptic macrocycles could be detected after equilibration, indicating

that correction and dissociation processes were taking place.'**

BiPh+NON } \ A

pPh+NON k ~SE__A

pPh+BtPh+NON
1437 min

pPh+BiPh+NON
719 min

|0‘59 10. 17 10 15 1013 1011 1009 100? 1005 1003 1DIJ1 9,99 99? 9.95 9.93
Chemical Shift (ppm)

Figure 11-9. 'H NMR spectra comparison of the pPh/BiPh/NON self-sorting experiment with
pPh/NON and BiPh/NON separated reactions. The top two spectra correspond to the pPh/NON
reaction at 2880 min and BiPh/NON reaction at 4384 min.

2.2.2. HRMS-ESI monitoring

HRMS was also used to identify some intermediates and to follow their evolution as a
function of time. The intermediates [pPh+NON], [BiPh+NON], and [pPh+2NON] were very
rapidly formed after mixing the solutions of the three components. They reached their highest
abundance after 180 min of reaction, being afterwards transformed into the homoleptic
macrocycles. After 24 h, two prominent peaks with m/z of 405.2276 and 557.2900 were
attributed to macrocycles [pPha(NON)+H]" and [BiPh2(NON):+H]", respectively. The
intermediates [pPh+BiPh+NON] and [pPh+BiPh+2NON], as well as the macrocycle
(pPh)(BiPh)(NON);, were also detected in the course of the reaction. Due to the poor
thermodynamic stability of the heteroleptic species, macrocycle (pPh)(BiPh)(NON)
disappeared later on. No signals corresponding to heteroleptic macrocycles could be observed

at the end of the reaction, indicating again the occurrence of a self-correcting process.
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Figure 11-10. Evolution of HRMS-ESI(+) spectra of the 2/2/4 mixture of pPh (2 mM), BiPh (2 mM)

and NON (2 mM), in 50%-50% CHCIs/MeOH. Selected reaction times: 10, 66, 180, 500, and 1770

min.
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Figure II-11. HRMS-ESI kinetic evolution of the species generated during the self-sorting process of
2pPh + 2BiPh + 4NON (50%-50% CHCIls/MeOH, r.t) as a function of time over 1440 min. NB:

These data do not provide quantitative information about the relative amounts of each species

identified by its mass, but, taken separately, they display the evolution of a given identified species

during the course of the reaction. The curves are added to guide the eye.
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2.2.3. Self-sorting processes of macrocycles pPh2(NON): and BiPh2(NON).

On the basis of the results above, a plausible self-sorting process may be suggested. In an
initial step, the diamine NON reacts with the aldehydes pPh or BiPh to form the
corresponding [1+1] intermediate; this intermediate can convert directly to the homoleptic
macrocycle, namely pPh2(NON)2 or BiPh2(NON): by dimerization but, as discussed above.
(Scheme II-3) at least two other pathways are possible. In the mixed aldehyde system,
heteroleptic intermediates do appear to form but are removed by self-correction processes
leading to the high-fidelity homo-self-sorting (Scheme II-4). At least two heteroleptic
intermediates, [pPh+BiPh+NON] and [pPh+BiPh+2NON], were observed transiently and

their final absence shows that their formation must be reversible.
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Scheme I1-4. Self-correction and dissociation processes showing the conversion of heteroleptic

intermediates into the desired homoleptic macrocycles pPha(NON),; and BiPh(NON)s,.
2.3. Self-sorting of macrocycles from a four-component DCL

A four-component DCL composed of pPh, BiPh, TriPh (4,4"-terphenyldialdehyde) and
NON in a 2:2:2:6 ratio was investigated (Figure II-12). The 'H NMR time evolution
indicated that the reaction equilibrium was reached after 5510 min of heating at 40 °C. The

generation of macrocycles followed the rate sequence pPh2(NON); > BiPh;(NON); >
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TriPh2(NON)2. The composition of the final equilibrium solution was 36% pPh2(NON),,
32% BiPh2(NON),, and 32% TriPh2(NON),, inferring that the three macrocyclic species
presented similar energies of formation. The production of the three macrocycles was also

confirmed by HRMS (Chapter VII, Figure S-11-32).
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Figure I1-12. (a) Partial "H NMR spectrum (after 5510 min at 40 °C, 400 MHz, CDCI;) of the parallel
formation of a mixture of macrocycles pPh2(NON);, BiPh2(NON); and TriPhy(NON); from the self-
sorting experiment between 2pPh + 2BiPh +2TriPh + 6NON. (b) Component abundance

(macrocycles pPhy(NON),, BiPhy(NON), and TriPh,(NON),) as measured using 'H NMR (tmax =
5510 min).

2.4. Formation of the macrobicyclic cage pPhiT: (T =
tris(aminomethyl)amine = "tren")

2.4.1. "H NMR monitoring

The assembly of cage pPhsT, (Figure II-13) was first monitored by 'H NMR
spectroscopy. In the 'H NMR spectra, signals due to several intermediates were observed. As
there may be at least eight possible intermediates for the generation of a cage, it is not
surprising that the spectra are more complicated than in the case of the macrocycles. Hence,
only the simplest [pPh+T] (Figure II-14) was assigned. After 118 min, about 55% pPh was
involved in the reaction, of which 35% pPh was converted to [pPh+T], while only 2% cage
pPhsT: was generated, indicating that the remaining intermediates contained about 13% pPh.

After that, the concentration of [pPh+T] gradually decreased and up to 96% cage pPhsT2 was
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generated. (see Chapter VII, Figures S-1I-26 and Figure S-II-27 for the observation of the

self-assembly reaction between T and BiPh).
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Figure I1-13. Evolution of the 'H NMR spectra (500 MHz, CDCI;) of a 3:2 mixture of pPh (3.6 mM)
and T (2.4 mM) showing the formation of intermediate [pPh+T] and of the final macrobicyclic cage
pPhsT.
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Figure II-14. '"H NMR spectrum (400 MHz, CDCl;) showing the generation of the intermediate
[pPh+T] after 59 min of condensation reaction between pPh (3.6 mM) and T (2.4 mM).
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Figure II-15. Time evolution of the species generated during the synthesis of pPhsT; as measured

using "H NMR. Error in "H-NMR signal integration: +5%.

2.4.2. HRMS-ESI monitoring

The HRMS monitoring defined a similar trend to that observed in the 'H NMR
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monitoring. From Figures II-16 and II-17, it can be seen that after mixing the two reactants,
the [1+1] type of intermediate (i.e., [pPh+T]) was formed first and gradually reached its
highest abundance. As expected, the [2+2] type of intermediate [2pPh+2T] reached its
maximum concentration slightly later than [pPh+T]. Although the absolute intensities of the
other four intermediates [2pPh+T], [pPh+2T], [3pPh+T], and [3pPh+2T] were quite low,
their abundance trend could still be determined thanks to the high sensitivity of the HRMS
equipment. (see Chapter VII, Figure S-1I-27 for the formation of cage BiPhsT>).
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Figure II-16. Evolution of the HRMS-ESI spectra of the 3:2 mixture of pPh (2 mM) and T (1.3 mM)
in 50%-50% CHCl3/MeOH.
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Figure II-17. HRMS-ESI kinetic profiles for the species generated during the self-assembly of pPh (2
mM) and T (50%-50% CHCI3/MeOH, r.t) as a function of time. NB: These data do not provide
quantitative information about the relative amounts of each species identified by its mass, but, taken
separately, they display the evolution of a given identified species during the course of the reaction.

The curves are added to guide the eye.

2.4.3. Formation processes of the macrobicyclic cage pPhsT>

Pathways for the generation of this [3+2] cage (i.e., pPh3T2) were then assessed. Figure
I1-18 illustrates all the imine species possibly involved in the dynamic self-assembling process
(nine intermediates as well as two reagents and a cage product), although some of them were
not detected by HRMS-ESI. In the initial stages of the reaction, only the dialdehyde pPh and
the tetramine T were present in the solution, along with slowly increasing quantities of the
[1+1] type of intermediate.

The proposed cage formation process involves sequential reactions with free pPh and/or
T, first with the [1+1] species, then with each higher species, increasing the number of imine
bonds and number of linking bridges until the precursor to the desired [3+2] cage is formed
(blue-line pathway) and undergoes intramolecular cyclisation. Some of these [1+1]

intermediates may connect directly with themselves or other [1+1] or [2+1] type of
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intermediates to form [2+2] or [3+2] type of intermediates, respectively (orange-line pathway).

/—!’\‘\;‘ —*\.!'-/\_4 Q \
3 AP - > JO—0
\ 3 it Q ‘\\\\ :D/ Cage pPh,T,

Figure II-18. Stepwise [3 + 2] imine condensation processes showing the intermediates on the way to

T ~L

pPh am _T/\

the formation of the dynamic covalent macrocyclic cage.

2.5. Self-sorting of macrobicyclic cages from a three-component DCL

2.5.1. "H NMR monitoring

A three-component self-sorting experiment resulting in the parallel formation of two
cages was set up from a pPh:BiPh: T mixture in a 3:3:4 ratio. Figure 1I-19 and Figure 11-20
show that after mixing the components, the concentration of pPh rapidly decreased.
Simultaneously, new broad signals appeared and progressively disappeared as the reaction
proceeded, indicating that they were due to intermediate species. After ca. 240 min, some
additional low-intensity peaks were noted, together with signals assigned to the imine bond
CH of both the small cage pPhs3T, and the large cage BiPhsT>, while both pPh and BiPh
were progressively further consumed. The aldehyde pPh was nearly fully consumed after 720
min, time at which 9% BiPh remained unreacted. The consumption sequence was in
accordance with their corresponding cage formation rates. NMR yields of 51% for pPhsT>
and 46% for BiPhsT, were attained after about 4157 min (69 h), with the final mixture
containing 2% of unreacted BiPh. The final spectrum indicated the high-fidelity self-sorting

and confirmed the absence of any heteroleptic cages.
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Figure I1-19. Time evolution of the partial 'H NMR spectra (400 MHz, CDCl;, 23 °C) of the reaction

3pPh + 3Biph + 4T ([pPh]o = [BiPh]o = 3.6 mM, [T]o = 4.8 mM). The two bottom spectra
correspond to the isolated macrobicyclic cages pPhsT2and BiPhsT,.
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Figure I1-20. 'H NMR monitoring of dialdehydes pPh, BiPh and cages pPhsT>, BiPh;T; over 1800
min. The component distribution (%) was obtained by integration of the aromatic and aldehyde CHO

proton signals in the 400 MHz 'H NMR spectra. Error in 'H-NMR signal integration: +5%.

7527



Chapter II. Rules of Self-Sorting

2.5.2. HRMS-ESI monitoring

To gain some additional information about the mechanism of the macrobicycle self-
sorting processes, intermediates formed during the reaction were characterised by their
HRMS spectra. Table S-II-3 lists all identified intermediates and cages detected in time
dependent HRMS experiments. The evolution of the spectra over time is shown in Figure II-
22 and it revealed qualitative trends for these species. After 4 min of mixing, the [1+1] type
intermediates (i.e., [pPh+T] and [BiPh+T]) were generated, and their concentrations reached
their maximum intensity at about 30-60 min, and then gradually decreased. The [2+2]
intermediates followed a similar tendency but slightly slower than that of [ 1+1] intermediates.
In general, a cascade reaction was triggered by the rapid appearance of [pPh+T] and

[BiPh+T], resulting ultimately in the simultaneous formation of pPhsT: and BiPh3T-.
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Figure II-21. Evolution of the HRMS-ESI spectra of the 3:3:4 mixture of pPh (2 mM), BiPh (2 mM)
and T in 50%-50% CHCIl3/MeOH after 4 minutes, 66 minutes, 150 minutes, 320 minutes and 960

minutes.
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Figure 11-22. HRMS-ESI monitoring of the evolution of the species generated during the reaction of
3pPh + 3BiPh + 4T (50%-50% CHCIl3/MeOH, r.t) as a function of time over 960 min. NB: These data
do not provide quantitative information about the relative amounts of each species identified by its
mass, but, taken separately, they display the evolution of a given identified species during the course

of the reaction. The curves are added to guide the eye.
Several heteroleptic intermediates appeared which subsequently underwent conversion to

other species before disappearing from the final spectra. Studying the HRMS plot in higher

detail (under high amplification of the axis, Figure II-23) revealed a decrease in the
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concentration of the heteroleptic cage (i.e., (pPh)(Biph).T) after its formation, indicating a

self-correction process as a result of the poor stability of such heteroleptic species.
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Figure 11-23. Amplified HRMS-ESI plot showing the evolution of cage (pPh)(BiPh),T> as a function
of time. NB: These data do not provide quantitative information about the relative amounts of each
species identified by its mass, but, taken separately, they display the evolution of a given identified

species during the course of the reaction. The curves are added to guide the eye.

2.5.3. Stepwise self-sorting experiment through component recombination

The previous "one-pot" self-sorting experiment was performed in two steps to gain more
insight into the recombination process of the intermediates (Scheme I1-5).

The '"H-NMR study indicated that in a solution prepared by mixing 3 equiv. BiPh and 4
equiv. T, 36% of the initial T was converted into the cage BiPh3T>. After 24h, as no CHO
signal of free BiPh remained, the rest of BiPh appeared to have formed [BiPh+2T] (10% by
T) and [2BiPh+2T] (15% by T), accompanied by the remaining free T (40%). This
composition did not change over another 4 days. Then, on the addition of 3 equiv. pPh to this
solution, all intermediates and free T were converted into > 47% (concerning the internal
reference) of each of the two macrobicycles pPh3;T2 and BiPhsT: (Figure II-24). These
results indicated that the reaction between i) the added pPh, ii) the [BiPh+2T] and
[2BiPh+2T] intermediates, and iii) the remaining free T gave the pPh3T: cage together with
the additional BiPhsT> cage. Taken together, they confirm that self-correction did indeed take
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place by component recombination driven by the thermodynamically-favoured formation of

the pPhs T cage.
CHO \ /\
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Scheme II-5. Component recombination by addition of 3 equiv. pPh to the 3BiPh + 4T solution.
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Figure I1-24. Evolution of the '"H NMR (400 MHz, CDCls, 23 °C) spectra of stepwise self-sorting by
addition of 3 equiv. pPh to the 3BiPh + 4T solution (the initial concentration of BiPh is 3.6 mM, T is
4.8 mM).
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2.5.4. Self-sorting processes of macrobicyclic cages pPh3;T: and BiPh;T:

DCL &m <l ==

One imine bond i i

A

Two imine bonds M 3 ‘y 1 | _l'
Three imine bonds \1’ Q Q w Q wq \!'

Qmm Acmv\ @a-

|
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Unstable cages

pPh-species formation pathway

m m BiPh-species formation pathway
Hetero-species formation

pPh,T, BiPh,T, and Self-correction pathway

Self-sorted cages

Figure II-25. Possible reaction pathways in the three-component [3+2] imine-cage self-sorting system.
Blue and red cuboid represent the dialdehyde units, the three-jaw figure represent the triamine T. Cyan
and pink lines correspond to the homoleptic reactions to form [xpPh+yT]| and [xBiPh+yT] species,

respectively. Green lines correspond to the heteroleptic pathways and self-correction pathways.

The self-sorting of cages defined a progressive evolution towards the final homoleptic
structures along a sequence of steps which may involve up to 38 intermediates (Figure II-25):
the [1+1] intermediate was formed initially in high abundance, and then it converted into
three-component intermediates [1+2] and [2+1]. These intermediates of odd stoichiometry

were then transformed into four- (i.e., [2+2] and [1+3]) and five-component (i.e., [2+3]) larger
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intermediates, which finally led to the formation of the desired homoleptic cage structures.
Self-correction of the heteroleptic species must take place at different steps within the reaction

sequence to yield the pure homoleptic macrobicyclic structures pPhs T2 and BiPh3Ta.
2.6. Principles of self-sorting

2.6.1. Effect of component size

N N K N N
~ cHo CHO f _
: ) HN gy NH e ! Jd / 1/
fo] + + (o] _0 Voo y 4+ mEwm
._ . " AN v O
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Figure I1-26. Time evolution of the '"H NMR (400 MHz, CDCls, 23 °C) spectra of 3E + 3F + 4T

reaction.

The previous results (for instance, the self-sorting of T with pPh and BiPh) inferred self-
sorting behaviours between components of different lengths. Here we explored the self-
sorting capacity of two dialdehydes of similar length (E, F) at the ratio of E:F:T = 3:3:4
(Figure II-26). Upon equilibration, aside from the signals of cage E3T> and F3T3, it became

evident in the view of the "H NMR signals that some additional species were produced (see
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for instance the 7.8-7.6 ppm in Figure II-26). Although the structure of these side-products
signals could not be identified by NMR, it was sufficient to demonstrate that the current
system did not exhibit the high-fidelity self-sorting phenomenon that we expected. This
experiment thus reveals that minor variations in precursor length can crucially affect the self-

sorting outcome.

2.6.2. Effect of stoichiometry
2.6.2.1. Stoichiometry effects on the self-sorting of components in different length

The self-sorting behaviour of cages in a competitive environment with insufficient
amounts of T was then investigated. The reactions were monitored by 'H NMR by mixing

pPh:BiPh:T in different stoichiometric ratios.

Table II-1. Outcomes of self-sorting experiments in pPh:BiPh:T mixtures with different ratios of T.”

pPh:BiPh:T
Constitutent 3:3:2 (%) 3:3:3 (%) 3:3:4 (%)
Unreacted pPh 10 4 <1
Unreacted BiPh 36 25 <1
Cage pPhsT> 36 45 51
Cage BiPhsT: 8 23 46

% The component distribution (%) was obtained by integration of the aromatic and aldehyde CHO
proton signals in the 400 MHz or 500 MHz 'H NMR spectra. Error in '"H-NMR signal integration:
+5%.

The outcomes of the reactions at equilibrium are summarized in Tables II-1. It can be
seen that (i) when there is an insufficient amount of T, the system preferred to form the
relatively smaller cage pPhsT», indicating that such cage is thermodynamically more stable
than the bigger one; (ii) all experiments exhibited excellent self-sorting behaviour, with good

overall NMR yields.
2.6.2.2. Stoichiometry effects on the self-sorting of components in similar length

Lehn et al. have reported a highly selective incomplete self-sorting phenomenon from

mixtures of dialdehydes of similar length (pyridine-2,6-dicarboxaldehyde, Py and m-
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phenylenedicarboxaldehyde, mPh).'? They demonstrated that from a mixture of Py:mPh:T in
a 3:3:2 ratio, the outcome showed a preference for cage PysT2 with up to 92% yield. This

motivated us to examine the self-sorting selectivity of Py:mPh:T in a 3:3:4 ratio.

CHO CHO  H,N_~ ~_NH,
< N CDCly, 23 °C
N o+ + —
CHO CHO NH,
Py mPh T

3 equiv. 3 equiv. 4 equiv.

