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Résumé

Le principe de Mazur donne un critère selon lequel une représentation galoisienne
irréductible mod ` provenant d’une forme modulaire de niveau Np (avec p premier
par rapport à N) peut également provenir d’une forme modulaire de niveau N . Dans
cette thèse nous démontrons un résultat analogue montrant que une représentation
galoisienne mod ` provenant d’une représentation automorphe cuspidale stable du
groupe de similitude unitaire G = GU(1, 2) qui est Steinberg en un nombre premier
inerte p peut également provenir d’une représentation automorphe de G qui est non
ramifiée en p.
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Abstract

Mazur’s principle gives a criterion under which an irreducible mod ` Galois re-
presentation arising from a modular form of level Np (with p prime to N) can also
arise from a modular form of level N. We prove an analogous result showing that
a mod ` Galois representation arising from a stable cuspidal automorphic represen-
tation of the unitary similitude group G = GU(1, 2) which is Steinberg at an inert
prime p can also arise from an automorphic representation of G that is unramified
at p.
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Chapitre 0

Introduction

Le théorème de diminution du niveau est un résultat profond dans le domaine
de la théorie des nombres, et plus précisément dans la théorie des représentations
galoisiennes et les formes modulaires. Ce théorème, établi par Kenneth Ribet en
1986, a joué un rôle central dans la démonstration du dernier théorème de Fermat
par Andrew Wiles en 1994.

Le dernier théorème de Fermat stipule qu’il n’existe pas de solutions entières non
triviales pour l’équation

an + bn = cn

pour n > 2. Ce théorème est resté sans preuve pendant plus de trois siècles après
sa proposition par Pierre de Fermat en 1637. Il est facile de voir que le problème se
ramène au cas où n = ` est un nombre premier plus grand que 3. En 1984, Gerhard
Frey a démontré que si une telle solution existait, il serait possible de construire une
courbe elliptique semi-stable sur Q

y2 = x(x− a`)(x+ b`)

appelée la courbe de Frey telle qu’il ait une mauvaise réduction exactment en les
nombres premiers p qui divisent le produit abc et sa représentation galoisienne mod `
satisfasse des propriétés de ramification très particulières. C’est à ce moment-là que
le théorème de diminution de niveau entre en jeu. Ce théorème, s’appuyant sur les
travaux de Jean-Pierre Serre ([Ser87b,Ser87a]), est établi par Ribet. Il est également
connu dans la littérature sous le nom du principe de Mazur.

Theorem 0.0.1. [Rib90, Theorem 1.1] Soit N un entier positif et p, ` des nombres
premiers distincts tels que ` soit impair et (p,N) = 1. Soit f une nouvelle forme
de poids 2 et de niveau Np et ρf,` la représentation galoisienne résiduelle mod `
attachée à f . Supposons que

1. ρf,` soit absolument irréductible ;
2. ρf,` soit non ramifiée en p ;
3. p 6≡ 1 mod `.

Alors il existe une nouvelle forme g de poids 2 et de niveau N telle que ρf,` ∼= ρg,`.

L’importance de ce théorème réside dans le fait qu’il a permis de réduire la
preuve du dernier théorème de Fermat à la conjecture de Shimura-Taniyama-Weil,
qui prétend que la représentation galoisienne mod ` de toute courbe elliptique sur

1



CHAPITRE 0. INTRODUCTION

Q provient d’une forme modulaire de poids 2. En effet, si la conjecture de Shimura-
Taniyama-Weil pour les courbes elliptiques est vraie, alors le théorème 0.0.1 nous
permettra de montrer que la représentation galoisienne mod ` attachée à la courbe de
Frey provient d’une forme modulaire de poids 2 et de niveau 2. Cependant, une telle
forme modulaire n’existe pas, ce qui conduit à une contradiction. Cette découverte
a conduit Andrew Wiles à démontrer le dernier théorème de Fermat en prouvant la
conjecture de Shimura-Taniyama-Weil pour les courbes elliptiques semi-stables.

Nous revenons à la démonstration du théorème 0.0.1. Ribet a incorporé la re-
présentation galoisienne donnée dans un module de torsion de la jacobienne d’une
courbe modulaire. Une étape clé est d’analyser l’action de Frobenius sur la partie
torique de la jacobienne. L’hypothèse p 6≡ 1 mod ` a été éliminée par Ribet dans
un travail ultérieur ([Rib91]), où il a choisi un autre nombre premier q tel que
q 6≡ 1 mod ` et a transféré la forme modulaire donnée à celle attachée à l’algèbre de
quaternions indéfinie ramifiée en pq par la correspondance de Jacquet-Langlands.
Ensuite, le soi-disant "astuce de commutation (p, q)" lui permet de diminuer le ni-
veau à p tout en utilisant le principe de Mazur pour diminuer le niveau à q. Pour
une explication plus détaillée de la méthode de Ribet, voir [Wan22].

Plus tard, Jarvis ([Jar99]) et Rajaei ([Raj01]) ont démontré des résultats simi-
laires sur la diminution du niveau des représentations galoisiennes attachées à des
courbes de Shimura sur des corps totalement réels, après une avancée majeure de
Carayol dans [Car86]. La géométrie de la mauvaise réduction de la courbe de Shi-
mura combinée à un calcul explicite des cycles évanescents révèle que le groupe des
composantes de la jacobienne de la courbe de Shimura est Eisensteinien. Dans la
même veine, van Hoften ([vH21]) et Wang ([Wan22]) ont étudié la diminution de
niveau pour les variétés modulaires de Siegel de niveau paramodulaire sous diffé-
rentes hypothèses techniques. Pour le groupe de similitude unitaire de signature
(1,2), Helm a prouvé la diminution du niveau en une place scindée dans l’extension
quadratique imaginaire sur un corps totalement réel dans [Hel06]. Boyer a traité le
cas des variétés de Shimura unitaires de type Kottwitz-Harris-Taylor dans [Boy19].

Cette thèse est divisée en trois parties. Dans la première partie, nous présentons
une preuve concise du théorème 0.0.1 afin d’illustrer notre méthode. Nous commen-
cons par rappeler les notions de base, notamment les formes modulaires, les algèbres
de Hecke, la représentation galoisienne et la suite spectrale de poids. Ensuite, nous
présentons la géométrie de la fibre spéciale mod p des courbes modulaires de ni-
veau Np, qui consiste en deux copies de la fibre spéciale de niveau N se coupant
transversalement au lieu supersingulier. Nous réalisons ρf,` dans le premier groupe
de cohomologie étale de la fibre générique de la courbe modulaire de niveau Np, sur
lequel existe une filtration donnée par la suite spectrale de poids. Finalement, nous
adaptons l’argument classique et concluons en utilisant l’involution d’Atkin-Lehner
qui a la même action que le Frobenius sur le lieu supersingulier.

Dans la deuxième partie, nous traitons de la diminution du niveau pour le groupe
de similitude unitaire de signature (1,2). Soit F une extension quadratique imagi-
naire sur Q et G := GU(1, 2) le groupe de similitude unitaire quasi-déployé cor-
respondant de signature (1,2). Fixons un nombre premier p inerte dans F et un
sous-groupe compact ouvert Kp de G(A∞,p), où A∞,p est l’anneau des adèles finis
en dehors de p. Soit Kp ⊂ G(Qp) un sous-groupe hyperspécial, et Iwp ⊂ Kp un
sous-groupe Iwahori. Soit S (resp. S0(p)) le modèle intégral de la variété de Shimura
2



CHAPITRE 0. INTRODUCTION

attachée à G de niveau KpKp (resp. KpIwp). Le théorème principal est le suivant :

Theorem 0.0.2. Soit π une représentation cuspidale automorphe stable de G(A)
cohomologique à coefficient trivial. Fixons un nombre premier ` 6= p. Soit m l’idéal
maximal mod ` de l’algèbre de Hecke sphérique attachée à π. Soit ρπ,` la représen-
tation galoisienne mod ` attachée à π. Supposons que

1. (π∞,p)Kp 6= 0;
2. πp est la représentation de Steinberg de Gp tordue par un caractère non ra-

mifié ;
3. si i 6= 2 alors Hi(S ⊗ F ac,F`)m = 0;
4. ρπ,` est absolument irréductible ;
5. ρπ,` est non ramifiée en p ;
6. ` - (p− 1)(p3 + 1).

Alors il existe une représentation automorphe cuspidale π̃ de G(A) telle que
(π̃∞)KpKp 6= 0 et ρπ̃,` ∼= ρπ,`.

Nous adaptons la stratégie de Ribet. Étant donné que la jacobienne n’est pas
disponible pour les surfaces de Shimura, inspirés par Helm, nous utilisons la suite
spectrale de poids-monodromie pour analyser les analogues du groupe de compo-
santes de la jacobienne de S et S0(p). Pour ce faire, nous avons besoin d’une étude
détaillée de la géométrie des fibres spéciales. La surface S ⊗ Fp2 a été étudiée par
Wedhorn dans [Wed01] et Vollaard dans [Vol10]. Ils ont montré que le lieu supersin-
gulier est constitué de composantes géométriques irréductibles qui sont des courbes
de Fermat de degré p+1 s’intersectant transversalement en des points superspéciaux.
Le complément du lieu supersingulier est le lieu µ-ordinaire qui est dense.

La géométrie de S0(p) est plus compliquée. L’étude des modèles locaux dans
[Bel02] implique que S0(p) a une réduction semi-stable en p. Nous définissons trois
strates fermées Y0, Y1, Y2 dans S0(p)⊗Fp2 . Nous montrons qu’elles sont toutes lisses
et que leur union est S0(p) ⊗ Fp2 . Nous étudions en outre les relations entre ces
strates et S⊗Fp2 . En particulier, Y0 est isomorphe au éclatement de S⊗Fp2 le long
des points superspéciaux ; Y1 admet un morphisme purement inséparable vers Y0 ;
et Y2 est un fibré en P1 sur la normalisation du lieu supersingulier de S ⊗ Fp2 qui
est géométriquement une union disjointe de courbes de Fermat. Les intersections
deux à deux Yi ∩ Yj sont transversales et paramétrées par des variétés de Shimura
discrètes attachées à G′, où G′ est la forme intérieure unique de G qui coïncide avec
G à tous les places finies et est compacte modulo le centre à l’infini. Cela peut être
vu comme une incarnation géométrique du transfert de Jacquet-Langlands. De plus,
nous montrons que les points géométriques de Y0 ∩ Y1 ∩ Y2 sont en bijection avec
la variété de Shimura discrète attachée à G′ de niveau KpIwp. Tous les morphismes
sont équivariants sous la correspondance de Hecke première à p, et définis sur Fp2 ,
donc compatibles avec l’action de Frobenius en prenant la fibre géométrique. Le
résultat ressemble à ceux de [dSG18] et [Vol10], mais est adapté aux applications
arithmétiques en préservant l’équivariance de Hecke et la structure schématique.

Par la formule de Matsushima, la représentation automorphe π donnée contri-
bue à la cohomologie d’intersection de la compactification de Baily-Borel de S0(p).
Heureusement, nous pouvons ignorer la compactification car la cohomologie du bord

3



CHAPITRE 0. INTRODUCTION

de la compactification de Baily-Borel s’annule lorsque on a localise à m par l’irré-
ductibilité de la représentation résiduelle galoisienne. Nous écrivons ensuite la suite
spectrale monodromie-poids pour la surface S0(p).

Nous sommes prêts à prouver le théorème 0.0.2 par l’absurde. Si le niveau ne peut
pas être abaissé, l’hypothèse (3) dans le théorème 0.0.2 éliminerait la possibilité que π
apparaisse dans la cohomologie étale de S⊗Fac

p . La suite spectrale monodromie-poids
se dégénèrerait à la première page et donnerait lieu à une filtration de H2(S0(p) ⊗
F ac,F`)m dont les pièces graduées sont données par les groupes de cohomologie de
Y0 ∩ Y1 ∩ Y2. La condition non ramifiée sur la représentation galoisienne résiduelle
forcerait ρπ,` à vivre dans la cohomologie étale de (Y0∩Y1∩Y2)⊗Fac

p . Nous trouvons
alors une contradiction en étudiant les valeurs propres généralisées de l’action de
Frobenius.

Dans la troisième partie de ma thèse, je présente un résultat selon lequel la
cohomologie étale de la fibre générique de la surface modulaire de Picard, localisée
en un idéal maximal approprié, s’annule en dehors du degré intermédiaire 2. La
preuve repose sur le choix d’un nombre premier q inert tel que la surface modulaire
de Picard ait une bonne réduction en q, ce qui nous permet de relier la question à
l’annulation de la cohomologie de la fibre spéciale en q. Nous utilisons le fait que
le lieu ordinaire de la compactification minimale est affine, ainsi que la séquence
spectrale de Deligne sur le diviseur à croisements normaux. Gardons la notation
ci-dessus du théorème 0.0.2. Le résultat principal est le suivant :

Theorem 0.0.3. Soit π une représentation automorphe cuspidale stable de G(A)
cohomologique à coefficient trivial. Soit ` un nombre premier. Soit m l’idéal maximal
mod ` de l’algèbre de Hecke sphérique attachée à π et ρm la représentation galoisienne
résiduelle attachée à m. Supposons que ρm soit absolument irréductible et qu’il existe
un nombre premier q 6= ` tel que

1. q est inerte dans F ;
2. ` - (q − 1)(q3 + 1);
3. Kq est hyperspécial ;
4. ρm(Frobq) n’est pas conjugué à une matrice de la forme diag(−νq, ν,−νq−1)

ou diag(νq2, ν, νq−2) pour un certain ν ∈ Fac,×
` .

Alors
Hi(S ⊗Qac,Fac

` )m = 0

pour i 6= 2.

En conséquence, le théorème 0.0.3 nous permet de supprimer la condition (3)
dans le théorème 0.0.2, en admettant un condition faible sur la représentation ga-
loisienne.

4



Chapitre 1

Level lowering of modular forms

1.1 Preliminaries
Level lowering was proposed by Serre [Ser87b, Ser87a] and proven by Mazur

and Ribet [Rib90] in the setting of modular forms, which is a key step in deducing
Fermat’s Last theorem from the Shimura-Taniyama-Weil conjecture. To demonstrate
our method, we will prove a level lowering theorem of modular forms, using the same
strategy that will be employed later on. For a positive integer N , define principal
congruence subgroups of SL2(Z) :

Γ0(N) =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡
[
∗ ∗
0 ∗

]
mod N

}
,

Γ1(N) =
{[

a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡
[

1 ∗
0 1

]
mod N

}

and Γ1(M,N) := Γ1(M) ∩ Γ0(N). Define

H+ := {τ ∈ C : im(τ) > 0}, H− := {τ ∈ C : im(τ) < 0}, H± = H+ t H+.

For γ =
[
a b
c d

]
∈ GL+

2 (Q) and τ ∈ H±, define

γ(τ) = aτ + b

cτ + d
, j(γ, τ) = cτ + d.

Moreover, for any integer k, define the weight-k operator [γ]k on functions f : H± →
C by

(f [γ]k)(τ) = j(γ, τ)−kf(γ(τ)), τ ∈ H±.

Definition 1.1.1. Let k, r,N be integers. Suppose that (r,N) = 1. A function f :
H+ → C is a modular form of weight k and level Γ1(r,N) if

1. f is holomorphic on H+,
2. f is weight-k invariant under Γ1(r,N), that is

f [γ]k = f, γ ∈ Γ1(r,N).
5



CHAPITRE 1. LEVEL LOWERING OF MODULAR FORMS

In particular, for γ =
(

1 1
0 1

)
, we have f(τ + 1) = f(τ), thus f admits a

Fourier expansion

f(τ) =
∞∑

n=−∞
anq

n, q = e2πiτ .

3. f [γ]k is holomorphic at ∞ for all γ ∈ SL2(Z), that is, an of f [γ]k vanishes
for n < 0.

If in addition, a0 of f [γ]k vanishes for all γ ∈ SL2(Z), then f is a cusp form of
weight k and level Γ1(r,N). The C-vector space of modular forms (resp. cusp forms)
of weight k and level Γ1(r,N) is finite-dimensional, denoted by Mk(Γ1(r,N)) (resp.
Sk(Γ1(r,N))).

There is a well-defined Petersson inner product

〈 , 〉Γ1(r,N) : Sk(Γ1(r,N))× Sk(Γ1(r,N)) −→ C

given by
〈f, g〉Γ1(r,N) = 1

VΓ1(r,N)

∫
Γ1(r,N)\H+

f(τ)g(τ)(Im(τ))kdµ(τ)

where dµ is the hyperbolic measure and VΓ1(r,N) is the volume of Γ1(r,N)\H+.

1.1.1 Hecke operators on the modular forms
For α ∈ GL+

2 (Q) we have a decomposition of the double coset

Γ1(r,N)αΓ1(r,N) =
∐
j

Γ1(r,N)βj

where j runs over a finite set. For an integer k, we can define the weight-k Hecke
operator

[Γ1(r,N)αΓ1(r,N)]k : Sk(Γ1(r,N))→ Sk(Γ1(r,N))
f 7→

∑
j

f [βj]k.

The definition does not depend on the choice of βj’s. In particular, for d ∈ (Z/rZ)∗,
we have a well-defined diamond operator

〈d〉 := [Γ1(r,N)
(
a b
c δ

)
Γ1(r,N)]k

where
(
a b
c δ

)
∈ Γ0(r) ∩ Γ0(N) ∼= Γ0(rN) such that d ≡ δ mod r. For a prime

number p, we can also define

Tp := [Γ1(r,N)
(

1 0
0 p

)
Γ1(r,N)]k.

All these operators commute with each other. We say f ∈ Sk(Γ1(r,N)) is an eigen-
form of weight k and level Γ1(r,N) if f is an eigenvector for all diamond operators
and Tp with (p,N) = 1 and a1 = 1.
6 1.1. PRELIMINARIES
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1.1.2 Hecke algebra
Let TNk,r,N be the Z-subalgebra of End(Sk(Γ1(r,N))generated by all Tp for all

prime numbers p prime to N and 〈d〉 for d ∈ (Z/rZ)∗. Then TNk,r,N is a commutative
Z-algebra of finite type.

Let A be a unitary commutative ring. An eigenform f = ∑∞
n≥0 anq

n of weight
k and level Γ1(r,N) with Fourier coefficients in A gives rise to a homomorphism
θf : TrNk,r,N → A sending Tp to ap for all prime numbers p not dividing N.

1.1.3 Two subspaces of Sk(Γ1(r, pN))
Let p be a prime number not dividingN . There are two ways to embed Sk(Γ1(r,N))

into Sk(Γ1(r, pN)) :

Sk(Γ1(r,N))→ Sk(Γ1(r, pN))
ip : f 7→ f

αp : f 7→ f

[(
p 0
0 1

)]
k

: τ 7→ pk−1f(pτ).

Define the subspaces

Sk(Γ1(r, pN))p−old := ipSk(Γ1(r,N)) + αpSk(Γ1(r,N)).

We then can define the subspace Sk(Γ1(r, pN))p−new to be the orthogonal comple-
ment of Sk(Γ1(r, pN))p−old under the Petersson inner product.

Remark 1.1.2. TpNk,r,pN preserves Sk(Γ1(r, pN))p−old and Sk(Γ1(r, pN))p−new. Denote
by TN,p−old

k,r,pN and TpN,p−new
k,r,pN the restriction of TpNk,r,pN to EndC(Sk(Γ1(r, pN))p−old) and

EndC(Sk(Γ1(r, pN))p−new). Then TpN,p−old
k,r,pN and TpN,p−new

k,r,pN are quotients of TpNk,r,pN .
Moreover, TpN,p−old

k,r,pN is isomorphic to TNk,r,N .

1.2 Modular curve
Let r ≥ 4 be a positive integer and N be a prime number coprime to r. Let

H
+ := H+ ∪Q∪{∞} be the compactification of H. We can then define the complex

modular curve

Y1(r,N)C := Γ1(r,N)\H+, X1(r,N)C := Γ1(r,N)\H+
.

One gets X1(r,N)C by adding a finite number of points called cusps to Y1(r,N)C.
Since X1(r,N)C is naturally a compact Riemann surface, it is a projective variety
over C. Let Ω1 be the sheaf of differential 1-forms on X1(r,N)C.We have a canonical
isomorphism

S2(Γ1(r,N))→ H0(X1(r,N)C,Ω
1)

f → fdz.

1.2. MODULAR CURVE 7
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1.2.1 Integral model
To facilitate arithmetic applications, we shall use adèlic language to express

Y1(r,N)C. Let A∞ be the finite adèle over Q. Let Ẑ = lim←−n Z/nZ. Define open
compact subgroups of GL2(A∞)

K1(r) :=
{
g ∈ GL2(Ẑ) | g ≡

(
∗ ∗
0 1

)
mod r

}
,

K0(N) :=
{
g ∈ GL2(Ẑ) | g ≡

(
∗ ∗
0 ∗

)
mod N

}
andK1(r,N) := K1(r)∩K0(N). By [Mil03, Lemma 2.3],Q×\{±}×A∞,×/ det(K1(r,N))
is finite and discrete where {±} = {+,−} is a discrete two-element set, Q× acts on
both sets on the left, and det(K1(r,N)) acts on A∞,× on the right.

Proposition 1.2.1. [Mil03, proposition 2.7] We have SL2(Q)∩K1(r,N) = Γ1(r,N)
and a bijection

Y1(r,N)C ∼= GL2(Q)\H± ×GL2(A∞)/K1(r,N).

Define the moduli problem

Definition 1.2.2. For a Z[1/rN ]-algebra R, Y1(r,N)(R) is the isomorphism classes
of (E,CN), where E is an elliptic curve over R, Pr is a point of exact order r of E,
and CN is a cyclic subgroups of E of order N.

Deligne and Rapoport in [DR73], Katz and Mazur in [KM85] showed that the
moduli problem Y1(r,N) is represented by a smooth affine curve over Z[1/rN ], still
denoted by Y1(r,N), such that we have an isomorphism of complex varieties

Y1(r,N)(C) ∼= GL2(Q)\H± ×GL2(A∞)/K1(r,N) ∼= Y1(r,N)C.

Remark 1.2.3. For a prime number p not dividing rN, we can replace CpN by a
pair (Cp, CN) of cyclic subgroups of order p and N, respectively.

There are two natural maps

Y1(r, pN)
π1

xx

π2

''
Y1(r,N) Y1(tr,N)

defined by the following : for a Z[1/rpN ]-algebraR and (E,Pr, CN , Cp) ∈ Y1(r, pN)(R),
we have

π1 : (E,Pr, CN , Cp) 7→ (E,Pr, CN),
π2 : (E,Pr, CN , Cp) 7→ (E/Cp, Pr mod Cp, CN mod Cp).

These morphisms extend in a unique way to morphisms from X1(r, pN) to X1(r,N).
The Hecke action Tp on the cohomology is defined as the composition

Tp : H0(X1(r,N)C,Ω
1
X1(r,N)C) π∗2−→ H0(X1(r, pN)C,Ω

1
X1(r,pN)C)
π1,!−−→ H0(X1(r,N)C,Ω

1
X1(r,N)C)

8 1.2. MODULAR CURVE
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induced by
π∗2ΩX1(r,N)C → ΩX1(r,pN)C

∼= π!
1Ω1

X1(r,N)C .

We can then verify that the two definitions of Tp coincide, in the sense that the
following diagram commutes :

H0(X1(r,N)C,Ω1
X1(r,N)C

) Tp //

∼=
��

H0(X1(r,N)C,Ω1
X1(r,N)C

)
∼=
��

S2(Γ1(r,N)) Tp // S2(Γ1(r,N))

Remark 1.2.4. In general, for g ∈ GL2(A∞) and K a neat open compact subgroup
of GL2(A∞), define

ShK := GL2(Q)\H± ×GL2(A∞)/K.

We have a correspondence

ShK∩gKg−1

π1

yy

π2

%%
ShK ShK

where π1 is induced by the natural injection K ∩ gKg−1 → K and π2 is given by
[x, a] 7→ [x, ag] for (x, a) ∈ H± × GL2(A∞). The correspondence induces an action
on the cohomology

g : Hi(ShK ,F`)
π∗2 // Hi(ShK∩gKg−1 ,F`)

π1,! // Hi(ShK ,F`)

In particular, recall that

Y1(r, pN)(C) ∼= GL2(Q)\H± ×GL2(A∞)/K1(r, pN),
Y1(r,N)(C) ∼= GL2(Q)\H± ×GL2(A∞)/K1(r,N),

and notice that K1(r, pN) = K1(r,N) ∩ gK1(r,N)g−1 with g ∈ GL2(A∞) such that
gp = diag(p−1, 1) and gp′ = id for p′ 6= p. Then we see that g induces a correspon-
dence over C and an action on Hi(Y1(r,N)C,F`) which coincides with the action of
Tp.

For d ∈ (Z/rZ)∗, the diamond operator 〈d〉 is induced by the action on Y1(r, pN),
still denoted by 〈d〉 :

〈d〉 : Y1(r, pN)→ Y1(r, pN)
(E,Pr, CN , Cp) 7→ (E, dPr, CN , Cp).

We also have the Atkin-Lehner involution wp on Y1(r, pN) :

wp : Y1(r, pN)→ Y1(r, pN) (1.1)
(E,Pr, CN , Cp) 7→ (E/Cp, Pr mod Cp, CN mod Cp, E[p]/Cp) (1.2)

such that π2 = π1 ◦ wp and w2
p = 〈p〉. In the adèlic language, wp corresponds to

g ∈ GL2(A∞) where gp′ = id for p′ 6= p and gp =
(

0 1
−p 0

)
.

1.2. MODULAR CURVE 9
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1.2.2 Geometry of the special fiber
The integral model Y1(r,N) has good reduction modulo p and Y1(r, pN) has se-

mistable reduction modulo p. Consider the special fiber Y1(r,N)Fp and Y1(r, pN)Fp .
We have two closed immersions Φ1,Φ2 : Y1(r,N)Fp → Y1(r, pN)Fp defined as fol-
lows : for an Fp-algebra R and (E,CN) ∈ Y1(r,N)Fp(R),

Φ1(E,Pr, CN) = (E,Pr, CN , kerF ), Φ2(E,Pr, CN) = (E(p), FPr, FCN , kerV ),

where F : E → E(p) is the relative Frobenius and V : E(p) → E is the Verschiebung
satisfying FV = p, V F = p.

To summarize we have the following diagram

Y1(r,N)Fp
Φ1

''

Y1(r,N)Fp
Φ2

ww
Y1(r, pN)Fp

π1

ww

π2

''
Y1(r,N)Fp Y1(r,N)Fp .

such that

Φ2 = wpΦ1, π2 = π1wp, π1Φ1 = id, π2Φ2 = 〈p〉, π1Φ2 = π2Φ1 = F.

Then we can show that

Y1(r, pN)Fp = imΦ1 ∪ imΦ2.

Moreover, the intersection imΦ1 ∩ imΦ2 is the supersingular locus Y1(r, pN)ss where
the elliptic curve E is supersingular (i.e., E(Fac

p )[p] = 0).

1.3 Galois representation
Keep the notation of Section 1.1.2. Let N be a positive integer, p, `, r be distinct

prime numbers such that (p, rN`) = 1. Let f = ∑
n≥1 anq

n be an eigenform of
weight k and level Γ1(r,N). Let T := TN2,r,N to be the prime-to-N Hecke algebra.
Let Kf = Q({an}) be the field generated by an’s with (n,N) = 1. One can show
that Kf is a finite extension over Q, and an ∈ Of for (n,N) = 1 where Of is the
ring of integers of Kf . Let λ be a place of Kf over ` and Of,λ be the completion of
Of with respect to λ. By Section 1.1.2 we then have a homomorphism θf : T→ Kf .
Then θf factors through Of . Define

m := ker(T
θf // Of,λ

// Of,λ/λ).

