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Introduction (English)

The present document aims at defining and studying new structures of operadic type on
algebraic invariants of matroids.

Part 1: hyperplane arrangements and operadic structures

A hyperplane arrangement is a finite collection of hyperplanes in a finite dimensional
vector space. For any hyperplane arrangementH, the intersection latticeLH ofH is the set
of all possible intersections {

⋂
H∈S H,S ⊂ H} ordered by reverse inclusion. As its name

indicates, it is a lattice, with supremum given by the intersection. This lattice encapsulates
all the combinatorial information of the hyperplane arrangement.

Example 0.0.1. Consider the arrangement Braid3 given by the hyperplanes {z1 = z2}, {z2 =
z3}, and {z1 = z3} in C3. The Hasse diagram of the intersection lattice of this hyperplane
arrangement is drawn in Figure 1. It is the set of partitions of {1, 2, 3} ordered by refine-
ment.

{z1 = z2} {z1 = z3} {z2 = z3}

{z1 = z2 = z3}

C3

Figure 1: Hasse diagram of LBraid3

An important leitmotiv in the study of hyperplane arrangements is sorting the infor-
mation which is determined by the intersection lattice, i.e. the information of combina-
torial nature, and the information which is not. A classical theorem in this spirit is the
following.
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4 INTRODUCTION (ENGLISH)

Proposition 0.0.2 (Orlik-Solomon, [27]). Let H be a complex hyperplane arrangement and let
AH be the complement of the union of the hyperplanes of H. The cohomology algebra of AH is
isomorphic to the quotient of the exterior algebra Λ[eH , H ∈ H] (with each eH in degree 1) by the
elements δ(eH1 ...eHk) for all {H1, ...,Hk} such that

dimH1 ∩ ... ∩Hk > n− k

(where δ denotes the unique derivation sending all the generators to 1). The cohomology algebra of
the projectivization PAH is isomorphic to the subalgebra generated by the elements eH − eH′ for
any two hyperplanes H and H ′.

The dimensions of the intersections of hyperplanes are given by the rank function of
LH, meaning the above algebras are determined by LH. In other words the cohomology
algebra of a hyperplane arrangement complement and its projectivization are “combina-
torial”. We will denote those algebras by OS(LH) and OS(LH) respectively.

To go further in the study of the projective arrangement complement one may be in-
terested in finding a model for H•(PAH). A classical way of achieving this goal is to find
a “good” compactification of the projective complement

PAH ↪→ Y H

and then look at the Leray spectral sequence of this inclusion. In order for this spectral
sequence to be tractable, one would like the complement of PAH in the compactifica-
tion to be a divisor with normal crossings, in which case the compactification is called
“wonderful”. De Concini and Procesi showed in [8] that there exist several such compact-
ifications which can be obtained by successively blowing up some of the intersections of
hyperplanes in P(Cn). If G is some subset of LH, let us denote by Y H,G the result of suc-
cessively blowing up P(Cn) along the elements of G (by increasing size). In order for Y H,G
to be a wonderful compactification, the subset G needs to contain all the non transver-
sal intersections. This can be axiomatized by the notion of building set, introduced in a
purely combinatorial setting by Feichtner-Kozlov [13]. We refer to Subsection 1.1 for the
definition of the symbols used in the following definition.

Definition 0.0.3 (Building set). Let L be a lattice. A building set G of L is a subset of L\{0̂}
such that for every element X of L the morphism of posets∏

G∈maxG≤X

[0̂, G]
∨−→ [0̂, X]

is an isomorphism (where maxG≤X is the set of maximal elements of G ∩ [0̂, X]).

In conclusion, we have a wonderful compactification Y H,G of PAH for each building
set G of LH. The projective smooth varieties Y H,G are stratified by the exceptional divisors
DG, G ∈ G obtained after each blow up. For any subset S ⊂ G the intersection

⋂
G∈S DG is

non-empty if and only if S forms a nested set of (L,G).



INTRODUCTION (ENGLISH) 5

Definition 0.0.4 (Nested set). Let L be a lattice and G a building set of L. A subset S of G
is called a nested set if for every subset A ⊂ S of pairwise incomparable elements, the join
of the elements of A does not belong to G whenever A contains at least two elements.

De Concini and Procesi showed that for any nested set S of (LH,G), the stratum

Y S :=
⋂
G∈S
DG

is isomorphic to a product of wonderful compactifications of “smaller” hyperplane ar-
rangementsHGS and building sets GGS indexed by the elements of S:

Y S '
∏
G∈S

Y HGS ,G
G
S
.

The inclusion of the stratum induces a morphism in cohomology

H•(Y H,G)→
⊗
G∈S

H•(Y HGS ,G
G
S

). (1)

To be precise, the hyperplane arrangements HGS are obtained by what is called restric-
tion/contraction of the hyperplane arrangementH and GGS is a building set “induced” by
G onHGS (see Subsection 1.1).

Definition 0.0.5 (Restriction/Contraction). Let H be a hyperplane arrangement in some
vector space V and F some element in LH. The restriction ofH along F is the arrangement
in V/F given by the elements of LH containing F . The contraction of H along F is the
hyperplane arrangement in F given by all the hyperplanes of F that can be obtained as
the intersection of some element in LH with F .

The hyperplane arrangement HGS is the contraction along
∨
S<G of the restriction

along G ofH.

A second important leitmotiv in the study of hyperplane arrangements is trying to re-
late the properties of a hyperplane arrangement with the properties of its restrictions/con-
tractions. More precisely, we are interested in “hereditary” properties, that subsist when
taking any restriction/contraction, and in “inductive” properties, that pass to the hyper-
plane arrangement if they are satisfied for every restriction/contraction. In this light,
morphisms (4) seem of utmost importance. For some specific hyperplane arrangements
and building sets the datum of the algebras H•(Y H,G) together with morphisms (4) form
types of structures which have already been extensively studied.

Example 0.0.6. Consider the braid arrangement Braidn given by the diagonal hyperplanes
{zi = zj} ⊂ Cn. Its intersection lattice is the partition lattice over {1, ..., n}. It admits a
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building set Gn given by the partitions with only one equivalence class containing more
than two elements. In this case it turns out that the hyperplane arrangementsHGS appear-
ing in (4) are isomorphic to smaller braid arrangements for any nested set S. The algebras
{H•(Y Braidn,Gn), n ∈ N∗} together with morphisms (4) form an object called a (co)operad.

Operads were introduced in the early seventies by Boardman, Vogt and May, and have
played an increasingly prominent role in algebraic topology as well as general algebra. In
a few words, operads are a formal abstraction of the collection of multi-variable opera-
tions on an object, much like monoids form an abstraction of the collection of endomor-
phisms of an object. In an operad P , elements (which should be thought of as formal op-
erations) are classified by the number of inputs they take, i.e. P = {P(0),P(1),P(2), ...},
and can be composed as one would compose multi-variable operations. For instance, if
we have a multivariable operation µ1 having say 2 inputs, and a second multivariable
operation µ2 having say 3 inputs, then one can compose those operations to get a new
operation taking 4 inputs, for instance:

x1, x2, x3, x4 → µ1(µ2(x1, x2, x3), x4).

This means that we should have a corresponding map: P(2) × P(3) → P(4), which shall
be part of the datum of the operad. Of course all the different composition maps should
satisfy the same associativity axioms as the usual composition. One can also consider the
additional datum of a symmetric action on the operations, mimicking the symmetric ac-
tion given by the permutation of variables. Naturally, this action is required to satisfy the
same compatibility with composition as the usual permutation of variables.

There are many equivalent ways to formally define an operad. The one of interest to
us is to view an operad as a monoidal functor defined on a particular monoidal category
which can be constructed as follow. Start with the groupoid FinSet with finite sets as
objects and all bijections as morphisms. Consider then the monoidal category T obtained
by adding to the free symmetric monoidal category generated by FinSet some morphisms⊗

v vertex of t

Inputs(v)
t−→ Leaves(t),

for each rooted tree t, with Inputs(v) the set of ingoing edges (the “inputs”) of the vertex
v and Leaves(t) the set of leaves of t. The composition of those morphisms is defined by
substitution of trees, i.e. if t is some rooted tree and for each vertex v of t we have a rooted
tree tv with leaves Inputs(v), then t◦ (⊗tv) is the tree constructed by substituting tv at each
vertex v in t. Finally, one needs to quotient by some relations expressing the compatibil-
ity between the symmetries and the composition morphisms. This construction is also
called the “monad of trees”. With this construction at hand, an operad can be very sim-
ply defined as a (strong) monoidal functor from T to some arbitrary symmetric monoidal
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category. The spaces of operations are the images of the finite sets by the functor, the com-
position morphisms are the images of the tree morphisms by the functor, the associativity
axiom comes from the associativity of the composition in T and the compatibility of the
functor with the composition, the symmetric action comes from the images of the bijec-
tions by the functor.

Over the last two decades many variants of operads appeared in the literature, such as
props (Mac Lane [23]), properads (Vallette [32]), cyclic operads (Getzler-Kapranov [16]),
modular operads (Getzler-Kapranov [17]) and so on. All those objects can be defined as
monoidal functors from a suitable symmetric monoidal category constructed in a similar
way to the one introduced in the previous paragraph. A general framework for such cate-
gories was laid out by Ralph Kaufmann and Benjamin Ward, who introduced the notion of
a Feynman category [20]. Before presenting the definition let us start by setting some no-
tations. If C is some category we denote by Sym(C) the free symmetric monoidal category
generated by C. For any functor F : C → D with D a symmetric monoidal category, there
is a unique (strong) monoidal functor Sym(F ) : Sym(C)→ Dwhich restricts to F on C. If C
is any category we denote by Ciso the category with the same objects as C and morphisms

the isomorphisms of C. If we are given a diagram of categories C F→ D G← E , the comma
category (F ↓ G) is the category having for objects triples (c ∈ C, e ∈ E , φ : F (c) → G(e))
and for morphisms commutative diagrams. If the functors F and G are clear from the
context we will write instead (C ↓ E).

Definition 0.0.7 (Feynman category). A triple F = (V,F , ı) is a Feynman category if V is a
groupoid, F is a symmetric monoidal category and ı : V → F is a functor such that:

1. The functor ı induces an equivalence of categories Sym(ı) : Sym(V)→ F iso.

2. The functor ı induces an equivalence of categories Sym((F ↓ V)iso)→ (F ↓ F)iso.

3. For every object ? ∈ V , the comma category (F ↓ ?) is essentially small (i.e. is
equivalent to a small category).

Example 0.0.8. • The triple (FinSet, T , ı) with FinSet and T the categories introduced
previously and ı the obvious inclusion is a Feynman category.

• Consider the groupoid ? with only one object and just the identity morphism. De-
noteA the monoidal category with objects the finite sets, morphisms the surjections
and monoidal structure given by disjoint union. The triple (?,A, ı) with ı the obvi-
ous inclusion is a Feynman category.

An object of V will be called an arity and a morphism of F will be called a structural
morphism. In plain English, Definition 0.0.7 means that a Feynman category can be con-
structed by adding morphisms of the form⊗

Objects −→ Object
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to the free symmetric monoidal category generated by some groupoid, as we did to con-
struct T out of FinSet.

Definition 0.0.9 (Operad over a Feynman category). Let F = (V,F , ı) be a Feynman cat-
egory and C a symmetric monoidal category. An operad over F in C is a strong monoidal
functor from F to C, and a cooperad over F in C is a strong monoidal functor from F to
Cop. A module over F in C is a functor from V to C.

(Co)operads (resp. modules) over F will also be called F-(co)operads (resp. F-modules).

Example 0.0.10. • An operad over (FinSet, T , ı) is a classical operad.

• An operad over (?,A, ı) is a monoid.

The first objective of this thesis is to find a Feynman category over which the collection
of algebras H•(Y H,G) for all pairs (H,G) together with morphisms (4) for all nested sets
form a (co)operad. Example 0.0.6 shows that this Feynman category should “contain” in
some sense the Feynman category encoding classical operads.

Instead of dealing with hyperplane arrangements we shall be working at the combina-
torial level, meaning with lattices. This means that we will lose all the information which
is not combinatorial, but we acquire more generality because we can work with lattices
which are not necessarily intersection lattices of some hyperplane arrangement. The class
of lattices we will focus on in this thesis is that of geometric lattices.

Definition 0.0.11 (Geometric lattice). A finite lattice (L,≤) is said to be geometric if it sat-
isfies the following properties:

• For every pair of elements G1 ≤ G2, all the maximal chains of elements between G1

and G2 have the same cardinal. (Jordan–Hölder property)

• The rank function ρ : L → N which assigns to any element G of L the cardinal of
any maximal chain of elements from 0̂ to G (not counting 0̂) satisfies the inequality

ρ(G1 ∧G2) + ρ(G1 ∨G2) ≤ ρ(G1) + ρ(G2)

for every G1, G2 in L. (Sub-modularity)

• Every element in L can be obtained as the supremum of some set of atoms (i.e.
elements of rank 1). (Atomicity)

This class strictly contains every lattice arising as the intersection lattice of some hyper-
plane arrangement (the rank function being given by the codimension). See [28] Example
2.1.22 for a geometric lattice not representable over any field. One could think of geomet-
ric lattices as a combinatorial abstraction of hyperplane arrangements. We have drawn
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in Figure 2 the Hasse diagrams of some posets. Let us quickly sort which of those posets
are geometric lattices. Poset (a) is not even a lattice because the two top elements do not
have an infimum. Poset (b) is a lattice but is not geometric because it is not atomic. Poset
(c) is not a geometric lattice because it is not atomic and it does not satisfy the Jordan–
Hölder property. Poset (d) is an atomic lattice satisfying the Jordan–Hölder property but
is not geometric because its rank function is not submodular. Finally, posets (e) and (f)
are geometric lattices. The first one is the intersection lattice of the arrangement given in
Example 0.0.1 , and the second one is the intersection lattice of the coordinate arrange-
ment {z1 = 0}, {z2 = 0}, {z3 = 0}.

• •

• •
(a)

•

•

•
(b)

•

•

•

•

•

(c)
•

• •

• • •

•
(d)

• • •

•

•
(e)

•

• • •

• • •

•

(f)

Figure 2: Hasse diagrams of some posets

In this document every lattice will be assumed to be geometric. A geometric lattice
is equivalent to the datum of what is called a loopless simple matroid, also known as a
combinatorial geometry. There are many different definitions of a matroid and we list
some of them here, referring to [35] for more details.

Definition 0.0.12 (Matroids via independent subsets). A matroid is a pair of a finite set E
and a set I of subsets of E (the “independent” subsets) satisfying the axioms

• For any I in I, every subset of I belongs to I.

• For any I , J in I, if #J > #I there exists an element a in J and not in I such that
I ∪ {a} is independent.
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Definition 0.0.13 (Matroids via closure operator). A matroid is a pair of a finite set E and
an application (the “closure operator”)

σ : P(E) −→ P(E)

satisfying the axioms

• For any X ∈ P(E) we have X ⊆ σ(X).

• For any X ⊆ Y ∈ P(E) we have σ(X) ⊆ σ(Y ).

• For any X ∈ P(E) we have σ(σ(X)) = σ(X).

• For any X ∈ P(E) and a, b ∈ E, if a ∈ σ(X ∪{b}) \σ(X) then b ∈ σ(X ∪{a}) \σ(X).

Definition 0.0.14 (Matroids via circuits). A matroid is a pair of a finite set E and a set C of
subsets of E (the “circuits”) satisfying the axioms

• The empty set is not a circuit.

• If C1 ⊆ C2 ∈ C then C1 = C2.

• If C1, C2 ∈ C, C1 6= C2 and e ∈ C1 ∩ C2 then there exists a circuit C ⊆ C1 ∪ C2 \ {e}.

One passes from the independent subset definition to the circuit definition by defining
the circuits as the minimal non-independent subsets. One passes from the circuit defini-
tion to the closure definition by putting

σ(X) := X ∪ {x | ∃C ∈ C with C ⊆ X ∪ {x} and x ∈ C}.

Finally, one passes from the closure definition to the independent subset definition by
defining an independent subset as a subset S such that for every s ∈ S, the element s
does not belong to σ(S \ {s}). Matroids form a combinatorial abstraction of the general
notion of independence across mathematics, encompassing linear independence, affine
independence, algebraic independence and so on. Matroids are also very strongly related
to graph theory via the observation that for any graph G with set of edges E, the subsets
of E given by the minimal cycles of G satisfy the circuit axioms (0.0.14), and thus they
define a matroid. The independent subsets of this matroid are given by the subforests of
G. We will denote this matroid by MG.

Example 0.0.15. Consider the graph G depicted in Figure 3. The circuits of MG are {1, 2},
{3}, {1, 4, 5} and {2, 4, 5}. The independent subsets of MG are ∅, {1}, {2}, {4}, {5}, {1, 4},
{1, 5}, {2, 4}, {2, 5}, {4, 5} together with the subsets obtained by adding 6 to the latter
subsets.
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•

•

•

•

5

4 61 2

3

Figure 3: A graph with labelled edges

A matroid (E, I) is said to be loopless if every singleton is independent. A matroid is
said to be simple if for every pair of elements a and b, if {a} and {b} are independent then
{a, b} is also independent. A flat of a matroidM = (E, σ) is a subset F ⊆ E such that σ(F )
is equal to F . The set of flats of M denoted by LM ordered by inclusion is a geometric
lattice with meet given by the intersection. Conversely if L is a geometric lattice then the
datum (E, σ) where E is the set of atoms of L and σ is the map defined by

σ(X) =
⋂
F∈L

X⊂At≤(F )

At≤(F )

is a simple loopless matroid. Those two constructions are inverse to each other on simple
loopless matroids. In this document we will mainly use the axiomatization by geomet-
ric lattices for convenience (it is the axiomatization that makes restriction/contraction the
most transparent).

In [8], De Concini and Procesi gave an explicit presentation by generators and relations
of the cohomology rings H•(Y H,G), which only depends on LH and G (in other words,
H•(Y H,G) is “combinatorial”). In [14], Feichtner and Yuzvinsky generalized those rings
to any pair (L,G) where G is a building set of some atomic lattice L. A pair (L,G) with
G the building set of some lattice L will be called a “built lattice”. In this document we
will restrict to geometric lattices. We will call those rings the Feichtner–Yuzvinsky rings
and denote them FY(L,G). If G = L \ {0̂} we get the so-called Chow ring of the geomet-
ric lattice/combinatorial geometry L. One could think of Feichtner–Yuzvinsky algebras
as invariants which help us study matroids, the same way cohomology algebras help us
study spaces. In the realizable case, meaning when the geometric lattice L is the intersec-
tion lattice of a hyperplane arrangement, the Feichtner–Yuzvinsky ring is the cohomology
algebra of a complex smooth projective manifold and therefore it satisfies Poincaré dual-
ity and the Kähler package.

A third important leitmotiv in the study of hyperplane arrangements/matroids is that
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properties of realizable matroids that assuredly seem deeply geometrical, may often mag-
ically subsist in the non-realizable setting. For instance, a celebrated result of Adiprasito-
Huh-Katz [1] states that every combinatorial Chow ring satisfies (a purely algebraic ver-
sion of) Poincaré duality and the Kähler package.

Definition 0.0.16 (Poincaré duality). A graded commutative algebra A over a field K is
said to satisfy Poincaré duality if there exists a top degree n such that we have Ap = 0 for
all p ≥ n+ 1, and an isomorphism of vector spaces An ' K (the “degree map”) such that
the multiplication

Ap ⊗An−p → An ' K

is a non-degenerate pairing for all p ≤ n.

Definition 0.0.17 (Kähler package). A graded commutative algebra A over Q is said to
satisfy the Kähler package if it has a top degree n and an isomorphism

deg : An
∼−→ Q

such that there exists a non-empty cone Σ ⊂ A1 of elements ` satisfying the following
properties.

• The multiplication map
· `n−2k : Ak → An−k

is an isomorphism for all k ≤ n/2. (Hard Lefschetz property)

• The bilinear form
Qk` : Ak ×Ak → Q

defined byQk` (a, b) = (−1)kdeg(a`2n−kb) is positive defined on ker (· `2n−k+1). (Hodge-
Riemann relations)

The result of Adiprasito-Huh-Katz was later generalized to all Feichtner–Yuzvinsky
rings by Pezzoli-Pagaria [29].

In [5], Bibby, Denham and Feichtner showed that the morphisms (4), which are ge-
ometrical in nature (they are induced by the inclusion of strata) also exist in the purely
combinatorial setting. More precisely, for any nested S in some building set G of some
geometric lattice Lwe have a morphism of algebras

FY(L,G)→
⊗
G∈S

FY(IGS , IndIGS
(G)), (2)

with
IGS := [

∨
G′∈S
G′<G

G′, G] ⊂ L
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(those intervals being the intersection lattices of the hyperplane arrangements HGS in the
realizable case) and IndIGS

(G) the building set “induced” by G on IGS (see Definition 1.1.13).

In addition to those structural morphisms, each isomorphism of poset L ∼−→ L′ sending
some building set G of L to some building set G′ of L′ (called an isomorphism of built
lattices) induces an isomorphism of algebras

FY(L,G)
∼−→ FY(L′,G′). (3)

In Section 2 we will construct a Feynman category LBS = (LBSirr,LBS, ı) such that the
datum of the algebras FY(L,G) together with the structural morphisms (5) and the sym-
metries (6) forms a cooperad over LBS (in the category of graded commutative algebras).
To put it in a nutshell the objects of LBS are going to be the built lattices, the symmetries
are going to be the isomorphisms of built lattices defined above and the nested sets will
form the structural morphisms. The combinatorial core of the construction is to define a
suitable “composition” of nested sets.

Having completed this first step, our new objectives are three-fold. Firstly, we would
be interested in studying the Feynman category LBS itself. We shall mainly be concerned
with finding a (graded) presentation of LBS, i.e. find a collection of morphisms of LBS
which generate every other morphism via tensorization and composition, and work out
which relations those generators satisfy. A presentation of LBS is given in Proposition
2.3.1 and Proposition 2.3.2. From a practical point of view, presentations of Feynman cat-
egories are quite useful to define operads. For instance in the case of classical operads, we
know that the rooted trees with only two inner vertices together with the isomorphisms
generate every morphism in T via tensorization and composition, and we know which
relations those generators satisfy. This implies that classical operads can be defined by
specifying only their partial compositions (composition of just two operations), and the
symmetric group action in each arity.

Our second objective will be to introduce several new LBS-operads, other than the
operad of Feichtner–Yuzvinsky algebras. In Section 3 and Section 5, we show that both
the families

{OS(L), (L,G)} and {OS(L), (L,G)}

admit an LBS-(co)operadic structure. The structural morphisms of the second one are
given by a combinatorial generalization of the residue morphisms in the realizable case.
When restricted to the partition lattices with building set of partitions with only one non-
trivial equivalence class, this gives the linear dual of a well-known operad called Grav
introduced by Getzler in [15]. The restriction of the operad of Orlik–Solomon algebras is
the linear dual of a classical operad callled Ger which encodes Gerstenhaber algebras.
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Finally, we would also like to study in more details the LBS-cooperad of Feichtner–
Yuzvinsky algebras, which will be denoted by FY. We also denote by FY∨ the operad over
LBS obtained by dualizing the objects, the structural morphisms and the symmetries of
FY. One of our underlying ambitions is to be able to relate the important properties of
the algebras FY(L,G) highlighted previously, with the properties of the global object FY.
Strikingly, even though operads over Feynman categories are in general much more com-
plex than associative algebras, one can study them the same way one would study an as-
sociative algebra. For instance, one can first try to look for a “presentation” of FY∨. In our
operadic context this means finding a set of elements in each object FY∨(L,G) which gen-
erate every other element in every arity by sum and product over structural morphisms,
and then examining which relations those products satisfy. In Section 3, Proposition 3.1.3,
we show that the degree maps generate FY∨ in the above sense, and we describe the rela-
tions between those generators. In Remark 3.1.4 we explain how the fact that the degree
maps operadically generate every other element in FY∨ is essentially equivalent to the
fact that the Feichtner–Yuzvinsky algebras satisfy Poincaré duality.

For associative algebras, a computational tool to deal with presentations of algebras is
the theory of Gröbner bases. The general idea of Gröbner bases is to start by choosing an
order on the generators of the presentation. This order is then used to derive an order on
all monomials, which is compatible in some sense with the multiplication of monomials
(we call such orders “admissible”). We then use this order to rewrite monomials in the
quotient algebra:

greatest term −→
∑

lesser terms,

for every relation R = greatest term −
∑

lower terms in some subset B of the ideal gener-
ated by the relations of the presentation. The greatest term is usually called the “leading
term”. The subset B is called a Gröbner basis when it contains “enough” elements. More
precisely, we want that every leading term of some relation in the quotient algebra is di-
visible by the leading term of some element of B. In general the goal is to find a Gröbner
basis as little as possible so that the rewriting is as easy as possible. At the end of the
rewriting process (which stops if the monomials are well-ordered) we are left with all the
monomials which are not rewritable i.e. which are not divisible by a leading term of some
element of B. Those monomials are called “normal” and they form a linear basis of our
algebra exactly when B is a Gröbner basis. This basis comes with a multiplication table
given by the rewriting process.

It turns out that this general strategy can be applied to structures which are much
more general and complex than associative algebras, such as operads. Loosely speaking,
all we need in order to implement this machinery is to be able to make (reasonable) sense
of the key words used above, such as “monomials”, “admissible orders” and “divisibil-
ity between monomials”. For operads over a Feynman category, the only non-trivial part
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is to construct admissible orders on monomials out of orders on generators. The main
issue comes from the symmetries, because usually the compatibility with symmetries is
too strong and prevents us from finding any admissible order. In order to circumvent
this problem, drawing inspiration from the case of classical operads which was sorted out
by Dotsenko and Khoroshkin in [11], in Section 4 we introduce a notion of a “shuffle” op-
erad over LBS, and we develop a theory of Gröbner bases for shuffle operads over LBS.

Another important notion in the theory of associative algebras is Koszul duality. In
English we say that a (graded) associative algebra is Koszul when it is generated by ele-
ments of grading 1, the relations between those generators are generated by elements of
grading 2, relations between relations are generated in grading 3 and so on. The formal
definition revolves around the so-called “bar” and “cobar” operators (denoted B and Ω
respectively)

B : { dg graded coassociative coalgebras }� { dg graded associative algebras } : Ω.

A graded associative algebra is said to be Koszul when there is a quasi-isomorphism be-
tween Ω(H(BA)) and A. In this case Ω(H(BA)) is the minimal model of A.

Kaufmann and Ward have shown in [20] that for certain Feynman categories called
“cubical”, one has a similar construction of bar/cobar operators for operads over those
Feynman categories, which allows us to define Koszulness of those operads exactly as
we did for associative algebras. In Section 5 Proposition 5.1.2 we show that the Feynman
category LBS is cubical. We then show the following theorem.

Theorem 0.0.18 (Corollary 5.3.3). The linear dual of the cooperad of Feichtner–Yuzvinsky alge-
bras is Koszul with Koszul dual the cooperad of projective Orlik–Solomon algebras.

This duality restricts to the duality between Hypercom and Grav on partition lattices,
proved by Getzler in [15]. The proof of Getzler relies on the observation that the second
page of the Leray spectral sequence of the inclusion

PABraidn ↪→ Y Braidn,Gn

is the bar construction of Hypercom, together with the fact that this spectral sequence de-
generates at the second page (by a mixed Hodge theory argument). In the possibly non
realizable case those geometric constructions do not exist but we still have a (purely com-
binatorial) Leray model for Orlik–Solomon algebras, a result proved by Bibby, Denham
and Feichtner in [5]. This combinatorial Leray model is the bar construction of the operad
of Feichtner–Yuzvinsky algebras, which implies that the latter operad is Koszul. Alterna-
tively, we also prove the two results

Proposition 0.0.19 (Proposition 5.6.1). An LBS-operad admitting a quadratic Gröbner basis
is Koszul.
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Theorem 0.0.20 (Corollary 4.5.7). The operad of Feichtner–Yuzvinsky algebras admits a quadratic
Gröbner basis.

This leads to the same conclusion.

In Section 6 we conclude the first part of this document by giving some further direc-
tions toward possible generalizations or modifications of LBS which may lead to other
applications.

Part 2: Koszulness of Feichtner–Yuzvinsky algebras

The second part of this manuscript is devoted to the study of the Koszulness of some
Feichtner–Yuzvinsky algebras, using the operadic structure developed in the first part.
We would like to stress here that this is a priori a problem unrelated to that of Koszulness
of the operad FY∨. However, we shall see that one can use the operadic structure to de-
rive Koszulness of some of the Feichtner–Yuzvinsky algebras.

Koszulness is a particularly interesting property to ask of the cohomology ring of a
formal space because it allows a direct computation of other rational homotopy invari-
ants such as the rational homotopy Lie algebra (see Berglund [4]). Since the wonderful
compactifications of hyperplane arrangements are known to be formal, it is natural to ask
which Feichtner–Yuzvinsky algebras are Koszul, a question raised by Dotsenko in [10].
This question is largely open.

A classical way to prove the Koszulness of a given algebra is to find a quadratic Gröb-
ner basis for this algebra. Feichtner and Yuzvinsky computed explicit Gröbner bases for
the Feichtner–Yuzvinsky rings, but those bases are almost never quadratic. In fact, the
Feichtner–Yuzvinsky rings themselves are not necessarily quadratic. One of the first re-
sults proving the Koszulness of some Feichtner–Yuzvinsky algebras was given by Dot-
senko who proved that the Feichtner–Yuzvinsky algebras associated to the braid arrange-
ments with minimal building sets (see Example 0.0.6) are Koszul. In a nutshell, Dotsenko
introduced an explicit order on the generators of the Feichtner–Yuzvinsky rings and then
used the (classical) operadic structure on this collection of rings to construct a bijection
between the algebraic normal monomials associated to the latter order and relations of
degree 2, and the operadic normal monomials obtained in a previous work via Gröbner
bases for operads (Dotsenko-Khoroshkin [11]). By a dimension argument this implies that
the relations of weight 2 form a quadratic Gröbner basis of the Feichtner–Yuzvinsky rings
in question. More recently, Mastroeni-McCullough [26] proved that the combinatorial
Chow rings are all Koszul, using the notion of Koszul filtrations.

In this document we will generalize the strategy of Dotsenko, using the extended op-
eradic structure introduced in the first part of this document. However, we shall see that
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in order to extend the argument one needs to restrict the class of lattices we are consider-
ing. Recall that an element a in a lattice L is called modular if for any b ≤ a and c in L we
have the identity

a ∧ (b ∨ c) = b ∨ (a ∧ c).

For instance a normal subgroup of a finite group G is modular in the lattice of subgroups
of G. For an example of a non-modular element let us go back to poset (c) in Figure 2.

0̂

b

a

1̂

c

Figure 4: A poset with a non-modular element

We have
a ∧ (b ∨ c) = a ∧ 1̂ = a 6= b = b ∨ 0̂ = b ∨ (a ∧ c),

which shows that a is not modular in this lattice. In [30] Stanley introduced the following
definition.

Definition 0.0.21 (Stanley). A lattice L is called supersolvable if it admits a maximal chain
of modular elements.

The denomination comes from the fact that the lattice of subgroups of a finite su-
persolvable group is supersolvable. Supersolvable lattices have very nice properties in
general. For instance, we have the following classical result.

Theorem 0.0.22 (Yuzvinsky, [36]). The Orlik–Solomon algebra of a supersolvable lattice admits
a quadratic Gröbner basis.

In this document we will prove a similar result for Feichtner–Yuzvinsky algebras. We
first introduce the following notion of supersolvability for built lattices.

Definition 0.0.23. A built lattice (L,G) is supersolvable if L admits a maximal chain

0̂ = G1 < ... < Gn = 1̂

of modular elements in G such that for all G′ in G and all i ≤ n we have G′ ∧Gi ∈ G ∪ 0̂.

