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Résumé

Le principe de Mazur donne un critere selon lequel une représentation galoisienne
irréductible mod ¢ provenant d’une forme modulaire de niveau Np (avec p premier
par rapport a N) peut également provenir d'une forme modulaire de niveau N. Dans
cette these nous démontrons un résultat analogue montrant que une représentation
galoisienne mod ¢ provenant d'une représentation automorphe cuspidale stable du
groupe de similitude unitaire G = GU(1,2) qui est Steinberg en un nombre premier
inerte p peut également provenir d’une représentation automorphe de G' qui est non
ramifiée en p.



Abstract

Mazur’s principle gives a criterion under which an irreducible mod ¢ Galois re-
presentation arising from a modular form of level Np (with p prime to N) can also
arise from a modular form of level N. We prove an analogous result showing that
a mod ¢ Galois representation arising from a stable cuspidal automorphic represen-
tation of the unitary similitude group G = GU(1,2) which is Steinberg at an inert
prime p can also arise from an automorphic representation of GG that is unramified
at p.
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Chapitre O

Introduction

Le théoreme de diminution du niveau est un résultat profond dans le domaine
de la théorie des nombres, et plus précisément dans la théorie des représentations
galoisiennes et les formes modulaires. Ce théoreme, établi par Kenneth Ribet en
1986, a joué un role central dans la démonstration du dernier théoreme de Fermat
par Andrew Wiles en 1994.

Le dernier théoreme de Fermat stipule qu’il n’existe pas de solutions entieres non
triviales pour I’équation

a + b =c"

pour n > 2. Ce théoréme est resté sans preuve pendant plus de trois siecles apres
sa proposition par Pierre de Fermat en 1637. Il est facile de voir que le probleme se
ramene au cas ou n = ¢ est un nombre premier plus grand que 3. En 1984, Gerhard
Frey a démontré que si une telle solution existait, il serait possible de construire une
courbe elliptique semi-stable sur Q

v = x(r — ag)(x + bg)

appelée la courbe de Frey telle qu’il ait une mauvaise réduction exactment en les
nombres premiers p qui divisent le produit abc et sa représentation galoisienne mod ¢
satisfasse des propriétés de ramification tres particulieres. C’est a ce moment-la que
le théoreme de diminution de niveau entre en jeu. Ce théoreme, s’appuyant sur les
travaux de Jean-Pierre Serre ([Ser87h, Ser87a]), est établi par Ribet. Il est également
connu dans la littérature sous le nom du principe de Mazur.

Theorem 0.0.1. [Rib90, Theorem 1.1] Soit N un entier positif et p, ¢ des nombres
premiers distincts tels que ¢ soit impair et (p, N) = 1. Soit f une nouvelle forme
de poids 2 et de niveau Np et p;, la représentation galoisienne résiduelle mod {
attachée a f. Supposons que

1. Py, soit absolument irréductible ;
2. Pyre S0it non ramifiée en p ;
3. p# 1 mod /.
Alors il existe une nouvelle forme g de poids 2 et de niveau N telle que p;, =P,
L’importance de ce théoreme réside dans le fait qu’il a permis de réduire la

preuve du dernier théoreme de Fermat a la conjecture de Shimura-Taniyama-Weil,
qui prétend que la représentation galoisienne mod ¢ de toute courbe elliptique sur
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CHAPITRE 0. INTRODUCTION

Q provient d'une forme modulaire de poids 2. En effet, si la conjecture de Shimura-
Taniyama-Weil pour les courbes elliptiques est vraie, alors le théoreme 0.0.1 nous
permettra de montrer que la représentation galoisienne mod ¢ attachée a la courbe de
Frey provient d’une forme modulaire de poids 2 et de niveau 2. Cependant, une telle
forme modulaire n’existe pas, ce qui conduit a une contradiction. Cette découverte
a conduit Andrew Wiles a démontrer le dernier théoreme de Fermat en prouvant la
conjecture de Shimura-Taniyama-Weil pour les courbes elliptiques semi-stables.

Nous revenons a la démonstration du théoreme 0.0.1. Ribet a incorporé la re-
présentation galoisienne donnée dans un module de torsion de la jacobienne dune
courbe modulaire. Une étape clé est d’analyser ’action de Frobenius sur la partie
torique de la jacobienne. L’hypothese p £ 1 mod ¢ a été éliminée par Ribet dans
un travail ultérieur ([Rib91]), ot il a choisi un autre nombre premier ¢ tel que
q Z 1 mod { et a transféré la forme modulaire donnée a celle attachée a I'algebre de
quaternions indéfinie ramifiée en pg par la correspondance de Jacquet-Langlands.
Ensuite, le soi-disant "astuce de commutation (p,q)" lui permet de diminuer le ni-
veau a p tout en utilisant le principe de Mazur pour diminuer le niveau a ¢g. Pour
une explication plus détaillée de la méthode de Ribet, voir [Wan22].

Plus tard, Jarvis ([Jar99]) et Rajaei ([RajO0l]) ont démontré des résultats simi-
laires sur la diminution du niveau des représentations galoisiennes attachées a des
courbes de Shimura sur des corps totalement réels, apres une avancée majeure de
Carayol dans [Car&6]. La géométrie de la mauvaise réduction de la courbe de Shi-
mura combinée a un calcul explicite des cycles évanescents révele que le groupe des
composantes de la jacobienne de la courbe de Shimura est Eisensteinien. Dans la
méme veine, van Hoften ([vH21]) et Wang ([Wan22]) ont étudié la diminution de
niveau pour les variétés modulaires de Siegel de niveau paramodulaire sous diffé-
rentes hypotheses techniques. Pour le groupe de similitude unitaire de signature
(1,2), Helm a prouvé la diminution du niveau en une place scindée dans 1'extension
quadratique imaginaire sur un corps totalement réel dans [HelOG]. Boyer a traité le
cas des variétés de Shimura unitaires de type Kottwitz-Harris-Taylor dans [Boy19].

Cette these est divisée en trois parties. Dans la premiere partie, nous présentons
une preuve concise du théoreme 0.0.1 afin d’illustrer notre méthode. Nous commen-
cons par rappeler les notions de base, notamment les formes modulaires, les algebres
de Hecke, la représentation galoisienne et la suite spectrale de poids. Ensuite, nous
présentons la géométrie de la fibre spéciale mod p des courbes modulaires de ni-
veau Np, qui consiste en deux copies de la fibre spéciale de niveau N se coupant
transversalement au lieu supersingulier. Nous réalisons p;, dans le premier groupe
de cohomologie étale de la fibre générique de la courbe modulaire de niveau Np, sur
lequel existe une filtration donnée par la suite spectrale de poids. Finalement, nous
adaptons 'argument classique et concluons en utilisant 'involution d’Atkin-Lehner
qui a la méme action que le Frobenius sur le lieu supersingulier.

Dans la deuxieme partie, nous traitons de la diminution du niveau pour le groupe
de similitude unitaire de signature (1,2). Soit F' une extension quadratique imagi-
naire sur Q et G := GU(1,2) le groupe de similitude unitaire quasi-déployé cor-
respondant de signature (1,2). Fixons un nombre premier p inerte dans F' et un
sous-groupe compact ouvert K? de G(A*P), ou A>? est 'anneau des adeéles finis
en dehors de p. Soit K, C G(Q,) un sous-groupe hyperspécial, et Iw, C K, un
sous-groupe Iwahori. Soit S (resp. Sy(p)) le modele intégral de la variété de Shimura
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CHAPITRE 0. INTRODUCTION

attachée a G de niveau K?K, (resp. K?Iw,). Le théoréme principal est le suivant :

Theorem 0.0.2. Soit ™ une représentation cuspidale automorphe stable de G(A)
cohomologique a coefficient trivial. Fizons un nombre premier { # p. Soit m [’idéal
maximal mod { de l’algebre de Hecke sphérique attachée a m. Soit p, , la représen-
tation galoisienne mod ¢ attachée a w. Supposons que

1. (m=P)K" £ 0;

2. m, est la représentation de Steinberg de G, tordue par un caractére non ra-
mifié ;

sii # 2 alors H(S ®@ F* Fy)y = 0;

Pry €St absolument irréductible ;

Pry €St mon ramifiée en p ;

f(p—1E*+1).

Alors il existe une représentation automorphe cuspidale T de G(A) telle que
()K" K £ 0 et Pry = Pry-

S v S

Nous adaptons la stratégie de Ribet. Etant donné que la jacobienne n’est pas
disponible pour les surfaces de Shimura, inspirés par Helm, nous utilisons la suite
spectrale de poids-monodromie pour analyser les analogues du groupe de compo-
santes de la jacobienne de S et Sy(p). Pour ce faire, nous avons besoin d’une étude
détaillée de la géométrie des fibres spéciales. La surface S ® 2 a été étudiée par
Wedhorn dans [Wed01] et Vollaard dans [Vol10]. Tls ont montré que le lieu supersin-
gulier est constitué de composantes géométriques irréductibles qui sont des courbes
de Fermat de degré p+1 s’intersectant transversalement en des points superspéciaux.
Le complément du lieu supersingulier est le lieu p-ordinaire qui est dense.

La géométrie de Sy(p) est plus compliquée. L’étude des modeles locaux dans
[Bel02] implique que Sp(p) a une réduction semi-stable en p. Nous définissons trois
strates fermées Y;, Y1, Y5 dans Sy(p) ® F,2. Nous montrons qu’elles sont toutes lisses
et que leur union est Sy(p) ® F,2. Nous étudions en outre les relations entre ces
strates et S ®F,2. En particulier, Y est isomorphe au éclatement de S @ IF,2 le long
des points superspéciaux; Y; admet un morphisme purement inséparable vers Yj ;
et Y5 est un fibré en P! sur la normalisation du lieu supersingulier de S ® F,2 qui
est géométriquement une union disjointe de courbes de Fermat. Les intersections
deux a deux Y; N'Y; sont transversales et paramétrées par des variétés de Shimura
discretes attachées a G’, ou G’ est la forme intérieure unique de G qui coincide avec
G a tous les places finies et est compacte modulo le centre a I'infini. Cela peut étre
vu comme une incarnation géométrique du transfert de Jacquet-Langlands. De plus,
nous montrons que les points géométriques de Yy NY; NY; sont en bijection avec
la variété de Shimura discrete attachée a G’ de niveau KPIw,. Tous les morphismes
sont équivariants sous la correspondance de Hecke premicre a p, et définis sur I,
donc compatibles avec I'action de Frobenius en prenant la fibre géométrique. Le
résultat ressemble & ceux de [dSG18] et [Voll0], mais est adapté aux applications
arithmétiques en préservant 1’équivariance de Hecke et la structure schématique.

Par la formule de Matsushima, la représentation automorphe 7 donnée contri-
bue a la cohomologie d’intersection de la compactification de Baily-Borel de Sy(p).
Heureusement, nous pouvons ignorer la compactification car la cohomologie du bord
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de la compactification de Baily-Borel s’annule lorsque on a localise a m par I'irré-
ductibilité de la représentation résiduelle galoisienne. Nous écrivons ensuite la suite
spectrale monodromie-poids pour la surface Sy(p).

Nous sommes préts a prouver le théoreme 0.0.2 par ’absurde. Si le niveau ne peut
pas étre abaissé, I'hypothese (3) dans le théoreme 0.0.2 éliminerait la possibilité que 7
apparaisse dans la cohomologie étale de S®F;°. La suite spectrale monodromie-poids
se dégénererait & la premicre page et donnerait lieu a une filtration de H?(Sy(p) ®
F?¢ ), dont les pieces graduées sont données par les groupes de cohomologie de
Yo NY; NYs5. La condition non ramifiée sur la représentation galoisienne résiduelle
forcerait p, , a vivre dans la cohomologie étale de (Yo NY1NY2) @ F2¢. Nous trouvons
alors une contradiction en étudiant les valeurs propres généralisées de ’action de
Frobenius.

Dans la troisieme partie de ma these, je présente un résultat selon lequel la
cohomologie étale de la fibre générique de la surface modulaire de Picard, localisée
en un idéal maximal approprié, s’annule en dehors du degré intermédiaire 2. La
preuve repose sur le choix d’'un nombre premier ¢ inert tel que la surface modulaire
de Picard ait une bonne réduction en ¢, ce qui nous permet de relier la question a
I’annulation de la cohomologie de la fibre spéciale en ¢q. Nous utilisons le fait que
le lieu ordinaire de la compactification minimale est affine, ainsi que la séquence
spectrale de Deligne sur le diviseur a croisements normaux. Gardons la notation
ci-dessus du théoreme 0.0.2. Le résultat principal est le suivant :

Theorem 0.0.3. Soit m une représentation automorphe cuspidale stable de G(A)
cohomologique a coefficient trivial. Soit { un nombre premier. Soit m l’idéal mazimal
mod ¢ de l’algebre de Hecke sphérique attachée a w et p,, la représentation galoisienne
résiduelle attachée a m. Supposons que p,, soil absolument irréductible et qu’il existe
un nombre premier q # { tel que

1. q est inerte dans F',

2. 01 (g —1)(¢* +1);

3. K, est hyperspécial ;

4. Pu(Frob,) n'est pas conjugué a une matrice de la forme diag(—vq,v, —vq™")

ou diag(vq?, v,vq~?) pour un certain v € F;~.
Alors
HZ(S ® QaC7F?C)m — 0

pour i # 2.

En conséquence, le théoreme 0.0.3 nous permet de supprimer la condition (3)
dans le théoreme 0.0.2, en admettant un condition faible sur la représentation ga-
loisienne.



Chapitre 1

Level lowering of modular forms

1.1 Preliminaries

Level lowering was proposed by Serre | , ] and proven by Mazur
and Ribet | | in the setting of modular forms, which is a key step in deducing
Fermat’s Last theorem from the Shimura-Taniyama-Weil conjecture. To demonstrate
our method, we will prove a level lowering theorem of modular forms, using the same
strategy that will be employed later on. For a positive integer IV, define principal
congruence subgroups of SLy(Z) :

FO(N):HZ Z eSLg(Z):[Z Z]zl; :]modz\f},

Fl(N):{[ZZ]ESLQ(Z):[?Z] L *]modN}

0 1
and I'y (M, N) :=T1(M)NTy(N). Define

Il
1

Ot ={reC:im(r) >0}, H ={reC:im(r) <0}, HT=HTuH™.

For v = [ g Z € GL; (Q) and 7 € $H*, define
atr+b .
V=g Jpm=e+d

Moreover, for any integer k, define the weight-k operator [y]; on functions f : §* —
C by

(fOl)() =50 m) " f (), e ™

Definition 1.1.1. Let k,r, N be integers. Suppose that (r,N) = 1. A function f :
Ht — C is a modular form of weight k and level T'1(r, N) if

1. f is holomorphic on $H7,
2. f is weight-k invariant under T'y(r, N), that is

fle=f, v e€Ti(r,N).



CHAPITRE 1. LEVEL LOWERING OF MODULAR FORMS

L1 ) , we have f(T+ 1) = f(7), thus f admits a

In particular, for v = ( 01

Fourier expansion
o0

f(,]_) — Z anqn’ q= 6271'1'7'.

3. fVlk is holomorphic at oo for all v € SLy(Z), that is, a, of f[v]x vanishes
forn <0.

If in addition, ay of f[y]x vanishes for all v € SLy(Z), then f is a cusp form of
weight k and level T'y(r, N'). The C-vector space of modular forms (resp. cusp forms)
of weight k and level T'y(r, N) is finite-dimensional, denoted by My (T'1(r, N)) (resp.
STy (1, ).

There is a well-defined Petersson inner product

(s = Sk(Fa(r, N)) xSy (Fa(r, N)) — €

given by
1

Vei v

(F oo = g [ F)gIm(r) d(r)

where dy is the hyperbolic measure and Vr, (. n) is the volume of T'y(r, N)\$H*.

1.1.1 Hecke operators on the modular forms

For a € GL3 (Q) we have a decomposition of the double coset
Fl(’f’, N)()éF1<T‘, N) = HFl(r, N)ﬁ]
J

where 7 runs over a finite set. For an integer k, we can define the weight-k Hecke
operator

[y (r, N)aI'y(r, N)g : Sp(Ty(r, N)) = Sk(Ly(r, N))
[ Zf[ﬁj]k-

The definition does not depend on the choice of 3;’s. In particular, for d € (Z/rZ)*,
we have a well-defined diamond operator

g € Io(r) NTo(N) = I'y(rN) such that d = § mod r. For a prime

number p, we can also define

a
where
c

T, = [Ty (r, N) ( : 2 )Fl(r, N)k.

All these operators commute with each other. We say f € Si(I'1(r, N)) is an eigen-
form of weight k and level T'y(r, N) if f is an eigenvector for all diamond operators
and T, with (p, N) =1 and a; = 1.

6 1.1. PRELIMINARIES



CHAPITRE 1. LEVEL LOWERING OF MODULAR FORMS

1.1.2 Hecke algebra

Let Ty, y be the Z-subalgebra of End(S,(T'y(r, N))generated by all T, for all
prime numbers p prime to N and (d) for d € (Z/rZ)*. Then T}, y is a commutative
Z-algebra of finite type.

Let A be a unitary commutative ring. An eigenform f = > 7%, a,q" of weight
k and level I'y(r, N) with Fourier coefficients in A gives rise to a homomorphism
0r : Tyl v — A sending T}, to a,, for all prime numbers p not dividing N.

1.1.3 Two subspaces of Si(I'i(r,pN))

Let p be a prime number not dividing N. There are two ways to embed S (I'y (r, N))
into Si(I'y(r,pN)) :

Sk(rl(rv N)) - Sk’(rl(rva))
i f= f

0 _
ap: fr=f N LT T f (o).
01/,
Define the subspaces
Se(T1(r, pN )P~ =4 STy (r, N)) + apSi(T1 (7, N)).

We then can define the subspace Sy(I'1(r,pN))P~™" to be the orthogonal comple-
ment of Sy,(T;(r, pN))P~°'4 under the Petersson inner product.

Remark 1.1.2. Tﬁf,\f’pN preserves Si(T'y(r, pN))P=°" and Sy,(Ty(r, pN))P~"¢*. Denote
by ']I‘]k\ffp_]\?ld and Tgfxv’]fg,”ew the restriction of ']I‘ﬁprN to Ende(Sg(Ty1(r, pN))P~°") and
Endc(Sk(Ty(r,pN))P~"*). Then TZ{X’I?&OM and Tﬁfﬁ”ﬁ&"ew are quotients of Tgff’p]\,.

Np—old . : .
Moreover, T}, P is isomorphic to Ty, y.

1.2 Modular curve

~Let r > 4 be a positive integer and N be a prime number coprime to r. Let
H =HTuU QU {0} be the compactification of $. We can then define the complex
modular curve

Yi(r, N)g := Ty (r, N\S', X1 (r, N)g := Dy (r, N\ .

One gets X;(r, N)¢ by adding a finite number of points called cusps to Yi(r, N).
Since Xi(r, N) is naturally a compact Riemann surface, it is a projective variety
over C. Let Q! be the sheaf of differential 1-forms on X (r, N)s. We have a canonical
isomorphism

Sy (T (r, N)) — HO(X,(r, N)g, Q1)
f— fd.
1.2. MODULAR CURVE 7
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1.2.1 Integral model

To facilitate arithmetic applications, we shall use adelic language to express
Yi(r,N)c. Let A be the finite adele over Q. Let Z = m Z/nZ. Define open
compact subgroups of GLg(A™)

Ki(r) = {ge GLy(Z) | g = ( ; T ) modr},

Ko(N) := {g € GLy(Z) | g = ( ; : ) mod N}

and K (r, N) := Ky (r)NKo(N). By [Mil03, Lemma 2.3], Q*\{£} x A>* / det(K;(r, N))
is finite and discrete where {£} = {4, —} is a discrete two-element set, Q* acts on
both sets on the left, and det(K;(r, N)) acts on A°* on the right.

Proposition 1.2.1. [Mil03, proposition 2.7] We have SLy(Q)N Ky (r, N) = T'1(r, N)
and a bijection

Yi(r,N)c = GL2(Q)\H* x GLy(A®) /K, (r,N).
Define the moduli problem

Definition 1.2.2. For a Z[1/rN]-algebra R, Y1(r, N)(R) is the isomorphism classes
of (E,Cy), where E is an elliptic curve over R, P, is a point of exact order r of E,
and Cy is a cyclic subgroups of E of order N.

Deligne and Rapoport in [DR73], Katz and Mazur in [[XM85] showed that the
moduli problem Y (r, N) is represented by a smooth affine curve over Z[1/rN], still
denoted by Yi(r, N), such that we have an isomorphism of complex varieties

Y (r, N)(C) & GLy(Q)\H* x GLy(A%)/K1(r, N) & Yi(r, N)..

Remark 1.2.3. For a prime number p not dividing rN, we can replace Cp,n by a
pair (Cp, Cn) of cyclic subgroups of order p and N, respectively.

There are two natural maps
Yl (7", pN)
Yl (7”, N) Yl (tT’, N)
defined by the following : for a Z[1/rpN]-algebra R and (E, P,,Cx,C,) € Y1(r,pN)(R),

we have

T - (E; PracNacp) = (E,PT,CN),
my: (E, P, Cy,Cy) — (E/C,, P, mod C,, Cy mod C,).

These morphisms extend in a unique way to morphisms from X, (r, pN) to X (r, V).
The Hecke action 7}, on the cohomology is defined as the composition

TP : HO(Xl(T’ N)(C’ Qﬁﬁ(r,N)C) = HO(Xl(T7 pN)(C’ Qiﬁ(r,pN)C)
- HO(Xl (r, N)e, Q_l)ﬁ(r,N)C)

8 1.2. MODULAR CURVE
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induced by
* ~Y !
WQQXI(TyN)C - QXI(T»PN)C = TrlQ%{l(T?N)c'

We can then verify that the two definitions of 7T}, coincide, in the sense that the
following diagram commutes :

Ty
HO(XI (Tu N)(C’ Q%ﬁ(r,N)C) — HO(XI (Ta N)(C’ Q%ﬁ(r,N)C)

l |

Sg(Fl(r, N)) SQ(F1<T, N))

1%
1%

Tp

Remark 1.2.4. In general, for g € GLy(A>®) and K a neat open compact subgroup
of GLy(A>), define

Shy := GLy(Q)\H* x GLy(A®)/K.
We have a correspondence

SthgKg—l
S
where 7, is induced by the natural injection K N gKg~' — K and m is given by
[z,a] = [x,ag] for (z,a) € HF x GLy(A>). The correspondence induces an action
on the cohomology

g Hi(Shy, Fy) —2> Hi(Shyngrg 1, Fe) —> Hi(Shye, Fy)
In particular, recall that
Y. (r,pN)(C) = GLy(Q)\H* x GLy(A®) /K1 (r, pN),
Y, (r, N)(C) = CLy(Q)\H* x GLy(A®) /K, (r, N),

and notice that K,(r,pN) = K;(r, N) N gK;(r, N)g~! with g € GLy(A>) such that
gp = diag(p™,1) and g, = id for p' # p. Then we see that g induces a correspon-
dence over C and an action on H'(Y1(r, N)q, Fe) which coincides with the action of
T,.