(mPh)(Py),T,

(mPh),(Py)T,

Scheme II-5. Precursors and possible products for the dynamic library: 3Py + 3mPh + 4T

The 'H NMR spectra (Figure II-27) showed that after mixing all components, it was
evident that the consumption of mPh was significantly slower than that of Py. As the reaction
course proceeded, complex uninterpretable signals appeared around the characteristic peaks of
cages Py3;T, and mPhsT,. The careful analysis led to attributing two singlets with chemical
shifts at 5.2 and 5.3 ppm to the two heteroleptic cages (Py)(mPh), T, and (Py)2(mPh)T>,
respectively. The existence of these heteroleptic macrobicycles was further confirmed by
HRMS-ESI (Figure II-28). After 8 days of equilibration, the composition of each constituent
as indicated by the '"H NMR remained unchanged, which was: mPh3 Tz (20%), (Py)(mPh), T
(25%), (Py)2mPh)T: (32%), Py3T2 (20%) and 3% unreacted mPh. In comparison with
previous reports, this experiment demonstrates that the stoichiometric ratio of the initial

library of components is an essential factor that determines the outcome of self-sorting

(ordered) or unsorting (disordered).
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Figure I1-27. Time evolution of the 'H NMR spectra (400 MHz, CDCls, 23 °C) of the reaction 3Py +
3mPh + 4T (CDCls, 23 °C). The two bottom spectra correspond to the isolated PysT, and mPhsT:

cages.
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Figure 11-28. Time evolution of the partial HRMS-ESI spectra for the reaction crude of the dynamic
self-assembly between 3Py + 3mPh + 4T

2.7. Self-sorting of macrobicyclic cages from a four-component DCL

In another case, a four-component DCL composed of pPh, BiPh, TriPh and T in a
3:3:3:6 ratio was investigated in CDCls (Figure 1I-29). The time evolution was monitored by
"H NMR at 40 °C. Again, the reactant concentrations decreased uniformly with time, in a
similar manner to the appearance of the characteristic peaks assigned to cages pPhsTa,
BiPh3T, and TriPhsT,, following the sequence of relative rates pPh3;T, > BiPhsT; >
TriPh3T,. After 900 min, signals corresponding to macrobicyclic cages pPhs T2, BiPhsT>, and
TriPhsT, were clearly apparent and the distribution was 29% pPhsT2, 26% BiPh3T2, 26%
TriPhs T, together with <1% unreacted BiPh and <1% unreacted TriPh. The production of
the three macrocycles was also confirmed by HRMS (Chapter VII, Figure S-II-34). These

results indicate that with an appropriate choice of precursor components, self-sorting systems

of higher diversity can be efficiently designed.
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Figure 11-29. (a) Partial 'H NMR spectrum (400 MHz, CDCl;) of the parallel formation of
macrobicyclic cages pPhsT2, BiPh3T,, and TriPhsT, through the self-assembly of 3pPh + 3BiPh
+3TriPh + 6T after 900 min at 40 °C. (b) '"H NMR monitoring of the formation of the cages pPhsT>,
BiPh;T;, and TriPh;T; over 900 min. Error in '"H-NMR signal integration: +5%. The signals of free
dialdehydes BiPh and TriPh are indicated by red and orange stars, respectively.

3. Summary of the chapter

We have studied the formation and self-sorting processes of either [2+2] tetraimino
macrocycles or [3+2] hexaimino macrobicyclic cages using '"H NMR and HRMS-ESI to
clarify the intrinsic rationale of self-sorting.

At the beginning of the chapter, the work focuses on the mechanistic studies of the [2+2]
imine-based macrocycles formation. After the kinetic investigations, a plausible three-
pathway cyclization mechanism towards the formation of [2+2] covalent organic macrocycles
was suggested. The results demonstrated that the heteroleptic intermediates randomly
generated during this process can be corrected through dissociation and recombination (i.e.,
self-correction process) leading to the parallel generation of two or three homoleptic
macrocycles.

The rest of the chapter describes the study of the self-assembly process of dynamic
molecular cages and several factors to influence their self-sorting behaviour. The generation
of macrobicyclic cages is more complicated than that of macrocycles, when macrobicyclic

cages are implemented into a three-component self-sorting system, at least 43 species with
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numerous internal reactions could be generated. To ensure the precise recognition of self and
non-self and to eliminate metastable heteroleptic species, an intrinsic self-correction process
is indispensable. In addition, the structural and stoichiometric effects were confirmed to be
the two key factors for the rendering of high-fidelity self-sorting. With this approach, the
simultaneous generation of three macrocycles or cages was successfully achieved from four-
component DCLs.

The results highlight the essential role played by structural features as well as
stoichiometry in controlling both the kinetic and thermodynamic parameters to balance a

sorted versus a scrambled outcome.
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Chapter I1I. Dynamic Covalent Self-Sorting and Kinetic
Switching Processes in Two Cyclic Orders: Macrocycles

and Macrobicyclic Cages

1. Introduction

A further step towards systems of higher complexity resides in the design and
exploration of DCLs presenting time dependence that would autonomously adapt to their
inherent kinetic factors and display self-recognition processes in the buildup of their
constitution through component self-sorting processes, leading to the emergence of higher
states of complex behaviour.'26:133:136

Recently, He and Lehn described a series of time-dependent DCLs that were generated
from mixtures of two aldehydes and two amino compounds through the formation of
reversible C=N bonds, either in the absence or presence of metal ions as shown in Figure
I1I-1.3° Based on the internal kinetic and thermodynamic properties of the selected
components as well as their related constituents, these DCLs underwent an evolution from an
initial kinetic distribution to the final thermodynamic one as a function of time. As a result,
the overall evolution exhibited a kinetically-controlled orthogonal switching from one
diagonal to the other diagonal of the [2 x 2] CDN. This report led to the present efforts to
incorporate such interesting kinetically controlled evolution into self-sorting systems.

In Chapter II, self-sorting processes in one type of topology, either macrocycles or cages
have been described. That antecedent project led to the exploration of DCLs of higher
complexity by, for instance: (i) implementing self-sorting in two cyclic orders (e.g.,
concurrent formation of macrocycles and macrobicyclic cages); (ii) evaluation of time-
dependent switching behaviours in the self-sorting processes of macrocycles and

macrobicyclic cages.
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Figure III-1. Kinetic orthogonal switching of the [2 x 2] CDNs (a) in the absence and (b) in the

presence of metal cations (Figure reproduced from reference®”).
2. Results and Discussion

2.1. Self-sorting in two cyclic orders

As shown in Chapter II, the main driving force for efficient self-sorting arises from the
differential reaction rates of the substrates involved. The reactivity of triamine T is known to
be higher than that of diamine NON, and the formation of T-cages is proven to be faster than
that of NON-macrocycles. These two polyamines were therefore chosen to examine the

possibility of parallel generation of constituents with different topologies via self-sorting

processes.
2.1.1. Self-sorting from three components Py/T/NON

To start with, the relatively reactive pyridine 2,6-dicarboxaldehyde (Py) was chosen to
react with a mixture of T and NON. Considering that T contains three reactive amino groups
and NON contains two amino groups, in order to allow all amines to fully react with the
aldehyde, the three precursors were mixed in a molar ratio of Py:T:NON=5:2:2. Upon
simultaneous addition of T and NON into a Py solution in an NMR tube, the tube was shaken
and the reaction was monitored by 'H NMR spectroscopy. Component T was almost
completely consumed after only 5 min of reaction, with the expected coupled decrease in the

amount of unreacted Py. The 'H NMR spectra taken over this period showed a large number
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of complicated signals which were difficult to interpret, indicating that several intermediates

were formed from the reaction of Py and T.
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Figure I1I-2. '"H NMR (500 MHz, CDCls, 23 °C) monitoring of the self-sorting behaviour of the
reaction SPy + 2T + 2NON, where the initial concentration of Py is 9.0 mM and the initial
concentration of both T and NON is 3.6 mM. The two bottom NMR spectra are the spectra of pure

Py>(NON); and Py;T> and have been included for comparison.

Study of the reaction progress described in Chapter II showed that the self-sorting of
organic cages and macrocycles involves an induction period with multiple condensation
reactions generating a number of unidentified intermediates. In accordance with this, as NON
was gradually consumed, another series of intermediates was detected in solution and
presumed to be involved in different oligomerization and cyclization reactions. Once

equilibrium was reached (after 36 h), almost all of the starting materials had been converted
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to macrocycle Py2(NON), and macrobicyclic cage PysT.

The rate curve (Figure III-5a) showed that (i) after mixing, more than 50% of Py was
immediately consumed and no cyclic product was formed; (i1) the rate of formation of cage
Py3T2 was higher than that of macrocycle Py2(NON)z; (iii) the outcome in which 60% of Py
was converted into cage PysT2 and 37% into Py2(NON), agreed well with the stoichiometric

ratio of the initial components.

2.1.2. Self-sorting from three components BiPh/T/NON and E/T/NON (E =
diphenylether dialdehyde)

2,6-pyridinedicarboxaldehyde was replaced by the longer but less reactive 4,4'-
biphenyldicarboxaldehyde, BiPh, to examine the effect of the dialdehyde length and
reactivity on the self-sorting outcome. Throughout the reaction (Figure III-3), a large
number of signals corresponding to intermediate compounds appeared. After 700 min, all the
T had been consumed and converted into the cage BiPh3T2, while NON had not been entirely
consumed. At equilibrium after 3830 min, the two predominant species were cage BiPhs T,
and macrocycle BiPh2(NON):.

The rate plot (Figure III-Sb) showed that (i) the rate of consumption of BiPh was
significantly slower than that of Py in the previous system; (i1) the formation rate of BiPhsT>
was faster than that of BiPh2(NON),; (iii) the concentration of cage BiPhsT2 remained
unchanged during the slow formation of BiPh2(NON).. When equilibrium was reached,
about 60% of BiPh was converted to cage BiPh3 T2 and about 33% of BiPh was converted to
macrocycle BiPh2(NON),, with the rest of the BiPh in the form of side products.

7687



Chapter III. Dynamic Covalent Self-Sorting and Kinetic Switching Processes in Two Cyclic Orders: Macrocycles
and Macrobicyclic Cages

CHO ‘CN‘ Nr:N ) /N(\O/\N\
S o, e 00000
SR ' ON 10 (R
BiPh T NON “ ";w hy | \NK/O\)",

BiPh,T, BiPh,(NON),

BiPh;T; BiPh,(NON),

3830 min v I_A_l ) ){ N

2880 min N L_kk JL A
1440 min . ’ Lo A__h_l ) A . e

720 min N 1 - k_‘ A "

480 min I N k_k-__.L_.L A e
somn ) NS W N S YO
240 min L W L _ A Adaa
120 min L 3 U_- l 5 R h L.k_AJ
60 min l U_ l A LLJ
amr | , A A
T+NON ) J ) A JLA

11.0 10.6 10.2 98 86 84 82 80 78 76 74 7.2 70 68 42 40 38 36 34 3.2 3.0 28 26 24
Chemical shift (ppm)

Figure I11-3. '"H NMR (500 MHz, CDCls, 23 °C) spectra of the self-sorting behaviour of reaction
5BiPh + 2T + 2NON, where the initial concentration of BiPh was 9.0 mM and the initial
concentration of both T and NON was 3.6 mM.

The self-sorting behaviour of E/T/NON was also examined. After 24 h of reaction at
room temperature, the resultant solution was heated to 50 °C. At equilibrium, the dominant
species present were cage E3T2 (65 %) and macrocycle E2(NON)2 (30 %) The above results
prove that self-sorting of macrocycles and macrobicyclic cages can be achieved from a

mixture of the selected dialdehyde with T and NON (Figure III-4 and Sc).
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Figure I1I-4. '"H NMR (400 MHz, CDCI3, 23 °C) monitoring of the self-sorting behaviour of reaction

S5E + 2T + 2NON, where the initial concentration of E is 9.0 mM and the initial concentration of both

T and NON is 3.6 mM.
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Figure III-5. Rate plots of the time evolution of a) Py, Py,(NON);, and Py3;T:, b) BiPh,
BiPh2(NON),, and BiPh;T;, c¢) E, E2(NON),, and E;T>. The compositions (%) have been obtained by

the integration of specific signals in the "H NMR spectra. Error in "H-NMR signal integration: +5%.

2.1.3. DCLJ1] generated from four components: Py/BiPh/T/NON.

First of all, the self-sorting within the four-component (DCL[1]) was studied for two
distinct-in-shape aldehydes (Py/BiPh), T, and NON (Scheme III-1). Here, the molar ratio
was set as 5 (Py):5 (BiPh):4 (T):4 (NON).
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Scheme III-1. Precursors and possible products for the dynamic library: 5Py + 5SBiPh + 4T+ 4NON
(DCLI1])

The 'H NMR spectra revealed the formation of the four expected constituents, with a
composition of 12%, 47%, 32%, and 5% for BiPh3T2, Py3;T2, BiPh2(NON); and Py2(NON).,
respectively. Therefore, the system was clearly following a high-fidelity homo-self-sorting
behaviour as no heteroleptic cage/macrocycle was present in the equilibrium state (Figure
I11-6).

Furthermore, the '"H NMR spectra showed that the consumption of the Py component
occurred much faster than the appearance of the Py3T, product. This behaviour suggested
again the occurrence of sequential reactions during which a number of open-chain
intermediates was generated. The presence of such intermediates can be better appreciated in
the amplified version of the "H NMR spectrum after 5 min (Figure III-6b), as well as in the

corresponding high resolution mass spectrum (Figure I11-7).
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Figure II1-6. (a) Time evolution of the 'H NMR (500 MHz, CDCls, 25 °C) of the reaction 5Py +
5BiPh + 4T+ 4NON ([Py]o= [BiPh]o = 3.6 mM; [T]o = [NON]o =2.9 mM). The four bottom traces
correspond to the isolated cage Pys;T,, macrocycle Py2(NON),, cage BiPh3T, and macrocycle
BiPh2(NON),. (b) Partially amplified "H NMR spectra of the reaction 5Py + 5BiPh + 4T+ 4NON
after 5 minutes of mixing. The two bottom traces correspond to the isolated cage PysT, and the

component mixture Py + BiPh.
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Figure III-7. (a) Time evolution of the HRMS-ESI spectra for the reaction between 5Py + 5BiPh +
4T + 4NON ([Py]o= [BiPh]s = 2.0 mM; [T]o = [NON]s =1.6 mM; 25 °C) in 50%-50% CHCl/MeOH
after 5, 31, 120, 320, 630, and 1280 min. (b) Amplified high resolution mass spectrum of the reaction
between 5Py + 5BiPh + 4T+ 4NON after 5 minutes.

These and previous observations show Py to be more reactive (better electrophile) than
BiPh, and T to be a better nucleophile than NON. The central nitrogen of T might also
participate in proton transfer events. That the macrobicyclic cage PysTz2was the first one to be
formed (Figure III-8) must be considered quite remarkable, taking into account that the

formation of such macrobicycle requires more condensation reactions (i.e., 6) than for the
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generation of macrocycles (i.e., 4) (Figure I11-8).
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Figure III-8. Rate plots showing the time evolution of the abundance of dialdehydes Py and BiPh,
cages Pys;T; and BiPh; T2, and macrocycles Py2(NON); and BiPhy(NON).. (a) '"H NMR monitoring
over 5770 min. The composition % was obtained by integration of the aromatic area for cage
BiPh3T2, macrocycle Py2(NON),, imine proton for cage PysT2, macrocycle BiPh2(NON).
and aldehyde CHO proton signals in the 500 MHz "H NMR spectra (CDCls, 25 °C). Error in
"H-NMR signal integration: +5%. (b) HRMS-ESI monitoring over 1280 min. NB: These data of
HRMS do not provide quantitative information about the relative amounts of each species identified
by its mass, but, taken separately, they display the evolution of a given identified species during the

course of the reaction. The curves are added to guide the eye.

Py, BiPh and T were then mixed in a molar ratio of 3:3:2 to investigate the
thermodynamic stability of cages PysT: and BiPhs3T,. As expected, cage Pys;T» was
preferentially generated during the course of the reaction until equilibrium was reached, with

up to 94% of the Py component being transformed into cage Pys3T2. In contrast, BiPh
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remained unreacted and no BiPhsT, product was observed. This competition experiment
agrees well with the previously reported case for the Py/isophthalaldehyde (mPh)/T system
in a 3:3:2 molar ratio.'?? Thus, the formation of cage Py3T2 seems to be both kinetically and
thermodynamically favoured. The intramolecular interactions between the imine C-H bonds

and the N lone pair may have played a crucial role in stabilising cage Py3T2.!%?

Py,T,

840 min ; “ u h ﬂ/
60 min u u M A !

Py+BiPh+T, u
5 min y 4 M
Py
Py+BiPh \I +«— BiPh II “ h
i n A A
- Al
BiPh,T, A ill I

1(').5 ' 1(').3 ' 1l').1 ' 9'.9 8'.5 8'.4 8‘.3 B'.Z 8'.1 8'.0 7‘.9 7'.8 7'.7 7'.6 7'.5 7'.4 7'.3 7'.2 7‘.1 7'.0 6'.9 6'.8 6l.7
Chemical shift (ppm)
Figure I11-9. (a) Time evolution of the 'H NMR (400 MHz, CDCls, 25 °C) of the reaction between
3Py+3BiPh+2T 5 ([Py]o = [BiPh]o = 3.6 mM; [T]o = [NON]o =2.9 mM). The two bottom traces

correspond to the isolated cages PysT2, and BiPhsT,.

7767



Chapter III. Dynamic Covalent Self-Sorting and Kinetic Switching Processes in Two Cyclic Orders: Macrocycles
and Macrobicyclic Cages

100401
CCeegq i PNNE 5
1 Hﬁﬁﬂ%ﬁ Setesdes

= 80- —O— Py
ol —O— BiPh
é 60 - PY3T2
o
Q.
§
S 404

20

0 <+%%%-'%fﬂ-'e:e:e:e:::«e:e:e: IR IR —O—D—D—

0 120 240 360 480 600 720 840

Time (min)

Figure I1I-10. Rate plots showing the time evolution of dialdehydes Py and BiPh, and cages Py;T>,
and BiPh3T2.

2.1.4. DCL]2] generated from four components pPh/BiPh/T/NON.

DCL[2] was built up starting from pPh, BiPh, T and NON under the same conditions as
used for DCL[1] (Scheme III-2).