The main result of the second part of this PhD is the following theorem.
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Theorem 0.0.24 (Theorem 8.3.1). Let (L,G) be a supersolvable built lattice. The algebra FY(L,G)
admits a quadratic Gröbner basis and is therefore Koszul.

Theorem 0.0.22 immediately implies that combinatorial Chow rings of supersolvable
lattices have quadratic Gröbner bases, strengthening the result of Mastroeni-McCullough
for supersolvable lattices. Turning our attention towards minimal building sets, Theorem
0.0.22 also gives us the following result.

Theorem 0.0.25 (Theorem 8.4.5). Let L be a supersolvable lattice and Gmin the building set
of irreducible elements of L. The algebra FY(L,Gmin) admits a quadratic Gröbner basis and is
therefore Koszul.

Stanley [30] proved that the geometric lattices associated to chordal graphs (i.e. graphs
such that every cycle has a chord) are supersolvable. Alternatively, one can associate
to a graph G a built lattice (LG,GG) where LG is the lattice associated to G and GG is
the building set of connected closed subgraphs of G. Stanley’s original argument also
shows that (LG,GG) is a supersolvable built lattice. This implies by Theorem 0.0.22 that
its Feichtner–Yuzvinsky algebra admits a quadratic Gröbner basis. Since the complete
graphs are chordal we recover the result of Dotsenko.

In [21], Losev and Manin introduced moduli spaces of stable curves with marked
points of two types, where the points of the first type are not allowed to coincide with
any other points, and those of second type are allowed to coincide between them. Those
moduli spaces form the components of an object called the “extended modular operad”,
introduced by Losev and Manin in the sequel [22]. In [25], Manin asked if the cohomology
algebras of those moduli spaces are Koszul. By considering the family of chordal graphs
Gm,n, where Gm,n has m + n vertices, the first m vertices are neighbors of every vertices
and the last n vertices are neighbors only of the first m vertices, one obtains the following
result.

Theorem 0.0.26 (Theorem 9.2.1). The cohomology algebras of the components of the extended
modular operad in genus 0 have quadratic Gröbner bases and are therefore Koszul.

Layout of the document

In Section 1 we define the main combinatorial characters of the story.

In Section 2 we define the Feynman category LBS and give a presentation of this Feyn-
man category.

In Section 3 we define the cooperad of Feichtner–Yuzvinsky algebras and the cooperad
of Orlik–Solomon algebras.
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In Section 4 we develop a theory of Gröbner bases for operads over LBS.

In Section 5 we show that LBS is cubical and we unpack the Koszul duality theory for op-
erads over LBS. We show that the (co)operad of Feichtner–Yuzvinsky algebras is Koszul.

In Section 6 we give some general comments towards possible generalizations and modi-
fications of LBS.

In Section 7 we make more explicit the relation between geometric lattices and matroids,
which will be used in the proof of the main result of the second part.

In Section 8 we prove Theorem 0.0.22 and we deduce Theorem 0.0.23.

In Section 9 we concentrate our attention toward supersolvable built lattices associated
to chordal graphs, which leads to Theorem 0.0.24.

Finally, in Section 10 we take a step back and give some general comments for further
research on Koszulness of Feichtner–Yuzvinsky algebras.
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Introduction (Français)

Le document qui suit vise à introduire et étudier de nouvelles structures de type opéradique
sur certains invariants algébriques de matroïdes.

Partie 1: Arrangements d’hyperplans et structures opéradiques

Un arrangement d’hyperplans est une collection finie d’hyperplans dans un espace vec-
toriel de dimension finie. Pour tout arrangement d’hyperplansH, le treillis d’intersection
LH deH est l’ensemble {

⋂
H∈S H,S ⊂ H} des intersections possibles ordonné par l’inclu-

sion renversée. Comme son nom l’indique il s’agit d’un treillis, dont le supremum est
donné par l’intersection. Ce treillis contient toute l’information combinatoire de l’arrange-
ment d’hyperplans.

Exemple 0.0.1. Considérons l’arrangement Braid3 donné par les hyperplans {z1 = z2},-
{z2 = z3}, et {z1 = z3} dans C3. Le diagramme de Hasse du treillis d’intersection de
cet arrangement d’hyperplans est représenté sur la Figure 5. Il s’agit de l’ensemble des
partitions de {1, 2, 3} ordonnées par raffinement.

{z1 = z2} {z1 = z3} {z2 = z3}

{z1 = z2 = z3}

C3

Figure 5: Diagramme de Hasse de LBraid3

Un leitmotif important dans l’étude des arrangements d’hyperplans est de compren-
dre quelle information est déterminée par le treillis d’intersection (l’information “combi-
natoire”) et quelle information ne l’est pas. Un théorème classique dans cet esprit est le
suivant.

21
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Proposition 0.0.2 (Orlik-Solomon, [27]). Soit H un arrangement d’hyperplans et AH le com-
plémentaire de la réunion des hyperplans de H. L’algèbre de cohomologie de AH est isomorphe
au quotient de l’algèbre extérieure Λ[eH , H ∈ H] (avec chaque eH en degré 1) par les éléments
δ(eH1 ...eHk) pour tout {H1, ...,Hk} tel que

dimH1 ∩ ... ∩Hk > n− k

(où δ dénote l’unique dérivation qui envoie tous les générateurs sur 1). L’algèbre de cohomologie
de la projectivisation PAH est isomorphe à la sous-algèbre engendrée par les éléments eH − eH′ ,
H,H ′ ∈ H.

La dimension des intersections d’hyperplans est donnée par la fonction de rang du
treillis LH, ce qui implique que l’algèbre décrite ci-dessus est déterminée par LH. En
d’autres termes, l’algèbre de cohomologie du complémentaire d’un arrangement d’hyper-
plans ainsi que celle de sa projectivisation sont de nature “combinatoire”. Nous noterons
ces algèbres OS(LH) et OS(LH) respectivement.

Pour aller plus loin dans l’étude des complémentaires projectivisés d’arrangements, il
est intéressant de trouver un modèle pour H•(PAH). Un moyen classique d’atteindre ce
but est de trouver une “bonne” compactification du complémentaire projectif

PAH ↪→ Y H

pour ensuite examiner la suite spectrale de Leray de cette inclusion. Pour que cette suite
spectrale soit calculable, on aimerait que le complémentaire de PAH dans la compactifi-
cation soit un diviseur à croisements normaux, auquel cas cette compactification est dite
“merveilleuse”. De Concini et Procesi ont montré dans [8] qu’il existe plusieurs compact-
ifications merveilleuses du complémentaire projectivisé d’un arrangement d’hyperplans,
qui peuvent être obtenues par éclatements successifs le long de certaines intersections
d’hyperplans bien choisies. Si G est un sous-ensemble de LH on notera Y H,G le résultat
obtenu après éclatement successif de P(Cn) le long des éléments de G (par taille crois-
sante). Pour que Y H,G soit une compactification merveilleuse l’ensemble G doit con-
tenir toutes les intersections non-transverses. Ceci peut être axiomatisé par la notion
d’ensemble de construction, introduite dans un cadre combinatoire par Feichtner-Kozlov
[13]. On réfère à la section 1.1 pour la définition des symboles utilisés dans la définition
suivante.

Définition 0.0.3 (Ensemble de construction). Soit L un treillis. Un ensemble de construction
G de L est un sous-ensemble de L \ {0̂} tel que pour tout élément X de L le morphisme∏

G∈maxG≤X

[0̂, G]
∨−→ [0̂, X]

est un isomorphisme.
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En conclusion, nous avons une compactification merveilleuse Y H,G de PAH pour tout
ensemble de construction G de LH. Les variétés projectives lisses Y H,G sont stratifiées
par les diviseurs exceptionnels DG, G ∈ G obtenus après chaque éclatement. Pour tout
sous-ensemble S ⊂ G l’intersection

⋂
G∈S DG est non-vide si et seulement si S forme un

ensemble niché de (L,G).

Définition 0.0.4 (Ensemble niché). Soit L un treillis et G un ensemble de construction de
L. Un sous-ensemble S de G est dit niché si pour toute partie A ⊂ S d’éléments deux à
deux incomparables, le supremum des éléments de A n’appartient pas à G dès que A est
de cardinal supérieur ou égal à deux.

De Concini et Procesi ont montré que pour tout ensemble niché S de (LH,G), la strate

Y S :=
⋂
G∈S
DG

est isomorphe à un produit de compactifications merveilleuses d’arrangements d’hyper-
plans plus “petits” HGS le long d’ensembles de construction GGS , indexés par les éléments
de S:

Y S '
∏
G∈S

Y HGS ,G
G
S
.

L’inclusion de la strate induit un morphisme en cohomologie

H•(Y H,G)→
⊗
G∈S

H•(Y HGS ,G
G
S

). (4)

Pour être tout à fait précis, les arrangements d’hyperplans HGS sont obtenus par ce qu’on
appelle restriction/contraction de l’arrangement d’hyperplans initial H, et l’ensemble de
construction GGS est “induit” par G surHGS (voir Section 1.1).

Définition 0.0.5 (Restriction/Contraction). Soit H un arrangement d’hyperplans dans
un espace vectoriel V , et F un élément de LH. La restriction de H le long de F est
l’arrangement d’hyperplans dans V/F donné par les éléments de LH contenant F . La
contraction de H le long de F est l’arrangement d’hyperplans donné par tous les hyper-
plans de F qui peuvent être obtenus par l’intersection d’un élément de LH avec F .

L’arrangement d’hyperplansHGS est la contraction le long de
∨
S<G de la restriction le

long de G deH.

Un second leitmotif important dans l’étude des arrangements d’hyperplans est d’es-
sayer de relier les propriétés d’un arrangement d’hyperplans avec les propriétés de ses
restrictions/contractions. Plus précisément, nous sommes intéressés par les propriétés
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“héréditaires” des arrangements, qui subsistent après restriction/contraction, et les pro-
priétés “inductives” qui passent à tout l’arrangement d’hyperplans si elles sont véri-
fiées sur chaque restriction/contraction. Sous cet angle, les morphismes (4) semblent
revêtir une importance particulière. Pour certains arrangements d’hyperplans et ensem-
bles de constructions spécifiques, la donnée des algèbres H•(Y H,G) avec les morphismes
(4) forme des types de structures qui ont déjà été intensivement étudiés.

Exemple 0.0.6. Considérons l’arrangement de tresse Braidn donné par les hyperplans di-
agonaux {zi = zj} ⊂ Cn. Son treillis d’intersection est l’ensemble des partitions de
{1, ..., n} ordonné par raffinement. Ce treillis admet un ensemble de construction donné
par l’ensemble des partitions qui contiennent une seule classe d’équivalence avec stricte-
ment plus d’un élément. Dans ce cas on vérifie que les arrangements HGS apparaissant
dans (4) sont isomorphes à des arrangements de tresses plus petits, pour n’importe quel
ensemble niché S. Les algèbres {H•(Y Braidn,Gn), n ∈ N∗} avec les morphismes (4) forment
un objet appelé une (co)opérade. Il s’agit du dual (linéaire) de l’opérade Hypercom qui
encode les algèbres hypercommutatives.

Les opérades ont été introduites vers le début des années soixante-dix par Boardmann,
Vogt et May, et ont joué un rôle de plus en plus important en topologie algébrique et en
algèbre générale. En quelques mots, les opérades forment une abstraction formelle de
la collection des opérations à plusieurs variables d’un objet, de la même manière que les
monoïdes forment une abstraction formelle de la collection des endomorphismes d’un
objet. Dans une opérade P , les éléments (qui devraient être vus comme des opérations
formelles) sont classifiés par le nombre d’entrées qu’ils prennent, c’est-à-dire

P = {P(0),P(1),P(2), ...},

et peuvent être composés comme l’on composerait des opérations à plusieurs variables.
Par exemple, si l’on a une opération à deux variables µ1, et une opération à trois variables
µ2, alors on peut composer ces deux opérations pour en obtenir une troisième, qui prendra
cette fois-ci quatre entrées. Par exemple:

x1, x2, x3, x4 → µ1(µ2(x1, x2, x3), x4).

Par conséquent, nous devrions avoir une application correspondante: P(2)×P(3)→ P(4),
qui fera partie de la donnée de l’opérade P . Bien sûr toutes les applications de composi-
tions doivent satisfaire les même axiomes d’associativité que la composition usuelle. On
pourrait aussi considérer la donnée supplémentaire d’une action du groupe symétrique
sur les opérations, qui devrait “mimer” l’action par permutation des variables que l’on
a pour les opérations à plusieurs variables. Naturellement, cette action devra bien sûr
satisfaire la même compatibilité avec les morphismes de composition que la permutation
des variables.
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Il existe plusieurs manières équivalentes de définir formellement une opérade. Celle
qui va nous intéresser dans ce document est de voir une opérade comme un foncteur
monoïdal défini sur une catégorie monoïdale construite de la manière suivante. Consid-
érons le groupoïde FinSet ayant pour objets les ensembles finis et pour morphismes les
bijections. On construit la catégorie monoïdale T en ajoutant à la catégorie symétrique
monoïdale libre engendrée par FinSet des morphismes⊗

v sommet de t

Inputs(v)
t−→ Leaves(t),

pour tout arbre enraciné t, avec Inputs(v) l’ensemble des arêtes rentrantes du sommet v
et Leaves(t) l’ensemble des feuilles de t. La composition de ces morphismes est définie
par substitution des arbres, c’est-à-dire si t est un arbre enraciné et pour tout sommet
v de t on a un arbre enraciné tv ayant pour feuilles Inputs(v), alors t ◦ (⊗tv) est l’arbre
construit en substituant tout sommet v par l’arbre tv dans t. Finalement, il faut encore
quotienter la catégorie obtenue par certaines relations qui expriment la compatibilité des
symétries avec les morphismes t. Cette construction est aussi appelée la “monade des ar-
bres”. Avec cette nouvelle construction on peut définir une opérade simplement comme
un foncteur monoïdal (fort) depuis T dans une catégorie symétrique monoïdale de notre
choix. Les ensembles d’opérations P(0),P(1), ...,P(n) sont les images par le foncteur P
des ensembles finis, les morphismes de compositions sont les images par le foncteur P
des morphismes représentés par les arbres enracinés, l’associativité des morphismes de
composition vient de l’associativité de la composition des morphismes dans la catégorie
T , et enfin l’action du groupe symétrique vient de l’image par le foncteur des bijections
entre ensembles finis.

Au cours des deux dernières décennies de nombreuses variantes des opérades sont ap-
parues dans la littérature, comme par exemple les props (Mac Lane [23]), les propérades
(Vallette [32]), les opérades cycliques (Getzler-Kapranov [16]), les opérades modulaires
(Getzler-Kapranov [17]) et ainsi de suite. Tous ces objets peuvent être définis comme
des foncteurs monoïdaux sur certaines catégories monoïdales symétriques bien choisies,
définies d’une manière similaire à celle utilisée pour construire T à partir de FinSet dans
le paragraphe précédent. Un cadre général pour de telles catégories a été développé par
Ralph Kaufmann et Benjamin Ward, qui ont introduit la notion de catégorie de Feyn-
man [20]. Avant de présenter la définition formelle, commençons par introduire quelques
notations. Si C est une catégorie, on note Sym(C) la catégorie symétrique monoïdale li-
bre engendrée par C. Pour tout foncteur F : C → D avec D une catégorie symétrique
monoïdale, il existe un unique foncteur monoïdal fort Sym(F ) : Sym(C) → D qui se
restreint à F sur C. On note Ciso la catégorie ayant les même objets que C et dont les
morphismes sont les isomorphismes de C. Si on se donne un diagramme de catégories

C F→ D G← E , la catégorie virgule (F ↓ G) est la catégorie ayant pour objets les triplets
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(c ∈ C, e ∈ E , φ : F (c) → G(e)) et pour morphismes les diagrammes commutatifs. Si les
foncteurs F et G peuvent être déduits du contexte on notera plus simplement (C ↓ E).

Définition 0.0.7 (Catégorie de Feynman). Un triplet F = (V,F , ı) est une catégorie de Feyn-
man si V est un groupoïde, F est une catégorie monoïdale symétrique et ı : V → F est un
foncteur tel que:

1. Le foncteur ı induit une équivalence de catégories Sym(ı) : Sym(V)→ F iso.

2. Le foncteur ı induit une équivalence de catégories Sym((F ↓ V)iso)→ (F ↓ F)iso.

3. Pour tout objet ? ∈ V , la catégorie virgule (F ↓ ?) est essentiellement petite (i.e. est
équivalente à une petite catégorie).

Exemple 0.0.8. • Le triplet (FinSet, T , ı) avec FinSet et T les catégories introduites
précédemment et ı l’inclusion évidente est une catégorie de Feynman.

• Soit ? le groupoïde avec un seul objet et un seul morphisme. On pose A la catégorie
symétrique monoïdale ayant pour objets les ensembles finis et pour morphismes
les surjections, et dont la structure monoïdale est donnée par l’union disjointe. Le
triplet (?,A, ı) avec ı l’inclusion évidente est une catégorie de Feynman.

Un objet de V sera appelé une arité et un morphisme de F sera appelé un morphisme
structurel. De manière plus informelle, on peut résumer la Définition 0.0.7 par le fait
qu’une catégorie de Feynman peut être construite en ajoutant des morphismes de la forme⊗

Objets −→ Objet

à une catégorie symétrique monoïdale libre engendrée par un groupoïde.

Définition 0.0.9 (Opérade sur une catégorie de Feynman). Soit F = (V,F , ı) une caté-
gorie de Feynman et C une catégorie symétrique monoïdale. Une opérade sur F dans C est
un foncteur monoïdal fort de F dans C, et une coopérade sur F dans C est un foncteur
monoïdal fort de F dans Cop. Un module sur F dans C est un foncteur de V dans C.

Les (co)opérades (resp. modules) sur F seront aussi appelés des F-(co)opérades (resp.
F-modules).

Exemple 0.0.10. • Une opérade sur (FinSet, T , ı) est une opérade au sens classique.

• Une opérade sur (?,A, ı) est un monoïde.

Le premier objectif de cette thèse est de construire une catégorie de Feynman sur
laquelle la collection des algèbres H•(Y H,G) pour toute paire (H,G), avec les morphismes
(4) pour tout ensemble niché, forme une (co)opérade. L’exemple 0.0.6 montre que cette
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catégorie de Feynman devrait “contenir” en un certain sens la catégorie de Feynman en-
codant les opérades classiques.

Au lieu de travailler avec les arrangements d’hyperplans nous nous placerons à un
niveau combinatoire, c’est-à-dire nous travaillerons avec les treillis. Cela implique de
perdre toute l’information qui n’est pas combinatoire, mais cela permet aussi d’accéder à
un plus haut niveau de généralité car nous pourrons potentiellement travailler avec des
treillis qui ne sont pas des treillis d’intersection. La classe de treillis sur laquelle nous nous
concentrerons dans ce document est celle des treillis géométriques.

Définition 0.0.11 (Treillis géométrique). Un treillis fini (L,≤) est dit géométrique si il satis-
fait les propriétés suivantes:

• Pour toute paire d’élémentsG1 ≤ G2, toutes les chaînes maximales d’éléments entre
G1 et G2 ont le même cardinal. (Propriété de Jordan–Hölder)

• La fonction de rang ρ : L → N qui assigne à un élément G de L le cardinal d’une
chaîne maximale d’éléments entre 0̂ et G (sans compter 0̂) satisfait l’inégalité

ρ(G1 ∧G2) + ρ(G1 ∨G2) ≤ ρ(G1) + ρ(G2)

pour tout G1, G2 dans L. (Sous-modularité)

• Tout élément de L peut être obtenu comme le suprémum d’un ensemble d’atomes
(éléments de rang 1). (Atomicité)

Cette classe contient strictement tous les treillis d’intersections d’arrangements d’hyper-
plans (la fonction de rang étant donnée par la codimension). Voir [28] Exemple 2.1.22 pour
un treillis géométrique qui n’est pas le treillis d’intersection d’un arrangement d’hyperplans
dans aucun corps. Les treillis géométriques peuvent être vus comme une abstraction com-
binatoire des arrangements d’hyperplans. Sont représentés sur la figure 6 quelques dia-
grammes de Hasse de certains ensembles partiellement ordonnés (posets). Déterminons
lesquels de ces posets sont des treillis géométriques. Le poset (a) n’est même pas un treil-
lis car les deux éléments du haut n’ont pas d’infimum (entre autres). Le poset (b) est un
treillis mais n’est pas géométrique car il n’est pas atomique. Le poset (c) n’est pas un
treillis géométrique car il n’est pas atomique et ne satisfait pas la propriété de Jordan-
Hölder. Le poset (d) est un treillis atomique satisfaisant la propriété de Jordan-Hölder
mais n’est pas géométrique car sa fonction de rang n’est pas sous-modulaire. Enfin, les
posets (e) et (f) sont des treillis géométriques. Le premier est le treillis d’intersection
de l’arrangement donné dans l’exemple 0.0.1, et le second est le treillis d’intersection de
l’arrangement donné par les hyperplans {z1 = 0}, {z2 = 0}, {z3 = 0} ⊂ C3.

Dans ce document tous les treillis seront supposés être géométriques. La donnée d’un
treillis géométrique est équivalente à la donnée de ce qu’on appelle un matroïde simple
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Figure 6: Diagramme de Hasse de quelques posets

sans boucle, aussi connu sous le nom de géométrie combinatoire. Il existe plusieurs déf-
initions de matroïdes, partiellement listées ci-dessous. Nous référons à [35] pour plus de
détails.

Définition 0.0.12 (Matroïdes via ensembles indépendants). Un matroïde est une paire d’un
ensemble fini E et d’un ensemble I de parties de E (appelées les sous-ensembles “in-
dépendants”) satisfaisant les axiomes

• Pour tout I dans I, toute partie de I appartient à I.

• Pour tout I , J dans I, si #J > #I il existe un élément a dans J et pas dans I tel que
I ∪ {a} soit indépendant.

Définition 0.0.13 (Matroïdes via opérateur de cloture). Un matroïde est une paire d’un
ensemble fini E et d’une application (l’opérateur de “cloture”)

σ : P(E) −→ P(E)

satisfaisant les axiomes

• Pour tout X ∈ P(E) on a X ⊆ σ(X).

• Pour tout X ⊆ Y ∈ P(E) on a σ(X) ⊆ σ(Y ).
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• Pour tout X ∈ P(E) on a σ(σ(X)) = σ(X).

• Pour tout X ∈ P(E) et a, b ∈ E, si a ∈ σ(X ∪{b})\σ(X) alors b ∈ σ(X ∪{a})\σ(X).

Définition 0.0.14 (Matroïdes via les circuits). Un matroïde est une paire d’un ensemble fini
E et d’un ensemble C de parties de E (les “circuits”) satisfaisant les axiomes

• L’ensemble vide n’est pas un circuit.

• Si C1 ⊆ C2 ∈ C alors C1 = C2.

• Si C1, C2 ∈ C, C1 6= C2 et e ∈ C1 ∩ C2 alors il existe un circuit C ⊆ C1 ∪ C2 \ {e}.

Toutes ces définitions sont équivalentes. On passe de la définition par ensembles in-
dépendants à la définition par circuits en définissant les circuits comme étant les ensem-
bles non indépendants minimaux. On passe de la définition par circuits à la définition par
opérateur de cloture en posant

σ(X) := X ∪ {x | ∃C ∈ C avec C ⊆ X ∪ {x} and x ∈ C}.

Enfin, on passe de la définition par opérateur de cloture à la définition par ensembles
indépendants en définissant un ensemble indépendant comme étant un sous-ensemble
S tel que pour tout s ∈ S, l’élément s n’appartient pas à la cloture de S \ {s}. Les
matroïdes forment une abstraction combinatoire de la notion générale d’indépendance
en mathématiques, qui comprend par exemple l’indépendance linéaire, l’indépendance
affine, l’indépendance algébrique et ainsi de suite. Les matroïdes sont aussi fortement
reliés à la théorie des graphes par l’observation que pour tout graphe G avec ensemble
d’arêtes E, les parties de E formant des cycles minimaux de G satisfont les axiomes des
circuits d’un matroïdes (0.0.14), et définissent donc un matroïde. Les sous-ensembles in-
dépendants de ce matroïde sont donnés par les sous-forêts de G. On notera ce matroïde
MG.

Exemple 0.0.15. Soit G le graphe représenté sur la figure 7. Les circuits de MG sont {1, 2},
{3}, {1, 4, 5} et {2, 4, 5}. Les sous-ensembles indépendants de MG sont ∅, {1}, {2}, {4},
{5}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {4, 5} avec tous les sous-ensembles obtenus en ajoutant 6
à ces sous-ensembles.

Une boucle dans un matroïde (E, I) est un élément x de E tel que {x} soit dépendant.
Un matroïde est dit simple si tout sous-ensemble de cardinal 2 sans boucle est indépen-
dant. Un fermé d’un matroïde M = (E, σ) est un sous-ensemble F ⊆ E tel que σ(F )
soit égal à F . L’ensemble des fermés de M dénoté LM ordonné par l’inclusion est un
treillis géométrique, dont l’infimum est donné par l’intersection. Dans l’autre sens si L
est un treillis géométrique, alors la paire (E, σ) avec E l’ensemble des atomes de L et σ
l’application définie par

σ(X) =
⋂
F∈L

X⊂At≤(F )

At≤(F )
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Figure 7: Un graphe

est un matroïde simple sans boucle. Ces deux constructions sont inverses l’une de l’autre
sur les matroïdes simples sans boucle. Dans ce document on utilisera principalement
l’axiomatisation par les treillis géométriques, qui convient mieux à nos objectifs (c’est
l’axiomatisation qui rend les restrictions/contractions les plus transparentes).

Dans [8], De Concini et Procesi ont donné une présentation explicite par générateurs
et relations des algèbres de cohomologie H•(Y H,G), qui dépend uniquement de LH et de
G (en d’autres termes, H•(Y H,G) est “combinatoire”). Dans [14], Feichtner et Yuzvinsky
ont généralisé ces anneaux pour toute paire (L,G) avec G un ensemble de construction de
L un treillis. Une telle paire (L,G) sera appelée un “treillis construit”. Dans ce document
nous nous restreindrons aux treillis géométriques. Nous appellerons ces anneaux les an-
neaux de Feichtner–Yuzvinsky et on les notera FY(L,G). Si G = L \ {0̂} on obtient un
anneau appelé l’anneau de Chow du treillis géométrique L. On peut voir les anneaux de
Feichtner–Yuzvinsky comme des invariants qui nous aident à étudier les matroïdes, de la
même manière que les anneaux de cohomologie nous aident à étudier les espaces. Dans
le cas réalisable, c’est-à-dire quand le treillis géométrique L est le treillis d’intersection
d’un arrangement d’hyperplans, l’anneau de Feichtner–Yuzvinsky est l’anneau de coho-
mologie d’une variété complexe projective lisse ce qui implique qu’il satisfait la dualité
de Poincaré et le Kähler package.

Un troisième leitmotif important dans l’étude des arrangements d’hyperplans/matroï-
des est que certaines propriétés des matroïdes réalisables qui semblent pourtant profondé-
ment géométriques, ont tendance à subsister dans le cas non-réalisable (c’est-à-dire pure-
ment combinatoire). Par exemple un résultat célèbre de Adiprasito-Huh-Katz [1] montre
que tous les anneaux de Chow combinatoires satisfont une forme purement algébrique de
la dualité de Poincaré et du Kähler package.

Définition 0.0.16 (Dualité de Poincaré). Une algèbre commutative graduéeA sur un corps
K satisfait la dualité de Poincaré si il existe un degré maximal n tel que l’on ait Ap = 0 pour
tout p ≥ n+ 1, et un isomorphisme d’espace vectoriel An ' K (l’application de degré) tel
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que la multiplication
Ap ⊗An−p → An ' K

soit un appariement non dégénéré pour tout p ≤ n.

Définition 0.0.17 (Kähler package). Une algèbre commutative graduée A sur Q satisfait
le Kähler package si il existe un degré maximal n et un isomorphisme

deg : An
∼−→ Q

tel qu’il existe un cone non-vide Σ ⊂ A1 d’éléments ` satisfaisant les propriétés suivantes.

• La multiplication
· `n−2k : Ak → An−k

est un isomorphisme pour tout k ≤ n/2. (Propriété de Lefschetz forte)

• La forme bilinéaire
Qk` : Ak ×Ak → Q

définie par Qk` (a, b) = (−1)kdeg(a`2n−kb) est définie positive sur ker (· `2n−k+1). (Re-
lations de Hodge-Riemann)

Le résultat de Adiprasito-Huh-Katz a ensuite été généralisé à tous les anneaux de
Feichtner–Yuzvinsky par Pezzoli-Pagaria [29].

Dans [5], Bibby, Denham et Feichtner ont montré que les morphismes (4), qui sont
de nature géométrique (ils sont induits par l’inclusion de strates) existent dans un cadre
purement combinatoire. Plus précisément pour tout ensemble niché S dans un ensemble
de construction G d’un treillis géométrique L on a un morphisme d’algèbre

FY(L,G)→
⊗
G∈S

FY(IGS , IndIGS
(G)), (5)

avec
IGS := [

∨
G′∈S
G′<G

G′, G] ⊂ L

(ces intervalles sont les treillis d’intersection des arrangements d’hyperplans HGS dans le
cas réalisable) et IndIGS

(G) l’ensemble de construction “induit” par G sur IGS (voir Défini-

tion 1.1.13). En plus de ces morphismes structurels, tout isomorphisme de poset L ∼−→ L′
qui envoie un ensemble de construction G de L sur un ensemble de construction G′ de L′
(qu’on appellera un isomorphisme de treillis construit) induit un isomorphisme d’algèbre

FY(L,G)
∼−→ FY(L′,G′). (6)
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Dans la Section 2 on construit une catégorie de Feynman LBS = (LBSirr,LBS, ı) telle
que la donnée des algèbres FY(L,G) avec les morphismes structurels (5) et les isomor-
phismes (6) forme une coopérade sur LBS (dans la catégorie des algèbres commutatives
graduées). Pour résumer la construction, les objets de LBS seront les treillis (géométriques)
construits, les isomorphismes seront les isomorphismes de treillis construits définis au-
dessus, et les morphismes structurels seront donnés par les ensembles nichés. Le coeur
de la construction est d’arriver à définir une bonne “composition” des ensembles nichés.

Après avoir atteint cette première étape, nos nouveaux objectifs se diviseront en trois
catégories. Pour commencer, il serait intéressant d’étudier la catégorie de Feynman LBS
en elle-même. On sera principalement préoccupé par la question de trouver une bonne
présentation de LBS, c’est-à-dire un ensemble de morphismes structurels de LBS qui
génère tous les autres morphismes par tensorisation et composition, ainsi que les relations
que ces générateurs satisfont. Une présentation de LBS est donnée par les Propositions
2.3.1 et 2.3.2. D’un point de vue pratique, les présentations de catégories de Feynman sont
utiles pour définir des opérades sur ces catégories de Feynman. Par exemple dans le cas
des opérades classiques, on sait que les arbres avec deux sommets internes avec les iso-
morphismes génèrent tous les autres morphismes de T par composition et tensorisation,
et on sait quelles relations ces générateurs satisfont. Ceci implique que les opérades clas-
siques peuvent être définies en spécifiant simplement les compositions partielles (compo-
sition de deux opérations), ainsi que l’action du groupe symétrique en chaque arité.