For d € (Z/rZ)*, the diamond operator (d) is induced by the action on Y (r, pN),
still denoted by (d) :

<d> : Y1<T7 pN) — Yl(n pN)
(E,P,,Cn,Cp) — (E,dP,,Cn,C,).
We also have the Atkin-Lehner involution w, on Y (r,pN) :

wy : Y1(r,pN) = Y (r,pN) (1.1)
(E,P.,Cn,Cy) — (E/C,, P, mod C,,Cy mod C,, E[p]/C,) (1.2)

such that m = m o w, and wg = (p). In the adelic language, w, corresponds to

g € GLy(A>) where gy = id for p’ # p and g, = < (ip (1) ) :

1.2. MODULAR CURVE 9
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1.2.2 Geometry of the special fiber

The integral model Y (r, N) has good reduction modulo p and Y;(r, p/N) has se-
mistable reduction modulo p. Consider the special fiber Y (r, N )Fp and Y, (r,pN )le'
We have two closed immersions @1, ®; : Yi(r, N)g — Yi(r,pN)g defined as fol-
lows : for an Fj-algebra R and (E,Cy) € Yi(r, N)y (R),

®,(E,P,,Cy) = (E,P,,Cy,ker F), ®y(E,P,,Cy)=(EP FP. FCy, kerV),

where F : E — E® is the relative Frobenius and V : E®) — E is the Verschiebung
satisfying F'V =p, VF = p.
To summarize we have the following diagram

Y1 (7’, N)Fp Y1 (T’, N)IFP
&A\ y
Yl (’l“, pN)IFp
/ Kx
Yl(T, N)IF Yl(T, N)Fp‘

such that
q)g :U)pq)l, Ty = T1Wp, 7T1(I)1 :id, 7T2(I)2 = <p>, 7T1(I)2 :71'2(1)1 =F.
Then we can show that

Y (r, pN)Fp = im®; Uim®P,.

SS

Moreover, the intersection im®; Nim®, is the supersingular locus Yy (r,pN)> where

the elliptic curve E' is supersingular (i.e., E(F5)[p] = 0).

1.3 Galois representation

Keep the notation of Section 1.1.2. Let N be a positive integer, p, £, r be distinct
prime numbers such that (p,rN¢) = 1. Let f = 3,5 a,¢" be an eigenform of
weight k and level T'y(r, N). Let T := Ty, y to be the prime-to-N Hecke algebra.
Let K = Q({a,}) be the field generated by a,’s with (n, N) = 1. One can show
that K is a finite extension over Q, and a,, € Oy for (n, N) = 1 where Oy is the
ring of integers of K. Let A be a place of Ky over £ and Oy be the completion of
Oy with respect to A. By Section 1.1.2 we then have a homomorphism 6, : T — K.
Then 0 factors through Oy. Define

m:= ker(T s Of’)\ Of’)\/>\).

Eichler-Shimura and Deligne showed the existence of a semisimple mod ¢ Galois
representation attached to f

Pm = Pro: Gal(Q*/Q) — GLy(T/m)
10 1.3. GALOIS REPRESENTATION
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such that for prime numbers p not dividing N/, p,, is unramified at p and
Tr 5, (Frob,) = T, mod m, detj,(Frob,) = (p)p*~' mod m.

Now we discuss Galois representations with values in a complete local ring. The
Hecke algebra T®Z, is a semi-local complete Z,-algebra thus admits a decomposition

T ®7 Zg 2 ] T, (1.3)

where the product is over a finite number of maximal ideals m; of T such that T /m;
is of characteristique ¢, and Ty, is the localization of T with respect to m;. Carayol
showed the existence of Galois representations taking value in a complete local ring :

Proposition 1.3.1. [Car94, Theorem 3| Suppose p,, is absolutely irreducible. Then
there exists a continuous representation

pm - Gal(Q*/Q) — GLy(Ty)

such that for all prime numbers p not dividing rN{, py is unramified and satisfies
the relations

Tr pu(Frob,) = 04(T},), det pn(Frob,) = (p)p" .
By reduction over m we recover the residual Galois representation defined above

Pm - Gal(QaC/Q) — GLQ(Tm) — GLQ(Tm/me)

1.4 Level lowering

We can state a variant of level lowering theorem proved by Mazur and written
down by Ribet. We set the weight £ = 2 so that we only need constant sheaves on
the modular curves. Keep the notation of Section 1.3 replacing N by pN.

Theorem 1.4.1. [Rib90, Theorem 1.1] Let N be a positive integer and r,p, ¢ be dis-

tinct prime numbers such that £ is odd and (p,rN¥) = 1. Let f € So(T'1(r,pN))P~"®

be an eigenform of weight 2 and level 'y (r,pN). Letm C T := TngpN be the prime-to-

pN mazimal ideal attached to f and p,, be the mod ¢ residual Galois representation.
Suppose that

1. b, is absolutely irreducible ;
2. P 1S unramified at p ;
3. p#% +1mod /.
Then there exists an eigenform g of weight 2 and level T'y(r, N) such that p;, = p, -

To prove Theorem 1.4.1, by [D574, Lemme 6.11], it suffices to show the following
theorem

Theorem 1.4.2. Suppose that (p, N) = 1,({,pN) =1 and p %21 mod ¢. Suppose
also that p,, is absolutely irreducible and unramified at p. Then 0; : T — Op /A
factors through TP=° which is the image of T in End(Sy(Ty(r, pN))P~°4.

1.4. LEVEL LOWERING 11
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In other words, we look for a morphism TP~ — O;,/\O;, such that the
following diagram commute

T Tp—new ij)\
Tp—old 77777777 > Of,/\/)\OfA

where TP~V .= ngﬁfgnew. We need to realize the given Galois representation p,, in
the cohomology of modular curves. Define the parabolic cohomology

H;(Yl (Tu pN)QaC’ Zﬁ) = Hl (Xl (T’ pN)Qawj*Zf)

where j is the inclusion of Y (r, pV) gac in Xy (7, pN) g - In his report [Car94] Carayol
explained that p,, lives in the m-torsion of the first cohomology of the modular curve.

Let M := H)(Xy(r, pN)gac, Z¢). Deonte by My, the localization of M at m. The
action of Gal(Q*/Q) on M commutes with T so makes M, a T,[Gal(Q*/Q)]-

module.
Proposition 1.4.3. We have an isomorphism of Gal(Q*®/Q)-modules
HY (X1 (1, pN) goe, Fe) [m] == 5"
for a positive integer n.
Proof. 1t suffices to show that
Hp (Xa (1, PN) gac, Fe)m[m] = 77
Indeed, we have

Hy (X (7, pN ) gae, Fo)m = HY (X (7, pN) g, F)m

Qac;
since the difference comes from Eisenstein series and vanishes after the localization
provided that p,, is absolutely irreducible. We claim that the Fy-cohomology is the
reduction of the Z,-cohomology :

My @ Fp & My /0My = H) (X1 (7, pN) gac, Fo)m-
Indeed, the cokernel of the injection
H (X (7, pN ) gocs Ze)m © Fo = Hy (X1 (7, PN ) gaes Fe)m

vanishes since Gal(Q**/Q) acts via its abelian quotient.
It remains to show that M, ® Fy,[m] is the direct sum of several copies of p,,. By
Matsushima formula,
My ® Q3

is pm-typic in the sense of [Sch18, Definition 5.2]. By [Sch18, Proposition 5.4] we see
that M, is also pn-typic, i.e.,

Mn = pn O, J
for some finitely-generated Ty,-module J. Thus
(Mn @ Fe)[m] = (J/0])[m] © Py,
from which the proposition follows. O

12 1.4. LEVEL LOWERING
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We recall the weight spectral sequence for semistable schemes :

Theorem 1.4.4. [Sai03, 1.1; Corollary 2.2.4] Let X be a proper scheme over Z, with
strictly semistable reduction at p ; that is, a reqular scheme with smooth generic fiber
whose special fiber Y is a divisor with normal crossings. For each i, let Y denote

the disjoint union of all i+ 1-fold intersections of distinct irreducible components of
Y. Then there is a spectral sequence

B = @  HHVL Fy(-i) = H (Xgye, Fo)
i>max(0,—p)
where the maps dy® : E7® — E'™ are alternative sums of Gysin or restriction

maps.

Moreover, let I, be the inertia group of Gal(Q3°/Q,), define the (p-adic) tame
quotient homomorphism t, : I, — F,(1) by sending o € Ix to (a(p*/*")/pt*"),.
Choose T' € I, such that t,(T) is a generator of Fy(1). Then, the endomorphism
v:=T —1 of RYF, induces a map

Hp+q (XQ:;C7 ]Fg)
ll@tg(T) T—1=v

EY 29 = @isnax(,—p) HO 2 (Yl ™) Fo(—i + 1)) —= HP(Xgye, Fe) (1)

of the weight spectral sequence.

We apply the weight spectral sequence to the integral model X (r, pN )Zp over Zj,
with semistable reduction at p : the first page E; , of the weight spectral sequence
localized at m reads

SS dy'?
HO (X, (r, N)]Fgc, Fo)m(—1) —=—H*(Xy(r, N)]F%C, Fy)m @ H2 (X (7, N)]F%C, Fo)m
HH (X1 (1, Ve, Fo) @ HY (X (7, N)jac, Fo)m
da” ss
HO (Xl (T7 N)Fgca FZ)m @ H0<X1 (TJ N)[Fgm FZ)m — HO(Xl (Tu N)F‘%C7Ff)m
which converges to H (X (r, pN) gac» Fe)m. The spectral sequence degenerates at page
2 and gives rise to a filtration Fil* H' (X (7, pN) gac, Fr)m of HY(X (7, pN) gacs Fe)m-
Put Cr; := Fil' / Fil"™'| then
Gr_; 2 kerd,"* € H(Xy(r, N)pue, Fo)m(—=1),
Gty = H(Xa (1. Ny ) HO(X (7, V) )
Gr; = coker d2%°

such that the action of the nilpotent operator v on H'(X;(r,pN )Qac,]F ¢)m is given
by

H (X1 (1, V) gues Fe ) —= Gy —= Gy (—1) = HO(X, (1, N )5, Eo)(— ).

In particular, ker v = Fil" H (X, (r, PN)gacs Fe)m-
We study the Gal(F}*/Fz)-action on H(X: (r, pN)fe, F)m.

1.4. LEVEL LOWERING 13
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Lemma 1.4.5. Let Frob, € Gal(F3°/IF,) be a geometric Frobenius. We have Frob,, =
w, on HY(X(r, N)gae: Fo)m-

Proof. The action of Frob, on H*(X(r,pN )?FS%C, F¢)m coincides with that induced by
the relative Frobenius I on X (r, pN)gsc. By [DR73, V.1], for a point (E, P, Cn, Cy)
in X*(IF5°), we have

wy(E, P,,Cy,C,) = (EP FP,, FCy, ker V)
= (EW FP, FCy,FC,) = F(E,P,,Cy,C,) (1.4)

since the E[p] has the unique rank-p subgroup ker F' = ker V. O

Lemma 1.4.6. Suppose p,, is unramified at p. Then there exists a rank 1 Oy /-
submodule W C HY (X1 (7, N)gac, Fo))m @ HO(Xy (1, N)]F%C,Fg))m on which T acts via
0.

Proof. Proposition 1.4.3 and the unramifiedness of p,, at p implies that

HY (X, (r, pN) gac, Fe)[m] C kerv.

Qac )

as a T-submodule of H' (X (r,pN )gacs Fe)m- Suppose that the lemma is false. Then
HY (X, (7, pN) gae, Fe) [m] € HO(X (7, N)ISFS%C,IF@),“. However, by Lemma 1.4.5 we have
Frob, = w, on H°(X,(r, N)Fse, Fo)m. Since w? = (p) € T (see (1.1)), we conclude
that pm(Frob,)? = diag(A\, A) mod ¢ for some A € F;*”. However, since f is new at
p, if 7 is the automorphic representation corresponding to f, then , is an unramified
twist of the Steinberg representation of GL3(Q,). By the local-global compatibility,

7w (Frob,) is conjugate to a matrix of the form

, 10
0 p
ac, X

for some v € F,””. Thus we deduce that p = +1 mod ¢, a contradiction. O

Proof of Theorem 1.4.2. In Lemma 1.4.6 the action of T on W factors through T —
TPd. We finish the proof. n

14 1.4. LEVEL LOWERING



Chapitre 2

Level lowering of automorphic
representations on the Picard
modular surface

2.1 Introduction

The level lowering problem was proposed by Serre[ , | in the name
of epsilon conjecture and served as a key step in deducing Fermat last theorem from
Shimura-Taniyama-Weil conjecture. Ribet proved the following theorem, which he
called also Mazur’s principle.

Theorem 2.1.1. | , Theorem 1.1] Let N be a positive integer and let p,{ be
distinct prime numbers such that ¢ is odd and (p, N) = 1. Let f be a newform of
weight 2 and level Np and py, be the mod ( residual Galois representation attached
to f. Suppose

1. pysy is absolutely irreducible ;
2. Pye is unramified at p ;
3. p# 1 mod /.
Then there exists a newform g of weight 2 and level N such that p;, = p, -

In his original proof, Ribet embedded the given Galois representation into some
torsion module of the Jacobian of a modular curve. A key step is to analyze the
Frobenius action on the toric part of Jacobians. The assumption p Z 1 mod ¢ was
removed by Ribet later in | |, where he took another prime number ¢ such that
q Z 1 mod ¢ and transferred the given modular form to the one attached to the
indefinite quaternion algebra ramified at pg by Jacquet-Langlands correspondence.
Then the so-called (p,q) switch trick allows him to lower the level at p while by
Mazur’s principle he can further lower the level at ¢. For a more precise explanation
of Ribet’s method, see | ].

Later Jarvis (| |) and Rajaei ([ ]) proved similar results on level lowering
of Galois representations attached to Shimura curves over totally real fields after
a major breakthrough by Carayol in | ]. The geometry of bad reduction of

Shimura curve combined with an explicit calculation of nearby cycles shows the
component group of the Jacobian of the Shimura curve is Eisenstein. Along the

15
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same line van Hoften ([vH21]) and Wang ([Wan22]) studied level lowering for Siegel
modular threefold of paramodular level under different technical assumptions. For
unitary similitude group of signature(1,2), Helm proved level lowering at a place split
in the quadratic imaginary extension over a totally real field in [HelO6G]. Boyer treated
the case for unitary Shimura varieties of Kottwitz-Harris-Taylor type in [Boy19].

In this article we deal with level lowering at a rational prime inert in a quadratic
imaginary extension for the unitary similitude group of signature (1,2).

Let F' be a quadratic imaginary extension over Q and G := GU(1,2) be the
corresponding quasi-split unitary similitude group of signature (1,2). Fix a prime
number p inert in F' and an open compact subgroup K? of G(A*P) where A>? is
the finite adele over Q outside p. Let K, C G(Q,) be a hyperspecial subgroup, and
Iw, C K, be an Iwahoric subgroup. Let S (resp. So(p)) be the integral model of
Shimura variety attached to G of level KPK,, (resp. K?Iw,). The main theorem is

Theorem 2.1.2 (Theorem 2.4.1). Let 7 be a stable automorphic cuspidal represen-
tation of G(A) cohomological with trivial coefficient. Fiz a prime number ¢ # p. Let
m be the mod { mazximal ideal of the spherical Hecke algebra attached to 7. Let p,,
be the mod ¢ Galois representation attached to w. Suppose

1. (woor) K" £ 0;
7, 1s the Steinberg representation of G, twisted by an unramified character;
if i # 2 then H/(S @ F**,Fy)y = 0;

Prg 18 absolutely irreducible ;

AR RS

Pr 18 unramified at p ;
6. L1 (p—1°+1).

Then there ezists a cuspidal automorphic representation 7 of G(A) such that

(7o) KPKe £ 0 and

12

Prp = Prp-

We adapt Ribet’s strategy. As Jacobian is unavailable for Shimura surfaces, ins-
pired by Helm we use weight-monodromy spectral sequence to analyze analogues
of the component group of Jacobians of S and Sy(p). In order to do so, we need a
detailed study on the geometry of special fibers. The surface S ® F,2 was studied
by Wedhorn in [Wed01] and Vollaard in [Vol10]. They showed that the supersingu-
lar locus consists of geometric irreducible components which are Fermat curves of
degree p 4+ 1 intersecting transversally at superspecial points. The complement of
supersingular locus is p-ordinary locus which is dense.

The geometry of Sy(p) is more complicated. The study of local models in [Bel02]
implies that Sp(p) has semistable reduction at p. We define three closed strata
Yo, Y1, Y5 in So(p) ® Fp2. We show they are all smooth and their union is Sp(p) ® Fe.
We further study relations between these strata and S ® F,.. In particular, Yj is
isomorphic to the blowup of S ® F,. at superspecial points; Y7 admits a purely
inseparable morphism to the latter; and Y5 is a P!-bundle over the normalization
of the supersingular locus of S ® IF,,» which is geometrically a disjoint union of Fer-
mat curves. The pairwise intersections Y; NY; are transversal and parameterized by
discrete Shimura varieties attached to G, where G’ is the unique inner form of GG
which coincides with G at all finite places and is compact modulo center at infinity.

16 2.1. INTRODUCTION
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This can be viewed as a geometric incarnation of Jacquet-Langlands transfer. Mo-
reover, we show the geometric points of YyNY; NY; are in bijection with the discrete
Shimura variety attached to G’ of level K?Iw,. All the morphisms are equivariant
under prime-to-p Hecke correspondence, and defined over I, thus compatible with
the Frobenius action when taking the geometric fiber. The result bears a resem-
blance to those of [SG18] and [Voll0], but is tailored for arithmetic applications
by preserving Hecke equivariance and schematic structure.

By Matsushima’s formula, the given automorphic representation 7 contributes
to the intersection cohomology of Baily-Borel compactification of Sy(p). Fortunately,
we can ignore the compactification since the cohomology of the boundary of Borel-
Serre compactification vanishes when localized at m by the irreducibility of the
residual Galois representation. We then write down the weight-monodromy spectral
sequence for the surface Sy(p).

We are ready to prove the main theorem by contradiction. If there were no level
lowering, the torsion-free assumption would eliminate the possiblity that m appears
in the localized cohomology of S ® F7°¢. The weight-monodromy spectral sequence
would degenerate at the first page and give rise to a filtration of H?(Sy(p) @ F2, Fy)n
with the graded pieces given by the cohomology groups of YoNY;NY5. The unramified
condition on the residual Galois representation would force p, , to live in the localized
cohomology of (Yo N'Y; NY3) ® F3¢. We then find a contradiction by studying the
generalized eigenvalues of the Frobenius action.

The article is organized as follows : after introducing the relevant Shimura va-
rieties in Section 2.2, we study the geometry of special fiber of Shimura varieties in
Section 2.3. Finally we carry out the proof of the main theorem in Section 2.4 .

2.1.1 Notation and conventions

The following list contains basic notation and conventions we fix throughout the

article, we will use them without further comments.

— We denote by A the ring of adeles over Q. For a set [ of places of QQ, we
denote by A" the ring of adéles away from [. For a number field F, we put
AT =AY ®@q F. It 0 = {vy,...,v,} is a finite set, we will also write AVt
for A,

— For a field K, denote by K?° the algebraic closure of K and put G =
Gal(K?*/K). Denote by Q* the algebraic closure of Q in C. When K is a
subfield of Q*, we take G to be Gal(Q*/K) hence a subgroup of Gg.

— For every rational prime p, we fix an algebraic closure Q¢ of Q,with the
residue field F7°, and an isomorphism ¢, : Q3¢ = C.

— For an algebraic group G over Q, set G, := G(Q,) for a rational prime p and
G = G(R).

— Let X be a scheme. The cohomology group H*(X, —) will always be computed
on the small étale site of X. If X is of finite type over a subfield of C, then
H*(X(C), —) will be understood as the Betti cohomology of the associated
complex analytic space X (C).

— Let R be a ring. Given two R-modules M; C M,, and s € N an integer.
denote by My C M, if the length of the R-module M,/Mj is s (hence finite).

— Let R be a ring and M be a set. Denote by R[M] the set of functions on M

2.1. INTRODUCTION 17
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with compact support with values in R.

— If a base ring is not specified in the tensor operation ®, then it is Z.

— For a scheme S (resp. Noetherian scheme S ), we denote by Sch/g (resp.
Sch'/s ) the category of S-schemes (resp. locally Noetherian S-schemes). If
S = Spec R is affine, we also write Sch,p ( resp. Sch’/R ) for Sch,g ( resp.
Sch'yg).

— The structure sheaf of a scheme X is denoted by Ox.

— For a scheme X over an affine scheme Spec R and an R-algebra S, we write
X ®pr S or even Xg for X Xgpecr SpecS.

— For a scheme S in characteristic p for some rational prime p, we denote by
oS — S the absolute p-power Frobenius morphism. For a perfect field s of
characteristic p, we denote by W (k) its Witt ring, and by abuse of notation,
o : W(k) — W(k) the canonical lifting of the p-power Frobenius map.

— Denote by P! the projective line scheme over Z, and G,, r = Spec R[T, T~ ']
the multiplicative group scheme over a ring R. Let S = Resc/r Gy,,c be the
Weil restriction of G,, ¢ to R.

2.2 Shimura varieties, integral models and moduli
interpretations

In this section we introduce some Shimura varieties associated with the group of
unitary similitudes.

Let F = Q(v/A) be a quadratic imaginary extension of Q with A € Z a negative
square-free element. Let ¢ be the nontrivial element in Gal(F/Q), and write a° or
¢(a) for the action of ¢ on a for a € F. Fix an embedding 7y : F — C such that
70(VA) € Ryg - v/—1. Then Yo = {7,771 = 79 o ¢} is the set of all complex
embeddings of F. Let Op be the ring of integers of F', F'** be an algebraic closure of
F. Let (A = O%,%) be the free Op-module of rank 3 equipped with the hermitian
form

Y(u,v) = 'udv

where

o= -1
1

Then ¢ is of signature (1,2) over R. Denote by eg,eq,es € A the standard basis

vectors. We put also
1
<u’ U>7/1 = TrF/Q(ﬁ¢(u7 U))

which is a non-degenerate alternating form V x V' — Q. Let G = GU(A, ) be the
group of unitary similitudes defined over Z by

G(R) = {(g7y(g)) € GLOF(X)ZR(A@ZR)XRX : 1/’(9513»99) = V(g)¢(way)7V$ay € A®ZR}
(2.1)
for any Z-algebra R. Note that G can be also defined as the similitude group of

<—7—>¢'

Let p be a prime number inert in F.

18 2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI
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2.2.1 Bruhat-Tits tree and open compact subgroups of G,
Bruhat-Tits tree

[BGO6, 3.1] Let T be the Bruhat-Tits building of G,. According to [1it79] or
[Cho94, 1.4], it is a tree, and its vertices decompose into two parts VIIV. Every
vertex of V (resp. of V) has p* + 1 (resp. p+ 1) neighbours which are all in V) (resp.
in V). The points of V are hyperspecial points in the sense of [Tit79], those of V are
special points which are not hyperspecial. We denote by € the set of (non-oriented)
edges of 7.

