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“The human being is only a reed, the most feeble in nature; but he is a thinking reed. Let us
make it our task, then, to think well: here is the principle of morality.”

–Blaise Pascal
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Résumé

“Tous les hommes aspirent par nature à la connaissance.”

–Aristotle

Contexte

Dans les années 1970, a débuté l’ère de l’information, caractérisée par une aug-
mentation du volume et de la complexité des données. Dans les années 1990, de
nouvelles stratégies et techniques étaient nécessaires pour faire face aux défis de
l’analyse de ces données, regroupées sous le terme de «Datamining ». LeDatamin-
ing est le processus d’identification de modèles et de corrélations dans les données
à l’aide d’approches mathématiques (par exemple, le théorème de Bayes - XVIIIe
siècle, l’analyse de régression - XIXe siècle) et de l’informatique, en particulier le
domaine de l’apprentissage automatique (réseaux neuronaux - années 1950, arbres
de décision - années 1960). Dans les années 2000, l’augmentation est devenue expo-
nentielle et est connue sous le nom de “Big Data”. Parallèlement, le développement
de l’apprentissage profond, de l’apprentissage automatique et des serveurs GPU a
permis au Data mining de faire face efficacement à des domaines divers et à des
défis spécifiques aux données.

Cependant, comme les données peuvent être catégorisées selon diverses carac-
téristiques ou structures, par exemple “Étiquetées vs Non étiquetées”, “Temporelles
vs Statiques”, “Structurées vs Non structurées”, “Numériques vs Catégorielles”, et
“Continues vs Discrètes”, le nombre de méthodes de Data mining est très impor-
tant et varié. Il est donc nécessaire de prendre en compte ces caractéristiques et
structures lors du choix de la méthode d’analyse à utiliser.

Données de Séries Temporelles

Dans ce travail, nous nous intéressons à la catégorie de données temporelles, c’est-
à-dire des séquences dépendantes du temps, plus spécifiquement les données de
séries temporelles (Figure 1). Ce domaine est considéré relativement nouveau en
apprentissage automatique, car il a commencé à susciter de l’intérêt dans les an-
nées 1970, mais n’a que récemment commencé à être sérieusement étudié. De telles

xvii



xviii Données de Séries Temporelles

Figure 1: Signaux de séries temporelles montrant différentes informations sur la
météo à Strasbourg, France, pendant le mois de février 2023, tirés de Weather Un-
derground.

données suivent l’évolution des phénomènes au fil du temps, à intervalles de temps
constants ou variables (taux d’échantillonnage), ce qui donne une séquence ordon-
née de valeurs réelles, voir Section 1.1. En général, tout type de données respectant
cette condition peut être considéré comme une série temporelle. Par exemple, la
collecte de données météorologiques à des fins de prévision, la surveillance de la
santé et la télédétection. D’autres objets pouvant être représentés sous la forme
d’une séquence ordonnée de valeurs réelles peuvent être considérés de manière
similaire, tels que la représentation unidimensionnelle d’objets, etc.

Les données de séries temporelles deviennent de plus en plus complexes et vo-
lumineuses en raison des avancées des technologies de détection. Cela a entraîné
un certain nombre de défis, tels que les distorsions, l’étiquetage des données et
l’explication des résultats.

Les distorsions dans les séries temporelles se manifestent dans le temps (dé-
calage) et l’amplitude (mise à l’échelle). Ces distorsions rendent difficile l’utilisation
de mesures de distance de type un-à-un (comme la distance euclidienne) car elles
ne tiennent pas compte des décalages et de l’échelle. Cela rend inefficaces un grand
nombre d’algorithmes.

Pour atténuer ce défi, deux approches peuvent être utilisées : soit l’utilisation
d’une mesure adaptée à ce type de données (par exemple, la DTW - Dynamic Time
Warping), soit la transformation des données pour les projeter dans un espace où
les méthodes conventionnelles (distance euclidienne) peuvent être utilisées directe-
ment.

La première approche vise à définir des mesures basées sur la distance qui étab-
lissent des correspondances entre les points de données, en prenant en compte les
distorsions. De telles mesures sont connues sous le nom de “mesures élastiques”. La
Dynamic Time Warping (DTW) est l’une des mesures élastiques les plus couram-
ment utilisées, dans laquelle la distance est calculée en fonction du chemin optimal
qui relie les points similaires entre eux. Cependant, son calcul a tendance à être
lent lorsqu’il est utilisé avec de grands ensembles de données. Il convient de noter
que la plupart des algorithmes doivent être adaptés pour incorporer ces mesures
lorsqu’ils sont utilisés avec des séries temporelles [1].

La deuxième approche consiste à apprendre une nouvelle représentation de la
série temporelle, qui peut être utilisée ultérieurement avec des algorithmes d’apprentissage
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automatique standard. Quelques exemples de méthodes visant à apprendre une
telle transformation sont la transformation en shapelet, l’approche Symbolic Ag-
gregate Approximation (SAX), l’approximation en morceaux (Piecewise Aggregate
Approximation - PAA), etc.

Analyse des Séries Temporelles

Les méthodes visant à regrouper les séries temporelles en classes ou en clusters
relèvent des termes de l’apprentissage supervisé, de l’apprentissage non supervisé
et de l’apprentissage semi-supervisé, où :

Apprentissage supervisé Utilise des connaissances préalables sur les données en
fournissant des étiquettes pendant le processus d’entraînement pour appren-
dre les dépendances cachées et les relations entre les données d’entrée et les
étiquettes fournies. Les performances du processus d’apprentissage sont en-
suite mesurées sur un ensemble de test non vu. Étant donné que le processus
d’étiquetage des données temporelles est fastidieux, coûteux et chronophage,
les techniques supervisées ne sont souvent pas préférées.

Apprentissage non supervisé Traite des données non étiquetées, sans aucune
information préalable, afin de découvrir la structure sous-jacente et la dis-
tribution, uniquement en fonction du biais de l’algorithme. En raison de
l’absence d’étiquettes, la mesure de la performance est difficile et les résultats
peuvent ne pas correspondre à l’intuition de l’expert.

Apprentissage semi-supervisé dans le but d’éviter ces deux problèmes (diffi-
cultés à obtenir de bons exemples en raison du manque d’informations préal-
ables et du coûteux processus d’étiquetage de l’ensemble des échantillons),
des approches dites semi-supervisées ont émergé. Elles impliquent l’incorporation
de l’expert dans le processus. Par exemple, l’expert est autorisé à guider le
processus en injectant des informations telles que des contraintes (appren-
tissage contraint), en validant à des moments clés (apprentissage actif), en
fournissant un faible pourcentage d’étiquettes, etc.

Dans ce travail, nous nous concentrons sur l’utilisation de contraintes pour
apprendre le regroupement. Ces contraintes représentent des informations préal-
ables (intuition de l’expert) fournies à l’algorithme. Des exemples d’algorithmes
de ce type sont le Constrained k-means [2] (CK-means), le Deep Constrained Clus-
tering (DCC) [3], etc. Ces contraintes peuvent prendre différentes formes, les plus
connues étant les contraintes par paires (également appelées contraintes de niveau
d’instance) : les contraintes de type "doivent être liées" (must-link) indiquent que
deux échantillons sont similaires, tandis que les contraintes de type "ne doivent
pas être liées" (cannot-link) indiquent qu’ils ne le sont pas. Les algorithmes de
regroupement contraint visent à respecter ces contraintes tout en attribuant des
points à différents groupes en fonction de leurs distances.
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Dans le travail de Davidson et al. [4] sur les propriétés des contraintes par
paires, ils ont formalisé les notions d’informativité et de cohérence des con-
traintes. L’informativité quantifie l’utilité des informations fournies par l’expert
au processus d’apprentissage, informations que l’algorithme seul ne serait pas ca-
pable d’apprendre uniquement en se basant sur son biais. La cohérencemesure le
degré de conflit entre les contraintes selon la métrique définie, où les contraintes
"doivent être liées" sont considérées comme exerçant une force attractive et les
contraintes "ne doivent pas être liées" une force répulsive. Avoir différents types de
contraintes à proximité peut entraîner des conflits lors de l’attribution des échantil-
lons aux groupes. L’informativité dépend de l’algorithme, tandis que la cohérence
est indépendante de l’algorithme. Selon la définition originale, la cohérence né-
cessite un espace métrique pour calculer le chevauchement entre les contraintes,
c’est-à-dire le conflit, ce qui n’est pas possible avec des mesures telles que DTW.

Un autre défi précédemment mentionné est d’expliquer la sortie du regroupe-
ment, car elle peut être complexe et difficile à interpréter, même pour les experts du
domaine. Cette difficulté est amplifiée par la complexité des données de séries tem-
porelles. Pour remédier à cela, certains algorithmes, tels que le Maximal Frequent
Item-Kmeans [5] - MFI-Kmeans, la méthode d’apprentissage conceptuel basée sur le
flou [6] - FCLM, utilisent le regroupement conceptuel pour apprendre des concepts
de plus haut niveau à partir des données. Ces concepts sont utilisés pour expliquer
les résultats du regroupement, en respectant strictement des conditions spécifiques.
De plus, des techniques de visualisation, de réduction de dimension, des techniques
basées sur des règles, etc., peuvent être utilisées pour faciliter l’explication des ré-
sultats du regroupement.

Travail Proposé

En résumé, le regroupement de séries temporelles est une tâche difficile qui né-
cessite des mesures de distance adaptées pour analyser et interpréter efficacement
les données. De plus, les sorties des algorithmes de regroupement de séries tem-
porelles peuvent être difficiles à interpréter. Pour remédier à cela, les experts peu-
vent fournir des connaissances préalables en utilisant des contraintes de niveau
d’instance, qui guident l’algorithme et alignent les résultats sur les besoins de l’expert.

Cependant, l’incorporation de contraintes de niveau d’instance dans le proces-
sus de regroupement introduit le défi d’évaluer l’informativité et la cohérence des
contraintes. De plus, l’intégration de techniques d’explication avec le paradigme
de regroupement contraint demeure une question ouverte.

Dans ce travail, nous cherchons d’abord à développer une représentation basée
sur les contraintes pour les séries temporelles qui tire parti des propriétés des
mesures élastiques, en particulier la Dynamic Time Warping (DTW), en utilisant
des shapelets et la transformation en shapelet. Notre approche vise à appren-
dre un espace où les propriétés des contraintes (par exemple, l’informativité et
la cohérence) peuvent être calculées, et où la distance entre les objets approxime
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la mesure de distance DTW (Dynamic Time Warping) de manière à prendre en
compte les distorsions dans les séries temporelles.

Deuxièmement, nous développons un cadre pour fournir des explications des
résultats du regroupement de séries temporelles (au niveau des clusters, c’est-à-
dire pour les clusters individuels par rapport à tout le reste, et au niveau global,
c’est-à-dire le regroupement dans son ensemble), en nous basant uniquement sur
la représentation découverte, c’est-à-dire les shapelets apprises. En tant que telle,
la nouvelle représentation améliore les performances du regroupement tout en fa-
cilitant l’explication des résultats.

Pour obtenir un espace explicatif conforme aux mesures basées sur la métrique,
nous utilisons la transformation en shapelet. La transformation en shapelet est une
transformation des séries temporelles basée sur des sous-séquences discriminatives
capables de différencier les séries temporelles en calculant la distance entre elles et
les shapelets. Comme les shapelets peuvent être vues de la même manière que
les séries temporelles (en tant que sous-séquences), elles devraient être plus faciles
à interpréter pour l’expert [7]. Pour garantir que la distance entre les séries tem-
porelles dans le nouvel espace tienne compte des distorsions, la distance entre leurs
représentations (dans l’espace transformé) est contrainte pour approximer la dis-
tance DTW appliquée aux séries temporelles brutes. Enfin, pour intégrer l’apport
de l’expert dans le processus d’apprentissage et le personnaliser à ses besoins, des
contraintes par paires sont intégrées.
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Plan de Thèse

Cette thèse est organisée comme suit :

Partie 1 : Introduction et État de l’Art

Chapitre 1 fournit les connaissances de base nécessaires et les définitions
pour les données de séries temporelles et l’analyse de séries temporelles.

Chapitre 2 présente les travaux connexes et les connaissances de base néces-
saires sur les shapelets, les contraintes et le regroupement.

Partie 2 : Shapelets Préservant la DTW Contrainte

Chapitre 3 présente notre approche proposée d’apprentissage de représen-
tation contrainte, appelée Shapelets Préservant la DTW Contrainte (CDPS).
Il présente également les expérimentations et les discussions menées pour
évaluer la robustesse et l’efficacité de CDPS.

Chapitre 4 introduit plusieurs approches qui tirent parti de la représentation
apprise à l’aide de CDPS pour expliquer les résultats de toute approche de
regroupement utilisée pour analyser les données. Cette approche est appelée
Explication du Regroupement avec Shapelets (SCE). Il démontre également le
processus d’explication sur un cas d’utilisation et les résultats sont discutés.

Partie 3 : Conclusions et Perspectives

Chapitre 5 nous présentons les conclusions de nos contributions et les direc-
tions futures possibles.



General Introduction

“All men by nature desire knowledge.”

–Aristotle

Context

In the 1970s, the era of information began, characterized by an increase in terms
of volume and complexity of data. In the 1990s novel strategies and techniques
were needed to address the challenges faced with analysing such data, falling under
the term ‘Data mining’. Data mining is the process of identifying patterns and
correlations in data using mathematical approaches (e.g. Bayes’ theorem–1700s,
regression analysis–1800s) and computer science, particularly the field of machine
learning (neural networks–1950s, decision trees–1960s). In the 2000s, the increase
became exponential and is known as “Big Data”. In parallel, the development of
deep learning, machine learning andGPU servers enabled datamining to efficiently
address diverse domains and data-specific challenges.

Nevertheless, as data can be categorized using various characteristics or struc-
tures, for example ‘Labeled vs. Unlabeled’, ‘Temporal vs. Static’, ‘Structured vs.
Unstructured’, ‘Numerical vs. Categorical’, and ‘Continuous vs. Discrete’ the num-
ber of data mining methods are very large and various. Thus, it is necessary to
take these characteristics and structures into account when choosing the analyti-
cal method to be used.

Time Series Data

In this work, we are interested in the category of temporal data, i.e. time-dependent
sequences, more specifically Time Series data (Figure 2). This domain is considered
relatively new in machine learning as it started to gain interest in the 1970s but has
only recently started to receive serious attention. Such data tracks the change of
phenomena through time, at constant or variable time intervals (sampling rate),
resulting in an ordered sequence of real values, see Section 1.1. Generally, any
type of data respecting this condition can be considered a time series. For example,
recording weather data for forecasting purposes, health monitoring, and remote
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Figure 2: Time-series signals showing different information about the weather in
Strasbourg-France during the month of February 2023, taken fromWeather Under-
ground.

sensing. Other objects that can be represented as an ordered sequence of real values
can be considered in a similar manner, such as one-dimensional representation of
objects, etc.

Time-series data is becoming increasingly complex and voluminous due to ad-
vancements in sensing technologies. This resulted in a number of challenges, e.g.
distortions, data labelling, and result explanation.

Distortions in time series are exhibited in time (shift) and amplitude (scaling).
These distortions make it challenging to use one-to-one based distance measures
(such as Euclidean distance) since they do not take shifts and scale into account.
This renders a wide number of algorithms inefficient. To mitigate this challenge,
two approaches can be used: either using a measure adapted to this type of data
(e.g. DTW – Dynamic Time Warping) or transforming the data to project it into a
space in which conventional methods (Euclidean distance) can be used directly.

The first approach aims to define distance-based measures that establish cor-
respondences between data points, taking distortions into account, such measures
are known as ‘elastic measures’. Dynamic TimeWarping (DTW) is one of the most
commonly used elastic measures, in which distance is calculated based on the op-
timal path that connects similar points together. Its calculation, however, tends to
be slow when used with large datasets. It should be noted that most algorithms
need to be adapted to incorporate these measures when used with time series [1].

The second approach involves learning a new representation of the time series,
which can be used later with standard machine learning algorithms. Some exam-
ples of methods that aim to learn such a transformation are shapelet transform,
Symbolic Aggregate approXimation (SAX), Piecewise Aggregate Approximation
(PAA), etc.

Time Series Analysis

Methods to group time series into classes/clusters fall under the terms supervised,
unsupervised, and semi-supervised, where:

Supervised learning uses prior knowledge of the data by providing labels during
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the training process to learn hidden dependencies and relationships between
the input and the provided labels. The performance of the learning process is
then measured on an unseen test set. Since the data labelling process for time
series is tedious, expensive, and time-consuming, supervised techniques are
often not preferred.

Unsupervised learning handles unlabeled data, without any prior information,
to unravel underlying structure and distribution, based solely on the algo-
rithm’s bias. Due to the lack of labels, measuring the performance is chal-
lenging and the results may not be aligned with the expert’s intuition.

Semi-supervised learning in an attempt to avoid these two problems (difficul-
ties in obtaining good examples due to the lack of prior information and
the expensive process of labelling all samples), so-called semi-supervised ap-
proaches have emerged. These involve incorporating the expert into the pro-
cess. For example, the expert is allowed to guide the process by injecting
information such as constraints (constrained learning), validating at key mo-
ments (active learning), providing a small percentage of labels, and so on.

In this work, we focus on using constraints to learn clustering. Where these
constraints represent prior information (expert intuition) that is provided to the al-
gorithm, examples of such algorithms are Constrained K-means [2] (COP-Kmeans),
Deep Constrained Clustering (DCC) [3], etc. These constraints can take different
forms, the most known are the pairwise constraints (also known as instance-level):
must-link and cannot-link. Must-link constraints indicate that a pair of samples are
similar while cannot-link constraints indicate that they are not. Constrained clus-
tering algorithms aim to respect the constraints while assigning points to different
clusters based on their distances.

In the work of Davidson et al. [4] on pairwise constraint properties, they for-
malized the informativeness and coherence of constraints. Informativeness

quantifies the usefulness of the information provided by the expert to the learn-
ing process, where the algorithm alone may not be able to learn such information
solely based on its bias. Coherence measures the degree of conflict between con-
straints according to the defined metric, where must-link are considered to exert
an attractive force and cannot-link a repulsive force. Having different types of
constraints in proximity may lead to conflict while assigning the samples to the
clusters. Informativeness is algorithm dependent, while coherence is independent
of the algorithm. According to the original definition coherence is verified by cal-
culating the overlap between constraints, i.e. the conflict. This requires a metric
space, which is not possible with measures such as DTW.

Another challenge previously mentioned is explaining the clustering output,
since it can be complex and difficult to interpret, even for domain experts. This
difficulty is further amplified by the complexity of time-series data. To address
this, some algorithms, (such as Maximal Frequent Item-Kmeans [5] – MFI-Kmeans,
Fuzzy-Based Concept Learning Method [6] – FCLM) employ conceptual clustering
to learn higher-level concepts from the data. These concepts are used to explain
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the clustering results, with strict adherence to specific conditions. Additionally,
visualization techniques, dimensionality reduction, rule-based techniques, etc., can
be employed to facilitate the explanation of clustering results.

Proposed Work

In summary, time-series clustering is a challenging task that requires tailored dis-
tance measures to effectively analyze and interpret data. Moreover, time series
clustering algorithm outputs can be hard to interpret. To address this, experts can
provide prior knowledge using instance-level constraints, which guide the algo-
rithm and align results with the expert’s needs.

However, incorporating instance-level constraints in the clustering process in-
troduces the challenge of assessing the informativeness and coherence of the con-
straints. Furthermore, integrating explanation techniques with the constrained
clustering paradigm remains an open issue.

In this work, we first try to develop a constraint-based representation for time
series that leverages elastic measure properties, specifically Dynamic Time Warp-
ing (DTW), using shapelets and the shapelet transform. Our approach aims to learn
a spacewhere constraint properties (e.g. informativeness and coherence) can be cal-
culated, and the distance between objects approximates the DTW (Dynamic Time
Warping) distance measure so that it can take into account distortions in the time
series.

Second, we develop a framework to provide explanations for time-series clus-
tering results (for cluster level, i.e. for individual clusters compared to everything
else, and global level, i.e. the overall clustering itself), solely by relying on the dis-
covered representation, that is the learned shapelets. As such, the new represen-
tation enhances clustering performance while facilitating an explanation of the re-
sults.

To achieve an explainable space that adheres to metric-based measures, we use
the shapelet transform. The shapelet transform is a time series transformation
based on discriminative sub-sequences that are able to differentiate between time
series by calculating the distance between them and the shapelets. Since shapelets
can be viewed in the samemanner as time series (being sub-sequences), they should
be easier for the expert to interpret [7]. To ensure that the distance between the
time series in the new space accounts for distortions, the distance between their
representations (in the transformed space) is constrained to approximate the DTW
distance applied to the raw time series. Finally, to incorporate expert input into
the learning process and to customize it to their needs, pairwise constraints are
integrated.



Thesis Outline xxvii

Thesis Outline

This thesis is organized as follows:

Part 1: Introduction and State-of-the-Art

Chapter 1 provides the necessary background knowledge and definitions for
time series data and time series analysis.

Chapter 2 provides the related work and background knowledge necessary
for shapelets, constraints and clustering.

Part 2: Constrained DTW Preserving Shapelets

Chapter 3 presents our proposed constrained representation learning approach,
called Constrained DTW Preserving Shapelets (CDPS). It also presents the
experimentation and discussion carried out to evaluate CDPS’s robustness
and effectiveness.

Chapter 4 introduces several approaches that leverage the representation learnt
using CDPS to explain the results of any clustering approach used to analyze
the data, this approach is termed Shapelet Cluster Explanation (SCE). It also
demonstrates the explanation process on a use case and the results are dis-
cussed.

Part 3: Conclusions and Prospective Work

Chapter 5 we present the conclusions of our contributions and possible fu-
ture directions.
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Introduction and State-of-the-Art
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Chapter 1 Introduction toTime
Series

“The journey of a thousand miles begins with one step.”

– Lao Tzu

1.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Phenomena . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Time series Analysis and Applications . . . . . . . 6
1.1.3 Time Series Representation . . . . . . . . . . . . . 7
1.1.4 Distance Measures . . . . . . . . . . . . . . . . . . 9

1.2 Problem and Motivation . . . . . . . . . . . . . . . . . . . 15
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Studying a phenomenon often involves observing various aspects and variables
of the phenomenon either at a specific time instant or its evolution over time. The
resulting data from observing the evolution of phenomena over time is referred
to as time series. Time series data contains valuable information that can reveal
significant aspects which may not be apparent when studying the phenomenon at
a single instant. Analyzing such data depends on the specific task at hand, such
as anomaly detection in a production pipeline or predicting stock market trends.
Analyzing time series data is challenging regardless of the task due to the pres-
ence of various types of distortions. These distortions may include missing data
or temporal shifts between different observations. These complexities add an ad-
ditional layer of difficulty when measuring similarity between time series data, as
similarity measures need to account for and accommodate such distortions. In this
chapter, we will introduce time series data, explore different approaches for analyz-
ing such data, discuss measuring similarity between time series data, and provide
the motivation behind our work.

3
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1.1 Time Series

In the following section, we will discuss the definitions and notations used for time
series data. We will also provide a detailed explanation of time series distortions
and the different measures used for them. Furthermore, we will present various
techniques for analyzing time series data and discuss their applications.

1.1.1 Phenomena

A time series generally corresponds to a sequence of observations (value of a stock,
radiometry of a terrestrial object, etc.) of a phenomenon (evolution of the course
of a stock, agricultural cycle, etc.) captured at intervals of time that may or may
not be regular. The frequency of acquisition is the amount of time between two
observations. The phenomena can exhibit recurring patterns known as seasonal-
ity, e.g. a cardiograph showing a heartbeat. It can follow a general trend which can
be increasing, decreasing or both, e.g. the blood pressure of a nervous patient in-
creases. It can have irregularities known as residuals, e.g. unexpected disruptions
in the environment can cause sudden abnormalities in the subject being monitored.
Figure 1.1 presents a visualization depicting these characteristics.

Analyzing such a series involves understanding the phenomena captured. For
example, the analysismay be to learn a classificationmodel (supervised learning) or
look for regularities (frequent patterns), abnormal behaviour (fraud detection), or
even groups (clustering) within these series. Such analysis is highly dependent on
the phenomenon being studied and the data itself. For example, in remote sensing,
the analysis of an agricultural crop yearly cycle depends on various factors, includ-
ing the types of crop (wheat, maize, etc.) present in the area under consideration.
Additionally, the growth cycle of a specific crop, wheat for example, can vary based
on numerous parameters. Thus, for two different observations (instances) of the
same phenomena we can observe a lag between the two cycles if the sowing dates
are different, having different growing conditions (soil quality, irrigation, etc.) can
lead to longer or shorter cycles and/or different yields, one-off events (hail, thun-
derstorms, etc.) can cause crops to end prematurely. Furthermore, studying the
seasonality of crops can provide important information about the state of the soil
at a given moment, having different annual weather patterns can disrupt cycles
throughout the area thus complicating multi-year comparisons, the geographical
location of the study area limits the types of crops grown and disrupts their cycles.
In addition to understanding the phenomena at hand, the analysis also depends on
the representative data. Some of the factors involved in this are as follows:

Acquisition frequency: howoften values are observed and recorded, whichmust
be sufficiently frequent to capture the phenomena being observed.

Acquisition quality: range of acquisition values, i.e. measurement resolution,
absence or presence of noise, using an appropriate recording device, etc.
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Figure 1.1: The original time series (first row) and its component: Trend (second
row), Seasonality :=Season (third row), and Residue :=Resid (last row).

The possibility of missing data: for example, having an obstacle in front of the
recording device such as in cloudy weather where it will be hard for the
device to capture relevant information about the phenomena.

Thus, time series data corresponding to the same phenomena are subject to
various distortions due to the phenomena itself, such as amplitude, trend, time,
phase, missing values, and outliers [8]. The following is an explanation of each
type of distortion.

Amplitude distortion: This type of distortion refers to differences in amplitude
scaling between two time series, while the intrinsic shape remains approxi-
mately the same, see Figure 1.2a.

Trend distortion: Also known as amplitude offset, it is caused by a varying mean
over time, leading to distortions in the trend where each time series has an
offset of different amounts in the amplitude axis, as shown in Figure 1.2b.
Techniques such as z-normalization or detrending can help mitigate this type
of distortion.

Time distortion: This can occur either globally or locally. Global distortion oc-
curs when the entire time series undergoes a uniform deformation, such as
time expansion or contraction (Figure 1.2c), resulting in a global shift of the
entire time series. On the other hand, local time distortion occurs when cer-
tain segments of the time series undergo a local deformation, such as stretch-
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Figure 1.2: Common types of distortions.

ing or compressing, at a specific region or time segment, resulting in a shift
in the phase component of the time series known as time warping.

Phase distortion: Refers to a shift of the time series in the time axis (Figure 1.2d).
Phase distortion can be thought of as a type of time distortion, but it specifi-
cally affects the relative timing of different components of the signal without
any compression or expansion. Phase shifting or phase alignment can be
used to correct phase distortion.

Missing values and Outliers (residue): During the acquisition of the data, some
instancesmight bemissing or deviate significantly from the expected pattern,
leading to outliers.

Out of the above-explained distortions, this work handles time series that suffer
from time, phase, and amplitude distortions. Elastic measures, such as Dynamic
TimeWarping (DTW) explained in Section 1.1.4, are commonly used techniques to
address this type of distortion.

1.1.2 Time series Analysis and Applications

Time series data is ubiquitous in our daily lives, and the analysis of this type of
data can provide valuable insights into various applications. These applications
range from predicting future trends to detecting anomalies in real-time systems.
Time series analysis refers to a range of techniques used to analyze time series
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data. Depending on the specific problem or task at hand, different techniques may
be applied [9].

Clustering groups similar time series together based on some distance mea-
sure or criterion without any prior knowledge or labels. Classification assigns time
series to different categories or classes based on their properties or characteris-
tics where ground truth information about the data samples is given. Forecasting
makes use of past time series observations to predict future values. Anomaly de-
tection detects unusual or unexpected patterns or events in a time series that may
indicate a problem or anomaly. Retrieval searches for specific time series or pat-
terns within a large collection of time series data. These are but a few of the many
tasks and challenges that can be solved by using time series analysis methods. The
specific problem at hand and the type of time series data being examined determine
the strategy or method to be used.

Since real-world time series is hard to label, this work focuses on time series
constrained clustering. We aim at grouping time series based on features extracted
from discriminative patterns. The integration of constraints allows the clustering
result to be aligned with the experts’ intuition by encoding their knowledge and
incorporating it into the clustering process. To account for the temporal distortions
that can occur between different instances of the same phenomenon (presented in
Section 1.1.1) it will be necessary to use distance measures that consider them. The
different measures proposed in the literature are presented in Section 1.1.4.

1.1.3 Time Series Representation

When studying phenomena one might be interested in observing one variable or
multiple variables of the same phenomena, where these variables can be either
observed synchronously or not, each using a different sensor. For example, by
monitoring the growth of a crop, one can track the quality of the soil or add the
variation in temperature, humidity, watering periods, level of carbon dioxide, etc.
Generally in the literature, two different distinctions of the recorded observation
are made, where it can be either a univariate or multivariate time series.

Definition 1 (Univariate Time Series) A time series of length N can be defined
as a sequence of real or symbolic (encoded using integers) values, represented as a
vector T ∈ RN or T ∈ ZN (respectively) composed of a set of measurements, i.e.