Notre deuxième objectif sera d’introduire plusieurs nouvelles LBS-opérades, autres
que l’opérade des anneaux de Feichtner–Yuzvinsky. Dans les sections 3 et 5, on montre
que les familles d’algèbres

{OS(L), (L,G)} et {OS(L), (L,G)}

admettent une structure LBS-opéradique. Les morphismes structurels de la deuxième
sont donnés par une généralisation combinatoire des morphismes de résidus dans le cas
réalisable. Lorsque l’on se restreint aux treillis de partitions avec l’ensemble de construc-
tion des partitions avec une seule classe d’équivalence non triviale, on obtient le dual
linéaire d’une opérade bien connue nommée Grav, introduite par Getzler dans [15]. La
restriction de l’opérade des algèbres d’Orlik–Solomon est le dual linéaire de l’opérade
classique nommée Ger qui encode les algèbres de Gerstenhaber.

Enfin, dans un troisième temps on s’intéressera de plus près à la LBS-coopérade des
anneaux de Feichtner–Yuzvinsky, que l’on notera FY. On notera aussi FY∨ l’opérade sur
LBS obtenue en dualisant (au sens linéaire) les objets, les morphismes structurels et les
isomorphismes de FY. Un de nos espoirs est de pouvoir relier les propriétés importantes
des algèbres de Feichtner–Yuzvinsky mises en lumières précédemment, et les propriétés
de l’objet global FY. De manière particulièrement frappante, alors que les opérades sur
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des catégories de Feynman sont en général bien plus complexes que de simples algèbres
associatives, on peut les étudier de la même manière. Par exemple on peut d’abord
s’intéresser à trouver une “présentation” de FY∨. Dans notre contexte opéradique cela
veut dire trouver un ensemble d’éléments dans chaque objet FY∨(L,G) qui génère tous
les autres éléments en chaque arité par somme et produit le long de morphismes struc-
turels, et ensuite examiner quelles relations ces générateurs satisfont. Dans la section 3,
Proposition 3.1.3, on montre que les applications de degré génèrent FY∨ au sens expliqué
ci-dessus, et on décrit les relations entre ces générateurs. En remarque 3.1.4 on explique
comment le fait que les applications de degré génèrent FY∨ est essentiellement équivalent
au fait que les algèbres de Feichtner–Yuzvinsky satisfont la dualité de Poincaré.

Pour les algèbres associatives, un outil calculatoire pour gérer les présentations d’algè-
bres est la théorie des bases de Gröbner. L’idée générale des bases de Gröbner est de
commencer par choisir un ordre sur les générateurs de la présentation. Cet ordre est
ensuite utilisé pour obtenir un ordre sur tous les monômes, qui est compatible en un
certain sens avec la multiplication (ces ordres sont dits “admissibles”). On utilise alors cet
ordre pour réécrire les monômes dans l’algèbre quotient:

terme dominant −→
∑

reste des termes,

pour toute relation R = terme dominant −
∑

reste des termes dans un sous-ensemble B
de l’idéal généré par les relations de la présentation. Le sous-ensemble B est appelé une
base de Gröbner quand il contient “assez” d’éléments. Plus précisément, on demande
que tout terme dominant d’une relation dans l’algèbre quotient soit divisible par le terme
dominant d’un élément de B. En général le but est de trouver une base de Gröbner aussi
petite que possible pour que la réécriture soit aussi facile que possible. A la fin du pro-
cessus de réécriture il ne reste que les monômes qui ne sont pas réécrivables, c’est-à-dire
qui ne sont pas divisibles par le terme dominant d’un élément de B. Ces monômes sont
appelés les monômes “normaux” et forment une base linéaire de l’algèbre quotient si et
seulement si B est une base de Gröbner. La table de multiplication de cette base est don-
née par le processus de réécriture.

Il se trouve que cette stratégie générale peut être appliquée à des structures beaucoup
plus générales et complexes que les algèbres associatives, telles que les opérades. De
manière informelle, tout ce dont nous avons besoin pour implémenter cette stratégie est
de pouvoir donner un sens aux mots clefs utilisés ci-dessus, tels que “monômes”, “or-
dres admissibles” et “divisibilité entre monômes”. Pour les opérades sur une catégorie
de Feynman, la seule partie non-triviale est de construire des ordres admissibles sur les
monômes à partir d’un ordre sur les générateurs. Le problème principal provient des
isomorphismes, car la compatibilité avec les isomorphismes est en générale trop forte et
nous empêche de trouver des ordres admissibles. Pour éviter ce problème, en s’inspirant
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du cas des opérades classiques traité par Dotsenko et Khoroshkin [11], dans la section
4 on introduit la notion d’opérade “shuffle” sur LBS ce qui permet de développer une
théorie de bases de Gröbner pour les LBS-opérades.

Une autre notion importante dans la théorie des algèbres associatives (graduées) est la
dualité de Koszul. Informellement, on dit qu’une algèbre associative graduée est Koszul
si elle est générée par ses éléments de degré 1, les relations entre éléments de degré 1 sont
générés par des éléments de degré 2, les relations entre relations de degré 2 sont générées
en degré 3 et ainsi de suite. Une définition formelle possible utilise les opérateurs “bar”
et “cobar” (que l’on notera B et Ω respectivement):

B : { dg graded coassociative coalgebras }� { dg graded associative algebras } : Ω.

Une algèbre associative graduée est Koszul si il existe un quasi-isomorphisme entre l’algè-
bre différentielle graduée Ω(H(BA)) et A. Dans ce cas Ω(H(BA)) est le modèle minimal
de A.

Kaufmann et Ward ont montré dans [20] que pour certaines catégories de Feynman
dites “cubiques”, on a un opérateur bar et un opérateur cobar entre (co)opérades sur ces
catégories de Feynman, ce qui permet de définir une notion de Koszulité de la même
manière que pour les algèbres associatives. Dans la section 5 Proposition 5.1.2 on montre
que la catégorie de Feynman LBS est cubique. On montre ensuite

Théorème 0.0.18 (Corollary 5.3.3). Le dual linéaire de la coopérade des anneaux de Feichtner–
Yuzvinsky est Koszul, avec pour dual de Koszul la coopérade des algèbres d’Orlik–Solomon projec-
tives.

Cette dualité se restreint à la dualité entre Hypercom et Grav sur les treillis de partition,
qui a été prouvée par Getzler dans [15]. La preuve de Getzler repose sur l’observation que
la deuxième page de la suite spectrale de Leray de l’inclusion

PABraidn ↪→ Y Braidn,Gn

est la construction bar de Hypercom, et le fait que cette suite spectrale converge à la deux-
ième page, par un argument de théorie de Hodge mixte. Dans un cadre purement com-
binatoire ces outils géométriques n’existent pas mais on a quand même un modèle de
Leray (purement combinatoire) pour les algèbres d’Orlik–Solomon, un résultat prouvé
par Bibby, Denham et Feichtner dans [5]. Ce modèle de Leray combinatoire est la con-
struction bar de l’opérade des anneaux de Feichtner–Yuzvinsky, ce qui implique que cette
opérade est Koszul. De manière alternative, on montre aussi les deux résultats suivant.

Proposition 0.0.27 (Proposition 5.6.1). Une LBS-opérade qui admet une base de Gröbner
quadratique est Koszul.
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Théorème 0.0.19 (Corollaire 4.5.7). L’opérade des anneaux de Feichtner–Yuzvinsky admet une
base de Gröbner quadratique.

Ceci mène à la même conclusion.

Dans la section 6 on conclut la première partie de ce document en donnant de nou-
velles directions de recherches possibles pour potentiellement généraliser LBS, ce qui
pourrait mener à d’autres applications.

Part 2: Koszulité des algèbres de Feichtner–Yuzvinsky

La deuxième partie de ce manuscrit est dévouée à l’étude de la Koszulité de certaines
algèbres de Feichtner–Yuzvinsky, à l’aide de la structure opéradique mise en lumière en
première partie. Il est important de mentionner ici qu’il s’agit d’un problème a priori non
relié à la Koszulité de l’opérade FY∨. Cependant, nous verrons que l’on peut quand même
utiliser la structure opéradique sur les anneaux de Feichtner–Yuzvinsky pour déduire des
résultats sur les anneaux eux-même.

La Koszulité est une propriété particulièrement intéressante à vérifier sur les anneaux
de cohomologie des espaces formels car elle permet de calculer directement d’autres in-
variants d’homotopie rationnelle tels que l’algèbre de Lie homotopique (voir Berglund
[4]). Puisque nous savons que les compactifications merveilleuses sont formelles il est na-
turel de se demander quelles algèbres de Feichtner–Yuzvinsky sont Koszul, une question
posée par Dotsenko dans [10]. Cette question est encore largement ouverte.

Un moyen classique de prouver la Koszulité d’une algèbre donnée est de trouver une
base de Gröbner quadratique de cette algèbre. Feichtner et Yuzvinsky ont calculé une base
de Gröbner explicite des anneaux de Feichtner–Yuzvinsky, mais ces bases de Gröbner ne
sont presque jamais quadratiques. En fait, les anneaux de Feichtner–Yuzvinsky eux-même
ne sont pas nécessairement quadratiques. Un des premiers résultats montrant la Koszulité
de certaines algèbres de Feichtner–Yuzvinsky a été donné par Dotsenko qui a montré
que les algèbres de Feichtner–Yuzvinsky associées aux arrangements de tresses avec en-
semble de construction minimal (Exemple 0.0.6) sont toutes Koszul. En quelques mots,
Dotsenko a introduit un ordre explicite sur les générateurs de ces anneaux de Feichtner–
Yuzvinsky et a ensuite utilisé la structure opéradique (au sens classique) pour construire
une bijection entre monômes normaux algébriques associés aux relations de degré 2, et les
monômes normaux opéradiques associés à une base de Gröbner opéradique connue par
des travaux précédents (voir Dotsenko-Khoroshkin [11]). Par un argument de dimension
cela implique que les relations de degré 2 forment une base de Gröbner des anneaux de
Feichtner–Yuzvinsky en question. Plus récemment, Mastroeni-McCullough [26] ont mon-
tré que les anneaux de Chow combinatoires sont tous Koszul, en utilisant la notion de
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filtration de Koszul.

Dans ce document nous allons généraliser la stratégie de Dotsenko, en utilisant la
structure opéradique étendue introduite en première partie. Cependant, nous allons voir
que l’argument de Dotsenko ne s’étend pas à tous les treillis géométriques et il nous fau-
dra restreindre la classe des treillis que l’on considère.

Rappelons qu’un élément a dans un treillis L est dit modulaire si pour tout b ≤ a et c
dans L on a l’identité

a ∧ (b ∨ c) = b ∨ (a ∧ c).
Par exemple un sous-groupe normal d’un groupe fini G est modulaire dans le treillis des
sous-groupes de G. Pour un exemple d’élément non-modulaire revenons au poset (c) de
la figure 6.

0̂

b

a

1̂

c

Figure 8: Un poset avec un élément non modulaire

On a
a ∧ (b ∨ c) = a ∧ 1̂ = a 6= b = b ∨ 0̂ = b ∨ (a ∧ c),

ce qui montre que a n’est pas modulaire dans ce treillis. Dans [30] Stanley a introduit la
définition suivante

Définition 0.0.20 (Stanley). Un treillis L est dit supersolvable si il admet une chaîne maxi-
male d’éléments modulaires.

La dénomination vient du fait que le treillis des sous-groupes d’un groupe fini modu-
laire supersolvable est supersolvable. Les treillis supersolvables ont de bonnes propriétés
en général. Par exemple on a le résultat classique suivant.

Théorème 0.0.21 (Yuzvinsky, [36]). L’algèbre d’Orlik–Solomon d’un treillis supersolvable ad-
met une base de Gröbner quadratique et est donc Koszul.

Dans ce document nous allons prouver un résultat similaire pour les algèbres de
Feichtner–Yuzvinsky. On commence par introduire la notion de supersolvabilité pour
les treillis construits.
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Definition 0.0.28. Un treillis construit (L,G) est supersolvable si L admet une chaîne max-
imale

0̂ = G1 < ... < Gn = 1̂

d’éléments de G modulaires tels que pour tout G′ dans G et tout i ≤ n on a G′∧Gi ∈ G∪ 0̂.

Le résultat principal de la deuxième partie de cette thèse est le théorème suivant.

Théorème 0.0.22 (Théorème 8.3.1). Soit (L,G) un treillis construit supersolvable. L’algèbre
FY(L,G) admet une base de Gröbner quadratique et est donc Koszul.

Théorème 0.0.22 implique immédiatement que les anneaux de Chow combinatoires
de treillis supersolvables admettent une base de Gröbner quadratique, ce qui renforce le
résultat de Mastroeni-McCullough pour les treillis supersolvables. Du côté des ensembles
de constructions minimaux, Théorème 0.0.22 implique également le résultat suivant.

Théorème 0.0.23 (Théorème 8.4.5). Soit L un treillis supersolvable et Gmin l’ensemble de con-
struction des éléments irreductibles de L. L’algèbre FY(L,Gmin) admet une base de Gröbner
quadratique et est donc Koszul.

Stanley [30] a montré que les treillis géométriques associés aux graphes cordaux (c’est-
à-dire les graphes tels que tout cycle de longueur supérieure ou égale à quatre admet une
corde) sont supersolvables. Tout treillis graphiqueLG admet un ensemble de construction
particulier noté GG qui est constitué des sous-graphes fermés connexes de G. L’argument
original de Stanley montre aussi que siG est un graphe cordal alors (LG,GG) est un treillis
construit supersolvable. Ceci implique par Théorème 0.0.22 que l’algèbre de Feichtner–
Yuzvinsky FY(LG,GG) admet une base de Gröbner quadratique. Puisque les graphes
complets sont cordaux on retrouve le résultat de Dotsenko (dans le cas des graphes com-
plets les ensembles de construction GG et Gmin coincident).

Dans [21], Losev et Manin ont introduit des espaces de module pour les courbes sta-
bles avec points marqués de deux types, ou les points du premier type ne sont pas au-
torisés à coïncider mais les points du second peuvent coïncider entre eux. Ces espaces
de module forment les composantes d’un objet appelé “l’opérade modulaire étendue”,
introduite par Losev et Manin dans la suite [22]. Dans [25], Manin a posé la question de
la Koszulité des algèbres de cohomologie de ces espaces de module. En considérant la
famille de graphes cordauxGm,n, oùGm,n am+n sommets, lesm premiers sommets sont
voisins de tous les autres sommets et les n derniers sommets sont voisins seulement des
m premiers sommets, on obtient le résultat suivant.

Théorème 0.0.24 (Théorème 9.2.1). L’algèbre de cohomologie des composantes de l’opérade mod-
ulaire étendue en genre 0 possède une base de Gröbner quadratique et est donc Koszul.
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Structure du document

En Section 1 on définit les personnages combinatoires principaux de cette histoire.

En Section 2 on définit la catégorie de Feynman LBS et on en donne une présentation.

En Section 3 on définit la coopérade des algèbres de Feichtner–Yuzvinsky et la coopérade
des algèbres d’Orlik–Solomon.

En Section 4 on développe une théorie de bases de Gröbner pour les opérades sur LBS.

En Section 5 on montre que LBS est cubique et on explicite la théorie de dualité de Koszul
pour les opérades sur LBS. On montre que la (co)opérade des algèbres de Feichtner–
Yuzvinsky est Koszul.

En Section 6 on donne des commentaires généraux pouvant servir pour des modifica-
tions ou des généralisations de LBS.

En Section 7 on explicite la relation entre treillis géométriques et matroïdes et on intro-
duit la notion de treillis construit supersolvable.

En Section 8 on prouve Théorème 0.0.22 et on déduit Théorème 0.0.23.

En Section 9 on concentre notre attention sur les treillis construits graphiques ce qui mène
au Théorème 0.0.24.

Enfin, en Section 10 on donne des remarques d’ordre général pouvant servir pour une
recherche ultérieure sur la Koszulité des algèbres de Feichtner–Yuzvinsky.
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Chapter 1

Combinatorial preliminaries

In this section we introduce the main combinatorial objects which will be used throughout
this document.

1.1 Lattices, building sets and nested sets

Definition 1.1.1 (Lattice). A finite poset L is called a lattice if every pair of elements in L
admits a supremum and an infimum.

The supremum of two elements G1, G2 is denoted by G1 ∨ G2 and called their join,
while their infimum is denoted by G1 ∧G2 and called their meet.

Remark 1.1.2. Since L is supposed to be finite, having supremums and infimums for pairs
of elements implies having supremums and infimums for any subset S of L, which will
be denoted by

∨
S and

∧
S respectively. As a consequence, every lattice admits an upper

bound (the supremum of S = L) and a lower bound (the infimum of S = L) which will
be denoted by 1̂ and 0̂ respectively.

Definition 1.1.3 (Geometric lattice). A finite lattice (L,≤) is said to be geometric if it satis-
fies the following properties:

• For every pair of elements G1 ≤ G2, all the maximal chains of elements between G1

and G2 have the same cardinal. (Jordan-Hölder property)

• The rank function ρ : L → N which assigns to any element G of L the cardinal of
any maximal chain of elements from 0̂ to G (not counting 0̂) satisfies the inequality

ρ(G1 ∧G2) + ρ(G1 ∨G2) ≤ ρ(G1) + ρ(G2)

for every G1, G2 in L. (Sub-modularity)
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• Every element in L can be obtained as the supremum of some set of atoms (i.e.
elements of rank 1). (Atomicity)

One of the reasons to study this particular class of lattices is that the intersection poset
of any hyperplane arrangement is a geometric lattice. In fact, one may think of geometric
lattices as a combinatorial abstraction of hyperplane arrangements. In addition, this object
is equivalent to the datum of a loopless simple matroid via the lattice of flats construction
(see [35] for a reference on matroid theory) and therefore it has connections to many other
areas in mathematics (graph theory for instance).

Here is a list of some important well-known geometric lattices.

Example 1.1.4. • If X is any finite set, the set P(X) of subsets of X ordered by inclu-
sion is a geometric lattice with join the union and meet the intersection. It is the
intersection lattice of the hyperplane arrangement of coordinate hyperplanes in CX .
Those geometric lattices are called boolean lattices and denoted by BX .

• If X is any finite set, the set ΠX of partitions of X ordered by refinement is a geo-
metric lattice. It is the intersection lattice of the so-called braid arrangement which
consists of the diagonal hyperplanes {zi = zj} in CX . Those geometric lattices are
called partition lattices.

• If G = (V,E) is any graph one can construct the graphical matroid MG associated to
G and then consider LG the lattice of flats associated to MG (see [35] for the details
of this construction). Those lattices are said to be graphical. This family of geometric
lattices contains the two previous ones because BX is the lattice associated to any
tree with edges X and ΠX is the lattice associated to the complete graph with ver-
tices X . For any graph G = (V,E) the geometric lattice LG is the intersection lattice
of the hyperplane arrangement {{zu = zv}, (u, v) ∈ E} in CV .

We have the following important fact about geometric lattices.

Proposition 1.1.5 ([35]). Let (L,≤) be a geometric lattice. For every G1 ≤ G2 ∈ L, the interval
[G1, G2] = {G ∈ L |G1 ≤ G ≤ G2} ordered by the restriction of ≤ is a geometric lattice.

In the rest of this article every lattice will be assumed to be geometric unless stated
otherwise.

Definition 1.1.6 (Building set). Let L be a geometric lattice. A building set G of L is a subset
of L \ {0̂} such that for every element X of L the morphism of posets∏

G∈maxG≤X

[0̂, G]
∨−→ [0̂, X] (1.1)

is an isomorphism (where maxG≤X is the set of maximal elements of G ∩ [0̂, X]).



1.1. LATTICES, BUILDING SETS AND NESTED SETS 43

The elements of maxG≤X will be called the factors of X in G. In the rest of the paper
we will prefer the more suggestive notation FactG(X) to refer to the set of those elements.

Definition 1.1.7 (Built lattice). The datum of a lattice L and a building set G of L will be
called a built lattice. If G contains 1̂ we say that (L,G) is irreducible.

The definition of a building set makes sense for a larger class of posets, as shown in
[14], but in this paper we will restrict ourselves to the case of geometric lattices. In this
particular context, building sets are geometrically motivated by the construction of won-
derful compactifications for hyperplane arrangement complements. In a nutshell, build-
ing sets are sets of intersections of a hyperplane arrangement that one can successively
blow up in order to obtain a wonderful compactification of its complement (see [8] for
more details). Each blowup creates a new exceptional divisor, so the wonderful compact-
ification is equipped with a family of irreducible divisors indexed by G. This family of
divisors forms a normal crossing divisor when G is a building set.

There are a few key examples to keep in mind throughout this story.

Example 1.1.8.

• Every lattice L admits L \ {0̂} as a building set.

• Every lattice L also admits a unique minimal building set which consists of all the
elements G of L such that [0̂, G] is not a product of proper subposets.

• From the definition one can see that a building set of some lattice Lmust contain all
the atoms of L. If L is a boolean lattice (see Example 1.1.4) then its set of atoms is in
fact a building set (the minimal one). This fact characterizes boolean lattices.

• If L is the lattice of partitions of some finite set (see Example 1.1.4) then the subset
of partitions with only one block having more than two elements is a building set of
L. This is the minimal building set of L.

• IfL is a graphical lattice (see Example 1.1.4) then the set of elements ofL correspond-
ing to sets of edges which are connected forms a building set of L. This family of
examples contains the two previous ones (by considering graphs with disconnected
edges for the former and complete graphs for the latter).

• Alternatively, if G = (V,E) is a graph one can consider the boolean lattice BV . This
lattice has a building set made up of the “tubes” of G, that is sets of vertices of G
such that the induced subgraph on those vertices is connected. This leads to the
notion of graph associahedra introduced in [6].

The additional choice of the building set adds a lot of information. For instance for
graphs we have the following result (which to the best of our knowledge is new).
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Proposition 1.1.9. LetG1 andG2 be two graphs with no isolated vertices, no loops and no parallel
edges. If there exists an isomorphism of posets f betweenLG1 andLG2 such that we have f(GG1) =
GG2 , then G1 and G2 are isomorphic.

In other words the datum of the built lattice (LG,GG) is enough to recover G. As is
well known the datum LG alone is not enough because for instance two trees having the
same number of edges have the same associated geometric lattice (a boolean lattice). The
datum of the connected subgraphs GG alone is not enough either because the three-cycle
and the star-shaped graph with 3 edges both have the same connected subgraphs (every
subgraph is connected).

Proof. We start with the following lemma.

Lemma 1.1.10. The only graphs with associated built lattice of the form (Bn,Gmax) for some n
are the star-shaped graphs.

Proof. If LG is a boolean lattice then G is a tree. One can see that the only trees with all
subgraphs connected are the star-shaped trees.

We can assume that G1 and G2 are both connected. If G1 has no vertex with strictly
more than one neighbor then G1 has just a single edge and so does G2. Otherwise denote
by x0 some vertex of G1 having strictly more than one neighbor. We will construct an
isomorphism of graphs f̂x0 between G1 and G2, induced by f and the choice of the vertex
x0. Denote by Star(x0) the set of edges of G1 attached to x0. By Lemma 1.1.10 the image
of Star(x0) by f is a star-shaped subgraph of G2 with more than two edges. We define
f̂x0(x0) as the center of this star-shaped subgraph. Next we have the following lemma.

Lemma 1.1.11. Let γ be a path in G1 starting from x0 and which does not contain any cycle. The
set of edges f(γ) is a path in G2 starting from f̂x0(x0) which does not contain any cycle

Proof. We prove the result by induction on the length of γ. If γ contains one edge the result
is obvious. If γ contains two edges, say e1, e2 with e1 attached to x0, then {f(e1), f(e2)}
is connected in G2 and f(e1) is attached to f̂x0(x0). If f(e2) is attached to f̂x0(x0) then
let e0 be an edge attached to x0 different from e1. The map f sends {e0, e1, e2} to a star-
shaped graph which contradicts Lemma 1.1.10. This proves that f(γ) is a path starting
from f̂x0(x0) without any cycle. Let γ be a path starting from x0 without any cycle and
with at least 3 edges. Denote by e1, e2, e3 the last three edges of γ in this order when
coming from x0. By induction f(γ \ {e3}) is a path starting from f̂x0(x0) without any
cycle. Denote by y1 the end vertex of this path. By the fact that f must send connected
subsets to connected subsets we get that f(e3) is either attached to y1 or to the other end
of e2. If it is attached to the other end of e2 then f sends {e0, e1, e2} to a star-shaped graph
which contradicts Lemma 1.1.10. As a consequence we see that f(γ) is a path starting
from f̂x0(x0). By the fact that f preserves the rank on both sides we see that this path
cannot contain any cycle.
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Finally, for any vertex x in G1 we define f̂x0(x) as the end vertex of f(γ) with γ any
path from x0 to x without any cycle. Let us prove that this definition does not depend
on the choice of γ, by induction on γ. Let γ′ be another path from x0 to x without any
cycle. Let x1 be the first vertex at which γ and γ′ meet (after x0). Denote by γx1 (resp.
γ′x1) the part of γ (resp. γ′) which goes from x0 to x1. The set of edges γx1 ∪ γ′x1 forms
a circuit of G1 and therefore f(γx1 ∪ γ′x1) must be a circuit of G2. By Lemma 1.1.11 this
implies that f(γx1) and f(γ′x1) have the same endpoint and we can conclude by induction.
By construction f̂x0 is a morphism a graph. i.e. sends neighbors to neighbors. Also by
construction f̂x0 has an inverse given by f̂−1

f̂x0 (x0) which finishes the proof.

Additionally, one can check that f̂x0 does not depend on x0. We have almost proved
that the functor G → (LG,GG) is fully faithful on isomorphisms, but this is not quite true
because of the one edge graph, which has a non-trivial automorphism (swapping the ex-
tremities of the edge), contrary to its associated built lattice.

One could get a slightly more general version of Proposition 1.1.9 allowing parallel
edges, by just working at the level of the graphical matroid and not the associated geo-
metric lattice. In order to allow loops one would need a notion of building set at the level
of the matroid. We investigate this question in Subsection 6.1.

A key fact about building sets is that any interval [G1, G2] in some built lattice (L,G)
admits an “induced” building set which we describe now. We start by introducing a
useful notation.

Notation 1.1.12. For any element G of some lattice L and a subset X of L, we denote by
G ∨X the set of elements of L which can be obtained as the join of G and some element
of X .

Definition 1.1.13 (Induced building set). Let G1 < G2 be two elements in some built
lattice (L,G). We denote by Ind[G1,G2](G) the set (G1 ∨ G) ∩ [G1, G2] \ {G1} and we call it
the induced building set on [G1, G2].

Lemma 1.1.14 ([5] Lemma 2.8.5). The subset Ind[G1,G2](G) ⊂ [G1, G2] is a building set of
[G1, G2].

We will often write Ind(G) instead of Ind[G1,G2](G) if the interval can be deduced from
the context. We have the obvious lemma.

Lemma 1.1.15. For any elements X1 ≤ X2 ≤ X3 ≤ X4 in some lattice L with building set G,
we have the equality of building set

Ind[X2,X3](Ind[X1,X4](G)) = Ind[X2,X3](G).

A subset of pairwise incomparable elements in a poset will be called an antichain.
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Definition 1.1.16 (Nested set). Let (L,G) be a built lattice. A subset S of G is called a
nested set if for every antichain A in S which contains at least two elements, the join of
the elements of A does not belong to G. A nested set S ⊂ G is said to be irreducible if it
contains maxG.

Example 1.1.17. A chain of elements in some building set G is always nested and those
are the only nested sets of the maximal building set (G = L \ {0̂}).

Geometrically, nested sets correspond to sets of divisors in the wonderful compact-
ification which have a nontrivial intersection. There are two crucial lemmas regarding
nested sets.

Lemma 1.1.18 ([13] Proposition 2.8). Let G be a building set of a geometric lattice L and let X
be any element of L. The subset FactG(X) is a nested antichain in G and furthermore it is the only
nested antichain in G having join X .

Lemma 1.1.19 ([29] Proposition 2.4). A nested set of L is a forest in the Hasse diagram of L.
More precisely for every K in L, S>K is either empty or has a unique minimal element.

We next introduce a map CompG : Ind[G,G′](G) → G which will help us define our
composition of nested sets in the next section. Let G′′ be an element of Ind[G,G′](G) and F
an element such that G′′ = G ∨ F and which is maximal amongst elements satisfying this
equality (such an F exists by definition of Ind(G) and by finiteness of L). Let us denote by
{Gi, i ≤ n} the factors of G in G. We have equalities

G′′ = G ∨ F =
∨
i≤n

Gi ∨ F =
∨
i≤n
Gi�F

Gi ∨ F

but the elements in the join on the right form an antichain which is nested by maximality
of F and therefore by Lemma 1.1.18 those elements are exactly the factors ofG′′ in G. From
this quick analysis it appears that such a maximal element F is in fact unique and we can
make the following definition.

Definition 1.1.20. For any element G′′ in some induced building set Ind[G,G′], we define
CompG(G′′) to be the unique maximal element of G satisfying

CompG(G′′) ∨G = G′′.

If G can be deduced from the context we will omit it. We have the simple lemma.

Lemma 1.1.21. The map CompG is injective.

Proof. The map CompG has a left inverse given by taking the join with G.
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1.2 Combinatorial invariants

To the objects introduced in the previous section one can associate various rings that gen-
eralize cohomology rings in the realizable case.

1.2.1 The Feichtner–Yuzvinsky rings

Definition 1.2.1. For every built lattice (L,G) we define the Feichtner–Yuzvinsky graded
commutative ring FY(L,G) by

FY(L,G) = Z[xG, G ∈ G]/Iaff ,

with all the generators in degree 2, and Iaff the ideal generated by elements∑
G≥H

xG

for every atom H , and elements ∏
G∈X

xG

for every set X ⊂ G which is not nested.

The subscript “aff” stands for affine. In the realizable case, the ring FY(L,G) is the co-
homology ring of the wonderful compactification associated to the building set G (see [8]
for the computation of the cohomology ring). Those rings were generalized to arbitrary
built lattices by Feichtner and Yuzvinsky in [14].

The Feichtner–Yuzvinsky rings admit two other useful presentations.

Proposition 1.2.2. For every built lattice (L,G) we have the other classical presentation

FY(L,G) ' Z[xG, G ∈ G \ {1̂}]/Iproj

where Iproj is the ideal generated by elements∑
1̂>G≥H1

xG −
∑

1̂>G≥H2

xG

for every pair of atoms H1 and H2, and elements∏
G∈X

xG

for every set X ⊂ G \ {1̂} which is not nested.
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Additionally, we have the presentation

FY(L,G) ' Z[hG, G ∈ G]/Iwond

where Iwond is the ideal generated by relations

hH

for every atom H and ∏
G′∈A

(hG − hG′)

for every G ∈ G and A an antichain in G such that
∨
A is equal to G. The change of variable

between the last presentation and the defining presentation is given by

hG =
∑
G′≥G

xG′ .

The first (defining) presentation will be called the affine presentation, the second the
projective presentation and the last one the wonderful presentation. The first two presenta-
tions appear in [14] (as a definition) while the second appeared first in [12] for the braid
arrangement and in [2] for general maximal building sets. It is widely used in [29].

Proof. The proof can be found in [29] (Theorem 2.9).

In [14], the authors address the issue of finding a Gröbner basis for FYaff(L,G) (see [3]
for a reference on Gröbner bases) and they show that when considering any linear order
on generators refining the reverse order on G, although the elements defining Iaff do not
form a Gröbner basis in general, one can still describe a fairly manageable Gröbner basis.

Theorem 1.2.3 ([14] Theorem 2). Elements of the form (
∏
G∈S xG)h

ρ(G′)−ρ(
∨
S)

G′ with S any
nested set and G′ any element of G satisfying G′ >

∨
S , together with the usual

∏
G∈X xG for

every non-nested set X , form a Gröbner basis of FYaff(L,G) for any linear order on generators
refining the reversed order of L. The normal monomials with respect to this Gröbner basis are
monomials of the form

xα1
G1
...xαnGn

where the Gi’s form a nested set S and for every i ≤ n we have αi < rk[
∨
S<Gi , Gi].