The tree T is endowed with an action of G,. The center Z, C G, acts on T
trivially. The action of G, on 'V (resp. V) is transitive, and the stabilizer of a vertex
v acts transitively on the set of vertices of V with distance n from v [Cho94, 1.4,
1.5], and therefore on the set of elements of € of origin v.

Maximal compact subgroup

[BGO6, 3.2] According to [BT72], a maximal compact subgroup of G, fixes one
and only one vertex of T, which defines a bijection between the set of maximal
compact subgroups of G, and VIIV. There are therefore two conjugacy classes
of maximal compact subgroups of G,, those who fix a vertex of V, which we call
hyperspecial, and those who fix a vertex of V, which we call special.

Let v € Vand o' € V. We denote by K, and K, the maximal compact subgroup
which fixes v and ¢'. Then K, is conjugate to K, := G(Z,), which is the stabilizer
of the standard self-dual lattice

A() = A & Zp = <€0, €1, €2>0Fp.
In the meanwhile, K,/ is conjugate to f(p which is the stablizer of the lattice

Al = <p607 €1, €2>OFP’

Assume that v and v" are neighbors. The stabilizer K, N K, of the edge (v,v’) is an
Twahoric subgroup of G,,.

2.2.2 Picard modular surface over C

Define the bounded symmetric domain associated with G as
B = {(20 AT 22) € IEDZ((C) | 5022 + 2121 + 2220 < 0}

which is biholomorphic to the unit ball in C?. The group G(R) acts by projective
linear transformations on P?(C), the action of G(R) preserves B and induces a
transitive action on B. Denote by K., the stabilizer of the "center" (—1 : 0 : 1).
Then we have an homeomorphism

G(R)/K.. = B.

2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI 19
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2.2.3 Shimura varieties for unitary groups

Consider the Deligne homomorphism

ho: S(R) = C* G(R)
z =1+ /—1ly— (diag(z, z, %), 22)

where 7 is the complex conjugate of z, and G(R) acts on Homg group scheme (S, G) by
conjugation. The stabilizer of hy of G(R) is K., and there exists a bijection between
B and the G(R)-conjugacy class X of hy.

For an compact open subgroup K C G(A*), the Shimura variety Sh(G, K) of
level K is a quasi-projective algebraic variety defined over F' whose complex points
are identified with

Sh(G, K)(C) == GQ\G(A)/ K Ko = GIQ\[X x G(AT)/K].

In this article, we will consider the Shimura varieties Sh(G, K) with K of the form
K = K?K,,, KK, or KPIw,, where K is a fixed open compact subgroup of G(A*),
as well as their canonical integral models over Op, ).

2.2.4 Dieudonné theory on abelian schemes

We first introduce some general notations on abelian schemes.

Definition 2.2.1. [L'TX 22, Definition 3.4.5] Let A and B be two abelian schemes
over a scheme S € Schyy . We say that a morphism of S-abelian schemes p : A —
B is a quasi-isogeny if there is an integer n such that ny is an isogeny. We say that
a morphism of S-abelian schemes ¢ : A — B is a quasi-p-isogeny if there exists
some ¢ € Z(Xp)such that cy is a isogeny. A quasi-isogeny ¢ is prime-to-p if there exist
two integers n,n’ both coprime to p such that ne and n’'p~! are both isogenies.

We denote by AV the dual abelian scheme of A over S. A quasi-polarization
of A is a quasi-isogeny A\ : A — A such that n\ is a polarization of A for some
n € Z. A quasi-polarization \ : A — AY is called p-principal if X is a prime-to-p
quasi-1sogeny.

Notation 2.2.2. Let A be an abelian variety over a scheme S. We denote by
H{®(A/S) (resp. Lieass, resp. wass ) the relative de Rham homology (resp. Lie
algebra, resp. dual Lie algebra) of A/S. They are all locally free Og-modules of
finite rank. We have Hodge exact sequence

0— wav/s —» H?R(A/S) — LieA/S — 0. (2.2)

When the base S is clear from the context, we sometimes suppress it from the nota-
tion.

Definition 2.2.3. Let S € Sch/Z(p).

1. An Op-abelian scheme over S is a pair (A,ia) in which A is an abelian
scheme over S and iy : Op — Endg(A) ® Zgy is a ring homomorphism of
algebras.

20 2.2. SHIMURA VARIETIES, INTEGRAL MODELS AND MODULI
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2. An unitary Op-abelian scheme over S is a triple (A,ia, Aa) in which (A,is)
is an Op-abelian scheme over S, and Ay : A — AV is a quasi-polarization
such that ia(a®)Y o Ag = Mg 0i(a) for every a € Op.

3. For two Op-abelian schemes (A,ia) and (A',iy) over S, a
(quasi-)homomorphism from (A,ia) to (A',dy) is a (quasi-)homomorphism
w: A— A" such that p ois(a) =i's(a) oy for every a € Op. We will usually
refer to such ¢ as an Op-linear (quasi-)homomorphism.

Moreover, we will usually suppress the notion i if the argument is insensitive to it.

Definition 2.2.4 (Signature type). Let (A,ia) be an Op-abelian scheme of di-
mension 3 over a scheme S € Sch,o,gp. Let r,s be two nonnegative integers with
r+s = 3. We say that (A,ia) has signature type (r,s) if for every a € Op, the
characteristic polynomial of ix(a) on Liea,g is given by

(T = 70(a))"(T = 71(a))* € O5[T].

Remark 2.2.5. Let A be an Op-abelian scheme of dimension 3 of signature type
(r,s) over a scheme S € Schy,. Consider the decomposition

~

Or @7 k kxk

a®x——=(ro(a)z, 7i(a)z)

where the bar denotes the mod p quotient map. Then for any Or ® k-module N we
have a canonical decomposition

N=Nyd N (2.3)
where a € Op acts on N; through 7;. Then (2.2) induces two short exact sequences
0 — wavss; — HF(A/S); — Lieass; — 0,4 =0,1

of locally free Og-modules of ranks s,3,r and r, 3, s.

Notation 2.2.6. Let (A, Aa) be a unitary Op-abelian scheme of signature type (r, s)
over a scheme S € Sch/omp). We denote

(5 Daai s HI®(A/S) x HI¥(A/S)is1 — O, i =0,1

the Og-bilinear alternating pairing induced by the quasi-polarization A, which is per-
fect if and only if A4 is p-principal. Moreover, for an Og-submodule § C H{®(A/S);,
we denote by F- C HI®(A/S)iy1 (where i € Z/27) its (right) orthogonal comple-
ment under the above pairing, if X is clear from the context.

Notation 2.2.7. In notation 2.2.6, put
AP = A xg, S,
where o is the absolute Frobenius morphism of S. Then we have

1. a canonical isomorphism HI® (AP /S) ~ o*H{E(A/S) of Og-modules;
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2. the Frobenius homomorphism Fra : A — A®) which induces the Verschiebung
map

Vy = (Fry), : HIR(A/S) — HE(AP)/S)
of Og-modules ;

3. the Verschiebung homomorphism Ver, : A®) — A which induces the Frobe-
nius map

Fa:i= (Vera). : HI®(AP/S) — H{*(A/S)
of Og-modules.

In what follows, we will suppress A in the notations F 4 and V 4 if the reference to A
is clear.

In Notation 2.2.7, we have ker F = imV = w,») /g and ker V. =imF.

Notation 2.2.8. Suppose that S = Speck for a perfect field k of characteristic p
containing F 2. Then we have a canonical isomorphism HI®(A®P) /k) ~ HR(A/K) R4 »
K.

1. By abuse of notation, we have
— the (k, 0)-linear Frobenius map F : HR(A/k) — HE(A/k) and
— the (k, 07 1)-linear Verschiebung map V : H{®(A/k) — H{E(A/K).

2. We have the covariant Dieudonné module D(A) associated to the p-divisible
group A[p™], which is a free W(k)-module, such that D(A)/pD(A) is cano-
nically isomorphic to HI®(A/k). Again by abuse of notation, we have
— the (W(k),o)-linear Frobenius map F : D(A) — D(A) lifting the one

above, and
— the (W(k),o")-linear Verschiebung map V : D(A) — D(A) lifting the

one above, respectively, satisfying FoV=VoF = p.
Remark 2.2.9. Similar to 2.3 we also have a decomposition
D(A) =D(A)y® D(A);.

Let (A, A4) be a unitary Op-abelian scheme of signature type (7, s) over Spec k.
We have a pairing
(a1 D(A) x D(A) = W(k)

lifting the one in Notation 2.2.6. We denote by D(A)14 the W (k)-dual of D(A)
D(A)H = {z € D(A)[1/p] | {x,y)r, € W(k),Vy € D(A).}

as a submodule of D(A)[1/p]. We have the following properties :

1. The direct summands in (2.3) are totally isotropic with respect to (,),.
2. we have
(Fr,y)a, = (2,V9)3,5 (tala)z, y)r, = (2, 2a(a)y)x,
for a € Op.
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Next we review some facts from the Serre-Tate theory [[<at81] and the
Grothendieck-Messing theory [Mes72], tailored to our application. Consider a closed
immersion S < S in Schyz , on which p is locally nilpotent, with its ideal sheaf
equipped with a PD structure, and a unitary Op-abelian scheme (A, A) of signature
type (r, s) over S. We let HSS (A4/S5) be the evaluation of the first relative crystalline
homology of A/S at the PD-thickening S < S, which is a locally free © ¢ ® Op-
module. The polarization A induces a pairing

()5 HS™S (A/S); x HE™ (A/8)ie — Og, i =0, 1. (2.4)

We define two groupoids
— Def(S, S: A, A), whose objects are unitary Op-abelian schemes (121, :\) of si-
gnature type (r, s) over S that lift (A N);
— Def'(S, 8; A, \), whose objects are pairs (&, @) where &; C HE™ (A/5); is a
subbundle that lifts wav,s; € H{¥(A/S); for i = 0,1, such that (D, &1)§5 =
0.

Proposition 2.2.10. The functor from Def(S, S';A,/\) to Def'(S,S’;A, A) sending
(A, ) to (Wivg,Wiv,) s a natural equivalence.

2.2.5 Moduli problems
Fix an open compact subgroup K? C G(A*P).

Definition 2.2.11. Let S be the moduli problem that associates with every Op -
algebra R the set S(R) of equivalence classes of triples (A, Aa,na), where
— (A, A4) is a unitary Op-abelian scheme of signature type (1,2) over R such
that A4 is p-principal ;
— na is a KP-level structure, that is, for a chosen geometric point s on every
connected component of Spec R, a m (Spec R, s)-invariant KP-orbit of iso-

morphisms
na:V @g AP =5 HS' (A, A>P)
such that the skew hermitian pairing (_, )y on V ®g AP corresponds to
the Xa-Weil pairing on H* (A, A®P) up to scalar.
Two triples (A, Aa,na) and (A, Aar,nar) are equivalent if there is a prime-to-p Op-
linear isogeny @ : A — A’ such that
— there exists ¢ € Z(Xp)such that @Y o Ay 0o = cAy; and
— the KP-orbit of maps v — p, ona(v) for v eV ®@g A>P coincides with 1.
Given g € KP\G(A>®P?)/K" such that g~'KPg C K, we have a map S(KP)(R) to
S(K'P)(R) by changing na to na o g.

Definition 2.2.12. Let S be the moduli problem that associates with every OF,p)-

algebra R the set S(R) of equivalence classes of triples (A, X ;,m;), where

1. (A, X\3) is a unitary Op-abelian scheme of signature type (1,2) over R such
that ker X ;[p™] is contained in Alp| of rank p?%;

2. ni is a KP-level structure.
The equivalence relation and the action of G(A*>P) are defined similarly as in Defi-
nition 2.2.15.
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Definition 2.2.13. The moduli problem Sy(p) associates with every Op ® Z,)-
algebra R the set So(p)(R) of equivalence classes of sextuples (A, Aa,na, A, X4, 04, @)
where

1. (A, Aa,ma) is an element in S(R).
2. (A, \;3,n5) is an element in S(R).
3. a:A— Ais an Op-linear quasi-p-isogeny such that

pla=a’o)joa.

4. kera C Alp] is a Raynaud Op-subgroup scheme of rank p*, which is isotropic
for the Aa-Weil pairing

e, + Alp] x Alp] — pp-

For the definition of Raynaud subgroup, see [1SG 18 1.2.1].

Two septuplets (A, Aa, 4, A, Aisni, o) and (A", Ny, 'y, A, A Ni, @) are equivalent
if there are Op-linear prime-to-p quasi-isogenies p : A — A and @' : A — A’ such
that

— there exists ¢ € Z,) such that ¥ o Aar 0 =cAy and ¥ o A 0p = cAj.

— the KP-orbit of maps v — @, ona(v) forv eV &g AP coincides with nar.

— the KP-orbit of maps v — ¢, ona/(v) forv €V ®@g A>P coincides with 1z .

It is well known that, for sufficiently small K7, the three moduli problems S, S
and Sy(p) are all representable by quasi-projective schemes over Op, ), still deno-
ted by S, 5, Sy(p) by abuse of notation, and give integral models of Sh(G, KPK,),
Sh(G, K?K,) and Sh(G, K*Iw,) respectively. We have natural forgetful maps 7 :
So(p) — S sending (A, A4, 14, A, X 1,14, ) to (A, Aa,m4), and 7 : Sy(p) — S sen-
ding (A, A, 14, A, AisNi, @) to (A, Ai,n4). This gives rise to the diagram

So(p) ~
S/ \S

Remark 2.2.14. For the convenience of readers, we recall why S is an integral model
of Sh(G, K?K,). We shall content ourselves with describing a canonical bijection
S(C) =~ Sh(G, KPKp)(C), which determines uniquely an isomorphism S ®o,, , F =
Sh(G, KPK,). It suffices to assign to each point

s = (A,Aa,n4) € S(C)
a point in
Sh(G, K7K,)(C) = GQ\(X x G(A™)/KPK})

Let H := Hy(A,Q), which is an F-vector space by the action of Op on A. The
polarization Ay induces a structure of skew hermitian space on H. By Hodge theory,
the composed map

H®¢R = HE(AR) — HF(A,C) — Liey
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is an isomorphism, which gives a complex structure on H @gR. The signature condi-
tion on A ensures an isomorphism of (skew) hermitian spaces H @g R =V ®qg R.
Now look at the place p. Since A is an abelian variety up to prime-to-p isogeny,
the Z,-module Ay := H$(A,Z,) is well-defined and gives a self-dual lattice in
H ®9 Q, = H'(A,Q,). Hence there exists an isomorphism of hermitian spaces
H®qQ, = V®qQ,. In addition to the prime-to-p level structure na, the Hasse prin-
ciple implies that there exists globally an isomorphism of hermitian spaces & : H =V
over F' up to similitude. Fiz such a §. First, the complex structure on H ®gR trans-
fers via & to a homomorphism of R-algebras C — Endp(V) ®q R, which leads to
an element © € X = G(R)/K because of the signature condition. Secondly, post-
composing with &, the level structure na gives a coset g? KP := ony € G(A®P)/KP.
At last, there ezists a coset g,K, € G(Q,)/ K, such that &(Am) = g,(Ao) as lattices
of V®qQ, for any representative g, of g,K,. Note that a different choice of § differs
by the left action of an element of G(Q). It follows that the class

[, 9" K7, gp 1] € G(QNX x GA™)/KP x G(Qp)/ K)

does not depend on the choice of £, and gives the point of Sh(G, KPK,,) corresponding
tos € S(C).

2.2.6 An inner form of GG

Let (W, 1y ) be a hermitian space over F' of dimension 3 such that it is isomorphic
to (V®gA™>, 1) as hermitian spaces over A*, and (W ®gR, 1w ) has signature (0, 3).
Such a (W, ) exists and is unique up to isomorphism. Let G’ be the unitary
similitude group over Q attached to (W, 4y ). Then G’ is an inner form of G such
that G'(A*) = G(A*). In the sequel, we fix such an isomorphism so that K? and
K, are also viewed respectively as subgroups of G'(A*?) and G'(Q,). As G'(R) is
compact modulo center, for an open compact subgroup K’ C G'(A*), we have a
finite set

Sh(G', K') := G'"(Q)\G'(A>)/K'.
We will give moduli interpretations for Sh(G’, K?K,), Sh(G’, K?K,) and Sh(G’, K”Tw,,).

Definition 2.2.15. The moduli problem T' is to associate with every Op ) -algebra
R the set T(R) of equivalence classes of triples (B, A\g,np), where

— (B, Ap) is a unitary Op-abelian scheme of signature type (0,3) over R such
that g is p-principal ;

— np is a KP-level structure, that is, for a chosen geometric point s on every
connected component of Spec R, ng is a m(Spec R, s)-invariant K?-orbit of
isomorphisms

np: W ®q AP — H; (B, A>?)

of hermitian spaces over F ®q AP,
Two triples (B, Ag,ng) and (B', Ag/,np') are equivalent if there is a prime-to-p Op-
linear isogeny @ : B — B’ such that
— there exists c € Z(Xp)such that " o A\gr o o = cAg; and
— the KP-orbit of maps v — ¢, ong(v) forve W ®g A*P? coincides with np.
Given g € KP\G'(A>?)/K' such that g~*KPg C K'?, we have a map T(K?)(U) to
T(K?)(U) by changing na to nao g.
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Definition 2.2.16. The moduli problem T is to associate with every Op @ Zpy)-
algebra R the set T(R) of equivalence classes of triples (B, \g,n3), where

1. (B, )\g) is a unitary Op-abelian scheme of signature type (0,3) over R such
that ker A\g[p™] is contained in Blp| of rank p?*;

2. ng 1is a KP-level structure.
The equivalence relation and the action of G(A>P) are defined similarly as in Defi-
nition 2.2.12.

Definition 2.2.17. The moduli problem Ty(p) is to associate with every Op ® Z,)-
algebra R the set Ty(p)(R)of equivalence classes of sextuples (B, Ag,np, B, \g,ng, 5)
where

1. (B, Ag,n5) € T(R);
2. (B,Ag,n3) € T(R);
3. B: B — B is an isogeny such that

pAg=p"0oApop;

4. ker B8 is a Op-subgroup scheme of B[p] of rank p*, which is isotropic for the
A - Weil pairing . .
ey Blp) x Blo] = o

The equivalence relation and the action of G(A*P) are defined similarly as in Defi-
nition 2.2.15.

For sufficiently small K?, three moduli problems defined above are representable
by quasi-projective schemes over Op,,). By abuse of notation we still denote them

by T, T, To(p).

Proposition 2.2.18. We have the uniformization maps

which is equivariant under prime-to-p Hecke correspondence. That is, given g €
KP\G(A>P)/K'" we have the commutative diagram

T(K?)(C) —*~Sh(G', KPK,)

lg )

T(K™)(C) —“~Sh(G', K" K,)

for g € KP\G(A*P)/K"™ such that g~' KPg C K'*. Here we use T(KP?) to emphasize
the dependence of T on KP. Similar diagrams hold for T and Ty(p).

Proof. Similar to Remark 2.2.14. It is worthwhile noting the signature type condition
forces the image of C — Endp(WV) ® R lies in the center F' @ R. O
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2.3 The geometry of geometric special fiber

Let k be a prefect field. Denote by Sy or S ® k the base change of S to k. If
k =T, we denote still by S the special fiber S ® F,2. Same notation holds for other
integral models.

2.3.1 The geometry of S

We recall the Ekedahl-Oort stratification on S, which has been studied exten-
sively in [Wed01, BW06, VW 11]. Given (A,ia,Aa,n4) € S(k). Define two standard
Dieudonné modules as "building blocks" of D(A[p]) :

Definition 2.3.1. [BW06, 3.2],[V W11, 2.4, 3.1]

1. Define a superspecial unitary Dieudonné module 8 over k as follows. It is a
free W (k)-module of rank 2 with a base {g,h}. Set

SO = W(k)g, 81 = W(k)h, S = 80 ) 81.

S is equipped by the natural O @ W (k) action.

Define an alternating form on 8 by (g,h) = —1. Define a (W (k),o)-linear
map F on 8 by Fg = ph and Fh = —g. Define a (W (k),o™")-linear map V
by Vh = g and Vg = —ph. This makes 8 is a unitary Dieudonné module of
signature (0,1). Write by 8 its reduction mod p.

2. For an integer r > 1 define a unitary Dieudonné module B(r) over k as
follows. It is a free W (k)-module of rank 2r with a base (eq, ..., e, f1,-- -, fr).
Set

B(r)o = W(k)er @ - - & W(k)en,
B(r)1=W(k)fr®--- ®@W(k)fr, B(r) =B(r)o® B(r):.

The alternating form is defined by
(i fi) = (=1)"0;.

Finally, define a o-linear map F and a o~ *-linear map V by

Ve; = pfiti, fori=1,...,r—1,
Ve, = fi,

Vi = e, fori=1,...,r—1,
Vf, = pei,

Fe; = (—=1)"f,,

Fe; = pfi_1, fori=2,...,r,
Ff1 = pe,,

Ffi=e;1, foro=2....r

This is a unitary Dieudonné module of signature (1,7 —1). Write by B(r) its
reduction mod p.
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Proposition 2.3.2. Let x = (A,ia, a,m4) € S(k). Then D(A[p]) = D(A)/p is
isomorphic to

@(T) @ gEBS—T

for some integer r with 1 < r < 3.

The Ekedahl-Oort stratification in our case is given by

S =515 |5,

where each S; is a reduced locally closed subscheme, and a geometric point
(Ayia, Aa,ma) € S(k) lies in S;(k) if and only if

H®(A/k) = B(i) 87"

All S; are equidimensional [Wed(1, Section 6], and we have dim Sy = 2, dim S; =0
and dim S3 = 1.

The open stratum S5 is usually called the p-ordinary locus, and denoted by S),.
Its complement Sy := S7 U S3 = S\Ss is the supersingular locus, i.e., the associated
F-isocrystal (D(A)[1/p],F) of A has Newton slope 1/2. Furthermore, the stratum S;
is exactly the locus where FD(A) = VD(A) holds. It is called the superspecial locus
and denoted by Sg,. The stratum Ss is called general supersingular locus, denoted
by Sgss. We will study the irreducible components of supersingular locus Sg.

2.3.2 Unitary Deligne-Lusztig variety

Let x be a field containing F,2 and denote by % one of its algebraic closure.
Recall o : S — S denotes the absolute p-power Frobenius morphism for schemes S
in characteristic p.

Definition 2.3.3. Consider a pair (¥,{,}) in which ¥ is a k-linear space of
dimension 3, and {, } : ¥V X ¥ — k, is a non-degenerate pairing that is k-linear
in the first variable and (k,o)-linear in the second variable. For every k-scheme S,
put Vs =V @, Og. Then there is a unique pairing {, }s: Vs X Y5 — Og extending
{, } that is Og-linear in the first variable and (Og, 0)-linear in the second variable.
For a subbundle H C Vs, we denote by HLt C ¥ its orthogonal complement under
{, }s defined by
H+ = {I € Vs | {$,H}S :O}

When the pairing is induced by a (quasi-)polarization Aa of an abelian variety A,
we write 1 5 instead of L to specify.

