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Chapitre 1 : Etat de l’art de la protéomique 
quantitative 

La spectrométrie de masse (MS) est devenue un outil de choix pour l’analyse des protéines grâce à de 
nombreuses avancées technologiques et génère des données qualitatives, quantitatives et/ou 
structurales sur des protéines issues de divers échantillons (cellules, tissus, fluides…), permettant ainsi 
d’appréhender certains processus biologiques. L’analyse protéomique comporte trois étapes clefs, 
représentées en Figure 1 : la préparation de l’échantillon, l’analyse par chromatographie liquide en 
phase inverse (RP-LC) couplée à la spectrométrie de masse et le traitement de données. 

Figure 1: Principales étapes de l’analyse protéomique sans marquage ou label-free. 

Chacune de ces étapes a bénéficié et bénéficie toujours de progrès technologiques majeurs depuis 30 
ans. Parmi eux on peut notamment citer : (i) les avancées dans l’automatisation des étapes de 
préparation d’échantillon1 (ii) le développement de nouvelles méthodes d’acquisition pour l’analyse 
MS/MS (Data Independent Acquisition (DIA)2 par exemple) (iii) ou encore l’émergence de logiciels de 
traitement de données basés sur le deep learning et l’intelligence artificielle3. 
La spectrométrie de masse est également une méthode communément utilisée pour l’étude des 
modifications post-traductionnelles (PTMs) des protéines, qui contrôlent notamment l’activité des 
protéines, leur demi-vie, leur conformation4,… L’une des PTMs la plus répandue et la plus étudiée est 
notamment la phosphorylation. En effet, la dérégulation de la réaction de phosphorylation est 
impliquée dans le processus de nombreuses maladies5,6. Cependant, malgré les avancées dans ce 
domaine, l’étude des phosphorylations à large échelle reste toujours un défi analytique. Que ce soit 
au niveau de la préparation des échantillons (abondance faible des peptides phosphorylés, 
conservation de la modification très labile, ...), en passant par l’analyse LC-MS/MS (difficultés 
d’ionisation et/ou de fragmentation des phosphopeptides) et jusqu’au traitement des données de 
phosphoprotéomique (outils classiques non adaptés, difficultés à localiser le site modifié, …), l’analyse 
des phosphopeptides rencontre de nombreuses difficultés7. 
Des difficultés supplémentaires s’ajoutent à la mise en place d’un protocole lorsque l’analyse 
(phospho)protéomique doit être réalisée dans le cadre d’une étude multi-omique dans un contexte 
d’application clinique. La multi-omique est définie comme une analyse regroupant des données issues 
de différentes sciences -omiques, telles que la génomique, la transcriptomique ou la protéomique 
entre autres. Ce type d’étude s’est révélée indispensable pour l’étude de pathologies complexes, pour 
lesquelles l’utilisation des différentes sciences -omiques séparément s’est avérée insuffisante pour 
expliquer les différents processus en cause dans ces maladies8. Cependant, dans un projet multi-
omique, la quantité de matériel de départ à disposition est souvent réduite, puisque les échantillons 
biologiques utilisés sont la plupart du temps issus de patients et l’échantillon précieux récupéré doit 
être utilisé pour les différentes analyses omiques. De plus, ces études regroupent généralement de 
grandes cohortes d’échantillons, afin d’être le plus représentatif possible de la population étudiée. Les 
protocoles mis en place doivent donc pouvoir être appliqués à de petites quantités d’échantillons de 
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départ, tout en permettant une analyse haut débit aussi reproductible que possible sur des centaines 
d’échantillons. 
L’objectif de ma thèse contenait ainsi deux axes principaux : 

• Le développement d’un protocole de phosphoprotéomique à haut débit, de la préparation 
d’échantillon, en passant par l’analyse LC-MS/MS et le traitement des données générées. Ainsi, 
j’ai développé un protocole automatisé de préparation d’échantillons adapté à des petites 
quantités de tissus cérébraux, comprenant notamment un enrichissement des 
phosphopeptides par Immobilized Metal Affinity Chromatography (IMAC). J’ai également 
évalué les paramètres chromatographiques, différentes énergies de collision mais aussi 
différentes méthodes d’acquisition (Data Dependent Acquisition (DDA) et Data Independent 
Acquisition (DIA)) sur une plateforme LC-MS/MS de dernière génération, afin de développer 
une méthode optimisée pour l’analyse de ces phosphopeptides. Enfin, différents logiciels de 
traitement des données ont été évalués pour l’identification, la quantification et la localisation 
des sites de phosphorylation, cette information de localisation étant cruciale pour 
l’interprétation biologique des résultats. 

• Ce protocole optimisé a ensuite été appliqué dans le cadre d’un projet multi-omique (Multi-
omic analysis of axono-synaptic degeneration in motoneuron disease, MAXOMOD) pour lequel 
j’ai réalisé l’analyse protéomique et phosphoprotéomique de centaines d’échantillons 
d’origines biologiques différentes (tissus cérébraux murins et humains, liquides céphalo-
rachidiens humains). Pour l’analyse des échantillons de liquide céphalo-rachidien (CSF), une 
méthode de préparation d’échantillon a également été développée, compatible à la fois avec 
l’analyse protéomique et phosphoprotéomique. Des contrôles qualités, transférables à 
d’autres applications cliniques, ont été mis en place pour s’assurer de la qualité et de la 
reproductibilité de l’ensemble des analyses (phospho)protéomiques réalisées sur cette large 
cohorte d’échantillons. 
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Chapitre 2 : Développement d’un protocole de 
phosphoprotéomique automatisé et à haut débit  

1. Développement d’un protocole de préparation d’échantillons 
automatisé et haut débit pour l’analyse phosphoprotéomique 

De nombreuses optimisations ont été réalisées pour la mise en place d’un protocole complet de 
phosphoprotéomique, automatisé et applicable à des analyses à haut débit. L’extraction des protéines 
a tout d’abord été optimisée en comparant 5 protocoles différents (Figure 2 – (A)).  

Figure 2: (A) Différents protocoles évalués pour la préparation d’échantillons et l’extraction des 
protéines (B) Nombre moyen de peptides identifiés et validés pour chaque protocole d’extraction. 

En Figure 2 – (B), nous concluons que les deux protocoles d’extraction donnant les meilleurs résultats 
sont les protocoles C (6M urée, 2M thio-urée sans précipitation) et E (Laemmli). En effet, après 
digestion, ils permettent d’identifier entre 6000 et 6500 peptides contre moins de 6000 peptides pour 
les autres protocoles. Ces deux protocoles ont ainsi été sélectionnés pour la suite des optimisations. 
Afin de palier à la faible stœchiométrie des phosphopeptides comparés aux peptides non phosphorylés 
dans les échantillons9, une étape d’enrichissement des phosphopeptides par chromatographie 
d’affinité est nécessaire. Ici, nous avons utilisé une étape d’enrichissement automatisée sur cartouches 
IMAC à l’aide d’un robot Bravo AssayMAP (Agilent Technologies). Les extraits peptidiques des deux 
conditions retenues ont ainsi été soumis à cet enrichissement, et ont conduit aux résultats présentés 
en Figure 3.  

Figure 3: Nombre moyen de phosphoprotéines et phosphopeptides identifiés à l’aide des deux 
protocoles après enrichissement IMAC. 
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Le protocole urée/thiourée présente les meilleurs résultats en terme d’identification de 
phosphoprotéines et phosphopeptides. Cependant, le protocole avec un tampon « Laemmli » ayant 
été retenu pour le projet multi-omique décrit en Chapitre 2 - 1.Analyse protéomique haut débit de 
large cohortes de tissus cérébraux murins et humains, seuls les résultats obtenus avec ces conditions 
seront présentés dans la suite de ce travail. 

2. Optimisation d’une méthode LC-MS/MS pour l’analyse des 
phosphopeptides 

Les échantillons enrichis sur cartouches IMAC ont ensuite été utilisés afin d’optimiser une méthode 
LC-MS/MS pour l’analyse des phosphopeptides. En effet, l’analyse par spectrométrie de masse des 
phosphopeptides est loin d’être triviale, de part notamment la labilité de la modification. A partir d’une 
méthode sur une Q-Exactive HF-X, non optimisée pour la phosphoprotéomique, nous avons ainsi 
profité des performances d’un instrument de dernière génération, le TimsTOF Pro, pour développer 
une méthode adaptée à l’analyse des phosphopeptides. Sur ce couplage LC-MS/MS, deux modes 
d’acquisition différents ont été testés : le mode DDA et le mode DIA (Figure 4). 

Figure 4: Schéma analytique pour l’optimisation d’une méthode LC-MS/MS pour l’analyse des 
phosphopeptides. 

Dans un premier temps, les paramètres communs aux deux modes d’acquisition ont été évalués en 
mode DDA : optimisation du temps d’accumulation, de la rampe d’énergie de collision et de la fenêtre 
de mobilité ionique. Ces optimisations ont permis d’augmenter le nombre de phosphosites de façon 
significative (plus de 35%) comparé à la méthode non optimisée (Figure 5, méthodes 3 et 4).  

Figure 5: Résultats d’identification et de quantification des phosphosites classe I à travers les 
différentes optimisations LC-MS/MS. 
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Une des limitations majeures du mode d’acquisition DDA est sa nature semi-stochastique. En effet, 
seuls les N ions précurseurs les plus intenses en MS1 vont être sélectionnés pour la fragmentation, 
limitant la gamme dynamique et la reproductibilité de la méthode. La DIA offre une alternative 
prometteuse10, puisqu’elle permet de fragmenter tous les ions compris dans une fenêtre d’isolation 
de masse définie. Cette méthode d’acquisition permet ainsi d’atteindre une meilleure justesse et 
sensibilité d’analyse. De plus, les premières études récentes décrites dans la littérature qui combinent 
une approche DIA avec la technologie de Parallel Accumulation Serial Fragmentation (PASEF) ont 
montré une augmentation considérable de la couverture du protéome et phosphoprotéome10,11, 
révélant ainsi les capacités plus que prometteuses de ces nouvelles générations. C’est pour cela que 
j’ai mis en place une méthode DIA pour l’analyse des phosphopeptides sur le TimsTOF Pro. Plusieurs 
paramètres ont ainsi été évalués (largeur de fenêtre d’isolation, temps d’accumulation, temps de cycle, 
plage de mobilité ionique) afin d'augmenter le nombre de sites de phosphorylation identifiés et 
quantifiés. Ces optimisations ont conduit à une méthode DIA adaptée pour la phosphoprotéomique, 
permettant ainsi d’atteindre de presque 8000 phosphosites class I identifiés (Figure 5, méthode 5). 

3. Evaluation de différentes méthodes de traitement de données 
pour l’identification, la quantification et la localisation de 
phosphorylation 

L'analyse des données en phosphoprotéomique est une étape difficile car, outre l'identification des 
peptides, les sites de phosphorylation doivent être localisés. L'identification et la quantification des 
sites de phosphorylation peuvent être effectuées par différents algorithmes. Ces derniers génèrent 
également différents scores pour évaluer la fiabilité de la localisation de la phosphorylation. 
Cependant, les données de la littérature ne permettent pas toujours de comparer directement les 
résultats obtenus par les différents algorithmes. C'est pourquoi durant ma thèse, j’ai comparé 
plusieurs logiciels de traitement des données de phosphoprotéomique, à la fois pour l’analyse DDA et 
DIA (Figure 6). 

Figure 6: Schéma analytique pour l’optimisation du traitement de données pour l’analyse DDA et DIA 
des phosphopeptides. 

Dans un premier temps, les résultats de comparaison des méthodes de traitements de données 
phosphoprotéomique issues de la DDA sont illustrés en Figure 7 – (A). Des nombres plus élevés 
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d'identification sont obtenus en utilisant la combinaison des deux moteurs de recherche, Mascot et de 
MS Amanda, avec plus de 1300 phosphosites, soit 8% de plus qu'en utilisant Mascot seul. Cependant, 
en regardant plus en détail dans les données et notamment les spectres de certains phosphopeptides 
identifiés uniquement par MS Amanda, il semble que ces spectres soient moins informatifs que ceux 
obtenus par Mascot. Pour l’évaluation des logiciels de DIA, DIA-NN permet une nette augmentation 
du nombre de phosphopeptides identifiés avec en moyenne 20% supplementaires sur l’ensemble des 
méthodes (Figure 7 – (B)). 

Figure 7: Comparaisons des logiciels de traitement des données phosphoprotéomique (A) DDA : 
Nombres moyens de phosphoprotéines, -peptides, et -sites identifiés (B) DIA : Nombres moyens de 

phosphopeptides identifiés. 

La définition d'un site de phosphorylation est dépendante du logiciel. En général, un site de 
phosphorylation fait référence à la localisation d'un acide aminé dans la séquence peptidique portant 
une phosphorylation. La notion de site donne plus d'informations que le phosphopeptide car un 
peptide peut porter plusieurs phosphorylations et plusieurs peptides peuvent porter le même site de 
phosphorylation. Ainsi, si la quantification est effectuée au niveau du peptide plutôt qu'au niveau du 
site, un biais est introduit. En mode DDA, si Proline et Proteome Discoverer permettent tous deux 
d'identifier les sites de phosphorylation, ils ne donnent accès à aucune information de quantification 
au niveau du site. MaxQuant est, à ce jour, le seul logiciel DDA à permettre la quantification des 
phosphosites en additionnant les intensités de tous les phosphopeptides impliqués dans un site, 
contenant ainsi les peptides avec des clivages manqués et ceux avec des modifications additionnelles. 
Similairement en DIA, Spectronaut est le seul logiciel à permettre la quantification des phosphosites. 
Pour cette raison, MaxQuant pour les données DDA et Spectronaut pour la DIA ont été les deux logiciels 
utilisés pour le traitement des données de phosphoprotéomique durant le reste de ma thèse. 
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Chapitre 3 : Application des développements 
méthodologiques à une étude multi-omique pour 

la recherche de biomarqueurs de la sclérose 
latérale amyotrophique - projet MAXOMOD 

La sclérose latérale amyotrophique12 (SLA) est une maladie neurodégénérative qui provoque des 
faiblesses musculaires progressives suivies du décès de la personne malade dans les 3 à 5 ans suivants 
les premiers symptômes. Son diagnostic est basé sur des critères cliniques et survient relativement 
tardivement. En raison de son mauvais diagnostic et des options thérapeutiques limitées, une 
meilleure caractérisation des événements déclencheurs du développement de la SLA est nécessaire. 
Le but du projet européen MAXOMOD, qui a financé une partie de mes travaux de thèse, était 
d’adopter une approche multi-omique pour identifier de nouvelles voies et biomarqueurs liés à la SLA.  

1. Analyse protéomique haut débit de large cohortes de tissus 
cérébraux murins et humains 

L'agrégation de différentes protéines, telles que SOD1, TDP-43, C9ORF72 ou FUS dans le cerveau, et 
notamment dans le cortex frontal, est bien connue comme l'une des principales caractéristiques de la 
SLA13,14. Par conséquent, l'étude (phospho)protéomique des tissus post-mortem du cortex préfrontal 
humain et de souris transgéniques peut permettre d'identifier des protéines spécifiques à la maladie. 
Ces protéines, participant à des processus pathologiques clés, peuvent être utilisées comme 
biomarqueurs potentiels de la SLA. Dans ce contexte, je me suis concentrée sur les développements à 
mener pour obtenir des protocoles complets pour l’analyse par LC-MS/MS à haut débit du protéome 
et du phosphoprotéome de grandes cohortes de tissus cérébraux. Pour chaque modèle étudié, la 
moitié des échantillons provenait d’échantillons contrôle et l'autre moitié d’échantillons ALS ou de 
souris transgéniques.  

Figure 8: Pour les différents modèles étudiés, résultats globaux de quantification et issus de l’analyse 
différentielle entre les conditions transgénique et contrôle, chez les mâles et femelles (A) 

Protéomique globale (B) Phosphoprotéomique. 

L’analyse des protéomes totaux a ainsi permis la quantification de plus de 3000 protéines (Figure 8 – 
(A)). Parmi elles, seul un faible pourcentage de protéines a été quantifié différentiellement entre les 
deux conditions, que ce soit chez les mâles ou les femelles. Pour l’analyse phosphoprotéomique des 
tissus (murins uniquement), le protocole développé précédemment (détaillé en Chapitre 1 - 1. 
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Développement d’un protocole de préparation d’échantillons automatisé et haut débit pour 
l’analyse phosphoprotéomique) a été appliqué sur les tissus. Ce protocole optimisé a permis la 
quantification de 3000 à 5000 phosphosites class I (Figure 8 – (B)). Comme pour la protéomique, 
l’analyse différentielle n’a révélé que peu de phosphosites différentiels. Ces résultats mettent en avant 
le peu de différence entre le protéome d’une personne saine et d’une personne atteinte de la SLA, 
ainsi que la complexité de la maladie. Malgré les faibles changements observés, ces résultats, mis en 
commun avec les résultats des autres sciences –omiques, ont permis l’identification de potentiels 
biomarqueurs de la SLA. 

2. Développement d’un protocole commun pour l’analyse 
protéomique et phosphoprotéomique de liquide céphalo-
rachidien 

Pour l’analyse protéomique et phosphoprotéomique de liquide céphalo-rachidien (LCR), différents 
protocoles de préparation d’échantillons ont été évalués. L’enjeu était de mettre en place un protocole 
commun à l’analyse protéomique, phosphoprotéomique et métabolomique, à partir du même 
échantillon.  

Figure 9: (A) Schéma analytique pour la préparation des échantillons LCR  (B) Résultats de la 
comparaison des deux protocoles en termes de protéines et peptides identifiés  (C) Résultats de 

l’analyse phosphoprotéomique de LCR à partir du protocole de préparation d’échantillon au 
RapiGest. 

Après une étape de précipitation au méthanol pour extraire les métabolites des échantillons et 
concentrer les échantillons, deux protocoles de digestion ont été comparés (Figure 9 – (A)). Le premier 
correspond à l’utilisation du kit commercial de préparation d’échantillon iST PreOmics consistant en la 
solubilisation des protéines dans leur tampon commercial, suivie du protocole iST de digestion sur 
membrane. Le second correspond à la reprise des protéines dans 0.1% de surfactant RapiGest, suivi 
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d’un protocole de digestion liquide. Les résultats de protéomique globale (Figure 9 – (B)) montrent 
que le protocole « RapiGest » permet d’obtenir un plus grand nombre d’identifications (plus de 3300 
peptides contre moins de 2300 peptides). Les performances du protocole RapiGest ont ensuite été 
évaluées pour l’analyse phosphoprotéomique. Pour cela, une étape d’enrichissement des 
phosphopeptides a été ajoutée. Grâce à ce protocole optimisé, des résultats prometteurs pour 
l’analyse des phosphorylations du LCR ont été obtenus, représentés en Figure 9 – (C). 
Le protocole de préparation des échantillons de LCR avec du RapiGest a ensuite été appliqué pour 
l’analyse protéomique et phosphoprotéomique des plus de 100 échantillons de LCR cliniques de 
patients contrôles et de patients atteints de la SLA. L’analyse a permis la quantification de 669 
protéines, dont 59 exprimées différentiellement chez les mâles et seulement 12 chez les femelles. Pour 
la phosphoprotéomique, plus de 360 phosphosites classe I ont été quantifiés. Parmi eux, 23 
phosphosites classe I différentiels chez les mâles et 28 chez les femelles. Ces résultats, mis en commun 
par la suite avec les autres équipes des différentes omiques du projet, permettent l’identification de 
potentielles cibles biomarqueurs de la SLA. 

3. Contrôles qualité pour l’analyse protéomique et 
phosphoprotéomique de larges cohortes d’échantillons 

Afin de s’assurer de la robustesse et répétabilité de notre préparation d’échantillons et de nos analyses 
sur de si grands nombres d’échantillons, différents contrôles qualités (QC) ont été mis en place. 
Pour les analyses protéomiques, des peptides synthétiques standards (iRT, Biognosys) ont été ajoutés 
à tous les échantillons avant leur injection en LC-MS/MS. Ces derniers nous ont permis de vérifier 
l’alignement des temps de rétention au cours de nos longues séquences d’injections. Ainsi, pour les 9 
peptides synthétiques détectés sur l’ensemble des cohortes, le coefficient de variation (CV) moyen sur 
les temps de rétention est inférieur à 4%, soulignant la stabilité du système chromatographique tout 
au long des plus de 1000 injections (Figure 10 – (A)). En plus de ce QC interne, un mélange de tous les 
échantillons a été assemblé pour chaque cohorte avant les étapes de réduction et alkylation des 
protéines. Ce pool a ensuite suivi exactement les mêmes étapes de préparation que les autres 
échantillons et a été injecté à intervalles très réguliers durant nos analyses. Cela nous a permis de nous 
assurer de la stabilité du signal de MS. En effet, comme illustré en Figure 10 – (B), l’abondances des 
protéines identifiées par les pools restent stable au cours des pools injectés ie au cours du temps.  

Figure 10 : (A) Coefficients de variation (en %) des temps de rétention des différentes peptides iRT 
synthétiques dans les échantillons des différentes cohortes de protéomique (B) Nuages de points 
représentant la variation de l’abondance protéique moyenne des différents pools d’échantillons. 
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Pour les analyses de phosphoprotéomique, un mélange de phosphopeptides synthétiques standards 
(Phosphomix, Sigma Aldrich) a été utilisé. Ces derniers ont été ajoutés sous leur forme non marquée 
« light » avant l’étape d’enrichissement sur cartouches IMAC, et sous leur forme isotopiquement 
marquée « heavy » après l’enrichissement. En calculant ensuite les ratios de l’intensité du peptide light 
sur l’intensité du peptide heavy, cela nous permet d’estimer un ratio d’enrichissement pour chaque 
phosphopeptide synthétique de chaque cohorte. Ainsi, en moyenne, entre 20% et 50% du matériel 
peptidique a été enrichi (Figure 11 – (A)). Afin d'évaluer la stabilité du système chromatographique, 
nous avons représenté les CV sur les temps de rétention des différents phosphopeptides synthétiques 
dans chaque cohorte (Figure 11 – (B)). Pour tous les modèles de souris, presque tous les CV sont 
inférieurs à 1 %, ce qui souligne la grande stabilité du système LC. De plus, même pour la grande 
cohorte de LCR, les CV sont tous inférieurs à 2 %. Cela permet de conclure que le système 
chromatographique est très stable sur des centaines d'injections. 

Figure 11: (A) Diagrammes en boîte représentant le ratio de phosphopeptides enrichis pour chaque 
cohorte (B) Coefficients de variation (en %) des temps de rétention des différents phosphopeptides 

synthétiques Phosphomix dans les échantillons des différentes cohortes. 

4. Evaluation des performances d’un logiciel d’Open Modification 
Search pour l’identification de phosphorylations 

Lors d’une analyse protéomique, un grand nombre de spectres ne sont généralement pas attribués à 
des peptides. L'une des raisons pour cela est l'espace de recherche restreint des moteurs de recherche 
actuels, qui ne peuvent donc pas identifier les peptides présentant des modifications inattendues. En 
effet, si une modification particulière n'a pas été spécifiée dans les paramètres de recherche, les 
spectres correspondant aux peptides portant cette modification peuvent se faire attribuer une 
séquence d'acides aminés incorrecte15. Dans cette optique, des outils d’Open Modifications Search 
(OMS) ont été développés pour identifier les spectres modifiés. Les logiciels OMS sont donc 
particulièrement prometteurs pour l'étude des PTMs. 
Pour mes travaux de thèse, j’ai donc évalué les performances d'un outil OMS, IonBot16, sur nos 
différents ensembles de données de tissus cérébraux de souris enrichis en phosphopeptides. Les 
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performances de IonBot (v.0.10.0) ont été comparées à celles de MaxQuant (v.1.6.14), pour 
l'identification des phosphorylations.  

Figure 12: Résultats de l'identification des phosphoprotéines, phosphopeptides et phosphosites pour 
les différents modèles de souris en utilisant Andromeda (MaxQuant) ou IonBot pour la recherche. 

IonBot permet ainsi d'augmenter les identifications de 15% (phosphopeptides) à 50% 
(phosphoprotéines). L'augmentation est encore plus impressionnante au niveau des sites avec en 
moyenne 10 000 phosphosites supplémentaires identifiés grâce à IonBot. En combinant les 
identifications des différentes cohortes, j’ai ensuite étudiés les différentes populations identifiées par 
les deux logiciels. IonBot permet ainsi l’identification de plus de 6700 phosphopeptides uniques 
comme représenté en Figure 13 – (A). En se concentrant sur les phosphopeptides identifiés 
uniquement par IonBot, j’ai pu mettre entre avant que la plupart d’entre eux sont également identifiés 
par IonBot mais avec des caractéristiques différentes (portant une autre modification, non modifié…). 
De plus, un filtre limitant la longueur des peptides à maximum 30 amino-acides afin de limiter l’espace 
de recherche est appliqué automatiquement lors de la recherche IonBot. Ainsi, plus de 800 
phosphopeptides sont uniquement identifiés par MaxQuant avec une longueur de peptide supérieure 
à 30 amino-acides puisque MaxQuant ne fixe pas de filtre à ce niveau. 

 Figure 13: (A) Recouvrement des phosphopeptides identifiés entre IonBot et Andromeda 
(MaxQuant) (B) Modifications les plus abondantes avec IonBot et le nombre correspondant de 

peptides modifiés identifiés.  
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Chapitre 4 : Conclusion générale 
Grâce à ces travaux de thèse, j’ai acquis une expertise dans le domaine de la protéomique et 
phosphoprotéomique basée sur la spectrométrie de masse. 
 
La première partie de ma thèse s’est concentrée sur les nombreux défis de l’analyse 
phosphoprotéomique. J’ai ainsi développé des protocoles complets et automatisés pour l’analyse des 
phosphopeptides, adaptés à la nature des échantillons du projet. J’ai commencé par l’optimisation de 
la préparation des échantillons et notamment celle de l’extraction des protéines et de l’étape 
d’enrichissement des phosphopeptides automatisée. Je me suis ensuite concentrée sur le 
développement de méthodes LC-MS/MS pour l’analyse des phosphopeptides sur un TimsTOF Pro. J’ai 
ainsi évalué les performances et l’influence de différents paramètres, à la fois en mode DDA et DIA, 
sur la qualité des résultats d’analyse. Ce travail a donné lieu à une méthode optimisée pour la 
phosphoprotéomique sur le TimsTOF Pro. Enfin, j’ai approfondi ces travaux jusqu’au choix du logiciel 
le plus adapté pour l’identification, la quantification et la localisation des sites de phosphorylation. J’ai 
ainsi évalué plusieurs logiciels proposés pour l’analyse – délicate et difficile – des données de 
phosphoprotéomique, qu’elles soient générées en DDA ou en DIA. 
 
La seconde partie de mes travaux de thèse est axée sur l’application d’une partie de ce travail dans le 
cadre d’un projet multi-omique sur la SLA. Dans ce contexte, j’ai réalisé des analyses protéomiques et 
phosphoprotéomiques sur un grand nombre et variété d’échantillons cliniques. Pour cela, j’ai 
notamment optimisé un protocole de préparation d’échantillon pour le LCR, commun à la fois à 
l’analyse protéomique, phosphoprotéomique et métabolomique. L’analyse, protéomique et 
phosphoprotéomique, des tissus et des échantillons LCR, a permis d’identifier de potentielles cibles 
pour la SLA qui seront par la suite validées en tant que biomarqueurs. La qualité de l’ensemble de ces 
analyses a pu être évaluée grâce à de nombreux contrôles qualités attestant de la reproductibilité des 
protocoles développés sur de larges cohortes d’échantillons. Enfin, j’ai évalué les performances d’un 
logiciel d’OMS pour l’identification de phosphorylations. Les résultats de cette expérience, bien que 
préliminaires, sont très prometteurs avec une augmentation des identifications de plus de 50%. 
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General introduction 
Proteins are large and complex molecules made of hundreds to thousands of amino acids, linked by 
peptidic bonds. The variety of proteins is extreme and collectively, proteins catalyze and control most 
tasks within biological systems. Proteomics is defined as the large-scale characterization of the entire 
protein complement of a cell, tissue or organism, at a specific time and location, and under given 
physiologic/pathologic conditions17. The proteome is thus highly dynamic and extremely complex. 
Indeed, in response to internal or external stimuli, proteins can be synthetized, modified by post-
translational modifications (PTMs), undergo translocations within the cell or be degraded. The 
transcription into RNA of the approximately 20,000 protein-coding human genes produces 
approximately 100,000 transcripts, which will be then translated into more than half a million proteins. 
It is estimated that at least half of these proteins contain modification sites that may carry a PTM, 
creating a total of more than a million different proteic forms, called proteoforms18. To date, more 
than 300 types of PTMs19 such as acetylation, glycosylation, phosphorylation, etc..., are described to 
occur physiologically and the implication of some of them has already been clearly recognized during 
the transformation of normal cells into tumor cells20. 
 
Strong from these specificities, proteomics represents a great opportunity to investigate biological 
processes and their modulating mechanisms upon genetic variability, environmental or physiological 
perturbations. Additionally, thanks to its complementarity with other –omics sciences (genomics, 
transcriptomics, metabolomics …), proteomics is a major counterpart in the context of multi-omics 
studies. These studies, while facing a combination of challenges both intrinsic to each individual omics 
and more generally for multi-level data integration, are still the most promising route to better 
understand cellular processes involved in many diseases21,22. 
 
The increasing interest for proteomics has followed the development of new technologies adapted for 
peptides/proteins separation and analysis. Since the 80’s during which proteomics analysis was 
performed on bi-dimensional electrophoresis gels, mass spectrometry has become a tool of choice for 
proteomic analysis thanks to numerous technological advances, together with continuous 
developments in sample preparation and data analysis17,23,24. Nowadays, high throughput label-free 
proteomics allows the identification and quantification of thousands of proteins in a few hours25. This 
label free approach can also be applied to study PTMs. However, they add an additional level of 
complexity to the analysis and despite recent advances, remains an analytical challenge. Difficulties 
emerge from sample preparation (labile PTMs, incomplete digestion, site localization, …), from the LC-
MS/MS analysis (ionization and fragmentation issues, low stoichiometry…) and from data treatment 
(localization of the modified site, quantification at the site level, …).  
 
My PhD work is in line with this context. Indeed, it was focused on the development of high-throughput 
proteomics and phosphoproteomics methods, and their application for amyotrophic lateral sclerosis 
(ALS) biomarker discovery on large cohorts. 
 
This manuscript is structured in five parts that are here briefly presented: 

• Part I of the manuscript is a brief summary in French of my PhD work. 
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• Part II corresponds to an overview of the state of the art in quantitative proteomics. It includes 

the description of the three main steps of the label free bottom-up proteomics workflow: 
sample preparation, LC-MS/MS analysis, and data treatment. It includes also the specificities 
and difficulties of protein phosphorylation analysis. A specific focus is also put on Data 
Independent Acquisition (DIA) methods, its different strategies, challenges, and its application 
to phosphoproteomics. Finally, a short review on multi-omics approaches to disease sums up 
the different challenges faced with these kind of studies. 
 

• Part III focuses on the analytical developments conducted to set up a fully automated high 
throughput phosphoproteomics workflow: 

- Chapter 1 describes the optimization of phosphoproteomics sample preparation on 
bovine brain tissues. It includes protein extraction and digestion optimizations, as well 
as phosphopeptide enrichment efficiency and reproducibility evaluation.  

- Chapter 2 details the developments performed for the optimization of a nanoLC-
MS/MS method for phosphopeptides analysis. In this chapter, different nanoLC-
MS/MS platforms and fragmentation methods were compared for phosphoproteomic 
analysis. NanoLC-MS/MS methods were then optimized using different modes of 
acquisition to study phosphopeptides. 

- In Chapter 3, different pipelines for phosphoproteomics data analysis were compared. 
Their performances were evaluated for the identification, quantification and 
localization of phosphorylation events. 
 

• Part IV is dedicated to the developments conducted and results obtained in the context of the 
Multi-omic analysis of AXOno-synaptic degeneration in MOtoneuron Disease (MAXOMOD) 
project (European consortium that has partially funded this PhD work). 

- Chapter 1 focuses on the application of proteomics and phosphoproteomics 
workflows for high throughput analysis of large cohorts of brain tissues. It sums up the 
protocols used as well as the global identification and quantification results achieved. 
The differential expression of some proteins/phosphosites is also investigated, as well 
as the biological relevance of those proteins/phosphosites. 

- In Chapter 2 the development of a protocol for proteomics and phosphoproteomics 
analysis of cerebrospinal fluid (CSF) samples is described. The evaluation of different 
sample preparation workflows and their performances for both proteomics and 
phosphoproteomics are evaluated. The results of the analysis of more than 100 
samples of clinical CSF for the MAXOMOD project are also detailed. The biological 
relevance of potential biomarker target was discussed. 

- Chapter 3 addresses the need of quality controls for proteomics and 
phosphoproteomics analysis of large cohorts of samples. 

- In Chapter 4, the use of an open modification search (OMS) software is evaluated to 
further increase phosphoproteome coverage in the future. 
 

• Part V details all experimental procedures and protocols used for the presented PhD work. 
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Chapter 1: Mass spectrometry analysis of proteins  
Proteins are functional molecules, coded from genetic information, that catalyze biochemical reaction 
in the cells of an organism. The first notion of proteome was introduced in 1994 by Marc Wilkins26 by 
analogy with the genome term. Unlike the genome, the proteome is a highly dynamic entity and 
protein expression varies with time, depending on their localization and in response to diverse stimuli, 
making its study challenging23. Proteomics were introduced a few years later by Peter James27. 
Proteomic is the science that studies the proteome and is defined as the large-scale characterization 
of the entire protein complement of a cell, tissue or organism, at a specific time and location, and 
under given physiologic/pathologic conditions17. Proteome adaptability to environmental stimuli, 
while challenging for proteomics analysis, is the reason proteomics studies are so popular in various 
areas such as clinical applications28,29, food industries30,31, plant interaction systems32,33, 
paleontology34,35 or art conservation36,37. 
Mass spectrometry has become a tool of choice for proteomic analysis thanks to numerous 
technological advances17,23,24, such as the development of new soft ionization sources (ESI38 or 
MALDI39) and of new acquisition methods. The constant instrumental developments of mass 
spectrometers and liquid-chromatography have also allowed for great improvement in sensitivity, 
specificity and resolution of proteomics analysis. Moreover, the continuous developments in 
automation of the workflow as well as relentless improvements of bioinformatics tools for data 
treatments have greatly contributed to the popularity of mass spectrometry proteomics. 

1. The different strategies for mass spectrometry-based 
proteomics 

Mass spectrometry-based proteomics can be performed either by keeping protein intact, or after 
enzymatic digestion, as illustrated on Figure 14. 

Figure 14: Schematic representation of the bottom-up and top-down approaches (Figure created 
with BioRender.com). 

The bottom-up approach consists in characterizing protein through the analysis of their peptides, 
obtained after enzymatic digestion. Generated peptides, with a mass lower than 3 kDa, are separated 
by liquid chromatography, ionized and analyzed by MS to obtain their mass. Those ions are then 
selected and fragmented in a collision cell, and masses of the fragment ions are measured by MS/MS. 
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Peptide identification is achieved by comparing those measured masses to a theoretical mass list 
obtained by in-silico digestion of proteic sequences from the chosen database. Protein identification is 
then performed by inference23. As peptides are not necessary uniquely assigned to a single protein but 
can also be shared by more than one protein, the identified proteins may be grouped. However, this 
inference process remains complex and the results of the bottom-up analysis will be the smallest list 
of protein satisfying the principle of parsimony40. 

On the other hand, top-down approach allows the analysis of intact proteins by MS (protein 
mass) and MS/MS (protein sequence) without enzymatic digestion. It aims at providing high coverage 
and complete characterization of a targeted protein. It is especially used to differentiate proteoforms 
and to study PTMs41,42. It has however some limitations43–45, particularly regarding sample preparation 
which requires proper extraction and solubilization of native proteins. Moreover, ionization and 
fragmentation of intact proteins require fine tuning, and are limiting factors of the approach’s 
sensitivity. Mass spectrometers with high resolution, mass accuracy and scan speed are thus required 
in top-down analysis to finely resolve the isotopic envelopes of the multiple charge states proteins 
analyzed. Progress are also still ongoing regarding the interpretation of the complex spectra generated 
and their statistical evaluation. 

While progress are ongoing to make top-down approach compatible with the study of complex 
protein mixture, bottom-up is still established as the gold standard for large scale and high throughput 
proteomics46. Moreover,  MS is currently more widely used to study protein phosphorylation as the 
identification of phosphorylated residues within proteins is mostly done by MS these days, and 
bottom-up technique involves analyzing peptides derived from protein digests47. The work presented 
in this manuscript is only based on this approach and therefore is described step-by-step in the 
following section. 

2. Bottom-up sample preparation 

The bottom-up approach includes three key steps that are described in Figure 15: sample preparation, 
LC-MS/MS analysis, and data analysis. 

Figure 15: Description of the main steps of a bottom-up proteomics workflow. 

The quality and the repeatability of bottom-up proteomics analysis greatly relies on sample 
preparation. Therefore, each step, from protein extraction to the injection on the LC-MS/MS system 
needs to be finely tuned for the analysis and the type of sample. 

i. Protein extraction 

One of the main strength of proteomic analysis is its versatility of applications. Indeed, it can be applied 
on various type of samples ranging from bio fluids such as CSF 48, plasma 49 or urine50, but also tissues51, 
micro-organisms52, plant cells32, or single cells53. The extraction of proteins from those samples is a 
major step, as proteins need to be available to protease for the enzymatic digestion. The goal is to 
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solubilize as many proteins as possible without degrading, modifying or introducing any bias. Cell lysis 
and protein extraction can be performed either mechanically or chemically. 
Mechanical approaches, such as manual mortar and pestle or beads grinding under liquid nitrogen, are 
most used for tissues and cells. Samples can also be sonicated or ultra-sonicated to help lyse and/or 
denaturize the proteins 54. Sonication is also helpful to desorb the proteins that may be adsorbed on 
tube walls. Many developments are being made in order to improve the efficiency, reproducibility and 
reliability of this step, for example: the Bioruptor (Diagenode)55,56 , the CryoPrep extraction system 
(Covaris), or the BeatBox (PreOmics)57. 

The chemical approach is based on the use of denaturing detergents to maximize protein 
extraction and solubilization via micelle formation. Those detergents can be either ionic (SDS), non-
ionic (Triton), zwitter-ionic (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate [CHAPS]), 
or salts of bile acids that are less denaturant (sodium deoxycholate, SDC) 54,58. All of those are not 
compatible with the enzymatic digestion and therefore need to be removed before the digestion. 
Other ionic detergents are however compatible with the enzymatic digestion RapiGest (Waters)59,60 
for example. The addition of chaotropic agents such as urea or thio-urea allows protein denaturation 
and unfolding of their structure. Organic solvents like ACN or MeOH also facilitate protein 
denaturation. Other conditions such as the concentration of the lysis buffer, its pH or the temperature, 
need to be adapted to the extraction process and the type of sample54,58,61. A combination of both 
chemical lysis and mechanical stimuli is however the most common approach61. 

Using detergents may not always be compatible with the LC-MS/MS analysis as they may 
contains impurities (salts, Triton…). Other impurities such as lipids or nucleic acids may be presents in 
the samples and interfere with the analysis by co-eluting with peptides of interest. A precipitation step 
may be added to remove get rid of those unwanted components. Most common protein precipitation 
are performed using trichloroacetic acid, ice cold ethanol, methanol or acetone, or a combination of 
two of those organic solvents together54,62,63. Other techniques might be used such as Solid-Phase 
Extraction (SPE), or filter based methods to remove contaminants. However, they have been shown to 
be more time consuming and prone to sample loss64. 

ii. Enzymatic digestion 

Enzymatic digestion is one of the key step of bottom-up proteomics sample preparation. Indeed, an 
incomplete digestion might result in a high rate of missed cleavages, generating peptides not selected 
for MS fragmentation or leading to lower quality spectra65,66. Before performing the digestion step, 
there is usually a step to reduce and alkylate the disulfide bridges of the proteins in order to ensure to 
proteases the access to cleavage sites. 

a. Reduction and alkylation 

Disulfide bonds are the results of a covalent bond between two cysteine’s’ thiol group on a protein. 
They contribute to the stability of its structure67. Two of the most used reducing agents used in 
proteomics to reduce disulfide bridges are dithiothreitol (DTT)68 and tris-2(-carboxyethyl)-phosphine 
(TCEP)69. They are both an alternative to beta-mercaptoethanol which is more toxic and less stable70. 
Sulfide groups are then alkylated to prevent the bridges to form again. Several alkylating agents may 
be used, the most common of them is iodoacetamide (IAM), but alkylation can also be performed using 
acrylamide or chloroacetamide70. The performances of those different reagents were evaluated on 
HeLa cells70, highlighting the great impact of the choice of an adapted reductant and alkylant. Indeed, 
they have a non-negligible impact on the identified peptides as well as the reproducibility of the 
experiment. 
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b. Used proteases 

After reduction and alkylation, proteins are digested, most of the time using trypsin. Trypsin owes its 
popularity to its high efficiency, cleavage-site specificity and relatively easy accessibility66,71,72. Trypsin 
cleaves specifically at the C-terminal end of lysine and arginine, except when they are followed by a 
proline, due to steric hindrance70,71. Thanks to the frequency of lysine and arginine residues, it 
generates peptides with a mass usually between 500 to 3000 Da, therefore suitable for the LC-MS/MS 
analysis. Moreover, a positive charge is present after cleavage at the basic C-terminal end of the 
peptides, which will favor their ionization and fragmentation, according to the mobile proton model, 
thus making tryptic peptides even more adapted to LC-MS/MS analysis. Tryptic digestion is usually 
performed at 37°C and pH 7, overnight (from 12 to 17 h). However, if an excess of enzyme is added or 
if the digestion is performed longer than recommended, trypsin might autolyze, leading to unwanted 
peptides that will compete with peptides of interest during the LC-MS/MS analysis73. 

For the past years, other proteases have been presented as alternatives. Due to the overall 
short lengths of tryptic peptides (56% of all generated tryptic peptides are smaller than 6 residues), 
they may be not identified by, therefore allowing only a limited segment of the proteome to be 
covered, especially when PTMs or proteoforms are involved72. To access a wider coverage, alternatives 
proteases have been investigated: chymotrypsin, pepsin, LysN, AspN, GluC, LysC or ArgC 66,74–76. The 
combination of trypsin with another protease seems particularly efficient as shown on S.Pombe cells 
where a mix of trypsin and AspN allowed a fine improvement in terms of peptide identification74. In 
particular, the association of trypsin to LysC displays higher sequence coverage and its use has spread 
across the scientific community77–79. LysC has the advantage of cleaving on the C-terminal of lysine 
residues, complementing the action of trypsin. Trypsin digestion (or a combination of trypsin and lysC) 
remains however the golden standard in proteomics. The digestion can be performed through 
different protocols, presented in the next paragraphs.  

c. In-solution digestion 

With in-solution digestion (ISD), the enzyme is added directly into the proteic medium. Its main assets 
is the simplicity of the process, as described in Figure 16, and its low cost55,58.  

Figure 16: General scheme of in-solution digestion (Figure created with BioRender.com). 

However, it requires the use of a buffer compatible with enzymatic digestion and LC-MS/MS analysis. 
Therefore, urea-based buffers are largely used as they are compatible with enzymatic digestion once 
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diluted. A clean-up step is then needed to remove urea and other salts that are not compatible with 
the LC-MS/MS analysis. Using C18 cartridges mostly, Solid Phase Extraction (SPE) is most of the time 
performed to clean-up peptides. They are retained based on their hydrophobicity, while salts and 
certain other contaminants are discarded. However, this SPE step needs to be performed with caution, 
as very hydrophobic peptides can remain attached to the cartridges. Moreover, adding an additional 
step to the workflow might lead to sample loss, especially if performed manually and when working 
on very low starting material amounts64. An alternative to classical SPE, called SP2, was recently 
developed80. It is based on the use of carboxylate-modified paramagnetic beads to retain peptides and 
therefore purify them from detergents and other contaminants. This protocol clean-up may be applied 
to phosphopeptides and glycopeptides, and might also be automated80,81. 

d. In-gel digestion 

In-gel preparation is typically employed when SDS was used during extraction step. Indeed, Sodium 
Dodecyl Sulphate – PolyAcrylamide Gel Electrophoresis (SDS-PAGE) protocol, illustrated in Figure 17, 
was developed as a method compatible with SDS use. 

Figure 17: General scheme of SDS-PAGE in-gel digestion (Figure created with BioRender.com). 

Extracted protein are first linearized and negatively charged due to SDS. They are then loaded on the 
gel and protein migration is performed with the application of an electric field. Different migration 
scenarios are possible: 

- 1D SDS-PAGE: proteins are first concentrated in the stacking gel (composed of 4-5% of 
acrylamide/bis-acrylamide). Then, thanks to SDS that uniforms proteic charges, they are 
separated according to their molecular weight by migrating in the separation gel (composed 
of 8-15% of acrylamide/bis-acrylamide). This method allows fractionating samples in several 
bands. 

- The stacking gel: proteins migration is performed only a few centimeters in the stacking, and 
stopped before entering the separation gel.  

Protein presence is then revealed thanks to Coomassie blue. Gel bands are cut, proteins trapped in the 
gel are reduced, alkylated and gel pieces washed to remove SDS and other contaminants. Proteins are 
digested directly in the gel as trypsin is small enough to enter the gel, thanks to dehydration/hydration 
processes. Finally, peptides are extracted from the gel, with again dehydration/hydration 
processes58,82. In-gel protocol was for long the golden standard of proteomic sample preparation but 
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it is time consuming and hardly automatable52,58.Therefore, for the past years, new sample preparation 
protocols, more adapted to high throughput and compatible with SDS have emerged. 

e. Membrane based digestion 

The In-Stage Tip (iST) protocol is filter-aided sample preparation-based method, in which all steps are 
performed in a single, enclosed, volume83. It is commercialized by PreOmics (Planegg-Martinsried, 
Germany) and the general protocol is described in Figure 18.  

Figure 18: General scheme of on filter digestion, iST protocol (Figure created with BioRender.com). 

First, cell are lysed, proteins are solubilized, reduced and alkylated using provided lysis buffer. All of 
these steps are performed under only 10 minutes. Proteins are then loaded on the iST cartridges to be 
digested at 37°C for 1 h. Peptides are washed thanks to centrifugation cycles and finally eluted from 
the cartridges and recovered. As the whole sample preparation is performed in a single reactor, it 
highly simplifies the workflow and thus minimize sample loss. Moreover, iST protocol is very fast and 
has shown robust results on various type of samples such as urine samples50, plasma84, HeLa cells55 or 
cerebrospinal fluid85. IST protocol displayed high level of reproducibility as well as the best digestion 
efficiency when compared to other in-solution and S-Trap protocols50,55. However, as a commercial kit, 
the exact composition of the different buffers is unknown, and the cost of using the kit for sample 
preparation remains significantly higher than for other techniques such as in-solution or in-gel 
protocols. An automated version of the protocol is available on the PreOn robot also commercialized 
by PreOmics. 
Other filter-based techniques, commercialized or not, exist, such as Filter Aided Sample Preparation 
(FASP)86, Suspension Trap (S-Trap)87,88, MStern89, Sample Preparation Kit (Biognosys) or PierceTM Mass 
Spec Sample Pre Kit (ThermoFisher Scientific). They are all based on a similar principle: proteins are 
trapped on a filter, then washed and digested on the filter before peptide recovery by centrifugation.  
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f. Digestion on beads 

The Single-Pot, Solid-Phase-Enhanced, Sample Preparation (SP3) protocol was first described by 
Hughes et al. in 201490, then later improved91,92 and finally automated on a BravoAssay Map platform 
(Agilent) in 202093. SP3 protocol, described in Figure 19, uses paramagnetic beads functionalized with 
carboxylate groups. Proteins are bound to those beads in specific conditions, usually at physiological 
pH and with a 50% concentration in ACN. Mechanisms advanced to explain this binding are similar to 
those in play in Hydrophilic Interaction Chromatography (HILIC) and Electrostatic interaction Liquid 
Chromatography (ERLIC)80,90. Extended investigation showed that protein immobilization is also driven 
by protein aggregation induced by the high concentration of organic solvent such as ACN94. Beads 
carrying the beads are then retained thanks to a magnetic rack to go through a series of washing step 
to get rid of contaminants. Proteins are then enzymatically digested, and peptides are recovered from 
the beads again using a magnetic rack. 

Figure 19: General scheme of bead-based digestion, SP3 protocol (Figure created with 
Biorender.com). 

The SP3 protocol has been applied to a wide variety of samples such as plants95, aquaculture species96, 
immunoprecipitation (IP)97, paleoproteomics human bone samples 34, yeast98, FFPE tissues99. SP3 
protocol has also been combined to labeling method such as TMT98,99 or SILAC100 labeling. Comparing 
SP3 to both in-gel and S-Trap digestion protocols, on micro-organisms, SP3 outperformed the two 
other methods in terms of speed, and allowed more peptides and proteins identification than in-gel 
protocol52. On different quantities of HeLa cells (from 1 µg to 20 µg), SP3 was compared to iST and 
FASP methods101. All three methods showed comparable performances for 20 µg of starting material. 
However, for low amount of material (1 µg to 5 µg), SP3 and iST allowed higher proteome coverage 
and reproducibility compared to FASP. On plasma samples, SP3 was tested against in-solution 
digestion, and outperformed the latest in terms of quantified proteins102. Finally, on plant pathogen 
extract, S-Trap protocol increased protein identification and reproducibility compared to SP3103. Many 
other publications and reviews compare sample preparation methods together, highlighting that there 
is no universal protocol suitable for every single kind of sample60,96,104–107. 
SP3 protocol main advantage is its versatility, as it is applicable to almost any kind of bottom-up 
studies, but was also applied on top-down analysis108,109. It Is compatible with SDS up to 10%91 and can 
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be easily applied to low protein amounts by adjusting the bead quantity, and was even applied on 
single cells110. The SP3 protocol has also already shown its aptitude to be automatized, in particular on 
an AssayMAP Bravo platform (Agilent), as shown by different groups93,111. SP3 protocol was also 
adapted as SP2 to purify peptides80 , as solvent precipitation SP3 (SP4)112 using non-magnetic inert 
beads and as universal SP3 (USP3)109 for both bottom-up and top-down sample preparation. 

iii. Automation of proteomic sample preparation 

For the last years, proteomics have evolved to become a method of choice to perform high throughput 
quantitative analysis on large cohorts of samples in the hope of finding new biomarkers for various 
diseases113,114. Sample preparation is a tedious, time consuming step, at the root of many unwanted 
variations. Therefore, there is a real need for automation, not only to increase the throughput, but 
most of all to improve the reproducibility and repeatability of the analysis. Automation also allows to 
reduce even more the amounts of starting material115 
Many steps of proteomics sample preparation, even complete protocols have been automatized. 
Liquid digestion, as well as S-Trap, SP393, or TMT labeling116 are compatible with automated platforms. 
Reduction and alkylation steps, SPE, reversed-phase fractionation may also be performed in an 
automated way1. For the analysis of PTMs such as phosphorylation or others, the enrichment step 
might also be automatized117–119. Many liquid handling platforms have been developed. Two of the 
most widespread are the AssayMAP Bravo (Agilent) and the KingFisher Flex (Thermo), both equipped 
with a 96 tip automatized head. Other platforms might be mentioned such as the MicroLab Star 
(Hamilton), the Resolvex A200 (Tecan), the Biomek workstation series (Beckman Coulter life science) 
or the PreOn platform (PreOmics)115. Recently, interfaces between sample preparation steps and LC-
MS/MS system have emerged, such as the cellenONE robot (CELLENION)120 to perform single cell 
analysis, or the ADE-OPI-MS developed by AB Sciex121. All these techniques allow to reduce drastically 
potential loss of material as well as analysis time. 

3. Liquid chromatography coupled to tandem mass spectrometry  

i. Peptidic separation by liquid chromatography 

While essential to classical bottom-up proteomics approach, enzymatic digestion greatly increases 
sample complexity with tens of thousands of peptides to analyze. Therefore, liquid chromatography is 
most of the time used to decomplexify the peptidic mixture before MS analysis. It thus allows to 
improve ionization efficiency, as well as sensitivity, specificity, and proteome coverage122. For 
proteomics analysis, the most common system is reversed-phase high performance liquid 
chromatography (RP-HPLC). This type of chromatography elutes peptides according to their 
hydrophobicity properties by decreasing the polarity of the mobile phase using a mixture of water and 
ACN. For the results presented in this manuscript, two different LC systems were used and are 
described in the following Table 1. 
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Table 1: Description of the LC systems used in my PhD work. 
Multiple factors are involved in the quality of the peptide’s separation by LC. They are of different 
types: (i) linked to the system itself (composition of the solvents, flow rate, gradient…) or (ii) inherent 
to the column (internal diameter, particle size, pore size, length of the column)123–125. Ultra High 
Pressure Liquid Chromatography (UHPLC) refers to chromatographic systems that are working with 
nano-columns at flow rates lower than µL per minute (nanoLC) and at high pressure (>400 bars). They 
require much lower amount of loaded material (between 100 to 350 ng of peptides), while increasing 
the resolution, sensitivity and peak capacity, rendering them well suited for proteomic analysis of low 
abundant samples. However, they face common technical problems (spray instability, hardly 
detectable leaks, and dead volumes) and thus require expert handling. 

ii. Tandem mass spectrometry 

Once eluted, peptides enter the mass spectrometer and are ionized via Electro Spray Ionization (ESI). 
Data Dependent Acquisition (DDA) is the most popular mode in bottom up analysis. Using this mode 
of acquisition, the mass over charge ratio (m/z) and the intensity of every ion are measured to generate 
a MS spectrum, as described in Figure 20. The top N most intense precursors are then selected, 
fragmented and analyzed, generating MS/MS spectra. 

Figure 20: Schematic representation of a DDA analysis. An MS spectrum is acquired then the N most 
intense ions are isolated one by one by decreasing intensities. Once isolated, they are fragmented in 

the collision cell and fragments ions are analyzed generating MS/MS spectrum. 

DDA mode enables the identification of thousands of proteins, offering a deep proteome coverage. 
However, as the ion selection for fragmentation is solely based on intensities, DDA remains a stochastic 
approach with a great lack of reproducibility especially for low abundant peptides. To increase the 
proteome coverage, some experimental parameters can be tuned such as dynamic exclusion to reduce 
spectral redundancy. Lists of exclusion or inclusion can also be set up for the same purpose126.  
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Tandem mass spectrometry, defined by this successive acquisition of MS and MS/MS, is used on hybrid 
instruments that combine different mass analyzers (quadrupole (Q), Orbitrap (OT), time of flight (TOF), 
ion trap (IT) and Fourier transform ion cyclotron resonance (FT-ICR)). For the results presented in this 
manuscript, three mass spectrometers with two different configurations were used and are described 
in the following Table 2. One of them, the TimsTOF Pro, is equipped with an additional dimension of 
separation that is detailed in the next part, ion mobility. 

Table 2: Description of the MS systems used in my PhD work. 

iii. Ion mobility spectrometry 

Ion mobility (IM) spectrometry has been used for a long time combined to MS for different applications 
(isomers separation, signal filtering, characterization of intact proteins,…)127,128. It was only recently 
extended to bottom-up proteomics with the development of the Field Asymmetric Ion Mobility 
Spectrometry (FAIMS, ThermoFisher Scientific)129 device and the Trapped Ion Mobility Spectrometry 
(TIMS, Bruker)130. Implemented in TimsTOF Pro mass spectrometer, the dual TIMS cell just before the 
quadrupole allows to separate ions by their charge and size in gas phase and to have an additional 
level of information: the ion mobility value (K0). Most of the time, we are talking about the reduced 
ion mobility (1/K0) or the Collision Cross Section (CCS) which is the 2D projection of the 3D structure 
of an ion. The CCS can be calculated from the ion mobility, with the Mason-Schamp equation. To fully 
take advantage of this additional separation dimension, Parallel Accumulation Serial Fragmentation 
(PASEF)130 has been developed and is composed of two main steps:  

• Ion separation in the dual TIMS cell: the first part of the TIMS cell is used to accumulate ions. 
Ions are then driven in the TIMS cell by an inert gas flow and retained by the application of a 
static electrical magnetic field. When the set accumulation time is reached, accumulated ions 
are transferred into the second part of the TIMS cell where they are separated according to 
their shape and charge in gas phase. For a same charge state, larger ions will by dragged by 
the gas flow further in the funnel and therefore be closer to its exit. Ions are then sequentially 
eluted by decreasing CCS into the quadruple by decreasing the electrical field. At the same 
time, the first part of the dual cell has accumulated other ions, and the cycle is repeated 
allowing a duty cycle of nearly 100%, meaning 100% of the ions incoming in the source are 
transmitted into the analyzer.  
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• Targeted isolation of the eluted ions by the quadrupole: the elution of the precursors from the 
second part of the TIMS cell is synchronized with their selection by the quadrupole using real 
time MS data treatment. It is possible to select precursors with a specific m/z and CCS using 
the PASEF scan mode. The focusing effect of the TIMS cell improve the ion utilization rate while 
increasing the duty cycle. Every MS/MS spectra corresponds to a given elution voltage and a 
given ion mobility value.  

Figure 21: (A) A full PASEF cycle: (a) peptides elution and ionization (b) accumulation of the ions in 
the first cell and ion separation in the second cell (c)/(d) simultaneous sequential elution from the 
second cell and TOF analysis to produce MS spectra (e) targeted isolation of the eluted ions by the 
quadrupole (f) multiple ion mobility resolved mass spectra obtained131 ; (B) PASEF mode principle: 
depending on the ion mobility value, m/z is selected in a targeted manner by the quadrupole130. 

This additional separation allows to isolate co-eluted peptides, for example isobaric phosphorylated 
peptides132,133 (bearing the same modification located on different amino acids). Moreover, the PASEF 
acquisition mode offers to the TimsTOF Pro an extremely fast acquisition speed and sensitivity with 
more than 100 MS/MS spectra acquired in 1 second. As an additional separation dimension is added, 
we are talking about a four-dimension separation: retention time, peptide mass measured by MS; 
fragment mass measured by MS/MS and ion mobility value.  

iv. Peptide fragmentation 

The goal of peptides’ fragmentation is to break the peptidic bond between amino acids, generating 
fragments that will generate MS/MS spectra. Various fragmentation methods have been implemented 
each fragmented at different locations on peptides. The different types of fragments generated are 
named according to the Biemman classification as illustrated on Figure 22. 

Figure 22: Biemann nomenclature for peptide fragmentation. a-, b-, c- ions carry the positive charge 
at the N-terminal part while x-, y-, z- ions carry it on the C-terminal part. 
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In bottom-up proteomics, Collision Induced Dissociation (CID) and Higher Collision Dissociation (HCD) 
are the most common fragmentation techniques. In both cases, ions are accelerated to increase their 
kinetic energy and then collide with neutral gas atoms (argon, helium, nitrogen) in the collision cell. 
The produced kinetic energy is converted into internal energy, inducing the breaking of the peptidic 
bond according to the mobile proton model134. With HCD, ions are accumulated in the C-Trap prior to 
fragmentation then sent to the collision cell, fragmented, sent back to C-Trap that will finally sent the 
fragments to the analyzer. Therefore, HCD fragmentation is specific of Orbitrap instruments. Both CID 
and HCD methods generate b- and y- ions, as described in Figure 23. 

Figure 23: MS/MS spectrum from NASNNPNELAASGAALQAR peptide obtained on a Q-Exactive Plus 
with a HCD fragmentation cell. Mostly b and y ions are generated and allow the identification of the 

amino acids of the peptide. 

Electron Transfer Dissociation (ETD)33 can also be used, and generates mostly c- and z-ions. The 
reaction of the peptide with an anion (most of the times fluoranthene obtained by chemical ionization) 
via an electron transfer leading to the fragmentation along the peptidic chain. ETD fragmentation is 
considered softer than other techniques, thus being useful for labile PTMs analysis135,136. Other 
fragmentation techniques exist such as Electron Capture Dissociation (ECD)137, UltraViolet Photo-
Dissociation (UVPD)138, Electron-Transfer/Higher-Energy Collision Dissociation (EThcD, which 
combines ETD and HCD)139, but they are not used in the presented work and therefore will not be 
detailed here. 

4. Data analysis and interpretation  

i. Protein identification and validation 

a. Search engines 

In a typical computational pipeline, data acquired by mass spectrometer, namely m/z ratios from 
MS/MS spectra, ion measured intensities and retention times, are compiled into a peaklist. Those 
experimental data are then searched against theoretical spectra corresponding to peptides from in-
silico digested proteins, generating Peptide Spectrum Matches (PSMs)140. Identification of peptides 
then lead to protein identification through inference process. Peptides might be either unique to a 
protein or shared between several proteins. In the latest case, proteins are then grouped in a protein 
group, while respecting the principle of parsimony so that the protein group is the smallest list possible. 
Protein inference remains a tricky process, as the same peptide sequence can be present in multiple 
proteins, therefore leading the identification of such shared peptides to ambiguities as to the correct 
identity of the sample proteins40. Those steps are performed automatically by search engines such as 
Andromeda141, Mascot142 (Matrix Science), MS Amanda143, Pulsar (Spectronaut, Biognosys), Sequest 
(Thermo) and others.  
Various information is needed by those software to perform the search, regarding both experimental 
and instrumental parameters listed below:  
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• The sequence database defining the search environment  
• The enzyme used for proteic digestion and the maximal number of authorized missed 

cleavages 
• The tolerance on the m/z ratios at both precursor level (MS spectra) and fragment level 

(MS/MS spectra) 
• The allowed charge for both precursors and fragment ions 
• The modifications of some amino acids that need to be searched, either fixed or variable 
• The type of fragmentation 

For the work presented in this manuscript, only Mascot, Andromeda, MS Amanda and Pulsar were 
used and therefore will be detailed here.  
Mascot is a proprietary search engine, commercialized by Matrix Science (London, UK). Its probability-
based algorithm calculates from each MS/MS spectrum an ion score. The ion score evaluates the 
probability that the match between an experimental MS/MS spectrum and the theoretical one occurs 
by chance, i.e. is a false positive. The higher the score, the more robust the peptide identification. The 
score is given at the PSM level which corresponds to all the identifications associated to a MS spectrum. 
Andromeda is a search engine developed by Cox et al.141 and integrated to the MaxQuant software. It 
works similarly to Mascot (a score is attributed to identifications through a notation system based on 
probabilities) and displays comparable results141.  
MS Amanda is a free right but not open source algorithm developed by Karl Mechtler’s group in the 
Institute of Molecular Pathology (Vienna)143. It can be either used on its own or through Proteome 
Discoverer (Thermo) software. Its principle is similar to both Mascot and Andromeda, but was 
especially designed for high mass accuracy data. It shows increased peptide identification 
performances compared to Mascot on both HCD and ETD data143.  
Pulsar search engine was developed by Biognosys (Schlieren, Switzerland) and has been implemented 
in Spectronaut software. It is dedicated to the generation of spectral libraries, used for DIA data 
extraction in the Spectronaut workflow. As it is a commercial solution, its algorithm is not available.  
Despite all the software developments, in average around 60% to 75% of MS/MS spectra remains 
unidentified144,145. This can be explained in a non-exhaustive manner by: 

• Errors during data processing such as incorrect peak extraction, incorrect monoisotopic peak 
attribution, or attribution to a wrong charge state. 

• A poor or insufficient MS/MS spectra quality, if for example the global intensity is too low or if 
the amount of fragments in insufficient.  

• The quality of the database is also of foremost importance (see 4.i.b.Protein databases), it 
needs to be adequate to the sample studied and as complete as possible. 

• Chimeric spectra might be generated if multiple precursors are co-isolated and co-fragmented 
despite the small DDA isolation window (between 1-3 m/z). To overcome this issue, Mascot 
(since version 2.5) allows to identify all peptides possible from chimeric spectra. Also, 
Andromeda offers a second peptide search on MS/MS spectra, if parent ions with close masses 
have been detected, performed after retrieving fragments that were used for the first peptide 
identification. Since 2018, Charmer is implemented in MS Amanda to specifically deal with 
chimeric spectra with a similar principle than MaxQuant second peptide search146. 

• The presence of various modifications on peptides can induce mass variations compared to 
the non-modified peptide sequence. If the modification was no specified in the search 
parameters, modified peptides will not be identified. A large fraction of unidentified spectra is 
suspected to be due to this phenomenon145,147,148. Indeed, PTMs identification trough 
“classical” searches is restricted as (i) it assumes prior knowledge of the modifications present 
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in the sample (ii) the consideration of multiple modifications lead to an explosion of needed 
informatics resources and calculation time. Therefore, new search engines are being 
developed, faster and specifically adapted to enzyme free searches or multiple PTMs searches. 
Those open searches software such as IonBot16, MSFragger149 or SpecOMS150 will be detailed 
in the appropriate later in this state of the art. 

b. Protein databases 

The choice of the appropriate database is crucial for the correct identification of peptides and proteins 
as it defines the search environment. A proteic database with redundant or incorrect sequences can 
greatly impair the analysis, thus a high quality database (achieved by data curation and sequence 
annotation) is necessary. Several databases are available, differentiated by their quality, 
completeness, and degree of sequence redundancy, among which:  

• UniprotKB151,152 , created through the collaboration of the European Informatics Institute (EBI), 
the Protein Information Resource (PIR) and the Swiss Institute of Bioinformatics (SIB) in 2002. 
It contains two different banks: 

o SwissProt is the reference proteic database used in proteomics when there are enough 
entries for the studied organism. All entries have been manually annotated and 
curated to keep only high quality information on protein sequences. Additionally to 
the proteic sequence, a wealth of information is available to the user such as its 
function, sub-cellular localization, known PTMs, sequence variant, interactions with 
other proteins, or structure. 

o TrEMBL contains automatically annotated and classified translating coding sequences 
from GenBank, as well as sequences from literature. Those sequences are waiting to 
be manually curated before validation to integrate SwissProt. The quality of those 
sequences is relatively poor as they contain many redundancies and errors. 

Both are regularly updated: on the 11th of April 2023, SwissProt counted 569 213 reviewed 
entries while TrEMBL counted 245 871 724 unreviewed entries. 

• Refseq153 was created by the National Center of Biological Information (NCBI). Its data are 
coming from automatized annotation of genomic data. A portion of these data is validated 
manually, leading to proteins with a NP prefix, while others have a XP prefix. For all proteins, 
the link between gene, transcript, and protein is available. On the 11th of April 2023, it counted 
254 500 694 entries. However, this database may be subject to sequence errors due to issues 
while translating nucleotide sequences into peptides sequences, which can negatively impact 
MS data interpretation154. 

Databases are in constant evolution thanks to day-to-day curation, annotation and discovery of 
alternative/variant sequences for instance. Therefore, re-analyzing data with updated databases 
allows to extract more information and to decrease the amount of non-exploited MS/MS spectra155,156, 
as previously discussed. 

c. Validation of protein identifications 

Search engines are not perfect and might introduce false peptide/protein assignations in the results. 
The score associated to each identification is not sufficient to assess the veracity of identification and 
thus it is necessary to validate the peptide and protein identifications. Automated validation methods 
have been developed, the most widespread being the target-decoy (TD) strategy157 used to evaluate 
the false discovery rate in a dataset. To do so, decoy proteins are added to the database. Decoy 
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sequences are usually created from reversing the proteic sequences from the original database, thus 
obtaining the same number of decoy as of real proteins, which have a very negligible probability to 
exist in experimental data. Then every decoy identification is by definition a wrong identification, 
allowing to evaluate a false discovery rate (FDR) for the dataset. The FDR is calculated as followed: 
𝐹𝐹𝐹𝐹𝐹𝐹 (𝑖𝑖𝑖𝑖 %)

=  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑁𝑁𝑎𝑎 𝑎𝑎𝑁𝑁𝑑𝑑𝑜𝑜𝑑𝑑 𝑎𝑎𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖𝑑𝑑𝑁𝑁𝑎𝑎

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑁𝑁𝑎𝑎 𝑎𝑎𝑁𝑁𝑑𝑑𝑜𝑜𝑑𝑑 𝑎𝑎𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖𝑑𝑑𝑁𝑁𝑎𝑎 +𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑁𝑁𝑎𝑎 𝑡𝑡𝑎𝑎𝑁𝑁𝑎𝑎𝑁𝑁𝑡𝑡 𝑎𝑎𝑁𝑁𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖𝑑𝑑𝑁𝑁𝑎𝑎
∗ 100 

Equation 1: FDR calculation by target/decoy approach. 