Notice that S can be empty in which case we get the already known relations hH = 0
for any atom H . Using that the above monomials form a linear basis of FY(L,G) one
can see that every Feichtner–Yuzvinsky algebra is in fact of finite dimension and that the
part of maximal grading, which is 2(rk(L)−1), has dimension one (generated by xrk(L)−1

1̂
).

One can also find a Gröbner basis for the wonderful presentation.
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Corollary 1.2.4. Elements of the form (
∏
G′∈A(hG−hG′))h

ρ(G)−ρ(A)
G for every antichainA ⊂ G

without atoms and every G ≥
∨
A form a Gröbner basis of FYwond(L,G) for any linear order on

generators refining the reversed order of L.

Proof. Indeed one can see that the leading terms of those elements are terms of the form
(
∏
G′∈A hG′)h

ρ(G)−ρ(
∨
A)

G and therefore the normal monomials with respect to those rela-
tions are elements of the form

∏
G∈S h

αG
G for any nested set S and any positive integers

αG satisfying the relations
αG < ρ(G)− ρ(

∨
S<G)

for all G in S, which are in obvious bijection with the normal monomials for the affine
Gröbner basis. This proves that those monomials form a linear basis of FYwond(L,G)
(linearly independent with the right cardinality), which implies that the elements above
form a Gröbner basis of Iwond.

This Gröbner basis will be of use in subsequent sections. In the next and last prelimi-
nary subsection we introduce another important combinatorial invariant.

1.2.2 The Orlik–Solomon algebras

In this document “graded commutative” means with Koszul signs.

Definition 1.2.5 (Orlik–Solomon algebra). Let L be a geometric lattice. We define the
Orlik–Solomon graded commutative algebra OS(L) by

OS(L) = Λ[eH , H atom of L]/I

where I is the ideal generated by elements of the form δ(eH1 ∧ ... ∧ eHn) for any circuit
{H1, ...,Hn} and δ is the unique derivation of degree −1 satisfying δ(eH) = 1. All the
generators eH have degree 1.

A circuit is a notion coming from matroid theory. In the language of geometric lattices
it is a set of atoms C = {Hi, i ≤ n} such that ρ(

∨
C) is n − 1 and ρ(

∨
X ′) = |X ′| for all

proper subsets X ′ ⊂ X .

In the complex realizable case this algebra is the cohomology ring of the complement
of the hyperplane arrangement (see Orlik-Solomon [27]).

We denote by OS(L) the subalgebra of OS(L) generated by elements of the form eH −
eH′ for every pair of atoms H,H ′. In the complex realizable case the algebra OS(L) is the
cohomology ring of the projective complement. We have the following important lemma.

Lemma 1.2.6 ([36] Section 2.4). For every geometric lattice L we have the equality

OS(L) = ker δ = Im δ.
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Chapter 2

The Feynman category

In this section we show that the combinatorial objects introduced in the previous section
(geometric lattices, building sets and nested sets) can be bundled up into a Feynman cat-
egory.

2.1 A short introduction to Feynman categories

The notion of Feynman categories was introduced by R. Kaufmann and B. Ward in [20].
Loosely speaking, Feynman categories encode types of operadic structures.

Notation. Let C be a category. We denote by Ciso the subcategory of C having the same
objects as C but only its isomorphisms as morphisms. We denote by Sym(C) the free
symmetric monoidal category generated by C. For any functor F : C → D with D a sym-
metric monoidal category, there is a unique induced strong monoidal functor Sym(F ) :

Sym(C) → D. If we are given a diagram of categories C F→ D G← E , the comma category
(F ↓ G) is the category having for objects triples (c ∈ C, e ∈ E , φ : F (c) → G(e)) and for
morphisms suitable commutative diagrams. If the functors F and G are clear from the
context we will write instead (C ↓ E).

Definition 2.1.1 (Feynman category). A triple F = (V,F , ı) is a Feynman category if V is a
groupoid, F is a symmetric monoidal category and ı : V → F is a functor such that:

1. The functor ı induces an equivalence of categories Sym(ı) : Sym(V)→ F iso.

2. The functor ı induces an equivalence of categories Sym((F ↓ V)iso)→ (F ↓ F)iso.

3. For every object ? ∈ V , the comma category (F ↓ ?) is essentially small (i.e. is
equivalent to a small category).

51
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Definition 2.1.2 (Operad over a Feynman category). Let F = (V,F , ı) be a Feynman cat-
egory and C a symmetric monoidal category. An operad over F in C is a strong monoidal
functor from F to C, and a cooperad over F in C is a strong monoidal functor from F to Cop.
A module over F in C is a functor from V to C.

(Co)operads (resp. modules) over F will also be called F-(co)operads (resp. F-modules).

Example 2.1.3. As described in the introduction, there exist a Feynman category Op en-
coding classical operads i.e. such that operads over Op are classical operads and modules
over Op are S-modules.

2.2 Construction of the Feynman category

Let us start by defining the underlying groupoid of our Feynman category.

Definition 2.2.1. We define LBS to be the groupoid having as objects the built lattices
and morphisms

MorLBS((L,G), (L′,G′)) = {f : L′ ∼−→ L isomorphism of poset satisfying f(G′) = G}.

We denote by LBSirr the full subcategory of LBS having as objects the irreducible built
lattices.

The groupoid LBSirr will play the role of V in Definition 2.1.1. We will add morphisms
to LBS in order to get the right category F .

Proposition 2.2.2. The category LBS admits a symmetric monoidal structure ⊗ given by

(L,G)⊗ (L′,G′) = (L × L′,G × {0̂} ∪ {0̂} × G′).

Furthermore the inclusion ı : LBSirr → LBS induces an equivalence of categories

Sym(ı) : Sym(LBSirr)→ LBS.

Proof. The fact that a product of two geometric lattices is again a geometric lattice is classi-
cal and the proof can be found in [35]. Additionally G×{0̂}∪{0̂}×G′ is indeed a building
set of L × L′ because for any (X,X ′) ∈ L × L′ we have the isomorphisms

[(0̂, 0̂), (X,X ′)] ' [0̂, X]× [0̂, X ′]

'
∏

G∈FactG(X)

[0̂, G]×
∏

G′∈FactG′ (X
′)

[0̂, G′]

'
∏

G′′∈FactG×{0̂}∪{0̂}×G′ ((X,X
′))

[(0̂, 0̂), G′′].
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Besides, one can see that ⊗ is functorial and satisfies the associativity/symmetry ax-
ioms of a symmetric monoidal product, the unit being ({0̂}, ∅).

For the last claim we show that Sym(ı) is essentially surjective and fully faithful. Let
(L,G) be an object of LBS. If we denote by {Gi, i ≤ n} the factors of 1̂ in G then we have
an isomorphism [0̂, 1̂] '

∏
i[0̂, Gi] and G is sent to G ∩ [0̂, G1] ∪ ... ∪ G ∩ [0̂, Gn] . In other

words (L,G) is isomorphic to ([0̂, G1],G ∩ [0̂, G1])⊗ ...⊗ ([0̂, Gn],G ∩ [0̂, Gn]) and Sym(ı) is
essentially surjective.

Finally, let
⊗

i≤n(Li,Gi) and
⊗

j≤n′(L′j ,G′j) be two elements of Sym(LBSirr) (here ⊗
denotes the free symmetric monoidal product in Sym(LBSirr)) and let φ be an isomor-
phism in LBS between

⊗
i≤n(Li,Gi) and

⊗
j≤n′(L′j ,G′j). Such an isomorphism is given

by a bijection between the factors of both sides (the isomorphism induces a bijection be-
tween the maximal elements of the building set of the domain and the maximal elements
of the building set of the target) together with isomorphisms between corresponding sum-
mands. This datum is exactly equivalent to an isomorphism in Sym(LBSirr) between⊗

i≤n(Li,Gi) and
⊗

j≤n′(L′j ,G′j), which proves that Sym(ı) is fully faithful.

We now add structural morphisms to LBS to get our Feynman category. Let (L,G) be
an irreducible built lattice and S = {Gi, i ≤ n} an irreducible linearly ordered nested set
of G. For any G ∈ S we define τS(G) :=

∨
S<G and we set

(LS ,GS) :=
⊗
i

([τS(Gi), Gi], Ind[τS(Gi),Gi](G))

which is an object of LBS. We will view S as a new formal morphism (LS ,GS)
S→ (L,G)

that we will add by hand to LBS. However, to this end one must specify how those new
morphisms compose with each other and with the isomorphisms. This is the object of the
next definition/lemma.

From now on, every nested set is assumed to be irreducible unless stated otherwise.
If S is a nested set, the intervals [τS(G), G] for G any element of S will be called the “local
intervals of S”.

Let S = {Gi, i ≤ n} be a nested set in (L,G) and let there be given additional linearly
ordered nested sets Si’s in each irreducible built lattice ([τS(Gi), Gi], Ind[τS(Gi),Gi](G)). We
define

S ◦ (Si)i := S ∪
⋃
i

{CompτS(Gi)(K) , K ∈ Si} (2.1)

which comes naturally equipped with a linear order (by concatenating the linear orders
of the Si’s).
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Remark 2.2.3. For G = Gmax the operation ◦ is just the concatenation of chains.

We have the key lemma.

Lemma 2.2.4. S ◦ (Si)i is a nested set of (L,G).

Proof. By Lemma 1.1.21 and Lemma 1.1.19 we have that all the elements of the form
Comp(K) with K in some Si are distinct and not in S, and they are partitioned according
to the unique minimal element of S above them.

Let A = {Gi|i ∈ I} t
⊔
j∈J Aj be an antichain in S ◦ (Si)i partitioned according to the

previous remark, such that the join of A belongs to G. Let us prove that A is a singleton.
Since A is an antichain, I and J are disjoint. Let M be the set of maximal elements of
{Gi, i ∈ I} ∪ {Gj , j ∈ J}. Since

∨
A belongs to G and S is a nested set, M is a singleton. If

this singleton belongs to {Gi, i ∈ I}, then by the fact that A is an antichain we must have
A = M . If this singleton belongs to {Gj , j ∈ J}, let us denote it {Gj}. By nestedness of
Sj we see that Aj is a singleton, which we denote by {Comp(K)} with K some element
in Sj . We have

Comp(K) ∨ τS(Gj) =
∨
A ∨ τS(Gj) = K.

By maximality of Comp(K) (see Definition 1.1.20), this means that
∨
A is equal to Comp(K)

and by the fact that A is an antichain, Amust be equal to the singleton {Comp(K)}.

Lemma 2.2.5. We have an isomorphism of built lattices⊗
i

(LSi ,GSi)
Φ−→ (LS◦(Si)i ,GS◦(Si)i).

Proof. We just need to show that the irreducible built lattices appearing on the left are
canonically isomorphic to the irreducible built lattices appearing on the right. Let K be
some element in some Si and let K1, ... ,Kp be the maximal elements of (Si)<K . We need
to find an isomorphism of built lattice

([τSi(K),K], Ind[τSi (K),K](Ind[τS(Gi),Gi](G)))
Φ−→

([
∨
i

Comp(Ki) ∨
∨

Gj<Comp(K)

Gj ,Comp(K)], Ind(G)).

Such an isomorphism is given by taking the join with τS(Gi). The fact that this is indeed
an isomorphism of poset comes from the building set isomorphism

[0̂,K] ' [0̂,Comp(K)]×
∏

Gj∈maxS<Gi
Gj�Comp(K)

[0̂, Gj ].

The fact that it sends building set to building set comes from Lemma 1.1.15.
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Finally, we have to prove that the operation ◦ on nested sets is “associative”.

Lemma 2.2.6. Let S be a nested set in (L,G). Let (Si)i be nested sets in every local interval of S
and for every i let (Sij)j be nested sets in every local interval of Si. The nested sets S ◦ (Si ◦ (Sij)j)j
and (S ◦ (Si)i) ◦ (Sij)i,j are equal (the last composition being performed via the isomorphism Φ of
Lemma 2.2.5).

Proof. This is a statement about the Comp operation. When necessary we put the lattice in
which we are doing the Comp operation in superscript. We denote S = {Gi , i ≤ n} and
choose some i0 ≤ n. We then denote Si0 = {Kj , j ≤ m} and choose some j0 ≤ m. We
also define I0 := {i |Gi ∈ maxS<Gi0} and J0 := {j |Kj ∈ max((Si0)<Kj0 )}.

We partition I0 into the following subsets:

Iext
0 := {i ∈ I0 |Gi � Comp(Kj0)},
I int

0 := {i ∈ I0 |Gi ≤ Comp(Kj0) and ∀j ∈ J0, Gi � Comp(Kj)},
Ij0 := {i ∈ I0 |Gi ≤ Comp(Kj)}.

It is a partition because the set {Kj , j ∈ J0} is nested. The map Φ is taking the join
with

∨
i∈Iext

0
Gi.

The lemma amounts to showing that for any L in Ind[τSi0
(Kj0 ),Kj0 ](G) we have the

equality

CompLτS(Gi0 )(Comp
[τS(Gi0 ),Gi0 ]

τSi0
(Kj0 ) (L)) = CompL∨{Comp(Kj), j∈J0} ∨

∨
{Gi, i∈Iint

0 }
(Φ−1(L)).

We have

CompLτS(Gi0 )(Comp
[τS(Gi0 ),Gi0 ]

τSi0
(Kj0 ) (L)) ∨

∨
j∈J0

Comp(Kj) ∨
∨
i∈Iint

0

Gi ∨
∨

i∈Iext
0

Gi =

Comp
[τS(Gi0 ),Gi0 ]

τSi0
(Kj0 ) (L) ∨

∨
j∈J0

Comp(Kj) ∨
∨
i∈Iint

0

Gi ∨
∨

i∈Iext
0

Gi = L.

Applying Φ−1 to both sides we get

CompLτS(Gi0 )(Comp
[τS(Gi0 ),Gi0 ]

τSi0
(Kj0 ) (L)) ∨

∨
j∈J0

Comp(Kj) ∨
∨
i∈Iint

0

Gi = Φ−1(L).

We need to prove that CompLτS(Gi0 )(Comp
[τS(Gi0 ),Gi0 ]

τSi0
(Kj0 ) (L)) is the biggest element in G which

satisfies this equation.
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Let G′ ∈ G such that we have

G′ ∨
∨
j∈J0

Comp(Kj) ∨
∨
i∈Iint

0

Gi = Φ−1(L).

Applying Φ on both sides we get

G′ ∨
∨
j∈J0

Comp(Kj) ∨
∨
i∈Iint

0

Gi ∨
∨

i∈Iext
0

Gi = L. (2.2)

The element G′ ∨
∨
i∈I Gi is below L and belongs to Ind[τS(Gi0 ),Gi0 ](G) so it is below one of

the factors of L in Ind[τS(Gi0 ),Gi0 ](G). Those factors are Comp
[τS(Gi0 ),Gi0 ]

τSi0
(Kj0 ) (L) or Kj for some

j in J . By equation (2.2), G′ ∨
∨
i∈I Gi cannot be below any Kj so we have

G′ ∨
∨
i∈I

Gi ≤ Comp
[τS(Gi0 ),Gi0 ]

τSi0
(Kj0 ) (L),

which implies

G′ ≤ CompLτS(Gi0 )(Comp
[τS(Gi0 ),Gi0 ]

τSi0
(Kj0 ) (L)).

We are now in position to make the following definition.

Definition 2.2.7. LBS is the monoidal category defined as follow.

• The objects of LBS are built lattices.

• The morphisms of LBS are generated (via composition and tensoring) by

1. Structural morphisms

(LS ,GS)
S−→ (L,G)

for every totally ordered nested set in some irreducible built lattice (L,G). The
composition of those morphisms is given by 2.1.

2. Isomorphisms between built lattices

(L,G)
∼−→ (L′,G′)

for each isomorphism of poset f : L′ → L such that f(G′) = G,
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quotiented by relations

(Lf(S),Gf(S))
f(S)→ (L′,G′) f→ (L,G) ∼ (Lf(S),Gf(S))

⊗f→ (LS ,GS)
S→ (L,G) (2.3)

for any isomorphism of irreducible built lattice f : (L′,G′) → (L,G), and for every
permutation σ of S :

(LS ,GS)
σ→ (LSσ ,GSσ)

Sσ→ (L,G) ∼ (LS ,GS)
S→ (L,G) (2.4)

where Sσ denotes the nested set equipped with the new linear order given by σ.
Finally we also impose the relation

{1̂} ∼ Id(L,G).

• The monoidal structure is the same as the one on LBS, which in addition acts on
nested sets (which are now considered as morphisms) by disjoint union.

Proposition 2.2.8. The triple LBS = (LBSirr,LBS, ı) with ı the obvious inclusion is a Feynman
category.

Proof. This is a consequence of Proposition 2.2.2 and of the construction itself.

We conclude this subsection by proving a general lemma on the composition of nested
sets which will be important later on.

Lemma 2.2.9. Let S be some irreducible nested set in some irreducible built lattice and S ′ ⊂ S a
subset containing 1̂. For any G′ in S ′ we put S ′G′ := (S ∨ τS′(G′))∩ (τS′(G

′), G′]. For any G′ in
S ′, S ′G′ is a nested set in ([τS′(G

′), G′], Ind(G)) and we have the equality between nested sets:

S = S ′ ◦ (S ′G′)G′∈S′ . (2.5)

Proof. Let G′ be any element of S ′ and G′1, ..., G
′
n the maximal elements of S ′<G′ . Let G

be some element in S which is below G′ and not below any of the G′i’s. We denote K :=
τS′(G

′) ∨ G. By the fact that S is nested, G is the maximal element of G satisfying the
equality

G ∨ τS′(G′) = K.

This proves the equality
G = CompτS′ (G′)(τS′(G

′) ∨G),

which implies equality (2.5).

For the nestedness, assume we have G1, ..., Gk some elements of S such that τS′(G′) ∨
G1, ..., τS′(G

′) ∨ Gk are elements of (τS′(G
′), G′] and such that

∨
i τS′(G

′) ∨ Gi belongs to
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Ind[τS′ (G
′),1̂](G). The factors of

∨
i τS′(G

′) ∨Gi in G are some of the (G′i)
′s and the element

CompτS′ (G′)(
∨
i τS′(G

′)∨Gi). Since CompτS′ (G′) is increasing (it has a left inverse given by
taking the join with τS′(G′)), by the first part of this proof we have

Gi = CompτS′ (G′)(τS′(G
′) ∨Gi) ≤ CompτS′ (G′)(

∨
i

τS′(G
′) ∨Gi)

for all i ≤ k and by the building set isomorphism we must have∨
i

Gi = CompτS′ (G′)(
∨
i

τS′(G
′) ∨Gi).

By nestedness of S the Gi’s do not form an antichain and therefore the τS′(G′) ∨ Gi’s do
not either. This proves that (τS′(G

′) ∨ S) ∩ (τS′(G
′), 1̂] is a nested set.

2.3 Presentation of LBS

In this section we give a presentation of the category LBS, that is a set of morphisms that
generate every other morphisms in LBS via composition and tensoring, together with
the relations they satisfy. As mentioned in the introduction, from a practical point of view
having a presentation of LBS will make defining operads over LBS a lot easier (in the
next section).

Proposition 2.3.1. Every morphism in LBS can be obtained as a composition and tensoring of
morphisms of the form {G, 1̂} and isomorphisms.

From now on since all our nested sets must contain 1̂ we will omit it (for instance the
above generators will be written {G}).

Proof. Iterate Lemma 2.2.9 with S ′ of the form {G}.

Proposition 2.3.2. Relations between compositions of generators {G} are all generated by the
relations

{G1} ◦ ({G2} ⊗ Id) = {G2} ◦ (Id⊗ {G1}) (2.6)

for every pair G1 < G2, relations

{G1} ◦ ({G1 ∨G2} ⊗ Id) = {G2} ◦ ({G1 ∨G2} ⊗ Id) ◦ σ2,3 (2.7)

for every pair G1, G2 of non comparable elements forming a nested set (with σ2,3 the transposition
swapping the two last summands) and relations

f ◦ f({G}) = {G} ◦ (f[G,1̂] ⊗ f[0̂,G]) (2.8)

for every isomorphism f : (L,G)
∼−→ (L′,G′) in LBS and every element G ∈ G \ {1̂}.
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Proof. One can check that those relations are indeed satisfied in LBS. In order to prove
that they generate all relations we start with the following lemma.

Lemma 2.3.3. Let (L,G) be a built lattice and C a linear order on L. Any morphism in LBS

F :
⊗
i

(Li,Gi)→ (L,G)

can be uniquely written as a composition⊗
i

(Li,Gi)
⊗
fi−−−→ (L′i,G′i)

σ−→ (L′σ(i),G
′
σ(i))

S−→ (L,G), (2.9)

where

• The fi’s are isomorphisms in LBSirr.

• σ is a permutation of the summands.

• S is an irreducible nested set of (L,G) with total order given by restriction of C.

Proof. By iteration of relations (2.3) and (2.4) one can see that every morphism can be
written in the form (2.9). For the unicity we define an invariant ι(F ) :

⊔
i(Li\{0̂})→ L\{0̂}

for every morphism F :
⊗

i(Li,Gi)→ (L,G) in LBS by setting

• For any nested set in some built lattice (L,G):

ι(S) :
⊔
G

([τS(G), G] \ {τS(G)}) ↪→ L \ {0̂}

is the obvious inclusion.

• For any isomorphism (L′,G′) f−→ (L,G) in LBS, ι(f) is equal to f−1.

and then extending to all morphisms by composition. One can see that ι preserves the
relations (2.3) and (2.4) and therefore it passes to the quotient and gives a well-defined
invariant for every morphism in LBS.

Now if F :
⊗

i(Li,Gi)→ (L,G) can be written as a composition⊗
i

(Li,Gi)
⊗
fi−−−→ (L′i,G′i)

σ−→ (L′σ(i),G
′
σ(i))

S−→ (L,G),

then we see that S and the f ′is can be extracted from ι(F ) (S is just the image by ι(F ) of⊔
i{1̂Li} in L \ {0̂} and the f ′is are just restrictions of ι(F ) to the suitable subsets) and σ is

the only permutation that permutes the summands in the right order when S is given the
order C. This proves the unicity.
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Assume now that we have two sequences of morphisms in LBS

ϕ = A→ X1 → ...→ Xn → (L,G) and ψ = A→ X ′1 → ...→ X ′n′ → (L,G),

such that every morphism in φ or ψ is either a generator of the form Id⊗ ...⊗ Id⊗ {G} ⊗
Id ⊗ ... ⊗ Id or an isomorphism, and (L,G) is some irreducible built lattice. We want to
prove that if the composition of the morphisms of ϕ is equal to the composition of the
morphisms of ψ then there is a chain of equivalences of the form (2.6), (2.7) or (2.8) (pos-
sibly tensored and composed with other common morphisms) between ϕ and ψ.

First, by iteration of relation (2.8) one can assume that the only morphisms in ϕ and ψ
which are not isomorphisms are the first morphisms of ϕ and ψ respectively. By Lemma
2.3.3 we can assume that those two isomorphisms are only permutations of summands
and that the nested obtained by composition of the other morphisms of ϕ is the same as
the one obtained by composition of the other morphisms of ψ. We will denote this nested
set by S. We also denote by Si (resp. S ′i) the nested set obtained by composing the last i
morphisms of ϕ (resp. ψ). By construction of the composition of nested sets (see Section
2.2) we have

S1 ( ... ( Sn = S

and
S ′1 ( ... ( S ′n′ = S,

and the cardinal of the nested sets increases exactly by one at each step. Let us denote
S1 = {Gϕ}. By the equations above there exist some j ≤ n′ such that we have

S ′j \ S ′j−1 = {Gϕ}.

One can find a chain of relations of the form (2.6) and (2.7) between ψ and some ψ′

such that the first morphism of ψ′ is {Gϕ} (applying relations (2.6) and (2.7) allows one to
swap successively the morphism corresponding to Gϕ in ψ with the morphism after, until
it reaches the end). This means that we can assume that the last morphism of ψ is {Gϕ}.
We denote by S<Gϕ (resp. S>Gϕ) the nested set obtained by composing the morphisms of
ϕ which correspond to generators in [0̂, G] (resp. [G, 1̂]), and we denote similarly S ′<Gψ ,
S ′>Gψ the same constructions but with ψ. We have

{Gϕ} ◦ (S<Gϕ ,S>Gϕ) = S = {Gϕ} ◦ (S ′<Gϕ ,S ′>Gϕ)

which implies that we have

S<Gϕ = S ′<Gϕ

S>Gϕ = S ′>Gϕ

by Lemma 1.1.21 and we conclude by induction.
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2.4 LBS is a graded Feynman category

An important feature of LBS is that morphisms of LBS can be graded in the following
sense.

Definition 2.4.1. A degree function on a Feynman category (V,F , ı) is a map

deg : Mor(F)→ N

such that

• deg(φ ◦ ψ) = deg(φ) + deg(ψ)

• deg(φ⊗ ψ) = deg(φ) + deg(ψ)

• Morphisms of degree 0 and 1 generate Mor(F) by compositions and tensor products.

Furthermore the degree function is said to be proper if the degree 0 morphisms are exactly
the isomorphisms. A graded Feynman category is a Feynman category equipped with a
degree function.

Example 2.4.2. The Feynman category Op encoding classical operads has a proper grad-
ing given by defining the degree of a tree t as the number of inner vertices of t minus
one.

For LBS we define a proper degree function by putting

deg(f) = 0 for all isomorphisms f,

deg({G}) = 1 for all G different from 1̂.

One can see that the relations introduced in Proposition 2.3.2 are homogeneous with re-
spect to this grading and therefore we can extend this grading to every morphism in LBS,
which makes LBS a properly graded Feynman category.
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Chapter 3

(Co)operads over LBS

In this section we show that the algebraic invariants introduced in Section 1 (Feichtner–
Yuzvinsky algebras, Orlik–Solomon algebras) can be bundled up to form various (co)operads
over LBS (see Definition 2.1.2).

3.1 The Feichtner–Yuzvinsky cooperad

In this section we define an LBS-cooperad structure on the family of Feichtner–Yuzvinsky
rings.

3.1.1 Definition of the cooperad

Lemma 3.1.1. The map (L,G) → FY(L,G) can be upgraded to a (strong) monoidal functor
from LBS to grComRingop where grComRing is the symmetric monoidal category of graded
commutative rings.

Proof. Let (L,G) and (L′,G′) be two built lattices and let (L′′,G′′) = (L,G) ⊗ (L′,G′). We
have an isomorphism of algebras

FY(L,G) ⊗ FY(L′,G′) ∼−→ FY(L′′,G′′)
xG ⊗ 1 → xG

1 ⊗ xG′ → xG′

with inverse

FY(L′′,G′′)→ FY(L,G)⊗ FY(L′,G′)

xG →
{
xG ⊗ 1 if G ∈ G
1⊗ xG otherwise.

63
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If φ is an isomorphism (L′,G′) ∼→ (L,G) in LBS, it induces the isomorphism of algebras

FY(L,G)→ FY(L′,G′)
xG → xφ(G)

which is compatible with composition.

Next we upgrade FY into a monoidal functor from LBS to grComRingop. Thanks to
the presentation of LBS given in Subsection 2.3 we only need to specify the action of FY
on nested sets of cardinal one and then check that it satisfies the right relations. For every
G ∈ G \ {1̂}we set (using this time the wonderful presentation)

FY({G}) : FY(L,G) −→ FY([G, 1̂], Ind(G))⊗ FY([0̂, G], Ind(G))

hG′ −→
{

1⊗ hG′ if G′ ≤ G
hG∨G′ ⊗ 1 otherwise.

In the realizable case this morphism of algebra is induced by the inclusion of the stra-
tum Y {G,1̂} in the wonderful compactification Y L,G .

Let us quickly justify why this map passes to the quotient. If H is an atom of L which
is below G then hH is sent to hH ⊗ 1 which is zero in the target algebra. On the contrary
if H is an atom of L which is not below G then this means by sub-modularity of L that
H ∨ G is an atom of [G, 1̂] and thus hH is sent to zero again. Notice that this is the first
time we have actually used the geometricity of our lattices. Now let X = {G1, ..., Gn} be
some elements in G having join G′ ∈ G. Let us assume that the first k Gi’s are the elements
of X below G. If G′ ≤ G then

∏
i(hG − hGi) is sent to

1⊗
∏
i

(hG − hGi),

which is zero in the target algebra. Otherwise if G′ > G then
∏
i>k(hG′ − hGi) is sent to∏

i>k

(hG∨G′ − hG∨Gi)⊗ 1,

which is also zero in the target algebra.

Proposition 3.1.2. The maps FY({G}) satisfy the relations given in Proposition 2.3.2.

Proof. Let G1 < G2 be two comparable elements in G \ {1̂}. We have to check the equality
of algebra morphisms

(FY({G2})⊗ Id) ◦ FY({G1}) = (Id⊗ FY({G1}) ◦ FY({G2}),
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and it is enough to check it on generators. Let G be any element in G. If G ≤ G1 one can
check that both morphisms send hG to 1 ⊗ 1 ⊗ hG. If G ≤ G2 and G � G1 one can see
that both morphisms send hG to 1⊗ hG1∨G ⊗ 1. Lastly, if G � G2 one can check that both
morphisms send hG to hG2∨G ⊗ 1⊗ 1.

Let G1, G2 be two non-comparable elements of G \ {1̂} forming a nested set. We have
to check the equality of algebra morphisms

(FY({G1 ∨G2})⊗ Id) ◦ FY({G1}) = σ2,3 ◦ (FY({G1 ∨G2})⊗ Id) ◦ FY({G2}).

It amounts again to a simple verification on generators with a small dichotomy. Let G be
any element in G. If G ≤ G1 this means that G cannot be below G2 and we see that both
morphisms send hG to 1⊗ 1⊗ hG, if G ≤ G2 by a similar argument both morphisms send
hG to 1⊗hG⊗1. Finally if G is neither below G1 nor below G2 then both morphisms send
hG to hG∨G1∨G2 ⊗ 1⊗ 1.

We can give an explicit formula for general morphisms FY(S). If G is any element in
G let G′ be the unique minimal element of S>G. We then have

FY(S)(hG) = 1⊗ ⊗ hτS(G′)∨G ⊗ 1⊗,

where 1⊗ means that we put a 1 in every interval which is not [τS(Gi0), Gi0 ].

Finally, we need to check that the morphisms FY({G}) satisfy relation (2.8). Let (L,G)
and (L′,G′) be two built lattices and f : (L′,G′) ∼−→ (L,G) an isomorphism in LBS, i.e. an
isomorphism of poset f : L ∼−→ L′ such that f(G) is equal to G′. Let G be an element in
G \ {1̂}. We have to check the equality between algebra morphisms

FY({f(G)}) ◦ FY(f) = (FY(f|[G,1̂])⊗ FY(f|[0̂,G])) ◦ FY({G}).

Let hK be some generator in FY(L,G). If K ≤ G one can check that both morphisms send
hK to 1 ⊗ hf(K). Otherwise if K � G one can check that both morphisms send hK to
hf(G)∨f(K) ⊗ 1.

In the sequel we will write FY when referring to the LBS-cooperad and not just the
algebras. We also write FY∨ for the (linear) dual operad (apply linear duality to all objects
and morphisms). This is an LBS-operad in the category of graded coalgebras.

3.1.2 A quadratic presentation for FY∨

In this section we exhibit a quadratic presentation for the operad FY∨. Let us first quickly
recall what this means in the context of operads over general Feynman categories. This is
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all part of the theory developed by R. Kaufmann and B. Ward in [20].

Let F = (V,F , i) be a Feynman category and M an F-module in some monoidal cate-
gory C (see Definition 2.1.2). If C is cocomplete there exists a “free” F-operad in C gener-
ated by M denoted by F(M). The F-operad F(M) satisfies the universal property that for
any morphism of F-module between M and some F-operad P (viewed as an F-module),
there exists a unique morphism of F-operad between F(M) and P which extends the first
morphism. Concretely, F(M) is given by the left Kan extension of M : Sym(V)→ C along
Sym(ı). The left Kan extension universal property is exactly the freeness universal prop-
erty.