CHO HzN\/\N/\/NHz (NTQTN—B (N/ . . \Nl
e, o Oy OOy
N —N
pPh T N =N e S
5 equiv. 4 equiv. eDCly, 23 °C pPh3T, BiPh3T,
cHO + _— +
O Van S 2nN <= > D

N N N N
HoN _~g~NH; (- w (
[o] [o]

A °
&N NJ N N
CHO (-
BiPh NON .
BiPh,(NON
5 equiv. 4 equiv. PPh;(NON), iPh>(NON),

Scheme III-2. Precursors and possible products for the dynamic library : 5pPh + 5BiPh + 4T+
4NON (DCLJ2))

The time evolution of the species monitored using 'H NMR revealed that the

consumption of initial components was slower than previously observed for Py, suggesting
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that pPh also presents a lower reactivity than Py (Figures III-11 and ITI-13a). After ca. 3 h,
the '"H NMR showed the presence of cage pPhsT2 (11%), cage BiPh3T: (<3%), macrocycle
pPh2(NON): (<2%), macrocycle BiPh2(NON): (<1%), unreacted pPh (10%), and unreacted
BiPh (27%). The sum composition of the assignable signals was about 54%, therefore
unidentified intermediates or other products contained nearly 46% of the building blocks. As
the reaction proceeded, all precursors and unidentified intermediates were consumed and
were gradually converted into about 20% of each homoleptic macrocycle and 30% of each
macrobicycle. Here the compositions are presented on the basis of the percentages of the
dialdehyde components (component %). Considering that each macrobicyclic cage is
composed of three dialdehyde molecules and each macrocycle contains only two dialdehyde
molecules, the corresponding molar ratio of the actual compounds themselves is almost
1:1:1:1.

pPh,(NON), pPh,T,

4 6660 min (110 h) o B'Ph“"momwlpmﬂk -
1380 min (23 h) T ..J‘_,L_L. A VN
540 min (9 h) P VT J.Uu_f"t i e
wOmin(6h) | JUNT L . “ g e
180 min (3 h) L T U IV N W
pPh+BiPh+T+NON, l 5 l ” i
4 min 4 ~
pPh+giph PP {’.JJ:@P " l u " l
- * NON
T+NON ) l ) ‘/ \‘Llﬂ‘l_
BiPh,(NON), ) " |I l
pPhy(NON), . i l » ,L
Cage BiPh,T, X L I
Cage pPh,T, |

105 103 101 9984 82 80 78 76 74 72 7039 37 35 33 31 29 27 25
Chemical Shift (ppm)

Figure I1I-11. Time evolution of the "H NMR spectra (500 MHz, CDCls, 25 °C) of the reaction 5Py
+ 5BiPh + 4T+ 4NON ([Py]o= [BiPh]o = 3.6 mM; [T]o = [NON]o =2.9 mM). The four bottom traces
correspond to the isolated cage PysT,, macrocycle Py,(NON),, cage BiPh;T, and macrocycle
BiPh;(NON):.
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Subsequently, we followed the rate of formation of DCL][2] through HRMS-ESI
analyses. The possible molecular ions of the four products are listed in Table S-III-2
(Chapter VII). As shown in Figure III-12, two intense signals for dipositively charged
species at m/z 294.1841 and 408.2308 were observed and were attributed to [pPh3;T2+2H]*
and [BiPh3;T>+2H]", respectively. Within the measured period (Figure III-11b), the intensity
of these two species gradually increased, indicating the progressive formation of pPhsT> and
BiPh3T,. However, the formation of macrocycles pPh2(NON), and BiPh2(NON); was less
obvious, likely as a result of their weaker response intensity. In general, the HRMS rate

profiles showed similar patterns to those of the '"H NMR rate curves.
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Figure I1I-12. Time evolution of the HRMS-ESI spectra of SpPh + 5BiPh + 4T + 4NON ([pPh]o=
[BiPh]o = 2.0 mM; [T]o = [NON]o =1.6 mM; 25 °C) in 50%-50% CHCls/MeOH after 5, 60, 122, 240,
and 955 min.
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Figure III-13. Kinetic plots of the evolution of dialdehyde pPh/BiPh, cages pPh;T2/BiPhsT,, and
macrocycles pPh2(NON)2/BiPh(NON);, as a function of time (a) '"H NMR monitoring over 6600 min.
(b) HRMS-ESI monitoring over 955 min. NB: These data of HRMS do not provide quantitative
information about the relative amounts of each species identified by its mass, but, taken separately,

they display the evolution of a given identified species during the course of the reaction. The curves

are added to guide the eye.

2.1.5. DCL]3] generated from four components Py/mPh/T/NON.

In Chapter II, the effect of the stoichiometric ratio of reactants on the self-sorting
outcome of the mPh + Py + T system has been described. Mixing mPh/Py/T in a 3:3:4 ratio
allowed for the formation of the statistically distributed constituents. Conversely, when an
mPh/Py/T=3:3:2 ratio was used, T selectively reacted with Py because of its higher reactivity,
to give only cage Py3T.

Hence, one may surmise that the statistically self-sorted outcome would be observed by
adding NON into the reaction of mPh/Py/T = 3:3:2. The '"H NMR spectra in Figure I11-14
indeed show that after equilibration of the mixture, cage PysT: (28%) and macrocycle
mPh;(NON), (25%) were the two major constituents. However, there were unassigned signals
still present in the spectrum of the whole reaction mixture. These signals are assigned to
heteroleptic cages/macrocycles that had not been removed during the self-sorting process.
The reason may be that the reactivity differences between Py - mPh and T - NON are not
large enough to allow for the specific selection of components. As a result, a random

combination of non-self-sorted products was produced.
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In light of these results, it can be concluded that achieving high-fidelity self-sorting
requires the use of reactants with significantly distinct structures which give products of

significantly different stability.
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Q HoN o~ g~ NH, @N/ N N7 + g :}
HO N=~pNs—=N- u NJ
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Scheme III-3. Precursors and possible products for the dynamic library :3Py + 3mPh + 2T+ 3NON
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Figure I1I-14. "H NMR spectra (400 MHz, CDCl;, 23 °C) of the reaction 3Py + 3mPh + 2T+ 3NON
([Py]o= [BiPh]o = 3.6 mM) after equilibration for 4 days. The four bottom traces correspond to the

isolated cage PysT,, macrocycle Py2(NON),, cage mPh3 T, and macrocycle mPha(NON),.

2.1.6. DCL][4] generated from [3 x 2] five components of Py, BiPh, TriPh, T, NON

To further increase the complexity of the system, the number of initial components of

the library was again increased. A series of five-component [3 x 2] DCLs was built by mixing
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three dialdehydes with T and NON in a molar ratio of 3: 3: 3: 2(T): 6(NON) at 40 °C.

Firstly, three dialdehydes, namely Py, BiPh and TriPh, differing in length were selected
(Scheme III-4). Since Py is the most reactive one among the aldehydes and T is more
reactive than NON, a large amount of T should first form cage Pys3T,. The reaction was
followed by 'H NMR (Figures III-15 and Figures III-16). After 90 min, all Py was
completely consumed, giving 23% of Py3T2 and 2% of Py2(NON),. Meanwhile, a large
amount of BiPh and TriPh remained unreacted and no macrocycles and cages containing
BiPh or TriPh could be detected. After 720 min, the distribution of constituents was BiPh
(<5%), TriPh (<7%), PysT2 (30%), Py2(NON)2 (6%), BiPhsT2 (2%), BiPh2(NON)2 (12%),
TriPhsT: (< 6%), TriPh2(NON): (10%), and the rest of the missing components was present
in solution as intermediates. On further progress of the reaction, macrocycles BiPh2(NON);
and TriPh2(NON); increased in concentration, while that of cages BiPh3;T, and TriPhsT;
decreased. After 2340 min, the distribution was BiPh (<1%), TriPh (<1%), Py3T2 (29%),
Py2(NON): (6%), BiPhsT2 (<1%), BiPh2(NON): (30%), TriPhsT2 (<1%), TriPh2(NON):
(28%). This experiment also proved that by using components of different length, self-sorting
can be efficiently reached for the five-component [3x2] DCL.

o BN
3 equiv. OHC” “N“CHO

BiPh * Rty CDCls, 40 °C

1] 35
+ HN NH 0
3 equiv. o"cc"° + \NH NN e
+ 2
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O~ O~

= 3, C )
ot B OO * 2 O-O-On
Ny N> N>
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o o *p o+ P %+ TriPh
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S v e
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Scheme III-4. Precursors and possible products for the dynamic library : 3Py + 3BiPh +3TriPh +
2T+ 6NON (DCL[4])
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Figure III-15. Time evolution of the '"H NMR spectra (400 MHz, CDCls, 40 °C) for the reaction
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between 3Py + 3BiPh +3TriPh + 2T+ 6NON. The initial concentration of each dialdehyde was 1.0
mM.
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Figure III-16. Kinetic plots of the evolution of dialdehyde Py, BiPh, TriPh, macrocycles and

macrocyclic cages over 2340 min. Error in 'H-NMR signal integration: +5%.

2.1.7. DCL]5] generated from [3 % 2] five components of Py, pPh, BiPh, T, NON

A similar system was designed starting from the precursors Py, pPh, BiPh, T and NON
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under the same conditions as before (Scheme III-5). After 13 h, equilibrium of the reaction
was reached (Figure III-17), with a distribution of constituents: BiPh (3%), PysT2 (23%),
Py2(NON)2 (5%), pPhsT2 (0%), pPh2(NON)2 (23%), BiPh3T2 (2%), BiPh2(NON)2 (23%).
The total amount of assignable species of the system was approximately 79%, which might
be because the similar length of Py and pPh precluded correction of the heteroleptic species.

This system adopted self-sorting behaviour to some extent, but the overall result was less

than satisfactory.
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Scheme III-5. Precursors and possible products for the dynamic library : 3Py + 3pPh +3BiPh + 2T+
6NON (DCLI5))
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Figure I1I-17. Time evolution of the "H NMR spectra (400 MHz, CDCl;, 40 °C) of the reaction 3Py
+ 3pPh + 3BiPh + 2T+ 6NON. The initial concentration of each dialdehyde was 1.0 mM.
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2.1.8. DCLJ6] generated from [4 X 2] six components: Py, pPy, BiPh, TriPh, T,
NON

Finally, the self-sorting behaviour of DCL[6] (Scheme III-6) built up from six
components (Py, pPy, BiPh, TriPh, T, NON in a ratio of 3:3:3:2:6) was studied at 40 °C for 3
days. The equilibrated solution (Figure III-18) gave BiPh (1%), TriPh (2%), PysT: (21%),
Py2(NON): (4%), pPh2(NON): (17%), TriPhsT: (2%), BiPh2(NON): (21%), and
TriPh2(NON)2 (17%). These products contained approximately 85% of the initial reactants.
These results further corroborated the proposed important role of structural features towards

achieving precise self-sorting of DCLs.
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pPh HN A~ A~ NH2

3 squiv. onc—_Y-cro . § £ HNogaNH,  CDCl40°G
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3 equiv. °“°°"° T NON
TriPh + 2 equiv. 9 equiv.
ri
3 equiv. DHCCHO
[N%N [N%O—MNB [NN\) [NN\)
N;
Nﬁ\QNQ/NN N = =N NN NN
PysT2 PPhsT, BiPhsT, TriPh,T,
&, TN, s
o q + + + 0 d + TriPh
<—-N N-) Q_N N_) + Int.
N <>
Py,(NON), TriPh,(NON),

Scheme III-6. Precursors and possible products for the dynamic library : 3Py + 3pPh + 3BiPh +
3TriPh +2T+ 9NON (DCL[6])
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Figure I11I-18. Time evolution of the "H NMR spectra (400 MHz, CDCl;, 40 °C) of the reaction 3Py
+ 3pPh + 3BiPh + 3TriPh +2T+ 9NON. The initial concentration of each dialdehyde was 2.0 mM.

The signals of free dialdehydes BiPh and TriPh are indicated by red and orange stars, respectively.
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2.2. Dynamic switching of CDNs of macrocycles and macrobicyclic cages

The component selectivity of DCL[1] exhibited the amplified formation of a pair of
agonistic constituents, namely cage Py3;T2 and macrocycle BiPh2(NON),. From this outcome,
it is quite evident that the initial kinetically favoured formation of cage PysT2 promoted the
generation of its agonistic macrocycle BiPh2(NON),. The results of the competition
experiment between Py/Biph/T also revealed that cage Pys3T. presents a higher
thermodynamic stability than cage BiPhsT2. However, the thermodynamic disparities
between the macrocycle and cage of BiPh remained unclear. Therefore, to elucidate the
thermodynamic properties of each constituent in DCL[1], the following component

recombination experiments were performed.
2.2.1. Transformation from macrocycle BiPh2(NON); to cage BiPh;T:

To investigate the difference in thermodynamic stability of macrocycle BiPh2(NON);
and cage BiPhsT,, the first step was to explore if any macrocycle-to-cage transformation
could be attained. Thus, T (4 equiv.) was added to the pre-synthesized macrocycle
BiPh2(NON): (3 equiv.) in solution, and the reaction process was monitored by 'H NMR
spectroscopy (Figure III-19), the kinetic curve of this reaction being shown in Figure II1-20.
NON units of macrocycle BiPh2(NON); were gradually replaced by T, which resulted in a
progressive transformation of macrocycle BiPh2(NON): to cage BiPhsT,. After about 400
min, the amounts of macrocyclic BiPhy(NON): and cage BiPhs3T, remained constant
indicating that equilibrium of the reaction was reached, corresponding to 20% of macrocycle
BiPh2(NON); and 43% of cage BiPhsT:. 8% of [Biph+2T], 6% of [2Biph+2T]. The

remaining 23% of BiPh was present as soluble side products that could not be identified.

o™ A o

N N VAL N Ny
@ G HNAN~ANH2  ope, 0 O O 0 O
+ \ _— + + HN~g~NH; + Intermediates
0 0 N, Loo 90 0
N N, W oW
Lo/ LA o/
BiPh,(NON), T BiPh;T, BiPh,(NON), NON

Scheme III-7. Macrocycle-to-cage transformation experiment
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Figure III-19. Time evolution of the 'H NMR spectra (400 MHz, CDCl;, 23 °C) showing the

macrocycle BiPh,;(NON); to macrocyclic cage BiPh3T, transformation.
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Component (%)
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Figure II1-20. Component abundance as calculated by '"H NMR for macrocycle BiPh:(NON), and

cage BiPhsT; over time.

2.2.2. Stepwise self-sorting and component recombination of Py/BiPh/NON and T

The second experiment consisted of mixing three components Py/BiPh/NON (2 equiv.

of each, Figure I1I-21). The equilibrium was reached after 13 h, where 81% of Py and NON
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had reacted to give macrocycle Py2(NON)z as the main product with 14% of Py and 94% of
BiPh remaining unreacted. After 5 days of the addition of an appropriate amount of T (4/3
equiv.) to this initial solution, the amount of macrocycle Py2(NON), was significantly
reduced and the equilibrium under these new conditions was shifted in favour of cage PysT>,
with a constituent distribution of BiPh3T2 (10%), Py3T2 (45%), BiPh2(NON): (33%) and
Py2(NON); (9%), together with unreacted BiPh (1%). This experiment demonstrated that (i)
Py2(NON); is more thermodynamically stable than BiPh2(NON)2 and cage PysT: is more
thermodynamically stable than both Py2(NON) and BiPhsT2; (i1) the less
thermodynamically stable constituents can be transformed to more stable ones by component

recombination.

BiPh,T, PysT,

Py,(NON),

yield 81% /N
< s I — @ 4/3 equiv. T

NON BiPh 5 days

2 equiv. 2 equw 2 equiv. .
Py B|Ph -“'@-— g
14%

. BiPh BiPh,(NON),  PY2(NON),
<1% 33% 9%

Figure III-21. Stepwise self-sorting by the addition of T into a preequilibrated solution of
Py/BiPh/NON. Data obtained from the '"H NMR spectra (400 MHz, 25 °C, CDCI;).
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Figure I11-22. Time evolution of the "H NMR spectra (400 MHz, 25 °C, CDCls) for the stepwise self-
sorting by the addition of 2/3 equiv. of T into an equilibrated solution of NON (3.6 mM, 2 equiv.),
Py (3.6 mM, 2 equiv.) and BiPh (3.6 mM, 2 equiv.). The four bottom traces correspond to the isolated

Bith(NON)z, BiPh3T2, Pyz(NON)z and Py3T2.

2.2.3. Imine metathesis within pre-formed cages and macrocycles

The above experiments confirm that such imine-based macrocycles can be transformed
into cages by component exchange. In a similar fashion, the dynamic nature of the imine
bonds provides the capacity to realize a cage-to-cage transformation by the addition of
another building block.!'”!?? Such transformation may also take place between preformed
macrocycles and macrobicyclic cages. To further explore this behaviour in a four-component
self-sorting system, two [2 x 2] Macrocycle-Macrobicyclic Cage Constitutional Dynamic
Networks (CDNs), namely DCL[7] and DCLI8] (Figure II1-25), were designed. The CDNs
were built up from mixtures of the separately prepared macrobicyclic cages and macrocycles
in the presence of 5 mol% dimethylamine hydrochloride (DMA-HCI) as an exchange catalyst.

DCL]7] was constructed by mixing two agonistic constituents macrocycle Py2(NON);
and cage BiPhsT: (1:1 concerning dialdehyde units) using dimethylamine hydrochloride
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(DMA-HCI) as the catalyst. After 10 days of equilibration, a composition of 6%, 41%, 41%,
and 5% for BiPhsT2, PysT2, BiPh2(NON)2, and Py2(NON),, respectively, was attained. The
agonistic constituents Py3T2 and BiPh2(NON): were clearly the major products, reflecting an
orthogonal distribution switching in the [2% 2] CDN (Figure III-23). Since no released T or
NON was observed during this process, the cage and macrocycle had broken up and
recombined to the preferred structures concomitantly by component exchange or imine

metathesis driven by the formation of the most stable cage PysTb.

fine e.il:'hz(l\:om)zpyz“m:'.)2 ;yst BiPh,T,
10 days " T ILL/ ) N
7.5 days 5 L L |l . e &
5.5 days ” IIAL._LL ” .
3 days , » I § LL_ . M )
1 day ,
+5% DMA-HCI 5min

BiPh,(NON),

Py,(NON), + BiPh,T, I l' \
L 5

5

=
T F—P—}—E——P—F’—ﬁﬁh‘
$

BiPh;T, ) T R
Py,(NON), o
PysT, R e | .y A
BiPh 1 , ‘i l ’”

Figure II1-23. Time evolution for the "H NMR spectra (400 MHz, r.t.) of the mixture of macrocycle
Py:(NON); (1.6 mM), cage BiPh3T, (1.1 mM), and 5 mol% dimethylamine hydrochloride
(DMA-HCI) after 5 minutes, 1 day, 3 days, 5.5days, 7.5 days, and 10 days (six top traces). The five

bottom traces correspond to the isolated BiPh2(NON),, Py2(NON),, BiPh; T, Py;T,, and BiPh.

Importantly, macrocycle BiPha(NON), was considered to be the least
thermodynamically stable amongst the four constituents of the library (i.e., PysTa,
Py2(NON);, BiPh3T>, and BiPh2(NON);) and its generation would be precluded in such a
competitive environment. However, with the appropriate design of the CDN, the formation of

the unfavoured product can be driven by the generation of the agonistic one
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(thermodynamically favoured).
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Figure III-24. Time evolution of the 'H NMR spectra (400 MHz, r.t.) for the mixture of
BiPh2(NON);, Py2(NON);, BiPhs;T; and Py3T: (0.9 mM each) and 5 mol% (in terms of dialdehyde
components) dimethylamine hydrochloride (DMA-HCI) after 5 minutes, 1 day, 2 days, 5.5 days, and
10 days (six top traces). The five bottom traces correspond to the isolated BiPh,(NON)2, Py2(NON),,
BiPh3T>, Py;T> and BiPh.

DCL[8] consisting initially of an appropriate mixture of the four preformed entities
Py3T2, BiPhsT2, Py2(NON); and BiPh2(NON):2 (20% of each macrocycle and 30% of each
macrobicycle concerning dialdehyde units, 25% of each concerning molecules) was set up to
investigate component redistribution among these four constituents in the same conditions.
After 10 days of self-organization, a composition of 10%, 46%, 37%, and 2% for BiPh3T>,
Py3T2, BiPh2(NON)2, and Py2(NON); was attained, showing that the agonistic constituents
Py3T2 and BiPh2(NON); had become the predominant products (Figure 111-24).