Eichler-Shimura and Deligne showed the existence of a semisimple mod ` Galois
representation attached to f

ρm = ρf,` : Gal(Qac/Q)→ GL2(T/m)
10 1.3. GALOIS REPRESENTATION
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such that for prime numbers p not dividing rN`, ρm is unramified at p and

Tr ρm(Frobp) = Tp mod m, det ρm(Frobp) = 〈p〉pk−1 mod m.

Now we discuss Galois representations with values in a complete local ring. The
Hecke algebra T⊗Z` is a semi-local complete Z`-algebra thus admits a decomposition

T⊗Z Z` ∼=
∏
i

Tmi (1.3)

where the product is over a finite number of maximal ideals mi of T such that T/mi

is of characteristique `, and Tmi is the localization of T with respect to mi. Carayol
showed the existence of Galois representations taking value in a complete local ring :

Proposition 1.3.1. [Car94, Theorem 3] Suppose ρm is absolutely irreducible. Then
there exists a continuous representation

ρm : Gal(Qac/Q)→ GL2(Tm)

such that for all prime numbers p not dividing rN`, ρm is unramified and satisfies
the relations

Tr ρm(Frobp) = θf (Tp), det ρm(Frobp) = 〈p〉pk−1.

By reduction over m we recover the residual Galois representation defined above

ρm : Gal(Qac/Q)→ GL2(Tm)→ GL2(Tm/mTm).

1.4 Level lowering
We can state a variant of level lowering theorem proved by Mazur and written

down by Ribet. We set the weight k = 2 so that we only need constant sheaves on
the modular curves. Keep the notation of Section 1.3 replacing N by pN.

Theorem 1.4.1. [Rib90, Theorem 1.1] Let N be a positive integer and r, p, ` be dis-
tinct prime numbers such that ` is odd and (p, rN`) = 1. Let f ∈ S2(Γ1(r, pN))p−new

be an eigenform of weight 2 and level Γ1(r, pN). Let m ⊂ T := TpN2,r,pN be the prime-to-
pN maximal ideal attached to f and ρm be the mod ` residual Galois representation.
Suppose that

1. ρm is absolutely irreducible ;
2. ρm is unramified at p ;
3. p 6≡ ±1 mod `.

Then there exists an eigenform g of weight 2 and level Γ1(r,N) such that ρf,` ∼= ρg,`.

To prove Theorem 1.4.1, by [DS74, Lemme 6.11], it suffices to show the following
theorem

Theorem 1.4.2. Suppose that (p,N) = 1, (`, pN) = 1 and p 6≡ 1 mod `. Suppose
also that ρm is absolutely irreducible and unramified at p. Then θf : T → OL,λ/λ
factors through Tp−old, which is the image of T in End(S2(Γ1(r, pN))p−old.

1.4. LEVEL LOWERING 11
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In other words, we look for a morphism Tp−old → Of,λ/λOf,λ such that the
following diagram commute

T // //

����

Tp−new // Of,λ

��
Tp−old // Of,λ/λOf,λ

where Tp−new := TpN,p−new
2,r,pN . We need to realize the given Galois representation ρm in

the cohomology of modular curves. Define the parabolic cohomology

H1
p(Y1(r, pN)Qac ,Z`) = H1(X1(r, pN)Qac , j∗Z`)

where j is the inclusion of Y1(r, pN)Qac in X1(r, pN)Qac . In his report [Car94] Carayol
explained that ρm lives in the m-torsion of the first cohomology of the modular curve.

Let M := H1
p(X1(r, pN)Qac ,Z`). Deonte by Mm the localization of M at m. The

action of Gal(Qac/Q) on M commutes with T so makes Mm a Tm[Gal(Qac/Q)]-
module.
Proposition 1.4.3. We have an isomorphism of Gal(Qac/Q)-modules

H1(X1(r, pN)Qac ,F`)[m] ∼= ρ⊕nm

for a positive integer n.

Proof. It suffices to show that

H1
p(X1(r, pN)Qac ,F`)m[m] ∼= ρ⊕nm .

Indeed, we have

H1
p(X1(r, pN)Qac ,F`)m ∼= H1(X1(r, pN)Qac ,F`)m

since the difference comes from Eisenstein series and vanishes after the localization
provided that ρm is absolutely irreducible. We claim that the F`-cohomology is the
reduction of the Z`-cohomology :

Mm ⊗ F` ∼= Mm/`Mm
∼= H1

p(X1(r, pN)Qac ,F`)m.

Indeed, the cokernel of the injection

H1
p(X1(r, pN)Qac ,Z`)m ⊗ F` → H1

p(X1(r, pN)Qac ,F`)m
vanishes since Gal(Qac/Q) acts via its abelian quotient.

It remains to show that Mm⊗F`[m] is the direct sum of several copies of ρm. By
Matsushima formula,

Mm ⊗Qac
`

is ρm-typic in the sense of [Sch18, Definition 5.2]. By [Sch18, Proposition 5.4] we see
that Mm is also ρm-typic, i.e.,

Mm
∼= ρm ⊗Tm J

for some finitely-generated Tm-module J. Thus

(Mm ⊗ F`)[m] ∼= (J/`J)[m]⊗ ρm
from which the proposition follows.
12 1.4. LEVEL LOWERING



CHAPITRE 1. LEVEL LOWERING OF MODULAR FORMS

We recall the weight spectral sequence for semistable schemes :

Theorem 1.4.4. [Sai03, 1.1 ; Corollary 2.2.4] Let X be a proper scheme over Zp with
strictly semistable reduction at p ; that is, a regular scheme with smooth generic fiber
whose special fiber Y is a divisor with normal crossings. For each i, let Y (i) denote
the disjoint union of all i+ 1-fold intersections of distinct irreducible components of
Y . Then there is a spectral sequence

Er,s
1 =

⊕
i≥max(0,−p)

Hs−2i(Y (r+2i)
Fac
p

,F`(−i))⇒ Hr+s(XQac
p
,F`)

where the maps dr,s1 : Er,s
1 → Er+1,s

1 are alternative sums of Gysin or restriction
maps.

Moreover, let Ip be the inertia group of Gal(Qac
p /Qp), define the (p-adic) tame

quotient homomorphism t` : Ip → F`(1) by sending σ ∈ IK to (σ(p1/`n)/p1/`n)n.
Choose T ∈ Ip such that t`(T ) is a generator of F`(1). Then, the endomorphism
ν := T − 1 of RψF` induces a map

Ep,q
1 = ⊕

i≥max(0,−p) Hq−2i(Y (p+2i)
Fac
p

,F`(−i)) //

1⊗t`(T )
��

Hp+q(XQac
p
,F`)

T−1=ν
��

Ep+2,q−2
1 = ⊕

i≥max(0,−p) Hq−2i(Y (p+2i)
Fac
p

,F`(−i+ 1)) // Hp+q(XQac
p
,F`)(1)

of the weight spectral sequence.

We apply the weight spectral sequence to the integral model X1(r, pN)Zp over Zp
with semistable reduction at p : the first page E1,m of the weight spectral sequence
localized at m reads

H0(X1(r,N)ss
Fac
p
,F`)m(−1) d−1,2

m−−−→H2(X1(r,N)Fac
p
,F`)m ⊕ H2(X1(r,N)Fac

p
,F`)m

H1(X1(r,N)Fac
p
,F`)m ⊕ H1(X1(r,N)Fac

p
,F`)m

H0(X1(r,N)Fac
p
,F`)m ⊕ H0(X1(r,N)Fac

p
,F`)m

d0,0
m−−→ H0(X1(r,N)ss

Fac
p
,F`)m

which converges to H1(X1(r, pN)Qac ,F`)m. The spectral sequence degenerates at page
2 and gives rise to a filtration Fil∗H1(X1(r, pN)Qac ,F`)m of H1(X1(r, pN)Qac ,F`)m.
Put Gri := Fili /Fili+1, then

Gr−1 ∼= ker d−1,2
m ⊂ H0(X1(r,N)ss

Fac
p
,F`)m(−1),

Gr0 ∼= H0(X1(r,N)Fac
p
,F`))m ⊕ H0(X1(r,N)Fac

p
,F`))m

Gr1 ∼= coker d0,0
m

such that the action of the nilpotent operator ν on H1(X1(r, pN)Qac ,F`)m is given
by

H1(X1(r, pN)Qac ,F`)m // // Gr−1 // Gr1(−1) � � // H0(X1(r,N)ss
Fac
p
,F`)m(−1).

In particular, ker ν = Fil0 H1(X1(r, pN)Qac ,F`)m.
We study the Gal(Fac

p /Fp2)-action on H0(X1(r, pN)ss
Fac
p
,F`)m.

1.4. LEVEL LOWERING 13
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Lemma 1.4.5. Let Frobp ∈ Gal(Fac
p /Fp) be a geometric Frobenius. We have Frobp =

wp on H0(X1(r,N)ss
Fac
p
,F`)m.

Proof. The action of Frobp on H0(X1(r, pN)ss
Fac
p
,F`)m coincides with that induced by

the relative Frobenius F on X1(r, pN)Fac
p
. By [DR73, V.1], for a point (E,Pr, CN , Cp)

in Xss(Fac
p ), we have

wp(E,Pr, CN , Cp) = (E(p), FPr, FCN , kerV )
= (E(p), FPr, FCN , FCp) = F (E,Pr, CN , Cp) (1.4)

since the E[p] has the unique rank-p subgroup kerF = kerV.

Lemma 1.4.6. Suppose ρm is unramified at p. Then there exists a rank 1 Of,λ/λ-
submodule W ⊂ H0(X1(r,N)Fac

p
,F`))m ⊕ H0(X1(r,N)Fac

p
,F`))m on which T acts via

θf .

Proof. Proposition 1.4.3 and the unramifiedness of ρm at p implies that

H1(X1(r, pN)Qac ,F`)[m] ⊂ ker ν.

as a T-submodule of H1(X1(r, pN)Qac ,F`)m. Suppose that the lemma is false. Then
H1(X1(r, pN)Qac ,F`)[m] ⊂ H0(X1(r,N)ss

Fac
p
,F`)m. However, by Lemma 1.4.5 we have

Frobp = wp on H0(X1(r,N)ss
Fac
p
,F`)m. Since w2

p = 〈p〉 ∈ T (see (1.1)), we conclude
that ρm(Frobp)2 ≡ diag(λ, λ) mod ` for some λ ∈ Fac,×

` . However, since f is new at
p, if π is the automorphic representation corresponding to f, then πp is an unramified
twist of the Steinberg representation of GL2(Qp). By the local-global compatibility,
ρm(Frobp) is conjugate to a matrix of the form

ν

(
1 0
0 p

)

for some ν ∈ Fac,×
` . Thus we deduce that p ≡ ±1 mod `, a contradiction.

Proof of Theorem 1.4.2. In Lemma 1.4.6 the action of T on W factors through T→
Tp-old. We finish the proof.

14 1.4. LEVEL LOWERING



Chapitre 2

Level lowering of automorphic
representations on the Picard
modular surface

2.1 Introduction
The level lowering problem was proposed by Serre[Ser87b, Ser87a] in the name

of epsilon conjecture and served as a key step in deducing Fermat last theorem from
Shimura-Taniyama-Weil conjecture. Ribet proved the following theorem, which he
called also Mazur’s principle.

Theorem 2.1.1. [Rib90, Theorem 1.1] Let N be a positive integer and let p, ` be
distinct prime numbers such that ` is odd and (p,N) = 1. Let f be a newform of
weight 2 and level Np and ρf,` be the mod ` residual Galois representation attached
to f . Suppose

1. ρf,` is absolutely irreducible ;
2. ρf,` is unramified at p ;
3. p 6≡ 1 mod `.

Then there exists a newform g of weight 2 and level N such that ρf,` ∼= ρg,`.

In his original proof, Ribet embedded the given Galois representation into some
torsion module of the Jacobian of a modular curve. A key step is to analyze the
Frobenius action on the toric part of Jacobians. The assumption p 6≡ 1 mod ` was
removed by Ribet later in [Rib91], where he took another prime number q such that
q 6≡ 1 mod ` and transferred the given modular form to the one attached to the
indefinite quaternion algebra ramified at pq by Jacquet-Langlands correspondence.
Then the so-called (p, q) switch trick allows him to lower the level at p while by
Mazur’s principle he can further lower the level at q. For a more precise explanation
of Ribet’s method, see [Wan22].

Later Jarvis ([Jar99]) and Rajaei ([Raj01]) proved similar results on level lowering
of Galois representations attached to Shimura curves over totally real fields after
a major breakthrough by Carayol in [Car86]. The geometry of bad reduction of
Shimura curve combined with an explicit calculation of nearby cycles shows the
component group of the Jacobian of the Shimura curve is Eisenstein. Along the
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same line van Hoften ([vH21]) and Wang ([Wan22]) studied level lowering for Siegel
modular threefold of paramodular level under different technical assumptions. For
unitary similitude group of signature(1,2), Helm proved level lowering at a place split
in the quadratic imaginary extension over a totally real field in [Hel06]. Boyer treated
the case for unitary Shimura varieties of Kottwitz-Harris-Taylor type in [Boy19].

In this article we deal with level lowering at a rational prime inert in a quadratic
imaginary extension for the unitary similitude group of signature (1,2).

Let F be a quadratic imaginary extension over Q and G := GU(1, 2) be the
corresponding quasi-split unitary similitude group of signature (1,2). Fix a prime
number p inert in F and an open compact subgroup Kp of G(A∞,p) where A∞,p is
the finite adèle over Q outside p. Let Kp ⊂ G(Qp) be a hyperspecial subgroup, and
Iwp ⊂ Kp be an Iwahoric subgroup. Let S (resp. S0(p)) be the integral model of
Shimura variety attached to G of level KpKp (resp. KpIwp). The main theorem is

Theorem 2.1.2 (Theorem 2.4.1). Let π be a stable automorphic cuspidal represen-
tation of G(A) cohomological with trivial coefficient. Fix a prime number ` 6= p. Let
m be the mod ` maximal ideal of the spherical Hecke algebra attached to π. Let ρπ,`
be the mod ` Galois representation attached to π. Suppose

1. (π∞,p)Kp 6= 0;
2. πp is the Steinberg representation of Gp twisted by an unramified character ;
3. if i 6= 2 then Hi(S ⊗ F ac,F`)m = 0;
4. ρπ,` is absolutely irreducible ;
5. ρπ,` is unramified at p ;
6. ` - (p− 1)(p3 + 1).

Then there exists a cuspidal automorphic representation π̃ of G(A) such that
(π̃∞)KpKp 6= 0 and

ρπ,`
∼= ρπ̃,`.

We adapt Ribet’s strategy. As Jacobian is unavailable for Shimura surfaces, ins-
pired by Helm we use weight-monodromy spectral sequence to analyze analogues
of the component group of Jacobians of S and S0(p). In order to do so, we need a
detailed study on the geometry of special fibers. The surface S ⊗ Fp2 was studied
by Wedhorn in [Wed01] and Vollaard in [Vol10]. They showed that the supersingu-
lar locus consists of geometric irreducible components which are Fermat curves of
degree p + 1 intersecting transversally at superspecial points. The complement of
supersingular locus is µ-ordinary locus which is dense.

The geometry of S0(p) is more complicated. The study of local models in [Bel02]
implies that S0(p) has semistable reduction at p. We define three closed strata
Y0, Y1, Y2 in S0(p)⊗Fp2 . We show they are all smooth and their union is S0(p)⊗Fp2 .
We further study relations between these strata and S ⊗ Fp2 . In particular, Y0 is
isomorphic to the blowup of S ⊗ Fp2 at superspecial points ; Y1 admits a purely
inseparable morphism to the latter ; and Y2 is a P1-bundle over the normalization
of the supersingular locus of S ⊗ Fp2 which is geometrically a disjoint union of Fer-
mat curves. The pairwise intersections Yi ∩ Yj are transversal and parameterized by
discrete Shimura varieties attached to G′, where G′ is the unique inner form of G
which coincides with G at all finite places and is compact modulo center at infinity.
16 2.1. INTRODUCTION
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This can be viewed as a geometric incarnation of Jacquet-Langlands transfer. Mo-
reover, we show the geometric points of Y0∩Y1∩Y2 are in bijection with the discrete
Shimura variety attached to G′ of level KpIwp. All the morphisms are equivariant
under prime-to-p Hecke correspondence, and defined over Fp2 thus compatible with
the Frobenius action when taking the geometric fiber. The result bears a resem-
blance to those of [dSG18] and [Vol10], but is tailored for arithmetic applications
by preserving Hecke equivariance and schematic structure.

By Matsushima’s formula, the given automorphic representation π contributes
to the intersection cohomology of Baily-Borel compactification of S0(p). Fortunately,
we can ignore the compactification since the cohomology of the boundary of Borel-
Serre compactification vanishes when localized at m by the irreducibility of the
residual Galois representation. We then write down the weight-monodromy spectral
sequence for the surface S0(p).

We are ready to prove the main theorem by contradiction. If there were no level
lowering, the torsion-free assumption would eliminate the possiblity that π appears
in the localized cohomology of S ⊗ Fac

p . The weight-monodromy spectral sequence
would degenerate at the first page and give rise to a filtration of H2(S0(p)⊗F ac,F`)m
with the graded pieces given by the cohomology groups of Y0∩Y1∩Y2. The unramified
condition on the residual Galois representation would force ρπ,` to live in the localized
cohomology of (Y0 ∩ Y1 ∩ Y2) ⊗ Fac

p . We then find a contradiction by studying the
generalized eigenvalues of the Frobenius action.

The article is organized as follows : after introducing the relevant Shimura va-
rieties in Section 2.2, we study the geometry of special fiber of Shimura varieties in
Section 2.3. Finally we carry out the proof of the main theorem in Section 2.4 .

2.1.1 Notation and conventions
The following list contains basic notation and conventions we fix throughout the

article, we will use them without further comments.
— We denote by A the ring of adèles over Q. For a set � of places of Q, we

denote by A� the ring of adèles away from �. For a number field F , we put
A�F := A� ⊗Q F . If � = {v1, . . . , vn} is a finite set, we will also write Av1,...,vn

for A�.
— For a field K, denote by Kac the algebraic closure of K and put GK :=

Gal(Kac/K). Denote by Qac the algebraic closure of Q in C. When K is a
subfield of Qac, we take GK to be Gal(Qac/K) hence a subgroup of GQ.

— For every rational prime p, we fix an algebraic closure Qac
p of Qpwith the

residue field Fac
p , and an isomorphism ιp : Qac

p
∼= C.

— For an algebraic group G over Q, set Gp := G(Qp) for a rational prime p and
G∞ := G(R).

— LetX be a scheme. The cohomology group H•(X,−) will always be computed
on the small étale site of X. If X is of finite type over a subfield of C, then
H•(X(C),−) will be understood as the Betti cohomology of the associated
complex analytic space X(C).

— Let R be a ring. Given two R-modules M1 ⊂ M2, and s ∈ N an integer.
denote by M1

s
⊂M2 if the length of the R-module M2/M1 is s (hence finite).

— Let R be a ring and M be a set. Denote by R[M ] the set of functions on M
2.1. INTRODUCTION 17
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with compact support with values in R.
— If a base ring is not specified in the tensor operation ⊗, then it is Z.
— For a scheme S (resp. Noetherian scheme S ), we denote by Sch/S (resp.

Sch′/S ) the category of S-schemes (resp. locally Noetherian S-schemes). If
S = SpecR is affine, we also write Sch/R ( resp. Sch′/R ) for Sch/S ( resp.
Sch′/S).

— The structure sheaf of a scheme X is denoted by OX .
— For a scheme X over an affine scheme Spec R and an R-algebra S, we write

X ⊗R S or even XS for X ×SpecR SpecS.
— For a scheme S in characteristic p for some rational prime p, we denote by

σ : S → S the absolute p-power Frobenius morphism. For a perfect field κ of
characteristic p, we denote by W (κ) its Witt ring, and by abuse of notation,
σ : W (κ)→ W (κ) the canonical lifting of the p-power Frobenius map.

— Denote by P1 the projective line scheme over Z, and Gm,R = SpecR[T, T−1]
the multiplicative group scheme over a ring R. Let S = ResC/R Gm,C be the
Weil restriction of Gm,C to R.

2.2 Shimura varieties, integral models and moduli
interpretations

In this section we introduce some Shimura varieties associated with the group of
unitary similitudes.

Let F = Q(
√

∆) be a quadratic imaginary extension of Q with ∆ ∈ Z a negative
square-free element. Let c be the nontrivial element in Gal(F/Q), and write ac or
c(a) for the action of c on a for a ∈ F. Fix an embedding τ0 : F → C such that
τ0(
√

∆) ∈ R>0 ·
√
−1. Then Σ∞ := {τ0, τ1 = τ0 ◦ c} is the set of all complex

embeddings of F. Let OF be the ring of integers of F , F ac be an algebraic closure of
F . Let (Λ = O3

F , ψ) be the free OF -module of rank 3 equipped with the hermitian
form

ψ(u, v) = tuΦv̄
where

Φ =

 1
−1

1

 .
Then ψ is of signature (1,2) over R. Denote by e0, e1, e2 ∈ Λ the standard basis
vectors. We put also

〈u, v〉ψ := TrF/Q( 1√
∆
ψ(u, v))

which is a non-degenerate alternating form V × V → Q. Let G = GU(Λ, ψ) be the
group of unitary similitudes defined over Z by

G(R) = {(g, ν(g)) ∈ GLOF⊗ZR(Λ⊗ZR)×R× : ψ(gx, gy) = ν(g)ψ(x, y),∀x, y ∈ Λ⊗ZR}
(2.1)

for any Z-algebra R. Note that G can be also defined as the similitude group of
〈_,_〉ψ.

Let p be a prime number inert in F .
18 2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI
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2.2.1 Bruhat-Tits tree and open compact subgroups of Gp

Bruhat-Tits tree

[BG06, 3.1] Let T be the Bruhat-Tits building of Gp. According to [Tit79] or
[Cho94, 1.4], it is a tree, and its vertices decompose into two parts V

∐
Ṽ. Every

vertex of V (resp. of Ṽ) has p3 + 1 (resp. p+ 1) neighbours which are all in Ṽ) (resp.
in V). The points of V are hyperspecial points in the sense of [Tit79], those of Ṽ are
special points which are not hyperspecial. We denote by E the set of (non-oriented)
edges of T.

The tree T is endowed with an action of Gp. The center Zp ⊂ Gp acts on T

trivially. The action of Gp on V (resp. Ṽ) is transitive, and the stabilizer of a vertex
v acts transitively on the set of vertices of V with distance n from v [Cho94, 1.4,
1.5], and therefore on the set of elements of E of origin v.

Maximal compact subgroup

[BG06, 3.2] According to [BT72], a maximal compact subgroup of Gp fixes one
and only one vertex of T, which defines a bijection between the set of maximal
compact subgroups of Gp and V

∐
Ṽ. There are therefore two conjugacy classes

of maximal compact subgroups of Gp, those who fix a vertex of V, which we call
hyperspecial, and those who fix a vertex of Ṽ, which we call special.

Let v ∈ V and v′ ∈ Ṽ. We denote by Kv and Kv′ the maximal compact subgroup
which fixes v and v′. Then Kv is conjugate to Kp := G(Zp), which is the stabilizer
of the standard self-dual lattice

Λ0 = Λ⊗ Zp = 〈e0, e1, e2〉OFp .

In the meanwhile, Kv′ is conjugate to K̃p which is the stablizer of the lattice

Λ1 = 〈pe0, e1, e2〉OFp .

Assume that v and v′ are neighbors. The stabilizer Kv ∩Kv′ of the edge (v, v′) is an
Iwahoric subgroup of Gp.

2.2.2 Picard modular surface over C

Define the bounded symmetric domain associated with G as

B = {(z0 : z1 : z2) ∈ P2(C) | z̄0z2 + z̄1z1 + z̄2z0 < 0}

which is biholomorphic to the unit ball in C2. The group G(R) acts by projective
linear transformations on P2(C), the action of G(R) preserves B and induces a
transitive action on B. Denote by K∞ the stabilizer of the "center" (−1 : 0 : 1).
Then we have an homeomorphism

G(R)/K∞ ∼= B.

2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI
INTERPRETATIONS
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2.2.3 Shimura varieties for unitary groups
Consider the Deligne homomorphism

h0 : S(R) = C× // G(R)
z = x+

√
−1y � // (diag(z, z, z), zz)

where z is the complex conjugate of z, and G(R) acts on HomR-group scheme(S, G) by
conjugation. The stabilizer of h0 of G(R) is K∞, and there exists a bijection between
B and the G(R)-conjugacy class X of h0.

For an compact open subgroup K ⊂ G(A∞), the Shimura variety Sh(G,K) of
level K is a quasi-projective algebraic variety defined over F whose complex points
are identified with

Sh(G,K)(C) := G(Q)\G(A)/KK∞ ' G(Q)\[X ×G(A∞)/K].

In this article, we will consider the Shimura varieties Sh(G,K) with K of the form
K = KpKp, KpK̃p or KpIwp, where Kp is a fixed open compact subgroup of G(A∞),
as well as their canonical integral models over OF,(p).

2.2.4 Dieudonné theory on abelian schemes
We first introduce some general notations on abelian schemes.

Definition 2.2.1. [LTX+22, Definition 3.4.5] Let A and B be two abelian schemes
over a scheme S ∈ Sch/Z(p) . We say that a morphism of S-abelian schemes ϕ : A→
B is a quasi-isogeny if there is an integer n such that nϕ is an isogeny. We say that
a morphism of S-abelian schemes ϕ : A → B is a quasi-p-isogeny if there exists
some c ∈ Z×(p)such that cϕ is a isogeny. A quasi-isogeny ϕ is prime-to-p if there exist
two integers n, n′ both coprime to p such that nϕ and n′ϕ−1 are both isogenies.

We denote by A∨ the dual abelian scheme of A over S. A quasi-polarization
of A is a quasi-isogeny λ : A → A∨ such that nλ is a polarization of A for some
n ∈ Z. A quasi-polarization λ : A → A∨ is called p-principal if λ is a prime-to-p
quasi-isogeny.

Notation 2.2.2. Let A be an abelian variety over a scheme S. We denote by
HdR

1 (A/S) (resp. LieA/S, resp. ωA/S ) the relative de Rham homology (resp. Lie
algebra, resp. dual Lie algebra) of A/S. They are all locally free OS-modules of
finite rank. We have Hodge exact sequence

0→ ωA∨/S → HdR
1 (A/S)→ LieA/S → 0. (2.2)

When the base S is clear from the context, we sometimes suppress it from the nota-
tion.

Definition 2.2.3. Let S ∈ Sch/Z(p) .

1. An OF -abelian scheme over S is a pair (A, iA) in which A is an abelian
scheme over S and iA : OF → EndS(A) ⊗ Z(p) is a ring homomorphism of
algebras.

20 2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI
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2. An unitary OF -abelian scheme over S is a triple (A, iA, λA) in which (A, iA)
is an OF -abelian scheme over S, and λA : A → A∨ is a quasi-polarization
such that iA(ac)∨ ◦ λA = λA ◦ i(a) for every a ∈ OF .