T = (T1, . . . , TN). (1.1)

Multivariate time series can be identified in two different ways: as a set of uni-
variate time series, each corresponding to an (a)synchronous measurement of a
different feature, or as a sequence of vectors representing the state of an object
at each timestamp. Figure 1.3 illustrates these different representations for two
multivariate time series, A and B. Figure 1.3a the series represented by features
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Figure 1.3: Different representations of multivariate time series: (a) feature-wise –
Case 1 (see text) the time series is a set of univariate time series (f1, f2, f3, . . . ),
and (b) time-wise – Case 2 (see text) the time series is a set of vectors of dimension
f -features (f1, f2, f3, . . . ).

(characteristics, attributes, etc.), where each feature is independent of the others.
In this representation, the sample’s evolution is represented byF independent time
series, where F is the number of features describing the object. On the other hand,
Figure 1.3b combines the features in a single vector, thereby creating relationships
between them by grouping them based on timestamps. In this representation, the
sample’s evolution is represented by a time series in which each timestamp is de-
scribed by F features. It is important to note that it is possible to convert between
these representations by creating vectors (whichmay be incomplete) or by disjoint-
ing vectors into independent time series. A formal definition of multivariate time
series is given in Definition 2.

Definition 2 (Multivariate time series) A time series of lengthN and F features
can be defined as a sequence of univariate time series of (a)synchronousmeasurements,
i.e. T ∈ RF×N and T = {T f}f=1,...,F (Case 1) or T = {Tn}n=1,...,N (Case 2) where
T f represent time series of the f th feature and Tn the vector of different features at
timestamp n.

When it comes to comparing two multivariate time series, there will be two
different approaches due to the different time series representations (Cases 1 and
2). LetA andB ∈ RF×N be twomultivariate time series, then the distance between
them is:

D(A,B) =

{∑F
f=1D1(T

f
A, T

f
B), (Case 1),∑N

i=1 D2(TA,i, TB,i), (Case 2),
(1.2)

where T f
A denotes a time series of feature f , while TA,i represents a vector of dif-

ferent feature values at time i. The distance between A and B is determined using
two distinct distance functions,D1 andD2. Consequently, these two distances can
yield different results: D1 is based on the comparison of individual values, whereas
D2 compares vectors. In this thesis, wewill refer to (uni)multi-variate time series as
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time series since univariate can be considered as a special case of the multivariate
with F = 1.

1.1.4 Distance Measures

A distance measure is a mathematical function or algorithm that quantifies the
distance between two objects. This distance is calculated based on their character-
istics or features [9]. Contrarily, a similarity measure is inversely proportional to
a distance measure in which the more similar the objects are, the larger the sim-
ilarity value and the smaller the distance is. The distance measures used in time
series analysis can be classified into two main categories: metric and non-metric
measures. Next, we will provide the necessary conditions for distance (metric and
non-metric) and similarity measures.

To consider a distance measure a metric it needs to fulfil a set of conditions. Let
D be the distance measure, and A, B, and C time series. The conditions for D to
be a metric are:

Non-negativity: The distance between two objects is always non-negative, i.e.

D(A,B) ≥ 0.

Identity of indiscernibles: The distance between an object and itself is zero, i.e.

D(A,B) = 0 iff A = B.

Symmetry: The distance between two objects is the same regardless of the order
in which they are compared, i.e.

D(A,B) = D(B,A).

Triangle inequality: The distance between two objects is always less than or
equal to the sum of the distance between those objects and a third object,
i.e.

D(A,B) +D(B,C) ≥ D(A,C).

Failing to satisfy one or more of these conditions the distance measure is hence
considered a non-metric measure.

On the other hand, A similarity measure S needs to respect the following con-
ditions [10]:

Non-negativity: The distance between an objectA and itself is greater than zero,
intuitively the higher the value the better the similarity, i.e.

S(A,A) ≥ 0.
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Similarity: The similarity between an object and itself is always greater than its
similarity to other objects, i.e.

S(A,A) ≥ S(A,B).

Symmetry: This property is commutative, i.e.

S(A,B) = S(B,A).

Triangle inequality: the similarity between A and B through C is no greater
than the direct similarity between A and C plus the self similarity of B, i.e.

S(A,B) + S(B,C) ≤ S(A,C) + S(B,B).

Identity of indiscernibles: If the similarity betweenA andB is equal to the self-
similarity of A and the self-similarity of B, then A and B are equivalent, i.e.

S(A,A) = S(B,B) = S(A,B) iff A ≡ B.

Furthermore, different categories of distancemeasures can be identified [11]. These
categories can be narrowed down to five groups: lock-step measures, elastic mea-
sures, embedding measures, kernel measures, and sliding measures. In this thesis,
we are interested in lock-step since they aremetric-based, elastic since they account
for distortions, and embedding measures since they transform the time series into
a lower vectorial representation highlighting important features. These are defined
as follows.

Lock-step measures

A distance measure is said to be a lock-step measure if it is a one-to-one mapping,
i.e. comparing the observed value at the ith timestamp of time series A to the ob-
served value at the ith timestamp of time series B, each of length N , that is

D(A,B) =
t∑

i=1

D(Ai, Bi).

The most known lock-step measures are based on the Lp-norms. The Lp-norm of
a vector A with N components is:

||A||p = (|Ap
1|+ |A

p
2|+ · · ·+ |A

p
t |)1/p,

where | · | is the absolute value.

Generally, Lp-norm is defined as the distance between a vector and the origin
of the space, and when used between two vectors it is known as the Minkowski
distance. The Minkowski distance between two vectors A and B is defined as:

D(A,B) = ||A−B||p =

(
N∑
i=1

|Ai −Bi|p
) 1

p

.
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Euclidean Distance: 11.33 Euclidean Distance: 11.27

Time-Series A Time-Series B Time-Series C

Figure 1.4: Illustration depicting that perceptually similar time series and dissimilar
ones can have a close Euclidean distance. Time seriesA andC follow a similar trend
unlike B.

When p = 1, the L1-norm, also known as the Manhattan norm or Manhattan
distance from the origin of the space, is defined as the sum of the absolute values of
the components of A. When p = 2, the L2-norm, or Euclidean norm or Euclidean
distance from the origin of the space, is defined as the square root of the sum of the
squares of the components ofA. Measures such as Euclidean distance and Manhat-
tan distance (Minkowski in general) satisfy the metric conditions stated previously.
Thesemeasures are computationally efficient and can handle low-dimensional time
series data. However, they may not be suitable for high-dimensional and complex
time series data due to the curse of dimensionality. The curse of dimensionality
refers to the difficulties and limitations that arise when working with data in high-
dimensional spaces, in which the distance between points tends to bemore uniform
and the concept of proximity becomes less meaningful.

Another major drawback of these measures is that they may fail to capture
the shape similarity and distortions that can be easily identified by human percep-
tion. As a result, they can measure time series as being similar even when they
are perceptually different. Figure 1.4 shows three time series, taken from the CBF
dataset from the UCR archive1 [12], time series A and C belong to the same cate-
gory, and time series B to another category. Perceptually, time series A and C are
similar whileB has a different trend. Hence one expects the Euclidean distance be-
tween A and C to be smaller than the distance between A and B, but the distance
D(A,B) = 11.33 is very close in value to that of D(A,C) = 11.27, as reported in
Figure 1.4, thus failing to quantify the dissimilarity between A and C .

1An open source collection of 128 univariate and 30 multivariate datasets from different do-
mains that are commonly used in the field as a benchmark.
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DTW Similarity: 52.50 DTW Similarity: 39.57

Time-Series A Time-Series B Time-Series C

Figure 1.5: Illustration showing perceptually similar time series (A and C) and
dissimilar ones (A and C) are correctly identified by DTW. Time series A and C

follow a similar trend while B follows a different one.

Elastic Measures

In time series analysis, it is crucial to consider the form and distortions of the time
series when determining similarity. The measures should be able to identify per-
ceptually similar items, even when they are not numerically equal, aligning with
human intuition. Elastic measures, such as Dynamic Time Warping (DTW) [13],
Longest Common Sub-sequences [14], and Time-Wrap-Edit (TWE) [15] etc., allow
for comparing time series based on one-to-many or one-to-none mapping of the
points. The latter is possible with certain measures (such as TWE) because they
are able to skip points and not assign them to any other point [16]. In compari-
son to other distance measures, Dynamic Time Warping has been proven to offer
state-of-the-art and is one of the most used distance measures for time series data.

Figure 1.5 shows a comparison between Euclidean distance and DTW, which
demonstrates that DTW, unlike Euclidean distance, captures the distortion. DTW is
an elastic distancemeasure that uses a one-to-manymapping approach, thereby ac-
commodating distortions in time series such as local shifting, phase shift, and time
series having different lengths (time distortion). DTW aims at finding the optimal
alignment (warping path) between two time series A and B, each of length tA and
tB , respectively, by minimizing the global cost while maintaining time-continuity.
LetD represent the local distance measure between individual samples of the time
series, then the DTW can be defined as follows:

DTW (A1:i, B1:j) = D(Ai, Bj) + min


DTW (A1:i−1, B1:j−1),

DTW (1 : Ai, B1:j−1),

DTW (1 : Ai−1, 1 : Bj),

where A1:i = A1, A2, . . . , Ai and B1:j = B1, B2, . . . , Bj represent sub-sequences
of A and B of length i and j respectively.
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Typically, the Euclidean distance or squared Euclidean distance is used, but
other distance measures can also be employed. A warping path P is a set of pairs
of indices that defines the best alignment of data points [17]. By definition, a (tA,
tB)-warping path of length P ∈ N is a sequence

P =< (i1, j1), (i2, j2), . . . , (iP , jP ) >,

where (il, jl) ∈ [1 : tA]× [1 : tB] for l ∈ [1 : P ]. A warping path must satisfy:

Boundary conditions: (i1, j1) = (1, 1) and (iP , jP ) = (tA, tB).

Step-size condition: 0 ≤ il+1 − il ≤ 1 and 0 ≤ jl+1 − jl ≤ 1 for all l < P .

Monotonicity condition: il ≤ ii+1 and jl ≤ jl+1 for all l ≤ P .

The boundary conditions enforce the alignment of the first and the last elements of
the time series. The step-size condition ensures that no element is omitted. Finally,
monotonicity conditions enforce the path to respect the timing, if an element in
A precedes other elements it should hold for B and vice versa. Algorithm 8 in
Appendix A describes the algorithm for calculating and finding the warping path.

The formulation provided earlier performs well with time series having one
feature (univariate). However, for multivariate time series, the independence or
dependence of the features must be taken into account [18]. If features are depen-
dent (i.e. the feature values at specific timestamps are dependent on each other) ,
then the warping path should be calculated on all features simultaneously, this will
be termed as dependent DTW. If they are distinct (i.e. the time component across
the dimensions is not important) a warping path for each feature can be found
and the total cost will be the sum of the individual costs for each path , termed as
independent DTW.

LetDTWD represent the dependent approach andDTWI the independent one.
Given two multivariate time series A ∈ RNA,F and B ∈ RNB ,F , DTWI(A,B)
finds the optimal path independently for each dimension and then adds their costs,
i.e. transform the multivariate time series to F -univariate time series and find the
wrapping path for each. DTWI(A,B) can therefore be written as:

DTWI(A,B) =
F∑

f=1

DTW (Af , Bf ).

Contrarily, DTWD(A,B) = DTW (A,B), hence finds one warping path simulta-
neously for the F -features. The choice of DTWD and DTWI highly impacts the
result accuracy [18]. Although DTW is a well-known distance measure that can
quantify perceptual similarity with great quality, it has some drawbacks.

First, DTW becomes impractical for large datasets due to its quadratic compu-
tational complexity O(tA × tB). As a result, researchers have developed a number
of DTW variants with the goal of reducing its computational complexity [19, 20,
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21, 22]. Second, false similarity can occur when the generated path assigns one
element from one time series to numerous subsequent elements from the other,
or vice versa. And finally, one major drawback of DTW is that it is not a metric
because it fails to satisfy the triangle inequality and uniqueness i.e. D(x, y) = 0
implies x = y. Thus, it is inapplicable to research that relies on a metric space,
such as measuring constraint properties in constrained clustering, which will be
discussed in Section 2.2.5. This means that an average time series cannot be cal-
culated, which impacts all learning methods that calculate the distance between
samples and the average sample, such as the K-means algorithm [23] (which will
be discussed further in Section 2.2.2 in Algorithm 1).

In order to use such algorithms, a suitable averaging method should be used.
Most of the averaging methods are based on pairwise averaging, i.e. a one-to-one
mapping, thus failing to capture the distortion of the time series. In order to miti-
gate this problem, Petitjean et al. [24] proposed DTW Barycenter averaging (DBA).
DBA consists of a heuristic technique that uses DTW to discover an average time
series (barycenter) by repeatedly refining a randomly chosen initial barycenter un-
til it becomes the barycenter of the set of input time series. By iteratively matching
the input time series with the current barycenter and then computing an updated
barycenter that is the point-wise average of the aligned time series, the approach
minimizes the sum of DTW distances between each input time series and the cur-
rent barycenter.

Embedding Measures

The above-describedmeasures all work on the raw time series. However, for certain
applications, mapping the time series to a different representation reveals crucial
characteristics or features of the time series that are not generally apparent in the
raw form, this is largely due to the diversity of the data and their characteristics
[9]. Embedding measures aim to use distance measures to find a mapping of the
time series to a new representation, also known as representation learning for time
series. The newfound representation can be used for further analysis using simple
distance measures such as Lp-distance or more sophisticated ones tailored for the
representation. Another important aspect of embedding measures is their ability
to map the time series to a lower-dimensional space if necessary. Generally, these
measures are distance-preserving, which means that the comparison between two
representations withLp-distance approximates the comparison of the original time
series using the original distance measure.

In the literature, several representations have been proposed [25], each target-
ing different features of the time series, such as capturing global structures, local
structures, or other physical qualities. Discrete Fourier transform [26] and Discrete
Wavelet Transform [27] are two representations that seek to transform time series
into the frequency domain. Another form of representation is Symbolic Aggregate
Approximation (SAX) [27], which quantizes the time series.
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More recent studies to learn representations include Generic RepresntAtIon
Leaning (GRAIL), which uses kernels, specifically the SINK kernel [28]; Similar-
ity Preserving Representational Learning (SPIRAL), which uses DTW [29]; Shift-
invariant Dictionary Learning which preserves the similarity between time series
[30]; and Random Warping series that uses a Global Alignment Kernel [31]. In
these methods, the algorithm aims to learn a representation (embedding) either
following a supervised or a non-supervised approach where most of them employ
neural networks to learn the embeddings.

Most of the aforementioned techniques are designed to transform time series
into a new domain through the discovery of global shape similarities. On the other
hand, time series data often exhibit local similarities. One state-of-the-art approach
that uses local similarities is known as the shapelet transform, which will be ex-
plained in detail in Section 2.1.

As in other works (Learning DTWPreserving Shapelets – LDPS [32]), shapelets
will be learned such that the transformation is constrained to model the DTW dis-
tance. The objective is to learn a transformation that can effectively map time
series data to a metric space where distortions are accounted for. DTW plays a
crucial role in handling distortions by allowing flexible alignments between time
series. Meanwhile, the shapelet transform enables a mapping into a metric space,
which facilitates the comparison and analysis of time series data based on relevant
features. The combination of DTW and the shapelet transform is instrumental in
addressing distortions and establishing a meaningful metric space for time series
analysis. In our work, we extend this concept to learn such transformation but also
allow the expert knowledge to influence it through the use of pairwise constraints
indicating if samples are similar (should be close) or not.

1.2 Problem and Motivation

Having discussed the various aspects of time series data, including the distance
measures and analysis techniques, we will now delve into the problem at hand.
Analyzing time series data using supervised methods, such as classification, re-
quires the expert to provide ground truth labels for all the data. These labels need
to be perfectly known and defined, and the data provided for learning needs to be
sufficiently large and of high quality. On the other hand, the complexity of the
time series data with a large number of samples makes it hard and taxing for the
expert to provide information on all the samples, hence, supervised approaches are
difficult to use and may be unsuitable. An alternative approach, that is often used
with time series data, is clustering. However, standard clustering techniques need
to be adapted to take into account the distortion and complexity of the time series.

One major problem of clustering is that it is ill-posed [33], where the goal is to
cluster samples based on their distances and to have homogeneous clusters without
a prior definition of their meaning. For example, a set of observations can have two
different clusterings depending on how the observations are perceived; suppose
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the observations represent a recording of running activity, the same observations
can be clustered based on gender or age. Clustering is highly dependent on the
approach used and the conditions specified. The results produced might not align
with the expert’s intuition and/or expectations. The expert’s intuition is defined
as what the expert expects of the results based on their prior knowledge about the
domain.

To overcome this issue, a different type of clustering approach is often used,
thesemethods integrate the expert’s intuition, i.e. prior knowledge, into the cluster-
ing algorithm in order to guide the learning process. The aim of this is to converge
to a clustering where the results align more closely with the expert’s intuition. This
is done by providing constraints to the clustering process. One way of providing
constraints, which is the interest of this work, is by using instance-level constraints
that specify the relationship between samples. These indicate whether two samples
should belong to the same group or not. Unlike labels where the expert needs to be
certain about the sample semantics, constraints can vary in their informativeness
[4], meaning they can provide additional information to the learning process, or
not. Similarly, constraints can also vary in their coherence [4], indicating that the
provided constraints may or may not be conflicting.

When using constrained clustering approaches it is assumed that the constraints
provided by the expert are both informative for the clustering algorithm and co-
herent, in which they encode relevant background knowledge about the instances.
Measuring these properties for time series data is challenging since a metric space
is generally needed. As mentioned before, using a metric space for time series data
is not as effective when compared to elastic distances. So if we want to measure
these properties for time series clustering data we need to map the data to a metric
space in which it is possible.

In addition to guiding the clustering process and measuring the properties of
the used constraints, clustering explanation is another major challenge. Recently,
cluster explanation and interpretability have started to gain interest in a wide range
of domains since it is important for experts to know ‘why’ such results are achieved
and ‘how’. Most of the work centres around finding concepts during the clustering
process or techniques to rank the features based on their contribution to reaching
a certain result.

1.3 Contribution

The contributions of this study are to address the problem of constructing a metric
space that takes into account time series distortion and expert intuition in the form
of pairwise relationships between samples definingwhether they are similar or not.
This is achieved by approximating an elastic measure (DTW) with an embedding
measure under the semi-supervised paradigm by the use of pairwise constraints. As
such, the elastic measure will enforce the space’s invariance to distortions, and the
embedding measure (shapelets) will enable the transformation of data to a metric
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space. Constraints are used to guide the learning process to obtain a transformation
closer to the expert’s intuition. This will enable the further analysis of constraint
properties such as the informativeness and coherence of the constraints that require
distance metrics. We also address the question of the explainability of the results,
in which we leverage the interpretability of the shapelets to provide an explanation
to experts of the clustering result. We provide cluster-level explanations unique to
each cluster and a global-level explanation, this is achieved by ranking the shapelets
according to their influence on the clustering results.
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Time series data often exhibit valuable local patterns that can hold important
information. To handle this information, distance measures for time series are
commonly used to capture local similarities between them. However, these mea-
sures often do not satisfy the metric condition, making them unsuitable for metric-
based algorithms. Another approach is to learn transformations, such as shapelets,
that can capture local similarities. An important task in analyzing time series is
grouping them based on these local similarities. Clustering, typically performed
with distance metrics, is commonly used for this purpose. However, when deal-
ing with time series data, measures that do not satisfy the metric conditions are
often preferred. One challenge with clustering is its inherent ill-posed nature, as
multiple results can be obtained for the same dataset and task. To address this is-
sue, constrained clustering approaches have been proposed to incorporate expert
knowledge and intuition into the clustering process. In this chapter we first discuss
shapelets, which are features extracted from time series data that can be used for
transforming them into a metric space. We emphasize a specific approach called
Learning DTW Preserving Shapelets (LDPS) and provide the relevant literature on
shapelets. Next, we introduce clustering in general, emphasizing its limitations,
and focusing on the K-means algorithm as it serves as a baseline for unsupervised
clustering approaches. Then, we explore constrained clustering approaches that
aim to overcome the limitations of traditional clustering methods by incorporating
expert knowledge into the clustering process. Finally, we delve into constrained
clustering algorithms specifically for time series, offering a comprehensive expla-
nation of the latest approaches and those used for comparison with our own ap-
proach. Introducing shapelets (specifically LDPS) and constrained clustering algo-
rithms is essential for understanding the contributions of this work, as they employ
concepts (transformation and constraints) from both approaches.

2.1 Shapelets

When we examine time series data, we may discern differences between several
time series based on local or global similarities. Local similarities can be observed
between patterns in subsequences of time series, whereas global similarities can be
observed across the entire time series. Because local similarities focus on events
occurring at specific intervals, they are more difficult to capture than global simi-
larities. While some methods emphasize capturing global similarities during trans-
formation, it is vital to consider local similarities because they may contain critical
information, such as a time series expressing a recorded variation of temperature,
where local similarities can refer to extreme weather events like thunderstorms or
heatwaves and these can help in understanding the weather during a period of time
to aid future forecasting. These local similarities can be identified using shapelets
[34]. Figure 2.1 shows an example of shapelet S capturing a local feature of tim
series T1, which discriminates it from T2.
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T1
T2
S

Figure 2.1: Illustration of shapelet S that captures the local similarity of time series
T1 and discriminates it from time series T2.

2.1.1 Definitions and Notations

Definition 3 (Shapelets) Are phase-independent discriminative sub-sequences of time
series. Let a Shapelet be denoted as S having length Lk . A set of K shapelets be de-
noted as S = {S1 , . . . , SK}, such that Sk = Sj,1:Lk

. Although shapelets of different
lengths may be included in the set S , for simplicity, we only take shapelets of the same
length into account in the formulation.

Definition 4 (Squared Euclidean Score) Measures the distance between a shapelet
Sk and a time series sub-sequence Ti,w:LS

, such that

Di,k,w =
1

Ls

Ls∑
x=1

(Ti,w+x−1 − Sk,x)
2. (2.1)

Definition 5 (Euclidean Shapelet Match) Represents the time-independentmatch-
ing score between a shapelet Sk and a time series Ti (of length Li), such that

T i,k = min
w∈{1:Li−Lk+1}

Di,k,w. (2.2)

2.1.2 Shapelet Discovery Algorithms

The original work on shapelets was developed by Ye and Keogh [34, 7]. The ap-
proach builds a shapelet tree, which is a decision tree classifier constructed by
recursively searching for discriminatory sub-sequences of time series across the
entire dataset. The found sub-sequences, i.e. the shapelets, are used to split the
data instances into two groups: one group comprises instances that contain subse-
quences similar to the shapelet, while the other group comprises instances that do
not. Figure 2.2 shows the decision tree used to classify the different data samples
in the arrow head dataset1 [34].
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Figure 2.2: Shapelet decision tree for the arrow head dataset. The found shapelets
are able to differentiate between the two types of arrow heads (Clovis and Avonlea).
Since shapelet I has better quality (lower value indicates better separation), it is
used as the root for the decision tree. Adapted from [7].

Figure 2.3 illustrates the process of finding the shapelets. The algorithm em-
ploys a brute-force search for each candidate shapelet (Figure 2.3a). To evaluate
the quality of a shapelet candidate, the algorithm constructs an ordered histogram,
also known as an orderline (Figure 2.3c), recording the distances between the sub-
sequences and the candidate shapelet (Figure 2.3b). This histogram allows for find-
ing a threshold that best splits it into two partitions by using a quality measure
that calculates the purity of the partitions. The sub-sequences from different time
series that are close to the shapelet are expected to be closer to each other, re-
sulting in lower distance values (located on the left side of the histogram), while
sub-sequences from other time series are further away (located on the right side of
the histogram). The quality measure used is the Information Gain. It is a measure
that identifies if a particular split yields a better partition of the data consider-
ing the class labels. After calculating the information gain for each shapelet, the
shapelets are ordered in descending order. Since this approach requires searching
the entire space of all possible shapelets in the dataset, it is time-consuming and
memory-intensive.

Most of the literature on shapelets focuses on speed efficiency. Rakthanmanon
and Keogh [36] suggest projecting the time series into a symbolic representation
(SAX), which is known as FastShapelet, shown in Figure 2.4. The use of this new
representation is to decrease the length of the time series and smooth the data. The
discretization of the data speeds up the pruning of the shapelet candidates, which
greatly improves the discovery process.

1Dataset taken from the UCR archive.

www.timeseriesclassification.com/dataset.php?train=&test=&leng=%3C300&class=&type=
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(a)

(b) (c)

Figure 2.3: Shapelet discovery process. In (a) the bag of all possible shapelets is
generated, in (b) for each candidate the distance is calculated to the all time series,
then in (c) the maximum information gain is recorded. Adapted from [35].

Figure 2.4: Illustration of Fast shapelets principal. A subsequence of the time series
is projected into a symbolic representation “adbacc” (top left). Using a sliding win-
dow technique multiple subsequences are shown in the lower left part. The time
series represents the skull of a lizard. Adapted from [36].
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(a)

(b)

(c)

Figure 2.5: Illustration of logical shapelets. (a) shows two classes of synthetic time
series. (b) Demonstrates the inability of the shapelets to effectively separate the
classes (any other shapelet will fail as well). (c) Using both shapelets in the logi-
cal sense “and” (i.e. both should exist) successfully achieves the separation of the
classes. Adapted from [37].

On the other hand, Mueen et al. [37] introduce logical shapelets, which are
an adaptation of the shapelet tree algorithm that finds logical combinations of
shapelets, e.g. AND, OR, XOR, to better handle complex problems. An example
is shown in Figure 2.5, where it can be seen using a combination of the shapelet S1

and S2 leads to better separation of the points.

Several techniques to accelerate shapelet discovery have also been developed by
exploiting graphic processing units to reduce the search time [38] or by changing
the quality criterion used to determine the quality of a possible candidate shapelet
[39, 40]. To overcome the exhaustive search for shapelet candidates from a bag of all
possible shapelets extracted beforehand, Grabocka et al. [41] propose a supervised
approach tomodel the shapelets as features to be learned, rather than searched. The
algorithm learns the weights for the shapelets and a logistic regression (to model
the classes) jointly, using a loss function that defines a linear relation between the
shapelet and the time series. This increases the speed of finding shapelets but comes
with a trade-off with respect to the interpretability of the shapelets.

Zakaria et al. [42] introduce the original work on clustering time series with
shapelets, called unsupervised-shapelets or u-shapelets. The shapelets are chosen
and extracted from a set of all possible sub-sequences by partitioning the dataset
and removing the time series that are similar to the shapelets. This approach is
computationally expensive, much like the earlier described techniques. A major
advantage of clustering with u-shapelets is that it can work with time series of
different lengths. This is not the case for the majority of approaches, which as-
sume time series have equal length (and must be trimmed if not) [43]. However,
u-shapelet clustering is able to ignore irrelevant parts of the time series data [44].
Multiple approaches have adopted the use of u-shapelets but still share the same
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Figure 2.6: Shapelet Transform adapted from [35]. Each time series is mapped to
a vectorial representation each component is the minimum distance between the
time series and shapelets.

exhaustive search shortcoming.

All of the previously mentioned approaches lack the flexibility to learn a clas-
sification or clustering model and extract features or transformations separately.
Separating the classification task from learning the time series representation was
proposed by Lines et al. [39] and Hills et al. [45]. This work introduces the con-
cept of the shapelet transform, the transformation maps the raw time series into
a vectorial representation in which the shapelets define the representation space’s
bases. Figure 2.6 shows the matrix form of the transformed time series where the
shapelets represent the features (columns) of the time series in the new spacewhere
the components are the distances between the time series and the shapelets.

Definition 6 (Shapelet Transform) Is the mapping of the time seriesTi using Eu-
clidean shapelet match (Equation 5) with respect to the set of shapelets S . The new
vectorial representation is therefore:

T i = {T i,1, . . . , T i,K}, (2.3)

where T i,k , k ∈ [1, K] is the Euclidean shapelet match between the ith time series
and the kth shapelet.

2.1.3 Learning DTW Preserving Shapelets

Inspired by the work of Grabocka et al. [41] and making use of the shapelet trans-
form [39, 45], in which they focus only on learning shapelets without any clas-
sification or clustering, Lods et al. [32] propose an unsupervised way of learning
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Figure 2.7: Learning DTW Preserving Shapelets (LDPS) [32]. Time series T1 and T2

are mapped to Euclidean space using the shapelets S1 and S2 where the distance
between the time series in the new space approximates DTW distance. Adapted
from [32].

shapelets, called Learning DTWPreserving Shapelets (LDPS). This approach learns
shapelets that approximate the DTW distance in the transformed space. The DTW
approximation guarantees that the shapelets learned to take into account time se-
ries distortions. Learning the shapelets is achieved by minimizing the following
loss function:

L(Ti, Tj) =
1

2
(DTW(Ti, Tj)− β · Distij)2 , (2.4)

where Ti and Tj are time series from T , β is a scaling parameter to be optimized
during the learning process, and Distij = ||Ti − Tj||2 is the approximated DTW
distance between the transformed time series Ti and Tj .

Figure 2.7 presents an illustration of LDPS, where the shapelets S1 and S2 are
used to map time series T1 and T2 into a two-dimensional space shown in the bot-
tom left. The Euclidean distance between the representation of the time series is
compared to the DTW between the original time series in the bottom right, it can
be seen that these distances become approximately equal.