In a similar trend to that of DCL[7], DCL[8] was thus undergoing evolution from the
initial distribution to the preferred self-sorted distribution, dominated by the cage PysT:

generation and the amplification of the agonistic species interrelated through the same
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diagonal of the square DCL (i.e., BiPh2(NON);). These experiments confirmed that these
macrocyclic and macrobicyclic structures based on multiple imine bonds exhibited excellent
self-sorting properties under acid catalysis to render them dynamic. Besides, they also
exemplified that the use of agonistic and antagonistic relationships of constituents in a CDN

can force the expression of thermodynamically unfavourable products.

50% 6% 41% 30% 30% 10% 46%

BiPh,T, BiPhT,  PuT c) EenT Py.T, BiPh,T, PysT:
a0 00 o
o uomanc | 5% DMAHCI
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. PY:(NON) : e
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20% 20% 1% 7% 2%
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40 - —n 40
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£ —m— Cage Py,T, E Cage PyaT,
o £ "
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Figure II1-25. Network switching in DCL[7] (a,b), DCL[8] (¢,d) by component rearrangement from
the starting distribution of preformed constituents (left square) to the final distribution (right square).
Experiments were performed over 10 days in the presence of 5 mol% of dimethylamine hydrochloride
(DMA-HCI) as an exchange catalyst. (b) and (d) reveal the time evolution of the component
abundance during the rearrangement for DCL[7] and DCL[8], respectively, as measured by '"H NMR.
The processes were further followed for 300 days, with some decomposition of the constituents being

observed.

2.3. Constitutional dynamic network switching from Kinetic to
thermodynamic distributions of self-sorting dynamic macrocycles
and macrobicyclic cages

The behaviour of the CDNs constructed from pre-synthesized constituents provoked
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efforts to explore time-dependent DCLs that might undergo switching between agonistic and

antagonistic constituents under kinetic control.
2.3.1. Component selection

In order to successfully design kinetically switchable dynamic self-sorting systems, the
following parameters were considered for selecting the components: (i) the shape difference
between the aldehyde components to optimize the self-sorting ability (e.g., one or two
aromatic groups: 2,5-Furandicarbaldehyde (Fur) and 2,2'-bipyridine-6,6'-dicarbaldehyde
(BiPy)); (i1) dialdehydes of different reactivities (e.g., carbonyl group activated by a
neighbouring nitrogen site, as in BiPy); (ii1)) the lower thermodynamic stability for the
kinetically-trapped species formed. For instance, in a [2 X 2] CDN consisting of four
constituents (AB, AB’, A'B and A'B’), if the diagonally located agonistic constituents AB
and A'B’ are initially formed as kinetic products from the four components (A, B, A’ and B’),
the antagonistic orthogonal pair AB’ and A'B is expected to be gradually generated as the
thermodynamic product over time.*® Competition between macrobicyclic cages and
macrocycles was chosen as a model because of the differences in the cyclic order of the
compounds and in their thermodynamic stabilities.

Three sets of self-sorting experiments were carried out involving: (i) the competition of
two dialdehydes BiPy and Fur (in 2:2:2 molar ratio) towards the diamine NON [three
components generating two macrocycles]; (ii) the competition of two dialdehydes BiPy and
Fur (or mPh) towards T (in 3:3:2 molar ratio) [three components generating two cages]; and
(111) a four constituent [2 x 2] CDN made up of two macrocycles and two macrobicycles with

competition between four components.

2.3.2. Time-dependent macrocycle switching from DCL[9] of three components

Fur/BiPy/NON

A competitive self-sorting experiment generating two macrocycles was carried out for a
DCL containing the aldehydes BiPy and Fur together with the diamine NON in a 2:2:2 molar
ratio in CDCl; at 23 °C (Figure I11-26). BiPy was immediately transformed upon mixing and
after about 35 min, the compound distribution was BiPy (10%), Fur (33%), BiPy2(NON).
(40%) and Fur2(NON): (<1%), with the remaining species being unidentified intermediates.
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The reaction was then equilibrated for 9 days with a decrease in the concentration of
BiPy2(NON), accompanied by a steady increase of Furz(NON): and a release of BiPy,
resulting in a final distribution of BiPy (22%), Fur (7%), BiPy2(NON): (17%) and
Fur2(NON): (19%). (Figure I11-27)
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Figure III-26. Time evolution of the 'H NMR (400 MHz, CDCl;, 25 °C) for a mixture
2Fur+2BiPy+2NON ([Fur]o= [BiPy]o = 3.6 mM) after 5 min, 0.5 h, 1 h, 2 h, 6 h, 18 h, 24 h, 60 h
and 216 h (nine top traces). The two bottom traces correspond to the isolated BiPy2(NON), and

Fur,(NON),.

To summarize, the more reactive dialdehyde BiPy first reacted with NON in a rather
short time leading to the formation of the kinetic product BiPy2(NON): (kinetic self-sorting).
Thereafter, the latter decreased and the Furz(NON): macrocycle was slowly formed,
indicating that it was the more stable macrocycle (thermodynamic self-sorting), although the
reaction had not yet reached its equilibrium. After about 9 days, BiPy2(NON); remained in
solution, suggesting that the thermodynamic features of BiPy2(NON); and Fur2(NON); must
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be somewhat similar, as evidenced by their final ca. 1:1 ratio.
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Figure III-27. Structure and distribution of macrocycles BiPy2(NON); and Fur,(NON), generated
from a mixture of 2Fur + 2BiPy + 2NON (% calculated based on the components; Error in '"H-NMR

signal integration: £5%).

2.3.3. Time-dependent macrobicyclic cage switching from a library of three

components

To investigate the selective self-sorting in the formation of macrobicyclic cages in
competitive environments, a set of experiments was carried out for libraries containing BiPy

together with another aldehyde competing for T in a 3:3:2 ratio.

2.3.3.1. DCL[10]: 3BiPy+3Fur+2T

The first case of study was the system based on BiPy/Fur/T in a molar ratio of 3/3/2. 'H
NMR experiments (Figure I1I-28) revealed that after T was added into a mixture of BiPy
and Fur, the signals for free T immediately began to diminish in conjunction with a
significant decrease of the ones for BiPy and Fur. At this time (5 min of reaction), the
integration of the CHO 'H NMR signals at 10.19 and 9.86 ppm corresponded to 31% of each
free BiPy and Fur, but the desired cages BiPysT2 and Furs;T, were still almost undetectable.
Hence, the initial condensation reactions clearly resulted in the formation of intermediates.
The concentration of BiPy then dropped to 13% after about 1 h. Meanwhile, the

concentration of cage BiPy3T: increased to its peak value of 22%, together with 5% of the
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[2+2] intermediate Int[BiPy;T:] (identified by 'H NMR and HRMS, see Figures S-III-1 and
S-III-2 in Chapter VII). In contrast, the concentration of unreacted Fur decreased smoothly
to 26%, and only 1.5% of cage FursT2 was detected. Interestingly, further progress of the
reaction revealed a slow decrease in the concentration of BiPys T2, whereas the concentration
of Furs;T; and free BiPy progressively increased, suggesting a transformation from BiPy3T>
to FursT,. After about 384 h (around 16 days) the solution contained BiPy (42%), Fur (4%),
BiPys;T: (3%) and FursT: (48%), with Furs;T,; as the major product. This behaviour is
illustrated in Figure 111-29.
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Figure II1-28. Evolution of the '"H NMR spectra for 3Fur+3BiPy+2T ([Fur]o= [BiPy]o = 3.6 mM,
CDCl3, 23 °C) after 5 min, 1 h, 2 h, 4 h, 24 h, 108 h, 216 h and 384 h (eight top traces). The two

bottom traces correspond to the isolated cage FursT2, and cage BiPysT..
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Figure II1-29. (left) '"H NMR monitoring and (right) abundance distribution of the time-dependent

mixture of 3BiPy + 3Fur + 2T in CDCl; at 23 °C (% calculated based on the components; Error in
"H-NMR signal integration: +£5%)

In order to examine any temperature effect, the same experiments were performed at
40 °C. Integration of 'H NMR signals indicated a mixture of BiPy3T2 (19%), FursT2 (2%),
12% unreacted BiPy and 27% unreacted Fur after 1h. Notably, after 12 days, the distribution
was 2% BiPy3T2, 46% FursT2, 38% unreacted BiPy and 5% unreacted Fur. As expected, a
higher temperature accelerated the transformation from BiPys;T2 to Furs;T,, but it did not

increase the final amount of BiPy3 T, (Figures I1I-30 and II1-31).
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Figure I11-30. Evolution of the '"H NMR (400 MHz, CDCI3, 40 °C) spectra for 3Fur+3BiPy+2T
([Fur]o= [BiPy]o = 3.6 mM) after 5 min, 1 h, 10 h, 26 h, 61 h, 110 h and 144 h.
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Figure I11-31. "H NMR monitoring for the time evolution of the reaction 3Fur+3BiPy+2T ([Fur]o=
[BiPy]o = 3.6 mM, CDCI3, 40 °C), as obtained from aromatic proton signals in the 'H NMR spectra.

Error in '"H-NMR signal integration: +5%.
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2.3.3.2. DCLJ11]: 3mPh+3BiPy+2T

Starting from a mixture of BiPy and mPh (3 equiv. each) with T (2 equiv.) at room
temperature, BiPy was consumed as soon as T was added to the solution (Figure III-32). As
can be seen from Figure III-33, the distribution after 2 h was BiPy (7%), mPh (46%),
BiPys;T: (30%) as well as Int[BiPy,T:] species (6%), but no signals corresponding to
mPh;T; were detected. After about 14 days, the amounts of BiPy3 T2, Int|BiPy,T2] and mPh
decreased to 12%, 3%, and 32% respectively, while those of BiPy and mPh3T> increased to
27% and 22%, respectively. Although the conversion from BiPys;T, to mPhsT, was very
slow and was continuing even after 14 days, it was sufficient to demonstrate that the system

underwent a transformation from kinetic to thermodynamic products.

T BN
r\\J /N N\ 't Nuz N\ N//Nﬁ\NI\\N
Z CHO CHO = N [F = S )N I
N Q WNNJ N \N
N:' cHO NY IN N\ NY N\ PR
OHC : y ; \ R o N
N yN N N NHN e
oy NG Vi
BiPy mPh BiPy;T, Int[BiPy,T,] mPh;T,
Time BiPy,T, mPh,T
4 336h Ll . " o = |
240 h ll M A kA l i
143 h

72h

41h

;:_:.'_I:'_
-
L
b

26h

|
l .
, | i
9h o i | Jl‘ .
l p

—
 S—
3

b

5h , U A
72 min .l U koA
BiPy+mPh+T, 5 min LJ i I_lM_l y o
BiPy+mPh l BiPy B | mP‘E\l d A l ’
Cage mPh;T, . 1 L_l |
Cage BiPy;T, 'Y l &

1‘;.D ‘ ‘1l;l,6 ' 1;‘.‘.2 ’ 9‘; 9‘.0 B’,ﬂ B‘.S 3‘.4 8’.2 B‘.D ?‘.s ?‘.5 ?’.4 T’.Z 5‘:4 5’.24‘.0 3‘,8 3’,5 3‘,4 31.2 3’.(} 2..B F.".B z‘tl
Chemical shift (ppm)
Figure III-32. Time evolution of the '"H NMR spectra of 3mPh+3BiPy+2T ([mPh]o= [BiPy]y = 3.6
mM, 400 MHz, CDCls, 25 °C) after 5 min, 72 min, 5 h, 9 h, 26 h, 41 h, 72 h, 143 h, 240 h and 336 h

(ten top spectra). The two bottom traces correspond to the isolated cage mPhs T, and cage BiPy;T5.
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signal integration: +5%)

2.3.3.3. DCL[12]: 3Py+3BiPy+2T

In all these cases, a fast selective formation of cage BiPy3T, was observed at the
beginning of the reaction; however, T exhibited a preference to transform into the
thermodynamically favoured cage containing monoaromatic bridges. The main reason for the
time-dependent switching achieved in the previous sets of experiments can be attributed to
the lower reactivity of Fur and mPh (in comparison with BiPy) but the higher stability of
their corresponding products compared to those of BiPy.

To investigate the effect of reactivity differences within substrates, a more reactive
pyridine dialdehyde Py was selected to replace Fur and mPh under the same conditions.
After mixing, the concentration of both Py and BiPy decreased, but Py was consumed more
rapidly and cage Pys3T2 was generated more quickly than cage BiPy3T2. As can be seen from
the '"H NMR monitoring (Figure I1I-35), the amount of cage Pys3T> was always higher than
that of cage BiPy3T2. Overall, this system did not exhibit a time-dependent switching process,

illustrating the importance of reactivity differences within substrates.
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Figure II1-34. Time evolution of the '"H NMR spectra for 3Py+3BiPy+2T ([mPh],= [BiPy]o = 3.6
mM, 400 MHz, CDCl;, 23 °C). The two bottom traces correspond to the isolated cages Py;T, and
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Figure I11-35. '"H NMR monitoring of the time-dependent evolution of cages generated from a

mixture of 3Py+3BiPy+2T (Error in 'H-NMR signal integration: £5%)
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2.3.3.4. DCL[13]: 3BiPh+3BiPy+2T

Next, systems with substrates of similar lengths were investigated. The reaction of a
mixture of BiPh, BiPy and T in a molar ratio of 3:3:2 was followed by 'H NMR
spectroscopy as a function of time (Figure III-36). After mixing, BiPy was rapidly
transformed into [BiPy.T2]. After 15 min, [BiPy2T:] reached its highest abundance, which
was about 24%. The composition of the system at this point also contained 13% of unreacted
BiPy, 48% of unreacted BiPh, and 13% of cage BiPy3;T,. After 60 min, it was difficult to
detect the intermediate [BiPy,T:], indicating that it had been fully converted to cage BiPysT2
(new abundance = 31%). In contrast, only 2% of cage BiPh3T, was generated at this point.
Thereafter, the system gradually reached equilibrium, with a distribution of BiPy (6%), BiPh
(44%), BiPy3T2 (39%), and BiPhsT> (2%). The rate plot is shown in Figure III-37. Again,
the system did not exhibit time-dependent conversion behaviour throughout the course of the

reaction, showing that BiPy3T> was both kinetically and thermodynamically favoured.
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Figure I11-36. Time evolution of the "H NMR spectra for 3BiPh+3BiPy+2T ([BiPh]o= [BiPy]y = 3.6
mM, [T]o= 2.4 mM 400 MHz, CDClIs, 25 °C).
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Figure III-37. '"H NMR monitoring of the time-dependent evolution of cages generated from a

mixture of 3BiPh+3BiPy+2T. Error in '"H-NMR signal integration: £5%.

In summary, from the results for all the different experiments, we can state that when
BiPy was treated with T in the presence of Fur or mPh, the reaction mixture contained
predominantly BiPy3 T, at early times (kinetic self-sorting), but the system slowly underwent
component exchange towards the generation of the corresponding thermodynamic product,
namely Fur;T2 or mPh3T2 (thermodynamic self-sorting), with the release of the dialdehyde
component BiPy. However, when Py was used instead, the first cage formed (i.e., Py3T2) was
also the thermodynamically stable product, precluding its conversion into cages containing
other linkages. Finally, dialdehydes of similar size produced cages of similar thermodynamic
stability. In all cases, smaller cages were shown more stable than larger ones.

Hence, the key features for designing and operating self-sorting under kinetic control
can be concluded as follows: (i) linkages should have different sizes; (ii) the longer linkages

should be more reactive than the shorter ones.

2.3.4. Switching from kinetic to thermodynamic distributions in a [2 x 2] CDN of

two macrocycles and two macrobicyclic cages

Extending the above studies, a [2 x2] CDN containing four constituents, two

macrocycles and two macrobicyclic cages, was generated from two aldehydes and two amino

compounds.

DCL[14] containing the components BiPy, Fur, T and NON in a 5:5:4:4 molar ratio
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was first investigated. The expected antagonistic products cage BiPy3T2 and macrocycle
BiPy2(NON); share the dialdehyde BiPy, while cage Fur;T> and macrocycle Fur2(NON)
share the dialdehyde Fur. As seen from Figure III-38 and Figure I1I-39, after 2.5 h of
reaction, a complex mixture was obtained: the dominant product BiPysT: reached its
maximum abundance of ca. 16%, together with 6% of intermediate [BiPy,T2]. There was
only a very small amount of its agonistic Furz(NON): (2%) accompanied by 13% of
unreacted Fur. Small amounts of the two other products Fur;T, and BiPy2(NON), were
formed, 4% and 9% respectively, and unreacted BiPy (2%) remained. After 15 h, free BiPy
had disappeared, and the constituents detected were BiPys;T: (14%), FursT2 (14%),
BiPy2(NON): (17%) and Fur2(NON): (8%), as well as some free Fur (2%). After 36 h, the
composition of the mixture was Fur2(NON)2 (9%) together with BiPy3T2 (13%), FursT:
(22%) and BiPy2(NON)2 (20%). At short times the largest fraction of components was
contained in unidentified intermediates. Finally, after 18 days, a simpler distribution
(probably close to equilibrium) was reached containing BiPy3;T: (5%), FursT: (47%),
BiPy2(NON): (35%) and Fur2(NON): (1%). A minor amount (ca. 12%) of the components
was still present as unidentified species. ESI-HRMS monitoring also confirmed such a
reaction process (Figure I11-40). The details for the MS signal assignation of MS can be found
in Chapter VII, Table S-III-3. From HRMS, [BiPy,T:] and cage BiPy3T, reached their
highest concentrations in about 1 h, and then gradually decreased. The highest-in-intensity
peak (m/z 427.2439) was attributed to the cyclic intermediate [Fur,T(NON)]. New signals
with m/z of 385.1858 and 407.1676 also appeared, attributed to the formation of macrocycle
Fur2(NON),.

When 10 mol% dimethylamine hydrochloride (DMA-HCl), was added as an acid
catalyst to DCL[14], the self-sorting was significantly faster, giving a distribution of
4%/42%/34%/1%/7%/1% for BiPy3;T2/Fur3;T2/BiPy2(NON)2/Fur:(NON),/BiPy/Fur after
5.5 days, with ca. 11% of unidentified materials (Figure S-III-5 in Chapter VII).