3. For two OF -abelian schemes (A, iA) and (A′, i′A) over S, a
(quasi-)homomorphism from (A, iA) to (A′, i′A) is a (quasi-)homomorphism
ϕ : A→ A′ such that ϕ ◦ iA(a) = i′A(a) ◦ϕ for every a ∈ OF . We will usually
refer to such ϕ as an OF -linear (quasi-)homomorphism.

Moreover, we will usually suppress the notion iA if the argument is insensitive to it.

Definition 2.2.4 (Signature type). Let (A, iA) be an OF -abelian scheme of di-
mension 3 over a scheme S ∈ Sch/OF⊗P. Let r, s be two nonnegative integers with
r + s = 3. We say that (A, iA) has signature type (r, s) if for every a ∈ OF , the
characteristic polynomial of iA(a) on LieA/S is given by

(T − τ0(a))r(T − τ1(a))s ∈ OS[T ].

Remark 2.2.5. Let A be an OF -abelian scheme of dimension 3 of signature type
(r, s) over a scheme S ∈ Sch/k. Consider the decomposition

OF ⊗Z k
' // k × k

a⊗ x � // (τ0(a)x, τ1(a)x)

where the bar denotes the mod p quotient map. Then for any OF ⊗ k-module N we
have a canonical decomposition

N = N0 ⊕N1 (2.3)

where a ∈ OF acts on Ni through τi. Then (2.2) induces two short exact sequences

0→ ωA∨/S,i → HdR
1 (A/S)i → LieA/S,i → 0, i = 0, 1

of locally free OS-modules of ranks s, 3, r and r, 3, s.

Notation 2.2.6. Let (A, λA) be a unitary OF -abelian scheme of signature type (r, s)
over a scheme S ∈ Sch/OF,(p) . We denote

〈 , 〉λA,i : HdR
1 (A/S)i × HdR

1 (A/S)i+1 → OS, i = 0, 1

the OS-bilinear alternating pairing induced by the quasi-polarization λA, which is per-
fect if and only if λA is p-principal. Moreover, for an OS-submodule F ⊆ HdR

1 (A/S)i,
we denote by F⊥ ⊆ HdR

1 (A/S)i+1 (where i ∈ Z/2Z) its (right) orthogonal comple-
ment under the above pairing, if λ is clear from the context.

Notation 2.2.7. In notation 2.2.6, put

A(p) := A×S,σ S,

where σ is the absolute Frobenius morphism of S. Then we have
1. a canonical isomorphism HdR

1 (A(p)/S) ' σ∗HdR
1 (A/S) of OS-modules ;

2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI
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2. the Frobenius homomorphism FrA : A→ A(p) which induces the Verschiebung
map

VA := (FrA)∗ : HdR
1 (A/S)→ HdR

1 (A(p)/S)

of OS-modules ;
3. the Verschiebung homomorphism VerA : A(p) → A which induces the Frobe-

nius map
FA := (VerA)∗ : HdR

1 (A(p)/S)→ HdR
1 (A/S)

of OS-modules.
In what follows, we will suppress A in the notations FA and VA if the reference to A
is clear.

In Notation 2.2.7, we have ker F = im V = ωA(p)/S and ker V = im F.

Notation 2.2.8. Suppose that S = Specκ for a perfect field κ of characteristic p
containing Fp2. Then we have a canonical isomorphism HdR

1 (A(p)/κ) ' HdR
1 (A/κ)⊗κ,σ

κ.

1. By abuse of notation, we have
— the (κ, σ)-linear Frobenius map F : HdR

1 (A/κ)→ HdR
1 (A/κ) and

— the (κ, σ−1)-linear Verschiebung map V : HdR
1 (A/κ)→ HdR

1 (A/κ).
2. We have the covariant Dieudonné module D(A) associated to the p-divisible

group A[p∞], which is a free W (κ)-module, such that D(A)/pD(A) is cano-
nically isomorphic to HdR

1 (A/κ). Again by abuse of notation, we have
— the (W (κ), σ)-linear Frobenius map F : D(A) → D(A) lifting the one

above, and
— the (W (κ), σ−1)-linear Verschiebung map V : D(A) → D(A) lifting the

one above, respectively, satisfying F ◦ V = V ◦ F = p.

Remark 2.2.9. Similar to 2.3 we also have a decomposition

D(A) = D(A)0 ⊕D(A)1.

Let (A, λA) be a unitary OF -abelian scheme of signature type (r, s) over Spec κ.
We have a pairing

〈 , 〉λA : D(A)×D(A)→ W (κ)

lifting the one in Notation 2.2.6. We denote by D(A)⊥A the W (κ)-dual of D(A)

D(A)⊥A := {x ∈ D(A)[1/p] | 〈x, y〉λA ∈ W (κ),∀y ∈ D(A).}

as a submodule of D(A)[1/p]. We have the following properties :
1. The direct summands in (2.3) are totally isotropic with respect to 〈, 〉λA .
2. we have

〈Fx, y〉λA = 〈x, Vy〉σλA , 〈iA(a)x, y〉λA = 〈x, iA(ac)y〉λA
for a ∈ OF .
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Next we review some facts from the Serre-Tate theory [Kat81] and the
Grothendieck-Messing theory [Mes72], tailored to our application. Consider a closed
immersion S ↪→ Ŝ in Sch/Zp2 on which p is locally nilpotent, with its ideal sheaf
equipped with a PD structure, and a unitary OF -abelian scheme (A, λ) of signature
type (r, s) over S. We let Hcris

1 (A/Ŝ) be the evaluation of the first relative crystalline
homology of A/S at the PD-thickening S ↪→ Ŝ, which is a locally free OŜ ⊗ OF -
module. The polarization λ induces a pairing

〈, 〉cris
λ,i : Hcris

1 (A/Ŝ)i × Hcris
1 (A/Ŝ)ic → OŜ, i = 0, 1. (2.4)

We define two groupoids
— Def(S, Ŝ;A, λ), whose objects are unitary OF -abelian schemes (Â, λ̂) of si-

gnature type (r, s) over Ŝ that lift (A, λ) ;
— Def ′(S, Ŝ;A, λ), whose objects are pairs (ω̂0, ω̂1) where ω̂i ⊆ Hcris

1 (A/Ŝ)i is a
subbundle that lifts ωA∨/S,i ⊆ HdR

1 (A/S)i for i = 0, 1, such that 〈ω̂0, ω̂1〉cris
λ,1 =

0.

Proposition 2.2.10. The functor from Def(S, Ŝ;A, λ) to Def ′(S, Ŝ;A, λ) sending
(Â, λ̂) to (ωÂ∨,0, ωÂ∨,1) is a natural equivalence.

2.2.5 Moduli problems
Fix an open compact subgroup Kp ⊂ G(A∞,p).

Definition 2.2.11. Let S be the moduli problem that associates with every OF,(p)-
algebra R the set S(R) of equivalence classes of triples (A, λA, ηA), where

— (A, λA) is a unitary OF -abelian scheme of signature type (1,2) over R such
that λA is p-principal ;

— ηA is a Kp-level structure, that is, for a chosen geometric point s on every
connected component of SpecR, a π1(SpecR, s)-invariant Kp-orbit of iso-
morphisms

ηA : V ⊗Q A∞,p ∼−→ Het
1 (A,A∞,p)

such that the skew hermitian pairing 〈_,_〉ψ on V ⊗Q A∞,p corresponds to
the λA-Weil pairing on Het

1 (A,A∞,p) up to scalar.
Two triples (A, λA, ηA) and (A′, λA′ , ηA′) are equivalent if there is a prime-to-p OF -
linear isogeny ϕ : A→ A′ such that

— there exists c ∈ Z×(p)such that ϕ∨ ◦ λA′ ◦ ϕ = cλA; and
— the Kp-orbit of maps v 7→ ϕ∗ ◦ ηA(v) for v ∈ V ⊗Q A∞,p coincides with ηA′ .

Given g ∈ Kp\G(A∞,p)/K ′p such that g−1Kpg ⊂ K ′p, we have a map S(Kp)(R) to
S(K ′p)(R) by changing ηA to ηA ◦ g.

Definition 2.2.12. Let S̃ be the moduli problem that associates with every OF,(p)-
algebra R the set S̃(R) of equivalence classes of triples (Ã, λÃ, ηÃ), where

1. (Ã, λÃ) is a unitary OF -abelian scheme of signature type (1,2) over R such
that kerλÃ[p∞] is contained in Ã[p] of rank p2;

2. ηÃ is a Kp-level structure.
The equivalence relation and the action of G(A∞,p) are defined similarly as in Defi-
nition 2.2.15.
2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI
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Definition 2.2.13. The moduli problem S0(p) associates with every OF ⊗ Z(p)-
algebra R the set S0(p)(R) of equivalence classes of sextuples (A, λA, ηA, Ã, λÃ, ηÃ, α)
where

1. (A, λA, ηA) is an element in S(R).
2. (Ã, λÃ, ηÃ) is an element in S̃(R).
3. α : A→ Ã is an OF -linear quasi-p-isogeny such that

pλA = α∨ ◦ λÃ ◦ α.

4. kerα ⊂ A[p] is a Raynaud OF -subgroup scheme of rank p2, which is isotropic
for the λA-Weil pairing

ep : A[p]× A[p]→ µp.

For the definition of Raynaud subgroup, see [dSG18, 1.2.1].
Two septuplets (A, λA, ηA, Ã, λÃ, ηÃ, α) and (A′, λ′A, η′A, Ã′, λÃ′ , ηÃ′ , α′) are equivalent
if there are OF -linear prime-to-p quasi-isogenies ϕ : A → A′ and ϕ′ : Ã → Ã′ such
that

— there exists c ∈ Z×(p) such that ϕ∨ ◦ λA′ ◦ ϕ = cλA and ϕ∨ ◦ λÃ′ ◦ ϕ = cλÃ.
— the Kp-orbit of maps v 7→ ϕ∗ ◦ ηA(v) for v ∈ V ⊗Q A∞,p coincides with ηA′ .
— the Kp-orbit of maps v 7→ ϕ′∗ ◦ ηA′(v) for v ∈ V ⊗Q A∞,p coincides with ηÃ′ .

It is well known that, for sufficiently small Kp, the three moduli problems S, S̃
and S0(p) are all representable by quasi-projective schemes over OF,(p), still deno-
ted by S, S̃, S0(p) by abuse of notation, and give integral models of Sh(G,KpKp),
Sh(G,KpK̃p) and Sh(G,KpIwp) respectively. We have natural forgetful maps π :
S0(p) → S sending (A, λA, ηA, Ã, λÃ, ηÃ, α) to (A, λA, ηA), and π̃ : S0(p) → S̃ sen-
ding (A, λA, ηA, Ã, λÃ, ηÃ, α) to (Ã, λÃ, ηÃ). This gives rise to the diagram

S0(p)
π

}}

π̃

!!
S S̃

Remark 2.2.14. For the convenience of readers, we recall why S is an integral model
of Sh(G,KpKp). We shall content ourselves with describing a canonical bijection
S(C) ' Sh(G,KpKp)(C), which determines uniquely an isomorphism S ⊗OF,(p) F

∼=
Sh(G,KpKp). It suffices to assign to each point

s = (A, λA, ηA) ∈ S(C)

a point in
Sh(G,KpKp)(C) = G(Q)\(X ×G(A∞)/KpKp)

Let H := H1(A,Q), which is an F -vector space by the action of OF on A. The
polarization λA induces a structure of skew hermitian space on H. By Hodge theory,
the composed map

H ⊗Q R ∼= HdR
1 (A,R)→ HdR

1 (A,C)→ LieA
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is an isomorphism, which gives a complex structure on H⊗QR. The signature condi-
tion on A ensures an isomorphism of (skew) hermitian spaces H ⊗Q R ∼= V ⊗Q R.
Now look at the place p. Since A is an abelian variety up to prime-to-p isogeny,
the Zp-module ΛH := Hét

1 (A,Zp) is well-defined and gives a self-dual lattice in
H ⊗Q Qp

∼= Hét
1 (A,Qp). Hence there exists an isomorphism of hermitian spaces

H⊗QQp
∼= V ⊗QQp. In addition to the prime-to-p level structure ηA, the Hasse prin-

ciple implies that there exists globally an isomorphism of hermitian spaces ξ : H ∼−→ V
over F up to similitude. Fix such a ξ. First, the complex structure on H⊗QR trans-
fers via ξ to a homomorphism of R-algebras C → EndF (V ) ⊗Q R, which leads to
an element x ∈ X = G(R)/K∞ because of the signature condition. Secondly, post-
composing with ξ, the level structure ηA gives a coset gpKp := ξ ◦ηA ∈ G(A∞,p)/Kp.
At last, there exists a coset gpKp ∈ G(Qp)/Kp such that ξ(ΛH) = gp(Λ0) as lattices
of V ⊗QQp for any representative gp of gpKp. Note that a different choice of ξ differs
by the left action of an element of G(Q). It follows that the class

[x, gpKp, gpKp] ∈ G(Q)\(X ×G(A∞,p)/Kp ×G(Qp)/Kp)

does not depend on the choice of ξ, and gives the point of Sh(G,KpKp) corresponding
to s ∈ S(C).

2.2.6 An inner form of G
Let (W,ψW ) be a hermitian space over F of dimension 3 such that it is isomorphic

to (V ⊗QA∞, ψ) as hermitian spaces over A∞, and (W⊗QR, ψW ) has signature (0, 3).
Such a (W,ψW ) exists and is unique up to isomorphism. Let G′ be the unitary
similitude group over Q attached to (W,ψW ). Then G′ is an inner form of G such
that G′(A∞) ∼= G(A∞). In the sequel, we fix such an isomorphism so that Kp and
Kp are also viewed respectively as subgroups of G′(A∞,p) and G′(Qp). As G′(R) is
compact modulo center, for an open compact subgroup K ′ ⊆ G′(A∞), we have a
finite set

Sh(G′, K ′) := G′(Q)\G′(A∞)/K ′.
We will give moduli interpretations for Sh(G′, KpKp), Sh(G′, KpK̃p) and Sh(G′, KpIwp).

Definition 2.2.15. The moduli problem T is to associate with every OF,(p)-algebra
R the set T (R) of equivalence classes of triples (B, λB, ηB), where

— (B, λB) is a unitary OF -abelian scheme of signature type (0,3) over R such
that λB is p-principal ;

— ηB is a Kp-level structure, that is, for a chosen geometric point s on every
connected component of SpecR, ηB is a π1(SpecR, s)-invariant Kp-orbit of
isomorphisms

ηB : W ⊗Q A∞,p ∼−→ H1(B,A∞,p)
of hermitian spaces over F ⊗Q A∞,p.

Two triples (B, λB, ηB) and (B′, λB′ , ηB′) are equivalent if there is a prime-to-p OF -
linear isogeny ϕ : B → B′ such that

— there exists c ∈ Z×(p)such that ϕ∨ ◦ λB′ ◦ ϕ = cλB; and
— the Kp-orbit of maps v 7→ ϕ∗ ◦ ηB(v) for v ∈ W ⊗Q A∞,p coincides with ηB′ .

Given g ∈ Kp\G′(A∞,p)/K ′p such that g−1Kpg ⊂ K ′p, we have a map T (Kp)(U) to
T (Kp′)(U) by changing ηA to ηA ◦ g.
2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI
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Definition 2.2.16. The moduli problem T̃ is to associate with every OF ⊗ Z(p)-
algebra R the set T̃ (R) of equivalence classes of triples (B̃, λB̃, ηB̃), where

1. (B̃, λB̃) is a unitary OF -abelian scheme of signature type (0,3) over R such
that kerλB̃[p∞] is contained in B̃[p] of rank p2;

2. ηB̃ is a Kp-level structure.
The equivalence relation and the action of G(A∞,p) are defined similarly as in Defi-
nition 2.2.12.

Definition 2.2.17. The moduli problem T0(p) is to associate with every OF ⊗Z(p)-
algebra R the set T0(p)(R)of equivalence classes of sextuples (B, λB, ηB, B̃, λB̃, ηB̃, β)
where

1. (B, λB, ηB) ∈ T (R);
2. (B̃, λB̃, ηB̃) ∈ T̃ (R);
3. β : B̃ → B is an isogeny such that

pλB̃ = β∨ ◦ λB ◦ β;

4. ker β is a OF -subgroup scheme of B̃[p] of rank p4, which is isotropic for the
λB̃-Weil pairing

ep : B̃[p]× B̃[p]→ µp.

The equivalence relation and the action of G(A∞,p) are defined similarly as in Defi-
nition 2.2.13.

For sufficiently small Kp, three moduli problems defined above are representable
by quasi-projective schemes over OF,(p). By abuse of notation we still denote them
by T, T̃ , T0(p).

Proposition 2.2.18. We have the uniformization maps

υ : T (C) ∼= Sh(G′, KpKp)
υ̃ : T̃ (C) ∼= Sh(G′, KpK̃p)

υ0 : T0(p)(C) ∼= Sh(G′, KpIwp)

which is equivariant under prime-to-p Hecke correspondence. That is, given g ∈
Kp\G(A∞,p)/K ′p, we have the commutative diagram

T (Kp)(C) υ //

g

��

Sh(G′, KpKp)
g

��
T (K ′p)(C) υ // Sh(G′, K ′pKp)

for g ∈ Kp\G(A∞,p)/K ′p such that g−1Kpg ⊂ K ′p. Here we use T (Kp) to emphasize
the dependence of T on Kp. Similar diagrams hold for T̃ and T0(p).

Proof. Similar to Remark 2.2.14. It is worthwhile noting the signature type condition
forces the image of C→ EndF (W )⊗ R lies in the center F ⊗ R.
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2.3 The geometry of geometric special fiber
Let k be a prefect field. Denote by Sk or S ⊗ k the base change of S to k. If

k = Fp2 we denote still by S the special fiber S⊗Fp2 . Same notation holds for other
integral models.

2.3.1 The geometry of S
We recall the Ekedahl-Oort stratification on S, which has been studied exten-

sively in [Wed01,BW06,VW11]. Given (A, iA, λA, ηA) ∈ S(k). Define two standard
Dieudonné modules as "building blocks" of D(A[p]) :

Definition 2.3.1. [BW06, 3.2],[VW11, 2.4, 3.1]
1. Define a superspecial unitary Dieudonné module S over k as follows. It is a

free W (k)-module of rank 2 with a base {g, h}. Set

S0 = W (k)g, S1 = W (k)h, S = S0 ⊕ S1.

S is equipped by the natural OF ⊗W (k) action.
Define an alternating form on S by 〈g, h〉 = −1. Define a (W (k), σ)-linear
map F on S by Fg = ph and Fh = −g. Define a (W (k), σ−1)-linear map V
by Vh = g and Vg = −ph. This makes S is a unitary Dieudonné module of
signature (0, 1). Write by S its reduction mod p.

2. For an integer r > 1 define a unitary Dieudonné module B(r) over k as
follows. It is a free W (k)-module of rank 2r with a base (e1, . . . , er, f1, . . . , fr).
Set

B(r)0 = W (k)e1 ⊕ · · · ⊕W (k)er,
B(r)1 = W (k)f1 ⊕ · · · ⊕W (k)fr, B(r) = B(r)0 ⊕B(r)1.

The alternating form is defined by

〈ei, fj〉 = (−1)iδij.

Finally, define a σ-linear map F and a σ−1-linear map V by

Vei = pfi+1, for i = 1, . . . , r − 1,
Ver = f1,

Vfi = ei+1, for i = 1, . . . , r − 1,
Vfn = pe1,

Fe1 = (−1)rfr,
Fei = pfi−1, for i = 2, . . . , r,
Ff1 = per,

Ffi = ei−1, for i = 2, . . . , r,

This is a unitary Dieudonné module of signature (1, r− 1). Write by B(r) its
reduction mod p.
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Proposition 2.3.2. Let x = (A, iA, λA, ηA) ∈ S(k). Then D(A[p]) ∼= D(A)/p is
isomorphic to

B(r)⊕ S
⊕3−r

for some integer r with 1 6 r 6 3.

The Ekedahl-Oort stratification in our case is given by

S = S1
⊔
S2
⊔
S3,

where each Si is a reduced locally closed subscheme, and a geometric point
(A, iA, λA, ηA) ∈ S(k) lies in Si(k) if and only if

HdR
1 (A/k)0 ∼= B(i)⊕ S

⊕3−i
.

All Si are equidimensional [Wed01, Section 6], and we have dimS2 = 2, dimS1 = 0
and dimS3 = 1.

The open stratum S2 is usually called the µ-ordinary locus, and denoted by Sµ.
Its complement Sss := S1 ∪S3 = S\S2 is the supersingular locus, i.e., the associated
F -isocrystal (D(A)[1/p], F) of A has Newton slope 1/2. Furthermore, the stratum S1
is exactly the locus where FD(A) = VD(A) holds. It is called the superspecial locus
and denoted by Ssp. The stratum S3 is called general supersingular locus, denoted
by Sgss. We will study the irreducible components of supersingular locus Sss.

2.3.2 Unitary Deligne-Lusztig variety
Let κ be a field containing Fp2 and denote by κ one of its algebraic closure.

Recall σ : S → S denotes the absolute p-power Frobenius morphism for schemes S
in characteristic p.

Definition 2.3.3. Consider a pair (V , { , }) in which V is a κ-linear space of
dimension 3, and { , } : V × V → κ, is a non-degenerate pairing that is κ-linear
in the first variable and (κ, σ)-linear in the second variable. For every κ-scheme S,
put VS := V ⊗κ OS. Then there is a unique pairing { , }S : VS ×VS → OS extending
{ , } that is OS-linear in the first variable and (OS, σ)-linear in the second variable.
For a subbundle H ⊆ VS, we denote by H⊥ ⊆ VS its orthogonal complement under
{ , }S defined by

H⊥ = {x ∈ VS | {x,H}S = 0}.

When the pairing is induced by a (quasi-)polarization λA of an abelian variety A,
we write ⊥Ā instead of ⊥ to specify.

Definition 2.3.4. We say that a pair (V , { , }) is admissible if there exists an Fp2-
linear subspace V0 ⊆ Vκ̄ such that the induced map V0⊗Fp2 κ̄→ Vκ̄ is an isomorphism,
and {x, y} = −{y, x}σ = {x, y}σ2 for every x, y ∈ V0.

Definition 2.3.5. Let DL(V , { , }) be the moduli problem associating with every
κ-algebra R the set DL(V , { , })(R) of subbundles H of VR of rank 2 such that
H⊥ ⊆ H. We call DL(V , { , }, h) the (unitary) Deligne-Lusztig variety attached to
(V , { , }) of rank 2.
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Proposition 2.3.6. Consider an admissible pair (V , { , }). Then DL(V , { , }) is
represented by a projective smooth scheme over κ of dimension 1 with a canonical
isomorphism for its tangent sheaf

TDL(V ,{,})/κ ' Hom(H/H⊥,VDL(V ,{,})/H)

where H ⊆ VDL(V ,{,}) is the universal subbundle. Moreover, DL(V , {, }) ⊗κ κ̄ is
isomorphic to the Fermat curve C ⊂ P2

κ̄ :

C : {(x : y : z) ∈ P2
κ̄|xp+1 + yp+1 + zp+1 = 0}.

Proof. For the first part, see [LTX+22, Proposition A.1.3]. For the second part,
by admissibility there exists an Fp2-linear space V0 such that V0 ⊗ κ → Vκ is an
isomorphism. Fix an element δ ∈ F×p2 such that δσ = −δ. Then we can find a basis
{e1, e2, e3} of V0 which can be regarded as a basis of Vκ such that {ei, ej} = δδij. Take
a rank 2 κ-subspace H of Vκ. If e3 6∈ H, we can assume H = {ze1 + xe3, ze2 + ye3}
where x, y, z ∈ κ and z 6= 0. Then H⊥ = {−xpe1 − ype2 + zpe3}. The condition
H⊥ ⊂ H is equivalent to H⊥ ∩H 6= {0}, i.e.,∣∣∣∣∣∣∣

z 0 x
0 z y
−xp −yp zp

∣∣∣∣∣∣∣ = z(xp+1 + yp+1 + zp+1) = 0.

Thus xp+1 + yp+1 + zp+1 = 0. It is easy to see the map {ze1 + xe3, ze2 + ye3} 7→ (x :
y : z) extends to an isomorphism DL(V , {, })⊗κ κ̄ ∼= C .

Notation 2.3.7. Take a point t = (B, λB, ηB) ∈ T (κ). Then B[p∞] is a supersin-
gular p-divisible group by the signature condition and the fact that p is inert in F .
From Notation 2.2.7, we have the (κ, σ)-linear Frobenius map

F : HdR
1 (B/κ)i → HdR

1 (B/κ)i+1, i ∈ Z/2Z.

which can be lifted to
F : D(B)i → D(B)i+1.

We define a pairing

{ , }t : HdR
1 (B/κ)i × HdR

1 (B/κ)i → κ

by the formula {x, y}t := 〈x, Fy〉λB . This pairing can also be lifted to

{ , }t : D(B)i ×D(B)i → W (κ)

To ease notation, we put
Vt := HdR

1 (B/κ)1.

Lemma 2.3.8. The pair (Vt, { , }t) is admissible of rank 3. In particular, the Deligne-
Lusztig variety DLt := DL(Vt, { , }t) is a geometrically irreducible projective smooth
scheme in Sch/κ of dimension 1 with a canonical isomorphism for its tangent sheaf

TDLt/κ ' Hom(H/H⊥, (Vt)DLt/H)

where H ⊆ (Vt)Dt is the universal subbundle.
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Proof. It follows from the construction that { , }t is κ-linear in the first variable and
(κ, σ)-linear in the second variable. Thus by Proposition 2.3.6 it suffices to show
that (Vt, {, }t) is admissible.

Note that we have a canonical isomorphism (Vt)κ̄ = HdR
1 (B/κ)i⊗κκ̄ ' HdR

1 (Bκ̄/κ̄)i,
and that the (κ̄, σ)-linear Frobenius map F : HdR

1 (Bκ̄/κ̄)i → HdR
1 (Bκ̄/κ̄)i+1 and

the (κ̄, σ−1)-linear Verschiebung map V : HdR
1 (Bκ̄/κ̄)i+1 → HdR

1 (Bκ̄/κ̄)i are both
bijective. Thus, we obtain a (κ̄, σ2)-linear bijective map V−1F : HdR

1 (Bκ̄/κ̄)i →
HdR

1 (Bκ̄/κ̄)i. Denote by V0 the invariant subspace of HdR
1 (Bκ̄/κ̄)i under V−1F. Then

the canonical map V0⊗Fp2 κ̄→ HdR
1 (B/κ̄)i = (Vt)κ̄ is an isomorphism. For x, y ∈ V0,

we have

{x, y}t = 〈x, Fy〉λB = 〈Vx, y〉σλB = 〈Fx, y〉σλB = −〈y, Fx〉σλB = −{y, x}σt

Thus, (Vt, { , }t) is admissible. The lemma follows.

2.3.3 Basic correspondence
We define a new moduli problem which gives the normalization of the supersin-

gular locus Sss.