Our work builds upon LDPS and the shapelet transform, which helps with in-
terpretability and the DTW distance approximation, in order to achieve our objec-
tive of having an interpretable transformation approximating DTW distance while
respecting user prior knowledge.
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Figure 2.8: General example of clustering data points.

2.2 Constrained Clustering

Next, we will briefly introduce clustering, the necessary notations, and definitions
with a non-exhaustive list of the clustering approaches found in the literature. We
then focus on explaining constrained clustering in detail and how these approaches
are adapted to deal with time series data.

2.2.1 Clustering Definition

Clustering is an unsupervised learning approach that groups data samples from
a dataset with no predetermined labels, these groups are called clusters. A cluster
contains themost homogeneous data objects that are as distinct as possible from the
other clusters [9, 46, 47], it is achieved by discovering regularities and structures in
the data instance whether they are explicitly present or not. Generally, regardless
of the choice of the clustering approach, the procedure of clustering consists of four
basic steps:

1. Feature selection or extraction, some algorithms work directly on the raw
datawhile others require transformation to decrease the dimensions and gen-
erate novel features.

2. Clustering algorithm selection, depending on the data different clustering
algorithms can be used. A brief description of the different clustering algo-
rithms is presented in Section 2.2.2 and constrained algorithms in Section
2.2.6.

3. Applying the chosen clustering algorithm.

4. Cluster validation. There exists a number of approaches to validate the qual-
ity of the clustering results, which will be explored in Section 2.2.3.

In the next section, we will give a non-exhaustive explanation of the most used
approaches in the literature.
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2.2.2 Clustering Algorithms

Formally, given a set of samples T = {T}n,l ∈ RN×L, where N is the number of
data samples andL is the number of features, the clustering process aims at finding
a partitioning C ∈ RK×L of T , where K is the number of clusters in C. In order
to find the optimal partitioning, different clustering techniques can be used, we
first distinguish three main approaches: Hard-clustering (crisp) [48], Hierarchical-
clustering [49], and Fuzzy-clustering (soft) [50].

Hard clustering algorithms cluster data samples into one and only one cluster,
hence samples can represent one and only one cluster, i.e. the clusters are disjoint.
For every Ci, Cj ∈ C where i, j ∈ {1, . . . , K}, a clustering is said to be hard if:⋃

∀i

Ci = T ,

Ci ̸= ∅,
Ci ∩ Cj = ∅, i ̸= j.

Contrarily, fuzzy clusteringmay allow one sample to belong to different clusters
with different degrees of membership [51], such as fuzzy C-means [52]. Let ui,j

define the membership of the jth object in the ith cluster, fuzzy clusters satisfies:
K∑
i=1

ui,j = 1,∀j and
N∑
j=1

ui,j < N,∀i.

Hierarchical clustering creates a dendrogram, which is a tree-like structure that
captures the relationship between clusters. The dendrogram is constructed in away
such that clusters are successively merged or split. By cutting the dendrogram at a
specific level, disjoint clusters can be obtained. Let H = {H1, . . . , HQ} represent
the dendrogram to be obtained where Q ≤ N such that ∀i, j ̸= i,m, l = 1 . . . Q,
we have:

(Ci, Cj) ⊆ Hm ×Hl|(m>l) ⇒ Ci ⊆ Cj or Ci ∩ Cj = ∅.

Many clustering algorithms have been proposed, each belonging to one of the
previously mentioned approaches [53]. These include partition [54], density-based
[55], spectral clustering [56], conceptual [57], deep clustering using neural net-
works [58], collaborative [59], ensemble [60], and interactive clustering techniques
[61].

Partitioning algorithms involve specifying an initial number of disjoint clus-
ters and iteratively reallocating objects among the clusters until convergence is
reached [52, 62]. These algorithms typically determine all clusters at once. One
of the most widely used heuristic methods for partitioning is the K-means algo-
rithm [47, 63], it is one of the simplest and most effective algorithms. As such, we
explain the K-means algorithm in detail and use it in this work. K-means, as de-
scribed in Algorithm 1, starts by assigning K random cluster centers. Then each
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Algorithm 1 K-means algorithm
Input:: data points x1, x2, . . . , xn, number of clusters : k
Output: Cluster assignments for each data point {C1, . . . , CK}
1: Initialize cluster centroids µ1, µ2, . . . , µk randomly
2: while not converged do

// Assign each data point xi to its closest centroid:
3: for each xi do

4: ci ← arg min
j∈{1,...,K}

||xi − µj||2

5: end for

// Update each centroid as the mean of the data points assigned to it:
6: for each Cj do

7: µj ← 1
|Cj |
∑

xi∈Cj
xi

8: end for

9: end while

10: return {C1, . . . , CK}

sample is assigned to the cluster whose centre is nearest, to formK clusters. Then
the refinement of the centroids starts by recalculating their centre using an aver-
aging method (such as the arithmetic mean) and re-assign the points to the closest
updated centroid; this process is repeated until there is no improvement in the cen-
troids. The complexity of the algorithm is O(nkt) which allows it to handle large
datasets. Note that K-means requires the computation of the cluster centre making
it valid for the data types where this computation is possible. In addition to this,
since the algorithm calculates the mean of the objects it is prone to outliers and
noise in the data [63], in these cases other approaches can be used, for example,
mean-shift (kernel-based) [64], etc.The performance of K-means is influenced by
the distinctness and density of the samples used for clustering, which affects its
ability to accurately capture the underlying structure.

Density-based clustering identifies clusters based on density conditions, search-
ing for regionswith high density that are separated by low density, such as ‘Density-
BasedAlgorithm for Discovering Clusters’ (DBSCAN) [65]. Spectral clustering uses
the concept of spectral proprieties of a matrix to transform the objects into a space
where the new information encodes the similarity between the objects, most tech-
niques under this approach make use of the Laplacian graph [66]. Conceptual clus-
tering finds clusters that represent a concept (such as COBWEB algorithm [67, 68],
MFI-Kmeans [5], and FCLM [6]). Ensemble and collaborative clustering both use
multiple algorithms to reach a consensus. Where in ensemble approaches each
algorithm reaches a clustering result independently [69] and these are combined.
And in collaborative clustering, the algorithms collaborate and share information
during the clustering process [70, 71, 72] as the information is considered to be
complementary [73]. The methods can be of different nature or the same with
different initialization [74, 75]. Collaborative clustering can be considered as an
extension of ensemble clustering, by adding a refinement step before the unifica-
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tion step, such as in SAMARAH [70, 71], where each clustering algorithm refines
its result according to all other clustering algorithms until all results are strongly
similar; the final unification can be achieved through a voting algorithm. In active
clustering [76, 77, 78], the user provides feedback to the algorithm to determine
which points belong to each cluster.

Most of the algorithms mentioned in this section find the clustering by using
optimization criteria to assert the homogeneity and separation of a cluster [54]. The
majority of the criteria are based on similarity or dissimilarity measures. These in-
fluence concepts such as the diameter of a cluster, the separation between clusters,
the within-sum of dissimilarities of a cluster, the within-sum of squares of samples
belonging to a cluster, etc. [79].

2.2.3 Cluster Validation

The quantitative evaluation of the clustering method is known as cluster validation
and the methods used to perform this evaluation as cluster validity methods or in-
dices. Clustering validation falls into three families of criteria: internal, relative,
and external [47, 53, 80]. The internal criteria evaluate the quality of a cluster-
ing result using only quantities and features inherited from the algorithm and the
dataset. Most measures in the internal criteria are based on measuring the intra-
cluster compactness and inter-cluster separation. The external criteria compare the
clustering output to the ground truth labels, hence the data labels should be known.
On the contrary, relative criteria seek to identify the optimal clustering conditions
of an algorithm by comparing different clustering results obtained under varying
assumptions and parameters. This approach aids in determining the most suitable
parameters for a clustering algorithm.

Ezugwu et al. [47] give a detailed explanation of the different criteria, and the
following is a non-exhaustive list of the most used validation criteria:

• Internal criteria:

– Sum of squared error is defined as SSE =
K∑
i=k

∑
∀xi∈Ck

||Ti − µk||2, where

µk is the mean of the cluster k. It is one of the simplest and widely used
measures in clustering [79].

– Silhouette index [81] is based on the intra-cluster compactness and the
inter-cluster separation of the clusters. It measures for each object how
well the object belongs to its own cluster compared to the other clusters.
Formally the silhouette index for the ith object Ti in clusterCk is defined
as:

s(i) =
∑ b(i)− a(i)

max(a(i), b(i))
,

where−1 ≤ s(i) ≤ 1 such that a(i) = 1
|Ck|

∑
∀Tj ̸=Ti∈Ck

D(Ti, Tj) is the av-

erage distance between theTi and the remaining objectswithin the clus-
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ter Ck, hence measuring the compactness. The separation Ti from all
other clusterC ′

k ̸= Ck is given by b(i) = min
∀k′ ̸=k

1
|C′

k|
∑

∀Tj∈C′
k ̸=Ti∈Ck

D(Ti, Tj).

The average silhouette index measures the performance of a clustering
algorithm, and a value of one (the measure’s maximum value) indicates
the best performance.

• External criteria:

– The Rand Index (RI) is a similarity measure between the clustering re-
sults C and the dataset underlying structure P [82]. It is defined as the
number of similar assignments of point-pairs normalized by the total
number of point-pairs [83], i.e.

RI =

[(
N
2

)
− 1

2

[∑
i

(∑
j nij

)2
+
∑

j (
∑

i nij)
2 −

∑∑
n2
ij

]]
(
N
2

) ,

where nij = |Ci ∩ Pj| represents the number of objects that are placed
in cluster Ci having underlying structure Pj . N is the total number of
samples, i = 1, . . . , |C| and j = 1, . . . , |P|. The value of the Rand Index
falls between zero and one, a major problem with this measure is that
the expected value for two random clustering is not constant.

– Adjusted Rand Index [83, 84] overcomes the disadvantage of the Rand
Index by normalizing with respect to the expected value of the Rand
Index,

ARI =
∑

i,j

(
nij

2

)
−
∑

i

(
ni

2

)∑
j

(
nj

2

)
/
(
N
2

)
1
2
[
∑

i

(
ni

2

)
+
∑

j

(
nj

2

)
]−
∑

i

(
ni

2

)∑
j

(
nj

2

)
/
(
N
2

) ,
where nij = |Ci ∩ Pj|, ni =

∑
j nij , and nj =

∑
i nij . N is the number

of samples, i = 1, . . . , |C| and j = 1, . . . , |P|.
– Entropy quantifies randomness [85]. The entropy of a single cluster is

defined as Ej =
∑

i pij log(pij), where pij is the probability of object Ti

being in class Cj citezhao2001criterion. The total entropy is:

E =

|C|∑
j=1

nj

n

∑
i

pijlog(pij).

– Normalized Mutual Information (NMI) is the mutual information nor-
malized by the entropy of the predicted labels and the ground truth
labels [74]. It indicates the amount of information one can extract from
a distribution regarding a second one. It is defined as:

NMI(C,P) = I(C,P)√
E(C)E(P)

, (2.5)

where I(C,P) = E(C) − E(C|P) is the mutual information between
the predicted and ground truth labels.
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ML
M
L

CL

CL

Figure 2.9: Examples of user constraints, showing the different types of con-
straints. The figure shows three different clusters (dashed ellipsis) of instances
(black points). The constraints shown are Instance level (must-link ‘ML’ in green
and cannot-link ‘CL’ in red), and Cluster level constraints (δ, ϵ, and γ in blue) rep-
resenting the minimum separation, the neighbourhood radius, and the maximum
diameter respectively. The ML and CL constraints specify the relation between
objects. ML indicates that the objects should be within the same cluster while CL
should not. Adapted from [1].

2.2.4 User Constraints

Following the definition of clustering, it can be inferred that the problem is ill-posed
due to the ambiguity of data and algorithmic bias. It is rare to have one clustering
solution for the same dataset, i.e. with different initial conditions the results will
vary. To overcome these limitations, constrained clustering approaches have been
developed. Very often the expert has some intuition of the data that can help in
guiding and mitigating the ill-posed nature of clustering. Constrained clustering is
an approach that leverages this information by integrating expert knowledge into
the clustering process in the form of constraints. It aims to balance the bias of the
optimization criteria and the constraints provided by the expert. There are different
ways of providing constraints for the clustering algorithm. The most known are
instance-level constraints, introduced by Wagstaff and Cardie [86], and cluster-
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level constraints, as in the work of Basu et al. [87], shown in Figure 2.9.

Instance-level constraints are constraints that specify the relationships between
individual data points. These fall into two types: must-link and cannot-link con-
straints. Must-link constraints specify that two data points must be assigned to the
same cluster, while cannot-link constraints specify that two data points cannot be
assigned to the same cluster. Instance-level constraints are relatively easy to define
and incorporate into the clustering process and can provide fine-grained control
over the clustering results.

Definition 7 (Instance-level Constraints) Let Ck be the kth cluster, ML be the
set containing time series indices for those connected by must-link constraints, and
CL the set for those connected by cannot-link constraints. Thus, ∀ Ti, Tj such that
i, j ∈ {1, . . . , N} and i ̸= j, we have

ML = {(i, j)|∀ k ∈ {1, . . . , K}, Ti ∈ Ck ⇔ Tj ∈ Ck}, (2.6)
CL = {(i, j)|∀ k ∈ {1, . . . , K},¬(Ti ∈ Ck ∧ Tj ∈ Ck)}. (2.7)

Instance level constraints encode interesting properties. Must-link constraints
are symmetric, reflexive, and transitive, which means if objects a and b are con-
nected by an ML constraint along with b and c, this infers that a and c are also
connected by a must-link constraint. Although cannot-link constraints do not have
such properties, additional cannot-link constraints can be inferred from the must-
link constraints.

Cluster-level constraints are constraints that specify conditions on the cluster’s
number, size, and individual objects belonging to the cluster. The following is a list
of cluster-level constraints.

• The number of clusters K .

• The size of the cluster, constraining the capacity of a cluster by expressing
the maximal or the minimal limit on the number of objects in each clus-
ter. Let α represent the minimum number of elements in a cluster and β
the maximum number of elements. Hence, the minimal constraint can be
formulated as ∀k ∈ {1, . . . , K} |Ck| ≥ α and the maximal constraint as
∀k ∈ {1, . . . , K}, |Ck| ≤ β.

• The maximum diameter of the cluster γ. This constraint provides an upper
bound on the diameter of each cluster. Formally, ∀k ∈ {1, . . . , K}, ∀Ti, Tj ∈
Ck, D(Ti, Tj) ≤ γ.

• The split between clusters δ, indicates the minimum separation between the
clusters ∀k, k′ ∈ {1, . . . , K}, k ̸= k′, ∀Ti ∈ Ck, ∀Tj ∈ Ck′ , D(Ti, Tj) ≥ δ.

• The neighbourhood of objects ϵ specifies the minimum radial distance for an
object to have at least one other object in the same cluster. It was introduced
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by Davidson and Ravi [88]. ∀k ∈ {1, . . . , K}, ∀Ti ∈ Ck, ∃Tj ∈ Ck, Ti ̸=
Tj, D(Ti, Tj) ≤ ϵ. This can be generalized to have at leastm objects within
the neighbourhood of the object.

In addition to the mentioned constraints, the user can take advantage of the fea-
tures that describe the instances and provide constraints on the properties of the
clusters [89]. Such as cardinality constraints, which constrain the number of objects
with a specific property within a cluster. Another type of property constraint is the
density constraint. Unlike cardinality constraints which are applied to the entire
cluster, density constraints are applied to a subset of the objects within a cluster.
Geometric constraints can also be provided bounding the clusters to some geomet-
ric property. Finally, complex logical constraints can also be provided, expressing
logical combinations of the constraints. Note that combinations of different types
of constraints can be used [88] and hence providing more information.

Note that for instance-level constraints the assumption is made that they are
informative and coherent with one another and do not conflict or overlap. This
can be challenging in practice, as it can be difficult to measure the informativeness
and coherence of user-provided constraints. In Section 2.2.5 we present a detailed
review of the definitions of informativeness and coherence for pairwise constraints.

In our work, we argue that constraints can be used in learning a transforma-
tion that reflects the expert intuition in which the space will assert that samples
perceived as similar by the expert are closer to each other and those that are not
similar are sufficiently far from each other. Section 3.2 provides a detailed expla-
nation of the importance of the constraints and how we integrate them into our
work.

2.2.5 Measuring Constraint Properties

The quality and usefulness of instance-level-based constrained clustering depends
highly on the constraint set provided [90]. Wagstaff et al. [90] and Davidson et al.
[4] show that constraint sets can increase or decrease clustering performance, hence
the urgency to formulate and identify some properties to measure which constraint
sets are useful or not. The authors proposed two approaches to measure the im-
portance of the constraints, one is algorithm dependent called ‘informativeness’—
which is also known as inconsistency [4]—and the other is algorithm independent,
named ‘coherence’. Coherence was later reformulated, to take into account all dif-
ferent aspects of conflicts by Lampert et al. [1].

Informativeness

Definition 8 (Informativeness) Measures the amount of information added to the
algorithm bias through the constraints. Hence, it measures the number of constraints
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(a) (b)

Figure 2.10: Illustration of informativeness (a) and coherence (b). The red lines
with X indicate cannot link constraints while the green line indicates must link
constraints. Adapted from [4].

Figure 2.11: Illustration of calculating constraint coherence, showing three cases
of computing the projected overlap between constraints a and b; where they con-
straint the points (a1, a2) and (b1, b2) respectively. The points indexed 1 always
appear to the left of the other. Adapted from [4].

that the clustering algorithm cannot satisfy using its default bias, i.e. without any
prior knowledge [90].

Given an incomplete set of constraints Γ, i.e. that does not represent a unique
partitioning, and an algorithmA, we generate a partitioningPA by applyingA on a
dataset T without any constraints. The informativeness IA(Γ) is hence calculated
as the fraction of constraints in Γ that are unsatisfied by PA [90]:

IA(Γ) =
1

|Γ|
∑
γ∈Γ

unsat(γ,PA), (2.8)

s.t. unsat(γ,PA) =

{
1 PA does not satisfy γ,

0 otherwise,

where unsat returns whether a constraint γ is satisfied by the partitioning PA or
not.
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Coherence

Definition 9 (Coherence) Evaluates the degree to which the constraints are consis-
tent and in agreement with one another, with respect to a distance metric. It is model-
independent in that it does not require any partitioning and is computed directly on
the constraints and data.

The motivation behind this measure is that the must-link, ML, (cannot-link,
CL) constraints impose an attractive (repulsive) force within the vicinity of the
constrained points and in the direction of the line connecting the pair of points.
To calculate the coherence (as defined in [1]), the constraints are treated as line
segments and the projected overlap (by projecting each constraint onto the others)
is measured.

Let a⃗ and b⃗ be vectors connecting the points constrained by a and b respec-
tively, i.e. (a1, a2) and (b1, b2), see Figure 2.11. We first project the points bound by
constraint a onto the line that is defined by the points bound by constraint b, such
that:

a′1 = ((a1 − b1)e)e+ b1
a′2 = ((a2 − b1)e)e+ b1

, where e =
b

|b|
.

Hence, the projection of the points to the 1D space can be written as:

a′′i = a′ie, b′′i = bie, where i ∈ {1, 2}.

Next, the points are sorted such that a′′1 ≤ a′′2 and b′′1 ≤ b′′2 . If this assumption is
satisfied, the overlap of constraint a on constraint b can be written as:

oba = max{0,min{a′′2, b′′2} −max{a′′1, b′′1}}.

According to the stated definition, two constraints are coherent if there is no
overlap between them. Formally, this can be written as:

cohcm =

{
1, if omc = 0 and ocm = 0,

0, otherwise.

Finally, the overall coherence of a set of constraints is defined as the fraction of
coherent constraints within the set, such that:

COH(C) =

∑
c∈CL,m∈ML

cohcm

|CL||ML| .

In addition to the instance-level properties, we can also measure the satisfac-
tion of constraints and the average distance between must-link and cannot-link
constraints [1]. Constraint satisfaction indicates how many constraints have been
fulfilled by the algorithm and not violated. The latter measures the ratio between
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the average distance of the must-link pairs and the cannot-link pairs, and there-
fore measures whether the must-link pairs are closer together than the cannot-link
pairs globally, i.e. the ratio is less than one. If the value is one, this indicates that the
distance between cannot-link pairs and must-link pairs is the same which means
that the constraints are not well represented in the space. Note that this measure
provides a high-level overview of the general distribution and an investigation of
individual constraints might be needed to draw more detailed conclusions.

2.2.6 Constrained Clustering Algorithms

Earlier we described the concept of constrained clustering and how constraints
can model an expert’s knowledge and intuition so that the results are closer to
their needs. In this section, we will describe some of the algorithms that have
been adapted to or developed for constrained clustering, such as K-means, metric
learning, spectral clustering, etc.

Let us first highlight the two main approaches when working with constraints:
hard and soft constraint satisfaction. In the hard satisfaction approach, all the con-
straints must be satisfied in the resulting clustering. If any constraint is violated,
the algorithmwill not converge to a solution. However, to mitigate this issue, some
algorithms relax this requirement and allow for the clustering algorithm to violate
some constraints, giving it some freedom to follow its bias. This is referred to as
the soft satisfaction approach.

Most of the proposed clustering algorithms in the literature can be extended
to integrate constraints; the constraints integrated are either instance-level con-
straints (the majority of cases) or cluster-level constraints. Some of these algo-
rithms are fast and find approximate solutions and hence don’t guarantee the sat-
isfaction of all constraints and therefore fall under soft constraint satisfaction. Con-
strained clustering algorithms fall into the same categories of clustering algorithms
mentioned in Section 2.2.2 (partition clustering, metric learning, spectral graph the-
ory, density based, etc). Next, we provide a non-exhaustive review of the most used
techniques in the literature highlighting the Constrained K-means algorithm (COP-
Kmeans), as it is used as a reference comparison for the constrained approaches in
this thesis (Section 3.3).

ConstrainedK-means, are approaches that extendK-means into a constrained
version using instance-level constraints either by enforcing pairwise constraints or
by using the constraints to define penalties in the objective function [91]. A mul-
titude of algorithms adopts the approach of enforcing constraint satisfaction, such
as COP-COBWEB [86] which extends the original COBWEB algorithm. Another
extension called COP-Kmeans was proposed by Wagstaff et al. [92], it chooses a
reassignment that does not violate any constraints at each iteration, hence it is
a greedy approach. An improved version of COP-Kmeans was proposed by Tan
et al. [93] and Rutayisire et al. [94], which tries to solve the problem of constraint
violation by either modifying the assignment order, based on either a measure of
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certainty computed for each instance or a sequenced assignment of cannot-link
pairs. Basu [95] proposed two derivatives, the first being Seed-Kmeans and the
second being Constrained-Kmeans. These approaches use the concept of seeds to
identify the clusters, and the difference is the possibility to change the centres or
not. A different approach was taken by Huang et al. [96] for A Semi-supervised
Clustering Algorithm Based on Must-Link Set (MLC-KMeans). The authors pro-
pose to use the must-link constraints to introduce assistant centroids that help in
assigning instances to clusters. Assistant centroids are based on the centroid of
the must-link set which is a set containing all the instances linked by a must-link
constraint for a given cluster.

A recent work proposed by Vouros and Vasilaki [97] called ‘A semi-supervised
sparse K-means algorithm’, PCSKM, uses constraints in ‘sparsity K-means cluster-
ing’ (SKM) [98] to guide the learning process. This preserves the sparsity capabil-
ities of the SKM algorithm, i.e. it finds clusters that are in distinct subsets of the
features. PCSKM uses the constraints to penalize the clustering process if a con-
straint is violated. In order to handle high-dimensional sparse data, Tang et al. [99]
proposed the SCREEN method for constraint-guided feature projection. The ap-
proach learns a lower-dimensional space such that the distance between any pair
of instances is minimized if linked by a must-link constraint or maximized if linked
by a cannot-link constraint. Afterwards, the spherical K-means [100] algorithm is
used to avoid the violation of cannot-link constraints. This work has some simi-
larities to our proposition where we try to minimize the distance between similar
samples under must-link constraint and maximize the distance between dissimi-
lar samples under cannot-link constraint. Note that this approach is not suited for
time series and is therefore not included as a comparison.

Algorithms that define penalties on the objective function make a balance be-
tween clustering performance and satisfying as many constraints as possible. Such
as the work of Demiriz et al. [101] by incorporating dispersion and impurity mea-
sures of the objective function. Davidson and Ravi [88] in their work Constrained
Vector Quantization Error (CVQE), penalize constraint violation. If a must-link is
violated then the penalty is the distance between the centriods of the clusters that
the samples are in, and if a cannot-link is violated then the distance between the
centriod of the cluster they are in and the nearest centriod. Later the work of Pelleg
and Baras [102] improves CVQE, called linear-time CVQE. It incorporates the co-
ordinates of the involved instances in the penalty calculations, while also avoiding
the need to check all possible assignments for the cannot-link constraints.

A combined objective function, in which the first term is the sum of the total
squared distances between the points and their cluster centres and the second term
the cost of violating any pairwise constraints, was proposed by Basu et al. [103]
and termed Active Semi-Supervision for Pairwise Constrained Clustering (PCK-
Means). PCK-Means proposes an active learning approach to provide constraints
to the algorithm based on the farthest-first traversal scheme, they showed that us-
ing this scheme gives better performance than when using random ones but it suf-
fers from outliers and noisy constraints. The work of Ganji et al. [104], Lagrangian
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constrained clustering, formulates the problem into an unconstrained optimization
problem. The objective is to minimize the Euclidean distance between the sam-
ples while also penalising the violation of cannot-link constraints. To account for
must-link constraints, instances subject to these constraints are aggregated into
super-instances. Super-instances are a mapping of must-linked instances where
any two such instances are mapped in the same super-instance. The method em-
ploys Lagrangian relaxation with increasing penalties to address unsatisfied con-
straints during the iterative clustering process. The extension of Fuzzy C-means
to include constraints was proposed by Grira et al. [105], they introduce a penalty
term into the loss function that measures the cost of violating pairwise constraints.
Grira et al. [106], propose an active approach for constrained-based fuzzy C-means,
called Active Fuzzy Constrained Clustering (AFCC). AFCC minimizes a competi-
tive agglomeration cost function with a fuzzy term that corresponds to the pairwise
constraints, the constraints are selected and provided following an active mecha-
nism. Beside pairwise constraints, Ge et al. [107] put constraints on the number of
objects in a cluster and the minimum variance of a cluster. The work of Demiriz
et al. [108] integrates theminimal size constraints. While Banerjee and Ghosh [109]
constrained the clusters to be balanced. In order to avoid empty clusters, Bradley
et al. [2] adds capacity constraints that specify the minimum number of samples in
a cluster to avoid empty clusters or those with few samples.

Metric learning learns a distance metric for the input data to discriminate
between the samples in the input space [110, 111]; the learned metric preserves
the distance between the training data. Since most algorithms rely on a distance
measure, metric learning can be considered as a prepossessing step, that is finding
a good metric will increase the performance of the subsequent algorithm.

Formally, metric learning learns the distanceDM which is equivalent to learn-
ing a distancemapmatrixM , in order to satisfy the conditions of ametric. M needs
to be a positive semi-definite real-valued matrix. For constrained clustering, Ma-
halanobis distance parameterized by matrix M is usually used, i.e. DM(Ti, Tj) =
||Ti− Tj||M . using Mahalanobis distance enables the measure to take into account
correlations between attributes [112].

The integration of constraints in metric learning means that the metric reduces
the distance between must-link pairs and the distance between cannot-link pairs
increases, this will give similar points a higher chance to be in the same cluster
while increasing cluster separation. This concept is similar to what we use in our
approach Constrained DTW Preserving Shapelets explained Chapter 3 where we
also aim at decreasing the distance between similar points and increasing it be-
tween dissimilar ones. Xing et al. [113] proposed to learn a metric constrained by
must-link and cannot-link constraints by formulating the problem as an optimiza-
tion problem. The objective function is the minimization of the distances for the
must-link pairs under the condition that the sum of the distances for the cannot-
link pairs is larger than a constant c, i.e.

min
∑

ML(Ti,Tj)

D2
M(Ti, Tj), s.t

∑
CL(Ti,Tj)

DM(Ti, Tj) ≥ c.
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In order to avoid over-fitting due to learning only on constrained objects, un-
labeled data can be introduced. Several methods are proposed to learn a distance
while including unlabeled data. Such works of Klein et al. [110] on Euclidean dis-
tance and shortest path, Bar-Hillel et al. [114, 115] on Mahanalobis distance, Cohn
et al. [116] on Kullback-Leibler divergence, Bilenko and Mooney [117] on string-
edit distance, and Hoi et al. [118] on Laplacian regulariser metric learning for clus-
tering. Bilenko et al. [119] propose MPCK-Means, which learns a metric for each
cluster. In order to avoid the intensive computational cost of the matrix M due to
the semi-definite condition, Yi et al. [120] propose to learn the matrix using regres-
sion analysis and matrix completion technique to rectify the pairwise constraints.