If furthermore F is assumed to be a graded Feynman category and C is a category of
modules for instance, then free operads are naturally graded (i.e. components in all arity
are graded and structural morphisms preserve this grading).

In addition, if we are given an F-operad P and M a sub F-module of P then one can
define the ideal 〈M〉 generated by M in P by considering all possible elements in Pwhich
can be obtained as the composition (along some structural morphism in F) of an element
of M with elements of P. Finally, we can define the quotient of an operad by an ideal in
an obvious way (just take the quotient in each arity and notice that the morphisms pass
to the quotient).

With all those notions at hand we can define a quadratic operad over a graded Feyn-
man category to be the quotient of a free operad by an ideal generated by degree 1 ele-
ments.

Since we have proved that LBS is a graded Feynman category in Section 2.4, this vo-
cabulary applies to LBS-operads.

Let Gen be the LBS-module in the category of graded Z-modules defined by

Gen(L,G) = Z[2(rk(L)− 1)]

and
Gen(f) = Id

for every irreducible built lattice (L,G) and all isomorphism of built lattice f .

If (L,G) is an irreducible built lattice we denote by Ψ(L,G) the canonical generator
of Gen(L,G). We also denote for all irreducible nested sets S of (L,G):

ΨS := LBS(Gen)(S)((Ψ([τS(G),G],Ind(G)))G∈S),
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which is an element of LBS(Gen)(L,G). We are now able to state the main result of this
section.

Proposition 3.1.3. The LBS-operad FY∨ is isomorphic to the quotient of LBS(Gen) by the
ideal generated by the elements ∑

1̂>G≥H1

Ψ{G} −
∑

1̂>G≥H2

Ψ{G}, (3.1)

for all atoms H1, H2 in some irreducible built lattice (L,G).

Proof. We have a map of LBS-modules Gen
π−→ FY∨ sending Ψ(L,G) to the linear form

which is zero in all degrees except degree 2(rk(L) − 1) where it takes value 1 on xrk(L)−1

1̂

(which linearly generates FY2(rk(L)−1)(L,G)).

This map is a natural transformation since for any isomorphism f : (L,G) → (L′,G′)
between built lattices, f preserves the top element and therefore FY(f) preserves hrk(L)−1

1̂
=

x
rk(L)−1

1̂
which implies that FY(f)∨ sends π(Ψ(L,G)) to π(Ψ(L′,G′)).

This map extends to an LBS-operadic map LBS(Gen)
π̂−→ FY∨ (by universal prop-

erty of free operads). Our goal is to prove that this map passes to the quotient by the
elements (3.1) and that the induced morphism is an isomorphism. The proof splits into
three steps.

Step 1: The map π̂ is surjective.

Going back to explicit formulas for general left Kan extensions in cocomplete cate-
gories yields

LBS(Gen)(L,G) =
⊕

⊗i(Li,Gi)→(L,G)

⊗
Gen((Li,Gi))/ ∼ ,

where the sum is over all possible maps ⊗i(Li,Gi) → (L,G) in LBS and the equivalence
relation ∼ identifies components corresponding to equivalent maps (two maps that can
be obtained from one another by precomposing with isomorphisms).

More explicitly if we have two maps ⊗i(Li,Gi)
ψ−→ (L,G) and ⊗i(L′i,G′i)

φ−→ (L,G) such
that there exist isomorphisms fi : (Li,Gi)

∼−→ (L′i,G′i) satisfying

ψ = φ ◦ (⊗ifi)

then we have
⊗iαi ∼ ⊗iGen(fi)(αi)
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for every element⊗αi in⊗iGen((Li,Gi)) (this formula holds for any LBS-module). Like-
wise if we have an equality of the form

ψ = φ ◦ σ

with sigma some permutation of the (Li,Gi)’s then we have

⊗iαi ∼ ⊗iασ(i).

Finally, replacing Gen(L,G) by its definition we get (for every irreducible built lattice (L,G)):

LBS(Gen)((L,G)) = Z〈{⊗i(Li,Gi)→ (L,G)}/ ∼〉

(generators are equivalence classes of maps in LBS having target (L,G), with the equiv-
alence relation being the precomposition with isomorphisms). With this identification the
map π̂ becomes

LBS(Gen)(L,G) −→ FY∨(L,G)

[µ : ⊗i(Li,Gi)→ (L,G)] −→ (α→ ⊗iπ(Ψ(Li,Gi))(FY(µ)(α))).

Let us fix an irreducible built lattice (L,G) and some linear order extending the order on
L. Amongst all maps of the form ⊗i(Li,Gi)→ (L,G) we have the maps given by linearly
ordered nested sets

(LS ,GS)
S−→ (L,G)

whose linear order is given by our chosen global linear order on L. It is enough to prove
the surjectivity of π̂ restricted to equivalence classes of those morphims. Passing to the
dual we must prove the injectivity of the map

FY(L,G) −→ Z〈{irreducible nested sets of (L,G)}〉
α −→ (π(ΨS)(FY(S)(α)))S

(3.2)

where π(ΨS) denotes the tensor product of maps ⊗G∈Sπ(Ψ([τS(G),G],Ind(G))).

Let α be an element of FY(L,G) which is sent to zero by the above map, meaning
that for every nested set S in (L,G) we have π(ΨS)(FY(S)(α)) = 0. We can assume that
α is homogeneous and by Corollary 1.2.4 we can write it uniquely as a sum of normal
monomials

α =
∑
S nested

µS−admissible

λS,µh
µ
S

where hµS denotes the monomial
∏
G∈S h

µ(G)
G . We have to prove that all the λS,µ’s are zero.

Arguing by contradiction, let G0 some element of G which is minimal amongst elements
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belonging to some nested set S such that there exist some S-admissible index µ satisfying
λS,µ 6= 0. We denote by S0 and µ0 the corresponding nested set and index for G0.

For any irreducible built lattice (L,G) and any k < rk, one can construct a nested set
S(L,G, k) having only local intervals with rank 1 except the top interval having rank k,
by picking any maximal chain 0̂ ≺ X1 ≺ .. ≺ Xn ≺ 1̂ in L and putting

S(L,G, k) = {X1} ◦ {X2} ◦ ... ◦ {Xn−k+1}.

The formula makes sense because each Xi is an atom in [Xi−1, 1̂] and must therefore be-
long to Ind[Xi−1,1̂](G). Notice that we have

π̂(ΨS(L,G,k))(h
k−1
1̂

) = 1.

For any nested set S ′ in ([G0, 1̂], Ind(G)) and any nested set S in G with admissible index
µ we have

π̂(Ψ{G}◦(S′,S([0̂,G],Ind(G),µ0(G0)+1))(h
µ
S) = 0

if S does not contain some element with strictly positive index and which is below G0. By
minimality of G0 this means that we have

π̂(Ψ{G}◦(S′,S([0̂,G],Ind(G),µ0(G0)+1))(α) =
∑
S nested

µS−admissible
µ(G0)=µ0(G0)

λS,µπ̂(Ψ{G}◦(S′,S([0̂,G],Ind(G),µ0(G0)+1))(h
µ
S)

=
∑
S nested

µS−admissible
µ(G0)=µ0(G0)

λS,µπ̂(ΨS′)(h
µ
G0∨S/h

µ(G0)
G0

)

= 0.

One can check that the monomials hµG0∨S/h
µ(G0)
G0

are normal monomials in the irreducible
built lattice ([G, 1̂], Ind(G)). By induction we get that λS0,µ0 is equal to zero which is a
contradiction.

Remark 3.1.4. Let us remark that for any irreducible nested set S the linear form

π̂(ΨS) ◦ FY(S) : FY(L,G)→ Z

is zero on FYk(L,G) for k different from 2(rk(L) − #S), and for k = 2(rk(L) − #S) one
can check that it is equal to the multiplication by xS\{1̂}, via the identification

FY(L,G)2(rk(L)−1) ' Z
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(given by choosing the generator xrk(L)−1). The injectivity of the map (3.2) can be rewritten
as the condition that for all element α ∈ FY2k(L,G), if αxS = 0 for all nested set S ⊂ G\{1̂}
of cardinal rk(L) − 1 − k, then α = 0. In other words the Feichtner–Yuzvinsky algebras
satisfy Poincaré duality.

Step 2: The map π̂ sends the elements (3.1) to zero.

We must check that the linear forms

φH = π̂

 ∑
1̂>G≥H

LBS(Gen)({G})
(

Ψ([G,1̂],Ind(G)),Ψ([0̂,G],Ind(G))

)
indexed by atoms H are in fact all equal and it is enough to check it on normal monomi-
als. Those linear forms are zero in degree other than 2(rk(L) − 2). Fortunately, normal
monomials of degree 2(rk(L)− 2) are rather simple.

Lemma 3.1.5. For any irreducible built lattice (L,G), the only degree 2(rk(L)−2) normal mono-

mials are the monomials hrk(G)−1
G h

rk(1̂)−rk(G)−1

1̂
with G any element of G (when G is an atom we

get the monomial hrk(L)−2

1̂
).

Proof. The proof hinges on the following result.

Lemma 3.1.6. Let S be a nested set containing 1̂ in some irreducible built lattice (L,G). We have
the equality ∑

G∈S
rk([τS(G), G]) = rk(L).

Proof. The proof goes by induction on the rank of L. Let G0 be a minimal element in S.
G0 ∨ (S \ {G0}) is a nested set in ([G0, 1̂], Ind(G)) so by induction hypothesis the sum
of the rank of its intervals is the rank of [G0, 1̂] but by nestedness of S taking the join
with G0 establishes a bijection between intervals of S which are not the interval [0̂, G0]
and intervals of G0 ∨ (S \ {G0}), and this bijection preserves the rank of the intervals.
Consequently, by induction we have∑

G∈S
rk([τS(G), G]) = rk([0̂, G0]) +

∑
G∈S\{G0}

rk([τS(G), G])

= rk([0̂, G0]) + rk([G0, 1̂])

= rk(L).
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Now if S is any irreducible nested set then the degree of any normal monomial of the
form h

µ(S)
S for some S-admissible index is at most

∑
G∈S rk([τS(G), G])− 1 which is equal

by the previous lemma to rk(L) − |S|. This means that to have degree 2(rk(L) − 2) the
cardinality of S must be at most two (counting 1̂) which proves the result. For normal
monomials with underlying nested set not containing 1̂ we just add 1̂ to the nested set
and follow the same line of argument.

Let hrk(G)−1
G h

rk(L)−rk(G)−1

1̂
be any degree 2(rk(L) − 2) normal monomial and H some

atom. Going back to the definition of φH we get

φH(h
rk(G)−1
G h

rk(L)−rk(G)−1

1̂
) =∑

G′≥H
(π(Ψ[G′,1̂])⊗ π(Ψ[0̂,G′]))

(
FY({G})(hrk(G)−1

G h
rk(L)−rk(G)−1

1̂
)
)
.

If H ≤ G then the only term which is not zero in this sum is the term G′ = G which gives

φH(h
rk(G)−1
G h

rk(1̂)−rk(G)−1

1̂
) = (π(Ψ[G,1̂])⊗ π(Ψ[0̂,G]))

(
FY({G})(hrk(G)−1

G h
rk(1̂)−rk(G)−1

1̂
)
)

= (π(Ψ[G,1̂])⊗ π(Ψ[0̂,G]))
(
h

rk(1̂)−rk(G)−1

1̂
⊗ hrk(G)−1

G

)
= 1.

If H � G the only term which is not zero in this sum is the term G′ = H which gives

φH(h
rk(G)−1
G h

rk(1̂)−rk(G)−1

1̂
) = (π(Ψ[H,1̂])⊗ π(Ψ[0̂,H]))

(
FY({H})(hrk(G)−1

G h
rk(1̂)−rk(G)−1

1̂

)
= (π(Ψ[H,1̂])⊗ π(Ψ[0̂,H]))

(
h

rk(G)−1
G∨H h

rkL−rk(G)−1

1̂
⊗ 1
)

(3.3)

= π(Ψ[H,1̂])
(
h

rk(G)−1
G∨H h

rkL−rk(G)−1

1̂

)
.

The monomial in the last equation is not a normal monomial in the irreducible built lattice
([H, 1̂], Ind(G)) and therefore we must rewrite it. By geometricity of L there exist atoms
H1, ...,Hrk(L)−rk(G)−1 such that 1̂ is equal to the join ofG∨H with those atoms. This means
that we have the relation

(h1̂ − hG∨H)(h1̂ − hH1)...(h1̂ − hHrk(L)−rk(G)−1
) = 0

in the algebra FY([H, 1̂], Ind(G)), and replacing the hHi ’s by zero we get

h
rk(L)−rk(G)

1̂
= h

rk(L)−rk(G)−1

1̂
hG∨H

which implies
h

rk(G)−1
G∨H h

rk(L)−rk(G)−1

1̂
= h

rk(L)−2

1̂
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This equality together with equation (3.3) leads directly to

φH(h
rk(G)−1
G h

rk(1̂)−rk(G)−1

1̂
) = 1

as in the case H ≤ G, which proves that φH does not depend on H .

Step 3: The kernel of π̂ is generated by the relations (3.1).

We postpone the proof of this last step to Subsection 4.5, where it will be an application
of our theory of Gröbner bases for LBS-operads.

3.2 The Feichtner–Yuzvinsky operad

One can define another operad out of the Feichtner–Yuzvinsky algebras as follow. Let
(L,G) be any irreducible built lattice. We put

FYPD(L,G) := FY(L,G).

For any isomorphism of built lattice f : (L,G)
∼−→ (L′,G′) we define

FYPD(f) : FY(L,G) −→ FY(L′,G′)
xG −→ xf−1(G)

and for any G ∈ G \ {1̂}we put

FYPD({G}) : FYPD([G, 1̂], Ind(G))⊗ FYPD([0̂, G], Ind(G)) → FYPD(L,G)∏
i x

αi
G′i
⊗
∏
j x

αj
Gj

→ xG
∏
i x

αi
CompG(G′i)

∏
j x

αj
Gj

if all the Gj ’s are different from G.

Let us show that this morphism is well-defined. For any antichain {Gi} below G and
such that

∨
iGi belongs to G we have

FYPD(1⊗
∏
i

xGi) = xG
∏
i

xGi = 0.

For any antichain {G ∨Gi} in Ind[G,1̂](G) having join G′ in Ind[G,1̂](G) we have

FYPD(
∏
i

xG∨Gi ⊗ 1) = xG
∏
i

xCompG(G∨Gi) = 0

because either G′ belongs to G and the elements {G,CompG(G ∨ Gi)} have join G′ in G,
either G′ does not belong to G and the elements CompG(G ∨Gi) have join CompG(G′).
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For any atom H below G we have

FYPD(1⊗
∑
G′≥H
G′<G

xG′) =
∑
G′≥H
G′<G

xGxG′

= xG(hH −
∑
G′≥G

xG′ −
∑

G′,G incomparables

xG′)

= xG(−
∑
G′≥G

xG′ −
∑

G′,G incomparables

xG′),

which does not depend on H .

Finally, if G ∨H is an atom in [G, 1̂], either G ∨H belongs to G in which case we have

FYPD({G})(hH ⊗ 1̂) = xGhG∨H = 0,

either G ∨H does not belong to G in which case we have

FYPD({G})(hH ⊗ 1̂) = xGhH = 0.

Our next order of business is to prove that those morphisms satisfy the relations in Propo-
sition 2.3.2. Let (L,G) be some irreducible built lattice. If G1 and G2 are two non compa-
rable elements forming a nested set in G \ {1̂}, one can check that both

FYPD({G1}) ◦ (FYPD({G1 ∨G2})⊗ Id)

and
FYPD({G2}) ◦ (FYPD({G1 ∨G2})⊗ Id) ◦ σ2,3

send
∏
i xGi ⊗

∏
j xG′j ⊗

∏
k xG′′k to xG1xG2

∏
i xCompG1∨G2

(Gi)

∏
j xG′j

∏
k xG′′k .

If G1 < G2 < 1̂ one can check that both

FYPD({G1}) ◦ (FYPD({G2})⊗ Id)

and
FYPD({G2}) ◦ (Id⊗ FYPD({G1}))

send
∏
i xGi ⊗

∏
j xG′j ⊗

∏
k xG′′k to xG1xG2

∏
i xCompG2

(Gi)

∏
j xCompG1

(G′j)

∏
k xG′′k .

Finally, if f : (L,G)
∼−→ (L′,G′) is an isomorphism of irreducible built lattice and G′ is

some element in G′, one can check that both

FYPD(f) ◦ FYPD({f(G′)})
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and
FYPD({G′}) ◦ (FYPD(f|[G′,1̂])⊗ FY

PD(f[0̂,G′]))

send
∏
i xGi ⊗

∏
j xG′j to xG′

∏
i xf−1(Compf(G′)(Gi))

∏
j xf−1(G′j)

.

The operads FY and FYPD are strongly related via Poincaré duality. If we denote
by PD the isomorphism FY(L,G)

∼−→ FY(L,G)∨ given by Poincaré duality we have the
equality between morphisms

FYPD({G}) = PD−1 ◦ FY∨({G}) ◦ (PD⊗ PD).

3.3 The affine Orlik–Solomon cooperad

In this section we introduce an LBS-cooperadic structure on the Orlik–Solomon algebras,
which extends the linear dual of the Gerstenhaber operad (defined on partition lattices
with minimal building set).

3.3.1 Definition

Let (L,G) be an irreducible built lattice. For all G ∈ G \ {1̂} we define a morphism of
algebras OS({G}) : OS(L) → OS([G, 1̂])⊗OS([0̂, G]) by

OS({G})(eH) =

{
1⊗ eH if H ≤ G
eG∨H ⊗ 1 otherwise,

for every generator eH .

Lemma 3.3.1. The morphism OS({G}) is well defined.

Proof. We have to check that OS({G}) vanishes on elements of the form δcircuit. Let C =
{Hi} t {H ′j} be a circuit with the Hi’s below G and the H ′j ’s not below G. We have

OS({G})(δ(
∏

C)) = OS({G})(δ(
∏

eHi ∧
∏

eH′j ))

= OS({G})(δ(
∏

eHi) ∧
∏

eH′j ±
∏

eHj ∧ δ(
∏

eH′j )) (3.4)

= δ(
∏

eHi)⊗
∏

eG∨H′j ±
∏

eHj ⊗ δ(
∏

eG∨H′j ).

If the Hi’s form a set of dependent atoms of L then we have δ(
∏
eHi) =

∏
eHi = 0

(these identities holding in both OS(L) and OS([0̂, G])). If on the contrary the Hi’s form
a set of independent atoms, by the fact that C is dependent there exists an atom H ′j0 in
C which is below

∨
Hi ∨

∨
j<j0

H ′j . By taking the join with G in this relation we obtain
G∨H ′j0 ≤ G∨

∨
j<j0

H ′j which implies that the G∨H ′j ’s form a set of dependent atoms of
[G, 1̂] which shows that we have δ(

∏
eG∨H′j ) =

∏
eG∨H′j = 0 in the algebra OS([G, 1̂]).
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Lemma 3.3.2. OS extends to an LBS-cooperad of graded commutative algebras.

Proof. On objects we set OS(L,G) = OS(L) for every built lattice (L,G). For structural
morphisms we use the morphisms OS({G}) introduced above on each generator of LBS
(one-element nested sets). On isomorphisms the action is

OS(L,G)→ OS(L′,G′)
eH → ef(H)

for any isomorphism f : (L′,G′) ∼−→ (L,G) in LBS (an isomorphism of posets must pre-
serve the atoms).

We have to check that those morphisms satisfy the relations given in Proposition 2.3.2.
Let G1 ≤ G2 < 1̂ be two comparable elements in the building set G of a lattice L. Let us
prove the equality of morphisms

(Id⊗OS({G1})) ◦OS({G2}) = (OS({G2})⊗ Id) ◦OS({G1}).

Since we are dealing with morphisms of algebras it is enough to prove the equality on
generators which amounts to a simple verification. For any atom H in L, if H ≤ G1 then
both morphisms send eH to 1⊗1⊗ eH . If H ≤ G2 and H � G1 then both morphisms send
eH to 1⊗ eG1∨H ⊗ 1. Lastly, if H � G2 then both morphisms send eH to eG2∨H ⊗ 1⊗ 1.

Let G1 and G2 be two non-comparable elements of G \ {1̂} forming a nested set. We
have to show the equality of morphisms

(OS({G1 ∨G2})⊗ Id) ◦OS({G2}) = σ2,3 ◦ (OS({G1 ∨G2})⊗ Id) ◦OS({G1}).

For any atom H in L, if H ≤ G1 then by nestedness H � G2 and consequently both mor-
phisms send eH to 1 ⊗ eH ⊗ 1. If H ≤ G2 then by the same argument both morphisms
send eH to 1 ⊗ 1 ⊗ eH . Finally if H � G1 and H � G2 then both morphisms send eH to
eG1∨G2∨H ⊗ 1⊗ 1 which finishes the proof.

Lastly, we need to prove the equality

OS({f(G)}) ◦OS(f) = (OS(f|[G,1̂])⊗OS(f|[0̂,G])) ◦OS({G})

for every isomorphism f : (L′,G′) ∼−→ (L,G) in LBS and G ∈ G \{1̂}. For any atom H of L,
if H ≤ G then both morphisms send eH to 1 ⊗ ef(H). If on the contrary H � G then both
morphisms send eH to ef(G)∨f(H) ⊗ 1.

Finally, one can check that OS is strong monoidal, which finishes the proof.
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Chapter 4

Gröbner bases for operads over LBS

In this section we develop a theory of Gröbner bases for operads over LBS.

Classical Gröbner bases [3] are a computational tool which is used to work out quo-
tients of free associative algebras. The general idea is to start by introducing an order on
generators of the free algebra. This order is then used to derive an order on all monomi-
als, which is compatible in some sense with the multiplication of monomials (we call such
orders “admissible”).

We then use this order to rewrite monomials in the quotient algebra:

greatest term −→
∑

lower terms,

for every relation R = greatest term −
∑

lower terms in some subset B of the quotient
ideal (usually the greatest term is called the “leading term” and we will use this denomi-
nation).

The subset B is called a Gröbner basis when it contains “enough” elements. More pre-
cisely we want that every leading term of some relation in the quotient ideal is divisible
by the leading term of some element of B.

The goal is to find a Gröbner basis as little as possible so that the rewriting is as easy
as possible. At the end of the rewriting process (which stops if the monomials are well-
ordered) we are left with all the monomials which are not rewritable i.e. which are not
divisible by a leading term of some element of B. Those monomials are called “normal”
and they form a linear basis of our algebra exactly when B is a Gröbner basis. This basis
comes with multiplication tables given by the rewriting process.

77
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It turns out that this general strategy can be applied to structures which are much more
general and complex than associative algebras, such as operads for instance. Loosely
speaking, all we need in order to implement this strategy is to be able to make (reason-
able) sense of the key words used above, such as “monomials”, “admissible orders” and
“divisibility between monomials”.

For operads over a Feynman category, the only non-trivial part is to construct admissi-
ble orders on monomials out of orders on generators. The main issue comes from the sym-
metries, because usually the compatibility with symmetries is too strong and prevents us
from finding any admissible order. In order to circumvent this problem, drawing inspira-
tion from the case of classical operads which was sorted out by Dotsenko and Khoroshkin
in [11], we introduce a notion of a “shuffle” operad over LBS.

4.1 Shuffle operads over LBS

We could directly define a shuffle LBS-operad to be an LBS-operad without symme-
tries but this definition would not be completely satisfactory, in particular when trying to
find an admissible order on nested sets. Essentially, we would like to have a bit more data
than just built lattices to construct those orders in a functorial way (for instance in the case
of shuffle operads the new important data is the linear ordering of the entries, see [11]).

In view of what has just been said we make the following definition.

Definition 4.1.1. A directed built lattice is a triple (L,G,C) where (L,G) is a built lattice and
C is a linear order on atoms of L. A directed built lattice (L,G,C) is said to be irreducible
if (L,G) is irreducible.

We are going to do the same construction all over again but with directed built lattices
instead of built lattices.

Definition 4.1.2. Let (L,G,C) be a directed built lattice and [G1, G2] be an interval of L.
The interval [G1, G2] admits an induced directed built lattice structure given by the build-
ing set Ind[G1,G2](G) and the linear order Cind defined by

K1 Cind K2 ⇔ min {H |G1 ∨H = K1, H atom} C min {H |G1 ∨H = K2, H atom} (4.1)

for any pair of elements K1, K2 covering G1 (i.e. atoms of [G1, G2]).

Both minima in (4.1) are well defined by geometricity of L. As in the case of built
lattices, doing a double induction is the same as doing a single induction directly on the
smallest interval (Lemma 1.1.15).
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Definition 4.1.3. The monoidal product ⊗ on directed built lattices is defined by

(L1,G1,C1)⊗ (L2,G2,C2) = (L1 × L2,G1 × {0} t {0} × G2,C)

where C is defined by putting all the atoms of L1 before the atoms of L2.

As a quick reminder, for any nested set S and G an element of S we have defined in
Subsection 2.2 the notation τS(G) :=

∨
S<G. If S is an (ordered) nested set in a directed

built lattice (L,G,C) we denote

(LS ,GS ,CS) :=
⊗
G∈S

([τS(G), G], Ind(G),Cind).

We are now able to make the following definition.

Definition 4.1.4. The Feynman category LBSX is the triple (V,F , ı) where

• The objects of the groupoid V are the directed irreducible lattices and its morphisms
are defined by

MorV((L,G,C), (L′,G′,C′)) = {f : L′ ∼−→ L | f poset isomorphism,
increasing with respect to C and C′ and such that f(G′) = G}.

• The objects of the category F are monoidal products of directed built lattices and

its morphisms are given by structural morphisms (LS ,GS ,CS)
S−→ (L,G,C) together

with the tensored isomorphisms of V and the permutations of monoidal summands,
quotiented by the relations

S ◦ σ ∼ σ · S

for every ordered nested set S in some directed irreducible nested set and σ some
permutation of the summands of (LS ,GS ,CS) acting on S by changing the order of
the elements.

• The functor ı is the obvious inclusion.

We define the composition of nested sets in this context exactly as it was defined in
Section 2.2. In subsequent sections a shuffle LBS-operad will mean an operad over the
Feynman category LBSX.

4.2 Monomials and divisibility

In order to be able to talk about Gröbner bases one needs a suitable notion of “monomials”
in a free LBSX-operad as well as a notion of divisibility between those monomials. Let
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M be a module over LBSX in some category of vector spaces over some field. We have
defined in Section 3.1.2 the free LBSX-operad LBSX(M) generated by the module M .
By the same analysis conducted in the latter section we have the explicit formula for each
directed irreducible built lattice (L,G,C):

LBSX(M)(L,G,C) =
⊕
S⊂G

S nested set

⊗
G∈S

M([τS(G), G], Ind(G),Cind). (4.2)

If furthermore we are given a basis B(L,G,C) of every vector space M(L,G,C) then we
can make the following definition.

Definition 4.2.1 (Monomial). A monomial in LBSX(M) is an element which is a tensor of
elements of the basis

⊔
(L′,G′,C′) B(L′,G′,C′).

In other words a monomial corresponds to the datum (S, (eG)G∈S) of a nested set S
and elements of the basis eG ∈ B([τS(G), G], Ind(G),Cind) for each G in S . Monomials
are stable under composition in LBSX(M) and by (4.2) they form a basis of every vector
space LBSX(M)(L,G,C). Additionally, we have a notion of divisibility between mono-
mials.

Definition 4.2.2 (Division between monomials). Let m1 and m2 be two monomials in
some arity LBSX(M)(L,G,C). We say that m1 divides m2 if m2 can be expressed as a
composition:

m2 = LBSX(M)(S)((αG)G∈S)

for some nested set S, where one of the αG’s is m1 and the rest are elements of the basis⊔
(L,G,C)B(L,G,C).

4.3 An admissible order on monomials

Let M be an LBSX-module, with a basis B(L,G,C) of M(L,G,C) for each (L,G,C).
Assume that we have a total order a of those bases in each arity. In this section we will
construct an order on monomials induced by a, which is compatible with the composition
of monomials in the sense of Proposition 4.3.6. We start by defining a total order C∗ on
L, induced by the direction C. For any element G in L we denote by w(G) the word in
the alphabet At(L) (the set of atoms of L) given by the list of atoms below G in increasing
order.

Definition 4.3.1. Given two elements G1, G2 in L, we say G1 C∗ G2 if w(G2) is an initial
subword of w(G1), or if w(G1) is less than w(G2) for the lexicographic order.

There are a few important lemmas/remarks to be made about this order. First we
prove that C∗ is compatible with the already existing order on L.
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Lemma 4.3.2. The total order C∗ extends the reversed lattice order on L.

Proof. Let G1 < G2 be two comparable elements in G, such that w(G1) is not an initial
subword of w(G2). One can write

w(G1) = uH1w1

w(G2) = uH2w2

with u,w1, w2 some words in the alphabet At(L) and H1, H2 two different atoms. Since
we have At≤(G1) ⊂ At≤(G2) we immediately get H2 C H1 which shows that w(G2) is
smaller than w(G1) for the lexicographic order.

Next we prove that C∗ behaves well with respect to restriction to intervals.

Lemma 4.3.3. Assume we are given an interval [G1, G2] in some irreducible directed built lattice
(L,G,C). The two total orders C∗ind and C∗|[G1,G2] on [G1, G2] are the same.

Proof. Since we are comparing two total orders we only need to prove one implication,
for instance K C∗|[G1,G2] K

′ ⇒ K C∗ind K
′. If w(K ′) is included in w(K) then this means

that we have K ′ ≤ K which proves that we have K C∗ind K
′ by the previous lemma. If

not then one can write w(K) = uHw and w(K ′) = uH ′w′ with u, w and w′ some words
and H C H ′ two atoms of L. The atom H cannot be below G1 otherwise H would also be
a letter in w(K ′). If H ′ is below G1 then let H ′′ be the first letter bigger than H ′ in w(K ′)
which is not belowG1 and such thatG1∨H ′′ does not belong toG1∨u (such a letter exists
because we have assumed that w(K ′) is not included in w(K)). In this case one can write

w[G1,G2](K) = v(G ∨H)t

w[G1,G2](K
′) = v(G ∨H ′′)t′

with v, t, t′ some words in At([G1, G2]). This implies that we have K C∗ind K
′.

Finally, we prove that C∗ is compatible with the join in L.

Lemma 4.3.4. Let G, G1 and G2 be three elements in L such that FactG(G1) and FactG(G2) are
both disjoint from FactG(G) and such that FactG(G1) ∪ FactG(G) and FactG(G2) ∪ FactG(G)
are both nested antichains. Then we have the equivalence

G1 C
∗ G2 ⇔ G ∨G1 C

∗ G ∨G2.

Proof. Let us start by proving the direct implication. If G1 > G2 then we have G ∨ G1 >
G ∨ G2 (the strictness coming from the nestedness condition) which proves the result by
Lemma 4.3.2. Otherwise write w(G1) = uH1w1 and w(G2) = uH2w2 where u, w1 and w2
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are some words and H1 is strictly smaller than H2. By the nestedness condition in the
proposition we have

w(G ∨G1) = sh(w(G), w(G1)),

w(G ∨G2) = sh(w(G), w(G2)),

where sh(·, ·) is the operation which merges two given words with increasing letters into
a word with increasing letters. From this we see that one can write

w(G ∨G1) = u′H1w
′
1,

w(G ∨G2) = u′H ′2w
′
2,

with u′,w′1,w′2 some words andH ′2 an atom ofL. IfH ′2 is inw(G) thenH1 is strictly smaller
than H ′2 (otherwise H ′2 would belong to u′). If on the contrary H ′2 belongs to w(G2) then
H ′2 is equal to H2 and H1 is strictly smaller than H ′2.