Definition 2.3.9. The moduli problem N associates with every Fp2-algebra R the
set N(R) of equivalence classes of sextuples (B, λB, ηB, A, λA, ηA, γ) where

1. (B, λB, ηB) ∈ T (R);
2. (A, λA, ηA) ∈ S(R);
3. γ : A→ B is an OF -linear isogeny such that

pλA = γ∨ ◦ λB ◦ γ;

Note that condition (3) implies that ker(γ) is a subgroup scheme of A[p] stable under
OF . Two septuplets (B, λB, ηB, A, λA, ηA, γ) and (B′, λ′B, η′B, A′, λA′ , ηA′ , γ′) are equi-
valent if there are OF -linear prime-to-p quasi-isogenies ϕ : B → B′ and ψ : A→ A′

such that
— there exists c ∈ Z×(p)such that ϕ∨ ◦ λB′ ◦ ϕ = cλB and ψ∨ ◦ λA′ ◦ ψ = cλA.
— the Kp-orbit of maps v 7→ ϕ∗ ◦ ηB(v) for v ∈ V ′ ⊗Q A∞,p coincides with ηB′ .
— the Kp-orbit of maps v 7→ ϕ′∗ ◦ ηA(v) for v ∈ V ⊗Q A∞,p coincides with ηA′ .

We obtain in an obvious way a correspondence

N
θ

��

ν

  
T Sss

(2.5)

Theorem 2.3.10. In diagram (2.5), take a point

t = (B, λB, ηB) ∈ T (κ)

where κ is a field containing Fp2. Put Nt := θ−1(t), and denote by
(B, λB, ηB,A, λA, ηA, γ) the universal object over the fiber Nt.
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1. The fiber Nt is a smooth scheme over κ, with a canonical isomorphism for
its tangent bundle

TNt/Fp2 ' (ωA∨,1, kerα∗,1/ωA∨,1)

2. The assignment sending (B, λB, ηB, A, λA, ηA; γ) ∈ Nt(R) for every R ∈
Sch′/κ to the subbundle

U := δ−1
∗,0(ωA∨/R,0) ⊆ HdR

1 (B/R)0 ∼= HdR
1 (B/κ)0 ⊗κ OR = Vt ⊗κ R.

induces an isomorphism

ζt : Nt
∼= DL(Vt, { , })

where δ : B → A is the unique quasi-p-isogeny such that γ ◦ δ = p idB and
δ ◦ γ = p idA . In particular, Nt is isomorphic to the Fermat curve C .

Proof. See [LTX+22, Theorem 4.2.5].

We can define a moduli problem for Sssp.

Definition 2.3.11. Let Sssp(R) be the set of points (A, λA, ηA) ∈ S(R) for R ∈
Sch′/Fp2 , where

VωA∨/R,0 = 0.

Remark 2.3.12. The definition is equivalent to VωA∨/R,1 = 0. Indeed, by comparing
the rank we have (ker V)0 = ωA∨/R,0, which is equivalent to (ker V)1 = ωA∨/R,1 by
duality.

Remark 2.3.13. The conditions ωA∨/R,0 = (ker V)0 and ωA∨/R,1 = (ker V)1 imply
Sssp is smooth of dimension 0.

Definition 2.3.14. Let M be the moduli problem associating with every Fp2-algebra
R the set M(R) of equivalence classes of septuplets (B̃, λB̃, ηB̃, A, λA, ηA, δ′) where

1. (B̃, λB̃, ηB̃) ∈ T̃ (R);
2. (A, λA, ηA) ∈ S(R);
3. δ′ : B̃ → A is a OF -linear quasi-p-isogeny such that
(a) ker δ′[p∞] ⊆ B̃[p];
(b) λB̃ = δ′∨ ◦ λA ◦ δ′;
(c) the Kp-orbit of maps v 7→ δ′∗ ◦ηB̃(v) for v ∈ V ⊗QA∞,p coincides with ηA.

The equivalence relations are defined in a similar way.

There is a natural correspondence

M
ρ′

��

ρ

��
T̃ S

Lemma 2.3.15. The morphism ρ factors through Sssp. Moreover, M is smooth of
dimension 0.
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Proof. Take a point (B̃, λB̃, ηB̃, A, λA, ηA, δ′) ∈ M(R) for R ∈ Sch′/Fp2 . By Remark
2.3.12 it suffices to show VAωA∨/R,0 = 0. By condition (3) and the proof of Lemma
3.4.12(1)(4) of [LTX+22], we have

rankOR ker δ′∗,0 + rankOR ker δ′∗,1 = 1.

We claim δ′∗,1 is an isomorphism, since otherwise rankOR ker δ′∗,0 = 0 and
rankOR im δ′∗,0 = 3, which imply rankOR ωA∨/R,0 = 3 by δ′∗,0ωB̃/R,0 ⊂ ωA∨/R,0, contra-
dicting the signature condition on A.We conclude that im δ′∗,1 = HdR

1 (A/R)1. Consi-
der the commutative diagram

HdR
1 (B̃/R)0

δ′∗,0 //

VB̃
��

HdR
1 (A/R)0

VA
��

HdR
1 (B̃(p)/R)0

δ
′(p)
∗,1 // HdR

1 (A(p)/R)0

. (2.6)

Thus we have

VAωA∨/R,0 = VA im δ′∗,0 = δ
′(p)
∗,1 (im VB̃)0 = δ

′(p)
∗,1 ωB̃(p)∨/R,0 = (δ′∗,1ωB̃∨/R,1)(p) = 0

where we have used ωB̃∨/R,1 = 0. We have proved ρ factors through Sssp. The signa-
ture condition and Remark 2.3.13 imply B̃ and A have trivial deformation. Thus M
is smooth of dimension 0.

Lemma 2.3.16. The morphism ρ induces isomorphisms of Fp2-schemes

ρ : M ∼= Sssp, ρ′ : M ∼= T̃

which are both equivariant under the prime-to-p Hecke correspondence. That is, given
g ∈ Kp\G(A∞,p)/K ′p such that g−1Kpg ⊂ K ′p, we have a commutative diagram

Sssp(Kp) g //

ϕ(Kp)
��

Sssp(K ′p)
ϕ(K′p)
��

T̃ (Kp) g // T̃ (K ′p)

Proof. We show that ρ is an isomorphism. SinceM and Sssp are smooth of dimension
0, it suffices to check that for every algebraically closed field κ containing Fp2 , ρ
induces a bijection on κ-points. We will construct an inverse map θ of ρ. Given a
point s′ = (A, λA, ηA) ∈ Sssp(κ). We list properties of D(A) :

1. VD(A) = FD(A). This follows from lifting the definition VωA∨/κ = 0 of Sssp.

2. D(A)⊥A0 = D(A)1,D(A)⊥A1 = D(A)0. This is because λ is self-dual, or equi-
valently D(A)⊥A = D(A).

3. We have a chain of W (κ)-modules

pD(A)0
2
⊂ FD(A)1

1
⊂ D(A)0, pD(A)1

1
⊂ FD(A)0

2
⊂ D(A)1.

This follows from [Vol10, Lemma 1.4] and in particulier A is of signature type
(1,2).
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Set
DB̃,0 = VD(A)1, DB̃,1 = D(A)1, DB̃ = DB̃,0 ⊕DB̃,1.

We verify that DB̃ is F, V-stable. Indeed, since D(A) is V−1F-invariant, it suffices to
verify the condition for V : we have VDB̃ = V2D(A)1 +VD(A)1 = VD(A)1 +pD(A)1 ⊂
DB̃ since V2 = FV = p.

The chain (3) implies DB̃ ⊂ D(A) as W (κ)-lattices in D(A)[1/p].
By Dieudonné theory there exists an abelian 3-fold B̃ such that D(B̃) = DB̃,

and the injection D(B̃) → D(A) is induced by a prime-to-p isogeny δ′ : B̃ → A.
Define the endormorphism structure iB̃ on B̃ by iB̃(a) = δ′−1 ◦ i(a) ◦ δ′ for a ∈ OF .
Then (B̃, iB̃) is an OF -abelian scheme. Let λB̃ be the unique polarization such that

λB̃ = δ′∨ ◦ λA ◦ δ′.

The pairings induced by λA and λB̃ have the relation

〈x, y〉λA = 〈x, y〉λB̃ , x, y ∈ D(A).

Define the level structure ηB̃ by ηB̃ = δ′∗
−1 ◦ ηA. We verify

1. D(B̃) is of signature type (0,3). Indeed, this follows from

Lie(B̃) ∼= DB̃/VDB̃
∼= D(A)1/pD(A)1.

2. kerλB̃ is a finite group scheme of rank p2. Indeed, from covariant Dieudonne
theory it is equivalent to show D(B̃)

2
⊂ D(B̃)⊥B̃ . Thus it suffices to show

D(B̃)0
1
⊂ D(B̃)⊥B̃1 . From (2) it is equivalent to show FD(A)1

1
⊂ D(A)0 which

comes from (3).
3. ker δ′[p∞] ⊂ B̃[p]. It suffices to show pD(A) ⊂ D(B̃), which is by definition.
Finally we set θ(s′) = (B̃, λB̃, ηB̃, A, λA, ηA, δ′). To verify θ is equivariant un-

der prime-to-p Hecke correspondence, it suffices to consider the associativity of the
following diagram

V ⊗Q A∞,p g // V ⊗Q A∞,p ηA // H1(A,A∞,p) δ′−1
∗ // H1(B̃,A∞,p)

for g ∈ Kp\G(A∞,p)/K ′p. It is easy to verify θ and ρ are the inverse of each other.
We show that ρ′ is an isomorphism. Since M and T̃ are smooth and have dimen-

sion 0, it suffices to check that for every algebraically closed field κ containing Fp2 ,
ρ′ induces a bijection on κ-points. We will construct an inverse map θ′ of ρ′. Given
t = (B̃, λB̃, ηB̃) ∈ T̃ (κ), we list properties of D(B̃) :

1. VD(B̃)0 = FD(B̃)0. In fact, since D(B̃) is of signature (0,3), [Vol10, Lemma
1.4] gives

D(B̃)0 = VD(B̃)1 = FD(B̃)1.

2. D(B̃)1
1
⊂ D(B̃)⊥B̃0 and D(B̃)0

1
⊂ D(B̃)⊥B̃1 . Indeed, since kerλB̃[p∞] is a B̃[p]-

subgroup scheme of rank p2, by covariant Dieudonné theory we have D(B̃)
2
⊂

D(B̃)⊥B̃ , and the claim follows.
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3. We have the chain of W (κ)-lattice

D(B̃)1
1
⊂ V−1D(B̃)⊥B̃1

2
⊂ 1
p
D(B̃)1.

Indeed, kerλB̃ ⊂ B̃[p] gives D(B̃)⊥B̃0 ⊂ (1/p)D(B̃)1. The claim comes from
(2b) and the fact that D(B̃)⊥B̃1 = (V−1D(B̃)0)⊥B̃ = F(D(B̃)0)⊥B̃ .

We set
DA,0 = D(B̃)⊥B̃1 ,DA,1 = D(B̃)1,DA = DA,0 ⊕DA,1.

That DA is F, V-stable follows from (2c). By covariant Dieudonné theory there exists
an abelian 3-fold A such that D(A) = DA, and the inclusion D(B̃) → D(A) is
induced by a prime-to-p isogeny δ′ : B̃ → A. Define the endormorphism structure iA
on A by iA(a) = δ′ ◦ iB̃(a) ◦ δ′−1 for a ∈ OF . Then (A, iA) is an OF -abelian scheme.
Let λA be the unique polarization such that

λB̃ = δ′∨ ◦ λA ◦ δ′.

The pairings induced by λA and λB̃ have the relation

〈x, y〉λA = 〈x, y〉λB̃ , x, y ∈ D(A).

Define the level structure ηA by ηA = δ′∗ ◦ ηB̃. We verify
1. D(A) is of signature (1,2) : calculate the Lie algebra

D(A)
VD(A) = D(B̃)⊥B̃1 + D(B̃)1

VD(B̃)1 + VD(B̃)⊥B̃1
.

The claim follows from (2c).
2. D(A) is self-dual with respect to 〈, 〉λA . Indeed, it suffices to show D(A)⊥A0 =

D(A)1. Since D(A)⊥A0 = D(A)⊥B̃0 , it is enough to verify D(A)⊥B̃0 = D(A)1,
which is exactly our construction.

Finally we set θ(t′) = (B̃, λB̃, ηB̃, A, λA, ηA, δ′). The equivariance under prime-to-p
Hecke correspondence is clear.

2.3.4 The geometry of S0(p)
We define three closed subschemes Yi, i = 0, 1, 2 of S0(p) over Fp2 as follows : for

an Fp2-algebra R, a point s = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ S0(p)(R) belongs to
— Y0(R) if and only if ωÃ∨/R,0 = imα∗,0;
— Y1(R) if and only if ωA∨/R,1 = kerα∗,1;
— Y2(R) if and only if ωÃ∨/R,1 = HdR

1 (Ã/R)⊥Ã0 .

Remark 2.3.17. In [dSG18], the authors define two strata Y m, Y et. We will see
that Y0 coincides with their Y m and Y1 coincides with their Y et.

We are going to show these three strata are all smooth of dimension 2.

Lemma 2.3.18. Take s = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ S0(p)(R) for a scheme R ∈
Sch′/Fp2

.
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1. If s ∈ Y0(R) then
(a) ωÃ∨/R,1 ⊆ imα∗,1;
(b) (ker VA)1 = kerα∗,1.

2. If s ∈ Y1(R) then
(a) kerα∗,0 ⊆ ωA∨/R,0;

(b) α∗,0(ωA∨/R,0) = HdR
1 (Ã/R)⊥Ã1 .

3. If s ∈ Y2(R) then
(a) kerα∗,0 ⊆ ωA∨/R,0.

Proof. Denote by ᾰ : Ã → A the unique isogeny such that ᾰ ◦ α = p idA and
α ◦ ᾰ = p idÃ .

1. (a) The condition ωÃ∨/R,0 = imα∗,0 implies ω⊥Ã
Ã∨/R,0 = (imα∗,0)⊥Ã . On the

other hand, we have 〈imα∗,0, imα∗,1〉λÃ = 〈HdR
1 (Ã/R)0, ᾰ∗,1 imα∗,1〉λÃ =

0, which implies imα∗,1 = (imα∗,0)⊥Ã by comparing the rank. We also
have 〈ωÃ∨/R,0, ωÃ∨/R,1〉λÃ = 0, thus (1a) follows.

(b) It suffices to show kerα∗,1 ⊆ (ker VA)1. The condition (1a) implies ωÃ∨/R,1 ⊆
imα∗,1 = ker ᾰ∗,1. We also have (ker VA)1 = (im FA)1. Consider the follo-
wing commutative diagram

HdR
1 (Ã/R)1

ᾰ∗,1 //

VÃ
��

HdR
1 (A/R)1

VA
��

HdR
1 (Ã(p)/R)0

ᾰ
(p)
∗,0 // HdR

1 (A(p)/R)0

. (2.7)

Thus we have

VA kerα∗,1 = VA im ᾰ∗,1 = ᾰ
(p)
∗,0(im VÃ)0

= ᾰ
(p)
∗,0ω(Ã(p))∨/R,0 = (ᾰ∗,1ωÃ∨/R,1)(p) = 0,

and (1b) follows.
2. (a) The condition ωA∨/R,1 = kerα∗,1 implies ω⊥AA∨/R,1 = (kerα∗,1)⊥A . On the

other hand, we have ωA∨/R,0 = ω⊥AA∨/R,1 and

〈kerα∗,0, kerα∗,1〉λA = 〈im ᾰ∗,0, kerα∗,1〉λA
= 〈HdR

1 (Ã/R)0, α∗,1 kerα∗,1〉λA = 0.

Thus (2a) follows.
(b) (2a) implies rankOR α∗,0ωA∨/R,0 = 1. On the other hand, we have

〈α∗,0ωA∨/R,0,HdR
1 (Ã/R)1〉λÃ = 〈ωA∨/R,0, ᾰ∗,1 HdR

1 (Ã/R)1〉λÃ
= 〈ωA∨/R,0, kerα∗,1〉λA = 〈ωA∨/R,0, ωA∨/R,1〉λA = 0.

Thus α∗,0ωA∨/R,0 ⊆ HdR
1 (Ã/R)⊥Ã1 . By comparing the rank (2b) follows.
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3. (a) Since ω⊥AA∨/R,0 = ωA∨/R,1, by taking the dual it suffices to show ωA∨/R,1 ⊂
(kerα∗,0)⊥A . Since kerα∗,0 = im ᾰ∗,0, it suffices to show that
〈ωA∨/R,1, im ᾰ∗,0〉λA = 0. By the equality 〈α∗x, y〉λÃ = 〈x, ᾰ∗y〉λA it suffices
to show that 〈α∗,1ωA∨/R,1,HdR

1 (Ã/R)0〉λÃ = 0, which follows from the
conditions ωÃ∨/R,1 = HdR

1 (Ã∨/R)⊥Ã0 and α∗,1ωA∨/R,1 ⊆ ωÃ∨/R,1.

Proposition 2.3.19. 1. Y0 is smooth of dimension 2 over Fp2 . Moreover, let
(A, Ã, α) denote the universal object on Y0. Then the tangent bundle TY0/Fp2

of Y0 fits into an exact sequence

0→ Hom(ωA∨,1, α
−1
∗,1ωÃ∨,1/ωA∨,1)→ TY0/Fp2

→ Hom(α−1
∗,1ωÃ∨,1/ kerα∗,1,HdR

1 (A)1/α
−1
∗,1ωÃ∨,1)→ 0 (2.8)

2. Y1 is smooth of dimension 2 over Fp2 . Moreover, let (A, Ã, α) denote the
universal object on Y1. Then the tangent bundle TY1/Fp2 of Y1 fits into an
exact sequence

0→ Hom(ωÃ∨,1, ω
⊥Ã

Ã∨,0/ωÃ∨,1)→ TY1/Fp2

→ Hom(ωÃ∨,0/HdR
1 (Ã)⊥Ã

1 ,HdR
1 (Ã)1/ωÃ∨,0)→ 0 (2.9)

3. Y2 is smooth of dimension 2 over Fp2 . Moreover, let (A, Ã, α) denote the
universal object on Y2. Then the tangent bundle TY2/Fp2 of Y2 fits into an
exact sequence

0→ Hom(ωÃ∨,0/α∗,0ωA∨,0,HdR
1 (Ã)0/ωÃ∨,0)→ TY2/Fp2

→ Hom(ωA∨,0/ kerα∗,0,HdR
1 (A)0/ωA∨,0)→ 0. (2.10)

Proof. 1. We show Y0 is formally smooth using deformation theory. Consider a
closed immersion R ↪→ R̂ in Sch′/Fp2

defined by an ideal sheaf I with I2 = 0.
Take a point y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y0(R). By Proposition 2.2.10
lifting y to an R̂-point is equivalent to lifting
— ωA∨/R,0 (resp. ωÃ∨/R,0) to a rank 2 subbundle ω̂A∨,0 (resp. ω̂Ã∨,0) of

Hcris
1 (A/R̂)0 (resp. Hcris

1 (Ã/R̂)0),
— ωA∨/R,1 (resp. ωÃ∨/R,1) to a rank 1 subbundle ω̂A∨,1 (resp. ω̂Ã∨,1) of

Hcris
1 (A/R̂)1 (resp. Hcris

1 (Ã/R̂)1),
subject to the following requirements
(a) ω̂A∨,0 and ω̂A∨,1 are orthogonal complement of each other under 〈 , 〉cris

λA

(2.4) ;
(b) ω̂Ã∨,0 and ω̂Ã∨,1 are orthogonal under 〈 , 〉cris

λÃ
(2.4) ;

(c) ω̂A∨,1 ⊆ α−1
∗,1ω̂Ã∨,1;

(d) ω̂Ã∨,0 = α∗,0Hcris
1 (Ã/R̂)0;
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Since 〈 , 〉cris
λA,0 is a perfect pairing, ω̂A∨,0 is uniquely determined by ω̂A∨,1

by (3a). Moreover, ω̂Ã∨,0 is uniquely determined by Hcris
1 (Ã/R̂)0. Therefore,

it suffices to give the lifts ω̂A∨,1 and ω̂Ã∨,1 subject to condition (1c) above.
But lifting ωÃ∨/R,1 is the same as lifting its preimage α−1

∗,1ωÃ∨/R,1 to a rank 2
subbundle ω̂′A∨,1 of Hcris

1 (Ã/R̂)0 containing kerα∗,1. Thus the tangent space
TY0/Fp2 ,y at y fits canonically into an exact sequence

0→ Hom(ωA∨/R,1, α−1
∗,1ωÃ∨/R,1/ωA∨/R,1)→ TY0/Fp2 ,y

→ Hom(α−1
∗,1ωÃ∨/R,1/ kerα∗,1,HdR

1 (A/R)1/α
−1
∗,1ωÃ∨/R,1)→ 0 (2.11)

Thus, Y0 is formally smooth over Fp2 of dimension 2.
2. Now we show Y1 is formally smooth. Consider a closed immersion R ↪→
R̂ in Sch′/Fp2

defined by an ideal sheaf I with I2 = 0. Take a point y =
(A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y1(R). By proposition 2.2.10 to lift y to an R̂-point
is equivalent to lift
— ωA∨/R,0 (resp. ωÃ∨/R,0) to a rank 2 subbundle ω̂A∨,0 (resp. ω̂Ã∨,0) of

Hcris
1 (A/R̂)0 (resp. Hcris

1 (Ã/R̂)0),
— ωA∨/R,1 (resp. ωÃ∨/R,1) to a rank 1 subbundle ω̂A∨,1 (resp. ω̂Ã∨,1) of

Hcris
1 (A/R̂)1 (resp. Hcris

1 (Ã/R̂)1),
subject to the following requirements
(a) ω̂A∨,0 and ω̂A∨,1 are orthogonal complement of each other under 〈 , 〉cris

λA,0
(2.4) ;

(b) ω̂Ã∨,0 and ω̂Ã∨,1 are orthogonal under 〈 , 〉cris
λÃ,0

;
(c) α∗,0ω̂A∨,0 ⊆ ω̂Ã∨,0;
(d) ω̂A∨,1 = kerα∗,1.
Since 〈 , 〉cris

λA,0 is a perfect pairing, ω̂A∨,0 is uniquely determined by ω̂A∨,1 =
kerα∗,1 by (3a) and (2d). On the other hand, we have α∗,0ωA∨/R,0 = HdR

1 (Ã/R)⊥Ã1
by Lemma 2.3.18(2b). To summarize, lifting y to an R̂-point is equivalent to
lifting ωÃ∨/R,0 to a subbundle ω̂Ã∨,0 containing Hcris

1 (Ã/R̂)⊥Ã1 , and lifting
ωÃ∨/R,1 to a subbundle ω̂Ã∨,1 of ω̂⊥Ã

Ã∨,0 where the latter has OR̂-rank 2. Thus
the tangent space TY1/Fp2 ,y at y fits canonically into an exact sequence

0→ Hom(ωÃ∨/R,1, ω
⊥Ã
Ã∨/R,0/ωÃ∨/R,1)→ TY1/Fp2 ,y

→ Hom(ωÃ∨/R,0/HdR
1 (Ã/R)⊥Ã1 ,HdR

1 (Ã/R)1/ωÃ∨/R,0)→ 0 (2.12)

Thus, Y1 is formally smooth over Fp2 of dimension 2.
3. We show Y2 is formally smooth using deformation theory. Consider a closed

immersion R ↪→ R̂ in Sch′/Fp2
defined by an ideal sheaf I with I2 = 0. Take

a point y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y2(R). We return to the proof of
Proposition 3. By proposition 2.2.10 to lift y to an R̂-point is equivalent to
lifting
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— ωA∨/R,0 (resp. ωÃ∨/R,0) to a rank 2 subbundle ω̂A∨,0 (resp. ωÃ∨,0) of
Hcris

1 (A/R̂)0 ( resp. Hcris
1 (Ã/R̂)0),

— ωA∨/R,1 (resp. ωÃ∨/R,1) to a rank 1 subbundle ω̂A∨,1 (resp. ωÃ∨,1) of
Hcris

1 (A/R̂)1 ( resp. Hcris
1 (Ã/R̂)1),

subject to the following requirements
(a) ω̂A∨,0 and ω̂A∨,1 are orthogonal complement of each other under 〈 , 〉cris

λA,0
(2.4) ;

(b) ω̂Ã∨,1 is the orthogonal complement of Hcris
1 (Ã/R̂)0 under 〈 , 〉cris

λÃ,0
;

(c) α∗,iω̂A∨,i ⊆ ω̂Ã∨,i for i = 0, 1.
(d) kerα∗,0 ⊆ ω̂A∨,0(Lemma 2.3.18(3a)).
Since 〈 , 〉cris

λA,0 is a perfect pairing, ω̂A∨,1 is uniquely determined by ω̂A∨,0

by (3a). Moreover, ω̂Ã∨,1 is uniquely determined by Hcris
1 (Ã/R̂)0 by (1b).

Given a lift ω̂A∨,0 with condition (3d) and define ω̂A∨,1 := ω̂⊥AA∨,0. We claim
α∗,1ω̂A∨,1 ⊂ ω̂Ã∨,1. Indeed, aince ωÃ∨,1 = Hcris

1 (Ã/R̂)⊥Ã0 , it suffices to check
〈α∗,1ω̂A∨,1,Hcris

1 (Ã/R̂)0〉λÃ = 0. However, we have

〈α∗,1ω̂A∨,1,Hcris
1 (Ã/R̂)0〉λÃ = 〈ω̂A∨,1, ᾰ∗,0Hcris

1 (Ã/R̂)0〉λÃ
= 〈ω̂A∨,1, kerα∗,0〉λÃ ⊂ 〈ω̂A∨,1, ω̂A∨,0〉λÃ = 0. (2.13)

The claim follows. To summarize, lifting y to an R̂-point is equivalent to
lifting ωA∨/R,0 to a subbundle ω̂A∨,0 of Hcris

1 (A/R̂)0 containing kerα∗,0 and
lifting ωÃ∨/R,0 to a subbundle ω̂Ã∨,0 of Hcris

1 (Ã/R̂)0 containing α∗,0ω̂A∨,0. Thus
the tangent space TY2/Fp2 ,y at y fits canonically into an exact sequence

0→ Hom(ωÃ∨/R,0/α∗,0ωA∨/R,0,HdR
1 (Ã/R)0/ωÃ∨/R,0)→ TY2/Fp2 ,y

→ Hom(ωA∨/R,0/ kerα∗,0,HdR
1 (A/R)0/ωA∨/R,0)→ 0. (2.14)

Thus Y2 is smooth over Fp2 of dimension 2.

Lemma 2.3.20. S0(p) is the union of three strata defined over Fp2

S0(p) = Y0 ∪ Y1 ∪ Y2.

Proof. By Hilbert’s Nullstellensatz, it suffices to show that

S0(p)(κ) = Y0(κ) ∪ Y1(κ) ∪ Y2(κ)

for an algebraically closed field κ of characteristic p. Take s = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈
S0(p)(κ). Suppose s /∈ Y0(κ) ∪ Y1(κ), that is, ωÃ∨/R,0 6= imα∗,0 and ωA∨/R,1 6=
kerα∗,1. It follows that ωA∨/R,1 ∩ kerα∗,1 = {0} by the rank condition and the-
refore α∗,1 induces an isomorphism ωÃ∨/R,1 = α∗,1ωA∨,1. Thus 〈imα∗,0, ωÃ∨/R,1〉λÃ =
〈imα∗,0, α∗,1ωA∨,1〉λÃ = 0. On the other hand, we have 〈ωÃ∨/R,0, ωÃ∨/R,1〉λÃ = 0.
Since ωÃ∨/R,0 6= imα∗,0 , we conclude 〈HdR

1 (Ã/R)0, ωÃ∨/R,1〉λÃ = 0. Thus s ∈ Y2(κ)
and the lemma follows.
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2.3.5 Relation between strata of S0(p) and S

Definition 2.3.21. Let S# be the moduli scheme that associates with every scheme
R ∈ Sch′/Fp2 , the isomorphism classes of pairs (A, λA, ηA,P0) where

1. (A, λA, ηA) ∈ S(R);
2. P0 is a line subbundle of ker(V : ωA∨/R,0 → ωA∨(p)/R,0).