FDR can be determined at PSM, peptide and/or protein levels. Assignations are sorted by score and 
filtered until obtaining a FDR lower that the defined threshold. In most proteomics articles and 
journals, a 1% FDR is the common guideline but is not a global consensus. Different software allow to 
filter thanks to the TD strategy among which Proline158, Andromeda or Proteome Discoverer. The latest 
however also enables the use of another validation method based on machine learning algorithm, 
namely Percolator159.  

ii. Open modification searches  

As detailed previously, a large amount of spectra are usually unmatched in a classical proteomics 
analysis. One of the reason for this is the restricted search space of current engines that can therefore 
not identify peptides with unexpected modifications. Indeed, if a particular modification has not been 
specified in the search settings, then spectra corresponding to peptides bearing this modification will 
be assigned an incorrect amino acid sequence15. These missed modifications have a damaging impact 
on identification performance, as such false hits tends to obtain higher scores than other false-
positives matches160. In this optic, Open Modifications Searching (OMS) tools have been developed to 
identify modified spectra.  
During OMS, a very wide precursor mass window exceeding the delta mass induced by the PTM is used, 
making possible the comparison of modified query spectrum to its unmodified counterpart. Compared 
with the number of candidate peptides in a classical search, it is approximately three orders of 
magnitude higher using OMS161. This increased in search space, while allowing to identify a wide range 
of modified spectra, comes at the cost of a drastic increase in computational cost15. One of the 
approach to overcome this is the development of OMS software using spectral libraries for the 
identification of unanticipated modifications. Among those tools can be named QuickMod162, 
pMatch163 , the hybrid method164 or the Approximate Nearest Neighbor Spectral Library (ANN-SoLo)15 
search tool.  
Another way to speed up OMS are based on the use of a sequence database instead of a spectral 
library. MSFragger149 uses an index of theoretical fragments, created from in silico digestion of the 
protein database, to quickly compute the number of shared fragments ions between a query spectrum 
and theoretical spectra. MSFragger allowed for a 100-fold improvement in speed over existing 
proteome database search tools149. SpecOMS150 uses an algorithm to compare within minutes a whole 
set of experimental spectra to a whole set of theoretical spectra deduced from a protein database. 
Other similar OMS tools using sequence database can be named such as PTM-Invariant Peptide 
Identification (PIPI)165, MODa166, TagGraph167 or Open-pFind168. PIPI, MODa and TagGraph engines 
work using a similar strategy: sequence tags are matched to measured spectra, then multiple matching 
tags are aligned and delta masses between the  tags or between the sum of the tags and the precursor 
mass are reporter as mass(es) of the modification(s)169. Recently, Schulze et al., based on the results 
of combining results from multiple classical search engines, demonstrated an increase in 8-18% in PSM 
by combining MSFragger, PIPI, MODa and TagGraph open search results169. 
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Machine learning, as for classical search engines, is getting more and more popular with OMS. Indeed, 
OMS tools implemented with deep-learning and machine-learning based algorithms are emerging such 
as yHydra170, IonBot16 or the last version of the ANN-SoLo tool171. ANN-SoLo and IonBot both use 
different rescoring algorithms, with the difference that IonBot rescoring is not limited only to first-
ranked PSMs and takes into account retention times (DeepLC172) and peak intensity (MS2PIP173) 
predictions, allowing to increase even more identifications compared to other OMS tools16. 

iii. Strategies for label free quantification 

There are various strategies for protein quantification. They can be either label-based, meaning 
samples will be labeled before LC-MS/MS analysis (chemical, enzymatic and metabolic labeling), or 
label-free. Even if labeling strategies are often considered more accurate for protein quantitation 
compared to label-free, they are much more expensive (expensive isotope labels), they need specific 
software for data analysis, and specific expertise to analyze generated data. Moreover, label-free 
approaches can be applied to every type of samples and are not limited in number of samples 
compared to label-based where samples are multiplexed174. For those reasons, label-free approaches 
are most of the time preferred for proteomics analysis. However, every step of the workflow needs to 
be perfectly reproducible as every sample are processed and analyzed on their own. In the work 
presented in this manuscript, peptides’ and proteins’ quantification was performed exclusively using a 
label-free extracted ion chromatogram (XIC) approach, which is the most widespread technique used 
in proteomics.  
In the XIC approach, the intensity of the chromatographic signal obtained in MS (if using DDA) or in 
MS/MS (if using DIA) is considered proportional to the peptide abundance. The ion current 
corresponding to a peptide is extracted, then the area under the curve measured to obtain the 
quantitative values. XIC-based quantification is performed at the MS level, but peptide identification 
is enabled by data collected at the MS/MS level. Therefore, the acquisition parameters of the method 
need to be optimized on one hand to obtain enough MS spectra to define the chromatographic peak, 
but also on the other hand to generate enough high quality  MS/MS spectra to reach a satisfying depth 
of coverage175,176. 
This technic however requires complex data processing, as retention time alignment and intensities 
normalization might be necessary to compensate for potential variations induced throughout the 
workflow (sample preparation, chromatographic fluctuations, and signal instability). Different 
software packages offer solutions such as in MaxQuant (Max Plank Institut), Proline (Profi) or 
Proteome Discoverer (Thermo). 
In order to partially overcome the stochasticity of this method in DDA, an algorithm can be used to 
search for the identity of a peptide detected in MS in an analysis but not identified due to the poor 
quality of the MS/MS spectrum or the absence of an MS/MS spectrum. The information of the 
unidentified MS signal, i.e. its m/z ratio and retention time, will be searched in other analyses 
processed in parallel. If an MS signal corresponding to an identified peptide is detected in another 
run, the identification will be transferred to the first assay whose signal did not trigger 
identification in the first place. This option is called Match Between Runs (MBR) in MaxQuant177 
or Cross Alignment in Proline158. 
To ensure quality and robustness of the label-free workflow, quality controls must be set up to 
control the stability and reproducibility of analysis. Indeed, as label-free approaches are not 
limited in the number of samples, injections might sometimes last for weeks. It is therefore 
necessary to ensure the stability of both the chromatographic system and the mass spectrometer. 
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In the context of the label-free analysis performed in this manuscript, two different techniques 
have been used, either separately or together: 

• Internal standards were added to all samples: indexed Retention Time (iRT) peptides178 
are a mixture of 11 synthetic peptides commercialized by Biognosys (Schlieren, 
Switzerland). They are added in equivalent quantity in each sample, and their retention 
times and intensities are then followed throughout the analyses. 

• External standards were analyzed regularly throughout the cohorts of analyses. The goal 
of those standards is to be representative of the biological samples, therefore they were 
constituted from an equivalent quantity of each analyzed sample. Those standards were 
made up before enzymatic digestion. Then this reference sample (called pool) follows the 
same sample preparation steps than any other sample. It is injected at regular intervals 
throughout the course of injections. The variations of the proteins’ intensities are then 
measured during the sequence of analysis.  

Once the intensities of the proteins are calculated for both internal and external standards, 
statistical tests are carried out to check if the protein abundance varies significantly across 
samples.  
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Chapter 2: Challenges in phosphoproteomics  

1. The biological importance of protein phosphorylation 

Post-translational modification (PTM) refers to the modification of a protein through the attachment 
of functional groups to its amino acid chain, or the side chain of a particular amino acid as well as a 
proteolytic cleavage. PTMs are usually implemented by dedicated and highly specific enzymatic 
systems (enzymatic PTM). Identification, characterization and mapping of these modifications to 
specific amino acids residues on proteins are critical to decipher their functional significance. 
Understanding these modifications is also important to develop novel targeted therapies for many 
pathologies such as cancers and neurodegenerative diseases179. To date, more than 300 types of 
PTMs19 such as acetylation, carbonylation, phosphorylation, etc... , are known to occur physiologically 
and the implication of some of them has already been clearly recognized during the transformation of 
normal cells into tumor cells20. 
Among them, protein phosphorylation is one of the most abundant and important. Phosphorylation is 
a reversible reaction tightly controlled by balanced activities of two enzyme groups: kinases and 
phosphatases. Kinases substitute a neutral hydroxyl group (OH) by a tetrahedral phosphate group 
(PO42-) coming from Adenosine TriPhosphatase (ATP) molecule while phosphatases remove it180,181. 
This highly dynamic and fast (of the order of a second182) reaction mechanism is described in Figure 
24.  

Figure 24: Schematic representation of the phosphorylation process. ATP = Adenosine 
TriPhosphatase ADP = Adenosine DiPhosphatase P=Phosphorylation. 

Nearly 75% of all human proteins may be phosphorylated, and these phosphorylation events mainly 
occur on serine (86.4%), threonine (11.8%) and tyrosine (1.8%) residues181. Other amino acids might 
be phosphorylated like cysteine, lysine, arginine, histidine, aspartic and glutamic acids181,183; they 
however represent an extreme minority. Phosphorylation can happen on one (mono-) or multiple 
(multi-) sites and can co-exist with other PTMs, generating different proteoforms184. In the human 
proteome, it is estimated that there are approximately 13 000 phosphoproteins and around 230 000 
phosphorylation sites185, and in the human genome, 568 kinases and 156 phosphatases that regulated 
phosphorylation events181. An estimated 30-75% of proteins might be phosphorylated, although their 
precise function is still unknown182,186. This modification of charge state and steric environment 
modifies chemical and electrostatic properties and creates opportunities for new interactions. For all 
those reasons, protein phosphorylation is one of the most studied and important modifications. The 
balance between phosphorylation and de-phosphorylation is tightly regulated and controls many 
cellular processes, as described in Figure 25.  
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Figure 25: Processes regulated by phosphorylation4. 

Dysregulation of phosphorylation plays a key role in the development of various diseases such as 
numerous cancers187,188, neurodegenerative pathologies like Alzheimer’s disease (AD)6,189 or 
Amyotrophic Lateral Sclerosis (ALS)190–192, cardiovascular diseases193, or diabetes194. Currently, there 
are 72 Food and Drug Administration (FDA)-approved therapeutic agents that exist and target about 
two dozen different protein kinases. Three of these drugs were approved in 2022195. 
The study of phosphorylation is promising for the discovery of new treatments and it is therefore 
necessary to determine the localization sites, abundance and role of phosphorylations to better 
comprehend cellular signaling and dysregulations. Mass spectrometry has step up as one of the gold 
standard to study protein phosphorylation, thanks to its untargeted nature and its high throughput 
capacity196,197. 

2. Analytical challenges of the study of protein phosphorylation by 
mass spectrometry 

To study protein phosphorylation, MS-based methods have become popular in recent years. Indeed, 
mass spectrometry enables accurate identification and quantification of expressed proteins as well as 
identification and localization of PTMs17. Yet, the analysis of protein phosphorylation poses many 
technical hurdles at every step of the phosphoproteomic workflow7,182, as detailed in Figure 26.  

Figure 26: Challenges encountered in the study of phosphorylation during the 3 main steps of a 
phosphoproteomic workflow: sample preparation, LC-MS/MS analysis and data analysis. 
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i. Sample preparation 

First of all, as phosphorylation are labile and thermo-sensitive modifications182,183, sample preparation 
steps must be, when possible, realized ice-cold. To keep the original phosphorylation status and stop 
the reversible reaction, protease and phosphatase inhibitors might be added during cell lysis183. For 
proteolytic digestion, even if trypsin is usually the enzyme of choice in proteomics, its efficiency is 
strongly impaired on phosphorylated proteins. Indeed, the formation of hydrogen bonds and salt 
bridges between phosphate group and basic amino acids residues, such as arginine or lysine, might 
lead to missed cleavages and complicate phosphoproteome analysis182,197. This can be partially 
compensated by using optimized digestion, such as increasing the amount of protease to a 1:20 ratio 
(enzyme:protein) instead of classical 1:50 or 1:100 ratios in global proteomics7. A multi-enzymatic 
digestion, using for example consecutively LysC and trypsin, allowed to increase by 40% more 
phosphorylation sites than a one-step tryptic digestion197. Another technique has been developed, 
adding a digallium complex that exhibits a high binding affinity to the phosphate group and therefore 
mitigating the salt bridge formation. It has been shown to improve phosphopeptides abundance by 
approximately 17%198. Phosphorylated peptides are present in really low abundance in samples (< 2-
3%) and therefore, their LC-MS/MS detection is hindered by the much more abundant unmodified 
peptides186. We might face signal suppression if peptides are co-eluted but also phosphopeptides may 
not being fragmented as in DDA, only the top N most abundant ions are isolated for fragmentation. 
Therefore, an additional step of phosphoprotein or phosphopeptide enrichment is commonly added 
to the classical proteomics workflow.  
With phosphoprotein enrichment, proteins extracted from lysed cells are enriched, then digested into 
peptides and analyzed by LC-MS/MS. One of the advantages of phosphoprotein enrichment approach 
is that intact proteins are separated. Therefore, the peptide spectrum obtained is mostly derived from 
one protein. Protein identification is more likely since it has been achieved on the basis of several 
peptides (including non-phosphorylated ones) and not according to only one single peptide. However, 
one main resulting disadvantage is that this technic is not very specific and therefore not suitable for 
the study of less abundant proteins. Moreover, as this approach mainly generate non-phosphorylated 
peptides, phosphopeptides are very difficult to detect as their signal is hindered by the high abundant 
peptides.  
For peptide enrichment, proteins extracts are first digested, then subjected to an enrichment step. 
Finally, enriched peptidic digest is analyzed by LC-MS/MS. With this approach, phosphopeptides 
identification should increase as we removed the unmodified peptides. Phosphopeptides enrichment 
approach is almost always preferred as it can led to precise phosphorylation sites localization and it is 
more easily automated than phosphoprotein enrichment199. Different techniques were developed to 
enrich phosphopeptides; the three most commonly used o are represented in the following Figure 27.  

Figure 27: Principle of the three main strategies for phosphoproteomics enrichment: Immobilized 
Metal Ion Affinity Chromatography (IMAC), Metal Oxide Affinity Chromatography (MOAC) and 

immuno-affinity enrichment using anti-pTyr antibodies. In blue are represented amino acid residues 
and in red serine, threonine and tyrosine residues. (M+)= Metal oxide (from Arrington et al., 2017200). 
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Immobilized Metal Affinity Chromatography (IMAC) exploits the affinity of phosphate groups for 
transition metal ions. The interaction is based on metal chelation and electronic attraction. There are 
three main components to an IMAC column: the metallic cations (usually Fe3+, Ga3+, Al3+, Zr4+ or Ti4+), 
immobilized by chelation using a coated ligand (mostly with iminodiacetic acid (IDA) or nitrilotriacetic 
acid (NTA)) on the stationary phase (magnetic beads or silica-based resins)183,197. Phosphopeptides are 
retained by the stationary phase in acidic conditions and then eluted in basic conditions184. 
Metal Oxide Affinity Chromatography (MOAC) is based on the formation of a stable bond between a 
metal cation in a metal oxide (TiO2, ZrO2 or Fe3O4) and an oxygen anion of the phosphate group182,197. 
Phosphopeptides are loaded onto the metal oxide in acidic conditions, usually with specific additives 
(lactic acid, glycerol, citric acid,..) to improve MOAC efficiency186,201. Phosphopeptides are then eluted 
at pH > 10.  
Both IMAC and MOAC techniques are widely spread in laboratories are they are available at rather low 
cost if performed manually. Enrichment recovery and overall sensitivity of the two methods are 
generally comparable182. It was recently shown in a targeted phosphorylation quantification workflow 
that, while TiO2 MOAC enrichment displayed higher recovery rate than Fe3+ IMAC (respectively 70% 
and 40%), IMAC provided a nearly perfect specificity (99% compared to 70% for MOAC)202. When 
comparing the two approaches, IMAC usually results in higher identification number of multiple-
phosphopeptides while MOAC displays higher identification number of mono-phosphopeptides. It has 
been also shown on HeLa cells that the two techniques seem complementary as a phosphopeptides 
library recovery of only 42% was observed between MOAC and IMAC203. As of this date, no clear 
consensus exists on the optimum technique for phosphorylation enrichment. 
Different strategies have been developed to increase the efficiency of those enrichment techniques. 
In the Sequential elution from IMAC (SIMAC) method, three fractions are eluted from IMAC phase: the 
non-retained fraction from sample loading, one fraction eluted at acid pH and one eluted at basic pH. 
The non-retained and acidic fractions are then mixed and undergo an additional MOAC enrichment 
step. The basic fraction contains multi-phosphorylated peptides whereas MOAC enriched fractions 
contain more mono-phosphorylated peptides204. Similarly, Sequential enrichment from MOAC 
(SMOAC), which uses serial enrichment with TiO2 and Fe-NTA, has shown promising results186,205. 
Another strategy is also to decomplexify samples before or after phosphopeptide enrichment by 
fractionation using Hydrophilic Interaction Liquid Chromatography (HILIC)206, Strong Cation Exchange 
(SCX)183,207 or basic Reversed Phase (RP) chromatography208.  
An interest has especially been taken in the study of phosphotyrosine (pTyr) peptides. Tyrosine kinases, 
which account for only 0.3% of the genome yet, contribute to a disproportionally large percent (about 
30%) of the known 100 dominant oncogenes. The regulation of kinase and phosphatase activates is 
crucial, and highlights the importance of an unbiased study of pTyr peptides to identify novel targeted 
therapies for patients209. For this reason, immune affinity based enrichment, using anti-pTyr 
antibodies, is specifically utilized to enrich and study those particular phosphorylations. However, this 
type of enrichment requires large amount of starting material as pTyr are present in really low 
abundance and as a preliminary IMAC step might sometimes be added182,210. This technique is also 
more expensive as the cost of the antibody needs to be considered.  
Those different enrichment technics (IMAC, MOAC, anti-pTyr antibodies) can be used under different 
formats: HPLC columns211, cartridges212, magnetic beads213. Phosphopeptides enrichment requires 
high amount of starting material (usually > 1 mg of peptides) as only a fraction of the original sample 
is kept. This might be especially crippling when studying phosphorylation on primary cell cultures, 
micro dissected cells or tissues samples182. To increase throughput and repeatability of 
phosphopeptides enrichment but also limit sample loss through manual handling, automatized 
platforms offer solutions. The EasyPhos protocol, in which digestion and enrichment are performed on 
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functionalized magnetic beads in a single container, was developed in this optic. It can be easily 
automatized as the steps are realized in 96 well plates. Results show that the protocol has high 
reproducibility and small sample size requirement (<200 µg of proteic starting material)214,215. Similarly, 
µPhos was developed as a phosphoproteomics platform allowing phosphopeptide enrichment on 24- 
to 96-well plates in a single-pot manner, minimizing sample loss and processing time while increasing 
sensitivity, specificity and reproducibility216. The Rapid-Robotic Phosphoproteomics (R2-P2) platform 
has also been developed for automation of streamlined phosphopeptide enrichment. The R2-P2 
platform enables the identification of more than 4000 phosphopeptides from 2.5 µg of yeast 
protein217. Phosphopeptide enrichment protocols using commercialized TiO2 or NTA- Fe3+ cartridges 
can be also used on AssayMAP Bravo platform (Agilent Technologies)118,212,218. Automatized IMAC 
protocol on AssayMAP Bravo enables also to greatly decrease the amount of sample starting material 
as it displayed promising results even with only 1 µg of HeLa cells219. This automatized protocol offers 
promising results on various other samples such as rat neuron lysate219, malignant melanoma 
tissues212, bacteria118, human cancer cell line220 or Formalin-Fixed Paraffin-Embedded (FFPE) tissues221.  

ii. Mass spectrometry analysis of phosphorylated peptides 

Two main issues are encountered when analyzing phosphorylated peptides by mass spectrometry: 
• The impact of a phosphorylation on a peptide upon ionization is widely discussed. It has been 

shown to affect the ionization efficiency of phosphorylated peptides compared to their non-
phosphorylated counterpart222. However, other studies on synthetic phosphopeptides suggest 
that the issue of ionization efficiency of phosphopeptides versus their unmodified 
counterparts is not as straightforward as suspected as no clear evidence for decreased 
ionization was found223. 

• The labile character of the phosphoester bond leads to the potential loss of phosphate group 
during fragmentation. Indeed, as the phosphate bond is very labile, it tends to break first, 
generating a 98 Da loss of phosphoric acid (also called neutral loss). It is especially the case 
when using CID fragmentation and can therefore drastically impair the fragmentation behavior 
when compared to non-modified peptides. The main risk is obtaining MS/MS spectra 
dominated by this neutral loss signal, resulting in poor quality for identification7,224. Two 
different mechanisms are possible for this neutral loss reaction; they are both described in 
Figure 28.  

Figure 28: Mechanisms of H3PO4 neutral loss (A) via formation of a five-membered oxazoline (B) 
under mobile proton conditions, via SN2 mechanism224. 
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As HCD generates more energy during fragmentation than CID, more informative spectra with less 
neutral loss are observed7,186. Other fragmentation methods were tested for phosphopeptides study 
such as ETD136, EThCD139 or UVPD225. As described in previously, ETD generates mostly c- and z- ions. 
ETD allows to preserve the labile phosphate group and therefore facilitate phosphopeptides 
identification. However, the technic suffers from a very long scanning speed due to the long reaction 
time between the anion that bear the electron and the peptide cation. Moreover, its efficiency of 
fragmentation is strongly dependent of the ion charge state, thus doubly charged peptides generally 
suffers from a lowest fragmentation efficiency with ETD than CID/HCD186,224. For these reasons, even if 
ETD spectra are more informative than CID’s (see Figure 29), they are generally used as complementary 
information to CID/HCD, which remains usually the method of choice to analyze phosphopeptides200.   

Figure 29: MS/MS spectra of VPIPGRFDRRVtVE phosphopeptide by (A) CID and (B) ETD. The most 
intense peak in CID spectrum corresponds to - 98 Da neutral loss of phosphate group. On ETD 

spectrum, mass differences between c11 and c12, z2 and z3 is equal to 181 Da corresponding to a 
threonine phosphorylation226. 

The combination of ETD and HCD into EThcD allows the combination of the fragmentation speed of 
HCD and the fragmentation efficiency of ETD. Peptides are thus fragmented twice, generating both y- 
and b- ions from HCD and z- and c- ions form ETD, as shown in Figure 30. This hybrid mode of 
fragmentation has shown promising results on phosphorylated peptides, as it allowed the 
identification of 3942 phosphosites (with a 99% localization probability at least) compared to 2002 and 
4291 respectively for ETD and HCD alone. However, 95% of all EThcD phosphosites were identified 
with a localization probability of at least 99% whereas only 89% for HCD. Therefore, even less 
phosphosites are identified with EThcD, the sequence coverage is higher than with HCD139. 
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Figure 30: EThcD MS/MS spectrum of a doubly phosphorylated peptide. RGTGQsDDsDIWDDTALIK is 
doubly phosphorylated and contains in total four potential phosphorylation sites. EThcD generates 
dual ion series that enable phosphorylation site localization with very high confidence (phosphoRS 

site probabilities: T(3), 0.0%; S(6), 100.0%; S(9), 100.0%; T(15), 0.0%)139. 

In UVPD fragmentation, a high flow of protons is sent through pulsed laser beam during a short amount 
of time (< 1 µs)138. This process generates complex spectra with a-, b-, c-, x-, y- and z- ions, as shown in 
Figure 31. Important parameters affecting the fragmentation efficiency and the fragment distribution 
are the number of impulsions, the energy of the laser, and the wavelength138,225. All mechanisms 
involved in this fragmentation method have not been yet fully comprehended. While UVPD has shown 
to identify less phosphopeptides than HCD on HeLa cell lysate, the unique identifications of UVPD make 
this technique complementary to HCD for phosphorylation analysis225. 

Figure 31: UVPD-generated fragmentation spectrum of APPDNLPSPGGsR phosphopeptide. The 
modification losses are encoded as {1} H3PO4 +H2O, {2} H3PO4, and {3} full modification or HPO3

138. 

iii. Quantification strategies of phosphorylated peptides 

Quantitative phosphoproteomics analysis can be performed using two different approaches: either 
with a label-free strategy7 or by labeling, mostly using Tandem Mass Tag (TMT)227,228. Labeling 
techniques such as isobaric Tag for Relative and Absolute Quantification (iTRAQ)229 or Stable Isotopic 
Labeling by Amino acids in Cell culture (SILAC)230 have also been applied to phosphoproteomics but are 
not predominant. 
In classical proteomics label free approach, a protein is usually identified with multiple peptides. 
However, in phosphoproteomics, quantification is performed at the peptide level, meaning only one 
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peptide is used for the quantification of a phosphorylation event. For one protein, quantitative values 
of different phosphosites of this protein might be different. It is thus necessary to detect the modified 
peptide in each analysis in order to identify and quantify the phosphorylation site. Because of the 
stochasticity of DDA label free method, the lability of the modification and the limited reproducibility 
of the phosphopeptide enrichment, the depth of the analysis can be relatively limited197. 
 To overcome these issues, TMT labeling is more and more used for phosphoproteomics 
analysis207,228,231,232. TMT labeling decreases analysis time on instrument as samples are multiplexed 
while limiting missing values that might be numerous in label-free approach. However, it is much more 
expensive than label-free and limited in terms of sample number. Indeed, to date, several commercial 
TMT labeling kits are available, allowing to multiplex up to 18 samples233. Some in-house protocols 
have been developed to go further in the number of samples, allowing to analyze 21234 or even 27 
samples235. TMT stable isotopic labeling strategy is illustrated in Figure 32. 

Figure 32: Quantitative strategies for global phosphoproteomics, adapted from Riley et al197. Label-
free quantitation requires no additional steps in the phosphoproteomic workflow, and samples are 

analyzed individually. Quantitation is then performed across separate LC−MS/MS analyses using 
accurate mass and retention time windows to compare phosphopeptides from different samples. In 
contrast, stable isotope labeling methods permit multiplexing, where multiple samples can be mixed 
after labeling and then analyzed in the same LC−MS/MS analysis. Isobaric labeling uses a reactive tag 
that labels peptide functional groups, but quantitation is achieved at the MS2 level. The intact mass 

of each label is the same based on the coupling of reporter and balance regions that have an 
equivalent number of total heavy isotopes. Upon phosphopeptide dissociation, the reporter ions 

fragment off, allowing comparison of relative reporter ion intensities for quantitative measurements 
between samples, all within the same scan that provides phosphopeptide identification. 

In a TMT labeling phosphoproteomics workflow, phosphopeptides can either be labeled before236 or 
after232 phosphopeptide enrichment. Labeling before phosphopeptide enrichment is highly expensive 
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as all the non-phosphorylated peptides that will mostly get lost during enrichment will also be labeled 
but shows reduced variability in sample preparation compared to labeling after enrichment186. 
However, Ogata et al.237, when comparing TiO2 enrichment of phosphopeptides either before or after 
TMT-labeling, showed that TMT-labeled phosphopeptides appear to have a tendency to flow through 
TiO2 columns. They thus suggest that the labeling step should preferably be performed after 
phosphopeptide enrichment. Once labeled, samples are pooled and analyzed by LC-MS/MS. As the 
labeled peptides have identical chemical features and only differ by their mass, they will co-elute in 
the LC and enter the mass spectrometer together. However, during fragmentation, each marker will 
generate a unique reporter ion that will be then detected by MS/MS. Peak heights provide relative 
quantification of all the different samples. Peptides identification is performed on fragmentation 
spectra and quantification on reporter ions in MS/MS spectra also238. 
Various studies comparing label-approaches to TMT labeling phosphoproteomics analysis have been 
performed. On ovarian cancer tissues, TMT method displayed the highest precision and robustness in 
phosphosites quantification while label-free quantification offered the highest number of 
identifications236. Similar conclusions were obtained on another study conducted on MOAC enriched 
DiFi cells lysate239. 
To improve identification and quantification of phosphopeptides, and especially co-eluted 
phosphopeptides, an additional separation dimension can be added, namely ion mobility. The two 
most used technologies are TIMS133,240,241 and FAIMS242–244. On FFPE mantle cell lymphoma samples, 
enriched by Fe3+ IMAC, more than 7000 class I phosphosites (meaning with a localization probability 
greater than 0.75) were quantified using a TimsTOF Pro245. Using FAIMS technology, around 15-20% 
additional phosphorylation sites were identified compared to same experiment performed without 
it244. As phosphorylation has shown to have a great impact on the Collision Cross Section (CCS) of 
peptides ions, an algorithm called TIMScore was developed by Brukerto predict CCS values of tryptic 
and phosphorylated peptides. It allows to increase phosphopeptides identification by 10 to 25% 
compared to analysis realized without TIMScore246. Another label-free approach to increase 
identification and quantification results in phosphoproteomics is Data Independent Acquisition 
(DIA)247. Detailed principle of this acquisition mode and its application to phosphoproteomics are 
detailed in Chapter 3: Data Independent Acquisition – 4.DIA for phosphoproteomics. 

3. Bioinformatics tools for phosphoproteomics 

For phosphoproteomics, or more generally PTMs study, a step is added in the proteomics pipeline, 
after data search identification and protein/peptide validation. This additional step consists of 
assigning the modification site localization and is followed by biological interpretation (Figure 33). 

Figure 33: Representation of the main data treatment steps for phosphoproteomics analysis. 

i. Identification and localization of phosphorylation 

For identification of modified peptides, most search algorithms such as Andromeda141, Mascot142, or 
MS Amanda143, allow variable modification search by adding a mass delta. However, if too many 
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modifications are searched at the same time, it exponentially increases search space and time. OMS 
software such as MSFragger149 or IonBot16 offer promising results to partially overcome this issue. 
Correct phosphorylation site assignment is a crucial aspect of phosphoproteomics analysis, as its 
determination allows for functional characterization of the modifications observed197,248. However, in 
a typical phosphoproteomics experiment, from 20 to 40% of identified phosphopeptides are lost due 
to ambiguous modification localization197. Accurate phosphosite localization might be hindered by 
neutral losses, as fragments generated from a neutral loss and unmodified fragment have the same 
mass and are thus undifferentiable. Moreover, phosphorylation can be bared by various residues (Ser, 
Thr, and Tyr) that can be present in the same peptide, and thus phosphosites localization might need 
complete peptide sequence coverage to be accurate224. Once the phosphorylation is localized and 
attributed to its corresponding peptide, a score to evaluate the probability of presence of the 
modification needs to be calculated. To do so, several algorithms have been developed, based on: (i) 
computing the probability of an incorrect match for each phosphopeptide isoforms (phosphorylations 
placed on the different amino acids potentially phosphorylated in the peptide) or (ii) computing the 
difference between score of the different peptide isoforms224. PTM Score (implemented in Andromeda 
search engine when using MaxQuant)141 or PhosphoRS (also called ptm-RS, implemented in MS 
Amanda, Mascot or Sequest search engines when using Proteome Discoverer)249 algorithms are based 
on the first method whereas Mascot delta score250 is based the second one224. The two most commonly 
used of them are PTM Score and PhosphoRS224, and their overall operating workflow are presented in 
Figure 34. 

Figure 34: Workflows for the calculation of phosphosite localization probabilities by phosphoRS (left), 
and MaxQuant/Andromeda (PTM-score, right)141,224,249. 

Many studies have compared the results obtained by the different algorithms224,251,252 and few 
explanations have been proposed to explain the observed differences : (i) fragment selection, (ii) noise 
thresholding, (iii) neutral loss consideration, (iv) the peak depth (how many of the most intense peaks 
per m/z are considered for score calculation) and (v) whether the algorithm was developed for low or 
high mass resolution and accuracy measurments224,251. Taking neutral loss into account is non editable 
in PTM Score but can be changed in PhosphoRS224. Comparing 22 phosphoproteomics pipelines for 
peptide identification and site localization, Locard et al. showed that only 50% of identified peptides 
were common between the Andromeda-PTM Score and Mascot-PhosphoRS. The main source of 
differences came from peptides identification but scoring played also an important role251. 
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ii. Validation of phosphosites and False Localization Rate (FLR) estimation 

In most phosphoproteomics studies, phosphosite validation is realized by applying an arbitrary filter 
of 75% on the localization probability: we are talking about class I phosphosites. Most of the algorithms 
score the confidence of the localization but do not estimated the False Localization Rate (FLR), an 
estimation of the number of wrong localization, which is similar but less straightforward than the FDR. 
Indeed, for an identified phosphopeptide with a given sequence, an incorrect localization phosphosite 
is not a random match as many fragments will match both correct and incorrect localizations, so decoy 
sequences do not provide an error estimation253. There are however a few attempts at finding an 
alternative such as the LuciPHor algorithm, a modified target-decoy approach, where decoy 
phosphopeptides are generated by adding an artificial phosphorylation on each non-candidate 
residues of identified phosphopeptide254. As the number of decoy sites is therefore usually higher than 
the number of target sites, this approach is considered more conservative224. The Site Localization In 
Peptide (SLIP) method performs the search with decoy phosphorylation on glutamic acid (E) and 
proline (P) residues allowed255. As the combined score of  both E and P residues matched 
approximately the one of threonine (around 16%), and that E and P residues are present in some of 
the most prevailing phosphorylation motifs, they ensure the presence of decoy sites in the close 
environment of the real phosphosites224. A method described by Ramsbottom et al. has explored the 
possibility of using amino-acids as decoy, with alanine and leucine displaying the best results for 
reliable FLR estimation256. More recently, Zong et al. 245 proposed a deep learning based approach to 
control FLR in phosphoproteomics. DeepFLR combines deep learning-based phosphopeptides MS/MS 
spectra prediction to a target-decoy approach for FLR control. On both synthetic and biological 
phosphopeptides datasets from various LC-MS/MS platforms, DeepFLR demonstrated accurate FLR 
estimation and led to additional phosphopeptides identifications. 
To date, all those alternatives are not unanimously approved among the scientific community and the 
only FLR evaluation accepted for now is on synthetic phosphopeptide libraries, as the correct 
phosphorylation sites are known, but do not reflect the complexity of true biological samples224. 

iii. Biological interpretation 

To extract the functional and biological role of phosphorylation from the data, various bioinformatics 
solutions have been developed. PaDua uses Python language257 while PhosR is based on R language258. 
Both packages are open source but only source code of PaDua is freely available. Scop3P is a freely 
accessible resource which allows to visualize the tridimensional structure of the protein but also give 
access to a variety of other information259. 
Phosphoproteomic data biological interpretation relies on databases that list all known 
phosphorylation sites, information on associated kinases and phosphatases, and the function affected 
by the phosphorylation of a given residue. PhosphositePlus260 is the golden standard in this area, with 
more than 300 000 described phosphorylation sites, that are well curated and regularly updated. Other 
resources exists such as Phosida261 , HRPD, Swiss-Prot or PhosphoELM. Both HRDP and Swiss-Port are 
general databases for all proteins while PhosphoSitePlus and PhosphoELM contains specific 
phosphorylation site information. Unfortunately, both HRPD and PhosphoELM were not updated since 
2010. Many other phosphorylation sites exist, and their review can be found in literature262. As every 
database, they have their shortcomings, and are missing information as more than 95% of reported 
human phosphosites have no known kinase that regulates them4. For comprehensive information on 
kinase and phosphatase signaling, different knowledge bases were developed262.  
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Chapter 3:  Data Independent Acquisition  
Ideally, proteomics would be able to quantify the vast majority of proteins in large sample cohort. 
Realistically, DDA-based approached successfully quantity thousands of proteins but in a restricted 
number of samples, and display limited sensitivity and restricted dynamic range. On the other hand, 
targeted approaches allows the quantification on only a limited number of proteins but in a multitude 
of samples and with increased sensitivity, specificity and dynamic range. Data-Independent Acquisition 
(DIA) strategies offers a promising combination of those two approaches, with the quantification of a 
large number of proteins, high sensitivity, specificity and accuracy, and a wide dynamic range2,263. 
Although the first DIA-based concept was reported in the early 2000 by Venable et al.2,264,265, 
instrument improvements over the past decade, especially their resolution and speed of acquisition, 
have been the main reason for the overgrowing interest for DIA proteomics analysis. Moreover, the 
rapid development of DIA data-dedicated algorithms has also largely contributed to this increased 
enthusiasm for DIA2,265 (Figure 35). 

Figure 35: Number of publications whose abstract contains the term “data-independent acquisition” 
in PubMed. *For 2023, the number of publications was collected on the 11th of April 2023. 

1. Principle and assay development of data independent 
acquisition 

Compared to DDA mode, it is not the N most intense ions that fragmented but rather all precursor ions 
on a defined mass range (m/z isolation window). The acquisition of the fragment from all co-isolated 
and co-fragmented peptides results in multiplexed MS/MS spectra and chromatographic peak are 
extracted for all detected fragment ions to perform their quantification (Figure 36). DIA mode allows 
the collection of MS/MS spectra of  peptides along the chromatographic gradient in an untargeted and 
unbiased manner, getting rid of the stochasticity and under-sampling issues of DDA265.   
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Figure 36: Schematic representation of Data-Independent Acquisition mode based on isolation 
windows on an Orbitrap instrument. 

2. Evolution of DIA based strategies 

The first proof-of-principle of DIA appeared in 2000 by Masselon et al., in an experiment in which 
several polypeptides were characterized from multiplexed MS/MS spectra generated on a Fourier 
transform ion cyclotron resonance mass spectrometer (FT-ICR). They pointed out that the gain in 
throughput and sensibility can only be achieved thanks to highly accurate mass measurements288. 

Table 3: Non exhaustive list of the evolution of DIA modes and associated parameters, adapted from 
Kitata and al.2. 

DIA Method Year Isolation windows Reference 
Shotgun CID 2003 Full range Purvine et al.266 

DIA 2004 10 m/z Venable et al.264 
MSE 2006 Full range Silva et al.267 

PAcIFIC 2009 2.5 m/z Panchaud et al.268 
AIF 2010 Full range Geiger et al.269 

XDIA 2010 20 m/z Carvalho et al.270 
FT-ARM 2012 100 m/z Weisbrod et al.271 
SWATH 2012 25 m/z Gillet et al.272 
HDMSE 2012 Full range Geromanos et al.273 

MSX 2013 4 m/z Egertson et al.274 
WiSIM 2014 200 m/z and 20 m/z Zabrouskov et al. 275 

pSMART 2014 5 – 20 m/z Prakash et al.276 
UDMSE 2014 Full range Distler et al.277 
SWATH 

(variable windows) 
2015 8-85 m/z variable Zhang et al.278 

HRM 2015 24 – 220 m/z variable Bruderer et al.279 
SONAR 2018 24 m/z Moseley et al.280 

BoxCar DIA 2018 - Meier et al.281 
DIA-FAIMS 2020 13.7 m/z Bekker-Jensen et al.282 
dia-PASEF 2020 25 m/z Meier et al.11 

DDIA 2020 12 m/z Guan et al.283 
Scanning SWATH 2021 5 m/z Messner et al.284 

PulseDIA 2021 variable Cai et al.285 
BoxCarMax 2021 22 m/z and 2.5 m/z Salovoska et al.286 

DaDIA 2022 25 m/z and 100 m/z Guo et al.287 
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In 2003, a first evolution of the concept was proposed by Purvine et al., under the name of shotgun 
CID. Here, a first analysis was performed at low source voltage to limit fragmentation and obtain MS 
spectra of precursor ions; and then a second one at higher source voltage to induce fragmentation of 
peptide and generate MS spectra of fragment ions. The term data-independent acquisition was 
introduced in 2004 by Venable et al., when they proposed a new alternative strategy to sequentially 
isolate and fragment precursor ions in 10 m/z isolation windows using a linear ion trap mass 
spectrometer264. Since then, variations and improvements of the method were continuously 
developed, as shown in Table 3. 
They can be divided in two categories: the approaches working on the complete mass range and the 
ones using isolation windows.  
In the work presented in this manuscript, only methods based on isolation windows were used and 
therefore detailed here. However, a general overview of the principle of all DIA based strategies is 
presented in Figure 37. 

Figure 37: Data-Independent Acquisition schemes in bottom-up proteomics, from Bilbao et al.289. (A) 
Full MS range-based DIA strategies (B) Isolation window-based DIA based strategies, with either fixed 

or variable windows (C) Multiplexed DIA strategy with randomly chosen isolation windows. 

i. DIA based strategies based on isolation windows 

a. Consecutive fixed windows 

Venable et al.264 were the first to propose the use of isolation windows for fragmentation, many have 
followed afterwards. The Precursor Acquisition Independent From Ion Count (PAcIFIC) approach, 
proposed by Panchaud et al., is based on the use of narrow isolation windows (2.5 m/z) to reduce 
MS/MS spectra complexity. Unfortunately, it requires multiple injection of samples over several days 
to cover the entire mass range268. They improved this method a few years later thanks to instrumental 
developments290. A similar method was developed more recently by Cai et al. called PulseDIA, which 
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aims to reduce the number of isolation windows and thus the number of injections by using window 
size adapted to the ion density285. 
A variation of this approach was introduced in 2010 by Carvalho et al., called eXtended Data-
Independent Acquisition (XDIA). It acquires an additional high resolution MS spectrum at the beginning 
of each cycle, followed by a combined CID and ETD fragmentation270. 
The Fourier Transform-All Reaction Monitoring (FT-ARM) strategy was presented by Weisbrod et al. in 
2012, and uses fixed windows of 12 m/z or 100 m/z on LTQ-Ft or LTQ-Orbitrap instruments271. The 
same year a similar strategy was developed by Gillet et al. on a Q-TOF instrument and using 25 m/z 
windows272. This method, namely Sequential Windowed Acquisition of All THeoritical fragment ion 
(SWATH), is now commercialized by Sciex. 
Two similar approaches relies on the parallelization capacity of Q-Exactive instruments by acquiring 
high resolution MS spectra independently from MS/MS spectra that are obtained after isolation of 
precursors in restricted mass windows. MS spectra are used for quantification while MS/MS spectra 
for identification. These approaches, called pSMART and Wide Selected-Ion Monitoring (WiSIM), were 
developed respectively by Prakash et al.276 and Zabrouskov et al.275 . 
Additionally, the BoxCar method has emerged and was first implemented in 2018 by Meier et al.281. It 
relies on MS acquisition of narrow mass windows to increase the dynamic range of MS1 signals. This 
approach combined to DIA is promising as it results in much better precursor information. Recently, 
an optimized version of this method, BoxCarMax, was developed for the analysis of complex samples 
obtained after SILAC and pulseSILAC labeling286. 
Recently, new DIA strategies have been developed thanks to ion mobility. DIA-FAIMS282 has been 
implemented on latest generation Q-Orbitrap instruments while dia-PASEF11 was applied to TimsTOF 
platforms. The dia-PASEF approach will be furthered described later in the manuscript. 
A hybrid method combining DDA and DIA was developed by Guan et al. in 2020283. The cycle is divided 
in three phases. First, precursor ions are analyzed generating MS spectra. Then, as in a DDA method, 
the top N most intense ions are selected and sequentially fragmented. Finally, a multiplexed MS/MS 
spectrum is acquired, resulting from the co-fragmentation of ions in isolation windows covering the 
entire mass range. The method showed promising results as, compared to a classical DIA method, it 
was able to identify a similar number of peptide but almost twice as many protein groups, while 
requiring much less sophisticated data treatment. Another hybrid approach combining both DDA and 
DIA has been proposed recently by Guo et al. called DaDIA287, in which individual biological samples 
are analyzed in DIA, whereas the pooled quality control (QC) samples are analyzed by DDA. DDA and 
DIA data are then integrated altogether using a dedicated algorithm. 

b. Consecutive variable width windows 

The peptide distribution across the m/z range, time dimension and ion mobility range, if present, is not 
homogeneous. A possibility would be to reduce the size of the windows to reduce the complexity of 
the MS/MS spectra but this will inherently increase the cycle time needed to cover the whole mass 
range and thus reduce proteome coverage. For this reason, using different size of isolation windows 
based on ion density would allow the ion population to be more evenly distributed. Large windows are 
used in sparse regions while smaller windows are used in in dense regions to reduce spectra complexity 
while limiting the impact on the cycle time. In this optic, a SWATH approach with variable windows 
was proposed by Zhang et al. in 2015, an evolution of the original method with fixed size windows278. 
Corresponding software were developed, such as swathTUNER, to optimize the isolation window size 
to the precursor ion density in an automated way. This strategy is implemented as SWATH 2.0 by Sciex. 
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A similar approach, Hyper Reaction Monitoring (HRM) was implemented in 2015 by Bruderer et al. on 
Q-Orbitrap instruments279 and is now owned by Biognosys company. In this method, the variable 
windows need to be generated manually. 

c. Multiplexed strategies 

A strategy based on the use of sequentially co-isolating the precursor ions contained in randomly 
selected isolation windows was proposed by Egertson et al. in 2013 called MSX274. The mass range 500-
900 m/z is divided into 100 windows of 4 m/z each. MS/MS spectra are then computationally 
demultiplexed to increase selectivity and signal-to-noise ratio. This increase is particularly adapted for 
the analysis of modified peptides, as they might be difficult to distinguish if they are isolated in the 
same window due to their similar fragmentation. This approach is based on the multiplexing 
capabilities of Q-Orbitrap instruments but it may suffer from a loss of sensitivity due to the limited 
time for ion trapping. 

d. Overlapping windows 

Another approach relies on overlapping isolation windows: the isolation scheme is composed of 
windows that cover half the masse range covered by the previous window, resulting in increased 
selectivity. Information from overlapping MS/MS spectra are used to generate demultiplexed MS/MS 
spectra. In this optic, the SONAR approach was developed on a Q-TOF instrument, were MS/MS 
spectra are continuously acquired over the 400-900 m/z range with 24 m/z windows280. Similarly and 
more recently, the scanning SWATH strategy was proposed by Messner et al. for restricted 
chromatographic gradients284. Cycle time is decreased compared to classical DIA methods as the 
successive window acquisition is replaced by a continuous scanning with the first quadrupole. 

e. Dia-PASEF approach 

The dia-PASEF approach is a more recent DIA acquisition method which is specific to the TimsTOF Pro 
and uses to its advantage the PASEF technology described earlier11. PASEF is beneficial to DIA as it 
allows for increased speed of acquisition, noise reduction, improvement of the signal thanks to the ion 
accumulation, and better separation of co-eluting peptides thanks to the ion mobility dimension. It 
also allows the use of up to 100% of the ions entering the mass spectrometer and the elimination of 
the interferences linked to mono-charged ions. The principle of dia-PASEF on a TimsTOF Pro is detailed 
in Figure 38.  
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Figure 38:  The dia-PASEF acquisition method, adapted from Meier et al.11 and Skowronek et al.241. 
(A) Schematic ion path of the TimsTOF Pro mass spectrometer (B) Correlation of IM and m/z in a 

tryptic digest of HeLa cell lysate (C) In diaPASEF, the quadrupole isolation window (gray) is 
dynamically positioned as a function of ion mobility (arrow). In a single TIMS scan, ions from the 

selected mass ranges are fragmented to record ion mobility–resolved MS/MS spectra of all 
precursors (D) Representation of the dia-PASEF acquisition scheme depicting three dia-PASEF scans 

divided into three IM windows (E) Original dia-PASEF acquisition scheme 

Briefly, ions enter the mass spectrometer and are accumulated in the first part of the IM cell. They are 
then separated according to their IM and sequentially eluted from the second part IM cell. As with 
dda-PASEF, the accumulation and separation/elution of the ions is performed simultaneously so that 
no ions are lost (100 % duty cycle), as shown in Figure 38-(A). As for peptide ions of a given charge 
state, ion mobilities and masses are correlated (Figure 38-(B)), this feature can be used to isolate 
precursor mass windows for DIA without losing the ions outside the respective windows, unlike in 
other DIA acquisition scheme. When separating ions according to their ion mobility, those with the 
lower mobility (usually high m/z) are released first, the m/z window of the quadrupole start at high 
m/z values. As higher mobility ions (usually low m/z) are then released from the TIMS, the quadrupole 
mass isolation should slide down to lower m/z values in synchronization with the elution of ions (Figure 
38-(C)), to fully transmit the ion cloud. This movement happens in distinct steps and thus divides one 
PASEF scan into multiple IM windows (Figure 38-(D) and (E)). The isolation windows for dia-PASEF are 
designed to cover the most part of the doubly and triply charged ions, as they fragment more easily 
and thus are more informative, and thus constitute a two dimension acquisition scheme (IM and m/z 
dimensions). The isolation windows are also located in the most precursors-dense regions, as 
illustrated in Figure 38-(E). Once a m/z window is selected by the quadrupole, precursor ions are sent 
into the collision cell where collision energy is applied according to the 1/K0 range. This means that 
higher energies are applied for lower IM coefficient, ie for ions that are harder to fragment. The applied 
collision energy will slide toward lower energies in synchronization with the ions’ elution from the IM 
cell. Finally, ions are sent to the TOF to measure their m/z and intensity . 
The dia-PASEF strategy is growing popularity amongst the scientific community and various 
applications of it are emerging291–295. Among the most recent ones are Synchro-PASEF295, Slice-PASEF296 
or midiaPASEF297.  
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3. Different approaches to overcome the challenge of DIA data 
processing 

In DIA, multiple peptides that are co-isolated and co-fragmented in the same precursors window 
generate highly convoluted fragmentation spectra, which can lead to the loss of a direct relationship 
between the precursors and its fragment ions, making the distinction of those multiple peptides 
complicated. DIA thus requires much more sophisticated data analysis post acquisition than DDA, and 
dedicated strategies have been developed as those generated multiplexed spectra cannot be analyzed 
by conventional DDA tools263,265,289. DIA data processing relies on two different approaches, 
represented in Figure 39: the peptide-centric approach and the spectrum-centric approach. 

Figure 39:  Schematic representation of the peptide-centric and spectrum-centric analysis, adapted 
from Ting et al.298. The peptide-centric approach uses previously generated spectral library to query 

for the presence of peptides in the DIA MS/MS spectra. The spectrum-centric approach identify 
peptides directly from DIA spectra. To do so, pseudo MS/MS DDA spectra are generated from DIA 

MS/MS spectra, and a classical database search is performed. 

i. Peptide centric approach 

The peptide-centric approach is based on the use of a previously generated spectral library, either 
performing targeted data extraction or by directly matching spectra. 

a. Spectral libraries generation 

A spectral library is defined as a condensation of MS/MS spectra confidently assigned to a specific 
peptide sequence299. A spectral library is usually composed of different features such as: precursor 
m/z, fragment ion m/z and relative intensity, standardized retention time (RT) for each peptide 
precursor, and sometimes ion mobility values. Peptides present in the library are usually in their 
dominant charge states, unique to a protein sequence, easily detectable ie with enough abundant 
ions265.  
Spectral libraries are usually generated from multiple fractionated DDA acquisitions of the same 
sample type of sample used for the DIA analysis. A search is then performed against a protein sequence 
database to identify peptides in the shotgun proteomics spectra, and the search results of multiple 
observations of the same peptides are collapsed together into a single entry to build a consensus 
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spectral library265,300. As only the peptides present in the generated library can be detected in the DIA 
analysis, it is utterly important to use a library as complete and qualitative as possible. Indeed, it 
assumes that precursors ions contained in the spectra are correctly identified, meaning false positives 
become true positives. Therefore, the FDR of the spectral library generation is generally controlled 
tightly at 1%300. This approach, which increases the coverage of the proteome and thus the search 
space thanks to fractionation, is however tedious, time and material consuming300.  
Another approach uses Gas Phase Fractionation (GPF) acquisition scheme for DIA library generation. 
GPF performs multiple analysis of a sample by mass spectrometry over multiple small m/z ranges289. 
Recently, a GPF scheme was implemented in combination with ion mobility on TimsTOF Pro. The study 
showed that the diaPASEF GPF generated library exceeded the performance of libraries generated 
directly from diaPASEF data301. 
Various software has been designed to build libraries from peptide spectrum matches results of DDA 
analysis. In SpectraST302, one of the most used, a library can be built from replicate spectra identified 
to the same peptide ion and combined with quality filters to remove low-quality spectra from the 
library. Skyline builds a library using a set of tools from BiblioSpec, to assemble a redundant library 
which is then filtered to create a non-redundant library. The best spectrum within a group with the 
best score and highest total ion chromatograph (TIC) is chosen303. Spectronaut Pulsar might also be 
used to generate spectral libraries265,304. 
To avoid the generation of spectral libraries, which is both time- and sample-consuming, various 
platforms provide public spectral libraries for the extraction of DIA-SWATH data. These include Peptide 
Atlas305,306, MassIVE307, Proteomics IDEntification database (PRIDE)308, or SWATHAtlas309. 
Unfortunately, these public libraries cover only a limited variety of organism’s proteomes. For 
example, as of April 2023, only 16 organisms are represented by PRIDE’s spectral libraries, and 18 in 
SWATHAtlas, six of which are human.  
The use of a spectral library generated from data acquired on the same LC-MS coupling and conditions 
is the optimal method for DIA analysis. However, studies have shown that MS/MS spectra acquired on 
different instruments both using CID fragmentation can be compared and thus used for cross-
instrument library generation, if the peptides’ elution order is the same265,310. Recently, Multiple 
Characteristic Intensity Pattern (MCIP) approach was introduced to better take into account spectral 
variability when building spectral libraries311. 

b. Artificial intelligence-predicted libraries 

Recently, deep learning and artificial intelligence growth has been reflected on proteomics data 
processing and especially with DIA data processing. Different tools have emerged to predict library 
assay with deep learning computational fragment ion prediction, reaching the same level of accuracy 
than with empirical methods. Prosit is a deep neural network, trained on ProteomeTools synthetic 
peptide library, that can learn and predict both chromatographic RT and fragmentation ion intensity 
of any peptide with extremely high quality312. It is implemented in ProteomicsDB313, allowing custom 
in-silico spectral library generation. DeepMass:Prism314 predicts peptide fragmentation pattern using 
a deep-learning based algorithm trained on millions of MS/MS spectra and generates experimentally 
equivalent mass spectra, used to create in-silico spectral library265. pDeep315 is also a deep-learning 
based method, with extensive PTM support, predicting the intensity distribution of product ions of a 
peptide. It work well to predict not only HCD spectra but also ETD and EThcD spectra265. An important 
point to be raised, is that the intensities of the computationally predicted fragment are instrument 
dependent265. An other deep-learning based approach, DeepDIA316 , aims at training instrument-
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specific models for accurate MS/MS spectrum and RT prediction. This approach is shown to 
outperform both Prosit and pDeep approaches for in-silico spectral library generation316,317. 
DIA data processing software such as Spectronaut (Biognosys) or DIA-NN3 also use artificial intelligence 
and machine learning to improve their data processing. Benchmarking studies comparing the different 
software and approaches are widely developing318–320. One of the current challenges in the field of 
deep-learning predicted libraries is the prediction of spectra of modified peptides321, even if some 
methods are emerging, such as DeepPhospho322, a deep learning network specifically designed to 
generate phosphoproteomics in-silico libraries. 

c. Targeted data extraction 

Targeted data extraction approach was first proposed in 2012 by Gillet et al.272 to process SWATH data. 
All information in the spectral library are used to extract XICs from MS/MS spectra and interrogate the 
presence of peptides in the data. Potential elution peaks of each peptide from these fragment ion 
chromatograms are evaluated according to different criteria263: 

• The shape of the chromatographic peak  
• The peptide sequence and normalized RT 
• The precursors ions’ m/z and charge 
• The correlation of the fragment ions over elution time and how well their relative intensities 

match their corresponding library spectrum  

Similarly to DDA, statistical validation of peptide identifications is performed using a targeted  strategy 
to assess the FDR. Several software are based on a targeted data extraction approach such as 
OpenSWATH323, DIA-NN3, PeakView (AbSciex), Skyline303 and Spectronaut (Biognosys). 
An incorrect peptide detection can be due to multiple factors: (i) the queried peptide is not in the 
sample (ii) it is in the sample but at an amount below the instrumental limit of detection (iii) the correct 
peak group results in a lower score than the wrong one. To overcome at least partially these issues, 
algorithms have been developed, such as Transfer of Identification Confidence (TRIC)324, DIAlignR325 or 
recently DeepRTAlign326, to normalize retention time between analyses and limit the proportion of 
false identifications. Other software have been also developed to support the DIA data including ion 
mobility dimension namely Mobi-DIK11, Spectronaut (Biognosys), or more recently DIA-NN. 

d. Direct spectrum matches 

Another way of processing DIA data is much similar to DDA search algorithms as it consists of directly 
scoring the match between the MS/MS spectrum and a theoretical assigned MS/MS spectrum 
contained in the spectral library263. It is thus an untargeted detection of peptide, as opposed to the 
previously described approach. These methods introduce additional heuristic filtering such as 
considering only observed spectra that match a threshold number of peaks in a theoretical spectrum. 
The first developed software tool was ProbIDtree, which includes an algorithm that identifies, for each 
multiplexed MS/MS spectrum, all potential precursor ions contained in an isolation window and above 
a user-defined intensity threshold, using the corresponding MS spectrum327. From the list of potential 
precursor ions, it then calculates a probability score for the identification of each peptide and a peptide 
probability is constructed. At each iteration, a new DIA MS/MS spectrum is generated by removing the 
already matched fragments. Another software, Mixture-Spectrum Partitioning using Libraries of 
Identified Tandem mass spectra (MSPLIT-DIA)328, deconvolutes the DIA MS/MS spectra by evaluating 
the similarities between them and MS/MS spectra from the spectral library. Spectra that are too similar 
are removed from the targeted extraction and the quality of the results is evaluated through RT score 
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and FDR statistical validation. On the other hand, the EncyclopeDIA329 software uses the PEptide-
Centric ANalysis (PECAN)330 algorithm, which is based on spectral library generation from multiple 
injections of the sample in DIA using narrow isolation windows (4 m/z).  

ii. Spectrum-centric approach 

Spectrum-centric (also called “library-free”) approaches rely on the generation by algorithms of 
multiple pseudo-MS/MS spectra from DIA MS/MS spectra, each containing the fragments of only a 
single peptide in the mixture. The intensities of different fragment of a same peptide should correlate 
over elution time, and it is this correlation that is used to assign fragment ions from MS/MS scans to 
their intact peptide specie in MS scans. The pseudo MS/MS spectra are then submitted to a classical 
DDA database search263. This approach was first reported by Purvine et al.266 in 2003, where they 
constructed pseudo DDA spectra, from analyses performed at low and high voltages, and based on the 
similar chromatographic characteristics of precursor and fragment ion to identify them manually. 
Since then, many algorithms have emerged to perform this task automatically. Among them, DIA-
Umpire331 software propose the untargeted identification and quantification of peptides. Moreover, it 
allows to generate a spectral library from the obtained identification results, further used to perform 
targeted extraction of peptides in the initial DIA data. More recently, thanks to the implementation of 
Pulsar search engine in Spectronaut software, a directDIA algorithm10 has been implemented, allowing 
peptide-centric extraction of data. Similarly, the discovery mode of MaxDIA also allows the use of a 
library-free approach332. Finally, DIA-NN software allows performing DIA data extraction with both 
peptide- and spectra-centric approaches3. 

4. DIA for phosphoproteomics 

In classical DDA approach, isobaric phosphopeptides are difficult to sample and assign, as they share 
the same mass, similar retention times, and many fragment ions. DIA offers promising solution to study 
these co-eluting phosphopeptides, as multiple precursor ions are fragmented in parallel to trace 
peptide fragment ions along their chromatographic gradient and uses fragment ions to perform 
quantification247,333 (Figure 40). 

Figure 40: Data-independent acquisition mass spectrometry deterministically samples 
chromatographic peaks at multiple time points. Due to the reconstruction of fragment ion elution 
profiles enabled by this method, chromatographically co-eluting phosphopeptide isomers may be 

distinguished from each other by their site-specific fragment ions, from Srinivasan et al.247. 

Even if DIA method is not yet unanimously adopted to study phosphopeptides, some studies 
comparing DIA to DDA for phosphoproteomics are emerging. They mostly demonstrates that DIA 
allows better quantitative reproducibility and superior quantitation over a larger dynamic range for 
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phosphopeptides10,247,334–336. On fungus samples, the number of quantifiable peptides was 35% higher 
using DIA than DDA while the data completeness was also increased with DIA334. On cell lysate, using 
a DIA method allowed an almost 2 fold increase in the number of quantified phosphosites, while also 
highly increasing the percentage of phosphosites quantified with a coefficient of variation (CV) lower 
than 20%336. Comparing the two approaches on a dataset from human cell line doped with synthetic 
phosphopeptides, Srinivasan et al. have shown that DIA allows a more robust phosphopeptide 
identification, with 66% of phosphopeptides identified in 5 out of 10 replicates for only 32% in DDA247. 
Bekker-Jensen et al. used an optimized DIA phosphoproteomics protocol on HeLa cell lysate and 
identified approximately twice as many phosphopeptides over a larger intensity range compared to 
DDA, with superior quantitative reproducibility between technical replicates10. 
 
Taking advantage of the instrument developments, and especially ion mobility separation using dia-
PASEF on a TimsTOF Pro, Skowronek et al. identified more than 35 000 class I phosphosites on 
stimulated HeLa cells, 20 000 of which were quantified in all replicates of at least one experimental 
condition241. Using also dia-PASEF technology, Oliinyk et al. quantified on 20 µg of human cancer cell 
line over 13 000 phosphosites without spectral library133. 

  



PART II: State of the art in quantitative proteomics and phosphoproteomics 

82 

  



PART II: State of the art in quantitative proteomics and phosphoproteomics 

83 

Chapter 4: Multi-omic approaches to disease 
The addition of ‘omic’ to a molecular term implies a comprehensive or global assessment of a set of 
molecules. The application of the different individual omic has successfully allowed to better 
understand multiple cellular processes involved in many diseases21,22,337,338. These omics data are useful 
as marker for the disease progress and to give insight into biological pathways or processes are 
involved in it. However, each of these omic taken separately have not been yet able to fully 
comprehend the cause of disease but are rather reflecting of the reactive process arising from it. It is 
in this context that multi-omics studies have arisen for the past decade, as shown in Figure 41. 

Figure 41: Number of publications whose abstract contains the term “multi-omics” in PubMed. *For 
2023, the number of publications was collected on the 1st of April 2023. 

Multi-omics, also called pan-omics, trans-omics, or vertical-omics, is defined as the use of at least three 
or more omic datasets coming from different layers of biological regulation. The integration of all 
multi-omics data have shown promising results to understand potential causative alterations leading 
to some disease or to potential biomarkers target that might lead to future treatments8,339–343.  

Figure 42: Non-exhaustive schematic representation of a multi-omics analysis. 
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1. The different omics data types 

Some examples of the types of omics data that can be used in the context of a multi-omics project are 
discussed below. This list is not exhaustive as a comprehensive list of all omics type would not be 
appropriate as new omics technologies are rapidly emerging. 

• Genomics : the genome is defined as the complete sequence of DNA in a cell or organism344. It 
was the first type of omics to emerge. In the field of medical research, genomics aims to 
identify genetic variants associated with disease, response to treatment, or future patient 
prognosis.  

• Transcriptomics: the transcriptome is the complete set of RNA transcripts from DNA in a cell 
or tissue344. It includes ribosomal RNA (rRNA), messenger RNA (mRNA), transfer RNA (tRNA), 
micro RNA (miRNA) and other non-coding RNA. Transcriptomics examines RNA levels genome-
wide, both qualitatively (which transcripts are present) and quantitatively (how much of each 
transcript is expressed). RNA is the molecular intermediate DNA and proteins.    

• Proteomics: proteins are large and complex molecules made of thousands of amino acids, 
performing and enabling various tasks within biological systems and thus essential for life. The 
variety of protein is extensive and collectively, proteins catalyze and control nearly all cellular 
processes. They form a highly structure entity called proteome200. Proteomics is defined as the 
large-scale characterization of the entire protein complement of a cell, tissue or organism, at 
a specific time and location, and under given physiologic/pathologic conditions58. Proteomics 
analysis is used to quantify peptide abundance, modifications and interactions340. 

• Metabolomics: the metabolome is the complete set of metabolites found within a biological 
sample such as amino acids, fatty acids, carbohydrates or other products of cellular metabolic 
function. Metabolite levels and relative ratios are a reflection of metabolic function and 
abnormal perturbations may indicate some disease 340,344.  

Other omics data types include miRNA-omics345, epigenomics56, microbiomics346 and much others.  

2. Challenges of omics studies   

Each individual omics present different challenges of their own347,348. Multi-omics analysis therefore 
take on each of the challenges of the individual omics, and is faced with additional ones linked to 
treatment of non-uniform missing values, data integration, computation and visualization, as well as 
data annotation and storage339,349. The different multi-omics challenges are detailed in various 
publications339,348–352, only some of them will be detailed here. 
When setting up a multi-omics analysis, multiple aspects need to be considered. For example, as it was 
shown by Tarazona et al.349, different omics platforms vary in the number of detected features. This is 
well represented with proteomics (Figure 43-(A)). Indeed, proteomics has an inherent bias of detecting 
more easily abundant proteins or targeting those with specific chemical properties, while this issue is 
almost non-existent in transcriptomics. Due to this differential feature coverage, analysis of the link 
between gene and protein expression is thus limited by the proteomics data. Moreover, different 
omics require a different number of samples to acquire reliable results as statistical power varies with 
sample size depending on the omic data339,349, as shown in Figure 43-(B). Reliability depends on the 
FDR which is linked to the number of measured entities. For example, proteomics might need around 
14 samples per experimental group to achieve a power of 0.6 while with metabolomics, only 4 samples 
are needed to achieve the same statistical power353. 
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Figure 43: Comparison of the properties of some omics data type, from Tarazona et al.349.(A) Number 
of features detected by each omic technology (B) Statistical power curves across omics data types as 

a function of sample size. 

Another main challenge in multi-omics analysis is sample preparation. Indeed, most omics have their 
own sample preparation process, each facing their own hurdles58,354. Independent molecular 
extraction techniques, while allowing for the correlation of single molecular classes, add multiple 
limitations to the process with (i) additional experimental deviations (ii) more time consuming sample 
preparation and (iii) a need of high quantities of starting material, the latter being especially 
challenging for study of clinical samples352. In this context, some protocols have been developed, 
proposing a unified extraction procedure working for each omic, such as the Metabolite, Protein, and 
Lipid Extraction (MPLEx)355 protocol or the Simultaneous Metabolite, Protein, Lipid Extraction 
(SIMPLEX)356 and others357,358. More recently, the Bead-enabled Accelerated Monophasic Multi-omics 
(BAMM) sample preparation approach was proposed by Muehlbauer et al.359. This technique combines 
the addition of n-butanol based monophasic extraction solvent with the addition of unmodified 
magnetic beads. Then samples are incubated on ice for 5 minutes to allow proteins to aggregate onto 
the beads while metabolites and lipids remains in the supernatant. Unbound metabolites and lipids 
can be then removed for further analysis. Digestion is performed on the proteins for less than 1 hour 
and all three omics samples can be analyzed within the same day as sample preparation. Compared to 
other methods such as MPLEx or SIMPLEX, it allows for the generation of comparable data depthwhen 
applied to various type of sample (cell pellets, bio-fluids, cell culture plates) while saving an average of 
19 hours359. 
One other main hurdle faced by multi-omics is the reproducibility of the analysis. It is quite challenging 
due to the diversity of methods and tools used for data analysis and statistical processing. Many 
development are done thus aimed at achieving the Findability, Accessibility, Interoperability and 
Reusability (FAIR) standards339,360,361, described in Figure 44. 
In an effort of to meet those principles, public platforms as GitHub are used to openly share scripts 
and codes of analysis. An example of an openly accessible omics data platform is the Omics Discovery 
Index (OmicsDI) which allows access and integration of genomics, transcriptomics, proteomics and 
metabolomics datasets362. This database contains more than datasets, covering almost 4000 different 
diseases, and more than 6000 species348. Other multi-omics data repositories exists but they focus on 
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one specific disease350, such as The Cancer Atlas Genome (TCGA)363 or the Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC)364.  

Figure 44: The FAIR principles and main guidelines360,361. 

3. Multi-omics data integration 

The integration of multi-omic data is a key step in the analysis, as it will help unravel and understand 
underlying mechanisms of the studied disease. It is however far from trivial because of data 
heterogeneity between the different –omic data. Indeed, they are mostly generated using various 
technologies and platforms, operating in different dynamic ranges of detection and quantification. 
Moreover, integration of multi-omic data also increases the difficulty to handle false positives in the 
combined datasets.  

Currently, no unanimous workflow has been adopted by the scientific community for multi-
omic data integration. However, some tools have been developed to improved data handling such as 
Similarity Network Fusion (SNF)365, mixOmics366, Multi-Omics Factor Analysis (MOFA)367 for example. 
MOFA is an unsupervised computational method for integration of multi-omics data on the same (or 
at least partially) samples. MOFA allows analyzing the sources of heterogeneity in multi-omics data 
set, thus improving the identification of discrete subgroups of samples350,367. MixOmics is a R package 
based on supervised and unsupervised multivariate approach to perform data integration with focus 
on data exploration, dimension reduction and visualization. SNF is based on the construction of 
networks of samples (ie patients) for each data type and then fuses iteratively these networks into a 
single similarity network. This network represents a full vision of the data, and avoids dealing with 
different scales and noise, that will disappear with iterations350,365. Many other tools for multi-omics 
data integration, based on different approaches and with various applications, are reported in 
literature339,350. 