Definition 2.3.4. We say that a pair (¥,{, }) is admissible if there exists an -
linear subspace ¥y C V= such that the induced map %®Fp2 Kk — Y is an isomorphism,

and {z,y} = —{y,x}7 = {w,y}*" for every x,y € %.
Definition 2.3.5. Let DL(7,{, }) be the moduli problem associating with every
k-algebra R the set DL(7,{, })(R) of subbundles H of ¥r of rank 2 such that

H+ C H. We call DL(7,{, },h) the (unitary) Deligne-Lusztig variety attached to
(v, {,}) of rank 2.
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Proposition 2.3.6. Consider an admissible pair (¥,{, }). Then DL(¥,{, }) is
represented by a projective smooth scheme over k of dimension 1 with a canonical
isomorphism for its tangent sheaf

Torr 1ys = Hom(H/HE, Yorr )/ H)

where H C oLy gy s the universal subbundle. Moreover, DL(V ,{,}) ®, K is
isomorphic to the Fermat curve € C P2 :

€ {(x:y:2) € P2aPt 4yt 4 22T =0},

Proof. For the first part, see [LTX 22 Proposition A.1.3]. For the second part,
by admissibility there exists an F.-linear space %, such that %) ® & — 7% is an
isomorphism. Fix an element 0 € IF;g such that ¢ = —J. Then we can find a basis
{e1, €2, €3} of ¥, which can be regarded as a basis of ¥z such that {e;, e;} = 69;;. Take
a rank 2 R-subspace H of ¥%. If e3 € H, we can assume H = {ze; + wes, zes + yes}
where z,y,2 € K and 2z # 0. Then H+ = {—aPe; — yPey + 2Pe3}. The condition
H*+ C H is equivalent to H- N H # {0}, i.e.,

z 0 =z
0 z oy | = (@t Pt 4 ) = 0.
—aP —yP 2P

Thus 2P + yPH 4+ 2P = 0. Tt is easy to see the map {ze; + wes, zes +yes} — (-
y : z) extends to an isomorphism DL(7, {,}) ®,. k = ¥. O

Notation 2.3.7. Tuke a point t = (B, \g,ng) € T(k). Then B[p™] is a supersin-
gular p-divisible group by the signature condition and the fact that p is inert in F.
From Notation 2.2.7, we have the (k,o)-linear Frobenius map

F:H®(B/k); = H®(B/K)ip1, i€ Z)27.

which can be lifted to

We define a pairing
{, 3o : H{™(B/k); x H{™(B/r); — &
by the formula {x,y}: := (x,Fy),. This pairing can also be lifted to
{, }t : @(.B)Z X D(B)Z — W(I{)

To ease notation, we put

¥ = H®(B/kK);.

Lemma 2.3.8. The pair (%,{, }+) is admissible of rank 3. In particular, the Deligne-
Lusztig variety DL, := DL(%,{, }+) is a geometrically irreducible projective smooth
scheme in Sch,. of dimension 1 with a canonical isomorphism for its tangent sheaf

Tpren = Hom(H/H*, (%)pL,/H)

where H C (¥)p, is the universal subbundle.
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Proof. 1t follows from the construction that {, }, is x-linear in the first variable and
(k,o)-linear in the second variable. Thus by Proposition 2.3.6 it suffices to show
that (%, {, }+) is admissible.

Note that we have a canonical isomorphism (%)z = H{®(B/k);®.k ~ HE(Bz /k);,
and that the (R, o)-linear Frobenius map F : HI®(B;/k); — HI®(B:/k)iy1 and
the (k,o~1)-linear Verschiebung map V : H{®(B;/k); 11 — H{R(Bi/k); are both
bijective. Thus, we obtain a (&,o?)-linear bijective map V7'F : H{®(Bz/k); —
H{®(B;/k);. Denote by ¥, the invariant subspace of H{®(Bx/k); under V-'F. Then
the canonical map % ®r , & — H{"(B/R); = (#)x is an isomorphism. For z,y € %,
we have

{I7y}t = <$’Fy>>\3 = <V$7y>§\-3 = <F$’y>KB = _<y’F$>KB = _{y>$}g

Thus, (¥, {, }:) is admissible. The lemma follows. O

2.3.3 Basic correspondence

We define a new moduli problem which gives the normalization of the supersin-
gular locus Sg.

Definition 2.3.9. The moduli problem N associates with every F2-algebra R the
set N(R) of equivalence classes of sextuples (B, \g,np, A, Aa,na,y) where

1. (B7AB7T/B) GT(R)’
2. (A7 >\A777A) S S<R)7
3. v: A — B is an Op-linear isogeny such that

pPAa=7"0Agow;

Note that condition (3) implies that ker(7y) is a subgroup scheme of Alp| stable under
Or. Two septuplets (B, A, np, A, Aa,na,7) and (B, Ng, 0y, A, Aar,nar, ') are equi-
valent if there are Op-linear prime-to-p quasi-isogenies ¢ : B — B" and ¢ : A — A’
such that

— there exists ¢ € Z(Xp)such that 0¥ o Agr o = cAp and ¥ o Ay o) = chy.

— the KP-orbit of maps v — @, ong(v) for v e V' @y A>P coincides with np:.

— the KP-orbit of maps v — ¢, onas(v) forv eV ®@g A>®P coincides with nar.

We obtain in an obvious way a correspondence

N
SN
T Sss

Theorem 2.3.10. In diagram (2.5), take a point

(2.5)

t = (B, Ag, ) € T(k)

where k is a field containing Fp2. Put N, := 07(t), and denote by
(B, AB,nB, A, A, Ma,7y) the universal object over the fiber Ny.
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1. The fiber Ny is a smooth scheme over k, with a canonical isomorphism for
its tangent bundle

rJ'1\1,5/1Fp2 >~ (wav 1, ker an s fwav 1)

2. The assignment sending (B, Ag,np, A, Aa,na;7y) € Ny(R) for every R €
Sch’),; to the subbundle

U i= 6-8(wav/no) € HIY(B/R)o = HIX(B/r)y @, O = % ®, R
induces an isomorphism
Ct : Nt = DL<%7{7 })

where § : B — A is the unique quasi-p-isogeny such that v o § = pidg and
0oy =pidys. In particular, Ny is isomorphic to the Fermat curve €.

Proof. See [LLTX 22, Theorem 4.2.5]. O
We can define a moduli problem for Sggp.

Definition 2.3.11. Let Sy, (R) be the set of points (A, a,na) € S(R) for R €
Sch'/r ,, where
VwAV/RD = 0.

Remark 2.3.12. The definition is equivalent to Vwav, g1 = 0. Indeed, by comparing
the rank we have (kerV)y = wav/ro, which is equivalent to (kerV); = wav/r1 by
duality.

Remark 2.3.13. The conditions wav/ro = (ker V) and wav,p1 = (ker V), imply
Sssp 15 smooth of dimension 0.

Definition 2.3.14. Let M be the moduli problem associating with every IF2-algebra
R the set M(R) of equivalence classes of septuplets (B, Az, ng, A, Aa,na, ") where
1. (B, Mg, np) € T(R);
2. (A, Aa,ma) € S(R);
3. 0': B— A is a Op-linear quasi-p-isogeny such that
(a) ker&'[p™] C B[p;
(b) \g =0V ods00;
(¢) the KP-orbit of maps v — 0, 0ng(v) forv € V ®@qg AP coincides with na.

The equivalence relations are defined in a similar way.

There is a natural correspondence

M
N
T S

Lemma 2.3.15. The morphism p factors through Sss,. Moreover, M is smooth of
dimension 0.
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Proof. Take a point (B, 3,13, A, Aa,14,0") € M(R) for R € Sch’/Fp2. By Remark
2.3.12 it suffices to show Vawav, o = 0. By condition (3) and the proof of Lemma
3.4.12(1)(4) of [LTX"22], we have

ranko, ker 0, ; + ranke, kerd, ; = 1.

We claim 4} ; is an isomorphism, since otherwise rankg,, ker d, ; = 0 and

ranko, im &, , = 3, which imply ranko, wav/ro = 3 by 5i,oWB/R,o C wav/p, contra-
dicting the signature condition on A. We conclude that im ¢, ; = H{®(A/R);. Consi-
der the commutative diagram

’

HIR(B/R)y — 2~ H{R(A/R), . (2.6)

J{VB lVA
5’(?)

H{®(B® /R); — > H{R (AP /R),

Thus we have

VAWA\//R’O =V, im 5;70 = (Si(ﬁ) (Hn VB)O = 5;(,ZI)WB(P)V/R,O = (5;,1("03\//1%,1)@) =0

where we have used wgv g, = 0. We have proved p factors through S, The signa-

ture condition and Remark 2.3.13 imply B and A have trivial deformation. Thus M
is smooth of dimension 0. m

Lemma 2.3.16. The morphism p induces isomorphisms of IF,2-schemes
p:M=Sy,, o M=T

which are both equivariant under the prime-to-p Hecke correspondence. That is, given
g € KP\G(A>®?)/K'" such that g~'KPg C K'P, we have a commutative diagram

Sesp(KP) —> Sy (K7)
w(Kp)l iw(K’p)
T(K?) —L—~T(K')

Proof. We show that p is an isomorphism. Since M and S, are smooth of dimension
0, it suffices to check that for every algebraically closed field s containing [,
induces a bijection on k-points. We will construct an inverse map 6 of p. Given a
point s = (A, Aa,na) € Sssp(k). We list properties of D(A) :

1. VD(A) = FD(A). This follows from lifting the definition Vw4v /. = 0 of Syp.

2. D(A)g4 = D(A)1, D(A)T* = D(A)o. This is because \ is self-dual, or equi-
valently D(A)+4 = D(A).

3. We have a chain of W (k)-modules
2 1 1 2
pD(A)g CFD(A); C D(A)y, pD(A); CFD(A)y C D(A);.

This follows from [Vol10, Lemma 1.4] and in particulier A is of signature type
(1,2).
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Set
DB,O = VD(A)lv DB,l = D(A)lv DB = Dé,o D Dé,l-

We verify that Dy is F, V-stable. Indeed, since D(A) is V~'F-invariant, it suffices to
verify the condition for V : we have VD 5 = V2D (A); +VD(A); = VD(A), +pD(A), C
D g since V2 = FV = p.

The chain (3) implies D C D(A) as W (k)-lattices in D(A)[1/p].

By Dieudonné theory there exists an abelian 3-fold B such that D(B) = Dj,
and the injection D(B) — D(A) is induced by a prime-to-p isogeny &' : B — A.
Define the endormorphism structure i3 on B by ig(a) = 0’ oi(a) o &' for a € Op.
Then (B, i3) is an Op-abelian scheme. Let A5 be the unique polarization such that

Ag=0"oAs00.
The pairings induced by A4 and Az have the relation
<x7y>)\A = <x’y>>\B7 T,y € 9(‘/4)

Define the level structure nz by n5z = 8 1 ony. We verify

1. D(B) is of signature type (0,3). Indeed, this follows from

Lie(B) = D5 /VD 5 = D(A), /pD(A);.

2. ker \j is a finite group scheme of rank p*. Indeed, from covariant Dieudonne
~ 2 ~
theory it is equivalent to show D(B) C D(B)*5. Thus it suffices to show

D(B)o < D(B)fB From (2) it is equivalent to show FD(A); c D(A)p which
comes from (3).
3. ker &'[p>] C B[p|. It suffices to show pD(A) C D(B), which is by definition.
Finally we set 0(s') = (B,)\B,nB,A, Aa,Ma,0"). To verify 6 is equivariant un-
der prime-to-p Hecke correspondence, it suffices to consider the associativity of the
following diagram
/—1 -
V @g AP LoV @g AP A (A, A%P) 2 H (B, A®P)
for g € KPA\G(A>P?)/K™. 1t is easy to verify 6 and p are the inverse of each other.
We show that p’ is an isomorphism. Since M and T are smooth and have dimen-
sion 0, it suffices to check that for every algebraically closed field x containing Iz,
p' induces a bijection on r-points. We will construct an inverse map ¢ of p’. Given
t = (B, g, np) € T(k), we list properties of D(B) :
1. VD(B)o = FD(B)o. In fact, since D(B) is of signature (0,3), [Vol10, Lemma
1.4] gives
D(B)o =VD(B); = FD(B);.
2. D(B), < D(B)éf’ and D(B), c D(B)fB Indeed, since ker A3[p>] is a B|p]-
subgroup scheme of rank p?, by covariant Dieudonné theory we have D(B) é
D(B)*5, and the claim follows.
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3. We have the chain of W (k)-lattice

. _ .21 -
D(B), CVID(B)P & L D(B).
Indeed, ker Az C B[p] gives D(B)é‘ﬁe C (1/p)®(B)1. The claim comes from
(2b) and the fact that D(B); % = (VID(B)o)Ls = F(D(B)o)*=.
We set L 3
Dao=D(B)1”?,Da1=D(B)1,Da=Dao®Das.

That D4 is F, V-stable follows from (2c¢). By covariant Dieudonné theory there exists
an abelian 3-fold A such that D(A) = D,, and the inclusion D(B) — D(A) is
induced by a prime-to-p isogeny ¢’ : B — A. Define the endormorphism structure i4
on Abyis(a) =0 ocig(a)od ! for a € Op. Then (A,i4) is an Op-abelian scheme.
Let A4 be the unique polarization such that

Ag=0"0Xg400.
The pairings induced by A4 and Az have the relation
(T, y)ra = (2,95, T,y € D(A).
Define the level structure n4 by na = 6. o nz. We verify
1. D(A) is of signature (1,2) : calculate the Lie algebra
D(4) _ D(B);” +D(B)

VD(A)  vD(B), +VD(B), 2

The claim follows from (2c).

2. D(A) is self-dual with respect to (,)y,. Indeed, it suffices to show D(A)g* =
D(A);. Since D(A)g4 = D(A)és, it is enough to verify @(A)OLB = D(A),
which is exactly our construction.

Finally we set 6(t') = (B, A5, 15, A, Aa,m4,6"). The equivariance under prime-to-p
Hecke correspondence is clear. O

2.3.4 The geometry of Sy(p)

We define three closed subschemes Y;, i = 0,1, 2 of Sy(p) over F2 as follows : for
an I 2-algebra R, a point s = (4, Aa,na, A, \1,11,@) € So(p)(R) belongs to

— Yo(R) if and only if w4y /o = imao;

— Yi(R) if and only if wav/p1 = ker vy 1;

— Yy(R) if and only if wy. 5, = H{R(A/R)yA.

Remark 2.3.17. In [ISG18], the authors define two strata Y ,,,Y . We will see
that Yy coincides with their'Y,, andY; coincides with their Y .

We are going to show these three strata are all smooth of dimension 2.

Lemma 2.3.18. Tuke s = (A, As, 14, A, N5,n5, @) € So(p)(R) for a scheme R €
Sch//p ..
/F 2
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1. If s € Yo(R) then

(0) wisym € imas

(b) (kerVy); = ker au ;.
2. If s € Yi(R) then

(a) ker o, g C wav/Ro;

(b) Qwolwav/ro) = HIF(A/R) 4.
3. If s € Yo(R) then

(a) ker o, g C wav/ryo-

Proof. Denote by & : A — A the unique isogeny such that & o @ = pid, and
aoa =pidj.

1. (a) The condition wjv,po = imau o implies wﬁé/Ro = (imay)t4. On the
other hand, we have (im o, im o, 1)y, = (H{R(A/R), &, 1 im Qa1)r; =

0, which implies ima,; = (ima, )4 by comparing the rank. We also
have (w4v/r o Wiv/r1)x; = 0, thus (1a) follows.

N

(b) It suffices to show ker ai,.; C (ker V4);. The condition (1a) implies wzv /5 4
ima, ; = ker @, ;. We also have (kerVy4); = (imFy4);. Consider the follo-
wing commutative diagram

61*,1

H{®(A/R), H{"(A/R), . (2.7)

\LVA lVA
d(P)

HR (AP /R 0**”>HdR A®/R),
1 1

Thus we have

Vakera,; =Vaima,, = @, (imV
(

and (1b) follows.
2. (a) The condition wav/ g1 = ker o, ; implies wj‘v“/RJ = (ker a,1)*4. On the

L
other hand, we have wav/ro = wy? 5, and

(ker v, g, ker v 1)x, = (im Gy, ker ai1)a,
= (H{"(A/R)o, g kerag 1)y, = 0.
Thus (2a) follows.

(b) (2a) implies ranko,, o owav/ro = 1. On the other hand, we have

(Qeowav /R0, H?R(A/Rh)xg = (Wav/R0, 0,1 H?R(A/R)QAA

= (wav/ro, ker o 1)x, = (Wav R0, wav/r1)r, = 0.

Thus a,owav/ro C H‘fR(A/R)llA. By comparing the rank (2b) follows.
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3. (a) Since Wj’vA/R,o = wav/ga, by taking the dual it suffices to show wav g1 C
(ker a*,o)“. Since ker a, o = im &, g, it suffices to show that
(Wav/r1,im Gy g)x, = 0. By the equality (ur, y)x; = (T, Q.y)r, it suffices
to show that (o wav g1, HIR(A/R)e)s, = 0, which follows from the

iy . _ ppdR( AV 1 .
conditions wiv g, = HM(AY/R)y"* and au1wav/p1 C Wiy g ;-

]

Proposition 2.3.19. 1. Yy is smooth of dimension 2 over F,2. Moreover, let
(A, A, ) denote the universal object on Yy. Then the tangent bundle TYo/sz
of Yy fits into an exact sequence

—1
0 — Hom(wav 1, a*,lwAvJ/wAvJ) — TYO/FP2

— Hom(a, jwiv 1/ ker o, 1, H‘liR(A)l/a;}wﬁvjl) —0 (2.8)

2. Yy is smooth of dimension 2 over F,.. Moreover, let (A,fl,a) denote the
universal object on Yy. Then the tangent bundle (.Tyl/[gpz of Y1 fits into an
exact sequence

1 -
O — %Om(Wﬁv71,wA\flyo/WAv7l) — ‘TY1/1FP2

e "
— Hom(wav o/ HY" (A) 4 H (A)1/wiv ) = 0 (2.9)

3. Yy is smooth of dimension 2 over F,.. Moreover, let (A,fl,a) denote the
universal object on Yy. Then the tangent bundle ‘Iy2/1gp2 of Yy fits into an
exact sequence

0— U-Com(wﬁv’o/a*,owﬂvm H?R(A)O/ijp) — (.TYQ/]FPQ
— Hom(wav,o/ ker o, o, HIF(A)g/wavo) — 0. (2.10)

Proof. 1. We show Yj is formally smooth using deformation theory. Consider a
closed immersion R < R in Sch’/F , defined by an ideal sheaf J with J* = 0.

Take a point y = (A, Aa, 14, A, Aj,n5,@) € Yo(R). By Proposition 2.2.10

lifting y to an R-point is equivalent to lifting

— wav/Rro (T€SP. wjv/p) to a rank 2 subbundle @4v o (resp. W4y o) of
HSs (A/R)y (resp. HES (A/R),),

— wav/ra (resp. wjv g ;) to a rank 1 subbundle wav; (resp. @4y ;) of
H{™ (A/R); (vesp. H{™ (A/R),),

subject to the following requirements

(a) Wavp and @av; are orthogonal complement of each other under (, )§'s
(2.4);

(b) @ivp and @4y, are orthogonal under (, )3 (2.4);

(¢) @avy C @ @4y s;

(d) Giv o = awoHT™ (A/R)o;
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Since ( >f€jo is a perfect pairing, @av o is uniquely determined by @4v 4
by (3a). Moreover, &y, is uniquely determined by H{™ (A/R)y. Therefore,
it suffices to give the lifts @av; and @zv,; subject to condition (1c) above.
But lifting w4v 5 is the same as lifting its preimage a;}wgv/RJ to a rank 2
subbundle &y ; of H{"™ (A/R)y containing ker cv, ;. Thus the tangent space
Ty, JE oy ALY fits canonically into an exact sequence

—1
00— fHom(wAv/RJ, Oé*JCUA\//R’l/WA\//R,I) — TYQ/Isz,y

— %om(a;}wgv/ﬂl/kera*l, H‘fR(A/R)l/a;iwAv/R,l) — 0 (2.11)

Thus, Yy is formally smooth over 2 of dimension 2.
2. Now we show Y} is formally smooth. Consider a closed immersion R —
R in Sch’/F , defined by an ideal sheaf J with J?2 = 0. Take a point y =
p
(A, A4, M4, A, X 4,m4, @) € Yi(R). By proposition 2.2.10 to lift y to an R-point
is equivalent to lift
— wav/ro (Tesp. wiv rp) to a rank 2 subbundle W4v o (resp. W4y o) of
HYS (A/R) (resp. HS™ (A/R)y),
— wav/r (resp. wiv ) to a rank 1 subbundle @4v; (resp. W4v ;) of
HE™ (A/R)1 (resp. H{™ (A/R)y),
subject to the following requirements

cris

(a) @avp and Gv ;1 are orthogonal complement of each other under (, )§7%
(2.4);

(b) @iv o and &4y, are orthogonal under ( )‘j\rfo,

(¢) uoavo € D4vp;

(d) @avy = ker ;.

Since ( >§i§s’0 is a perfect pairing, wav o is uniquely determined by wav ; =

ker a,; by (3a) and (2d). On the other hand, we have a., gwav /g = H‘%R(A/R)ffi

by Lemma 2.3.18(2b). To summarize, lifting y to an R-point is equivalent to

lifting wjv gy to a subbundle &4, containing H{™ (A/R); 4, and lifting

wjv g, to a subbundle @4y ; of (Dﬁ‘f}o where the latter has Op-rank 2. Thus

the tangent space Ty, JF oy ALY fits canonically into an exact sequence

Li
0— j_COTn(C‘),LXV/R,l7 WA\//R’U/wAV/RJ) — TYl/JFpmy

— Hom(w g po/ HIM(A/R); 4 B A/ R)1 fw e o) = 0 (2.12)

Thus, Y; is formally smooth over F,2 of dimension 2.