Given a point (A, λA, ηA) ∈ S(R) for a scheme R ∈ Sch′/Fp2 , recall (Notation
(2.2.7)) that we have the locally free OR-module HdR

1 (A/R), the Frobenius map VA :
HdR

1 (A/R)i → HdR
1 (A(p)/R)i+1 and the Verschiebung map FA : HdR

1 (A(p)/R)i+1 →
HdR

1 (A/R)i for i = 0, 1 satisfying ker FA = im VA = ωA(p)/R, ker VA = im FA. If no
confusion arises we denote them by F and V. The p-principal polarization λA induces
a perfect pairing 〈 , 〉 on HdR

1 (A/R). Denote by H⊥ the orthogonal complement of
a subbundle H of HdR

1 (A/R) under the pairing 〈 , 〉.

Proposition 2.3.22. S# is smooth of dimension 2 over Fp2 . Moreover, let (A,P0)
denote the universal object on S#. Then the tangent bundle TS#/Fp2 of S# fits into
an exact sequence

0→ Hom(ωA∨/S#,1,P
⊥
0 /ωA∨/S#,1)→ TS#/Fp2

→ Hom(P⊥0 /(ker V)1,HdR
1 (A/S#)1/P

⊥
0 )→ 0 (2.15)

Proof. We show S# is formally smooth using deformation theory. Consider a closed
immersion R ↪→ R̂ in Sch′/Fp2

defined by an ideal sheaf I with I2 = 0. Take a
point s = (A, λA, ηA,P0) ∈ S#(R). By proposition 2.2.10 lifting s to an R̂-point is
equivalent to lifting

— ωA∨/R,0 (resp. ωA∨/R,1) to a rank 2 (resp. rank 1) subbundle ω̂A∨,0 (resp. ω̂A∨,1)
of Hcris

1 (A/R̂)0 ( resp. Hcris
1 (A/R̂)1),

— P0 to a rank 1 subbundle P̂0 of (ker V)0.
subject to the following requirements

1. ω̂A∨,0 and ω̂A∨,1 are orthogonal complement of each other under 〈 , 〉cris
λA

(2.4) ;
2. P̂0 ⊆ ω̂A∨,0;

Since 〈 , 〉cris
λA,0 is a perfect pairing, ω̂A∨,0 is uniquely determined by ω̂A∨,1 by (1).

In the meanwhile, lifting P0 is equivalent to lifting P⊥0 to a rank 2 subbundle P̂1 of
Hcris

1 (A/R̂)1 subject to the conditions
1. (ker V)⊥0 = (ker V)1 ⊆ P̂1 ;
2. ω̂⊥A∨,0 = ω̂A∨,1 ⊆ P̂1.

Therefore, it suffices to give the lifts ω̂A∨,1 and P̂1 subject to the conditions (1). Thus
the tangent space TS#/Fp2 ,s at s fits canonically into an exact sequence

0→ Hom(ωA∨/S#,1,P
⊥
0 /ωA∨/S#,1)→ TS#/Fp2 ,s

→ Hom(P⊥0 /(ker V)1,HdR
1 (A/S#)1/P

⊥
0 )→ 0 (2.16)

Thus, S# is formally smooth over Fp2 of dimension 2.
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Remark 2.3.23. By [dSG18, 2.3], S# is the moduli space represented by the blow up
of S at the superspecial points. Indeed, for R ∈ Sch′/Fp2 and (A, λA, ηA,P0) ∈ S#(R),
if A is not superspecial then P0 = ker(V |ωA∨/R,0) is unique. At superspecial points,
since V |ωA∨/R,0 vanishes, the additional datum P0 amounts to a choice of a subline
bundle ωA∨/R,0.

Proposition 2.3.24. 1. There is an isomorphism of Fp2-schemes

π#
0 : Y0

∼−→ S#

defined as follows : given a point y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y0(R) for a
scheme R ∈ Sch′/Fp2 , define

π#
0 (y) = (A, λA, ηA, (α−1

∗,1ωÃ∨/R,1)⊥) ∈ S#(R).

2. There is a purely inseparable morphism of Fp2-schemes

π#
1 : Y1 → S#

defined as follows : given a point y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y1(R) for a
scheme R ∈ Sch′/Fp2 , define

π#
1 (y) = (A, λA, ηA, (α−1

∗,1(ker VÃ)1)⊥) ∈ S#(R).

Proof. 1. We check π#
0 is well-defined. Given a point y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈

Y0(R) for a scheme R ∈ Sch′/Fp2 , we need to show (α−1
∗,1ωÃ∨/R,1)⊥ ⊆ (ker VA)0∩

ωA∨/R,0. Firstly we show (α−1
∗,1ωÃ∨/R,1)⊥ ⊆ ωA∨/R,0. By duality it suffices to

show ωA∨/R,1 ⊂ α−1
∗,1ωÃ∨/R,1, which follows from functoriality. Secondly we

show (α−1
∗,1ωÃ∨/R,1)⊥ ⊆ (ker VA)0. By duality it suffices to show (ker VA)1 ⊆

α−1
∗,1ωÃ∨/R,1. The condition imα∗,0 = ωÃ∨/R,0 implies imα

(p)
∗,0 = ω(Ã(p))∨/R,0.

The commutative diagram (2.7) then implies α∗,1(ker VA)1 = α∗,1(im FA)1 =
FÃ imα

(p)
∗,0 = FÃω(Ã(p))∨/R,1 = 0. Thus π#

0 is well-defined.
Since S# is smooth over Fp2 , to show that π#

0 is an isomorphism, it suffices
to check that for every algebraically closed field κ containing Fp2 , we have

(a) π#
0 induces a bijection on κ-points ;

(b) π#
0 induces an isomorphism on the tangent spaces at every κ-point.

For (1a), it suffices to construct a map θ : S#(κ) → Y0(κ) inverse to π#
0 .

Take a point s = (A, λA, ηA,P0) ∈ S#(κ). We will construct a point y =
(A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y0(κ). Recall that there is a perfect pairing 〈 , 〉 on
D(A) lifting that on HdR

1 (A/κ). Given a W (κ)-submodule M of D(A) denote
by M∨ the dual lattice

M∨ := {x ∈ D(A) | 〈x,M〉 ∈ W (κ)}.

We list miscellaneous properties of D(A) and P0 :
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(a) We have two chains of W (κ)-modules

pD(A)0
2
⊂ FD(A)1

1
⊂ D(A)0, pD(A)1

1
⊂ FD(A)0

2
⊂ D(A)1.

Here, for an inclusion of W (κ)-modules N
i
⊂ M , the number i above ⊂

means dimκ(M/N) = i.
(b) D(A) is self dual : D(A)⊥0 = D(A)1, D(A)⊥1 = D(A)0.

(c) The preimage of (ker VA)0 ∩ ωA∨/S,0 under the reduction map D(A)0 →
D(A)0/pD(A)0 ∼= HdR

1 (A/R)0 is FD(A)1 ∩ VD(A)1.

(d) P0 is a κ-vector subspace of ker V ∩ ωA∨/R,0 of dimension 1.
(e) Denote by P̃0 the preimage of P0 under the reduction map D(A)0 →

HdR
1 (A/κ)0. Then we have chains of W (κ)-modules

pVD(A)1
1
⊂ pD(A)0

1
⊂ P̃0 ⊂ FD(A)1 ∩ VD(A)1, P̃0

2
⊂ VD(A)0.

pFD(A)1
1
⊂ pD(A)0

1
⊂ P̃0 ⊂ FD(A)1 ∩ VD(A)1, P̃0

2
⊂ FD(A)0.

We set

DÃ,0 = F(P̃0)∨, DÃ,1 = V−1D(A)0, DÃ = DÃ,0 + DÃ,1.

We verify that DÃ is F, V-stable and satisfies the following chain conditions :
(a) VDÃ,0

2
⊂ DÃ,1. It suffices to check (P̃0)∨

2
⊂ p−1V−1D(A)0. By taking duals,

this is equivalent to pFD(A)1
2
⊂ P̃0, which follows from (1e).

(b) FDÃ,0
2
⊂ DÃ,1. It suffices to check (P̃0)∨

2
⊂ p−1F−1D(A)0. By taking duals,

this is equivalent to pVD(A)1
2
⊂ P̃0, which follows from (1e).

(c) VDÃ,1
1
⊂ DÃ,0. It suffices to check F−1D(A)0

1
⊂ (P̃0)∨. By taking duals,

this is equivalent to P̃0
1
⊂ VD(A)1, which follows from (1e).

(d) FDÃ,1
1
⊂ DÃ,0. It suffices to check V−1D(A)0

1
⊂ (P̃0)∨. By taking duals,

this is equivalent to P̃0
1
⊂ FD(A)0, which follows from (1e).

(e) D(A)0
1
⊂ DÃ,0, D(A)1

1
⊆ DÃ,1. Same as (1c) and (1a).

Thus we have an inclusion D(A) ⊆ DÃ. By covariant Dieudonné theory
there exists an abelian 3-fold Ã such that D(Ã) = DÃ, and the inclusion
D(A) ⊆ DÃ is induced by a prime-to-p isogeny α : A → Ã. Define the
endormorphism structure iÃ on Ã by iÃ(a) = α ◦ iA(a) ◦ α−1 for a ∈ OF .
Then (Ã, iÃ) is an OF -abelian scheme. Let λÃ be the unique polarization
such that

pλA = α∨ ◦ λÃ ◦ α.
The pairings induced by λÃ and λB have the relations

〈x, y〉λA = p−1〈x, y〉λÃ , x, y ∈ D(A).

For a W (κ)-submodule M of D(A), we have

M∨A = pM∨Ã .

Define the level structure ηÃ on Ã by ηÃ = α∗ ◦ ηA. We verify
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(a) D(Ã) is of signature (1,2). This is by definition.

(b) kerα is a Raynaud subgroup of A[p]. It suffices to show D(A)0
1
⊆ D(Ã)0

and D(A)1
1
⊆ D(Ã)1, which follows from (1e).

(c) D(Ã)1
1
⊂ D(Ã)⊥Ã0 . It suffices to show V−1D(A)0

1
⊂ p−1FP̃0, or equivalently

pD(A)0
1
⊂ P̃0, which follows from (1e).

(d) D(Ã)0
1
⊂ D(Ã)⊥Ã1 . This is the dual version of (1c).

(e) kerλÃ[p∞] is a Ã[p]-subgroup scheme of rank p2. Indeed, from covariant
Dieudonné theory it is equivalent to show D(Ã)

2
⊂ D(Ã)⊥Ã . Thus it suf-

fices to show D(Ã)0
1
⊂ D(Ã)⊥Ã1 and D(Ã)1

1
⊂ D(Ã)⊥Ã0 which follows from

(1c) and (1d).
(f) ωÃ∨/R,0 = imα∗,0, ωÃ∨/R,1 ⊂ imα∗,1. It suffices to check VD(Ã)0 ⊆ D(A)1,

VD(Ã)1 ⊆ D(A)0, which follows from (1e).
Finally we set θ(s) = (A, λA, ηA, Ã, λÃ, ηÃ, α). By (1) we see θ(s) ∈ Y0(κ). It
is easy to verify θ is the inverse of π#

0 .

For (1b), the morphism π#
0 induces the identification α−1

∗,1ωÃ∨/κ,1 = P⊥0 . Com-
bined with Lemma 2.3.18 (1b), we see two exact sequences of tangent bundle
(2.8) and (2.15) coincide. The proposition follows.

2. We check π#
1 is well-defined. Given a point y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈

Y1(R) for a schemeR ∈ Sch′/Fp2 .We need to show (α−1
∗,1(ker VÃ)1)⊥ ⊆ (ker VA)0∩

ωA∨/R,0.

Firstly we show (α−1
∗,1(ker VÃ)1)⊥ ⊆ ωA∨/R,0. By duality it suffices to show

ωA∨/R,1 ⊂ α−1
∗,1(ker VÃ)1, which follows from the condition ωA∨/R,1 = kerα∗,1.

Secondly we show (α−1
∗,1(ker VÃ)1)⊥ ⊆ (ker VA)0. By duality it suffices to show

(ker VA)1 ⊆ α−1
∗,1(ker VÃ)1, which is again from the commutative diagram (2.7).

Thus π#
1 is well-defined.

To show that π#
1 is a purely inseparable morphism, it suffices to check that

for every algebraically closed field κ containing Fp2 , π induces a bijection on κ-
points. We construct an inverse map θ of π#

1 . Take a point s = (A, λA, ηA,P0) ∈
S#(κ).
We set

DÃ,0 = V(P̃0)∨, DÃ,1 = F−1D(A)0, DÃ = DÃ,0 + DÃ,1.

In an entirely similar manner we can construct a point
θ(s) = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y1(κ). It is easy to verify that θ is the
inverse of π#

1 .

We now introduce a new moduli problem to show Y2 is a P1-bundle over N .

Definition 2.3.25. Let P be the moduli problem associating with every Fp2-algebra
R the set P (R) of equivalence classes of undecuples (A, λA, ηA, Ã, λÃ, ηÃ, B, λB, ηB, α, δ)
where

1. (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ S0(p)(R);
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2. (A, λA, ηA, B, λB, ηB, δ ◦ α) ∈ N(R);
3. δ : Ã→ B is a OF -linear quasi-p-isogeny such that
(a) ker δ[p∞] ⊆ Ã[p];
(b) λÃ = δ∨ ◦ λB ◦ δ;
(c) the Kp-orbit of maps v 7→ δ∗ ◦ηÃ(v) for v ∈ V ⊗QA∞,p coincides with ηB.

Two undecuples (B, λB, ηB, A, λA, ηA, Ã, λÃ, ηÃ, α, δ) and
(B′, λ′B, η′B, A′, λA′ , ηA′ , Ã′, λÃ′ , ηÃ′ , α′, δ′) are equivalent if there are OF -linear prime-
to-p quasi-isogenies ϕ : B → B′, ψ : A→ A′ and φ : Ã→ Ã′ such that

— there exists c ∈ Z×(p)such that ϕ∨ ◦ λB′ ◦ ϕ = cλB, ψ
∨ ◦ λA′ ◦ ψ = cλA and

φ∨ ◦ λÃ′ ◦ φ = cλÃ;
— the Kp-orbit of maps v 7→ ϕ∗ ◦ ηB(v) for v ∈ W ⊗Q A∞,p coincides with ηB′ ;
— the Kp-orbit of maps v 7→ ψ∗ ◦ ηA(v) for v ∈ V ⊗Q A∞,p coincides with ηA′ ;
— the Kp-orbit of maps v 7→ φ∗ ◦ ηÃ(v) for v ∈ V ⊗Q A∞,p coincides with ηÃ′ .

Lemma 2.3.26. Take a point s = (B, λB, ηB, A, λA, ηA, Ã, λÃ, ηÃ, α, δ) ∈ P (R) for
a scheme R ∈ Sch′/Fp2 . Then

1. δ∗,0 : HdR
1 (Ã/R)0 → HdR

1 (B/R)0 is an isomorphism and rankOR ker δ∗,1 = 1.
2. ωÃ∨/R,1 = HdR

1 (Ã/R)⊥Ã0 .

Proof. 1. Denote by γ the quasi-p-isogeny γ := δ ◦ α : A → B. The relation
pλA = α∨ ◦ λÃ ◦ α and λÃ = δ∨ ◦ λB ◦ δ implies

pλA = γ∨ ◦ λB ◦ γ.

By [LTX+22, Lemma 3.4.12(2),(3a),(3b),(4)], we have

rankOR(kerα∗,0)− rankOR(kerα∗,1) = 0,

rankOR(kerα∗,0) + rankOR(kerα∗,1) = 2,
rankOR(ker γ∗,0)− rankOR(ker γ∗,1) = −1,
rankOR(ker γ∗,0) + rankOR(ker γ∗,1) = 3,
rankOR(ker δ∗,0) + rankOR(ker δ∗,1) = 1.

The solution is

rankOR kerα∗,0 = 1, rankOR ker γ∗,0 = 1,
rankOR kerα∗,1 = 1, rankOR ker γ∗,1 = 2.

We claim rankOR ker δ∗,0 = 0 since otherwise δ∗,1 is an isomorphism and the-
refore rankOR kerα∗,1 = rankOR ker γ∗,1 which is absurd. Then by comparing
the ranks we conclude δ∗,0 is an isomorphism. (1) follows.

2. By comparing the rank it suffices to show 〈ωÃ∨/R,1,HdR
1 (Ã/R)0〉λÃ = 0. We

claim ωÃ∨/R,1 = ker δ∗,1. Indeed, by (1) it suffices to show ωÃ∨/R,1 ⊆ ker δ∗,1.
The signature condition of B implies ωB∨/R,1 = 0. Thus ωÃ∨/R,1 ⊆ ker δ∗,1 and
the claim follows. On the other hand, from λÃ = δ∨◦λB ◦δ we have 〈x, y〉λÃ =
〈δ∗x, δ∗y〉λB for x, y ∈ HdR

1 (Ã/R). Therefore 〈ker δ∗,1,HdR
1 (Ã/R)0〉λÃ = 0. We

can then conclude 〈ωÃ∨/R,1,HdR
1 (Ã/R)0〉λÃ = 0 and (2) follows.
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Proposition 2.3.27. P is smooth of dimension 2 over Fp2 . Moreover, let
(A, Ã,B, α, δ) denote the universal object over P . Then the tangent bundle TP/Fp2

of P fits into an exact sequence

0→ Hom(ωÃ∨/P,0/α∗,0ωA∨/P,0,HdR
1 (Ã/P )0/ωÃ∨/P,0)→ TP/Fp2

→ Hom(ωA∨/P,0/ kerα∗,0,HdR
1 (A/P )0/ωA∨/P,0)→ 0. (2.17)

Proof. The proof resembles that of Proposition 2.3.19(3). We show P is formally
smooth using deformation theory. Consider a closed immersion R ↪→ R̂ in Sch′/Fp2

defined by an ideal sheaf I with I2 = 0. Take a point
s = (A, λA, ηA, Ã, λÃ, ηÃ, B, λB, ηB, α, δ) ∈ P (R). Denote by δ̆ : B → Ã the unique
quasi-p-isogeny such that δ̆ ◦ δ = idÃ and δ ◦ δ̆ = idB . By proposition 2.2.10 lifting
s to an R̂-point is equivalent to lifting

— ωA∨/R,0 (resp. ωÃ∨/R,0) to a rank 2 subbundle ω̂A∨,0 (resp. ωÃ∨,0) of Hcris
1 (A/R̂)0

( resp. Hcris
1 (Ã/R̂)0),

— ωA∨/R,1 (resp. ωÃ∨/R,1) to a rank 1 subbundle ω̂A∨,1 (resp. ωÃ∨,1) of Hcris
1 (A/R̂)1

( resp. Hcris
1 (Ã/R̂)1),

— ωB∨/R,0 (resp. ωB∨/R,1) to a rank 3 (resp. rank 0) subbundle ω̂B∨,0 (resp. ω̂B∨,1)
of Hcris

1 (B/R̂)0 ( resp. Hcris
1 (B/R̂)1),

subject to the requirements in the proof of Proposition 2.3.19(3) and
1. δ∗,1ω̂Ã∨,1 ⊆ ω̂B∨,1.

We verify (1) holds. Indeed, since λB is p-principal, it suffices to show that
〈δ∗,1ω̂Ã∨,1,Hcris

1 (B/R̂)0〉λB = 0. However, the same argument as Lemma 2.3.26(1)
shows δ∗,0 : Hcris

1 (Ã/R̂)0 → Hcris
1 (B/R̂)0 is an isomorphism. Thus we have

〈δ∗,1ω̂Ã∨,1,Hcris
1 (B/R̂)0〉λB = 〈ω̂Ã∨,1,Hcris

1 (Ã/R̂)0〉λÃ = 0 by Proposition 2.3.19(3b)
and therefore (1) holds. We conclude the requirements are the same as those in
Proposition 3. Thus the tangent space TP/Fp2 ,s at s fits into an exact sequence

0→ Hom(ωÃ∨/R,0/α∗,0ωA∨/R,0,HdR
1 (Ã/R)0/ωÃ∨/R,0)→ TP/Fp2 ,s

→ Hom(ωA∨/R,0/ kerα∗,0,HdR
1 (A/R)0/ωA∨/R,0)→ 0. (2.18)

We have shown P is smooth over Fp2 of dimension 2.

Lemma 2.3.28. The natural forgetful map ν̃ induces an isomorphism of Fp2-schemes

ν̃ : P ∼= Y2.

Proof. Since Y2 is smooth over Fp2 by Proposition 2.3.19(3), to show that ν̃ is an
isomorphism, it suffices to check that for every algebraically closed field κ containing
Fp2 , we have

1. ν̃ induces a bijection on κ-points ; and
2. ν̃ induces an isomorphism on the tangent spaces at every κ-point.

For (1), we construct an inverse map θ(κ) of ν̃. Take a point
y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y2(κ). We have the following facts :
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1. We have two chains

D(A)0
1
⊂ D(Ã)0, D(A)1

1
⊂ D(Ã)1

since kerα is a Raynaud subgroup of A[p].
2. D(Ã)⊥Ã0 = p−1VD(Ã)0. Indeed, this is by taking the preimage of the condition
ωÃ∨/R,1 = HdR

1 (Ã/κ)⊥Ã0 under the reduction map D(Ã)0 → D(Ã)0/pD(Ã)0 ∼=
HdR

1 (Ã/κ)0.

3. VD(Ã)0 = FD(Ã)0. Rewrite (2) as D(Ã)⊥A0 = VD(Ã)0 by identifying D(Ã) as
a lattice inD(A)[1/p] and taking account of the relationD(Ã)⊥A0 = pD(Ã)⊥Ã0 .
By taking the λA-dual we getD(Ã)0 = (VD(Ã)0)⊥A = F−1D(Ã)⊥A0 = F−1VD(Ã)0.
Thus (3) follows.

4. There is a chain of W (κ)-lattice in D(A)0[1/p] :

pD(A)1
1
⊆ VD(A)0

1
⊆ VD(Ã)0 = D(Ã)⊥A0

1
⊆ D(A)1.

Indeed, the first inclusion follows from (3) and the second follows from (1).
Now we define

DB,0 = D(Ã)0, DB,1 = p−1VDB,0, DB = DB,0 + DB,1.

We can easily verify DB is F, V-stable from the fact that DB,0 is V−1F-invariant.
Moreover, we have an injection D(Ã)→ DB. By covariant Dieudonné theory there
exists an abelian 3-fold B such that D(B) = DB, and the inclusion D(Ã)→ D(B)
is induced by an isogeny δ : Ã→ B. Let λB be the unique polarization such that

λÃ = δ∨ ◦ λB ◦ δ.

We have the relation

〈x, y〉λÃ = 〈x, y〉λB , x, y ∈ D(Ã).

Define the level structure ηB by ηB = δ∗ ◦ ηÃ. We verify
1. D(B) is of signature type (0,3) : this follows from the definition.
2. D(B) is self-dual with respect to 〈 , 〉λB . Indeed, as above it suffices to show

D(B)1 = D(B)⊥B0 , which is equivalent to VDB,0 = D⊥AB,0, which follows from
(4).

Finally we set θ(y) = (B, λB, ηB, A, λA, ηA, Ã, λÃ, ηÃ, α, δ).
For (2), take s ∈ P (κ) and thus y = ν̃(s) ∈ Y2(κ). Under the morphism ν̃ the

exact sequences (2.17) and (2.10) coincide. Thus (2) follows and ν̃ is an isomorphism.

Proposition 2.3.29. 1. Define V by

V (R) := HdR
1 (B/R)0/γ∗,0ωA∨/R,0

where (A, λA, ηA, B, λB, ηB, γ) ∈ N(R) for every Fp2-algebra R. Then V is a
locally free sheaf of rank 2 over N.

2.3. THE GEOMETRY OF GEOMETRIC SPECIAL FIBER 45



CHAPITRE 2. LEVEL LOWERING OF AUTOMORPHIC REPRESENTATIONS ON
THE PICARD MODULAR SURFACE

2. The assignment sending a point (A, λA, ηA, Ã, λÃ, ηÃ, B, λB, ηB, α, δ) ∈ P (R)
for every Fp2-algebra R to the subbundle

I := δ∗,0ωÃ∨/R,0/δ∗,0α∗,0ωA∨/R,0 ⊆ V (R)

induces an isomorphism of Fp2-schemes

µ : P ' P(V ).

The relations of morphisms are summarized in the following diagram

P(V )

��

Y2
∼=oo � � //

π2
��

S0(p)
π

��
N

ν // Sss
� � // S

. (2.19)

Proof. 1. It suffices to show δ∗,0α∗,0ωA∨/R,0 is locally free OR-module of rank
1. Since δ∗,0 is an isomorphism by Lemma 2.3.26(1), it suffices to show
α∗,0ωA∨/R,0 is locally free of rank 1, which follows from Lemma 2.3.18(3a).

2. To show I is locally free of rank 1, the argument is the same as (1). Now we
show µ is an isomorphism. Since Y2 is smooth, it suffices to check that for
every algebraically closed field κ containing Fp2 , we have
(a) µ induces a bijection on κ-points ;
(b) µ induces an isomorphism on the tangent spaces at every κ-point.
To show (2a), it suffices to construct an inverse map θ. Take
p′ = (A, λA, ηA, B, λB, ηB, γ, I) ∈ P(V )(κ) where I is a locally free rank 1
Oκ-submodule of V (κ). We list miscellaneous properties of D(A) and D(B) :
(a) VD(B) = FD(B). In fact, since D(B) is of signature (0,3), [Vol10, Lemma

1.4] gives
D(B)0 = VD(B)1 = FD(B)1,

which implies D(B)0 and D(B)1 are both V−1F-invariant.
(b) D(B)⊥B0 = D(B)1 and D(B)⊥B1 = D(B)0. This follows from the self-dual

condition of λB.
(c) We have chains of W (κ)-module

pD(B)0
1
⊆ D(A)0

2
⊆ D(B)0, pD(B)1

1
⊆ D(A)1

2
⊆ D(B)1.

(d) Denote by Ĩ the preimage of I under the composition of the reduction
map D(B)0 → D(B)0/pD(B)0 ∼= HdR

1 (B/R)0 and the quotient map
HdR

1 (B/κ)0 → V (κ). Then we have a chain of W (κ)-module

pD(B)0
2
⊂ Ĩ

1
⊂ D(B)0.

Now define

DÃ,0 = D(B)0,DÃ,1 = V−1Ĩ ,DÃ = DÃ,0 + DÃ,1

We verify that DÃ is F, V-stable and has the following chain conditions :
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(a) VDÃ,0
∼= FDÃ,0. This follows from (2a).

(b) VDÃ,0
2
⊂ DÃ,1. The rank condition of I gives pD(B)0

2
⊂ Ĩ , thus we have

FD(B)0
2
⊂ V−1Ĩ .

(c) VDÃ,1
1
⊂ DÃ,0. This is by definition.

(d) FDÃ,1
1
⊂ DÃ,0. This is equivalent to DÃ,1

1
⊂ F−1DÃ,0. The claim follows

from the fact that F−1DÃ,0 = V−1DÃ,0.