Machine learning tools, which are already used for single omics data, are now also being 
developed to investigate and integrate multi-omics data. Machine learning tools have been applied to 
a variety of multi-omics studies, from brain disease8 study to single-cell analysis368. A plethora of 
different machine learning and deep learning techniques are used in the literature for multi-omics data 
analysis, all with various goals and characteritics369,370. 
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Protein phosphorylation regulates many cellular processes, as discussed in Part II, Chapter 2. It is a fast 
and reversible reaction, modulating protein conformation, thus activating or inhibiting protein 
function, enzyme activity and influencing protein interactions4. Despite its widespread use in 
laboratories, and despite technological and instrumental evolutions for the past decade, 
phosphoproteomics still faces many challenges7,180. 
A significant number of quantitative phosphoproteomics studies are based on isotopic labeling 
techniques using TMT as they allow increased sample throughput, thus improved statistical power and 
limited missing values186,207,231,371–373. Labeling however greatly increases the cost of the analysis as well 
as the time of sample preparation and the quantification accuracy is reduced compared to label-free 
approaches. For these reasons, my goal was to develop a robust label free phosphoproteomic method 
allowing for the identification and quantification of phosphorylations. 
Additionally, when working on clinical samples, the amount of starting material at disposal can be 
small, when working on tumor biopsies for instance, whereas the usual amount of sample required for 
phosphoproteomics analysis is relatively high, as the many steps of the workflow might generate 
sample losses. Moreover, in most multi-omics clinical studies, a high number of samples are used to 
be as representative as possible of the studied population. Therefore, the whole workflow needs to be 
highly reproducible and high throughput. This is why I focused on developing an automated and high 
throughput phosphoproteomics workflow, applicable on large cohorts of samples and compatible with 
small amounts of starting material.  
 

To develop this method, I focused on key points of the workflow: protein extraction and digestion, 
nanoLC-MS/MS analysis, and data treatment. The analytical framework is represented in Figure 45. 

Figure 45: Analytical framework for the development of an automated and high throughput 
phosphoproteomics workflow. 
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A first experiment was conducted on bovine brain samples to optimize the different parts of the 
workflow: 

• First, protein extraction from brain tissue was optimized by evaluating different lysis buffers. 
Two different digestion protocols were also compared. After protein digestion, 
phosphopeptide enrichment of the samples was performed using a standard IMAC method on 
an AssayMAP Bravo platform. 

• For the nanoLC-MS/MS analysis, two different platforms were compared and evaluated: the 
Q-Exactive HF-X (Thermo) and the TimsTOF Pro (Bruker), both using HCD/CID fragmentation 
methods. Some tests were also conducted on a Tribrid Eclipse (Thermo, Orbitrap/Ion Trap) 
using an alternative fragmentation method, ETD.  

• Finally, different pipelines were compared for the database search (Mascot (Matrix Science), 
Andromeda and MS Amanda), the localization and validation (Mascot, Andromeda, 
PhosphoRS), and the quantification (Proline, MaxQuant, Proteome Discoverer (Thermo)) of 
phosphorylation sites. 
 

Taking the optimizations one step further, the developed method was applied on mouse brain tissues 
and both DDA and DIA methods for phosphopeptides analysis were optimized on the TimsTOF Pro. 
Finally, two different software were evaluated for phosphoproteomics DIA data analysis: Spectronaut 
(Biognosys) and DIA-NN3 . 
All experimental protocols are detailed in Part IV: Experimental section. 
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Chapter 1: Development of a high throughput and 
automated phosphoproteomics sample 

preparation workflow 

1. Determination of the most adapted protein extraction protocol  

An efficient protein extraction relies on releasing proteins by cell lysis and is a key step for 
(phospho)proteomic analysis. The lysis buffer must thus be able to solubilize as many proteins as 
possible without modifying or degrading them, and without introducing a bias of over- or under-
expression of one subtype of proteins. Different protocols were compared for tissue protein extraction 
on triplicates of about 30 mg of bovine brain. A representation of all protocols is displayed in Figure 
46. 

Figure 46: Method development for protein extraction and digestion. Five different protocols were 
compared: A = 8M urea; B = 8M urea with precipitation; C = 6M urea, 2M thiourea; D = 6M urea, 2M 

thiourea with precipitation; E = Laemmli-like buffer. 

Three different lysis buffers described in literature374 were used to extract proteins from the brain 
tissues: a buffer containing 8M of urea in 0.1M of ammonium bicarbonate (ABC), another with 8M 
urea and 6M thiourea in 0.1M of ABC, and finally a Laemmli-like buffer with 2.5% SDS in 50mM of 
TrisHCl. Each buffer contains proteases inhibitors and phosphatases inhibitors to prevent 
phosphorylation degradation. For the two urea-based buffers, a step of chloroform and methanol 
(CHCl3/MeOH) precipitation was added to remove impurities from the sample such as salts or lipids 
that might interfere with the enzymatic digestion or the LC-MS/MS analysis. 

First of all, we compared the yield of extraction for each protocol, as displayed in Figure 47. The two 
conditions with precipitation (conditions B and D) display the lowest results. Indeed, the addition of a 
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precipitation step is known to cause sample losses58 but can be useful to remove contaminants before 
MS analysis. The two highest yields are obtained respectively with the urea and the Laemmli-like 
extraction but the Laemmli-like extraction appears to be more reproducible than the urea one. Using 
a combination of thiourea and urea does not seem to improve the extraction. Indeed conditions C and 
D both display lower results compared to their only-urea counterparts (respectively, conditions A and 
B). 

Figure 47: Average yield of extraction (in %) calculated from the theoretical initial mass of tissue and 
the protein amount in the sample measured for each extraction by proteic assay. 

For all urea-based conditions, protein extracts were then digested using a mixture of trypsin and lysC 
before undergoing peptide clean-up using a SPE protocol to remove salts (especially urea) from the 
samples. For the Laemmli-like condition, a SP3 digestion was performed, which is compatible with SDS. 
A peptide clean-up step was not used for SP3 as washing steps are performed during the protocol 
before the digestion. The generated peptides were injected on a nanoAcquity coupled to a Q-Exactive 
Plus (Thermo) to check the performance of the protocols before phosphopeptide enrichment. Proteins 
and peptides identification was performed by Mascot and validation using Proline. Identification 
results for the different protocols are displayed in Figure 48. 

 
Figure 48: Average number of (A) proteins and (B) peptides identified and validated for each 
extraction. A = urea; B = urea with precipitation; C = urea/thiourea; D = urea/thiourea with 

precipitation; E = Laemmli-like. 
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Surprisingly, compared to the extraction yield results, the best identification results for both proteins 
and peptides are obtained with condition C with 1254 proteins and 6547 peptides identified. The 
addition of thiourea in the extraction buffer thus seems to solubilize or extract additional proteins 
compared to a urea-only buffer. These additional identifications are represented by the Venn diagram 
in Figure 49 and 16% of proteins are identified exclusively using the urea/thiourea buffer (condition 
C).  

Figure 49: Venn diagram of the overlap of identified proteins between the urea condition (A) and the 
urea/thiourea condition (C). 

The Laemmli-like condition, while not being the best in terms of protein identifications, has the second 
highest number of peptides identified after the urea condition with 6005 peptides identified (Figure 
48) with the best reproducibility of both proteins and peptides identification. Like for extraction yield 
results, the precipitation step decreases the number of identifications for the urea/thiourea buffer. 
However, it surprisingly seems to improve the results for the urea buffer with a 6% increase in terms 
of proteins identified and an 11% increase for peptides identified using precipitation. However, these 
results need to be taken cautiously, as if we take into account the relatively high standard deviations 
of conditions A and B’ results, the difference of identification between the two conditions is not 
representative. 

Quantitation was performed with Proline158 and a stringent filter was applied as quantitative values 
were required in 3 out of the 3 replicates, meaning no missing values were allowed. As shown by the 
Figure 50 – (A), condition C with urea/thiourea and condition with Laemmli allows for the highest 
quantifications with respectively 4087 and 3956 quantified peptides. Coefficients of variation (CV) 
were then computed on the intensities of quantified peptides and their distribution by condition are 
represented by Figure 50 – (B). The Laemmli extraction (condition B) displays the lowest CV with a 
median CV of 15.7%.  
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Figure 50 : (A) Number of quantified peptides in 3/3 replicates for each condition (B) Boxplots 
representing the distribution of CVs on the peptide intensities and the median CV per condition. 

Overall, conditions 3 (urea/thiourea) and 5 (Laemmli-like) display the best results in terms of 
identification, quantification and reproducibility. Those two conditions are therefore chosen to further 
evaluate the phosphopeptide enrichment step.  

2. Evaluation of the automated phosphopeptide enrichment 
protocol 

Phosphopeptide enrichment is performed on 150 µg of digested peptides in a solution of 80% ACN, 
0.1% TFA using IMAC cartridges filled with a 5 µL Fe(III)-NTA phase. Peptides are eluted by increasing 
the pH with a 1% NH4OH solution and enriched phosphopeptides fractions were then injected on a 
NanoElute coupled to a TimsTOF Pro (Bruker). 

i. Enrichment efficiency 

To estimate the enrichment efficiency, a mixture of isotopically labeled (heavy or light) synthetic 
phosphopeptides can be added to the samples. These phosphopeptides, called Phosphomix, are 
derived from naturally occurring peptides in HeLa cells and commercialized by Thermo Fisher Scientific. 
Different mixes can be used, all of them containing 10 different synthetic phosphopeptides that are 
mono- or bi-phosphorylated. They were used to evaluate the efficiency and reproducibility of the 
phosphopeptide enrichment process, as they were added before (Phosphomix light, in their naturally 
occurring isotopic abundance) and after the enrichment (Phosphomix heavy, in their stable isotope 
enriched version). They are not widely used in literature as the ratio of phosphorylated peptides over 
all peptides is more commonly used. Other phosphopeptides mixtures are also used to monitor protein 
phosphorylation: 

- SpikeMixTM PTM-Kit (JPT): pool of 100 proteotypic phosphoserine and phosphothreonine 
containing peptides. 

- SureQuantTM Phosphopeptide suitability standard (ThermoFisher Scientific): The SureQuant 
Multipathway Phosphopeptide Standard contains an optimized mixture of 131 isotopically 
labeled phosphopeptides while the SureQuant Phosphopeptide Suitability Standard contains 
a mixture of 20 isotopically labelled phosphopeptides with increasing hydrophobic properties. 

- SigPath375: 298 synthetic heavy-labelled phosphopeptides. 
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As described in the Phosphomix technical sheet (Table 4), some of those phosphopeptides are more 
easily detected than others. 

Table 4: Technical sheet of Phosphomix 1 with the peptide sequences and the phosphorylated sites, 
the associated heavy and light mass weight, and signal intensity. The relative signal intensity was 

obtained after reversed phase LC-MS/MS with ESI ionization. 

Equivalent quantities of phosphomix light and heavy were added before and after the phopshopeptide 
enrichment. The ratio of the heavy peptides intensities over the light peptides intensities thus 
corresponds to the ratio of peptides enriched ie the enrichment efficiency. In the Proteomics 
Multicentric Experiment 11 (PME11) inter-laboratories study, every lab added phospomix 1 and 2 to 
yeast lysate before performing phosphopeptide enrichment (either IMAC or MOAC) and highlighted 
the varibility of enrichment process between differnet labs376. To our knowledge, the only study 
describing the use of phosphomix standards to evaluate IMAC enrichment is an application note from 
Agilent. In this study, they used phosphomix 1 and 2 to highlight the efficiency of the IMAC 
phosphopeptide enrichment using Fe(III)-NTA cartidges on an AssayMAP Bravo220. This study was 
however performed on cell lysates and not tissues, but as a comparison, only 6 out of the 10 
phosphomix were identified in the experiment.  
Phosphomix 1 was added to the peptidic mixture from the urea/thiourea condition and the 
corresponding phosphopeptides ion currents’ were extracted using Skyline (v.20.2.0). Out of the 10 
synthetic phosphopeptides, only 3 of them have a usable signal : EVQAEQPSSSSP, ADEPSSEESDLEID, 
and FEDEGAGFEESSETGDYEE. According to their technical sheet, they are expected to have from a 
medium to a strong relative signal intensity. As summarized in Table 5, they were some of the most 
frequently identified phosphomix standards among the 31 laboratories of the PME11 initiative376. As a 
comparison, the mean ratio heavy/light of those peptides in the Agilent Application220 note is also 
added in Table 5.  
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Table 5: Mean heavy/light ratio of the 3 observed Phosphomix for the urea/thiourea condition and 
comparison with mean heavy/light ratio and frequency of detection from literature. 

The enrichment efficiency appears to be quite low, especially when compared to the ratios obtained 
in the Agilent technical note. However, we need to take into account that our experiment was 
performed on tissue samples, much more complex than cell lines, which can explain the differences 
obtained. Moreover, in the application note, the synthetic peptides were followed in a targeted way, 
using MRM, greatly increasing the sensitivity and specificity of the analysis toward those specific 
peptides. We can also note that the ratio of enrichment seems greatly dependent on the peptide. For 
example, ADEPSSEESDLEID peptide was detected whereas its mono-phosphorylated counterpart 
ADEPSSEESDLEID was not. This might be due to the bias of IMAC enrichment towards multi-
phosphorylated peptides377,378. Considering the low efficiency of enrichment as well as the low number 
of synthetic phosphopeptides detected, one can question the overall quality of the Phosphomix batch 
used, as it was prepared a couple of years ago, suggesting that the phosphopeptides might have been 
degraded.  
A more widespread method to evaluate phosphopeptide enrichment efficiency is to look at the ratio 
of the number of phosphorylated peptides over the total number of identified peptides and eventually 
comparing this ratio for non-enriched samples. For urea/thiourea, this ratio for enriched samples is 
equal to 25±9% whereas it is of 13±1% for the Laemmli-like buffer.  

ii. Identification results 

As shown in Figure 51, between 640 and 713 phosphoproteins were identified on bovine brain tissues 
using either Laemmli like or urea/thiourea buffer for protein extraction. Phosphoproteomics studies 
on bovine brain tissues are almost inexistent in literature, so comparison can be made, cautiously, with 
other species’ brain tissues. For example, on mouse brain tissues in a urea-based buffer and enriched 
by IMAC, almost 400 phosphoproteins were identified379. In another study, human brain tissues were 
homogenized in SDS buffer, labeled by TMT, fractionated and finally enriched by IMAC, identifying 
4631 phosphopeptides227. Those results are however difficult to compare with ours as both TMT 
labeling and fractionation steps were used, as in numerous phosphoproteomics studies6,228,235, which 
both greatly improve identifications. 
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Figure 51: Mean number of phosphoproteins and phosphopeptides identified for the urea/thiourea 
and Laemmli extraction conditions. 

Phosphoproteins and phosphopeptides are relatively well identified by both extraction buffers as they 
have around 45% to almost 60% of identification overlap (Figure 52). The two buffers seem quite 
complementary as around 20% of identifications are unique to the Laemmli-like buffer whereas 
approximately 30% are unique to the urea/thiourea buffer.  

Figure 52: Venn diagrams of the (A) phosphopeptides and (B) phosphoproteins identified by the two 
extraction methods (urea/thiourea and Laemmli-like). 

iii. Sample preparation reproducibility 

Three technical replicates for each condition were prepared following the exact same steps of sample 
preparation in order to evaluate the reproducibility of the workflow. Almost 30% of the 
phosphopeptides are shared between the 3 technical replicates, corresponding to 423 
phosphopeptides for the Laemmli condition and 460 for the urea/thiourea condition (Figure 53). A 
30% overlap between the 3 technical replicates might seem low at first sight. However, compared to 
classical global proteomics, it was observed in the lab that on average only 50% of the peptides are 
common between 3 replicates due to the stochasticity of the DDA analysis. Here, we have an extra 
phosphopeptide enrichment step, adding another level of variability in sample preparation. Moreover, 
we are studying a very labile modification which induces another layer of variability in the analysis. 
Taking all these elements into the equation, a 30% recovery in phosphopeptides identified seems a 
reasonable result. Indeed, a 25% recovery was obtained on four replicates of lung cell lysate after TiO2 
enrichment380. On A431 lysate digest, 48% of recovery was obtained on unique phosphopeptides 
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identified across three technical replicates of Fe3+ IMAC enrichment211. More recently, 45% coverage 
was achieved between the phosphoproteome of 3 malignant melanoma samples after automated 
Fe(III)-NTA phosphopeptide enrichment212. 

Figure 53: Venn diagrams of the phosphopeptides coverage between the 3 replicates for (A) the 
urea/thiourea extraction and (B) the Laemmli-like extraction. 

Differences are observed for Replicate 2 of the Laemmli-like condition, compared to the two other 
replicates, as 40% of phosphopeptides are uniquely identified by this replicate. As the bovine brain 
samples were not clinically prepared but bought and home-made cut then only frozen, there can be a 
great variability from one sample to the other. Another explanation might be that the 2nd replicate was 
the first sample injected of the series, whereas Replicate 1 and Replicate 3 were stored in the auto-
sampler at 4°C and injected almost 48h later in the sequence. We did not anticipate such a big effect 
of the time between different replicate injections. This effect is discussed further in the next paragraph 
on the reproducibility of the LC-MS/MS analysis. 

iv. LC-MS/MS analysis reproducibility 

To evaluate the reproducibility of the LC-MS/MS analysis, 3 injection replicates were analyzed for the 
urea/thiourea condition. The overlap of those injection replicates, injected at each 24h interval, is 
represented by Figure 54. 

Figure 54: Venn diagram of the phosphopeptides overlap between 3 injection replicates. 



PART III: Development of a fully automated high throughput phosphoproteomics workflow 

99 

We observe an almost 40% decrease in identification between T and T+24h. This loss of 
phosphopeptides might be explained by the thermal degradation of phosphopeptides but also by their 
potential adsorption onto the tube wall206. Thus, for all further phosphoproteomics experiments in this 
manuscript, samples after enrichment were frozen at -80°C and de-frozen by 24h-period before their 
injection on the LC-MS/MS platform. 

v. Distribution of the phosphorylation on amino acids 

The distribution of the phosphorylations on serine (S), threonine (T) and tyrosine (Y) residues for the 
two extraction conditions is represented in Figure 55. 

Figure 55: Distribution of the phosphorylation on serine (S), threonine (T) and tyrosine (Y) residues 
for (A) the urea/thiourea condition and (B) the Laemmli-like condition. 

The repartition obtained is equivalent to the one in literature181, as around 86-87% of phosphorylations 
were found on serine residues, 12-13% on threonine and 1% on tyrosine residues. 

To conclude, the urea/thiourea condition allows for a greater number of phosphopeptide 
identifications with the highest efficiency of enrichment.  
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Chapter 2: Optimization of LC-MS/MS methods for 
the analysis of phosphopeptides 

1. Evaluation of the best LC-MS/MS platform for 
phosphoproteomics 

i. Comparison of two different nanoLC-MS/MS systems for phosphopeptides 
analysis: Q-Exactive HF-X and TimsTOF Po 

Here, the goal was to compare a well-established Orbitrap instrument, the Q-Exactive HF-X (Thermo), 
to a latest generation instrument equipped with an ion mobility dimension, the TimsTOF Pro (Bruker), 
for the specific purpose of phosphopeptides analysis. Indeed, when I began my PhD, the acquisition 
methods were optimized for classical proteomics on the TimsTOF Pro but no evaluation had been 
performed for phosphopeptides analysis. In addition, very few publications described 
phosphoproteomics on a TimsTOF Pro in the literature. We thus started using “standard” parameters 
on the machine to compare its performances to the ones of the Q-Exactive HF-X. Later, we have further 
optimized those parameters (see Chapter 2 – 2. Optimization of a DDA method on a TimsTOF Pro 
platform and 3.Development of a dia-PASEF method).  
The main differences between the two nanoLC-MS/MS platforms are the fragmentation modes and 
the additional dimension brought by the ion mobility in the TimsTOF. Moreover, the TimsTOF is 
coupled with the PASEF technology, greatly increasing the instrument’s sensitivity (see Part II: State of 
the art for more details). The two mass spectrometers also use different fragmentation techniques as 
the Q-Exactive HF-X employs HCD whereas TimsTOF uses CID fragmentation. The additional energy 
brought with HCD might allow for a better fragmentation of phosphopeptides by reducing neutral 
losses of the phosphate group and thus generating more informative spectra180.  

Figure 56: Mean numbers of identified phosphoproteins and phosphopeptides on the two 
instruments. 

Identification of phosphopeptides was performed using MaxQuant, and results are displayed in Figure 
56. Identifications are around 50% higher with the TimsTOF Pro compared to the Q-Exactive HF-X. 
However, the reproducibility of identifications is more than twice lower with the TimsTOF Pro than the 
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Q-Exactive HF-X. Indeed, for the Q-Exactive HF-X the standard deviation is of 14% and 18% respectively 
for phosphoproteins and phosphopeptides, compared to 35% and 40% for the TimsTOF Pro.  
The recovery of the identified phosphopeptides between the two platforms is represented in Figure 
57. Less than 30% of the phosphopeptides identified robustly (in 3 out of the 3 replicates) are common 
between the two platforms and more than 300 phosphopeptides are uniquely identified in all 
replicates on the TimsTOF Pro.  

Figure 57: Venn diagram representing the overlap between the most reliable phosphopeptides 
identified by the two platforms in 3 out of 3 replicates.  

In terms of quantification performances, the median CVs of the intensities of all phosphopeptides 
quantified in 3 out of 3 replicates were calculated for both platforms. The median CV was of 41% for 
Q-Exactive HF-X data and 50% for TimsTOF Pro data, highlighting a slightly more robust quantification 
of phosphopeptides with Q-Exactive HF-X. 

All these results highlight that despite a slightly increased robustness of quantification with HCD 
fragmentation on Orbitrap instruments, the TimsTOF Pro offers promising identifications of 
phosphopeptides. Both platforms seem complementary as they both identify different populations of 
phosphopeptides. The TimsTOF Pro is not yet as widespread as the Q-Exactive HF-X for 
phosphoproteomics analysis. Optimizations are therefore necessary to improve the reproducibility of 
identified and quantified phosphopeptides on a TimsTOF Pro platform. Those optimizations will be 
developed later in this manuscript (see Part III -Chapter 2: Optimization of a DDA method on a 
TimsTOF Pro platform).  

ii. Investigation of an alternative fragmentation technique for 
phosphopeptides: electron transfer dissociation on a Tribrid Eclipse 
instrument 

Many publications emphasize the use of alternative fragmentation methods (in opposition to classical 
CID/HCD) to improve the analysis of modified peptides and especially phosphopeptides. Indeed, 
collision fragmentation (CID/HCD) often leads to the loss of the phosphate group, instead of the 
peptidic bond fragmentation, thus leading to non-informative spectra. Softer ionization techniques, 
such as ETD, allow keeping the phosphate group while fragmenting the peptidic bond, allowing to get 
information on the peptide sequence and the site localization224.  
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We wanted to test this fragmentation method, available in the lab on an Orbitrap Eclipse Tribrid 
(Thermo) equipped with multiple fragmentation modes (HCD, CID, ETD, EThCD, UVPD). Samples 
enriched in phosphopeptides were thus injected in ETD and in HCD for comparison. Generated data 
were analyzed using Proteome Discoverer.  

Figure 58: MS/MS spectra of peptide SDSLILDHQWELEK obtained by HCD (upper panel) or ETD (lower 
panel) fragmentation on the Tribrid Eclipse instrument. 

Figure 59: MS/MS spectra of peptide ILEEKSPEK obtained by HCD (upper panel) or ETD (lower panel) 
fragmentation on the Tribrid Eclipse instrument. 

In Figure 58, fragmentation spectra of the SDSLILDHQWELEK phosphorylated peptide, obtained either 
by HCD or ETD are represented. In HCD, very few fragments are detected compared to the much richer 
spectrum of ETD. In Figure 59, spectra (by HCD and ETD) of the ILEEKSPEK phosphorylated peptide are 
represented. Here, in HCD, the most intense peak at 576.78070 corresponds to the mass of the non-
fragmented peptide, while the peak at 527.79224 m/z corresponds to the non-fragmented peptide 
with a phosphate loss (-98 Da). On the other hand, the ETD spectrum displays lots of informative 
fragments that allow to assemble the peptide sequence and localize the phosphate group. 

When comparing the phosphosites identified by both techniques (Figure 60), 500 additional 
phosphosites are identified using HCD. Despite an easier identification of phosphosites thanks to 
better fragmentation spectra, ETD identifies a smaller total number of phosphosites. Indeed, ETD is a 
slow fragmentation technique as it needs a consequent reaction time between positively charged 
peptides and fluoroanthene anion. This greatly increases the overall cycle time of the MS analysis, 
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leading to poorer coverage of the chromatographic peaks. This explains the lower identifications of 
phosphosites compared to ETD. Additionally, we generated different phosphosites with the two 
technics, suggesting that they are complementary. The same observation is described in literature, and 
ETD and HCD are depicted as complementary techniques that allow the identification of different 
populations of phosphorylations381. 

Figure 60: Overlap of the identified class I phosphosites between HCD and ETD fragmentation. 

While ETD generates in theory promising results, it lacks for now optimizations and stays too slow for 
large scale phosphoproteomics.  

2. Optimization of a DDA method on a TimsTOF Pro platform 

In order to improve the performances of the TimsTOF Pro for the analysis of phosphopeptides, 
different parameters were optimized: the collision energy, the ion mobility window, the accumulation 
time, the number of PASEF scans and the LC gradient. All those optimizations were performed on 
murine brain tissues samples enriched in phosphopeptides and data analyzed using MaxQuant. 

i. First evaluation of MS/MS method parameters for phosphoproteomics on 
TimsTOF Pro 

The ion mobility value depends on the mass, the charge and the shape of the considered ion. It is also 
affected by the presence of a modification, as Ogata et al. showed that the reduced mobility coefficient 
(1/K0), also called Collision Cross Section (CCS), of phosphorylated peptides has a different value from 
its unmodified counterpart132. Thus, as the collision energy is applied as a function of the measured 
ion mobility, both parameters deserve being optimized for phosphoproteomics. 
The value of the accumulation time of the ions in the mobility cell will also have an impact on the 
analysis as the longer it is, the more ions are accumulated and thus the more information we will 
obtained. This is particularly suitable for the analysis of low quantities of material. However, if 
accumulation time is too long, we risk impacting the duty cycle and increase the cycle time. The cycle 
time is also an important parameter to optimize. As represented in Figure 61, the longer the cycle time 
the smaller the number of points per chromatographic peak thus the less defined the chromatographic 
peak. Therefore, a balance needs to be found for an optimal cycle time in which there are enough 
points per peak (usually between 8 to 10) to achieve the best accuracy and resolution possible. The 
number of PASEF scans in a method will also have an impact on the cycle time. If not enough PASEF 
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scans are performed, the risk is that not all precursors will be fragmented, but the greater the number 
of PASEF scans, the longer the cycle time.  

Figure 61: Description of one cycle across a chromatographic peak.  

All these parameters were evaluated and optimized in order to achieve the best performances for 
phosphopeptides analysis. We first set up two methods (A and B) and compared them with the two 
default methods supplied by Bruker (C and D). All other methods developed and their parameters are 
detailed in Figure 62 – (A) and Figure 62 – (B). 

Figure 62: (A) Table describing the 4 different methods used with their respective ion mobility range, 
collision energy range, slope of collision energy range, accumulation time, number of PASEF scans 

and cycle time (B) Description of the stepwise and linear slopes of collision energy range used for the 
different methods. 
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As displayed in Figure 63, optimized methods A and B both outperform C and D methods in terms of 
numbers of class I phosphosites identified. Indeed, because of their longer accumulation time of 166 
ms (in contrast to100 ms for methods C and D), methods A and B identify between 300 to 500 
additional class I phosphosites compared to methods C and D. Methods with a linear slope of collision 
energy (methods B) give slightly better results than methods with a stepwise slope (methods A) with 
in average a 10% increase in identifications. No significant difference is however observed for a method 
depending on the number of PASEF scans.  

Figure 63: Mean number of class I phosphosites identified by each method. 

Similarly to identifications, optimized methods A and B both quantify more class I phosphosites than 
methods C and D (Figure 64 – (A)). Method B, with a linear range of collision energy, allows for the 
quantification of more than 1800 class I phosphosites.  
To evaluate the accuracy of quantification of the different methods, the coefficients of variation were 
calculated on the intensities of the class I phosphosites quantified in the two replicates (Figure 64 – 
(B)). Method C, with a median CV of 6.6%, appears to be the most robust for quantification, as it uses 
the higher collision energies and thus suggests a more efficient fragmentation of the phosphopeptides. 
However, every other methods seem to have similar reproducibility with all CV < 20%, except for 
method A with 8 scans which displays a CV of almost 30%. 

Figure 64: (A) Number of class I phosphosites quantified in 2 out of 2 replicates per method (B) 
Repartition of the CVs on class I phosphosites quantified in 2 out of 2 replicates per method. 
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These results are to be interpreted cautiously as only 2 injection replicates per method could be 
injected due to instrumental problems. For this reason, additional tests for optimization were 
performed. 

ii. Fine tuning of an MS/MS method for phosphoproteomics on TimsTOF Pro 

For this second experiment, previously tested methods A, B and C were evaluated again. Two other 
new methods were added for fine tuning of the parameters, they are described in details in Figure 65- 
(A). In addition, five replicates per method were injected here (instead of two in the previous test) in 
order to evaluate more finely the quantification performances of the methods. Additionally, we used 
phospho-enriched murine tissues freshly prepared, while for the first experiment, already enriched 
samples from a previous experiment that were kept at -80°C had been used.  

Figure 65: (A) Table describing the 5 different methods used with their respective ion mobility range, 
collision energy range, slope, accumulation time, number of PASEF scans and cycle time (B) Ion 

mobility distribution of the precursors of the phosphopeptides identified with method D.  

Method E is the same as C except that it has a longer accumulation time (166 ms instead of 100 ms). 
Method F was designed to optimize the ion mobility window. Indeed, we looked at the ion mobility of 
the precursors of identified phosphopeptides of the method D of the first test, for which the ion 
mobility window was set from 0.6 to 1.6 1/K0. As shown by Figure 65- (B), the distribution of the ion 
motilities is mainly centered between 0.7 and 1.4 1/K0. For this reason, we wanted to evaluate the 
effect of a reduce ion mobility window, from 0.7 to 1.4 1/K0.  
The results of identification and quantification are represented in Figure 66. 

Figure 66: (A) Mean number of class I phosphosites identified by each method (B) Number of class I 
phosphosites quantified in 5 out of the 5 replicates by each method. 
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Both methods A and B display comparable results with around 3800 class I phosphosites identified, 
but method B slightly outperforms method A in terms of quantification. This suggests that a linear 
range of collision energy (method B) might be more adapted than a stepwise range (method A). The 
use of a reduced ion mobility window, even if adapted to the observed ion mobility of 
phosphopeptides precursors, does not allow for additional identifications. Indeed, method F (from 0.7 
to 1.4 1/K0) quantifies on average 10% less class I phosphosites than the same method with a wider 
ion mobility range (method B, from 0.6 to 1.6 1/K0). Methods C and E both have the lowest 
identification (with respectively 2885 and 3447 class I phosphosites identified) and quantification (with 
respectively 1297 and 1605 class I phosphosites quantified) rates. Comparing the two of them, method 
E allows for a 19% increase in identification numbers and a 24% increase in quantification numbers, 
suggesting that a longer accumulation time (166 ms instead of 100 ms) is more adapted for the 
analysis. As for the previous test, the number of PASEF scans does not significantly impacts the 
identification and quantification results. It does however seems that for each method, 8 PASEF scans 
allows for the better results, suggesting that it is the balance between an efficient fragmentation and 
a short cycle time. 

Figure 67: (A) Distribution of the CVs on class I phosphosites quantified in 5 out of 5 replicates for 
each method (B) Distribution of the scores of class I phosphosites quantified in 5 out of 5 replicates 

for each method. 

However, when looking at the reproducibility of quantification results (Figure 67 – (A)), methods C and 
E seem to be the more robust with median CVs on class I phosphosites quantified in all replicates of 
15.6% for C and 17.1% for E, whereas almost all other methods have median CVs > 20%. Indeed, as 
they are high collision energy methods (up to 80 eV), methods C and E generate more informative 
spectra and thus have a higher fragmentation efficienc, compared to lower collision energy methods 
(methods A, B and F, up to 62 eV). Moreover, when looking at the repartition of the scores of the best 
associated MS/MS spectrum, method C displays the highest median score (217.7), 10% higher in 
average than the one from any other “low –energy” method. Again, as the collision energies are higher 
in methods C and E, they generate better MS/MS spectra and thus scores for the best associated 
MS/MS spectrum are higher. 
 
To conclude, our results show that higher collision energy methods, despite identifying and quantifying 
less phosphopeptides than other methods, allow for robust and reproducible quantification of those 
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phosphopeptides. A method with 8 PASEF scans seems optimal for the analysis as it is a good balance 
between an efficient fragmentation and a short cycle time. The cycle time comes out as one of the 
most –if not the most- important parameter to look for as longer cycle times decrease the precision of 
the analysis with not enough data to generate informative results. Comparing to our very first 
phosphopeptide analysis on the TimsTOF Pro on the bovine brain tissues (see Figure 68), our 
phosphopeptides identifications on mouse brain tissues were increased by more than 200% and 
quantification by 300%, highlighting the need for nanoLC-MS/MS method optimization to study 
phosphorylation. 

Figure 68: Identification and quantification of class I phosphosites through our different 
optimizations. 

iii. Choice of the best suited LC gradient 

Next, we wanted to evaluate the best chromatographic conditions for phosphopeptides’ analysis. For 
this, we injected triplicates of our phosphopeptides-enriched samples of mouse brain tissues on the 
TimsTOF Pro, using 3 different LC gradients (30 minutes, 45 minutes, 80 minutes) and the MS method 
B with 8 PASEF scans. Identification and quantification results are displayed in Figure 69. 

Figure 69: (A) Mean numbers of phosphoproteins and phosphopeptides identified for each gradient 
(B) Distribution of the CVs on the intensities of phosphosites quantified in 3 out of 3 replicates for 

each method. 
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In terms of phosphoproteins and phosphopeptides identification (Figure 69 – (A)), comparable results 
were obtained with the 3 conditions, with between 3916 phosphopeptides identified with the 80 
minutes gradient to 4001 phosphopeptides identified with the 45 minutes gradient. However, looking 
into the quantification, and especially into the CVs on the intensities of phosphosites quantified in 3 
out of the 3 replicates for each gradient, differences in the results appears. Indeed, the median CV for 
the 30 minutes gradient is 33%, 15% for the 45 minutes gradient and 22% for the 80 minutes gradient. 
The quantification seems much more reproducible with the 45 minutes gradient, the only one with a 
CV <20%.In conclusion, the best compromise between analysis time and quantification robustness is 
achieved with the 45 min gradient. 

3. Development of a dia-PASEF method on the TimsTOF Pro 

The dia-PASEF is a recent DIA acquisition method specific to TimsTOF Pro as it uses to its advantage 
the PASEF presented in the previous section. DIA should benefit from the PASEF with the increased 
acquisition speed of the instrument, the noise reduction, the improvement of the signal with the 
accumulation of ions and the better separation of co-eluting peptides from the LC thanks to ion 
mobility. Recently, a few publications have shown the application of dia-PASEF technology on 
phosphopeptides with promising results in terms of identification, quantification, throughput and 
sensitivity of analysis133,241,334. For these reasons, we decided to investigate the potential of this 
innovative method, and thus developed a dia-PASEF pipeline for the analysis of phosphopeptides and 
evaluated its performances.  

i. Test 1: evaluation of isolation window width and accumulation time 

Mouse brain tissue samples enriched in phosphopeptides and four replicates were injected per 
method on the TimsTOF Pro using a 45 minutes gradient. Generated data were analyzed using 
Spectronaut (Biognosys). The four different methods tested are described in Figure 70 – (A). For all 
methods in this experiment, ion mobility range was set from 0.7 to 1.4 1/K0 and mass ranges from 400 
to 1400 Da.  
The first parameter to assess was the optimal isolation window width. Indeed, narrower isolation 
window results in less complex spectra but on the other hand increases the total number of windows 
needed to cover the whole mass range and thus the cycle time. As for DDA method optimization, we 
also evaluated two different accumulation time settings (100 ms and 166 ms). 

Figure 70: (A) Description and parameters of the 4 different dia-PASEF methods.  

We first evaluated the performances of the different methods in terms of identification. As shown in 
Figure 70 – (B), method 1 with an isolation window of 25 Da and 100 ms accumulation time displays 
the best results with highest numbers of both phosphopeptides (4458) and class I phosphosites (4563) 
identified. Using a wider isolation window of 30 Da decreases identifications by approximately 5%. 
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Comparing the different accumulation times, 100 ms allows for an average 14% increase in the number 
of phosphopeptides identified.  

Figure 71: Mean number of phosphopeptides and class I phosphosites identified by each method. 

For quantification, method A (25 Da window, 100 ms) displays the highest number of phosphopeptides 
quantified in all replicates with 2639 phosphopeptides quantified in all 4 replicates (Figure 72– (A)). 
However, if we apply a filter on the CV calculated on the intensities of the precursors of those 
quantified phosphopeptides, the drop of quantification for method A is of more than 80%. On the 
other hand, method 2 (30 Da window, 100 ms) quantifies 2850 phosphopeptides in all 4 replicates, 5% 
of them (1642 phosphopeptides) being quantified with a CV <20%. These results suggest that a 30 Da 
window width, while identifying and quantifying less phosphopeptides, allows for a better 
reproducibility of quantification. The same result is observed between methods 3 and 4: while they 
display similar results in number of quantified phosphopeptides, method 4 (30 Da window) has a 
higher proportion of quantified phosphopeptides with a CV < 20% (43% for method 4 opposed to 26% 
for method 3) and a lower median CV. This is further emphasized by the distribution of the CVs on the 
precursors’ intensities for each method, represented in Figure 72 – (B): method B has a median CV of 
13.7% whereas method A has a median CV of 19.8%.  

Figure 72: (A) Phosphopeptides quantified in 4 out of the 4 replicates and quantified in 4 out of the 4 
replicates with a CV <20% for each method (B) Distribution of the CV on intensities of the quantified 

phosphopeptides.  
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Comparably to identification, both methods A and B (100 ms) outperform methods C and D (166 ms) 
for quantification. The drop in quantification with the CV <20% filter is quite massive for those two 
methods, with almost a 300% drop for method 3 and a 130% drop for method 4 (Figure 72– (A)). Both 
methods also have a median CV on the precursors’ intensities higher than 20% with respectively a 
median CV of 33.1% for method 3 and 23.8% for method 4 (Figure 72 – (B)). These results highlight 
that a 100 ms accumulation time is optimal for phosphopeptides analysis by dia-PASEF. Indeed, a 166 
ms accumulation time might be less effective as (i) it increases the cycle time and thus reduces the 
sensitivity of the analysis (ii) too much ions are accumulated and therefore the complexity of analysis 
increases. A 100 ms accumulation time thus seems the optimum balance between filling the TIMS cell 
to its capacity and achieving the highest ion mobility resolution possible. Most global proteomics dia-
PASEF published studies and in the very few published work on phosphoproteomics dia-PASEF, a 100 
ms accumulation time is systemically used292,294,334. 

This first experiment led to different conclusions: (i) a 100 ms accumulation time allows for robust 
identification and quantification of phosphopeptides and (ii) a 30 Da isolation window seems best 
adapted for reproducible quantification of phosphopeptides. However, these optimizations are not 
sufficient as many other dia-PASEF parameters might impact our phosphopeptides analysis. Hence, 
further optimizations were performed as followed. 

ii. Test 2: optimization of the number of mobility steps and ion mobility range 

For this second experiment, mouse brain tissue samples enriched in phosphopeptides were injected 
on the TimsTOF Pro in three replicates per method using a 45 minutes gradient and generated data 
were analyzed using Spectronaut (Biognosys). The six different methods tested and their 
corresponding parameters are described in Table 6. For all methods in this experiment, the 
accumulation time was of 100 ms and mass ranges were set from 400 to 1400 Da. 

Table 6: Description and parameters of the 6 different dia-PASEF methods. 

For this second experiment, we assessed again the isolation window width by comparing a 25 Da 
window (method 1) to a 30 Da window (method 2). Except for method 1, all other methods were set 
with a 30 Da isolation window as first experiment suggested that it allowed a more robust 
quantification of phosphopeptides. We also evaluated the impact of different number of mobility 
steps. As represented in Figure 73, two possibilities are available when setting up a dia-PASEF 
experiment. In Figure 73 – (A), the m/z range is split in consecutive fixed isolation windows but only 
one ion mobility step is used. Alternatively, multiple mobility windows can be used, as shown in Figure 
73 – (B), meaning the ion mobility range will also be split into windows (usually from 1 to 3 maximum). 
This can be useful to decomplexify the precursors so that less co-eluting peptides should be observed. 
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However, as the overall number of steps is increased, we risk increasing the variability but also the 
cycle time and thus the quantitative precision. 

Figure 73: (A) A dia-PASEF polygon with 1 mobility step, (B) with 2 mobility steps and (C) with 3 
mobility steps. 

In addition, we evaluated a smaller ion mobility range, more adapted to phosphopeptides. Indeed, we 
looked at the ion mobilities of the precursors of identified phosphopeptides in the first experiment, 
and its distribution is represented in Figure 74. While an ion mobility range of 0.7 to 1.4 1/K0 was set, 
most precursors appear to have an IM value between 0.8 and 1.35. For this reason, we evaluated a 
method with an ion mobility range from 0.8 to 1.35 1/K0, optimally cover the area occupied by 
phosphopeptides and more adapted the to the peak density (method with 1 mobility step and method 
with 2 mobility steps). 

Figure 74: Distribution of precursors’ ion mobility for identified phosphopeptides of the 1st experiment. 

Identification results for this second experiment are presented in Figure 75. Consistently with what 
was observed in the first experiment, we confirm here that better results are obtained using a 30 Da 
isolation window as method 2 allows identifying more than 700 additional class I phosphosites 
compared to method 1. Results between method 2, 3 and 4, which have all the same parameters but 
increasing numbers of mobility steps, are similar as all the three methods identify between 7236 and 
7518 phosphopeptides. It seems that the number of mobility steps does not have a great impact on 
phosphopeptides identification. This is further shown when comparing method 5 to method 6 with 
respectively 1 and 2 mobility steps. The smaller ion mobility window (from 0.8 to 1.35 1/K0, methods 
5 and 6) appears to give lower identification results as they identify on average 20% less 
phosphopeptides compared to the same method with a wider ion mobility range (0.7 to 1.4 1/K0). 
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Figure 75: Mean number of phosphopeptides and class I phosphosites identified by each method. 

As for identifications, methods 2, 3 and 4 display similar results for quantification with between 4138 
to 4267 phosphopeptides quantified in all 3 replicates (Figure 76 – (A)). However, when applying a 20% 
filter on the CV of the quantified phosphopeptides, a clear distinction appears as method 3 (2 mobility 
steps) and method 4 (3 mobility steps) lose more than 50% of their quantified phosphopeptides. On 
the other hand, method 2 (with 1 mobility step) still robustly quantifies (with a CV lower than 20%) 
2891 phosphopeptides, compared to 4226 without the CV filter. This suggests that while an increased 
number of mobility steps has no impact on the number of phosphopeptides identified and quantified, 
it greatly reduced the reproducibility of quantification. This is further shown when looking at the global 
distribution of the CVs of the different methods, where method 2 has a median CV of 14% compared 
to 26% and 25% (Figure 76 – (B)) respectively for method 3 with 2 mobility steps and method 4 with 3 
mobility steps. This decreased reproducibility of quantification with the increase in the number of 
mobility steps is linked to the increasing cycle time, leading to poor quantitative precision. 

Figure 76: (A) Phosphopeptides quantified in 3 out of the 3 replicates and quantified in 3 out of the 3 
replicates with a CV <20% for each method (B) Distribution of the CV on intensities of the quantified 

phosphopeptides. 

Surprisingly, for the 0.8 to 1.35 1/K0 methods (methods 5 and 6), the opposite trend is observed. Both 
methods display comparable results in both numbers of phosphopeptides identified and quantified. 
However, after the CV <20% filter, method 6 (with 2 mobility steps) allows the quantification of almost 
300 additional phosphopeptides. Method 6 also displays a lower median CV (11%) compared to 
method 5 (15%), suggesting that 2 mobility steps allows for more robust quantification when using a 
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smaller ion mobility window. These comparable results between the two methods can be explained as 
the cycle time between the two methods is the same, thus the addition of a 2nd ion mobility step does 
not impair the quantification.  

Comparing our phosphoproteomics dia-PASEF results to the literature is not an easy task as they are 
very few published studies so far on the application of dia-PASEF to phosphoproteomics. Additionally, 
most of them are using the py_diAID package241, a Python package for DIA with an automated isolation 
window design. This package allows defining variable isolation windows in the m/z versus ion mobility 
plane that are adjusted to the expected precursor ion density of phosphopeptides, leading to an almost 
complete phosphorylated precursor coverage.  

Using this algorithm, Skowronek et al. identified almost 20 000 phosphopeptides on 100 µg of 
stimulated HeLa cells241. These results are however not comparable to ours for many reasons : (i) they 
analyzed HeLa cells which are much less complex than brain samples (ii) they used py_diAID for optimal 
isolation design and (iii) they used a library based approach while we used a library free approach to 
analyze our data.  

Similarly, Oliinnyk et al. identified almost 9 000 class I phosphosites on 20 µg HeLa cells digest133. They 
used Spectronaut in its directDIA mode, but also used py_diAID algorithm to set up their isolation 
windows. On fungus samples, using isolation windows of 25 Da and 15 dia-PASEF scans per cycle, a 
study identified around 6000 phosphopeptides334. Data was however analyzed using DIA-NN with a 
spectral library.  

Finally, from 20 µg of HeLa starting material, using latest developed µPhos protocol for 
phosphopeptide enrichment and py_diAID package, Oliinyk et al. identified more than 20 000 
phosphopeptides216. These results are again not comparable to ours, as too many parameters differ 
from our experiment. 

4. Summary of the improvements achieved via our 
phosphoproteomics method development 

Through all MS/MS optimizations performed, we were able to greatly improve our phosphoproteomics 
analysis. Indeed, we started from scratch with phosphopeptides injections on a Q-Exactive HF-X with 
a MS/MS method not adapted at all to phosphoproteomics. Thanks to multiple optimizations on the 
TimsTOF Pro, first in DDA then in DIA modes, we were able to increase by a factor of 12 the 
phosphosites identified and by a factor of 14 the phosphosites quantified (Figure 77). Moreover, while 
identifications were increased, the time of analysis was reduced from an original 90 min gradient to a 
final 45 min gradient. By decreasing the time of analysis, we allow for high throughput 
phosphoproteomics.  
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Figure 77: Summary of the different optimizations performed during my PhD, which led to an 
increase in phosphosites class I identification by a factor of 12. 

Moreover, thanks to the additional IM mobility separation on the TIMS, co-eluting phosphopeptides 
that are isobaric can be resolved. Figure 78 shows examples of co-eluting phosphopeptides, with the 
same sequence but different phosphorylation sites, which were separated based on their different ion 
mobilities. These co-eluting phosphopeptides thus generate two discrete MS/MS spectra that will be 
confidently assigned to different phosphopeptides by the search engine. This separation would not 
have been possible on a conventional non-TIMS mass spectrometer. 

Figure 78: Co-eluting isobaric phosphopeptides that differ only by the phosphorylation localization 
site are separated by TIMS. 

In addition, comparing DDA and DIA results, we were able to also greatly reduce the percentage of 
missing values across samples. As represented in Figure 79, while with DDA we have an overall 
percentage of missing values (MV) of almost 66%, this percentage of MVs is reduced by almost twice 
in DIA. These results highlight the known stochasticity of DDA, further enhanced in 
phosphoproteomics. Similar amount of MV have been obtained on a phosphoproteomics dataset by 
Weng et al. on T-cells samples, with around 40% of MV in DDA compared to 30% in DIA382. 
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Figure 79: Representation of the amount of missing values across phosphopeptides identification for 
(A) DIA dataset and (B) DDA datasets, from method optimization on the TimsTOF Pro. MX_RX (X%) 

indicates that replicate X of method X has X% of missing values. 

Strong of these optimizations and results, future high throughput phosphoproteomics analysis can 
now be performed on the TimsTOF Pro, either in DDA or DIA mode, and generate thousands of robust 
phosphosites’ identification and quantification.  
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Chapter 3: Evaluation of different data treatment 
pipelines for phosphosites identification, 

quantification and localization 

1. Benchmarking of different pipelines for DDA 
phosphoproteomics data analysis 

Data analysis in phosphoproteomics is a challenging step as in addition to identify peptides, 
phosphorylation sites need to be localized. Identification and quantification of phosphorylation sites 
can be performed by various algorithms, which also generate various scores to evaluate the reliability 
of the localization of the phosphorylation. However, scores returned by different algorithms are not 
always directly comparable. For this reason, various software for data treatment were compared. The 
different combinations evaluated are summarized in Table 7. 

Table 7: Algorithms used to search, validate and localize phosphosites. 

The evaluation of the different pipelines for data analysis was performed on triplicates of bovine brain 
tissues extracted with Laemmli-like buffer and analyzed on Q-Exactive HF-X platform (see Chapter 1: 
Development of a high throughput and automated phosphoproteomics sample preparation 
workflow), and results are described in the following paragraphs. 

i. Definition of a phosphorylation site depending on the software 

The definition of a phosphorylation site is specific and software-dependent. In general, a 
phosphorylation site refers to the localization of an amino acid in the peptidic sequence bearing a 
phosphorylation. The notion of site gives more information than the phosphopeptide as one peptide 
can bear multiple phosphorylations and multiple peptides can bear the same phosphorylation site. 
This is highlighted in Figure 80, when for example a peptide is miss-cleaved or also bears another 
modification. 
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Figure 80:  Schematic representation of different phosphorylation sites. A and B: the peptides have 
the same sequence and bear the same S3 phosphorylation site but the second one also has an 

oxidation in M7. A and C: the peptides have the same sequence but not the same phosphorylation 
site. C and D: they both have the same phosphorylation site and partially the same sequence but 

peptide D is miss-cleaved.  

The functional effect of phosphorylation can be site-dependent meaning that they happen only if the 
phosphorylation is on a specific amino-acid or sometimes on multiple amino-acids of the same protein. 
It is thus important to be able to correctly localize the phosphosite and have information on its 
multiplicity. All studied software allow for identification at the phosphosite level. For MaxQuant, 
thanks to the “PhosphoSites” file that can be then processed through Perseus with the option “expand 
sites tables” to have access to the site information. For Proline, it is through “modification sites” or 
“modification clusters” tabs, and for Proteome Discoverer, through “Modification Sites” tab. However, 
each software has its own definition of a phosphosite, and they are illustrated in Figure 81. 

Figure 81: Schematic representation of the definition of a phosphorylation site depending on the 
software.  

As showed in Figure 81, the different software also handle differently the multiplicity of the site, 
meaning if the peptide is mono- or multi-phosphorylated. In Proteome Discoverer or in the 
“modification cluster” tab from Proline, which have both the same site definition, we do not have 
access to the multiplicity information. On the other hand, it is accessible both in Proline in the 
“modification site” tab and in MaxQuant. However, keeping the multiplicity information gives rise to a 
redundancy as for one bi-phosphorylated site, two different lines are created in the output file. To 
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compare our results between the different software at the phosphosite level, we thus decided to get 
rid of the redundancy and chose the Proteome Discoverer definition of a phosphosite. As explained 
earlier, the multiplicity of a site can be a crucial information, and thus the ability to access this 
information can also be a criteria of evaluation between the software. 

ii. Identification results  

Shared peptides are also handled differently from one software to another. Both Proline and Proteome 
Discoverer attribute peptide/phosphorylation sites to the different isoforms of a protein. This creates 
a redundancy and leads to a bias, as one single PSM will wrongly identify multiple sites in multiple 
proteins. As displayed in Figure 82, DIESQVNKLR peptide, which is phosphorylated on serine 6, is 
associated to 8 different proteins, all myosine’s isoforms. This leads, in the case of Proline and 
Proteome Discoverer to eight lines in the output file, as if 8 different phosphorylation sites were 
identified. On the other hand, MaxQuant groups all protein isoforms for a same PSM in a protein group, 
overcoming the redundancy issue. To get rid of the redundancy in Proline and Proteome Discoverer 
and be able to compare the results from the different software all together, Charlotte BRUN 
developed383 a Python (v 3.8) script to attribute the phosphorylated peptide to the protein with the 
highest Mascot/MS Amanda score. 

Figure 82: Example of how the different software handle shared peptides with the ADIESQVNKLR 
peptide  
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The identification results are displayed in Figure 83. Mascot search algorithm, used in both Proline and 
Proteome Discoverer pipelines, gives rise to much different results depending on the software. Indeed, 
Proteome Discoverer (with Mascot only) identifies almost twice more phosphosites and 
phosphopeptides than Proline. This increase in identifications is due to the use of Percolator as 
validation algorithm, compared to the target decoy approach of Proline. Locard-Paulet et al.251 
observed the same tendency of Percolator outperforming classical target decoy approaches when 
comparing different pipelines for phosphoproteomics data treatment. Percolator is an algorithm 
developed by Käll et al. in 2007, designed to increase confident peptides identification through semi-
supervised machine learning159.  

Figure 83: Phosphoproteins, phosphopeptides and phosphosites identification depending on the data 
treatment pipeline. 

Highest numbers of identifications are obtained using the combination of Mascot and MS Amanda 
(Figure 83) with more than 1300 phosphosites, 8% more than using Mascot alone, highlighting the 
effect of the search algorithm. However, looking deeper into the data and into the spectra of some 
phosphopeptides identified uniquely by MS Amanda, it seems that those spectra are less informative 
than when using Mascot (Figure 84). We however only looked manually at a handful number of 
spectra, and thus this might not be a generality but only a trend. 

Figure 84: Spectra of a phosphopeptide identified with MS Amanda, with Mascot and with both 
Mascot and MS Amanda. 
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All these results display the great impact of the choice of both the search and validation algorithms to 
perform phosphoproteomics data analysis.  

iii. Localization of the phosphorylation  

As said previously, the correct localization of a phosphorylation on the peptide might be crucial for the 
understanding of biological processes, and the difficulty to correctly localize phosphosites has been 
widely discussed in the scientific community224. Another difficulty is added when we want to compare 
the performances of different localization algorithms, as most of them are tied to specific search 
engine. It is thus tricky to evaluate if observed differences are due to the localization algorithm or to 
the search engine. Several studies showed that, even when using synthetic peptides with known 
phosphorylation sites, the results obtained by the different algorithms are not directly 
comparable251,384. Here, we evaluated the performances of three different localization algorithms: MD-
Score (Proline), PTM-Score (MaxQuant) and PhosphoRS (Proteome Discoverer). All those algorithms 
compute the localization probability of a phosphorylation on a peptide (between 0 and 1). In the case 
where the peptide only has one site that could be phosphorylated, the probability is 1. The usual 
threshold of probability is set up to 0.75 on the MaxQuant probability score, these phosphorylation 
sites are then defined as class I phosphosites. The localization probabilities obtained on our data by 
the different pipelines are represented in Figure 85.  

Figure 85: Frequency (in %) of the different localization probabilities for the identified 
phosphorylation sites depending on the pipeline. 
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MaxQuant’s PTM Score displays the best results with more than 75% of localization score higher than 
0.9. PhosphoRS algorithm (in Proteome Discoverer) however has the highest amount of low 
localization scores with more than 50% of them below 0.5. Surprisingly, almost no phosphorylation 
sites are localized with a probability between 0.6 and 0.9, the other half of identified phosphosites 
being localized with a score higher than 0.9. These results are nonetheless coherent with what Locard 
et al. reported in their pipelines comparison251. Proline MD Score displays similar results to the PTM 
Score, with 70% of localization score between 0.9 and 1, and more than 90% higher than 0.5. 

iv. Global comparison of all pipelines 

To have a general overview of the overall performances of the different pipelines, their main 
advantages and drawbacks are represented in Table 8. One need to keep in mind that these results 
highlight the performances of the software in the specific case of our analysis, and results might be 
different in another case. 

Table 8: Main positive and negative features of the different pipelines 

As previously explained, the definition of a site is crucial in phosphoproteomics, especially for 
quantitative phosphoproteomics. Indeed, if quantification is performed at the peptide level instead of 
the site level, a bias is introduced. Additional variable modifications or a missed-cleavage both can 
generate different phosphopeptides while they bear the same phosphorylation site, displaying the 
same biological phosphorylation event. While Proline and Proteome Discoverer both allow 
phosphosites identification, they do not give access to any quantitation information at the site level. 
To date, MaxQuant is the only software that allows for phosphosite quantification by summing the 
intensities of all the phosphopeptides carrying a specific phosphosite, thus containing miss-cleaved 
peptides and peptides with additional modifications. However, because MaxQuant keeps the 
multiplicity information, this quantification will led to two values of quantification for one same multi-
phosphorylated peptide. This downside can lead to a bias if statistical analysis is performed afterwards.  

For these reasons, MaxQuant was used in all the phosphoproteomics work presented here for 
phosphosites identification, validation, localization and quantification. 

2. Spectronaut and DIA-NN software for dia-PASEF data treatment  

As for DDA data processing, a plethora of software tools for DIA data processing exist. The choice of 
the software tool and of the spectral library has a great impact on the resulting data. While many 
publications review the performances of those tools for DIA proteomics318,319,385,386, only a handful have 
done the same for DIA phosphoproteomics or even for dia-PASEF phosphoproteomics387,388. For these 
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reasons, we decided to evaluate the performances of two of the most common DIA software 
(Spectronaut and DIA-NN) on our phosphoproteomics dia-PASEF dataset. Spectronaut version 17.1 and 
DIA-NN version 1.8 were used. 
In some DIA phosphoproteomics workflows, a tailor made spectral library is constructed prior to data 
processing as it has shown to achieve higher coverage and quantification compared to library free 
approaches10. However, this usually comes at the price of time, samples and effort consuming library 
building. Indeed, building a high-quality spectral library for DIA phosphoproteomics usually requires 
DDA analysis of extensively pre-fractionated of repeatedly injected samples322. It is therefore much 
more accessible to implement a library free workflow for DIA phosphoproteomics. Library free 
approach has also extra advantages when it comes to phosphoproteomics. When building a DIA 
phosphoproteomics library, rare phosphorylation sites may get hindered by other more abundant 
ones. Additionally, a phosphorylation must be present in the library in order to be considered, while 
in library free approach, all possible phosphorylation sites combination for a given peptide are 
considered. 
For all the reasons listed above, we decided in the following experiments to compare both software in 
directDIA/library-free modes. 

i. Identification and quantification results  

First of all, we evaluated the identification and quantification performances of both software. As 
displayed in Figure 86 – (A), Spectronaut identifies in average between 5866 and 7518 
phosphopeptides, while DIA-NN identifies between 6930 and 8994 phosphopeptides. Across the 
different methods, DIA-NN allows an overall increase in phosphopeptides identifications of 19%. As for 
quantification performances, DIA-NN unanimously outperforms Spectronaut (in Figure 86 – (B)), with 
up to 5527 phosphopeptides quantified robustly in 3 out of 3 replicates and with a CV < 20%.  

Figure 86: Comparison of Spectronaut and DIA-NN performances in terms of (A) average number of 
identified phosphopeptides and (B) number of phosphopeptides quantified in 3 out of 3 replicates 

with a CV < 20%. 

In Figure 87 – (A) is represented the distribution of the CVs at the precursor level of all 
phosphopeptides quantified in the three replicates across all methods. We can notice that while the 
number of quantified phosphopeptides is much higher in DIA-NN than Spectronaut, the difference in 
the robustness of quantification is much less significant. The distribution of CV is slightly more spread 
for Spectronaut, but the overall median CV for Spectronaut is 18% while it is of 17% for DIA-NN. By 
method, the same observations can be drawn (Figure 87 – (B)). For most methods, Spectronaut’s 
distribution of CVs is mildly wider, but no significant differences are observed in terms of median CV. 
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Figure 87: (A) Boxplots representing the distribution of the coefficients of variation (CVs) at the 
precursor level for all phosphopeptides quantified in 3 out of 3 replicates, for both Spectronaut (SP) 

and DIA-NN (B) Boxplots representing the distribution of the coefficients of variation (CVs) at the 
precursor level for all phosphopeptides quantified in 3 out of 3 replicates across the different 

methods, for both Spectronaut (SP) and DIA-NN. 

In a recent publication Lou et al388 also compared DIA-NN (v.1.8.1) and Spectronaut (v.17) for DIA 
phosphoproteomics analysis on both a TimsTOF Pro and a Q-Exactive HF-X using treated and 
stimulated cell lines enriched in phosphopeptides. Interestingly, while DIA-NN slightly outperformed 
Spectronaut for phosphopeptides identifications on the TimsTOF Pro, the opposite trend was observed 
on the Q-Exactive HF-X. While they did not share numbers of phosphopeptides quantified, they also 
obtained a similar quantification reproducibility between the two software on the dia-PASEF data. 

On TiO2 enriched THP1 cells analyzed by DIA on an Orbitrap Fusion Lumos, Wen et al.387 showed the 
higher performances of directDIA Spectronaut (v.17.1) compared to DIA-NN (v.1.8.1), both for 
phosphopeptides and phosphosites identification. However, when analyzing enriched murine 
fibroblaste cells by dia-PASEF, the considerable advantage of Spectronaut compared to DIA-NN 
disappeared. Indeed, both software identified a similar number of phosphopeptides (around 12 000 
identified phosphopeptides). They also highlighted that, for phospho-dia-PASEF data, directDIA 
workflow displayed a lower quantification reproducibility than the DIA-NN-based workflow. 

Recently, Vashist et al.389 presented results of the comparison of Spectronaut (v.17) and DIA-NN (v.1.8) 
on synthetic phosphopeptides analyzed by dia-PASEF. In this work, both software displayed similar 
identification performances as well as similar quantification CVs. 
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ii. Comparison of the phosphopeptides populations  

We then investigated the different populations of phosphopeptides identified by the two software. As 
displayed in Figure 88 – (A), Spectronaut surprisingly identifies a total number of phosphopeptides (11 
829 phosphopeptides) higher than DIA-NN (9878 phosphopeptides). However, illustrated by Figure 88 
– (B), which displays the overlap between quantified phosphopeptides, DIA-NN allows the robust 
quantification of an additional 36% phosphopeptides compared to Spectronaut. These results, along 
with our previous identification and quantification results, suggest that while Spectronaut identifies 
more phosphopeptides, identifications and quantifications are sparser across the different methods 
and replicates. While DIA-NN identifies a lower total number of phosphopeptides, these 
phosphopeptides are identified and quantified robustly in most methods and replicates. 

Figure 88: Overlap phosphopeptides between Spectronaut and DIA-NN (A) all identified 
phosphopeptides across the 6 methods (B) phosphopeptides quantified in all replicates in at least 

one method. 

We then investigated the nature of the different populations of phosphopeptides. We looked into the 
additional 3681 phosphopeptides quantified only by DIA-NN. We wondered if those phosphopeptides 
were quantified in Spectronaut but solely did not passed the 0.1% p-value (precursor level) 
quantification filter. As represented in Figure 89, most of the DIA-NN quantified phosphopeptides are 
also found by Spectronaut but did not pass the quantification filter. This means that for a same set of 
peptides, DIA-NN seems to be less stringent in terms of validation than Spectronaut. 

Figure 89: Percentage of phosphopeptides quantified by DIA-NN quantified by Spectronaut with a p-
value > 0.1%. 
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iii. Definition of a phosphorylation site depending on the software 

As already noticed for DDA software tools, the way of handling a phosphorylation site is software-
dependent. As previously described, a phosphorylation site usually refers to the localization of an 
amino acid in the peptidic sequence bearing a phosphorylation. In Spectronaut, a phosphosite is 
defined as the combination of the protein carrying the site, the position of the site in the parent 
protein, the amino acid carrying the site and the multiplicity of the site. As explained in 
1.Benchmarking of different pipelines for DDA phosphoproteomics data analysis ; i.Definition of a 
phosphorylation site depending on the software, keeping the multiplicity information leads to an 
inherent redundancy for multi-phosphorylated sites. Spectronaut allows the quantification at the 
phosphosite level, thanks to an implemented algorithm developed by Bekker-Jensen et al.10. This 
algorithm’s function is similar to the “expand site table” option in Perseus software for DDA analysis. 
As represented by Figure 90, the algorithm will sum (if “sum” is selected as “PTM consolidation” in 
Spectronaut’s parameters) all identified peptides that correspond to this PTM site group and 
consolidate them into site quantities.  

Figure 90:  Example of a quantitative site collapse of phosphorylated parent peptides, performed 
according to their multiplicity (Spectronaut user manual). 

On the other hand, DIA-NN does not straightly give a site information, we only have access to a 
“Modified sequence” which is the combination of the peptide sequence with the modification inserted 
in the peptide sequence. While no redundancy is observed as we do not have the multiplicity 
information, another problem emerges with this definition of a phosphosite. In example 1 (Figure 91), 
the peptide is seen carrying the phosphosite on two different amino acids. They are therefore two 
distinct phosphosites, belonging to the same peptide. With the DIA-NN definition of a phosphosite, we 
keep the correct information as we will get two different lines for the two different phosphosites as 
followed: “AEEEGGS(Unimod:21)EEEGSDRSPQESK” and “AEEEGGEEEGSDRS(Unimod:21)PQESK”. 
However, if as in example 2 (Figure 91), a phosphorylated peptide is miss-cleaved, a redundancy will 
appear. Indeed, as DIA-NN defines a phosphosites with its peptidic sequence, a same phosphosite on 
a miss-cleaved peptide will be considered as a different phosphosite. This will lead to the wrongful 
output of two different lines for one same phosphosite: “ALGLEES(Unimod:21)PEEEGK” and 
“ALGLEES(Unimod:21)PEEEGKAR”. Additionally, DIA-NN does not give access to any quantitation 
information at the phosphosite level. 
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Figure 91: Two examples of phosphosites in DIA-NN. 

iv. Overall comparison of the two software 

To sum up, the main advantages and drawbacks of the two software are displayed in Table 9.  

 
Table 9: Main positive and negative features of the different pipelines for phospho-dia-PASEF data 

treatment 

One needs to keep in mind that this table results from the performances of the software observed in 
our specific context, ie the study protein phosphorylation in mouse brain tissues using dia-PASEF 
without spectral library on a TimsTOF Pro. 
All the different results presented here highlight that there is no consensus yet on the better 
performing software for DIA phosphoproteomics data. Results vary depending on the type of sample 
(synthetic phosphopeptides or biological sample), the instrument used (classical DIA or dia-PASEF) and 
last but not least, on the version of the software used. Indeed, software are in constant evolution and 
new versions are frequently released. The use of one software or the other should thus be adapted to 
each specific project. 
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Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative motor neuron disorder 
causing progressing muscle weaknesses, muscle atrophy and cramps. These symptoms spread with the 
progression of the disease and usually lead to death due to respiratory failure within 3 to 5 years. 
Although being a rare disease, with an estimated incidence of 1.75-3 per 100 000 persons per year (10-
12 per 100 000 in Europe), the lifetime risk to be affected is 1:400 in women and 1:350 in men12. In 
only a small amount of the ALS cases (10%) does the patient have a family history suggesting familial 
case of the disease (fALS). The majority of the cases are considered as sporadic (90%, sALS)12. ALS is a 
highly heterogeneous disease at the genetic level, with more than 30 genetic mutations that have been 
associated with it. Out of these, 4 gene variants account for 55% of fALS and more than 12% of sALS : 
SOD1, FUS, TARDBP and C9orf7213,390. 

ALS diagnosis is based on only clinical criteria and occurs relatively late as it takes from 8 to 15 months 
in average to confirm diagnosis since first symptoms’ appearance391. Indeed, ALS symptoms at the 
onstage of the disease vary from patient to patient and are sometimes very similar to the symptoms 
of other diseases. Even though they are not yet fully integrated into standard clinical utilization, several 
biomarkers have been proposed to facilitate diagnosis and as potential therapeutic target. 
Neurofilaments levels in cerebrospinal fluid and serum is one of the most promising biomarker but 
seems however not to correlate with disease progression190,392. For the past two decades in most 
European countries, the only approved and licensed pharmacological treatment was the glutamate 
antagonist riluzole. It is shown to prolong patient survival by 3-6 months maximum, with various side 
effects including liver problems and nausea. It also seems to be only efficient on a subpopulation of 
patients12,393. Recently, the antioxidant edaravone has been approved for ALS treatment in US, Canada, 
Japan, South Korea and Switzerland. It is however not yet approved in the European Union because of 
the small size of patient panel, the short study duration, and the lack of improved survival data under 
edaravone treatment12,394. Even more recently, PB/Turso (co-formulation of sodium phenylbutyrate 
and taurursodiol) was approved by the FDA as it was shown to slow the decline rated associated with 
ALS and might provide survival benefit compared to placebo395. 