For the converse, assume we have G ∨ G1 C∗ G ∨ G2. If G ∨ G2 < G ∨ G1 then
G2 < G1 by nestedness which implies G1 C∗ G2 by Lemma 4.3.2. Otherwise, write
w(G ∨ G1) = uH1w1 and w(G ∨ G2) = uH2w2 for u,w1, w2 some words and H1 strictly
smaller thanH2. One can check thatH1 necessarily belongs tow(G1) which means that we
can write w(G1) = u′H1w

′
1 and w(G2) = u′H ′2w

′
2 where H ′2 is the first letter of w(G ∨ G2)

which belongs to w(G2) and which comes after H2. We immediately get H1 C H2 E H ′2
which finishes the proof.

For any monomial m = (S, (eG)G) and G0 some element in min≤ S, we denote

G0 ∨m := (G0 ∨ (S \ {G0}), (eCompG0
(G))G),

which is a well-defined monomial in LBSX(M)([G0, 1̂], Ind(G),Cind), by Lemma 2.2.9.
For any nested set S we denote MM(S) := minC∗a min≤ S.

Definition 4.3.5 (An admissible order on monomials). We define a total order C∗a on
monomials in the following inductive way. Form1 = (S1, (e

1
G)G∈S1) andm2 = (S2, (e

2
G)G∈S2)

we put m1 C∗a m2 if there exists some G in min≤ S1 ∩ min≤ S2 such that e1
G = e2

G and
G∨m1 C∗a G∨m2, or if there is no such G and MM(S1) C∗ MM(S2) or MM(S1) = MM(S2)
and e1

MM(S1) a e
2
MM(S2).

One can check that this definition does not depend on the choice of the element G
because if we have two different elementsG andG′ in min≤ S1∩min≤ S2 such that e1

G = e2
G

and e1
G′ = e2

G′ then we have the equality of monomials

(G ∨G′) ∨ (G ∨mi) = (G ∨G′) ∨ (G′ ∨mi)

for i = 1, 2. If there is no ambiguity on the order awe write C∗ instead of C∗a.
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Proposition 4.3.6. The order on monomialsC∗ is compatible with the composition of monomials.
More precisely, if S is any nested set in some directed irreducible built lattice (L,G,C) and we have
some generators eG ∈ B([τS(G), G], Ind(G),Cind) for all G in S except for G0 in S where we
have monomials m1 = (S1, (e

1
G)G),m2 = (S2, (e

2
G)G) ∈ LBSX([τS(G0), G0], Ind(G),Cind ),

with #S1 = #S2, then we have

m1 C
∗ m2 ⇒ LBSX(M)(S)((eG)G,m1) C∗ LBSX(M)(S)((eG)G,m2).

Proof. The proof goes by induction on #S + #S1. The initialization at #S = 0 or #S1 = 0
is obvious. The induction step is a consequence of Lemma 4.3.4.

Since every element in a free LBSX-operad can be uniquely written as a sum of
monomials, we can make the following definition.

Definition 4.3.7 (Leading term). If f is an element in some free LBSX-operad with total
order on generators a then the leading term of f , denoted by Lt(f), is the biggest monomial
with respect to C∗a which has a non-zero coefficient in f .

At last, everything has been leading to the following definition.

Definition 4.3.8 (Gröbner basis). Let I be an operadic ideal in some free LBSX-operad
LBSX(M), where M is some LBSX-module in some category of vector spaces which is
endowed with a basis and a well-order a of this basis in each arity. A Gröbner basis of I
relative to a is a subset B of I such that every leading term relative toC∗a of some element
of I is divisible by the leading term of some element of B.

A Gröbner basis is said to be quadratic if it contains only degree 1 elements.

Definition 4.3.9 (Normal monomial). A normal monomial with respect to some set of el-
ements B is a monomial which is not divisible by the leading term of some element in
B.

Proposition 4.3.10. The set of normal monomials with respect to some set of elements B in an
ideal I ⊂ LBSX(M) linearly generates LBSX(M)/I in every arity. This set of monomials is
linearly independant if and only if B is a Gröbner basis of I.

Proof. The proof is the same as in every other context where we have a notion of Gröb-
ner basis. Let us just point out that since the basis is well ordered one can see that the
monomials are well ordered as well.

4.4 Relating LBS-operads and shuffle LBS-operads

There is an obvious functor between Feynman categories:

X : LBSX → LBS

(L,G,C)→ (L,G)

S → S.
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This allows us to define a forgetful functor from LBS-operads/modules to shuffle LBS-
operads/modules by precomposition.

Definition 4.4.1. For any LBS-operad (resp. module) P we define the shuffle LBS-
operad (resp. module) PX by

PX := P ◦X.

As in the classical operadic case this functor enjoys very nice properties which are
listed and proved below.

Proposition 4.4.2. 1. For any LBS-module M we have an isomorphism of shuffle operads:

LBSX(MX) ' LBS(M)X. (4.3)

2. Let R be a sub-LBS-module in some free LBS-operad LBS(M) with M some LBS-
module. The LBS-module RX can be identified with a sub-LBSX-module of the free
LBSX-operad LBSX(MX). The LBSX-module 〈R 〉X can be identified with an ideal
of LBS(Gen)X. The isomorphism (4.3) sends (via identifications) the (shuffle) ideal 〈RX〉
to the shuffle ideal 〈R 〉X. As a consequence we have the isomorphism of LBSX-operads

LBSX(MX)/〈RX〉
∼−→ LBS(M)X/〈R 〉X.

3. Lastly, we have an isomorphism of shuffle operads

LBS(M)X/〈R 〉X ' (LBS(M)/〈R 〉)X .

Proof. 1. By the definition of left Kan extensions we have a morphism of LBS-modules

M → LBS(M).

Applying the forgetful functor we get a morphism of LBSX-modules

MX → LBS(M)X.

By universal property of free LBSX-operads (which comes from the universal
property of left Kan extensions) we get a morphism of LBSX-operads

LBSX(MX)→ LBS(M)X.

Let us take a closer look at this morphism.

By unpacking the construction of free operads (left Kan extensions) we get the fol-
lowing formula for every irreducible directed built lattice (L,G,C):

LBSX(MX)(L,G,C) '
⊕
S⊂G

S irreducible
nested set

MS .
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We also have

LBS(M)X(L,G,C) = LBS(M)(L,G) =

 ⊕
⊗i(Li,Gi)→(L,G)

⊗
i

M(Li,Gi)

 / ∼

where∼ identifies components corresponding to equivalent maps via isomorphisms,
as explained at the beginning of the proof of Theorem 3.1.3. The above morphism
sends the component M(S) to the equivalence class of the component M(S).

However by Lemma 2.3.3 the nested sets in S with linear order C∗ form a system
of representatives for the equivalence classes of morphisms which means that the
above morphism is indeed a linear isomorphism in each arity.

2. For the first identification if we start with the injective morphism R ↪→ LBS(M),
then apply the forgetful functor (which preserves injective morphisms since it is the
right adjoint to left Kan extension), and then compose with isomorphism (4.3) we get
an injective morphism RX ↪→ LBSX(MX). For the second identification we have
an injective morphism 〈R 〉 ↪→ LBS(M) and applying the forgetful functor gives
us an injective morphism 〈R 〉X ↪→ LBS(M)X. By unraveling again the explicit
description of isomorphism (4.3) we see that it sends the shuffle ideal 〈RX〉 to the
shuffle ideal 〈R 〉X.

3. We have an obvious identification of components in each arity between the two
shuffle operads and one can check that this identification is operadic.

4.5 Application: the example of FY∨

We have proved in Subsection 3.1.2 that if Gen is the LBS-module with one generator
Ψ(L,G) of degree 2(rk(L) − 1) in each arity (L, G), and I is the ideal generated by the
elements∑

G.≥H1

LBS(Gen)({G})(Ψ([G,1̂],Ind(G)),Ψ([0̂,G],Ind(G)))−∑
G≥H2

LBS(Gen)({G})(Ψ([G,1̂],Ind(G)),Ψ([0̂,G],Ind(G))) (4.4)

for each pair of atoms H1 and H2, then we have a surjective morphism of LBS-operads:

LBS(Gen)/I π−→ FY∨.
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Let us denote by R the linear span of the elements (4.4), which is a sub LBS-module of
LBS(Gen). By Proposition 4.4.2 we have an isomorphism of shuffle LBS-operads

LBSX(GenX)/〈RX〉
∼−→ LBS(Gen)X/〈R 〉X.

Let us use our theory of Gröbner bases for shuffle LBS-operads to study the operad
LBSX(GenX)/〈RX〉. Notice that RX is just the linear span of elements of the form∑

G≥H1

LBSX(GenX)({G})(Ψ([G,1̂],Ind(G)),Ψ([0̂,G],Ind(G)))−∑
G≥H2

LBSX(GenX)({G})(Ψ([G,1̂],Ind(G)),Ψ([0̂,G],Ind(G))).

We denote by B the set of those elements, and we put

ΨS := LBSX(GenX)(S)((Ψ([τS(G),G],Ind(G)))G∈S).

By applying the same arguments as in the proof of Theorem 3.1.3 we get a surjective
morphism of LBSX-operads.

LBSX(GenX)/〈RX〉 −→ FY∨X. (4.5)

We will compute the normal monomials associated to B and find that they have the
desired cardinality, which will prove that B forms a Gröbner basis of 〈RX〉, and that mor-
phism (4.5) is an isomorphism.

To describe those monomials in a natural way we introduce a classical tool in poset
combinatorics called “EL-labeling”.

Definition 4.5.1 (EL-labeling). LetP be a finite poset with set of covering relations Cov(P ).
An EL-labeling of P is a map λ : Cov(P ) → N such that for any two comparable elements
X < Y in P there exists a unique maximal chain going from X to Y which has increas-
ing λ labels (when reading the covering relations from bottom to top) and this unique
maximal chain is minimal for the lexicographic order on maximal chains (comparing the
words given by the successive λ labels from bottom to top).

We refer to [33] for more details on this notion. The main result we will use about
EL-labelings is the following.

Proposition 4.5.2. Let L be a geometric lattice. Any linear ordering H1 C ... C Hn of the atoms
of L induces an EL-labeling λC of L defined by

λC(X ≺ Y ) = min{i |X ∨Hi = Y }

for any covering relation X ≺ Y in L.



4.5. APPLICATION: THE EXAMPLE OF FY∨ 87

Proof. The proof of this result can be found in [33].

If λ is an EL-labelling of some poset P and X < Y are two comparable elements we
denote by ωX,Y,λ the unique maximal chain from X to Y which has increasing λ labels. If
the EL-labelling can be deduced from the context we will drop it from the notation.

We also define ωkX,Y,λ to be the the chain ωX,Y,λ truncated at height k for any positive
integer k which is less than the length of ωX,Y,λ. More precisely if ωX,Y,λ = {X0 = X ≺
X1 ≺ ... ≺ Xn = Y } then ωkX,Y,λ := {X0 ≺ ... ≺ Xk}.

We will also need a new definition in nested set combinatorics.

Definition 4.5.3 (Cluster). An irreducible nested set S is called a cluster if all its local
intervals except possibly the top one have rank 1. A cluster is said to be proper if its top
interval has rank strictly greater than 1.

Clusters can be constructed out of truncated maximal chains in the following way. If
ω is a chain ω = {X0 = 0̂ ≺ X1 ≺ ... ≺ Xn} in some built geometric lattice L then we put:

S(ω) := {X1} ◦ {X2} ◦ ... ◦ {Xn},

which is a cluster. This formula makes sense even if the Xi’s do not belong to G because
each Xi covers Xi−1 and therefore is an atom in [Xi−1, 1̂] which must belong to the in-
duced building set.

We can finally state the main result of this section.

Proposition 4.5.4. The normal monomials with respect to B in arity (L,G,C) are the monomials
of the form

LBSX(GenX)(S)

(
ΨS(ω

kG
τS (G),G,λC

)

)
where S is some nested set without any rank 1 intervals and the kG’s are integers strictly less
than rk([τS(G), G]) − 1, except k1̂ which can be equal to rk([τS(1̂), 1̂]) − 1. Furthermore this
decomposition is unique.

Proof. We start with the following lemma.

Lemma 4.5.5. Any irreducible nested set S in some irreducible built lattice can be written as

S = S ′ ◦ (S ′G′)G′∈S′

where S′ is an irreducible nested set with no rank 1 intervals and the S ′G′s are proper clusters
except S1̂ which is any cluster.

The nested set S ′ will be called the frame of S and denoted by fr(S).
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Proof. We put fr(S) = {G ∈ S s.t. rk([τS(G), G]) > 1} ∪ {1̂} and conclude by Lemma
2.2.9.

Now let us proceed with the proof of the statement. We denote by M(L,G,C) the
normal monomials with respect to B in arity (L,G,C) and M′(L,G,C) the monomials of
the form

LBSX(Gen)(S)

(
Ψ
ω
kG
τS (G),G,λC

)
.

Our goal is to show the equality M(L,G,C) = M′(L,G,C) for all irreducible directed built
lattice (L,G,C). However we have a bijection between M′(L,G,C) and normal monomi-
als of FY(L,G) with respect to the Gröbner basis introduced in Theorem 1.2.3, given by

LBSX(Gen)(S)

(
Ψ
ω
kG
τS (G),G,λC

)
→
∏
G∈S

x
rk([τS(G),G])−kG−1
G ,

and we have the surjective morphism of LBSX-operads (4.5). This means that it is
enough to prove the inclusion M(L,G,C) ⊂ M′(L,G,C) (see Proposition 4.3.10). By
Lemma 4.5.5 it is enough to prove that for any cluster S , if ΨS is a normal monomial
then S is of the form ωk

0̂,1̂,λC
.

Leading terms of elements of B are monomials of the form Ψ{H} where H is not the
minimal atom. Let S be any cluster such that ΨS is a normal monomial, i.e. is not divisible
by any ΨH with H not minimal. For any G ∈ S \ 1̂, let us denote by HG the smallest atom
such that τS(G) ∨HG = G.

Lemma 4.5.6. The map G → HG is increasing, with respect to the order ≤ on the domain and
the order C on the codomain.

Proof. Let G1 < G2 be two elements in S \ {1̂} such that there is no element in S strictly
between G1 and G2. By Lemma 2.2.9 we can write S = (S \ {G1}) ◦ {τS\{G1}(G2) ∨HG1}.
Since ΨS is not divisible by any monomial ΨH where H is not minimal this means that
τS\{G1}(G2) ∨HG1 is the minimal atom in [τS\{G1}(G2), G2], but this interval contains the
atom τS\{G1}(G2) ∨HG2 so we have τS\{G1}(G2) ∨HG1 Cind τS\{G1}(G2) ∨HG2 .

Technically this means

min{H | τS\{G1}(G2) ∨H = τS\{G1}(G2) ∨HG1} <
min{H | τS\{G1}(G2) ∨H = τS\{G1}(G2) ∨HG2}. (4.6)

By nestedness of S we have

{H | τS\{G1}(G2) ∨H = τS\{G1}(G2) ∨HG1} = {H | τS(G1) ∨H = G1},
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which has minimal element HG1 , and

{H | τS\{G1}(G2) ∨H = τS\{G1}(G2) ∨HG2} = {H | τS(G2) ∨H = G2},

which has minimal element HG2 . Inequality (4.6) concludes the proof.

Let us denote S = {G1, ..., Gn} ∪ {1̂} with HG1 C ... C HGn . By the previous lemma
and successive applications of Lemma 2.2.9 we get

S = {HG1} ◦ {HG1 ∨HG2} ◦ ... ◦ {HG1 ∨ ... ∨HGn}.

What is left to prove is that the chainHG1 ≺ ... ≺ HG1 ∨...∨HGn is exactly the chain ωn
0̂,1̂,λC

.

We consider the concatenation of chains

HG1 ≺ ... ≺ HG1 ∨ ... ∨HGn ≺ ωHG1
∨...∨HGn 1̂λCind

.

This chain has increasing labels everywhere except possibly at HG1 ∨ ... ∨HGn .

By Lemma 2.2.9 we have S = (S \ {Gn}) ◦ {τS\{Gn}(1̂) ∨ HGn} so if ΨS is a normal
monomial this means that τS\{Gn}(1̂) ∨HGn is the minimal atom in [τS\{Gn}(1̂), 1̂]. There-
fore, HGn is smaller than all the atoms which are not below τS\{Gn}(1̂) and consequently
the maximal chain introduced previously also has increasing labels at HG1 ∨ ... ∨HGn .

By Proposition 4.5.2 the chainHG1 ≺ ... ≺ HG1 ∨ ...∨HGn ≺ ωHG1
∨...∨HGn ,1̂,λCind

must
be the chain ω0̂,1̂,λC

and therefore HG1 ≺ ... ≺ HG1 ∨ ... ∨ HGn is the chain ωn
0̂,1̂,λC

which
concludes the proof.

Corollary 4.5.7. The morphism

LBS(Gen)/I π−→ FY∨

is an isomorphism and the shuffle LBS-operad FY∨X admits a quadratic Gröbner basis.
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Chapter 5

Koszulness of LBS-operads

In [20], R. Kaufmann and B. Ward constructed a Koszul duality theory for operads over
certain well-behaved Feynman categories called “cubical”. This cubicality condition is
what allows us to define odd operads and a cobar construction on odd operads, which is
central in Koszul duality theory.

In the first subsection we prove that LBS is cubical. Then we unpack Koszulness
for operads over LBS, following the definitions in [20]. Finally, we prove that having a
quadratic Gröbner basis implies being Koszul and we apply this result to FY∨.

5.1 LBS is cubical

Let us start with some reminders on the notion of “cubicality” (we refer to [20] for more
details).

Given (V,F , ı) a graded Feynman category (see Section 2.4) and A, B two objects in F
we denote by C+

n (A,B) the set of composable chains of morphisms of degree less than 1
having exactly n morphisms of degree 1, quotiented by relations:

A→ ...→ Xi−1
f→ Xi

g→ Xi+1 → ...→ B ∼ A→ ...→ Xi−1
g◦f→ Xi+1 → ...→ B (5.1)

provided f or g has degree 0. There is a composition map going from C+
n (A,B) to

HomF (A,B) given by composing all the morphisms of the chain (the equivalence rela-
tion preserves this composition). This map will be denoted by cA,B .

Definition 5.1.1 (Cubical Feynman category). A graded Feynman category (V,F , ı) is
called cubical if the degree function is proper and if for every A, B objects of F there is
a free Sn action on C+

n (A,B) such that

91
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• The composition map is invariant over the action of Sn.

• The composition map defines a bijection cA,B : C+
n (A,B)Sn

'→ HomF (A,B).

• The Sn action is compatible with concatenation of sequences (considering the inclu-
sion Sp × Sq ⊂ Sp+q).

Proposition 5.1.2. The Feynman categories LBS and LBSX are cubical.

Proof. We only prove the result for LBS, the same arguments also work for LBSX. By
Section 2.3, degree 0 and degree 1 morphisms generate every morphism in LBS. Let us
now define an explicit faithful symmetric action on C+

n (A,B) for every A,B in LBS. It is
enough to define it for B an irreducible built lattice.

Using relation (2.3) and relation (5.1) we can see that every chain ψ in C+
n (A,B) has a

representative of the form

A
(
⊗
i fi⊗({G}◦(g1⊗g2))⊗

⊗
j fj)◦ν−−−−−−−−−−−−−−−−−−−−−→ A′

φ−→ B, (5.2)

where the fi’s, f ′js and g1, g2 are isomorphisms in LBSirr, ν is a permutation of the sum-
mands of A and φ is an element of C+

n−1(A′, B) which contains only degree 1 morphisms
which are nested sets of cardinality one. By Lemma 2.3.3 this representative is in fact

unique. We denote ψ′ = [A′′
Id⊗{G}⊗Id−−−−−−−→ A′

φ−→ B]. The composition of the chain φ is a
nested set S, and we have a linear ordering G1, G2, ..., Gn of S given by reading the chain
φ say from right to left. Let σ be any element of Sn. We define

σ · ψ′ := [A′′
σ′−→ A′′′

Id⊗⊗{Gσ(1)∨...∨Gσ(n)}⊗Id⊗

−−−−−−−−−−−−−−−−−−→ ...
{Gσ(1)}−−−−−→ B]

where

• The formula Id⊗ ⊗ {Gσ(1) ∨ ... ∨ Gσ(i)} ⊗ Id⊗ means that we tensor the morphism
{Gσ(1)∨...∨Gσ(i)} by the identities of the summands of the codomain not containing
Gσ(1) ∨ ... ∨Gσ(i).

• σ′ is the only permutation of the summands of A′′ which gives us A′′′.

Finally, we put

σ · ψ := [A

⊗
i fi⊗g1⊗g2⊗

⊗
j fj−−−−−−−−−−−−−→ A′′

σ·ψ′−−→ B].
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First, let us prove that this defines an action of Sn. Assume σ is a product σ1σ2 with
σ1, σ2 ∈ Sn. We have

σ1 · (σ2 · ψ) = σ1 · [A
⊗
i fi⊗g1⊗g2⊗

⊗
j fj−−−−−−−−−−−−−→ A′′

σ2·ψ′−−−→ B]

= σ1 · [A
⊗
i fi⊗g1⊗g2⊗

⊗
j fj−−−−−−−−−−−−−→ A′′

σ′2−→ A′′′2
Id⊗⊗{Gσ2(1)∨...∨Gσ2(n)}⊗Id⊗

−−−−−−−−−−−−−−−−−−−→ ...
{Gσ2(1)}−−−−−→ B]

= [A

⊗
i fi⊗g1⊗g2⊗

⊗
j fj−−−−−−−−−−−−−→ A′′

σ′2−→ A′′′2
σ′1−→ A′′′1

Id⊗⊗{Gσ1(σ2(n))}⊗Id⊗

−−−−−−−−−−−−−−−→ ...
{Gσ1(σ2(1))}−−−−−−−−→ B]

= [A

⊗
i fi⊗g1⊗g2⊗

⊗
j fj−−−−−−−−−−−−−→ A′′

(σ1σ2)′−−−−→ A′′′1
Id⊗⊗{Gσ1σ2(1)∨...∨Gσ1σ2(n))}⊗Id⊗

−−−−−−−−−−−−−−−−−−−−−−−→ ...
{Gσ1σ2(1)}−−−−−−−→ B]

= (σ1σ2) · ψ.

Second, let us remark that by relation (2.4), we have cA′′,B(σ · ψ′) = cA′′,B(ψ′) which
implies cA,B(σ · ψ) = cA,B(ψ) i.e. the composition map is invariant by the action of Sn.

Third, we see that the action is free because of the unicity of decomposition (5.2).

Fourth and lastly, the composition map is bijective after passing to the quotient by the
action of Sn. The surjectivity immediately comes from the fact that morphisms of degree
0 and degree 1 generate every morphism in LBS. The injectivity is a consequence of the
unicity of decomposition (5.2).

5.2 Definition of Koszulness for LBS-operads

5.2.1 Odd operads over cubical Feynman categories

Let F = (F ,V, ı) be cubical category. An odd operad over F is an operad over the Feynman
category Fodd = (Fodd,V, ıodd) where Fodd is the category enriched in abelian groups
having the same objects as F and morphisms

Fodd(X,Y ) = Z < C+
n (X,Y ) > /σ.φ− ε(σ)φ.

with composition given by concatenating chains of morphisms. Since V only has isomor-
phisms it is clear that V is also embedded in Fodd and we call this embedding ıodd.

In the case of LBS, the category LBSodd is generated by isomorphisms and generators
{G}odd for each elementGwhich is not the maximal element in some building set of some
lattice, quotiented by relations

{G1}odd ◦ ({G1 ∨G2}odd ⊗ Id) = −{G2}odd ◦ ({G1 ∨G2}odd ⊗ Id) ◦ σ2,3 (5.3)

for every nested antichain {G1 6= 1̂, G2 6= 1̂} in some building set, relations

{G1}odd ◦ ({G2}odd ⊗ Id) = −{G2}odd ◦ (Id⊗ {G1}odd) (5.4)
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for every chain G1 < G2 < 1̂ in some building set, as well as relations

f ◦ f({G}odd) = {G}odd ◦ (f[G,1̂] ⊗ f[0̂,G]) (5.5)

for every isomorphism f between built lattices.

5.2.2 An example of an odd LBS cooperad

The family of projective Orlik–Solomon algebras {OS(L)}(L,G) has an odd cooperadic
structure over LBS which extends the dual of the odd operad Grav. It will be denoted by
OS and defined as follow.

• For any built lattice (L,G) we define

OS(L,G) := OS(L).

• For any element G ∈ G \ {1̂} in some irreducible built lattice (L,G), we define

OS({G}odd) : OS(L) −→ OS([G, 1̂])⊗OS([0̂, G])∏
i eHi

∏
j eH′j −→ δ(

∏
i eG∨Hi)⊗

∏
j eH′j

where the Hi’s are atoms not below G and the H ′j ’s are atoms below G.

Let us check that the image belongs to the tensored projective Orlik–Solomon algebras.
By Lemma 1.2.6 it is enough to show that OS({G}odd)(δ(

∏
H eH)) belongs to OS([G, 1̂])⊗

OS([0̂, G]) for all sets of atoms H. We partition H into {Hi } t {H ′j} where the Hi’s are
atoms not below G and the H ′j ’s are atoms below G. We then have

OS({G}odd)(δ(
∏
H
eH)) = OS({G}odd)(δ(

∏
i

eHi)
∏
j

eH′j ±
∏
i

eHiδ(
∏
j

eH′j ))

= δ(δ(
∏
i

eG∨Hi))⊗
∏
j

eH′j ± δ(
∏
i

eG∨Hi)⊗ δ(
∏
j

eH′j )

= ±δ(
∏
i

eG∨Hi)⊗ δ(
∏
j

eH′j ) ∈ OS([G, 1̂])⊗OS([0̂, G]).

• For any isomorphism of built lattice f : (L′,G′) ∼−→ (L,G) we define OS(f) as the
restriction of OS(f) to the projective subalgebra.

We must check that the morphismsOS({G}odd) andOS(f) satisfy relations (5.3), (5.4) and
(5.5) above. Let {G1 6= 1̂, G2 6= 1̂} be a nested antichain in some irreducible built lattice
(L,G) and let α = δ(

∏
i≤n eHi

∏
j≤n′ eH′j

∏
k≤n′′ eH′′k ) be an element in OS(L) where the

Hi’s are atoms below neither G1 nor G2, the H ′j ’s atoms below G2 and the H ′′k ’s below G1
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(by nestedness of {G1, G2} there can be no atom below both G1 and G2). In this case one
can check that the morphism

(OS({G1 ∨G2}odd)⊗ Id) ◦OS({G1}odd)

sends α to δ(
∏
i eG1∨G2∨Hi)⊗ δ(

∏
j eH′j )⊗ δ(

∏
k eH′′k ) whereas the morphism

σ2,3 ◦ (OS({G1 ∨G2}odd)⊗ Id) ◦OS({G2}odd)

sends α to the opposite. Let G1 < G2 < 1̂ be a chain in some irreducible built lattice (L,G)
and let α = δ(

∏
i≤n eHi

∏
j≤n′ eH′j

∏
k≤n′′ eH′′k ) be an element in OS(L) where the Hi’s are

atoms not below G2, the H ′j ’s are atoms below G2 and not below G1 and the H ′′k ’s are
atoms below G1. In this case one can check that the morphism

(OS({G2}odd)⊗ Id) ◦OS({G1}odd)

sends α to δ(
∏
i eG2∨Hi)⊗ δ(

∏
j G1 ∨ eH′j )⊗ δ(

∏
k eH′′k ) whereas the morphism

(Id⊗OS({G2}odd)) ◦OS({G2}odd)

sends α to the opposite. At last, equation (5.5) is also easily verified.

To conlude, we have shown that OS is an odd LBS-cooperad (in graded abelian
groups).

5.2.3 The bar/cobar construction

Let C be some complete cocomplete symmetric monoidal abelian category. We denote by
Ch C the category of chain complexes over C. Let F be a cubical Feynman category.

In [20], R. Kaufmann and B. Ward define a bar operator

B : F−OpsCh C → Fodd −OpsCh Cop

and a cobar operator
Ω : Fodd −OpsCh Cop → F−OpsCh C

which form an adjunction Ω
 B and such that the counit

ΩB =⇒ Id

is a level-wise quasi-isomorphism. Informally, those functors are defined by taking free
constructions together with a differential constructed using the degree 1 generators. Let
us describe Ω explicitely in our case. Let P be an LBSodd cooperad in Ch Cop. We have

Ω(P) := (LBS(P), dΩ + dP),
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where dP is the obvious differential coming from P and dΩ is defined as follow. Recall the
explicit formula

LBS(P)(L,G) =
⊕

⊗(Li,Gi)
f−→(L,G)

⊗
i

P(Li,Gi)/ ∼

where ∼ identifies components corresponding to equivalent maps (maps that can be ob-
tained from each other by precomposition of isomorphisms). For any⊗ipi ∈

⊗
i≤n P(Li,Gi)

we put

dΩ([(⊗pi, f :
⊗
i

(Li,Gi)→ (L,G))]) :=
∑
j≤n

G∈Gj\{1̂}

[(Id⊗P({G})⊗Id)(⊗pi), f◦(Id⊗{G}⊗Id))].

The cubicality condition and the fact that P is odd ensures that dΩ + dP is a differential.
Let us now describe B explicitely for LBS-operads. Let P be an LBS-operad in Ch C. We
have

B(P) = (LBSodd(P), dB + dP),

where dP is the obvious differential coming from P and dB is defined as follow. We have
the formula

LBSodd(P)(L,G) =
⊕
n∈N

ψ∈C+
n ((L′,G′),(L,G))

P(L′,G′)/ ∼ ,

where the equivalence relation ∼ is given by

(P(f)(α), ψ) ∼ (α,ψ ◦ f)

for every isomorphism f and

(α,ψ) ∼ ε(σ)(α, σ.ψ)

for every permutation σ. Let ψ be an element in C+
n ((L′,G′), (L,G)), and let α be an ele-

ment of P(L′,G′). We have

dB((α, [ψ])) :=
∑

φ:(L′′,G′′)→(L,G)
G s.t. c(φ◦{G})=c(ψ)

ε(φ)((Id⊗ P({G})⊗ Id)(α), φ),

where c is the composition map and ε(φ) is the signature of the permutation sending ψ to
φ ◦ {G}. One can check that this descends to the quotient by the equivalence relation ∼.
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5.2.4 Quadratic duality and Koszul duality

In this subsection we assume that C is a category of vector spaces over some field. For any
graded Feynman category F, an F-quadratic data is a pair (M,R) with M an F-module
and R a submodule of F1(M), where F1(M) denotes the part of weight 1 in the free F-
operad LBS(M). Notice that an F-quadratic data can also be seen as an Fodd-quadratic
data since F and Fodd have the same modules and we have

Fodd
1 (M) = F1(M).

If P is an F-operad which is a quotient F(M)/〈R 〉 for some F-quadratic data (M,R),
we define

P! := Fodd(M∨)/〈R⊥〉,

which is an Fodd-operad. We have a morphism of differential graded Fodd-operads

(P!)∨ → BP, (5.6)

which is induced by the morphism of F-modules given by the composition

(P!)∨ �M∨ ↪→ P.

We say that P is Koszul with Koszul dual (P!)∨ if morphism (5.6) is a quasi-isomorphism.
We refer to [20] and [34] for more details. This coincides with the classical Koszul duality
theories (Koszul duality for operads for instance).

In addition to having a homological degree (given by the grading of LBSX), the odd
cooperad BP has a weight grading coming from the grading of P. The differential pre-
serves this weight grading.

One can check that the map
(P!)∨ → BP

is injective and its image is exactly the kernel of dB in the diagonal {weight grading = degree},
which is also the homology of the diagonal since the elements on the diagonal are the
highest degree elements in their respective weight component. As a consequence P is
Koszul if and only if the homology of BP is concentrated on the diagonal.