We also have an inclusion δ : DÃ ⊂ D(B) by definition. By covariant Dieu-
donné theory there exists an abelian 3-fold A such that D(Ã) = DÃ, and the
inclusionD(Ã)→ D(B) is induced by a prime-to-p isogeny δ : Ã→ B. Define
the endormorphism structure iÃ on Ã by iÃ(a) = δ−1 ◦ iB(a) ◦ δ for a ∈ OF .
Then (Ã, iÃ) is an OF -abelian scheme. Let λÃ be the unique polarization such
that

λÃ = δ∨ ◦ λB ◦ δ.

The pairings induced by λÃ and λB have the relation

〈x, y〉λÃ = 〈x, y〉λB , x, y ∈ D(A).

Define the level structure ηÃ on Ã by ηÃ = δ−1
∗ ◦ ηB. We verify

(a) D(Ã) is of signature (1,2). This follows from (2b) and (2c).

(b) D(Ã)1
1
⊂ D(Ã)⊥Ã0 . Consider D(Ã)⊥Ã0 = D(B)⊥B0 = p−1VD(B)0. The claim

follows from the definition and (2d).

(c) D(Ã)0
1
⊂ D(Ã)⊥Ã1 . This is the dual version of (2b).

(d) kerλÃ[p∞] is a Ã[p]-subgroup scheme of rank p2. Indeed, from covariant
Dieudonné theory it is equivalent to show D(Ã)

2
⊂ D(Ã)⊥Ã . Thus it suf-

fices to show D(Ã)0
1
⊂ D(Ã)⊥Ã1 and D(Ã)1

1
⊂ D(Ã)⊥Ã0 which follows from

(2b) and (2c).
Now we prove (2b). Indeed, a deformation argument shows that the tangent
space TP(V )/Fp2 ,p′ at p′ fits into an exact sequence

0→ Hom(I,V (R)/I)→ TP(V )/Fp2 ,p

→ Hom(ωA∨/R,0/ ker γ∗,0,HdR
1 (A/R)0/ωA∨/R,0)→ 0 (2.20)

which coincides with (2.17) under µ. Thus (2b) follows.

2.3.6 Intersection of irreducible components of S0(p)
Define Yi,j := Yi ×S0(p) Yj and Yi,j,k := Yi ×S0(p) Yj ×S0(p) Yk. The intersection of

irreducible components are parametrized by some discrete Shimura varieties :

Proposition 2.3.30. 1. Denote by π0,1 the restriction of the morphism π on
Y0,1. Then π0,1 factors through Sssp. Moreover, denote by (A, λA, ηA) the uni-
versal object on Sssp. Let P := P(ωA∨,0) be the projective bundle associated with
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ωA∨,0. Then the assignment sending a point (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y0,1(R)
for every Fp2-algebra R to the subbundle

I := (α−1
∗,1ωÃ∨/R,1)⊥ ⊆ ωA∨/R,0

induces an isomorphism of Fp2-schemes

ϕ0,1 : Y0,1 ∼= P

The morphism ϕ0,1 is equivariant under the prime-to-p Hecke correspondence.
That is, given g ∈ Kp\G(A∞,p)/K ′p such that g−1Kpg ⊂ K ′p, we have a
commutative diagram

Y0,1(Kp)
ϕ0,1(Kp) //

g

��

Y0,1(K ′p)
g

��
P(Kp)

ϕ0,1(K′p) // P(K ′p)

.

To summarize, we have the commutative diagram

P

��

Y0,1
∼=oo � � //

π0,1

��

S0(p)
π

��
Sssp
� � // S

. (2.21)

2. The restriction of the morphism π̃ := π ◦ ν̃−1 on Y0,2 in the diagram (2.21)
is an isomorphism of Fp2-schemes which is equivariant under the prime-to-p
Hecke correspondence.

π̃0,2 := π̃ |Y0,2 : Y0,2 ∼= N.

Y0,2
� � // Y2

ν̃−1
// P π // N .

3. The morphism π̃ induces a finite flat purely inseparable map

π̃1,2 : Y1,2 → N.

which is equivariant under the prime-to-p Hecke correspondence.

Proof. 1. We show π0,1 factors through Sssp. Take y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈
Y0,1(R) for a schemeR ∈ Sch′/Fp2 , we need to show VωA∨/R,1 = 0. By definition
we have ωA∨/R,1 = kerα∗,1; By Lemma 2.3.18(1b) we have V kerα∗,1 = 0. Thus
(A, λA, ηA) ∈ Sssp(R).
It is easy to see ϕ0,1 is well-defined. Now we show it is an isomorphism. A
deformation argument shows Y0,1 is smooth with tangent bundle

TY0,1
∼= Hom(α−1

∗,1ωÃ∨,1/ kerα∗,1,HdR
1 (A)1/α

−1
∗,1ωÃ∨,1). (2.22)

Thus it suffices to check that for every algebraically closed field κ containing
Fp2 ,
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(a) ϕ0,1 induces a bijection on κ-points ;
(b) ϕ0,1 induces an isomorphism on the tangent spaces at every κ-point.
To show (1b), it suffices to construct an inverse map θ. Take
p = (A, λA, ηA, I) ∈ P(κ) where I is a locally free rank 1 sub κ-module of
ωA∨/R,0. We list miscellaneous properties of D(A) :
(a) FD(A)0 = VD(A)0. This is by VωA∨/R,1 = 0.
(b) Denote by Ĩ⊥ the preimage of I⊥ under the reduction map D(A)1 →

D(A)1/pD(A)1 ∼= HdR
1 (A/R)1. Then the condition ωA∨/κ,1 ⊂ I⊥ lifts as a

chain of W (κ)-module

VD(A)0
1
⊂ Ĩ⊥

1
⊂ D(A)1

1
⊂ F−1D(A)0.

Now define

DÃ,0 = V−1Ĩ⊥,DÃ,1 = V−1D(A)0,DÃ = DÃ,0 + DÃ,1

We verify that DÃ is F, V-stable and has the following chain conditions :

(a) VDÃ,0
2
⊂ DÃ,1 and FDÃ,0

2
⊂ DÃ,1. By (1a) it suffices to show that Ĩ⊥

2
⊂

F−1D(A)0, which is by (1b).

(b) VDÃ,1
1
⊂ DÃ,0 and FDÃ,1

1
⊂ DÃ,0. By (1a) it suffices to show VD(A)0

1
⊂ Ĩ⊥,

which is by (1b).
We also have an inclusion α∗ : D(A) ⊂ DÃ by definition. By covariant Dieu-
donné theory there exists an abelian 3-fold Ã such that D(Ã) = DÃ, and α∗
is induced by a prime-to-p isogeny α : A → Ã. Define the endormorphism
structure iÃ on Ã by iA(a) = α−1 ◦ iÃ(a) ◦ α for a ∈ OF . Then (Ã, iÃ) is an
OF -abelian scheme. Let λÃ be the unique polarization such that

pλA = α∨ ◦ λÃ ◦ α.

The pairings induced by λA and λÃ are related by

〈x, y〉λA = p−1〈α∗x, α∗y〉λÃ , x, y ∈ D(A).

Define the level structure ηÃ on Ã by ηÃ = α∗ ◦ ηA. We verify
(a) D(Ã) is of signature (1,2). This follows from (1)

(b) D(Ã)1
1
⊂ D(Ã)∨Ã0 . Consider D(Ã)∨Ã0 = (V−1Ĩ⊥)∨Ã = p−1F(Ĩ⊥)∨A . The

claim follows from the definition and (1b).

(c) D(Ã)0
1
⊂ D(Ã)∨Ã1 . This is the dual version of (2b).

(d) kerλÃ[p∞] is a Ã[p]-subgroup scheme of rank p2. Indeed, from covariant
Dieudonné theory it is equivalent to show D(Ã)

2
⊂ D(Ã)⊥Ã . Thus it suf-

fices to show D(Ã)0
1
⊂ D(Ã)⊥Ã1 and D(Ã)1

1
⊂ D(Ã)⊥Ã0 which follows from

(2b) and (2c).
(e) ωÃ∨/κ,0 = imα∗,0 and ωA∨/κ,1 = kerα∗,1. These are from the definition of

D(Ã)1 and (1a).
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Finally we set θ(p) = (A, λA, ηA, Ã, λÃ, ηÃ, α). The equivariance under prime-
to-p Hecke correspondence is clear.
To show (1b), denote by I ⊆ ωA∨,0 the universal subbundle (of rank 1). Then
we have an isomorphism

TP/Sssp ' HomOP(I⊥/ωA∨,1,HdR
1 (A)1/I

⊥). (2.23)

Under the morphism ϕ0,1 we have

I⊥ = α−1
∗,1ωA/κ,1, kerα∗,1 = ωA/κ,1.

Thus the expression of tangent space (2.22) and (2.23) coincide. Thus ϕ0,1 is
an isomorphism.

2. Since N is smooth over Fp2 by Proposition 2.3.19(3), to show that ϕ0,2 is an
isomorphism, it suffices to check that for every algebraically closed field κ
containing Fp2 , we have
(a) ϕ0,2 induces a bijection on κ-points ; and
(b) ϕ0,2 induces an isomorphism on the tangent spaces at every κ-point.
For (2a), we construct an inverse map θ of ϕ0,2. Take a point

n = (A, λA, ηA, B, λB, ηB, γ) ∈ N(κ).

We define

DÃ,0 = D(B)0, DÃ,1 = V−1D(A)0, DÃ = DÃ,0 ⊕DÃ,1.

We can easily verifyDB is F, V-stable from the fact thatDB,0 is V−1F-invariant.
We also have an inclusion α∗ : D(A) ⊂ DÃ by definition. By covariant Dieu-
donné theory there exists an abelian 3-fold Ã such that D(Ã) = DÃ, and α∗
is induced by a prime-to-p isogeny α : A → Ã. Define the endormorphism
structure iÃ, polarization λÃ and prime-to-p level structure ηÃ in a similar
way. We verify
(a) D(Ã) is of signature (1,2). This is by definition.

(b) D(Ã)1
1
⊂ D(Ã)⊥Ã0 . Consider D(Ã)⊥Ã0 = pĨ⊥Ã = Ĩ⊥A . The claim follows

from the definition and (1b).

(c) D(Ã)0
1
⊂ D(Ã)⊥Ã1 . This is the dual version of (2b).

(d) kerλÃ[p∞] is a Ã[p]-subgroup scheme of rank p2. Indeed, from covariant
Dieudonné theory it is equivalent to show D(Ã)

2
⊂ D(Ã)⊥Ã . Thus it suf-

fices to show D(Ã)0
1
⊂ D(Ã)⊥Ã1 and D(Ã)1

1
⊂ D(Ã)⊥Ã0 which follows from

(2b) and (2c).
(e) ωÃ∨/κ,0 = imα∗,0 and ωA∨/κ,1 = kerα∗,1. These are from the definition of

D(Ã)1 and (1a).
Finally we set θ(n) = (A, λA, ηA, Ã, λÃ, ηÃ, α). The equivariance under prime-
to-p Hecke correspondence is clear.
For (2b), take p ∈ P (κ) and thus y = ν̃(p) ∈ Y2(κ). By the proof of Proposi-
tion 3 and Proposition 2.3.27, the canonical morphism of tangent space

TY2,y → ν̃∗TP,p

is an isomorphism.
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3. To show that ϕ1,2 is a purely inseparable morphism, we need check that
for every algebraically closed field κ containing Fp2 , ϕ1,2 induces a bijec-
tion on κ-points. We construct an inverse map θ of ϕ0,2. Take a point n =
(A, λA, ηA, B, λB, ηB, γ) ∈ N(κ). We define

DÃ,0 = D(B)0, DÃ,1 = p−1VD(A)0, DÃ = DÃ,0 + DÃ,1.

We can easily verifyDB is F, V-stable from the fact thatDB,0 is V−1F-invariant.
In a entirely similar way we can construct a point
θ(n) = (A, λA, ηA, Ã, λÃ, ηÃ, α).

Definition 2.3.31. Let M̃ be the moduli problem associating with every Fp2-algebra
R the set M̃(R) of equivalence classes of tuples

(B̃, λB̃, ηB̃, A, λA, ηA, Ã, λÃ, ηÃ, B, λB, ηB, δ′, α, δ)

where
1. (B̃, λB̃, ηB̃, A, λA, ηA, δ′) ∈M(R);
2. (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y0,2(R);
3. (A, λA, ηA, Ã, λÃ, ηÃ, B, λB, ηB, α, δ) ∈ P (R);
4. (B, λB, ηB, B̃, λB̃, ηB̃, δ′ ◦ α ◦ δ) ∈ T0(p)(R).

The equivalence relations are defined in a similar way.

There is a natural correspondence

M̃
ρ̃′

||

ρ̃

  
T0(p) Y0,2

Lemma 2.3.32. The morphism ρ̃ factors through Y0,1,2. Moreover, M̃ is smooth of
dimension 0.

Proof. Take a point (B̃, λB̃, ηB̃, A, λA, ηA, Ã, λÃ, ηÃ, B, λB, ηB, δ′, α, δ) ∈ M̃(R) for
an Fp2-algebra R. By Lemma 2.3.18(1b) we have (ker V)1 = kerα∗,1. By Remark
2.3.13 we have (ker V)1 = ωA∨/R,1. Thus ωA∨/R,1 = kerα∗,1 and ρ̃ factors through
Y0,1,2. It is easy to see B̃, A, Ã, B have trivial deformation. Thus M̃ is smooth of
dimension 0.

Lemma 2.3.33. 1. The morphism ρ̃ induces an isomorphism of Fp2-schemes

ρ̃ : M̃ ∼= Y0,1,2

which is equivariant under the prime-to-p Hecke correspondence.
2. The morphism ρ̃′ is an isomorphism of Fp2-schemes

ρ̃′ : M̃ ∼= T0(p)

which is equivariant under the prime-to-p Hecke correspondence.
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Proof. 1. Since M̃ and Y0,1,2 are smooth of dimension 0, to show that ρ̃ is an
isomorphism, it suffices to check that for every algebraically closed field κ
containing Fp2 , ρ̃ induces a bijection on κ-points. Take a point
y = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y0,1,2(κ). We set

θ̃(y) = (B̃, λB̃, ηB̃, A, λA, ηA, Ã, λÃ, ηÃ, B, λB, ηB, δ′, α, δ),

where B̃ with δ′ are constructed in Lemma 2.3.16 and B with δ are construc-
ted in Lemma 2.3.28. It is easy to verify θ̃(y) ∈ M̃(R) and θ̃ is the inverse of
ρ̃. The equivariance under prime-to-p Hecke correspondence is clear.

2. Since M̃ and T0(p) are smooth of dimension 0, to show that ρ̃′ is an isomor-
phism, it suffices to check that for every algebraically closed field κ containing
Fp2 , ρ̃′ induces a bijection on κ-points. Take a point
t = (B̃, λB̃, ηB̃, B, λB, ηB, β) ∈ T̃ (κ). We list properties of D(B) and D(B̃) :
(a) D(B) andD(B̃) is V−1F-invariant. In fact, sinceD(B) is of signature (0,3),

[Vol10, Lemma 1.4] gives

D(B)0 = VD(B)1 = FD(B)1,

which implies D(B)0 and D(B)1 are both V−1F-invariant. The argument
is identical for D(B̃).

(b) D(B)⊥B0 = D(B)1 and D(B)⊥B1 = D(B)0. This follows from the self-dual
condition of λB.

(c) We have a chain of W (κ)-lattice

D(B̃)1
1
⊂ V−1D(B̃)⊥B̃1

2
⊂ 1
p
D(B̃)1.

Indeed, kerλB̃ ⊂ B̃[p] gives D(B̃)⊥B̃0 ⊂ (1/p)D(B̃)1. The claim comes
from (2b) and the fact that D(B̃)⊥B̃1 = (V−1D(B̃)0)⊥B̃ = F(D(B̃)0)⊥B̃ .

(d) We have a relation

pD(B)0
1
⊂ D(B̃)0

2
⊂ D(B)0, pD(B)1

1
⊂ D(B̃)1

2
⊂ D(B)1.

Indeed, we have pD(B) ⊂ D(B̃) since ker β ∈ B̃[p] and there is an exact
sequence

0→ D(B̃)→ D(B)→ D(ker β)→ 0
by covariant Dieudonné theory.

We set

DÃ,0 = VD(B)1, DÃ,1 = V−1D(B̃)⊥B̃1 , DÃ = DÃ,0 + DÃ,1.

We verify that DÃ is F, V-stable. Indeed, since D(B) and D(B̃) are V−1F-
invariant, it suffices to verify the condition for V : we have VDÃ = V2D(B)1 +
D(B̃)⊥B̃1 . Then it suffices to show pD(B)0 ⊂ pD(B̃)⊥B1 and pD(B̃)⊥B1 ⊂
D(B)0 since V2 = FV = p. Then it suffices to show D(B̃)1 ⊂ D(B)⊥B0 and
pD(B)⊥B0 ⊂ D(B̃)1, which are from (2d). By covariant Dieudonné theory
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there exists an abelian 3-fold A such that D(Ã) = DÃ, and the inclusion
D(Ã) → D(B) is induced by a prime-to-p isogeny δ : Ã → B. Define the
endormorphism structure iÃ on Ã by iÃ(a) = δ−1 ◦ iB(a)◦ δ for a ∈ OF . Then
(A, iA) is an OF -abelian scheme. Let λÃ be the unique polarization such that

λÃ = δ∨ ◦ λB ◦ δ.

The pairings induced by λÃ and λB have the relation

〈x, y〉λÃ = 〈x, y〉λB , x, y ∈ D(A).

Define the level structure ηÃ on Ã by ηÃ = δ−1
∗ ◦ ηB. We verify

(a) D(Ã) is of signature (1,2) : calculate the Lie algebra

D(Ã)
VD(Ã)

= VD(B)1 + V−1D(B̃)⊥B̃1

D(B̃)⊥B̃1 + pD(B)1
.

The argument is the same as that in verifying DÃ is F, V-stable.
(b) kerλÃ[p∞] is a Ã[p]-subgroup scheme of rank p2. Indeed, from covariant

Dieudonné theory it is equivalent to show D(Ã)
2
⊂ D(Ã)⊥Ã . Thus it suf-

fices to showD(Ã)0
1
⊂ D(Ã)⊥Ã1 , which is equivalent to pD(B̃)⊥B0

1
⊂ D(B)1,

which is equivalent to pD(B)0
1
⊂ D(B̃)0, which comes from (2d).

We have constructed Ã and δ, while A and δ′ are constructed in Lemma
2.3.16. The inclusion D(A) ⊂ D(Ã) is then induced by a prime-to-p isogeny
α : A→ Ã.

Finally we set θ̃′(t) = (B̃, λB̃, ηB̃, A, λA, ηA, Ã, λÃ, ηÃ, B, λB, ηB, δ′, α, δ). It is
easy to verify θ̃′ is the inverse of ρ̃′. The equivariance under prime-to-p Hecke
correspondence is clear.

2.4 Level lowering

2.4.1 Langlands group of G
Denote by Z the center of G and G0 the unitary group associated with G. By

[Kni01, p. 378] we have Z(A) = A×F and

G(A) = Z(A)G0(A).

Let P be the parabolic of G and M ⊂ P be the Levi factor of G such that P (Q)
consists of matrices under the standard basis of (Λ, ψ) of the form

P (Q) =


 a ∗ ∗

0 b ∗
0 0 c


∣∣∣∣∣∣∣ a, b, c ∈ F×, acc = bbc


and M ⊂ P be the subgroup of diagonal matrices. The Langlands dual group of G
and G0 are

Ĝ0 = GL3(C), Ĝ = GL3(C)× C×,
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LG0 = Ĝ0 o Gal(F/Q), LG = Ĝo Gal(F/Q).
Let c be the nontrivial element in Gal(F/Q). The action of c on Ĝ is given by

c(g, λ) = (Φ(tg)−1Φ, λ det g).

The embedding G0 ↪→ G corresponds to the natural projection Ĝ→ Ĝ0.
Let p be a rational prime unramified in F. By Satake’s classification, each un-

ramified principal series σp of Gp corresponds to a Ĝ-conjugacy class of semisimple
elements in ĜoFrobp where Frobp is the image of an Frobenius element at p, called
the Langlands/Satake (semisimple) parameter of σp.

2.4.2 Classification of unramified principal series at an inert
place

Keep the notation of Section 2.4.1. Suppose p is inert in F . Let LC(Pp\Gp) be
the space of locally constant functions on Pp\Gp, equipped with the natural action
by Gp via right multiplication. Let Stp be the quotient space of LC(Pp\Gp) by the
constant function. Then Stp is an irreducible admissible representation of Gp, called
the Steinberg representation of Gp.

Moreover, let ν : G → Gm be the similitude homomorphism. For any β ∈ C×,
let µβ : Gp → C× be the composite

µβ : Gp

g 7→det g
ν(g)−−−−→ Q×p

x 7→βvalp(x)
−−−−−−→ C×

Any unramified character of Mp has the form

χα,β :Mp → C× a 0 0
0 b 0
0 0 c

 7→ αvalp(a)−valp(b)βvalp(b)

where α, β ∈ C∗ and valp is the p-adic valuation on Fp.
Denote by Iα,β := IndGpPp (χα,β) be the normalized unitary induction of χα,β, vie-

wed as a character on Pp trivial on its unipotent radical. Then Iα,β|G0,p coincides
with I(α) in the notation of [BG06, 3.6.5, 3.6.6]. We list the properties of Iα,β :

1. If α 6= p±2,−p±1, then Iα,β is irreducible.
2. If α = p±2, Iα,β has two Jorden-Holder foctors : Stp ⊗ µβ and µβ.
3. If α = −p±1, then Iα,β has two Jordan-Hölder factors, πnβ which is unramified

and non-tempered, and π2
β which is ramified and square-integrable.

4. The central character of Iα,β is

Zp ∼= F×p −→C∗

b 7→βvalp(b).

5. For all α, β ∈ C∗, dim I
Kp
α,β = dim I

K̃p
α,β = 1, dim I

Iwp
α,β = 2.

6. StKpp = StK̃pp = 0, dim(πnβ)Kp = dim(π2
β)K̃p = 1, (πnβ)K̃p = (π2

β)Kp = 0.
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7. Let πp be an admissible irreducible representation of Gp. Then πIwp
p 6= 0 if

and only if it is a Jordan-Hölder factor of Iα,β for α, β ∈ C∗[Car79, Theorem
3.8].

8. The Langlands parameter of Iα,β is the Ĝ-conjugacy class of

tα,β =


 α 0 0

0 β/α 0
0 0 1

 , 1
o c.

Note that t2α,β =


 α 0 0

0 1 0
0 0 α−1

 , β
 ∈ Ĝ.

2.4.3 Automorphic and Galois representation
Let π = ⊗vπv be a cuspidal automorphic representation of G(A). Let π0 be the

restriction of π to G0(A) and χπ be the central character of π. Recall that Rogawski
defined, a base change map from automorphic representations of G0(A)(resp. G(A))
to G0(AF ) ∼= GL3(AF )(resp. GL3(AF ) × GL1(AF )). Denote by π0F (resp. πF ) the
base change of π0(resp. π). By [Rog92, Lemma 4.1.1], we have

πF = π0F ⊗ χπ

as a representation of GL3(AF ) × GL1(AF ), where χπ is the character z 7→ χπ(z̄).
We say π is stable [Rog90, Theorem 13.3] if π0F is a cuspidal representation.

Let � be a finite set of places of Q containing the archimedean place such that π
is unramified outside �, ` be a rational prime and fix an isomorphism ι` : Qac

` → C.
Let p - � be a finite place of Q unramified in F, tπ,p ∈ LG be the Satake parameter
of πp, well defined up to Ĝ-conjugacy, and tπ0,p ∈L G0 be the image of tπ,p via the
canonical projection LG→L G0.

1. If pOF = wwc splits, then tπ0,p ∈ Ĝ0 = GL3(C) and

{tπ0F ,w, tπ0F ,wc} = {tπ0,p,
t t−1
π0,p};

2. If p is inert in F , then tπ0,p ∈ Ĝ0 o Frobp and tπ0F ,p = t2π0,p ∈ GL3(C). If

πp = Iα,β for α, β ∈ C×, then tπ0F ,p =

 α 0 0
0 1 0
0 0 α−1

 .
Assume now π is stable and cohomological with trivial coefficient, i.e.,

H∗(g, K∞; π∞) 6= 0

where K∞ is defined in Section 2.2.2 and g = LieG(R)⊗ C. Blasius and Rogawski
[BR92, 1.9] defined a semisimple 3-dimensional `-adic representation

ρπ0,` : Gal(F ac/F )→ GL3(Qac
` )

attacted to π0(or π0,F ) that is characterized as follows :
1. ρπ0,` is unramified outside � ∪ {`}.
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2. Let w be a non-archimedean place of F with w - �` and
Frobw ∈ Gal(F ac

w /Fw) ↪→ Gal(F ac/F ) be a geometric Frobenius of w. Then
the characteristic polynomial of ρπ0,`(Frobw) coincides with that of ι`(tπ0F ,w)qw,
where tπ0F ,w ∈ GL3(C) is the Satake parameter of π0F at w, which is well
defined up to conjugation.

Since π is cohomological with trivial coefficient, χπ,∞ : C× → C× is trivial. By
class field theory, ι` ◦ χπ can be viewed as a character of Gal(F ac/F ). We put

ρπ,` := ρπ0,` ⊗ (ι` ◦ χπ). (2.24)

Let L/Q` be a sufficiently large finite extension such that Im(ρπ,`) ⊆ GL3(L). LetM◦

be a Gal(F ac/F )-stable OL-lattice in the representation space of ρπ,`. We denote by
ρπ,` the semi-simplification ofM◦/$LM

◦ as Gal(F ac/F )-representation. By Brauer-
Nesbitt theorem, ρπ,` is independent of the choice of M◦.

By the local-global compatibility, if p is inert in F and πp ∼= Stp ⊗ µβ for some
β ∈ C×, then the multiset of eigenvalues of ρπ,`(Frobp) is {ι−1

` (β)p4, ι−1
` (β)p2, ι−1

` (β)}
mod `.

2.4.4 Spherical Hecke algebra
(cf. [BG06, 3.3.1]) For a finite place p of Q at which G is unramified, let Kp

denote a hyperspecial subgroup of Gp. Denote by T(Gp, Kp) := Z[Kp\Gp/Kp] the
Hecke algebra of all Z-valued locally constant, compactly supported bi-Kp-invariant
functions on Gp. It is known that T(Gp, Kp) is a commutative algebra with unit
element given by the characteristic function of Kp. We put K� := ∏

p/∈�Kp. Denote
by T(G�, K�) the prime-to-� spherical Hecke algebra

T(G�, K�) :=
⊗
p/∈�

T(Gp, Kp).

Suppose (π�)K� 6= 0. Then dim(π�)K� = 1 and there exists a homomorphism
φπ : T� → OL such that T ∈ T� acts on (π�)K� via ι`(φπ(T )). Let λ be the place
in L over Q`. Define

φπ,` : T� φπ−→ OL → OL/λ, m := kerφπ,`. (2.25)

The residual Galois representation ρπ,` depends only on m thus is also denoted by
ρm.