Overall, in the course of the process, BiPys;T, was rapidly formed and then its
concentration decreased progressively in favour of Fur;T, and BiPy2(NON),, indicating a
switching from the initial incomplete kinetic distribution network in which the fast formed
BiPy3;T2 dominates to a thermodynamically preferred distribution with amplification of the
agonistic constituents FursT2 and BiPy2(NON).. The process represents an orthogonal

switching from one diagonal to the other one of the square network.
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Figure I11I-38. Evolution of the "H NMR spectra for SFur + 5BiPy + 4T+ 4NON (DCL[14]) ([Fur]o

= [BiPy]o = 3.6 mM, CDCls, 25 °C) after 5 min, 2 h, 8 h, 19 h, 48 h, 264 h and 432 h (eight top traces).
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Figure I11-40. Time evolution of the HRMS-ESI spectra for SFur + 5BiPy + 4T + 4NON ([Fur]o=
[BiPy]o = 2.0 mM; [T]o = [NON]o =1.6 mM; 25 °C) in 50%-50% CHCIls/MeOH.
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Figure I1I-41. HRMS-ESI monitoring the time-dependent generation of Intermediate [BiPy,T,],
cages BiPy;T, and Fur;T,, and macrocycles BiPy:2NON; and Fur,(NON); from the reaction between
SFur + 5BiPy + 4T + 4NON ([Fur]o = [BiPy]o = 2.0 mM; [T]o = [NON]o =1.6 mM; 25 °C) as a
function of time (over 502 h). NB: These data do not provide quantitative information about the
relative amounts of each species identified by its mass, but, taken separately, they display the
evolution of a given identified species during the course of the reaction. The curves are added to guide

the eye.
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Figure I11-42. Partial '"H NMR spectra (aromatic region, 400 MHz, 25 °C) for the mixture of BiPy;T»,
and Fur,(NON); (50% of each, on basis of dialdehyde components) and 5 mol% dimethylamine
hydrochloride (DMA-HCI) after 5 min, 12 h, 24 h, 72 h, 120 h and 240 h (six top traces). The four
bottom traces correspond to the isolated BiPy3 T2, Fura(NON),, Fur;T; and BiPy,(NON).

Similar observations were made of the behaviour of DCL[15], starting from a mixture of
two agonistic constituents, (i.e., cage BiPy3;T> and macrocycle Fur2(NON),) in a ratio of 1:1
(concerning dialdehyde units). After 10 days, the system reached a composition of 3%, 45%,
47%, and 3% for BiPysT2, Fur;T2, BiPy2(NON)2 and Fur2(NON)., respectively. Thus, it is
evident that the agonistic constituents macrobicyclic cage Furs3T, and macrocycle
BiPy2(NON), became the major products as a result of a distribution switching to the

orthogonal diagonal of the [2 x 2] CDN (Figure I11-42 and Figure I11-43).
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Figure I11-43. (a) Network switching in the DCL[15] through component exchange from preformed
macrocycle Fur(NON); (50%) and cage BiPy3 T, (50%) (left) to the final distribution over 10 days in
presence of 5 mol% DMA-HCI (concerning the dialdehyde components) as exchange catalyst (right).
(b) "H NMR monitoring the time-dependent switching evolution in CDN-7 over 10 days. Error in 'H-
NMR signal integration: £5%.

3. Summary of the chapter

In conclusion, this chapter involves: (i) the self-sorting of two model architectures of
different cyclic order, namely macrocycles and macrobicyclic cages; and (ii) the kinetic
switching from the initially fast formed self-sorted kinetic product to the thermodynamic one.

The first section demonstrates the high-fidelity formation of macrocycles and cages
performed under thermodynamic control by mixing triamine (T) or diamine (NON) with
dialdehydes of a different type. Since the cages were generated before the macrocycles in all
DCLs, the selectivity and fidelity of self-sorting processes are governed by the cages’

stability and the formation rate of macrocycles in the system.
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The rest of the chapter suggested a time-dependent dual-stage process for the different
DCLs. Firstly, an initial kinetic non-equilibrium state was generated containing the rapidly-
generated constituent together with a mixture of unreacted components, incomplete
intermediates, and small amounts of other cages and macrocycles. Secondly, the non-
equilibrium state evolved towards equilibrium and resulted in a thermodynamically
controlled switching process from this kinetic distribution to the thermodynamic one. Many
efforts have been devoted in this chapter to studying how time-dependent switching of
constituents in a DCL can be achieved by controlling the size and reactivity of initial
components.

Moreover, the rational design and utilization of kinetic and thermodynamic features of
macrocycles and macrobicyclic cages permitted to demonstrate that several CDNs can adapt
over time either from separately prepared constituents or by in situ imine condensation from
their components. This switching behaviour in CDNs thus revealed an orthogonal switching
from one diagonal to the other diagonal of the [2 x 2] network square or, in other words, from
an out-of-equilibrium distribution to the equilibrium one.

In general terms, the diverse kinetic and thermodynamic features of the dynamic system
drive the redistribution of all inter-connected constituents through component exchange, thus

illustrating the regulation and self-correction ability of constitutional dynamic networks.
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explore DCLs based on unsymmetric components with different structural and electronic

properties for each macrobicyclic lid.

2. Results and Discussion

2.1. Formation of cage isomers

The unsymmetrical dialdehyde Py-Ph was allowed to react with T in CDCI3 at room
temperature for 24 h. The reaction mixture, as monitored by 'H NMR, showed three signals
between 8.6 and 8.9 ppm, indicating the presence of at least three different imines (Figure V-
1a). The solution was further analysed by HRMS and the only signal found correlated well
with the presence of the [3+2] imine cage. Combining both the 'H NMR and HRMS results,
the only possibility is the coexistence of two isomeric cages, namely bbp and bbb. As shown
in scheme V-2, cage bbb describes the stereoisomer containing all dialdehyde units pointing
in the same direction, whereas cage bbp denotes the species in which one of the dialdehydes

is present in the reverse direction.

b
[\\\ h HN o~~~
i +
) NH
J 2
CHO
NN N NN N
Py-Ph T Sy M
3 equiv. 2 equiv. cage bbp cage bbb
(Py-Ph);T,

Scheme V-2. Formation of two isomeric cages via imine condensation of unsymmetric dialdehyde Py-

PhandT.

A structural comparison of the two isomeric cages suggested four kinds of coordination
sites which depend on the number of N-donor atoms (from both imine and pyridine scaffolds).
One of the 3D-arrangements within the cavity of cage bbb contained six N-donor sites,
allowing for octahedral coordination of metallic cores. It was envisaged at this point that the
separation of the two isomers could be achieved by making use of the anticipated solubility
difference between monometallic and uncoordinated cages.

Indeed, after the addition of Zn(OTf) (1 equiv.) into a suspension of both macrobicyclic
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isomers in MeCN/CHCIl3 only one isomer, namely cage bbp, remained insoluble. Significant
differences can be observed in the 'H NMR spectra when comparing the isolated isomer
(Figure V-1¢) with the initial isomeric mixture. Integration of imine signals from the 'H
NMR spectrum for the in situ generated mixture in CDCI3 revealed a distribution of bbp
(67%) and bbb (33%). Even a more favourable formation of cage bbp (83%) was observed
when the reaction was carried out in MeOH (Figure V-1b). Therefore, the reaction presented
selectivity towards the generation of cage bbp, rather than a statistical 1:1 mixture of the two
isomers. This selectivity may be due to the mutual repulsion of the electron-rich N atoms
present in the pyridine rings that triggers the directional rotation of one linkage unit to

minimize this unfavourable conformation.

a) Cage bbp + Cage bbb

in situ from (:DC!3 Y, ”
b) Cage bbp + Cage bbb

Isolated from MeOH I ' : r‘

c) Isolated Cage bbp J}I h

3.08988878685848382 7675747372717.06968 424140393837 30292827 2.
Chemical Shift (ppm)

Figure V-1. Comparison of 'H NMR spectra (400 MHz, CDCl;, 23 °C) of (a) isomeric mixture
obtained in situ from CDCl;; (b) isomeric mixture obtained from MeOH; (c) isolated cage bbp. The

blue stripes highlight some characteristic signals of cage bbb.

Colourless crystals were obtained when performing the reaction in a 1:1 ratio of
CHCI3/MeOH. Although the X-ray structure determination was modelled in terms of the cage
bbp (Figure V-2), the 'H NMR spectrum of this crystalline solid in CDCl; showed a mixture
of both isomeric cages to be present. The difficulty in distinguishing C from N by X-ray
diffraction is well known and assuming that the two cages could adopt essentially identical

conformations, it is quite possible that both could be present in the one crystal.
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Figure V-2. Single-crystal X-ray structure interpreted as that of the macrobicyclic cage bbp. Colour

scheme: carbon (grey), hydrogen (white), nitrogen (blue), chlorine (green).

2.2. Metallo-selective amplification of cage bbb

DCLs displaying a selection of components and amplification of constituents in
response to metal cations pave the way towards adaptive systems presenting higher levels of
application.’®!*® To investigate the metallo-adaptation ability of the current system, Zn(OTf)>
solution (0.5 equiv.) was added to the mixture of two stereoisomeric cages (2 equiv. total
isomeric concentration). The octahedral coordination preference of Zn(Il) was expected to
favour its complexation in the hexadentate site of cage bbb (coordination of Zn(II) with three
N atoms of imines and three N atoms of pyridinyl units). Indeed, the cage bbp gradually
transformed into the thermodynamically-favoured cage bbb-Zn complex, and the distribution
was cage bbb-Zn(II) (90%) and cage bbp (10%) after 7 days at room temperature in the
presence of 0.2 equiv. of dimethylamine hydrochloride (DMA-HCI).

The use of 2 equiv. of Zn(II) and other cations like Fe(Il), Cd(IT), Cu(I) were also tested
(Figures S-V-12 to S-V-15). However, in these cases, the 'H NMR spectra showed no
significant changes after several days of reaction, indicating that no cage-to-cage conversion

occurred.
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Figure V-3. Comparison of "H NMR spectra (500 MHz, 60%-40% CD;CN-CDCl, 23 °C) showing
the cage-to-cage conversion upon Zn(II) addition to the initial isomeric mixture in the presence of 0.2
equiv. of dimethylamine hydrochloride (DMA-HCI).
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Figure V-4. '"H NMR spectrum (400 MHz, 60%-40% CD;CN-CDCl;, 23 °C) showing the templated
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formation of cage bbb-Zn(Il) via imine condensation of unsymmetric dialdehyde Py-Ph (3 equiv.)
and T (2 equiv.) in the presence of Zn(OTf), (1 equiv.).

Considering the adaptive behaviour of the isomeric cages in the presence of Zn(Il), the
selective synthesis of cage bbb-Zn complex by using Zn(Il) as a template was attempted.
After mixing 1 equiv. Zn(OTY), with 3 equiv. of dialdehyde Py-Ph and 2 equiv. of T at 60 °C
for 48 h, cage bbb-Zn(II) complex was obtained as the predominant product, with the
absence of the undesired isomeric cage bbp (Figure V-4). This experiment demonstrates the
selective assembling and self-sorting of unsymmetric components in the presence of a

chemical effector, 47148

2.3. Coordinated bimetallic cages

Coordination cages are well-known for their excellent performance in enantiomeric
separations, catalysis, sensing, and drug delivery.'*~!>3 Such remarkable outcomes are the
direct result of their well-defined structure, specific size, and tunable cavities.'**'%¢ To
investigate potential applications for these two isomeric cages, the formation of their

complexes with different metal ions was explored.
2.3.1. Synthesis of cage bbp complex

Cadmium has two NMR active isotopes with 1/2 nuclear spin, '''Cd and '}Cd.
Therefore, cadmium complexes may exhibit proton-cadmium spin-spin coupling in their 'H
NMR spectra.’>” Addition of Cd(OTf): (2 equiv.) into a 1/1 MeCN-CHCI; solution of cage
bbp resulted in the formation of a cage bbp-2Cd(II) complex. As shown in the 'H NMR
(Figure V-5), the imine signals showed a merged Ju.cq) coupling in which the difference
between the "''Cd and 'Cd coupling constants with 'H were too small to be correctly
determined. The differences in the chemical shift in the "*Cd NMR spectrum of -367.01 ppm
and -438.93 ppm, both referenced to CdCl,, proved the inequality in coordination geometry
(Figure V-6). The bimetallic complex was characterised by *C NMR and ''*Cd-'"H HMBC
(Figures S-V-9 and S-V-10 in Chapter VII).

In a similar manner, the cage bbp-2Pb(II) species was also synthesized (Figure V-7 and
Figure S-V-11 in Chapter VII). In this case, 'H-**’Pb spin-spin couplings were observed,

enabling the calculation of the corresponding coupling constants.
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Figure V-5. '"H NMR spectrum (500 MHz, CD;CN, 23 °C) of complex bbp-2Cd(II) showing the
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Figure V-7. "H NMR spectrum (500 MHz, CD;CN, 23 °C) of complex bbp-2Pb(II) showing the single
coupling of 'H with **’Pb.

2.3.2. Synthesis of heterometallic cage

The construction of metal-coordinated cages comprising multiple metal ions is of
particular interest as the synergic effect between the heterometals could provide promising
advantages for catalytic applications.!® However, the synthesis of such heterometallic
complexes requires rational design of the ligands and appropriate stepwise metal ion
introduction to avoid the generation of kinetic trapped or homometallic assembled mixtures.

As described above, cage bbb-Zn(II) could be obtained either by its separation from isomeric
cage mixtures or by metal-templated self-sorting from initial components. It must be mentioned that
this unsymmetrical cage provides two different coordination sites that might permit to host two
distinct metal ions. Hence, the synthesis of heterobimetallic macrobicyclic complexes was
investigated. Addition of Cu(I) (1 equiv.) into a 1/1 MeCN-CHCIl; solution of cage bbb-Zn(II)
resulted in the formation of heterometallic cages bbb-Zn(II)-Cu(I). The cage complexes were

preliminarily characterized preliminarily by 'H NMR spectroscopy (Figure V-8).
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Figure V-8. (a) Chemical structure, (b) ESI(+)-HRMS spectrum and (c) '"H NMR (400 MHz, 60%-40%
CD3CN-CDCls, 23 °C) spectrum of heterometallic complex cage bbb-Zn(II)-Cu(lI).

3. Summary of the chapter

In this chapter, the formation of two isomeric cages by imine condensation of
unsymmetric dialdehyde Py-Ph with T has been described. Due to the intrinsic N---N
repulsion within the macrobicyclic cavity, cage bbp seems to be thermodynamically favoured
over its isomeric cage bbb. In addition, the different coordination ability of these isomeric
cages rendered an ideal scenario for metallo-driven self-sorting. In fact, the imino
microenvironment of cage bbb seemed to be preferential for the formation of its Zn(II)
complex. With this approach, the pure organic cage bbp and metal complex cage bbb-Zn
could be separated by taking advantage of their different solubility. Besides, the dynamic
features of imine bonds allowed for the interconversion of cage bbp into cage bbb-Zn
complex in the presence of the metallic core. Similarly, the cage bbb-Zn complex could be
synthesized through metallo-templated self-assembly of initial components.

The unsymmetrical structural units provided two different chemical environments that
were used for heterobimetallic complexations. This work showed that the introduction of

isomeric  constituents through unsymmetric components into DCLs promoted
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interconnections at the challenging stereoisomeric level. The present results may provide a
new aspect for developing DCLs of higher complexity with constituents presenting not only

“agonistic-antagonistic” relations, but also isomeric interconnections.
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Chapter VI. Conclusion and Perspectives

The spontaneous formation of multiple self-organized assemblies via the self-sorting
process has a significant impact on the exploration of highly complex biochemical pathways.
The study of self-sorting systems under different controlled conditions, and in particular their
behaviour under kinetic control, may pave the way to understanding their intrinsic properties
and the intricacy of matter. The objective of this thesis was to provide plausible mechanistic
insights into the self-sorting behaviour of a set of dynamic covalent libraries of macrocycles
and macrobicyclic cages. The four major studies involved:

(1) In Chapter II, the time evolution of imine-based dynamic covalent libraries and their
corresponding self-sorting processes involved in the generation of two types of preorganized
structures, macrocycles or macrobicyclic cages. On the way to the self-sorted outcome, the
formation of heteroleptic intermediates was observed. Thereafter, error-correction processes
allowed for the conversion of less stable heteroleptic into homoleptic species through
component exchange. A thorough study was also performed for evaluating the importance of
structural and stochiometric effects on the final outputs.

(i1) In Chapter III, the self-sorting ability between compounds of two cyclic orders,
namely macrocycles and molecular cages. This enabled the generation of [2 % 2] CDNs.
Monitoring the kinetic and thermodynamic features of constituents provided an improved
understanding of the orthogonal switching from one diagonal to another of the [2 x 2]
network occurring as a function of time.

(111) In Chapter VI, a triply adaptive DCL of macrocyclic constituents was investigated.
The composition of the DCL could be modulated by controlling time, the presence of metal
ions, and the feeding of an external reactant. By exploiting the adaptative behaviour, the DCL
was proved to undergo a cyclic sorting/amplification of constituents to unsorting/statistic
distribution process through component exchange.

(iv) Chapter V involved the interconversion between two isomeric dynamic covalent
cages that were obtained in the dynamic self-assembly of unsymmetric bridging ligands.
Furthermore, the synthesis of their homo- and heterometallic complexes was also attained.
The study gave another approach towards reaching higher complexities from simple

molecules.
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It is also of great importance to be aware of the principles of self-sorting governed by
the kinetic and thermodynamic properties of the constituents in the DCLs. The present study
applied these basic principles of self-sorting into DCLs, both under kinetic and
thermodynamic control. The results illustrated as well how the evolution of self-sorting can
be affected by the structural and reactivity properties of initial components.

In conclusion, it can be stated that achieving systems of increasing complexity requires
the investigation of constitutional dynamic systems that possess time-dependent adaptive
behaviour. This adaptation allows for evolution as a function of time from a non-equilibrium
to the equilibrium state, which is of great importance for understanding biological evolution

and for developing new types of complex systems.
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Chapter VII. Experimental Part

4. General Procedures

4.1. Instrumentation and measurement general procedures

NMR spectra were recorded on Bruker Avance 400 (400 MHz for 'H and 100 MHz for *C),
Bruker Avance III 400 (400 MHz for 'H and 100 MHz for '*C) and Bruker Ascend Spectroscope
Avance Neo-500 (500 MHz for 'H and 125 MHz for '*C). MestReNova 10 software was used for the
treatment of the NMR spectra. Chemical shifts are given in ppm scale. Residual solvent proton peaks
were taken as reference (CDCls: 7.26 ppm; CD3CN: 1.94 ppm; TCE-d>: 6.00 ppm). '"H NMR shifts
were measured by using hexamethyldisilane as internal standard. The error in 'H-NMR integration
amounts to about £5%. The coupling constants J are listed in Hz. Peaks are described as singlet (s),
doublet (d), triplet (t), doublet of doublet (dd) and multiplet (m). Unless otherwise noted, spectra
were recorded at 23 °C

HRMS-ESI (High-Resolution Mass Spectrometry-Electro-Spray Ionisation) mass spectra were
recorded by direct injection into a ThermoFisher Exactive Plus EMR Orbitrap mass spectrometer.

X-Ray crystallography was performed at the service de radiocristallographie, University of
Strasbourg. The diffraction data collection was carried out on a Bruker PHOTON-III DUO Kappa
CPAD diffractometer.