Spectral-based methods are modified to either integrate pairwise constraints
or labels, which can be taken into account either in a hard or soft approach. Kamvar
et al. [121] were the first to propose incorporating instance-level constraints into
spectral clustering. They proposed to modify the affinity matrix by setting must-
link points to 1 and cannot-link to zero. It was later extended byAlzate and Suykens
[122] to out-of-sample and soft constraints through the use of regularisation. Later,
Wang and Davidson [123] and Wang et al. [124] proposed a framework that allows
for measuring constraint satisfaction because constraints are modelled by a matrix
with values of 1 if must-link and -1 if cannot-link. In the previous approach, a
value of zero (CL) does not necessarily guarantee that objects belong to different
clusters [125]. In this work, it is possible to use soft constraints by allowing real
values or by using fuzzy cluster membership. Wang and Davidson [126] introduce
a user-defined lower bound on the level of constraint satisfaction.

Ensemble clustering aims at reducing the bias and/or variance of the clus-
tering algorithms by applying a consensus function on the final results of multiple
independent methods [69]. The integration of constraints into ensemble clustering
can be done in two manners: constraints are given independently to each method
or integrated with the consensus function. Methods following the first approach
limit the advantage of ensemble learning since constrained-based approaches tend
to have low variance (diversity). Iqbal et al. [127] propose SCEV (Semi-supervised
Clustering Ensembles by Voting) to balance diversity by using different constrained
algorithms and a weighted voting approach to combine the results. On the other
hand, methods following the second approach exist, such as the work of Al-Razgan
and Domeniconi [128], Xiao et al. [129], and Dimitriadou et al. [130]. These ap-
proaches divide the consensus function into four different steps to create and parti-
tion a sparse graph constructed from a similarity matrix based on the set of cluster-
ing results. The most important step is the partitioning step where the constraints
are integrated, to split or merge clusters. This approach mitigates the drawback of
the first approach (low variance) but it adds the difficulty of defining a consensus
function that takes into account the constraints and the cluster information.

Collaborative clustering can be extended to constrained clustering through
three stages according to Forestier et al. [131]. The first stage is the generation of
the final results using label constraints, which is the simplest and easiest to im-
plement as it does not interfere with the collaborative process. The second stage,
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guiding the collaborative process by directly including the constraints in the col-
laborative step is highly dependent on how information is shared and exchanged.
And the third stage, using the constrained-based agents, this method is expensive
as it requires extensive modification of each clustering method. This final approach
is limited since it limits the diversity of the algorithms and therefore increases er-
ror rates [132]. To address this, Domeniconi and Al-Razgan [132] propose a hybrid
approach to integrate constraints in the second and the third stages, in which the
algorithms also collaborate using the constraints. SAMARAH [131] also follows a
similar approach, where it refines the results according to the constraints with the
goal of resolving conflicts [133].

Declarative clustering generalizes the framework of constrained clustering
by allowing the expert to explicitly state the constraints, which can be of different
types, in the objective function. This allows the search for a global optimum that
satisfies all constraints. Generally, optimization tools are used, such as integer lin-
ear programming (ILP), Boolean Stability Solver (SAT), or constraint programming
(CP). These approaches allow the direct integration of cluster-level constraints, and
for different optimization criteria, unlike the previouslymentioned approaches that
are developed for a particular criterion. Mueller and Kramer [134], Ouali et al.
[135] developed a framework based on ILP that can integrate different kinds of
constraints. Davidson et al. [136] proposed an SAT-based approach that integrates
different types of constraints (pairwise constraints, maximum diameter, and mini-
mum split). Dao et al. [137] introduced a CP-based framework for distance-based
constrained clustering. In Duong et al. [138], they show that the problem of finding
both compact and well-separated clusters can be solved by iteratively changing the
objective function and adding constraints to the other objective value and proper-
ties, making the clustering actionable [89].

Incremental and active constrained clustering, these approaches explicitly
include the expert during the clustering process (unlike the collaborative approach
where the interaction ends after explicitly providing the constraints to the objective
function) where the algorithm can query the expert at each iteration. This query
enables to the expert to guide the results and for the algorithm to gain additional
information, which can take the form of additional constraints to be taken into
account in the next clustering iteration. Cohn et al. [116] proposed an approach
to iteratively express agreement or disagreement regarding the clustering results
using pairwise constraints. In addition, they propose the idea of adding comments
on samples themselves if they are “good”, implying it should be maintained in the
next clustering, or “bad”, implying they should be changed. The work of Davidson
et al. [139] proposes the idea that updating an existing clustering to satisfy new and
old constraints is more efficient than re-clustering from scratch. Under the active
constrained paradigm [76], where the algorithm proposes potential constraints to
the user in the form of queries, and the user validates or rejects them. The works of
Lewis [140] and Settles and Craven [141] focus on constraint informativeness and
uncertainty by selecting samples with the lowest confidence. The selection process
is achieved through a learner that uses a defined strategy and criteria to assess the
uncertainty, the authors proposed a number of approaches, such as Fisher Infor-
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mation based selection strategy, Information Density, etc. While the proposition
of Basu et al. [103], Settles and Craven [141], and Van Craenendonck et al. [142]
emphasize the importance of coherence, they choose constraints by selecting sam-
ples that will have the greatest effect on the clustering result or those that reduce
clustering error [143, 144].

Deep clustering approaches are based on neural networks, and grouped into
two approaches: the first divides the process into transformation learning and
clustering [145, 146, 147, 3, 148] and the second learns them both simultaneously
[149, 150, 151]. In order to integrate prior knowledge into the learning process,
Ohi et al. [145] proposes to train a Siamese network (the weights between parallel
networks are not shared) to generate meaningful embeddings from constraints and
then perform clustering on them. The model is trained to minimize the pairwise
distance of the embeddings, where it adds a distance hyperparameter to assert that
cannot-link points are always a specific distance apart (the distance will be bound
by the maximum defined by the hyperparameter) and set this distance to zero if the
pair of samples has a must-link constraint. This approach is similar in spirit to the
concept ofmetric-constrained learning and our approach. On the other hand, ‘Deep
constrained clustering – DCC’ is proposed by Zhang et al. [3], which is based on a
deep clustering method called Deep Embedding Clustering [149] and its improved
version, IDEC [152]. This approach is explained more in detail in the following
section since we use a time series variant of it to compare our contribution to.

Besides these approaches, efforts to extend density-based clustering, hierarchi-
cal, and graph-based approaches exist in the literature, for a detailed overview of
each the reader is referred to the work of Cai et al. [91]. Here, we compare algo-
rithms that were created or extended to time series clustering, and these generally
fall under deep clustering and partition-based approaches. These algorithms will
be highlighted in detail in the next section.

2.3 Time Series Constrained Clustering

In order to be applied to time series, the clustering algorithm must consider both
the temporal and dimensional aspects of the data type. It is therefore important to
address the challenges related to dimensionality, distortion, volume, and variability,
among others, as explained in Chapter 1. In this section, we will outline various
approaches proposed in the literature to tackle these issues. Additionally, we will
provide a detailed explanation of the methods we compare to.

In the literature, three categories can be identified for time series clustering:
whole clustering, subsequence clustering, and time point clustering.

Whole time series clustering considers the entire time series as the object to be
clustered. Hence each cluster consists of multiple, complete time series. This
approach is suitable for applications where the entire time series is analysed
or modelled, such as in remote sensing, medical, or financial data analysis.
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Subsequence clustering methods cluster subsequences of time series [153], i.e.
each object to cluster is a subsequence or a segment of the time series ex-
tracted using a sliding window. This approach might be useful for applica-
tions where only certain segments of the time series are relevant, such as in
speech or gesture recognition and usually, it is given in the form of streaming
time series.

Time Point clustering methods cluster time points within a time series accord-
ing to a combination of their temporal proximity and similarity [154, 155].
It is similar to the subsequence approach, but in time point clustering not
all parts of the time series need to be clustered. This approach is useful for
applications where the time series data is irregular or sparse, such as in en-
vironmental monitoring or sensor networks.

In this thesis, we work with whole-time series clustering where the approaches can
be categorized intomodel, feature, shape, and shape-feature-based approaches [46].
The shape approach tries to match similar time series accounting for distortions,
it employs classical clustering on raw time series with measures modified to time
series, such as using DTW distance. In the feature approaches, the time series are
mapped into a vector of lower dimension, where the vector components are based
on features that are either based on statistical features or learned or extracted from
the time series. In the model-based approaches, the time series is transformed into
model parameters (parametric model) and then a clustering algorithm is applied
[156]. Using one or some of these approaches together is applicable and depends
on the problem.

Next, we will provide an explanation of the methods used later in the experi-
mental study in Section 3.3. Themethods include COP-Kmeans, whichwas adapted
to time series by Lampert et al. [1], deep constrained clustering as proposed by
Zhang et al. [3] and further adapted by Lafabregue et al. [157], and FeatTS clus-
tering as introduced by Tiano et al. [158]. The first two approaches belong to the
shape-based category as they use DTW and DBA techniques to handle time series.
DCC falls under the model-based approach, while FeatTS under both the shape and
model category.

Constrained Kmeans (COP-Kmeans) has been extended to time series by
adopting the DTWdistance instead of the usual Euclidean distance and use of DTW
averaging (DBA) to find cluster centres [1]. The algorithm is described inAlgorithm
2. In Line 4, the DTW distance between the cluster centre and the time series
instances is calculated so it can be associated with the closest cluster. In Line 8,
DBA is used to calculate the centroid for each cluster. As explained in Section
1.1.4 (Chapter 1), DBA is a heuristic aiming to minimize the sum of squared DTW
distances of the set of time series and hence results in an average sequence. In line
5 the algorithm asserts that there is no constraint violation, if a constraint violation
exists the algorithm will end and not converge.

MIP-Kmeans: extends the K-means algorithm using mixed integer linear pro-
gramming, hence the acronym MIP-Kmeans. The problem can be considered as
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Algorithm 2 COP-Kmeans algorithm
Input: data points x1, x2, . . . , xn, number of clustersK , must-link constraintsML,
cannot-link constraints CL

Output: Cluster assignments for each data point {C1, . . . , CK}
1: Initialize cluster centroids µ1, µ2, . . . , µk randomly
2: while not converged do

// Assign each data point xi to its closest centroid:
3: for each point xi do

4: k ← arg min
j∈{1,...,K}

DTW (xi, µj)

// Check if the assignment of points violates the constraints:
5: if violate_constraint(xi, Ck, CL,ML) is True return {} else continue
6: end for

// Update each centroid as the mean of the data points assigned to it:
7: for each cluster Cj do

8: µj ← DBA(Cj)

9: end for

10: end while

11: return C1, . . . , CK

Function violate_constraints(xi, Ck, CL,ML)
1: For each (xi, xj) ∈ML if xj /∈ Ck, return True
2: For each (xi, xj) ∈ CL if xj ∈ Ck, return True
3: return False

a minimization of the distance between the objects and the cluster centroids, thus
minimizing the intra-group distances. The constraints are incorporated in the form
of conditions to respect. Let xi,j represent the ith object belonging to the jth clus-
ter, hence the grouping of the objects and the centroids can be represented by
D(xi, µj) xi,j , whereD is the DTWdistance and µj is the centroid of the jth cluster.
The mathematical model can be written as:

min
µj

N∑
i=1

K∑
j=1

D(xi, µj) xi,j, (2.9)

Subject to:

xi1,j = xi2,j, (i1, i2) ∈ML, (2.10a)
xi1,j + xi2,j ≤ 1, (i1, i2) ∈ CL, (2.10b)

∀j ∈ {1, . . . , K},
N∑
i=1

xi,j ≥ 1, (2.10c)

∀i ∈ {1, . . . , N},
K∑
j=1

xi,j = 1. (2.10d)
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Algorithm 3 MIP-Kmeans algorithm
Input: data points x1, x2, . . . , xn, number of clusters : K , must-link constraints
ML, cannot-link constraints CL

Output: Cluster assignments for each data point {C1, . . . , CK}
1: Initialize cluster centroids µ1, µ2, . . . , µk randomly
2: Initialize MIP solver withML, CL, µj and xi to reflect Equations 2.9 and 2.10
3: while not converged do

4: Assign time series to the closest centroid
5: Update cluster centroids
6: Update MIP solver
7: Resolve pairwise constraints by adjusting cluster assignments
8: end while

9: return {C1, . . . , CK}

The conditions in Equations 2.10a and 2.10b assert that the constraints are re-
spected, the condition in Equation 2.10c makes sure that each cluster has at least
one object, and the last condition in Equation 2.10d guarantees that each instance
belongs to one and only one cluster (hard clustering). The MIP-Kmeans algorithm
is represented in Algorithm 3.

Deep Constrained Clustering (DCC): similar to DEC, DCC first trains an
autoencoder (xi = g(f(xi))) and then removes the decoder part (see Figure 2.12).
The embeddings zi returned by the encoder are used to learn hard clustering for
the instances. This is achieved by fine-tuning the encoder (zi = f(xi)) by opti-
mizing an objective function based on Kullback-Leiber divergence Lc between two
different distributionsQ andP , which represent the cluster centres as Gaussian dis-
tributions (Q) and the target distribution P as the normalised square of Q (pulling
points towards the cluster centres). The soft cluster assignment for instance i is
represented as a vector qi of lengthK , it is computed from zj , which indicates the
degree of belonging to cluster j. On the other hand, P represents the target distri-
bution based on Q which indicates the hard assignment of instance i to only one
cluster. The following is the mathematical definition for Lc, qij and pij ,

Lc = KL(P ||Q) =
N∑
i=1

K∑
j=1

pij log
pij
qij

,

qij =
(1 + ||zi − µj||2)−1∑
j(1 + ||zi − µj||2)−1

, pij =
q2ij/

∑
i qij∑

j(q
2
ij/
∑

i qij)
,

where µ is the set of centriods initialized using K-means on z, qij is the similarity
between z and µ based on Student’s t-distribution [159]. N is the number of in-
stances andK is the number of clusters. In order to preserve the representativeness
of the embedded features and not be affected after removing the decoder, Guo et al.
[152] propose to keep the reconstruction loss. Hence, the overall loss function is:

L = Lr + γLc,
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Figure 2.12: The DCC method architecture. Adapted from [160].

where Lr is the reconstruction loss and written as,

Lr =
1

n

n∑
i=1

||g(f(xi))− xi||2.

Zhang et al. [3] proposes four types of constraints, but the pairwise constraints
is the only one that concern this work. These aim to maximize the similarity be-
tween the latent representations of objects for must-link constraints and respec-
tively minimize it for cannot-link constraints. The must-link ML and cannot-link
CL constraint losses are defined as:

lML = Lr − γML ·
∑

(a,b)∈ML

log
∑
j

qaj · qbj,

lCL =
∑

(a,b)∈CL

log(1−
∑
j

qaj · qbj).

Moreover, Lafabregue et al. [157] show that by modifying DCC to use 1D-
convolutional layers, better performance is achieved with time series [161]. In the
modified version, these are also followed by batch normalization layers and the em-
bedding layer is preceded by a global average pooling layer. The final embedding
layer remains fully connected.

Feature-based Time Series Clustering (FeatTS), is a semi-supervised ap-
proach that uses a small portion of labelled data to select relevant features from the
time series. These features encode global similarities between time series. Note that
this approach is different from the constrained algorithms presented above, as it as-
sumes that the thematic labels (classes) are known for the few instances labelled
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Figure 2.13: The algorithmic pipeline of FeatTS, adapted from [158].

by the expert. Hence, this approach takes much more information compared to
constrained algorithms because the labels represent N(N-1)/2 constraints, given N
labels.

As shown in Figure 2.13, FeatTS starts by (1) extracting and selecting n features,
using the TSfresh [162] method. Since not all features are equally relevant for
clustering, the authors propose to use a supervised procedure called Benjamini-
Yekutieli [163] to rank the features. Then (2) Principal Factor Analysis (PFA) feature
selection (a variant of principal component analysis) is used to choose the features
necessary to create a graph encoding. PFA is used since it preserves the original
values and leverages the concept of explained variance.

Once the features are selected, FeatTS computes the global relationships be-
tween the time series based on their statistical features. It uses graph networks
(3) to encode these relationships. Each time series is converted into a node, and
weighted edges are created between them. The edge weight represents the differ-
ence between the values of two different time series using the selected features. The
graphs are pruned based on a threshold and a Community Detection algorithm is
applied to obtain the global relationships among the time series. The results of the
communities are merged into a Co-Occurrence matrix (4), on which a clustering
algorithm (K-Medoid) is applied (5).

2.4 Conclusions

This chapter provided a detailed overview of the related work, background knowl-
edge, and state-of-the-art techniques. We described shapelets in depth, which are
subsequences of time series capable of distinguishing between different categories
of time series. These shapelets can be extracted or learned through supervised
or unsupervised approaches. We discussed various approaches from the literature
that aim to find optimal shapelets and highlighted their strengths and weaknesses
for different tasks. Furthermore, we focused on one specific approach called Learn-
ing DTW Preserving Shapelets. This approach aims to learn shapelets in an unsu-
pervised manner while approximating the DTW similarity measure (as presented
in Chapter 1), which takes into account the distortions present in time series data.
Next, we presented the task addressed in this thesis, which is time series clustering.
We discussed different approaches to clustering time series data, emphasizing the
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challenging nature of the problem due to the lack of background knowledge. We
then introduced a semi-supervised approach for clustering, specifically falling un-
der the guided approaches where the expert provides their intuition to guide the al-
gorithm through constraints aligned with their expectations. We described various
constrained clustering approaches and highlighted constrained clustering methods
specifically tailored for time series data. In the evaluation study of our approach,
we provided a detailed explanation of four constrained clustering algorithms for
time series. The first is constrained K-means, referred to as COP-Kmeans, which
incorporates expert knowledge through must-link and cannot-link constraints to
ensure clusters adhere to these constraints. Another variant, called MIP-Kmeans,
transforms the clustering problem into a linear integer programming problem sub-
ject to a set of constraints encoding must-link and cannot-link relationships. We
also explained a constrained algorithm utilizing neural networks, known as deep
constrained clustering (DCC), which learns a time series embedding using an au-
toencoder. The embedding is then transformed using the encoder part, followed by
a clustering layer. Additionally, we presented a semi-supervised approach using la-
bels instead of constraints for clustering, known as FeatTS. This approach aims to
extract statistical features from time series data and applies KMedoids clustering
on a graph constructed using these features. Overall, these approaches represent
different perspectives on constrained clustering for time series data and are utilized
in the evaluation study of our proposed approach.
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We have previously pointed out the ill-posed nature of clustering and that it can
be mitigated by using constrained clustering, where we emphasized our interest in
pairwise constrained clustering approaches. We highlighted that in order to mea-
sure the properties of constraints, a metric measure is necessary. This is hard to
obtain for time series data due to distortions that need to be accounted for. In order
to resolve these problems, i.e. a space where a metric measure can be used and to
adapt it to time series, we propose Constrained DTW Preserving Shapelets, termed
CDPS. We argue that using constraints in learning a time series representation can
help in obtaining a space where the expert’s intuition is respected. This trans-
formation can be used with unsupervised (unconstrained) clustering approaches,
inherently adding the expert’s intuition to the clustering process. This has multi-
ple advantages, for example, there is no need to adapt the clustering algorithm to
take constraints into account or to create complex algorithms to account for this
information. In order to achieve this, we adopt the concept of contrastive learning,
in which the model learns distinctions between samples, based on a comparison
between similar and dissimilar pairs of data.

First, we explain the concept behind contrastive learning in Section 3.1, which is
used to model the pairwise constraints. In Section 3.2, the CDPSmodel is presented
in detail and discussed in detail the sections to follow.

3.1 Contrastive Learning

Generally, contrastive means showing and emphasizing the difference and distinc-
tions between things, by identifying contrasting elements, characteristics, or fea-
tures. For example in image recognition, one can emphasise different groupings of
cars based on colour and/or brand (Figure 3.1).

Contrastive learning is an approach falling under the paradigm ‘learn-to-compare’
that uses contrastive information to learn a model for representation [164, 165],
similarity measure [166, 167], classification [168], clustering [169], and more [170].
Most of these approaches were developed for images (classification and segmen-
tation) and natural language processing. Where they use the concept of positive
pairs, i.e. similar samples (e.g. cars with similar colours and/or brands), and neg-
ative pairs, i.e. distinct samples (e.g. cars with different colours and/or brands), to
identify and learn the contrastive relation between samples.

In supervised contrastive learning approaches, the relationships between ob-
jects are inferred from labels, and represent a large amount of information. It is
equivalent to all the possible constraints between the labelled points, i.e. N(N −
1)/2 constraints if we had N labels. This enormous number of pairs increases the
computational complexity of the model and the memory load. On the other hand,
in unsupervised approaches, data augmentation is usually used to build positive
pair samples, and self-supervised learning is used to generate pseudo labels. The
choice of data augmentation method is of high importance in unsupervised con-
trastive learning and using multiple data augmentation operations is essential in
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Figure 3.1: Illustration of the general idea behind contrastive learning. (b) Shows
contrastive relations according to colour (blue, white) and in (c) according to brands
(Toyota, Mercedes).

yielding effective representations [171]. Chen et al. [171] argue that unsupervised
learning benefits more from data augmentation than supervised learning. A major
drawback of unsupervised contrastive learning is the batch size1. The batch size is
large so that it can account for enough contrastive information, but this increases
the computational and memory complexity.

In general, the learning process depends on the loss used. There are two cate-
gories for contrastive loss: distance and probabilistic-based.

Distance-based: The objective is tomaximize the distance between negative pairs
and minimize the distance between positive pairs in the learned representa-
tion space. The loss function encourages the model to learn representations
that can distinguish between similar and dissimilar samples based on their
distances. Chopra et al. [166], Hadsell et al. [172] proposed the first classical
contrastive loss in a supervised paradigm.

Probabilistic-based: The objective is to compare the distributions of embeddings
in order to identify the contrastive relationship between samples [164]. In-
stead of directly optimizing distances, these loss functions focus onmodelling
the probability or likelihood of samples being similar or dissimilar [165].

1Batch size is the number of input samples to be fed into the model to train during each training
iteration.
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Schroff et al. [173] proposed the triplet loss that uses the concept of an an-
chor sample and compares a positive (hence maximizing the distance) and a
negative sample (minimizing the distance) to it.

Out of these two approaches we are interested in using distance base contrastive
learning as it allows us tomodel the information in the form of the distance between
samples, which serves as an important component in the CDPS algorithm. Next, we
will explain in detail the loss proposed by Hadsell et al. [172] in ‘Dimensionality
Reduction by Learning an Invariant Mapping’, as the loss proposed for CDPS is
based upon this concept. The idea behind this work was to learn to map the data
into a low-dimensional manifold using neighbourhood relationships.

Let X = {X1, . . . , XN} be set of N instances where Xi ∈ RF is the ith sample
with F -features, and GW a parametric transformations GW : RF −→ RF ′ where
F ′ << F , such that

• the distance in the output space approximates the neighbourhood relation-
ships in the input space;

• the mapping should be able to learn invariances to complex transformations;

• should model samples whose neighbourhood relationships are unknown.

Assuming that for each Xi there exist a set of positive pairs PXi
. Using this infor-

mation generates a binary label Y indicating the contrastive relation between Xi

and any other instance, such that the value of Y is zero for every other instance
in PXi

and one for instances that are not in PXi
. Since the problem is to learn a

representation based on relationships, the authors propose to learn a parametrized
distance function defined over the transformations of two input instances X1 and
X2. The distance function to be learnt is written as:

DW (X1, X2) = ||GW (X1)−GW (X2)||2,

and the overall loss function as:

L(W ) =
N∑
i=1

L
(
W, (Y,X1, X2)

i
)
, (3.1)

whereW represents the weights to be learnt of a neural network representing the
transformation and (Y,X1, X2)

i is the ith labelled sample pair, and

L
(
W, (Y,X1, X2)

i
)
= (1− Y )LS(Di

W ) + Y LD(Di
W ), (3.2)

whereDi
W is the distance between the ith pair, such that LS is the loss function for

similar pair instances (positive) and LD for the dissimilar ones (negative).

The authors provide an analogy to the physical spring model, known as Hooks
law, which models the forces acting on a spring, where they assume that Di

W is
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Figure 3.2: Illustration of the loss function L against the energyDW , where the red
dashed line is the loss of positive pairs and the blue solid line is for the negative
pairs. Adapted from [172].

the energy such that the minimization of L leads to the minimization of LS and
maximization of LD as shown in Figure 3.2. The exact solution of Equation 3.2 that
satisfies this condition will be

LS(W,X1, X2) = DW (X1, X2), (3.3)

LD(W,X1, X2) =
1

2
(max{0,m−DW (X1, X2)})2 , (3.4)

where m is the margin in which after this distance the points are considered to
be distinct enough, preventing them from being pushed towards infinity. While
training, the gradient with respect to W will play the role of either an attractive
force (in the spring analogy) of positive pairs or a repulsive force of negative pairs.
In the work of Hadsell et al. [172] and similar works for learning contrastive rep-
resentations, the learning is based on either a convolutional-based neural network
that learns embeddings, or is based on more recent architectures. One drawback of
these approaches is that the transformation is a black box where the learnt weights
cannot be interpreted by the expert. Moreover, as mentioned earlier, the amount of
information required is relatively large, which can prohibit its use in some domains.

3.2 Constrained DTW Preserving Shapelets

In our work, we use the contrastive concept presented earlier such that similar
points are those associated with a must-link constraint (positive pairs) while dis-
similar points are those associated with a cannot-link constraint (negative pairs)
and we aim to minimise the distance between ML points and increase the distance
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between CL points by adapting the loss proposed by Hadsell et al. [172]. Unlike
the unsupervised and supervised approaches that use huge amounts of contrastive
pairs or big batch sizes, we show that using the training procedure we propose is
sufficient to learn a representation guided by the contrastive information given by
the expert.

As a reminder, in our work, we aim to learn a guided transformation with ex-
plainable capabilities that take into account the distortions exhibited in time series.
We argue that combining the transformation offered by shapelets with the capa-
bilities of the contrastive loss will allow us to encode expert intuition and model
DTW distance. Next, we explain the proposed loss followed by a description of the
architecture used.

3.2.1 Proposed Loss Function

Given a set of N time series T = {T1, . . . , TN} with F features and length L,
therefore Ti ∈ RF×L (theoretically the time series can be of varying length but for
simplicity, we work with uniform length). Let ML be a set of must-link pairs and
CL a set of cannot-link pairs, given by the expert. We aim to learn a set of shapelets
S = {S1, . . . , SK} of length LSk

such that the shapelet transform

ST :RF×L −→ RF×K ,

Ti −→ T i,

is subject to the conditions

D(T i, T j) ≈ DTW(Ti, Tj), (3.5)
D(T i, T j) −→ 0 if (Ti, Tj) ∈ ML, (3.6)
D(T i, T j) −→ mi,j if (Ti, Tj) ∈ CL, (3.7)

where Ti = {T i,1, . . . , T i,K} is the transformation of time series Ti, T i,k is the
Euclidean shapelet match between time series Ti and shapelet Sk explained in Def-
inition 5 in Chapter 2, andD = || · ||2 is the Euclidean distance between the trans-
formed time series in the new space. Equation 3.5 forces the transformation to
approximate the DTW distance and Equation 3.6 asserts that if the expert indicates
the samples are similar, the distance should be pushed as close as possible, and if
the samples are indicated as dissimilar (CL), Equation 3.7 forces the instance to be
pushed further apart in the new space (this distance is limited by the variablemi,j).
The value of mi,j is of great importance, if it is not sufficiently large it will not
separate the points enough and if it was too large it will lead CL points biasing the
loss’s gradient. The choice ofmi,j will be explained in detail later. In what follows,
the distance D(T i, T j) will be written as Di,j for simplicity.

In the unsupervised LDPS approach [32] (explained in detail in Section 2.1.3),
in which the space is learnt only to model the DTW distance, the loss function only
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satisfies Equation 3.5 and is defined such that

LLDPS(Ti, Tj) =
1

2
(DTW(Ti, Tj)− β · Di,j)

2 ,

where β is a parameter to scale the approximated distance to the same order of
the DTW similarity. This measures the squared error between the DTW similarity
and approximated distance and hence minimising LLDPS, therefore, measures the
squared error between the DTW distance and approximated distance and hence
minimising LLDPS, minimises the approximation’s error.

In order to also take into account the information provided by the expert through
constraints, we propose to modify LLDPS to integrate the contrastive paradigm.
The proposed loss function can be written as:

LCDPS(Ti, Tj) = LLDPS + ϕi,j,

where ϕi,j is the contrastive term. The term ϕi,j is inspired by the contrastive loss
and is defined, such that

ϕi,j =


α · D2

i,j, if (i, j) ∈ ML,
γ ·max(0,mi,j −Di,j)

2, if (i, j) ∈ CL,
0, otherwise,

(3.8)

where α, γ are weights that regularise the must-link and cannot-link distances
respectively, andm is the minimum distance between samples for them to be con-
sidered well separated in the embedded space (after which, there is no influence on
the loss). The termm is calculated using

mi,j = max
∀i,∀j

(DTW (Ti, Tj)) + log
(

DTW (Ti, Tj)

max∀i,∀j(DTW (Ti, Tj)

)
, (3.9)

such that i ̸= j. An illustration of Equation 3.9 is presented in Figure 3.3. In order
to understand the use of this function (and therefore Figure 3.3), let us consider
the following scenario. The expert provides the algorithm with cannot-link con-
straints on pairs of samples that are already ‘well-separated’ by DTW distance we
argue that there is no need to push these samples further apart as they are already
considered far by approximating DTW (hence the plateau in the value of m as vi-
sualized in Figure 3.3). On the other hand, if these cannot-link (dissimilar) samples
have a small DTW distance (which can be due to problems such as misclassifica-
tion, etc. as reported in Chapter 1), we aim to adjust and correct the small distance
in the new space by forcing them to be pushed further apart, limited by m. This
is reflected in the small DTW values in Figure 3.3, for which the value of m in-
creases sharply. Consequently, the overall loss function over the entire dataset T
is formalized such that:

L(T ) = 2

K(K − 1)

K∑
i=1

K−1∑
j=i+1

LCDPS(Ti, Tj). (3.10)
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Figure 3.3: Graph of the margin mi,j (represented as m in the figure, which
acts upon CL constraints, see Equation 3.8) against DTW (Ti, Tj) and with
max∀i,∀j(DTW (Ti, Tj)) = 20.