Because of its poor prognosis, rapid progression and limited therapeutic options, a better 
characterization of the onset events in ALS development is needed. Most studies on ALS focused only 
on an individual molecular subset such as transcripts396, miRNA397 or proteins338,398, and have not yet 
been able to fully comprehend the disease. In this context, the European E-RARE MAXOMOD (Multi-
omic analysis of axono-synaptic degeneration in motoneuron disease) consortium, which partially 
financed my PhD, was created. This project’s aim was to develop and implement a large multi-omic 
investigation on both human (post-mortem brain tissues and cerebrospinal fluids) and mouse models 
samples to identify new disease-relevant pathways and biomarkers related to amyotrophic lateral 
sclerosis. The MAXOMOD project thus involves eight different teams, each of them with different tasks 
within the project: 

- acquisition and preparation of the samples 
- genomic, transcriptomic, miRNAomic and metabolomic analysis 
- proteomic and phosphoproteomic analysis 
- global multi-omic data analysis and integration with development of the FAIR-ALS data 

integration platform 
- identification of molecular pathway targets for therapeutic validation and biomarkers 

target 
- in vitro validation of molecular targets, pathways and pharmacological treatment 
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During my PhD, I was responsible for conducting all the proteomics and phosphoproteomics analyses 
of post-mortem brain tissues (N>100), mouse models (N>80) and human CSF samples (N>100). This 
resulted in the analysis of more than almost 400 samples (proteomics and phosphoproteomics 
included). First of all, proteomics analyses were performed on human post-mortem brain tissues and 
brain tissues from four different mouse models (SOD1, TDP43, FUS and C9). The optimized workflow 
for phosphoproteomics discussed previously in this manuscript (see PART III- Chapter 1) was then 
applied on the 80 mouse model samples. Then for CSF samples, a sample preparation workflow 
common for proteomics, phosphoproteomics and metabolomics analysis was developed. The 
efficiency and reproducibility of our high-throughput analysis of hundreds of samples was evaluated 
thanks to the implementation of different quality controls. Finally, the performances of an open 
modification search software (IonBot developed by the CompOmics group, Ghent, Belgium) were 
evaluated to improve identification and localization of phosphorylation sites. 
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Chapter 1: Proteomics and phosphoproteomics 
analysis of large cohorts of brain tissues 

1. High throughput proteomics of large cohorts of mouse and 
human brain tissues 

Protein aggregation of different proteins, such as SOD1, TDP-43 (encoded by gene TARDP), C9ORF72 
or FUS in the brain and namely in the frontal cortex, is well reported as one of the central characteristic 
of ALS13,14. Therefore, the proteomic study of both human and transgenic mouse pre-frontal cortex 
(PFC) tissues may give the opportunity to identify disease-specific proteins that participate in key 
pathological processes and might be used as potential ALS biomarkers. Here, we worked with four 
established transgenic mouse models of ALS that each recapitulate different aspects of ALS, namely 
SOD1, TDP43, C9orf72 and FUS mouse models399. For each mouse model, we had 20 PFC samples, half 
of them from non-transgenic mice (wild type condition, WT) and the other half from transgenic (TG) 
mice. Among the two conditions, the same number of samples came from male and female mice. We 
thus had a total of 80 PFC mice samples. For human post-mortem brain tissues, frontal cortex samples 
came either from sALS patients (N = 52, male/female) and age-matched control without 
neurodegeneration symptoms (N = 50, male/female). 

i. Sample preparation of mouse and human brain tissues 

Sample preparation of brain tissues is especially crucial as brain tissues have a high lipid level (about 
one half of its dry weight) and these lipids might co-elute with analytes of interest400,401. For the 
proteomic analysis of both mice and human brain tissues, we therefore decided to go for an in-gel 
based (non-separated stacking gel) sample preparation, as it was at the time still the lab’s reference 
method for tissue sample preparation402 (Figure 92).  

Figure 92: Schematic representation of sample preparation workflow for proteomics analysis of 
mouse and human brain tissues (Figure created with BioRender.com). 

An additional step of protein MeOH/H2O precipitation was added to the workflow. This precipitation 
step allowed to recover the metabolites of the sample for metabolomics analysis to be performed. It 
was also useful to concentrate and separate proteins from other cellular constituents such as the lipids 
from the brain tissues. MeOH precipitation is widely reported to perform metabolites extraction in 
tissues17,18 and thus was used here, for further analysis of metabolites by our collaborators in Zurich 
(Switzerland). 

A Laemmli-like buffer containing 3% of SDS was used for protein extraction, as it has been 
shown in different studies that a detergent-based buffer was more suitable for global proteomic 
analysis of brain tissues401,403,404. Indeed, Karpinski et al.401 recently showed that detergent buffer 
displayed highest yield of protein extraction for brain tissues compared to chaotropic agent buffer or 
detergent-free buffer. By using a detergent buffer, they achieved higher protein concentration 
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compared to detergent-free, and their gene ontology analysis revealed that it allowed to identify more 
neuro-relevant proteins than detergent-free. 

ii. Identification and quantification results 

Identification and quantification were performed using MaxQuant software. We identified reliably and 
reproducibly more than 3400 proteins for each cohort, as displayed in Figure 93. 

Figure 93: Mean number of proteins identified in each cohort of samples. 

The goal was then to perform a differential analysis of the transgenic (TG) condition versus the wild-
type (WT) ie the healthy condition. This analysis will allow to potentially find key proteins differentially 
expressed between our two conditions that could be later used as biomarkers. As ALS is slightly more 
prevalent in males than females12, and because sex-specific differences were observed in blood of ALS 
patients405,406 and on therapeutic responses in mouse models407,408, we separated male and female 
conditions for the differential analysis. For each model, we thus divided the samples in 4 different 
conditions: TG_Male, TG_Female, WT_Male and WT_Female. 
Before performing this differential analysis, we first need to make sure of the quality of our 
quantitative data. For this, we performed statistical validation using Prostar409 software. First, we kept 
only proteins identified with at least one unique peptide. Because label-free untargeted proteomics 
data are sometimes filled with missing values, due mainly to the stochasticity of DDA analysis, we need 
to ensure that we get rid of the proteins that are only sparsely quantified. The percentage of missing 
values in the case of LC-MS/MS approaches can range from 10 to 50%, while the amount of proteins 
or peptides that present at least one missing value can range from 70 to 90%410. Missing values are a 
significant issue in proteomics because they are introducing a bias in quantification and lead to 
inaccurate representation of the samples. We thus kept only proteins, which had at least 80% of values 
(max 20% missing values), in at least one condition. Before proceeding to missing value imputation, 
we need to get rid of the technical variability between the analyses. For this, a normalization of the 
protein abundances was performed using the quantile normalization algorithm with a 15% quantile. 
Then, we got rid of the remaining missing values by performing imputation. Multiple methods for 
missing values exist and were compared in different studies411,412. As missing values might sometimes 
be due to proteins with low levels of expression in a specific condition, we imputed the missing values 
with small numbers. Using Prostar, we performed imputation using the detquantile algorithm, with a 
2.5% quantile. Then we performed our differential analysis and set up a filter on p-value at 0.1% in 
order to best control our False Discovery Rate (FDR). As illustrated in Figure 94 , we quantified more 
than 3000 proteins for each mouse model and for human samples. 
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Figure 94: Total number of quantified proteins after statistical validation and number of differentially 
expressed proteins between TG vs WT conditions, for male and female (p-value < 0.1%).  

For most studied models, the difference between the ALS (or TG) and the CTRL (or WT) conditions are 
minor, highlighting the high complexity of ALS disease. 
In human samples, we detected 16 differentially expressed proteins (DEPs) in males and 7 in females 
(Figure 95). Among them, only 3 were common between the two sexes, all of them down-regulated in 
ALS condition. While not differentially expressed, several known neurodegeneration proteins were 
quantified such as matrin-3 (MATR3), spartin (SPART) or alpha synuclein (SYUA). MATR3 protein was 
shown involved in ALS413, SPART protein in spastic paraplegia414 and alpha synuclein is a known 
biomarker of Parkinson’s disease415.  

Figure 95: Volcano plots representing the differential analysis for human samples (ALS versus CTRL) 
for both sexes. All quantified proteins are represented by dots, colored dots representing DEPs. 

For mouse models, between 0.3% to 0.7% of proteins were differentially expressed in males, and 0.1% 
to 2.3% in females. The C9 model however appears to be an exception and displays the strongest 
changes with more than 8% of DEPs in females and almost 15% of DEPs in males (Figure 96).  
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Figure 96: Volcano plots representing the differential analysis of C9 model (TG versus WT) for both 
sexes. All quantified proteins are represented by dots, colored dots representing DEPs. 

One of the DEPs in C9 is sequestome-1 (SQSTM) protein, the highest up-regulated protein in both 
males and females (Figure 96). Sequestome-1 protein is the product of ALS-causing gene and its 
aggregation is reported in ALS patients as well as mouse models of fALS416,417. In both SOD1 and C9, 
male and female, differential analysis, exportin-1 (XPO1) appears up-regulated. XPO1 is a regulator of 
nuclear RNA transport and it has already been investigated as an ALS therapeutic target418. 

2. Application of the optimized phosphoproteomics workflow to 
study phosphorylation in mouse brain tissues  

The analysis of mouse models’ phosphoproteome is widespread to study various neurodegenerative 
diseases and especially Alzheimer’s, but are scarcer for ALS. Phosphoproteomics analysis was not 
performed on human samples as most phosphoproteins are degraded under 72 hours in post-mortem 
tissues. Here, strong of the developments on phosphoproteomics described in Part III, we performed 
phosphoproteomics analysis on the four models of transgenic mouse PFC tissues. Analyses were 
performed on the protein extract from proteomic sample preparation of the mouse tissues. Samples 
enriched in phosphopeptides were injected on a Q-Exactive HF-X platform and identification and 
quantification were performed using MaxQuant. Identification results are displayed in Figure 97. 

Figure 97: Mean number of phosphoproteins and phosphopeptides identified in each of the 4 mouse 
models. 
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Across the four different mouse models, we identified between 3000 and 5500 phosphopeptides, and 
from 1470 to 2125 phosphoproteins. In comparison, on C57B6 mice whole brains after 
phosphopeptide enrichment using both IMAC/C18 and TiO2/C18, Nakamura et al.419 identified by DDA 
2938 phosphopeptides and 1567 phosphoproteins. More recently, 2124 phosphopeptides were 
identified in mice brain after SDS-Page sample preparation and TiO2 phosphopeptide enrichment420. 
For most of our mouse models, both phosphoproteins and phosphopeptides identifications were 
reproducible with a CV <20%. However, the C9 model stands out with a CV on phosphoproteins 
identifications of 44% and on phosphopeptides identification of 19%. Overall, the reproducibility of 
identification within a mouse model but also the reproducibility across the different mouse models is 
much lower than it was for global proteomics. Once again, this is mainly due to the addition on an 
extra phosphopeptide enrichment step in the workflow but also to the lability of the phosphorylation, 
which both increase the variability in the results.  
As for the global proteomics analysis, samples of each model were divided into 4 different conditions 
before performing differential analysis: TG_Male, TG_Female, WT_Male and WT_Female. Using 
Perseus and it’s ‘expand site stable’ option, intensities of all peptides involved in a phosphosite were 
extracted from MaxQuant’s Phospho(STY).txt file and merged to obtain quantification information at 
the phosphosite level. Only phosphosites with a probability of localization greater than 0.75 were kept. 
Using Prostar, quality filters were applied, normalization and imputation of the data were performed. 
The results of the different differential analysis, performed at the class I phosphosites level, are 
represented in Figure 98.  

Figure 98: Total number of quantified class I phosphosites after statistical validation and numbers of 
differentially expressed class I phosphosites between TG vs WT conditions, for male and female (p-

value < 0.1%). 
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We quantified around 3000 class I phosphosites for both SOD1 and TDP43, and up to more than 5000 
for C9 and FUS models. Among these, between 1.2% to 6% of the class I phosphosites were 
differentially expressed (Differentially Expressed phosphosites, DEpS) between transgenic and wild 
type conditions.  

Figure 99: Volcano plots representing the differential analysis of C9 model (TG versus WT) for both 
sexes. All quantified class I phosphosites are represented by dots, colored dots representing DEpS. 

Amongst the DEpS in the C9 model, five phosphosites are localized on the sequestome-1 (Figure 99) 
protein that was previously found as differentially expressed in the C9 model for global proteomics. 
These five sequestome-1 phosphosites are all highly up-regulated in the ALS condition, for both males 
and females.  

3. Multiomic ALS signatures highlight sex differences, molecular 
subclusters and the MAPK pathway as therapeutic target 

The (phopsho)proteomics analysis of mouse and human brain tissues were performed in a multiomic 
study. The integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes are detailed 
in a paper currently in submission in Nature Medicine journal (see Appendices). For this publication, 
all the results of the (phospho)proteomics analysis on tissue samples were made public through a 
complete submission of the data on PRIDE platform with the following datasets identifiers: : 
PXD043300 and PXD043297. 
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Chapter 2: Development of a protocol for both 
proteomics and phosphoproteomics analysis of 

cerebrospinal fluid 
Cerebrospinal fluid (CSF) is produced in the brain at a rate of 500 mL a day, allowing to replace the 150 
mL of circulating volume to be recycled three to four times a day421. CSF is the only body fluid in direct 
contact with the extracellular space of the brain, and is thus widely used to study central nervous 
system (CNS) diseases. Indeed, it is a valuable reporter of abnormal variation in the CNS, such as 
inflammation, infection, neurodegeneration or tumor growth421. It is thus a fluid of choice to 
investigate the discovery of potential biomarkers for neurodegenerative diseases such as ALS85,422. 
Composition of the CSF is close to plasma, with albumin and immunoglobulin constituting respectively 
around 50% and 15% of the total protein content421,423. However, CSF contains also its specific highly 
abundant proteins, such as cystatin C or prostaglandin D2 synthase, both synthetized in the CNS. 
Because of the large dynamic range of protein concentration in CSF (Figure 100), with its top 10 most 
abundant proteins accounting for about 80% of total concentration, identification and quantification 
of low abundant proteins is challenging. Additionally, total protein concentration in CSF is 50-100 times 
lower than in plasma. Indeed, protein concentration in CSF samples is quite low, with a mean CSF 
protein amount estimated at 0.42 µg/µL, and an overall protein concentration below 1 µg/µL421,424.  

Figure 100: Cerebrospinal fluid protein dynamic range according to Carlyle et al.425. Proteins are 
ranked according to their abundance, with the location of specific proteins placed according to their 
concentrations in enzyme-linked immunoassays (ELISAs), Multiple-Reaction-Monitoring (MRM), and 

(unpublished) label-free experiments. One should note that there is disagreement between 
experiments on the exact concentration of these analytes and thus their place in the plot should be 

considered illustrative425. 

Sample preparation of CSF is thus a crucial step due to the high dynamic range of concentrations. 
Therefore, different pre-analytical technics have been implemented to enhance proteome coverage. 
One of the most commonly used technic is depletion of high abundant proteins421,426,427, similarly to 
plasma sample preparation. Affinity depletion is based on the specific capture of target proteins thanks 
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to immobilized molecules or antibodies, such as protein A/G or Cibacron Blue, which have specific 
affinity and high affinity for the targets. Depending on the used depletion kit, between 2 to 20 of the 
most abundant proteins can be removed423. One of the risk with this technic is that low-abundant 
proteins might be co-depleted from the sample, making their detection even more difficult428. Other 
technics such as relative enrichment of low and medium abundant proteins423, protein precipitation429–

431 or sample fractionation427,429 are reported in various CSF studies. However, the addition of any of 
those steps might inherently introduce sample preparation variability. Moreover, enrichment of low 
abundant proteins was shown to lead to protein loss423. For fractionation, large amounts of CSF are 
required due to its low protein concentration, but usually only small amounts of CSF are available as it 
is a precious biological sample, collected through invasive lumbar puncture procedure432. During this 
CSF collection through lumbar puncture, unwanted vascular bleeding might happen (in up to 20% of 
the procedures), leading to peripheral blood to contaminate CSF. These blood contaminations may 
introduce variabilities and lead to unreliable detection of biomarkers. Among the most common, 
hemoglobin is a marker of blood contamination in CSF as it is highly expressed in red blood cells. 
Carbonic anhydrase and catalase were also already used as blood contamination markers in CSF. One 
thus needs to look for those potential blood contaminants, as quality of CSF sample is key to the 
analytical outcome. Some methods have  been set up to estimate levels of blood contamination in CSF 
through mass spectrometry analysis433. 
 
Here, because of the low amount of starting material at our disposal (for the MAXOMOD project, 150 
µL of CSF for proteomics and 500 µL for phosphoproteomics), a fractionation step was not considered 
as it usually requires more than 500 µL of sample. On a large cohort of samples such as the one for this 
specific project, a precipitation step appeared to be the most economic and suitable approach 
compared to the use of commercial kits either for protein depletion or enrichment. Protein 
precipitation was also necessary in our case in order to recover the metabolites that were analyzed by 
another MAXOMOD partner. Methanol precipitation was chosen as it is well reported for efficient 
metabolites extraction on CSF samples434,435. 
As for tissue (phospho)proteomics, in the following work, different protocols were evaluated to set up 
a common (phospho)proteomics and metabolomics sample preparation for high throughput CSF 
analysis. The optimized method was then applied on more than 100 clinical CSF samples for both 
proteomics and phosphoproteomics analysis. 
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1. Optimization of a sample preparation protocol for CSF 
proteomics and phosphoproteomics analysis 

i. Evaluation of in-solution versus in-gel digestion 

In a first approach, in-solution digestion (ISD) using RapiGest (Waters) surfactant was compared to 
classical in-gel digestion (IGD), as both technics are reported in literature for CSF sample 
preparation427,428,436. RapiGest is a reagent used to enhance the in-solution digestion. Both protocols 
were compared with and without a methanol precipitation step, to evaluate the impact of this 
additional step on protein concentration and recovery. The different protocols are represented in 
Figure 101. Two biological replicates and three technical replicates were used to evaluate each 
workflow.  

Figure 101:  Method development for CSF sample preparation. Four different protocols were 
compared: A = MeOH precipitation + ISD ; B = ISD ; C = MeOH precipitation + IGD; D = IGD. 

We assessed protein concentration before and after methanol precipitation. Before precipitation, the 
range of concentration was [0.3 – 0.7] µg/µL while after precipitation the range of protein 
concentration increased to [2.2 – 4.7] µg/µL, depending on the biological replicate and on the protocol. 
Thanks to this precipitation step, CSF protein concentration was successfully increased. 
We also evaluated the protein recovery efficiency of the methanol extraction for the two protocols. 
Starting with 150 µg of material, we recovered between 57 µg – 117 µg (38% - 78%) of proteins with 
IGD (protocol C) and between 55 µg – 98 µg (37% - 65%) with ISD (protocol A). Protein loss appears 
similar between the two protocols but high variability is observed between the recoveries of the two 
replicates.  
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a. Identification results 

We then compared the performances of the different protocols in terms of identification, and results 
are displayed in Figure 102. 

Figure 102: Average numbers of proteins and peptides identified by the different protocols. 

Protocol A with a methanol precipitation step followed by in-solution digestion using RapiGest displays 
the best results with more than 500 proteins and 3000 peptides identified. It also seems to be the 
more reproducible protocol with a CV on peptides (proteins) identified of only 4% (9%). The 
precipitation step increases identifications for both protocols but appears to have a greater impact on 
in-solution digestion than on in-gel digestion. Indeed, the addition of methanol precipitation in the 
case of RapiGest liquid digestion improves identifications by 27% for proteins and 33% for peptides. 

b. Quantification results 

The number of peptides that were quantified in 6 out of 6 replicates (2 biological replicates x 3 injection 
replicates per method) are represented in Figure 103. 

Figure 103: Number of peptides quantified in 6/6 replicates with and without a filter on CV<20%. 

Protocol A (MeOH precipitation and in-solution digestion) and protocol C (MeOH precipitation and in-
gel digestion) both display the highest number of quantified peptides (respectively, 2411 and 2186 
quantified peptides). However, when we apply a filter on the CVs of the quantified peptides intensities, 
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we lose almost 90% of quantified peptides with method C. Less than 300 peptides are quantified 
reproducibly with a CV <20% with method C, while method A still allows to robustly quantify 669 
peptides. This is further shown with the distribution of CVs on quantified (in 6/6 replicates) peptides 
intensities, represented in Figure 104. Here, protocol A displays a more reproducible quantification 
with a median CV of 25%, the lowest compared to other methods.  

Figure 104: Distribution of the coefficient of variation (CVs) on the intensities of peptides quantified 
in 6 out of 6 replicates for the different protocols. 

c. Comparison of protein and peptide populations identified with 
the different protocols 

A represented in Figure 105, we obtain an overlap between the different protocols of almost 50% at 
the protein level and 27% at the peptide level. These numbers are quite correct considering that the 
average recovery between technical replicates for a DDA analysis is around 70% for proteins and 40-
50% for peptides. By comparison, Neset et al. evaluated three different protocols (one of them being 
ISD) on HeLa cells and obtained a 67.1% overlap at the quantified protein level102. In another study 
from Ludwig et al., a 55% protein overlap and a 38% peptide overlap were obtained comparing 5 
different sample preparation protocols on colon cancer cells104.  
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Figure 105: Venn diagrams representing the overlap between (A) identified proteins and (B) 
identified peptides between the different protocols. 

Protocol A with methanol precipitation followed by in-solution digestion allows to uniquely identify 
more than 110 proteins and 1130 peptides, representing respectively 14% and almost 17% of all 
identified proteins and peptides (compared to less than 5% for other protocols). 
The proportion of missed-cleaved peptides among all the identified peptides is also an element to 
evaluate the efficiency of digestion between protocols. They are represented in Figure 106. Protocol 
A (MeOH precipitation and ISD) displayed the lowest amount of missed-cleavages (MC) with 13% of 
missed-cleaved peptides. The addition of a precipitation step seems to decrease the number of miss-
cleaved peptides compared to the sample protocol without precipitation. Indeed, protocol B has 18% 
of MC compared to protocol’s A 13%, and protocol D has 27% compared to protocol’s C 25%. Protein 
precipitation thus seems to increase digestion efficiency. In-gel digestion protocols displayed the 
highest percentages of missed-cleaved proteins, which can be explained by the use of only trypsin for 
the enzymatic digestion for this protocol, compared to the combined use of trypsin and lysC for in-
solution digestion. This higher MC proportion for IGD was also observed by Yang et al., compared to 
ISD or filter-aided digestion106. In-solution digestion protocols (A and B) might also display better 
digestion efficiency thanks to the use of RapiGest surfactant, that is designed to improve protein 
digestion by facilitating their unfolding while retaining enzymatic activity.  

Figure 106: Proportion (in %) of missed-cleaved peptides for the different protocols. 
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ii. Evaluation of in-solution versus on-membrane digestion 

Now that we stated that methanol precipitation improved identifications and that RapiGest in-solution 
digestion outperformed in-gel digestion, we wanted to benchmark this protocol (protocol A, RapiGest 
ISD) against another sample preparation method: on-membrane digestion. For this, we used PreOmics 
iST kit (PreOmics), which is also reported in literature for CSF proteomics sample preparation85. Sample 
preparation workflow is represented in Figure 107. Three biological replicates were used to evaluate 
each workflow. While there is no recommendation on the amount of protein material for RapiGest in-
solution digestion, it is advised with the iST to apply the protocol on 1-100 µg of protein. Additionally, 
for less than 20 µg of starting material, the protocol needs to be slightly adapted. Thus, to be in the 
middle of the advised range, we performed iST protocol on 45 µg of protein. For in-solution digestion 
with RapiGest, protocol was applied on 10 µg of starting material. 

Figure 107: Comparison on two different protocols for CSF sample preparation. A = in-solution 
digestion using RapiGest ; B = PreOmics iST kit protocol with membrane digestion. 

We measured protein concentration before and after protein resuspension to evaluate the percentage 
of protein recovery depending on the lysis buffer. For protocol A (RapiGest), protein recovery ranged 
depending the biological replicate between 68% to 87% while it was between 39% to 60% for protocol 
B (PreOmics). 
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a. Identification and quantification results 

Next, we evaluated the performances of the two protocols in terms of peptides identification and 
quantification (Figure 108). Protocol 1 using 0.1% RapiGest with in-solution digestion allows to identify 
3333 peptides and 593 proteins, which represents 32% more peptides and proteins than with the iST 
protocol. Results obtained using RapiGest are in accordance with Barkovits et al. results, as they 
identified on average over 3 CSF replicates 573 proteins and 3180 peptides on Q-Exactive HF in DDA 
mode428.  

Figure 108: Average numbers of peptides identified and numbers of peptides quantified in 3 out of 3 
replicates, with and without a filter on CV < 20%. 

In terms of quantification, in-solution method also allows for the quantification of more peptides with 
almost 2000 quantified peptides. We then applied a filter on the CVs of the intensities of quantified 
peptides, to obtain only the more robustly quantified peptides. With this filter, the performances of 
the two methods are comparable, with respectively 791 and 733 quantified peptides for method A and 
method B. In addition, both protocols have similar reproducibility of quantification with a median CV 
of 23% for both methods, highlighting their similar robustness of quantification (Figure 109). 

Figure 109: Distribution of the coefficient of variation (CVs) on the intensities of peptides quantified 
in 3 out of 3 replicates for the two protocols. 
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b. Comparison of protein and peptide populations identified with 
the two protocols 

We also looked at the overlap between the peptides identified by the two protocols. Figure 110 
represents the recovery of all peptides identified in the three replicates for the RapiGest protocol with 
all peptides identified in the three replicates for the iST PreOmics protocol.  

Figure 110:  Venn diagram representing the overlap in peptides identification between the two 
protocols. 

Only a 31% overlap is observed between the two protocols, meaning they both identify very different 
peptides. In total, over the three replicates, the RapiGest protocol identified more than 4600 peptides 
while PreOmics identifies in total 2967 peptides. The proportion of missed-cleaved peptides among all 
the identified peptides was also evaluated for the different protocol. They are represented in Figure 
111. 

Figure 111: Proportion (in %) of missed-cleaved identified peptides for the different protocols. 

PreOmics iST digestion (protocol B) displays twice less missed cleavages than RapiGest in-solution 
digestion (20% for RapiGest compared to 9% for iST). Comparable results were obtained by Ding et al. 
on urine samples comparing different sample preparation protocols including in-solution digestion and 
PreOmics iST protocols. In their work, in-solution digestion showed around 75% of full cleavages while 
iST method yielded the best digestion efficiency with around 92% of full cleavage50. This accrued 
digestion efficiency of iST method is suggested to be due to higher abundance of trypsin in the provided 
iST kit. To evaluate this theory, we looked at the contribution of trypsin to the overall MS1 peptide 
intensity. In Figure 112 are represented the percentage of trypsin peptides’ MS1 intensity over the 
total MS1 peptides intensity. Trypsin’s peptides intensity is more than 10% higher with iST method 
compared to RapiGest method, suggesting that trypsin amount is indeed higher in iST kit. This is also 
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the potential reason for which PreOmics protocol displays less missed-cleavages compared to in-
solution method.  

Figure 112: Percentage of trypsin and LysC peptides’ MS1 intensity over the total MS1 peptides 
intensity for each protocol. 

iii. Choice of the best suited CSF sample preparation protocol for proteomics 
analysis 

To choose the best suited protocol for CSF sample preparation, we need to take into account not only 
the different results shown previously but also the time that each protocol takes. The description of 
the different steps of the different protocols and their corresponding timelines are detailed in Figure 
113.  

Figure 113: Description of the sample preparation workflows evaluated for CSF proteomics analysis. 

In-gel protocol is the longest as it takes approximately three days to prepare samples for injection (a 
bit less if using pre-prepared commercial gels), while both in-solution and iST protocols are much faster 
with less than 1 day of sample preparation for iST protocol.  
Main advantages and drawbacks of the different protocols were summed up in Table 10 to have a 
better overall view of the comparisons. It is however important to keep in mind that the conclusion 
discussed here works for CSF samples but might be very different for other sample types. 

Table 10:  Summary of the drawbacks and advantages of the different protocols according to our 
results. 
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As the goal was to develop a high-throughput proteomics analysis adapted for thousands of clinical 
CSF samples, the in-gel protocol was not adapted as it is the most time-consuming method. Moreover, 
in-solution digestion outperformed in-gel digestion both in terms of identification and quantification 
performances. While iST protocol was the fastest, RapiGest in-solution method exceeded iST protocol 
for peptides identification and quantification, while the two methods produced comparable results for 
quantification reproducibility. In addition, RapiGest performances were achieved on a smaller amount 
of material compared to iST, which is a key asset when working on limited amounts of clinical samples. 
Finally, one other important parameter to take into account for the analysis of large cohort of samples 
is the price of the protocol. PreOmics iST kit is the most expensive, costing (at the time these analysis 
were performed) around 200€ for the preparation of 10 samples. On the other hand, preparing 
samples by in-solution digestion with RapiGest costs around 80€ per 10 samples. For all these reason, 
we decided to keep RapiGest in-solution digestion as optimized sample preparation protocol for CSF 
samples. 

iv. Evaluation of sample preparation for CSF phosphoproteomics analysis 

The optimized sample preparation protocol using RapiGest was applied on the CSF samples and an 
additional automated phosphopeptide enrichment step was added, to evaluate its performances for 
phosphoproteomic analysis (Figure 114). 

Figure 114: Schematic representation of sample preparation workflow for phosphoproteomics 
analysis of cerebrospinal fluid samples (Figure created with BioRender.com). 

Identification results are displayed in  Figure 115. With this protocol, a total of almost 200 
phosphopeptides and close to 150 class I phosphosites were identified on the two CSF replicates ( 
Figure 115 - (A)). Moreover, an average of 84 phosphoproteins and 146 phosphopeptides were 
identified. At the phosphopeptides level, a coverage of almost 50% was achieved between the two 
replicates (Figure 115 - (B)), which is around the expected value when studying phosphorylation. Very 
few studies of the CSF phosphoproteome can be found in literature, making it difficult to evaluate if 
our results match expected values or not. Among the few CSF phosphoproteomics studies published 
so far, Nakamura et al.419, using an LTQ Orbitrap, reported 123 phosphopeptides and 70 
phosphoproteins identified after sequential IMAC/C18 and TiO2/C18 phosphopeptide enrichment. 44 
phosphorylated proteins were identified by Bahl et al. on CSF samples after TiO2 enrichment followed 
by LC-MS/MS analysis on a LTQ-Orbitrap437. More recently, 1200 phosphopeptides were quantified by 
PRM-PASEF on extracellular vesicles isolated from CSF and enriched in phosphopeptides438. 
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Figure 115: (A) Average and total numbers of phosphoproteins, phosphopeptides, and class I 

phosphosites identified in the two biological replicates (B) Overlap of the phosphopeptides identified 
in the two  biological replicates. 

In conclusion, a protocol starting with a methanol precipitation followed by in-solution digestion using 
RapiGest (with an additional phosphopeptides IMAC enrichment for phosphoproteomics) has showed 
efficient identification results for (phospho)proteomics analysis of CSF samples. Therefore, this 
protocol will be applied on the MAXOMOD cohort of a 110 CSF samples. 

2. High throughput (phospho)proteomics analysis of ALS-
cerebrospinal fluid samples  

i. Quality of CSF samples 

As stated previously, blood proteins can contaminate CSF during sample collection. In order to evaluate 
the quality of our CSF samples ie their contamination level, we used the classification established by 
Barkovits et al.433. In their publication, different methods were used to detect blood levels in CSF: ELISA, 
Combur10-Test® strips, and MS-based analysis. They then defined five different contamination values: 
(i) “negative” corresponds to 1, (ii) very low to 10, (iii) low to 20, (iv) high to 30, and (v) very high to 40. 
Specific thresholds were then set up to each categories from each methods. Focusing on MS, the 
identification pattern of three known blood contaminant proteins were used ie hemoglobin (HB), 
carbonic anhydrase 1 (CAH1) and catalase-A (CATA). The criteria for each category are presented in 
Table 11. 

Table 11: Categorization of blood contamination in CSF. Five specific contamination levels were 
selected on the basis detection of specific blood proteins (for LC-MS analysis). Adapted from 

Barkovits et al.433. 

This categorization system was thus applied on our 103 CSF samples. As displayed in Figure 116, almost 
all samples contamination levels were below 10, and thus considered as very low contaminated.  
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Figure 116: Results of the blood level categorization to our clinical CSF samples. 

Thanks to these classifications, we were able to ensure the good quality of our CSF samples, and thus 
that no blood contaminant might affect our analysis. 

ii. Global proteomics analysis of ALS-cerebrospinal fluid samples 

After applying the optimized sample preparation protocol on the 103 samples of CSF, generated data 
were analysed using MaxQuant. Protein intensities were extracted and some quality filters were 
applied using Prostar. As for global proteomics on mouse and human brain tissues, we divided samples 
in 4 different conditions (ALS_Male, ALS_Female, CTRL_Male and CTRL_Female) and kept only the 
proteins that were identified in at least 80% of the samples in at least one condition. Quantile 
normalization and detquantile data imputation were performed. After this, we were able to perform 
differential analysis of the ALS (ie the “disease” condition) against the CTRL condition (ie the “healthy” 
condition). Results of these differential analyses are represented by volcano plots in Figure 117.  

Figure 117: Volcano plots representing the differential analysis of CSF samples (ALS versus CTRL 
samples) for both sexes, with a 1% p-value filter. All quantified proteins are represented by dots, 

colored dots representing DEPs. 

In total, we robustly quantified 669 proteins. For the comparison amongst females, only 12 proteins 
were differentially expressed while 59 DEPs were identified in the male condition. 
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Four proteins were differentially expressed in both males and females, and among them was 
chitotriosidase-1 (CHIT1, also known as chitinase 1), which is one of the highest up-regulated protein 
in ALS in both females and males. CHIT1 belongs to the chitinase protein family, which are secreted by 
activated glial cells and other cells of the immune system. CHIT1 was already reported to be involved 
in ALS disease439,440 and other neurodegenerative diseases such as multiple sclerosis441. Indeed, CHIT1 
levels in CSF were shown more elevated in ALS samples compared to disease controls and correlated 
with disease progression rate, thus representing a promising tool for both diagnostic and progression 
of ALS439. Two other chitinase proteins, the Chitinase-3-like protein 1 (CH3L1) and Chitinase-3-like 
protein 2 (CH3L2) were also differentially quantified in females and/or males. CH3L1 and CH3L2 are 
both reportedly linked to ALS and especially to spinal cord atrophy for CH3L1440,442. 
Some other DEPs found in the male condition are reported to be linked with various 
neurodegenerative diseases. Among them is oligodendrocyte (OMGP) protein. Oligodendrocytes (OLs) 
are proteins of the central nervous system whose primary function is to form the myelin, the structure 
wrapping the axons and ensuring protection and signal conduction to neurons. The impact of myelin 
deterioration (demyelination) is known in a variety of neurodegenerative diseases, including ALS and 
is considered a key factor of disability progression. Studies suggests that OLs are affected during 
disease progression and that their dysfunction may be a key factor of the disease, and thus could be a 
novel therapeutic target for ALS443. Prion protein PRIO was also found up-regulated in ALS in the males. 
Prion proteins are misfolded proteins in that can trigger other “normal” proteins to fold abnormally 
and thus aggregate, leading to neurodegenerative prion diseases. Similarities between prion diseases 
and ALS have been reported, opening another road to potential insights into new therapeutic 
strategies for ALS444,445. Another protein that was up-regulated in ALS for males is cholecystokinin 
(CCKN), hormone of satiety and is highly expressed in brain regions such as hippocampus.  
 
Dysregulation of Glucose-6-phosphate isomerase (G6PI) is also particularly shown in females. This 
enzyme is supposedly involved in many neurodegenerative diseases (ALS, Parkinsons’, Alzheimers’, 
Huntingtons’) but its role especially in ALS has not yet been fully explored446. 
Other quantified proteins were found related to ALS and neurodegeneration. Cyclophlin A (PPIA) is an 
enzyme involved in protein folding and assembly and is mainly in the CNS. Cyclophin A’s activity has 
been shown to be linked with ALS447,448. Phosphatidylethanolamine binding protein 1 (PEBP1) was also 
quantified here, and its potential role as an Alzheimer’s disease biomarker has been suggested in many 
studies449,450.  
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iii. Phosphoproteomics analysis of ALS-cerebrospinal fluid samples 

As for the global proteomics analysis, phosphoproteomics samples were divided into 4 different 
conditions before performing differential analysis: ALS_Male, ALS_Female, CTRL_Male and 
CTRL_Female. Using Perseus and it’s ‘expand site stable’ option, the intensities of all peptides involved 
in a phosphosite were extracted from Phospho(STY).txt file from MaxQuant and merged to obtain 
quantification information at the phosphosite level. Only the phosphosites with a probability of 
localization greater than 0.75 were kept. Using Prostar, we kept only the proteins that were identified 
in at least 50% of the samples in at least one condition. Normalization and imputation of the data were 
also performed. The results of the different differential analyses, performed at the class I phosphosites 
level, are represented in Figure 118.  

Figure 118: Volcano plots representing the differential analysis of phospho CSF samples (ALS versus 
CTRL samples) for both sexes, with a 1% p-value filter. All quantified class I phosphosites are 

represented by dots, colored dots representing DEpS. 

In total, 365 class I phosphosites were quantified. Out of those, only a few were differentially 
quantified between the ALS and control condition with respectively 23 and 28 DEpS for females and 
males. Among those, five are common between both sexes. Four of them are phosphorylated 
neurofilament sites, highly over-expressed in the ALS condition. Neurofilaments (NF Heavy, Medium, 
or Light) phosphorylation is well reported to be linked to various neurological disorders, including 
ALS5,190,442,451. 620_NFM_1, 672_NFM_1 and 685_NFM_1 phosphorylated sites for example were 
described as up-regulated in Alzheimer’s brain samples compared to control samples452. 
Other up-regulated phosphosites in females are 335_SCG1_1 and 130_SCG1_1, on Secretogranin-1 
protein. SCG1 (also called CHGB) belongs to the family of granin neuropeptides located in the nervous 
system and that help modulate both neural activity and synaptic signalling. Granin proteins have been 
linked to various neurodegenerative diseases and especially in studies on brain and CSF of AD 
patients453.  
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Osteopontin (OSTP), also known as secreted phosphoprotein 1 (SPP1), is expressed by various 
components including the immune system and the central system. It was shown to play a role in 
neurodegenerative diseases including multiple sclerosis, Parkinson’s disease, AD, FTD and ALS454,455. 
Recently, De Luna et al. found that SPP1 levels were significantly higher in CSF of ALS patients 
compared to healthy controls456. Here, we found in females’ analysis that one osteopontin phosphosite 
was up-regulated in our ALS samples (258_OSTP_1). As displayed in Figure 119, osteopontin is a 
protein with a large number of potential phosphorylation. Out of those, we quantified in total 59 
osteopontin phosphosites.  

Figure 119: Potential phosphorylated residues of osteopontin and their corresponding number of 
references, from PhosphoSitePlus®. 

In both males and females, the same protein, Chromogranin A (CMGA or CHGA), is phosphorylated 
and upregulated, while the phosphorylation is not on the same site. In females, 333_CMGA_1 and 
112_CMGA_1 sites are phosphorylated, while in males it is 322_CMGA_1. Chromogranin is a protein 
found in neuroendocrine cells and neurons. It’s overexpression was shown to accelerate AMS disease 
onset in mouse models and increased levels of CMGA were found in CSF of ALS patients451,457.  
 
In conclusion, we were able here to develop and optimize a complete sample preparation workflow 
for high throughput (phospho)proteomics analysis of cerebrospinal fluid. We then applied this protocol 
on large cohorts of clinical samples of CSF. We were able to robustly quantify more than 660 proteins 
and 365 class I phosphosites in more than 100 CSF samples. By performing a differential analysis on 
these samples, we found know targets of ALS that have a potential as disease biomarkers. Moreover, 
we also found differentially expressed proteins/phosphosites that are yet unknown as ALS targets, 
which could potentially be new biomarkers for ALS. All these potential targets are currently being 
validated in-vitro by a team of biologists from the MAXOMOD consortium to evaluate their potential 
as biomarkers. Targeted proteomics experiments are also envisioned to be performed on an 
independent validation cohort. 
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3. Msqrob2PTM: differential abundance and differential usage 
analysis of MS-based proteomics data at the post-translational 
modification and peptidoform levels 

i. Context of the project  

This side-project was carried out in collaboration with Nina Demeulemeester, Prof. Lieven Clement 
and Pr. Lennart Martens (CompOmics lab, Ghent University, Belgium). 
Thanks to open-modification search engines, LC-MS/MS-based proteomics can detect more post-
translational modifications than ever. These developments have the potential to take proteomics 
research to the next level, as PTMs are key in many cellular processes. However, despite these 
advances in modification identification, statistical methods for PTM-level quantification and 
differential analysis have yet to catch up. This is partially due to the inherently low abundance of many 
PTMs and the confounding of PTM intensities with its parent protein abundance. Therefore, our 
collaborators have developed msqrob2PTM, a new workflow in the msqrob2 universe capable of 
differential abundance analysis at the PTM, and at the peptidoform level. In this context, both our 
proteomics and phosphoproteomics CSF data were shared with them to be used to evaluate the 
msqrob2PTM method. 

ii. Publication 

The obtained results were submitted to Molecular & Cellular Proteomics and are currently in review 
(see Appendices). 
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Chapter 3: Quality controls for proteomics and 
phosphoproteomics analysis of large cohorts 

Despite many technological and computational progresses, proteomic experiments are still prone to a 
considerable variability, especially when large cohorts of samples are involved. This variability comes 
from a combination of different factors, represented in Figure 120.  

Figure 120: Representation of the different steps of a (phospho)proteomics workflow and their 
contribution to the global variability of the experiment (adapted from 458,459). 

First of all, part of the variability comes from the inherent samples’ heterogeneity, which is further 
enforced on large cohorts of samples or when multiple biological conditions are considered. All the 
different steps of sample preparation then further increase this variability, especially when performed 
manually. Indeed, variations can be introduced through partial inefficiency and/or irreproducibility of 
the digestion, or through unexpected variable modifications460. After sample preparation, peptides are 
usually separated and analyzed by LC-MS/MS. Here, multiple factors can affect the accuracy of 
analysis: peptides with poor chromatographic behavior, overloading, cross-contamination due to 
sample carry-over, presence of contaminants…Moreover, when hundreds of samples are analyzed 
over a few days or even weeks, sample degradation might appear. Additionally, the state of both the 
chromatographic system and the mass spectrometer might be variable over such a long period of time. 
Finally, the accuracy of the final results is also dependent on the bioinformatics pipeline used for data 
processing. For example, the use of databases, spectral libraries, search engines, used parameters, 
statistical validation and normalization, all will have an impact on the generated results460. 
 
To produce reproducible and confident results on large-scale proteomics analysis, it is thus necessary 
to set up appropriate quality controls (QCs) to keep the control and evaluate the inherent variability 
of the analysis. Currently, there is no global consensus on a QC methodology and there were only a 
few attempts to review the different methodologies458–461. There are however, some tools developed 
to evaluate the quality of MS raw data (QC-ART462, QCloud2463, PACOM464…), proteomic quantitative 
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data, (pmartR465,466) or MaxQuant generated data467. These tools generate different degrees of quality 
assessment (raw data quality, identifications and quantification quality) but none of them includes all 
levels of assessment. Only recently MaCProQC was developed, a tool a priori enabling evaluation of 
data metric at all three levels460. 
 
Here, we will describe the different QCs that we have set up to ensure the reproducibility and 
robustness of both proteomics and phosphoproteomics analysis of hundreds of clinical samples. 

1. Global quality control in mass spectrometry 
(phospho)proteomics 

One of the most common QC samples are whole-cell lysates, used routinely to evaluate the 
performances of the chromatographic system and of the mass spectrometer. Performance criteria are 
set in terms of both chromatographic parameters (following the RT, mid-height width, area of a few 
peptides spread across the chromatographic gradient) and MS/MS acquisition (number of proteins, 
peptides and PSM spectra…). Once set up, validation criteria and thresholds are established. If the 
performances fail to achieve the set up thresholds, intervention either on the LC system (change of 
pre-column or column) or on the mass spectrometer (change of capillary or spray needle, cleaning) are 
conducted. These QC samples are usually injected before starting each new sequence of samples ie at 
least once a week. When injecting large cohorts of samples over a few weeks, it is recommended to 
also inject these QC during the sample sequence. It allows to evaluate the performances of the LC-
MS/MS throughout the course of injections. Therefore, for our largest cohorts of >100 samples 
(namely proteomics for human PFC and CSF, and phosphoproteomics for CSF), we injected these QC 
lysate in between our samples. For proteomics on human brains and CSF, samples were injected on a 
Q-Exactive Plus platform, with a yeast lysate as QC (200 ng injected). For phosphoproteomics analysis 
of CSF, samples were injected on a Q-Exactive HF-X, with a HeLa lysate as QC (100 ng injected). 
First of all, we evaluated chromatographic performances during the analysis by following four (or five 
for the Q-Exactive HF-X) peptides. In  Figure 121 are represented the different metrics evaluated for 
the followed peptides of the QCs, injected at different days. As displayed in  Figure 121, no shift in 
retention time of the peptides is observed across days, nor any tailing of the chromatographic peaks 
as mid-height width are constant across QC injections. Additionally, area under the chromatographic 
peaks appears also to be repeatable over the different QC injections.  
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 Figure 121: (A) Chromatographic performances of yeast digest quality control on NanoAcquity 
coupled to Q-Exactive Plus for human PFC and CSF cohorts over sequence analysis (B) 

Chromatographic performances of HeLa digest quality control on NanoAcquity coupled to Q-Exactive 
HF-X for phosphoCSF cohort over injection sequence. 

Then, qualitative evaluation of the identifications was performed through the following metrics: 
number of proteins and peptides identified, and number of PSM spectra. As highlighted in Figure 122, 
numbers of identified proteins were almost perfectly reproducible over QC injections. The number of 
peptides identified and PSM spectra, while not as stable as the number of peptides, were still always 
above the set thresholds (red lines in Figure 122).  

Figure 122: (A) MS/MS performances of yeast digest quality control on Q-Exactive Plus for human 
PFC and CSF cohorts over injection sequence (B) MS/MS performances of HeLa digest quality control 

on Q-Exactive HF-X for phosphoCSF cohort over injection sequence. 

Thanks to this external control, we were able to assess the performances of the LC-MS/MS system and 
highlight its overall stability over weeks of injections. However, more complex and more adapted QC 
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are necessary to fully evaluate the robustness and reproducibility of our analysis. The other quality 
controls set up during our analyses are detailed in the next sections. 

2. Internal and external quality controls for global proteomics 
analysis  

i. External QC: pools of samples 

For all proteomics cohorts, a fraction of all samples was pooled before protein reduction and 
alkylation. The pool was submitted to the same protocol as the biological samples. QC samples, 
depending on their type, can be incorporated in the injection sequence in various ways. Here, pool 
samples were interleaved with biological samples to detect potential decreases in performance and 
avoid any sample loss. In total, for the mouse models, five QC runs were injected. For the human brain 
cohort, 20 pools were injected and 16 for the human CSF cohort.  
Identification numbers are often used as basic indicators of proteomics data quality. In Figure 123 – 
(A) are represented the identified protein counts for all pool samples in the different cohorts. As 
displayed by this figure, we obtain a reproducible rate of identifications across all different pools, even 
for larger cohorts. Protein identification count is almost perfectly identical across the pools of mouse 
models. C9 mouse model shows however slightly higher identification numbers and stands out from 
other mouse models, in coherence with previous results on this particular model. We also looked at 
the reproducibility in protein abundance levels (Figure 123 – (B)) across pools. Overall, within a 
dataset, proteins’ abundances are quite stable over all pool samples.  

Figure 123: (A) Scatter plot of identified protein counts (B) Scatter plot of average protein 
abundances. 

Proteins’ abundances stability is further highlighted in Figure 124, in which are represented the 
distribution of the CVs on the intensities (A) and LFQ intensities (B) of all proteins quantified in all pool 
samples. By calculating the CV on the LFQ intensities of all pool injections, we are able to highlight the 
great stability of the system. Median CVs on the intensities ranged between [14 - 33%], with the higher 
median CVs of 26% and 33% for respectively human PFC and human cohorts, both cohorts larger than 
100 samples. Label-Free Quantitation (LFQ) intensities are normalized to exclude potential outliers and 
best represent the ratio changes in different samples and are thus more reproducible that classical 
intensities. Median CVs on LFQ intensities were much smaller and ranged between [6 – 15%]. The 
distribution of CVs on the LFQ intensities is also really narrow, highlighting the great stability of the 
system even across hundreds of samples.  
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Figure 124:  (A) Boxplots representing the distribution of CVs on the pools’ intensities for the 
different cohorts (B) Boxplots representing the distribution of CVs on the pools’ LFQ intensities for 

the different cohorts. 

ii. Internal QC: iRT synthetic peptides 

Another type of QC is the mixture of synthetic peptides. Theses mixtures can either be run individually 
or spiked into the QC pool samples and/or biological samples. One of the main advantages of spiking 
in those synthetic peptides is that quality control is performed in real-time with the analysis. A direct 
link between the qualitative information and the experimental data can thus be established458. Spiked-
in peptides should not overlap with the signal of the biologically relevant peptides. For this reason, 
artificial, synthetic peptides or isotopically labelled peptides might be used. Here, we used indexed 
Retention Time (iRT) synthetic peptides (Biognosys), which are a mixture of 11 non-naturally occurring 
synthetic peptides. In comparison to experimental RT, the iRT value of a peptide is stable and enables 
accurate prediction of peptide retention for any chromatographic setup. These iRT peptides were 
added to each of our proteomic samples, including pool samples, to check retention time alignment 
over all our injections. 
Out of the eleven synthetic peptides of the iRT mix, we were able to systematically detect nine of them 
in all of the proteomics cohorts (mouse brains, human brains and human CSF). For each of those 
peptides, we calculated the CV of their retention time over all the samples (Figure 125). For all peptides 
and across all cohorts, the CV was lower than 4%, and for most of them even lower than 2%. These 
results highlight the stability of the LC system over weeks and hundreds of injections. 

 Figure 125: CVs (in %) on the retention time (RT) of the different iRT synthetic peptides in all samples 
of the different proteomics cohorts. 



PART IV: Multi-omic analysis of axono-synaptic degeneration in motoneuron disease – 
application to the MAXOMOD project 
 

164 

We also calculated the median CV of iRT peptides intensity values across all samples injections for the 
different cohorts of samples. We obtain median CV between 14% at the lowest (for FUS mouse model) 
and 38% at the highest (for CSF cohort). By comparison, on mouse liver tissues, Imbert et al.468 obtained 
a 40% median CV on the 11 iRT synthetic peptides over 42 samples. 
As all the synthetic peptides of the mix have indexed retention times that are known and referenced, 
we then evaluated the correlation between the reference iRT and the measured retention time of the 
synthetic peptides. For each cohort of samples, we averaged across samples the experimental 
retention time of each synthetic peptide and plot it against its iRT. In Figure 126 the linear line 
represents the correlation between the two retention time for each synthetic peptides.  

Figure 126: Correlation between Indexed Retention Time (iRT) of synthetic peptides and their 
experimental Retention Time (RT).  

For all cohorts, we obtain excellent correlations, as all correlation coefficients (r) are above 0.99, from 
0.9946 at the lowest for human PFC up to 0.9977 for human CSF. Determination coefficients (R2) are 
also almost all greater than 0.99, demonstrating the quality of the linear regression. We notice that 
the human CSF cohort, while it as the highest correlation, also has the greatest shift between expected 
iRT and measured RT with an ordinate at origin of almost 40 minutes. This means that while retention 
times appears shifted from their expected values, this shift was consistent and reproducible across the 
whole gradient and across all samples.  
We also can note that all mouse cohorts have really have similar correlations results. It is expected as 
the exact same chromatographic gradient was used for all mouse models and thus synthetic peptides 
are expected to have a similar behavior, while human PFC and CSF were analyzed with a slightly 
different gradient. 
All these parameters together emphasize both stability and robustness of the chromatographic system 
across our different cohorts of samples. 
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3. Specific quality controls for phosphoproteomics analysis 

i. Performances of the phosphopeptide enrichment 

For the phosphoproteomics sample preparation, we used adapted phospho quality controls. The 
Phosphomixes are mixes of synthetic phosphopeptides derived from naturally occurring peptides in 
HeLa cells. They were used to evaluate the efficiency and reproducibility of the phosphopeptide 
enrichment process, as they were added before (Phosphomix light, in their naturally occurring isotopic 
abundance) and after the phosphopeptide enrichment process (Phosphomix heavy, in their stable 
isotope enriched version). Out of the ten phosphopeptides of the Phosphomix, we were able to detect 
five of them across our different cohorts, all of them described as having either a strong or medium 
relative signal intensity by instructor’s information (Table 12, Sigma-Aldrich, Product information, MS 
Phosphomix data sheet).  

Table 12: MS Phosphomix 1 data sheet (Sigma-Aldrich, Product information). Highlighted in green, 
the phosphopeptides detected in all 5 cohorts of samples. In blue, an additional phosphopeptide 
detected in both TDP43 and C9 mouse models. In pink, an additional phosphopeptide detected in 

FUS mouse model. 

Using Skyline software (v.22.2.0.351), we extracted the intensities of the light and heavy versions of 
those peptides for each cohort and determined the ratio 𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙𝑝𝑝𝑝𝑝 𝑙𝑙𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑙𝑙𝑡𝑡𝑖𝑖

ℎ𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙𝑝𝑝𝑝𝑝 𝑙𝑙𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑙𝑙𝑡𝑡𝑖𝑖
  in order to look at the 

phosphopeptide enrichment efficiency.   
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Figure 127: (A) Boxplots representing the ratio of phosphopeptide enrichment for each cohort (B) 
Boxplots representing the distribution of CVs on the ratio of phosphopeptide enrichment for each 

cohort.  

In Figure 127 – (A) are represented the ratio of peptides that were enriched as the 

ratios 𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙𝑝𝑝𝑝𝑝 𝑙𝑙𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑙𝑙𝑡𝑡𝑖𝑖
ℎ𝑝𝑝𝑒𝑒𝑒𝑒𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙𝑝𝑝𝑝𝑝 𝑙𝑙𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑖𝑖𝑙𝑙𝑡𝑡𝑖𝑖

. For most cohorts, we were able to enrich between 41% to 53% (median 

values) of our peptidic material. Only the phosphopeptide enrichment of the SOD1 cohort seems less 
efficient with only a median ratio of enrichment of 24%. One explanation of this is the use of an old 
batch of Phosphomix for the SOD1 experiment, which was replaced by a new batch for other 
experiments once we saw the performances for the SOD1 model.  
In a study on a human breast cancer cell line 220, they performed an automated IMAC phosphopeptide 
enrichment on an AssayMAP Bravo platform on four samples of tryptic digest of purified cancer cell 
lines, pre-spiked with Phosphomix I and II. Out of the ten Phosphomix peptides, they were able to 
detect only six peptides and obtained a recovery ratio of 0.63 over all Phosphomix peptides and 
samples. Considering the much larger size of our cohorts and our increased sample complexity, we can 
conclude our enrichment process was overall efficient.  
To ensure that our phosphopeptide enrichment was reproducible, we also looked at the CVs of the 
ratio of enrichment (Figure 127 – (B)). All median CV were found lower than 40%, and lower than 20% 
for SOD1, TDP43 and C9 with median CVs of respectively 10%, 11% and 20%. These results highlight 
the great reproducibility of the phosphopeptide enrichment step, thanks to automation, even on large 
cohorts of samples.  

ii. Stability of the LC-MS/MS system 

We then used the three Phosphomix phosphopeptides that were detected reproducibly in every 
cohorts as internal standards.  
In order to evaluate the stability of the chromatographic system, we represented the CVs on the 
retention times of the different synthetic phosphopeptides in each cohort (see Figure 128 – (A)). For 
all mouse models, almost all CVs were below 1%, stressing the great stability of the LC system. 
Moreover, even for the large CSF cohort, CVs are all below 2%. This leads to the conclusion that the 
chromatographic system is highly stable over hundreds of injections.  

Figure 128: (A) CVs (in %) on the retention time of the different Phosphomix phosphopeptides in all 
samples of the different phosphoproteomics cohorts; (B) Boxplots representing the distribution of 

CVs on the heavy Phosphomix phosphopeptides intensities for the different cohorts. 
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Figure 128 – (B) represents the distribution of the CVs on the intensities of the heavy synthetic 
phosphopeptides across the different cohorts. For all cohorts of samples, except for C9, the 
distribution of CVs is quite narrow. The distribution for C9 is wider, which is coherent with the higher 
global heterogeneity observed for this mouse model. For SOD1, TDP43 and C9 mouse models, we 
obtain median CVs below 20%. While even for the largest cohort of CSF samples, median CV is below 
30%. These results emphasize the robustness of the analysis and signal stability 
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Chapter 4: Open Modification Searches software 
evaluation to increase phosphorylation 

identifications 
As detailed previously, a large amount of spectra usually are unmatched in a proteomics analysis. One 
of the reason for this is the restricted search space of current engines that can therefore not identify 
peptides with unexpected modifications. Indeed, if a particular modification has not been specified in 
the search settings, then spectra corresponding to peptides bearing this modification will be assigned 
to an incorrect amino acid sequence15. In this perspective, Open Modification Searching (OMS) tools 
have been developed to identify modified spectra. OMS software are thus especially promising for 
PTMs studies. 
Here, we decided to evaluate the performances of one OMS tool, IonBot16, on our different phospho-
enriched mouse brain tissues datasets. IonBot, developed at the CompOmics laboratory (Ghent 
University, Belgium) combines machine learning-based algorithms in order to predict both peptide RT 
(with DeepLC172) and MS2 peak intensities (with MS2Pip173). Then through fully machine learning based 
re-scoring, it performs sensitive and accurate identifications of (modified) peptides. IonBot (v.0.10.0) 
performances will be benchmarked against previously used MaxQuant (v.1.6.14) at the identification 
and localization levels.  

1. Improved identification with open modification searching 

The total numbers of phosphoproteins, phosphopeptides and phosphosites identified with the two 
different pipelines and on the different mouse models are represented in Figure 129. Here, to have 
the same definition of a phosphorylation site between MaxQuant and IonBot, a phosphosite was 
defined as the protein carrying the site and the position of the site within the protein.  

 Figure 129: Phospho-identification results for the different mouse models using either Andromeda 
(MaxQuant) or IonBot for the search.  

Depending on the model, IonBot allows to increase phosphoproteins identifications from 30% to 50%. 
Going at the phosphopeptides levels, the gap is a bit smaller between the two pipelines with between 
15% and 30% of additional phosphopeptides identifications with IonBot. The increase is even more 
impressive at the site level with on average an additional 10 000 phosphosites identified thanks to 
IonBot. While IonBot increases in phospho-identifications are quite impressive, we wanted to 
investigate these additional identifications.  
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2. Populations of peptides identified 

For this, we combined identifications from the different mouse models and looked at the coverage in 
identifications between the two pipelines.  

 
Figure 130: Overlap of phospho-identifications between the two pipelines at (A) the phosphoprotein 

level (B) the phosphopeptide level (C) the phosphosite level. 

Figure 130 represents the identification overlap between IonBot and MaxQuant. While more than half 
of the phosphoproteins are shared between the two software, IonBot identified an additional 40% of 
phosphoproteins (Figure 130 – (A)). Results are similar at the peptidic level with also half of the 
phosphopeptides identified by both MaxQuant and IonBot, and 36% of additional phosphopeptides 
using IonBot (Figure 130 – (B)). However, less than 20% of all identified phosphosites are shared 
between the two pipelines (Figure 130 – (C)). IonBot allows for the impressive additional identification 
of more than 35 000 phosphosites. 
We then focused on the 2942 phosphopeptides identified only by MaxQuant and tried to found out 
why they where not found by IonBot.  

Figure 131: (A) Distribution of the characteristics of the phosphopeptides only identified by 
MaxQuant (B) Amino acid length of the phosphopeptides identified solely by MaxQuant. 

As represented in Figure 131 – (A), the majority (75%) of the phosphopeptides identified by MaxQuant 
only, are also found by IonBot but because of some other characteristics, did not make into the final 
list of identified phosphopeptides. First of all, we looked at the length of those 1332 phosphopeptides 
(Figure 131 – (B)). Out of them, 819 ie 28% have more than 30 amino acids (AA). While there is no 
upper limit of the number of amino acids in MaxQuant, it is limited to 30 AA maximum in IonBot. 
Although this length limitation prevents us here to identify those 819 phosphopeptides, it is set to limit 
the search space thus the overall open search time. Then, about one third of them were also identified 
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as phosphorylated peptides in IonBot but had a q-value > 1% so did not make it through the quality 
filter. Finally, 340 of them were identified by IonBot but with another modification, while 40 of them 
were found unmodified by IonBot.  

3. Identified modifications in IonBot 

IonBot allows identifying all UniMod modifications and any individual sequence variant. By 
comparison, MaxQuant will only identify modifications set up a priori in the search parameters. These 
modifications were in our case: Carbamidomethylation of cysteines, acetylation of protein N termini, 
oxidation of methionines, and phosphorylation of serines, threonine or tyrosine residues. This explains 
why IonBot identifies much more modified peptides and thus more modified peptides. In total, 87 815 
different modifications were identified by IonBot. The top modifications and the number of peptides 
identified with these modifications are represented in Figure 132.  

Figure 132: Nine most abundant modifications in IonBot and their corresponding number of 
identified modified peptides. 

Reassuringly, phosphorylated peptides come at the top of le list. Carbamidomethylation and oxidation 
are also among the most frequent modifications on peptides. However, it is interesting to notice that 
it appears that some phosphorylated peptides are phosphorylated on other amino acids such as 
glutamic acid [E] or aspartic acid [D]. Phosphorylation happens mainly on serine [S], threonine [T] and 
tyrosine residues [Y] and they constitute together the family of phosphoesters or O-phosphate, as 
these all bind through the oxygen of the residues. While they happen less often and are less studied, 
six other naturally occurring amino acids can be phosphorylated, with 3 other types of linkages. 
Altogether, they are name the SONA, for S-, O-, N- and A- phosphate linkage families469. In particular, 
the A-phosphate (acyl phosphate) family is composed of phosphoaspartate and phosphoglutamate. It 
is thus interesting to look more in details on the different amino acids that are found phosphorylated 
thanks to IonBot.  
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Figure 133: Repartition of phosphorylation on different amino acids at the PSM level. 

As represented in Figure 133, the majority of identified phosphorylations are on serine residues (79%). 
Phosphorylations of the N-phosphate (phosphoramidates) family are also present, with 12% of 
phosphorylated arginines, and a lower presence of lysine and histidine phosphorylations. 
Nevertheless, aspargin and glutamin phosphorylations, observed previously, represent less than 2% of 
the total of phosphorylated PSMs. 
 
While those additional phosphorylated residues might increase global phospho-identifications, their 
relevance needs to be further investigated. In this specific context, localization probability represents 
a variable of choice. 
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General conclusion 
My PhD work intended to develop high-throughput proteomics and phosphoproteomics methods 
applicable on large cohorts of samples for biomarker discovery.  
 

The opening part of this manuscript consisted in a bibliographic study on the current state-of-
the-art of quantitative proteomics. The classical bottom-up label free workflow is presented, with 
specific focus on its key steps: sample preparation, peptides separation, mass spectrometry analysis, 
protein identification, validation and quantification. The specific challenges of phosphoproteomics are 
detailed, along with their potential answer. Emphasis was put on data independent acquisition mode, 
its principle, evolution and challenges, and its promises to improve phosphoproteomic analysis. An 
overview of multi-omic approaches and their associated hurdles was finally presented. 
 

In this context, the objectives of this PhD work were the following: 
• The development of an automated sample preparation workflow for phosphoproteomics 
• The optimization of LC-MS/MS methods for phosphopeptides’ analysis using different 

acquisition modes 
• The benchmarking of both DDA and DIA software tools and their performances for 

identification quantification, and localization of phosphorylation events 
• The reproducible and high-throughput analysis of large cohorts of various types of samples for 

the identification of biologically relevant ALS targets 
 

The first part of the results presented was focused on the developments of an automated and 
high-throughput phosphoproteomics workflow. Starting from the beginning of the workflow, the 
influence of protein extraction and digestion protocols were evaluated on bovine brain samples. 
Results revealed that, while a SP3-based protocol was kept for practical reasons, a urea/thiourea-
based protocol allowed for highest phosphoproteomics identifications.  
 

I also benchmarked phosphoproteomics performances of different nanoLC-MS/MS platforms and 
fragmentation techniques. Because of its PASEF technology and 4-dimensions separation ability, 
allowing for increased sensitivity, almost perfect duty cycle and high depth of analysis, the TimsTOF 
Pro proved to be the ideal choice for phosphoproteomics analysis. Through the evaluation of various 
acquisition parameters of both a dda- and diaPASEF methods, an optimized MS/MS method was set 
up for phosphopeptides analysis. While the optimized ddaPASEF method allowed for improved 
identification of phosphopeptides, the optimized diaPASEF method indisputably outperformed with 
the highest depth and coverage of phosphoproteome achieved.  
 

As data analysis is a critical step of every workflow, I then evaluated various data treatment 
pipelines for identification, quantification and localization of phosphorylation sites. For DDA data 
analysis, four different pipelines were benchmarked. While Proteome Discoverer performances were 
the highest in terms of identifications, better localization of phosphorylation sites was achieved with 
MaxQuant. For diaPASEF phosphoproteomics data, performances of Spectronaut and DIA-NN were 
compared. We showed that DIA-NN outperformed Spectronaut for phosphopeptides counts but both 
software displayed similar quantification reproducibility. However, one crucial point is to be noted 
concerning both MaxQuant (for DDA generated data) and Spectronaut (for DIA generated data). They 
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are, at the time this work was performed, the only software that allow for quantification of 
phosphorylation at the site level.  
 

The second part of my PhD results were centered around the multi-omic E-Rare MAXOMOD 
project, focusing on ALS biomarker discovery. In the context of this project, I performed global 
proteomics analysis of large cohorts of mice and human brain tissues, which led to the robust 
quantification of thousands of proteins. The previously optimized phosphoproteomics sample 
preparation workflow was applied on mice samples and allowed for the robust quantification of up to 
almost 6000 class I phosphosites. The differential analysis, for both proteomics and phosphoproteomic 
tissues analysis, highlighted the complexity of ALS disease as only a few significant differences were 
observed.  
 

For this project, a common sample preparation for proteomics, phosphoproteomics and 
metabolomics analysis of CSF samples was needed. I thus benchmarked different sample preparation 
protocols, and demonstrated that in-solution digestion using RapiGest was the most adapted protocol 
for (phospho)proteomics analysis of large cohorts of clinical CSF. This optimized protocol led to the 
robust quantification of thousands of proteins and class I phosphosites.  
 

Then, as every (phospho)proteomics analysis is prone to various sources of variability, I set up 
different quality controls to ensure the control this inherent variability and the quality and 
reproducibility of our analyses. Different external quality controls (HeLa cell digest, pool of samples) 
and internal quality controls (iRT synthetic peptides) highlighted the stability and robustness of the LC-
MS/MS systems over weeks and hundreds of injections. For phosphoproteomic analysis, synthetic 
phosphopeptides were used to evaluate the efficiency and reproducibility of the phosphopeptides 
enrichment step. They showed the great reproducibility of the enrichment step over thousands of 
samples thanks to automation.  

 
Finally, I evaluated the performances of an open modification search tool, IonBot, to improve the 

phosphoproteome coverage. On average, we were able to increase identifications by 50% and 
identified up to 30 000 phosphosites. This is only a preliminary work and will need further 
investigations, but the results already achieved look very promising. 
 

Overall, the work detailed in this manuscript highlights the relevance of analytical developments, 
at each level of the workflow, for both proteomics and phosphoproteomics analysis. 
 

To conclude, I would like to insist on some points and perspectives about proteomics. 
 

A huge part of my work was focused on developments of sample preparation. It is important for 
me to point out that, while I discussed here some optimized methods on different types of samples, 
one should know that there is no universal method for sample preparation. Depending on the analysis 
and the type of sample, sample preparation optimization should be performed, as one protocol might 
produce different performances on different types of samples. Additionally, emphasis needs to be put 
on automation, which is key for sample preparation on large cohorts of samples and low amount of 
starting material. Considerable efforts are done to reduce considerably quantities of starting material 
in (phospho)proteomics, with the aim of high depth analysis of single cells. I look forward to see more 
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and more applications and developments of single cell analysis, especially in the field of single cell 
phosphoproteomics and single cell multi-omics.  
 

I also want to stress out the current popularity of DIA-based methods. One reason for this is that 
DIA continuously proves its ability to combine in a single analysis the performances of both global and 
targeted approach for detection and quantification of proteins. Moreover, taking advantage of the 
strengths of the TimsTOF Pro, diaPASEF methods have shown more than promising results for both 
proteomics and phosphoproteomics analysis. Indeed, thanks to the ion-mobility dimension, diaPASEF 
allows distinguishing signals from peptides that co-elute and would otherwise be co-fragmented, thus 
producing cleaner spectra. New DIA scan modes are emerging (synchroPASEF, slicePASEF, 
midiaPASEF…) with the promises to achieve even higher sensitivity and precision of analysis. 
 

The third point I would like to mention is that, as of today, data treatment remains a bottleneck of 
proteomics analysis, especially with DIA and phosphoproteomics. While progresses are made with the 
latest versions of software, there is still major room for improvement. For phosphoproteomics 
especially, there is for instance no clear consensus on the definition of a phosphosite. This results in 
software and users with different definitions, and thus non-comparable results from one to another. 
In addition, while identification of phosphosites is routine, quantification at the site level is not yet 
possible with all software. Moreover, one huge challenge of phosphoproteomics is the localization of 
the phosphorylation site and its validation. Probability of localization needs to be computed to ensure 
reliability of the results, usually through False Localization Rate computation. However, only a few 
software and tools currently allow for this kind of calculations. I believe however that the numerous 
improvements emerging in bioinformatics, e.g. prediction algorithm, open search tools, deep learning 
and artificial intelligence, should greatly improve and facilitate data treatment in proteomics in a near 
future.  