Commercially available chemicals were generally purchased from Sigma-Aldrich, Alfa Aesar,
Fluorochem, TCI and were used without further purification. Solvents and reagent of pharmaceutical
grade quality were purchased from Carlo Erba, and solvents of spectroscopic grade were purchased
from Sigma-Aldrich and Fisher Chemical. CDClsz was purchased from Euriso-TOP and filtered

through basic alumina to remove traces of acid before use.
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4.2. Experimental method
4.3. Time-dependent '"H NMR studies

A stock solution of internal standard was made by adding 1.5 pL hexamethyldisilane into 2 mL
CDCls. The stock solutions of amines (NNN, NON, NCN, T) and dialdehydes were freshly prepared
in CDCls and quantified by reference to the internal standard (hexamethyldisilane). For all the cases,
dialdehydes and polyamines were mixed in NMR tubes according to reaction conditions indicated in
the spectrum. The reaction solution was monitored by 'H NMR until changes reached undetectable
levels, at which time it was assumed that equilibrium had been reached. The composition of species
was calculated on the basis of the integration of the imine and aromatic proton peaks
NOTE: The time dependent course of the reactions was sensitive to the experimental conditions.
The chloroform was passed through basic aluminium oxide to remove trace amounts of acid every
time before use. The reaction times t;» were markedly affected by the aluminium oxide used to treat
the CDCI3 (acidity and water) used as the solvent. For example, in the case of the pPh/NON system,
the half-consumption of pPh could vary from 270 min (for old-treated alumina CDCl3) to 720 min
(for freshly-treated alumina CDCI3) and the half formation time of the pPh2(NON), macrocycle
from 660 min to 2200 min in the same conditions. We verified that with different qualities of
alumina giving these different time dependence curves, the sequence of reaction processes remained
the same, with the sequence of three intermediates, and finally, yielded nearly 99% of pPh2(NON),

macrocycle as illustrated in greater detail in section 5.5.6.
4.4. Time-dependent HRMS studies

The 30 mM stock solutions of amines (NON, T) and dialdehydes were freshly prepared in
50%-50% CHCI3/MeOH. For all the cases, HRMS kinetic experiments were carried out under a

dialdehyde concentration of 2 mM and were monitored as a function of time.
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5. Chapter I1. Rules of Self-Sorting
5.1. Synthesis

5.1.1. Synthesis of 6,6'-diformyl-2,2'-bipyridine (BiPy)

6,6'-diformyl-2,2'-bipyridine was prepared from 6,6’-dimethyl-2,2'-bipyridine according to
previously reported procedures. Generally, SeO> (3 g, 27 mmol) was added to 6,6'-dimethyl-2,2'-
bipyridine (500 mg, 3 mmol) in 40 mL glacial acetic acid. The reaction mixture was refluxed for 48
hours. The oxide residue was separated from the solution by vacuum filtration on a filtered glass
funnel. The light brown filtrate was concentrated under reduced pressure, and then the remaining
light brown solid was subjected to silica gel column chromatography (CH>Cl,/MeOH, 24:1). The
product was isolated as a white powder (172 mg, 30%) after evaporation of the solvent. Its properties
were consistent with the literature values.!>’

"H NMR (400 MHz, CDCl5): § 10.19 (s, 2 H), 8.84-8.82 (dd, 2 H), 8.07—8.03 (m, 4 H) ppm.
5.1.2. Synthesis of [1,1':4':1""| Terphenyl-4,4"'-dicarbaldehyde

[1,1":4":1"]Terphenyl-4,4"''-dicarbaldehyde was prepared via Suzuki—Miyaura Cross-coupling
according to previously reported procedures.'®® Its properties were consistent with the literature
values.
"H NMR (400 MHz, CDCls): & 10.08 (s, 2H), 8.00-7.98 (d, 8Hz, 4H), 7.83-7.81 (d, 8Hz, 4H), 7.77
(s, 4H)

5.1.3. Synthesis of macrocycles

Macrocycles were synthesized according to reference with slight modifications.'®!

NON (2,2"-oxybis(ethylamine)) (0.20 mmol) in MeCN (2 mL) was added dropwise in 1 hour at

Normally,

room temperature to dicarboxaldehyde (0.20 mmol) MeCN (8 mL) solution. The mixed solution
remained clear for up to 1-2 days, until a white suspension formed. The reaction mixture was stirred
at room temperature for another 5 days. The suspension was filtered and the white precipitate

collected, washed with MeCN and dried under vacuum.
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5.1.4. Synthesis of macrocycle Furz(NON);

Macrocycle Fur2(NON), was synthesized directly in CDCI; without isolation. For this purpose,
2 equiv. Fur and 2 equiv. NON were mixed in CDCIl; in an NMR tube. The final concentration of

Fur was 3.6 mM. The characterizations of macrocycles are described below.
5.1.5. Synthesis of macrocycle TriPh2(NON):

[1,1":4":1"]Terphenyl-4,4"-dicarbaldehyde (TriPh) (36.41 mg; 0.13 mmol) was dissolved in 8
mL CHCIs. The solution was further diluted with 5 mL MeCN before a MeCN (3 mL) solution of
2,2'-oxybis(ethylamine) (NON) (12.90 mg; 0.12 mmol) was added in five portions for 20 minutes.
The reaction mixture was stirred at room temperature for 7 days. After removal of the solvent by
centrifugation, the crude product was washed with MeCN and dried under vacuum to afford

macrocycle TriPh2(NON); as an ivory solid (38.97 mg, 88 %).

5.1.6. Synthesis of macrobicyclic cages

Macrobicyclic cages were synthesised as described in published work based on this thesis.!*

Macrobicyclic cage BiPys T2 were synthesised in CDCI3 without isolation. For this purpose, 3 equiv.
BiPy and 2 equiv. T (for cage) o were mixed in CDCI3 in an NMR tube. The final concentration of
BiPy was 3.6 mM.

5.1.7. Synthesis of macrobicyclic cage TriPhsT>

[1,1":4":1"]Terphenyl-4,4"-dicarbaldehyde (TriPh) (33.15 mg; 0.12 mmol) was dissolved in 8 mL
CHCIs. Then, the solution was further diluted with 3 mL MeOH before a MeOH (2 mL) solution of
tris(2-aminoethyl)amine (T) (11.07 mg; 0.076 mmol) was added in five portions over 20 minutes.
The reaction mixture was stirred at room temperature for 3 days. After removal of the solvent by
centrifugation, the crude product was washed with 1 mL CHCIlz and MeOH, then dried under
vacuum to afford the macrobicyclic cage TriPhsT: as a yellow solid (30.21 mg, 76 %).
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5.2. Spectroscopic data of macrocycles and macrobicyclic cages that
have been used in chapters II and III
Macrocycle pPh2(NON),: The white precipitate was obtained in an isolated yield of 62%.
"H NMR (500 MHz, CDCl;, 25 °C): 6 = 8.13 (s, 4H), 7.37 (s, 8H), 3.77 (s, 16H);
13C NMR (125 MHz, CDCl3, 25 °C): 6 = 162.50, 137.66, 127.96, 68.77, 60.53;
HRMS (ESI+): m/z caled for C24HasN4O2 [M+H]"405.2285, found 405.2284.
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Figure S-II-1. 'H NMR spectrum (500 MHz, CDCls, 25 °C) of macrocycle pPh2(NON)s.
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Figure S-II-2. *C NMR spectrum (125 MHz, CDCls, 25 °C) of macrocycle pPh2(NON)s.
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Macrocycle Py2(NON)2: The white precipitate was obtained in an isolated yield of 70%.

'"H NMR (500 MHz, CDCl3, 25 °C): & = 8.15 (s, 4H), 7.70 (d, J = 7.7 Hz, 4H), 7.44 (t, ] =
7.7 Hz, 2H), 3.78 (s, 16H);

13C NMR (125 MHz, CDCl3, 25 °C): 6 = 163.53, 154.02, 136.61, 121.55, 69.02, 61.10;
HRMS (ESI+): m/z calcd for C22Ha6N6O2 [M+2H]** 407.2190, found 407.2188.
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Figure S-I1-3. 'H NMR spectrum (500 MHz, CDCl3, 25 °C) of macrocycle Py2(NON)..
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Figure S-II-4. *C NMR spectra (125 MHz, CDCls, 25 °C) of macrocycle Py2(NON),.

147



Chapter VIL. Experimental Part

Macrocycle Furz(NON)2: ("H NMR yield 99%)

'H NMR (500 MHz, CDCls, 25 °C): & = 7.96 (s, 4H), 6.68 (s, 4H), 3.77 — 3.74 (m, 8H),
3.72 —-3.71 (m, 8H);

13C NMR (125 MHz, CDCl;, 25 °C): 6 = 146.83, 145.85, 107.71, 62.84, 55.09;

HRMS (ESI+): m/z caled for C20H24N4O4 [M+H]" 385.1870, found 385.1870.
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Figure S-I1-5. Equilibrium state 'H NMR spectra (500 MHz, CDCls, 25 °C) of macrocycle
Fur2(NON); obtained in situ from 1/1 mixture of Fur and NON.
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Figure S-11-6. Equilibrium state *C NMR spectra (125 MHz, CDCls, 25 °C) of macrocycle
Fur2(NON); obtained in situ from 1/1 mixture of Fur and NON.
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Macrocycle BiPh2(NON).: The white precipitate was obtained in an isolated yield of 89 %.
'"H NMR (500 MHz, CDCls, 25 °C): & = 8.19 (s, 4H), 7.43 (d, ] = 8.2 Hz, 8H), 7.27 (d, ] =
9.5 Hz, 8H) 3.80(s, 16H);

13C NMR (125 MHz, CDCls, 25 °C): & = 162.51, 141.94, 135.32, 128.42, 126.85, 69.11,
60.53;

HRMS (ESI+): m/z calcd for C36H3sN4O> [M+2H]** 279.1492, found 279.1493.
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Figure S-II-7. 'H NMR spectra (500 MHz, CDCl3, 25 °C) of macrocycle BiPh2(NON),.
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Figure S-II-8. '*C NMR spectra (125 MHz, CDCls, 25 °C) of macrocycle BiPh2(NON),.
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Macrocycle BiPy2(NON)2: The white precipitate was obtained in an isolated yield of 78%.
'"H NMR (500 MHz, CDCls, 25 °C): & = 8.24 (s, 4H), 8.07 (d, J = 7.7 Hz, 4H), 7.66 (d, ] =
7.7 Hz, 4H), 7.45 (t, ] = 7.7 Hz, 4H), 3.83 (s, 16H);
3C NMR (125 MHz, CDCls, 25 °C): & = 164.36, 154.48, 153.61, 136.77, 121.56,
120.25,69.15, 60.95;
HRMS (ESI+): m/z caled for C3H3oN3O, [M+2H]** 281.1397, found 281.1395; [M+H]*
561.2721, found 561.2712.
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Figure S-I1-9. 'H NMR spectra (500 MHz, CDCls, 25 °C) of macrocycle BiPy2(NON)..
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Figure S-II-10. '*C NMR spectra (125 MHz, CDCls, 25 °C) of macrocycle BiPy2(NON),.
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Macrocycle E2(NON)2: The white precipitate was obtained in an isolated yield of 61%.

'"H NMR (500 MHz, CDCls, 25 °C): 6 = 8.07 (s, 4H), 7.40 (dt, J = 8.7 Hz, 8H), 6.84 (dt, ] =
8.6 Hz, 8H), 3.80 —3.70 (m, 16H);

13C NMR (125 MHz, CDCl;, 25 °C): & = 161.87,158.30, 131.86, 129.78, 118.64,69.34,
60.63;

HRMS (ESI+): m/z calcd for C36H3sN4O4 [M+2H]** 295.1441, found 295.1440.
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Figure S-II-11. 'H NMR spectra (500 MHz, CDCls, 25 °C) of macrocycle E2(NON)s.
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Figure S-II-12. '*C NMR spectra (125 MHz, CDCls, 25 °C) of macrocycle E2(NON)s.
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Macrocycle TriPh2(NON);:

'"H NMR (500 MHz, CDCl3, 25 °C): & = 8.23 (s, 4H), 7.48 (t, J = 7.5 Hz, 8H), 7.38-7.35 (m,
16H), 3.80-3.70 (m, 16H)

HRMS (ESI+): m/z caled for C36H36N4O2 [M+Na]* 731.3356, found 731.3339
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Figure S-II-13. 'H NMR spectra (500 MHz, CDCls, 25 °C) of macrocycle TriPh,(NON),.

Macrobicyclic cage TriPhsT»:
'H NMR (400 MHz, CDCl3, 25 °C): & = 8.30 (s, 6H), 7.31-7.22 (m, CDCl; included),
7.19-7.16 (m, 24H), 3.85 (m, 12H), 2.84 (m, 12H)

HRMS (ESI+): m/z caled for [M+H]" 1043.5483, found 1043.5463.
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Figure S-II-14. "H NMR spectra (500 MHz, CDCl3, 25 °C) of macrobicyclic cage TriPhsT2
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Macrobicyclic cage BiPys;T, ("H NMR yield 90%)

TH NMR (500 MHz, CDCls, 25 °C): & = 8.07 (d, J = 7.2 Hz, 6H), 7.92, (m, 12H), 7.74 (d, J = 7.7
Hz, 6H), 3.67 (d, ] =4.9 Hz, 12H), 2.97-2.85 (m, 12H).

13C NMR (125 MHz, CDCl;, 25 °C): & = 163.32, 154.51, 153.51, 136.65, 122.72, 120.34, 59.85,
56.41;

HRMS (ESI+): m/z caled for CagHasNis [M+2H]*"411.2166, found 411.2164; [M+H]" 821.4259,
found 821.4247
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Figure S-1I-15. Equilibrium state 'H NMR spectra (400 MHz, CDCl3, 25 °C) of macrobicyclic cage
BiPy3 T, obtained in situ from 3BiPy + 2T.
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Figure S-II-16. *C NMR spectra (125 MHz, CDCls, 25 °C.) of macrobicyclic cage BiPysT,
obtained in situ from 3BiPy + 2T.
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Assignment of intermediate [2Ph+NON]

Y- W.Y.V.IT

| J |

<t - (=3
-] (=} - M ©
T T T T Y T TN T T T T T T TN T T T T T

10.3 101 99 85 83 81 79 77 75 73 71 69 40 38 36 34 3.2 3.0 28 26 2
Chemical Shift (ppm)

Figure S-11-19. 'H NMR spectrum (500 MHz, CDCls, 23 °C) of intermediate [2Ph+NON].
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Figure S-11-20. '"H NMR spectra (500 MHz, CDCl;) of the intermediate [BiPh+T] after 168 min
condensation of BiPh (3.6 mM) and T (2.4 mM).
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Assignment of [BiPh+2T] and [2BiPh+2T]

Firstly, the aromatic protons in [2BiPh+2T] will be shielded because the protons experience a lower
external magnetic field than that of [BiPh+2T], so the chemical shift of the former moves further
downfield.

Secondly, the assignment can be verified by a linear equation in two variables based on the integrals

shown in Figure S-II-21 shown below. Let the integration of imine protons (H¢) in [BiPh+2T] be

represented by x, and the integration of imine protons (Hj) in [2BiPh+2T] be represented by y.
Therefore, the integration of Hr in [BiPh+2T] could be represented by 4x, the integration of Hm in

[2BiPh+2T] could be represented by y. Considering that only H,+Hr can give two overlapped triplet
signals at chemical shifts 2.61-2.57 ppm, a linear equation with binary variables can be generated:
4x + y = 0.62, where, from the integrals shown, x, y could have the values of either x1 = 0.08, y; =

0.25 or x> = 0.25, y> = 0.08 but only the former is compatible with the methylene group integral.

Based on the above discussion, we can assign the protons in the spectrum of figure S55.
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Figure S-II-21. Equilibrated '"H NMR (400 MHz, CDCls, 23 °C) spectrum of 3BiPh + 4T reaction
at 48 h.
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5.3. Formation of the separate macrocycles

5.3.1. Time-dependent 'H NMR spectral changes in the formation of macrocycle

BiPh2(NON).
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Figure S-I1-22. Evolution of the 'H NMR spectra (500 MHz, CDCls) of a 1/1 mixture of BiPh and
NON (3.6 mM) showing the formation of two intermediates and of the final macrocycle

BiPh2(NON),.
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Figure S-II-23. 'H NMR monitoring of the evolution of a 1/1 mixture of components BiPh and

NON (3.6 mM each in CDCls) as a function of time as obtained from integration of the imine CH=N
and dialdehyde CHO proton signals in the 500 MHz "H NMR spectra.

5.3.2. Time-dependent HRMS changes in the formation of macrocycle pPh2(NON);

Table S-II-1. HRMS-ESI assignments of the key species identified during the formation process of

macrocycle pPh2(NON);

Entry assignment formula Combined ion m/zcaled.  m/z found

1 NON CsH12N20 +H" 105.1022 105.1024
+Na" 127.0842 127.0840

2 [pPh+NON]-H.O Ci2HigN2O2  +H' 221.1285 221.1276
+Na" 243.1104 243.1095
+2H" 111.0679 N/A®*

3 [pPh+2NON]-2H,0 Ci6H2¢N4O,  +H' 307.2129 307.2115
+Na* 329.1948 329.1934
+2H" 154.1101 154.1095

4 [2pPh+NON]-2H0  CoH20N203  +H' 337.1547 337.1531
+Na* 359.1372 359.1351
+2H" 169.0810 N/A

5 [2pPh+2NON]- C4H30N4O3;  +H" 423.2391 N/A

3H20 +Na* 445.2210 445.2193

+2H" 212.1232 212.1386
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6 [2pPh+2NON]- C24H28N402 +H" 405.2285 405.2269
4H>0O +Na* 427.2104 427.2089
+2H" 203.1179 N/A

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value

to other more abundant ion-combined species.
5.3.3. Time-dependent HRMS changes in the formation of macrocycle BiPh2(NON);

Table S-1I-2. HRMS-ESI assignment of the key species identified during the formation process of
macrocycle BiPh2(NON);

Entry assignment formula Combined ion m/z caled. m/z found

1 NON CsH12N2O +H* 105.1022  105.1028
+Na* 127.0842  127.0844

2 [BiPh-+NON]-H.O CisH20N202 +H" 297.1598  297.1597
+Na* 319.1417  319.1416
+2H" 149.0835 N/A

3 [BiPh+2NON]-2H20  C22H30N4O: +H" 383.2442  383.2412
+Na* 405.2261  405.2258
+2H" 192.1257  192.1256

4 [2BiPh+NON]-2H20  C32H2sN203 +H" 489.2173  489.2140
+Na* 511.1992  511.1960
+2H" 245.1123 N/A

5 [2BiPh+2NON]-3H,0  C36H3sN40; +H" 575.3017  575.2980
+Na* 597.2836  597.2926
+2H" 288.1545 N/A

6 [2BiPh+2NON]-4H,O C36H36N4O: +H" 557.2911  557.2876
+Na* 579.2730  579.2696
+2H" 279.1492  279.1473

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value

to other more abundant ion-combined species.