Minimization of LCDPS with respect to β and Sk,l

Now, we will explain the effect of minimizing the loss function on the distance
between the time series in the transformed space. Using the chain rule, the partial
derivative of LCDPS with respect to a shapelet parameter Sk,l (kth shapelet at the lth
element) over points (Ti,Tj) can be written as:

∂LCDPS(Ti, Tj)

∂Sk,l

=
∂LLDPS(Ti, Tj)

∂Sk,l

+
∂ϕi,j

∂Sk,l

=
∂LLDPS(Ti, Tj)

∂Di,j

∂Di;j

∂Sk,l︸ ︷︷ ︸
A

+
∂ϕi,j

∂Di,j

∂Di,j

∂Sk,l︸ ︷︷ ︸
B

.
(3.11)

First, we study the effect of the LLDPS loss, which will be referred to as term A and
can be further expanded to

A = −β(DTW(Ti, Tj)− β · Di,j)
∂Di,j

∂Sk,l

and B into

B =


2αDi,j

∂Di,j

∂Sk,l
, if (i, j) ∈ML,

−2γ(mi,j −Di,j)
∂Di,j

∂Sk,l
, if (i, j) ∈ CL,

0, otherwise.

Following a similar analogy as Hadsell et al. [172], we treat A =
∂LLDPS(Ti,Tj)

∂Sk,l
and

B =
∂ϕi,j

∂Sk,l
as forces acting on T i to push it closer to or further apart from T j .

Figure 3.4 gives an illustration of this analogy. For the different cases shown, A is
represented by the blue arrow and its purpose is to push/pull the points to model
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Case A Case B Case C

Case E Case FCase D

Figure 3.4: Illustration of the effect of the proposed loss function on the distance of
the points in the new space. Different cases are illustrated depending on whether
the points are linked with a must-link (green) or cannot-link (red) constraint, blue
indicates the effect of approximating DTW.

their DTW distance (the blue dotted circle). The negative sign in A asserts that
this force will always be opposite to DTW(Ti, Tj) − β · Di,j , meaning that if this
term is negative then Di,j is larger than DTW and the points need to be pulled
closer to each other and vice versa. The term B has two different roles if the points
are connected by a must-link (i.e. (i, j) ∈ ML) then they should be closer to each
other (represented by a green arrow) and if connected by cannot-link (i.e. (i, j) ∈
CL) should be pushed further apart (represented by the red arrow). When (i, j) ∈
ML, the absence of the sign means that T i will always be pushed to T j and the α
parameter can either increase the impact of this force or decrease it. In contrast,
when (i, j) ∈ CL, the points will always be pushed away from each other until the
distance between them ism, after which the force has no effect.

As illustrated in Figure 3.4 the force brought by A (responsible for approximat-
ing the DTW distance, the blue arrow) is present in all the cases (but would cancel
out when β ·Di,j = DTW (Ti, Tj)), The interaction between the other forces shown
in Figure 3.4 are as follows: in Case A, the points are dissimilar and the forces ex-
erted are the repulsive force B (red arrow) and the force for DTW approximation
A (blue arrow), after training for a while the points might be pushed sufficiently
far apart that the repulsive force is zero (the points are distinct enough), as shown
in Case B, by continuing training the forces should reach an equilibrium, Case C,
where the points are sufficiently far from each other (but not necessarily equal to
the actual DTW distance between the time series). The same reasoning can be
made for the samples connected by a must-link (cases D, E, and F).

Having explained the effect of the loss on the space, we provide the necessary
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derivation. The derivative of the distance between the samples in the transformed
space Di,j by Sk,l is

∂Di,j

∂Sk,l

=
∂Di,j

∂∆i,j,k

∂∆i,j,k

∂Sk,l

,

where ∆i,j,k = T i,k − T j,k. The derivation of each term is straightforward,

∂Di,j

∂∆i,j,k

=
∆i,j,k

Di,j

, where Di,j ̸= 0,

and
∂∆i,j,k

∂Sk,l

=
∂T i,k

∂Sk,l

− ∂T j,k

∂Sk,l

,

where
∂T i,k

∂Sk,l

=
∂min(Di,k,w)

∂Sk,l

=
∑
w

∂T i,k

∂Di,k,w

∂Di,k,w

∂Sk,l

.

In order to calculate the derivative with respect to the shapelet score, we use soft-
minimum as an approximation of the minimum, as used in LDPS [32], which gives
∂T i,k

∂Di,k,w
= δw,w∗ and hence the above can be written as:

∂T i,k

∂Sk,l

=
∑
w

δm,m∗
∂Di,k,w

∂Sk,l

,

and,

∂Di,k,w

∂Sk,l

=
1

LSk

∂

∂Sk,l

LSk∑
x=1

(Ti,w+x−1 − Sk,x)
2


x=l

= − 2

LSk

(Ti,w+l−1 − Sk−l).

The derivative with respect to the scaling parameter β is

∂LCDPS

∂β
=

∂LCDPS

∂β
+

∂ϕij

∂β

= −β[DTW (Ti, Tj)− βDi,j] +
�
�
��7
0

∂ϕij

∂β
,

where ϕij is used to penalize the approximation of DTW according to the expert
regardless of the actual DTW so there is no need to include β in ϕi,j . This means
that the adjustment of β will only depend on the error between actual DTW(Ti, Tj)
and the approximated distance Dij .

3.2.2 Model Architecture

We employ a Siamese architecture, which is well-suited for contrastive learning.
Our chosen architecture closely resembles the one described in LDPS. It consists of
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Figure 3.5: Illustration of the CDPS model. ST is the shapelet transform, Sk are the
weights of the shapelets, Ti (i = {1, 2}) are the input generated by the batch layer.

layers representing shapelets, called ‘shapelet blocks’. The shapelet blocks have no
interconnections i.e. they are parallel. The shapelet blocks are followed by a min-
pooling to calculate the best shapelet match over the whole time series. Figure 3.5
provides a visual representation of the model architecture.

In contrast to LDPS, we use a batch input layer and train the model using batch
gradient descent instead of stochastic descent. The batch layer takes the time series
and the constraints set as its input so that it can generate batches containing sam-
ples that are constrained and those that are not. Using batch gradient descent will
lead to less noise in the backward propagation especially when having contrast-
ing information. Note that the batch size in CDPS is typically smaller compared
to what is commonly used in contrastive learning. Using a very large batch size
will make the backward propagation smoother but will lead to a local optimum,
choosing a smaller batch size on the other hand will allow the training to escape
the local optimum and converge to a better solution. The training procedure will
be described in more detail in the subsequent sections.

Figure 3.6 shows an illustration of the shapelet layer. For simplicity, we illus-
trate uni-variate time series (those with one feature) and three shapelets blocks,
where each can have a different shapelet length (denoted as LSi

, i = {1, 2, 3}) and
a different number of shapelets (denoted as NUMSi

, i = {1, 2, 3}). After receiving
the input batches, the shapelet layer takes the time series as input and calculates the
Euclidean Shapelet Match Di,k,w (defined in Definition 4, Chapter 2) with respect
to the shapelets in each shapelet block. Di,k,w will return all the possible distances
between each shapelet in the blocks and each possible subsequence of the time se-
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Figure 3.6: Illustration of the shapelet layer. Di,k,w is the Shapelet Euclidean Score
(Definition 4), LSi

is the length of the shapelet block, NUMi is the number of
shapelets in a shapelet block, and T i,k is the embeddings with respect to each
shapelet block.

ries, which is then fed into a min-pooling layer to get the best match (since we are
using one feature, the output of the min-pooling will be: number of time series ×
number of shapelet × one).

3.2.3 Learning Procedure

Algorithm 4 describes the CDPS approach to learning the representational em-
bedding. ShapeletBlocks is a dictionary containing Smax pairs, {shapelet length
LSk

; shapelet number }, where shapelet length is Lmin · bind, Lmin is the minimum
shapelet length and bind ∈ {1, . . . , Smax} is the index of the shapelet block. The
number of shapelets for each block is calculated using the same approach as LDPS
[32]: 10 × log(Li − Lmin · bind). Initialize_shapelets initializes the shapelets ei-
ther randomly or rule-based. Here the following rule-based approach is taken: (1)
Shapelets are initialized by drawing a number of time series samples and then re-
shaping them into sub-sequences with lengths equal to that of the shapelets; (2)
K-means clustering is then performed on the sub-sequences and the cluster cen-
tres are extracted to form the initial shapelets. Get_Batch(T , ML, CL, sbatch, cbatch)
returns batches containing both constrained and unconstrained samples, where the
batch size is sbatch and the number of constraints in a batch is cbatch. The introduction
of cbatch ensures that constrained time series are frequently observed during train-
ing, increasing their impact in the presence of a large number of unconstrained
samples. If there are insufficient constraints to fulfil cbatch, then they are repeated.
For speed and to take advantage of GPU acceleration, the above algorithm can be
implemented as a 1D convolutional neural network in which each layer represents
a shapelet block composed of all the shapelets having the same length followed by
max-pooling in order to obtain the embeddings.



3.3 Evaluation 63

Algorithm 4 Constrained Distance Preserving Shapelets (CDPS)
Input: T a set of time-series,

ML and CL constraint sets,
Lmin minimum length of shapelets,
Smax maximum number of shapelet blocks,
nepochs, sbatch, cbatch

Output: Set S of shapelets,
Embeddings of T .

1: ShapeletBlocks← Get_Shapelet_Blocks(Lmin, Smax, Li )
2: Shapelets← Initialize_Shapelets(ShapeletBlocks)
3: for i← 0 to nepochs do

4: for 1 to |T |/sbatch do
5: minibatch← Get_Batch(T , ML, CL, sbatch, cbatch)
6: Compute the DTW between the Ti′s and Tj′s in minibatch
7: Update the Shapelets and β by descending the gradient ∇L(Ti, Tj)

8: end for

9: end for

10: Embeddings← Shapelet_Transform(T )

3.3 Evaluation

After providing a comprehensive explanation of CDPS and its ability to create a
representational space, our next step is to evaluate CDPS through multiple exper-
imental protocols to highlight its strengths and weaknesses. We first describe the
experimental setup.

3.3.1 Experimental Setup

Unsupervised (K-means, and DCC without constraints) and semi-supervised clus-
tering algorithms (COP-Kmeans, MIP-Kmeans, FeatTS, and DCC) are used as base-
lines; these algorithms were explained in detail in Chapter 2, Section 2.2.6. Since
CDPS takes constraints during training, none are given to the algorithms that use
CDPS’ representation. The normalised Mutual Information (NMI, defined in Chap-
ter 2 Equation 2.5) is used to measure clustering performance between the true
and predicted labels, where zero signifies no mutual information and one a perfect
correlation with the ground truth labels.

The study is carried out on the UCR repository [12, 174], which is a well-known
archive for evaluating time series classification and clustering algorithms. The
archive is comprised of a diverse collection of time series datasets covering various
domains, including human activity recognition, medical diagnostics, environmen-
tal monitoring, sensor data analysis, synthetic data, and more. The datasets have
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different characteristics, such as different temporal patterns (trend, cycle, etc.), the
number of classes, the length of the time series, and different distributions (different
sampling, variability of the domain, ). All the datasets are split into train and test
sets, the train and test sets may have different numbers of samples and the classes
may or may not be imbalanced (the properties of these datasets are presented in
Table B.1 of Appendix B). These datasets, therefore, represent a wide variety of
potential real-world applications and offer a means to demonstrate an algorithm’s
ability without focusing directly on an application domain. The reader is referred
to articles published by Bagnall et al. [175] and Bagnall et al. [176] that describe the
univariate and multivariate datasets (respectively) found in the archive in detail.

Due to the computational complexity of COP-Kmeans andMIP-Kmeans, thirty-
five univariate and fifteen multivariate datasets were chosen at random. In total
fifty datasets are used to evaluate the performance of CDPS in comparison to COP-
Kmeans and MIP-Kmeans. The randomly chosen datasets encompass a wide range
of domains, representing different distributions and exhibiting varying severity and
complexity in terms of distortions. Since CDPS and DCC are more computationally
efficient, their performance on all the datasets was evaluated and is presented in
Appendix C (the details of the datasets such as the number of samples per training
and test sets, the number of classes and dimensions are provided in Appendix B).
Testing on all the datasets investigates the performance of CDPS on a wide range of
applications where the results showed that CDPS outperforms DCC in most of the
results. Using the UCR archive will allow us to investigate the capabilities of CDPS
by analyzing its performance in comparison to other approaches. We can identify
scenarios where CDPS outperforms alternative methods and recognize situations
where it may fall short. This comprehensive evaluation using the UCR archive will
help us to gain insight into the CDPS’ weaknesses and strengths.

Three use cases are evaluated. In the first, termed Transductive Clustering,
the training and test sets (as given by the repository) are combined, this reflects the
real-world case in which a dataset is to be explored and knowledge extracted. In
the second, termed Inductive Clustering, the embedding is learnt on the train-
ing set and its generalisation is evaluated on the test set. This inductive use case
is not normally possible with constrained clustering algorithms since clustering is
a transductive operation. This highlights a key contribution of CDPS, its ability
to generalise constraints to unseen data. The third use case termed Representa-

tion Learning, highlights the importance of CDPS shapelets as general features
able to be integrated into other downstream algorithms. As such, FeatTS’ semi-
supervised statistical features are replaced with the dataset’s CDPS embedding.
The algorithms are evaluated with varying constraint levels, represented as a per-
centage of constrained samples: 5%, 15%, 25%. These represent a very small fraction
of the total possible constraints, 1

2
N(N − 1). Experiments are repeated 10 times

with different random constraint sets, and each clustering algorithm is repeated 10
times per constraint set (i.e. 100 repetitions for each constraint percentage1). Con-
straints are generated by randomly selecting two samples, and adding a constraint

1Despite multiple initialisations, some COP-Kmeans results did not converge when applied to
certain constraint sets, resulting in fewer repetitions.
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(ML/CL) depending on their class labels until the desired number of constraints is
reached.

Training is carried out using mini-batch gradient descent, batch size sbatch = 64
and number of constraints in batch cbatch = 16 for the transductive setting, and
sbatch = 32 and cbatch = 8 for the inductive setting (since there are fewer samples).
Experiments were performed on the high-performance computing cluster provided
by the University of Strasbourg. The influence of α and γ on accuracy were eval-
uated and the algorithm showed stability in most cases, leading to a fixed value of
2.5 for both. The minimum shapelet length Lmin = 0.15 · Li , and the maximum
number of shapelets Smax = 3 are taken following those in LDPS [32]. All models
(CDPS) are trained for 500 epochs using the Adam optimiser. The DCC implemen-
tation and parameter values were taken from [157]. Note that more details about
model performance and an investigation into the model’s sensitivity and space is
presented in Section 3.4.3.

3.3.2 Clustering

We now present the results for each use case described earlier and discuss them
in detail. In general, the results are expected to be favourable when using CDPS
compared to using the clustering algorithm directly. This expectation arises from
the fact that CDPS aims to learn a discriminative space based on expert intuition.
When using CDPS, the data samples are transformed into a representation that
encourages separate and concentrated clusters following the constraints provided
by the expert. This characteristic aligns well with the requirements of cluster-
ing algorithms, which tend to perform better when the data samples form distinct
and well-defined clusters. Hence, we anticipate that CDPS will enhance the per-
formance of the clustering algorithms when compared to using them directly. By
evaluating the results of each use case, we can further analyze and validate these
expectations.

Transductive Clustering

Figure 3.7 summarises the Transductive results (the full results presented in Ap-
pendix C, Table C.1). The figure shows the NMI scores for CDPS (Euclidean K-
means performed on the CDPS embeddings) compared to the other algorithms ap-
plied to the raw time series (COP-Kmeans, MIP-Kmeans, and DCC), LDPS (CDPS
with no constraints reduces to LDPS) and (unconstrained) K-means are presented
as a basis for the constrained algorithms to study how constraints benefit each.

As expected LDPS and K-means offer similar performance, see Figure 3.7a, al-
though some datasets do favour the unconstrained K-means algorithms, outper-
forming LDPS. Nevertheless, CDPS efficiently uses the information given by con-
straints to outperform the other algorithms in almost all the different constraint
fractions and datasets.
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Figure 3.7: A Transductive comparison between CDPS+K-means (y-axis) and Raw-
TS+(constrained K-means) (x-axis) with different constraint fractions. Each dot
represents a dataset from the UCR archive, blue dots represent COP-Kmeans per-
formance and red dots MIP-Kmeans performance. The datasets located in the blue
triangle are those for which CDPS performs better than COP-Kmeans and MIP-
Kmeans, and the white triangle is the opposite. The term “wins” indicate the num-
ber of datasets in which either CDPS have a higher score compared to the compar-
ison (in this case wins is located on top of each figure) or vice versa (wins located
at the bottom).
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CDPS performance increases with the number of constraints, whereas COP-
Kmeans and MIP-Kmeans tends to stagnate. This can be seen as the cloud of points
move upwards (CDPS’ NMI score increases) as more constraints are given. DCC
tends to work better for the datasets that have lowNMI scores for COP-Kmeans and
MIP-Kmeans. Indicating complex or similar structures with which DTW struggles
to capture the detailed differences. In contrast, DCC is able to find more discrimi-
native features beyond the structural similarity of the time series, resulting in im-
proved performance. We can also observe that for some datasets the constrained
algorithms behave similarly with 5% constraints, where COP-Kmeans and MIP-
Kmeans have almost similar performance while DCC is a bit worse. Again CDPS
benefits the most from increasing the number of constraints and significantly out-
performs the comparison algorithms with larger constraint percentages.

Overall COP(MIP)-Kmeans perform similarly, however, MIP-Kmeans was able
to converge on datasets for which COP-Kmeans was not. COP-Kmeans fails if a
constraint is violated, however, MIP-Kmeans’s formulation as a mixed-integer pro-
gramming optimisation allows it to search the space for an optimal or near-optimal
solution. Furthermore, CDPS exploits constraints better than other algorithms, and
DCC seems to exploit them the least. For some datasets, all algorithms perform
equally (see top right and bottom left corners) which can be due to the fact that the
datasets are either very difficult (hence low NMI) or very easy to cluster.

Inductive Clustering

Figure 3.8 summarises the Inductive results (the full results are presented in Ap-
pendix C, Table C.4), i.e. embedding learnt on the training set, generalisation per-
formance evaluated on the unseen test set. Note that for the same constraint per-
centage, there are significantly fewer constraints than in the transductive setting.

It can therefore be concluded that even with fewer data and constraints, CDPS
is still able to learn a generalisable representation and attain (within a certain mar-
gin) the same clustering performance as when trained with the merged datasets.
This is probably explained by the fact that having fewer samples and constraints
means they are repeated in the mini-batches (see Section 3.2.2). Allowing CDPS
to focus on learning shapelets that are highly discriminative and preserve DTW
rather than shapelets that model larger numbers of time series. Thus, the resulting
representational space better adheres to the constraints, allowing better clustering
of unseen time series.

It can also be observed that COP-Kmeans tends to struggle with a small number
of constraints, since it increases the risk of constraint violations, whileMIP-Kmeans
is able to overcome this. In this setting, DCC outperforms both COP-Kmeans and
MIP-Kmeans for some of the challenging datasets (low NMI – lower left corner)
and shows similar performance to the other algorithms on less complex data (top
right corner).
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Figure 3.8: An inductive comparison between CDPS+K-means (y-axis) and Raw-
TS+(constrained K-means) (x-axis) with different constraint fractions. Each dot
represents a dataset from the UCR archive, blue dots represent COP-Kmeans per-
formance and red dots MIP-Kmeans performance. The datasets located in the blue
triangle are those for which CDPS performs better than COP-Kmeans and MIP-
Kmeans, and the white triangle is the inverse. “wins” indicates the number of
datasets in which either CDPS has a higher score compared to the comparison (in
this case wins is located on top of each figure) or vice versa (wins is located at the
bottom).
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Figure 3.9: A comparison between CDPS+FeatTS and FeatTS with respect to NMI
score. The top wins, indicates how many datasets FeatTS with CDPS features out-
performs FeatTS, and the number of FeatTS wins is located at the bottom.

Representation Learning

In this section, we aim to demonstrate that the CDPS representation is versatile
and compatible with various downstream algorithms. To achieve this, we compare
CDPS with FeatTS. Firstly, let’s provide a brief overview of FeatTS (more informa-
tion can be found in Section 2.3). FeatTS is a semi-supervised approach that extracts
statistical features from labelled data. For this study, we will use 25% labelled sam-
ples which is a lot more than the information contained in 25% constraints used to
train CDPS. These features are used to generate a co-occurrence matrix, which, in
turn, is used with a K-medoids clustering algorithm to cluster the data. In order to
compare the features obtained from FeatTS with CDPS, we employ the following
approach. We provide the FeatTS algorithm with the CDPS representation as input
features. By doing so, we allow FeatTS to generate the co-occurrence matrix and
perform clustering using the CDPS representation. This comparison serves as a
proof of concept, demonstrating the versatility of the CDPS representation and its
possible compatibility with different downstream algorithms. It allows us to eval-
uate and compare the performance of FeatTS when operating on CDPS features.

Figure 3.9 shows the NMI scores of CDPS+FeatTS (FeatTS using CDPS shapelets
as features) and the original FeatTS algorithm, carried on the 35 univariate datasets
(since FeatTS is limited to univariate time-series). We observe that, out of 35 datasets,
CDPS+FeatTS outperforms FeatTS in 27. Indicating that CDPS’ shapelets are more
informative for clustering tasks when compared to FeatTS’ statistical features. For
the datasets that achieved around zero NMI with respect to CDPS+FeatTS while
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high NMI with FeatTS (e.g. with the GunPointAgeSpan dataset CDPS+FeatTS gives
0.001, while FeatTS gives 0.559), it appears that the shapelets learnt in these cases
are not discriminative enough, which is confirmed by CDPS’ low scores (CDPS+K-
means: 0.004).

3.4 Discussion

This section discusses the results, describes the model selection strategy and inves-
tigates the model’s sensitivity to several parameters: α, γ, the number of shapelets,
and the length of shapelets. Furthermore, we present an exploration of the repre-
sentational space. Specifically, we measure the coherence of constraints (refer to
Definition 9, Section 8) It should be noted that this coherence measurement could
not be calculated for classical time series datawhen employedwith elasticmeasures
like DTW.

3.4.1 Results

Due to the fact that LDPS only models DTW distance, its induced clustering per-
forms approximately equal to K-means with DBA averaging, as shown in Figure
3.8a, in which the results are clustered around the diagonal. However, both LDPS
and CDPS result in a metric space, which is beneficial for further analysis and pro-
cessing. For example, in a constrained clustering setting, it will be possible to mea-
sure the coherence property of the pairwise constraints.

Generally, the results shown earlier conclude that CDPS is more capable of ex-
ploiting the information contained in the constraints when they are introduced,
giving more accurate clustering results overall. Furthermore, CDPS avoids the
problem of non-convergence that can arise with hard-constrained clustering tech-
niques such as COP-Kmeans, which is significantly more challenging when using
an elastic measurement such as DTW. In these experiments, all constraints can be
considered coherent since they are generated from the ground truth data. How-
ever, in real-world situations, this problem would be exacerbated by inconsistent
constraints, particularly considering time series since these are very hard to label.
CDPS does not suffer from such limitations.

While K-means-based methods were included in this study for the purpose of
comparison, it is not a common practice to use them in an inductive use case for
classical clustering algorithms. The inductive setting was simulated by providing
COP-Kmeans and MIP-Kmeans with the combined ‘training’ dataset, along with
its associated constraints, and the test data to be clustered (without constraints).
However, this approach introduces certain challenges. The need to store and ac-
cess this entire dataset can limit the feasibility of such use cases, not to mention
the significantly high computational cost involved. In contrast, CDPS offers a truly
inductive approach in which new data can be projected into the resulting space,
which inherently models user constraints. This demonstrates the new possibilities
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that can arise from such ‘constrained representations’ since CDPS’ embedding can
be used for tasks other than clustering (classification, generation, etc.). By lever-
aging CDPS, we open up new possibilities and overcome the limitations associated
with traditional clustering algorithms. CDPS’ inductive complexity (once the space
has been determined) is O(NLkK), plus K-means’ complexity O(NMKi), where
M is the number of clusters, K is the number of shapelets, Lk is the length of the
shapelets, i is the number of iterations until convergence, and the complexity of
COP-Kmeans is O(NMKi|ML ∪ CL|).

Overall, the CDPS algorithm leads to better clustering results since it is able to
exploit the information brought to the learning process by the constraints. In ab-
solute terms, the performance of other algorithms tends to decrease or stagnate as
more constraints are introduced, while it increases with CDPS. These constraints
bias CDPS to find shapelets that define a representation that respects both DTW
and the constraints. Although the focus of this work is not to evaluate whether
clustering on these datasets benefits from constraints, it can be observed that gen-
erally better performance is found when constraints are added.

Although CDPS outperforms the competitors in the majority of the datasets, as
discussed, it still falls short in a number of datasets. This suggests that CDPS ex-
hibits certain limitations. Looking at the CDPS formulation these limitations arise
when dealing with complex datasets that lead to noisy DTW similarity, therefore
affecting its performance. As described in Section 3.2.1, CDPS aims to find a balance
in the neighbourhood of a sample based on the different forces, that approximate
DTW (blue), that respect the cannot-link (red) and the must-link (green), as shown
in Figure 3.4. If the dataset contains complex information with respect to the DTW
distance, this can introduce conflicting information during training and may not
guarantee a balance for the different forces. This issue will be further explored in
a failure case in Chapter 4, Section 4.3. Additionally, there are other weaknesses
that have not been addressed in CDPS. First, CDPS is not compatible with sparse
time series since it does not consider missing values. Second, it is not suitable for
time-dependent feature analysis because the shapelet transform used in CDPS is
time-independent. Finally, CDPS’s loss function does not inherently enforce dis-
similarity between shapelets, which may result in multiple similar shapelets being
learned. This is mitigated by the proposed shapelet ranking approach, Shapelet
Cluster Explanation (SCE), that will be introduced in Chapter 4.

It is also conceivable to use a constrained clustering algorithm with CDPS em-
bedding. Although this was not studied, it would allow another mechanism to
integrate constraints after the embedding has been learnt.

3.4.2 Model Selection

During unsupervised learning, there is typically no validation data available to es-
tablish a definitive stopping criterion. Therefore, it becomes crucial to carefully
examine the behaviour of CDPS during training in order to provide some useful
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Figure 3.10: Clustering quality (NMI) as a function of the number of epochs for
each dataset, using a constraint fraction of 30%.

guidelines for when to stop the training process. This can be done by analyzing the
training dynamics and observing the performance trends of CDPS across different
datasets. Such an analysis should help us achieve a satisfactory representation that
leads to improved clustering results using CDPS. In what follows clustering using
K-means (under the transductive setting) on the CDPS representation is used to
evaluate and study CDPS performance during training. Different datasets are cho-
sen at random, and the CDPS training is carried out with a 30% constraint fraction.

Figure 3.10 illustrates the clustering quality (measured by Normalized Mutual
Information, NMI) of CDPS as the number of epochs progresses for different datasets.
The figure reveals that the majority of models converge within a relatively small
number of epochs, except for the FaceFour dataset, which requires more epochs
to reach convergence. An interesting observation is that the quality of the learned
representation does not deteriorate as the number of epochs increases. This in-
dicates that neither the preservation of DTW distance nor the influence of con-
straints dominates the loss function to the extent that it diminishes the other. In
other words, the competing objectives of preserving temporal relationships and in-
corporating user constraints remain balanced throughout the training process and
reach an equilibrium (as explained in Section 3.2.1), resulting in a consistent and
robust representation quality. This finding is significant as it suggests that increas-
ing the number of epochs does not lead to overfitting or a decline in the overall
performance of CDPS. Instead, it reinforces the reliability of CDPS in maintaining
the desired characteristics of both DTW and constraints, leading to stable and good
clustering results.

Figure 3.11 presents scatterplots showcasing the relationship between the NMI
score and CDPS loss for multiple datasets. Both NMI and CDPS loss values are
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Figure 3.11: Relationship between NMI and CDPS Loss for each dataset. To high-
light the relationship between datasets, both loss and NMI have been scaled to
between 0 and 1.

normalized between zero and one. In addition to the scatterplot of the total loss,
the individual losses for Must-Link (ML) and Cannot-Link (CL) constraints are also
included (Figures 3.11b and 3.11c respectively). An evident trend observed in all the
scatterplots is that a lower overall loss corresponds to a higher NMI. This indicates
that as the CDPS loss decreases, the clustering quality, as measured by NMI, tends
to improve. The correlation between the two metrics suggests that minimizing the
loss function during training is sufficient to yield a better alignment between the
learned representation and the underlying data structure.