3. We show Y5 is formally smooth using deformation theory. Consider a closed
immersion R < R in Sch)y , defined by an ideal sheaf J with J2 = 0. Take
P
a point y = (A, a,ma, A, A1, n4,0) € Ya(R). We return to the proof of
Proposition 3. By proposition 2.2.10 to lift y to an R-point is equivalent to
lifting
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— wav/ro (Tesp. wjv o) to a rank 2 subbundle W4v o (resp. wjv o) of
HE™ (A/R)y ( resp. HE™ (A/R)o),
— wav/g (resp. WAV/RJ) to a rank 1 subbundle @av; (resp. wjv ;) of
H{™s (A/R); (resp. H{™® (A/R)y),
subject to the following requirements
(a) @avo and Gav are orthogonal complement of each other under (, )§™,
(2.4);
(b) @4v, is the orthogonal complement of HSs (A) f%)o under ( )f\fso;
(C) Oé*,i(IJAv’Z’ g @Av,i for 1 = 0, 1.
(d) ker g € @av o(Lemma 2.3.18(3a)).
Since ( >f\‘jf0 is a perfect pairing, @4v; is uniquely determined by &4v o
by (3a). Moreover, &jv, is uniquely determined by Hf" (A/R)o by (1D).
Given a lift @qv o with condition (3d) and define &yv; = @jé,o' We claim
0y 1@avy C Wgv . Indeed, aince wyy ; = H{™ (A/R)y4, it suffices to check
{(Qu1@av 1, HS® ([l/ft?)()),\/i = 0. However, we have

(1@av 1, HY™S (A/R)o), = (@av 1, & oHS™ (A/R)o)x

= <@Av71,ker Oé*,0>)\A C <@AV,17@AV,O>)\A =0. (2.13)

The claim follows. To summarize, lifting y to an ]%—point is equivalent to
lifting wav/ro to a subbundle @4v o of H{™ (A/ ]:2)0 containing ker a, o and
lifting w 4v o to a subbundle &y , of H{™ (A/R) containing v, o&av . Thus
the tangent space Ty, JE 2y ALY fits canonically into an exact sequence

0— ﬁ{om(wAV/Rjo/a*prv/R’o, H?R(A/R)O/WAV/RO) — TYg/]Fpg "
— ﬂ'Com(wAV/R,O/ ker 0, H?R(A/R)O/CUAV/R@) — 0. (214)

Thus Y5 is smooth over F,2 of dimension 2.
O

Lemma 2.3.20. Sy(p) is the union of three strata defined over Iy
So(p) =YoUY UYs.
Proof. By Hilbert’s Nullstellensatz, it suffices to show that
So(p) (k) = Yo(r) U Y1 (k) U Ya(k)

for an algebraically closed field « of characteristic p. Take s = (A, A4, 14, A\ I Ni, Q) €
So(p)(k). Suppose s ¢ Yo(k) U Yi(k), that is, wiv/pe # ima.p and wav/r1 #
ker ai, 1. It follows that wav/p1 Nkera,; = {0} by the rank condition and the-
refore a1 induces an isomorphism w4y, g1 = @ 1wav,1. Thus (im v, g, WAV/R,1>AA =
(im a0, 1wav)a; = 0. On the other hand, we have (wiv/pg,Wiv/gi)r; = 0
Since w4y g # iMau , we conclude <H?R(A/R)0,wAV/R71>,\A = 0. Thus s € Ys(k)
and the lemma follows. ]

38 2.3. THE GEOMETRY OF GEOMETRIC SPECIAL FIBER



CHAPITRE 2. LEVEL LOWERING OF AUTOMORPHIC REPRESENTATIONS ON
THE PICARD MODULAR SURFACE

2.3.5 Relation between strata of Sy(p) and S

Definition 2.3.21. Let S# be the moduli scheme that associates with every scheme
R e Sch’/]FPQ, the isomorphism classes of pairs (A, Aa,na, Po) where

1. (A, Xa,ma) € S(R);

2. Py is a line subbundle of ker(V : wav/po — wAv(p)/Rvo).

Given a point (A,A4,n4) € S(R) for a scheme R € Sch’sg ,, recall (Notation

(2.2.7)) that we have the locally free O g-module H{®(A/R), the Frobenius map V4 :
HI®(A/R); — HIR(A® /R);,; and the Verschiebung map Fy : H{R(A®) /R); 1 —
H{R(A/R); for i = 0,1 satisfying kerF4 = imV, = Waw /g, kerVa = imF4. If no
confusion arises we denote them by F and V. The p-principal polarization A4 induces

a perfect pairing ( , ) on HI®(A/R). Denote by H' the orthogonal complement of
a subbundle H of H{®(A/R) under the pairing { , ).

Proposition 2.3.22. S# is smooth of dimension 2 over F,2. Moreover, let (A, Py)
denote the universal object on S*. Then the tangent bundle ‘J'S#/]FPQ of S# fits into
an ezxact sequence

0 = Hom(wavs# 1, Py /wavs# 1) — Ts#/F
— Hom(Py/(ker V);, H{R(A/S#), /P5) — 0 (2.15)
Proof. We show S #i is formally smooth using deformation theory. Consider a closed
immersion R — R in Sch’/IF , defined by an ideal sheaf J with J2 = 0. Take a

point s = (A, Ax, 14, Po) € S#(R). By proposition 2.2.10 lifting s to an R-point is
equivalent to lifting
— wav/Rro (resp. wav,/p1) to arank 2 (resp. rank 1) subbundle &4v o (resp. &av 1)
of H§'™ (A/R)o (resp. HY™ (A/R),),
— P, to a rank 1 subbundle P, of (ker V).
subject to the following requirements

1. @avoand Oav are orthogonal complement of each other under (, )§™ (2.4);
2. jDO Q (DAV,O;
Since (, )§¥, is a perfect pairing, &4v is uniquely determined by &av; by (1).

In the meanwhile, lifting Py is equivalent to lifting Py to a rank 2 subbundle P, of
H{"s (A/R); subject to the conditions

1. (ker V)& = (kerV); C Py ;
2. @jV,O - (:L\}AV71 g j)l.

Therefore, it suffices to give the lifts ©4v ; and P, subject to the conditions (1). Thus
the tangent space Ts#r , s at s fits canonically into an exact sequence
p b

0— }COm(WA\//s#’l, :P(J)_/WA\//S#J) — TS#/FPQ,S
— Hom(Py /(ker V), HE(A/S#), /Py) — 0 (2.16)

Thus, S# is formally smooth over F,: of dimension 2.
O
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Remark 2.3.23. By [5G18, 2.3], S# is the moduli space represented by the blow up
of S at the superspecial points. Indeed, for R € Sch’/]pp2 and (A, Aa,ma, Po) € S#*(R),
if A is not superspecial then Py = ker(V |wAv/R,o) is unique. At superspecial points,
since V ""’AV/R,O vanishes, the additional datum Py amounts to a choice of a subline
bundle wav /R -

Proposition 2.3.24. 1. There is an isomorphism of F2-schemes
Y, S 5%

defined as follows : given a point y = (A, A4, na, A, X1,n1,a) € Yo(R) for a
scheme R € Sch'yp ,, define

ﬂ—#(y) = (A> )\A777A7 (a*_&wﬁv/R,l)L) S S#(R)
2. There is a purely inseparable morphism of F,2-schemes
7'('# : Y1 — S#

defined as follows : given a point y = (A, a,ma, A, X5,n5, @) € Yi(R) for a
scheme R € SCh//Jsz, define

7 (y) = (A, An,na, (aj(ker Vo)i)*) € S*(R).

Proof. 1. We check W# is well-defined. Given a point y = (A, A, 14, A, AisNi, @) €
Yo(R) for a scheme R € Sch'/x ,, we need to show (a;iwgv/R,l)L C (kerVy)oN
wav/ro- Firstly we show (Oé;}WAv/RJ)L C wav/gp- By duality it suffices to
show wav/p1 C a5 W4y k1> which follows from functoriality. Secondly we
show (Oé;%WAv/RJ)L C (kerVy4)o. By duality it suffices to show (kerVy,); C
Oz*_ijV/R’l. The condition ima, g = wjv, g, implies im ozf,fg = WA®YY /R0
The commutative diagram (2.7) then implies o, j(kerVy); = ay 1 (imF4); =
F;im aff% = Fiwiwmyv/ry = 0. Thus mi is well-defined.

Since S# is smooth over F2, to show that 7 is an isomorphism, it suffices
to check that for every algebraically closed field x containing IF,2, we have
(a) 7 induces a bijection on s-points

(b) 7 induces an isomorphism on the tangent spaces at every k-point.

For (1a), it suffices to construct a map 6 : S#(k) — Yy(k) inverse to m .
Take a point s = (A, Xa,74,P0) € S#(x). We will construct a point y =
(A, A4, ma, Ay A 1, M4, ) € Yo(k). Recall that there is a perfect pairing ( , ) on
D(A) lifting that on H{®(A/k). Given a W (k)-submodule M of D(A) denote
by MV the dual lattice

MY :={z € D(A) | (xz, M) € W(k)}.

We list miscellaneous properties of D(A) and Py :
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(a) We have two chains of W (k)-modules
2 1 1 2
pD(A)g CFD(A); C D(A)g, pD(A); CFD(A)y C D(A);.
Here, for an inclusion of W (k)-modules N EM , the number i above C
means dim,(M/N) = i.
(b) D(A) is self dual : D(A)y = D(A)1, D(A)T = D(A)y.
(c) The preimage of (kerVa)o Nwav,so under the reduction map D(A)y —
D(A)o/pD(A)o = H{*(A/R)o is FD(A)1 NVD(A);.
(d) Py is a k-vector subspace of ker VN wav,po of dimension 1.

(e) Denote by P, the preimage of Py under the reduction map D(A)y —
H{®(A/k)o. Then we have chains of W (k)-modules

PVD(A)1 & pD(A)y & Py © FD(A)1 NVD(A)1, Py & VD(A)o.

PFD(A); € pD(A)y € Py C FD(A); NVD(A), Py & FD(A).
We set
Do =F(Po)’, Di;1 =V"'D(A), Dj=Dso+ Dy,
We verify that D ; is F, V-stable and satisfies the following chain conditions :
(a) VD4, & D ;- It suffices to check (Po)V & p'VID(A),. By taking duals,
this is equivalent to pFD(A); & Py, which follows from (1e).
(b) FD 4, - D 4. It suffices to check (Pp)" ¢ p'F'D(A),. By taking duals,
this is equivalent to pvVD(A), & Py, which follows from (1e).
(c) VD4, c D ;- It suffices to check F7'D(A)g c (Po)Y. By taking duals,
this is equivalent to Py c VD(A);, which follows from (le).
(d) D4, < D - It suffices to check V7'D(A)q c (Po)Y. By taking duals,
this is equivalent to Py c FD(A)g, which follows from (1e).
1
(e) D(A)g < Dio D(A)1 € Dj,. Same as (1c) and (1a).
Thus we have an inclusion D(A) C Dj. By covariant Dieudonné theory
there exists an abelian 3-fold A such that D(A) = Dy, and the inclusion
D(A) € Dy is induced by a prime-to-p isogeny a : A — A. Define the
endormorphism structure 75 on A by iz(a) = aois(a) o a™" for a € Op.
Then (A,iz) is an Op-abelian scheme. Let A; be the unique polarization

such that
pla=a’oljoa.

The pairings induced by A ; and Ap have the relations
<$a y>)\A = p_1<$7 y>)\/p T,y € D(A>
For a W (k)-submodule M of D(A), we have
MY4 =pMVYA.
Define the level structure 7z on Aby 7 i = o ona. We verify
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(a) D(A) is of signature (1,2). This is by definition.

1 .
(b) ker v is a Raynaud subgroup of A[p]. It suffices to show D(A)y C D(A)
1 .
and D(A); € D(A);, which follows from (1e).

(c) D(A), < D(A);A. Tt suffices to show V1D(A), < p~'FPy, or equivalently
pD(A)g C Po, which follows from (le).

(d) D(A), < @(A)ff‘. This is the dual version of (1c).

(e) ker A4[p™] is a A[p]-subgroup scheme of rank p?. Indeed, from covariant
Dieudonné theory it is equivalent to show D(A) & D(A)*4. Thus it suf-
fices to show D(A), & D(A); 4 and D(A), < D(A)y4 which follows from
(1c) and (1d).

(f) wiv/po = iMau0, Wiv gy C ima. . It suffices to check VD(A)y € D(A),

VD(A); € D(A)g, which follows from (1e).
Finally we set 0(s) = (A, Aa, 4, A, X5, m5, ). By (1) we see 0(s) € Yy(x). Tt
is easy to verify 6 is the inverse of 7.
For (1b), the morphism 7ff induces the identification O W v el = Ps. Com-
bined with Lemma 2.3.18 (1b), we see two exact sequences of tangent bundle
(2.8) and (2.15) coincide. The proposition follows.

2. We check ﬂ# is well-defined. Given a point y = (A, Aa,na, A, Ai,Mi, @) €
Y1(R) for ascheme R € Sch’/p ,. We need to show (az1(kerVz)1)* C (kerVa)on
WAV/R,O~
Firstly we show (o, 1(kerV;)1)* € wav/ro. By duality it suffices to show
wav/p1 C a;&(ker V)1, which follows from the condition wav g1 = ker a, ;.
Secondly we show (a1 (ker V4);)* C (kerVa)o. By duality it suffices to show
(kerV4)1 C a; j(kerV4);, which is again from the commutative diagram (2.7).
Thus 77 is well-defined.

To show that w# is a purely inseparable morphism, it suffices to check that
for every algebraically closed field x containing [F)2, 7 induces a bijection on k-
points. We construct an inverse map 6 of 7# . Take a point s = (A, Aa,na, Po) €
S#(k).
We set

Dio=V(Po)", Diy =F 'D(A)o, Dg= Do+ DA

In an entirely similar manner we can construct a point
0(s) = (A, a,ma, A, A 4,4, ) € Yi(k). It is easy to verify that 6 is the
inverse of 7T1# .

m
We now introduce a new moduli problem to show Y is a P'-bundle over N.

Definition 2.3.25. Let P be the moduli problem associating with every Fp2-algebra
R the set P(R) of equivalence classes of undecuples (A, Aa,na, A, Ai,m4, B, A, 1B, @, 0)
where

1. (A7 >\A7 na, 1217 )‘Aa ni Oé) € SO(p)<R)7
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2. (A, Aa,na, B, A, nB,0 o) € N(R);
3. 6: A — B is a Op-linear quasi-p-isogeny such that
(a) ker d[p>] C Alp];
(b) \j=0Y0Agod;
(¢) the KP-orbit of maps v — 0,0nz(v) forv € V &g AP coincides with np.
Two undecuples (B, Ag,ng, A, Aa,na, A, X 5,05, ,0) and
(B, Ng,nlg, Ay A ar,mar, A, Nin i, o, 0") are equivalent if there are Op-linear prime-
to-p quasi-isogenies o : B — B', 1 A — A" and ¢ : A — A’ such that
— there exists ¢ € Z(Xp)such that ©¥ o Agr o = cAg, Y o Ay o) = chy and
¢V orz0d=cAg
— the KP-orbit of maps v — . ong(v) forve W &g A*P? coincides with np;
— the KP-orbit of maps v — 1, ona(v) for v eV &g A*P coincides with nar;
— the KP-orbit of maps v — ¢, on;i(v) forv eV ®@g A®P coincides with nj,.

Lemma 2.3.26. Tuke a point s = (B, g, n, A, Aa, 4, A, N5, n5,2,0) € P(R) for
a scheme R € Sch'jg ,. Then

1. 6,0 : H®(A/R)y — HIR(B/R), is an isomorphism and ranke, ker 6,1 = 1.
2. Wiv/r1 = H?R(A/R)OLA-
Proof. 1. Denote by ~ the quasi-p-isogeny v := d o a : A — B. The relation
pAa=a’oXjoaand A\j =d" o Agod implies
pAa=7"0Apon.
By ['TX722) Lemma 3.4.12(2),(3a),(3b),(4)], we have
rankg,, (ker a, o) — rankg,, (ker o, 1) =0,

rankg,, (ker a,. o) + rankg,, (ker a, 1) = 2,
rankg,, (ker v.9) — ranke,, (ker v.1) = —1,
rankg,, (ker v, ) + ranke, (ker v, 1) = 3,
rankg, (ker d, o) + ranke, (kerd, ;) = 1.

The solution is

ranko, ker o, o = 1, rankg, kerv, o = 1,

ranky, ker a, 1 = 1, ranky, ker~,; = 2.
Or ) ) Or )

We claim rankg, ker d, o = 0 since otherwise 9, ; is an isomorphism and the-
refore ranky,, ker o, ; = ranke,, ker, ; which is absurd. Then by comparing
the ranks we conclude 4, is an isomorphism. (1) follows.

2. By comparing the rank it suffices to show (w4v/p 1, H?R(A/R)O),\A = 0. We
claim w4y p; = kerd.1. Indeed, by (1) it suffices to show wjv,p; C kerd, ;.
The signature condition of B implies wpv,p; = 0. Thus w zv /r1 & ker ¢, ; and
the claim follows. On the other hand, from A ; = 0¥ oApod we have (z,y),, =
(6.2, 6.y)x, for x,y € HIR(A/R). Therefore (kerd, ;, H‘liR(fl/R)o),\/i =0. We
can then conclude (wjiv /g1, H(llR(fl/R)O),\A =0 and (2) follows.

O
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Proposition 2.3.27. P is smooth of dimension 2 over F,. Moreover, let
(A, A, B, «,d) denote the universal object over P. Then the tangent bundle (Igp/FPQ
of P fits into an exact sequence

0 — Hom(wiv/po/awowav/po, HI A/ Plo/wiv po) = Teye ,
— Hom(wav/po/ ker a. o, HIR(A/P)o/wav /o) — 0. (2.17)

Proof. The proof resembles that of Proposition 2.3.19(3). We show P is formally
smooth using deformation theory. Consider a closed immersion R < R in Sch’/]F )
P

defined by an ideal sheaf J with J2 = 0. Take a point } .
s = (A, Aa,ma, A, X4,n1, B, A\g, B, @, 8) € P(R). Denote by 0 : B — A the unique
quasi-p-isogeny such that dod =1idjz and 6 o d = idp. By proposition 2.2.10 lifting
s to an R-point is equivalent to lifting
— wav/ro (resp. wiv, g ) to arank 2 subbundle Gav o (resp. wzv o) of HY™ (A/R)o
( resp. HS™S (A/R),), . R
— wav/ra (resp. wiv ) toarank 1 subbundle @4v 1 (resp. wjv ;) of HY™ (A/R),
(resp. HS™ (A4/R)y),
— wpv/Ryo (resp. wpv/pr;1) to arank 3 (resp. rank 0) subbundle &pv o (resp. wpv 1)
of H{"™S (B/R)o ( resp. HS™ (B/R)1),
subject to the requirements in the proof of Proposition 2.3.19(3) and
1. 5*71@A\/71 g @B\/’l.
We verify (1) holds.AIndeed, since \p is p-principal, it suffices to show that
(0410 4v 1, H™ (B/R)o)a, = 0. However, the same argument as Lemma 2.3.26(1)
shows 8, o : HS™ (A/R)y — H$™ (B/R), is an isomorphism. Thus we have
(0210 4v 1, H™ (B/R)o)ay = (©jv1, H™ (A/R)o)x, = 0 by Proposition 2.3.19(3b)
and therefore (1) holds. We conclude the requirements are the same as those in
Proposition 3. Thus the tangent space ‘J'p/FPM at s fits into an exact sequence

0— j‘COm(WAv/R’O/Oé*prv/R,O, H?R(A/R)o/WAV/R’O) — ‘Ip/[[rp2 S
— Hom(wav,ro/ ket a0, HIV(A/R)o/wav/ro) — 0. (2.18)

We have shown P is smooth over I, of dimension 2. O
Lemma 2.3.28. The natural forgetful map v induces an isomorphism of F2-schemes
v:P=Y,.

Proof. Since Y, is smooth over F,2 by Proposition 2.3.19(3), to show that 7 is an
isomorphism, it suffices to check that for every algebraically closed field x containing
F,2, we have

1. 7 induces a bijection on x-points; and
2. 7 induces an isomorphism on the tangent spaces at every k-point.

For (1), we construct an inverse map 6(x) of 7. Take a point
y= (A, a,ma, A, A1,m4, @) € Ya(k). We have the following facts :
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1. We have two chains
1 - 1 _
'D(A)O C 'D(A)O, @(A)l C @(A)l

since ker av is a Raynaud subgroup of A[p].

2. D(A)é“ — p~'VD(A),. Indeed, this is by taking the preimage of the condition
Wiv Ry = HI®(A/k)y4 under the reduction map D(A)g — D(A)o/pD(A)y =
H?R(A//i)o.

3. VD(A)y = FD(A),. Rewrite (2) as D(A);4 = VD(A), by identifying D(A) as
a lattice in D(A)[1/p] and taking account of the relation @(fl)jf‘ = pD(/Nl)éA .
By taking the A 4-dual we get D(A)y = (VD(A)g)"4 = F1D(A)g* = F'VD(A),.
Thus (3) follows.

4. There is a chain of W (k)-lattice in D(A)q[1/p] :

1 1 . . 1
pD(A); S UD(A)y C VD(A) = D(AR & D(A),.
Indeed, the first inclusion follows from (3) and the second follows from (1).

Now we define
Dpo = D(A)()’ Dp1 = ]flV@B,O, Dp=Dpo+Dp;.

We can easily verify Dy is F,V-stable from the fact that Dpq is V- 'F-invariant.

Moreover, we have an injection D(A) — Dp. By covariant Dieudonné theory there

exists an abelian 3-fold B such that D(B) = Dp, and the inclusion D(A) — D(B)
is induced by an isogeny ¢ : A — B. Let Ag be the unique polarization such that

Aj=0"0Agod.
We have the relation

<$ay>>\f1 = (z,Y)rp, T, Y € ‘D(A)

Define the level structure ng by ng = d. o 5. We verify
1. D(B) is of signature type (0,3) : this follows from the definition.

2. D(B) is self-dual with respect to ( , )»,. Indeed, as above it suffices to show
D(B); = D(B)y?, which is equivalent to VDp, = @é’%, which follows from
(4).
Finally we set 8(y) = (B, Ag,n5, A, Aa, 14, A, A1, m5, @, 0).
For (2), take s € P(k) and thus y = 7(s) € Y3(k). Under the morphism 7 the
exact sequences (2.17) and (2.10) coincide. Thus (2) follows and # is an isomorphism.
[

Proposition 2.3.29. 1. Define V" by
VY (R) := H™(B/R)o/Ys0wav /R0

where (A, Aa,na, B, A\g,np,7) € N(R) for every F,2-algebra R. Then ¥ is a
locally free sheaf of rank 2 over N.
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2. The assignment sending a point (A, Xa,na, A, X\1,m1, B, \p, 15, ,8) € P(R)
for every F2-algebra R to the subbundle

I:= 0. 0Wiv R0/ 0x 00 0wav /R0 € ¥V (R)
induces an isomorphism of F,2-schemes
p: P ~P(Y).

The relations of morphisms are summarized in the following diagram

P(¥) <— Yo So(p) - (2.19)
L
N —— 8,C S
Proof. 1. It suffices to show 0, g owav/ro is locally free Og-module of rank

1. Since 0, is an isomorphism by Lemma 2.3.26(1), it suffices to show
Qs 0wAav /R0 s locally free of rank 1, which follows from Lemma 2.3.18(3a).

2. To show [ is locally free of rank 1, the argument is the same as (1). Now we
show p is an isomorphism. Since Y5 is smooth, it suffices to check that for
every algebraically closed field x containing F,2, we have

(a) w induces a bijection on k-points;
(b) p induces an isomorphism on the tangent spaces at every k-point.