However, there is one matter I would like to discuss with the emergence of new bioinformatics 
tools and software solutions for proteomics. With more and more tools emerging, each based on 
different algorithms, with different parameters tunable by the user, with different validation methods, 
and different versions released frequently, it becomes more and more difficult for a user to compare 
the results. To choose the most adapted pipeline for data analysis, users thus should not be afraid of 
digging into the their data, to ensure they have comparable results. In addition, with the race for 
numbers that is sometimes observed, my advice keep a critical eye with the results that might be 
presented in publications or conferences. Indeed, there is a gap between the type of validation needed 
on data generated from classical cell digest for example, to the validation needed on more complex 
clinical samples. This difference in validation of the data might greatly impact the numbers and results 
obtained. Therefore, no matter how impressive the numbers might be, one should always keep an eye 
for the type of sample the experiment was performed on, but mostly on if and how the presented 
numbers were validated.  

One last topic I would like to point out about proteomics data, or scientific data in general, is data 
sharing. While data sharing is more than useful to the scientific community and has been common 
practice for a few years in proteomics, it critically lacks metadata annotation. This lack of metadata 
annotation makes it a challenge for researchers to fully understand the context of the data and thus 
greatly limits data reanalysis. In the case of proteomics data sharing on PRIDE platform, most people 
go for a partial data submission over a complete one, for which less files and less data annotation are 
needed. From what I could experience, this is mostly because metadata annotation is quite time 
consuming, especially on large cohorts of samples. While it may be more work, I hope, with the tools 
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that are emerging to facilitate data sharing and annotation, that complete data submission will become 
the standard practice, to ensure data longevity and re-usability.  
 
Last, I would like to bring up the challenges faced when working on large cohorts of samples. Indeed, 
there is no consensus amongst the scientific community for a global quality control for 
(phospho)proteomics analysis for instance. Additionally, most publications do not discuss the eventual 
QC samples and metrics they might have used. For phosphoproteomics, most studies do not give any 
information on either their efficiency or reproducibility of enrichment. However, I have shown in this 
work the imperative need to set up some appropriate QC to ensure the overall quality and 
reproducibility of analysis. I thus hope that sharing this kind of information will be of any use and 
become more usual in the future. 
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Chapter 1: Development of a fully automated high 
throughput phosphoproteomics workflow 

1. Development of a high throughput and automated 
phosphoproteomics sample preparation workflow 

i. Cell lysis, protein assay and protein precipitation  

Three different lysis buffers were compared: 
• “Urea”: with 8 M urea, 0.1 M ABC, protease inhibitors (1:50 v:v) and 1 mM sodium 

orthovanadate 
• “Urea/thiourea”: with 6 M urea, 2 M thiourea, 0.1 M ABC, protease inhibitors (1:50 v:v) and 1 

mM sodium orthovanadate 
• “Laemmli-like”: with 50 mM Tris-HCl pH=6.8, 10% glycerol, 2.5% SDS, 1 mM EDTA, protease 

inhibitors (1:50 v:v) and 1 mM sodium orthovanadate 
The urea and the urea/thiourea buffers were used with and without a MeOH/CH3Cl3 precipitation step. 
In total, 5 conditions were tested as represented in Figure 134. 

Figure 134: Five different protocols compared: A = 8M urea; B = 8M urea with precipitation; C = 6M 
urea, 2M thiourea; D = 6M urea, 2M thiourea with precipitation; E = Laemmli-like buffer. 

Frozen bovine brain samples (N= 3 replicates per condition) were grinded using KimbleTM BioMasher II 
(Dutscher, Bernolsheim, France). Samples were then resuspended in 350 µL of lysis buffer. For 
conditions B and D, protein precipitation was performed adding 4 volumes of ice cold MeOH, 1 volume 
of CH3Cl3, and 3 volumes of H2O. After centrifugation (4°C, 5000 g, 30 min), proteins were at the 
interface between two phases. The upper phase was removed and 3 volumes of ice cold MeOH were 
added. Samples were centrifuged (4°C, 5000 g, 10 min) and pellets washed with 1 mL of ice cold MeOH 
before being centrifuged again (4°C, 5000 g, 5 min). Protein pellets were then resuspended in 350 µL 
of lysis buffer. Protein concentration was assessed using RC-DC assay (Bio-Rad, Hercules, USA). 

ii. Reduction and alkylation 

For each replicate, 200 µg of proteins were reduced for 30 min at 37°C using 20 mM DTT, 0.1 M 
ammonium bicarbonate (ABC) to reach a final DTT concentration of 12 mM. Protein alkylation was 
performed for 1 h at room temperature in the dark using 700 mM IAM, 0.1 M ABC to reach a final IAM 
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concentration of 40 mM. For conditions A, B, C and D, samples were diluted with 0.1 M ABC buffer to 
decrease urea concentration under 1 M. 

iii. Conditions A to D: in-solution digestion and peptide clean-up 

For conditions A to D, protein digestion was performed overnight at 37°C by adding trypsin/Lys-C (Mass 
Spec Grade, Promega, Madison, WI, USA) at a 1:50 ratio (enzyme:protein, m:m). Digestion was stopped 
by TFA addition to reach a pH <3. 
Generated peptides were purified by automated SPE: peptide clean-up v2.0 protocol was loaded on 
AssayMAP Bravo platform (Agilent Technologies, Santa Clara, CA, USA). Briefly, 5 µL C18 cartridges 
were washed and primed with 50% ACN, 0.1% TFA and equilibrated with 0.1% TFA acidic solution. 
Samples were then loaded on the cartridges at 5 µL/min, washed with 0.1% TFA and then peptides 
were eluted at 5 µL/min with 40 µL of 70 µL ACN, 0.1% FA. 

iv. Condition E: SP3 digestion  

On-bead digestion protocol was used for condition E with the Laemmli like buffer. Beads A (Sera-Mag 
Speed, Thermo Fisher Scientific, 45152105050250) and beads B (Sera-Mag Speed,Thermo Fisher 
Scientific, 65152105050250) were combined (ratio 1:1) and washed 3 times with ultra-pure water. A 
solution at 100 µg/µL of beads was then prepared. The bead mixture was added to the samples with a 
bead:protein ratio of 10:1 for each type of beads thus of 20:1 for the combination of beads. Pure ACN 
was added to reach a 50% final concentration and proteins bound to the beads for 18 min at room 
temperature. Samples are then incubated for 2 min on a magnetic rack to remove supernatant. 
Proteins were washed twice with 200 µL of 80% EtOH and once with 180 µL of 100% ACN. Proteins 
were then resuspended in 90 µL of 0.1M ABC and digested on the beads overnight at 37°C and 1 000 
rpm using trypsin/Lys-C (Mass Spec Grade, Promega, Madison, WI, USA) at a 1:20 ratio 
(enzyme:protein, m:m). Digestion was stopped by TFA addition to reach a pH <2. After quick 
sonication, samples were incubated on the magnetic rack for 2 min and peptidic supernatant was 
collected.  

v. NanoLC-MS/MS analysis of the samples before enrichment 

For each replicate, 2 µL of sample were collected, vacuum dried and resuspended in 0.1% FA to be 
injected on NanoAcquity coupled to Q-Exactive Plus.  

a. Chromatographic conditions  

Samples (equivalent to 300 ng of proteins) were loaded on a Symmetry C18 precolumn (20 mm × 180 
μm with 5 μm diameter particles, Waters) over 3 min at 5 μL/min with 99% of solvent A (H2O, 0.1% FA) 
and 1% of solvent B (ACN, 0.1% FA). Peptides were separated on an ACQUITY UPLC BEH130 C18 column 
(250 mm × 75 μm with 1.7 μm diameter particles) at 400 nL/min with the gradient of solvent B detailed 
in Table 13. Two blank injections were realized between each sample and samples were injected in 
randomized order. 
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Table 13: Chromatographic gradient used on the NanoAcquity for analysis before phosphopeptide 
enrichment. 

b. MS and MS/MS parameters 

The Q-Exactive Plus operated in positive ESI mode with the source temperature at 250°C and a 2.1 kV 
spray voltage. The system was operated DDA mode with automatic switching between MS and MS/MS 
modes. MS full scans (300-1800 m/z) were acquired with a 70 000 resolution at 200 m/z, a maximal 
injection time of 50 ms and an AGC target of 3.106. The ten most abundant precursor ions were 
selected on each MS spectrum for further isolation and higher energy collision dissociation 
fragmentation, excluding mono-charged and unassigned ions. The dynamic exclusion time was set to 
60 s. MS/MS spectra were acquired with a 17 500 resolution at 200 m/z, a maximal injection time of 
100 ms and an AGC target of 1.105. 

vi. Results before enrichment: identification and quantification  

The peaklist (mgf files) were generated from raw data using ProteoWizard MS Convert (v 3.0.11417). 
Peaks were assigned using Mascot (v 2.6.2) search engine with trypsin/P specificity against an in-house 
generated protein sequence database containing all Bos Taurus entries extracted from SwissProt (26th 
of June 2020, 12 220 entries). The precursor mass tolerance was set at 5 ppm and the fragment ion 
mass tolerance at 0.07 Da. A maximum of one missed cleavage was allowed. Methionine oxidation and 
acetylation of proteins’ N-termini were set as variable modifications and Cysteine 
carbamidomethylation as a fixed modification. Generated data were validated using Proline (v 2.2.0). 
The maximum false discovery rate was set to 1% at PSM and protein levels with the use of a decoy 
strategy. A minimal peptide length of seven amino acids was required, as well as a protein pretty rank 
<1 and a protein score >25. A minimal of one specific peptide per protein was also required. Data 
normalization as well as protein quantification were also performed in Proline (v 2.2.0). The map 
alignment option was selected, all other parameters were set on default values. 

vii. Conditions C and E: phosphopeptide enrichment 

Peptidic material from conditions C and E was dried upon speed vacuum concentrator and 
resuspended in 170 µL of 80% ACN, 0.1% FA. Phosphomix I light (Thermo Fisher Scientific) were added 
to each sample (ratio peptide(µg):mix(fmol) = 1.6). Phosphopeptide enrichment was then performed 
on 5 µL phase Fe(III)-NTA cartridges on an AssayMAP Bravo platform following an IMAC protocol. 
Briefly, cartridges were washed and primed with 50% ACN, 0.1% TFA, then equilibrated with 80% ACN, 
0.1% TFA. 160 µL of samples were loaded at 2 µL/min on the phase then washed with 80% ACN, 0.1% 
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TFA before being eluted in 20 µL 1% NH4OH at 5 µL/min. After the enrichment, FA was added to each 
sample as well as phosphomix I heavy (Sigma Aldrich) (ratio peptide (µg)/mix(fmol) = 1.6).  

viii. LC-MS/MS analysis of enriched samples 

All enriched samples were dried upon speed vacuum concentrator and resuspended in 40 µL of 2% 
ACN, 0.1% FA. They were then analyzed on a nanoElute (Bruker) coupled to a TimsTOF Pro (Bruker). 

a. Chromatographic conditions 

Samples (5 µL) were loaded on an AcclaimTM PepMapTM 100 C18 precolumn (100 µm x 20 mm with 5 
µm diameter particles) with 2% of solvent B (ACN, 0.1% FA). Phosphopeptides were separated on an 
Aurora C18 column (20 mm x 180 µm with 1.6 µm diameter particles; IonOpticks) at 300 nL/min with 
the following gradient of solvent B (Table 14). The column was then washed with 95% of B for 10 min 
and equilibrated for 10 min with 2% of B. Samples were injected in a randomized order with two blank 
injections between each sample. 

Table 14: Chromatographic gradient used on the NanoElute for samples after phosphopeptide 
enrichment. 

b. MS and MS/MS parameters 

The TimsTOF Pro was operated in DDA-PASEF mode with the CaptiveSpray nano-electrospray source 
temperature at 180°C and a 1.6 kV spray voltage. Mass spectra for MS and MS/MS were acquired 
between 100 to 1 700 m/z. Both accumulation and ramp time were set on 166 ms. The ion mobility 
range was fixed between 0.7 to 1.25 1/K0 and the collision energy was ramped stepwise from 20 eV 
to 52 eV depending on the ion mobility value. Data acquisition was performed using 10 PASEF scans 
per cycle with a near 100% duty cycle and total cycle time was of 1.88 s. A polygon filter was applied 
in the m/z and ion mobility space to exclude low m/z, singly charged ions from PASEF precursor 
selection. For ion precursor selection, the intensity threshold was set at 1 000 (arbitrary units) and the 
target intensity at 17 000 (arbitrary units) with a dynamic exclusion time of 0.4 min. 

ix. Results after enrichment: identification and quantification  

Raw data were processed using MaxQuant software (version 2.3.1). Peaks were assigned with the 
Andromeda search engine with trypsin/P specificity against an in-house generated protein sequence 
database containing all Bos Taurus entries extracted from UniProtKB-SwissProt (17th of December 
2020, 73 032 entries). The minimal peptide length required was seven amino acids and a maximum of 
one missed cleavage was allowed. Methionine oxidation, acetylation of proteins’ N-termini, and serine, 
threonine and tyrosine phosphorylation were set as variable modifications while cysteine 
carbamidomethylation as a fixed modification. For protein quantification, the “match between runs” 
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option was enabled. The maximum false discovery rate was set to 1% at peptide and protein levels 
with the use of a decoy strategy. All other parameters were set on default values. “Phospho(STY)Sites” 
output file was used and processed through Perseus (v 2.0.7) to obtain quantification information at 
the phosphosite level thanks to the “expand sites table” function. 

2. Optimization of a LC-MS/MS method for the analysis of 
phosphopeptides 

i. Evaluation of the best LC-MS/MS platform for DDA analysis of 
phosphopeptides 

Phospho-enriched samples from the Laemmli-like buffer extraction condition were injected on 3 
different systems: 

• A NanoElute (Bruker) coupled to the TimsTOF Pro (Bruker), see viii.LC-MS/MS analysis 
of enriched samples. 

• A nanoAcquity (Waters) coupled to a Q-Exactive HF-X (Thermo Fisher Scientific)  
• A Dionex Ultimate 3000 (Thermo Fisher Scientific) Tribrid Eclipse (Thermo Fisher 

Scientific), to compare HCD to ETD fragmentation. 

a. Q-Exactive HF-X 

• Chromatographic conditions 
Samples (8 µL) were loaded on an ACQUITY UPLC® M-Class Symmetry® C18 Trap Column (20 mm x 180 
µm with 5 µm diameter particles; Waters) over 3 min at 5 μL/min with 99% of solvent A (H20, 0.1% FA) 
and 1% of solvent B (ACN, 0.1% FA). Phosphopeptides were separated on an ACQUITY UPLC® Peptide 
BEH C18 Column (250 mm x 75 µm with 1.7 µm diameter particles) at 400 nL/min with the following 
gradient of solvent B (Table 15). Samples were injected in a randomized order with two blank injection 
between each sample. 

Table 15: Chromatographic gradient used on the NanoAcquity for samples after phosphopeptide 
enrichment. 

• MS and MS/MS parameters 
The Q-Exactive HF-X is operated in positive ESI mode with the source temperature at 250°C and a 2.0 
kV spray voltage. The system was operated in DDA mode with automatic switching between MS and 
MS/MS modes. MS full scans (375-1 500 m/z) were acquired with a 120 000 resolution at 200 m/z, a 
maximal injection time of 60 ms and an AGC target of 3.106. The 20 most abundant precursor’s ions 
were selected on each MS spectrum for further isolation and higher energy collision dissociation 
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fragmentation, excluding monocharged and unassigned ions. The dynamic exclusion time was set to 
40 s. MS/MS spectra (200-2 000 m/z) were acquired with a 15 000 resolution at 200 m/z, a maximal 
injection time of 60 ms and an AGC target of 1.105.  
 

• Identification and quantification of phosphorylation sites 
Raw data were processed using MaxQuant software (version 2.3.1). Peaks were assigned with the 
Andromeda search engine with trypsin/P specificity against an in-house generated protein sequence 
database containing all Bos Taurus entries extracted from UniProtKB-SwissProt (17th of December 
2020, 37 518 entries). The minimal peptide length required was seven amino acids and a maximum of 
one missed cleavage was allowed. Methionine oxidation, acetylation of proteins’ N-termini, and serine, 
threonine and tyrosine phosphorylation were set as variable modifications while cysteine 
carbamidomethylation as a fixed modification. For protein quantification, the “match between runs” 
option was enabled. The maximum false discovery rate was set to 1% at peptide and protein levels 
with the use of a decoy strategy. All other parameters were set on default values. “Phospho(STY)Sites” 
output file was used and processed through Perseus (v 2.0.7) to obtain quantification information at 
the phosphosite level thanks to the “expand sites table” function. 

b. Eclipse Tribrid 

• Chromatographic conditions 
6 µL of samples were loaded on Acclaim PepMapTM (100 µm x 20 mm, 5 µm : Thermo Fisher Scientific) 
at 10 µL/min of 1% B (0.1% FA in ACN) and 99% A (0.1% FA in H2O) for 3 min. Phosphopeptides were 
separated on C18 Aurora (250 mm x 75 µm, 1.6 µm, IonOptics) at 300 nL/min and with the gradient 
detailed in Table 16. 

Table 16: Chromatographic gradient used on the Dionex Ultimate 3000 for phosphopeptides analysis. 

• MS and MS/MS parameters 
HCD: the Eclipse worked in positive ESI mode with the source temperature at 250°C and a 2.0 kV spray 

voltage. The system was operated in DDA mode with automatic switching between MS and MS/MS 
modes. MS full scans (375-1500 m/z) were acquired on an Orbitrap with a 120 000 resolution at 
200 m/z, a maximal injection time of 50 ms and an AGC target of 4.106. The 20 most abundant 
precursor’s ions were selected on each MS spectrum for further isolation and HCD fragmentation, 
excluding monocharged and unassigned ions. The dynamic exclusion time was set to 40 s. MS/MS 
spectra (120-1200 m/z) were acquired on Orbitrap with a 15 000 resolution at 200 m/z, a maximal 
injection time of 22 ms and an AGC target of 5.105. 

ETD: All parameters were the same as for HCD fragmentation except for the following. ETD 
fragmentation was performed, excluding monocharged and unassigned ions. MS/MS spectra (120-
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1 200 m/z) were acquired on ionic trap using “rapid” scan mode, with a maximal injection time of 
35 ms and an AGC target of 1.105. 

 
• Identification and quantification of phosphopeptides 

Raw data were processed using Proteome Discoverer (version 2.5). Peaks were assigned with Mascot 
search engine with trypsin/P specificity against an in-house generated protein sequence database 
containing all Bos Taurus entries extracted from UniProtKB-SwissProt (17th of December 2020, 37 518 
entries). The minimal peptide length required was seven amino acids and a maximum of one missed 
cleavage was allowed. Methionine oxidation, acetylation of proteins’ N-termini, and serine, threonine 
and tyrosine phosphorylation were set as variable modifications while cysteine carbamidomethylation 
as a fixed modification. Localization probability of the phosphorylation sites was evaluated by 
phosphoRS algorithm. A 1% FDR was applied at the PSM, peptide and protein levels with Percolator. 
Only sites with a localization probability greater than 25% were kept. 

ii. Optimization of a DDA method on a TimsTOF Pro platform 

Optimizations of phosphopeptides LC-MS/MS method on the TimsTOF Pro were performed on murine 
brain tissues.  

a. Sample preparation  

Mouse brain protein extract from Laemmli-like extraction were used. Protease inhibitors (1:50 v:v) and 
200 mM sodium orthovanadate (for a final concentration of 1 mM) were added to every sample. 
Protein concentration was assessed using RC-DC assay (Bio-Rad, Hercules, USA). Samples were diluted 
in Laemmli buffer (TrisHCl, 3% SDS) to reach a 50 µL final volume and 225 µg of proteins were reduced 
for 30 min at 37°C using 20 mM DTT, 0.1 M ABC to reach a final DTT concentration of 12 mM. Protein 
alkylation was performed for 30 min at room temperature in the dark using 700 mM IAM, 0.1 M ABC 
to reach a final IAM concentration of 40 mM. SP3 digestion was then performed, under the same 
conditions as those described in 1.Development of a high throughput and automated 
phosphoproteomics sample preparation workflow - iv.Condition E: SP3 digestion. After peptides 
recovery, 225 µL of sample were dried upon speed vacuum concentrator and resuspended in 170 µL 
of 80% ACN and 0.1% TFA. Phosphomix I light (Thermo Fisher Scientific) was added to each sample 
(ratio peptide(µg):mix(fmol) = 1.6). Phosphopeptide enrichment was then performed on 5 µL phase 
Fe(III)-NTA cartridges on an AssayMAP Bravo platform following an IMAC protocol, previously 
described. After the enrichment, FA was added to each sample as well as Phosphomix I heavy (Sigma 
Aldrich) (ratio peptide (µg)/mix(fmol) = 1.6). Enriched samples were dried upon speed vacuum 
concentrator and resuspended in 20 µL of H2O, 2% ACN, 0.1% FA and all samples were pooled together. 

b. Chromatographic conditions 

Samples (4 µL) were loaded on an AcclaimTM PepMapTM 100 C18 precolumn (100 µm x 20 mm with 5 
µm diameter particles) with 2% of solvent B (ACN, 0.1% FA). Phosphopeptides were separated on an 
Aurora C18 column (20 mm x 180 µm with 1.6 µm diameter particles; IonOpticks) at 300 nL/min. The 
different gradient tested are described in Table 17. Samples were injected in randomized order and 
one blank was injected between every sample 
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Table 17: Chromatographic gradients tested on the NanoAcquity for phosphopeptides analysis. 

c. MS and MS/MS parameters 

• For MS/MS optimizations 
For all methods, the TimsTOF Pro was used in DDA-PASEF mode with the source temperature at 180°C 
and a 1.6 kV spray voltage. Mass spectra for MS and MS/MS were acquired between 100 to 1 700 m/z. 
A polygon filter was applied in the m/z and ion mobility space to exclude low m/z, singly charged ions 
from PASEF precursor selection. For ion precursors selection, the intensity threshold was set at 1 000 
(arbitrary units) and the target intensity at 17 000 (arbitrary units) with a dynamic exclusion time of 
0.4 min. Other parameters that were variable from one method to the other are detailed in the 
following Table 18. 

Table 18: Different parameters tested for each method. 

The different collision energy range and their corresponding slope are represented in Figure 135. 
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Figure 135: Description of the stepwise and linear slopes of collision energy range used for the 
different methods. 

• For gradient optimizations 
For all gradient tested, the TimsTOF operated with the same parameters than described for the MS/MS 
optimizations, and method B with 8 PASEF scans was used. 

d. Identification and quantification of phosphopeptides 

Raw data were processed using MaxQuant software (version 2.0.3). Peaks were assigned with the 
Andromeda search engine with trypsin/P specificity against an in-house generated protein sequence 
database containing all mouse entries extracted from SwissProt (19th of January  2020, 36 725 entries). 
The minimal peptide length required was seven amino acids and a maximum of one missed cleavage 
was allowed. Methionine oxidation, acetylation of proteins’ N-termini, and serine, threonine and 
tyrosine phosphorylation were set as variable modifications while cysteine carbamidomethylation as 
a fixed modification. For protein quantification, the “match between runs” option was not activated. 
The maximum false discovery rate was set to 1% at peptide and protein levels with the use of a decoy 
strategy. All other parameters were set on default values. “Phospho(STY)Sites” output file was used 
and processed through Perseus (v 2.0.7) to obtain quantification information at the phosphosite level 
thanks to the “expand sites table” function. 

iii. Development of a dia-PASEF method 

Optimization of a dia-PASEF method for phosphoproteomics on the TimsTOF Pro were performed on 
murine brain tissues (see Chapter 1 – 2.Optimization of a LC-MS/MS method for the analysis of 
phosphopeptides – ii.Optimization of a DDA method on a TimsTOF Pro platform- a.Sample 
preparation). 

a. Chromatographic conditions 

Samples (4 µL) were loaded on an AcclaimTM PepMapTM 100 C18 precolumn (100 µm x 20 mm with 5 
µm diameter particles) with 2% of solvent B (ACN, 0.1% FA). Phospho-peptides were separated on an 
Aurora C18 column (20 mm x 180 µm with 1.6 µm diameter particles; IonOpticks) at 300 nL/min with 
the gradient of B detailed in Table 19 . Samples were injected in randomized order and one blank was 
injected between every sample. 

Table 19: Chromatographic gradient used on the NanoAcquity for dia-PASEF phosphopeptides 
analysis. 
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b. MS and MS/MS parameters 

The TimsTOF Pro was used in dia-PASEF mode with the source temperature at 180°C and a 1.6 kV spray 
voltage. Mass spectra for MS and MS/MS were acquired between 400 to 1400 m/z. Collision energy 
ranged from 20 eV to 80 eV. Other parameters that were variable from one method to the other are 
detailed in Table 20.  

Table 20: Different parameters tested for each dia-PASEF methods. 

c. Identification and quantification 

Generated DIA phospho-enriched data were analyzed in Spectronaut software (v.17.1 ; Biognosys) 
using directDIATM.  

• Test 1: an in-house generated protein sequence database containing all mouse entries 
extracted from SwissProt (19th of January 2020, 36 822 entries) was used for the Pulsar search. 
Trypsin/P was used as digestion enzyme with two missed cleavages allowed. 
Carbamidomethylation of cysteine residues was set as a fixed modification. Oxidation of 
methionine residues, acetylation of proteins n-termini and phosphorylation of serine, 
threonine and tyrosine residues were set as variable modifications. Peptide length was set up 
between 7 to 52 amino acids. A maximum of 5 variables modifications per peptide were 
allowed. For quantitative data extraction, MS and MS/MS mass tolerances, Extracted Ion 
Chromatogram (XIC) and retention time windows were all set as dynamic. DirectDIA+ (deep) 
workflow was used. A false discovery rate of 1% was set at precursor and protein levels. A 
localization probability cutoff of 0.75 was set for PTMs. “PTM report” file was exported to 
extract phosphosites intensities. 

• Test 2: an in-house generated protein sequence database containing all mouse entries 
extracted from SwissProt (15th of May 2023, 17 268 entries) was used for the Pulsar search. 
Trypsin/P was used as digestion enzyme with one missed cleavage allowed. 
Carbamidomethylation of cysteine residues was set as a fixed modification. Oxidation of 
methionine residues and phosphorylation of serine, threonine and tyrosine residues were set 
as variable modifications. Peptide length was set up between 7 to 30 amino acids. A maximum 
of 2 variables modifications per peptide and one missed cleavage were allowed. For 
quantitative data extraction, MS and MS/MS mass tolerances, XIC and retention time windows 
were all set as dynamic. DirectDIA+ (deep) workflow was used. A false discovery rate of 1% 
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was set at precursors and proteins levels. A localization probability cutoff of 0.75 was set for 
PTMs. “PTM report” file was exported to extract phosphosites intensities. 

3. Evaluation of different data treatment pipelines for 
phosphosites identification, quantification and localization  

i. Benchmarking of different pipelines for DDA phosphoproteomics data 
analysis 

Phospho-enriched data generated by the Q-Exactive HF-X were analyzed by different pipelines for 
identification, quantification and localization of phosphorylation. 

a. Mascot (Proline) 

The peaklist (mgf files) were generated from raw data using ProteoWizard MS Convert (v 3.0.11417). 
Peaks were assigned using Mascot (v 2.6.2) search engine with trypsin/P specificity against the Bos 
Taurus database already described. The precursor mass tolerance was set at 5 ppm and the fragment 
ion mass tolerance at 0.05 Da. A maximum of one missed cleavage was allowed. Methionine oxidation, 
acetylation of proteins’ N-termini, serine, threonine and tyrosine phosphorylations were set as variable 
modifications. Cysteine carbamidomethylation was set as a fixed modification. Generated data were 
validated using Proline (v 1.0). The maximum false discovery rate was set to 1% at PSM and protein 
levels with the use of a decoy strategy. A minimal peptide length of seven amino acids was required, 
as well as a protein pretty rank <1 and a protein score >25. A minimal of one specific peptide per 
protein was also required.  

b. Mascot (Proteome Discoverer) 

Raw data were processed using Proteome Discoverer (version 2.5). Peaks were assigned with Mascot 
search engine. Proteic database and search parameters were the same as described in 3- 
i.Benchmarking of different pipelines for DDA phosphoproteomics data analysis – a.Mascot 
(Proline). Localization probability of the phosphorylation sites was evaluated by phosphoRS algorithm. 
A 1% FDR was applied at the PSM, peptide and protein levels with Percolator. Only sites with a 
localization probability greater than 25% were kept. 

c. Mascot + MS Amanda (Proteome Discoverer) 

Raw data were processed using Proteome Discoverer (version 2.5). Proteome Discoverer allows to 
perform two parallels searches at the same time. Here, search was performed by both Mascot and MS 
Manda (v.2.0) algorithms. For both searches, proteic database and search parameters were as 
described in 3- i.Benchmarking of different pipelines for DDA phosphoproteomics data analysis – 
a.Mascot (Proline). Localization probability of the phosphorylation sites was evaluated by phosphoRS 
algorithm. A 1% FDR was applied at the PSM, peptide and protein levels with Percolator. Only sites 
with a localization probability greater than 25% were kept. 

d. Andromeda (MaxQuant) 

See 1.Development of a high throughput and automated phosphoproteomics sample preparation 
workflow - b - ix.Results after enrichment: identification and quantification. 
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ii. Spectronaut and DIA-NN software for dia-PASEF data treatment  

a. Spectronaut  

See 2.Optimization of a LC-MS/MS method for the analysis of phosphopeptides iii.Development of 
a dia-PASEF method c.Identification and quantification – Test 2. 

b. DIA-NN 

DIA-NN (version 1.8.1) was used in a library free approach. The proteic database used for the DIA-NN  
search and search parameters were the same as described for Spectronaut Pulsar search. A 1% FDR at 
the precursor level was set. The “deep learning-based spectra, RTs and IMs prediction” as well as 
“heuristic inferences” were activated. Quantification strategy was set as robust LC (high precision). 
Low RAM and high speed mode was activated.  
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Chapter 2: Multi-omic analysis of axono-synaptic 
degeneration in motoneuron disease – application 

to the MAXOMOD project 

1. Proteomics and phosphoproteomics analysis of large cohorts of 
brain tissues 

i. Global proteomics analysis of human and mouse brain tissues 

a. Sample preparation 

Brain tissues coming both from human post-mortem frontal cortex and from pre-frontal cortex (PFC) 
of the 4 different mouse models (SOD1, TDP43, C9, FUS) were prepared as follows. Tissues were 
grinded with a biomasher using 350 µL of MeOH:H2O (4:1). After incubation on ice for 20 min, they 
were centrifuged at 14 000 g at 4°C for 15 min, to extract metabolites for metabolomics analysis 
(conducted at the FGC Zurich). Protein pellets were resuspended in 200 µL Laemmli buffer (10% SDS, 
Tris 1M pH 6.8, glycerol) then centrifuged at 5 000 g at 4°C for 5 min. Protein concentration was 
determined using DC assay (BioRad, Hercules, CA, USA) according to the manufacturer’s instructions. 
100 µg of each sample were taken and diluted up to 50 µL with Laemmli. DTT was added to each 
sample to reach a final concentration of DTT of 50 mM. A Quality Control sample (QC) was prepared 
by mixing 5 µL of each protein extract. Sample mix followed exactly the same sample preparation steps 
than any other biological sample. Samples were then heated at 95°C for 5 min and stacked in an in-
house prepared 5% acrylamide SDS-PAGE stacking gel. Gel bands were reduced and alkylated prior to 
overnight digestion (enzyme:protein ratio of 1:80) at 37°C using modified porcine trypsin (Mass Spec 
Grade, Promega, Madison, USA). The generated peptides were extracted with 60% ACN followed by a 
second extraction with 100% ACN. Vacuum dried peptidic samples were resuspended in 30 µL of H20, 
2% ACN, 0.1% FA and iRT peptides (Biognosys, Zurich, Switzerland) were added to each sample 
according to the manufacturer’s instructions as an internal QC. 

b.  Chromatographic conditions 

NanoLC-MS/MS analyses were performed on a nanoAcquity UltraPerformance LC® (UPLC®) device 
(Waters Corporation, Milford, MA) coupled to a Q-Exactive Plus mass spectrometer (Thermo Fisher 
Scientific, Waltham, MA). The solvent system consisted of 0.1% FA in water (solvent A) and 0.1% FA in 
ACN (solvent B). Tryptic digests (equivalent to 800 ng of proteins) were loaded on a Symmetry C18 
precolumn (20 mm × 180 μm with 5 μm diameter particles, Waters) over 3 min at 5 μL/min with 99% 
of solvent A and 1% of solvent B. Peptides were separated on an ACQUITY UPLC BEH130 C18 column 
(250 mm × 75 μm with 1.7 μm diameter particles) at 400 nL/min with the gradient of solvent B detailed 
in Table 21. The samples of each cohort were injected in randomized order. The QC samples (mix of 
samples digest was  injected regularly throughout the cohort, every 6 samples for the human cohort 
(total of 21 QCs) and every 5 samples for mouse  cohorts (total of 5 QCs). 
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Table 21: Chromatographic gradient used on the NanoAcquity Q-Exactive Plus for proteomics 
analysis of human and mouse brain tissues. 

c. MS and MS/MS parameters 

Q-Exactive Plus  was operated in DDA mode with automatic switching between MS (mass range 300 – 
1800 m/z with R = 70 000, AGC fixed at 3x 106 ions and a maximum injection time set at 50 ms) and 
MS/MS (mass range 200–2000 m/z with R = 17 500, AGC fixed at 1 x 105 and the maximal injection 
time set to 100 ms) modes. The ten most abundant precursor’s ions were selected on each MS 
spectrum for further isolation and higher energy collision dissociation fragmentation, excluding 
monocharged and unassigned and ions. The dynamic exclusion time was set to 60 s. 

d. Identification and quantification 

Raw data were processed using MaxQuant software (version 1.6.14). Peaks were assigned with the 
Andromeda search engine with trypsin/P specificity against an in-house generated protein sequence 
database containing either all human entries extracted from UniProtKB-SwissProt (24th of August 2020, 
20 421 entries) or all mouse entries extracted from UniProtKB-SwissProt (27th of March 2020, 17 134 
entries for SOD1 & TDP43 models and 29th of September 2020, 17 061 entries for C9 and FUS models). 
The minimal peptide length required was seven amino acids and a maximum of one missed cleavage 
was allowed. Methionine oxidation and acetylation of proteins’ N-termini were set as variable 
modifications and Cysteine carbamidomethylation as a fixed modification. For protein quantification, 
the “match between runs” option was enabled. The maximum false discovery rate was set to 1% at 
peptide and protein levels with the use of a decoy strategy. Intensities were extracted from the 
Proteingroup.txt file to perform the following statistical analysis. 

e. Statistical and differential analysis 

Protein intensities were uploaded in Prostar software (v.1.30.7 and DAPAR v.1.30.6) and data was split 
into 4 conditions for each cohort of samples: TG_Male, TG_Female, WT_Male and WT_Female. After 
log transformation of the intensities, contaminants and reverse proteins were removed as well as 
proteins identified with no unique peptide. Proteins with at least 80% of non-missing values, in at least 
one condition, were kept. Normalization of the data was performed using quantile centering 
normalization with a 15% quantile. Missing values were imputed using det quantile algorithm and a 
2.5% quantile. Finally, a Limma statistical test was applied as well as Benjamini-Hochberg p-value 
calibration. Differential analysis of the TG versus WT conditions was performed, with a 0.1% p-value 
filter. 
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ii. Phosphoproteomic analysis of mouse brain samples 

a. Sample preparation 

For SOD1, TDP43 and FUS mouse models, protein extract from global proteomics analysis were used 
for sample preparation. For the C9 mouse model, proteins were extracted from brain tissues following 
the steps detailed in global proteomics sample preparation. For all mouse models, protease inhibitors 
(1:50 v:v ; Sigma, P8340) and 20 mM sodium orthovanadate (final concentration in Na3VO4 = 1 mM) 
were added to protein extract. Protein concentration was determined using RC-DC assay (BioRad, 
Hercules, CA, USA) according to the manufacturer’s instructions. 250 µg of proteins for each sample 
were reduced and alkylated prior to an in-house SP3 protocol, previously described. Proteins were 
then resuspended in 95 µL NH4HCO3 prior to overnight on-beads digestion (enzyme:protein ratio of 
1:20) at 1 000 rpm at 37°C using modified porcine trypsin/Lys-C (Mass Spec Grade mix ,Promega, 
Madison, USA). Digestion was stopped using TFA (final pH < 2). Recovered peptides were resuspended 
in 170 µL 80% ACN, 0.1% TFA and Phosphomix I light (Sigma Aldrich) was added to each sample (ratio 
peptide (µg)/mix(fmol) = 1.6). 
Phosphopeptide enrichment was performed on 5 µL phase Fe(III)-NTA cartridges on an AssayMAP 
Bravo platform following an IMAC protocol, previously described. After the enrichment, FA was added 
to each sample as well as Phosphomix I heavy (Sigma Aldrich) (ratio peptide (µg)/mix(fmol) = 1.6). 
Phosphopeptides were vacuum dried and resuspended in 40 µL H2O, 2% ACN, 0.1% FA. 

b.  Chromatographic conditions 

Samples (8 µL) were analyzed on the nanoLC Q-Exactive HF-X platform with the same chromatographic 
condiitons as detailed in Chapter 1 - LC-MS/MS analysis of enriched samples - a.Chromatographic 
conditions. 

c. MS and MS/MS parameters 

Q-Exactive HF-X MS and MS/MS parameters were as described in Chapter 1 - LC-MS/MS analysis of 
enriched samples – b.MS and MS/MS parameters. 

d. Identification and quantification 

Raw data were processed using MaxQuant software (version 1.6.14). Peaks were assigned with the 
Andromeda search engine with trypsin/P specificity against an in-house generated protein sequence 
database containing all mouse entries extracted from UniProtKB-SwissProt (29th of September 2020, 
17 061 entries). The minimal peptide length required was seven amino acids and a maximum of one 
missed cleavage was allowed. Methionine oxidation and acetylation of proteins’ N-termini were set as 
variable modifications and Cysteine carbamidomethylation as a fixed modification. For protein 
quantification, the “match between runs” option was enabled. The maximum false discovery rate was 
set to 1% at peptide and protein levels with the use of a decoy strategy. Intensities were extracted 
from the Phospho(STY)sites.txt file to perform the following statistical analysis. 

e. Statistical and differential analysis 

Phospho(STY)sites.txt file was loaded into Perseus software (v 2.0.7). Contaminants and reverse 
protein were removed, and lines with null intensity values in all samples were removed. Then, using 



PART V: Experimental part 

195 

the “expand site tables” option, the intensities of all phosphopeptides carrying the same phosphosite 
were combined to obtain intensities at the phosphosite level. Only phosphosites with a localization 
probability >0.75 were kept. Phosphosite intensities were then uploaded in Prostar software (v.1.30.7 
and DAPAR v.1.30.6) and data split into 4 conditions for each mouse model: TG_Male, TG_Female, 
WT_Male and WT_Female. After log transformation of the intensities, phosphosites with at least 70% 
of non-missing values, in at least one condition, were kept. Normalization of the data was performed 
using quantile centering normalization with a 15% quantile. Missing values were imputed using imp4p 
algorithm. Finally, a Limma statistical test was applied as well as Benjamini-Hochberg p-value 
calibration. Differential analysis of the TG versus WT conditions was performed, with a 0.1% p-value 
filter. 

2. Development of a protocol for both proteomics and 
phosphoproteomics analysis of cerebrospinal fluid 

i. Test 1: in-solution digestion versus in-gel digestion 

a. Sample preparation 

The different protocols tested are represented in Figure 136. 

Figure 136: Method development for CSF sample preparation. 

Two biological replicates of human CSF were used. Protein concentration was determined using DC 
assay (BioRad, Hercules, CA, USA) according to the manufacturer’s instructions. For conditions with a 
precipitation step, 150 µg of sample were precipitated using MeOH:H2O (4:1) , vortexed vigorously for 
10 s and incubated for 20 min on ice. Samples were then centrifuged for 15 min at 16 000 g at 4°C. 
Metabolites were recovered and proteins resuspended in either 25 µL of 0.1% RapiGest in 50 mM ABC 
or in 25 µL of Laemmli buffer. Samples were sonicated for 3 min. Protein concentration after 
precipitation was determined using DC assay (BioRad, Hercules, CA, USA) according to the 
manufacturer’s instructions.  

• For in-solution digestion: DTT was added to 10 µg of each sample (final concentration in DTT 
= 10 mM). Samples were incubated for 30 min at 60°C. IAM was added to each sample to reach 
a concentration in IAM of 55 mM and samples were incubated at room temperature in the 
dark for 30 min. Overnight digestion (enzyme:protein ratio 1:25) was performed at 37°C using 
a mixture of Trypsin/Lys-C (Mass Spec Grade mix, Promega, Madison, USA). Digestion was 
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stopped using TFA (final concentration of TFA = 0.5%, pH < 2). Samples were then incubated 
at 37°C for 45 min followed by a centrifugation at 13 000 rpm for 10 min in order to get rid of 
RapiGest. 

• For in-gel digestion: DTT was added to 10 µg of each sample to reach a final concentration of 
50 mM. Samples were then heated at 100°C for 5 min and stacked in an in-house prepared 4% 
acrylamide SDS-PAGE stacking gel. Gel bands were reduced and alkylated prior to overnight 
digestion (enzyme:protein ratio of 1:40) at 37°C using modified porcine trypsin (Mass Spec 
Grade, Promega, Madison, USA). The generated peptides were extracted with 60% CAN 
followed by a second extraction with 100% ACN. 

All samples were vacuum dried and resuspended in H20, 0.1% FA. 

b. Chromatographic conditions 

Samples (2 µL) were loaded on a Symmetry C18 precolumn (20 mm × 180 μm with 5 μm diameter 
particles, Waters) over 3 min at 5 μL/min with 99% of solvent A (H2O, 0.1% FA) and 1% of solvent B 
(ACN, 0.1% FA). Peptides were separated on an ACQUITY UPLC BEH130 C18 column (250 mm × 75 μm 
with 1.7 μm diameter particles) at 450 nL/min with the gradient of solvent B detailed in Table 22. One 
blank injection was realized between each sample. 

Table 22: Chromatographic gradient used on the NanoAcquity Q-Exactive Plus. 

c. MS and MS/MS parameters 

The Q-Exactive Plus operated in positive ESI mode with the source temperature at 250°C and a 2.1 kV 
spray voltage. The system was operated in DDA mode with automatic switching between MS and 
MS/MS modes. MS full scans (300-1800 m/z) were acquired with a 70 000 resolution at 200 m/z, a 
maximal injection time of 50 ms and an AGC target of 3.106. The ten most abundant precursor ions 
were selected on each MS spectrum for further isolation and HCD fragmentation, excluding 
monocharged and unassigned ions. The dynamic exclusion time was set to 60 s. MS/MS spectra were 
acquired with a 17 500 resolution at 200 m/z, a maximal injection time of 100 ms and an AGC target 
of 1.105.  

d. Identification and quantification 

The peaklists (mgf files) were generated from raw data using ProteoWizard MS Convert (v 3.0.11417). 
Peaks were assigned using Mascot (v 2.6.2) search engine with trypsin/P specificity against an in-house 
generated protein sequence database containing all human entries extracted from SwissProt (25th of 
August 2021, 20 339 entries). The precursor mass tolerance was set at 5 ppm and the fragment ion 
mass tolerance at 0.05 Da. A maximum of one missed cleavage was allowed. Methionine oxidation and 
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acetylation of proteins’ N-termini were set as variable modifications and Cysteine 
carbamidomethylation as a fixed modification. Generated data were validated using Proline (v 2.2.0). 
The maximum false discovery rate was set to 1% at PSM and protein levels with the use of a decoy 
strategy. A minimal peptide length of seven amino acids was required, as well as a protein pretty rank 
<1 and a protein score >25. A minimal of one specific peptide per protein was also required.  

ii. Test 2: in-solution digestion versus on-membrane digestion  

a. Sample preparation 

The different protocols tested are represented in Figure 137. 

Figure 137: Method development for CSF sample preparation 

Three biological replicates of human CSF were used.  
• For Protocol A (in-solution digestion): protein concentration was determined using Pierce 660 

nm assay (ThermoFisher Scientific) according to the manufacturer’s instructions. 150 µL of CSF 
were precipitated using 100% MeOH, vortexed vigorously for 10 s and incubated for 10 min 
on ice. Samples were then centrifuged for 15 min at 16 000 g at 4°C. Metabolites were 
recovered and protein resuspended in 100 µL of 0.1% RapiGest in 50 mM. Samples were 
sonicated for 3 min. Protein concentration after precipitation was determined using Pierce 660 
nm assay (ThermoFisher Scientific) according to the manufacturer’s instructions. 10 µg of 
samples were diluted up to 30 µL with 0.1 M ABC and 20 mM DTT was added to reach a final 
concentration in DTT of 5 mM. Samples were incubated for 30 min at 60°C. 100 mM IAM was 
added to each samples to reach a final concentration in IAM of 15 mM and samples were 
incubated in the dark at room temperature for 30 min. Overnight digestion (enzyme:protein 
ratio 1:25) was performed at 37°C and 1 000 rpm using a mixture of Trypsin/Lys-C (Mass Spec 
Grade mix, Promega, Madison, USA). Digestion was stopped using TFA (final concentration of 
TFA = 0.5%, pH < 2). Samples were then incubated at 37°C for 45 min followed by a 
centrifugation at 13 000 rpm for 10 min in order to get rid of RapiGest. Samples were vacuum 
dried and resuspended in 100 µL of H2O, 0.1% FA and injected on Q-Exactive HF-X platform. 

 
• For Protocol B (on-membrane digestion): protein concentration was determined using BCA 

assay (ThermoFisher Scientific) according to the manufacturer’s instructions. 250 µL of CSF 
were precipitated using 100% MeOH, vortexed vigorously for 10 s and incubated for 10 min 
on ice. Samples were then centrifuged for 15 min at 16 000 g at 4°C. Metabolites were 
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recovered and protein resuspended in 70 µL of PreOmics iST kit (GmbH, Germany) lysis buffer. 
Protein concentration after precipitation was determined using BCA assay (ThermoFisher 
Scientific) according to the manufacturer’s instructions. 10 µg of samples were used to follow 
the PreOmics iST kit protocol. Samples were vacuum dried and resuspended in H2O, 0.1% FA 
and injected on Q-Exactive Plus platform 

b. Chromatographic conditions 

• For in-solution digestion (Protocol A): tryptic digests (300 ng) were loaded on an ACQUITY 
UPLC® M-Class Symmetry® C18 Trap Column (20 mm x 180 µm with 5 µm diameter particles; 
Waters) over 3 min at 5 μL/min with 99% of solvent A (H20, 0.1% FA) and 1% of solvent B (ACN, 
0.1% FA). Peptides were separated on an ACQUITY UPLC® Peptide BEH C18 Column (250 mm 
x 75 µm with 1.7 µm diameter particles) at 400 nL/min with the following gradient of solvent 
B (Table 23). Samples were injected in a randomized order with two blank injection between 
each sample. 

Table 23: Chromatographic gradient used on the NanoAcquity Q-Exactive HF-X. 

• For on-membrane digestion (Protocol B): samples (2 µL) were loaded on a Symmetry C18 
precolumn (20 mm × 180 μm with 5 μm diameter particles, Waters) over 3 min at 5 μL/min 
with 99% of solvent A (H2O, 0.1% FA) and 1% of solvent B (ACN, 0.1% FA). Peptides were 
separated on an ACQUITY UPLC BEH130 C18 column (250 mm × 75 μm with 1.7 μm diameter 
particles) at 450 nL/min with the gradient of solvent B previously detailed in Table 22. One 
blank injection was realized between each sample.  

c. MS and MS/MS parameters 

• For in-solution digestion (Protocol A): the Q-Exactive HF-X is operated  in positive ESI mode 
with the source temperature at 250°C and a 2.0 kV spray voltage. The system was operated in 
DDA mode with automatic switching between MS and MS/MS modes. MS full scans (375 - 1 
500 m/z) were acquired with a 120 000 resolution at 200 m/z, a maximal injection time of 60 
ms and an AGC target of 3.106. The 20 most abundant precursor ions were selected on each 
MS spectrum for further isolation and higher energy collision dissociation fragmentation, 
excluding monocharged and unassigned ions. The dynamic exclusion time was set to 40 s. 
MS/MS spectra (200-2000 m/z) were acquired with a 15 000 resolution at 200 m/z, a maximal 
injection time of 60 ms and an AGC target of 1.105.  
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• For on-membrane digestion (Protocol B): see parameters described in 2.Development of a 
protocol for both proteomics and phosphoproteomics analysis of cerebrospinal fluid – i.Test 
1: in-solution digestion versus in-gel digestion c.MS and MS/MS parameters. 

d. Identification and quantification 

See 2.Development of a protocol for both proteomics and phosphoproteomics analysis of 
cerebrospinal fluid - i.Test 1: in-solution digestion versus in-gel digestion – d.Identification and 
quantification. 

iii. Evaluation of sample preparation for CSF phosphoproteomics analysis 

a. Sample preparation 

500 µL (equivalent 150 µg of proteic material) of CSF samples for phosphoproteomics analysis were 
prepared with the in-solution digestion protocol using 0.1% RapiGest described in 2. Development of 
a protocol for both proteomics and phosphoproteomics analysis of cerebrospinal fluid – ii.Test 2: in-
solution digestion versus on-membrane digestion – a.Sample preparation. A peptide clean-up step 
was performed using 5 µL C18 phase cartridges on AssayMAP Bravo (Agilent) platform. Briefly, 
cartridges were washed and primed with 50% ACN, 0.1% TFA, then equilibrated with H2O, 0.1% TFA. 
360 µL of samples were loaded at 5 µL/min on the phase then washed with 50% ACN, 0.1% TFA before 
being eluted in 20 µL 70% ACN, 0.1% TFA at 5 µL/min. Samples were then diluted up to 90 µL with 80% 
ACN, 0.1% TFA. Phosphomix I light (Thermo Fisher Scientific) was added to each sample (ratio 
peptide(µg):mix(fmol) = 1.6). 100 µL of samples were then loaded on AssayMAP Bravo platform to 
perform IMAC phosphopeptide enrichment, previously described. After the enrichment, FA was added 
to each sample as well as Phosphomix I heavy (Sigma Aldrich) (ratio peptide (µg)/mix(fmol) = 1.6). 
Enriched samples were dried upon speed vacuum concentrator and resuspended in 25 µL of H2O, 2% 
ACN, 0.1% FA. 

b. Chromatographic conditions 

Samples (8 µL) were loaded on an ACQUITY UPLC® M-Class Symmetry® C18 Trap Column (20 mm x 180 
µm with 5 µm diameter particles; Waters) over 3 min at 5 μL/min with 99% of solvent A (H20, 0.1% FA) 
and 1% of solvent B (ACN, 0.1% FA). Peptides were separated on an ACQUITY UPLC® Peptide BEH C18 
Column (250 mm x 75 µm with 1.7 µm diameter particles) at 400 nL/min with the following gradient 
of solvent B (Table 15). Samples were injected in a randomized order with two blank injection between 
each samples. 

c. MS/MS and data analysis 

Q-Exactive HF-X was operated in the same exact parameters as described for in-solution digestion. 
Identification and quantification parameters were the same as for in-solution digestion experiment. 
See 2.Development of a protocol for both proteomics and phosphoproteomics analysis of 
cerebrospinal fluid - i.Test 1: in-solution digestion versus in-gel digestion.  
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iv. Global proteomics analysis of MAXOMOD CSF samples 

a. Sample preparation 

We analyzed 103 samples of human CSF coming from both ALS patients and control samples. 
Additionally, 20 CSF samples were submitted to the same protocol and used as external quality control. 
150 µL samples were precipitated using 100% MeOH, vortexed vigorously for 10 s and incubated for 
10 min on ice. Samples were then centrifuged for 15 min at 16 000 g at 4°C. Metabolites were 
recovered and protein resuspended in 100 µL of 0.1% RapiGest in 50 mM. Samples were sonicated for 
3 min. Protein concentration after precipitation was determined using Pierce 660 nm assay 
(ThermoFisher Scientific) according to the manufacturer’s instructions. 20 µg of samples were diluted 
up to 60 µL with 0.1 M ABC. Reduction and alkylation were performed on AssayMAP Bravo (Agilent) 
platform using In-solution digestion (v1.2) protocol. Briefly, 10 µL of 35 mM DTT was added to reach a 
final concentration in DTT of 5 mM. Samples were incubated for 30 min at 60°C. 10 µL of 120 mM IAM 
was added to each sample to reach a final concentration in IAM of 15 mM and samples were incubated 
at room temperature for 30 min. Overnight digestion (enzyme:protein ratio 1:25) was performed 
manually at 37°C and 1 000 rpm using a mixture of Trypsin/Lys-C (Mass Spec Grade mix, Promega, 
Madison, USA). Digestion was stopped using TFA (final concentration of TFA = 0.5%, pH < 2). Samples 
were then incubated at 37°C for 45 min followed by a centrifugation at 13 000 rpm for 10 min in order 
to get rid of RapiGest. 110 µL of samples were then loaded on AssayMAP Bravo to perform peptide 
clean-up protocol on C18 cartridges (described previously). Eluted samples were vacuum dried and 
resuspended in 150 µL (100 µL for pool samples) of H2O, 0.1% FA. The 20 additional CSF samples were 
pooled and divided in 50 µL aliquots to be injected as external QCs. 

b. Chromatographic conditions 

Samples (300 ng equivalent) were loaded on a Symmetry C18 precolumn (20 mm × 180 μm with 5 μm 
diameter particles, Waters) over 3 min at 5 μL/min with 99% of solvent A (H2O, 0.1% FA) and 1% of 
solvent B (ACN, 0.1% FA). Peptides were separated on an ACQUITY UPLC BEH130 C18 column (250 mm 
× 75 μm with 1.7 μm diameter particles) at 400 nL/min with the gradient of solvent B detailed in Table 
24. Samples were injected in a randomized order with two blank injection between each sample. 

Table 24: Gradient used on the NanoAcquity for CSF sample analysis. 

c. MS and MS/MS parameters 

The Q-Exactive Plus operated in positive ESI mode with the source temperature at 250°C and a 2.1 kV 
spray voltage. The system was operated in DDA a 70 000 resolution at 200 m/z, a maximal injection 
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time of 50 ms and an AGC target of 3.106. The ten most abundant precursor ions were selected on 
each MS spectrum for further isolation and HCD fragmentation, excluding monocharged and 
unassigned ions. The dynamic exclusion time was set to 60 s. MS/MS spectra were acquired with a 
17 500 resolution at 200 m/z, a maximal injection time of 100 ms and an AGC target of 1.105.  

d. Identification and quantification 

Raw data were processed using MaxQuant software (version 2.3.1.0). Peaks were assigned with the 
Andromeda search engine with trypsin/P specificity against an in-house generated protein sequence 
database containing all human entries extracted from UniProtKB-SwissProt (11th of January 2023, 20 
428 entries). The minimal peptide length required was seven amino acids and a maximum of one 
missed cleavage was allowed. Methionine oxidation and acetylation of proteins’ N-termini were set as 
variable modifications and Cysteine carbamidomethylation as a fixed modification. For protein 
quantification, the “match between runs” option was enabled. The maximum false discovery rate was 
set to 1% at peptide and protein levels with the use of a decoy strategy. Intensities were extracted 
from the ProteinGroup.txt file to perform the following statistical analysis. 

e. Statistical and differential analysis 

Protein intensity were uploaded in Prostar software (v.1.22.4) and data split into 4 conditions: 
ALS_Male, ALS_Female, CTRL_Male and CTRL_Female. After log transformation of the intensities, 
contaminants and reverse proteins were removed as well as proteins identified with only one unique 
peptide. Proteins with at least 80% of non-missing values, in at least one condition, were kept. 
Normalization of the data was performed using quantile centering normalization with a 15% quantile. 
Missing values were imputed using det quantile algorithm and a 2.5% quantile. Finally, a Limma 
statistical test was applied as well as Benjamini-Hochberg p-value calibration. Differential analysis of 
the ALS versus CTRL conditions was performed, with a 1% p-value filter. 

v. Phosphoproteomics  analysis of MAXOMOD CSF samples 

a. Sample preparation 

Samples used for CSF phosphoproteomics analysis were the same as for proteomics. Additionally, 20 
CSF samples were also processed as every other samples to be later pooled together and used as 
external quality control. 500 µL samples were precipitated using 100% MeOH, vortexed vigorously for 
10 s and incubated for 10 min on ice. Samples were then centrifuged for 15 min at 16 000 g at 4°C. 
Metabolites were recovered and protein resuspended in 300 µL of 0.1% RapiGest in 50 mM. Samples 
were sonicated for 3 min. Protein concentration after precipitation was determined using Pierce 660 
nm assay (ThermoFisher Scientific) according to the manufacturer’s instructions. 100 µg of samples 
were diluted up to 60 µL with 0.1 M ABC. Reduction and alkylation were performed on AssayMAP 
Bravo (Agilent) platform using In-solution digestion (v1.2) protocol, previously described. Overnight 
digestion (enzyme:protein ratio 1:25) was performed manually at 37°C and 1 000 rpm using a mixture 
of Trypsin/Lys-C (Mass Spec Grade mix, Promega, Madison, USA). Digestion was stopped using TFA 
(final concentration of TFA = 0.5%, pH < 2). Samples were then incubated at 37°C for 45 min followed 
by a centrifugation at 13 000 rpm for 10 min in order to get rid of RapiGest. Samples were then loaded 
on AssayMAP Bravo to perform peptide clean-up protocol on C18 cartridges (described previously). 
Eluted samples were diluted in 80% ACN, 0.1% TFA and Phosphomix I light (Sigma Aldrich) synthetic 
phosphopeptides were added to each samples (ratio peptide (µg)/mix(fmol) = 1.6). 100 µL of samples 
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were loaded on AssayMAP Bravo to perform IMAC phosphopeptide enrichment (described previously). 
Phospho-enriched peptidic material were eluted in 20 µL to which Phosphomix I heavy (Sigma Aldrich) 
synthetic phosphopeptides were added (ratio peptide (µg)/mix(fmol) = 1.6). Sampled were then 
vacuum dried and resuspended in 20 µL of H2O, 0.1% FA.  

b. Chromatographic and MS/MS conditions 

Phosphopeptides were injected on a nanoLC Q-Exactive HF-X platform with the exact same 
chromatographic, Ms and MS/MS parameters as described in iii.Evaluation of sample preparation for 
CSF phosphoproteomics analysis.  

c. Identification and quantification 

Raw data were processed using MaxQuant software (version 2.3.1.0). Peaks were assigned with the 
Andromeda search engine with trypsin/P specificity against an in-house generated protein sequence 
database containing all human entries extracted from UniProtKB-SwissProt (11th of January 2023, 20 
428 entries). The minimal peptide length required was seven amino acids and a maximum of one 
missed cleavage was allowed. Methionine oxidation, acetylation of proteins’ N-termini and serine, 
threonine and tyrosine phosphorylations were set as variable modifications while Cysteine 
carbamidomethylation as a fixed modification. For protein quantification, the “match between runs” 
option was enabled. The maximum false discovery rate was set to 1% at peptide and protein levels 
with the use of a decoy strategy. Intensities were extracted from the Phospho(STY)sites.txt file to 
perform the following statistical analysis. 

d. Statistical and differential analysis 

Phospho(STY)sites.txt file was loaded into Perseus software (v 2.0.7). Contaminants and reverse 
protein were removed, and lines with null intensity values in all samples were removed. Then, using 
the “expand site tables” option, the intensities of all phosphopeptides involved in one phosphosites 
were combined to obtain intensities at the phosphosite level. Only phosphosites with a localization 
probability >0.75 were kept. Phosphosite intensities were then uploaded in Prostar software (v.1.22.4 
and data split into 4 conditions: ALS_Male, ALS_Female, CTRL_Male and CTRL_Female. After log 
transformation of the intensities, phosphosites with at least 50% of non-missing values, in at least one 
condition, were kept. Normalization of the data was performed using quantile centering normalization 
with a 15% quantile. Missing values were imputed using slsa algorithm. Finally, a Limma statistical test 
was applied as well as Benjamini-Hochberg p-value calibration. Differential analysis of the ALS versus 
CTRL conditions was performed, with a 1% p-value filter. 

3. Open modification searching 

Phosphoproteomics mouse data generated in Chapter 2: Multi-omic analysis of axono-synaptic 
degeneration in motoneuron disease – application to the MAXOMOD project – ii.Phosphoproteomic 
analysis of mouse brain samples were used. MGF generated files were loaded in IonBot (version 
0.10.0). In-house generated protein sequence database containing all mouse entries extracted from 
UniProtKB-SwissProt (11th of January 2023, 17 154 entries) was used, with a K|R cleavage pattern. 
Error tolerances were set on default values: MS precursors tolerance at 20 ppm and MS/MS fragment 
tolerance at 0.02 Da. Methionine oxidation and serine, threonine and tyrosine phosphorylations were 
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set as variable modifications while Cysteine carbamidomethylation as a fixed modification. Open 
modification search option was enabled.  
 
 



 

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



References 

206 

References 
1. Kuras, M. et al. Assessing Automated Sample Preparation Technologies for High-Throughput 
Proteomics of Frozen Well Characterized Tissues from Swedish Biobanks. J. Proteome Res. 18, 548–
556 (2018). 
2. Kitata, R. B., Yang, J. & Chen, Y. Advances in data-independent acquisition mass spectrometry 
towards comprehensive digital proteome landscape. Mass Spectrometry Reviews e21781 (2022). 
3. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks 
and interference correction enable deep proteome coverage in high throughput. Nat Methods 17, 41–
44 (2020). 
4. Needham, E. J., Parker, B. L., Burykin, T., James, D. E. & Humphrey, S. J. Illuminating the dark 
phosphoproteome. Sci. Signal. 12, eaau8645 (2019). 
5. Gendron, T. F. et al. Phosphorylated neurofilament heavy chain: a biomarker of survival for 
C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol. 82, 139–146 (2017). 
6. Butterfield, D. A. Phosphoproteomics of Alzheimer disease brain: Insights into altered brain 
protein regulation of critical neuronal functions and their contributions to subsequent cognitive loss. 
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1865, 2031–2039 (2019). 
7. Solari, F. A., Dell’Aica, M., Sickmann, A. & Zahedi, R. P. Why phosphoproteomics is still a 
challenge. Mol. BioSyst. 11, 1487–1493 (2015). 
8. Morello, G., Salomone, S., D’Agata, V., Conforti, F. L. & Cavallaro, S. From Multi-Omics 
Approaches to Precision Medicine in Amyotrophic Lateral Sclerosis. Front. Neurosci. 14, 577755 (2020). 
9. Paulo, J. A. & Schweppe, D. K. Advances in quantitative high-throughput phosphoproteomics 
with sample multiplexing. Proteomics 21, e2000140 (2021). 
10. Bekker-Jensen, D. B. et al. Rapid and site-specific deep phosphoproteome profiling by data-
independent acquisition without the need for spectral libraries. Nat Commun 11, 787 (2020). 
11. Meier, F. et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-
independent acquisition. Nat Methods 17, 1229–1236 (2020). 
12. Masrori, P. & Van Damme, P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol 27, 
1918–1929 (2020). 
13. Malik, R. & Wiedau, M. Therapeutic Approaches Targeting Protein Aggregation in Amyotrophic 
Lateral Sclerosis. Front. Mol. Neurosci. 13, 98 (2020). 
14. Blokhuis, A. M., Groen, E. J. N., Koppers, M., van den Berg, L. H. & Pasterkamp, R. J. Protein 
aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 125, 777–794 (2013). 
15. Bittremieux, W., Meysman, P., Noble, W. S. & Laukens, K. Fast Open Modification Spectral 
Library Searching through Approximate Nearest Neighbor Indexing. J. Proteome Res. 17, 3463–3474 
(2018). 
16. Degroeve, S. et al. ionbot: a novel, innovative and sensitive machine learning approach to LC-
MS/MS peptide identification. bioRxiv (2022). 
17. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. 
Nature 537, 347–355 (2016). 
18. Harper, J. W. & Bennett, E. J. Proteome complexity and the forces that drive proteome 
imbalance. Nature 537, 328–338 (2016). 
19. Leutert, M., Entwisle, S. W. & Villén, J. Decoding Post-Translational Modification Crosstalk With 
Proteomics. Molecular & Cellular Proteomics 20, 100129 (2021). 



References 

207 

20. Wang, Y., Zhang, J., Li, B. & He, Q. Advances of Proteomics in Novel PTM Discovery: Applications 
in Cancer Therapy. Small Methods 3, 1900041 (2019). 
21. Zhang, S. et al. Genome-wide identification of the genetic basis of amyotrophic lateral 
sclerosis. Neuron 110, 992-1008.e11 (2022). 
22. Humphrey, J. et al. Integrative transcriptomic analysis of the amyotrophic lateral sclerosis 
spinal cord implicates glial activation and suggests new risk genes. Nature Neuroscience 26, 150–162 
(2022). 
23. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C. & Yates, J. R. Protein Analysis by 
Shotgun/Bottom-up Proteomics. Chem. Rev. 113, 2343–2394 (2013). 
24. Li, X., Wang, W. & Chen, J. Recent progress in mass spectrometry proteomics for biomedical 
research. Sci. China Life Sci. 60, 1093–1113 (2017). 
25. Richards, A. L. et al. One-hour proteome analysis in yeast. Nat Protoc 10, 701–714 (2015). 
26. Wilkins, M. R. et al. From Proteins to Proteomes: Large Scale Protein Identification by Two-
Dimensional Electrophoresis and Amino Acid Analysis. Nature Biotechnology 14, 61–65 (1996). 
27. James, P. Protein identification in the post-genome era: the rapid rise of proteomics. Quart. 
Rev. Biophys. 30, 279–331 (1997). 
28. Meyer, J. G. & Schilling, B. Clinical applications of quantitative proteomics using targeted and 
untargeted data-independent acquisition techniques. Expert Review of Proteomics 14, 419–429 (2017). 
29. Doll, S., Gnad, F. & Mann, M. The Case for Proteomics and Phospho-Proteomics in Personalized 
Cancer Medicine. Prot. Clin. Appl. 13, 1800113 (2019). 
30. Valdés, A. et al. Foodomics: Analytical Opportunities and Challenges. Anal. Chem. 94, 366–381 
(2022). 
31. Korte, R. & Brockmeyer, J. Novel mass spectrometry approaches in food proteomics. TrAC 
Trends in Analytical Chemistry 96, 99–106 (2017). 
32. Vu, L. D. et al. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential 
Drought-Responsive Phosphorylation Events in Maize Leaves. J. Proteome Res. 15, 4304–4317 (2016). 
33. Subba, P. & Prasad, T. S. K. Plant Phosphoproteomics: Known Knowns, Known Unknowns, and 
Unknown Unknowns of an Emerging Systems Science Frontier. OMICS: A Journal of Integrative Biology 
25, 750–769 (2021). 
34. Cleland, T. P. Human Bone Paleoproteomics Utilizing the Single-Pot, Solid-Phase-Enhanced 
Sample Preparation Method to Maximize Detected Proteins and Reduce Humics. J. Proteome Res. 17, 
3976–3983 (2018). 
35. Warinner, C., Korzow Richter, K. & Collins, M. J. Paleoproteomics. Chem. Rev. 122, 13401–
13446 (2022). 
36. Vilanova, C. & Porcar, M. Art-omics: multi-omics meet archaeology and art conservation. 
Microb. Biotechnol. 13, 435–441 (2020). 
37. Galluzzi, F., Chaignepain, S., Arslanoglu, J. & Tokarski, C. Hydrogen‑deuterium exchange mass 
spectrometry to study interactions and conformational changes of proteins in paints. Biophysical 
Chemistry 289, 106861 (2022). 
38. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray Ionization for 
Mass Spectrometry of Large Biomolecules. Science 246, 64–71 (1989). 
39. Karas, Michael. & Hillenkamp, Franz. Laser desorption ionization of proteins with molecular 
masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988). 
40. Nesvizhskii, A. I. & Aebersold, R. Interpretation of Shotgun Proteomic Data. Molecular & 
Cellular Proteomics 4, 1419–1440 (2005). 