Both these studies (NMI clustering score with respect to the epoch and normal-
ized loss) show the importance of optimizing the loss function on achieving better
cluster results and that it can be used as a model selection criterion without any
additional knowledge of the dataset. For practical application, the embedding can
be trained for a fixed, large enough number of epochs (as done in this study) or un-
til stability is achieved. This is in line with the typical manner in which clustering
algorithms are applied.

3.4.3 Sensitivity Study

Now, we will analyze the sensitivity of CDPS with regard to its various parameters.
By investigating the impact of these parameters on the performance and behaviour
of CDPS, we will be able to test the ability of the model to converge to a stable so-
lution. The parameters to analyze are α, γ, the number of shapelets, and the length
of shapelets. By systematically varying these parameters and observing their ef-
fects on CDPS, we can understand the extent to which each parameter influences
the quality and characteristics of the learned representation. This analysis will
provide valuable insights and recommendations for selecting optimal parameter
values, guiding the user in making informed decisions when applying CDPS.
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Figure 3.12: Heatmaps showing CDPS sensitivity to α and γ parameters, using 6
random univariate datasets (brighter colours indicate better performance).

Effect of α and γ

To test the stability of the learning process to different values of α and γ parame-
ters, a grid search was performed over the range 0, 0.5, 1, 1.5, 2, 2.5. Each pair of
parameter values was tested with 10 repetitions on a fixed set of constraints. Both
univariate andmultivariate datasets from the UCR archive were randomly selected.

Figure 3.12 presents these results, in which the clustering scores are presented
for each pair of values (note that brighter colour indicates better performance). It
can be observed that the impact of parameter values varies across different datasets.
For datasets such as Fish (a one-dimensional representation of the fish shape by
tracing its outline into a one-dimensional line), ECG200 (electrical activity of a
heartbeat), and BME (synthetic dataset with three classes characterized by the
presence of a peak in the series either at the beginning or end or not present.),
higher values of the parameters lead to improved performance. However, for other
datasets, the influence of these parameters is not as significant. As such, taking
α = γ = 2.5 (as in the previous experiments) is reasonable since they result in
high scores over the majority of datasets, and hence CDPS can be considered ro-
bust with respect to α and γ values. This means that the user does not need to
optimise their values, nor needs to have in-depth knowledge of their meaning to
achieve state-of-the-art performance.
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Figure 3.13: Heatmaps of CDPS sensitivity to shapelet parameters (brighter colour
indicates better performance).

Effect of Shapelet Parameters

The shapelet parameters in CDPS consist of the number of shapelet blocks (Smax),
the minimum shapelet length (Lmin), and a multiplier that determines the number
of shapelets per block (scale). This study aims to investigate the impact of the
shapelet parameters, which are typically user provided, by determining if there is a
saturation in the clustering performance induced by the CDPS representation after
a specific set of parameter values. As mentioned in Section 3.3.1, the parameters
of the shapelets are specified using the same rule proposed by LDPS [32]. That is,
the number of shapelets per block are determined according to the following rule
log(Li − Lmin · bind) ·scale, where bind ∈ {1, . . . , Smax} indicating the block number.
In order to evaluate the sensitivity of the model to the parameters, we explore Smax
and scale using the values {2, 4, 3} and {1, 2, 4, 6, 8, 10} respectively and we fix
Lmin to 0.15 · Li (since shapelet length is directly related to the block number).

Figure 3.13 displays the clustering scores for different combinations of Smax and
scale; brighter colours indicate better performance. It can first be observed that for
the majority of datasets, the clustering performance is often the same for multiple
parameter combinations. This implies that we can choose a smaller multiplier for
the shapelets per block as well as a smaller value for the number of shapelet blocks
and still guarantee a similar clustering score. For instance, clustering on Epilepsy
produced similar results for (4,1) and (4,8), but since (4,1) offers less complexity, it
would be preferred. In addition, we can see that for some datasets, the performance
degrades as the number of shapelets increases (whether in terms of Ssmax or scale),
as seen in the cases of BME, RacketSports, and EGC200.

Taking this study into account, we can infer that choosing the values for the
maximum number of shapelet blocks and the scale as Smax = 3 and scale = 10
generally results in performances on par with the state-of-the-art regardless of the
dataset, even though fine-tuning these parameters might lead to better results. In
conclusion, the investigation of shapelet parameters highlights the robustness of
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CDPS and provides insights into choosing suitable values that offer competitive
clustering performance without the need for extensive parameter optimization.

3.5 Conclusions

In this chapter, we have introduced the first contribution of this thesis, called Con-
strained DTW Preserving Shapelets (CDPS). We began by discussing the concept
of contrastive learning and contrastive loss, which aims to learn information from
pairs of data samples. We explained how CDPS uses this concept to incorporate
user constraints in the form of pairwise constraints (must-link and cannot-link con-
straints) into the learning process of LDPS. This allows shapelets to be learnt that
respect the user constraints while approximating the DTW distance measure.

We evaluated the accuracy of performing clustering on the CDPS representa-
tional space, in order to assess the quality of the learnt space, and compared it to
other algorithms. K-means and LDPS were used as baselines for use cases without
constraints information, while COP-Kmeans, MIP-Kmeans, and DCC were used as
comparisons for constrained clustering algorithms. The results demonstrated that
CDPS consistently outperformed the competitors in both transductive and induc-
tive settings. The transductive setting is the classical approach used in clustering
while the inductive setting means that constraints on one dataset are generalised to
another. This showed that CDPS effectively incorporates the constraint informa-
tion and exhibits generalization capabilities to unseen data. Furthermore, we pro-
vided a comparison with another semi-supervised algorithm, FeatTS, to showcase
the potential of CDPS in enhancing the performance of downstream algorithms,
where CDPS exhibited superior performance in most cases.

We also discussed the model selection strategy and sensitivity, revealing that
the loss function can serve as a stopping criterion and that the algorithm is rela-
tively robust to changes in the parameters. The representation of the CDPS space
was examined, demonstrating its discriminative nature compared to LDPS and
DTW-based representations. We also provided a discussion on the weakness of
CDPS such as its inability to work with sparse datasets or time-dependent feature
analysis, and its possible limitations due to the complexity of the dataset and there-
fore the possibility of conflicting information being introduced when using DTW
distance.
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Having an explanation for a clustering algorithm’s results is important across
various domains. Clustering algorithms are designed to uncover patterns and group
similar instances together. However, when dealing with complex time series data,
interpreting the underlying reasons behind clustering outcomes can be challeng-
ing. To tackle this challenge, one approach is to transform the time series data
into a more interpretable space that captures essential features while discarding
irrelevant ones. In the previous chapter, we introduced CDPS (Constrained DTW
Preserving Shapelets) a method that achieves such a transformation but also in-
cludes expert intuition in the learning process. CDPS uses shapelets, which are in-
terpretable subsequences that capture key characteristics of the time series while
approximating DTW distance and preserving distortions. The transformed space,
facilitated by CDPS, provides an interpretable representation of the time series data
and offers insights into the “why” behind clustering results, which is more signifi-
cant for the expert than just providing a validation of the clusters.

In this chapter, we will leverage the interpretability of shapelets to propose a
framework that ranks them based on their discriminative ability to provide insights
into the clustering algorithm and individual clusters. By extending previous works
that individually rank shapelets, such as the work of Ye and Keogh [7], Zakaria
et al. [42], Ulanova et al. [43], etc, this ranking identifies the most informative set
of shapelets that accurately reflect a particular clustering scenario or the overall
clustering. Additionally, it may enable us to reduce the number of shapelets re-
quired while achieving comparable clustering performance.

We will first provide the theory behind the framework followed by a case study.
An in-depth study of the importance of the reduced space achieved by the Shapelet
Clustering Explanation (SCE) framework is also presented at the end of this chap-
ter. In Section 4.3 we will study the effects of constraints, by studying coherence
and the average distance between must-link and cannot-link constraints ML/CL.
Coherence can now be calculated accurately since CDPS results in a metric space,
and ML/CL will assess the influence of the constraints on the compactness and
separation of the space. The effect of constraints on the learned space is compared
to the equivalent space learnt using Learning DTW Preserving (LDPS, i.e. without
constraints) and to dimensionality reduction on the DTW distance map. We will
also study if the influence of the constraints (coherence and ML/CL) persists when
using a subset of shapelets that are ranked according to the SCE framework.

4.1 Explanation Framework Definitions

In this section, the necessary background and notations are briefly explained and
the Shapelet Clustering Explanation (SCE) method is introduced. In most of the
shapelet approaches, ranking shapelets has been widely used as a means of search-
ing for the shapelets from a set of all possible shapelets. Previous studies, such as
the work of Ye and Keogh [7], used an independent rankingmethod (as explained in
Chapter 2, Section 2.1.2) which ranks the shapelets by their ability to split the data
into more homogeneous groups. Information gain is used to quantify the quality,
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treating each shapelet individually. In our work, we will first present this inde-
pendent ranking of shapelets as introduced by Ye and Keogh [7] . This will then
be extended to two alternative approaches: combined ranking (ranks shapelets by
combining different shapelets and studying the space formed by them) and succes-
sive ranking (also studying the space formed by different combinations of shapelets
but measures how much information is added when an additional shapelet is in-
cluded). These are contributions of this thesis that extend independent shapelet
ranking to dependent ranking based on the combined information of the shapelets.
These two novel approaches will be discussed in detail later in this chapter.

In order to rank the shapelets, we need a quality measure capable of assess-
ing the separation of the samples into groups of samples similar to the shapelets
and those that are not similar, hence assessing the discriminative capability of the
shapelet. Hills et al. [45] testedwith a number of qualitymeasures (such as Informa-
tion Gain [177], Kruskal-Wallis [178], etc.), and showed that there is no significant
difference in performance between them. Out of the tested measures, Information
Gain (IG) is the only one that is capable of assessing the quality of partitioning
the data (using the shapelets) into groups that aim to model the clustering process,
hence assessing the quality of the shapelets. In this work, as with the original inde-
pendent ranking approach, we will use IG to quantify the quality of the shapelets.
But first, the definitions necessary to understand information gain (IG) and the
criteria to split the data are presented.

Definition 10 (Entropy) Measures the randomness, thus purity, of a given set of
class labels: homogeneous cluster labels give zero entropy, and uniformly random
samples give the maximum value. Assuming a dataset T with C classes and N in-
stances, each class ci with probability p(ci) contains ni samples. With ln the natural
logarithm, T ’s entropy is defined, such that:

E(T ) = −
C∑
i=1

p(ci) ln(p(ci)), s.t.


∑

ni = N,

p(ci) =
ni

N
,

(4.1)

where ln is the natural logarithm. Note that any logarithm loga can be used.

Definition 11 (Information Gain) Measures the reduction of entropy, i.e. infor-
mation gained, in a dataset after being partitioned into distinct groups based on a
specific splitting criterion (e.g. threshold). It is evaluated by calculating the entropy of
the dataset before and after the split. The Information Gain (IG) of a dataset T with
split ζ is defined such that

IG(T , ζ) = E(T )− E(T )|ζ , (4.2)

where E(T )|ζ is the entropy calculated after the split. Suppose D is partitioned into
two sets Tl and Tr based on the split ζ , therefore

E(T )|ζ =
Nl

N
E(Tl) +

Nr

N
E(Tr), s.t.

{
Nl = |Tl|,
Nr = |Tr|.

(4.3)
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The shapelets learned by CDPS can be ranked using IG according to their abil-
ity to reproduce (i.e. explain) a full clustering, termed ‘Global-Wise’ explanation
(GE), or a specific cluster, termed ‘Cluster-Wise’ explanation (CE). The term ‘re-
produce’ refers to the ability to recreate the clustering output (GE) or a specific
cluster therein (CE), when the time-series dataset is projected into the space de-
fined by one or more shapelets (ranked according to their IG) by linear separation.
This separation is performed using Linear Discriminative Analysis (LDA) [179].
LDA is used because it provides a linear separation of the data samples according
to the cluster labels (cluster labels C are considered as the class labels for the pur-
pose of LDA) by maximizing the separation between the clusters and minimizing
the within-cluster variance, leading to effective linear decision boundaries. The IG
is calculated on LDA’s output predictions (partitioning) using the labels given in C
as the ground labels.

More specifically, given a set of N time-series T , a set of K learned shapelets
S , and a partitioning of T into M clusters C = {C1, . . . , CM} (i.e. the result of
an unsupervised clustering algorithm applied to the CDPS learnt representation),
the goal is to rank the shapelets in importance for giving the best CE using Ci (GE
using C). In this manner, if a certain subset of shapelets is highly representative of
Ci (C), i.e. is highly ranked by IG, it allows the user to visually perceive how the
cluster (clustering) came to be formed. Furthermore, once the shapelets have been
ranked accordingly, the best d-shapelets, Sd (|Sd| = d) can be adjusted according
to further user needs (e.g. to reduce dimensionality, remove duplicate shapelets,
etc). It should be noted that in the following formulations, ζ is an operator that
partitions the space into M partitions if GE is employed or two partitions if CE
is used, i.e. the partitioned space is denoted by D = {Dm}m=1...M , such that Dm

should be representative of Cm. Thus, with CE, a thresholding criterion is used for
ζ . Alternatively, with GE, Linear Discriminative Analysis is used for ζ , in which the
cluster assignments C are treated as class labels and LDA splits the data according
to the linear decision boundaries found.

Three approaches for ranking the shapelets, irrespective of the objective (either
CE or GE), can be identified depending on the desired result.

Independent. In which the IG of each shapelet is examined independently of the
other shapelets. Hence, Sd is defined such that:

Sd = {Sj | IG(T , ζj) > IG(T , ζ i)}, (4.4)

where IG(T , ζ i) > IG(T , ζ i−1) ∀Si, Sj, Si−1 ∈ S, Si ̸= Sj , such that ζ i =
ζ(T , Si) partitions the dataset T in the space defined by the shapelet Si into
Di. Similarly ζj = ζ(T , Sj) and ζ i−1 = ζ(T , Si−1) partition the dataset T in
the space defined by shapelets Sj and Si−1 into Dj and Di−1 respectively. In
this way, all shapelets are ranked according to their IG.

Combined. Ranking the shapelets independently as above does not mean that
when the top-d shapelets are combined to form a space they result in the
highest possible Information Gain, i.e. results in the best linearly separable



4.1 Explanation Framework Definitions 81

distribution, out of all the possible combinations of the d shapelets. Finding
this space is NP-Hard, the combined approach, therefore, uses an exhaustive
recursive search strategy to find the shapelet that adds the highest Informa-
tion Gain1, Sl, at each iteration to build the d-dimensional space. In this way,
the basis of the transformed space is recursively constructed such that:

Sj
d = (Sj−1

d , Sl),where
{
S0
d = (ϕ),

IG(T , ζjd) > IG(T , ζj−1,i
d ),

(4.5)

and where Sj
d is the ordered list of the j best shapelets found so far, such

that ζjd = ζ(T ,Sj
d) and ζj−1,i

d = ζ(T , (Sj−1
d , Si)) partition the dataset T

in the space defined by Sj
d and (Sj−1

d , Si) into Dj and Dj−1,i respectively,
l, i ∈ {1, . . . , K}, i ̸= l, and Si, Sl ∈ S , Si /∈ Sj

d .

Successive. Besides optimising linear separability and modelling the clustering
result, the combined strategy does not impose diversity in the shapelet or-
dering. For example, assume that a shapelet is selected using the combined
strategy and has the same IG as the previously discovered set of shapelets,
this equality in IG does not necessarily imply that the selected shapelet is
diverse nor increases separation in the space. The successive strategy alters
the combined strategy by only calculating the Information Gain of a set of
samples δj ⊂ T whose partitioning differs or are incorrectly identified, after
adding an additional shapelet, Sl, at each iteration, such that

δj = ∆j,j−1 ∪ ιj
δ
′
j = ∆(j−1,i),j−1 ∪ ιj−1,i,

(4.6)

where ∆ indicates the difference between the current partitioning Dj and
the previous partitioning Dj−1, such that:

∆j,j−1 =
M⋃

m=1

Dj,m \ Dj−1,m,

∆(j−1,i),j−1 =
M⋃

m=1

D(j−1,i),m \ Dj−1,m,

(4.7)

and ι are the samples that remained incorrectly identified in the current par-
tition Dj , such that:

ιj = {t | t ∈ Dj,m, t /∈ Cm},
ιj−1,i = {t | t ∈ D(j−1,i),m, t /∈ Cm},

(4.8)

whereDj = {Dj,m}m=1...M is the partitioning of the samples in the space de-
fined bySj

d (andD0 = T ) andDj−1,i = {D(j−1,i),m}m=1...M is the partitioning
in the space defined by (Sj−1

d , Si) such that Si /∈ Sj
d , i.e. all the shapelets that

1The Information Gain is calculated based on the partitioning returned by linear decision
boundaries, i.e. hyper-planes.
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Algorithm 5 GI-SCE: Global Independent Shapelet Clustering Explanation
Input: dists, a distance matrix between (shapelets, time-series)

C, clustering predictions for the time-series
Output: Sd, Shapelets ordered by IG

IG, Information gain related to Sd
1: IG, Sd ← [], []

2: S, K,N ← GetShapeletsIndicesAndSize(dists)

3: for j = 1, . . . , K do

4: IG∗
j ← 0

5: for Sl ∈ S and Sl /∈ Sd do
6: embvector← transpose(dists)[Sl]
7: Dj ← get_Partitions_By_Shapelets(embvector, C)
8: IGj ← IG(Dj, Sl)

9: if IG∗
j < IGj then

10: Sj, Dj−1, IG
∗
j ← Sl, Dj, IGj

11: end for

12: Sd ← [Sd, Sj]

13: IG← [IG, IG∗
j ]

14: end for

do not add the maximal IG when combined with Sj−1
d . Therefore, the best

shapelet at iteration j can be found such that:

IG(δj, ζ
j
δ )
µj

N
> IG(δ

′

j, ζ
j−1,i

δ′
)
µj−1

N
, (4.9)

where ζjδ = {δj,m}m=1...M and ζj−1,i

δ′
= {δ′

j,m}m=1...M are the partitions of
δj and δ

′
j respectively, and µ is the number of samples correctly identified

in Dj and incorrectly in Dj−1. The scaling factor µ
N

is used to weight to
shapelets proportionally to the number of correctly partitioned samples. In
this way it focuses on constructing a space using more diverse shapelets,
aiding explainability.

With this in place, several combinations of SCE measures can now be proposed,
e.g. Global Combined SCE, GC-SCE; Local Independent SCE, LI-SCE, etc.

Next, we will explain the algorithms for each use case (independent, combined,
and successive) for the GE approach.

We will first explain the GI-SCE algorithm presented in Algorithm 5.

Line 5 iterates through all the shapelets that are not ranked already i.e. not in Sd,
to find the next best independent shapelet to rank.

Line 6 “embvector” represent the embedding of the time series data (dists) using
only the shapelet Sl.
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Algorithm 6 GC-SCE: Global Combined Shapelet Clustering Explanation
Input: dists, a distance matrix between (shapelets, time-series)

C, clustering predictions for the time-series
Output: Sd, Shapelets ordered by IG

IG, Information Gain related to Sd
1: Sj , IG∗

j , Dj−1← GetBestIndependentShapelet(dists, C)
2: Sd, IG,← [Sj], [IG

∗
j ]

3: S, K,N ← GetShapeletsIndicesAndSize(dists)

4: for j = 2, . . . , K do

5: IG∗
j ← 0

6: for Sl ∈ S and Sl /∈ Sd do
7: embvector← transpose(dists)[Sd, Sl]
8: Dj ← get_Partitions_By_Shapelets(embvector, C)
9: IGj ← IG(Dj, [Sd, Sl])

10: if IG∗
j < IGj then

11: Sj, Dj−1, IG
∗
j ← Sl, Dj, IGj

12: end for

13: Sd ← [Sd, Sj]

14: IG← [IG, IG∗
j ]

15: end for

Line 7 takes this vector and the cluster labels to get the partitions of the data based
on ζ , where, in this case, it is a thresholding criterion.

Line 9 through 11 calculate first the Information Gain of the current shapelets
and if it is better than the best one so far, the IG, shapelet and partitions are
stored to compare with.

Subsequently, we will explain the algorithm of GC-SCE provided in Algorithm
6 and highlight the differences to GI-SCE.

Line 1 the shapelet that best splits the dataset into M = |C| partitions is found
based on the independent approach. Its index Sl, corresponding IG∗ and
partitions Dj−1 are stored.

Line 7 unlike theGI-SCE approach that returns “embvector” based on one shapelet,
now we will return the embeddings of the time series using the best-found d-
shapelets so far in Sd and the current shapelet Sk under study, hence building
the space as specified in Equation 4.5.

Line 8 get_partitions_by_shapelets returns the best possible partitioning by
applying ζ (LDA) to the data-samples obtained via embvector.

Line 8 the IG is computed as defined in the combined case.
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Algorithm 7 GS-SCE: Global Successive Shapelet Clustering Explanation
Input: dists, a distance matrix between (shapelets, time-series)

C, clustering predictions for the time-series
Output: Sd, Shapelets ordered by IG

IG, Information Gain related to Sd
1: Sj , IG∗

j , Dj−1← GetBestIndependentShapelet(dists, C)
2: Sd, IG← [Sj],[ IG

∗
j ]

3: S, K,N ← GetShapeletsIndicesAndSize(dists)

4: for j = 2, . . . , K do

5: IG∗
j ← 0

6: for Sl ∈ S and Sl /∈ Sd do
7: embvector← transpose(dists)[Sd, Sl]
8: Dj ← get_Partitions_By_Shapelets(embvector, C)
9: δj ← ∆j,j−1 ∪ ιj
10: µj ← NumberOfCorrectP ts(δj)

11: IGj ← IG(δj, [Sd, Sl]) · µj

N

12: if IG∗
j < IGj then

13: SjDj−1, IG
∗
j ← SlDj, IGj

14: end for

15: IG,Sd ← [IG, IG∗
j ], [Sd, Sj]

16: end for

Finally, the GS-SCE algorithm (Algorithm 7) is explained and the differences to
the other approaches are highlighted.

Lines 1 through 8 are similar to the GC-SCE approach.

Line 9 Stores misidentified samples and those whose partition differs.

Line 10 The number of correct samples in δj is returned.

Line 11 The Information Gain defined in the successive case is calculated.

In order to achieve the Cluster-Wise explanation (CE), the only change to the
presented algorithms is to use binary labels instead of the cluster labels: the clus-
ter labels are Ci (the cluster being explained) and Ci (all other clusters). To rank
the shapelets that best represent a specific cluster, and when Global-Wise explana-
tion (GE) is concerned the original clustering labels, C, are used as the labels. It is
worth noting that these strategies may be used with any shapelet-based method,
independent of the learning process.
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Figure 4.1: Time-series samples from each category of the Synthetic Control dataset
are presented. Colours correspond to the clustering in Figures 4.3, 4.6 and 4.7.

4.2 Cluster Explanation: A Case Study

A case study of SCE using global wise (GI-SCE, GC-SCE, and GS-SCE) cluster ex-
planation is presented herein. We will first describe the dataset used for this study,
and then present the case study for the successive approach. It is followed by a dis-
cussion in comparison to the other two approaches independent and combined. We
will also examine reducing the number of shapelets by choosing the best-ranked
ones under the GS-SCE approach.

The Synthetic Control dataset, from the UCR archiveis used. This dataset was
chosen since it contains multiple categories which will allow us to show the impor-
tance of the global setting, i.e. having more than two labels. The dataset contains
600 samples, that represents synthetically generated control charts each of length
60. The dataset is divided into six categories: 1-Normal, 2-Cyclic, 3-Increasing
trend, 4-Decreasing trend, 5-Upward shift, and 6-Downward shift. Figure 4.1 shows
two instances from each category. The Transductive approach is used, and the aim
is to provide insight and explanation of the clustering result. Recall that the GS-
SCE algorithm, described in Algorithm 7, takes clustering labels and transformed
time series as input and returns a shapelet ranking based on the information added
by each.

Figure 4.2 presents the Normalised Cumulative Information Gain, NCIG, scaled
between 0 and 1. After a certain number of shapelets NCIG plateaus, indicating
that any further addition of the remaining shapelets does not improve the space
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Figure 4.2: The normalised cumulative Information Gain calculated using GS-SCE.

relative to the clustering partitioning. In this case, dimensionality reduction up to
the number of shapelets indicated by the elbow can be considered. In some cases,
Information Gain may not plateau, indicating that all shapelets are necessary.

Figure 4.3 presents the best 3 shapelets, the order-lines1 for each shapelet, and
the scatter plots of the data samples in the space when used with 2 and 3 shapelets.
These 3 shapelets represent an additive Information Gain of 0.67, 0.42, and 0.027
respectively, together capturing 1.117 of the total cumulative IG which is equal
to 97% of NCIG. This means that these shapelets hold 97% of the information in
the overall shapelet space and are therefore considered to be the best shapelets for
reflecting the overall clustering.

Figure 4.3d presents the order-line of the most informative shapelet (S102, Fig-
ure 4.3a), which exhibits an increasing trend. The figure demonstrates that despite
having well separated-clusters, not all categories can be distinguished. It is clear
that cluster zero (blue) which exhibits a decreasing trend and cluster five (brown)
which exhibits an increasing trend are well separated and the other categories
slightly overlap each other except for clusters two (green) and red (violet), which
overlap each other by a considerable amount since they exhibit both increasing and
decreasing trends, see Figure 4.1. Shapelet S95, Figure 4.3b, represents a decreasing
trend in the data and therefore has a low distance to clusters zero and four and
a high distance to clusters one and five (having increasing trends), as seen in the
y-axis of Figure 4.3e. Clusters two and three (green and red, Figure 4.1), however,
exhibit both upward and downward trends, hence their overlap in feature space
(Figure 4.3e). Observing this scatter plot further, we can see that the complement-
ing information of the shapelets separates the clusters, except for clusters two and
three that exhibit both trends. Adding shapelet S0, which models both upward and
downward trends, see Figure 4.3c, increases the separation between the second and

1An order-line is simply a representation of the distance between the time-series and the
shapelet ordered from lowest to highest distance.
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Figure 4.3: Successive global explanation (GS-SCE). The top three shapelets are
presentedwith the corresponding scatter plots of the data projected into each space,
defined by adding each shapelet in succession (starting from S54).

the third cluster (visually S0 has more similarity to three than two), see Figure 4.3f.

In light of this, one can ask whether SCE can also help to achieve equivalent
clustering with fewer, informative shapelets. As such, K-means clustering is ap-
plied to the embeddings obtained using each subset returned by GS-SCE and com-
pared to the results of the original clustering. As expected, NMI follows the same
trend as IG, see Figure 4.4, and it can be observed that using just 20% of the shapelets
( around 10 shapelets) results in approximately the same performance as the origi-
nal clustering. As such the NCIG can be used to threshold the number of shapelets
in a similar way to the eigenvalues in principal component analysis.

For example, taking a threshold of 80% NCIG, would result in two shapelets
(S102 and S95), accumulating 0.94 of the NCIG, while retaining an NMI of 0.8 rela-
tive to the original clustering. Adding a third shapelet (S0) increases the NCIG to
0.96 and results in an NMI of 0.9. It should be noted, however, that the reduced
dimensional space will not model DTW distance, as will be explored in Section
4.2.1.

In order to further explore the possibility of using SCE as a dimensionality re-
duction technique for selecting a reduced set of shapelets, we conducted a com-
parison with Principal Component Analysis (PCA) [180]. The comparison evalu-
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Figure 4.4: NMI of K-means clustering and normalized cumulative information gain
NCIG relative to the number of shapelets used to form the representation (ordered
by GS-SCE). The labels used for NMI are the clustering labels output by CDPS. The
plateau in NCIG indicates that these shapelets add no further information.

ates the clustering scores obtained from clustering based on PCA components and
compares them to the clustering results achieved using SCE shapelets. Where we
assess clustering performance while increasing the number of shapelets or princi-
pal components. Figure 4.5 presents the NMI scores obtained from clustering using
an increasing number of shapelets based on the ranking provided by GS-SCE, as
well as PCA components ranked by their eigenvalues. The figure indicates that
PCA performs slightly better than SCE in terms of clustering accuracy with lower
dimensionalities because it is able to extract linear combinations of the shapelet em-
beddings, however, it loses the interpretability offered by ranking shapelets them-
selves, as with SCE. We should recall that the embedding created by CDPS is the
minimum matching distance of each shapelet over the whole time series, therefore
we cannot simply create a linear combination of the shapelets to interpret the PCA
results because the minimum position of the shapelets represented by the linear
combination produced by PCA do not necessarily occur at the same point in the
time series.

Comparison to GI-SCE and GC-SCE

In order to better understand the idea and the reasoning behind the proposed GS-
SCE explanation approach and to highlight the difference, this section provides
visual examples of GI-SCE and GC-SCE. The first three best shapelets are used to
infer the difference between the approaches presented in Subsection 4.1.