158



Chapter VIL. Experimental Part

- 1051028
z=1
(1 297.1597
50 | 127.0844 =1 3191.:14 18
: 1 tes._o?ua 1851148 2360715 257 2052 351.1678 430.9138 3 min
o 1 e =t =1 1 z=1 z=1
287.1578
& 100+ e
3
£
2 50 4471018 318.1394
g 175 1711062 yg0 go44 2360609 287.2032 z=1 363 1651 489.2138 gqq qgsg 5972874 5792800 .
£ a5 =1 - z=1 7=7 z=1 =1 ly =1 =1 260 min
£ | =2 l z=1
z 0 L L . L -1 L L i b A IS
100~ 2971576
=
AL 1711082 545 135, 236.0609 $19.1384  360.1661 89.2138 S7T25 570,288
=1 by j 286.9705 1 4071811 489. 511.1959 = . .
: ) =1 z=1 e "l' z=1 2m1 =1 z=1 =1z 900 min
o 1L L L i i "
100
50 2071517 557.2878
1 125_9:157 171.1082 21551352 235131?90 z=1 3191394 3631652 4071912 4892140 5111960 =1 5?913?92
o R i S . | B =1 i rk z=1 2=l | i 2410 min
100 150 200 250 300 350 400 450 500 550 600

Figure S-1I-24. Evolution of the HRMS-ESI spectra of a 1/1 mixture of BiPh and NON (2 mM each
in 50%-50% CHCls/MeOH) after 3 minutes, 260 minutes, 900 minutes and 2410 minutes.
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Figure S-I1-25. HRMS-ESI monitoring of the evolution of the species generated during the
formation of the macrocycle BiPhy(NON); from BiPh and NON (2 mM each, 50%-50%
CHCI3/MeOH, r.t) as a function of time over 2410 min. NB: These data do not provide quantitative
information about the relative amounts of each species identified by its mass, but, taken separately,
they display the evolution of a given identified species during the course of the reaction. The curves

are added to guide the eye.
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5.4. Formation of the separate macrobicyclic cages

5.4.1. Time-dependent "H NMR of macrobicyclic cage BiPh3T,
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Figure S-11-26. Evolution of the 'H NMR spectra (500 MHz, CDCl;) of a 3/2 mixture of BiPh (3.6

mM) and T showing the formation of intermediate [BiPh+T] and of the final macrobicyclic cage
BiPh3T:.
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Figure S-1I-27. '"H NMR monitoring of the evolution of cage BiPhsT, formation as a function of

time over 2893 min. Error in '"H-NMR signal integration: =5%.

5.4.2. Time-dependent HRMS changes in the formation of macrobicyclic cage pPhsT;

Table S-II-3. HRMS-ESI assignment of the key species identified during the formation process of

macrocycle pPh3T>

Entry assignment formula Combined ion  m/z calcd. m/z found

1 T CsHisNy +H" 147.1604 147.1595
+Na* 169.1424 169.1413

2 [pPh+T-H,O] CisH2oN,O  +H' 263.1866 263.1849
+Na* 285.1686 285.1666
+2H" 132.0970 N/A*

4 [2pPh+T-2H,0] C2oHp6N4O>  +H' 379.2129 379.2102
+Na* 401.1948 401.1921
+2H" 190.1101 N/A

5 [3pPh+T-3H,0] C3oH30N4O3  +H' 495.2391 495.2358
+Na* 517.2210 517.2171
+2H" 248.1232 N/A

3 [pPh+2T-2H,0] C20H38Ns +H" 391.3292 391.3265
+Na* 413.3112 413.3083
+2H" 196.1682 196.1670

6 [2pPh+2T-3H,0]  CsH4NgO  +H' 507.3554 N/A
+Na* 529.3374 N/A

+2H" 254.1814 N/A
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7 [2pPh+2T-4H,0]  CasHaoNg +H* 489.3449 4893415
+Na' 511.3268  511.3236
+2H" 245.1761  245.1744

8 [3pPh2T-4H,0]  CseHuNgO,  +H' 6233816  N/A
+Na* 6453636 N/A
+2H 312.1945  N/A

9 [3pPh2T-5H,0]  C3HauNsO  +H 6053711  605.3671
+Na' 6273491  627.3530
+2H 303.1892  303.1869

10 [3pPh+2T-6H,0]  C3eHaNg +HY 587.3605  587.3568

Cage pPhsT: +Na* 609.3425  609.3388
+2H 294.1839  294.1820

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value

to other more abundant ion-combined species.

5.4.3. Time-dependent HRMS changes in the formation of macrobicyclic cage BiPhsT>

Table S-1I-4. HRMS-ESI assignment of the Key Species Identified during the formation process of

macrocycle BiPh3T»

Entry assignment formula Combined ion m/z caled. m/z found

1 T CeHisNy +H" 147.1604  147.1595
+Na" 169.1424  169.1413

2 [BiPh+T-H,0] C20H26N4O +H* 339.2179  339.2156
+Na* 361.1999  361.1974
+2H" 170.1126 N/A

4 [2BiPh+T-2H,0] C34H34N4O2  +H' 531.2755  531.2720
+Na* 553.2574  553.2539
+2H" 266.1414  266.1407

5 [3BiPh+T-3H,O] CsgH2N4O3  +H' 723.3330  723.3275
+Na* 745.3149 7453104
+2H" 362.1701  N/A

3 [BiPh+2T-2H,0] CaosHa2Ng +H* 467.3605 N/A
+Na* 489.3425  489.3366
+2H" 234.1839  234.1824

6 [2BiPh+2T-3H>0]  C40Hs50NsO +H" 659.4180 N/A
+Na* 681.4000 N/A

+2H" 330.2127  N/A
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7 [2BiPh+2T-4H,0]  CaoHasNs +H* 641.4075  641.4027
+Na* 663.3844  663.3894
+2H 3212052  321.2074

8 [3BiPh+2T-4H,0] CssHssNgO>  +H' 851.4755 N/A
+Na* 873.4575 N/A
+2H 4262414  N/A

9 [3BiPh+2T-5H,0]  CssHssNgO  +H 833.4650  833.4509
+Na* 855.4469  855.4075
+2H 417.2361  517.2229

10 [3BiPh+2T-6H,0] Cs4HssNs +HY 815.4544  815.4484

Cage BiPhsT: +Na' 837.4364  837.4302
+2H 408.2308  408.2283

to other more abundant ion-combined species.

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value
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Figure S-II-28. Evolution of the HRMS-ESI spectra of the 3/2 mixture of BiPh (2 mM) and T in
50%-50% CHCl3/MeOH after 4 minutes, 40 minutes, 100 minutes, 290 minutes and 740 minutes.
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Figure S-II-29. HRMS-ESI kinetic evolution of the species generated during the formation of the
macrocycle BiPh3 T2 from BiPh (2 mM) and T (50%-50% CHCl3/MeOH, r.t) as a function of time
over 740 min. NB: These data do not provide quantitative information about the relative amounts of
each species identified by its mass, but, taken separately, they display the evolution of a given

identified species during the course of the reaction. The curves are added to guide the eye.
5.5. Self-sorting experiments

5.5.1. Stepwise self-sorting experiment
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Figure S-11-30. Evolution of the 'H NMR (400 MHz, CDCl3, 23 °C) spectra of 3BiPh + 4T reaction
with dated alumina-treated CDCl;.
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5.5.2. Self-sorting experiment 2pPh + 2BiPh + 4NON

Table S-1I-5. HRMS-ESI assignments of the key species identified during the self-sorting reaction

of 2pPh + 2BiPh + 4NON

Entry assignment formula Combined m/z calcd. m/z found
ion

1 [pPh+NON-H,O] Ci2H16N202 +H" 221.1285 221.1283
+Na* 243.1104 243.1103

2 [pPh+2NON-2H;O] Ci6H26N4O2 +H" 307.2129 307.2125
+Na* 329.1948 329.1967
+2H" 154.1101 154.1100

3 [2pPh+NON-2H»0] C20H20N203 +H* 337.1547 337.1542
+Na* 359.1372 359.1362
+2H" 169.0810 N/A

4 [2pPh+2NON-3H,0] C24H30N40s3 +H" 423.2391 423.2386
+Na* 445.2210 445.2118
+2H" 212.1232 212.1392

5 [2pPh+2NON-4H,0] C24H28N4O2 +H* 405.2285 405.2279

pPh2(NON): +Na* 427.2104 427.2099

+2H" 203.1179 203.1176

6 [BiPh+NON-H:0] CisH20N202 +H" 297.1598 297.1593
+Na* 319.1417 319.1410
+2H" 149.0835 149.0834

7 [BiPh--2NON-2H,0] C22H30N4O2 +H" 383.2442 N/A
+Na* 405.2261 405.2281
+2H" 192.1257 192.1254

8 [2BiPh+NON-2H,0] C32H2sN203 +H" 489.2173 489.2166
+Na* 511.1992 511.2074
+2H" 245.1123 N/A

9 [2BiPh+2NON-3H,0] C36H33N403 +H" 575.3017 N/A
+Na* 597.2836 N/A
+2H" 288.1545 N/A

10 [2BiPh+2NON-4H,0] C36H36N4O2 +H* 557.2911 557.2904

BiPh2(NON): +Na* 579.2730 579.2722

+2H" 279.1492 279.1490

11 [pPh+BiPh+NON-2H>0]  Ci6H24N203 +H" 413.1860 413.1852
+Na* 435.1679 435.1672

+2H" 207.0966 N/A
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12 [pPh+BiPh+2NON-3H,0] C30H34N403 +H" 499.2704 499.2697
+Na* 521.2523 N/A

+2H" 250.1388 250.1384

13 [pPh+BiPh+2NON-4H>O] C30H32N402 +H" 481.2598 481.2592

(pPh)(BiPh)(NON): +Na* 503.2417 503.2413

+2H" 241.1335 241.1331

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value

to other more abundant ion-combined species.

5.5.3. Self-sorting experiment 3pPh + 3BiPh + 4T

Table S-1I-6. HRMS-ESI assignments of the key species identified during the self-sorting reaction

of 3pPh + 3BiPh + 4T.

Entry assignment formula Combined  m/z calcd. m/z found
ion

1 T CeHisN4 +H" 147.1604 147.1597
+Na* 169.1424 169.1415

2 [pPh+T-H,O] CisHNsO  +H' 263.1866 263.1852
+Na* 285.1686 285.1671
+2H" 132.0970 N/A

3 [2pPh+T-2H,0] CoHagN4O2  +H" 379.2129 379.2100
+Na” 401.1948 401.1924
+2H" 190.1101 N/A

4 [3pPh+T-3H,0] C3oH30N403  +H' 495.2391 495.2362
+Na* 517.2210 N/A
+2H" 248.1232 N/A

5 [pPh+2T-2H,0] C20H38Ns +H" 391.3292 391.3262
+Na* 413.3112 413.3083
+2H" 196.1682 196.1671

6 [2pPh+2T-4H,0] C2sH40Ns +H* 489.3449 489.3417
+Na* 511.3268 511.3236
+2H" 245.1761 245.1745

7 [3pPh+2T-6H:0] Cs6Ha2Ns +H" 587.3605 587.3567

Cage pPhsT: +Na* 609.3425 609.3391

+2H" 294.1839 294.1820

8 [BiPh+T-H,O] C20H2N4O  +H' 339.2179 339.2156

+Na* 361.1999 361.1974
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10

11

12

13

14

15

16

17

18

19

20

21

[2BiPh+T-2H,0]

[3BiPh+T-3H,0]

[BiPh+2T-2H,0]

[2BiPh+2T-4H,0]

[3BiPh+2T-6H,0]

Cage BiPhsT>

[pPh+BiPh+T-2H,0]

[2pPh+BiPh+T-3H,0]

[pPh-+2BiPh+T-3H,0]

[pPh+BiPh+2T-3H,0]

[pPh+BiPh+2T-4H,0]

[2pPh+BiPh+2T-5H,0]

[pPh+2BiPh+2T-4H,0]

[pPh+2BiPh+2T-5H,0]

C34H34N402

Cs8H42N4O3

CosHaoNg

Cs0HagNg

Cs4Hs4Ng

CogH30N402

C36H34N403

C4H38N403

C34H46NgO

C34H44Ng

C42HagNgO

Cs8H54NgO2

C4sHs2NgO
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+2H"
+H*
+Na*
+2H"
+H*
+Na*
+2H*
+H*
+Na*
+2H"
+H*
+Na*
+2H"
+H*
+Na*
+2H"
+H*
+Na*
+2H*
+H*
+Na*
+2H"
+H*
+Na*
+2H"
+H"
+Na*
+2H"
+H*
+Na*
+2H"
+H*
+Na*
+2H*
+H*
+Na*
+2H"
+H"

170.1126
531.2755
553.2574
266.1414
723.3330
745.3149
362.1701
467.3605
489.3425
234.1839
641.4075
663.3844
321.2052
815.4544
837.4364
408.2308
455.2442
477.2261
228.1257
571.2704
593.2523
286.1388
647.3017
669.2836
324.1545
583.3867
605.3687
292.1970
565.3762
587.3581
283.1917
681.4024
703.3843
341.2048
775.4442
797.4262
388.2258
757.4337

N/A
531.2723
553.2543
N/A
723.3093
N/A
362.1998
467.3576
N/A?
234.1827
641.4045
663.3864
321.2054
815.4494
837.4312
408.2308
455.2415
477.2226
N/A
571.2659
N/A

N/A
647.2968
N/A

N/A
583.3823
605.3699
292.1949
565.3561
N/A
283.1897
681.3974
7.3.3795
341.2025
N/A
797.4228
388.2229
757.4284
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22 [pPh+2BiPh+2T-6H,0] CasHsoNg

Cage(pPh)(BiPh).T>

+Na*
+2H"
+H*

+Na*
+2H*

779.4156 779.4086
379.2205 379.2188
739.4231 739.4170
761.4051 761.3801
370.2152 370.2128

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value

to other more abundant ion-combined species.

5.5.4. Self-sorting experiment 2pPh + 2BiPh + 2TriPh + 6NON

BiPh,(NON),

92h : Y ¢ PPhy(NON), N

24h . o R AJ_LJ\,J -
830 min o Ly |l ,L_,J o .
270 min 1 L I ‘-IJ-L A i J

pPh-l-B:Ph
+
amin || |
| pPh+BiPh+TriPh
l | A,

10.2 10084 82 80 78 76 74 72 38 36 34 32 3.0 28 26

Chemical Shift (ppm)

Figure S-1I-31. Evolution of the "TH NMR (400 MHz, CDCls, 40 °C) spectra of 2pPh + 2Biph +
2Triph + 6NON ([pPh]o= [BiPh]o = [TriPh]o = 1.0 mM, [NON]o =3.0 mM).
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[Pthng,fl}z*'H]*

ReEzIs1

[pPhy(NON),+Na]*
i

Figure S-1I-32. HRMS-ESI spectrum of three macrocycles obtained in situ from 2pPh + 2Biph +
2Triph + 6NON reaction in CDCl3 after the equilibration.

5.5.5. Self-sorting experiment 3pPh + 3BiPh + 3TriPh + 6T

_ BiPh,T, Mj
900 min TriPh ._T____H,br pPhsT, . M
645 min M LM N
264 min A_,L,h,_‘____.)\hk M
M

AN

213 min

133 minL \ II }“I

e
A

pPh+BiPh+TriPh+T

AA

e[l N

l PPh+BiPh+TriPh

10.2 986 8.4 8.2807.87.67.47.27.06.84.2 4.0 3.8 3.6 3.43.23.0282621
Chemical Shift (ppm)

Figure S-II-33. Evolution of the '"H NMR (400MHz, CDCls, 40 °C) spectra evolution of 3pPh +
3Biph + 3Triph + 6T ([pPh]o=[BiPh]o = [TriPh]o = 1.0 mM, [T]o =2 mM).
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Figure S-1I-34. HRMS-ESI spectrum showing peaks for the three macrobicyclic cages obtained in
situ from 3pPh + 3Biph + 3Triph + 6T reaction in CDCI3 after equilibration.

5.5.6. Effects of the quality of alumina
5.5.6.1. Formation of the macrocycle pPh2(NON):

Macrocycle pPh;(NON),

40 h ) B l, LI\ JL ” Jk«
10h L,,_*,LJ_J__/M_‘J M—JJLL—AML»M—/FM—“
Int [2pPh+NON]
p Iint [pPh+2NDN]
35h | o | A :1 ! | b “J-Lu_a_J LJ_N‘/M—‘—M—
Int [pPh+NON] /M(
pPh + NON| |
10min___J\ | J{ ~ uu_d_,,_JL_,,_ML J ul—-—-——
Ph JL .

NON J
7 77
0.3 10.2 10.1 10.0 84 83 82 81 80 79 78 74 7 3 7 2 3 9 3 8 3.5 2 9 28 2 7 26 2 5
Chemical Shift (ppm)

Figure S-11I-35. Evolution of the 'H NMR spectra (500 MHz, CDCls, 23 °C) during the formation of
macrocycle pPh2(NON); with dated-alumina treated CDCls.
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Figure S-11-36. '"H NMR monitoring during the formation of macrocycle pPh2(NON), with dated-
alumina treated CDCls.

5.5.6.2. Formation of macrocycle BiPh2(NON),

Macrocycle BiPh,(NON), >
132 h
27h -JJ-L LMMJXLJL‘—M

Int [2BiPh+NON]

T | il JJK.
BiPh + NON Int [BiPh+NON] M‘ W
1h ._JLIL y ‘- A _J L
BiPh _ —
J L y A JL

10.2 101 10.0 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2
Chemical Shift (ppm)

Figure S-II-37. Evolution of the 'H NMR spectra (500 MHz, CDCls, 23 °C) during the formation of
macrocycle BiPh2(NON); with freshly-opened-alumina treated CDCls.
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Figure S-1I-38. 'H NMR monitoring during the formation of macrocycle BiPh2(NON), with
freshly-opened-alumina treated CDCls.

5.5.6.3. Self-sorting experiment 2pPh + 2BiPh + 4NON

i Ph,(NON
4680 min (78 h) IB'PhZ(Noﬂj’z_E 2(NON), u I ||

1440 min (24 h) L

| A A L AR AA = v l
Bh w
300min P pBPh

ILL..»._..,..J-L -
120 min | |, I il T
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— LL pPh+BiPh+NON “I M |-
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pPh+BiPh l \Ul th'P h |

pPPhy(NON), A
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10.2 10.0 84 83 82 81 80 79 78 7.7 76 7.5 74 73 7.2
Chemical Shift (ppm)

.

Figure S-11-39. Evolution of the '"H NMR spectra (400 MHz, CDCls, 23 °C) during the self-sorting
of macrocycle pPh2(NON); and BiPh2(NON); with dated-alumina treated CDCls.
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Figure S-1I-40. 'H NMR monitoring during the self-sorting of macrocycle pPh2(NON), and
BiPh2(NON); with dated-alumina treated CDCls.

5.5.6.4. Self-sorting experiment 3pPh + 3BiPh + 4T

-PPh;T,
1800 min T o . LL ~BiPh,T,
600 min b \ LLLM_
240 min pP{] 1“:Biph o Ak T " T -
60 min Ll N Mo M L
6 swidrs pPh+BiPh+T u Il
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Figure S-11-41. Evolution of the '"H NMR spectra (400 MHz, CDCls, 23 °C) during the self-sorting
of pPh3T: and BiPh3T: with dated-alumina treated CDCls.
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Figure S-11-42. 'H NMR monitoring during the self-sorting of pPhsT, and BiPhsT, with dated-
alumina treated CDCl3
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6. Chapter III. Dynamic Covalent Self-Sorting and Kinetic Switching Processes
in Two Cyclic Orders: Macrocycles and Macrobicyclic Cages

6.1. Synthesis of intermediate BiPy:T>

Intermediate BiPy,T> was synthesized in CDCls without isolation. For this purpose, 3 equiv.
BiPy and 4 equiv. T were mixed in CDCls in an NMR tube. The final concentration of BiPy was 3.6
mM.