5.3 Koszulness of FYPD using the projective combinatorial Leray
model

In [5] the authors define a differential bigraded algebra B(L,G) as follow.
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Definition 5.3.1 (Combinatorial Leray model [5]). Let (L,G) be an irreducible built lattice.
The differential bigraded algebra B(L,G) is defined as the quotient of the free commuta-
tive algebra Q[eG, xG, G ∈ G] by the ideal I generated by

1. The elements eSxT with S ∪ T not nested.

2. The elements
∑

G≥H xG for all atoms H of L.

3. The element e1̂.

The generators eG have bidegree (0, 1) and the generators xG have bidegree (2, 0). The
differential d of this algebra has bidegree (2,−1) and is defined by

d(eG) = xG

d(xG) = 0.

The authors of [5] have shown that we have an isomorphism of graded vector spaces

B•,d(L,G) '
⊕

S irreducible
nested set of (L,G)

#S=d+1

FYPD(S)

for every integer d ([5] Proposition 5.1.4). Those isomorphisms give an isomorphism of
complexes between B(L,G) and BFYPD(L,G). For each irreducible built lattice (L,G) we
have a morphism of differential graded algebras

OS(L)→ B•(L,G),

induced by the map eH →
∑

G≥H eG. One can check that this is a morphism of LBSodd-
cooperads. The main result of [5] is the following.

Theorem 5.3.2 ([5], Theorem 5.5.1). The morphism OS(L)
∼−→ B•(L,G) is a quasi-isomorphism

for every pair (L,G).

This immediately implies:

Corollary 5.3.3. The operad FYPD is Koszul with Koszul dual OS.

Remark 5.3.4. The algebra structure on BFYPD(L,G) coming from the isomorphism

BFYPD(L,G) ' B(L,G)

can be defined purely operadically as follow. Let α be some element in FYPD(S) for some
nested set S in some built lattice (L,G) and β some element of FYPD(S ′) for some nested
set S ′ in the same built lattice. The product of α and β in BFYPD(L,G) is given by

α · β =

{
FY(S ′)(α)FY(S)(β) if S ∩ S ′ = {1̂} and S ∪ S ′ is a nested set.

0 otherwise.
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In the first row, S ′ is viewed as a nested set of (LS ,GS) and S is viewed as a nested set
of (LS′ ,GS′) via Lemma 2.2.9. The product takes place in the algebra FY(LS∪S′ ,GS∪S′).
It is interesting to note that we have used the operadic structure of FY and not that of
FYPD. This shows that Poincaré duality plays an important role when trying to relate the
properties of FY and the properties of the Feichtner–Yuzvinsky algebras.

5.4 Koszulness and the affine combinatorial Leray model

In [5] the authors also define a Leray model B̂(L,G) for the (affine) Orlik-Solomon alge-
bras, just by taking out the relation e1̂ = 0 in B(L,G). One can also interpret this affine
Leray model as a bar construction in a larger Feynman category LBSmod defined as fol-
low. The set of objects of the underlying groupoid of LBSmod is

Obj(LBSirr) tObj(LBSirr).

For each irreducible built lattice (L,G) we will denote the two copies of (L,G) in LBSmod
by (L,G)proj and (L,G)aff , for reasons which will be clear later. If (L,G) is an irreducible
built lattice, the structural morphisms of LBSmod with target (L,G)proj are labelled by
irreducible nested sets ⊗

G∈S
([τS(G), G], Ind(G))proj S−→ (L,G)proj,

with composition as in LBS. In other words when restricting LBSmod to the “projective”
arities we get the Feynman category LBS. The structural morphisms of LBSmod with
target (L,G)aff are labelled by nested sets which can either contain 1̂ or not. If S contains
1̂ then we have the morphism⊗

G∈S
([τS(G), G], Ind(G))proj Saff

−−→ (L,G)aff

and if S does not contain 1̂ we have the morphism⊗
G∈S

([τS(G), G], Ind(G))proj ⊗ ([τS(1̂), 1̂], Ind(G))aff Saff

−−→ (L,G)aff .

The composition of those morphisms is defined as in LBS. This Feynman category en-
codes pairs (P,M) with P an LBS-operad andM a “P-module” (P is the restriction to the
projective part andM the restriction to the affine part). A set of generating morphisms of
LBSmod is given by

{G, 1̂}proj (G 6= 1̂) and {G}aff .
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One can define an odd LBSmod-cooperad OStot by setting

OStot((L,G)proj) = OS(L), OStot((L,G)aff) = OS(L),

for each irreducible built lattice (L,G), and

OStot({G, 1̂}proj) = OS({G, 1̂})

together with
OStot({G}aff) = (δ ⊗ Id) ◦OS({G}).

In this case the odd OS-comodule structure on OS comes from the morphism of LBS-
operads

OS δ−→ OS.

On the other hand one can define an LBSmod-operad FYPD
tot by setting

FYPD
tot ((L,G)proj) = FY(L,G), FYPD

tot ((L,G)aff) = FY(L,G),

and
FYtot({G, 1̂}proj) = FYPD({G, 1̂}proj),

together with
FYtot({G}aff) = FY({G, 1̂})

for G 6= 1̂, and finally FYtot({1̂}aff) is set to be the multiplication by x1̂. Exactly as for the
projective part, one can use the results of [5] to see that B̂(L,G) is isomorphic to BFYPD

tot

and the morphism eH →
∑

G≥H eG induces a quasi-isomorphism of odd LBSmod-cooperads

OStot
∼−→ BFYPD

tot ,

which implies Koszulness of the LBSmod-operad FYPD
tot .

5.5 Koszulness via shuffle operads

As in the case of classical operads and their shuffle counterpart, we have the key proposi-
tion.

Proposition 5.5.1. Let P be an LBS-operad. P is Koszul if and only if PX is Koszul.

Proof. By Proposition 4.4.2 we have isomorphisms of shuffle LBSodd-operads

(PX)! ' (P!)X

which gives an isomorphism of shuffle LBSodd-cooperad (in Ch C):

((PX)!)∨ ' ((P!)∨)X.
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On the other hand, we have

(LBSodd(P))X ' LBSodd
X (PX).

By going back to explicit formulas one can check that those isomorphisms are compatible
with the bar differential and that we have a commutative diagram

(P!)∨X (BP)X

((PX)!)∨ B(PX),

' '

but of course in every arity (L,G,C) we have the commutative diagram of complexes

(P!)∨(L,G) BP(L,G)

((P!)∨)X(L,G,C) (BP)X(L,G,C).

' '

Combining the two diagrams in every arity finishes the proof.

5.6 Koszulness and Gröbner bases

As in the case of classical shuffle operads, we have the key proposition.

Proposition 5.6.1. Let P be a shuffle LBS-operad. If P admits a quadratic Gröbner basis then P
is Koszul.

Proof. This is just an adaptation of the proof given in [19] to our setting, and translating
Gröbner basis language in “PBW basis” language. We denote P = LBSX(M)/〈R 〉. Let
us use our total well-order on monomials to construct a filtration on BP. We will denote
this total order by “<”. Let m = (S, (eG)G∈S) be some monomial. We define

FmBP =< {m1 ⊗ ...⊗mn ∈ P(S ′) |m1, ... ,mn monomials s.t. LBSX(S ′)((mi)i) ≤ m} >

where the brackets <,> denote the linear span. The bar differential preserves this filtra-
tion. We will now show that the associated spectral sequence collapses at the first page
and its homology is concentrated on the diagonal. The complex E0

mBP is spanned by
elements of the form

P(S1)((eG)G∈S1)⊗ ...⊗ P(Sn)((eG)G∈Sn),



102 CHAPTER 5. KOSZULNESS OF LBS-OPERADS

where the nested sets Si are such that there exist some nested set S ′ satisfying S = S ′◦(Si)i,
and such that the monomials P(Si)((eG)G∈Si) are all normal.

For anyG in S\{1̂}we denote by n(G) the unique minimum of S>G. We also denote by
Adm(m) the set of elements of S \ {1̂} such that P({G})(eG, en(G)) is a normal monomial.
By the fact that our Gröbner basis is quadratic we see that E0

mBP is isomorphic to the
augmented dual of the combinatorial complex C•(∆Adm(m)), which has trivial homology
except when Adm(m) = ∅, in which case the complex is reduced to K on the diagonal
(with generator given by⊗GeG). By a standard spectral sequence argument this concludes
the proof.

As a corollary of this proposition and 4.5.7 we get the following result.

Corollary 5.6.2. The operad FY∨ is Koszul.



Chapter 6

Further directions for the operadic
structure

In this section we highlight some possible ways to extend/refine LBS which seem natu-
ral to us and may lead to further applications.

6.1 Working with matroids instead of geometric lattices

One possible refinement of LBS would be to do everything with matroids instead of ge-
ometric lattices, which would allow us to take loops and parallel elements into account.
For now this refinement is useless because all the operads we know (Feichtner–Yuzvinsky
rings, Orlik–Solomon algebras) do not “see” the loops and parallel elements (i.e. factor
through the lattice of flat construction). However, it may happen that some finer invari-
ants of matroids which detect loops and parallel elements may also have an operadic
structure. In order to implement this refinement it will be beneficial to have a purely
matroidal axiomatization of building sets. Let us describe a possible way to obtain that.
Recall that a matroid can be defined by its rank function as follow.

Definition 6.1.1 (Matroid, via rank function). Let E be a finite set. A matroid structure on
E is the datum of a map

rk : P(E)→ N

called the rank function, satisfying the following properties.

1. The rank function takes value 0 on the empty set.

2. For every A,B ∈ P(E) we have

rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B).
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3. For every A ∈ P(E) and x ∈ E we have

rk(A ∪ {x}) ≤ rk(A) + 1.

Here is a possible way of axiomatizing a building set in terms of the rank function.

Definition 6.1.2 (Building decomposition). A building decomposition of a matroid (E, rk) is
a function ν which assigns to every subset X ⊂ E a partition of X and which satisfies the
following axioms.

1. If X ⊂ Y are two subsets of E, then ν(X) refines the restriction of ν(Y ) to X .

2. If ν(X) is the partition with blocks P1|...|Pn then for all i ≤ n the partition ν(Pi) is
the partition with only one block.

3. For all X ⊂ E, if ν(X) is the partition P1|...|Pn then rk(X) = rk(P1) + ...+ rk(Pn).

On simple loopless matroids the datum of a building decomposition is equivalent to
the datum of a building set on the lattice of flats. One can construct a building set out of
a building decomposition by considering the flats which have a partition with only one
block. On the other hand, one can construct a building decomposition out of a building
set by setting ν(X) to be the partition induced by the factor decomposition of σ(X).

Example 6.1.3. Let G = (V,E) be a graph and MG its cycle matroid. MG admits a build-
ing decomposition given by the partitions into connected components for each subset of
E. Naturally if we look at the induced building set on the lattice of flats this gives the
graphical building set introduced in Example 1.1.8.

We also have a natural notion of induced building decomposition on restrictions and
contractions of matroids.

Definition 6.1.4. Let M = (E, rk) be a matroid with building decomposition ν and S a
subset of the ground set E. The contraction MS admits a building decomposition IndS(ν)
given by IndS(ν)(X) = ν(X ∪ S)|X for every X ⊂ E \ S. The restriction MS admits a
building decomposition IndS(ν) given by IndS(ν)(X) = ν(X) for every X ⊂ S.

Working with those definitions, we are fairly certain everything should work in the
same fashion as in Section 2, by just replacing the built lattices ([0̂, G], Ind(G)), ([G, 1̂], Ind(G))
by the matroidal restrictions/contractions (MG, Ind(ν)), (MG, Ind(ν)), forG such that ν(G)
is the trivial partition (a priori we would not even need G to be closed, which would give
additional structural morphisms).
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6.2 The polymatroidal generalization

One can also naturally consider an exension of LBS to polymatroids, which form a com-
binatorial abstraction of subspace arrangements. This is justified by the fact that the won-
derful compactification story also works for subspace arrangements and the cohomology
algebras give us a natural candidate for an operad over this bigger Feynman category.
It has been shown by Pagaria and Pezzoli [29] that those cohomology rings also admit
natural generalizations to arbitrary polymatroids and that they also have a Hodge theory.
Here are some reminders on polymatroids.

Definition 6.2.1 (Polymatroid). Let E be a finite set. A polymatroid structure on E is the
datum of a function

cd : P(E)→ N

satisfying

1. cd(∅) = 0.

2. For any subsets A ⊂ B of E we have cd(A) ≤ cd(B).

3. For any subsets A,B of E we have

cd(A ∩B) + cd(A ∪B) ≤ cd(A) + cd(B).

The letters “cd” stand for codimension. If we ask that cd take value 1 on singletons we
get a classical matroid. We can define the lattice of flats of a polymatroid by considering
the subsets F of E such that cd(F ∪ {x}) > cd(F ) for all x /∈ F . However, for general
polymatroids the lattice of flats does not contain enough information and needs to be
considered together with cd to recover the polymatroid (for matroids “cd” is just the rank
function of the lattice of flats and does not add any information). In [29] the authors
introduced a notion of building set for polymatroids.

Definition 6.2.2. Let P = (E, cd) be a polymatroid with lattice of flats L. A building set of
P is a subset G of L\ {0̂} such that for any X in L the join gives an isomorphism of posets∏

G∈FactG(X)

[0̂, G]
∼−→ [0̂, X]

and we additionally have
cd(X) =

∑
G∈FactG(X)

cd(G).

Notice that the last condition is automatically verified for matroids (cd = rk). The
authors also give suitable generalizations of nested sets, and they show that for anyG inL,
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the (polymatroidal) contraction ([G, 1̂], Ind(cd)) has an induced (polymatroidal) building
set given (as in the matroidal case) by

Ind[G,1̂](G) = (G ∨G) ∩ (G, 1̂],

and the same goes for (polymatroidal) restrictions. With those definitions we are fairly
certain one can readily extend LBS to polymatroids.

In [29], the authors also introduce a generalization of the Feichtner–Yuzvinsky alge-
bras to the polymatroidal setting as follows.

Definition 6.2.3. Let (L, cd) be a polymatroid with some building set G. The algebra
FY(L,G, cd) is defined by

FY(L,G, cd) = Q[xG, G ∈ G]/I,

with all the generators in degree 2 and I the ideal generated by elements∏
i≤n

xGi

where {G1, ..., Gn} is not nested and elements∑
G≥H

xG

cd(H)

for any atom H .

As in the matroidal case, one can get another presentation by considering the change
of variable hG :=

∑
G′≥G xG′ . The algebra morphisms

FY(L, cd,G) −→ FY([G, 1̂], Ind(cd), Ind[G,1̂](G))⊗ FY([0̂, G], Ind(cd), Ind[0̂,G](G))

hG′ −→
{
hG∨G′ ⊗ 1 if G′ � G

1⊗ hG otherwise.

are well-defined and give us an operadic structure on the family of generalized Feichtner–
Yuzvinsky algebras.

6.3 Adding morphisms to LBS

One could also consider adding more morphisms of degree 0 in LBS. This is justified
by the fact that the Feichtner–Yuzvinsky algebras have a lot more functoriality than what
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we have in LBS. More precisely let (L,G) and (L′,G′) be two built lattices and let f :
L −→ L′ be a poset morphism which sends G to G′, atoms of L to atoms of L′ and which
is compatible with the join on both sides, i.e.

f(G1 ∨G2) = f(G1) ∨ f(G2)

for all G1, G2 in L. With those hypotheses the map induced by

FY(L,G)
FY(f)−−−−→ FY(L′,G′)

hG −→ hf(G)

is a well-defined map of algebras. This incentivizes us to formally add such morphisms in
LBS. Some of those morphisms are very natural to add in their own right. For instance
if G ⊂ G′ are two building sets of some lattice L then the identity of L satifies the above
conditions. In the realizable case the corresponding map FY(f) is induced by the blow
down

Y L,G′ → Y L,G .

If f is the inclusion of some interval [0̂, G] ↪→ L then f satisfies the above conditions
when taking the induced building set on [0̂, G]. For instance this includes the various
inclusions Πn ' [0̂, J1, n+ 1K \ {i}|i] ↪→ Πn+1. The corresponding morphisms

FY∨(Πn+1,Gmin)→ FY∨(Πn,Gmin)

are induced by forgetting some marked point on the genus 0 curve.
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Chapter 7

Additional reminders in
combinatorics

In this section we explicit the relation between geometric lattices and matroids and we
introduce the notion of supersolvable built lattices.

7.1 Geometric lattices and matroids

Let us describe in more details the correspondence between simple loopless matroids and
geometric lattices. There are several equivalent definitions of matroids. We refer to [35]
for more details.

Definition 7.1.1 (Matroids via independent subsets). A matroid is a pair of a finite set E
and a set I of subsets of E (the “independent” subsets) satisfying the axioms

• For any I in I, every subset of I belongs to I.

• For any I , J in I, if #J > #I there exists an element a in J and not in I such that
I ∪ {a} is independent.

Definition 7.1.2 (Matroids via closure operator). A matroid is a pair of a finite set E and
an application (the “closure operator”)

σ : P(E) −→ P(E)

satisfying the axioms

• For any X ∈ P(E) we have X ⊆ σ(X).

• For any X ⊆ Y ∈ P(E) we have σ(X) ⊆ σ(Y ).
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• For any X ∈ P(E) we have σ(σ(X)) = σ(X).

• For any X ∈ P(E) and a, b ∈ E, if a ∈ σ(X ∪{b}) \σ(X) then b ∈ σ(X ∪{a}) \σ(X).

Definition 7.1.3 (Matroids via circuits). A matroid is a pair of a finite set E and a set C of
subsets of E (the “circuits”) satisfying the axioms

• The empty set is not a circuit.

• If C1 ⊆ C2 ∈ C then C1 = C2.

• If C1, C2 ∈ C, C1 6= C2 and e ∈ C1 ∩ C2 then there exists a circuit C ⊆ C1 ∪ C2 \ {e}.

One can replace the last axiom by a stronger version which we will use later in this
document.

If C1, C2 ∈ C, e ∈ C1 ∩ C2, f ∈ C1 \ C2,

then there exists a circuit C ⊆ C1 ∪ C2 \ {e} containing f. (7.1)

One passes from the circuit definition to the closure definition by putting

σ(X) := X ∪ {x | ∃C ∈ C with C ⊆ X ∪ {x} and x ∈ C}. (7.2)

A matroid (E, I) is said to be simple loopless if every subset of E of cardinal less than
two is independent. A flat of a matroid M = (E, σ) is a subset F ⊆ E such that σ(F ) is
equal to F . The set of flats ofM denoted by LM ordered by inclusion is a geometric lattice
with meet given by the intersection. Conversely if L is a geometric lattice then the datum
(E, σ) where E is the set of atoms of L and σ is the map defined by

σ(X) =
⋂
F∈L

X⊂At≤(F )

At≤(F )

is a simple loopless matroid. Those two constructions are inverse to each other on simple
loopless matroids. In the sequel we will freely identify an element of some geometric
lattice with the set of atoms below this element. For instance ifG1 andG2 are two elements
of some geometric lattice L then G1 ∪ G2 will mean At≤(G1) ∪ At≤(G2). Finally, notice
that by definition, for any subset S ⊆ Lwith L some geometric lattice we have∨

S = σ(
⋃
X∈S

X) (7.3)

where σ is the closure operator of the associated matroid.
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7.2 Supersolvable built lattices

Recall that a lattice L is said to be distributive if for every triple X,Y, Z ∈ L we have the
equality

X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z).

An element X in a lattice L is said to be modular if for every pair Y,Z of elements of L
with Y ≤ X we have the equality

X ∧ (Y ∨ Z) = Y ∨ (X ∧ Z).

The following definition is due to Stanley [30].

Definition 7.2.1 (Supersovable lattice (1)). A lattice is said to be supersolvable if there exists
a maximal chain M of elements of L such that for every pair X < Y of elements in L the
sublattice generated by M , X and Y is distributive.

Stanley [30] proved that this is equivalent to a (seemingly) weaker assumption.

Definition 7.2.2 (Supersolvable lattice (2)). A lattice is said to be supersolvable if it admits
a maximal chain of modular elements.

Fact 7.2.3. Supersolvability is a hereditary condition (meaning it is stable by taking inter-
vals) because if G is some element in some supersolvable lattice L with maximal chain of
modular elements

0̂ = M1 < ... < Mn = 1̂,

the maximal chains
M1 ∧G ≤ ... ≤Mn ∧G

and
M1 ∨G ≤ ... ≤Mn ∨G

are maximal chains (with possibly multiple occurencies) of modular elements of [0̂, G] and
[G, 1̂] respectively (see [30]).

We introduce the following variant for built lattices.

Definition 7.2.4 (Supersolvable built lattices). A built lattice (L,G) is said to be supersolv-
able if it admits a maximal chain 0̂ = G1 < ... < Gn = 1̂ of modular elements in G such
that for any element G in G, the element Gi ∧G belongs to G ∪ {0̂} for all i ≤ n.

By Fact 7.2.3, supersolvability for built lattices is a hereditary condition (meaning it is
stable by taking intervals and induced building set).
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Example 7.2.5. Let B4 be the boolean lattice of {1, 2, 3, 4}. If we put

G := {{1}, {2}, {3}, {4}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {2, 3, 4}, {2, 3}}

then the built lattice (B4,G) is supersolvable. Indeed the chain

{1} ⊂ {1, 2} ⊂ {1, 2, 3} ⊂ {1, 2, 3, 4}

is a maximal chain of modular elements in G (all the elements of B4 are modular), and we
have

{2, 3, 4} ∧ {1, 2, 3} = {2, 3} ∈ G.
On the contrary if one puts G′ := G \{2, 3}∪{3, 4} then (B4,G′) is not a supersolvable built
lattice because we have

{1, 2, 3} ∧ {2, 3, 4} = {2, 3} /∈ G.
and any maximal chain of elements in G must contain either {1, 2, 3} or {2, 3, 4}.

One can immediately see that if L is a supersolvable lattice then (L,Gmax) is a super-
solvable built lattice. In Section 8 and Section 9 we will introduce other large classes of
supersolvable built lattices.

Let us prove here a small general lemma which will be useful later on.

Lemma 7.2.6. Let L be a geometric lattice, G a modular element of L and C a circuit in L. At
least one of the following propositions is true:

• C ⊂ G.

• C ∩G = ∅.

• There exists a circuit C ′ such that C ′ ∩ G is a singleton H and C ′ \ {H} is included in
C \ (G ∩ C).

Proof. Assume the first two propositions are not true. Let us denote

I := C ∩G,
J := C \ I.

Let H be any element of I , which is not empty by assumption. By modularity of G we
have

G ∧ (σ(I \ {H}) ∨ σ(J)) = σ(I \ {H}) ∨ (G ∧ σ(J)).

Since J is not empty I is independent and the element on the left has rank at least #I .
Since σ(I \ {H}) only has rank #I − 1 we must have

G ∧ σ(J) 6= 0̂.

By Formula (7.2) this implies that we have the desired circuit C ′.
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Let (L,G) be a supersolvable built lattice with some chosen maximal chain of modular
elements ω = {0̂ = G1 < ... < Gn = 1̂}. For any G in G and any G′ in Ind[G,1̂](G) we
denote by dω,G(G′) the coatom in the maximal chain of modular elements induced by ω
on [G,G′] (see Fact 7.2.3). An element of the form dω,G(G′) will be called an initial segment
of G′ relative to G. In practice we will drop ω from the notation. If G is equal to 0̂ we
also drop it from the notation. In the sequel whenever we introduce a supersolvable built
lattice we implicitly choose a particular maximal chain of modular elements of this built
lattice.

The rest of this document will be devoted to the proof of the following theorem.

Theorem 7.2.7. Let (L,G) be a supersolvable built lattice. The algebra FY(L,G) admits a
quadratic Gröbner basis and is therefore Koszul.

Let us include here a small step toward the above result which we will need later on.

Proposition 7.2.8. Let (L,G) be a supersolvable built lattice. The Feichtner–Yuzvinsky ring
FY(L,G) is quadratic.

Proof. It is enough to prove that the nested set complex of (L,G) is flag, meaning that for
any anti-chain G1, ..., Gn in G with n ≥ 2, if G1 ∨ ... ∨ Gn belongs to G then there exists
i 6= j ≤ n such that Gi ∨ Gj belongs to G. Assume the contrary is true and there exist an
anti-chain G1, ..., Gn such that we have

G1 ∨ ... ∨Gn ∈ G

and

Gi ∨Gj /∈ G ∀i 6= j ≤ n.

By restricting to a smaller interval we can assume G1 ∨ ... ∨ Gn = 1̂. By Fact 7.2.3, the
element d(1̂) ∧ (Gi ∨ Gj) is either equal to Gi ∨ Gj or is covered by Gi ∨ Gj . In the latter
case, using the building set isomorphism (1.1) we see that either Gi or Gj is below d(1̂).
As a consequence we see that there is at most one integer i ≤ n such that Gi is not below
d(1̂) (in fact there is exactly one such i). By reordering let us assume that this integer is n.
By atomicity there exist an element X < Gn such that we have G1 ∨ ...∨Gn−1 ∨X = d(1̂).
If G′1, ...G

′
k are the factors of X in G, the anti-chain G1, ..., Gk, G

′
1, ..., G

′
k is a new counter-

example to the flagness of the nested set complex of (L,G). We get a contradiction by
reiterating this process.
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Chapter 8

Quadratic Gröbner bases for
Feichtner–Yuzvinsky algebras of
supersolvable built lattices

In the first subsection we define an order on the generators of the Feichtner–Yuzvinsky
algebras of supersolvable lattices and we compute the normal monomials of weight 2 as-
sociated to this order. In the next subsection we define a bijection between the algebraic
normal monomials associated to the latter order and the operadic normal monomials in-
troduced in Proposition 4.5.4. The construction of this bijection will be done by induc-
tion and using the operadic structure. By a dimension argument this bijection will show
that the algebraic normal monomials form a basis of the Feichtner–Yuzvinksky algebras,
which will show that the set of weight 2 relations forms a Gröbner basis of the Feichtner–
Yuzvinsky algebras.

8.1 The order on generators and the normal monomials of weight 2

Definition/Proposition 8.1.1. Let (L,G) be a supersolvable built lattice. The transitive
closure of the relations

dk(G) a G a G′ (8.1)

for all k and allG,G′ ∈ G withG′ ≤ G andG′ not an initial segment ofG, is anti-symmetric
and thus defines a partial order.

Proof. One can define an explicit total order containing the relations (8.1) as follow. Let C
be a total order on the atoms of L extending the relations H a H ′ for all pairs of atoms
H,H ′ such that there exists an integer k satisfying

H ≤ dk(G) and H � dk(G).

115
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For any element G in G let us denote by w(G) the word with letters At≤(G) written in
increasing order. We define a total order on G, also denoted C, by putting

G C G′ ⇔ w(G) is less than w(G′) for the lexicographic order.

This order contains relations (8.1).

In the sequel whenever we introduce a supersolvable built lattice we implicitly choose
an associated total order on G as in the above proof.

Proposition 8.1.2. Let (L,G) be a supersolvable built lattice and let α = hG1hG2 be a monomial
in FY(L,G) with G1 C G2. Let us denote by G the join G1 ∨ G2. The monomial α is normal if
and only if one of the three following conditions is verified.

• The element G does not belong to G.

• The element G belongs to G and G1 is an initial segment of G2 = G.

• The element G belongs to G, G2 � G1, G2 is not covered by G and we have G1 = dk(G)
where k is the maximal integer satisfying

dk(G) ∨G2 = G.

Proof. We have an obvious bijection between the monomials described in the above propo-
sition and the normal monomials given by 1.2.3, sending h

diG′ (G)
hG′ to xG′xG if G′ is not

covered by G, sending hd(G)hG to x2
G and sending hG1hG2 to xG1xG2 when {G1, G2} is a

nested set. By a dimension argument it is enough to prove that the normal monomials of
weight 2 with respect to C are included in the monomials described in the proposition.

Assume G = G1 ∨G2 belongs to G. If G C G1 and G C G2 then hG1hG2 is the leading
term of the relation

(hG − hG1)(hG − hG2).

If G1 E G C G2 and G2 is covered by G then hG1hG2 is the leading term of the relation

(hG − hG1)(hG − hG2)− hG(hG − hG2).

Finally, if G1 E G C G2 then G1 is some initial segment dk(G). If k is not the maximal
integer such that we have

dk(G) ∨G2 = G,

we see that hG1hG2 is the leading term of the relation

(hG − hG1)(hG − hG2)− (hG − hdk+1(G))(hG − hG2).
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Notice that the normal monomials do not really depend on C but only on the cho-
sen maximal chain of modular elements. We next come to an important lemma which
highlights a first connection between our normal monomials and supersolvability.

Lemma 8.1.3. Let (L,G) be a supersolvable built lattice. Let G1 and G2 be two non-comparable
elements of G such that we have G1 C G2, G1 ∨G2 ∈ G, G2 is not covered by G1 ∨G2 and G1 is
an initial segment ofG1∨G2. Then hG1hG2 is a normal monomial if and only ifG1∧G2 ≤ d(G1).

The forward statement is always true but for the converse we need the supersolvabil-
ity hypothesis. For instance consider L the graphical lattice associated to a 5-cycle and
number the edges (i.e. the atoms) from 1 to 5. If we pick G1 = {1, 2, 3} and G2 = {4, 5} in
the maximal building set, then we have G1 ∧G2 = 0̂ but hG1hG2 is not normal because we
have d(G1) ∨G2 = G1 ∨G2 = 1̂.

Proof. With the hypothesis on G1 and G2 we have

hG1hG2 is normal ⇔ d(G1) ∨G2 < G1 ∨G2

⇔ G1 � d(G1) ∨G2

⇔ G1 ∧ (d(G1) ∨G2) < G1

⇔ d(G1) ∨ (G1 ∧G2) < G1

⇔ G1 ∧G2 ≤ d(G1).

The fourth equivalence comes from the fact that by supersolvability G1 is modular in the
interval [0̂, G1 ∨G2].

8.2 A bijection between algebraic normal monomials and operadic
normal monomials

Let (L,G) be a supersolvable built lattice and let C be a total order on the atoms of L
obtained as in the proof of Definition/Proposition 8.1.1. Let us denote ANM(L,G,C) the
algebraic normal monomials with respect to the order C and the relations of weight 2,
i.e. is the set of monomials in FY(L,G) which are not divisible by the leading term (with
respect to C) of some relation of weight 2. Let us denote by ONM(L,G,C) the set of
operadic normal monomials with respect to the order on atoms C (see Proposition 4.5.4),
viewed as nested sets. Notice that in the supersolvable case the nested set S(ωkGτS(G),G) is
simply some truncation of the maximal chain {G > dτS(G)(G) > d2

τS(G)(G) > ... > τS(G)}.
This means that the operadic normal monomials do not depend on the particular choice
of C but only on the choice of the maximal chain of modular elements of (L,G). Such
choice being implicit we will drop C from all notations.
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8.2.1 From operadic normal monomials to algebraic normal monomials

We first define maps

ONM(L,G)
ΦL,G−−−→ ANM(L,G).

by induction on the rank of L. Let (L,G) be a supersolvable built lattice. For any element
G 6= 1̂ ∈ G and any algebraic monomial α =

∏
G′∈I hG′ in FY([G, 1̂], Ind(G)) we define the

algebraic monomial in FY(L,G):

SuppG(α) =
∏
G′∈I
G′∈G

h
d
iG′,G (G′)

∏
G′∈I
G′ /∈G

hG′⊥

where for any G′ ∈ G, iG′,G is the biggest integer such that we have diG′,G(G′) ∨ G = G′,
and for any G′ /∈ G, the element G′⊥ is the factor of G′ in G different from G. Finally, for
any operadic normal monomial S in some supersolvable built lattice (L,G,C) with G the
maximal element of S ′ for the order C we define by induction (on both the cardinal of S
and the rank of L) the map

Φ(L,G)(S) := SuppG(Φ[G,1̂],Ind(G)(G ∨ S�G))Φ[0̂,G],Ind(G)(S≤G).

initialized on empty nested sets by

Φ(∅) = h1̂hd(1̂)...hdrkL−2(1̂).