To show (2a), it suffices to construct an inverse map 6. Take
P = (A, a,n4, B, A\g,nB,7,I) € P(¥)(k) where [ is a locally free rank 1
O,-submodule of ¥ (k). We list miscellanecous properties of D(A) and D(B) :

(a) VD(B) =FD(B). In fact, since D(B) is of signature (0,3), [Voll0, Lemma
1.4] gives

which implies D(B)y and D(B); are both V- !F-invariant.

(b) D(B)y? = D(B), and D(B);® = D(B)y. This follows from the self-dual
condition of Apg.

(¢) We have chains of W (k)-module
1 2 1 2
PD(B)y & DAYy & D(B)o, pD(B): & D(A), & D(B)s
(d) Denote by I the preimage of I under the composition of the reduction

map D(B)y — D(B)o/pD(B)y = H®(B/R)y and the quotient map
H{®(B/k)o — ¥ (k). Then we have a chain of W (k)-module

pD(B)o & 1 D(B),.
Now define
Dig=D(B),Diy =V ', Ds=Dig+Ds,

We verify that D ; is F, V-stable and has the following chain conditions :
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(a) VDo = FDj,. This follows from (2a).

(b) VD4, ¢ D4, The rank condition of I gives pD(B)g & I, thus we have
FD(B)y & V1.

(c) VD4, c D 5,0- This is by definition.

(d) FD4, < D ;- This is equivalent to D 4, C F'D ;4. The claim follows
from the fact that F~'D 5, =V'D 4.

We also have an inclusion § : D; C D(B) by definition. By covariant Dieu-

donné theory there exists an abelian 3-fold A such that D(A) = D4, and the
inclusion D(A) — D(B) is induced by a prime-to-p isogeny § : A — B. Define
the endormorphism structure i; on A by i;(a) = 6~ oig(a) o § for a € Op.
Then (A, i ;) is an Op-abelian scheme. Let ) ; be the unique polarization such
that

Aj=0"0Agod.

The pairings induced by A ; and Ap have the relation
<xuy>>\A = <x7y>)\37 T,y € D<A)

Define the level structure n; on A by 1; = 6! o ng. We verify
(a) D(A) is of signature (1,2). This follows from (2b) and (2c).

(b) D(A), < D(fl)é;‘. Consider D(fl)é“ = D(B)y® = p~'VD(B),. The claim
follows from the definition and (2d).

(c) D(A), < D(A); 4. This is the dual version of (2b).

(d) ker A 5[p™] is a A[p]-subgroup scheme of rank p?. Indeed, from covariant
Dieudonné theory it is equivalent to show D(A) & D(A)*4. Thus it suf-

fices to show D(A), c D(A);4 and D(A), < D(A);4 which follows from
(2b) and (2c¢).

Now we prove (2b). Indeed, a deformation argument shows that the tangent
space (.Tp(y/) /F 2.0 at p’ fits into an exact sequence

0— Jfom(f, ﬂf/(R)/[) — ‘J‘P(y/)/]szyp
— Hom(wav,ro/ ket Ve, HiV(A/R)o/wav /o) — 0 (2.20)

which coincides with (2.17) under p. Thus (2b) follows.
[

2.3.6 Intersection of irreducible components of S;(p)

Define Y; ; :=Y; X g, Y; and Y j 1 :=Y; Xsyp) ¥j X50(p) Y- The intersection of
irreducible components are parametrized by some discrete Shimura varieties :

Proposition 2.3.30. 1. Denote by my1 the restriction of the morphism m on
Yo1. Then my, factors through Ssp. Moreover, denote by (A, Aa,na) the uni-
versal object on Sssp. Let P :=P(wav o) be the projective bundle associated with
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wav o. Then the assignment sending a point (A, A, na, AN m5, ) € Yo1(R)
for every F2-algebra R to the subbundle

I:= (CY;%WA\//RJ)L g C"-)AV/R,O
induces an isomorphism of F,2-schemes
o1 : Yo =P
The morphism ¢g 1 is equivariant under the prime-to-p Hecke correspondence.
That is, given g € KP\G(A>P)/K'" such that g-'K?g C K, we have a

commutative diagram

©0,1(Kp)

Yo (Kp) Yo (K™).
gi ig
]P)(Kp) wo0,1(K'P) P(K!p)

To summarize, we have the commutative diagram

14

P\Yof Sol) (221)
Sy S

. The restriction of the morphism % := mo ™' on Yy, in the diagram (2.21)

is an isomorphism of F2-schemes which is equivariant under the prime-to-p
Hecke correspondence.

7?0,2 =T |Y072: Yb’g = N.

1

YooY, L P-—">N .

)

. The morphism 7 induces a finite flat purely inseparable map

7?12 : Yi72 — N.
which is equivariant under the prime-to-p Hecke correspondence.

1. We show g factors through Sy,. Take y = (A4, A4, 14, A, AisNi, @) €
Y5.1(R) for a scheme R € Sch’/]FPQ, we need to show Vwuv, g1 = 0. By definition
we have wav /g1 = ker o, 1; By Lemma 2.3.18(1b) we have Vker o, ; = 0. Thus
(A7 >\A> 77A) € SsSp(R)'

It is easy to see ¢y is well-defined. Now we show it is an isomorphism. A
deformation argument shows Y{; is smooth with tangent bundle

Ty, = f}fom(a;&wﬁv’l/ker Qe 1, H‘fR(A)l/a;iwAvJ). (2.22)

Thus it suffices to check that for every algebraically closed field x containing
F

P2
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(a) o1 induces a bijection on k-points;
(b) o1 induces an isomorphism on the tangent spaces at every x-point.

To show (1b), it suffices to construct an inverse map 6. Take
p = (A, Aa,ma,I) € P(k) where I is a locally free rank 1 sub x-module of
wav/ro- We list miscellaneous properties of D(A) :

(a) F@(A)O = V'D(A)g This is by V(,L)AV/RJ = 0.

(b) Denote by I the preimage of I* under the reduction map D(A); —
D(A)1/pD(A); = H®(A/R);. Then the condition wyv 1 C I+ lifts as a
chain of W (k)-module

VD(A)y € I- & D(A); C FLD(A),.
Now define
Dip= vl Diy=V"D(A),Ds=Dio+ D,

We verify that D ; is F, V-stable and has the following chain conditions :

(a) VD4, ¢ Dj, and FD4 & D4, By (la) it suffices to show that té
F~1D(A)g, which is by (1b).

(b) VD, - Djpand FD g, < D 5. By (1a) it suffices to show VD(A)o - It
which is by (1b).

We also have an inclusion a, : D(A) C D4 by definition. By covariant Dieu-

donné theory there exists an abelian 3-fold A such that D(A) = Dy, and o

is induced by a prime-to-p isogeny a : A — A. Define the endormorphism

structure iz on A by ia(a) = a ' oiz(a)oa for a € Or. Then (A,iz) is an

Op-abelian scheme. Let A ; be the unique polarization such that

p/\A ZOsz)\Aoa,
The pairings induced by A4 and A j; are related by
<.T, y>)\A = p71<a*x7 a*y>/\1§7 T,y € D(A)

Define the level structure n; on Abyn i = . 0. We verify

(a) D(A) is of signature (1,2). This follows from (1)

(b) D(A), & D(A)g4. Consider D(A)y4 = (V-1IL)V4 = p-IF(I1)V4. The
claim follows from the definition and (1b).

(¢) D(A)g < D(A);4. This is the dual version of (2b).

(d) ker A;[p>] is a A[p]-subgroup scheme of rank p?. Indeed, from covariant
Dieudonné theory it is equivalent to show D(A) ¢ D(A)* 4. Thus it suf-
fices to show D(A), < D(}i)f*i and D(A), < D(A)OLA which follows from
(2b) and (2¢).

(€) Wiv/xo =1maso and wav/.1 = ker 1. These are from the definition of

D(A); and (1a).
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Finally we set 6(p) = (A, Aa, 74, A, A\ 1,14, @). The equivariance under prime-
to-p Hecke correspondence is clear.

To show (1b), denote by J C wyv o the universal subbundle (of rank 1). Then
we have an isomorphism

T]P/SSSP ~ %Omop(jl/w‘,qv,l,H?R(A)l/jl). (223)
Under the morphism ¢ ; we have
It = a;%wA/,{yl, ker a1 = wWa -

Thus the expression of tangent space (2.22) and (2.23) coincide. Thus ¢q; is
an isomorphism.

. Since N is smooth over F,2 by Proposition 2.3.19(3), to show that ¢ is an

isomorphism, it suffices to check that for every algebraically closed field
containing IF,2, we have

(a) o2 induces a bijection on k-points; and
(b) ¢o,2 induces an isomorphism on the tangent spaces at every x-point.
For (2a), we construct an inverse map 6 of ¢g 2. Take a point

n= (A7 )\A7 na, Ba )\37773;7) € N(/{/)
We define
Djio=D(B)o, Diy =V 'D(A)o, Di=Dio® Dy,

We can easily verify Dp is F, V-stable from the fact that Dp ¢ is V" 'F-invariant.

We also have an inclusion a, : D(A) C D4 by definition. By covariant Dieu-
donné theory there exists an abelian 3-fold A such that D(A) = D ;, and a,
is induced by a prime-to-p isogeny a : A — A. Define the endormorphism
structure 7 4, polarization Aj; and prime-to-p level structure 7z in a similar
way. We verify

(a) D(A) is of signature (1,2). This is by definition.

(b) D(A), c D(A)y 4. Consider D(A)y4 = pIta = 4. The claim follows
from the definition and (1b).

(c) D(A), < D(A)} 4. This is the dual version of (2b).

(d) ker A;[p>] is a A[p]-subgroup scheme of rank p?. Indeed, from covariant
Dieudonné theory it is equivalent to show D(A) & D(A)*4. Thus it suf-
fices to show D(A)g < D(A); 4 and D(A), < D(A)y4 which follows from
(2b) and (2¢).

(e) WAY /0 = im a, o and wav/.1 = ker a, ;. These are from the definition of
D(A); and (1a).

Finally we set 8(n) = (A, Aa, 14, A, A 1,14, @). The equivariance under prime-

to-p Hecke correspondence is clear.

For (2b), take p € P(k) and thus y = (p) € Ya(k). By the proof of Proposi-

tion 3 and Proposition 2.3.27, the canonical morphism of tangent space

TYz,y - ﬂ*‘IP,p
is an isomorphism.
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3. To show that ;2 is a purely inseparable morphism, we need check that
for every algebraically closed field x containing F,2, ¢12 induces a bijec-
tion on x-points. We construct an inverse map 6 of ¢g 2. Take a point n =
(A, Aa,ma, B, Ag,mB,7) € N(k). We define

Djio=D(Bo, Diy=p 'VD(A)y, Dg=Djs+ Da,-

We can easily verify Dp is F, V-stable from the fact that Dp g is V- !F-invariant.
In a entirely similar way we can construct a point

0(n) = (A, A, 4, A, N 1,15, @).
]

Definition 2.3.31. Let M be the moduli problem associating with every F,2-algebra
R the set M(R) of equivalence classes of tuples

(é> )‘Ba UJz Aa )‘Aa TA, 1217 )‘Av Ure Ba )‘Ba B, 5/a «, 5)

1. (B, Ag,ng, A, Aa,na, &) € M(R);

2. (A, a,m4, A, N 5,m4, @) € Yoa(R);

3. (A, Aa,na, A, Az, nx B, Mg, ns, a, 8) € P(R);
4. (B, Ag,ns, B, A3, np,0' 0 a0d) € Ty(p)(R).

The equivalence relations are defined in a similar way.

There is a natural correspondence

M
2N
To(p) Yo

Lemma 2.3.32. The morphism p factors through Yy 1,2. Moreover, M is smooth of
dimension 0.

Proof. Take a point (B, AisNgs A, A, 4, A, N5, n5, B, Ag,nB, 0", a,8) € M(R) for
an Fj2-algebra R. By Lemma 2.3.18(1b) we have (kerV); = kera,;. By Remark
2.3. 13 we have (kerV), = wav/r1. Thus wav/r1 = kera,; and p factors through
Y012 It is easy to see B, A, A, B have trivial deformatlon Thus M is smooth of
dimension 0. ]

Lemma 2.3.33. 1. The morphism p induces an isomorphism of IF,2-schemes
g M= Yo1,2

which is equivariant under the prime-to-p Hecke correspondence.

2. The morphism p' is an isomorphism of F,2-schemes
7= Ti(p)

which is equivariant under the prime-to-p Hecke correspondence.
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1. Since M and ¥0,1,2 are smooth of dimension 0, to show that p is an
isomorphism, it suffices to check that for every algebraically closed field s
containing [z, p induces a bijection on r-points. Take a point
y= (A a,ma, A, 1,m5, @) € Yp12(k). We set

é<y> - (B7 /\Ba ng, A7 AA) na, A? /\Aa Ni, Ba )\B7 nB, 5,; «, 5)7

where B with ¢’ are constructed in Lemma 2.3.16 and B with ¢ are construc-
ted in Lemma 2.3.28. It is easy to verify 0(y) € M(R) and 0 is the inverse of
p. The equivariance under prime-to-p Hecke correspondence is clear.

. Since M and Ty(p) are smooth of dimension 0, to show that 7' is an isomor-

phism, it suffices to check that for every algebraically closed field k containing

[Fp2, p' induces a bijection on s-points. Take a point .

t = (B, g,np5, B, A\g.np, 5) € T(k). We list properties of D(B) and D(B) :

(a) D(B) and D(B) is V" 'F-invariant. In fact, since D(B) is of signature (0,3),
[Vol10, Lemma 1.4] gives

D(B)g =VD(B); = FD(B);,

which implies D(B), and D(B); are both V" 'F-invariant. The argument,

is identical for D(B).

(b) D(B)y? = D(B); and D(B);® = D(B),. This follows from the self-dual
condition of A\g.

(c) We have a chain of W (k)-lattice

- . 1 .
D(B), C V'D(B)? & [ D(B)

Indeed, ker \5 C B[p] gives D( )OLB C (1/p)D(B);. The claim comes
from (2b) and the fact that D(B);? = (V1D (B))te = F(D(B)o)*=.
(d) We have a relation

pD(B)y € D(B)o & D(B)o, pD(B) € D(B) & D(B).

Indeed, we have pD(B) C D(B) since ker § € B[p] and there is an exact
sequence )
0— D(B) — D(B) —» D(ker ) - 0

by covariant Dieudonné theory.
We set

DA,O = V®(B)1a QA,l = Vil@(é)f% DA = DA,O + DAJ'

We verify that Dj is F,V-stable. Indeed, since D(B) and D(B) are V'F-
invariant, it suffices to verify the condition for V : we have VD ; = V*D(B); +
D(B); 2. Then it suffices to show pD(B)y C pD(B)i*# and pD(B);? C
D(B), since V> = FV = p. Then it suffices to show D(B); C D(B)y? and
pD(B)y? C D(B);, which are from (2d). By covariant Dieudonné theory
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there exists an abelian 3-fold A such that D(A) = Dy, and the inclusion
D(A) — D(B) is induced by a prime-to-p isogeny § : A — B. Define the
endormorphism structure i ; on A by i ;(a) = 6~ ' oig(a)od for a € Op. Then
(A,i4) is an Op-abelian scheme. Let A ; be the unique polarization such that

Aj=06"0oAgod.
The pairings induced by A ; and Ap have the relation
<xay>)\g = <x7y>)\37 T,y € ®<A)

Define the level structure 7z on Aby n i = 0, ' ong. We verify
(a) D(A) is of signature (1,2) : calculate the Lie algebra

D(A)  VD(B), +V 'D(B);”
VD(A)  D(B)E +pD(B),

The argument is the same as that in verifying D ; is F, V-stable.

(b) ker A;[p>] is a A[p]-subgroup scheme of rank p?. Indeed, from covariant
Dieudonné theory it is equivalent to show D(A) ¢ D(A)* 4. Thus it suf-
fices to show D(A), < D(A)f’i, which is equivalent to pD(B)y® < D(B)1,
which is equivalent to pD(B)y c D(B)y, which comes from (2d).

We have constructed A and 6, while A and ¢ are constructed in Lemma

2.3.16. The inclusion D(A) C D(A) is then induced by a prime-to-p isogeny
a:A— A

Finally we set 6'(t) = (B, Az, 15, A, Aasna, A, A5, n1, B, Mg, 0, 0, 0). Tt is
easy to verify @ is the inverse of §/. The equivariance under prime-to-p Hecke
correspondence is clear.

O

2.4 Level lowering

2.4.1 Langlands group of G

Denote by Z the center of G and GGy the unitary group associated with GG. By
[Kni01, p. 378] we have Z(A) = Ay and

G(A) = Z(A)Go(A).

Let P be the parabolic of G and M C P be the Levi factor of G such that P(Q)
consists of matrices under the standard basis of (A, ) of the form

P(Q){( ) a,b,cEFX,accbbc}

and M C P be the subgroup of diagonal matrices. The Langlands dual group of G
and Gg are

S O
S > ¥
[SIEE

Go = GL3(C), G = GLs(C) x C¥,
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LGy =Gy x Gal(F/Q), G =G x Gal(F/Q).
Let ¢ be the nontrivial element in Gal(F/Q). The action of ¢ on G is given by

c(g,\) = (®(*g) '@, Adet g).

The embedding Gy < G corresponds to the natural projection G — (/J\o.

Let p be a rational prime unramified in F. By Satake’s classification, each un-
ramified principal series o, of G, corresponds to a @—conjugacy class of semisimple
elements in G x Frob, where Frob, is the image of an Frobenius element at p, called
the Langlands/Satake (semisimple) parameter of o,,.

2.4.2 Classification of unramified principal series at an inert
place

Keep the notation of Section 2.4.1. Suppose p is inert in F. Let LC(P,\G,) be
the space of locally constant functions on P,\G,, equipped with the natural action
by G, via right multiplication. Let St, be the quotient space of LC(P,\G,) by the
constant function. Then St,, is an irreducible admissible representation of G, called
the Steinberg representation of G,.

Moreover, let v : G — (G, be the similitude homomorphism. For any § € C*,
let pg : G, — C* be the composite

det
g— g % xHBvalp(a:)

ps o Gy —=25 Q; > C*

Any unramified character of M, has the form

Xa,B ZMp — C*

— avalp(a)fvalp(b)ﬁvalp(b)

o O 2
o o O
o O O

where a, 8 € C* and val, is the p-adic valuation on F},.
Denote by I, 5 := Indglf(xawg) be the normalized unitary induction of x, g, vie-

wed as a character on P, trivial on its unipotent radical. Then I, g|¢,, coincides
with I(a) in the notation of [BG06, 3.6.5, 3.6.6]. We list the properties of I, 4 :

1. If a # p*™, —p*!, then I, 5 is irreducible.
2. If @ = p*? 1, 5 has two Jorden-Holder foctors : St, @ ug and pug.

3. If & = —p*!, then I, 3 has two Jordan-Hélder factors, 7 which is unramified
and non-tempered, and ﬂ% which is ramified and square-integrable.

4. The central character of I, 3 is

Z, = F) —=C
b Hﬁvalp(b) )

5. For all , 8 € C*, dim I = dim 1'% = 1, dim I} = 2.
6. Stff” = Stffp = 0, dim(mj)*r = dim(ﬁg)kp =1, (W}})KP = ()% = 0.
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7. Let m, be an admissible irreducible representation of G,. Then W;WP # 0 if
and only if it is a Jordan-Holder factor of I, g for a, § € C*[Car79, Theorem
3.8].

8. The Langlands parameter of 1, g is the é’—conjugacy class of

a 0 0
taﬁ: 0 B/Oé 0 ,1 X C.
0O 0 1
a 0 0
Note that 2 5 = 01 0 |.,8]ed.
0 0 at

2.4.3 Automorphic and Galois representation

Let 7 = ®,m, be a cuspidal automorphic representation of G(A). Let 7y be the
restriction of 7 to G(A) and x, be the central character of w. Recall that Rogawski
defined, a base change map from automorphic representations of Go(A)(resp. G(A))
to Go(Ar) = GL3(Ap)(resp. GL3(Ar) x GL;(AFr)). Denote by mop(resp. mr) the
base change of my(resp. 7). By [Rog92, Lemma 4.1.1], we have

Tp = Tor @ Xx

as a representation of GL3(Ar) x GL;(Ar), where X, is the character z — x.(Z).
We say 7 is stable [Rog90, Theorem 13.3] if mop is a cuspidal representation.

Let [ be a finite set of places of Q containing the archimedean place such that 7
is unramified outside [, ¢ be a rational prime and fix an isomorphism ¢, : Q3¢ — C.
Let p {0 be a finite place of Q unramified in F, t,, € “G be the Satake parameter
of mp,, well defined up to @—conjugacy, and t,,, € Gy be the image of ¢, , via the
canonical projection G = G,.

1. If pOp = ww* splits, then t,, , € Go = GL3(C) and
—-1 7.
{tWOF,UH tﬂonw‘} = {tﬂovp’t tTr(),p )

2. If p is inert in F, then t,,, € Go x Frob, and t,,,, = t2 € GLg(C). If

0,p
a 0 0
mp=1Iop for o, 8 € C*, thent; ., = 0 1 0
00 o't

Assume now 7 is stable and cohomological with trivial coefficient, i.e.,

H*(g9, Keo; o) # 0

where K, is defined in Section 2.2.2 and g = Lie G(R) ® C. Blasius and Rogawski
[BR92, 1.9] defined a semisimple 3-dimensional (-adic representation

Proe - Gal(F*/F) — GL3(Q}°)

attacted to my(or m ) that is characterized as follows :
1. pry.e is unramified outside O U {¢}.
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2. Let w be a non-archimedean place of F' with w { ¢ and
Frob,, € Gal(F2°/F,) — Gal(F?°/F) be a geometric Frobenius of w. Then
the characteristic polynomial of p, ¢(Frob,,) coincides with that of t; (. w)quw,
where t,,,.., € GL3(C) is the Satake parameter of mop at w, which is well
defined up to conjugation.

Since 7 is cohomological with trivial coefficient, xr o : C* — C* is trivial. By
class field theory, ¢; 0 x, can be viewed as a character of Gal(F?/F'). We put

P = Dot ® (160X, ): (2.24)

Let L/Qy be a sufficiently large finite extension such that Im(p, ) C GL3(L). Let M°
be a Gal(F?¢/F)-stable Or-lattice in the representation space of p, . We denote by
P the semi-simplification of M°/w M® as Gal(F*°/F')-representation. By Brauer-
Nesbitt theorem, p, , is independent of the choice of M°.

By the local-global compatibility, if p is inert in /' and m, = St, ® pg for some
3 € C*, then the multiset of eigenvalues of p,. ,(Frob,) is {¢; " (8)p*, vy ' (B)p%, 1y ' (8)}
mod /.