'"H NMR (500 MHz, CDCl3, 25 °C): 6 = 7.97 (s, 4H), 7.94 (d, ] = 7.7 Hz, 4H), 7.84 (d, ] = 7.8 Hz,
4H), 7.69 (t, J = 7.7 Hz, 4H), 3.69 — 3.57 (m, 8H), 2.91 (m, 12H), 2.63 (t, ] = 5.4 Hz, 4H).

HRMS (ESI+): m/z caled for C36HaaN12 [M+2H]** 323.1979, found 323.1978; [M+H]" 645.3885,
found 645.3873

=
7]
o
o
hmmmc':r-mr-g nNSTTN 00T ON
QNGO MMNOY Qoo ®o®o oo
[ I S N o O N OO NN NNNNN
e N
[N HaN.__ o~~~ NH;
HoN-) L
—N S
\NH, NS + 3
\\ N réj\?Nq NH,
N@/‘N
BiPy,T, T
oy Ty Py T
oNGO T e ~ @
i e e < o ™~
—t . . . . . v —r et s . . . . .
85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00

Chemical Shift (ppm)
Figure S-III-1. Equilibrium state '"H NMR spectra (500 MHz, CDCl;, 25 °C) of intermediate

BiPy,T; obtained in situ from 3 equiv. BiPy and 4 equiv. T.

3231978
=2

40 411.2162

=2
20 329.1972 ﬁ 5451,231873

= L

Relative Abundance

Figure S-III-2. HRMS-ESI spectrum of intermediate BiPy2T obtained in situ from 3 equiv. BiPy
and 4 equiv. T.
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6.2. Self-sorting experiment 3Py + 3BiPh + 3TriPh + 2T + 6NON

Buth(NOIg)

NON) y NON)z L J

39 h_TriPh,(NON); 11_..« AP I, -

1250 min e “L—_AA..'WL—;—LA
o1+ BiPh,T

780 min f“fhﬁfw..i_i_,-du_ul.ﬁ& A

390min_§

60 min L ALLLJ__JL | _AAJ
0 D O

Py+BJPh+
13 scjtumq c|

5 min l +T+NON
l I y+B’Ph+r I’] JT
10.210.0 84 8.2 80 78 76 7.4 7.2 7.0 3.9 3.7 3.6 3.3 3.1 29 27 2.¢
Chemical Shift (ppm)

Figure S-111-3. Temporal evolution of the 'H NMR (400MHz, CDCl;, 40 °C) spectra of 3Py +
3Biph + 3Triph + 2T + 6NON ([pPh]o= [BiPh]o = [TriPh]o = 1.0 mM).
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Figure S-1II-4. HRMS-ESI spectrum of the final products obtained in situ from 3Py + 3Biph +
3Triph + 2T + 6NON reaction in CDClI; after the equilibration.
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6.3. Kinetic switching and self-sorting from SFur+5BiPy+4T+4NON in the
presence of DMA-HCI

133 h . - BiPW(NON]{‘u BiPlvstM U lf r3T; p—
T‘94 h N R U | .

47h A _ Wu;
245h ) . l l ,h L

13.5h A )

8h | IM"""“‘J“‘JL‘JL‘I
- ' ; -ALAJI-—..ALIL._JA_J
- = = A M ahrt i | l

+T+NON, 5 mir| %

Fur+BiPy
+10% DMA-HCI

BiPy,(NON), |

_ |

Fur;T, ) 1 1
|

I

Fur,(NON), 1

BiPy,T, __ \

106 104 10.2 10.0 9.8 9.6 8.9 8.7 Csh.gmlcaal'sshlfts(';pm)lg 7.7 7.5 7.3 71 ' 6'.9v Gv.7’ 6|.5
Figure S-III-5. Evolution of the 'H NMR spectra (400MHz, CDCl;, 40 °C) of
SFur+5BiPy+4NON+4T ([Fur]o = [BiPy]o = 3.6 mM) and 10 molar% (in terms of dialdehyde
components) dimethylamine hydrochloride (DMA-HCI) after 5 min, 1 h, 3 h, 8 h, 13.5 h, 24.5h, 47h,
94 h and 133 h. The bottom four traces correspond to the isolated BiPy3;T2, Fur2(NON)2, Fur;T,,

BiPy2(NON)..
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Figure S S-III-6. '"H NMR monitoring of the time-dependent switching evolution of the mixture of
components SFur+5BiPy+4NON-+4T and 10 molar% (in terms of dialdehyde components)
dimethylamine hydrochloride (DMA-HCI) as a function of time as obtained from the aromatic

proton signals in Figure S98. Error in '"H-NMR signal integration: £5%
6.4. Self-sorting between macrocycles and macrobicyclic cages

Table S-III-1. HRMS-ESI assignments for the macrobicyclic cages Pys3T2, BiPhs;T: and
macrocycles Py2(NON),, BiPhoNON; generated from the self-sorting reaction of 5Py + 5BiPh + 4T

+ 4NON (DCL[1]).

Entry assignment formula Combined ion m/z calcd. m/z found

1 PysT: Cs3H39N11 +H* 590.3463 590.3439
+Na* 612.3282 612.3256
+K* 628.3021 628.2987
+2H" 295.6768 295.6755

2 Py2(NON), C22H26N6O2 +H" 407.2190 407.2173
+Na" 429.2009 429.1992
+K* 445.1749 445.1746

+2H" 204.1131 N/A
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3 BiPh;T: CsaHs4Ns +H" 815.4544 815.4503
+Na* 837.4364 837.4324
+K* 853.4103 N/A
+2H" 408.2308 408.2295

4 BiPh;(NON); C36H36N402 +H" 557.2911 557.2891
+Na* 579.2730 579.2710
+K* 595.2470 N/A
+2H" 279.1492 279.1481

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value

to other more abundant ion-combined species.

Table S-III-2. HRMS-ESI assignments for the macrobicyclic cages pPhsT2, BiPhsT: and
macrocycles pPh2(NON)2, BiPh:NON; generated from the self-sorting reaction of SpPh + 5BiPh +

4T + 4NON (DCL]2)).

Entry assignment formula Combined ion m/z calcd. m/z found

1 pPhsT: Cs6H4oNg +H* 587.3605 587.3603
+Na* 609.3425 609.3423
+K* 625.3164 625.3165
+2H" 294.1839 294.1842

2 pPhz(NON) C24H2N4O2  +H' 405.2285 405.2285
+Na* 427.2104 427.2105
+K* 443.1844 443.1848
+2H" 203.1179 N/A

3 BiPh3T: Cs4Hs4N3g +H" 815.4544 815.4538
+Na* 837.4364 837.4358
+K* 853.4103 N/A
+2H" 408.2308 408.2307

4 BiPh2(NON) C3sH3sN4O2  +H' 557.2911 557.2911
+Na* 579.2730 579.2736
+K* 595.2470 N/A
+2H" 279.1492 279.1491

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value

to other more abundant ion-combined species.
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6.5. Kinetic switching and self-sorting from SFur+5BiPy+4T+4NON (DCL[14])

Table S-1II-3. HRMS-ESI assignments for the Intermediate Int[BiPy2T2|, cages BiPys;T2, FursT:
and macrocycles BiPy:2NONz, Fur2(NON), generated from the self-sorting reaction of SFur +

5BiPy + 4T + 4NON.
Entry assignment formula Combined ion m/z calcd. m/z found
1 Int[BiPy,T:] C36HaaN12 +H" 645.3885 645.3860
+Na* 667.3704 667.3678
+K* 683.3443 N/A
+2H" 323.1979 323.1967
2 BiPysT> CasHagNi4 +H* 821.4259 821.4222
+Na* 851.4347 851.4358
+K* 859.3818 859.3792
+2H" 411.2166 411.2150
3 Furs:T: C30H36NgO3 +H* 557.2983 557.2964
+Na* 579.2803 579.2783
+K* 595.2542 595.2521
+2H" 279.1528 279.1526
4 BiPy:NON: C32H32N302 +H" 561.2721 567.2702
+Na* 583.2540 583.2519
+K* 599.2280 599.2260
+2H" 281.1397 281.1394
5 Fur2(NON), C20H24N4O4 +H" 385.1870 385.1856
+Na* 407.1690 407.1673
+K* 423.1429 423.1413
+2H" 193.0972 N/A

N/A: Unable to read the mass-to-charge ratio (m/z) abundance as it has an extremely close m/z value

to other more abundant ion-combined species.
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Chapter V. Isomeric Cages with Unsymmetrical Building Blocks
7.1. Synthesis of cage isomers

54.3mg (0.257mol) Py-Ph was dissolved in 50mL MeOH. To the solution, 25.0mg (0.171
mmol) of Tren in 5 ml MeOH was added over 2 min at room temperature. The reaction mixture was
stirred for 24 h. A pale yellow precipitate was collected by centrifugation and washed with small
amounts of cold MeOH. The solid was dried at room temperature under vacuum. The resulting pale

yellow solid was the desired cage mixture (yield 39.8 mg, 57%) and contained 83% of cage bbp and
17% of cage bbb.

7.2. Isolation of cage bbp

4.90 mg of cage isomers obtained from MeOH were dispersed on 1/1 MeCN-CHCI3 (4mL).
Thereafter, 17 mol% Zn(OTf), MeCN solution was added. The suspension was stirred for 10min.
The precipitate was collected by centrifugation and washed with MeCN twice. The pale yellow solid
was dried at room temperature under vacuum and was confirmed to be the pure cage bbp (yield 4.05

mg, 99%).

7.3. Spectroscopic data
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Figure S-V-1. "H NMR spectrum (400 MHz, CDCl;, 23 °C) of cage isomers obtained from MeOH
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Figure S-V-2. '"H NMR spectrum (400 MHz, CDCls, 23 °C) of cage isomers obtained in situ from
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Figure S-V-3. '"H NMR spectrum (500 MHz, CDCls, 25 °C) of Cage bbp
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Figure S-V-5. '"H-'H Cosy spectrum (500 MHz, CDCl;, 25 °C) of Cage bbp
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Figure S-V-7. 'H-13C HSQC spectrum (500 MHz of 'H, 125 MHz of 1*C,, CDCls, 25 °C) of Cage
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Figure S-V-8. 'H-'"H ROESY spectrum (500 MHz of 'H, 125 MHz of '*C,, CDCl;, 25 °C) of Cage
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Figure S-V-8. 'H-'"H COSY spectrum (500 MHz of 'H, 125 MHz of '*C, CDCl;, 25 °C) of Cage
bbb-Zn(II)
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Figure S-V-8. 'H-3C HMBC spectrum (500 MHz of 'H, 125 MHz of '*C, CDCls, 25 °C) of Cage
bbb-Zn(II)
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Figure S-V-9. 3C NMR spectrum (500 MHz, CD3CN, 23 °C) of complex bbp-2Cd(II)
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Figure S-V-11. '"H-"H COSY spectrum (500 MHz, CDCl3, 25 °C) of Cage bbb-2Pb(II)
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Figure S-V-12. Comparison of '"H NMR spectra (400 MHz, 60%-40% CD;CN-CDCls, r.t.) after
addition of Cd(OTHY); to the initial isomeric mixture.
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Figure S-V-13. Comparison of '"H NMR spectra (400 MHz, 60%-40% CD;CN-CDCls, r.t.) after

addition of Fe(ClO4); to the initial isomeric mixture.
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Figure S-V-14. Comparison of 'H NMR spectra (400 MHz, 60%-40% CDsCN-CDCls, r.t.) after

addition of Cu(OTY) to the initial isomeric mixture.
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Figure S-V-15 Comparison of "H NMR spectra (400 MHz, 60%-40% CD;CN-CDCl;, r.t.) after addition of 2

equiv. of Zn(OTf): to the initial isomeric mixture.
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8. X-ray crystallography

Colourless, square single crystals of macrocycle pPh2(NON);'H,O and BiPh2(NON); were
respectively obtained by crystallization in MeCN and vapor diffusion of n-Hexane into a CDCl3
solution in a closed vial at room temperature. The crystal of 2BiPy2(NON),-CHCI3 was obtained by
slow evaporation of a chloroform solution at 4 °C. Each BiPy unit in the macrocycle showed a
planarized structure, rather than a twisted shape and with a distance of 13.39 A between the O atoms.
The colourless crystal of TriPhsT2-:3CHCI; was obtained from a reaction solution of 3TriPh+2T at
4 °C in CHCIs. Crystallographic data for the structure has been deposited with the Cambridge
Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB21EZ, UK. Copies of the data
can be obtained free of charge via www.ccdc.cam.ac.uk on quoting the depository number CCDC
2006765 for pPh2(NON):-H20, 2006766 for BiPh2(NON)2, 2006767 for 2BiPy2(NON);-CHCls,
and 2018494 for TriPh3;T2-:3CHCls.

Figure S-Crystal-1. Single-crystal X-ray structure of Macrocycle pPh2(NON)2-H:O and
BiPh2(NON):. Color scheme: carbon (grey), hydrogen (white), nitrogen (blue), oxygen (red).
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Figure S-Crystal-2. Single-crystal X-ray structure of macrocycle 2BiPy2(NON),-CHCl;. Colour
scheme: carbon (grey), hydrogen (white), nitrogen (blue), oxygen (red).

Figure S-Crystal-3. Single-crystal X-ray structure of macrobicyclic cage TriPh;T2-3CHClIs.

Colour scheme: carbon (grey), hydrogen (white), nitrogen (blue), chlorine (green).
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Table S-Crystal-1. Crystal data and structure refinement for Macrocycle pPh2(NON).,
BiPh2(NON); and BiPy2(NON);

Identification code | pPh2(NON)2-H:0 BiPh2(NON): 2BiPy2(NON),-CHCl3
Empirical formula | C24H238N4O2-H,O C36H36N402 2C32H3:Ng0,-CHCl3
Formula weight 422.52 556.69 680.02
Temperature/K 120(2) 120(2) 173(2)

Crystal system orthorhombic triclinic triclinic

Space group Pccn P-1 P-1

a/A 16.0157(5) 8.9175(4) 11.8514(8)

b/A 16.9055(6) 9.6423(5) 12.1452(8)

c/A 8.2684(2) 10.4108(5) 12.4329(9)

o/° 90 62.612(2) 92.612(2)

/e 90 67.462(2) 100.027(2)

v/° 90 72.983(2) 106.750(2)
Volume/A? 2238.70(12) 726.71(6) 1678.7(2)

Z 4 1 2

Pealed/gcm’ 1.254 1.272 1.345

p/mm’! 0.084 0.080 0.316

F(000) 904 296 708

Crystal size/mm? 0.120%0.140%0.160 0.200%0.150%0.080 0.280%0.180%0.140
Radiation 0.71073 0.71073 0.71073

20 range for data | 2.410-28.012 2.304-30.008 1.760-28.052

collection/®

Index ranges

21<h<2l,-22<k<

11<h<12,-13<k<

15<h<15,-16<k<

21,-10<1<10 13,-14<1<14 16,-16 <1<16
Reflections 27088 27416 44903
collected
Reflns. unique 2703 4246 8137
Reflns. obsd. 2311 3538 5004
Rint 0.0412 0.0341 0.0484
Params. refined 145 190 418
Goodness-of-fit on | 1.054 1.025 1.039
F2
Final R indexes | Ri=0.0432, R1=0.0394, R1=0.0594,
[[>=26 ()] wR>=0. 1117 wR>=0.1026 wR>=0.1437
Final R indexes [all | Ri=0.0513, Ri=0.0498, Ri=0.1077,
data] wR>=0.1168 wR>=0.1104 wR>=0.1698
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Largest diff.
peak/hole / e A3

0.350/-0.495

0.380/-0.189

1.150/-0.959

Table S-Crystal-2. Crystal data and structure refinement for TriPh3T2 and Cage bbp

Identification code TriPh3;T2-3CHCI; Cage bbp
Empirical formula C72HesNs, 3(CHCI3) Cs1Hs1Ny1, CHCI3
Formula weight 1401.43 937.39
Temperature/K 120(2) 120(2)

Crystal system triclinic triclinic

Space group P-1 P-1

a/lA 12.9054(10) 9.9355(3)

b/A 13.4545(11) 15.3115(5)

c/A 22.5621(18) 16.8456(6)

o/° 76.114(3) 104.1200(10)

p/e 82.526(3) 101.9570(10)

v/° 62.714(3) 94.1560(10)
Volume/A? 3379.0(5) 2410.80(14)

V4 2 2

Pealed/g-cm™ 1.377 1.291

p/mm! 0.424 2.102

F(000) 1456 984

Crystal size/mm? 0.400%0.200%0.140 0.230%0.210%0.200
Radiation 0.71073 1.54178

20 range for data collection/® | 1.986-27.978 2.781-66.789

Index ranges

-16<h<17,-17<k<17,-29
<1<29

-11<h<11,-16 <k <18, -20
<1<20

Reflections collected 147869 61234
Reflns. unique 16195 8497
Reflns. obsd. 12684 8145
Rint 0.0546 0.0312
Params. refined 829 595
Goodness-of-fit on F? 1.031 1.055

Final R indexes [[>=2c (I)]

Ri1=0.0659, wR>=0.1778

R1=0.0894, wRo= 0.2645

Final R indexes [all data]

R;=10.0831, wRo=0.1941

R1=0.0908, wR>= 0.2656

Largest diff. peak/hole / e A

1.932/-1.456

1.619/-1.598
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Résumé

L'étude des systemes d’auto-triage, notamment leur comportement sous controle cinétique,
pourrait ouvrir la voie a une meilleure compréhension des propriétés intrinseques et de
l'intrication de la maticre. Cette thése est centrée autour de l'étude des caractéristiques
cinétiques et thermodynamiques dans les systémes d’auto-triage de macrocycles de
polyimines et de cages macrobicycliques. Les forces motrices de chaque distribution,
obtenues a la fois a des temps de réaction courts et apreés avoir atteint 1'équilibre, ont été
¢tudiées dans un premier temps. Ces résultats mettent en évidence le role essentiel du choix
judicieux des composants initiaux, qui permet 1’évolution des DCLs (initialement composées
des produits cinétiques hors équilibre) vers des états thermodynamiquement favorisés. Dans le
dernier chapitre, les interconnexions isomériques entre les constituants ont été évaluées afin
d’explorer une nouvelle approche pour le développement de DCLs d’une plus grande
complexité.

Mots cles : chimie covalente dynamique, bibliothéque covalente dynamique, triage
automatique dynamique, macrocycles, cages moléculaires, systemes hors équilibre,
commutation cinétique

Abstract

The study of self-sorting systems, especially their behaviour under kinetic control, may pave
the way to understand the intrinsic properties and intricacy of matter. This thesis focuses on
the study of kinetic and thermodynamic features in self-sorting systems of polyimine
macrocycles and macrobicyclic cages. The driving forces for each distribution obtained at
both short reaction times and after reaching the equilibrium were firstly investigated. The
results highlight the essential role of an appropriate design of initial components, which
allows the evolution of DCLs from out-of-equilibrium kinetic products to thermodynamically
favoured states. In the last chapter, isomeric interconnections between constituents were
evaluated in order to provide a new aspect for developing DCLs of higher complexity.

Key words: dynamic covalent chemistry, dynamic covalent library, dynamic self-sorting,
macrocycles, molecular cages, out-of-equilibrium systems, kinetic switching
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