References 

208 

41. Toby, T. K., Fornelli, L. & Kelleher, N. L. Progress in Top-Down Proteomics and the Analysis of 
Proteoforms. Annual Rev. Anal. Chem. 9, 499–519 (2016). 
42. Fornelli, L. et al. Top-down proteomics: Where we are, where we are going? Journal of 
Proteomics 175, 3–4 (2018). 
43. Cupp-Sutton, K. A. & Wu, S. High-throughput quantitative top-down proteomics. Mol. Omics 
16, 91–99 (2020). 
44. LeDuc, R. D. et al. Accurate Estimation of Context-Dependent False Discovery Rates in Top-
Down Proteomics. Molecular & Cellular Proteomics 18, 796–805 (2019). 
45. Ghezellou, P. et al. A perspective view of top-down proteomics in snake venom research. Rapid 
Commun Mass Spectrom 33, 20–27 (2019). 
46. Muntel, J. et al. Surpassing 10 000 identified and quantified proteins in a single run by 
optimizing current LC-MS instrumentation and data analysis strategy. Mol. Omics 15, 348–360 (2019). 
47. Reinders, J. & Sickmann, A. State-of-the-art in phosphoproteomics. Proteomics 5, 4052–4061 
(2005). 
48. Khoonsari, P. E. et al. The human CSF pain proteome. Journal of Proteomics 190, 67–76 (2019). 
49. Shu, T. et al. Plasma Proteomics Identify Biomarkers and Pathogenesis of COVID-19. Immunity 
53, 1108-1122.e5 (2020). 
50. Ding, H. et al. Urine Proteomics: Evaluation of Different Sample Preparation Workflows for 
Quantitative, Reproducible, and Improved Depth of Analysis. J. Proteome Res. 19, 1857–1862 (2020). 
51. Jiang, L. et al. A Quantitative Proteome Map of the Human Body. Cell 183, 269-283.e19 (2020). 
52. Hayoun, K. et al. Evaluation of Sample Preparation Methods for Fast Proteotyping of 
Microorganisms by Tandem Mass Spectrometry. Front. Microbiol. 10, 1985 (2019). 
53. Slavov, N. Single-cell protein analysis by mass spectrometry. Current Opinion in Chemical 
Biology 60, 1–9 (2021). 
54. Cañas, B., Piñeiro, C., Calvo, E., López-Ferrer, D. & Gallardo, J. M. Trends in sample preparation 
for classical and second generation proteomics. Journal of Chromatography A 1153, 235–258 (2007). 
55. Varnavides, G. et al. In Search of a Universal Method: A Comparative Survey of Bottom-Up 
Proteomics Sample Preparation Methods. J. Proteome Res. 21, 2397–2411 (2022). 
56. Shirvaliloo, M. Epigenomics in COVID-19; the link between DNA methylation, histone 
modifications and SARS-CoV-2 infection. Epigenomics 13, 745–750 (2021). 
57. Bissell, K. et al. Semi-automated, high-throughput homogenization technique for in-depth 
analysis of tissue proteome. 
58. Feist, P. & Hummon, A. Proteomic Challenges: Sample Preparation Techniques for Microgram-
Quantity Protein Analysis from Biological Samples. IJMS 16, 3537–3563 (2015). 
59. Pop, C., Mogosan, C. & Loghin, F. Evaluation of Rapigest efficacy for the digestion of proteins 
from cell cultures and heart tissues. Medicine and Pharmacy Reports 87, 258–262 (2014). 
60. Davalieva, K., Kiprijanovska, S., Dimovski, A., Rosoklija, G. & Dwork, A. J. Comparative 
evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded 
tissues. Journal of Proteomics 235, 104117 (2021). 
61. Shehadul Islam, M., Aryasomayajula, A. & Selvaganapathy, P. A Review on Macroscale and 
Microscale Cell Lysis Methods. Micromachines 8, 83 (2017). 
62. Novák, P. & Havlíček, V. Protein Extraction and Precipitation. in Proteomic Profiling and 
Analytical Chemistry 51–62 (Elsevier, 2016). 
63. Yuan, X. & Desiderio, D. M. Proteomics analysis of human cerebrospinal fluid. Journal of 
Chromatography B 815, 179–189 (2005). 



References 

209 

64. Tubaon, R. M., Haddad, P. R. & Quirino, J. P. Sample Clean-up Strategies for ESI Mass 
Spectrometry Applications in Bottom-up Proteomics: Trends from 2012 to 2016. Proteomics 17, 
1700011 (2017). 
65. Brownridge, P. & Beynon, R. J. The importance of the digest: Proteolysis and absolute 
quantification in proteomics. Methods 54, 351–360 (2011). 
66. Switzar, L., Giera, M. & Niessen, W. M. A. Protein Digestion: An Overview of the Available 
Techniques and Recent Developments. J. Proteome Res. 12, 1067–1077 (2013). 
67. Depuydt, M., Messens, J. & Collet, J.-F. How Proteins Form Disulfide Bonds. Antioxidants & 
Redox Signaling 15, 49–66 (2011). 
68. Cleland, W. W. Dithiothreitol, a New Protective Reagent for SH Groups. Biochemistry 3, 480–
482 (1964). 
69. Getz, E. B., Xiao, M., Chakrabarty, T., Cooke, R. & Selvin, P. R. A Comparison between the 
Sulfhydryl Reductants Tris(2-carboxyethyl)phosphine and Dithiothreitol for Use in Protein 
Biochemistry. Analytical Biochemistry 273, 73–80 (1999). 
70. Müller, T. & Winter, D. Systematic Evaluation of Protein Reduction and Alkylation Reveals 
Massive Unspecific Side Effects by Iodine-containing Reagents. Molecular & Cellular Proteomics 16, 
1173–1187 (2017). 
71. Vandermarliere, E., Mueller, M. & Martens, L. Getting intimate with trypsin, the leading 
protease in proteomics: trypsin in proteomics. Mass Spec Rev 32, 453–465 (2013). 
72. Tsiatsiani, L. & Heck, A. J. R. Proteomics beyond trypsin. FEBS J 282, 2612–2626 (2015). 
73. Perutka, Z. & Šebela, M. Pseudotrypsin: A Little-Known Trypsin Proteoform. Molecules 23, 
2637 (2018). 
74. Dau, T., Bartolomucci, G. & Rappsilber, J. Proteomics Using Protease Alternatives to Trypsin 
Benefits from Sequential Digestion with Trypsin. Anal. Chem. 92, 9523–9527 (2020). 
75. Morsa, D. et al. Multi-Enzymatic Limited Digestion: The Next-Generation Sequencing for 
Proteomics? J. Proteome Res. 18, 2501–2513 (2019). 
76. Giansanti, P., Tsiatsiani, L., Low, T. Y. & Heck, A. J. R. Six alternative proteases for mass 
spectrometry–based proteomics beyond trypsin. Nat Protoc 11, 993–1006 (2016). 
77. Saveliev, S. et al. Trypsin/Lys-C protease mix for enhanced protein mass spectrometry analysis. 
Nat Methods 10, i–ii (2013). 
78. Glatter, T. et al. Large-Scale Quantitative Assessment of Different In-Solution Protein Digestion 
Protocols Reveals Superior Cleavage Efficiency of Tandem Lys-C/Trypsin Proteolysis over Trypsin 
Digestion. J. Proteome Res. 11, 5145–5156 (2012). 
79. Hakobyan, A., Schneider, M. B., Liesack, W. & Glatter, T. Efficient Tandem LysC/Trypsin 
Digestion in Detergent Conditions. Proteomics 19, 1900136 (2019). 
80. Waas, M., Pereckas, M., Jones Lipinski, R. A., Ashwood, C. & Gundry, R. L. SP2: Rapid and 
Automatable Contaminant Removal from Peptide Samples for Proteomic Analyses. J. Proteome Res. 
18, 1644–1656 (2019). 
81. Wojtkiewicz, M., Berg Luecke, L., Kelly, M. I. & Gundry, R. L. Facile Preparation of Peptides for 
Mass Spectrometry Analysis in Bottom-Up Proteomics Workflows. Current Protocols 1, (2021). 
82. Granvogl, B., Plöscher, M. & Eichacker, L. A. Sample preparation by in-gel digestion for mass 
spectrometry-based proteomics. Anal Bioanal Chem 389, 991–1002 (2007). 
83. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-
sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11, 319–324 
(2014). 



References 

210 

84. Gautam, S. S. et al. Label-free plasma proteomics for the identification of the putative 
biomarkers of oral squamous cell carcinoma. Journal of Proteomics 259, 104541 (2022). 
85. Bader, J. M. et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of 
Alzheimer’s disease. Mol Syst Biol 16, e9356 (2020). 
86. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method 
for proteome analysis. Nat Methods 6, 359–362 (2009). 
87. Elinger, D., Gabashvili, A. & Levin, Y. Suspension Trapping (S-Trap) Is Compatible with Typical 
Protein Extraction Buffers and Detergents for Bottom-Up Proteomics. J. Proteome Res. 18, 1441–1445 
(2019). 
88. Zougman, A., Selby, P. J. & Banks, R. E. Suspension trapping (STrap) sample preparation method 
for bottom-up proteomics analysis. Proteomics 14, 1006–1000 (2014). 
89. Berger, S. T. et al. MStern Blotting–High Throughput Polyvinylidene Fluoride (PVDF) 
Membrane-Based Proteomic Sample Preparation for 96-Well Plates. Molecular & Cellular Proteomics 
14, 2814–2823 (2015). 
90. Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol 
Syst Biol 10, 757 (2014). 
91. Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics 
experiments. Nat Protoc 14, 68–85 (2019). 
92. Moggridge, S., Sorensen, P. H., Morin, G. B. & Hughes, C. S. Extending the Compatibility of the 
SP3 Paramagnetic Bead Processing Approach for Proteomics. J. Proteome Res. 17, 1730–1740 (2018). 
93. Müller, T. et al. Automated sample preparation with SP 3 for low-input clinical proteomics. Mol 
Syst Biol 16, e9111 (2020). 
94. Batth, T. S. et al. Protein Aggregation Capture on Microparticles Enables Multipurpose 
Proteomics Sample Preparation. Molecular & Cellular Proteomics 18, 1027–1035 (2019). 
95. Mikulášek, K. et al. SP3 Protocol for Proteomic Plant Sample Preparation Prior LC-MS/MS. 
Front. Plant Sci. 12, 635550 (2021). 
96. Araújo, M. J. et al. Comparison of Sample Preparation Methods for Shotgun Proteomic Studies 
in Aquaculture Species. Proteomes 9, 46 (2021). 
97. Gonzalez-Lozano, M. A., Koopmans, F., Paliukhovich, I., Smit, A. B. & Li, K. W. A Fast and 
Economical Sample Preparation Protocol for Interaction Proteomics Analysis. Proteomics 19, 1900027 
(2019). 
98. Paulo, J. A., Navarrete-Perea, J. & Gygi, S. P. Multiplexed proteome profiling of carbon source 
perturbations in two yeast species with SL-SP3-TMT. Journal of Proteomics 210, 103531 (2020). 
99. Griesser, E. et al. Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-
capture Microdissected FFPE Tissue. Molecular & Cellular Proteomics 19, 839–851 (2020). 
100. Cagnetta, R., Frese, C. K., Shigeoka, T., Krijgsveld, J. & Holt, C. E. Rapid Cue-Specific Remodeling 
of the Nascent Axonal Proteome. Neuron 99, 29-46.e4 (2018). 
101. Sielaff, M. et al. Evaluation of FASP, SP3, and iST Protocols for Proteomic Sample Preparation 
in the Low Microgram Range. J. Proteome Res. 16, 4060–4072 (2017). 
102. Neset, L., Takayidza, G., Berven, F. S. & Hernandez-Valladares, M. Comparing Efficiency of Lysis 
Buffer Solutions and Sample Preparation Methods for Liquid Chromatography–Mass Spectrometry 
Analysis of Human Cells and Plasma. Molecules 27, 3390 (2022). 
103. Balotf, S., Wilson, R., Tegg, R. S., Nichols, D. S. & Wilson, C. R. Optimisation of Sporosori 
Purification and Protein Extraction Techniques for the Biotrophic Protozoan Plant Pathogen 
Spongospora subterranea. Molecules 25, 3109 (2020). 



References 

211 

104. Ludwig, K. R., Schroll, M. M. & Hummon, A. B. Comparison of In-Solution, FASP, and S-Trap 
Based Digestion Methods for Bottom-Up Proteomic Studies. J. Proteome Res. 17, 2480–2490 (2018). 
105. Muller, L., Fornecker, L., Van Dorsselaer, A., Cianférani, S. & Carapito, C. Benchmarking sample 
preparation/digestion protocols reveals tube-gel being a fast and repeatable method for quantitative 
proteomics. Proteomics 16, 2953–2961 (2016). 
106. Yang, Y., Anderson, E. & Zhang, S. Evaluation of six sample preparation procedures for 
qualitative and quantitative proteomics analysis of milk fat globule membrane. Electrophoresis 39, 
2332–2339 (2018). 
107. Duong, V.-A. & Lee, H. Bottom-Up Proteomics: Advancements in Sample Preparation. IJMS 24, 
5350 (2023). 
108. Yang, Z., Shen, X., Chen, D. & Sun, L. Toward a Universal Sample Preparation Method for 
Denaturing Top-Down Proteomics of Complex Proteomes. J. Proteome Res. 19, 3315–3325 (2020). 
109. Dagley, L. F., Infusini, G., Larsen, R. H., Sandow, J. J. & Webb, A. I. Universal Solid-Phase Protein 
Preparation (USP3) for Bottom-up and Top-down Proteomics. J. Proteome Res. 18, 2915–2924 (2019). 
110. Virant-Klun, I., Leicht, S., Hughes, C. & Krijgsveld, J. Identification of Maturation-Specific 
Proteins by Single-Cell Proteomics of Human Oocytes. Molecular & Cellular Proteomics 15, 2616–2627 
(2016). 
111. Zecha, J. et al. Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and 
Testing. Molecular & Cellular Proteomics 19, 1503–1522 (2020). 
112. Johnston, H. E. et al. Solvent Precipitation SP3 (SP4) Enhances Recovery for Proteomics Sample 
Preparation without Magnetic Beads. Anal. Chem. 94, 10320–10328 (2022). 
113. Wang, S., Kojima, K., Mobley, J. A. & West, A. B. Proteomic analysis of urinary extracellular 
vesicles reveal biomarkers for neurologic disease. EBioMedicine 45, 351–361 (2019). 
114. Higginbotham, L. A. et al. Integrated proteomics reveals brain-based cerebrospinal fluid 
biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Science advances 6, eaaz9360 
(2020). 
115. Alexovič, M., Urban, P. L., Tabani, H. & Sabo, J. Recent advances in robotic protein sample 
preparation for clinical analysis and other biomedical applications. Clinica Chimica Acta 507, 104–116 
(2020). 
116. Rivera, K. D. et al. Automating UbiFast for High-throughput and Multiplexed Ubiquitin 
Enrichment. Molecular & Cellular Proteomics 20, 100154 (2021). 
117. Liu, L. et al. Automated Intact Glycopeptide Enrichment Method Facilitating Highly 
Reproducible Analysis of Serum Site-Specific N-Glycoproteome. Anal. Chem. 93, 7473–7480 (2021). 
118. Birk, M. S., Charpentier, E. & Frese, C. K. Automated Phosphopeptide Enrichment for Gram-
Positive Bacteria. J. Proteome Res. 20, 4886–4892 (2021). 
119. Pollock, S., Wu, S., Han, J. & Murphy, S. Automated MHC-Associated Peptide Enrichment for 
Immunopeptidomics Analysis Using Agilent AssayMAP Bravo Large Capacity Cartridges. Agilent 
Application Note (2020). 
120. Matzinger, M., Müller, E., Dürnberger, G., Pichler, P. & Mechtler, K. Robust and Easy-to-Use 
One-Pot Workflow for Label-Free Single-Cell Proteomics. Anal. Chem. 95, 4435–4445 (2023). 
121. Zhang, H. et al. Acoustic Ejection Mass Spectrometry for High-Throughput Analysis. Anal. 
Chem. 93, 10850–10861 (2021). 
122. Camerini, S. & Mauri, P. The role of protein and peptide separation before mass spectrometry 
analysis in clinical proteomics. Journal of Chromatography A 1381, 1–12 (2015). 



References 

212 

123. Gillet, L. C., Leitner, A. & Aebersold, R. Mass Spectrometry Applied to Bottom-Up Proteomics: 
Entering the High-Throughput Era for Hypothesis Testing. Annual Rev. Anal. Chem. 9, 449–472 (2016). 
124. Dams, M., Dores-Sousa, J. L., Lamers, R.-J., Treumann, A. & Eeltink, S. High-Resolution Nano-
Liquid Chromatography with Tandem Mass Spectrometric Detection for the Bottom-Up Analysis of 
Complex Proteomic Samples. Chromatographia 82, 101–110 (2019). 
125. Šesták, J., Moravcová, D. & Kahle, V. Instrument platforms for nano liquid chromatography. 
Journal of Chromatography A 1421, 2–17 (2015). 
126. Hodge, K., Have, S. T., Hutton, L. & Lamond, A. I. Cleaning up the masses: Exclusion lists to 
reduce contamination with HPLC-MS/MS. Journal of Proteomics 88, 92–103 (2013). 
127. Dodds, J. N. & Baker, E. S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, 
Applications, and the Road Ahead. J. Am. Soc. Mass Spectrom. 30, 2185–2195 (2019). 
128. Zhou, M. et al. Higher-order structural characterisation of native proteins and complexes by 
top-down mass spectrometry. Chem. Sci. 11, 12918–12936 (2020). 
129. Bonneil, E., Pfammatter, S. & Thibault, P. Enhancement of mass spectrometry performance for 
proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS): 
Application of FAIMS to proteomics. J. Mass Spectrom. 50, 1181–1195 (2015). 
130. Meier, F. et al. Parallel Accumulation–Serial Fragmentation (PASEF): Multiplying Sequencing 
Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. J. Proteome Res. 14, 
5378–5387 (2015). 
131. Meier, F. et al. Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel 
Trapped Ion Mobility Mass Spectrometer. Molecular & Cellular Proteomics 17, 2534–2545 (2018). 
132. Ogata, K., Chang, C.-H. & Ishihama, Y. Effect of Phosphorylation on the Collision Cross Sections 
of Peptide Ions in Ion Mobility Spectrometry. Mass Spectrometry 10, A0093–A0093 (2021). 
133. Oliinyk, D. & Meier, F. Ion mobility-resolved phosphoproteomics with dia-PASEF and short 
gradients. Proteomics 23, e2200032 (2022). 
134. Wysocki, V. H., Tsaprailis, G., Smith, L. L. & Breci, L. A. Mobile and localized protons: a 
framework for understanding peptide dissociation. J. Mass Spectrom. 35, 1399–1406 (2000). 
135. Penkert, M. et al. Electron Transfer/Higher Energy Collisional Dissociation of Doubly Charged 
Peptide Ions: Identification of Labile Protein Phosphorylations. J. Am. Soc. Mass Spectrom. 30, 1578–
1585 (2019). 
136. Wiesner, J., Premsler, T. & Sickmann, A. Application of electron transfer dissociation (ETD) for 
the analysis of posttranslational modifications. Proteomics 8, 4466–4483 (2008). 
137. Williams, J. P. et al. Top-Down Characterization of Denatured Proteins and Native Protein 
Complexes Using Electron Capture Dissociation Implemented within a Modified Ion Mobility-Mass 
Spectrometer. Anal. Chem. 92, 3674–3681 (2020). 
138. Fort, K. L. et al. Implementation of Ultraviolet Photodissociation on a Benchtop Q Exactive 
Mass Spectrometer and Its Application to Phosphoproteomics. Anal. Chem. 88, 2303–2310 (2016). 
139. Frese, C. K. et al. Unambiguous Phosphosite Localization using Electron-Transfer/Higher-
Energy Collision Dissociation (EThcD). J. Proteome Res. 12, 1520–1525 (2013). 
140. Li, Y. F. & Radivojac, P. Computational approaches to protein inference in shotgun proteomics. 
BMC Bioinformatics 13, S4 (2012). 
141. Cox, J. et al. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. 
J. Proteome Res. 10, 1794–1805 (2011). 
142. Blueggel, M., Chamrad, D. & Meyer, H. E. Bioinformatics in Proteomics. Current Pharmaceutical 
Biotechnology 5, 77–88 (2004). 



References 

213 

143. Dorfer, V. et al. MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy 
Tandem Mass Spectra. J. Proteome Res. 13, 3679–3684 (2014). 
144. Griss, J. et al. Recognizing millions of consistently unidentified spectra across hundreds of 
shotgun proteomics datasets. Nat Methods 13, 651–656 (2016). 
145. Pathan, M., Samuel, M., Keerthikumar, S. & Mathivanan, S. Unassigned MS/MS Spectra: Who 
Am I? in Proteome Bioinformatics (eds. Keerthikumar, S. & Mathivanan, S.) vol. 1549 67–74 (Springer 
New York, 2017). 
146. Dorfer, V., Maltsev, S., Winkler, S. & Mechtler, K. CharmeRT: Boosting Peptide Identifications 
by Chimeric Spectra Identification and Retention Time Prediction. J. Proteome Res. 17, 2581–2589 
(2018). 
147. Skinner, O. S. & Kelleher, N. L. Illuminating the dark matter of shotgun proteomics. Nat 
Biotechnol 33, 717–718 (2015). 
148. den Ridder, M., Daran-Lapujade, P. & Pabst, M. Shot-gun proteomics: why thousands of 
unidentified signals matter. FEMS Yeast Research 20, foz088 (2020). 
149. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: 
ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat 
Methods 14, 513–520 (2017). 
150. David, M., Fertin, G., Rogniaux, H. & Tessier, D. SpecOMS: A Full Open Modification Search 
Method Performing All-to-All Spectra Comparisons within Minutes. J. Proteome Res. 16, 3030–3038 
(2017). 
151. Apweiler, R. UniProt: the Universal Protein knowledgebase. Nucleic Acids Research 32, 115D – 
119 (2004). 
152. The UniProt Consortium et al. UniProt: the universal protein knowledgebase in 2021. Nucleic 
Acids Research 49, D480–D489 (2021). 
153. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic 
expansion, and functional annotation. Nucleic Acids Res 44, D733–D745 (2016). 
154. Armengaud, J. A perfect genome annotation is within reach with the proteomics and genomics 
alliance. Current Opinion in Microbiology 12, 292–300 (2009). 
155. Vaudel, M. et al. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat 
Biotechnol 33, 22–24 (2015). 
156. Vaudel, M. et al. Exploring the potential of public proteomics data. Proteomics 16, 214–225 
(2016). 
157. Elias, J. E. & Gygi, S. P. Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics. 
in Proteome Bioinformatics (eds. Hubbard, S. J. & Jones, A. R.) vol. 604 55–71 (Humana Press, 2010). 
158. Bouyssié, D. et al. Proline: an efficient and user-friendly software suite for large-scale 
proteomics. Bioinformatics 36, 3148–3155 (2020). 
159. Käll, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised learning 
for peptide identification from shotgun proteomics datasets. Nat Methods 4, 923–925 (2007). 
160. Bogdanow, B., Zauber, H. & Selbach, M. Systematic Errors in Peptide and Protein Identification 
and Quantification by Modified Peptides. Molecular & Cellular Proteomics 15, 2791–2801 (2016). 
161. Na, S. & Paek, E. Software eyes for protein post-translational modifications: eyes for PTMs. 
Mass Spec Rev 34, 133–147 (2015). 
162. Ahrné, E., Nikitin, F., Lisacek, F. & Müller, M. QuickMod: A Tool for Open Modification 
Spectrum Library Searches. J. Proteome Res. 10, 2913–2921 (2011). 



References 

214 

163. Ye, D. et al. Open MS/MS spectral library search to identify unanticipated post-translational 
modifications and increase spectral identification rate. Bioinformatics 26, i399–i406 (2010). 
164. Burke, M. C. et al. The Hybrid Search: A Mass Spectral Library Search Method for Discovery of 
Modifications in Proteomics. J. Proteome Res. 16, 1924–1935 (2017). 
165. Yu, F., Li, N. & Yu, W. PIPI: PTM-Invariant Peptide Identification Using Coding Method. J. 
Proteome Res. 15, 4423–4435 (2016). 
166. Na, S., Bandeira, N. & Paek, E. Fast Multi-blind Modification Search through Tandem Mass 
Spectrometry. Molecular & Cellular Proteomics 11, M111.010199 (2012). 
167. Devabhaktuni, A. et al. Measuring proteomes with long strings: A new, unconstrained 
paradigm in mass spectrum interpretation. bioRxiv (2018). 
168. Chi, H. et al. Comprehensive identification of peptides in tandem mass spectra using an 
efficient open search engine. Nat Biotechnol 36, 1059–1061 (2018). 
169. Schulze, S. et al. Enhancing Open Modification Searches via a Combined Approach Facilitated 
by Ursgal. J. Proteome Res. 20, 1986–1996 (2021). 
170. Altenburg, T., Muth, T. & Renard, B. Y. yHydra: Deep Learning enables an Ultra Fast Open 
Search by Jointly Embedding MS/MS Spectra and Peptides of Mass Spectrometry-based Proteomics. 
bioRxiv (2021). 
171. Arab, I., Fondrie, W. E., Laukens, K. & Bittremieux, W. Semisupervised Machine Learning for 
Sensitive Open Modification Spectral Library Searching. J. Proteome Res. 22, 585–593 (2023). 
172. Bouwmeester, R., Gabriels, R., Hulstaert, N., Martens, L. & Degroeve, S. DeepLC can predict 
retention times for peptides that carry as-yet unseen modifications. Nature Methods 18, 1363–1369 
(2021). 
173. Degroeve, S. & Martens, L. MS2PIP: a tool for MS/MS peak intensity prediction. Bioinformatics 
29, 3199–3203 (2013). 
174. Neilson, K. A. et al. Less label, more free: Approaches in label-free quantitative mass 
spectrometry. Proteomics 11, 535–553 (2011). 
175. Blein-Nicolas, M. & Zivy, M. Thousand and one ways to quantify and compare protein 
abundances in label-free bottom-up proteomics. Biochimica et Biophysica Acta (BBA) - Proteins and 
Proteomics 1864, 883–895 (2016). 
176. Wang, X., Shen, S., Rasam, S. S. & Qu, J. MS1 ion current-based quantitative proteomics: A 
promising solution for reliable analysis of large biological cohorts. Mass Spec Rev 38, 461–482 (2019). 
177. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-
based shotgun proteomics. Nat Protoc 11, 2301–2319 (2016). 
178. Escher, C. et al. Using iRT, a normalized retention time for more targeted measurement of 
peptides. Proteomics 12, 1111–1121 (2012). 
179. Xu, H. et al. PTMD: A Database of Human Disease-associated Post-translational Modifications. 
Genomics, Proteomics & Bioinformatics 16, 244–251 (2018). 
180. von Stechow, L., Francavilla, C. & Olsen, J. V. Recent findings and technological advances in 
phosphoproteomics for cells and tissues. Expert Review of Proteomics 12, 469–487 (2015). 
181. Ardito, F., Giuliani, M., Perrone, D., Troiano, G. & Muzio, L. L. The crucial role of protein 
phosphorylation in cell signaling and its use as targeted therapy (Review). International Journal of 
Molecular Medicine 40, 271–280 (2017). 
182. Urban, J. A review on recent trends in the phosphoproteomics workflow. From sample 
preparation to data analysis. Analytica Chimica Acta 1199, 338857 (2022). 



References 

215 

183. Low, T. Y. et al. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING 
STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. Mass Spec Rev 40, 309–333 (2021). 
184. Qiu, W., Evans, C. A., Landels, A., Pham, T. K. & Wright, P. C. Phosphopeptide enrichment for 
phosphoproteomic analysis - A tutorial and review of novel materials. Analytica Chimica Acta 1129, 
158–180 (2020). 
185. Vlastaridis, P. et al. Estimating the total number of phosphoproteins and phosphorylation sites 
in eukaryotic proteomes. GigaScience 6, (2017). 
186. Paulo, J. A. & Schweppe, D. K. Advances in quantitative high-throughput phosphoproteomics 
with sample multiplexing. Proteomics 21, 2000140 (2021). 
187. Singh, V. et al. Phosphorylation: Implications in Cancer. Protein J 36, 1–6 (2017). 
188. Coopman, P. Protein Phosphorylation in Cancer: Unraveling the Signaling Pathways. 
Biomolecules 12, 1036 (2022). 
189. Wegmann, S., Biernat, J. & Mandelkow, E. A current view on Tau protein phosphorylation in 
Alzheimer’s disease. Current Opinion in Neurobiology 69, 131–138 (2021). 
190. De Schaepdryver, M. et al. Comparison of elevated phosphorylated neurofilament heavy 
chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Neurol 
Neurosurg Psychiatry 89, 367–373 (2018). 
191. Gendron, T. F. et al. Phosphorylated neurofilament heavy chain: a biomarker of survival for 
C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol. 82, 139–146 (2017). 
192. Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and 
amyotrophic lateral sclerosis. Ann Neurol. 64, 60–70 (2008). 
193. El-Armouche, A. et al. Decreased phosphorylation levels of cardiac myosin-binding protein-C 
in human and experimental heart failure. Journal of Molecular and Cellular Cardiology 43, 223–229 
(2007). 
194. Chan, C. Y. X., Gritsenko, M. A., Smith, R. D. & Qian, W.-J. The current state of the art of 
quantitative phosphoproteomics and its applications to diabetes research. Expert Review of 
Proteomics 13, 421–433 (2016). 
195. Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 
update. Pharmacological Research 187, 106552 (2023). 
196. Olsen, J. V. & Mann, M. Status of Large-scale Analysis of Post-translational Modifications by 
Mass Spectrometry. Molecular & Cellular Proteomics 12, 3444–3452 (2013). 
197. Riley, N. M. & Coon, J. J. Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. 
Anal. Chem. 88, 74–94 (2016). 
198. Bubis, J. A., Gorshkov, V., Gorshkov, M. V. & Kjeldsen, F. PhosphoShield: Improving Trypsin 
Digestion of Phosphoproteins by Shielding the Negatively Charged Phosphate Moiety. J. Am. Soc. Mass 
Spectrom. 31, 2053–2060 (2020). 
199. Fíla, J. & Honys, D. Enrichment techniques employed in phosphoproteomics. Amino Acids 43, 
1025–1047 (2012). 
200. Arrington, J. V., Hsu, C.-C., Elder, S. G. & Andy Tao, W. Recent advances in phosphoproteomics 
and application to neurological diseases. Analyst 142, 4373–4387 (2017). 
201. Leitner, A. Phosphopeptide enrichment using metal oxide affinity chromatography. TrAC 
Trends in Analytical Chemistry 29, 177–185 (2010). 
202. Yi, L. et al. Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK 
Pathway. Anal. Chem. 90, 5256–5263 (2018). 



References 

216 

203. Matheron, L., van den Toorn, H., Heck, A. J. R. & Mohammed, S. Characterization of Biases in 
Phosphopeptide Enrichment by Ti 4+ -Immobilized Metal Affinity Chromatography and TiO 2 Using a 
Massive Synthetic Library and Human Cell Digests. Anal. Chem. 86, 8312–8320 (2014). 
204. Thingholm, T. E., Jensen, O. N., Robinson, P. J. & Larsen, M. R. SIMAC (Sequential Elution from 
IMAC), a Phosphoproteomics Strategy for the Rapid Separation of Monophosphorylated from Multiply 
Phosphorylated Peptides. Molecular & Cellular Proteomics 7, 661–671 (2008). 
205. Rogers, J. C. Sequential Enrichment from Metal Oxide Affinity Chromatography (SMOAC), a 
Phosphoproteomics Strategy for the Separation of Multiply Phosphorylated from 
Monophosphorylated Peptides. (2017). 
206. Boersema, P. J., Mohammed, S. & Heck, A. J. R. Hydrophilic interaction liquid chromatography 
(HILIC) in proteomics. Anal Bioanal Chem 391, 151–159 (2008). 
207. Lombardi, B., Rendell, N., Edwards, M., Katan, M. & Zimmermann, J. G. Evaluation of 
phosphopeptide enrichment strategies for quantitative TMT analysis of complex network dynamics in 
cancer-associated cell signalling. EuPA Open Proteomics 6, 10–15 (2015). 
208. Batth, T. S., Francavilla, C. & Olsen, J. V. Off-Line High-pH Reversed-Phase Fractionation for In-
Depth Phosphoproteomics. J. Proteome Res. 13, 6176–6186 (2014). 
209. Johnson, H. & White, F. M. Toward quantitative phosphotyrosine profiling in vivo. Seminars in 
Cell & Developmental Biology 23, 854–862 (2012). 
210. Abe, Y., Nagano, M., Tada, A., Adachi, J. & Tomonaga, T. Deep Phosphotyrosine Proteomics by 
Optimization of Phosphotyrosine Enrichment and MS/MS Parameters. J. Proteome Res. 16, 1077–1086 
(2017). 
211. Ruprecht, B. et al. Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron 
Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns. Molecular & Cellular Proteomics 
14, 205–215 (2015). 
212. Murillo, J. R. et al. Automated phosphopeptide enrichment from minute quantities of frozen 
malignant melanoma tissue. PLoS ONE 13, e0208562 (2018). 
213. Liu, X. et al. Fe3+-NTA magnetic beads as an alternative to spin column-based phosphopeptide 
enrichment. Journal of Proteomics 260, 104561 (2022). 
214. Humphrey, S. J., Karayel, O., James, D. E. & Mann, M. High-throughput and high-sensitivity 
phosphoproteomics with the EasyPhos platform. Nat Protoc 13, 1897–1916 (2018). 
215. Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in 
vivo insulin signaling dynamics. Nat Biotechnol 33, 990–995 (2015). 
216. Oliinyk, D., Will, A., Schneidmadel, F. R., Humphrey, S. J. & Meier, F. µPhos: a scalable and 
sensitive platform for functional phosphoproteomics. bioRxiv (2023). 
217. Leutert, M., Rodríguez-Mias, R. A., Fukuda, N. K. & Villén, J. R2-P2 rapid-robotic 
phosphoproteomics enables multidimensional cell signaling studies. Mol Syst Biol 15, (2019). 
218. Voinov, V. G. et al. A Novel, Automated and Highly Selective Phosphopeptide Enrichment for 
Phosphopeptide Identification and Phosphosite Localization. Agilent Application Note (2020). 
219. Post, H. et al. Robust, Sensitive, and Automated Phosphopeptide Enrichment Optimized for 
Low Sample Amounts Applied to Primary Hippocampal Neurons. J. Proteome Res. 16, 728–737 (2017). 
220. Wu, S. & Wu, L. Human Breast Cancer Cell Line Phosphoproteome Revealed by an Automated 
and Highly Selective Enrichment Workflow. Agilent Application Note (2018). 
221. Zeneyedpour, L. et al. Phosphorylation Ratio Determination in Fresh-Frozen and Formalin-
Fixed Paraffin-Embedded Tissue with Targeted Mass Spectrometry. J. Proteome Res. 19, 4179–4190 
(2020). 



References 

217 

222. Gao, Y. & Wang, Y. A method to determine the ionization efficiency change of peptides caused 
by phosphorylation. J. Am. Soc. Mass Spectrom. 18, 1973–1976 (2007). 
223. Steen, H., Jebanathirajah, J. A., Rush, J., Morrice, N. & Kirschner, M. W. Phosphorylation 
Analysis by Mass Spectrometry. Molecular & Cellular Proteomics 5, 172–181 (2006). 
224. Potel, C. M., Lemeer, S. & Heck, A. J. R. Phosphopeptide Fragmentation and Site Localization 
by Mass Spectrometry: An Update. Anal. Chem. 91, 126–141 (2019). 
225. Robinson, M. R., Taliaferro, J. M., Dalby, K. N. & Brodbelt, J. S. 193 nm Ultraviolet 
Photodissociation Mass Spectrometry for Phosphopeptide Characterization in the Positive and 
Negative Ion Modes. J. Proteome Res. 15, 2739–2748 (2016). 
226. Tang, N., Perkins, P., Miller, C. & van de Goor, T. Protein Phosphorylation Sites Determination 
Using A Microfluidic Chip Interfaced With ETD Ion Trap And Q-TOF Mass Spectrometry. (2007). 
227. Sathe, G. et al. Multiplexed Phosphoproteomic Study of Brain in Patients with Alzheimer’s 
Disease and Age-Matched Cognitively Healthy Controls. OMICS: A Journal of Integrative Biology 24, 
216–227 (2020). 
228. Ping, L. et al. Global quantitative analysis of the human brain proteome and phosphoproteome 
in Alzheimer’s disease. Sci Data 7, 315 (2020). 
229. Qin, G. et al. iTRAQ-based quantitative phosphoproteomics provides insights into the 
metabolic and physiological responses of a carnivorous marine fish (Nibea albiflora) fed a linseed oil-
rich diet. Journal of Proteomics 228, 103917 (2020). 
230. Baro, B. et al. SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes 
in budding yeast. GigaScience 7, (2018). 
231. Koenig, C., Martinez-Val, A., Franciosa, G. & Olsen, J. V. Optimal analytical strategies for 
sensitive and quantitative phosphoproteomics using TMT-based multiplexing. Proteomics 22, 19–20 
(2022). 
232. Hogrebe, A. et al. Benchmarking common quantification strategies for large-scale 
phosphoproteomics. Nat Commun 9, 1045 (2018). 
233. Li, J. et al. TMTpro-18plex: The Expanded and Complete Set of TMTpro Reagents for Sample 
Multiplexing. J. Proteome Res. 20, 2964–2972 (2021). 
234. Frost, D. C., Feng, Y. & Li, L. 21-plex DiLeu Isobaric Tags for High-Throughput Quantitative 
Proteomics. Anal. Chem. 92, 8228–8234 (2020). 
235. Wang, Z. et al. 27-Plex Tandem Mass Tag Mass Spectrometry for Profiling Brain Proteome in 
Alzheimer’s Disease. Anal. Chem. 92, 7162–7170 (2020). 
236. Zhang, Y. et al. Comparative Assessment of Quantification Methods for Tumor Tissue 
Phosphoproteomics. Anal. Chem. 94, 10893–10906 (2022). 
237. Ogata, K., Tsai, C.-F. & Ishihama, Y. Nanoscale Solid-Phase Isobaric Labeling for Multiplexed 
Quantitative Phosphoproteomics. J. Proteome Res. 20, 4193–4202 (2021). 
238. Dephoure, N., Gould, K. L., Gygi, S. P. & Kellogg, D. R. Mapping and analysis of phosphorylation 
sites: a quick guide for cell biologists. MBoC 24, 535–542 (2013). 
239. Stepath, M. et al. Systematic Comparison of Label-Free, SILAC, and TMT Techniques to Study 
Early Adaption toward Inhibition of EGFR Signaling in the Colorectal Cancer Cell Line DiFi. J. Proteome 
Res. 19, 926–937 (2020). 
240. Michna, T. PASEF-DDA enables deep coverage single-shot phosphoproteomics and ion 
mobility-based elucidation of phosphosite isomers. (2020). 



References 

218 

241. Skowronek, P. et al. Rapid and In-Depth Coverage of the (Phospho-)Proteome With Deep 
Libraries and Optimal Window Design for dia-PASEF. Molecular & Cellular Proteomics 21, 100279 
(2022). 
242. Adoni, K. R., Cunningham, D. L., Heath, J. K. & Leney, A. C. FAIMS Enhances the Detection of 
PTM Crosstalk Sites. J. Proteome Res. 21, 930–939 (2022). 
243. Zhao, H., Cunningham, D. L., Creese, A. J., Heath, J. K. & Cooper, H. J. FAIMS and 
Phosphoproteomics of Fibroblast Growth Factor Signaling: Enhanced Identification of Multiply 
Phosphorylated Peptides. J. Proteome Res. 14, 5077–5087 (2015). 
244. Muehlbauer, L. K., Hebert, A. S., Westphall, M. S., Shishkova, E. & Coon, J. J. Global 
Phosphoproteome Analysis Using High-Field Asymmetric Waveform Ion Mobility Spectrometry on a 
Hybrid Orbitrap Mass Spectrometer. Anal. Chem. 92, 15959–15967 (2020). 
245. Fuseau, C. et al. Differential Phosphoproteomics Deciphers Physiopathology of High-Risk 
Mantle Cell Lymphoma. Blood 140, 9300–9301 (2022). 
246. Adams, C. et al. TIMScore with PaSER: Exploiting the CCS-dimension. Bruker Application Note 
(2022). 
247. Srinivasan, A., Sing, J. C., Gingras, A.-C. & Röst, H. L. Improving Phosphoproteomics Profiling 
Using Data-Independent Mass Spectrometry. J. Proteome Res. 21, 1789–1799 (2022). 
248. López, E. et al. Technical phosphoproteomic and bioinformatic tools useful in cancer research. 
J Clin Bioinformatics 1, 26 (2011). 
249. Taus, T. et al. Universal and Confident Phosphorylation Site Localization Using phosphoRS. J. 
Proteome Res. 10, 5354–5362 (2011). 
250. Savitski, M. M. et al. Confident Phosphorylation Site Localization Using the Mascot Delta Score. 
Molecular & Cellular Proteomics 10, S1–S12 (2011). 
251. Locard-Paulet, M., Bouyssié, D., Froment, C., Burlet-Schiltz, O. & Jensen, L. J. Comparing 22 
Popular Phosphoproteomics Pipelines for Peptide Identification and Site Localization. J. Proteome Res. 
19, 1338–1345 (2020). 
252. Jiang, X. et al. Evaluation of search engines for phosphopeptide identification and quantitation. 
Agilent Application Note (2016). 
253. Chalkley, R. J. & Clauser, K. R. Modification Site Localization Scoring: Strategies and 
Performance. Molecular & Cellular Proteomics 11, 3–14 (2012). 
254. Fermin, D., Walmsley, S. J., Gingras, A.-C., Choi, H. & Nesvizhskii, A. I. LuciPHOr: Algorithm for 
Phosphorylation Site Localization with False Localization Rate Estimation Using Modified Target-Decoy 
Approach. Molecular & Cellular Proteomics 12, 3409–3419 (2013). 
255. Baker, P. R., Trinidad, J. C. & Chalkley, R. J. Modification Site Localization Scoring Integrated 
into a Search Engine. Molecular & Cellular Proteomics 10, M111.008078 (2011). 
256. Ramsbottom, K. A. et al. Method for Independent Estimation of the False Localization Rate for 
Phosphoproteomics. J. Proteome Res. 21, 1603–1615 (2022). 
257. Ressa, A., Fitzpatrick, M., van den Toorn, H., Heck, A. J. R. & Altelaar, M. PaDuA: A Python 
Library for High-Throughput (Phospho)proteomics Data Analysis. J. Proteome Res. 18, 576–584 (2019). 
258. Kim, H. J. et al. PhosR enables processing and functional analysis of phosphoproteomic data. 
Cell Reports 34, 108771 (2021). 
259. Ramasamy, P. et al. Scop3P: A Comprehensive Resource of Human Phosphosites within Their 
Full Context. J. Proteome Res. 19, 3478–3486 (2020). 
260. Hornbeck, P. V. et al. 15 years of PhosphoSitePlus®: integrating post-translationally modified 
sites, disease variants and isoforms. Nucleic Acids Research 47, D433–D441 (2019). 



References 

219 

261. Gnad, F., Gunawardena, J. & Mann, M. PHOSIDA 2011: the posttranslational modification 
database. Nucleic Acids Research 39, D253–D260 (2011). 
262. Savage, S. R. & Zhang, B. Using phosphoproteomics data to understand cellular signaling: a 
comprehensive guide to bioinformatics resources. Clin Proteom 17, 27 (2020). 
263. Hu, A., Noble, W. S. & Wolf-Yadlin, A. Technical advances in proteomics: new developments in 
data-independent acquisition. F1000Res 5, 419 (2016). 
264. Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for 
quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1, 39–45 
(2004). 
265. Zhang, F., Ge, W., Ruan, G., Cai, X. & Guo, T. Data-Independent Acquisition Mass Spectrometry-
Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics 20, 1900276 (2020). 
266. Purvine, S., Eppel*, J.-T., Yi, E. C. & Goodlett, D. R. Shotgun collision-induced dissociation of 
peptides using a time of flight mass analyzer. Proteomics 3, 847–850 (2003). 
267. Silva, J. C. et al. Quantitative Proteomic Analysis by Accurate Mass Retention Time Pairs. Anal. 
Chem. 77, 2187–2200 (2005). 
268. Panchaud, A. et al. Precursor Acquisition Independent From Ion Count: How to Dive Deeper 
into the Proteomics Ocean. Anal. Chem. 81, 6481–6488 (2009). 
269. Geiger, T., Cox, J. & Mann, M. Proteomics on an Orbitrap Benchtop Mass Spectrometer Using 
All-ion Fragmentation. Molecular & Cellular Proteomics 9, 2252–2261 (2010). 
270. Carvalho, P. C. et al. XDIA: improving on the label-free data-independent analysis. 
Bioinformatics 26, 847–848 (2010). 
271. Weisbrod, C. R., Eng, J. K., Hoopmann, M. R., Baker, T. & Bruce, J. E. Accurate Peptide Fragment 
Mass Analysis: Multiplexed Peptide Identification and Quantification. J. Proteome Res. 11, 1621–1632 
(2012). 
272. Gillet, L. C. et al. Targeted Data Extraction of the MS/MS Spectra Generated by Data-
independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Molecular & 
Cellular Proteomics 11, O111.016717. (2012). 
273. Geromanos, S. J., Hughes, C., Ciavarini, S., Vissers, J. P. C. & Langridge, J. I. Using ion purity 
scores for enhancing quantitative accuracy and precision in complex proteomics samples. Anal Bioanal 
Chem 404, 1127–1139 (2012). 
274. Egertson, J. D. et al. Multiplexed MS/MS for improved data-independent acquisition. Nat 
Methods 10, 744–746 (2013). 
275. Zabrouskov, V. et al. Large-Scale Targeted Protein Quantification Using Wide Selected-Ion 
Monitoring Data-Independent Acquisition. LCGC 12, 19–25 (2014). 
276. Prakash, A. et al. Hybrid Data Acquisition and Processing Strategies with Increased Throughput 
and Selectivity: pSMART Analysis for Global Qualitative and Quantitative Analysis. J. Proteome Res. 13, 
5415–5430 (2014). 
277. Distler, U. et al. Drift time-specific collision energies enable deep-coverage data-independent 
acquisition proteomics. Nat Methods 11, 167–170 (2014). 
278. Zhang, Y. et al. The Use of Variable Q1 Isolation Windows Improves Selectivity in LC–SWATH–
MS Acquisition. J. Proteome Res. 14, 4359–4371 (2015). 
279. Bruderer, R. et al. Extending the Limits of Quantitative Proteome Profiling with Data-
Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver 
Microtissues. Molecular & Cellular Proteomics 14, 1400–1410 (2015). 



References 

220 

280. Moseley, M. A. et al. Scanning Quadrupole Data-Independent Acquisition, Part A: Qualitative 
and Quantitative Characterization. J. Proteome Res. 17, 770–779 (2018). 
281. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar acquisition method 
enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat Methods 15, 440–
448 (2018). 
282. Bekker-Jensen, D. B. et al. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS 
Interface Improves Proteome Coverage in Short LC Gradients. Molecular & Cellular Proteomics 19, 
716–729 (2020). 
283. Guan, S., Taylor, P. P., Han, Z., Moran, M. F. & Ma, B. Data Dependent–Independent Acquisition 
(DDIA) Proteomics. J. Proteome Res. 19, 3230–3237 (2020). 
284. Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. Nat Biotechnol 39, 846–854 
(2021). 
285. Cai, X. et al. PulseDIA: Data-Independent Acquisition Mass Spectrometry Using Multi-Injection 
Pulsed Gas-Phase Fractionation. J. Proteome Res. 20, 279–288 (2021). 
286. Salovska, B., Li, W., Di, Y. & Liu, Y. BoxCarmax: A High-Selectivity Data-Independent Acquisition 
Mass Spectrometry Method for the Analysis of Protein Turnover and Complex Samples. Anal. Chem. 
93, 3103–3111 (2021). 
287. Guo, J., Shen, S., Xing, S. & Huan, T. DaDIA: Hybridizing Data-Dependent and Data-Independent 
Acquisition Modes for Generating High-Quality Metabolomic Data. Anal. Chem. 93, 2669–2677 (2021). 
288. Masselon, C. et al. Accurate Mass Multiplexed Tandem Mass Spectrometry for High-
Throughput Polypeptide Identification from Mixtures. Anal. Chem. 72, 1918–1924 (2000). 
289. Bilbao, A. et al. Processing strategies and software solutions for data-independent acquisition 
in mass spectrometry. Proteomics 15, 964–980 (2015). 
290. Panchaud, A., Jung, S., Shaffer, S. A., Aitchison, J. D. & Goodlett, D. R. Faster, Quantitative, and 
Accurate Precursor Acquisition Independent From Ion Count. Anal. Chem. 83, 2250–2257 (2011). 
291. Demichev, V. et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of 
low sample amounts. Nat Commun 13, 3944 (2022). 
292. Huang, Z. et al. Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and 
diaPASEF. Data in Brief 41, 107919 (2022). 
293. Arenas-De Larriva, M. del S., Fernández-Vega, A., Jurado-Gamez, B. & Ortea, I. diaPASEF 
Proteomics and Feature Selection for the Description of Sputum Proteome Profiles in a Cohort of 
Different Subtypes of Lung Cancer Patients and Controls. IJMS 23, 8737 (2022). 
294. Mun, D.-G. et al. DIA-Based Proteome Profiling of Nasopharyngeal Swabs from COVID-19 
Patients. J. Proteome Res. 20, 4165–4175 (2021). 
295. Skowronek, P. et al. Synchro-PASEF Allows Precursor-Specific Fragment Ion Extraction and 
Interference Removal in Data-Independent Acquisition. Molecular & Cellular Proteomics 22, 100489 
(2023). 
296. Szyrwiel, L., Sinn, L., Ralser, M. & Demichev, V. Slice-PASEF: fragmenting all ions for maximum 
sensitivity in proteomics. bioRxiv (2022) doi:10.1101/2022.10.31.514544. 
297. Distler, U. et al. midiaPASEF maximizes information content in data-independent acquisition 
proteomics. bioRxiv (2023) doi:10.1101/2023.01.30.526204. 
298. Ting, Y. S. et al. Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of 
Tandem Mass Spectrometry Data. Molecular & Cellular Proteomics 14, 2301–2307 (2015). 
299. Ludwig, C. et al. Data-independent acquisition-based SWATH -MS for quantitative proteomics: 
a tutorial. Mol Syst Biol 14, (2018). 



References 

221 

300. Schubert, O. T. et al. Building high-quality assay libraries for targeted analysis of SWATH MS 
data. Nat Protoc 10, 426–441 (2015). 
301. Penny, J., Arefian, M., Schroeder, G. N., Bengoechea, J. A. & Collins, B. C. A gas phase 
fractionation acquisition scheme integrating ion mobility for rapid diaPASEF library generation. 
Proteomics 23, 2200038 (2023). 
302. Lam, H. et al. Development and validation of a spectral library searching method for peptide 
identification from MS/MS. Proteomics 7, 655–667 (2007). 
303. Pino, L. K. et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry 
proteomics. Mass Spec Rev 39, 229–244 (2020). 
304. Zhao, M. et al. Evaluation of Urinary Proteome Library Generation Methods on Data-
Independent Acquisition MS Analysis and its Application in Normal Urinary Proteome Analysis. Prot. 
Clin. Appl. 13, 1800152 (2019). 
305. Desiere, F. The PeptideAtlas project. Nucleic Acids Research 34, D655–D658 (2006). 
306. Deutsch, E. W., Lam, H. & Aebersold, R. PeptideAtlas: a resource for target selection for 
emerging targeted proteomics workflows. EMBO Rep 9, 429–434 (2008). 
307. Wang, M. Proteomics data reuse with MassIVE-KB. Cell Systems (2018). 
308. Martens, L. et al. PRIDE: The proteomics identifications database. Proteomics 5, 3537–3545 
(2005). 
309. Rosenberger, G. et al. A repository of assays to quantify 10,000 human proteins by SWATH-
MS. Sci Data 1, 140031 (2014). 
310. Bruderer, R. et al. Optimization of Experimental Parameters in Data-Independent Mass 
Spectrometry Significantly Increases Depth and Reproducibility of Results. Molecular & Cellular 
Proteomics 16, 2296–2309 (2017). 
311. Ammar, C. et al. Multi-Reference Spectral Library Yields Almost Complete Coverage of 
Heterogeneous LC-MS/MS Data Sets. J. Proteome Res. 18, 1553–1566 (2019). 
312. Gessulat, S. et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep 
learning. Nat Methods 16, 509–518 (2019). 
313. Schmidt, T. et al. ProteomicsDB. Nucleic Acids Research 46, D1271–D1281 (2018). 
314. Tiwary, S. et al. High-quality MS/MS spectrum prediction for data-dependent and data-
independent acquisition data analysis. Nat Methods 16, 519–525 (2019). 
315. Zhou, X.-X. et al. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning. Anal. 
Chem. 89, 12690–12697 (2017). 
316. Yang, Y. et al. In silico spectral libraries by deep learning facilitate data-independent acquisition 
proteomics. Nat Commun 11, 146 (2020). 
317. Meyer, J. G. Deep learning neural network tools for proteomics. Cell Reports Methods 1, 
100003 (2021). 
318. Fröhlich, K. et al. Benchmarking of analysis strategies for data-independent acquisition 
proteomics using a large-scale dataset comprising inter-patient heterogeneity. Nat Commun 13, 2622 
(2022). 
319. Gotti, C. et al. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software 
Tools Using a Complex Proteomic Standard. J. Proteome Res. 20, 4801–4814 (2021). 
320. Lou, R. et al. Benchmarking commonly used software suites and analysis workflows for DIA 
proteomics and phosphoproteomics. Nat Commun 14, 94 (2023). 
321. Cox, J. Prediction of peptide mass spectral libraries with machine learning. Nature 
Biotechnology 41, 33–43 (2022). 



References 

222 

322. Lou, R. et al. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library 
generation. Nat Commun 12, 6685 (2021). 
323. Röst, H. L. et al. OpenSWATH enables automated, targeted analysis of data-independent 
acquisition MS data. Nat Biotechnol 32, 219–223 (2014). 
324. Röst, H. L. et al. TRIC: an automated alignment strategy for reproducible protein quantification 
in targeted proteomics. Nat Methods 13, 777–783 (2016). 
325. Gupta, S., Ahadi, S., Zhou, W. & Röst, H. DIAlignR Provides Precise Retention Time Alignment 
Across Distant Runs in DIA and Targeted Proteomics. Molecular & Cellular Proteomics 18, 806–817 
(2019). 
326. Liu, Y. et al. DeepRTAlign: toward accurate retention time alignment for large cohort mass 
spectrometry data analysis. bioRxiv (2022). 
327. Zhang, N. et al. ProbIDtree: An automated software program capable of identifying multiple 
peptides from a single collision-induced dissociation spectrum collected by a tandem mass 
spectrometer. Proteomics 5, 4096–4106 (2005). 
328. Wang, J. et al. MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. 
Nat Methods 12, 1106–1108 (2015). 
329. Searle, B. C. et al. Chromatogram libraries improve peptide detection and quantification by 
data independent acquisition mass spectrometry. Nat Commun 9, 5128 (2018). 
330. Ting, Y. S. et al. PECAN: library-free peptide detection for data-independent acquisition tandem 
mass spectrometry data. Nat Methods 14, 903–908 (2017). 
331. Tsou, C.-C. et al. DIA-Umpire: comprehensive computational framework for data-independent 
acquisition proteomics. Nat Methods 12, 258–264 (2015). 
332. Sinitcyn, P. et al. MaxDIA enables library-based and library-free data-independent acquisition 
proteomics. Nat Biotechnol 39, 1563–1573 (2021). 
333. Searle, B. C., Lawrence, R. T., MacCoss, M. J. & Villén, J. Thesaurus: quantifying phosphopeptide 
positional isomers. Nat Methods 16, 703–706 (2019). 
334. Bersching, K., Michna, T., Tenzer, S. & Jacob, S. Data-Independent Acquisition (DIA) Is Superior 
for High Precision Phospho-Peptide Quantification in Magnaporthe oryzae. Journal of Fungi 9, 63 
(2022). 
335. Rosenberger, G. et al. Inference and quantification of peptidoforms in large sample cohorts by 
SWATH-MS. Nat Biotechnol 35, 781–788 (2017). 
336. Kitata, R. B. et al. A data-independent acquisition-based global phosphoproteomics system 
enables deep profiling. Nat Commun 12, 2539 (2021). 
337. Lanznaster, D. et al. Metabolomics: A Tool to Understand the Impact of Genetic Mutations in 
Amyotrophic Lateral Sclerosis. Genes 11, 537 (2020). 
338. Barschke, P., Oeckl, P., Steinacker, P., Ludolph, A. & Otto, M. Proteomic studies in the discovery 
of cerebrospinal fluid biomarkers for amyotrophic lateral sclerosis. Expert Review of Proteomics 14, 
769–777 (2017). 
339. Krassowski, M., Das, V., Sahu, S. K. & Misra, B. B. State of the Field in Multi-Omics Research: 
From Computational Needs to Data Mining and Sharing. Front. Genet. 11, 610798 (2020). 
340. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol 18, 83 (2017). 
341. Clark, C., Rabl, M., Dayon, L. & Popp, J. The promise of multi-omics approaches to discover 
biological alterations with clinical relevance in Alzheimer’s disease. Front. Aging Neurosci. 14, 1065904 
(2022). 



References 

223 

342. Douglas, G. M. et al. Multi-omics differentially classify disease state and treatment outcome in 
pediatric Crohn’s disease. Microbiome 6, 13 (2018). 
343. Sathyanarayanan, A. et al. Multi-omics data integration methods and their applications in 
psychiatric disorders. European Neuropsychopharmacology 69, 26–46 (2023). 
344. Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical 
Trials, Board on Health Care Services, Board on Health Sciences Policy, & Institute of Medicine. 
Evolution of Translational Omics: Lessons Learned and the Path Forward. (National Academies Press, 
2012). 
345. Li, C., Sullivan, R. E., Zhu, D. & Hicks, S. D. Putting the “mi” in omics: discovering miRNA 
biomarkers for pediatric precision care. Pediatric Research 93, 316–323 (2023). 
346. Lal, C. V., Bhandari, V. & Ambalavanan, N. Genomics, microbiomics, proteomics, and 
metabolomics in bronchopulmonary dysplasia. Seminars in Perinatology 42, 425–431 (2018). 
347. Schubert, O. T., Röst, H. L., Collins, B. C., Rosenberger, G. & Aebersold, R. Quantitative 
proteomics: challenges and opportunities in basic and applied research. Nat Protoc 12, 1289–1294 
(2017). 
348. Misra, B. B., Langefeld, C., Olivier, M. & Cox, L. A. Integrated omics: tools, advances and future 
approaches. Journal of Molecular Endocrinology 62, R21–R45 (2019). 
349. Tarazona, S., Arzalluz-Luque, A. & Conesa, A. Undisclosed, unmet and neglected challenges in 
multi-omics studies. Nat Comput Sci 1, 395–402 (2021). 
350. Subramanian, I., Verma, S., Kumar, S., Jere, A. & Anamika, K. Multi-omics Data Integration, 
Interpretation, and Its Application. Bioinform Biol Insights 14, 117793221989905 (2020). 
351. Palsson, B. & Zengler, K. The challenges of integrating multi-omic data sets. Nat Chem Biol 6, 
787–789 (2010). 
352. Kopczynski, D. et al. Multi-OMICS: a critical technical perspective on integrative lipidomics 
approaches. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1862, 808–811 
(2017). 
353. Tarazona, S. et al. Harmonization of quality metrics and power calculation in multi-omic 
studies. Nat Commun 11, 3092 (2020). 
354. Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics 
using liquid chromatography–mass spectrometry. Anal Bioanal Chem 403, 1523–1548 (2012). 
355. Nakayasu, E. S. et al. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative 
Proteomic, Metabolomic, and Lipidomic Analyses. mSystems 1, e00043-16 (2016). 
356. Coman, C. et al. Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial 
Multimolecular Omics Approach for Systems Biology. Molecular & Cellular Proteomics 15, 1435–1466 
(2016). 
357. Valledor, L. et al. A universal protocol for the combined isolation of metabolites, DNA, long 
RNAs, small RNAs, and proteins from plants and microorganisms. Plant J 79, 173–180 (2014). 
358. Quinn, R. A. et al. From Sample to Multi-Omics Conclusions in under 48 Hours. mSystems 1, 
e00038-16 (2016). 
359. Muehlbauer, L. K. et al. Rapid Multi-Omics Sample Preparation for Mass Spectrometry. Anal. 
Chem. 95, 659–667 (2023). 
360. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and 
stewardship. Sci Data 3, 160018 (2016). 
361. Berrios, D. C., Beheshti, A. & Costes, S. V. FAIRness and Usability for Open-access Omics Data 
Systems. AMIA Annu Symp Proc. (2018). 



References 

224 

362. Perez-Riverol, Y. et al. Discovering and linking public omics data sets using the Omics Discovery 
Index. Nat Biotechnol 35, 406–409 (2017). 
363. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization 
defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008). 
364. METABRIC Group et al. The genomic and transcriptomic architecture of 2,000 breast tumours 
reveals novel subgroups. Nature 486, 346–352 (2012). 
365. Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat 
Methods 11, 333–337 (2014). 
366. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: An R package for ‘omics feature 
selection and multiple data integration. PLoS Comput Biol 13, e1005752 (2017). 
367. Argelaguet, R. et al. Multi‐Omics Factor Analysis : a framework for unsupervised integration of 
multi-omics data sets. Mol Syst Biol 14, (2018). 
368. Ma, A., McDermaid, A., Xu, J., Chang, Y. & Ma, Q. Integrative Methods and Practical Challenges 
for Single-Cell Multi-omics. Trends in Biotechnology 38, 1007–1022 (2020). 
369. Reel, P. S., Reel, S., Pearson, E., Trucco, E. & Jefferson, E. Using machine learning approaches 
for multi-omics data analysis: A review. Biotechnology Advances 49, 107739 (2021). 
370. Feldner-Busztin, D. et al. Dealing with dimensionality: the application of machine learning to 
multi-omics data. Bioinformatics 39, btad021 (2023). 
371. McClatchy, D. B. et al. Global quantitative analysis of phosphorylation underlying 
phencyclidine signaling and sensorimotor gating in the prefrontal cortex. Mol Psychiatry 21, 205–215 
(2016). 
372. Zecha, J. et al. TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling 
Approach. Molecular & Cellular Proteomics 18, 1468–1478 (2019). 
373. Fang, B. et al. Lowering Sample Requirements to Study Tyrosine Kinase Signaling Using 
Phosphoproteomics with the TMT Calibrator Approach. Proteomics 20, 2000116 (2020). 
374. Iliuk, A. Identification of Phosphorylated Proteins on a Global Scale. Current Protocols in 
Chemical Biology 10, (2018). 
375. Keshishian, H. et al. A highly multiplexed quantitative phosphosite assay for biology and 
preclinical studies. Molecular Systems Biology 17, e10156 (2021). 
376. Colomé, N. et al. Multi-laboratory experiment PME11 for the standardization of 
phosphoproteome analysis. Journal of Proteomics 251, 104409 (2022). 
377. Yue, X., Schunter, A. & Hummon, A. B. Comparing Multistep Immobilized Metal Affinity 
Chromatography and Multistep TiO 2 Methods for Phosphopeptide Enrichment. Anal. Chem. 87, 8837–
8844 (2015). 
378. Salovska, B., Tichy, A., Rezacova, M., Vavrova, J. & Novotna, E. Enrichment strategies for 
phosphoproteomics: state-of-the-art. Reviews in Analytical Chemistry 31, (2012). 
379. Huttlin, E. L. et al. A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression. 
Cell 143, 1174–1189 (2010). 
380. Kettenbach, A. N. & Gerber, S. A. Rapid and Reproducible Single-Stage Phosphopeptide 
Enrichment of Complex Peptide Mixtures: Application to General and Phosphotyrosine-Specific 
Phosphoproteomics Experiments. Anal. Chem. 83, 7635–7644 (2011). 
381. Wiesner, J., Premsler, T. & Sickmann, A. Application of electron transfer dissociation (ETD) for 
the analysis of posttranslational modifications. Proteomics 8, 4466–4483 (2008). 
382. Weng, S. H. S. et al. Improved Phosphoproteomics Workflow with Automation Platform on 
KingFisher Flex and Data-Independent Acquisition (DIA) Analysis. 



References 

225 

383. Brun, C. Développement de stratégies analytiques quantitatives pour l’étude des protéines, de 
leurs phosphorylations et glycations. (Université de Strasbourg, 2022). 
384. Ferries, S. et al. Evaluation of Parameters for Confident Phosphorylation Site Localization Using 
an Orbitrap Fusion Tribrid Mass Spectrometer. J. Proteome Res. 16, 3448–3459 (2017). 
385. Kuharev, J., Navarro, P., Distler, U., Jahn, O. & Tenzer, S. In-depth evaluation of software tools 
for data-independent acquisition based label-free quantification. Proteomics 15, 3140–3151 (2015). 
386. An Staes et al. Benchmarking DIA data analysis workflows. bioRxiv 2023.06.02.543441 (2023). 
387. Wen, C. et al. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and 
Ubiquitinomics Data-Independent Acquisition Data. J. Proteome Res. acs.jproteome.2c00735 (2023). 
388. Lou, R. et al. Benchmarking commonly used software suites and analysis workflows for DIA 
proteomics and phosphoproteomics. Nat Commun 14, 94 (2023). 
389. Vashist, T. D. et al. DIA Phosphoproteomics: Comparative Evaluation of Dynamic Range and 
Quantitative Linearity Across Multiple MS Platforms. (2023). 
390. Ryan, M., Heverin, M., McLaughlin, R. L. & Hardiman, O. Lifetime Risk and Heritability of 
Amyotrophic Lateral Sclerosis. JAMA Neurol 76, 1367 (2019). 
391. Paganoni, S. et al. Diagnostic timelines and delays in diagnosing amyotrophic lateral sclerosis 
(ALS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 15, 453–456 (2014). 
392. Oeckl, P. et al. Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and 
GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral 
sclerosis. Acta Neuropathol 139, 119–134 (2020). 
393. Zoccolella, S. et al. Riluzole and amyotrophic lateral sclerosis survival: a population-based study 
in southern Italy: Riluzole and ALS survival in Puglia. European Journal of Neurology 14, 262–268 
(2007). 
394. Breiner, A., Zinman, L. & Bourque, P. R. Edaravone for amyotrophic lateral sclerosis: barriers 
to access and lifeboat ethics. CMAJ 192, E319–E320 (2020). 
395. Paganoni, S. et al. Trial of Sodium Phenylbutyrate–Taurursodiol for Amyotrophic Lateral 
Sclerosis. N Engl J Med 383, 919–930 (2020). 
396. Tam, O. H. et al. Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: 
Retrotransposon Activation, Oxidative Stress, and Activated Glia. Cell Reports 29, 1164-1177.e5 (2019). 
397. Figueroa-Romero, C. et al. Expression of microRNAs in human post-mortem amyotrophic 
lateral sclerosis spinal cords provides insight into disease mechanisms. Molecular and Cellular 
Neuroscience 71, 34–45 (2016). 
398. Umoh, M. E. et al. A proteomic network approach across the ALS-FTD disease spectrum 
resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol Med 10, 48–62 
(2018). 
399. Lutz, C. Mouse models of ALS: Past, present and future. Brain Research 1693, 1–10 (2018). 
400. Li, P. & Bartlett, M. G. A review of sample preparation methods for quantitation of small-
molecule analytes in brain tissue by liquid chromatography tandem mass spectrometry (LC-MS/MS). 
Anal. Methods 6, 6183–6207 (2014). 
401. Karpiński, A. A. et al. Study on Tissue Homogenization Buffer Composition for Brain Mass 
Spectrometry-Based Proteomics. Biomedicines 10, 2466 (2022). 
402. Li, K. W., Ganz, A. B. & Smit, A. B. Proteomics of neurodegenerative diseases: analysis of human 
post-mortem brain. J. Neurochem. 151, 435–445 (2019). 