With the above preparations we can state the main theorem :

Theorem 2.4.1. Let π be a stable cuspidal automorphic representation of G(A)
cohomological with trivial coefficient. Let p be a prime number inert in F . Suppose
that

1. πp ∼= Stp⊗µβ for some β ∈ C× as defined in Section 2.4.2 ;
2. if i 6= 2 then Hi(S ⊗ F ac,F`)m = 0;
3. ρπ,` is absolutely irreducible ;
4. ρπ,` is unramified at p ;
5. ` - (p− 1)(p3 + 1).
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Then there exists a cuspidal automorphic representation π̃ of G(A) such that π̃KpKp 6=
0 and ρπ̃,` ∼= ρπ,`.

To prove the theorem, we will firstly use the Rapoport-Zink weight-monodromy
spectral sequence to study the cohomology of Picard modular surface, then we argue
by contradiction. We need some preliminaries on the compactification of Shimura
varieties.

2.4.5 Borel-Serre compactification of S0(p)
Let S0(p)BS be the Borel-Serre compactification of S0(p)(C) and ∂S0(p)BS the

boundary. By [NT16, Lemma 3.10] we have a G(A∞)-equivariant isomorphism

∂S0(p)BS(C) ∼= P (Q)\(G(A∞)/KpIwp × e(P ))
∼= IndG(A∞)

P (A∞) P (Q)\(P (A∞)/Kp
P Iwp × e(P )) (2.26)

where e(P ) is the smooth manifold with corners described in [BS73, §7.1] and Kp
P =

Kp ∩ P (A∞,p).

Lemma 2.4.2. Keep the notations and assumptions of Theorem 2.4.1. We have

H∗(∂S0(p)BS,F`)m = 0.

Proof. Suppose on the contrary that H∗(∂S0(p)BS,F`)m 6= 0. We will show that ρπ,`
is reducible, which contradicts the condition (3) in Theorem 2.4.1. Since ρπ,` ∼=
ρπ0,` ⊗ (ι` ◦ χπ) by (2.24), it suffices to show that ρπ0,` is reducible. Put K�P =
K� ∩ P (A�), K�M = K� ∩M(A�), etc. We have a Satake map

N : T(G�, K�G)→ T(M�, K�M).

Following the argument of [ACC+22, p. 36] or [NT16, Theorem 4.2], since m is in the
support of H∗(∂S0(p)BS,F`), there exists a subgroup K ′M ⊂ KM with (K ′M)� = K�M
and a maximal idealm′ of T(M�, KM

�) in the support of H0(M(Q)\M(A∞)/K ′M ,F`)
such that m = N−1(m′). In other words, there exists a homomorphism
θπ,` : T(M�, K�M)→ L for a finite extension L of F` such that φπ,` = θπ,` ◦N.

Put H := ResF/Q Gm. The standard Levi M is a torus

M ∼= H ×H
diag(a, b, c) 7→ (a, b).

We can now assume K ′M = K ′H ×K ′H which implies

T(M�, K ′�M ) ∼= T(H�, K ′�H )⊗ T(H�, K ′�H ).

Since H(A) = A×F , θπ,` is equivalent to two Hecke characters ψ1, ψ2 : A×F/F×K ′H →
L.

By class field theory, ψ1 and ψ2 correspond to two Galois characters σ1, σ2 :
Gal(F ac/F )→ L

× such that for a place w in F and a uniformizer $w in Fw ⊂ A×F ,
we have

σi(Frobw) = ψi($w).
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We claim that
ρπ0,`

∼= (σ1 ⊕ σ2 · σc,∨
2 ⊕ σ

c,∨
1 )⊗ ε` (2.27)

where ε` is the `-adic cyclotomic character and σc,∨
i (g) := σi((gc)−1). Indeed, by

Chebatorev density and Brauer-Nesbitt theorem, it suffices to verify that for every
place q = wwc split in F , the eigenvalues of Frobw for ρπ0,` and (σ1⊕σ2·σc,∨

2 ⊕σ
c,∨
1 )⊗ε`

coincide.
To show this, recall that

G (Qq) =
{
g ∈ GL3 (F ⊗Q Qq) | tgcΦg = ν(g)Φ for some ν(g) ∈ Q×q

}
=
{
g = (gw, gwc) ∈ GL3(Fw)×GL3(Fwc) | gwc = ν(g)Φ(tg−1

w )Φ
}
.

Therefore, we have an isomorphism

Gq
∼= GL3(Fw)×Q×q

g 7→ (gw, ν(g))

under which g = diag(a, b, c) ∈ Mq is identified with (diag(aw, bw, cw), bwbwc). If
T ⊂ GL3 denotes the diagonal torus, we have an isomorphism

Tq ×Q×q ∼=Mq

(diag(a, b, c), ν) 7→ diag((a, ν/c), (b, ν/b), (c, ν/a)).

Since Hq
∼= F×w × F×wc , we have

Tq ×Q×q ∼=Hq ×Hq

(diag(a, b, c), ν) 7→((a, ν/c), (b, ν/b)).

The local component at q of ψ1ψ2 is given by

(ψ1ψ2)q : (diag(a, b, c), ν) 7→ ψ1,w(a)ψ1,wc(ν/c)ψ2,w(b)ψ2,wc(ν/b)
= (ψ1,wcψ2,wc)(ν)ψ1,w(a)(ψ2,wψ

−1
2,wc)(b)ψ−1

1,wc(c).

Let M̂ = T̂ × Gm be the torus over Z` dual to MQq . By duality, the group of the
unramified characters of MQq with values in L× is isomorphic to

X∗(MQq)⊗ L× = X∗(M̂)⊗ L× ∼= M̂(L),

where X∗(MQq) (resp. X∗(M̂)) denotes the character group ofMQq (resp. the cocha-
racter group of M̂). With this identification (ψ1ψ2)q corresponds to the semisimple
element 

 ψ1,w(q) 0 0
0 (ψ2,w/ψ2,wc)(q) 0
0 0 ψ

−1
1,wc(q)

 , ν
 ∈ M̂(L).

By Section 2.4.3 and Satake isomorphism the eigenvalues of ρπ0,`(Frobw) are given
by

q{ψ1,w(q), (ψ2,wψ
−1
2,wc)(q), ψ−1

1,wc(q)}.
By Chebotarev density, the equality (2.27) holds. This finishes the proof of the
lemma.
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Corollary 2.4.3. Denote by S0(p)BB the Baily-Borel compactification of S0(p). Then
we have canonical isomorphisms

H2
c(S0(p)⊗ F ac,F`)m ∼= IH2(S0(p)BB ⊗ F ac,F`)m ∼= H2(S0(p)⊗ F ac,F`)m. (2.28)

Proof. One has an exact sequence of Betti cohomology [CS19, Remark 1.5]

0→ H1(∂S0(p)BS,F`)→ H2
c(S0(p),F`)→ H2(S0(p),F`)→ H2(∂S0(p)BS,F`)→ 0

(2.29)
which is equivariant under T(G�, K�)-action. By [HLR86, 1.8] the intersection coho-
mology group IH2(S0(p)BB⊗F ac,F`)m is the image of the map H2

c(S0(p)⊗F ac,F`)m →
H2(S0(p)⊗ F ac,F`)m. The corollary then follows from Lemma 2.4.2.

2.4.6 Generalities on the weight-monodromy spectral se-
quence

[Sai03, Corollary 2.2.4], [Liu19, 2.1]. Let K be a henselian discrete valuation field
with residue field κ and a separable closure K̄. We fix a prime p that is different
from the characteristic of κ. Throughout this section, the coefficient ring Λ will be
F`. We first recall the following definition.

Definition 2.4.4 (Strictly semistable scheme). Let X be a scheme locally of finite
presentation over Spec OK. We say that X is strictly semistable if it is Zariski locally
étale over

Spec OK [t1, . . . , tn]/(t1 · · · ts −$)
for some integers 0 ≤ s ≤ n (which may vary) and a uniformizer $ of K.

Let X be a proper strictly semistable scheme over OK . The special fiber Xκ :=
X ⊗OK κ is a normal crossing divisor of X. Suppose that {X1, . . . , Xm} is the set of
irreducible components of Xκ. For r ≥ 0, put

X(r)
κ =

∐
I⊂{1,...,m},|I|=r+1

⋂
i∈I
Xi.

Then X(r)
κ is a finite disjoint union of smooth proper κ-schemes of codimension r.

From [Sai03, page 610], we have the pullback map

δ∗r : Hs(X(r)
κ̄ ,Λ(j))→ Hs(X(r+1)

κ̄ ,Λ(j))

and the pushforward (Gysin) map

δr∗ : Hs(X(r)
κ̄ ,Λ(j))→ Hs+2(X(r−1)

κ̄ ,Λ(j + 1))

for every integer j. These maps satisfy the formula

δ∗r−1 ◦ δr∗ + δr+1∗ ◦ δ∗r = 0

for r ≥ 1. For reader’s convenience, we recall the definition here. For subsets J ⊂ I ⊂
{1, . . . ,m} such that |I| = |J | + 1, let iJI : ⋂i∈I Xi →

⋂
i∈J Xi denote the closed

immersion. If I = {i0 < · · · < ir} and J = I\ {ij}, then we put ε(J, I) = (−1)j. We
define δ∗r to be the alternating sum ∑

I⊂J,|I|=|J |−1=r+1 ε(I, J)i∗IJ of the pullback maps,
and δr∗ to be the alternating sum ∑

I⊃J,|I|=|J |+1=r+1 ε(J, I)iJI∗ of the Gysin maps.
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Remark 2.4.5. In general, the maps δ∗r and δr∗ depend on the ordering of the
irreducible components of Xκ. However, it is easy to see that the composite map
δ1∗ ◦ δ∗0 does not depend on such ordering.

Let us recall the weight spectral sequence attached to X. Denote by Kur ⊂ Kac

the maximal unramified extension, with the residue field κ̄ which is a separable
closure of κ. Then we have GK/IK ' Gκ. Denote by t0 : IK → Λ0(1) the (p-adic)
tame quotient homomorphism, that is, the one sending σ ∈ IK to (σ($1/pn)/$1/pn)n
for a uniformizer $ of K. We fix an element T ∈ IK such that t0(T ) is a topological
generator of Λ0(1).

We have the weight spectral sequence EX attached to the (proper strictly semis-
table) scheme X, where

(EX)r,s1 =
⊕

i≥max(0,−r)
Hs−2i(X(r+2i)

κ̄ ,Λ(−i))⇒ Hr+s(XK̄ ,Λ) (2.30)

This is also known as the Rapoport-Zink spectral sequence, first studied in [RZ82] ;
here we will follow the convention and discussion in [Sai03]. For t ∈ Z, put tEX =
EX(t) and we will suppress the subscript X in the notation of the spectral sequence
if it causes no confusion. By [Sai03, Corollary 2.8(2)], we have a map µ : E•−1,•+1

• →
E•+1,•−1
• of spectral sequences (depending on T ) and its version for rE. The map

µr,s := µr,s1 : tEp−1,q+1
1 → tEr+1,s−1

1 is the sum of its restrictions to each direct
summand Hs+1−2i(X(2i+1)

κ̄ ,Λ(r − i)), and such restriction is the tensor product by
t0(T ) (resp. the zero map) if Hs+1−2i(X(2i+1)

κ̄ ,Λ(t−i+1)) does (resp. does not) appear
in the target. The map µr,s induces a map, known as the monodromy operator,

µ̃r,s : tEr−1,s+1
2 → tEr+1,s−1

2 (−1)

of Λ[Gκ]-modules.

2.4.7 Weight-monodromy spectral sequence for S0(p)
We will try to apply the weight-monodromy spectral sequence to the surface f :

S0(p)→ Spec(OF ⊗Z(p)). In the derivation of weight-monodromy spectral sequence
f is required to be proper to get Hi(S0(p) ⊗ Fac

p , RΨZ`) ∼= Hi(S0(p) ⊗ F ac,Z`).
However, in our case f is not proper. Fortunately, according to [LS18, Corollary
4.6], Hi(S0(p)⊗ Fac

p , RΨZ`) ∼= Hi(S0(p)⊗ F ac,Z`) still holds. Put

Y (2) = Y0,1,2 ⊗ Fac
p , Y

(1) = (Y0,1 t Y0,2 t Y1,2)⊗ Fac
p , Y

(0) = (Y0 t Y1 t Y2)⊗ Fac
p .

The spectral sequence (2.30) with Λ = F` reads

H0(Y (2))m(−2)→H2(Y (1))m(−1) → H4(Y (0))m
H1(Y (1))m(−1) → H3(Y (0))m
H0(Y (1))m(−1) → H2(Y (0))m ⊕ H0(Y (2))m(−1)→ H2(Y (1))m

H1(Y (0))m → H1(Y (1))m
H0(Y (0))m → H0(Y (1))m → H0(Y (2))m.

Here we omit the coefficient F` in the cohomology group.
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Lemma 2.4.6. Let G0(resp. G′0) be the unitary group attached to G(resp. G′) as
in Section 2.4.1. Recall the inner form G′ defined in Section 2.2.6. Put G0,p :=
G0(Qp), K0,p := Kp ∩ G0,p, K

p
0 := Kp ∩ Gp

0. Let K1
0,p be the kernel of the reduction

map G0(Op)→ G0(Fp2). Then we have an isomorphism

ι`H1(N ⊗ Fac
p ,Qac

` ) |G0(A)∼= MapK0,p(G
′
0(Q)\G′0(A∞)/Kp

0 ,Ω3) (2.31)

of C[Kp
0K

1
p,0\G′0(A∞)/Kp

0K
1
p,0]-modules, where (ρΩ3 ,Ω3) is the Tate-Thompson re-

presentation of K0,p in [LTX+22, C.2] and the right hand side of the isomorphism
denotes the locally constant maps f : G′0(Q)\G′0(A∞)/Kp

0 → Ω3 such that f(gk) =
ρΩ3(k−1)f(g) for k ∈ K0,p and g ∈ G′0(A∞). Moreover, let π�0 be an irreducible ad-
missible representation of G0(A�) such that (π�0 )K�

0 is a constituent of ι`H1(N ⊗
Fac
p ,Qac

` ). Then one can complete π�0 to an automorphic representation π′0 = π�0 ⊗∏
q∈� π

′
0,q of G′0(A) such that BC(π′0,p) is a constituent of an unramified principal

series of GL3(Fp) with Satake parameter {−p, 1,−p−1} , where BC denotes the local
base change from G0,p to GL3(Fp).

Proof. Recall the fiber of the morphism N → T is geometrically a Fermat curve
of degree p + 1 where T (C) ∼= G′(Q)\G′(A∞)/KpKp by Theorem 2.3.10(2). Take
t ∈ T (Fac

p ), then H1(N ⊗ Fac
p ∩ θ−1(t),Qac

` ) |G0(A) is a representation of G0(Fac
p ) =

K0,p/K
1
0,p, isomorphic to Ω3. For the remaining part, note that the right-hand side of

(2.31) is a C[Kp
0K

1
p,0\G0(A∞)/Kp

0K
1
p,0]-submodule of Map(G′0(Q)\G′0(A∞)/Kp

0K
1
0,p,C).

In particular, we can complete π�0 to an automorphic representation π′0 = π�0 ⊗∏
q∈� π

′
0,q of G′0(A) such that π′0,p|K0,p contains Ω3. The same argument as [LTX+22,

Theorem 5.6.4(ii)] then implies π′0,p ∼= c-IndG0
Kp,0(Ω3) ∼= πs(1) where πs(1) appears in

[Rog90, Proposition 13.1.3(d)]. The base change BC(πs(1)) has the Satake parame-
ter {−p, 1,−p−1} by [Rog90, Proposition 13.2.2(c)]. The lemma follows.

Lemma 2.4.7. Keep the notations and assumptions of Theorem 2.4.1. Suppose
there is no level-lowering, i.e., there is no automorphic representation π′ of G(A)
such that π′K

pKp 6= 0 and ρπ′,` ∼= ρπ,`. Then one has
1. H2(S ⊗ Fac

p ,F`)m = 0;
2. H2(T ⊗ Fac

p ,F`)m = 0;
3. H0(T̃ ⊗ Fac

p ,F`)m = 0;
4. H∗(S# ⊗ Fac

p ,F`)m = 0;
5. H∗(N ⊗ Fac

p ,F`)m = 0;

Proof. 1. Suppose H2(S ⊗ Fac
p ,F`)m 6= 0. By [LS18, Corollary 4.6], we have

H2(S ⊗ F ac,F`)m ∼= H2(S ⊗ Fac
p ,F`)m 6= 0. The universal coefficient theorem

gives the exact sequence

0→ Hi(S ⊗ F ac,Z`)m ⊗ F` → Hi(S ⊗ F ac,F`)m
→ Hi+1(S ⊗ F ac,Z`)m[`]→ 0, i ∈ Z

which implies that H2(S ⊗ F ac,Z`)m is torsion-free and non-zero. Thus there
exists a cuspidal automorphic representation π̃ of G(A) such that the π̃-
isotypic component H2(S ⊗ F ac,Z`)m[π̃]⊗Qac

` 6= 0 and π̃KpKp 6= 0 since S is
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of level KpKp. Moreover, by Section 2.4.3 the prime-to-� Hecke equivariance
implies ρπ̃,`(Frobq) = ρπ,`(Frobq) for q /∈ �. Finally, Chebotarev density
ensures ρπ̃,` ∼= ρπ,`. This contradicts the no-level-lowering assumption.

2. Suppose H0(T ⊗ Fac
p ,F`)m ∼= H0(T ⊗ F ac,F`)m 6= 0. Since H0(T ⊗ F ac,Z`)m

is torsion-free, there exists an irreducible automorphic representation π′ of
G′(A) such that π′KpKp 6= 0. By [Clo00, Theorem 2.4] we can transfer π′ to
an automorphic representation π̃ of G(A) such that the finite components
π̃∞ and π′∞ coincide. In particular π̃KpKp 6= 0. The prime-to-� Hecke equiva-
riance and Chebatrov density then imply that ρπ̃,` ∼= ρπ,`, contradicting the
no-level-lowering assumption.

3. Suppose H0(T̃ ⊗ Fac
p ,F`)m 6= 0. By the same argument as (2), there is an

irreducible automorphic representation π′ of G′(A) such that (π′)KpK̃p 6= 0
and we can again transfer π′ to an automorphic representation π̃ of G(A) such
that the finite components π̃∞ and π′∞ coincide. In particular π̃KpK̃p 6= 0.
The prime-to-� Hecke equivariance and Chebotarev density then imply that
ρπ̃,`
∼= ρπ,`.

On the other hand, by Section 2.4.2(7), π̃p is a Jordan-Hölder factor of Iα,β
for some α, β ∈ C×.
If α 6= p±2,−p±1, then π̃p ∼= Iα,β thus π̃Kpp 6= 0 by Section 2.4.2(5), contradic-
ting the no-level-lowering assumption.
If α = p±2, then π̃p ∼= Stp⊗µβ or µβ. The first case is excluded since it has no
non-trivial K̃p-fixed vector by Section 2.4.2(6). The second case is excluded
as π̃ is tempered.
If α = −p±1, then π̃p ∼= πnβ or π2

β. The former is excluded since it has no
non-trivial K̃p-fixed vector by Section 2.4.2(6). For the latter the multiset of
eigenvalues of ρπ̃,`(Frobp) would be {−p, 1,−p−1} up to a scalar, leaving two
possibilities : if p2 ≡ −p mod ` then p ≡ −1 mod ` thus p2 ≡ 1 mod `, if
p2 ≡ −p−1 mod ` then p3 ≡ −1 mod `, both contradicting our assumption.

4. Let E be the exceptional divisor of the blowup S# of S along the superspecial
locus Sssp. Consider the corresponding blow up square

E

π

��

j // S#

b
��

Sssp
i // S

.

We have a distinguished triangle [The18, Tag 0EW5]

F` → Ri∗(F` |Sssp)⊕Rb∗(F` |S#)→ Rc∗(F` |E)→ F`[1]

where c = i ◦ π = b ◦ j. This induces an exact sequence of localized étale
cohomology

Hi(S ⊗ Fac
p ,F`)m → Hi(S# ⊗ Fac

p ,F`)m ⊕ Hi(Sssp ⊗ Fac
p ,F`)m

→ Hi(E ⊗ Fac
p ,F`)m → Hi+1(S ⊗ Fac

p ,F`)m
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compatible with the T(G�, K�)m-action. Since H∗(S ⊗ Fac
p ,F`)m = 0 by (1)

and H0(Sssp⊗Fac
p ,F`)m ∼= H0(T̃ ⊗Fac

p ,F`)m = 0 by Lemma 2.3.16 and (3), we
have an isomorphism of T(G�, K�)m-modules

Hi(S# ⊗ Fac
p ,F`)m ∼= Hi(E ⊗ Fac

p ,F`)m.

Therefore, it suffices to show H∗(E ⊗ Fac
p ,F`)m = 0. Since E is a P1-bundle

over Sssp by the proof of Proposition 2.3.24(1), we have H∗(E ⊗ Fac
p ,F`)m =

H∗(Sssp ⊗ Fac
p ,F`)m[X]/X2 = 0 and finish the proof.

5. Firstly, we have Hi(N ⊗ Fac
p ,F`)m ∼= Hi(T ⊗ Fac

p ,F`)m = 0 for i = 0, 2 by
(2). If H1(N ⊗ Fac

p ,F`)m 6= 0, then π� appears in H1(N ⊗ Fac
p ,Z`)m ⊗ Qac

`

since H1(N ⊗ Fac
p ,Z`)m is torsion-free. By Lemma 2.4.6 we can complete π�

to an automorphic representation π′ = π� ⊗∏q∈� π
′
q of G′(A) such that the

Satake parameter of BC(π′p,0) is {p, 1, p−1}. We can again transfer π′ to an
automorphic representation π̃ of G(A) such that the finite components π̃∞
and π′∞ coincide. Then the multiset of eigenvalues of ρπ̃,`(Frobp) would be
{−p, 1,−p−1} up to a scalar. Comparing the eigenvalues of ρπ̃,` and ρπ,` as in
Lemma 2.4.7(3) leads to a contradiction.

Corollary 2.4.8. 1. H∗(Y (0),F`)m = 0;
2. H∗(Y (1),F`)m = 0.

Proof. 1. By Proposition 2.3.24 we have isomorphisms of T(G�, K�)m-module
Hi(Y0 ⊗ Fac

p ,F`)m ∼= Hi(Y1 ⊗ Fac
p ,F`)m ∼= Hi(S# ⊗ Fac

p ,F`)m = 0 for i = 0, 1, 2.
Now we show H∗(Y2 ⊗ Fac

p ,F`)m = 0. By Lemma 2.3.28, Proposition 2.3.29
and Lemma 2.4.7(5), Y2 is a P1-bundle over N and thus

H∗(Y2 ⊗ Fac
p ,F`)m ∼= H∗(N ⊗ Fac

p ,F`)m[X]/X2 = 0.

2. By Proposition 2.3.30(1), Y0,1 is a P1-bundle over T̃ . Thus we have an iso-
morphism of T(G�, K�)m-modules

H∗(Y0,1 ⊗ Fac
p ,F`)m ∼= H∗(T̃ ⊗ Fac

p ,F`)m[X]/X2 = 0

by [Mil80, Proposition 10.1] and Lemma 2.4.7(3). By Proposition 2.3.30(2)(3),
Y0,2 is isomorphic to N , Y1,2 → N is a purely inseparable map, thus we have
isomorphisms of T(G�, K�)m-modules

Hi(Y0,2 ⊗ Fac
p ,F`)m ∼= Hi(Y1,2 ⊗ Fac

p ,F`)m ∼= Hi(N ⊗ Fac
p ,F`)m.

By Lemma 2.4.7(5) they all vanish.

Corollary 2.4.9. The spectral sequence (3.16) localized at m degenerates at E1.

Proof. By Poincaré duality it suffices to show E−1,4
m = H2(Y (1),F`)m = 0 and E0,3

m =
H3(Y (0),F`)m = 0, which follow from Lemma 2.4.7.
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We study the Gal(Fac
p /Fp2)-action on H0(Y (2),F`)m ∼= H0(T0(p)⊗Fac

p ,F`)m. Consi-
der the Iwahoric Hecke algebra T(Gp, Iwp) := Z[Iwp\Gp/Iwp]. The Gal(Fac

p /Fp2)-
action and the T(Gp, Iwp)-action on H0(T0(p) ⊗ Fac

p ,F`)m commute. Let φIwp de-
note the action of T(Gp, Iwp) on H0(Y (2),F`)m. For a ∈ Z(Qp) = F×p , denote by
〈a〉 ∈ T(Gp, Iwp) the characteristic function of aIwp.

Lemma 2.4.10. The action of Frobp2 and 〈p−1〉 on H0(Y (2),F`)m coincide.

Proof. Take s = (A, λA, ηA, Ã, λÃ, ηÃ, α) ∈ Y (2)(Fac
p ). Ã is superspecial by Lemma

2.3.28(3) and Lemma 2.3.33(2a).
Since A and Ã are superspecial, there are supersingular elliptic curves E and

Ẽ defined over Fp2 such that A = (E⊕3) ⊗ Fac
p and Ã = (Ẽ⊕3) ⊗ Fac

p . It is well
known that the relative Frobenius FrE : E → E(p2) ∼= E coincides with the isogeny
−p : E → E, and FrẼ : Ẽ → Ẽ(p2) ∼= E coincides with the isogeny −p : Ẽ → Ẽ.
It turns out that the action of Frobp2 and 〈−p−1〉 on H0(Y (2),F`)m coincide. We
conclude by remarking that 〈−p−1〉 = 〈p−1〉.

Lemma 2.4.11. φIwp(〈p−1〉) lies in the image of Z(A�)/K� ∩ Z(A�) in
EndF`(H0(Y (2),F`)m).

Proof. Let p ∈ Z(A∞) ∼= (A∞F )× be the element whose p-component is p and other
components are 1. By definition the action of p and 〈p〉 coincide. Since the action
of p−1 on H0(Y (2),F`)m factors through Z(A∞)/Z(Q)(KpIwp∩Z(A∞)), it suffices to
show that there exist g� ∈ Z(A�) and f ∈ Z(Q), such that g�fp−1 ∈ K� ∩ Z(A�),
which follows from the weak approximation.

2.4.8 Proof of the main theorem
Proof. [Proof of Theorem 2.4.1] Suppose there is no level-lowering, i.e., there is
no automorphic representation π̃ of G(A) such that π̃KpKp 6= 0 and ρπ̃,`

∼= ρπ,`.
By Zucker’s conjecture and the Matsushima formula we have the decomposition
[BR92, 1.9]

IH2(S0(p)⊗ F ac,Z`)m ⊗Qac
` =

⊕
π̃

ι−1
` π̃K

pIwp ⊗ ρπ̃,` (2.32)

where π̃ runs over irreducible automorphic representations of G(A) such that π̃∞
is cohomological with trivial coefficient and ρπ̃,` ∼= ρπ,`. By Corollary 2.4.3 and the
absolute irreducibility of ρπ,`, every irreducible Jordan-Hölder factor of H2(S0(p)⊗
F ac,F`)m is isomorphic to ρπ,`. The weight-monodromy spectral sequence, which
degenerates at E1 by Lemma 2.4.9, gives a filtration Fil∗H2(S0(p) ⊗ F ac,F`)m on
H2(S0(p) ⊗ F ac,F`)m of T(G�, K�)m-modules. Put Grp := Filp /Filp+1 . Then by
Lemma 2.4.7 the non-zero terms are

Gr−2 = H0(Y (2),F`(−2))m,
Gr0 = H0(Y (2),F`(−1))m,
Gr2 = H0(Y (2),F`)m.