2.4.4 Spherical Hecke algebra

(cf. [BGOG, 3.3.1]) For a finite place p of Q at which G is unramified, let K,
denote a hyperspecial subgroup of G,. Denote by T(G,, K,,) := Z[K,\G,/K,] the
Hecke algebra of all Z-valued locally constant, compactly supported bi- K -invariant
functions on G,. It is known that T(G,, K,) is a commutative algebra with unit
element given by the characteristic function of K,. We put K" := [I,¢0 Kp. Denote
by T(G", KV) the prime-to-[J spherical Hecke algebra

T(G”, KY) :== R T(G,, Kp).

p¢0

Suppose (72)K” £ 0. Then dim(7”)X” = 1 and there exists a homomorphism
¢r : T9 — Oy, such that T € T acts on (72)5" via 1,(é.(T)). Let A be the place
in L over Q. Define

Gry TP 2500 = 0/, m=kerd,,. (2.25)

The residual Galois representation p, , depends only on m thus is also denoted by

Pr-
With the above preparations we can state the main theorem :

Theorem 2.4.1. Let 7 be a stable cuspidal automorphic representation of G(A)
cohomological with trivial coefficient. Let p be a prime number inert in F'. Suppose
that

1. m, = St, ®ug for some € C* as defined in Section 2.4.2;
2. if i # 2 then H(S @ F*,Fy)y = 0;
3. Py 18 absolutely irreducible ;
4. Py 18 unramified at p ;
5. 01 (p—1D@° +1).
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Then there exists a cuspidal automorphic representation @ of G(A) such that 75" 5r #£
0 and Pz ¢ = Pry-

To prove the theorem, we will firstly use the Rapoport-Zink weight-monodromy
spectral sequence to study the cohomology of Picard modular surface, then we argue
by contradiction. We need some preliminaries on the compactification of Shimura
varieties.

2.4.5 Borel-Serre compactification of Sy(p)

Let So(p)®® be the Borel-Serre compactification of So(p)(C) and 9Sy(p)™® the
boundary. By [NT16, Lemma 3.10] we have a G(A>)-equivariant isomorphism

050(p)™(C) = P(Q\(G(A™)/K"Tw, x e(P))
=~ Ind(3 ) P(Q\(P(A%)/KpIw, x e(P)) (2.26)

where e(P) is the smooth manifold with corners described in [3573, §7.1] and K% =
K? N P(A™P).

Lemma 2.4.2. Keep the notations and assumptions of Theorem 2.4.1. We have
H* (850(]))138, FZ)m = 0.

Proof. Suppose on the contrary that H*(9Sy(p)®®, Fy)m # 0. We will show that o,
is reducible, which contradicts the condition (3) in Theorem 2.4.1. Since p,, =
Prot @ (e © X;) by (2.24), it suffices to show that p, , is reducible. Put Kp =
KN P(AP), KT, = K2 N M(AP), etc. We have a Satake map

N:T(GY, Kg) — T(M", KY)).

Following the argument of [ACC22, p. 36] or [N'T'16, Theorem 4.2], since m is in the
support of H*(8S,(p)®, F,), there exists a subgroup K}, C K, with (K},)2 = KJ
and a maximal ideal m’ of T(M®, K,") in the support of HO(M (Q)\M (A>)/ K}, Fy)
such that m = N~!(m’). In other words, there exists a homomorphism
O : T(M", K;) — L for a finite extension L of F, such that ¢, , = 0,0 N.

Put H := Resp/g Gy,. The standard Levi M is a torus

M=HXxH
diag(a,b,c) — (a,b).

We can now assume K}, = K} x K} which implies
T(MY, K1) = T(H”, Kif) @ T(H", K).

Since H(A) = A%, 0, is equivalent to two Hecke characters ¢,y : A/F* K} —
L.

By class field theory, 1, and v, correspond to two Galois characters 7;,o :
Gal(F>/F) — L™ such that for a place w in F and a uniformizer w, in F,, C A},
we have

7;(Froby) = ,(wy).
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We claim that
—c,V

Pri = (01 @72 -05 @777) © ¢ (2.27)

where ¢, is the f-adic cyclotomic character and 75" (g) = &;((¢°)~"). Indeed, by
Chebatorev density and Brauer-Nesbitt theorem, it suffices to verify that for every
place ¢ = ww* split in F, the eigenvalues of Frob,, for p,, ,and (7107 -E§’v®ﬁi’v)®ez
coincide.

To show this, recall that

G (Qg) = {g € GLs (F ®¢ Q) | 'g"®g = v(g)® for some v(g) € Q; |
= {9 = (9> 9u) € GLs(F,) x GLs(Fue) | gue = v(9)®('g;") P} .

Therefore, we have an isomorphism
G, = GL3(Fy) X Q;
g+ (9w, v(9))
under which g = diag(a,b,c) € M, is identified with (diag(aw,bw,cw), buwbwe). If
T C GL3 denotes the diagonal torus, we have an isomorphism
Ty x QF =M,
(diag(a, b, c),v) = diag((a,v/c), (b,v/b), (c,v/a)).
Since H, = F x F,., we have
Ty, x QF =H, x H,
(diag(a, b, c),v) —((a,v/c), (b,v/b)).

The local component at g of ¥,1), is given by

(@1@2% . (diag(a, b, c),v) = El,w(a)al,w(V/C)@zw(b)@zwc(’//b)
= (V1.0 P2,006) (V)10 (@) (D1 Dy ) () e (€)-

Let M = T x G,, be the torus over Z, dual to Mg,. By duality, the group of the
unramified characters of Mg, with values in " is isomorphic to

o~ o~

X*(My,) ® L™ = Xu(M) © L™ = M(L),

o~

where X*(Mg,) (resp. X,(M)) denotes the character group of Mg, (resp. the cocha-
racter group of M). With this identification (1,1),), corresponds to the semisimple

element o
¢1,w(Q> o 9 0 .
0 @ou/toudle) 0 || eHD)
0 0 V1 ()

By Section 2.4.3 and Satake isomorphism the eigenvalues of 5, ,(Frob,) are given
by
— — =1 —1
A 1(0), (ot200e) (@), 1 e (@)}

By Chebotarev density, the equality (2.27) holds. This finishes the proof of the
lemma. O
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Corollary 2.4.3. Denote by Sy(p)B® the Baily-Borel compactification of So(p). Then
we have canonical isomorphisms

H2(So(p) ® F*, Fo)m = TH?(So(p)™ @ F*, Fo)m = H2(So(p) ® F*, Fo)m.  (2.28)
Proof. One has an exact sequence of Betti cohomology [C'S19, Remark 1.5

0 — HY(0So(p)®5, Fy) — H2(So(p), Fy) — H2(So(p), Fe) — H2(0So(p)®5, Fy) — 0
(2.29)
which is equivariant under T(G", K")-action. By [HLRS0, 1.8] the intersection coho-
mology group TH?(Sy(p)*P @ Fa¢ Fy),, is the image of the map H2(Sy(p) Q@ F¢, Fy)m —
H%(So(p) ® F**,Fy)m. The corollary then follows from Lemma 2.4.2. O

2.4.6 Generalities on the weight-monodromy spectral se-
quence

[52103, Corollary 2.2.4], [Liu19, 2.1]. Let K be a henselian discrete valuation field

with residue field x and a separable closure K. We fix a prime p that is different

from the characteristic of k. Throughout this section, the coefficient ring A will be
IF,. We first recall the following definition.

Definition 2.4.4 (Strictly semistable scheme). Let X be a scheme locally of finite
presentation over Spec Ok . We say that X is strictly semistable if it is Zariski locally
étale over

Spec Okt ... ta]/(t1 - ts — @)

for some integers 0 < s < n (which may vary) and a uniformizer w of K.

Let X be a proper strictly semistable scheme over Og. The special fiber X, :=
X ®oy k is a normal crossing divisor of X. Suppose that {X7,..., X,,} is the set of
irreducible components of X,. For r > 0, put

X = 11 N X

IC{1,....,m},|I|=r+1i€l

Then X" is a finite disjoint union of smooth proper x-schemes of codimension r.
From [Sai03, page 610], we have the pullback map

o B (X AG)) = BT AG)
and the pushforward (Gysin) map
bre s U AG)) = BP0 A+ 1))
for every integer j. These maps satisfy the formula
57100y + 010067 =0

for r > 1. For reader’s convenience, we recall the definition here. For subsets J C I C
{1,...,m} such that |I| = |[J| + 1, let iy5 : Nicr Xi = Nics X; denote the closed
immersion. If I = {ig < --- <4,} and J = I\ {i;}, then we put €(J,I) = (—1)7. We
define 6 to be the alternating sum ;¢ ; 51sj—1=r+1 €({, J)i7; of the pullback maps,
and 6, to be the alternating sum >/~ 7j=sj+1=r+1 €(J; 1)isr. of the Gysin maps.
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Remark 2.4.5. In general, the maps 0} and 6,. depend on the ordering of the
irreducible components of X,.. However, it is easy to see that the composite map
01, 0 05 does not depend on such ordering.

Let us recall the weight spectral sequence attached to X. Denote by K" C K?*¢
the maximal unramified extension, with the residue field x which is a separable
closure of k. Then we have G /Ix ~ G,. Denote by t : Ix — A¢(1) the (p-adic)
tame quotient homomorphism, that is, the one sending o € I to (o(w/?") /='/?"),
for a uniformizer w of K. We fix an element T € Ik such that t,(7") is a topological
generator of Ag(1).

We have the weight spectral sequence Ex attached to the (proper strictly semis-
table) scheme X, where

Ex)i* = @ W HXI A(=i) = H(Xg, A) (2.30)

i>max(0,—7)

This is also known as the Rapoport-Zink spectral sequence, first studied in [R782];
here we will follow the convention and discussion in [Sai03]. For t € Z, put 'Ex =
Ex(t) and we will suppress the subscript X in the notation of the spectral sequence
if it causes no confusion. By [Sai03, Corollary 2.8(2)], we have a map p : E~ b+ —
Estle=1 of spectral sequences (depending on T ) and its version for "E. The map
pr o=yt o PERTROTL L RIS g the sum of its restrictions to each direct
summand H*1-2(X ) A(r — i), and such restriction is the tensor product by
to(T) (resp. the zero map) if H**1=2i( X ™) A(t—i+1)) does (resp. does not) appear
in the target. The map p™® induces a map, known as the monodromy operator,

78

~rs . tpr—1,s+1 tar+1,5s—1
[T O — By (=1)

of A|G,]-modules.

2.4.7 Weight-monodromy spectral sequence for Sy(p)

We will try to apply the weight-monodromy spectral sequence to the surface f :
So(p) = Spec(Or ® Zyy). In the derivation of weight-monodromy spectral sequence
f is required to be proper to get H'(So(p) ® Fa¢, RUZ,) = H'(So(p) @ F*, Zy).
However, in our case f is not proper. Fortunately, according to [L.518, Corollary
4.6], H'(So(p) @ Fa¢, RUZy) = H'(Sp(p) ® F*, Zy) still holds. Put

YO =Yy, @F YO = (YUY, UYi) @F%, YO = (Y,uY,UY,) @ Fo.

The spectral sequence (2.30) with A = F, reads

HO (Y (=2) =HE (Y WD)u(-1) — HY(Y ),
HY(YW)u(=1)  — H (YO,
HO(YW)(=1) — HXY©), @H' (YD), (-1) = H3(YW),
H(y©®), - 2y W),
HO (YO, = HO(YW), - HY(Y®)

Here we omit the coefficient I, in the cohomology group.
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Lemma 2.4.6. Let Gg(resp. Gj) be the unitary group attached to G(resp. G') as
in Section 2.4.1. Recall the inner form G' defined in Section 2.2.6. Put Gy, =
Go(Qy), Kop = K, N Goyp, K§ := KP NG Let Kg, be the kernel of the reduction
map Go(Op) = Go(F,2). Then we have an isomorphism

L HY (N @ F, Q) loos)™= Mapg, , (Go(Q\Go(A)/KF, Q) (2.31)

of CI[KH K )\ Gy (AOO)/KgK;’O]—mOdules, where (pqs,$3) is the Tate-Thompson re-
presentation of Ko, in [L1X 22, C.2] and the right hand side of the isomorphism
denotes the locally constant maps [ : GH(Q)\G{(A>®)/ K — Q3 such that f(gk) =
pas (K1) f(g) for k € Ko, and g € Gi(A>). Moreover, let 7§ be an irreducible ad-
missible representation of Go(A°) such that (x5§)55 is a constituent of L, H (N ®
Fe, ac) Then one can complete w5 to an automorphic representation Ty = 7TOD ®
[lyen ™o, of Go(A) such that BC(WOW) is a constituent of an unramified principal
series of GL3(F},) with Satake parameter {—p, 1, —p~'}, where BC denotes the local
base change from Gy, to GL3(F}).

Proof. Recall the fiber of the morphism N — T is geometrically a Fermat curve
of degree p + 1 where T'(C) = G'(Q)\G'(A>~)/K?K, by Theorem 2.3.10(2). Take
t € T(Fx), then H' (N @ Fa N 071(t), Q) |gy(a) is a representation of Go(Fa®) =
Ko,/ Koljp, isomorphic to §23. For the remaining part, note that the right-hand side of
(2.31)is a C[KF K, ,\Go(A™) /K K o]-submodule of Map(G((Q)\G{(A®)/K§ K, C).
In particular, we can complete 7§ to an automorphic representation 7, = m§ ®
[Tgen ™o, of G(A) such that 7T(’)p|,;<0 contains 3. The same argument as [[/TX 22,

Theorem 5.6.4(ii)] then implies 7 , = c- IndGO ,(§23) = 7°(1) where 7°(1) appears in
[Rog90, Proposition 13.1.3(d)]. The base change BC(7*(1)) has the Satake parame-
ter {—p, 1, —p~'} by [Rog90, Proposition 13.2.2(c)]. The lemma follows. O

Lemma 2.4.7. Keep the notations and assumptions of Theorem 2.4.1. Suppose
there is no level-lowering, i.e., there is no automorphic representation @' of G(A)
such that 7% % # 0 and pp g = D,y Then one has
1. H3(S® Fo¢, Fo)m = 0;
2. H3(T ® o, Fo)m = 0;
3. H(T ® F2¢, Fr)m = 0;
4. *(S#@]FaC 2)m = 0;
5. HY(N @ 3¢, Fy)m = 0;

Proof. 1. Suppose H*(S @ 5, Fe)m # 0. By [L518, Corollary 4.6], we have
H2(S @ F* Fy)m = HY(S ® F2¢, F)m # 0. The universal coefficient theorem
gives the exact sequence

0— H(S® F* Z)w @F; — H(S @ F* Fy)m
— HT (S ® F*, Zy)ull] =0, ic€Z
which implies that H?(S ® F* Z,),, is torsion-free and non-zero. Thus there

exists a cuspidal automorphic representation 7 of G(A) such that the 7-
isotypic component H2(S ® F, Zy)n[7] ® Q3¢ # 0 and #5"K» =£ () since S is
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of level KPK,. Moreover, by Section 2.4.3 the prime-to-[] Hecke equivariance
implies 7 ,(Frob,) = 7, ,(Frob,) for ¢ ¢ [. Finally, Chebotarev density
ensures px , = p.,. This contradicts the no-level-lowering assumption.

. Suppose H(T ® o6, Fp)m = HY(T @ F*,Fy)m # 0. Since H(T @ F°, Zy)n

is torsion-free, there exists an irreducible automorphic representation 7’ of
G'(A) such that 7'5"%» £ 0. By [Clo00, Theorem 2.4] we can transfer 7’ to
an automorphic representation 7 of G(A) such that the finite components
7> and 7> coincide. In particular #%"%» =£ 0. The prime-to-CJ Hecke equiva-
riance and Chebatrov density then imply that p , = p, ,, contradicting the
no-level-lowering assumption.

. Suppose H)(T' ® F2¢,F¢)m # 0. By the same argument as (2), there is an

irreducible automorphic representation 7 of G’'(A) such that (7/)5"E» £ 0
and we can again transfer 7’ to an automorphic representation 7 of G(A) such
that the finite components 7 and 7'> coincide. In particular FKPEy # 0.
The prime-to-[] Hecke equivariance and Chebotarev density then imply that
Pzt = Py

On the other hand, by Section 2.4.2(7), 7, is a Jordan-Hoélder factor of I, g
for some a, f € C*.

If a # p*2, —p*!, then 7, = I, 4 thus ﬁffp # 0 by Section 2.4.2(5), contradic-
ting the no-level-lowering assumption.

If « = p*2, then 7, = St, ® g or pg. The first case is excluded since it has no
non-trivial f(p—ﬁxed vector by Section 2.4.2(6). The second case is excluded
as T is tempered.

If « = —p*!, then 7, = T or 71%;. The former is excluded since it has no
non-trivial K,-fixed vector by Section 2.4.2(6). For the latter the multiset of
eigenvalues of p; ,(Frob,) would be {—p, 1, —p~'} up to a scalar, leaving two
possibilities : if p? = —pmod ¢ then p = —1 mod ¢ thus p*> = 1 mod ¢, if

p? = —p ! mod ¢ then p3> = —1 mod ¢, both contradicting our assumption.

. Let E be the exceptional divisor of the blowup S# of S along the superspecial

locus S Consider the corresponding blow up square

E—l.g#

Sep —— S
We have a distinguished triangle [Thel8, Tag 0EW5]

F, — Ri, (]Fg

Sssp) D Rb*(Fg |S#) — RC*(Fg |E) — Fg[l]

where ¢ = 1 o7 = bo j. This induces an exact sequence of localized étale
cohomology

H' (S @ Fa¢, Fy)m — H (5% @ F2°, F)m & H' (Ssp @ F2, Fy)um
— H(EQF2, Fo)m — H (S @ F2, Fo)m
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compatible with the T(G”, K)y-action. Since H*(S @ Fa¢, Fy)n = 0 by (1)
and H%(Sy, @ F2, Fy)p = H(T @ F2, )iy = 0 by Lemma 2.3.16 and (3), we
have an isomorphism of T(G", K"),-modules

H'(S* @ F2, Fo)m = H(E @ F2C, Fo).

Therefore, it suffices to show H*(E ® F5¢,F¢)y, = 0. Since E is a P-bundle
over Sgyp by the proof of Proposition 2.3.24(1), we have H*(E ® F2°, Fy)y =
H*(Ssp @ F2°, Fy)m[X]/X? = 0 and finish the proof.

5. Firstly, we have H'(N ® F3°,Fy)n = H(T ® F3°,F¢)m = 0 for i = 0,2 by
(2). If HY(N ® Fa°,F¢)m # 0, then 7 appears in H'(N ® F2°, Z)m @ Qf°
since H'(N ® 3¢, Z¢)m is torsion-free. By Lemma 2.4.6 we can complete 0
to an automorphic representation 7’ = 7 ® [ e, of G'(A) such that the
Satake parameter of BC(m, ) is {p,1,p~'}. We can again transfer 7’ to an
automorphic representation 7 of G(A) such that the finite components 7>
and 7' coincide. Then the multiset of eigenvalues of p; ,(Frob,) would be
{=p,1,—p"'} up to a scalar. Comparing the eigenvalues of p; , and p, , as in

Lemma 2.4.7(3) leads to a contradiction.
O]

Corollary 2.4.8. 1. H*(Y O Fy) = 0;
2. H* (YW Fy)m = 0.
Proof. 1. By Proposition 2.3.24 we have isomorphisms of T(G", KU),-module
H (Yo @ F2¢, Fp)m = HY(Y) @ F2°, Fy) = H(S* @ 5, Fy)p = 0 for i = 0,1,2.
Now we show H*(Yy ® 3¢, Fy)n = 0. By Lemma 2.3.28, Proposition 2.3.29
and Lemma 2.4.7(5), Y3 is a P'-bundle over N and thus

H* (Y, @ T2, Fy)o = HY (N @ F2, Fy) o[ X]/ X2 = 0.

2. By Proposition 2.3.30(1), Yy, is a P!-bundle over T. Thus we have an iso-
morphism of T(GY, K"),-modules

H* (Yo, ® F2, Fy)w = HY(T @ F2°, Fy)u[X]/X? =0

by [Mil80, Proposition 10.1] and Lemma 2.4.7(3). By Proposition 2.3.30(2)(3),
Yy 2 is isomorphic to N, Y; 2 — N is a purely inseparable map, thus we have
isomorphisms of T(G", K),-modules

Hi(%,? ® ]FZC7 Ff)m g Hi(Yi,Q ® F;C7 Ff)m g HZ(N ® ]FZC7F€>m'

By Lemma 2.4.7(5) they all vanish.

Corollary 2.4.9. The spectral sequence (3.16) localized at m degenerates at Ej.

Proof. By Poincaré duality it suffices to show E 14 = H2(Y () Fy),, = 0 and E%3 =
H3(Y©®) F))y = 0, which follow from Lemma 2.4.7. O
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We study the Gal(F2°/F 2 )-action on HO(Y ), Fy)y = H(Ty(p) @F2°, Fy)m. Consi-
der the Iwahoric Hecke algebra T(G),Iw,) := Z[Iw,\G,/Iw,]. The Gal(F;/F,2)-
action and the T(G), Iw,)-action on HO(To(p) ® Fa¢, Fy)m commute. Let ¢y, de-
note the action of T(G,,Iw,) on H(Y® Fy)y. For a € Z(Q,) = F), denote by
(a) € T(G,,Iw,) the characteristic function of alw,,.

Lemma 2.4.10. The action of Frob,: and (p~*) on HO (Y Fy)y coincide.

Proof. Take s = (A, Aa,na, A, X\z,m4,a) € Y(z)(IE‘ZC). A is superspecial by Lemma
2.3.28(3) and Lemma 2.3.33(2a).

Since A and A are superspecial, there are supersingular elliptic curves E and
E defined over Fj. such that A = (E®%) @ F2 and A = (E%%) @ F2. It is well
known that the relative Frobenius Frp : E — E®*) = E coincides with the isogeny
—p: EF — E, and Fry : FE — E®) =~ F coincides with the isogeny —p : E — E.
It turns out that the action of Frob,: and (—p~') on H(Y® F,), coincide. We
conclude by remarking that (—p~1) = (p~1). O

Lemma 2.4.11. ¢r,,, ((p™")) lies in the image of Z(AZ)/KZ N Z(A") in
Endg, (H*(Y® Fy)y).