Figure 4.6 presents the space with the different shapelets ranked with GI-SCE,
which ranks shapelets independently of each other. Looking at the scatter plots
(Figures 4.6e and 4.6f) and the shapelets (Figures 4.6a, 4.6b and 4.6c) it is clear that in
the Independent case the features are highly correlated. This is expected as there
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Number of Components

Figure 4.5: Comparison of Clustering Performance on Increasing Number of
Shapelets Ranked by GS-SCE (termed SCE) and Increasing Number of PCACompo-
nents (termed PCA). Note that the cluster labels obtained from the entire shapelet
space are used as class labels for computing the Normalized Mutual Information
(NMI) scores.

is no requirement for the ordering of the shapelets to reflect complementary infor-
mation and hence highly correlated shapelets will be ranked first since they have
equivalent IGs. Figure 4.7 presents the space with the different shapelets ranked
with GC-SCE. Contrarily to the independent approach, the Combined approach
tries to find diverse shapelets. In this use case, the shapelets for the combined ap-
proach are diverse (see Figure 4.7a, 4.7b and 4.7c) but this is not guaranteed as there
is no explicit condition specifying their diversity and how much information they
add. The scatterplots obtained using the three shapelets in GS-SCE (see Figure 4.3f)
and GC-SCE (Figure 4.7f) seem similar, but the third shapelet found by GS-SCE (ac-
cording to the definition) results in most points being moved to the correct cluster,
and hence a better representation of the clustering result. Although in this example
the difference is not great, in other datasets this can cause a very different shapelet
to be found.

The Normalised Cumulative Information Gain (NCIG) plots of the GI-SCE and
GC-SCE reflect these findings, see Figure 4.8, in which the Successive approach
quickly finds the shapelets that maximise Information Gain. These figures also in-
clude the NMI score of K-means clustering performed in the subspace relative to
the number of shapelets (plotted in orange). It becomes clear that the Information
Gain found by GI-SCE (Figure 4.8a) and GC-SCE (Figure 4.8b) does not represent
NMI, and would therefore result in an overestimation in the required number of
shapelets. On the other hand, GS-SCE (Figure 4.4) results in a compact representa-
tion (fewer shapelets) with a comparable NMI score.

As noted in Section 4.1, the Cluster-Wise explanations (CI-SCE, CC-SCE, and
CS-SCE, which explain the clustering of a specific cluster rather than the global
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Figure 4.6: Independent global explanation (GI-SCE). The top three shapelets are
presentedwith the corresponding scatter plots of the data projected into each space,
defined by adding each shapelet in succession.

clustering) can be obtained using the global algorithms but by providing C as bi-
nary labels. These labels should be true for samples contained in the cluster to be
explained Cj and false for all others Cj . The same discussion and reasoning can be
conducted to reflect the recently presented findings.

4.2.1 Shapelet Selection

Section 4.2 illustrated cluster explanation using GW approaches and the possibil-
ity of reducing the number of shapelets while achieving results equivalent to those
obtained in the original space. Aside from the intended use-case of offering in-
sight into the clustering results, this demonstrates further possibilities for the in-
formation obtained using such an approach. We further illustrate this point with 10
datasets using transductive clustering, (explained in Chapter 3, Section 3.3.1) with
25% constraint fraction.

Table 4.1 presents the clustering score achievedwith the subset of shapelets that
result in a cumulative Information Gain of 80%. For the majority of the datasets,
this reduced dimensionality results in more than 0.7 NMI when compared to the
clustering achieved in the original space, even though in most cases only 1 or 2
(~2%) shapelets are retained. Having said this, the shapelets (and therefore the in-
formation) that are removed are needed to respect the original DTWdistances. This
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Figure 4.7: Combined global explanation (GC-SCE). The top three shapelets are
presentedwith the corresponding scatter plots of the data projected into each space,
defined by adding each shapelet in succession.

Table 4.1

Clustering scores for different datasets using all shapelets (100% NCIG) and a
subset of the shapelets (thresholded to 80% NCIG).

Dataset #Shapelets (Total) NCIG NMI

BME 1 (68) 96% 0.77±0.000
CBF 2 (68) 100% 0.86±0.000
ECG200 1 (64) 96% 0.70±0.000
GunPoint 1 (70) 99% 0.88±0.000
GunPointAgeSpan 2 (70) 98% 0.72±0.000
Herring 1 (89) 86% 0.66±0.000
MoteStrain 1 (62) 88% 0.64±0.001
OSULeaf 12 (86) 80% 0.67±0.006
Plane 2 (70) 99% 0.82±0.003
Symbols 2 (85) 96% 0.82±0.002

is because the representational space is learnt to approximate the DTW distances
using all the shapelets and not a subset of the space or the shapelets themselves.
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Figure 4.8: NMI of K-means clustering relative to the number of shapelets used to
form the representation ordered by GI-SCE (Figure 4.8a) and by GC-SCE (Figure
4.8b). The labels used for NMI are the clustering labels output by CDPS.

(a) (b) (c)

Figure 4.9: Comparison of distance map between the actual DTW (a) and approxi-
mate DTW using all shapelets (b) and a subset of shapelets (c) for the Plane dataset.
The colour bar indicates the distance between the different samples, the brighter
the larger the distance.

Figure 4.9 shows example distance maps for the Plance dataset. Figure 4.9a
shows the distance map of the actual DTW distance, Figure 4.9b shows with re-
spect to the CDPS space, and Figure 4.9c the reduced dimensionality CDPS space
(2 shapelets). It can be seen that the original DTW and CDPS result in similar dis-
tancemapswhile the reduced CDPS dimensional space has a very different distance
map since it looses some of the DTW approximation (but retains the ability to dif-
ferentiate between clusters). The loss of DTW approximation is due to the fact that
the distance between the samples in the overall shapelet space approximates the
DTW and choosing any fewer shapelets will break this approximation. As such,
one can choose to use all the shapelets, retaining the DTW approximation in the
space while respecting constraints, or use fewer shapelets for better performance.
Note that using fewer shapelets does not necessarily means lower clustering per-
formance, the experts may deem the clustering achieved using fewer shapelets is
better than that using all the shapelets, even though DTW approximation is lost.
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Figure 4.10: Visualization of ML/CL: the ratio of the average distance between ML
constraints to the average distance between CL constraints across different spaces
LDPS, CDPS, and RAW time series space using DTW. The ratio was calculated for
ten different univariate datasets. The constraint sets, for each constraint fraction,
that were considered under the transductive study are used.

4.3 Effect of Constraints on the Representation

In this section, our objective is to investigate the impact of constraints on the repre-
sentational space and determine the validity of using contrastive loss for bringing
similar samples closer together and pushing dissimilar samples further apart. In
this way, the expert constraints are modelled, as described in Section 3.1 and 3.2.
We use the same ten randomly selected datasets as presented in the previous sub-
section to calculate the statistics presented in the remainder of this chapter, using
the transductive setting (Section 3.3.2). A random subset of three datasets is se-
lected for visualization to save space.

To begin with, we will examine the ratio between the average distance of the
must-link samples and the average distance of the cannot-link samples, denoted as
ML/CL. We then calculate the coherence in all ten repetitions of the 25% constraint
sets. Measuring the ML/CL ratio provides a general understanding of the distances
between the samples in the space, as explained in Chapter 2, Section 2.2.5. We
expect that CDPS exhibits the lowest ML/CL ratio, followed by LDPS and DTW.

Figure 4.10 presents the boxplots of the ML/CL ratio calculated over LDPS,
CDPS and time series space using DTW. The study is done for the three different
constraint fractions (5%, 15%, and 25%) using the ten constraint sets that were used
in the transductive setting (Section 3.3.2). It is evident that DTW yields the largest
ratios (overall constraint fractions), CDPS has the smallest ratios, and LDPS is ap-
proximately equal to DTW. This strengthens the assumption that CDPS exploits
constraints to bring similar samples closer together and dissimilar ones further
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apart, leading to a decrease in ML/CL.

Now we compare the LDPS (CDPS without constraints) with the CDPS space.
This will allow us to observe the effects of the constraints on the space by visually
interpreting the ML/CL ratio. In order to visualise the spaces in two dimensions,
we use Pairwise ControlledManifold Approximation (PaCMAP) dimensionality re-
duction [181]. PaCMAP is a recent approach developed to take into account both
the global and the local structure of the space to be reduced. It optimizes the low-
dimensional embeddings using three kinds of pairs of points; neighbouring pairs,
mid-near pairs, and distant pairs.

Figure 4.11 shows the scatterplots depicting a subset of the constrained samples.
Must-link connected samples are linked by solid lines, coloured according to the
ground truth labels, while cannot-link samples are connected by red dotted lines.
Analyzing these figures provides a general overview of how CDPS makes use of
the constraints provided. Figures 4.11a and 4.11c demonstrates that LDPS separates
clusters in the BME and CBF datasets, but CDPS further consolidates similar points,
as illustrated in Figures 4.11b and 4.11d. Examining the Symbols dataset, LDPS
exhibits confusion between four clusters (red and purple) and (blue and orange)
due to the relatively close distance between these pairs of classes. In comparison,
CDPSmanages to push the clusters further apart, thanks to the constraints, but still
encounters challenges in capturing some points, such as the red must-link point
connected to the purple region. This discrepancy may stem from the requirement
of approximating DTW distance.

Next, we will compare the clustering results obtained using the DTW distance.
However, since DTW is not a metric we cannot directly visualise it. Instead, we
must use Multidimensional Scaling (MDS) [182] embeddings to map DTW’s dis-
tance matrix to a two-dimensional space. The same is performed for LDPS and
CDPS in order to perform a fair comparison and therefore the clustering results
obtained from each of them can be compared in a two-dimensional space. This
should further solidify the previous discussion.

Figure 4.12 shows these visualisations for the three chosen datasets. These show
that LDPS and DTW have generally the same trend, in which the distance between
must-link pairs is relatively large and the grouping of points is similar across both
methods, with overlapping must-link and cannot-link constraints. On the other
hand, CDPS shows more compact clustering, similar to what was observed with
the PaCMAP plots, where similar points are closer and dissimilar points are pushed
further apart. The rest of the analysis follows the same line of reasoning as seen
with PaCMAP.

An interesting observation can be made by investigating the GunPoint and
GunPointAgeSpan dataset found in the UCR archive. First, we will explain these
datasets. Both datasets are records of two different actions performed by a female
and a male actor. The first action, termed Gun, is to take a gun from a waist hol-
ster and aim it at an eye-level target. The second action termed Point (or NoGun),
is to point at the target without a gun. The GunPoint dataset was recorded in
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Figure 4.11: Visualization of the constraints on the LDPS and CDPS representa-
tional space using PaCMAP dimensionality reduction; for three different datasets.
Must-link constraints are represented in solid lines coloured according to the
ground truth labels and cannot-link constraints are the red dashed lines.
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Figure 4.12: Visualization of the constraints on theMDS embedded space calculated
using DTW, LDPS and CDPS distance maps; for three different datasets. Must-link
constraints are represented in solid lines coloured according to the ground truth
labels and cannot-link constraints are the red dashed lines.
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Figure 4.13: Illustration of the effect of the constraints for different tasks on the
same dataset. The visualisation is on LDPS and CDPS using PaCMAP dimension-
ality reduction. The dataset used contains samples of pointing a gun. (a) and (b)
shows the task of grouping the samples based on age while (c) and (d) are based on
the movement itself.

2008 and the classes are Gun (first action) and Point (second action) where the
model needs to learn a distinction between pointing with and without a gun. While
the GunPointAgeSpan dataset contains data from actors recorded in 2003 and re-
peated recording by the same actors after 15 years, in 2018. The classes in the
GunPointAgeSpan dataset are also Gun (first action) and Point (second action), but
now each class contains more variability.

Figure 4.13 presents PaCMAP embedding visualisations of the constraints and
their impact on theGunPoint andGunPointAgeSpan datasets. CDPS is compared to
LDPS to investigate its effectiveness in capturing the constraints. For the GunPoint
dataset, CDPS successfully uses the constraints, resulting in two distinct groupings
of data samples. In contrast, LDPS shows overlapping clusters as it relies only the
DTW distance. In the case of the GunPointAgeSpan dataset, both LDPS and CDPS
have the same results, with no clear separation between the clusters. This finding is
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Figure 4.14: Illustration of the GunPointAgeSpan classes. It shows 20 samples cho-
sen at random for each class. Each sample is recorded over five seconds with 30
frames per second, the 150 frames are represented in the x-axis. The y-axis shows
the position of the abscissa component of the hand’s centroid in each frame.

intriguing because it suggests that CDPS fails to effectively model the constraints
for this particular dataset. Figure 4.14 displays samples from each class (only 20
samples per class shown), it can be observed that the actions performed by the ac-
tors after a 15-year gap exhibit notable differences. This means that the constraints
give vastly conflicting information compared to the DTW distance and CDPS is not
able to resolve it. Thus, this indicates that CDPS’s failure on the GunPointAgeSpan
dataset can be attributed to the approximation of DTW distance, which struggles
to distinguish the differences between the clusters. Consequently, this limitation
affects both LDPS and diminishes the effectiveness of constraints in CDPS. Note
that this study was done with α = γ = 2.5 and adjusting this value and increasing
the number of constraints might give better results but these will still be limited by
the need to approximate DTW.

Measuring Constraints Coherence

Now that we have a metric space in which time series can be transformed, we can
now also calculate the coherence of the constraints directly in the resulting CDPS
space. Recall that DTW distance is not a metric measure and hence the coherence
of constraints cannot be calculated. Instead, we use an embedding approach (Multi-
Dimensional Scaling, MDS) to find a representation that matches the distance ma-
trix as closely as possible. This gives a reduced metric space in which coherence
can be indirectly calculated. And we can then compare this to the coherence that
can now be calculated in the CDPS representation. Furthermore, we also calculate
anMDS embedding for LDPS and CDPS in order to have a fair comparison to DTW.

Figure 4.15 presents the distribution of constraint coherence values calculated
upon the ten datasets used in the previous discussion. In order to compare DTW
to LDPS and CDPS, MDS embeddings of DTW were calculated with the number
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Figure 4.15: Distribution of coherence of the constraints calculated for different
datasets based on DTW, LDPS and CDPS. For DTW the coherence is shown in
the MDS embedding space with dimensions equal to a number of shapelets |S| is
presented as well.
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Figure 4.16: Scatter plot pf coherence versus NMI calculated for different datasets
using the LDPS, CDPS and DTW with MDS embeddings with dimension equal to
|S|. The figure also shows the best fit of the data with the correlation factor.

of dimensions equal to the number of shapelets. Analyzing the figure, we ob-
serve that CDPS demonstrates the highest coherence values, indicating that the
constraints are more consistent with each other in CDPS space. This result aligns
with our expectations since CDPS is designed to respect and incorporate the pro-
vided constraints. On the other hand, DTW and LDPS exhibit similar coherence
values, which is expected since LDPS approximates DTW. The coherence measure
provides valuable insights into the degree of consistency among the constraints,
independent of any partitioning or specific clustering algorithm. The higher co-
herence in CDPS confirms its effectiveness in modelling constraints.

Now that we have established that CDPS is effective in modelling the con-
straints, we will investigate the correlation between coherence and clustering per-
formance. A correlation study between them will be carried out for each DTW,
LDPS, and CDPS, following the same concept explained earlier. Recall that coher-
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ence indicates whether the constrained samples in the space are conflicting or not.
Higher coherence means fewer conflicts. In general, if there are no conflicts, the
constraints will not necessarily improve the clustering as they may not be infor-
mative. However, if the conflict between constraints is too great, this may impede
clustering as they provide conflicting information. In this comparison (between co-
herence and NMI) we will be able to identify if higher coherence (fewer conflicts)
in the CDPS space is positively correlated with the NMI score, and if coherence is
correlated to NMI when DTW and LDPS are used.

Figure 4.16 shows the scatter plot for coherence versus NMI clustering scores.
The figure also displays the fitted line and reports the correlation factor. It is clear
that CDPS exhibits a positive correlation between coherence and the clustering
score, unlike both DTW and LDPS, where there is almost no correlation (the factor
is zero) or a slightly negative correlation. This strengthens the fact that CDPS leads
to better results and is capable of respecting and modelling constraints. It must be
emphasised here that these results are not definitive and should be interpreted with
caution. First, the DTW coherence is calculated on anMDS embedding of the DTW
distance matrix, which may or may not be valid (although the similar LDPS results
give weight to its validity). Secondly, assessing the positive effect of coherence
on the clustering results is also complicated. Nevertheless, since it demonstrates
the only way to calculate a measure such as coherence when using DTW distance,
these results do show that measuring it with the proposed CDPS embedding seems
to be more accurate.

Effect of Constraints on Reduced Representation

In this section, we will analyze the reduced space obtained using the GS-SCE algo-
rithm. We aim to investigate whether the observations and discussions presented
in Section 4.2 regarding the clustering performance and shapelet rankings are also
reflected in the coherence of constraints and the ratio between the average distance
of the must-link (ML) samples and cannot-link (CL) ones, represented as ML/CL.
We will follow the same strategy used in Section 4.3, where the effect of the con-
straints on the representationwhen using all shapelets was investigated. Therefore,
to maintain consistency, we will employ the same datasets and experimental set-
tings used in Chapter 3, Section 4.3 to examine the reduced representation achieved
using GS-SCE with a threshold of 80% NCIG. As such, only the number of shapelets
that result in 80% NCIG is used for clustering using shapelets. For PCA, the number
of principal components used was equal to the number of shapelets yielding 80%
NCIG.

Figure 4.17 shows the ML/CL ratio in the reduced space (using PCA and SCE
with threshold 80% NCIG to choose the number of components and shapelets) in
comparison to the overall representational space (see Section 4.3, Figure 4.15 for
comparison to LDPS and DTW). The illustration shows that the ratio of the reduced
spaces is relatively small compared to the original space. This indicates that the
constraints are still modelled well and the shapelets did not lose their separability
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Figure 4.17: Average distance between the must-link and cannot-link constraints
ML/CL for the reduced CDPS representation space in comparison to using all the
space. GS-SCE was used to reduce the original representational space and com-
pared to PCA dimensionality reduction.

power, in addition, lower values can be attributed to having smaller distances as the
representational space is smaller and hence less sparse. Moreover, it seems that the
SCE reduced space offers more separation than that obtained using PCA as the ratio
in SCE is smaller. Figure 4.18 shows the coherence of constraints over the reduced
space (using PCA and SCE) in comparison to the overall representational space
(which was discussed and presented in Section 4.3, Figure4.15). This figure shows
that the coherence in the reduced space is slightly better than the original space and
comparable to the PCA reduced space. This strengthens the finding represented in
Figure 4.17, that shapelets model the constraints and reflect expert intuition.

Figure 4.19 offers a visualization of the Synthetic Control dataset (used in Sec-
tion 4.2) CDPS reduced representational space obtained using GS-SCE and PCA
reduction. This illustration provides a visual comparison between the two reduced
spaces and how the constraints are represented in them, offering a case study of
the finding of Figures 4.17 and 4.18. Comparing PCA (Figure 4.19a) to CDPS GS-
SCE space (Figure 4.19b) it is clear that there is less overlap between the points
in the CDPS reduced space. This is reflected in the constraints presented in Fig-
ures 4.19c and 4.19d where there is less overlap between must-link belonging to
different clusters in the CDPS reduced space than with PCA.

Overall, this study provides an in-depth study on the reduced space using GS-
SCE and provides clarification on how the constraints affect the reduced space. It
was shown that the constraints remain respected and hence reducing the number
of shapelets using GS-SCE will provide comparable performance and separation
when using the overall space.
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Figure 4.18: This figure shows the coherence for the reduced CDPS representation
space in comparison to using all the space. GS-SCE was used to reduce the repre-
sentational space and compared to PCA dimensionality reduction.

4.4 Conclusions

In this chapter, we presented the Shapelet Cluster Explanation (SCE) framework
which offers a valuable solution for interpreting clustering algorithms’ results for
time series data. By leveraging the interpretability of shapelets, SCE ranks them
based on their ability to provide insights into the clustering algorithm and indi-
vidual clusters. This ranking helps identify the most informative set of shapelets,
which accurately reflects specific clustering scenarios or the overall clustering out-
come. Different approaches for ranking the shapelets were investigated termed as
independent, combined and successive. These approaches can be used to achieve
global-wise or cluster-wise explanations. It was shown that out of the proposed
approaches the successive global wise approach, termed GS-SCE provided the best
explanation for the clustering as it focus on ranking the shapelets based on the
information brought by the addition of any new shapelet to the study.

Overall, the SCE framework not only offers interpretability for clustering re-
sults answering the “why” but also provides a means to reduce the number of
shapelets requiredwhilemaintaining comparable clustering performance. By lever-
aging shapelets’ interpretability and the constraints modelled in the CDPS space,
using SCE with CDPS offers a comprehensive approach to understanding and ex-
plaining clustering outcomes in complex time series data. Although SCE was only
experimented on the representation learnt by CDPS the framework is applicable
to any shapelet-based algorithm since it is independent of the shapelet learning
process, the only inputs to the SCE approach are the cluster labels and the distance
between the shapelets and the time series samples.

In addition to the study of the explainability of the space this chapter discusses
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Figure 4.19: Illustration of the samples and constraints for the reduced CDPS rep-
resentation space using PCA and GS-SCE. The example used in Section 4.2 is used
herein to visually compare PCA with two principal components to GS-SCE. (a) and
(b) show the scatter plots of the data points using the first two principal compo-
nents of PCA and the first two shapelets ranked using GS-SCE. (c) and (d) show
visualizations of a subsample of the constraints in each of the spaces shown in (a)
and (b) respectively.
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the representational space capabilities inmodelling the constraints in both the orig-
inal space and the reduced space. Studying the coherence of the constraints in the
CDPS space in comparison to LDPS and DTW showed that CDPS is effective in
modelling the constraints. The correlation study between the coherence and the
clustering score showed that having better coherence might result in improved
clustering and that CDPS does indeed improve the calculation of such measures.
As well as studying the constraints in the overall space, a study over the reduced
representational space is also presented where we found that the reduced space
does model the constraints and retain the separability power of the representa-
tional space.

CDPS does, however, have some limitations (these were discussed in detail in
relation to the GunPoint and GunPointAgeSpan datasets) that can be introduced
by either the DTW distance or when insufficient constraints are provided by the
expert. We discussed how the approximation to DTW may lead to reduced dis-
crimination among data points and negatively affect constraint satisfaction. Note
that this might be mitigated to a certain degree, as the parameters α and γ can be
adjusted to increase the importance of constraints. However, this adjustment may
introduce noise in the learning process, making it challenging to reach an equilib-
rium in the space.



Part III

Conclusions and Prospective Work

105





Chapter 5 Conclusions

“The scientist is not a person who gives the right
answers, he’s one who asks the right questions.”

– Claude Lévi-Strauss

This thesis presented the ConstrainedDTWPreserving Shapelets (CDPS) frame-
work. This framework constructs a metric space that considers time series distor-
tion and expert intuition. The key contribution of the study is the approximation
of the elastic measure, Dynamic Time Warping (DTW) while modelling the expert
intuition through the use of pairwise constraints. This framework falls under the
semi-supervised paradigm and uses the concept of contrastive learning to learn
and model the constraints of information. By leveraging the strengths of the elas-
tic measure and an embedding measure, CDPS achieves a transformation of time
series data into a metric space that is both distortion-invariant and aligned with ex-
pert intuition. Moreover, this space learns shapelets which are subsequences that
represent discriminative features of the time series to discriminate between differ-
ent categories. Since the shapelets are discriminative subsequences they are inter-
pretable and hence the space learned by CDPS is explainable as well. The CDPS
framework incorporates pairwise constraints, such as must-link and cannot-link
constraints, provided by the expert through the contrastive loss, which ensures
that similar points are closer to each other and dissimilar points are sufficiently
far in the representational space. These constraints guide the learning process and
ensure that the resulting transformation respects the expert’s intuition. In order to
approximate the DTW distance, the mean squared error between the actual DTW
and the approximated one is minimized.

Using this space addresses two major questions in constraints clustering for
time series data. First, how to calculate the properties of the constraints when
most of the measures used to take distortion into account cannot be used to mea-
sure such properties. Second, to answer the question asked in “why” a clustering
result is obtained. This work answers both concerns using the CDPS space and the
second contribution of this work, Shapelet Cluster Explanation (SCE). SCE ranks
the shapelets based on their ability to provide insights into the clustering algo-
rithm and individual clusters by ranking them according to their informativeness
(using the information gain). This ranking enables the identification of informative
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shapelets for cluster-level and global-level explanations, offering a comprehensive
understanding of the clustering outcomes. At the cluster level, we provide an ex-
planation of individual clusters in comparison to the other clusters and at the global
level provide insights into the overall result of the clustering algorithm. In thiswork
we distinguished between three different ways of ranking the shapelets, either tak-
ing each shapelet independently, termed independent, using combined shapelets by
aggregating them, termed dependent, and finally ranking them based on the infor-
mation they add to the previous best shapelet, termed successive. In addition to
explaining the space using the successive approach for ranking the shapelets, the
successive approach offers a way to reduce the number of shapelets without losing
much in terms of clustering power.

To evaluate the effectiveness of CDPS, various experiments are conducted us-
ing multiple public time series datasets. The clustering performance of CDPS is
compared with other algorithms, including unconstrained K-means, LDPS, COP-
Kmeans, MIP-Kmeans, and DCC. The results consistently demonstrate the supe-
riority of CDPS in both transductive and inductive settings. CDPS outperforms
the competitors by effectively incorporating constraint information. The inductive
study which cannot be used with classical clustering algorithms demonstrated the
generalizable capabilities of the CDPS algorithm to unseen data.

Furthermore, the study explores the potential of CDPS for enhancing the per-
formance of downstream algorithms. A comparison with the semi-supervised al-
gorithm FeatTS showcases CDPS’s ability to improve the performance of other al-
gorithms by replacing their statistical features with the representation learned by
CDPS. This shows that the features extracted by CDPS have more discriminative
power than the statistical time series features. In addition, we discussed model
selection, which identified that minimizing the loss function is a sufficient stop-
ping criterion, and the algorithm is found to be relatively robust to changes in
parameters. The discriminative nature of the CDPS space is examined, revealing
its superiority compared to LDPS and DTW-based representations.

Studying the representation space of CDPS proved that CDPS is able to model
the constraints in both the original space and using fewer shapelets, but in this
case, it loses the approximation to DTW. This was achieved by analysing the co-
herence property of the constraints in comparison to DTW and LDPS space and
measuring the average distance of the must-link points to those of the cannot-
linked points. The coherence analysis of the constraints confirms that CDPS has
the highest coherence out of LDPS and DTW and that the average distance is rel-
atively low (less than one, which indicates good separation between the points).
This analysis strengthens the fact that CDPS is able to model the constraints, and
having a small ratio means that the CDPS was able to make use of the contrastive
loss to decrease the distance between similar points and make it larger between
non-similar points.

While CDPS demonstrates several advantages, it also has limitations. The ap-
proximation to DTW may lead to reduced discrimination among data points, neg-
atively affecting constraint satisfaction. Depending on the constraints and DTW
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since in some cases the information between the two might be conflicting to the
degree where it is not possible to reach an equilibrium and hence a solution. Ad-
justing CDPS’s parameters can help in reducing and mitigating this issue but may
introduce noise in the learning process. The study discusses these limitations in
detail and provides insights into potential challenges and areas for improvement.
Moreover, the current proposition cannot work with time series having missing
data and domains where the time information is sensitive, since the shapelets are
independent of the position they are found, although approximating DTW should
account for this it is not guaranteed.

5.1 Perspectives

Having an explainable space that incorporates prior knowledge and models dis-
tance measures opens up many research directions. One interesting approach is to
investigate whether this space can be used in active learning, where the expert can
add constraints during representation training. The SCE framework enables the
expert to gain insights into the clustering results. This insight can be valuable at
any stage during active learning, allowing the expert to make informed decisions.

Another direction is to explore the use of different types of distance measures
and determine if a dynamic approach for the distance measure can be implemented.
This would allow for the learning of shapelets that better capture distortions while
accommodating the constraints provided by the expert. These two directions rep-
resent the short-term perspective as implementing and testing these ideas should
be simple and also allow for a concrete comparison to what comes next. Inves-
tigating the use of this space in a collaborative framework with other constraint
algorithms is also an interesting avenue to explore, which will be the mid-term fu-
ture work placing the building block to the long-term perspective. It would involve
studying how this transformation affects collaborative learning between different
algorithms. Furthermore, the proposed explanation framework in this work allows
the expert to gain insights into the clustering results.

Another important question to answer is whether CDPS space can be used to
guide the expert in proposing new constraints by providing suggestions to the ex-
pert. For example, after having a clustering of the data, either using the CDPS
transformed data or other data representation, the CDPS transformation and SCE
can be leveraged to provide explanations for the clustering results, this might en-
able a way forward to propose constraints based on the uncertain data samples and
clusters identified through the analysis of shapelets and SCE explanations. This is
the long-term perspective and that we desire to reach after investigating the nec-
essary directions mentioned above. Thus, a closed loop can be established between
the expert proposing constraints, the CDPS transformation, clustering and then
proposing constraints, and so on, until a consensus is reached between the expert
and the model. By establishing such a feedback loop, the expert’s constraints and
the model’s learning process can continuously inform and influence each other,
leading to a mutually agreed-upon representation.
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Appendix A Dynamic TimeWarp-
ing

This section presents Algorithm 8, which outlines the Dynamic Time Warping
(DTW) algorithm. Additionally, Figure A.1 provides a visual representation of the
optimal warping path for two distinct time series. Both the algorithm and the fig-
ure serve to reinforce and illustrate the concepts discussed and explained in Section
1.1.4.
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Figure A.1: Illustration of mapping between points based on Euclidean distance (a)
and DTW similarity (b). The wrapping path of DTW is shown in (c).
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Algorithm 8 Dynamic Time Warping
Input: Two time series X and Y of lengths n and m respectively
Output: The DTW distance between X and Y
1: D [:, 0] = infinity
2: D[0, :] = infinity
3: D[0, 0] = 0
4: for i = 1 to n do

5: for j = 1 to m do

6: cost = distance(X[i], Y[j])
7: D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1])
8: end for

9: end for

10: return D[n, m]



Appendix B Datasets

This section provides an overview of the datasets utilized in this thesis. The datasets
are randomly chosen from the UCR archive [12].