The monodromy operator µ̃ in Section 2.4.6 boils down to identity maps Gr−2 →
Gr0(−1) and Gr0 → Gr2(−1). In particular, ker µ̃ = Fil2 ∼= H0(Y (2),F`)m. The
unramifiedness of ρπ,` at p implies that H0(Y (2),F`)[m] ⊂ H0(Y (2),F`)m contains a
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copy of ρπ,` |Gal(Fac
p /Fp2 ) . However, by Lemma 2.4.10 and Lemma 2.4.11, Frobp2 acts

as the scalar χπ,`(p)−1 on H0(Y (2),F`)m[m] where χπ,` := ι−1
` ◦ χπ and χπ is the

central character. On the other hand, the multiset of eigenvalues of ρπ,`(Frobp) is
{p2, 1, p−2} mod ` up to multiplication by a common scalar. We then deduce that
p2 ≡ 1 mod l, contradicting the assumption.
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Chapitre 3

Vanishing theorems for Picard
modular surfaces

3.1 Introduction
In Chapter 2, we proved an analogue of the level lowering theorem for Picard

modular surfaces. An essential assumption is that the cohomology of the generic fiber
of Picard modular surface localized at a suitable Hecke maximal ideal concentrates
in the middle degree. In this chapter, we aim at giving a criterion for this to be true.

Let F be an imaginary quadratic extension of Q, OF be its ring of integers and
G be the unitary similitude group over Z of signature (1,2) defined in (2.1).

Fix an open compact subgroup Kq ⊂ G(A∞,q). Let S be the Picard modular
surface attached to G of level KqKq defined over OF ⊗Z(q) (cf. Section 2.2.11 where
we use the notation p instead of q and S instead of S).

We state the main theorem :

Theorem 3.1.1. Let π be a stable cuspidal automorphic representation of G(A)
cohomological with trivial coefficient. Let ` be a prime number and fix an isomor-
phism ι` : Qac

` → C. Denote by λ the place in the field of definition of π∞ over `
induced by ι`. Choose a finite set � of places of Q outside which π is unramified.
Let m ⊂ T(G�, K�) be the mod λ Hecke maximal ideal attached to π. Denote by
ρm the residual Galois representation attached to π. Suppose that ρm is absolutely
irreducible and there is a prime number q such that

1. q is inert in F ;
2. ` - (q − 1)(q3 + 1) ;
3. Kq is hyperspecial ;
4. ρm(Frobq) is not conjugate to a matrix of the form diag(−νq, ν,−νq−1) or

diag(νq2, ν, νq−2) for some ν ∈ Fac,×
` .

Then
Hi(S⊗Qac,Fac

` )m = 0
for i 6= 2.

Remark 3.1.2. We expect the existence of such a prime number q to be implied
by the assumption that the image of ρm is big enough, similar to [LTX+19, Lemma
2.6.1].
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3.2 Hecke operators
Recall that in Section 2.2.6 we define an inner form G′ of G over Q such that

G′q
∼= Gq for all finite places q and G′ is of signature (0, 3) at infinity. We also define

moduli problems T, T̃,T0(q) over OF ⊗ Z(q) attached to G′ with level Kq, K̃q, Iwq

at q. We have natural maps

T0(q)
ψ

}}

ψ̃

!!
T T̃

(3.1)

equivariant under prime-to-q Hecke correspondence.

Definition 3.2.1. Let R be a commutative ring. We define morphisms

T := Kq diag(q, 1, q−1)Kq ∈ Z[Kq\Gq/Kq] :H0(T⊗ Fac
q , R)→ H0(T⊗ Fac

q , R),
J := K̃qKq ∈ Z[K̃q\Gq/Kq] :H0(T⊗ Fac

q , R)→ H0(T̃⊗ Fac
q , R),

J̃ := KqK̃q ∈ Z[Kq\Gq/K̃q] :H0(T̃⊗ Fac
q , R)→ H0(T⊗ Fac

q , R),
I1 := KqIwq ∈ Z[Kq\Gq/Iwq] :H0(T0(q)⊗ Fac

q , R)→ H0(T⊗ Fac
q , R),

Ĩ1 := K̃qIwq ∈ Z[K̃q\Gq/Iwq] :H0(T0(q)⊗ Fac
q , R)→ H0(T̃⊗ Fac

q , R),
tI1 := IwqKq ∈ Z[Iwq\Gq/Kq] :H0(T⊗ Fac

q , R)→ H0(T0(q)⊗ Fac
q , R),

tĨ1 := IwqK̃q ∈ Z[Iwq\Gq/K̃q] :H0(T̃⊗ Fac
q , R)→ H0(T0(q)⊗ Fac

q , R).

We also define I2 := J̃ ◦ Ĩ1,
t I2 :=t Ĩ1 ◦ J.

The following lemma describes the relations between these morphisms

Lemma 3.2.2. We have
1. J̃ ◦ J = T + (q3 + 1) id;
2. I1 ◦t I1 = (q3 + 1) id;
3. I1 ◦t I2 = (q3 + 1) id +T ;
4. I2 ◦t I1 = (q3 + 1) id +T ;
5. I2 ◦t I2 = (q3 + 1)(q + 1) id +(q + 1)T.

Proof. Recall that for an open compact subgroup K ′qK ′q of G′(A∞) and a commu-
tative ring R, H0(G′(Q)\G′(A∞)/K ′qK ′q), R) is the R-module of locally constant,
compactly supported functions f : G′(A∞) → R such that f(qgk) = f(g) for all
q ∈ G′(Q), g ∈ G′(A∞) and k ∈ K ′qK ′q.

Let R[G′q/K ′q] be the R-module of locally constant, compactly supported func-
tions f : G′q → R such that f(gk) = f(g) for all g ∈ G′q, k ∈ K ′q.

Since G′(Q)\G′(A∞)/K ′qG′q is a quotient of the finite set G′(Q)\G′(A∞)/K ′qK ′q,,
we have a decomposition

G′(A∞) =
h∐
i=1

G′(Q)xiK ′qG′q
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for some x1, · · · , xh ∈ G′(A∞). Therefore we have

G′(Q)\G′(A∞)/K ′qK ′q ∼= tiG′(Q)\G′(Q)xiK ′qG′q/K ′qKq = tiΓi\G′q/K ′q

where Γi := G′(Q) ∩ xiKqx−1
i . For f ∈ H0(G′(Q)\G′(A∞)/K ′qK ′q), R), define func-

tions fi ∈ R[Γi\G′q/K ′q] by sending gq ∈ G′q to f(xigq). Then the morphism

H0(G′(Q)\G′(A∞)/K ′qK ′q), R)→
h⊕
i=1

R[Γi\G′q/K ′q]

f 7→ (fi)1≤i≤h

is an isomorphism of R-modules.
Keep the notations of the Bruhat-Tits tree of Gq in Section 2.2.1. Since Gq

∼= G′q,
we have the bijections

G′q/Kq
∼= V, G′q/K̃q

∼= Ṽ, G′q/Iwq
∼= E.

To summarize, we have isomorphisms of R-modules

H0(T⊗ Fac
q , R) ∼=

h⊕
i=1

R[Γi\V], H0(Γi\T̃⊗ Fac
q , R) ∼=

h⊕
i=1

R[Γi\Ṽ],

and
H0(T0(q)⊗ Fac

q , R) ∼=
h⊕
i=1

R[Γi\E].

Thus the morphisms defined in Definition 3.2.1 are given by the corresponding
morphisms with the same notation on the Bruhat-Tits tree :
Definition 3.2.3. [BG06, Lemme 3.5.1] Let d be the distance function between ver-
tices of X. For x ∈ V, Ṽ,E, denote by δx be the characteristic function of x. Define
G′q-equivariant morphisms

T : R[V]→ R[V] J : R[V]→ R[Ṽ] J̃ : R[Ṽ]→ R[V]
δx 7→

∑
d(y,x)=2

δy δx 7→
∑

d(x′,x)=1
δx′ δx′ 7→

∑
d(x′,x)=1

δx

and

I1 : R[E]→ R[V] I2 : R[E]→ R[V]
δ(x,x′) 7→ δx δ(x,x′) 7→

∑
d(y,x′)=1

δy

tI1 : R[V]→ R[E] tI2 : R[V]→ R[E]
δx 7→

∑
d(x,x′)=1

δ(x,x′) δx 7→
∑

d(x′,x)=1,d(x′,y)=1
δ(x′,y).

To prove Lemma 3.2.2, it suffices to verify the relations between morphisms
on the tree, which is an easy combinatoric calculation similar to [BG06, Lemme
3.5.3].
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The following lemma calculate the eigenvalue of Hecke operators on unramified
principle series :
Lemma 3.2.4. Let π′ be an irreducible admissble automorphic representation of
G′(A∞) appearing in (3.6) such that π′q ∼= Iα,β for some α, β ∈ C∗. Let φπ′ be the
Hecke homomorphism defined in Section 2.4.4. Then we have

φπ′(Tm) = q2(α + α−1) + (q − 1). (3.2)

Proof. Recall that in Section 2.4.1 we have the dual group Ĝ ∼= (GL3×Gm)(C) of
G over Qq and the Langlands dual group LG = (GL3×Gm)(C) o {1, σ} where the
involution σ sends g ∈ GL3(C) to Φ(tg−1)Φ.

Let Mq := M(Qq) be the split torus of Gq defined in Section 2.4.1. Let M̂q
∼=

D × Gm be the dual group of Mq where D ⊂ GL3(C) is the diagnonal matrix.
Let X∗(M̂q) be the character group of M̂q and Z[X∗(M̂q)] ∼= Z3 ⊕ Z be the group
algebra of X∗(M̂q) with coefficient in Z. Let W be the Weyl group of Gq. For a
character ν ∈ X∗(M̂q), denote by [ν] ∈ Z[X∗(M̂q)] the characteristic function of ν.
Define characters µ : M̂q → Gm by (diag(a, b, c), ν) 7→ a/c and µc : M̂q → Gm by
(diag(a, b, c), ν) 7→ ν.

The Satake isomorphism reads

Sat : Z[Kq\Gq/Kq] ∼= Z[X∗(M̂q)]W ∼= Z[[µc], [µ−1
c ], [µ] + [µ−1]].

By [Car79, (35),(39)], the value of φπ′(Tm) is given by

φπ′(Tm) =
∫
Z[X∗(M̂q)]

Sat(Tm)(m)χα,β(m)dm.

It then boils down to calculate the Satake transform of Tm.
For an algebraic representation ρ of LG, denote by χ(ρ) the character of ρ res-

tricted on M̂qσ. Let ρstd be the standard representation Ĝ ∼= GL3×Gm → GL3 given
by (g, ν) 7→ gν. Define ρ := ρstd ⊗ ρ∨std where ρ∨std denotes the dual representation.
Since the restriction of ρ on the similitude factor Gm ⊂ Ĝ is trivial, we can apply
the calculation in [LTX+22, Lemma B.1.2] to get

[χ(ρ)] = [µ] + [µ−1] + 1

in Z[X∗(M̂q)]. By [XZ18, Lemma 9.2.4] and [Zhu18, (5.2.1)] we have

q2[χ(ρ)] = q2 − q + 1 + Sat(Tm),

from which we derive that

Sat(Tm) = q2([µ] + [µ−1] + 1)− (q2 − q + 1) = q2([µ] + [µ−1]) + q − 1,

Since χα,β([µ]) = α, the lemma follows.
Lemma 3.2.5. Suppose that ρm(Frobq) is not conjugate to a matrix of the form
diag(−νq, ν,−νq−1) or diag(νq2, ν, νq−2) for some ν ∈ Fac,×

` . Then the morphisms
localized at m

Jm :H0(T⊗ Fac
q ,F`)m → H0(T̃⊗ Fac

q ,F`)m (3.3)
J̃m :H0(T̃⊗ Fac

q ,F`)m → H0(T⊗ Fac
q ,F`)m (3.4)

(I1,m, Ĩ1,m) :H0(T0(q)⊗ Fac
q ,F`)m → H0(T⊗ Fac

q ,F`)m ⊕ H0(T̃⊗ Fac
q ,F`)m (3.5)

are isomorphisms.
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Proof. We have decompositions

H0(T⊗ Fac
q ,Z)m ⊗ C '

⊕
π′
m(π′) · π′KqKq , (3.6)

H0(T̃⊗ Fac
q ,Z)m ⊗ C '

⊕
π′
m(π′) · π′KqK̃q , (3.7)

H0(T0(q)⊗ Fac
q ,Z)m ⊗ C '

⊕
π′
m(π′) · π′KqIwq (3.8)

where π′ runs over all irreducible admissible representations of G′(A) with coeffi-
cients in C such that π′∞ is trivial and the mod ` Hecke homomorphism φπ′,` defined
in (2.25) satisfies φπ′,` = φπ,`, and m(π′) denotes the automorphic multiplicity of π′.

We then claim the following equalities :

rankZ`H0(T⊗ Fac
q ,Z`)m = rankZ`H0(T̃⊗ Fac

q ,Z`)m, (3.9)
rankZ`H0(T0(q)⊗ Fac

q ,Z`)m = 2rankZ`H0(T⊗ Fac
q ,Z`)m, (3.10)

It is equivalent to show that the dimension of H0(T ⊗ Fac
q ,Z)m ⊗ Q` and H0(T̃ ⊗

Fac
q ,Z)m ⊗Q` are both half the dimension of H0(T0(q)⊗ Fac

q ,Z)m ⊗Q`.
By (7) in Section 2.4.2, for any π′ in the direct sums (3.6), (3.7) or (3.8), the

q-component π′q has to be a Jordan-Hölder factor of the unramified principle series
Iα,β for some α, β ∈ C×. The assumption (4) in Theorem 3.1.1 then implies that
α 6= {−q,−q−1, q2, q−2}, from which we deduce that Iα,β is irreductible and therefore
π′q
∼= Iα,β by (1) in Section 2.4.2. On the other hand, we have dim I

Kq
α,β = dim I

K̃q
α,β =

1, dim I
Iwq
α,β = 2 by (5) in Section 2.4.2, thus the claim follows.

Now we head back to show that Jm and J̃m are isomorphisms. By (3.9) it suffices
to show that the composition J̃m ◦ Jm : H0(T ⊗ Fac

q ,F`)m → H0(T ⊗ Fac
q ,F`)m is

an isomorphism. Indeed, if so then Jm (resp. J̃m) is an injective (resp. surjective)
morphism between free F`-vector spaces of the same rank. Consequently, Jm and J̃m
are isomorphisms.

By Lemma 3.2.2(1), we have

J̃m ◦ Jm = Tm + (q3 + 1) idm .

Thus it suffices to show that for every π′ appearing in (3.6),

φπ′(Tm) + (q3 + 1) 6≡ 0 mod m

where φπ′ is defined in Section 2.4.4. By Lemma 3.2.4 we have

φπ′(Tm) = q2(α + α−1) + (q − 1). (3.11)

Since ρm(Frobq) is not conjugate to a matrix of the form diag(−νq, ν,−νq−1) or
diag(νq2, ν, νq−2) for some ν ∈ Fac,×

` , the relation (2) between Satake parameter and
the Langlands parameter in Section 2.4.3 then implies that α 6≡ −q,−q−1, q2, q−2 mod
m. Thus

φπ′(Tm) + q3 + 1 ≡ q2(α + α−1 + q + q−1) 6≡ 0 mod m,

and J̃m ◦ Jm is an isomorphism. Therefore Jm and J̃m are both isomorphisms.
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To show that (I1,m, Ĩ1,m) is an isomorphism, by (3.4) it suffices to show that the
composition of the morphisms

(I1,m, I2,m) : H0(T0(q) ⊗ Fac
q ,F`)m → H0(T ⊗ Fac

q ,F`)m ⊕ H0(T ⊗ Fac
q ,F`)m (3.12)

is injective. Consider the composition Im : (I1,m ⊕ I2,m) ◦ (tI1,m ⊕t I2,m) :

H0(T⊗ Fac
q ,F`)m

tI1,m

))

H0(T⊗ Fac
q ,F`)m

tI2,m

uu
⊕ H0(T0(q)⊗ Fac

q ,F`)m

I1,muu I2,m ))

⊕

H0(T⊗ Fac
q ,F`)m H0(T⊗ Fac

q ,F`)m.

Then by (3.10) it suffices to show that Im is an isomorphism. Since the source and
target of Im are F` vector space of the same dimension, it suffices to show that Im is
injective. By Lemma 3.2.2, the intersection matrix is calculated as(
I1,m ◦t I1,m I1,m ◦t I2,m
I2,m ◦t I1,m I2,m ◦t I2,m

)
=
(

(q3 + 1) idm (q3 + 1) idm +Tm
(q3 + 1) idm +Tm (q3 + 1)(q + 1) idm +(q + 1)Tm

)

whose determinant is −(Tm+(q3 +1) idm)(Tm−q(q3 +1) idm). For every π′ appearing
in (3.6) such that π′q ∼= Iα,β,q for some α, β ∈ C∗, the determinant acts on π′Kqq as
the scalar

− (φπ′(Tm) + (q3 + 1))(φπ′(Tm)− q(q3 + 1)) mod m

= −(α + α−1 + q + q−1)(α + α−1 − q2 − q−2) mod m. (3.13)

which is nonzero since α 6≡ −q,−q−1, q2, q−2 mod m by the same argument below
(3.11). Thus Im is injective and (I1,m, Ĩ1,m) is an isomorphism.

3.3 Proof of the main theorem
Denote by S∗ the minimal compactification of the moduli problem S. As a to-

pological space, it is obtained by adding a finite set of points to S, corresponding
to CM elliptic curves. It is well known that the ordinary locus S∗,ord of S∗ is affine.
The natural map S→ S∗ is an open immersion.

Let (S⊗Fac
q )ss be the supersingular locus of S⊗Fac

q which coincides with that of
S∗ ⊗ Fac

q . Let (S⊗ Fac
q )ssp be the superspecial locus of S⊗ Fac

q which coincides with
that of S∗ ⊗ Fac

q .
Let (S∗ ⊗ Fac

q )# be the blowup of S∗ ⊗ Fac
q along (S⊗ Fac

q )ssp with the canonical
morphism π : (S∗ ⊗ Fac

q )# → S∗ ⊗ Fac
q .

Let (S∗⊗Fac
q )#,ss := π−1(S∗⊗Fac

q )ss be the supersingular locus of (S∗⊗Fac
q )#,ss.

Let ˜(S∗ ⊗ Fac
q )

ss
⊂ (S∗ ⊗ Fac

q )# be the strict transformation of (S∗ ⊗ Fac
q )ss. Let

(S∗ ⊗ Fac
q )#,ssp := π−1(S∗ ⊗ Fac

q )ssp be the exceptional divisor of (S∗ ⊗ Fac
q )#. Then

we have
(S∗ ⊗ Fac

q )#,ss = ˜(S∗ ⊗ Fac
q )

ss
∪ (S∗ ⊗ Fac

q )#,ssp

3.3. PROOF OF THE MAIN THEOREM 71



CHAPITRE 3. VANISHING THEOREMS FOR PICARD MODULAR SURFACES

There are canonical morphisms

θ : ˜(S∗ ⊗ Fac
q )

ss
→ T⊗ Fac

q

with each geometric fiber isomorphic to the Fermat curve C (cf. Proposition 2.3.6)
and

θ̃ : (S⊗ Fac
q )#,ssp → (S⊗ Fac

q )ssp ∼= T̃⊗ Fac
q ,

with each geometric fiber isomorphic to P1. Moreover, we have an isomorphism

θ0(q) : ˜(S∗ ⊗ Fac
q )

ss
∩ (S∗ ⊗ Fac

q )#,ssp ∼= T0(q)⊗ Fac
q .

In the following we replace Fac
q by Fac

q if needed.
We are going to use the following spectral sequence by Deligne in the `-adic

setting, see [Pet17, Theorem 3.3(ii), Example 3.5].
Proposition 3.3.1. Let X be a smooth algebraic variety of dimension n over an
algebraic closed field k such that char(k) 6= `. Suppose D = D1 ∪ . . . ∪ Dk a strict
normal crossing divisor. Consider the stratification of X by the various intersections
of the components of D. For I ⊂ {1, . . . , k}, let DI = ⋂

i∈I Di, including D∅ = X.
Let Di := t|I|=iDI . There is a spectral sequence

Ei,j
1 = H2n+2i+j(D−i,F`) =⇒ H2n+i+j(X\D,F`)

where the morphisms di,j1 : Ei,j
1 → Ei+1,j

1 are alternating sums of Gysin maps.
Proof of Theorem 3.1.1. Since Kq is hyperspecial, S has smooth reduction at q.
Since

Hi(S∗ ⊗Qac,F`)m ∼= Hi(S∗ ⊗Qac
q ,F`)m ∼= Hi(S∗ ⊗ Fac

q ,F`)m,
it suffices to show that Hi(S∗ ⊗ Fac

q ,F`)m 6= 0 for i 6= 2. Since ρm is absolutely
irreducible, the same argument as Lemma 2.4.2 implies that the compact support
cohomology is isomorphic to the ordinary cohomology

Hi
c(S⊗ Fac

q ,F`)m ∼= Hi(S⊗ Fac
q ,F`)m. (3.14)

By the Poincaré duality, it suffices to show that Hi(S∗⊗Fac
q ,F`)m = 0 for i > 2. The

same argument as Lemma 2.4.7(4) implies that

Hi((S∗ ⊗ Fac
q )#,F`)m ∼= Hi(S∗ ⊗ Fac

q ,F`)m.

Thus it suffices to show that Hi((S∗ ⊗ Fac
q )#,F`)m = 0 for i > 2. We now apply the

weight spectral sequence in Proposition 3.3.1 to (S∗ ⊗ Fac
q )#. Define

D0 = (S∗ ⊗ Fac
q )#, D1 = ˜(S∗ ⊗ Fac

q )
ss
t (S∗ ⊗ Fac

q )#,ssp,

D2 = ˜(S∗ ⊗ Fac
q )

ss
∩ (S∗ ⊗ Fac

q )#,ssp ∼= T0(q)⊗ Fac
q . (3.15)

The first page E1 of the spectral sequence writes as

H0(D2,F`)m
d−2,4

1,m // H2(D1,F`)m
d−1,4

1,m // H4(D0,F`)m
H1(D1,F`)m

d−1,3
1,m // H3(D0,F`)m

H0(D1,F`)m // H2(D0,F`)m
H1(D0,F`)m
H0(D0,F`)m

(3.16)
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where d−2,4
1,m is defined by

H0(D2,F`)
(Gys1,−Gys2) // H2( ˜(S∗ ⊗ Fac

q )
ss
⊗ Fac

q ,F`)⊕ H2((S∗ ⊗ Fac
q )#,ssp ⊗ Fac

q ,F`)

where Gys1 and Gys2 are the Gysin maps for the closed immersions of D2 into
˜(S∗ ⊗ Fac

q )
ss
and (S∗⊗Fac

q )#,ssp. The spectral sequence converges to H∗((S∗⊗Fac
q )ord,F`)m

where (S∗⊗Fac
q )ord is the ordinary locus (S∗⊗Fac

q )#−(S∗⊗Fac
q )#,ss = (S∗⊗Fac

q )#−D1.
By [GN17, Corollary 1.3], (S∗ ⊗ Fac

q )ord is affine, thus its cohomology vanishes for
degree > 2 by Artin-Grothendieck vanishing theorem (cf. [Han20, Theorem 1.1]).

We claim that d−2,4
1,m is an isomorphism. Indeed, by Section 3.3 and (3.15) the

morphism
d−2,4

1,m : H0(D2,F`)m → H2(D1,F`)m
is identified with

(ψ!,m, ψ̃!,m) = (I1,m, Ĩ1,m) : H0(T0(q)⊗Fac
q ,F`)m → H0(T⊗Fac

q ,F`)m⊕H0(T̃⊗Fac
q ,F`)m

where ψ and ψ̃ are the natural projections in (3.1). The isomorphism (3.5) then
implies that d−2,4

1,m is an isomorphism.
We now show that H4((S∗ ⊗ Fac

q )#,F`)m = 0. It is easy to see E0,4
2,m = E0,4

∞,m = 0
which is a graded piece of H4((S∗ ⊗ Fac

q )ord,F`)m = 0. On the other hand, E0,4
2,m =

coker(d−1,4
1,m ). Thus it suffice to show that d−2,4

1,m is surjective which is deduced from
the claim.

We now show that H3((S∗ ⊗ Fac
q )#,F`)m = 0. Calculate

E−1,4
2 = ker d−2,4

1,m ,

E0,3
2 = coker(H1(D1,F`)m → H3((S∗ ⊗ Fac

q )#,F`)m = H3((S∗ ⊗ Fac
q )#,F`)m.

By Lemma 2.4.6 we have H1(D1,F`)m = 0. Thus we have E0,3
3,m = E0,3

∞,m = 0
which is a graded piece of H3((S∗ ⊗ Fac

q )ord,F`)m = 0. On the other hand, E0,3
3,m =

coker(ker d−2,4
1,m → H3((S∗⊗Fac

q )#,F`)m). Thus it suffices to show ker d−2,4
1,m = 0, which

is deduced from the claim. We finish the proof of Theorem 3.1.1.
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Résumé 
Le principe de Mazur donne un critère selon lequel une représentation galoisienne irréductible mod 
$\ell$ provenant d'une forme modulaire de niveau $Np$ (avec $p$ premier par rapport à $N$) peut 
également provenir d'une forme modulaire de niveau $N$. Dans cette thèse nous démontrons un 
résultat analogue montrant que une représentation galoisienne mod $\ell$ provenant d'une 
représentation automorphe cuspidale stable du groupe de similitude unitaire $G=\mathrm{GU}(1,2)$ 
qui est Steinberg en un nombre premier inerte $p$ peut également provenir d'une représentation 
automorphe de $G$ qui est non ramifiée en $p$.   

Mots clés : Surface modulaire de Picard, diminution de niveau, principe de Mazur, représentation 
galoisienne 

Résumé en anglais 
Mazur's principle gives a criterion under which an irreducible mod $\ell$ Galois representation arising 
from a modular form of level $Np$(with $p$ prime to $N$) can also arise from a modular form of 
level $N.$ We prove an analogous result  showing that a mod $\ell$ Galois representation arising 
from a stable cuspidal automorphic representation of the unitary similitude group $G=\mathrm{GU}
(1,2)$ which is Steinberg at an inert prime $p$ can also arise from an automorphic representation of 
$G$ that is unramified at $p$. 

Keywords : Picard modular surface, level lowering, Mazur’s principle, Galois representation 

Hao FU 
LA DIMINUTION DE NIVEAU POUR LES 

FORMES AUTOMORPHES SUR LES 
SURFACES MODULAIRES DE PICARD



Le principe de Mazur donne un critère selon lequel une représentation galoisienne
irréductible mod ` provenant d’une forme modulaire de niveau Np (avec p premier
par rapport à N) peut également provenir d’une forme modulaire de niveau N . Dans
cette thèse nous démontrons un résultat analogue montrant que une représenta-
tion galoisienne mod ` provenant d’une représentation automorphe cuspidale stable du
groupe de similitude unitaire G = GU(1, 2) qui est Steinberg en un nombre premier inerte p
peut également provenir d’une représentation automorphe de G qui est non ramifiée en p.

Mazur’s principle gives a criterion under which an irreducible mod ` Galois repres-
entation arising from a modular form of level Np (with p prime to N) can also arise from
a modular form of level N. We prove an analogous result showing that a mod ` Galois
representation arising from a stable cuspidal automorphic representation of the unitary
similitude group G = GU(1, 2) which is Steinberg at an inert prime p can also arise from
an automorphic representation of G that is unramified at p.
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