References 

226 

403. Shevchenko, G., Musunuri, S., Wetterhall, M. & Bergquist, J. Comparison of Extraction 
Methods for the Comprehensive Analysis of Mouse Brain Proteome using Shotgun-based Mass 
Spectrometry. J. Proteome Res. 11, 2441–2451 (2012). 
404. Ericsson, C., Peredo, I. & Nistér, M. Optimized protein extraction from cryopreserved brain 
tissue samples. Acta Oncologica 46, 10–20 (2007). 
405. Santiago, J. A., Quinn, J. P. & Potashkin, J. A. Network Analysis Identifies Sex-Specific Gene 
Expression Changes in Blood of Amyotrophic Lateral Sclerosis Patients. IJMS 22, 7150 (2021). 
406. Murdock, B. J., Goutman, S. A., Boss, J., Kim, S. & Feldman, E. L. Amyotrophic Lateral Sclerosis 
Survival Associates With Neutrophils in a Sex-specific Manner. Neurol Neuroimmunol Neuroinflamm 8, 
e953 (2021). 
407. Günther, R. et al. The rho kinase inhibitor Y-27632 improves motor performance in male 
SOD1G93A mice. Front. Neurosci. 8, (2014). 
408. Torres, P. et al. Gender-Specific Beneficial Effects of Docosahexaenoic Acid Dietary 
Supplementation in G93A-SOD1 Amyotrophic Lateral Sclerosis Mice. Neurotherapeutics 17, 269–281 
(2020). 
409. Wieczorek, S. et al. DAPAR & ProStaR: software to perform statistical analyses in quantitative 
discovery proteomics. Bioinformatics 33, 135–136 (2017). 
410. Kong, W., Hui, H. W. H., Peng, H. & Goh, W. W. B. Dealing with missing values in proteomics 
data. Proteomics 22, 2200092 (2022). 
411. Liu, M. & Dongre, A. Proper imputation of missing values in proteomics datasets for differential 
expression analysis. Briefings in Bioinformatics 22, bbaa112 (2021). 
412. Lazar, C., Gatto, L., Ferro, M., Bruley, C. & Burger, T. Accounting for the Multiple Natures of 
Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J. 
Proteome Res. 15, 1116–1125 (2016). 
413. Salem, A. et al. Matrin3: Disorder and ALS Pathogenesis. Front. Mol. Biosci. 8, 794646 (2022). 
414. Diquigiovanni, C. et al. A novel mutation in SPART gene causes a severe neurodevelopmental 
delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism. 
FASEB j. 33, 11284–11302 (2019). 
415. Pedersen, C. C. et al. A systematic review of associations between common SNCA variants and 
clinical heterogeneity in Parkinson’s disease. npj Parkinsons Dis. 7, 54 (2021). 
416. Hirano, M. et al. Mutations in the gene encoding p62 in Japanese patients with amyotrophic 
lateral sclerosis. Neurology 80, 458–463 (2013). 
417. Mitsui, S. et al. Systemic overexpression of SQSTM1/p62 accelerates disease onset in a 
SOD1H46R-expressing ALS mouse model. Mol Brain 11, 30 (2018). 
418. Wobst, H. J., Mack, K. L., Brown, D. G., Brandon, N. J. & Shorter, J. The clinical trial landscape 
in amyotrophic lateral sclerosis—Past, present, and future. Med Res Rev 40, 1352–1384 (2020). 
419. Nakamura, T., Myint, K. T. & Oda, Y. Ethylenediaminetetraacetic Acid Increases Identification 
Rate of Phosphoproteomics in Real Biological Samples. J. Proteome Res. 9, 1385–1391 (2010). 
420. Siino, V. et al. Impact of diet-induced obesity on the mouse brain phosphoproteome. The 
Journal of Nutritional Biochemistry 58, 102–109 (2018). 
421. Lachén-Montes, M., Gonzales-Morales, A., Fernandez-Irigoyen, J. & Santamaría, E. 
Determination of Cerebrospinal Fluid Proteome Variations by Isobaric Labeling Coupled with Strong 
Cation-Exchange Chromatography and Tandem Mass Spectrometry. in Cerebrospinal Fluid (CSF) 
Proteomics: Methods and Protocols 155–168 (Springer New York, 2019). 



References 

227 

422. Collins, M. A., An, J., Hood, B. L., Conrads, T. P. & Bowser, R. P. Label-Free LC–MS/MS Proteomic 
Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for 
Amyotrophic Lateral Sclerosis. J. Proteome Res. 14, 4486–4501 (2015). 
423. Jankovska, E., Svitek, M., Holada, K. & Petrak, J. Affinity depletion versus relative protein 
enrichment: a side-by-side comparison of two major strategies for increasing human cerebrospinal 
fluid proteome coverage. Clin Proteom 16, 9 (2019). 
424. Yoshihara, T. et al. Cerebrospinal Fluid Protein Concentration in Healthy Older Japanese 
Volunteers. IJERPH 18, 8683 (2021). 
425. Carlyle, B., Trombetta, B. & Arnold, S. Proteomic Approaches for the Discovery of Biofluid 
Biomarkers of Neurodegenerative Dementias. Proteomes 6, 32 (2018). 
426. Macron, C., Núñez Galindo, A., Gahoi, N., Cominetti, O. & Dayon, L. A Versatile Workflow for 
Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep 
Coverage and Sample Throughput. in Cerebrospinal Fluid (CSF) Proteomics: Methods and Protocols 
129–154 (2019). 
427. Macron, C., Lane, L., Núñez Galindo, A. & Dayon, L. Deep Dive on the Proteome of Human 
Cerebrospinal Fluid: A Valuable Data Resource for Biomarker Discovery and Missing Protein 
Identification. J. Proteome Res. 17, 4113–4126 (2018). 
428. Barkovits, K. et al. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition 
Mass Spectrometry. J. Proteome Res. 17, 3418–3430 (2018). 
429. McKetney, J. et al. Pilot proteomic analysis of cerebrospinal fluid in Alzheimer’s disease. 
Proteomics Clinical Apps 15, 2000072 (2021). 
430. Rao, A. A., Mehta, K., Gahoi, N. & Srivastava, S. Application of 2D-DIGE and iTRAQ Workflows 
to Analyze CSF in Gliomas. in Cerebrospinal Fluid (CSF) Proteomics: Methods and Protocols 81–110 
(2019). 
431. Birke, R., Krause, E., Schümann, M., Blasig, I. E. & Haseloff, R. F. Quantitative Evaluation of 
Different Protein Fractions of Cerebrospinal Fluid Using 18O Labeling. in Cerebrospinal Fluid (CSF) 
Proteomics: Methods and Protocols 119–128 (2019). 
432. Barkovits, K., Tönges, L. & Marcus, K. CSF Sample Preparation for Data-Independent 
Acquisition. in Cerebrospinal Fluid (CSF) Proteomics: Methods and Protocols 61–67 (2019). 
433. Barkovits et al. Blood Contamination in CSF and Its Impact on Quantitative Analysis of Alpha-
Synuclein. Cells 9, 370 (2020). 
434. Hörmann, P., Barkovits, K., Marcus, K. & Hiller, K. Co-extraction for Metabolomics and 
Proteomics from a Single CSF Sample. in Cerebrospinal Fluid (CSF) Proteomics: Methods and Protocols 
(eds. Santamaría, E. & Fernández-Irigoyen, J.) 337–342 (Springer New York, 2019). 
435. Yang, H. et al. Identification of cerebrospinal fluid metabolites as biomarkers for 
neurobrucellosis by liquid chromatography-mass spectrometry approach. Bioengineered 13, 6996–
7010 (2022). 
436. Karayel, O. et al. Proteome profiling of cerebrospinal fluid reveals biomarker candidates for 
Parkinson’s disease. Cell Reports Medicine 3, 100661 (2022). 
437. Bahl, J. M. C., Jensen, S. S., Larsen, M. R. & Heegaard, N. H. H. Characterization of the Human 
Cerebrospinal Fluid Phosphoproteome by Titanium Dioxide Affinity Chromatography and Mass 
Spectrometry. Anal. Chem. 80, 6308–6316 (2008). 
438. Sun, J. et al. Profiling phosphoproteome landscape in circulating extracellular vesicles from 
microliters of biofluids through functionally tunable paramagnetic separation. Angewandte Chemie 
e202305668 (2023). 



References 

228 

439. Costa, J. et al. Cerebrospinal Fluid Chitinases as Biomarkers for Amyotrophic Lateral Sclerosis. 
Diagnostics 11, 1210 (2021). 
440. Thompson, A. G. et al. CSF chitinase proteins in amyotrophic lateral sclerosis. J Neurol 
Neurosurg Psychiatry 90, 1215–1220 (2019). 
441. Oldoni, E. et al. CHIT1 at Diagnosis Reflects Long-Term Multiple Sclerosis Disease Activity. Ann 
Neurol 87, 633–645 (2020). 
442. Schneider, R. et al. Chitinase 3–like 1 and neurofilament light chain in CSF and CNS atrophy in 
MS. Neurol Neuroimmunol Neuroinflamm 8, e906 (2021). 
443. Raffaele, S., Boccazzi, M. & Fumagalli, M. Oligodendrocyte Dysfunction in Amyotrophic Lateral 
Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 10, 565 (2021). 
444. Lee, S. & Kim, H.-J. Prion-like Mechanism in Amyotrophic Lateral Sclerosis: are Protein 
Aggregates the Key? Exp Neurobiol 24, 1–7 (2015). 
445. McAlary, L. et al. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. 
Front. Cell. Neurosci. 14, 581907 (2020). 
446. Tiwari, M. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: 
Mapping diagnostic and therapeutic opportunities. Genes & Diseases 4, 196–203 (2017). 
447. Pasetto, L. et al. Defective cyclophilin A induces TDP-43 proteinopathy: implications for 
amyotrophic lateral sclerosis and frontotemporal dementia. Brain 144, 3710–3726 (2021). 
448. Pasetto, L. et al. Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends 
Survival in a Mouse Model of Amyotrophic Lateral Sclerosis. J. Neurosci. 37, 1413–1427 (2017). 
449. Wojdała, A. L. et al. Phosphatidylethanolamine Binding Protein 1 (PEBP1) in Alzheimer’s 
Disease: ELISA Development and Clinical Validation. JAD 88, 1459–1468 (2022). 
450. Nilsson, J. et al. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer’s 
disease. Alz & Dem Diag Ass & Dis Mo 13, (2021). 
451. Kaiserova, M. et al. Cerebrospinal fluid levels of chromogranin A and phosphorylated 
neurofilament heavy chain are elevated in amyotrophic lateral sclerosis. Acta Neurol Scand 136, 360–
364 (2017). 
452. Rudrabhatla, P., Grant, P., Jaffe, H., Strong, M. J. & Pant, H. C. Quantitative phosphoproteomic 
analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer’s disease by iTRAQ. FASEB 
j. 24, 4396–4407 (2010). 
453. Quinn, J. P. et al. Cerebrospinal Fluid and Brain Proteoforms of the Granin Neuropeptide Family 
in Alzheimer’s Disease. J. Am. Soc. Mass Spectrom. 34, 649–667 (2023). 
454. Mousavi, S. V., Agah, E. & Tafakhori, A. The Role of Osteopontin in Amyotrophic Lateral 
Sclerosis: A Systematic Review. Arch Neurosci 7, (2020). 
455. Yamamoto, T., Murayama, S., Takao, M., Isa, T. & Higo, N. Expression of secreted 
phosphoprotein 1 (osteopontin) in human sensorimotor cortex and spinal cord: Changes in patients 
with amyotrophic lateral sclerosis. Brain Research 1655, 168–175 (2017). 
456. De Luna, N. et al. Neuroinflammation-Related Proteins NOD2 and Spp1 Are Abnormally 
Upregulated in Amyotrophic Lateral Sclerosis. Neurol Neuroimmunol Neuroinflamm 10, e200072 
(2023). 
457. Verde, F. et al. Chromogranin A levels in the cerebrospinal fluid of patients with amyotrophic 
lateral sclerosis. Neurobiology of Aging 67, 21–22 (2018). 
458. Bittremieux, W. et al. Quality control in mass spectrometry-based proteomics. Mass Spec Rev 
37, 697–711 (2018). 



References 

229 

459. Köcher, T., Pichler, P., Swart, R. & Mechtler, K. Quality control in LC-MS/MS. Proteomics 11, 
1026–1030 (2011). 
460. Rozanova, S. et al. Quality Control—A Stepchild in Quantitative Proteomics: A Case Study for 
the Human CSF Proteome. Biomolecules 13, 491 (2023). 
461. Patterson, K. L. et al. Establishing Quality Control Procedures for Large-Scale Plasma 
Proteomics Analyses. J. Am. Soc. Mass Spectrom. 34, 1105–1116 (2023). 
462. Stanfill, B. A. et al. Quality Control Analysis in Real-time (QC-ART): A Tool for Real-time Quality 
Control Assessment of Mass Spectrometry-based Proteomics Data. Molecular & Cellular Proteomics 
17, 1824–1836 (2018). 
463. Olivella, R. et al. QCloud2: An Improved Cloud-based Quality-Control System for Mass-
Spectrometry-based Proteomics Laboratories. J. Proteome Res. 20, 2010–2013 (2021). 
464. Martínez-Bartolomé, S. et al. PACOM: A Versatile Tool for Integrating, Filtering, Visualizing, and 
Comparing Multiple Large Mass Spectrometry Proteomics Data Sets. J. Proteome Res. 17, 1547–1558 
(2018). 
465. Stratton, K. G. et al. pmartR : Quality Control and Statistics for Mass Spectrometry-Based 
Biological Data. J. Proteome Res. 18, 1418–1425 (2019). 
466. Degnan, D. J. et al. pmartR 2.0 : A Quality Control, Visualization, and Statistics Pipeline for 
Multiple Omics Datatypes. J. Proteome Res. 22, 570–576 (2023). 
467. Bielow, C., Mastrobuoni, G. & Kempa, S. Proteomics Quality Control: Quality Control Software 
for MaxQuant Results. J. Proteome Res. 15, 777–787 (2016). 
468. Imbert, A. et al. ProMetIS, deep phenotyping of mouse models by combined proteomics and 
metabolomics analysis. Sci Data 8, 311 (2021). 
469. Ardito, F., Giuliani, M., Perrone, D., Troiano, G. & Muzio, L. L. The crucial role of protein 
phosphorylation in cell signaling and its use as targeted therapy (Review). International Journal of 
Molecular Medicine 40, 271–280 (2017). 
470. Rainer, J. et al. A Modular and Expandable Ecosystem for Metabolomics Data Annotation in R. 
Metabolites 12, 173 (2022). 
471. Kohler, D. et al. MSstatsPTM: Statistical relative quantification of post-translational 
modifications in bottom-up mass spectrometry-based proteomics. Molecular & Cellular Proteomics 
100477 (2022) doi:10.1016/J.MCPRO.2022.100477. 
 
 



 

 

  



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendices 
 

 
 
 
 
 
 

  



 

 

Multiomic ALS signatures highlight sex 
differences, molecular subclusters and 
the MAPK pathway as therapeutic 
target 
 
Lucas Caldi Gomes1*, Sonja Hänzelmann2,3,4*, Sergio Oller2,3, Mojan Parvaz1,  Fabian 
Hausmann2,3, Robin Khatri2,3, Melanie Ebbing2,3, Constantin Holzapfel2,3, Laura Pasetto5, 
Stefano Fabrizio Columbro5, Serena Scozzari5, Marie Gebelin6, Johanna Knöferle1, 
Isabell Cordts1, Antonia F. Demleitner1, Laura Tzeplaeff1, Marcus Deschauer1, Claudia 
Dufke7, Marc Sturm7, Qihui Zhou8,  Pavol Zelina9, Emma Sudria-Lopez9, Tobias B. 
Haack7,10, Sebastian Streb11, Magdalena Kuzma-Kozakiewicz12, Dieter Edbauer8,13, R. 
Jeroen Pasterkamp9, Endre Laczko11, Hubert Rehrauer11, Ralph Schlapbach11, Christine 
Carapito6,  Valentina Bonetto5,  Stefan Bonn2,3 §, Paul Lingor1,8,13 §,# 

 

1  Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology; 
Ismaninger Str. 22, 81675 München, Germany. 

2  Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 
Germany. 

3  Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 
4  III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 
5 Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy 
6  Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de 

Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR 2048, Strasbourg, France. 
7 Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany 
8 German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377 München, 

Germany 
9 Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, 

Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands 
10 Center for Rare Diseases, University of Tübingen, Tübingen, Germany 
11 Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland 
12 Department of Neurology, Medical University of Warsaw, Warsaw, Poland 
13 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 

 
*,§ These authors contributed equally. 
  
#Corresponding Author: Paul Lingor; email: paul.lingor@tum.de; Department of Neurology, School of 
Medicine, University Hospital rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 
81675 Munich, Germany, Tel.: +498941408257 

 

  



 

 

Introduction  
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease usually leading to 
paralysis and death within a few years after symptom onset. The vast majority of ALS patients do not 
have a family history for the disease and are considered sporadic (sALS). Approximately 10% of all ALS 
patients have a positive family history (fALS) and in approximately half of them, a genetic cause can be 
identified, most frequently due to variants in C9orf72, SOD1, TARDBP, or FUS. However, approximately 
10% of all sALS patients also carry disease-causing mutations1. To date, sALS lacks effective disease-
modifying treatments. Multiple disease mechanisms have been suggested for ALS, but the etiology of 
sALS in particular remains unclear 2. An improved understanding of early disease mechanisms could 
facilitate the identification of diagnostic and prognostic biomarkers as well as the discovery of novel and 
potentially more efficient therapeutic drug targets.  
Although direct analysis of affected nervous system tissue remains the gold standard for the 
understanding of neuropathology, patient material is only available post-mortem and in limited numbers. 
This carries the risk of describing disease end-stages, obscuring mechanisms that occur in earlier 
phases and may therefore represent more auspicious drug targets. Similar to what has been observed 
in other neurodegenerative disorders, such as Alzheimer’s or Parkinson’s disease, ALS pathology 
spreads from the motor cortex to other cortical brain areas over time3,4. Numerous studies have analyzed 
the motor cortex in ALS 5–7. However, since this area is the most severely affected in ALS, it is likely that 
it primarily reflects the final stages of the disease. In contrast, the prefrontal cortex (PFC) in Brodmann 
area 6 typically exhibits only intermediate TDP43 pathology at the time of death 8. This suggests that 
analyzing this area could provide insight into earlier disease-mediated alterations in post-mortem tissue.  
Previous investigations of ALS brain tissue have primarily focused on individual molecular subsets, 
including transcripts 5,7,9, miRNAs 10, or proteins 11, suggesting that ALS is a complex and heterogeneous 
disease. Recent transcriptomic analysis identified potential distinct ALS populations, which were 
stratified in different subclusters based on gene set enrichment analyses (oxidative stress [ALS-Ox], 
retrotransposon activation [ALS-TE], and glial dysfunction [ALS-Glia])7,12. More recently, studies utilizing 
induced pluripotent stem cells (iPSC) 13 derived from ALS patients 14,15  and multiomic strategies in 
circulating biofluids have further deepened the comprehensive understanding of the molecular 
mechanisms underlying ALS 16. 
In this study, we decipher early ALS disease mechanisms by profiling the transcriptome, miRNAome 
and (phospho-)proteome in the PFC of ALS patients and four mouse models of the disease. We identify 
strong sex differences and demonstrate that ALS is not a homogeneous disease, but consists of different 
molecular subtypes, which find their correlation in individual transgenic mouse models of the disease. 
Multiomic data integration identified MAPK as a target for early therapeutic intervention and we validate 
this target in models in vitro and in vivo. 
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Results  
 
Cohort composition and depth of analysis 
To obtain a comprehensive overview of the early molecular changes in sALS, we performed a deep 
multiomic characterization of human postmortem PFC (Brodmann area 6) from 51 neuropathologically 
confirmed ALS patients (35 males; 16 females) and 50 control subjects (22 males; 28 females) (Fig. 1a, 
Table 1, Supplementary Table 1). On average, we detected 19.641 transcripts, 736 miRNAs (mature 
miRNAs and hairpin precursors), and 2.344 proteins per sample (Supplementary Fig. 1). We detected 
the C9orf72 repeat expansion in one ALS patient and another individual carried a previously reported 
pathogenic variant in NEK1 (c.3107 C>G, p.Ser1036Ter) 17 (Supplementary Fig. 2, Supplementary Table 
2). Because two of our ALS cases had a known causative mutation and data on family history for ALS 
was not available from the brain banks, we will refer to all cases simply as "ALS" for clarity and accuracy. 
Four transgenic mouse models were analyzed to identify parallels to human ALS. PFC from 
presymptomatic or early disease stage was collected from C9orf72-, SOD1-, TDP43- or FUS-ALS 
transgenic mice with an equal distribution of wild-type (wt) and transgenic (tg) litter-mates, and sex (n=20 
per model). In mouse tissue, we detected on average 17.020 transcripts, 842 miRNAs (mature miRNAs 
and hairpins), 2.568 proteins, and 6.755 phosphosites. Overall, sample quality was high (Supplementary 
Fig. 3). 
 
Transcriptomic stratification of human ALS into four molecular subclusters 
We first performed a principal component analysis (PCA) to assess the effects of disease, sex and 
sample origin on the transcriptome, revealing a moderate separation by condition (Silhouette score: 0.11 
for ALS, -0.03 for CTR), but a strong separation by sex (Supplementary Fig. 4). We, therefore, analyzed 
differentially expressed genes (DEG) separately for males and females. The number of differentially 
expressed genes (DEGs) was much higher in males (72) compared to females (2) (Fig. 1b, 
Supplementary Table 3). Overrepresentation analysis revealed an upregulation of genes involved in 
retinoic acid and lipid metabolism in females, and a downregulation of extracellular matrix (ECM), 
collagen, and vasculature in males (Supplementary Fig. 5). KEGG pathway analysis showed a 
suppression of complement/cytokine and ECM-receptor signaling and an activation of oxidative 
phosphorylation and glutamatergic synapse in males, whereas in females complement/coagulation was 
decreased, and ribosomal function and oxidative phosphorylation were activated (Fig. 1d). Hierarchical 
clustering for enriched pathways revealed four distinct molecular subgroups: C1-C4. Regulation of 
immune response dichotomized ALS patients best (C1/2 vs. C3/4), whereas second-level arborization 
was mainly driven by ECM (C1 vs. C2), synaptic function, RNA splicing, and protein folding (C3 vs. C4, 
Fig. 1c, Supplementary Table 4). These clusters are reminiscent of previously proposed subclusters 7, 
where C1 and C2 show similarities to “Oxidative stress” (ALS-Ox) (and less to “Retrotransposon 
reactivated” (ALS-TE)), whereas C3 and C4 correspond to the “Glial dysfunction” (ALS-Glia) cluster 
(Supplementary Fig. 6). To characterize the clusters by similarly regulated RNA networks, we performed 
a weighted gene co-expression network analysis (WGCNA 18) resulting in 20 modules (M) (Fig. 1e, 
Supplementary Figs. 8-9, Supplementary Table 5). The  module Mturquoise was enriched for 
mitochondrial respiration and upregulated in C1/2, particularly in males and driven by neuronal 
alterations, suggesting increased oxidative respiration in PFC neurons. The Myellow module was 
enriched for synaptic function and showed a similar regulation in C1/2. In contrast, the Mtan and 
Mlightcyan modules were enriched for immune response and RNA splicing were upregulated in modules 
C3/4 (Fig. 1e,f). In summary, molecular subclusters and sex-specific differences drive the heterogeneity 
in the PFC of ALS patients.  
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Fig. 1 |Study overview and transcriptomic landscape of ALS-affected brains. 
a. Overview of the sample processing workflow. Prefrontal cortex samples were prepared for multiomics 
experiments from the human cohort (51 ALS/50 CTR samples), as well as from 4 selected ALS mouse models 
(C9orf72; FUS; SOD1; TDP43 - 10 TG / 10 CTR animals per group). RNA, DNA and protein lysates were 
prepared for mRNA / small RNA sequencing, targeted DNA sequencing and proteomics / phospho-proteomics 
(ph-proteomics) experiments, respectively. The latter was performed exclusively for animal tissue. 
b. Volcano plot of deregulated genes in human samples. X-axis: log2 fold change (FC); Y-axis: negative log10 
padj of each gene. Blue and orange circles indicate significant differential change: left side = decrease (low in 
ALS), right side = increase (high in ALS).  
c. The heatmap depicts activity scores (calculated by Decoupler) of each pathway throughout the entire ALS 
human cort. Pathways were selected based on their increased occurrence across the different enrichment 
analyses. Pathways are indicated on the y-axis and the ALS samples on the x-axis (top) along with the metadata, 



 

 

sex and age at death. Only selected pathways are shown. A full heatmap of all chosen pathways can be found in 
Supplementary figure 16.  
d. Dotplot analysis of enriched KEGG pathways using ClusterProfiler in male and female samples.The dotplot 
displays significantly enriched pathways in males and females, represented by circles colored by their 
corresponding adjusted p-values (-log10 transformed) on the x-axis and gene count on the y-axis. The size of 
each circle corresponds to the number of genes annotated to the KEGG gene set. Similar pathways were 
summarized. Pathway clusters for human males were composed by the following terms: Retrograde 
endocannabinoid signaling, synaptic vesicle cycle, long-term potentiation, glutamatergic synapse (for synapse 
related terms);  Staphylococcus aureus infection, Malaria, complement & coagulation cascades, cytokine-cytokine 
receptor interaction (for immune system activation/infectious diseases), in order of appearance. Pathway clusters 
for human females were composed by the following terms: Parkinson’s disease, Huntington’s disease, 
Spinocerebellar ataxia, pathway of neurodegeneration - multiple diseases, amyotrophic lateral sclerosis  (for 
neurodegenerative/neurological diseases);  Complement & coagulation cascades, viral protein interaction with 
cytokine & cytokine receptor, Staphylococcus aureus infection, Epstein-Barr virus infection, Influenza A,   
cytokine-cytokine receptor interaction (for immune system activation/infectious diseases), in order of appearance.  
e. Heatmap showing Pearson's correlation of WGCNA modules with each sample group. On the y-achsis each 
cluster of the ALS samples and controls are shown (sub stratified by sex). Representative WGCNA modules were 
selected for the identified ALS clusters (i.e. turquoise (1) and yellow (2) for clusters C1 and C2; tan (3) and 
lightcyan (4) for clusters C3 and C4) and explored further by enrichment analyses. 
f. Enrichment results (over-representation analysis) for each of the selected WGCNA modules (top 5 terms based 
on significance). 
 
The transcriptome of murine ALS models reflects human ALS subclusters 
The strongest transcriptomic changes were observed in the C9orf72 model, reflecting the fast disease 
progression present in this mouse model. Each mouse model was predominantly characterized by the 
deregulation of particular pathways, i.e., immune/inflammatory response in the C9orf72 mice, ERK1/2 
cascade, development and response to H2O2  in SOD1, transcription and endopeptidase activity in 
TDP43. No enrichment was found in the FUS model, which showed the smallest number of DEG (Fig 
2a-e, Supplementary Fig. 8, Supplementary Table 6).  
To assess the degree to which the observed alterations in gene expression reflect changes in the cellular 
composition of the PFC, we estimated cell type fractions for the subclusters of human ALS and mouse 
models using deep learning-based deconvolution 19. Interestingly, human subclusters showed cell 
fraction changes that are reflected in specific mouse models. The SOD1 model and human C1 & 
C2  showed a decrease in glial and endothelial cells and a relative increase in excitatory neurons. The 
C9orf72 model and human C3 are dominated by a strong glial and endothelial cell increase and a 
decrease of excitatory neurons, suggesting strong neuroinflammation and neuronal loss. FUS and 
TDP43 models showed intermediate levels of glial and neuronal cell types (Fig. 2f, Supplementary Fig. 
10). Evidently, transcriptional changes are partially driven by changes in cell composition. Interestingly, 
our data suggest that the neurovascular unit in ALS20 may be differently affected in subgroups of ALS 
patients. Overall, our transcriptomic analyses revealed remarkable similarities between human clusters 
and mouse models: C1 and C2 showed the best correlation with the SOD1 model, whereas C3 
correlated best with the C9orf72 and to a lesser extent with the TDP 43- and FUS-models. Finally, C4 
showed a weak correlation with the FUS model (Fig. 2g). While we observed transcriptional and cell 
composition differences between mouse models and human ALS clusters, we found consistent changes 
in MAPK signaling in TDP43, SOD1, and C9orf72 models as well as in human ALS samples. Moreover, 
analysis of subclusters shows that the classical MAPK pathway is activated in C1 and C2, whereas it is 
downregulated in C3. On the other hand, C1 & 2 show a downregulation of the JNK and p38 MAPK 
pathway, which shows an activation in C3 (Supplementary Fig. 11). Mouse models of ALS thus reflect 
molecular subgroups of human ALS, partially driven by cell fraction changes. Deregulation of MAPK 
pathways is a common theme in both human ALS and mouse transcriptomes. 
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Fig. 2 | Overview of the results for the selected ALS mouse models 
a-d Volcano plot of deregulated genes in the four transgenic mouse models, represented by dots colored by their 
corresponding sex. The x-axis shows the log2 FC between transgenic and wild-type mice, while the y-axis shows 
the negative log10 transformed adjusted p-values. Orange dots represent DEGs in females and blue dots in 
males. 
e Dotplot analysis of enriched GO-BP using genetonic in male and female samples for ALS mouse models. The 
dotplot displays enriched pathways in males and females, represented by circles colored by their corresponding 
adjusted p-values on the x-axis and gene count on the y-axis. The size of each circle corresponds to the number 
of genes annotated to GO-BP gene sets.  



 

 

f Heatmap showing summary of changes in cell type proportions across ALS mouse models and human clusters. 
The indicated changes are the relative difference between median cell type composition of ALS Cluster/TG and 
median cell type composition in corresponding CTR samples. Comparisons are grouped according to their 
similarity using hierarchical clustering with Euclidean distance. 
g Heatmap showing pairwise Pearson correlation of relative changes in median cell type proportions of ALS 
mouse models and human clusters. Comparisons are grouped according to their similarity using hierarchical 
clustering as depicted by the dendrograms. 
 
Differential alternative splicing events represent an early ALS disease mechanism  
TARDBP/TDP43 and FUS regulate alternative splicing and transcript usage for hundreds of genes 21,22. 
Recently, TDP43 was shown to repress cryptic exon splicing events in UNC13A shedding more light on 
its role in the ALS disease mechanism. However, these events are specific to neurons with TDP43 
pathology and thus too rare to be detectable in bulk RNAseq at our sequencing depth and the sequences 
are not conserved in mice. Here, we identified significant differential alternative splicing (DAS) events 
that occur more frequently in male than in female ALS patients (Fig. 3a). DAS in males was observed 
for CLTB, TPRN, NRN1, CAMK2N1, and in females for TPRN and the gene encoding for TMEM170A-
CFDP1, a novel readthrough protein (AC009163.5) (Supplementary Table 14). Genes involved in the 
regulation of kinase activity were particularly enriched in the DAS of male ALS patients (SI Table 7). 
Mouse DAS was more balanced between sexes (Fig. 3b, Supplementary Fig. 12) and we identified 
FINB, CPLANE1 (involved in ciliogenesis and migration), and ATP1B1 (a membrane-bound Na+/K+ 
ATPase) as differentially spliced in male and female models (Fig. 3c), showing enrichment in the terms 
translation and myelin sheath (C9orf72), GTPase activity and myelin sheath (SOD1), translation and 
heat shock protein binding (TDP43), and purine metabolism and basal plasma membrane (FUS) (SI 
Table 7). Early disease mechanisms thus appear to be influenced by splicing events, particularly in 
males. TPRN, a stereocilium-associated protein previously only described in nonsyndromic deafness, 
may have additional roles in the pathogenesis of ALS (Fig. 3d).  
 
Downregulation of hairpin and mature miRNA in males characterize early ALS  
To address the role of miRNA-mediated regulation in ALS disease mechanisms 23, we sequenced small 
RNA species. Male ALS patients showed a stronger (down-)regulation of mature miRNAs and miRNA-
hairpins than females (Fig. 3e,f). The higher number of DE hairpins compared to mature miRNA 
(Supplementary Fig.1) points to early miRNA biogenesis defects as a potential early ALS disease 
mechanism. In males we observed 10 DE mature miRNAs (9 down-, 1 up-regulated), but none in 
females. For miRNA-hairpins, females presented 8 DE species (7 down-, 1 up-regulated), whereas 
males presented 82 DE hairpins (71 down-, 11 up-regulated). Top hits common for both males and 
females included the miRNA-hairpins let-7a-3, miR-26a-1, and let-7f-1 (all down-regulated), and miR-
1227 (up-regulated) (Fig. 3e-h). Enrichment analysis for the targets of DE miRNAs revealed pathways 
involved in cell growth, focal adhesion, integrin binding and kinase activity regulation pointing to the 
ECM/neurovascular unit as an important target of miRNA regulation (Supplementary Fig. 13). Mouse 
models showed the most pronounced DE of miRNAs in the C9orf72 model (targets annotated for cell 
survival/PI3K-Akt-, mTOR-, MAPK signaling), followed by the SOD1 model (cancer and lipid 
metabolism) (Supplementary Fig. 13, Supplementary Table 8). Among the top 5 regulated miRNAs, 
miR-451a was found significantly deregulated across all mouse models and in human ALS patients (Fig. 
3g,h). Targets of hsa-miR-451a, such as MAPK1, AKT1 and BCL2, are known for their role in the 
regulation of cell growth, survival, and anti-apoptosis while others targets are involved in inflammatory 
signaling, such as Il6R, IKBKB, MIF, or extracellular matrix remodeling, e.g., MMP2 and MMP9 (Fig. 3i, 
Supplementary Fig. 14). In addition to pronounced sex-specific regulation of miRNAs, consistent miRNA 
changes related to the regulation of the MAPK pathway, ECM, and inflammatory signaling were 
identified and matched the findings for the transcriptomics dataset, underscoring their role in ALS.  
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Fig. 3 | Differential alternative splicing and miRNAomic profiling 
a-b Differential Alternative Splicing (DAS) analysis. The plot displays the results for human male and female 
samples for various splice events, i.e. alternative exon (AE), skipped exon (SE), Alternative 5' Splice Site (A5),  
Alternative 3' Splice Site (A3), Alternative Last Exon (AL) and retained intron (RI) events. Each event is 
represented by a separate bar, with the height of the bar representing the fraction of significant events in ALS vs. 



 

 

CTRL. The bars are colored in blue for events with significant differential splicing in males, while orange bars 
represent events with significant differential splicing in females. 
c Venn diagram showing the overlap of differentially alternatively spliced (DAS) genes in four transgenic mouse 
models (TDP43, FUS, C9orf72, and SOD1) for the ALS vs CTRL comparison. Each circle represents the number 
of genes with significant differential splicing in each model. The overlapping regions between the circles represent 
the number of genes with significant differential splicing in more than one model. 
d Enrichment of selected themes for DAS genes in four transgenic mouse models and human, in male and 
female samples, and percentage of genes in each functional term. The plot displays two sets of information: the 
enrichment of DAS genes in different samples, and the percentage of genes in each functional term. The y-axis 
represents the percentage of genes in each term, while the x-axis displays the different functional terms. The bars 
are colored by sex and the different mouse models and human samples.   
e - f Volcano plots showing the differential expression of miRNA in male and female human samples for mature 
miRNA (e) and hairpin miRNA (f). The plots display the log2 fold change (x-axis) and the negative log10 adjusted 
p-value (y-axis) for each miRNA between the male and female samples. The miRNAs are represented as dots in 
the plot, and the color of the dots indicates the significance of the differential expression (blue male and orange 
female). 
g-h The heatmaps display the log2 fold change of the top miRNAs in female and male samples of mouse and 
human datasets. The miRNAs were selected based on the ordered absolute log2 fold change per dataset. Red 
color indicates upregulation of miRNAs, while blue color indicates downregulation of miRNAs. The statistical 
significance of differential expression of the miRNAs was inferred using DESeq2, and is indicated by stars. 
**P<0.01 and *P<0.05 represents statistical significance at a high and moderate level, respectively.  Top 5  
miRNAs, which are significant differentially expressed in at least two mouse models, were shown. 
i Protein-protein interaction (PPI) network of the target genes of miRNA451a. MAPK1, AKT1, IKBKB, MYC, BCL2 
and IL6 appear as important molecular hubs. 
 
Human proteomic landscape most closely correlates with the TDP43 model  
Next, we assessed proteomic signatures of early ALS using mass spectrometry. In human samples, we 
detected 49 (30) differentially expressed proteins (DEPs) in males (females), Annexin A2 (ANXA2) being 
the only protein down-regulated in both sexes (pvalue<0.1). Interestingly, we identified several 
neurodegeneration-related proteins, such as MATR3, SPART and SCNA (involved in genetic forms of 
ALS, spastic paraplegia-causing, and Parkinson’s disease, respectively) (Fig. 4a, Supplementary Table 
9). The projection of transcriptomic clusters onto the proteomic data did not reproduce the subclustering, 
likely because of the much smaller number of mapped entities (Supplementary Fig. 16). Functional 
enrichment and unsupervised clustering identified pathways with relevance in both sexes, such as 
synaptic function, immune response, and ECM/cytoskeleton. In contrast, transmembrane transport, lipid 
metabolism, development, and catalytic activity were enriched in females, whereas cell metabolism was 
captured for males (Fig. 4b,c, Supplementary Table 10). In mice, proteomic analyses revealed the 
strongest changes in the C9orf72 model, where sequestosome 1/p62, the product of the ALS-causing 
SQSTM1 gene 24, showed the strongest upregulation pointing to reduced autophagic flux in this dipeptide 
accumulation model25 (Supplementary Fig. 17-18). pSQSTM1 was also significantly up-regulated in the 
phospho-proteomic analysis (Supplementary Fig. 19). SOD1 males showed one up-regulated DEP, 
Exportin-1 (XPO1), which is a major regulator of nuclear RNA export. This corresponds to increased 
XPO1 gene expression in this model and was also observed in TDP43 females, FUS-males and both 
sexes in the C9orf72 model (Supplementary Table 3). To compare GO term enrichments in human and 
animal proteomics, we used clustering in semantic space26. Human proteomics results showed a 
clustering for the mechanisms differentiation and development (females: clusters 3, 4, 7, 11; males: 
cluster 8), synapse and immune / defense response (Fig. 4e,f). In contrast, the enrichment in the 
C9orf72 model was shaped by clusters for RNA processing, ribosome, translation, ATP synthesis, 
development, cell adhesion, transport, and synapse. Remarkably, the SOD1 model showed a strong 
clustering for ATP synthesis, mitochondrial respiration, translation, and vesicle-mediated transport. 
Enrichment analysis thus underscored the pathways previously identified in our RNA sequencing data. 
Overall, the human proteome showed the strongest similarities with the TDP43 model. Several mouse 
models (especially males) showed increased XPO1 expression, a protein that is therapeutically targeted 
with the inhibitor BIIB100 in ALS27 (Fig. 4d, Supplementary Fig. 20). 
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Fig. 4 | Proteomics overview and multiomics factor integration 
a Volcano plot of deregulated proteins in human samples. X-axis: log2 fold change (FC); Y-axis: negative log10 
padj of each protein. Blue and orange circles indicate significant differential change: left side = decrease (low in 
ALS), right side = increase (high in ALS). 
b-c Revigo based summary of  proteomics gene set enrichment results for the human samples (left females and 
right males). The plot summarizes the functional similarity of the proteins by reducing redundant GO BP terms 
and clustering the remaining non-redundant terms. The plot is divided into several areas, each of which 
represents a cluster of similar GO BP terms. The size of the circles represents the number of genes in  the GO 
BP terms, and the color represents the significance  



 

 

d-e Plots displaying the results of a GO enrichment analysis of the proteins identified in the proteomics data for 
the four mouse models (TDP43, FUS, C9, and SOD1) humans separated by sex. The GO terms were 
summarized by clustering pathways in the semantic space based on their descriptions with the GO-Figure 
clustering tool. 
f Pearson correlation of log2 fold change of proteins found to be significantly deregulated (p-value < 0.1) in any 
mouse model or human samples. Comparisons are grouped according to their similarity using hierarchical 
clustering as depicted by the dendrograms. 
g The MOFA analysis was performed to integrate and visualize the transcriptomics, proteomics, mature & hairpin 
miRNA data in male and female samples. UMAP representation showing the distribution of the human male (blue) 
and female (orange) samples.  
h Variance decomposition plot showing the contribution of each factor in the MOFA analysis to the overall 
variance of the integrated dataset separated by sex. The plot displays the variance explained by transcriptomics, 
proteomics, mature and hairpin miRNA for human male and female samples. The y-axis represents the different 
omics, and the x-axis represents the different factors in the analysis (left: males, right: females). Blue color 
indicates the proportion of explained variance, while red color indicates Pearson correlation with the condition. 
i The MOFA weight plot for miRNA human males data (Factor 3) displays the contribution of each gene to the 
MOFA model. Each line represents a gene, the x-axis shows the MOFA weight for that gene, reflecting its 
importance in the factor. T.  
j The MOFA weight plot for proteomics human females data (Factor 12)  displays the contribution of each protein 
to the MOFA model. Each line represents a protein, the x-axis shows the MOFA weight for that protein, reflecting 
its importance in the factor.  
k Protein-protein interaction (PPI) network of the genes in factor 12 female. MAPK1 is an important molecular hub 
and interacts with PEA15, PRRT2, MEK2, DUSP6, HSPA4 and HSP90AA1. Further proteins of interest are 
highlighted (bold/dark purple). 
 
Integration of multiomic data reveals sex-specific molecular networks of ALS 
We made use of various omics modalities to uncover molecular pathways associated with early ALS-
related changes. Here, we employed a biologically motivated approach that focused on identifying valid 
interaction triplets involving transcripts, miRNAs, and proteins. We found the miR-769-3p-Anxa2-ANXA2 
triplet particularly intriguing, as ANXA2 was the only common differentially expressed protein in both 
sexes. The triplet miR-484-Lamb2-LAMB2 indicated the downregulation of the ECM-component Laminin 
subunit Beta 2, which is consistent with the identified alterations in the ECM/neurovascular junction 
compartment (see Fig. 1). We also identified triplets related to the regulation of the cytoskeleton 
component Vimentin, involving potential miRNA regulators such as miR-1301-3p, miR-138-5p, miR-16-
5p, miR-26b-5p, and miR-320a (Supplementary Fig. 21, Supplementary Table 11). Valid quadruplets in 
mouse models, including phosphoproteomic data,  highlighted GFAP, SQSTM1, ATXN2L, and XPO1 
as salient target proteins (Supplementary Fig. 22, Supplementary Table 11). Importantly, GFAP has 
recently emerged as a potential marker for neurodegenerative disorders, and XPO1 is a therapeutically 
targeted protein in ALS. 
Following the biologically motivated triplet and quadruplet analysis, we conducted an unsupervised 
integration of transcriptomic, small RNA and proteomic data using Multi-Omics Factor Analysis 
(MOFA)28. As sex was an important differentiating factor (Fig. 4g), MOFA was performed for each sex 
independently (Fig. 4h). To identify overarching terms of relevance beyond the transcriptomic 
subclusters, we included all patients in this analysis. In males, factor 1, mainly driven by hairpin sRNA, 
explained 23.7% of the variance. A downregulation in ALS of hsa-miR-7851, -1285-1, -5096 and a 
cluster of hsa-miR-1273 isoforms strongly contributed to its weight (Supplementary Fig. 24). MAPK1 
took a central role among the miR-1273-targets (Supplementary Fig. 26). The transcriptome-based 
factor 3 correlated best with the disease condition and was driven by genes responsible for vesicular 
function (RAB3C, NSF), oxidative phosphorylation (ND1, ND2), cell survival (BCL2, BHLHB9) and RNA 
metabolism (SNORA73B, RN7SL2). This factor also contained miR-3648-2, which was shown to recruit 
amyloid precursor protein intracellular domains, regulating survival and neurogenesis29. Proteome-
dominated factor 4 contains ZO2 and CD44, which are involved in myelination and BCNSB formation. 
Finally, factor 7, which also showed a strong correlation with disease condition, was dominated by 
neurofilament isoforms (NFH, NFM, NFL) as well as proteins involved in Ca-binding (HPCL4) and ECM 
formation (PGCA) (Supplementary Fig. 24). In females, factors 1-3 explained 42.6% of the variance, but 
factors 10 and 12 correlated best with the disease condition (Fig. 4h). Synaptic genes, such as RAB3C, 
NAPB, SNAP25, contributed to factor 1 and were upregulated in ALS. hsa-miR-1285-1, miR-5096 and 
the miR-1273 cluster were also contributing to factor 2, similar to factor 1 in males. Factors 3 and 7 were 
similar to male factor 4, including oligodendrocyte-/myelin markers as well as CD44 and ZO2 (Fig. 4i). 
Factor 10 contained antiproteases SERPINA1 and SERPINA330 as well as chitinases CHI3L1 and 
CHI3L2, which are known biomarkers for ALS31 (Supplementary Fig. 25). Factor 12 showed 
downregulation of neurofilament heavy isoform (NFH) as well as the MAPK-ERK1/2-regulator PEA15 
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(Fig. 4j). MOFA analysis on one hand, underlined mechanisms that were identified in individual omics 
analyses, such as the downregulation of miRNA clusters (particularly in males, Supplementary Fig. 27), 
ECM components and oligodendrocyte/myelin markers. This unbiased data integration strategy 
highlighted known ALS biomarkers (neurofilaments, chitinases) and the MAPK pathway, especially in 
females, as important molecular hubs (Fig. 4k). 
 
MAPK pathway emerges as therapeutic target based on multi-omic data integration 
Single omic analyses revealed several molecular signaling pathways suitable as pharmacological 
targets, which could be more appropriate for different subclusters or sexes of ALS patients. Currently 
licensed drugs target glutamatergic synapse function (by Riluzole), oxidative stress (by the antioxidant 
Edaravone), mitochondrial function (by TUDCA/Phenylbutyrate), or SOD1 itself (by the antisense 
oligonucleotide Tofersen). Major mechanisms revealed in our analysis, such as immune response and 
ECM/BCNSB function are not yet addressed by licensed drugs. Although multiple molecular pathways 
identified in our analysis would merit therapeutic validation, we decided to focus on the MAPK pathway, 
which was altered consistently in humans (albeit stronger in females) and mouse models, across several 
data types, integration methods, and the different subclusters. More specifically, we concentrated on 
mitogen-activated protein kinase kinase 2 (MAP2K2 or MEK2) since it appeared upregulated in human 
PFC and multiple mouse models and is central in the female-specific ALS-associated cluster 12 (Fig. 
4k, Supplementary figure 11). Furthermore, MEK2 can be modulated by the FDA-approved inhibitor 
trametinib.(PMID: 23237773).  
 
Validation of MEK2 inhibition by trametinib in vitro and in vivo 
First, we used primary cortical neuronal cultures (PCNC) from P0-1 B57/Bl6 mice, which were treated 
with glutamate as an in vitro model of excitotoxicity in ALS 32. Treatment with 5mM (6h) glutamate did 
not affect MEK2 protein expression  but significantly increased phospho-Erk1/2 levels. Application of 
trametinib attenuated glutamate-induced phosphorylation of Erk1/2. Glutamate intoxication also 
increased cell death (caspase-positive neurons) and reduced the average neurite length, both of which 
could be counteracted by trametinib (Fig. 5a-f, Supplementary Fig. 28). Our data suggests that 
trametinib attenuates MEK2 activity, reduces Erk1/2 phosphorylation resulting in decreased cell death 
and increased neurite outgrowth under excitotoxic stress. 
To validate the importance of the MAPK pathway in vivo, we selected the  SOD1 mouse model, which 
shows the strongest similarities with the largest human ALS subcluster (C1/2) (Fig. 2h). We observed 
strong MEK2 phosphorylation in the motor neurons of the spinal cord, the main tissue involved in the 
pathology in this animal model 33 (Fig. 5g,h). In females, pMEK2 substantially increased with disease 
progression, while in male pMEK2 returned to control levels after week 14 (Fig. 5i). We treated SOD1 
mice for 7 weeks with trametinib, starting from week 9 (presymptomatic stage) and we observed a 
reduction of ERK1/2 phosphorylation compared to vehicle-treated mice in female and male mice (Fig. 
5j). Trametinib significantly reduced the autophagy receptor p62 in the spinal cord of female, but not 
male mice, in agreement with its previously described neuroprotective role by increasing autophagy 
through TFEB activation34 (Fig. 5k). p62 also co-localizes with ubiquitin and mutant SOD1 in protein 
aggregates35. Accordingly, we detected a significant reduction of detergent-insoluble SOD1 and ubiquitin 
in trametinib-treated females, but not in males (Fig. 5l,m). Finally, we investigated whether trametinib 
has an effect on neurodegeneration. Neurofilament light chain (NfL) plasma concentration 36 was 
significantly reduced after trametinib-treatment in female SOD1 mice (Fig. 5n). The striking sex 
difference in the trametinib response correlates with the increase of MEK2 phosphorylation during 
disease progression in female, but not in male SOD1 mice. In conclusion, trametinib has shown marked 
effects on the clearance of protein aggregates leading to neuroprotection in female SOD1 mice, 
suggesting that MEK2 is a promising therapeutic target for ALS, particularly in females. 
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Fig. 5 | Validation experiments 
a-b Effects of different concentrations of Trametinib on apoptosis in glutamate (5 mM) and non-glutamate treated 
cells analyzed by immunostaining. Representative photomicrographs for two of the analyzed conditions (control 
[vehicle]; 200 nM Trametinib). Scale bar: 40µm. c-d Quantification plots showing effects of the treatment with 
Trametinib on cell survival (caspase 3 staining) (c) and on neurite outgrowth (d), for glutamate-treated / vehicle-
treated (control) treated cells, for all analyzed conditions (control [vehicle]; 2 nM Trametinib; 20 nM Trametinib; 
200 nM Trametinib). Data are the mean ± SEM of at least 5 different cultures and tested by one-way Anova. 
e-f. Western blot analysis and quantification of Trametinib effects on Phospho-Erk1/2 with and without glutamate 
treatment. Data are the mean ± SEM of at least 3 different cultures and tested by one-way Anova, P < 0.05. 
g-h Diffuse pMEK2 immunostaining shown in the lumbar spinal cord of non-transgenic (g) and SOD1G93A mice 
(h) at 19 weeks of age. In ventral horns, pMEK2 staining is mainly present in motor neurons cells. Scale bar: 50 
µm.  
i Western blot analysis for pMEK2 in lumbar spinal cord of SOD1G93A and Ntg mice at 9, 14 and 19 weeks of 
age. Data are mean ± SEM (n=6-4 in each experimental group) and are expressed as relative immunoreactivity 
(RI).  *p < 0.05 by pairwise TukeyHSD after one-way ANOVA. Dot blot analysis for pERK1/2 (j), p62 (k), insoluble 
SOD1 (l) and ubiquitin (m) in spinal cord of SOD1G93A female and male mice, treated with Trametinib or vehicle, 



 

 

at 16 weeks of age.  Data are mean ± SEM (n=3/5 in each experimental group) and are expressed as relative 
immunoreactivity (RI). *p < 0.05 by Student's t test. NFL plasma levels were analysed in female and male (n) 
SOD1G93A mice treated or not with Trametinib at 16 weeks of age. Data are mean ± SEM (n =3/5 in each 
experimental group). *p < 0.05 by Student's t test. 
Discussion 
In this study, we conducted individual and combined analyses of multiple omics data types to obtain a 
comprehensive understanding of the molecular architecture of ALS in the PFC, an area that is affected 
at later stages by TDP43 pathology and has therefore the potential to reveal early disease mechanisms 
8.  
Almost all of our analyses were characterized by marked sex-specific differences, which were often 
more pronounced in males than in females. ALS has a slightly higher prevalence in males37 and sex-
specific differences in blood of ALS patients have been previously identified38,39. Sex-dependent 
therapeutic responses were previously observed in ALS mouse models40,41, but current therapeutic 
options do not consider patient sex in the differential therapy and neither do clinical trials or the 
guidelines of the Food and Drug Administration for clinical trial design (FDA, 
https://www.fda.gov/media/130964/download). Our data, especially the sex-specific differences in 
MAPK signaling and therapeutic tractability, argues for a stronger consideration of sex as covariate in 
clinical trials for ALS.  
Phenotypic heterogeneity, as reflected by stratum of onset or speed of disease progression, is clearly 
recognized in ALS42, and previous transcriptomic analyses suggested molecular subtypes 12. We 
identified four clusters in our human ALS cohort based on the transcriptome, which partially mirror 
previous findings that suggested a clustering of ALS patients into ALS-Ox, ALS-Glia and ALS-TE 
subgroups (Tam et al.). Whereas the ALS-Glia and ALS-Ox clusters can be correlated to our clusters 
C1/2 and C3/4, respectively, the ALS-TE cluster finds only marginal representation in our data. As we 
analyzed the PFC, an area in which TDP43 aggregation is observed later than in the motor cortex, our 
data supports the finding that ALS-TE is driven by TDP43 dysfunction 7. Moreover, this suggests that 
molecular subclusters in ALS may evolve as a function of time and are subject to change in the course 
of the disease. This should be further explored on the level of liquid biomarkers and could have 
implications for patient stratification and inclusion into personalized clinical trials. 
Furthermore, we suggest that the molecular phenotype in the four mouse models analyzed here can be 
approximated to these clusters and that these models can therefore serve as surrogates for the 
molecular subgroups in human ALS. Interestingly, the oldest and so-far most frequently used model, 
the SOD1.G93A mouse, correlated best with the largest cluster C1/2. Although the SOD1 mouse is not 
representative of all human ALS cases, our analyses suggest that the pathways dysregulated in this 
model represent an important subgroup in this population. 
The integrated analysis of multiple omics data types identified several deregulated disease-relevant 
pathways that were previously attributed to ALS, i.e. mitochondrial respiration/oxidative stress, 
transcriptional regulation/splicing, and protein misfolding2. In addition, we also identified pathways that 
have been less prioritized previously, including dysregulation of the ECM and BCNSB, or the MAPK 
pathway. The deregulation of multiple pathways, which are in part only distantly related, suggests that 
future therapeutic approaches should consider the combination of multiple drugs in order to address 
human ALS mechanistically. 
While we found evidence for a female-predominant deregulation of the MAPK pathway in the integrated 
MOFA analysis, it did not contribute to the separation of clusters C1-C4. Therefore, the MAPK pathway 
could be an interesting therapeutic target for all human ALS subgroups. MAPKs are fundamental signal 
transducers that are involved in proliferation, differentiation, cell survival and death43. Extracellular and 
intracellular signals are integrated by MAPK and an overactivation of MAPK signaling, e.g., abnormal 
phosphorylation of ERK1/2, has been reported in human ALS and ALS mouse models44. Increased 
phosphorylation of ERK1/2 is also observed in our glutamate toxicity model and phospho-MEK2 is 
increased in the SOD1 mouse model, reproducing the aberrant activation of this pathway, which could 
be restored with the MEK2-inhibitor trametinib. However, this effect was most pronounced in female 
animals, arguing for sex-specific efficacy.  Sex-specific differences in ALS pathomechanisms constitute 
a relevant but yet unadressed point in ALS research.  Currently, one clinical phase I/II trial examines the 
safety, tolerability and efficacy of trametinib in patients with ALS 
(https://clinicaltrials.gov/ct2/show/NCT04326283) and our data argues for an independent evaluation of 
male and female patients. In addition, our results propose the ECM, the immune response and the RNA 
processing machinery as potential targets for therapeutic intervention, which need to be explored in 
more detail in subsequent studies.  
Despite the limitations of our study (e.g. analysis of postmortem-tissue limits the assessments to a 
retrospective view only; limited number of well characterized postmortem brain samples), we aimed at 
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overcoming them to provide valuable insights into the molecular architecture of ALS. Although more 
than one hundred brain samples were studied and allowed us to identify molecular subclusters, a larger 
number could yield an even more granular analysis of molecular subgroups. Nevertheless, analyzing 
PFC tissue allowed us to study the disease in earlier stages, providing a unique perspective compared 
to previous studies. Our robust multiomic, computational and integrative approaches led to the 
identification of subclusters that are reminiscent of previous ones, but show clear differences. Our 
findings also highlight the importance of splicing and transcript usage as early regulators of disease, 
with several ALS-related genes involved in these mechanisms. Overall, our study represents a 
significant step forward in unraveling the complexity of ALS and provides a foundation for further 
research in this field. 
An important goal of our study was the comparison of human brain tissue and samples from transgenic 
mouse models of ALS. Although we find clear correlations of mouse models and molecular clusters in 
sALS, we acknowledge that the four mouse models analyzed here, represent four particular scenarios 
and that for each of the four genes studied in these models also other mouse models exist, which could 
potentially yield other results45. Our study also does not consider the analysis of the DNA methylation 
status and we did not study other post-translational modifications, such as glycation, methylation, or 
acetylation all of which could yield additional information about ALS-specific dysregulation, as much as 
a single cell-based analysis could yield another layer of detail.        
In this deep multiomic data integration of human ALS tissue and animal models, we highlight clear sex-
specific differences in the pathology of ALS, identify molecular clusters and advocate for their stronger 
consideration in clinical trials and the development of novel therapeutic strategies. Validation of omics 
results should rely on multiple systems as each individual mouse model system only reproduces parts 
of human pathology. Our data suggest additional molecules and pathways for validation as therapeutic 
targets for ALS and support further exploration of the MAPK pathway for ALS treatment.  
 
Methods  
 
Human postmortem prefrontal cortex samples 
Human prefrontal cortex samples were provided by four different brain banks: the Netherlands Brain 
Bank, King's College London Brain Bank (London Neurodegenerative Diseases Brain Bank), 
Parkinson‘s UK Brain Bank, Oxford Brain Bank. In total, 51 ALS and 50 CTR samples (without signs of 
neurodegeneration) were included. Frozen tissues were shipped on dry ice to the Department of 
Neurology at the Klinikum rechts der Isar of the Technical University of Munich and stored at -80°C 
(Supplementary Table 1). Ethical approval for the use of human tissue was obtained from the Ethics 
Commission (EC) of the University Medical Center Göttingen (2/8/18 AN) and the EC of the Technical 
University Munich (145/19 S-SR). For sampling, prefrontal cortex blocks were transferred to a cryostat 
chamber at -20°C and punched with a 20-G Quincke Spinal Needle (Becton Dickinson). ∼20 mg tissue 
was collected into RNAse/DNAse free tubes and kept at -80°C until further use. 

ALS animal models 
Four transgenic mouse models covering the most frequent ALS-causing genes were used for multiomic 
studies. Animal handling and all animal experiments in this study were performed in accordance with 
the applicable animal welfare laws and approved by respective regulatory organs from the involved 
research centers. Mice were housed in standard cages in a pathogen-free facility in a 12-h light/dark 
cycle with ad libitum access to food and water. B6;129S6-
Gt(ROSA)26Sortm1(TARDBP*M337V/Ypet)Tlbt/J mice 46 (here simply called TDP43-mice) were 
provided by the Department of Translational Neuroscience of the University Medical Center Utrecht. 
This model was generated by inserting an 80 kb genomic fragment carrying the human TDP43 locus 
(including a patient-derived M337V mutation). TDP43 transgenic and control wild-type animals were 
sacrificed at the age of 26 weeks (presymptomatic stage) for biomaterial collection. B6SJL-
Tg(SOD1*G93A)1Gur/J mice 33 (here simply called SOD1-mice) were provided by the Laboratory of 
Translational Biomarkers, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri” (IRFMN) Milano. 
High-copy number B6 congenic Tg(SOD1*G93A)1Gur/J SOD1*G93A male mice from Jackson 
Laboratory were bred with C57BL/6 female mice to obtain non-transgenic and mutant transgenic 
G93A*SOD1-expressing mice. SOD1 transgenic and control animals were sacrificed 14 weeks after 
birth (presymptomatic stage). (poly)GA-NES/C9orf72(R26(CAG-Isl-175GA)-29xNes-Cre) mice 47 (here 
simply called C9orf72-mice) were provided by the German Center for Neurodegenerative Diseases in 
Munich. Animals were generated by electroporating plasmids for conditional expression of DPRs which 
were produced by inserting GFP-(GA)175 genes (encoded using non-repeating alternate codons) 
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downstream of a floxed stop-cassette in the pEX CAG stop-bpA vector, into murine RMCE embryonic 
stem cells at the Rosa26 Safe Harbour. Mouse lines GAstop with germ-line transmission were 
backcrossed to the C57Bl6N background until >98% purity was confirmed using SNP genotyping. 
C9orf72 transgenic and control animals were sacrificed at 4.5 weeks after birth (early symptomatic 
stage). Tg(Prnp-FUS)WT3Cshw/J mice 48 (here simply called FUS-mice) were provided by the 
Laboratory of Translational Biomarkers, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milano, 
and were sacrificed at 4 weeks after birth. For each model, 10 transgenic and 10 non-transgenic mice, 
balanced for sex, were selected.  
 
Preparation of prefrontal cortex from ALS mouse models 
Mice were perfused with 50 mL ice-cold PBS prior to the microdissection. The head was removed by 
cutting at the base of the skull followed by removing the skin. The skull was removed through the small 
cuts and mouse brains were microdissected in order to isolate the prefrontal cortex region from both 
hemispheres. The olfactory bulb and the cerebellum were removed by cutting at the cerebellar peduncle, 
starting from the olfactory bulb (OB) and continuing along the interhemispheric fissure using tweezers 
with fine tips. Cortex was then lifted from the rest of the brain and removed. Incisions were made in the 
middle of the cortex in order to remove the PFC (Supplementary Fig. 25). Freshly prepared PFC were 
collected into nuclease-free tubes, and kept at -80°C until RNA and protein isolation experiments. 
 
RNA and DNA isolation from human and mouse tissue samples 
Total RNA was isolated from human and animal prefrontal cortex samples using Trizol Reagent (Sigma 
Aldrich, Taufkirchen, Germany). All RNA-related experiments were performed under an RNA-
workstation fume hood. Briefly, 500 μl of TRI Reagent was added to each sample and tissues were 
homogenized using plastic homogenizer, followed by addition of 50μl of 1-Bromo-3-Chlor-Propane 
(Sigma Aldrich, Taufkirchen, Germany). The reaction tubes were mixed by inversion for 10 - 15 seconds 
and incubated at room temperature for 3 minutes. The lysates were centrifuged at 12.000 x g for 15 
minutes / 4°C, leading to phase separation. The RNA-containing aqueous phase was collected and 
transferred to a fresh Nuclease-free tube. RNA precipitation was performed by adding 250 μl of 2-
propanol (AppliChem, Darmstadt, Germany) and 2 μl GlycoBlue Co-precipitant (15 mg/ml) 
(ThermoFisher, Waltham, MA, USA), followed by mixing and overnight incubation at -20°C. The day 
after, samples were centrifuged at 12.000 x g for 30 minutes / 4°C, the supernatant was discarded and 
the RNA pellets were washed three times with 75% ice-cold ethanol (AppliChem, Darmstadt, Germany). 
The pellets were air-dried for a few minutes under the fume hood. Pellets were reconstituted with 15-20 
μl of Nuclease-free water (Sigma Aldrich, Taufkirchen, Germany) followed by 2 minutes of incubation at 
55°C in a thermoshaker in order to completely dissolve the RNA. After the RNA isolation, a DNAse 
treatment was performed in order to remove any DNA contamination from the samples. For that, 5μl of 
10X DNAse I Incubation buffer (LifeTechnologies, Carlsbad, CA, United States), 5μl DNase I (2U/μL) 
and 0.5μl - RNase OUT (40U/μl) were added to each sample. Samples volume was filled up to 50 μl by 
the addition of Nuclease-free water, followed by incubation at 37°C for 20 minutes. Finally, the RNA 
samples were cleaned and concentrated with the RNAClean & Concentrator-5 KIT (Zymo Research, 
Irvine, CA, USA), following the manufacturer’s instructions. 
DNA isolation from human midbrain samples was performed with the QIAamp DNA Mini Kit following 
the manufacturer’s instructions. Directly after RNA / DNA isolation, nucleic acid concentration and purity 
were measured in the NanoDrop One spectrophotometer (ThermoFisher, Waltham, MA, USA). RNA 
integrity was assessed with the Agilent 6000 NanoKit in the 2100 Bioanalyzer (Agilent). 
 
DNA Sequencing Experiments and C9orf72 repeat expansion analysis 
Prior to DNA sequencing experiments, the quality of the isolated DNA was determined with a 
TapeStation 4200 (Agilent, Santa Clara, California, USA). The Ampliseq protocol (Illumina, Inc, 
California, USA) was used in the succeeding steps. We used a target panel of 566 amplicons covering 
30 ALS related genes: TARDBP; DCTN1; ALS2; ERBB4; TUBA4A; CHMP2B; NEK1; MATR3; SQSTM1; 
FIG4; C9orf72; SIGMAR1; VCP; GLE1; SETX; OPTN; HNRNPA1; KIF5A; TBK1; ANG; SPG11; CCNF; 
FUS; PFN1; MAPT; VAPB; SOD1; CHCHD10; NEFH; UBQLN2. Using this panel, the DNA samples 
(50-100 ng) were amplified, 14 PCR cycles were used. The amplicons were digested and the AmpliSeq 
CD indexes were ligated for multiplexing.  The quality and quantity of the enriched libraries were 
validated using the TapeStation 4200 (Agilent, Santa Clara, California, USA).  The average fragment 
size of the amplified product was approximately 480 bp. The libraries were normalized to 9 nM in Tris-
Cl 10 mM, pH8.5 with 0.1% Tween 20. The MiSeq (Illumina, Inc, California, USA) was used for cluster 
generation and sequencing according to standard protocol. Loading concentration was 9pM and 15% 
of phiX was added. Sequencing configuration was paired-end 250 bp. C9orf72 repeat expansion 
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analysis was performed using the Asuragen  Amplidex® PCR/CE  C9orf72 Kit (Asuragen a Biotechne 
Brand,  2150 Woodward St., Suite 100 Austin, TX 78744 USA). In brief DNA samples (n=51, 40ng each) 
were amplified using the three-primer GGGCC -Repeat Primed (RP) configuration (combining flanking 
primers and GGGCC-repeat specific Primer). This configuration allows sizing of GGGCC alleles up to 
145 repeats and the detection of expanded GGGCC Alleles > 145 Repeats simultaneously. PCR 
conditions were as follows. Initial denaturation 5min/98°C; 37 cycles: 35s/ 97°C, 35s/ 62°C, 3min/ 72°C; 
final elongation 10min/ 72°C). Capillary electrophoresis was carried out on an ABI 3730 (Applied 
Biosystems, Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA) using the ROX 1000 sizing 
ladder (Asuragen), followed by analysis with GeneMapper 4.0 software (Applied Biosystems) and 
conversion of peak size to GGGGCC repeat length via calibration curve method according to 
manufacturer's instructions. 
  
Preparation of RNA libraries 
mRNA and small RNA sequencing experiments were performed in the Functional Genomics Center in 
Zurich. For the mRNA sequencing, total RNA libraries were prepared using either the TruSeq Stranded 
mRNA (Illumina, Inc, California, USA)(Short Read Sequencing), or the SMARTer® Stranded Total RNA-
Seq Kit v2 -Pico Input Mammalian (A Takara Bio Company, California, USA)(Short Read Sequencing). 
Briefly, for the TruSeq protocol, total RNA samples (100-1000 ng) were poly-A enriched and then 
reverse-transcribed into double-stranded cDNA. The cDNA samples were fragmented, end-repaired and 
adenylated before ligation of TruSeq adapters containing unique dual indices (UDI) for multiplexing. 
Fragments containing TruSeq adapters on both ends were selectively enriched with PCR. This produces 
a smear with an average fragment size of approximately 260 bp. The libraries were normalized to 10nM 
in Tris-Cl 10 mM, pH8.5 with 0.1% Tween 20. For the SMARTer® Stranded Total RNA-Seq Kit v2 -Pico 
Input Mammalian protocol, total RNA samples (0.25–10 ng) were reverse-transcribed using random 
priming into double-stranded cDNA in the presence of a template switch oligo (TSO). This results in a 
cDNA fragment that contains sequences derived from the random priming oligo and TSO. PCR 
amplification using primers binding to these sequences adds full-length Illumina adapters, including the 
index for multiplexing. Ribosomal cDNA is cleaved by ZapR in the presence of the mammalian-specific 
R-Probes. Remaining fragments are enriched with a second round of PCR amplification using primers 
designed to match Illumina adapters. The product was a smear with an average fragment size of 
approximately 360 bp. These libraries were normalized to 5nM in Tris-Cl 10 mM, pH8.5 with 0.1% Tween 
20. The quality and quantity of the isolated RNA and the enriched libraries were validated using a 
Fragment Analyzer (Agilent, Santa Clara, California, USA) (for the TruSeq kit) and the Tapestation 
(Agilent, Waldbronn, Germany) (for the SMARTer® Kit). 
 
Cell-type deconvolution analyses 
We performed single cell reference based cell-type deconvolution on RNAseq of mouse models using 
Scaden19. We used adult healthy scRNA-seq datasets for mouse55 and human56). Scaden uses a fully-
connected deep neural network ensemble trained on pseudo-bulks simulated from the reference 
scRNA-seq data. Before deconvolution, we filtered scRNA-seq data using Scanpy57 to maintain at least 
200 genes expressed per cell and at least 5 cells to have one gene’s expression. For Scaden, counts 
per million (CPM) of simulated pseudo bulks and TPMs of the data to be deconvolved was used. Here, 
CPM was used for scRNA-seq instead of TPMs because the scRNA-seq consists of UMI counts and 
does not include gene-length bias. We used a variance cutoff of 0.01, and mean squared error 
calculated over each batch as loss. 
 
Differential Alternative Splicing analysis (DAS) 
The study used the splicing tool SUPPA2 (version 2.3) to calculate the differential alternative splicing 
for seven alternative splicing events, including exon skipping, mutually exclusive exons, intron retention, 
alternative 3' splice site, alternative 5' splice site, alternative first exon, and alternative last exon. 
SUPPA2 was used with multipleFieldSelection() to select the TPM values of transcripts, followed by 
generateEvents with the parameters -f ioe -e SE SS MX RI FL and annotation files GENCODE 
v37 for human data and GENCODE vM26 for mouse data. The inclusion values (PSupplementary) were 
calculated with psiPerEvent and the differences in PSupplementary 
(deltaPSupplementary/ΔPSupplementary) between mutant and control conditions were determined 
using diffSplice with parameters -m empirical -l 0.05 -gc –save tpm_events to detect 
anomalies in the splicing landscape. 
 