One can check that G ∨ S�G is an operadic monomial so our map is well-defined. This
map sends an operadic normal monomial to some algebraic monomial, which will turn
out to be normal but we will not need this fact.

8.2.2 From algebraic normal monomials to operadic normal monomials

We are concerned with finding an inverse for Φ. Let us define a candidate

ANM(L,G)
ΨL,G−−−→ ONM(L,G)

by induction on the rank of L and the weight of the monomial. We will drop the built
lattice from the notation if it can be deduced from the context. We initialize with

Ψ(1) = ω0̂,1̂ = {1̂ > d(1̂) > ... > 0̂}.

Let α =
∏
i hGi be some algebraic normal monomial in FY(L,G) and let us denote by G

the maximum of the G′is with respect to C. If G = 1̂ then by Proposition 8.1.2 we see that
all the Gi’s except G are below d(1̂) so we put

ΨL,G(α) = Ψ[0̂,d(1̂)],Ind(G)(α/h1̂),
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where Ψ[0̂,d(1̂)],Ind(G)(α/h1̂) is viewed as a normal monomial in (L,G). If G is different
from 1̂, let us denote respectively

α≤G =
∏
Gi≤G

hGi ,

α�G =
∏
Gi�G

hGi .

We put
ΨL,G(α) := {G} ◦ (Ψ[0̂,G],Ind(G)(α≤G),Ψ[G,1̂],Ind(G)(G ∨ α�G)), (8.2)

with G ∨ α�G a notation for
∏
Gi�G hG∨Gi . One can check that this defines an operadic

normal monomial.

As a side remark let us remind the reader that we have

FY({G})(α) := α≤G ⊗G ∨ α�G,

so we are in fact using again the (co)operadic structure on the Feichtner–Yuzvinsky rings.

We must prove that the monomial G ∨ α�G is normal in FY([G, 1̂], Ind(G)). This is
implied by the following lemma.

Lemma 8.2.1. Let (L,G) be a supersolvable built lattice and let G1 C G2 C G3 be elements in G.
If hG1hG2 , hG1hG3 and hG2hG3 are normal then hG1∨G3hG2∨G3 is normal in FY([G3, 1̂], Ind(G)).

This is the technical core of the article. The statement is not true in general with-
out the supersolvability condition, as shown by the following example. Let L be the
graphical lattice associated to a 6-cycle with edges {1, ..., 6}. Consider the elements G1 =
{1, 2}, G2 = {3, 4} and G3 = {5, 6}. One can quickly check that the monomials hG1hG2 ,
hG1hG3 and hG2hG3 are normal in FY(L,Gmax). However, hG1∨G3hG2∨G3 is not normal in
FY([G3, 1̂],Gmax) for two reasons: G2 ∨G3 is covered by G1 ∨G2 ∨G3 = 1̂ and we have

{1} ∨G2 ∨G3 = G1 ∨G2 ∨G3.

If a built lattice has a small rank it can happen that it satisfies Lemma 8.2.1 without being
supersolvable (see Subsection 10.1).

Proof. The statement is obvious when two of the Gi’s are comparable so we can assume
that the elements G1, G2, G3 are not comparable. We make a disjunction on whether
Gi ∨Gj belongs to G for i, j ≤ 3.
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Case 1. Gi ∨Gj /∈ G for all i 6= j ≤ 3.

In this case we have (G1 ∨ G3) ∨ (G2 ∨ G3) /∈ Ind(G). Indeed, by the proof of Proposi-
tion 7.2.8 the element G1 ∨ G2 ∨ G3 does not belong to G, and if G1 ∨ G2 ∨ G3 is equal to
G1 ∨G with G ∈ G and G1, G nested we immediately get G1 ∨G2 = G ∈ G contradicting
the initial hypothesis.

Case 2. G1 ∨G2 /∈ G, G1 ∨G3 /∈ G, G2 ∨G3 ∈ G.

Let us show that {G1∨G3, G2∨G3} is a nested anti-chain in Ind(G) as in the previous case.
By contradiction assume that G1 ∨ G2 ∨ G3 belongs to G. By restriction we can assume
G1 ∨ G2 ∨ G3 = 1̂. Since hG2hG3 is normal and G2 ∨ G3 ∈ G there exists some integer k
such that we have dk(1̂) ∧ (G2 ∨G3) = G2. We have

dk(1̂) = dk(1̂) ∧ (G2 ∨G1 ∨G3)

= G2 ∨ (dk(1̂) ∧ (G1 ∨G3))

= G2 ∨ (dk(1̂) ∧G1) ∧ (dk(1̂) ∧G3)

≤ G2 ∨G1 ∨G2

= G1 ∨G2.

By nested-ness this implies dk(1̂) = G2 which contradictsG1 C G2. IfG1∨G2∨G3 belongs
to Ind(G) but not to G we immediately get a contradiction as in the previous case.

Case 3. G1 ∨G2 /∈ G, G1 ∨G3 ∈ G, G2 ∨G3 /∈ G.

This is similar to the previous case.

Case 4. G1 ∨G2 /∈ G, G1 ∨G3 ∈ G, G2 ∨G3 ∈ G.

Once again let us show that {G1 ∨ G3, G2 ∨ G3} is a nested anti-chain in Ind(G). By con-
tradiction assume that G1 ∨ G2 ∨ G3 belongs to G. By restriction we can assume that we
have G1 ∨ G2 ∨ G3 = 1̂. By assumption there exists an integer k1 such that we have
dk1(1̂) ∧ (G1 ∨ G3) = G1 and an integer k2 such that we have dk2(1̂) ∧ (G2 ∨ G3) = G2.
Let us denote k := min(k1, k2). Let us assume k1 ≥ k2, the other case being symmetric. By
modularity of dk(1̂) and definition of k we have

dk(1̂) = dk(1̂) ∧ (G1 ∨G2 ∨G3)

= G1 ∨ (dk(1̂) ∧ (G2 ∨G3))

= G1 ∨G2.
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This contradicts the fact that G1 ∨ G2 does not belong to G. If G1 ∨ G2 ∨ G3 belongs to
Ind(G) and not to G we immediately get a contradiction as in the previous cases.

Case 5. G1 ∨G2 ∈ G, G1 ∨G3 /∈ G and G2 ∨G3 /∈ G.

We can either have G1 ∨ G2 ∨ G3 /∈ G or the contrary. In the first case the building set
isomorphism

[0̂, G1 ∨G2 ∨G3] ' [0̂, G1 ∨G2]× [0̂, G3]

immediately gives the result. In the second case we can assume G1 ∨G2 ∨G3 = 1̂. Let us
prove that G1 ∨ G3 is an initial segment of G1 ∨ G2 ∨ G3 in [G3, 1̂]. By assumption there
exists an integer k such that we have dk(1̂) ∧ (G1 ∨G2) = G1. We will prove the equality

dk(1̂) ∨G3 = G1 ∨G3.

We have

dk(1̂) = dk(1̂) ∧ (G1 ∨G2 ∨G3)

= G1 ∨ (dk(1̂) ∧ (G2 ∨G3)) (by modularity of dk(1̂))

≤ G1 ∨ (dk(1̂) ∧G2) ∨ (dk(1̂) ∧G3) (by nested-ness of{G2, G3})
≤ G1 ∨G1 ∨G3 (by definition of k)

= G1 ∨G3.

The other inequality is obvious. Let us now show the inequality

d(G1) ∨G2 ∨G3 < G1 ∨G2 ∨G3. (8.3)

According to Lemma 8.1.3 it is enough to prove the inequality

(G1 ∨G3) ∧ (G2 ∨G3) ≤ d(G1) ∨G3. (8.4)

An atom H below G1 ∨ G3 is either below G1 or G3 by nested-ness, and similarly for
G2 ∨G3. As a consequence, an atom below G1 ∨G3 and below G2 ∨G3 is either below G3

or is below G1 ∧G2, which is below d(G1) by Lemma 8.1.3.

One must also prove that G2 ∨G3 is not covered by G1 ∨G2 ∨G3. By inequality (8.3)
if G2 ∨G3 is covered by G1 ∨G2 ∨G3 then we have d(G1)∨G3 ≤ G2 ∨G3. In this case by
nested-ness d(G1) is either below G2 or G3. In the first case we immediately obtain that
G2 is covered by G1 ∨G2 which is a contradiction. In the second case we get G1 ∧G3 6= 0̂
which contradicts the fact that G1 ∨G3 does not belong to G.

Case 6. G1 ∨G2 ∈ G, G2 ∨G3 ∈ G.
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In this case we necessarily have G1 ∨ G2 ∨ G3 ∈ G. Let us prove that G1 ∨ G3 is an
initial segment of G1 ∨ G2 ∨ G3 in [G3, G1 ∨ G2 ∨ G3]. It is enough to prove that G1 is
an initial segment of G1 ∨ G2 ∨ G3. By restriction we can assume G1 ∨ G2 ∨ G3 = 1̂.
Since G1 is an initial segment of G1 ∨ G2 there exists an integer k1 such that we have
dk1(1̂) ∧ (G1 ∨G2) = G1. Since G2 is an initial segment of G2 ∨G3 there exists an integer
k2 such that we have dk2(1̂) ∧ (G2 ∨ G3) = G2. The integer k1 is greater or equal than k2

because the opposite inequality would imply G2 ≤ G1. Let us prove the equality

dk1(1̂) = G1.

We have

dk1(1̂) = dk1(1̂) ∧ (G1 ∨G2 ∨G3)

= G1 ∨ (dk1(1̂) ∧ (G2 ∨G3)) (by modularity of dk1(1̂))

≤ G1 ∨ (dk1(1̂) ∧G2) (by k1 ≥ k2)

≤ G1 ∨G1 (by definition of k1)

= G1.

The opposite inequality is obvious. Let us now prove inequality 8.4. By supersolvability
the lattice generated by G1 = dk1(1̂), G3 and G2 ∨G3 is distributive. This implies

(G1 ∨G3) ∧ (G2 ∨G3) = (G1 ∧ (G2 ∨G3)) ∨ (G3 ∧ (G2 ∨G3))

= (G1 ∧ (G2 ∨G3)) ∨G3

≤ (G1 ∧G2) ∨G3 (by k1 ≥ k2)

≤ d(G1) ∨G3.

As in the other cases one can check that G2 ∨G3 is not covered by G1 ∨G2 ∨G3.

Case 7. G1 ∨G2 ∈ G, G1 ∨G3 ∈ G, G2 ∨G3 /∈ G.

In this case we necessarily have G1 ∨ G2 ∨ G3 ∈ G. As always by restriction we can
assume G1 ∨ G2 ∨ G3 = 1̂. By assumption there exists an integer k2 such that we have
dk2(1̂)∧ (G1 ∨G2) = G1 and an integer k3 such that we have dk3(1̂)∧ (G1 ∨G3) = G1. Let
us denote k := max(k2, k3). We will prove the equality

dk(1̂) = G1.
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We have

dk(1̂) = dk(1̂) ∧ (G1 ∨G2 ∨G3)

= G1 ∨ (dk(1̂) ∧ (G2 ∨G3)) (by modularity of dk(1̂))

= G1 ∨ (dk(1̂) ∧G2) ∨ (dk(1̂) ∧G3) (by nested-ness of {G2, G3})
≤ G1 ∨G1 (by definition of k)

= G1.

The opposite inequality is obvious. This implies that G1 ∨ G3 is an initial segment of
G1 ∨ G2 ∨ G3 in [G3, 1̂]. Let us now prove inequality 8.4. By supersolvability the lattice
generated by G1 = dk1(1̂), G3 and G2 ∨G3 is distributive. This implies

(G1 ∨G3) ∧ (G2 ∨G3) = (G1 ∧ (G2 ∨G3)) ∨ (G3 ∧ (G2 ∨G3))

= (G1 ∧ (G2 ∨G3)) ∨G3

= (G1 ∧G2) ∨ (G1 ∧G3) ∨G3 (by nested-ness of {G2, G3})
≤ d(G1) ∨G3 (by Lemma 8.1.3).

As in the other cases one can check that G2 ∨G3 is not covered by G1 ∨G2 ∨G3.

8.3 Proof of Theorem 7.2.7

In this subsection we give the proof of the main theorem of the second part of this manuscript
and some immediate corollaries.

Theorem 8.3.1. Let (L,G) be a supersolvable built lattice. The algebra FY(L,G) admits a
quadratic Gröbner basis and is therefore Koszul.

Proof. By dimension it is enough to prove that the map Φ is a left inverse of Ψ, which we
will do by induction. The base cases are obvious.

Let α =
∏
G′∈I hG′ be a normal algebraic monomial with maximal element G with

respect to C. If G = 1̂ then every element G′ ∈ I is of the form dk(1̂) for some k. In this
case we can explicitly compute

Ψ(
∏
i≤n

hdki (1̂)) = {dk(1̂) | k + 1 /∈ {ki, i ≤ n}},

and
Φ({dki(1̂), i ≤ n}) =

∏
k−1/∈{ki,i≤n}

hdk(1̂),
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which proves reciprocity. If G 6= 1̂ by induction one can prove that the maximal element
(for C) of Ψ(α) is G. We then have by definition

Φ ◦Ψ(α) = Φ({G} ◦ (Ψ(G ∨ α�G),Ψ(α≤G)))

= SuppG(Φ(Ψ(G ∨ α)))Φ(Ψ(α≤G)).

However, by normality of α and maximality of G we get SuppG(G ∨ α) = α�G which
concludes the proof by induction.

When restricting our attention to the maximal building set we get the immediate corol-
lary.

Corollary 8.3.2. Let L be a supersolvable lattice. The combinatorial Chow ring FY(L,Gmax)
admits a quadratic Gröbner basis and is therefore Koszul.

In the next subsection we shall see that this is also true for the minimal building set.
As mentioned in the introduction this strengthens the result of Mastroeni and McCul-
lough [26] proving Koszulness of the combinatorial Chow rings, in the particular case of
supersolvable lattices.

8.4 Minimal building sets of supersolvable lattices

A lattice is said to be irreducible if it is not a product of proper subposets. The minimal
building set Gmin of a lattice L is the set of elements G of L such that [0̂, G] is irreducible.
We have the key proposition.

Proposition 8.4.1. Let L be an irreducible supersolvable lattice. The built lattice (L,Gmin) is
supersolvable.

Proof. It is enough to prove that if L is a supersolvable irreducible lattice then d(1̂) is
irreducible. In fact here d(1̂) can be any modular coatom (it does not need to be part of a
maximal chain of modular elements). We will prove the contraposition of this statement.
Assume that d(1̂) decomposes as a product [0̂, G1] × ... × [0̂, Gn]. Denote by R the set of
atoms which are not below d(1̂). We have the following lemma.

Lemma 8.4.2. There exists an integer i ≤ n such that we have the inclusion (
∨
R) \R ⊂ Gi.

Proof. Recall from Subsection 7.1 that we have∨
R = σ(R) = R ∪ {i ∈ At(L) | ∃C circuit s.t. i ∈ C ⊂ R ∪ {i}}.

Let us prove that there exists some integer i such that for any atom H /∈ R and any
circuit C ⊂ R ∪ {H} containing H we have H ≤ Gi, by induction on the cardinal of the
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circuits. The base case is when the circuits have length 3. Let H1, H2 be two different
atoms in R. Since d(1̂) is a coatom we have H2 ≤ 1̂ = d(1̂) ∨ H1 so there exists a circuit
C containing H1 and H2 and such that we have C \ {H1, H2} ⊂ d(1̂). Since d(1̂) is
modular by Lemma 7.2.6 there exists a circuit C ′ containing some element H ′ in d(1̂) and
such that C ′ \ {H ′} is equal to {H1, H2}. Such a circuit is in fact unique, the atom H ′

being necessarily equal to d(1̂) ∧ (H1 ∨ H2). Consider now three atoms H1, H2, H3 in R.
The element d(1̂) ∧ (H1 ∨ H2 ∨ H3) has rank at most 2 and it contains the three atoms
d(1̂) ∧ (Hi ∨Hj) for i 6= j ≤ 3. If two of those atoms are equal, say

d(1̂) ∧ (H1 ∨H2) = d(1̂) ∧ (H2 ∨H3) =: H,

then by sub-modularity of Lwe have

ρ(H1 ∨H3 ∨H) ≤ ρ(H1 ∨H) + ρ(H3 ∨H)− ρ((H1 ∨H) ∧ (H3 ∨H)) ≤ 2 + 2− 2 = 2

(since we have H ∨H2 ≤ (H1 ∨H) ∧ (H3 ∨H)). This implies H ≤ H1 ∨H3 and therefore
d(1̂) ∧ (H1 ∨H3) is also equal to H . If the three atoms are different then they must form a
circuit, and thus they must all belong to some same Gi. This concludes the initialization.
Let us now assume that all the atoms d(1̂) ∧ (H1 ∨H2) are below G1 for instance.

Let C be a circuit of arbitrary length, containing a unique element H not in R. Let
H1, H2 be two atoms in C different from H . By the initialization part there exists a circuit
{H1, H2, H

′} with H ′ in G1. If H ′ is equal to H then we have H ∈ G1. If not, by Ax-
iom (7.1) one can construct a circuit C ′, containing H and not containing H1, such that C ′

is included in C ∪ {H ′}. If C ′ does not contain H ′, then we are done by induction. If C ′

contains H ′ then since d(1̂) is modular by Lemma 7.2.6 there exists a circuit C ′′ containing
some element H ′′ in d(1̂) and such that C ′′ \ {H ′′} is contained in C ′ ∩R. By induction the
atom H ′′ belongs to G1. If H ′′ = H we are done. Otherwise by Axiom (7.1) there exists
a circuit C ′′′ containing H , contained in C ′ ∪ {H ′′} and not containing some element in
C ′ ∩ R. Reiterating this process we get a circuit containing H and some elements in G1

which proves that H belongs to G1.

From this we deduce the second lemma.

Lemma 8.4.3. The set of atoms G1 ∪R is closed.

Proof. Let H be some element contained in a circuit C contained in G1 ∪R ∪ {H}. If H is
in R we are done. If H is the unique element of C under d(1̂) then by the previous lemma
we are also done. Otherwise using Lemma 7.2.6 together with Axiom (7.1) (as we did in
the previous lemma) gives us a circuit contained in d(1̂), containing H with every other
element in G1. This proves that H belongs to G1.

Finally, we get the concluding lemma.
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Lemma 8.4.4. L is isomorphic to [0̂, G1 ∪R]× [0̂, G2]× ...× [0̂, Gn].

Proof. We will prove that every circuit is either contained in G1 ∪ R or in some Gi with
i ≥ 2. Let C be a circuit in L. If C is contained in d(1̂) then the result comes from the
isomorphism [0̂, d(1̂)] ' [0̂, G1]× ...× [0̂, Gn]. If C * d(1̂) and C ∩ d(1̂) is a singleton then
by the previous lemma we have C ⊂ G1 ∪ R. If C * d(1̂) and C ∩ d(1̂) is not a singleton,
pick H any atom in C ∩ d(1̂). By iterating Lemma 7.2.6 as in the previous proof we obtain
a circuit C ′ containing H , contained in d(1̂) and containing some elements in G1. The
isomorphism

[0̂,d(1̂)] ' [0̂, G1]× [0̂, Gn]

implies that this circuit should be contained in G1 which proves the result.

The above proposition and Theorem 7.2.7 imply the following theorem.

Theorem 8.4.5. Let L be a supersolvable lattice. The algebra FY(L,Gmin) has a quadratic Gröb-
ner basis and is therefore Koszul.

Proof. Any supersolvable lattice L decomposes as a product of irreducible supersolvable
lattices

L ' L1 × ...× Ln.

We then have
FY(L,Gmin) ' FY(L1,Gmin)⊗ ...⊗ FY(Ln,Gmin)

and we can conclude by Proposition 8.4.1 and Theorem 7.2.7.



Chapter 9

Application to the extended modular
operad

9.1 Chordal graphs

In [30] Stanley proved that if G is a chordal graph (meaning every cycle in G has a chord),
the geometric lattice associated toG is supersolvable. This result is based on the following
lemma by Dirac [9].

Lemma 9.1.1 (Dirac, [9]). Every chordal graph admits a vertex v such that the graph induced by
the neighboors of v is a complete graph.

Such vertices are called “simplicial”. If we remove a simplicial vertex from a chordal
graph, the graph we obtain is chordal and this graph is a coatom in the original graph.
This means we can reiterate the process and get a maximal chain in the lattice associated
with a chordal graph. One can then check that this maximal chain contains only modular
elements. We have a “built” variant of this result. Let us remind the reader that in Exam-
ple 1.1.8 we have defined a built lattice (LG,GG) for every simple graph G, with LG the
usual graphical matroid associated to G and GG the building set of connected subgraphs
of G.

Lemma 9.1.2. Let G be a connected chordal graph. The built lattice (LG,GG) associated to G is
supersolvable.

Proof. Let us choose a maximal chain of modular elements as in the last paragraph. By
construction those elements are connected subgraphs of G. Let G′ be a closed connected
subgraph of G. For any integer k less than the rank of G, the element dk(1̂) ∧ G′ can be
obtained from G′ by successively removing simplicial vertices of G′ and therefore it is
connected.
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Corollary 9.1.3. For all chordal graph G, the Feichtner–Yuzvinsky algebra FY(LG,GG) admits
a quadratic Gröbner basis.

9.2 The components of the extended modular operad

In [21], Losev and Manin introduced new moduli stacks Lg,S for stable curves of genus g
with painted marked points indexed by S of two types (say “black” and “white”) where
the points of type black are allowed to coincide and the points of type white are not. Those
stacks are the components of the so-called “extended modular operad” (see [22]). We will
deduce from Corollary 9.1.3 the following result.

Theorem 9.2.1. The cohomology algebras of the components of the extended modular operads in
genus 0 are Koszul.

Proof. It is part of the folklore that if S is a (colored) set with m white points and n black
points and ∗ is some chosen white point, then the moduli space L0,S is isomorphic to the
wonderful compactification of the graphical arrangement

{zi = zj | i 6= ∗white , j 6= ∗white or black},

with respect to the building set of connected components (see 1.1.8). The corresponding
graph denoted Gm−1,n has m + n − 1 vertices, with the first m − 1 vertices connected to
every other vertices and the last n vertices connected only to the first m − 1 vertices. We
notice that Gm,n is a chordal graph for every m and n and therefore we can conclude by
Corollary 9.1.3.

Let us summarize here the main line of arguments giving the stated isomorphism. In
the sequel [25], Manin remarked that the moduli stacks Lg,S are part of the formalism of
Hassett spaces introduced by Hassett in [18]. In the latter article, the author introduces
the moduli problem of curves with weighted points, where one fixes a “weight data”
consisting of a vector (g,w) = (g, w1, ..., wn) ∈ N × (]0, 1] ∩ Q)n and one then seeks to
parametrize the nodal curves of genus g with n marked points (si)i≤n which are allowed
to coincide “up to their weights”, meaning that if the points si, i ∈ I coincide then we
require ∑

i∈I
wi ≤ 1,

and satisfying a (weighted) stability condition (see [18]). If the first p weights are 1 and
the last n− p weights are small enough (precisely

∑
i>pwi < 1) then the above condition

means exactly that the first p points cannot coincide with any other point and the last n−p
points can coincide only between them, and we recover the painted moduli problem of
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Losev and Manin. Hassett proved that there exists a Deligne–Mumford stackMg,w rep-
resenting the above weighted moduli problem.

In genus 0 the stability condition can be simply stated: for any irreducible component
T of the nodal curve, we require∑

i s.t.si∈T
wi + #nodes of T > 2.

In addition, in genus 0 the moduli stack M0,w is a smooth projective scheme (called a
Hassett space). If the weights are either 1 or very small then we call those Hassett spaces
“heavy/light”. Indexes with weight 1 are called heavy and the other indexes are called
light. Work of Cavalieri-Hampe-Markwig-Ranganathan [7] shows that a “heavy/light”
Hassett space is a tropical compactification of the projective complement M0,w of the
same graphical arrangement {zi = zj | i 6= ∗ heavy, j 6= ∗ heavy or light} (with ∗ some
chosen heavy index). To put it in a nutshell this means that there exists an embedding of
M0,w in a torus Tn together with a fan Σ in Rn having support the tropicalization ofM0,w

and such that the closure ofM0,w in the toric variety X(Σ) is the Hassett spaceM0,w (we
refer to [24] for an introduction to tropical geometry). The fan Σ introduced in [7] is none
other than the Bergman fan associated to the buit lattice (LGm,n ,GGm,n) (see [14] for the
definition of the Bergman fan of a built lattice).

In [31], Tevelev has shown that the tropical compactification of a projective hyperplane
arrangement complement along the bergman fan of some building set G of the correpond-
ing lattice can in fact be identified with the wonderful compactification of De Concini and
Procesi along the same building set G, which is the stated isomorphism.
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Chapter 10

Further considerations

10.1 Towards a classification of Koszul Feichtner–Yuzvinsky al-
gebras

We would like to emphasize the fact that we know plenty of Feichtner–Yuzvinsky algebras
FY(L,G) which admit quadratic Gröbner bases and such that the built lattice (L,G) is not
supersolvable, especially in low rank. For instance, if C4 and C5 are respectively the 4 and
5-cycles then the latticesLC4 andLC5 are not supersolvable but the built lattices (LC4 ,GC4)
and (LC5 ,GC5) are so small that they still satisfy the key Lemma 8.2.1 and therefore their
Feichtner–Yuzvinsky algebras will be Koszul. However, for the wonderful presentation
and for the order used in this article, based on a few examples it feels to the author that the
supersolvability condition should be close to necessary, in high enough rank. For instance
if Cn is the n-cycle then one can easily check that the relations of weight 2 do not form a
Gröbner basis of the algebra FY(LCn ,GCn) with respect to the order considered in this ar-
ticle for n ≥ 6. We still do not know if FY(LC6 ,GC6) is Koszul or not. In order to produce
a quadratic Gröbner basis of this algebra one would either need to consider a different
order, or even a different presentation (which should also be different from the classical
presentation since one can show that no order on monomials induces a quadratic Gröbner
basis for the classical presentation; the argument is completely analogous to that of Dot-
senko [10] for the case of the building set of connected subgraphs of the complete graphs).

Let us also highlight the fact that even the question of quadraticity of Feichtner–
Yuzvinsky algebras is not completely clear. We know that the building sets having a
flag nested set complex give quadratic Feichtner–Yuzvinsky algebras but this condition
is not necessary, as shown by the following example. Consider C4 the 4-cycle with edges
numbered from 1 to 4. The set of flats

G = {1̂, {1, 2}, {1}, {2}, {3}, {4}}
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is a building set of LC4 which has a non-flag nested set complex since {2, 3, 4} is not nested
and does not contain any proper subset which is not nested. However, the Feichtner–
Yuzvinsky algebra of this built lattice is the algebra generated by h1̂ and h{1,2} with rela-
tions

h3
1̂

= 0,
h1̂h{1,2} = h2

1̂
,

h2
{1,2} = 0,

which is quadratic since the first relation is a consequence of the last two which are
quadratic. This “pathology” has to do with the fact that the minimal building set of LC4

(which is just the atoms together with the maximal element) does not have a flag nested
set complex.

Proposition 10.1.1. Let L be a lattice and G′ a building set of L such that (L,G′) has a flag nested
set complex. If G is a building set of L containing G′ and such that FY(L,G) is quadratic, then
the nested set complex of (L,G) is flag.

Proof. Assume that we have non-comparable elementsG1, ..., Gn, with n ≥ 3, such that we
haveG :=

∨
iGi ∈ G andGi∨Gj /∈ G for all i 6= j. IfG belongs to G′ then decomposing the

elements G1, ..., Gn in G′ immediately yields a contradiction to the flag-ness of the nested
set complex of (L,Gmin). If G does not belongs to G′, to lighten the notation let us assume
G = 1̂ (just restrict to the interval [0̂, G]). We have some decomposition

L ' [0̂, F1]× ...× [0̂, Fp] (10.1)

with {Fi, i ≤ p} the factors of G in G′ and p ≥ 2. Let j be some index less than p. By
isomorphism (10.1) we have Fj =

∨
i(Fj ∧ Gi). If we decompose the elements Fj ∧ Gi as

the join of their factors in G we can see that there is at most two indexes i such that we have
Fj ∧ Gi 6= 0̂ (otherwise we get a new family of non comparable elements contradicting
the flag-ness ofN (L,G), but this time with join Fj which is irreducible). In addition, there
cannot be two such indexes, because if say Fj = (Gi1∧Fj)∨(Gi2∧Fj) with i1 6= i2 then Fj is
an element of G belowG1∨G2 which is neither belowGi1 nor belowGi2 which contradicts
the fact that we haveGi1 ∨Gi2 /∈ G. In conclusion for each j there is exactly one i such that
we haveGi∧Fj 6= 0̂, and this implies that we in fact have Fj ≤ Gi. By using isomorphism
(10.1) one more time we get that eachGi is a join of some Fj ’s, and this forms a partition of
the Fj ’s. Finally, if FY(L,G) is a quadratic algebra then the relation (h1̂−hG1)...(h1̂−hGn)
can be written as a sum of relations of weight 2, multiplied by monomials. One of the
terms of this sum shall be of the form hn−2

1̂
(h1̂ − hG′1)(h1̂ − hG′2) with G′1 and G′2 two

elements in G with join 1̂. By isomorphism (10.1) we have G′1 = (G1∧G′1)∨ ...∨ (Gn∧G′1),
and similarly for G′2. If there are more than three indexes i such that we have Gi ∧G′1 6= 0̂,
then decomposing the elements Gi ∧ G′1 in G yields a new obstruction to the flag-ness of
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N (L,G), and we can conclude by some induction. If there are two indexes i1 6= i2 such
that we have G′1 ∧ Gi1 6= 0̂ and G′1 ∧ Gi2 6= 0̂ then G′1 contradicts the fact that we have
Gi1 ∨ Gi2 /∈ G. Finally, we get G′1 = Gi1 and G′2 = Gi2 for some i1, i2, which contradicts
Gi1 ∨Gi2 /∈ G.

As we know from Proposition 8.4.1, if a lattice L is supersolvable the nested set com-
plex associated to its minimal building set is flag. By the previous proposition this implies
that for any building set G of L, if FY(L,G) is quadratic then the nested set complex of
(L,G) is flag.

10.2 Conceptualizing the proofs of Koszulness

It would be very beneficial if one could explain in a more conceptual way the strategy
for proving the Koszul property introduced by Dotsenko and extended in this document.
In this direction, it could be of interest to check if an analogous strategy could work to
reprove the following classical theorem of Yuzvinsky.

Theorem 10.2.1 (Yuzvinsky, [36]). If L is a supersolvable geometric lattice then the algebra
OS(L) admits a quadratic Gröbner basis.

The corresponding (co)operad would be the cooperad of Orlik–Solomon algebras in-
troduced in Subsection 3.3. Having this other example may lead to a better understanding
of the phenomena at play and perhaps give new applications.

It would also be interesting to find an operadic characterization of supersolvable lat-
tices, which would explain why they behave so well with respect to the operadic structure.
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In the first part of this PhD thesis we introduce a global operadic structure on some
algebraic invariants of matroids such as the generalized combinatorial Chow rings and
the Orlik–Solomon algebras. We develop a theory of Gröbner bases for this new op-
eradic structure, which we use in order to prove Koszulness of the operad of generalized
combinatorial Chow rings.

In the second part we use this new operadic structure to prove the Koszulness of
some generalized combinatorial Chow rings.
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