Table B.1

List of UCR datasets used in the main study.
Dataset Train size Test size Length Classes Dimensions

FaceAll 560 1690 131 14 1
MoteStrain 20 1252 84 2 1
Symbols 25 995 398 6 1
PenDigits 7494 3498 8 10 2
ScreenType 375 375 720 3 1
BasicMotions 40 40 100 4 6
ShapesAll 600 600 512 60 1
BME 30 150 128 3 1
Fungi 18 186 201 18 1
CBF 30 900 128 3 1
RacketSports 151 152 30 4 6
NATOPS 180 180 51 6 24
FiftyWords 450 455 270 50 1
Handwriting 150 850 152 26 3
OSULeaf 200 242 427 6 1
CricketY 390 390 300 12 1
SyntheticControl 300 300 60 6 1
Rock 20 50 2844 4 1
CricketX 390 390 300 12 1
GunPoint 50 150 150 2 1
Fish 175 175 463 7 1
Cricket 108 72 1197 12 6
Libras 180 180 45 15 2

(Continued on next page)
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Table B.1 (continued)
Dataset Train size Test size Length Classes Dimensions

BirdChicken 20 20 512 2 1
FaceFour 24 88 350 4 1
UWaveGestureLibrary 120 320 315 8 3
FacesUCR 200 2050 131 14 1
Phoneme 214 1896 1024 39 1
StandWalkJump 12 15 2500 3 4
Epilepsy 137 138 206 4 3
CricketZ 390 390 300 12 1
Mallat 55 2345 1024 8 1
AtrialFibrillation 15 15 640 3 2
EthanolConcentration 261 263 1751 4 3
PowerCons 180 180 144 2 1
HandMovementDirection 160 74 400 4 10
Lightning7 70 73 319 7 1
Plane 105 105 144 7 1
Lightning2 60 61 637 2 1
Adiac 390 391 176 37 1
Meat 60 60 448 3 1
SwedishLeaf 500 625 128 15 1
Heartbeat 204 205 405 2 61
ECG200 100 100 96 2 1
Car 60 60 577 4 1
Coffee 28 28 286 2 1
Herring 64 64 512 2 1
GunPointAgeSpan 135 316 150 2 1
ArticularyWordRecognition 275 300 144 25 9
Beef 30 30 470 5 1



Appendix C Results

This section details the results discussed in Section 3.3.

Table C.1

Transductive NMI results for CDPS on the UCR archive.
0% 5% 15% 25%

LDPS DCC CDPS DCC CDPS DCC CDPS DCC

ACSF1 0.52 0.39 0.53 0.37 0.54 0.36 0.56 0.36

Adiac 0.69 0.57 0.69 0.58 0.7 0.58 0.7 0.58

ArrowHead 0.27 0.29 0.29 0.33 0.35 0.36 0.4 0.3

ArticularyWordRecognition 0.91 0.89 0.9 0.9 0.91 0.89 0.91 0.89

AtrialFibrillation 0.12 0.03 0.11 0.17 0.09 0.13 0.11 0.18

BME 0.44 0.2 0.45 0.28 0.68 0.35 0.8 0.31

BasicMotions 0.77 0.28 0.79 0.25 0.78 0.28 0.77 0.25

Beef 0.26 0.3 0.3 0.32 0.31 0.3 0.32 0.3

BeetleFly 0.16 0.05 0.21 0.09 0.29 0.06 0.41 0.11

BirdChicken 0.01 0.07 0.05 0.11 0.23 0.08 0.23 0.12

CBF 0.75 0.4 0.8 0.44 0.89 0.77 0.9 0.95

Car 0.18 0.23 0.28 0.27 0.41 0.28 0.46 0.26

Chinatown 0.4 0.02 0.73 0.47 0.83 0.47 0.84 0.39

ChlorineConcentration 0.0 0.0 0.01 0.0 0.01 0.0 0.01 0.0

CinCECGTorso 0.04 0.28 0.16 0.37 0.47 0.45 0.58 0.26

Coffee 0.63 0 0.71 0.55 0.93 0.53 0.96 0.55

Computers 0.05 0.01 0.04 0.01 0.03 0.02 0.02 0.02

Cricket 0.9 0.21 0.92 0.36 0.92 0.43 0.91 0.54

CricketX 0.38 0.23 0.36 0.22 0.36 0.23 0.39 0.23

CricketY 0.42 0.29 0.42 0.27 0.42 0.27 0.43 0.27

CricketZ 0.38 0.23 0.36 0.22 0.37 0.23 0.37 0.22

Crop 0.5 0.34 0.5 0.56 0.53 0.55 0.54 0.55

DistalPhalanxTW 0.55 0.47 0.52 0.58 0.52 0.59 0.53 0.63

(Continued on next page)
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Table C.1 (continued)
0% 5% 15% 25%

Dataset LDPS DCC CDPS DCC CDPS DCC CDPS DCC

ECG200 0.02 0.18 0.06 0.26 0.27 0.43 0.29 0.44

ECG5000 0.43 0.55 0.62 0.73 0.64 0.77 0.65 0.76

ECGFiveDays 0.02 0.01 0.84 0.76 0.99 1.0 1.0 0.99

EOGHorizontalSignal 0.38 0.36 0.4 0.37 0.45 0.37 0.46 0.37

EOGVerticalSignal 0.32 0.34 0.35 0.33 0.39 0.33 0.41 0.33

Earthquakes 0.04 0.02 0.04 0.01 0.04 0.01 0.04 0.01

ElectricDevices 0.36 0.13 0.38 0.07 0.42 0.07 0.44 0.07

Epilepsy 0.63 0.04 0.64 0.07 0.68 0.08 0.72 0.08

EthanolConcentration 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0

EthanolLevel 0.01 0.01 0.01 0.01 0.03 0.01 0.06 0.01

FaceAll 0.67 0.35 0.66 0.4 0.67 0.37 0.7 0.4

FaceFour 0.58 0 0.61 0.49 0.6 0.51 0.68 0.58

FacesUCR 0.68 0.51 0.66 0.46 0.65 0.48 0.69 0.49

FiftyWords 0.67 0.63 0.67 0.62 0.68 0.61 0.67 0.61

FingerMovements 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01

Fish 0.31 0.36 0.44 0.3 0.54 0.29 0.64 0.29

FordA 0.0 0.0 0.39 0.01 0.53 0.01 0.56 0.01

FordB 0.05 0.0 0.36 0.0 0.52 0.0 0.56 0.0

FreezerRegularTrain 0.1 0.22 0.89 0.23 0.95 0.22 0.92 0.22

FreezerSmallTrain 0.1 0.23 0.87 0.23 0.92 0.24 0.92 0.22

Fungi 0.89 0.89 0.88 0.0 0.89 0.0 0.9 0.0

GunPoint 0.0 0.0 0.08 0.09 0.68 0.16 0.81 0.37

GunPointAgeSpan 0.0 0.5 0.0 0.36 0.0 0.55 0.0 0.42

GunPointMaleVersusFemale 0.58 0.08 0.8 0.32 0.82 0.84 0.86 0.84

GunPointOldVersusYoung 0.02 0.07 0.1 0.19 0.55 0.57 0.46 0.62

Ham 0.03 0.1 0.04 0.14 0.09 0.23 0.14 0.22

HandMovementDirection 0.02 0.04 0.02 0.04 0.02 0.03 0.02 0.03

Handwriting 0.44 0.27 0.41 0.28 0.37 0.27 0.37 0.27

Haptics 0.1 0.09 0.09 0.1 0.11 0.11 0.12 0.1

Heartbeat 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0

Herring 0.03 0.0 0.02 0.01 0.01 0.01 0.03 0.01

HouseTwenty 0.53 0.13 0.57 0.13 0.66 0.17 0.67 0.22

InlineSkate 0.11 0.05 0.08 0.06 0.1 0.05 0.13 0.05

InsectEPGRegularTrain 0.36 0.13 0.43 0.24 0.53 0.3 0.62 0.3

(Continued on next page)
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Table C.1 (continued)
0% 5% 15% 25%

Dataset LDPS DCC CDPS DCC CDPS DCC CDPS DCC

InsectEPGSmallTrain 0.36 0.18 0.44 0.25 0.53 0.27 0.62 0.34

InsectWingbeatSound 0.22 0.55 0.38 0.53 0.45 0.54 0.49 0.54

ItalyPowerDemand 0.01 0.01 0.64 0.81 0.77 0.67 0.79 0.08

LargeKitchenAppliances 0.13 0.02 0.13 0.03 0.17 0.03 0.24 0.03

Libras 0.63 0.54 0.62 0.53 0.63 0.54 0.63 0.54

Lightning2 0.11 0.04 0.11 0.04 0.09 0.07 0.07 0.05

Lightning7 0.54 0.42 0.56 0.44 0.56 0.44 0.57 0.43

Mallat 0.87 0.87 0.88 0.85 0.88 0.83 0.89 0.85

Meat 0.76 0.49 0.67 0.54 0.59 0.51 0.64 0.55

MedicalImages 0.33 0.26 0.27 0.23 0.31 0.25 0.33 0.24

MiddlePhalanxOutlineAgeGroup 0.4 0.39 0.39 0.42 0.38 0.41 0.39 0.43

MiddlePhalanxOutlineCorrect 0.0 0.02 0.0 0.03 0.0 0.02 0.0 0.02

MiddlePhalanxTW 0.41 0.45 0.41 0.46 0.42 0.5 0.42 0.49

MixedShapesRegularTrain 0.56 0.34 0.63 0.49 0.68 0.57 0.7 0.5

MixedShapesSmallTrain 0.55 0.47 0.62 0.52 0.68 0.58 0.69 0.52

MoteStrain 0.09 0.49 0.47 0.58 0.63 0.68 0.68 0.75

NATOPS 0.65 0.44 0.64 0.45 0.64 0.47 0.63 0.51

NonInvasiveFetalECGThorax1 0.7 0.7 0.74 0.71 0.81 0.71 0.82 0.71

OSULeaf 0.29 0.2 0.36 0.18 0.41 0.19 0.43 0.19

OliveOil 0.53 0.49 0.53 0.37 0.58 0.5 0.57 0.49

PenDigits 0.68 0 0.71 0.68 0.73 0.82 0.74 0

PhalangesOutlinesCorrect 0.0 0.02 0.01 0.03 0.01 0.01 0.0 0.01

Phoneme 0.32 0.16 0.29 0.16 0.29 0.16 0.29 0.15

PigAirwayPressure 0.63 0.55 0.62 0.54 0.63 0.54 0.63 0.54

PigArtPressure 0.84 0.63 0.84 0.63 0.83 0.62 0.84 0.62

PigCVP 0.65 0.55 0.67 0.56 0.68 0.56 0.69 0.56

Plane 0.89 0.84 0.89 0.86 0.9 0.85 0.89 0.88

PowerCons 0.43 0.43 0.28 0.32 0.43 0.42 0.59 0.91

ProximalPhalanxOutlineAgeGroup 0.53 0.44 0.49 0.51 0.49 0.52 0.51 0.5

ProximalPhalanxOutlineCorrect 0.08 0.07 0.08 0.1 0.08 0.12 0.08 0.11

ProximalPhalanxTW 0.58 0.57 0.55 0.6 0.55 0.6 0.56 0.6

RacketSports 0.61 0.23 0.61 0.21 0.62 0.23 0.61 0.29

RefrigerationDevices 0.05 0.02 0.05 0.02 0.06 0.02 0.07 0.02

Rock 0.26 0.43 0.25 0.0 0.26 0.0 0.25 0.0

(Continued on next page)
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Table C.1 (continued)
0% 5% 15% 25%

Dataset LDPS DCC CDPS DCC CDPS DCC CDPS DCC

ScreenType 0.02 0.02 0.02 0.03 0.02 0.03 0.01 0.03

SemgHandGenderCh2 0.08 0.13 0.08 0.12 0.1 0.13 0.13 0.14

SemgHandMovementCh2 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.16

ShapeletSim 0.02 0.01 0.04 0.03 0.05 0.02 0.06 0.03

ShapesAll 0.75 0.69 0.75 0.69 0.75 0.68 0.76 0.69

SmallKitchenAppliances 0.24 0.01 0.24 0.01 0.25 0.01 0.26 0.01

SmoothSubspace 0.59 0.47 0.49 0.43 0.67 0.43 0.74 0.5

SonyAIBORobotSurface1 0.69 0.73 0.77 0.83 0.9 0.96 0.91 0.95

SonyAIBORobotSurface2 0.31 0.24 0.63 0.57 0.81 0.79 0.88 0.9

StandWalkJump 0.16 0.05 0.12 0.12 0.13 0.16 0.15 0.14

Strawberry 0.12 0.14 0.49 0.16 0.64 0.17 0.63 0.15

SwedishLeaf 0.66 0.6 0.68 0.55 0.71 0.54 0.73 0.54

Symbols 0.79 0.81 0.85 0.82 0.85 0.85 0.85 0.83

SyntheticControl 0.86 0.58 0.88 0.52 0.86 0.53 0.88 0.57

ToeSegmentation1 0.03 0.01 0.18 0.01 0.63 0.02 0.73 0.04

ToeSegmentation2 0.14 0.02 0.33 0.04 0.47 0.05 0.61 0.06

Trace 0.7 0.54 0.79 0.57 0.85 0.61 0.88 0.6

TwoLeadECG 0.06 0.0 0.92 0.67 1.0 0.54 1.0 0.12

TwoPatterns 0.91 0.02 0.69 0.02 0.76 0.03 0.78 0.04

UMD 0.37 0.37 0.32 0.21 0.41 0.21 0.46 0.23

UWaveGestureLibrary 0.66 0.6 0.64 0.65 0.65 0.64 0.66 0.63

UWaveGestureLibraryAll 0.5 0.72 0.5 0.72 0.66 0.75 0.71 0.71

UWaveGestureLibraryX 0.45 0.48 0.45 0.46 0.49 0.45 0.5 0.44

UWaveGestureLibraryY 0.42 0.44 0.42 0.4 0.44 0.4 0.46 0.38

Wafer 0.0 0.01 0.28 0.84 0.28 0.21 0.32 0.16

Wine 0.01 0.0 0.01 0.01 0.02 0.01 0.02 0.02

WordSynonyms 0.49 0.42 0.45 0.41 0.47 0.41 0.49 0.41

Worms 0.16 0.09 0.1 0.07 0.11 0.07 0.13 0.08

WormsTwoClass 0.03 0.01 0.02 0.02 0.03 0.02 0.04 0.03

Yoga 0.01 0.01 0.0 0.03 0.0 0.0 0.0 0.0
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Table C.2

Inductive NMI results for CDPS on the UCR archive.

0% 5% 15% 25%

Dataset LDPS DCC CDPS DCC CDPS DCC CDPS DCC

ACSF1 0.57 0.31 0.54 0.35 0.55 0.39 0.56 0.35

Adiac 0.73 0.6 0.73 0.59 0.73 0.6 0.73 0.6

ArrowHead 0.25 0.46 0.36 0.48 0.37 0.47 0.42 0.45

ArticularyWordRecognition 0.89 0 0.89 0.89 0.88 0.89 0.88 0.88

AtrialFibrillation 0.16 0 0.17 0.28 0.17 0.25 0.18 0.3

BME 0.52 0.3 0.46 0.35 0.42 0.43 0.47 0.42

BasicMotions 0.88 0 0.87 0.34 0.88 0.29 0.89 0.35

Beef 0.33 0.35 0.33 0.37 0.36 0.39 0.35 0.41

BeetleFly 0.14 0.19 0.17 0.12 0.21 0.1 0.3 0.11

BirdChicken 0.08 0.3 0.09 0.22 0.18 0.33 0.16 0.25

CBF 0.8 0.48 0.78 0.46 0.79 0.43 0.8 0.53

Car 0.27 0.26 0.3 0.28 0.32 0.27 0.36 0.28

Chinatown 0.2 0.01 0.24 0.05 0.34 0.02 0.3 0.07

ChlorineConcentration 0.0 0.01 0.01 0.01 0.01 0.02 0.01 0.02

CinCECGTorso 0.06 0.24 0.15 0.3 0.19 0.33 0.21 0.35

Coffee 0.28 0 0.37 0.64 0.59 0.66 0.77 0.64

Computers 0.05 0.02 0.03 0.02 0.03 0.02 0.02 0.03

Cricket 0.88 0 0.89 0.62 0.89 0.55 0.88 0.6

CricketX 0.37 0.26 0.37 0.27 0.36 0.27 0.39 0.27

CricketY 0.46 0.29 0.44 0.28 0.44 0.29 0.43 0.28

CricketZ 0.37 0.26 0.37 0.26 0.38 0.26 0.39 0.26

Crop 0.49 0.46 0.47 0.56 0.5 0.56 0.52 0.56

DistalPhalanxTW 0.52 0.53 0.52 0.63 0.52 0.65 0.53 0.67

ECG200 0.02 0.2 0.06 0.27 0.16 0.34 0.17 0.43

ECG5000 0.44 0.62 0.55 0.67 0.61 0.76 0.61 0.79

ECGFiveDays 0.04 0.06 0.12 0.19 0.18 0.14 0.39 0.17

EOGHorizontalSignal 0.37 0.43 0.47 0.44 0.48 0.45 0.5 0.44

EOGVerticalSignal 0.39 0.35 0.38 0.39 0.43 0.39 0.44 0.38

Earthquakes 0.06 0.0 0.03 0.01 0.03 0.01 0.03 0.03

ElectricDevices 0.4 0.04 0.4 0.14 0.44 0.14 0.45 0.13

Epilepsy 0.62 0 0.59 0.07 0.61 0.08 0.61 0.07

EthanolConcentration 0.01 0 0.01 0.01 0.01 0.01 0.01 0.01

EthanolLevel 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.01

(Continued on next page)
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Table C.2 (continued)

0% 5% 15% 25%

Dataset LDPS DCC CDPS DCC CDPS DCC CDPS DCC

FaceAll 0.66 0.44 0.65 0.42 0.65 0.43 0.66 0.42

FaceFour 0.6 0 0.59 0.51 0.6 0.54 0.58 0.51

FacesUCR 0.62 0.54 0.58 0.53 0.61 0.54 0.61 0.54

FiftyWords 0.7 0.67 0.7 0.67 0.7 0.66 0.7 0.66

Fish 0.42 0.36 0.46 0.35 0.51 0.35 0.56 0.34

FordA 0.01 0.01 0.32 0.01 0.5 0.01 0.55 0.01

FordB 0.02 0.02 0.26 0.0 0.41 0.01 0.44 0.0

FreezerRegularTrain 0.1 0.27 0.24 0.26 0.63 0.25 0.78 0.25

FreezerSmallTrain 0.1 0.33 0.22 0.35 0.35 0.37 0.38 0.4

Fungi 0.85 1.0 0.85 0.0 0.85 0.0 0.85 0.0

GunPoint 0.0 0.03 0.02 0.13 0.06 0.19 0.17 0.12

GunPointAgeSpan 0.0 0.52 0.0 0.43 0.0 0.43 0.0 0.46

GunPointMaleVersusFemale 0.61 0.15 0.65 0.24 0.82 0.3 0.85 0.73

GunPointOldVersusYoung 0.02 0.07 0.05 0.18 0.12 0.21 0.11 0.34

Ham 0.11 0.05 0.03 0.12 0.07 0.12 0.12 0.21

HandMovementDirection 0.04 0 0.05 0.05 0.05 0.05 0.05 0.06

Handwriting 0.38 0 0.37 0.55 0.37 0.55 0.37 0.54

Haptics 0.09 0.16 0.12 0.14 0.14 0.13 0.14 0.13

Heartbeat 0.01 0 0.01 0.0 0.01 0.0 0.01 0.0

Herring 0.06 0.02 0.04 0.02 0.03 0.02 0.03 0.01

HouseTwenty 0.33 0.26 0.56 0.19 0.66 0.19 0.63 0.25

InlineSkate 0.11 0.23 0.2 0.23 0.19 0.23 0.19 0.21

InsectEPGRegularTrain 0.32 0.28 0.35 0.34 0.42 0.33 0.42 0.37

InsectEPGSmallTrain 0.36 0.18 0.49 0.21 0.49 0.3 0.52 0.24

InsectWingbeatSound 0.24 0.57 0.32 0.58 0.39 0.57 0.42 0.57

ItalyPowerDemand 0.01 0.78 0.06 0.2 0.34 0.21 0.46 0.62

LargeKitchenAppliances 0.14 0.04 0.15 0.06 0.16 0.05 0.26 0.06

Libras 0.65 0 0.65 0.55 0.64 0.54 0.64 0.55

Lightning2 0.19 0.16 0.17 0.04 0.13 0.03 0.09 0.09

Lightning7 0.6 0.44 0.58 0.46 0.58 0.48 0.58 0.47

Mallat 0.89 0.97 0.87 0.93 0.86 0.93 0.87 0.93

Meat 0.74 0.52 0.73 0.63 0.64 0.52 0.62 0.66

MedicalImages 0.34 0.24 0.28 0.26 0.29 0.26 0.31 0.29

MiddlePhalanxOutlineAgeGroup 0.1 0.45 0.43 0.44 0.43 0.46 0.43 0.45

(Continued on next page)
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Table C.2 (continued)

0% 5% 15% 25%

Dataset LDPS DCC CDPS DCC CDPS DCC CDPS DCC

MiddlePhalanxOutlineCorrect 0.07 0.02 0.0 0.03 0.0 0.05 0.0 0.04

MiddlePhalanxTW 0.41 0.47 0.43 0.49 0.43 0.51 0.43 0.53

MixedShapesRegularTrain 0.54 0.42 0.52 0.45 0.61 0.43 0.64 0.47

MixedShapesSmallTrain 0.53 0.5 0.54 0.54 0.58 0.56 0.59 0.55

MoteStrain 0.07 0.28 0.04 0.24 0.14 0.26 0.26 0.32

NATOPS 0.64 0 0.64 0.44 0.64 0.46 0.63 0.51

OSULeaf 0.27 0.24 0.32 0.23 0.34 0.24 0.37 0.25

OliveOil 0.65 0.37 0.57 0.55 0.59 0.56 0.59 0.55

PenDigits 0 0 0 0.7 0 0.82 0 0

PhalangesOutlinesCorrect 0.03 0.05 0.0 0.04 0.0 0.01 0.0 0.01

Phoneme 0.24 0.52 0.23 0.51 0.23 0.51 0.23 0.51

PigAirwayPressure 0.69 0.82 0.83 0.82 0.81 0.82 0.82 0.82

PigArtPressure 0.86 0.83 0.88 0.84 0.87 0.84 0.87 0.84

PigCVP 0.74 0.81 0.83 0.8 0.83 0.8 0.84 0.8

Plane 0.87 0.82 0.88 0.84 0.89 0.85 0.89 0.86

PowerCons 0.32 0.48 0.28 0.31 0.34 0.29 0.43 0.36

ProximalPhalanxOutlineAgeGroup 0.51 0.46 0.51 0.45 0.49 0.47 0.51 0.46

ProximalPhalanxOutlineCorrect 0.14 0.05 0.05 0.08 0.06 0.1 0.07 0.09

ProximalPhalanxTW 0.57 0.5 0.55 0.62 0.57 0.64 0.56 0.66

RacketSports 0.48 0 0.51 0.29 0.49 0.27 0.53 0.31

RefrigerationDevices 0.06 0.04 0.04 0.03 0.06 0.02 0.07 0.03

Rock 0.31 0.24 0.33 0.0 0.31 0.0 0.32 0.0

ScreenType 0.02 0.04 0.02 0.05 0.02 0.04 0.01 0.05

SemgHandGenderCh2 0.07 0.14 0.09 0.14 0.11 0.2 0.14 0.26

SemgHandMovementCh2 0.17 0.2 0.19 0.23 0.19 0.22 0.2 0.22

ShapeletSim 0.65 0.07 0.04 0.06 0.06 0.07 0.08 0.06

ShapesAll 0.76 0.72 0.76 0.73 0.77 0.73 0.77 0.73

SmallKitchenAppliances 0.3 0.01 0.2 0.01 0.2 0.02 0.2 0.01

SmoothSubspace 0.47 0.43 0.5 0.42 0.68 0.45 0.71 0.42

SonyAIBORobotSurface1 0.35 0.1 0.34 0.23 0.42 0.26 0.46 0.21

SonyAIBORobotSurface2 0.26 0.3 0.36 0.46 0.39 0.47 0.49 0.35

StandWalkJump 0.21 0 0.18 0.19 0.17 0.26 0.17 0.23

Strawberry 0.1 0.14 0.33 0.16 0.62 0.18 0.62 0.17

SwedishLeaf 0.67 0.59 0.69 0.54 0.71 0.52 0.72 0.52

(Continued on next page)
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Table C.2 (continued)

0% 5% 15% 25%

Dataset LDPS DCC CDPS DCC CDPS DCC CDPS DCC

Symbols 0.83 0.78 0.83 0.8 0.84 0.8 0.84 0.81

SyntheticControl 0.82 0.54 0.86 0.55 0.87 0.54 0.87 0.58

ToeSegmentation1 0.09 0.03 0.05 0.02 0.16 0.03 0.32 0.04

ToeSegmentation2 0.44 0.01 0.51 0.01 0.59 0.03 0.66 0.01

Trace 0.74 0.56 0.73 0.59 0.8 0.62 0.83 0.63

TwoLeadECG 0.07 0.09 0.08 0.23 0.16 0.17 0.31 0.14

TwoPatterns 0.88 0.06 0.74 0.03 0.69 0.04 0.71 0.06

UMD 0.32 0.24 0.34 0.28 0.35 0.28 0.34 0.29

UWaveGestureLibrary 0.61 0 0.64 0.71 0.63 0.71 0.64 0.69

UWaveGestureLibraryAll 0.5 0.68 0.41 0.71 0.52 0.72 0.59 0.75

UWaveGestureLibraryX 0.45 0.47 0.43 0.46 0.46 0.46 0.46 0.47

UWaveGestureLibraryY 0.42 0.45 0.4 0.45 0.42 0.44 0.44 0.4

Wafer 0.0 0.01 0.01 0.16 0.04 0.78 0.05 0.32

Wine 0.0 0.09 0.02 0.07 0.02 0.07 0.03 0.07

WordSynonyms 0.5 0.5 0.51 0.52 0.53 0.52 0.54 0.5

Worms 0.18 0.09 0.11 0.09 0.11 0.1 0.12 0.1

WormsTwoClass 0.0 0.01 0.02 0.02 0.02 0.03 0.03 0.03

Yoga 0.0 0.01 0.0 0.01 0.0 0.04 0.01 0.03
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Summary

Time-series clustering is a challenging task that requires tailored similarity measures to effectively an-
alyze and interpret data. Moreover, the algorithm outputs can be hard to interpret. To address this,
experts can provide prior knowledge using instance-level constraints, which guide the algorithm and
align results with the expert’s needs. However, incorporating this in the clustering process introduces
the challenge of assessing the informativeness and coherence of the constraints. Furthermore, inte-
grating explanation techniques with the constrained clustering paradigm remains an open issue. In
this work, we first develop a constraint-based representation for time series that leverages elastic mea-
sure properties, specifically Dynamic Time Warping (DTW), using shapelets and the shapelet trans-
form. Our approach aims to learn a metric space where constraint properties can be calculated, and
the distance between objects approximates the DTW (Dynamic Time Warping) similarity measure.
Second, we develop different approaches to provide explanations for time-series clustering results by
using shapelets representations. As such, the new representation enhances clustering performance
while facilitating an explanation of the results.
Keywords: Learning Shapelets, constrained clustering, Time Series, explaining clustering, time se-
ries transformation

Résumé

Le regroupement de séries temporelles est une tâche complexe qui nécessite des mesures de similarité
sur mesure pour analyser et interpréter efficacement les données. De plus, les sorties des algorithmes
peuvent être difficiles à interpréter. Pour remédier à cela, les experts peuvent fournir des connais-
sances préalables en utilisant des contraintes au niveau des instances, qui guident l’algorithme et alig-
nent les résultats sur les besoins de l’expert. Cependant, incorporer cela dans le processus de regroupe-
ment introduit le défi d’évaluer l’informativité et la cohérence des contraintes. De plus, l’intégration
de techniques d’explication avec le paradigme de regroupement contraint reste une question ouverte.
Dans ce travail, nous développons d’abord une représentation basée sur des contraintes pour les séries
temporelles qui exploite les propriétés de mesure élastique, en particulier la Dynamic Time Warping
(DTW), en utilisant des shapelets et la transformation des shapelets. Notre approche vise à appren-
dre un espace métrique où les propriétés des contraintes peuvent être calculées, et la distance entre
les objets approxime la mesure de similarité DTW (Dynamic Time Warping). Deuxièmement, nous
développons différentes approches pour fournir des explications pour les résultats du regroupement
de séries temporelles en utilisant des représentations de shapelets. Ainsi, la nouvelle représentation
améliore les performances du regroupement tout en facilitant l’explication des résultats.
Keywords: Learning Shapelets, clustering sur contraint, séries temporelles, explication du cluster-
ing, transformation de séries temporelles.
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