Proof. Let p € Z(A>) = (A¥)* be the element whose p-component is p and other
components are 1. By definition the action of p and (p) coincide. Since the action
of p~t on H (Y Fy),, factors through Z(A>)/Z(Q)(K*Iw,N Z(A>)), it suffices to
show that there exist ¢” € Z(A") and f € Z(Q), such that ¢”fp~' € KPn Z(AD),
which follows from the weak approximation. - O

2.4.8 Proof of the main theorem

Proof. [Proof of Theorem 2.4.1] Suppose there is no level-lowering, i.e., there is
no automorphic representation 7 of G(A) such that #*"*» # 0 and p;, = 7.
By Zucker’s conjecture and the Matsushima formula we have the decomposition
[BR92, 1.9]

IH?(So(p) ® F*, Zg)m @ Q3 = P 1, ' 7™ @ pay (2.32)

where 7 runs over irreducible automorphic representations of G(A) such that 7
is cohomological with trivial coefficient and p; , = p, ,. By Corollary 2.4.3 and the
absolute irreducibility of p, ,, every irreducible Jordan-Hélder factor of H?*(Sy(p) ®
F*,Fy)m is isomorphic to p, ,. The weight-monodromy spectral sequence, which
degenerates at E; by Lemma 2.4.9, gives a filtration Fil* H?(Sy(p) @ F°,Fy), on
H2(So(p) ® F*,Fy)m of T(GY, K)y-modules. Put Gr, := Fil’ /Fil’"'. Then by
Lemma 2.4.7 the non-zero terms are

Gry = H'(Y® Fy(=2))m,
Grg = HY(Y® Fy(~1))n,
Cry = H(Y® F)),.
The monodromy operator fi in Section 2.4.6 boils down to identity maps Gr_o —

Gro(—1) and Grg — Gry(—1). In particular, ker i = Fil*> = H(Y® F,),. The
unramifiedness of p,, at p implies that H'(Y® F,)[m] ¢ H'(Y® F,), contains a
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copy of p, |Ga1(Fgc JE ) - However, by Lemma 2.4.10 and Lemma 2.4.11, Frob,. acts
as the scalar X, ,(p)~' on H'(Y®) Fy)n[m] where X/ := t;' 0 xr and x, is the

central character. On the other hand, the multiset of eigenvalues of Pro(Frob,) is
{p?,1,p~2} mod ¢ up to multiplication by a common scalar. We then deduce that

p?> =1 mod [, contradicting the assumption. O]
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Chapitre 3

Vanishing theorems for Picard
modular surfaces

3.1 Introduction

In Chapter 2, we proved an analogue of the level lowering theorem for Picard
modular surfaces. An essential assumption is that the cohomology of the generic fiber
of Picard modular surface localized at a suitable Hecke maximal ideal concentrates
in the middle degree. In this chapter, we aim at giving a criterion for this to be true.

Let F' be an imaginary quadratic extension of Q, O be its ring of integers and
G be the unitary similitude group over Z of signature (1,2) defined in (2.1).

Fix an open compact subgroup K9 C G(A*?). Let S be the Picard modular
surface attached to G of level K9K, defined over Op ® Z(g) (cf. Section 2.2.11 where
we use the notation p instead of ¢ and S instead of S).

We state the main theorem :

Theorem 3.1.1. Let 7 be a stable cuspidal automorphic representation of G(A)
cohomological with trivial coefficient. Let ¢ be a prime number and fix an isomor-
phism 1 @ Q3¢ — C. Denote by A the place in the field of definition of ©° over £
induced by 1. Choose a finite set L of places of Q outside which m is unramified.
Let m C T(G®, KP) be the mod X\ Hecke mazimal ideal attached to w. Denote by
Pm the residual Galois representation attached to m. Suppose that p,, is absolutely
irreducible and there is a prime number q such that

1. q is inert in F';

2. 01 (g — 1)@ +1);
3. Ky 1is hyperspecial ;
4

. Pm(Froby,) is not conjugate to a matriz of the form diag(—vq,v,—vq™') or
ac, X

diag(vq?®, v,vq™2) for some v € T}

Then '

H'(S ® Q*,F})n =0
for i # 2.
Remark 3.1.2. We expect the existence of such a prime number q to be implied
by the assumption that the image of p,, is big enough, similar to | , Lemma
2.6.1].
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3.2 Hecke operators

Recall that in Section 2.2.6 we define an inner form G’ of G over Q such that
G, = G, for all finite places ¢ and G" is of signature (0,3) at infinity. We also define

moduli problems T, T, Ty(q) over Op @ Zq) attached to G’ with level K, lA(/q,qu
at ¢. We have natural maps

) To(q) - (3.1)
T/ \T

equivariant under prime-to-¢ Hecke correspondence.

Definition 3.2.1. Let R be a commutative ring. We define morphisms

T = K, diag(q, 1, qil)Kq € ZIK\Gy/ Ky HY(T @ F* R R) —» HY(T® g R),
J = K K, € Z[K,\G,/K,] HY(T @ F*, R) — HY(T © F**, R),
J = KK, € Z[K\Gy/K,) H(T @ Fy*, R) - HY(T @ Fy", R),
I = K lw, € Z[K\Gy/Iw,] :H(To(q) @ F2, R) — H)(T @ F°, R),
L) := K,Iw, € Z[K,\G,/Iw,] :H(To(q) @ F2, R) — HY(T @ F*, R
' = Iwg I € Z[Iw\Go/ K] HY(T @ Fyf, R) — HY(To(q) @ Fy', R
[ | -HA(T (

T = Tw K, € Z[Iw,\G, /K, H(T ® F>, R) — H°(Ty(q) ® F2,

R)
R),
R),
R)
We also define I, := Jo I,! I, :=t I, o J.

The following lemma describes the relations between these morphisms

Lemma 3.2.2. We have

1. JoJ =T+ (¢ +1)id;

2. o' I = (¢ + 1) id;

3. I1o' I = (¢*+1)id+T;

4. Lot = (¢# +1)id+T;

5. Lot I, = (¢4 1)(g+1)id+(¢+ 1)T.

Proof. Recall that for an open compact subgroup K"K of G'(A*) and a commu-
tative ring R, H'(G'(Q)\G'(A>)/K"K}), R) is the R-module of locally constant,
compactly supported functions f : G'(A*) — R such that f(qgk) = f(g) for all
7€ G'(Q),g € G'(A®) and k € K"K,

Let R[G,/K]] be the R-module of locally constant, compactly supported func-
tions f : G — R such that f(gk) = f(g) for all g € G|,k € K.

Since G'(Q)\G'(A>)/K"1G}, is a quotient of the ﬁmte set G’( NG (A>®)/K"K!

q77
we have a decomposition

h
(4%) = [[ ¢'(Qz:K" G,
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for some x4, ,x, € G'(A*>). Therefore we have
G QNG (A%)/ KK, = L,G(Q\G(Q)ui K“G, /K"Ky = LiT\G, /K

where T; := G'(Q) Nz; K9z, ' For f € H'(G'(Q)\G'(A>®)/K"K]), R), define func-
tions f; € R[[';\G,/K]] by sending g, € G to f(v;g,). Then the morphism
h
H(G(Q\G'(A)/K"Ky), R) — D R[[\G, /K]

i=1

= (fi)i<i<n

is an isomorphism of R-modules.
Keep the notations of the Bruhat-Tits tree of G in Section 2.2.1. Since G, = G7,
we have the bijections

Gl /K, =V, G/K,=V, G /lw,=E.

To summarize, we have isomorphisms of R-modules

H(T ® F2°, R) = é R[T}\V], H'(T\T®F, R)= é R[T\V],

i1 i=1
and

H(To(q) @ F2°, R) = 6_9 R[[;\&].

Thus the morphisms defined in Definition 3.2.1 are given by the corresponding
morphisms with the same notation on the Bruhat-Tits tree :

Definition 3.2.3. [BG06, Lemme 3.5.1] Let d be the distance function between ver-
tices of X. For x € V,V, &, denote by 6, be the characteristic function of x. Define
G -equivariant morphisms

T : R[V] — R[V] J : R[V] = R[V] J : R[V] = R[V]
b Y. Gy D D e D
d(y,z)=2 d(z’,x)=1 d(z!,z)=1
and
I, : R[] — R[V] L : R[] — R[V]
5(%1/) — (55,; 5(90@/) — Z (5y
d(y,z")=1
51, — Z 5(1,1’) 5z — Z 5(1«/7?}).
d(z,x")=1 d(z’,x)=1,d(z',y)=1

To prove Lemma 3.2.2, it suffices to verify the relations between morphisms
on the tree, which is an easy combinatoric calculation similar to [BGOG, Lemme
3.5.3]. m
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The following lemma calculate the eigenvalue of Hecke operators on unramified
principle series :

Lemma 3.2.4. Let @’ be an irreducible admissble automorphic representation of
G'(A>) appearing in (3.6) such that m, = I, g for some o, 3 € C*. Let ¢ be the
Hecke homomorphism defined in Section 2.4.J. Then we have

br(Tw) = (o +a 1) + (g —1). (3.2)

Proof. Recall that in Section 2.4.1 we have the dual group G = (GL3 xG,,)(C) of
G over Q, and the Langlands dual group “G = (GL3 XG,,)(C) % {1,0} where the
involution o sends g € GL3(C) to ®('g~")®.

Let M, := M(Q,) be the split torus of G, defined in Section 2.4.1. Let M\q =
D x G,, be the dual group of M, where D C GL;3(C) is the diagnonal matrix.
Let X*(M,) be the character group of M, and Z[X*(M,)] = Z* & Z be the group

—

algebra of X*(M,) with coefficient in Z. Let W be the Weyl group of G,. For a

o~ o~

character v € X*(M,), denote by [v] € Z[X*(M,)] the characteristic function of v.
Define characters p : M, — G,, by (diag(a,b,c),v) — a/c and p. : M, — G, by
(diag(a, b, c),v) — v.
The Satake isomorphism reads
Sat : ZIK\ G/ Ko) 2 ZIX ()" = 2l [, 1] + 17

By [Car79, (35),(39)], the value of ¢,/ (T},) is given by

6o (T) = [, ST )Xo s(m)dm.

It then boils down to calculate the Satake transform of T,.

For an algebraic representation p of L@, denote by x(p) the character of p res-
tricted on M,o. Let psq be the standard representation G GL3 xG,, — GL3 given
by (g,v) — gv. Define p := pgq ® piq Where p, denotes the dual representation.
Since the restriction of p on the similitude factor G, C G is trivial, we can apply
the calculation in [LTX 22, Lemma B.1.2] to get

Dx(p)] = [+ [ ] +1
in Z[X*(M,)]. By [X718, Lemma 9.2.4] and [Zhu18, (5.2.1)] we have
Cx(p)] = ¢ = a+ 1+ Sat(Tw),
from which we derive that
Sat(Tn) = ¢*([u] + [+ 1) = (¢* =g+ 1) = ¢ (] + [n7']) + ¢ — 1,
Since Xa5([p]) = @, the lemma follows. O

Lemma 3.2.5. Suppose that p,,(Frob,) is not conjugate to a matriz of the form
diag(—vq,v, —vq™') or diag(vq?®, v,vq=2) for some v € F;"*. Then the morphisms
localized at m

T HY(T @ F2, F)w — HY(T @ F2, Fy)um (3.3)
Jn HY(T @ F2, Fy)y — HY(T @ F2, Fy) .
(I, L) HY(To(q) @ F2, F)w — HA(T @ F2, Fy) @ HY(T @ F2, F)w  (3.5)
are isomorphisms.

3.2. HECKE OPERATORS 69



CHAPITRE 3. VANISHING THEOREMS FOR PICARD MODULAR SURFACES

Proof. We have decompositions

HY(T @ F, Z)w ® C ~ @ m(x’) - 7', (3.6)
HO(T®F3C,Z)m®C2@m(W’) -W’qu(q, (3.7)
HO(To(q) @ F2, Z)p ® C = @ m(n') - n'K M (3.8)

where 7" runs over all irreducible admissible representations of G'(A) with coeffi-
cients in C such that 77, is trivial and the mod ¢ Hecke homomorphism ¢,/ , defined

in (2.25) satisfies ¢/, = ¢, 4, and m(7’) denotes the automorphic multiplicity of '.
We then claim the following equalities :

rankz, H)(T ® F2°, Zy) = rankz, H(T @ F2, Zy), (3.9)
rankz, H'(To(q) ® F2, Z)w = 2rankz, H(T @ F2*, Zy)y, (3.10)

It is equivalent to show that the dimension of H(T ® F2°,Z),, ® Q, and HY(T ®
Fa¢, Z)m ® Q, are both half the dimension of H(Ty(q) ® F2°, Z)n ® Q.

By (7) in Section 2.4.2, for any 7’ in the direct sums (3.6), (3.7) or (3.8), the
g-component 7, has to be a Jordan-Hélder factor of the unramified principle series
I, p for some o, 3 € C*. The assumption (4) in Theorem 3.1.1 then implies that
a#{—q,—q7 ', ¢* ¢ ?}, from which we deduce that I, s is irreductible and therefore
T, = Iop by (1) in Section 2.4.2. On the other hand, we have dim [f% = dim [f% =
1,dim I,"¢ = 2 by (5) in Section 2.4.2, thus the claim follows.

Now we head back to show that J,, and J, are isomorphisms. By (3.9) it suffices
to show that the composition Jy o Ju : H(T ® 2 Fo)m — HY(T @ F2¢, Fo)m is
an isomorphism. Indeed, if so then J, (resp. Ju) is an injective (resp. surjective)
morphism between free Fy-vector spaces of the same rank. Consequently, J, and Jn

are isomorphisms.
By Lemma 3.2.2(1), we have

I © Jn =T+ (¢* + 1) idy .
Thus it suffices to show that for every n" appearing in (3.6),
¢r(Tw) + (¢* +1) Z0 mod m
where ¢, is defined in Section 2.4.4. By Lemma 3.2.4 we have
O (Tw) = ¢*(a+a™) + (¢ - 1). (3.11)

Since p,(Frob,) is not conjugate to a matrix of the form diag(—vq,v, —vg™') or
diag(vq?, v, vq=2) for some v € F;*”, the relation (2) between Satake parameter and
the Langlands parameter in Section 2.4.3 then implies that o Z —¢q, —¢~*, ¢*, ¢~ mod
m. Thus

G (To) + @ +1=(a+a +q¢+q ") #0mod m,

and jm o Ju is an isomorphism. Therefore J,, and jm are both isomorphisms.
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To show that (I m, fl,m) is an isomorphism, by (3.4) it suffices to show that the
composition of the morphisms

(I1m: Lom) : H(To(q) ® Fof Fo)m — HY(T ® Fof Fo)m @ HY(T ® Fof Fo)m  (3.12)
is injective. Consider the composition Iy : (I1m @ Iom) © ("1 m @ o)

HO(T @ F2, Fy)m (T ® F2, Fy)

\tl/

Il m
® H°(To(q) ® F2°, F <>

HY(T @ F2°, Fy)m AT @F2, Fy)um.

Then by (3.10) it suffices to show that I, is an isomorphism. Since the source and
target of I, are IF, vector space of the same dimension, it suffices to show that I, is
injective. By Lemma 3.2.2, the intersection matrix is calculated as

Il,m OLL Il,m Il,m Ot [2,m . <q3 + 1) ldm (q3 + 1) ldm +Tm
Lmo' lim Lmolhn | \ (@+1)ide+Tw (¢*+1)(g+1)idn+(qg+ 1)T

whose determinant is —(T +(®+1)idy) (T — q(¢®> +1) idy). For every ' appearing
in (3.6) such that @, = I, 3, for some «, 3 € C*, the determinant acts on 7/ as
the scalar

— (¢w(T) + (¢° + 1)) (n(Tw) — q(¢* + 1)) mod m
=—(at+a'+qg+qg Y at+a = —¢?) modm. (3.13)

which is nonzero since a % —q, —q*1,~q27 ¢~? mod m by the same argument below
(3.11). Thus I, is injective and (I; m, [1m) is an isomorphism. O

3.3 Proof of the main theorem

Denote by S* the minimal compactification of the moduli problem S. As a to-
pological space, it is obtained by adding a finite set of points to S, corresponding
to CM elliptic curves. It is well known that the ordinary locus S*°¢ of S* is affine.
The natural map S — S* is an open immersion.

Let (S®IF;¢)* be the supersingular locus of S ® F3® which coincides with that of
S* @ Fi¢. Let (S @ F5°)*P be the superspecial locus of S ® ;¢ which coincides with
that of S* ® F;°.

Let (S* ® F2°)# be the blowup of S* ® Fa° along (S ® F2°)*P with the canonical
morphism 7 : (S* ® ]Fac)# — S* @ F:F.

Let (S* Fac)# 55 = 7171 (S* @ F2°)™ be the supersingular locus of (S* @ Fac)#,

Let (S* IFaC) (S* F2)# be the strict transformation of (S* ® Fa°)*. Let
(S* @ Fac)#P = 7~ 1(S* @ F2°)*P be the exceptional divisor of (S* ® Fa°)#. Then
we have S

(8" @ F)#= = (SO Fy) U (S @ Fy)#
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There are canonical morphisms

S

0:(S*®Fxr) - TF"

with each geometric fiber isomorphic to the Fermat curve € (cf. Proposition 2.3.6)
and B B
0: (SQFX)* - (SQFX) =T aF"

with each geometric fiber isomorphic to P!. Moreover, we have an isomorphism

—_— Ss

Oo(q) : (S* ®@F2¢) N (S* @ F2)#*P = Ty(q) @ Fa.

In the following we replace F;© by Fi¢ if needed.
We are going to use the following spectral sequence by Deligne in the /(-adic
setting, see [Pet17, Theorem 3.3(ii), Example 3.5].

Proposition 3.3.1. Let X be a smooth algebraic variety of dimension n over an
algebraic closed field k such that char(k) # (. Suppose D = Dy U ... U Dy, a strict
normal crossing divisor. Consider the stratification of X by the various intersections
of the components of D. For I C {1,...,k}, let Dy = Ve D, including Dy = X.
Let D; := U= Dr. There is a spectral sequence

Eil,j — H2n+2i+j<D7i’ F@) —_— H2n+i+j (X\D’ IFZ)
where the morphisms dy7 - EY — EXYY are alternating sums of Gysin maps.

Proof of Theorem 5.1.1. Since K, is hyperspecial, S has smooth reduction at q.
Since . . '
H'(S" ® Q™ Fp)m € H'(S" @ Q) Fr)m = H'(S" @ F3, Fy)m,

it suffices to show that H'(S* @ Fa°,F;)n # 0 for i # 2. Since p,, is absolutely
irreducible, the same argument as Lemma 2.4.2 implies that the compact support
cohomology is isomorphic to the ordinary cohomology

HL(S @ F2°, Fy)m = H'(S @ F2°, Fo)um. (3.14)
By the Poincaré duality, it suffices to show that H (S* ® F2¢, F¢)m = 0 for i > 2. The
same argument as Lemma 2.4.7(4) implies that

H((S* @ F2)* Fo)m = H'(S* @ F2°, Fy)m.
Thus it suffices to show that H'((S* ® Fa)# Fy), = 0 for i > 2. We now apply the
weight spectral sequence in Proposition 3.3.1 to (S* ® IFZC)#. Define
Do=(S"@F), Di=(S eFy) U(S @),
Dy = (S*®@F2) N(S*@F2)F*P = Ty(q) @ F2. (3.15)

The first page E; of the spectral sequence writes as

—24 —1,4

d d
HO(Dy, Fy)py —> H2(Dy, Fy)m T H* (D, F,
H'(Dy,Fp)w  —=H3Dy, F,
(
(

)m (3.16)
)
HO(Dy,Fy)w ——H%(Do,Fr)m
)
)
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where d;gf is defined by

(Gysy,—Gyss) e
_

HO(D,, ) H2((S* @ Fac) @ Fa,Fy) @ H?((S* @ FgC)#vSSP ® Fac, IFy)

where Gyisl and Gys, are the Gysin maps for the closed immersions of D, into
(S*®Fac) and (S*®@F2¢)#*P. The spectral sequence converges to H*((S*@Fa)rd Fy)y,
where (S*®F2°)°" is the ordinary locus (S*®Fa)# —(S*@F2°)# = (S*@F2)#—D;.
By [GN17, Corollary 1.3], (S* ® Fa¢)°¢ is affine, thus its cohomology vanishes for
degree > 2 by Artin-Grothendieck vanishing theorem (cf. [Han20, Theorem 1.1]).

We claim that di?f is an isomorphism. Indeed, by Section 3.3 and (3.15) the
morphism

dit  HY(Do, Fp) — H(D1, Fo)m

is identified with
(V1 Prm) = (T, Tim) - H(To(q) @F2, F)y — H(TQFX, Fy) ©H (T RF, Fy)um

where ¢ and ¢ are the natural projections in (3.1). The isomorphism (3.5) then
implies that dfﬁf is an isomorphism.

We now show that H((S* ® F2)# Fy),, = 0. It is easy to see Eyy, = E%% =0
which is a graded piece of H*((S* ® F2°)"Y, Fy)y = 0. On the other hand, Egﬁ1 =
Coker(dii{zl). Thus it suffice to show that dfﬁf is surjective which is deduced from

the claim.
We now show that H3((S* @ Fa)# F,), = 0. Calculate

By =kerd %,
Eg73 = coker(Hl(Dl, F@)m — Hg((s* ® FZC)#a IE?é)m = H3((S* ® FZC)#a Fé)m-
By Lemma 2.4.6 we have H'(D;,F;), = 0. Thus we have Egi1 = EY, =0
which is a graded piece of H?((S* ® Fgc)ord,lﬁ‘g)m = 0. On the other hand, Egz1 =

coker(ker dizfl — H3((S*®F2°)#,F()m). Thus it suffices to show ker dl_ff = 0, which
is deduced from the claim. We finish the proof of Theorem 3.1.1. ]
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Résumé

Le principe de Mazur donne un critére selon lequel une représentation galoisienne irréductible mod
$\ell$ provenant d'une forme modulaire de niveau $Np$ (avec $p$ premier par rapport a $N$) peut
également provenir d'une forme modulaire de niveau $N$. Dans cette thése nous démontrons un
résultat analogue montrant que une représentation galoisienne mod $\ell$ provenant d'une
représentation automorphe cuspidale stable du groupe de similitude unitaire $G=\mathrm{GU}(1,2)$
qui est Steinberg en un nombre premier inerte $p$ peut également provenir d'une représentation
automorphe de $G$ qui est non ramifiée en $p$.

Mots clés : Surface modulaire de Picard, diminution de niveau, principe de Mazur, représentation
galoisienne

Résumeé en anglais

Mazur's principle gives a criterion under which an irreducible mod $\ell$ Galois representation arising
from a modular form of level $Np$(with $p$ prime to $N$) can also arise from a modular form of
level $N.$ We prove an analogous result showing that a mod $\ell$ Galois representation arising
from a stable cuspidal automorphic representation of the unitary similitude group $G=\mathrm{GU}
(1,2)$ which is Steinberg at an inert prime $p$ can also arise from an automorphic representation of
$G$ that is unramified at $p$.

Keywords : Picard modular surface, level lowering, Mazur’s principle, Galois representation




Le principe de Mazur donne un critere selon lequel une représentation galoisienne
irréductible mod ¢ provenant d’'une forme modulaire de niveau Np (avec p premier
par rapport a N) peut également provenir d’'une forme modulaire de niveau N. Dans
cette thése nous démontrons un résultat analogue montrant que une représenta-
tion galoisienne mod ¢ provenant d’'une représentation automorphe cuspidale stable du
groupe de similitude unitaire G = GU(1, 2) qui est Steinberg en un nombre premier inerte p
peut également provenir d’'une représentation automorphe de G qui est non ramifiée en p.

Mazur’'s principle gives a criterion under which an irreducible mod ¢ Galois repres-
entation arising from a modular form of level Np (with p prime to N) can also arise from
a modular form of level N. We prove an analogous result showing that a mod ¢ Galois
representation arising from a stable cuspidal automorphic representation of the unitary
similitude group G = GU(1,2) which is Steinberg at an inert prime p can also arise from
an automorphic representation of G that is unramified at p.
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