Multi-Omics Factor Analysis (MOFA) 
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We used Multi-Omics Factor Analysis (MOFA) 2 v1.4.0 to integrate data from multiple omics levels, 
including transcriptomics, miRNA, proteomics, and phosphoproteomics, for mouse models of 
neurodegenerative diseases. The MOFA model was trained on the data and downstream analyses were 
performed. Each omics type was preprocessed in its own way and the default training parameters were 
used. The MOFA models were initialized with 15 initial factors and convergence was reached when the 
ELBO value did not change more than a deltaELBO value of 1e-4%. 
 
RNA Sequencing 
SequencingSequencing was done using the Illumina platforms NovaSeq 6000 (for transcriptomics) and 
HiSeq 2500 (for small RNA sequencing) (Illumina, Inc, California, USA) according to the standard 
protocols. Small RNA sequencing was processed with the use of the RealSeq-AC miRNA (SomaGenics, 
California, USA) (Short Read Sequencing). All samples were quantified and quality controlled with the 
Fragment Analyzer (Agilent, Santa Clara, California, USA). Briefly, RNA samples (1ng-1ug) were 
adaptor ligated and circularized followed by reverse-transcription into cDNA. The cDNA samples were 
amplified using PCR that also incorporated sample barcodes. The library product, a peak with a 
fragment size of approximately 149 bp, was normalized to 10nM in Tris-Cl 2 mM, pH8.5 with 0.1% 
Tween 20. The quality and quantity of the enriched libraries were also validated using a Fragment 
Analyzer. Transcriptomics data has been processed using the NextFlow Core RNASeq pipeline, version 
3.0 described at49. The data has been demultiplexed with bcl2fastq, and the fastq files have undergone 
several quality checks including FastQC50. Salmon was used for pseudo alignment and quantitation, with 
a salmon index built using GRCm39 with annotations from GENCODE vM26 for the mice data and 
GRCh38 with annotations from GENCODE v37 for the human data. Count matrices from Salmon were 
used in downstream analyses. The count matrices were filtered, keeping genes with at least ten counts 
in 50% of the samples of any condition and sex. We used the clusterProfiler R package51 and GO 
biological processes and molecular functions for gene set enrichment analysis, filtering terms by size 
between 10 and 500 genes, and correcting for multiple testing (Benjamini-Hochberg correction). 
 
Global proteomics on mouse & human PFC brain tissue samples  
Brain tissues coming from both human PFC and the 4 different mouse models were prepared as follows. 
Tissues were grinded with a biomasher using 350 µL of MeOH:H2O (4:1). Protein pellets were 
resuspended in 200 µL Laemmli buffer (10% SDS, Tris 1M pH 6.8, glycerol) then centrifuged at 11.135 
rpm at 4°C for 5 minutes. Protein concentration was determined using DC assay (BioRad, Hercules, 
CA, USA) according to the manufacturer’s instructions. 100 µg of protein lysate for each sample were 
heated at 95°C for 5 minutes and stacked in an in-house prepared 5% acrylamide SDS-PAGE stacking 
gel. Gel bands were reduced and alkylated prior to overnight digestion (enzyme:protein ratio of 1:80) at 
37°C using modified porcine trypsin (Mass Spec Grade, Promega, Madison, USA). The generated 
peptides were extracted with 60% acetonitrile followed by a second extraction with 100% acetonitrile 
(ACN). Peptides were resuspended in 30 µL of H20, 2% ACN, 0.1% FA and iRT peptides (Biognosys, 
Schlieren, Switzerland) were added to each sample according to the manufacturer’s instructions as an 
internal Quality Control. NanoLC-MS/MS analyses were performed on a nanoAcquity UltraPerformance 
LC® (UPLC®) device (Waters Corporation, Milford, MA) coupled to a Q-Exactive Plus mass 
spectrometer (Thermo Fisher Scientific, Waltham, MA). The solvent system consisted of 0.1% FA in 
water (solvent A) and 0.1% FA in ACN (solvent B). Samples (equivalent to 800 ng of proteins) were 
loaded on a Symmetry C18 precolumn (20 mm × 180 μm with 5 μm diameter particles, Waters) over 3 
min at 5 μL/min with 99% of solvent A and 1% of solvent B. Peptides were separated on an ACQUITY 
UPLC BEH130 C18 column (250 mm × 75 μm with 1.7 μm diameter particles) at 400 nL/min with the 
following gradient of solvent B: from 1 to 8 % over 2 min, from 8 to 35% over 77 min, from 35 to 90 % 
over 1 min, at 90% for 5 minutes and from 90 to 1% over 2 minutes. The samples of each cohort were 
injected in randomized order. The system was operated in Data Dependent Acquisition mode with 
automatic switching between MS (mass range 300–1800 m/z with R = 70,000, Automatic gain control 
(AGC) fixed at 3.106 ions and a maximum injection time set at 50 ms) and MS/MS (mass range 200–
2000 m/z with R = 17,500, AGC fixed at 1.105 and the maximal injection time set to 100 ms) modes.The 
ten most abundant precursor ions were selected on each MS spectrum for further isolation and higher 
energy collisional dissociation, excluding monocharged and unassigned and ions. The dynamic 
exclusion time was set to 60 s. A sample pool was injected as an external QC every 6 samples for the 
human cohort and every 5 samples for mouse cohorts. The MaxQuant software (version 1.6.14) was 
used to process raw data. Andromeda search engine was used to assign peaks with trypsin/P specificity 
against a protein sequence database generated in-house containing all human (24th of August 2020, 20 
421 entries)  or mouse entries (27th of March 2020, 17 016 entries for SOD1 & TDP43 models and 29th 
of September 2020, 17 061 entries for C9 and FUS models) extracted from UniProtKB-SwissProt. 

https://www.zotero.org/google-docs/?gTt6az
https://www.zotero.org/google-docs/?1e4GgR
https://www.zotero.org/google-docs/?qRyD0m


 

 

Methionine oxidation and acetylation of proteins’ N-termini were set as variable modifications and 
cysteine carbamidomethylation as a fixed modification. The "match between runs" option was enabled 
for protein quantification. The maximum false discovery rate was set to 1% at peptide and protein levels 
using a decoy strategy. Intensities were extracted from the Proteingroup.txt file for statistical analysis. 
The MaxQuant protein vs. samples table was used for downstream analyses, including Label Free 
Quantitation (LFQ) intensities, and only Swiss-Prot proteins were kept while TrEMBL proteins were 
removed for higher reliability. After filtering out low abundant proteins, i.e. proteins which were detected 
in less than 50% of the samples in any combination of condition and sex, and imputing missing values 
using the missForest 52  , the intensities were log2 transformed and used for principle component 
exploration, heatmaps, and differential abundance analysis. The limma package was used for linear 
modeling and p-values were adjusted with Benjamini-Hochberg correction. The protein names were 
mapped to corresponding genes and searched for enriched biological processes and molecular 
functions using the criteria described in the transcriptomics data, with a p<0.01 threshold for functional 
annotation analyses. 
 
Phospho-proteomics on mouse PFC brain tissue samples 
Starting from the protein extracts from the global proteomics experiments, proteases inhibitors (Sigma, 
P8340) and phosphatases inhibitors (final concentration in Na3VO4 = 1 mM) were added to all samples. 
Protein concentration was determined using RC-DC assay (BioRad, Hercules, CA, USA) according to 
the manufacturer’s instructions. 250 µg of proteins for each sample were reduced and alkylated prior to 
an in-house optimized single-pot, solid-phase-enhanced sample preparation (SP3) protocol (adapted 
from Hughes et al., Nat Protoc, 2019). Briefly, beads A (Sera-Mag Speed beads, Fisher Scientific, 
Germany, 45152105050250) and beads B (Sera-Mag Speed beads, Fisher Scientific, Germany, 
65152105050250) were combined (ratio 1:1) and, after 3 washing steps with H2O, were added to the 
samples (ratio beads:protein of 10:1 for each type of beads, meaning a 20:1 ratio for the combination of 
beads). After inducing protein binding to the beads with 100% ACN for 18 minutes, the beads/proteins 
mixtures were washed twice with 80% EtOH and once with 100% ACN before being resuspended in 95 
µL NH4HCO3 prior to overnight on-beads digestion (enzyme:protein ratio of 1:20) at 1 000 rpm at 37°C 
using modified porcine trypsin/lys-C (Mass Spec Grade mix, Promega, Madison, USA). Digestion was 
stopped using TFA (final pH < 2). Recovered peptides were resuspended in 170 µL of 80% ACN, 0.1% 
TFA and phosphomix I light (Sigma Aldrich) was added to each sample (ratio peptide (µg)/mix(fmol) = 
1.6). Phosphopeptide enrichment was performed on 5 µL phase Fe(III)-NTA cartridges on an AssayMAP 
Bravo platform following an IMAC protocol. Briefly, cartridges were washed and primed with 50% ACN, 
0.1% TFA, then equilibrated with 80% ACN, 0.1% TFA. 100 µL of samples were loaded at 2 µL/min on 
the phase then washed with 80% ACN, 0.1% TFA before being eluted in 20 µL 1% NH4OH at 5 µL/min. 
After the enrichment, FA was added to each sample as well as phosphomix I heavy (Sigma Aldrich) 
(ratio peptide (µg)/mix(fmol) = 1.6). Dried phosphopeptides were resuspended in 40 µL H2O, 2% ACN, 
0.1% FA. Sample preparation steps for C9 & FUS mouse models were identical to those previously 
described for SOD1 & TDP43, except that proteins were extracted from new tissue samples just before 
the ph-proteomics experiment. 
Nano-LC-MS/MS analyses were performed on a nanoAcquity UPLC devise (Waters) coupled to a Q-
Exactive HF-X mass spectrometer (Thermo Scientific, Bremen, Germany) equipped with a Nanospray 
Flex™ ion source. The solvent system consisted of 0.1% FA in water (solvent A) and 0.1% FA in ACN 
(solvent B). Samples were loaded on an ACQUITY UPLC® Peptide BEH C18 Column (250 mm x 75 
µm with 1.7 µm diameter particles) over 3 min at 5 μL/min with 99% of solvent A and 1% of solvent B. 
Phosphopeptides were separated on an ACQUITY UPLC® M-Class Symmetry® C18 Trap Column (20 
mm x 180 µm with 5 µm diameter particles; Waters) at 400 nL/min with the following gradient of solvent 
B: from 1 to 2 % over 2 min,  from 2 to 35% over 77 minutes, and from 35 to 90% over 1 minute. The 
samples of each cohort were injected in randomized order. The system was operated in Data Dependent 
Acquisition mode with automatic switching between MS (mass range 375–1500 m/z with R = 120,000, 
Automatic gain control (AGC) fixed at 3.106 ions and a maximum injection time set at 60 ms) and MS/MS 
(mass range 200–2000 m/z with R = 15,000, AGC fixed at 1.105 and the maximal injection time set to 
60 ms) modes. The ten most abundant ions were selected on each MS spectrum for further isolation 
and higher energy collisional dissociation, excluding monocharged and unassigned ions. The dynamic 
exclusion time was set to 40 s. 
Raw ph-proteomics data were processed using MaxQuant software (version 1.6.14). Peaks were 
assigned with the Andromeda search engine with trypsin/P specificity against an in-house generated 
protein sequence database containing all mouse entries extracted from UniProtKB-SwissProt (29th of 
September 2020, 17 061 entries). The minimal peptide length required was seven amino acids and a 
maximum of one missed cleavage was allowed. Methionine oxidation, acetylation of proteins’ N-termini 

https://www.zotero.org/google-docs/?oQ90GV


 

 

and serine, threonine and tyrosine phosphorylation were set as variable modifications and Cysteine 
carbamidomethylation as a fixed modification. For protein quantification, the “match between runs'' 
option was enabled. The maximum false discovery rate was set to 1% at peptide and protein levels with 
the use of a decoy strategy. Intensities were extracted from the Phospho(STY).txt file and processed 
through Perseus software (version 2.0.7.0) in which contaminants and reversed proteins, as well as 
proteins with a negative score were removed. Using the “expand sites table” option, the intensities of 
the different phosphopeptides involved in one phosphosite were summed and phosphosites with a 
localization probability below 75% were removed. The Perseus output table was then used for further 
statistical analysis. 
Only those proteins that were detected in more than 50% of the mice samples of any combination of 
sex and condition were kept for each dataset. i Intensities were log2-transformed, quantile normalization 
was applied and  missing values were imputed by lowest quartile. The rest of the data processing for 
the phospho proteomics follows  the procedure described above for proteomics data. 
 
small RNA sequencing data processing and miRNA target prediction 
The small RNA data has been processed using the NextFlow Core smRNASeq pipeline, version 1.049. 
Reads trimmed and aligned against miRBase (version 22.1) using Bowtie1, both for mature miRNA and 
hairpins. miRNAs with at least ten counts in 50% of the samples of any condition and sex were kept and 
the rest were filtered out. The unnormalized count matrices were used for subsequent DESeq253 
differential expression analysis, stratified by sex, and adjusting the p-values using the Benjamini-
Hochberg correction. The mature miRNA were mapped to their corresponding genes using miRDB 
v6.054, excluding matches with scores lower than 60 or more than 800 targets, as recommended. For 
each miRNA present in the miRNA expression matrices, we obtained experimentally validated targets 
from miRTarBase 8.0 and predicted targets from miRDB v22. miRTarBase provides the most extensive 
curated database of validated miRNA-target interactions (MTI) collected from literature using natural 
language processing (NLP) to select functional miRNA studies. Additionally, the miRDB database 
includes MTIs predicted from MirTarget, which uses a support vector machine (SVM) to analyze 
thousands of high-throughput sequencing experiments; each final prediction has a probability score 
attached to it, which is the output of SVM. A higher probability score indicates a higher likelihood of 
accurate target predictions. Therefore, we set a threshold of 0.6 on output probabilities to select only 
very likely MTIs. Finally, we joined miRNA-target pairs from both sources for further analysis. 
 
Gene ontology, pathway enrichment analyses and protein interaction networks 
The study performed gene set enrichment analysis using gseGO and gseKEGG from the clusterProfiler 
R package, with biological processes and molecular function chosen as background databases for GO 
enrichment. The p-value cutoff was set at 0.05. Differential expression was presented using volcano 
plots generated with the Enhanced Volcano plot package in R, and ORA (Over-Representation Analysis) 
was performed on genes that showed at least one significant DAS event using the clusterProfiler 
function enrichGO(), with a p-value cutoff of 0.1 and Benjamini Hochberg correction for multiple 
hypothesis testing. Protein protein interaction networks were created using the STRING protein 
interaction network database v11.058,59 under standard settings. 
 
Weighted Correlation Network Analysis (WGCNA) 
We performed weighted gene co-expression analysis using WGCNA18. Pairwise Pearson correlations 
between each pair of genes were used to create signed regulatory networks in WGCNA. We computed 
an adjacency matrix and used a soft-thresholding approach to approximate a scale-free topological 
network. Eigengenes or eigen proteins were calculated as the first principal component for each module. 
This resulted in several modules. To merge modules, we merged similar modules based on hierarchical 
clustering (RNAseq - SOD1: 0.4, C9orf72: 0.4, FUS: 0.5, TDP43: 0.4, Proteomics: 0.25). We calculated 
relationships between WGCNA modules and traits. Sex was also included in traits resulting in four traits 
- male ALS, female ALS, male CTR, female CTR. First we filtered modules based on the significance of 
this module-gene relationship (p<0.05) and then selected modules that were highly correlated with either 
male or female ALS. The correlation cutoffs differed between mouse models (RNAseq - SOD1: 0.5, 
C9orf72: 0.3, FUS: 0.3, TDP43: 0.5, Proteomics - SOD1: 0 , C9orf72: 0, FUS: 0, TDP43: 0). Using 
WGCNA, we also analyzed co-expression networks in the mouse models. The minimal module size was 
set to 30 with a merge height of 0.4-0.5 and a correlation threshold between 0.3-0.5 (Supplementary 
Table 14). 
 
Reproducible Data Pipeline 
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Given the size and complexity of all the datasets, data processing and data analysis methods, we 
integrated all the analyses and raw data into a Data Version Control pipeline60. The pipeline used both 
nextflow and docker images to guarantee a reproducible execution environment. This enabled us to 
keep all results consistent, as any change or exploration to a data processing method automatically 
triggered the recalculation of all the dependent analyses and integrations. 
 
Primary cortical culture from mice 
Cortical neuronal cell cultures were prepared from mouse C57Bl/6J pups on postnatal day 0-1 (P0-P1). 
The protocol for generating the primary neuronal cell cultures was in accordance with local and 
international guidelines on the ethical use of animals. Animal care followed official governmental 
guidelines and all efforts were made to minimize the number of animals used and their suffering. Pups 
were decapitated and the brains were collected in dissection media containing the 10X Hanks balanced 
salt solution HBSS and sodium bicarbonate. Cortex was dissected, meninges were removed and small 
pieces of the cortex were collected in a falcon tube. Tissues were trypsinized at 37 °C in a water bath 
for 12 min and was treated with 200 μL of DNAse I (10 mg/mL). Tissues were triturated in fetal bovine 
serum with fire polished pasteur pipette until all tissue pieces dissolved, centrifuged for 4 min at 800 g 
and the cell pellet was suspended and maintained in neurobasal medium supplemented with B27 and 
antibiotics (0.06 μg/mL penicillin and 0.1 μg/mL streptomycin). The cells were seeded at a density of 
3x105 cells per well in 24-well plates, respectively. Before cell seeding, coverslips were acid washed, 
rinsed many times with water, sterilized with ethanol and UV light and placed in the well plate. The plates 
were then coated with poly-L-ornithine (0.05 mg/mL) overnight and Laminin (10 μg/mL) for 2 h in the 
incubator before use. The cells were cultured at 37 °C in a humidified atmosphere containing 5% CO2 
for 7 days prior to experimentation with medium exchange every 3 days. For glutamate excitotoxicity 
induction, L-glutamic acid (Tocris, UK) was dissolved in 50mM sodium hydroxide (NaOH), and the stock 
solution of 50 mM was prepared prior to use. Appropriate concentration of glutamate was prepared in 
maintenance media (neurobasal medium supplemented with B27 and antibiotics). Cells were exposed 
to 5mM glutamate by exchanging 1:3 of the media at DIV7. After 6h of incubation, glutamate was washed 
out thoroughly and the cells were fixed for immunocytochemistry or lysed for protein extraction. 
 
Immunocytochemistry and microscopy 
Cells were cultured on coverslips following the described methods and were immunostained at DIV7 
according to standard techniques. To this, cells were fixed with (4 % paraformaldehyde in PBS at room 
temperature for 10 min. For quenching the free aldehyde groups, cells were treated with 50 mM 
ammonium chloride for 15 min and then washed with PBS. For permeabilization of the cell membrane, 
PBS with 0.25 % Triton X-100 was applied for 10 min at RT. Non-specific binding sites were blocked by 
applying 10% Goat serum in PBS for at least 20 min. Dilutions of primary antibodies were prepared in 
blocking solution to a final volume of 180 μl per 18-mm coverslip and cells were incubated for 90 min at 
37 °C shaking. The following primary antibodies were used: mouse anti-MAP2 (Invitrogen,Catalog # 
MA5-12826, MA, USA) 1:500, rabbit anti-cleaved caspase 3 (cell signaling, Catalog #9661, MA, USA) 
1:250 . Cells were washed 3 times for 5 min with PBS before applying the secondary antibodies. 
Secondary antibodies were applied to cells, and incubated for 30 min followed by repeating the washing 
steps. For double staining, a second primary antibody was added and the same steps were repeated. 
Coverslips were mounted on slides using a mounting medium with DAPI. Images were captured by a 
63x oil objective with an inverted fluorescence microscope (Zeiss, Jena, Germany) and analyzed by 
image J software. Fifteen random images from each coverslip were analyzed for cell death by counting 
the number of cleaved caspase-3 positive cells. Neurite lengths were measured using simple neurite 
tracing (SNT) plugin in image J software. Statistical analyses were conducted with the GraphPad Prism 
software version 9.4.1 (GraphPad, SanDiego,  CA,  USA). Outliers were identified and removed using 
Grubbs test (Alpha = 0.1). Comparisons were done using One-Way Anova test and data plotted as 
mean ± standard error of the mean (SEM) of at least five independent experiments.  Differences were 
considered significant when p < 0.05. 
 
 
Protein extraction and western blotting 
For protein analysis, cells were washed once with 1X PBS and after adding the lysis buffer RIPA, 
protease inhibitor cocktail 1:25 and phosphatase inhibitor 1:20 incubated on ice for 5 min. The cells were 
scratched with a cell scraper on ice and transferred in 1 mL reaction tubes and homogenized by passing 
through the U-100 Insulin syringes a few times. Protein concentration was determined using Pierce™ 
BCA Protein Assay Kit (Thermo Fisher Scientific) following the manufacturer’s instructions. 1 μl of a 
protein sample was used in the assay. The prepared colorimetric reactions were analyzed in an ELISA 
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plate reader (Tecan's Infinite® M200 PRO). 20 g of the samples were loaded on the gel (NuPAGE™ 4 
to 12%, Bis-Tris, Invitrogen, Carlsbad, CA). NuPAGE LDS-sample buffer 1:4 and sample reducing buffer 
1:10 was added to lysed protein before loading on the gels and incubated shaking at 75 °C for 13 min 
and they centrifuged at 12.000 g at 4 °C. Proteins were separated by gel electrophoresis at 200 V. 
Proteins were transferred to a nitrocellulose membrane using the iBlot2 gel transfer device and transfer 
stack (Thermo Fisher Scientific). Membranes were blocked for 30 min at room temperature with 5% 
nonfat milk in PBST followed by incubation with primary antibodies (diluted in blocking buffer) overnight 
at 4 °C under rotation. After washing 4 times with PBST (5 min each time) the membranes were 
incubated with highly-sensitive HRP-labeled secondary antibodies (1:10.000 diluted in blocking buffer) 
at room temperature for 1 h followed by intensive washing with PBST. Blots were incubated with ECL 
reagent and were imaged on a BioRad Molecular Imager ChemiDoc™. Band signal intensities were 
quantified with Image J Software and were normalized to housekeeping protein and control condition. 
Statistical analyses were conducted with the GraphPad Prism software version 9.4.1 (GraphPad, 
SanDiego,  CA,  USA). Outliers were identified and removed using Grubbs test (Alpha = 0.1). 
Comparisons were done using One-Way Anova test and data plotted as mean ± standard error of the 
mean (SEM) of at least three independent experiments.  Differences were considered significant when 
p < 0.05. 
 
Tissue protein extraction for immunoblot analysis 
Spinal cords were homogenized in 5 volumes (w/v) of 1% boiling SDS61. Protein homogenates were 
further sonicated, boiled for 10 min and centrifuged at 13.500 g for 5 min. Supernatants were analyzed 
by dot blot analyses. For detergent-insoluble protein extraction, mouse tissues were homogenized in 10 
volumes (w/v) of buffer, 15 mM Tris-HCl pH 7.6, 1 mM DTT, 0.25 M sucrose, 1 mM MgCl2, 2.5 mM 
EDTA, 1 mM EGTA, 0.25 M sodium orthovanadate, 2 mM sodium pyrophosphate, 25 mM NaF, 5 µM 
MG132, and a protease inhibitors cocktail (Roche), as described62. Briefly, the samples were centrifuged 
at 10.000 g and the pellet was suspended in an ice-cold homogenization buffer with 2% Triton-X100 
and 150 mM KCl. The samples were then centrifuged at 10.000 g to obtain the Triton-insoluble fraction 
(insoluble). 
 
Immunohistochemistry 
Mice were anesthetized and perfused transcardially with 50 mL of phosphate-buffered saline (PBS) 
followed by 100 mL of 4% paraformaldehyde (Sigma-Aldrich) in PBS. Spinal cord was rapidly removed, 
postfixed for 3h, transferred to 20% sucrose in PBS overnight and then to 30% sucrose solution until 
they sank, frozen in N-pentane at 45°C and stored at ± 80°C. Before freezing, spinal cord was divided 
into cervical, thoracic, and lumbar segments and included in Tissue-tec OCT compound (Sakura). 
Coronal sections (30 µm) of lumbar spinal cord were then sliced and immunohistochemistry was done. 
Antibody used for immunohistochemistry is rabbit monoclonal anti-phospho-MEK (Ser221) (pMEK2) 
antibody (1:50, Cell Signaling; RRID: AB_490903). Briefly, slices were incubated for 1h at room 
temperature with blocking solutions (0.2% Triton X100 plus 2% normal goat serum (NGS)), then 
overnight at 4°C with the primary antibodies. After incubation with biotinylated secondary antibodies 
(1:200; 1 h at room temperature; Vector Laboratories) immunostaining was developed using the avidin–
biotin kit (Vector Laboratories) and diaminobenzidine (Sigma). Sections were counterstained with 0.5% 
cresyl violet. Stained sections were collected at 20 X and 40 X with an Olympus BX-61 Virtual Stage 
microscope so as to have complete stitching of the whole section, with a pixel size of 0.346 µm. 
Acquisition was done over 6-µm-thick stacks with a step size of 2 µm. The different focal planes were 
merged into a single stack by mean intensity projection to ensure consistent focus throughout the 
sample. Finally, signals were analyzed for each slice with ImageJ and OlyVIA software. 

Immunoblotting 
Protein levels were determined using the BCA protein assay (Pierce) and analyzed by western blot and 
dot blot, as described previously63. Membranes were blocked with 3% (w/v) BSA (Sigma-Aldrich) and 
0.1% (v/v) Tween 20 in Tris-buffered saline, pH 7.5, and incubated with primary antibodies and then 
with peroxidase-conjugated secondary antibodies (GE Healthcare). Antibodies used for immunoblot 
were the following: rabbit monoclonal anti-phospho-MEK (Ser221) (pMEK2) antibody (1:2000, Cell 
Signaling; RRID: AB_490903),  rabbit monoclonal anti-phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) 
antibody (1:2000, Cell Signaling; RRID: AB_2315112), rabbit polyclonal anti-human SOD1 antibody 
(1:1000, StressMarq Biosciences; RRID: AB_2704217), rabbit polyclonal anti-ubiquitin antibody 
(1:1000, Abcam; RRID: AB_306069), mouse monoclonal anti-SQSTM1/p62 (p62) antibody (1:500, 
Abcam); goat anti-mouse or anti-rabbit peroxidase-conjugated secondary antibodies (respectively 
1:20000 and 1:10000, GE Healthcare). Blots were developed with the Luminata Forte Western 
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Chemiluminescent HRP Substrate (Millipore) on the ChemiDoc™ Imaging System (Bio-Rad). 
Densitometry was done with Image Lab 6.0 software (Bio-Rad). The immune reactivity of the different 
proteins was normalized to Ponceau Red staining (Fluka). 
 
Preclinical study in the SOD1G93A mouse 
Starting at a presymptomatic stage (9 weeks of age), SOD1G93A female and male mice received 3 mg/kg 
dose of trametinib (n=10) or vehicle (PBS) (n=10) through intranasal delivery. The drug was 
administered twice per week for 7 weeks (from 9 to 16 weeks of age). At 16 weeks of age, mice were 
sacrificed, spinal cord and plasma were collected for subsequent biochemical analysis. The Mario Negri 
Institutional Animal Care and Use Committee and the Italian Ministry of Health (Direzione Generale della 
Sanità Animale e dei Farmaci Veterinari, Ufficio 6) prospectively reviewed and approved the animal 
research protocols of this study (prot. no. 9F5F5.143 and 9F5F5.250) and ensured compliance with 
international and local animal welfare standards.  
 
NFL measurements 
Plasma samples were collected from mice in K2-EDTA BD Microtainer blood collection tube and 
centrifuged at 5.000 g for 5 minutes to isolate plasma samples. The plasma NFL concentration was 
measured using the Simoa® NF-light™ Advantage (SR-X) Kit (#103400) on the Quanterix SR-X™ 
platform with reagents from a single lot, according to the protocol issued by the manufacturer (Quanterix 
Corp, Boston, MA, USA). 
 
Statistical analysis for in vivo experiments 
Prism 7.0 (GraphPad Software Inc., San Diego, CA) was used. For each variable, the differences 
between experimental groups were analyzed by Student’s t test, or one-way ANOVA followed by post-
hoc tests. P values below 0.05 were considered significant. 
 
Data availibility  
Mouse raw RNA-seq data and processed gene expression data can be accessed via the National Center 
for Biotechnology Information’s Gene Expression Omnibus database (GSE234246). Encrypted raw 
RNA-seq data for the human cohort can be accessed via the European Genome-Phenome Archive 
(registered study: EGAS00001007318). Proteomics and phosphoproteomics datasets have been 
deposited in the ProteomeXchange Consortium database with the identifiers PXD043300 and 
PXD043297, respectively. 
 
Code availability 
For RNASeq, we used the NextFlow pipeline for alignment and DESeq2 for differential analysis: 
https://www.nextflow.io/, https://www.bioconductor.org/packages//2.10/bioc/html/DESeq.html 
Alternative splicing was done with SUPPA, DRIMSeq and DEXSeq: 
https://github.com/comprna/SUPPA, 
https://bioconductor.org/packages/release/bioc/html/DRIMSeq.html, 
https://bioconductor.org/packages/release/bioc/html/DEXSeq.html 
Enrichment was done with: https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html, 
http://revigo.irb.hr/ 
Gene gene interaction network analysis was done with: 
https://cran.r-project.org/web/packages/WGCNA/index.html 
Deconvolution was done with Scaden: 
https://scaden.readthedocs.io/en/latest/ 
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Abstract 
 
In the era of open-modification search engines, more post-translational modifications than ever can 
be detected by LC-MS/MS-based proteomics. This development can switch proteomics research into 
a higher gear, as PTMs are key in many cellular pathways important in cell proliferation, migration, 
metastasis and ageing. However, despite these advances in modification identification, statistical 
methods for PTM-level quantification and differential analysis have yet to catch up. This absence can 
partly be explained by the inherently low abundance of many PTMs and the confounding of PTM 
intensities with its parent protein abundance.  
Therefore, we have developed msqrob2PTM, a new workflow in the msqrob2 universe capable of 
differential abundance analysis at the PTM, and at the peptidoform level. The latter is important for 
validating PTMs found as significantly differential. Indeed, as our method can deal with multiple PTMs 
per peptidoform, there is a possibility that significant PTMs stem from one significant peptidoform 
carrying another PTM, hinting that it might be the other PTM driving the perceived differential 
abundance. 
Our workflows can flag both Differential Peptidoform (PTM) Abundance (DPA) and Differential 
Peptidoform (PTM) Usage (DPU). This enables a distinction between direct assessment of differential 



 

 

abundance of peptidoforms (DPA) and differences in the relative usage of peptidoforms corrected for 
corresponding protein abundances (DPU). For DPA, we directly model the log2-transformed 
peptidoform (PTM) intensities, while for DPU, we correct for parent protein abundance by an 
intermediate normalisation step which calculates the log2-ratio of the peptidoform (PTM) 
intensities to their summarized parent protein intensities. 
We demonstrated the utility and performance of msqrob2PTM by applying it to datasets with known 
ground truth, as well as to biological PTM-rich datasets. Our results show that msqrob2PTM is on par 
with, or surpassing the performance of, the current state-of-the-art methods. Moreover, msqrob2PTM 
is currently unique in providing output at the peptidoform level. 
 
Introduction 
Mass-spectrometry-based proteomics allows the identification and quantification of a myriad of 
posttranslational modifications (PTMs) which reveal additional complexity and diversity of the 
proteome. Indeed, PTMs greatly extend the number of different forms of a protein, i.e., proteoforms, 
that can be found. More importantly, these PTMs can impact protein functions (1-4) and are linked to 
a variety of diseases and developmental disorders (5-8). Aberrant PTM status can cause a number of 
detrimental effects ranging from the alteration of protein folding to the dysregulation of cell signalling. 
It is thus of great importance to study these PTMs in detail, not only through their correct identification 
but also by their correct quantification and subsequent statistical analysis. 
 
In recent years, there has been a significant improvement in the identification of PTMs with the advent 
of open-modification search engines such as MsFragger (9), Open-pFind (10) and ionbot (11). Yet, 
bespoke statistical methodologies for differential PTM analysis are lacking. To our knowledge, the only 
dedicated tool released at the time of writing is MSstatsPTM (12). This can be partly attributed to the 
complexity of PTM-rich data. Peptides can contain multiple PTM sites, sites are not always modified 
and modified peptides are usually harder to detect than their non-modified counterparts (4). This 
means that enrichment methods are most often needed for sufficient detection, which increases 
technical variability and experimental complexity, time and cost, which in turn leads to less available 
replicates (13,14). As a result, PTM-rich data are characterised by a high amount of missingness and 
variability, complicating statistical analysis. 
 
Moreover, the parent proteins on which the PTMs occur can also change in abundance regardless of 
the PTM. Any changes in abundance of a PTM are then confounded with changes in protein abundance 
(15). It is therefore crucial that any proposed statistical methodology for  PTMs can take this into 
account.  
Here, we introduce the concept of differential PTM abundance (DPA) and differential PTM usage (DPU) 
to enable a clear distinction between directly assessing differential abundance of PTMs (DPA) on the 
one hand, and differences in relative PTM abundance upon correction for the overall protein 
abundance (DPU), on the other hand. 
 
In the current state-of-the-art, MSstatsPTM, DPU is achieved through an adjustment based on the 
model estimates of a separate PTM model as well as a protein model. We argue that this approach is 
suboptimal as it fails to leverage the inherent correlation between the parent protein and PTMs or 
peptidoforms, i.e., a specific peptide with its corresponding modifications. Additionally, the separate 
modelling and adjustment process in MSstatsPTM can artificially amplify small differences. This 
phenomenon is demonstrated in figure 1. Here, we can see a PTM for which the PTM intensities closely 
mimic the protein intensities across the samples. Although no significant differences are observed at 
the PTM or protein level when comparing the "Combo" and "Ctrl" conditions in the dataset, the 
adjustment inflates the difference, causing MSstatsPTM to return a significant PTM. Hence, in 
msqrob2PTM we employ a different normalisation strategy that directly accounts for this correlation 
between peptidoform and protein. 



 

 

Figure 1: line plot displaying the PTM log2 intensity values (pink dotted line) and log2 intensity values of its parent protein 
(light green dotted line) in each sample. MSstatsPTM first fits a model to the PTM (dark pink line) and to the protein intensities 
(dark green line) to estimate the average intensity in each condition. Subsequently, the fitted average protein abundances 
are subtracted from the fitted average PTM intensities to obtain the average PTM abundances in each condition corrected 
for protein abundance (yellow line). MSstatsPTM corrected PTM abundances seem to indicate differential PTM usage. 
Moreover, the comparison between “Combo” vs “Ctrl” is returned by MSstatsPTM as statistically significant. This, however, 
appears to be an artifact of MSstatsPTM as the correction for protein abundance does not account for the link between 
protein and PTM intensities within samples. Indeed, when comparing “Combo” and “Ctrl” sample level intensities, the pattern 
at the PTM-level closely follows that of its parent protein. 
 
Additionally, we will not limit ourselves to the analysis of the PTMs. Indeed, our method can manage 
the analysis of peptidoforms as well. In many studies, each distinct PTM will likely not be characterized 
by a myriad of peptidoforms. It is therefore possible that a significant PTM effect can be attributed to 
only one or two strongly significant associated peptidoforms, which may be significant for another 
reason, i.e. a different PTM occurring on that (those) peptidoform(s). We think it is crucial that 
potential users thus do not restrict their analysis to the PTM alone, but also assess the individual 
peptidoforms that carry the specific PTM. 
We here present a statistical, R-based workflow, based on the msqrob2 R package (16), to carry out 
differential abundance as well as differential usage analysis at the peptidoform and PTM level. We 
apply this workflow to simulated datasets, a spike-in study, and to biological datasets, and use these 
to compare our method to MSstatsPTM. We show that our approach does not suffer from the artifacts 
that are introduced by uncoupling the within-sample correlation between PTM and parent protein, 
while maintaining good sensitivity and FDR control. The approach is freely available and can be 
consulted on https://github.com/statOmics/msqrob2PTMpaper. 
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Experimental procedures 
In this section, we first introduce the msqrob2 workflow for differential peptidoform/PTM abundance 
and usage analysis. Next, we introduce the datasets that were used to test and validate the workflow 
and benchmark it to MSstatsPTM.  
 
Workflow 
 
The general workflow for the differential abundance analysis on PTM and peptidoform level was 
developed in R (17) (version 4.2) and is mainly based on two R packages: msqrob2 
(https://www.bioconductor.org/packages/release/bioc/html/msqrob2.html, version 1.6.0) and 
QFeatures (18) (https://www.bioconductor.org/packages/release/bioc/html/QFeatures.html, version 
1.8.0).  
QFeatures provides an infrastructure to store and manage mass spectrometry data across different 
levels (e.g. peptidoform and protein level) whilst keeping links between the levels where possible. For 
each preprocessing step a novel, linked assay is constructed. In this way, the original data is not 
overwritten, and preprocessed data can be traced back to its origin. msqrob2 is a package with updated 
and modernised versions of the MSqRob (16) and MSqRobSum (19)tools and builds upon the 
QFeatures class infrastructure. It provides a robust statistical framework for differential analysis of 
label-free LC-MS proteomics data to infer on differential abundance on the peptide (peptidoform) 
and/or protein level. Here, we add workflows that provide inference on differential abundance and 
usage at the PTM and peptidoform level. 
 
We make a distinction between differential abundance and differential usage. This is the difference 
between directly assessing differential abundance (DA) on the one hand, and differences in relative 
abundance upon correction for the overall protein abundance (DU), on the other hand. Essentially, this 
relates to a difference in normalisation (see point 3 below). 
 
We first provide an overview of the workflow before going over each step in detail. 

1. Conversion of input data and construction of the QFeatures object 
2. Pre-processing 
3. Normalisation 
4. Peptidoform level analysis  
5. Summarisation of peptidoforms to PTM level 
6. PTM level analysis 
7. Results exploration plus visualisation 

 
1. Conversion of input data and construction of the QFeatures object 

As input data, we require the output of a quantification algorithm (in txt or csv format) that contains 
all peptidoform identifications, parent protein(s) and per sample intensities. This should be in wide 
format: each unique peptidoform should be on one line that contains (at least) the information on its 
parent protein, modification (plus location), and intensities for each sample. As quantitative 
proteomics data can be readily transformed into this format, we have no restrictions on search engines 
or quantification algorithms users want to adopt. 
Once the data are in the right format they are imported as a QFeatures object. Next, information on 
the experimental design can be added in the colData instance of the object.  
 

2. Pre-processing 
First, the peptidoform data can be filtered. Each peptidoform should have measured intensity values 
in at least two samples, or else are filtered out. Intensities are log-transformed if not already the case. 
Of course, decoys and contaminants should be removed. 

https://www.bioconductor.org/packages/release/bioc/html/msqrob2.html
https://www.bioconductor.org/packages/release/bioc/html/QFeatures.html


 

 

The pre-processing steps are not limited to those above, as, depending on the nature of the dataset 
and user knowledge, more filtering steps can be added. 
 

3. Normalisation 
Distinct normalisation steps should be adopted for inferring on differential abundance and differential 
usage. For DA, only median centring or mean centring can be used, e.g. via the normalise function from 
the QFeatures package. DU requires an additional normalisation to correct for changes occurring in 
the parent protein. Indeed, changes in the overall protein abundance between conditions can trigger 
the associated PTM(s) to be detected as differentially abundant. To infer on PTM(s) for which the effect 
of the treatment differs from that of the overall protein, we first summarise the protein intensity value 
per sample for each unique protein, e.g., via robust regression using the robustSummary function in 
the MsCoreUtils470 R package, and we subsequently subtract it from the intensity values corresponding 
to all peptidoforms derived from that protein, i.e. 
 

𝑑𝑑𝑖𝑖,𝑝𝑝,𝑃𝑃
∗ = 𝑑𝑑𝑖𝑖,𝑝𝑝,𝑃𝑃 − 𝜇𝜇𝑖𝑖,𝑃𝑃                                                                  (1) 

 
With 𝑑𝑑𝑖𝑖,𝑝𝑝,𝑃𝑃

∗  the normalised log2-transformed intensity for peptidoform p in sample i with parent protein 
P, 𝑑𝑑𝑖𝑖,𝑝𝑝,𝑃𝑃 the log2-transformed intensity for peptidoform p in sample i with parent protein P before 
normalisation and 𝜇𝜇𝑖𝑖,𝑃𝑃 the summarised intensity for protein P in sample i. 
 
It is possible to calculate the summarised protein intensity value directly from the PTM dataset itself. 
However, when the experiment includes both an enriched and non-enriched (global profiling) dataset 
we recommend using the non-enriched dataset to calculate the summarised protein values. Of note, 
steps one and two should also be applied to the non-enriched data. 
 

4. Peptidoform level analysis  
Before transitioning to the PTM level, it is possible to directly assess differential usage or expression 
on peptidoform level. The steps to take are exactly the same as step 6 below, but instead of using the 
PTM assay obtained in step 5, we use the normalised peptidoform assay obtained in step 3 as input to 
the msqrob function. 
This allows the user to assess associated peptidoforms underlying significant PTMs of interest. 
 

5. Summarisation of peptidoforms to PTM level 
For each unique PTM (i.e. unique protein – modification – location combination), we need a 
summarised intensity value per sample. This is done by taking a subset of the dataset with all 
peptidoforms containing a specific PTM and summarising all corresponding intensity values into one 
value per sample. When peptidoforms contain multiple PTMs, these are used multiple times. Here we 
apply robust regression using the robustSummary function in the MsCoreUtils (20) R package by 
default to summarise the peptidoform level data at the PTM-level. In this way, we obtain an intensity 
assay on the PTM level. This assay can then be added to the existing QFeatures object. 
 

6. PTM level analysis 
We use the functionalities of the msqrob2 package for this step. Msqrob2 (16,19,21,22) provides a 
robust linear (mixed) model framework for assessing differential abundance in proteomics 
experiments. To assess differential abundance on the protein level, the workflows can start from raw 
peptide intensities or summarised protein abundance values. The model parameter estimates can be 
stabilized by ridge regression, empirical Bayes variance estimation and robust M-estimation. Here we 
assess differential abundance on the PTM level by first summarising peptidoform expression values 
(step 5). 
When one predictor (e.g. condition) is present in the dataset, we perform an msqrob analysis on PTM 
intensities with the following model: 



 

 

𝑑𝑑𝑑𝑑𝑎𝑎 = 𝛽𝛽0 + 𝛽𝛽𝑑𝑑
𝑑𝑑𝑜𝑜𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖+𝜀𝜀𝑑𝑑𝑎𝑎 

 
With 𝑑𝑑𝑑𝑑𝑎𝑎 the summarised log2-transformed PTM intensity in sample s of condition c, 𝛽𝛽0 the intercept, 
and 𝛽𝛽𝑑𝑑

𝑑𝑑𝑜𝑜𝑖𝑖𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖, the effect of a condition c. The error term 𝜀𝜀𝑑𝑑𝑎𝑎 is assumed to be normally distributed with 
mean 0 and variance σ2.  
When multiple predictors are present, the model can be expanded as needed, with the additional 
possibility of using mixed models. The user needs to specify the model formula themselves using lm or 
lme4 (23) R syntax.  
The contrast matrix for contrasts of interest can be specified via the makeContrast function present in 
msqrob2, which are subsequently assessed using the hypothesisTest function. By default, the results 
of the latter function are corrected for multiple testing using the Benjamini-Hochberg false discovery 
rate (FDR) method.  
 
The model results are stored in the existing QFeatures object together with the raw data and the pre-
processed data. 
 

7. Results exploration plus visualisation 
The abovementioned model results contain a significance table with (adjusted) p-values, log fold 
changes, standard errors, degrees of freedom and test statistics.  
Different visualisations can easily be made based on this table and the links to the underlying intensity 
data in the QFeatures object, such as volcano plots, heatmaps and line plots at the peptidoform, PTM 
and/or protein level. 
 
Data  

 
Our novel msqrob2 workflow is tested and benchmarked to MSstatsPTM using two computer 
simulations developed by the MSstatsPTM team, the spike-in dataset from the MSstatsPTM paper, and 
data from two real experiments. 
 
The computer simulations were specifically developed for testing differential PTM workflows, and also 
allowed us to directly compare our method to MSstatsPTM. The first simulation produced “perfect” 
datasets with no missing values and many modified features per PTM, while the second simulation 
incorporated missing values and limited modified features, producing more lifelike datasets.  
 
The spike-in dataset consists of fifty human ubiquitinated peptides that were spiked into four 
background mixtures in known amounts. Hence, the true log-fold changes and identity of the truly 
changing PTMs are known.  
 
The biological case studies consist of a biological, label-free LC-MS/MS ubiquitination experiment by 
Cunningham et al. to study the role of USP30, a deubiquitylase enzyme, in mitophagy regulation (24); 
and a label-free phosphorylation experiment with a two-factor design where both the total proteome 
and phosphoproteome were measured. 
 
More details on each dataset are given below.  
 

8. Computer simulations  
We used the two computer simulations from the MSstatsPTM team that were found on 
https://github.com/devonjkohler/MSstatsPTM_simulations/tree/main/data (simulation1_data.rda 
and simulation2_data.rda). The first simulation consists of data without any missing values, while in 

https://github.com/devonjkohler/MSstatsPTM_simulations/tree/main/data


 

 

the second simulation, missing data is introduced. For each simulation, 24 datasets were created with 
different experimental designs and intensity variance. In each dataset, 1000 PTMs were simulated.   
 
Half of the PTMs were simulated to have a fold change between conditions. However, of the half with 
differential fold changes on the PTM level, 250 could be confounded with differential fold changes of 
the parent protein. For further details on the creation of the datasets, we refer to the MSstatsPTM 
paper (12) and to their GitHub page. 
  
Both simulations contain an enriched PTM dataset as well as its non-enriched protein counterpart. 
From each of the 24 datasets, the FeatureLevelData was extracted from the PTM and the protein 
dataset. These two datasets were then used as input to the workflow and all seven steps were 
followed. The protein dataset was used for the normalisation step.  
Because it is known which PTMs are differentially abundant and/or differentially used, we can readily 
evaluate the performance of a method in terms of the false positive rate (fpr), sensitivity, specificity, 
precision and accuracy, and true positive rate (tpr) - false discovery proportion (fdp) plots. Note, that 
tpr is the fraction of the truly differentially abundant PTMs picked up by the method and fdp is the 
fraction of false positives in the total number of PTMs flagged as differentially abundant. On the tpr-
fdp plot we also indicate the observed fdp at 5% FDR cut-off, which is expected to be close to 5%. 
 
We compared our results with the results obtained with the MSstatsPTM method, on their GitHub 
page https://github.com/devonjkohler/MSstatsPTM_simulations/tree/main/data 
(adjusted_models_sim1.rda and adjusted_models_sim2.rda) and included these in the tpr-fdp plots. 
 

6. Spike-in dataset  
The MSstatsPTM team also developed a biological spike-in dataset with known ground truth to test 
their approach. Fifty human ubiquitinated peptides were spiked into four background mixtures 
consisting of human and E.coli proteins in different amounts. These four mixtures represent four 
different conditions and for each, two replicates were created. An overview of the experimental design 
can be seen in figure 2. Because the amount of spiked-in peptides is known, the true log-fold changes 
between the conditions is known and it is possible to assess whether the method can pick up these 
fold changes, and if these fold changes differ from the fold change of the corresponding protein in the 
background. Note, however, that as opposed to real experiments, the ubiquitinated peptides in the 
spike-in study are not correlated to their corresponding protein in the background. Further technical 
details can be found in the MSstatsPTM paper (12). The dataset can be found on MassIVE: 
MSV000088971.The true log fold changes (before and after protein adjustment) are depicted in table 
1. 
 

Comparison True log2 FC without 
adjustment 

True log2 FC after adjustment 

mix2 vs mix1 -1 -1 
mix3 vs mix1 0 1 
mix4 vs mix1 -1 0 
mix3 vs mix2 1 2 
mix4 vs mix2 0 1 
mix4 vs mix3 -1 -1 

Table 1: True log2 fold changes of the spike-in peptides in the different comparisons between the mixtures. 
 

https://github.com/devonjkohler/MSstatsPTM_simulations/tree/main/data
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=c4c583ecf7f941cdac87f7a4f872517b


 

 

Figure 2: Experimental design of the spike-in dataset. Fifty human heavy labelled KGG motif peptides were spiked into four 
background mixtures in different amounts. Mixes 3 and 4 consist of a mix of E. Coli and human proteins. Only the human 
proteome was utilised as the global proteome. Figure adapted from 471 
 
As input to our workflow, we used the MSstatsPTM_Summarized.rda object provided on MassIVE. In 
the FeatureLevel data part of the object, the spiked-in peptides were not annotated and were 
irretrievable because the heavy peptides can also be present as their light counterparts. However, they 
were annotated in the ProteinLevel part. Hence, we could not use the low-level data, and had to start 
from the data that had already been pre-processed and summarised to PTM (for the PTM dataset) and 
Protein level (for the global profiling dataset) by MSstatsPTM, thus omitting step 4 and 5 from the 
workflow. We therefore could not assess our entire workflow based on these data, and moreover do 
not know which preprocessing steps were conducted. 
 
We employed various methods to analyse this dataset. Our primary approach was the msqrob2PTM 
workflow as described in the workflow section, as well as the normal MSstatsPTM workflow. We also 
assessed the differential abundance of the PTMs with the standard msqrob2 workflow: DPA-nonNorm, 
which does no normalisation and hence skips step 3 of the standard workflow entirely and DPA, which 
only applies median centring in step 3. 
 
Because we know the ground truth of this dataset, we can again use the same metrics to assess the 
performance. Here, we also make ROC (tpr-fpr) curves. Furthermore, the log fold changes estimated 
by msqrob2PTM and MSstatsPTM were used to generate boxplots showing the observed and expected 
FCs for each mixture. For MSstatsPTM, the log fold changes were derived from the 
MSstatsPTM_Model.rda object and Spike-in_Vizualization.Rmd contained R code for the boxplots. 
Both these files were found on MassIVE RMSV000000669. 
 

7. Ubiquitination dataset 
Details of the experimental set-up can be found in reference(24). The dataset itself is available on 
MassIVE (25) as MSV000078977. 

https://massive.ucsd.edu/ProteoSAFe/reanalysis_container.jsp?task=07b0ff7ec463427da7e6949b21f93672
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=1b516164de5345108b40b75147dd58b5


 

 

The dataset consists of four conditions: carbonyl cyanide 3-chlorophenylhydrazone (CCCP) treatment, 
USP30 overexpression (USP30-OE), a combination of both (Combo), and a control group. Per condition, 
two biological replicates with two technical replicates each were generated. All pairwise comparisons 
were tested using msqrob2PTM. 

This dataset has also been used in the MSstatsPTM paper, hence, we can compare our results to theirs 
for a biological case with unknown ground truth. As input to the msqrob2PTM workflow, we used the 
usp30_input_data.rda object found in the MassIVE MSstatsPTM analysis container RMSV000000358, 
which was also used as input to the MSstatsPTM workflow. This ensures compatibility of the results 
with those in the MSstatsPTM paper. In this container, the analysis file MSstatsPTM_USP30_Analysis.R 
can also be found, which was used for the MSstatsPTM results. 

All steps of the workflow were followed as described above. The normalisation step made use of the 
available PTM dataset, given the lack of a non-enriched counterpart. Because each condition consists 
of two biological replicates which in turn consists of two technical replicates, we used the msqrob 
function with a mixed model as input.  

The results of both analyses were used to generate line plots with input as well as our normalised PTM 
level-data and the estimated effects for each condition. The detailed model results in the MSstatsPTM 
model object allowed us to inspect the model output for each PTM and protein as well as those for 
PTM upon correction for protein. 

8. Phospho dataset 
The human phosphorylation datasets consist of 47 samples from condition A and 43 from condition B. 
Ethical approval for the use of human tissue was obtained from the Ethics Commission (EC) of the 
University Medical Center Göttingen (2/8/18 AN) and the EC of the Technical University Munich 
(145/19 S-SR). Two aliquots were processed for each sample: one dedicated to total proteome analysis, 
and the other one to the phosphoproteome analysis. The main sample preparation steps were 
identical for proteomics and phosphoproteomics apart from the additional phosphopeptide 
enrichment step. Briefly, MeOH precipitation was performed on all samples and protein pellets were 
resuspended with 0.1% RapiGestTM surfactant (Waters). Either 20 µg (proteomics) or 100 µg 
(phosphoproteomics) of samples were subjected to overnight trypsin/lysC (Mass Spec Grade mix, 
Promega, Madison, USA) digestion at 37°C with an enzyme:protein ratio of 1:25. Peptide samples were 
then incubated for 45 minutes at 37°C and centrifuged to remove RapiGest.  
 
For total proteome analysis, collected supernatants were loaded on an AssayMAP Bravo (Agilent) for 
automated peptide clean-up using C18 cartridges. Desalted peptides were injected on a nanoAcquity 
UltraPerformance LC® (UPLC®) device (Waters Corporation, Milford, MA) coupled to a Q-Exactive Plus 
mass spectrometer (Thermo Fisher Scientific, Waltham, MA) and analysed using Data Dependent 
Acquisition (DDA).  

 
For phosphoproteomics, collected supernatants were loaded on an AssayMAP Bravo (Agilent) for 
automated Fe(III)-NTA phosphopeptides enrichment. Enriched samples were then analysed on a 
nanoAcquity UPLC devise (Waters) coupled to a Q-Exactive HF-X mass spectrometer (Thermo Scientific, 
Bremen, Germany) using DDA.  
 
Generated raw data files were searched against a database containing all human entries extracted 
from UniProtKB-SwissProt (25/08/2021, 20 339 entries) using MaxQuant (v.1.6.17). The minimal 
peptide length required was seven amino acids and a maximum of one missed cleavage was allowed. 
For proteomics data, methionine oxidation and acetylation of proteins’ N-termini were set as variable 
modifications and cysteine carbamidomethylation as a fixed modification. For phosphoproteomics 



 

 

data, serine, threonine and tyrosine phosphorylations were added as variable modifications. For 
protein quantification, the “match between runs” option was enabled. The maximum false discovery 
rate was set to 1% at peptide and protein levels with the use of a decoy strategy. Intensities were 
extracted from the Evidence.txt file to perform the following statistical analysis. All seven steps of the 
workflow were performed. The dataset can be found on PRIDE (PXD043476). Further technical details 
can be found in the supplementary information. 
 

9. Mock analyses 
For the phospho dataset a mock analysis was included, that is an analysis where we only take one 
treatment arm of the data, so none of the PTMs (peptidoforms) are expected to be differential. We 
then assign the samples at random to a mock treatment with two levels and assess differential usage 
between the two conditions (mock vs control). In this way, correct control of the type I error by the 
statistical method can be assessed. Indeed, every PTM that is called as differentially abundant is a false 
positive. Hence, we expect the method to return uniform p-values.  

From the phospho dataset, only the samples from factor 1 condition B, and factor 2 condition y were 
withheld, i.e. 26 samples. Upon step 4, 13 out of the 26 samples were randomly assigned to condition 
“mock”, the other 13 were assigned as condition “control”. Step 5 was then carried out by testing for 
a condition effect and the calculated p-values were retained. The randomisation to the mock 
treatment and step 5 in the analysis was repeated 5 times and a histogram was made for the p-values 
for each mock simulation. 

This mock analysis was done for different workflows: we assessed the effect of using robust regression 
in the modelling step, the use a non-enriched counterpart for normalisation and normalisation based 
on the enriched dataset, itself. Moreover, we conducted the analysis both on peptidoform as well as 
PTM-level. 

Results 
The performance of our novel PTM and peptidoform msqrob2 based workflows will be compared to 
MSstatsPTM based on computer simulations, the spike-in dataset, the ubiquitination and phospho 
datasets.  

Computer simulations 
 
PTM-level 

We first evaluated our method using the two computer simulations mentioned above. The first 
simulation consisted of 24 “perfect” datasets with no missing data and ten distinct peptidoforms 
carrying a specific PTM. Half of the datasets were simulated with a standard deviation of the 
difference in log-intensities between modified and unmodified peptidoforms of 0.2, the other half 
had a standard deviation of 0.3. The datasets differ in the number of replicates as well as in the 
number of conditions.  

Figure 3 shows the true positive rate (tpr, the fraction of the truly differentially abundant PTMs picked 
up by the method) - false discovery proportion (fdp, the fraction of false positives in the total number 
of PTMs flagged as differentially abundant) curve for simulation 1 for all 24 datasets. As expected, both 
msqrob2PTM and MSstatsPTM perform better in datasets with lower variability and/or a higher 
number of replicates. Indeed, the true positive rate or sensitivity is higher for the same level of the 
false discovery proportion when the number of repeats increases while keeping the sd fixed (or when 
reducing the sd while keeping the number of repeats fixed). msqrob2PTM (solid line) clearly 
outperforms MSstatsPTM in all datasets (dotted line). Furthermore, MSstatsPTM in particular seems 



 

 

to have issues when the number of replicates is low. Indeed, in four out of six datasets with two 
replicates, the dotted line immediately veers right instead of up, indicating that non-DU PTMs are 
returned among the most significant features. This particularly affects datasets with higher variation 
(sd 0.3). msqrob2PTM, however, does not suffer from a poor ranking of the PTMs for these four 
datasets and is still able to report (a few) true positive results at the 5% FDR level. Moreover, the fdp 
at the 5% FDR level for msqrob2PTM is close to 5% for most datasets, indicating a good control of false 
positives. 

Figure 3: True positive rate (tpr) - false dicovery proportion (fdp) plots for datasets simulated under first scenario (no 
missingness). msqrob2PTM (full lines) is compared to MSstatsPTM (dotted lines). Observed fdp at a 5% FDR cut-off is denoted 
by dots for msqrob2PTM and by triangles for MSstatsPTM. msqrob2PTM uniformly outperforms MSstatsPTM for all datasets. 

Indeed, MSstatsPTM is less sensitive, i.e. its tpr-fdp curve is always below the corresponding one of msqrob2PTM. 

Figure 4 shows the tpr - fdp curves for simulation 2 for all 24 datasets. As expected, the higher number 
of missing values induces a slight drop in performance overall. However, for the larger sample sizes 
the performance remains very good for msqrob2PTM. Again, msqrob2PTM uniformly outperforms 
MSstatsPTM and the fdp is close to 5% when adopting a 5% FDR threshold. For two datasets, we see 
that the far end of the tpr-fdp curve for msqrob2PTM veers straight up (two conditions, two replicates 
sd 0.2 and sd 0.3), which reflects msqrob2’s inability to fit the models for a number of PTMs. This 
happens because these PTMs have too few observations to fit the models due to the missingness 
introduced in this simulation scenario. 



 

 

For further comparison, ROC curves (true positive rate vs false positive rate) are shown in 
Supplementary figure 1 and 2. These plots give less weight to a few top-ranked false positives. Again, 
these ROC curves demonstrate superior msqrob2PTM performance. 

In supplementary table 1 and 2, the performance metrics (false positive rate, sensitivity, specificity, 
precision and accuracy) that were reported in the MSstatsPTM paper are also given for all datasets for 
comparison. 

Figure 4: tpr-fdp plot for datasets simulated under second scenario (with missingness). msqrob2PTM (full lines) is compared 
to MSstatsPTM (dotted lines). Observed fdp at a 5% FDR cut-off is denoted by dots for msqrob2PTM and by triangles for 
MSstatsPTM. Here again, msqrob2PTM outperforms MSstatsPTM for all datasets. 

Peptidoform level 
 
Our msqrob2PTM workflow can also infer on differential usage at the peptidoform level, which we 
consider to be very important. Indeed, not all peptidoforms that carry the same PTM will necessarily 
follow the same abundance pattern. Therefore, it can occur that a significant effect at the PTM-level 
stems only from one or a few associated peptidoforms while the other associated peptidoforms remain 
unchanged between conditions. This might indicate that the underlying biology is not only affected by 
a single PTM, but rather by a combination of PTMs and/or sequence variation. We thus recommend 
adding a peptidoform analysis by default to the overall workflow.  
 



 

 

Peptidoform level information was available in both simulations, hence the performance of our 
method can be evaluated at this level as well. The peptidoform level tpr-fdp plots are given in figures 
5 and 6, and the underlying data in supplementary table 3 and 4. These show that msqrob2PTM also 
performs well on the peptidoform level and maintains good control of false positives. However, on 
peptidoform level, the method performance seems to be more affected by a lower number of 
replicates, increased variability, and missingness. This can be expected as there is inherently less 
information, but more variation, present at the peptidoform level. This variability is reduced by 
averaging over peptidoforms when summarising the data to the PTM level. However, because PTMs 
are not directly quantified, but averaged out over peptidoforms, they can lead to more ambiguous 
results.  
 
Note that, as MSstatsPTM does not offer a peptidoform level analysis, no comparison could be 
included for this workflow.  
 

 
Figure 5: tpr-fdp plot for datasets simulated under the first scenario (no missingness). Performance of msqrob2PTM is 
assessed at peptidoform level. Observed fdp at a 5% FDR cut-off is denoted by dots. 
 



 

 

 
Figure 6: tpr-fdp plot for datasets simulated under the second scenario (with missingness). Performance of msqrob2PTM is 
assessed at peptidoform level. Observed fdp at a 5% FDR cut-off is denoted by dots. For datasets with only 2 or 3 replicates, 
the method starts to suffer from lack of information, making it harder to report significant peptidoforms, especially for 
datasets with sd 0.3.  
 
Biological spike-in dataset 
 
The design of the spike-in dataset (see also figure 2) is suboptimal to assess the performance of 
methods inferring differential PTM usage. This is because the spiked-in peptides and their 
corresponding protein abundance in the background proteome are not correlated as they would be in 
real experiments. Indeed, the latter does not contain the actual parent proteins of the spike-in 
peptides. Moreover, the E.coli proteins in mixes 3 and 4 induce loading differences present across the 
samples (see also supplementary figure 3), which brings additional normalisation issues. We illustrate 
these issues using ROC curves that compare the performance of different approaches: differential PTM 
abundance by adopting a conventional msqrob2 workflow directly on the summarized PTM-level 
intensities without normalisation (DPA-NonNorm), the same workflow upon normalisation with the 
median peptidoform log-intensity (DPA), the default workflow for msqrob2PTM (default msqrob2PTM 
workflow assessing DPU), and MSstatsPTM (default MSstatsPTM workflow) (figure 7). Every pairwise 
comparison between mixes is shown. Because all methods report many false positives for this dataset, 
the tpr-fdp plots quickly became unreadable (see supplementary figure 4). 
 



 

 

When comparing mix 4 to mix 1 (mixmix4), the log2FC after adjustment should be 0, hence, no method 
should report any differential PTMs. Indeed, this comparison is an internal control, and the ROC curves 
are expected to lie along the diagonal. Here, DPA-NonNorm and MSstatsPTM show the largest 
deviations from the diagonal.  
 
In the other comparisons, DPA always outperforms the other methods. Note that DPA assesses 
differential PTM abundance rather than differential usage as it does not normalise for parent protein 
intensity. This superior performance of the DPA method as compared to the DPA-NonNorm method 
indicates that it is very important to correct for technical variability resulting from the experimental 
design, i.e. the loading differences, rather than correcting for parent protein abundance. In the mix 2 
vs mix 1 (mixmix2) and mix 4 vs mix 3 comparison, DPA-NonNorm also performs very well, because in 
these comparisons, the adjusted and unadjusted fold changes are the same. However, the loading 
differences for the other comparisons cause a breakdown of DPA-NonNorm. MSstatsPTM and 
msqrob2PTM always have a lower performance than DPA, but never break down. For the mix 2 vs mix 
1 and the mix 4 vs mix 3 comparisons, MSstatsPTM performs slightly better than the default 
msqrob2PTM workflow, while the latter performs better in the remaining three comparisons. The 
decrease in performance by msqrob2PTM as compared to DPA can be explained by the increase in 
variability that is introduced in the workflow by subtracting the unrelated “parent protein intensities” 
from the spiked-in peptidoform intensities. In other words, the design is not suited to benchmark the 
performance of methods developed to quantify differential peptidoform usage. However, the design 
is useful for assessing the performance of methods that quantify differential PTM abundance. This can 
easily be obtained with standard msqrob2 workflows, but is not returned by default by MSstatsPTM. 
However, because the msqrob2 suite builds upon the QFeatures architecture, the results of a DPA and 
DPU workflow can both be stored in the same object, thus providing more transparency and 
reproducibility across the workflows.  
 
For completeness, we also plotted the log2 fold changes for all PTMs  in supplementary figures 5 and 
6, which illustrate that both msqrob2PTM as well as MSstatsPTM provide good estimates for these. 



 

 

Figure 7: ROC curves of the different approaches for all pairwise comparisons. Mix 4 vs 1 (mixmix4) serves as internal control, thus the curves should follow the diagonal as closely as possible. 
DPA performs very well in all comparisons and outcompetes all other methods. DPA-NonNorm has good performance in the two comparisons where adjusted and unadjusted fold changes are 
the same, but breaks down for the other comparisons. The performance of MSstatsPTM and msqrob2PTM (the default differential PTM usage workflow) is similar, with performance dependent 
on the comparison being made.



 

 

Ubiquitination dataset 
 
msqrob2(PTM) is capable of handling more complex designs that require mixed model analysis, as well 
as datasets that lack a non-enriched version of the dataset. These two aspects apply to the 
ubiquitination dataset. Note that this is an experimental, biological dataset, and therefore does not 
come with a known ground truth.  
Despite the two abovementioned complexities, the standard msqrob2PTM workflow could find 
differentially abundant ubiquitin sites in most comparisons, except for the USP30_OE vs control 
comparison. However, table 2 shows that msqrob2PTM generally reports much fewer significant PTMs 
than MSstatsPTM. 
  

Contrast MSstatsPTM Msqrob2PTM 
Combo vs Ctrl 424 30 
CCCP vs Ctrl 359 12 
USP30_OE vs Ctrl 40 0 
Combo vs CCCP 31 1 
Combo vs USP30_OE 407 24 
CCCP vs USP30_OE 364 13 

Table 2: The number of significant PTMs reported for each contrast for both methods. 
 
Upon closer inspection of the PTMs reported as significant by MSstatsPTM, it was discovered that this 
large discrepancy can be explained by several reasons. 
 
First, both methods have a different way of dealing with missing data. Upon inspecting multiple line 
plots, we observed PTMs that were flagged as significant by MSstatsPTM despite having only one bio-
repeat, or even only a single data point available in one of the conditions. In figure 8, for instance, line 
plots are shown for two PTMs that are significant in MSstatsPTM when comparing the combination 
condition (Combo) versus the control condition (Ctrl), but not in msqrob2PTM. Notably, PTM 
O00154_K205 only presents PTM information for the first biological replicate, while PTM 
O00159_K0578 contains just one data point within the entire control condition. For these features, 
msqrob2 therefore did not return a model fit.  



 

 
 

 
Figure 8: line plots displaying estimated log2 intensity values of the PTM (dark pink) for each sample, its normalised intensity 
values (yellow), log2 intensity values of its parent protein (green), for MSstatsPTM estimated log2 intensity values of that 
parent protein (dark green), and for msqrob2PTM, log2 intensity values of the peptidoforms (grey) on which the PTM occurs. 
On the left, line plots for PTM O00154_K205 and O00159_K0578 for msqrob2PTM, on the right for MSstatsPTM. Both PTMs 
were deemed significant by MSstatsPTM when comparing the control condition to the combination condition (combo), but 
not by msqrob2PTM. O00154_K205 only contains intensity information for bio replicate B1. O00159_K0578 only has 1 
associated intensity value in the control condition. Hence, both of these PTMs contain too few datapoints for msqrob2PTM 
to determine significance. 
 



 

 
 

When examining the results more closely, we noticed that MSstatsPTM uses three different models to 
fit the data and that the model choice is based on the available data points for each PTM (see 
UbiquitinationBioData exploration of results file on https://github.com/statOmics/msqrob2PTMpaper 
for detailed examples), i.e. a full mixed model was employed when no data was missing, using a fixed 
effect for group and random effects for subject (1 | SUBJECT) and subject x group (1 | 
GROUP:SUBJECT), as soon as a single data point is missing, the (1 | GROUP:SUBJECT) term is dropped, 
and when data is missing for one of the bio repeats in all conditions, a linear model is employed with 
only a fixed group effect. This adaptability to missing data comes with a price, however. Notably, the 
second model, without the (1 | GROUP:SUBJECT) term, ignores the between bio repeat variability. 
Indeed, bio repeat 1 in the control group is not the same as bio repeat 1 in the combination group. 
However, they are treated as such, resulting in underestimated standard errors.  
 
Across comparisons, 15-27% of PTMs deemed significant were modelled with an incorrect mixed 
model (% differs according to comparison). Moreover, 44-75% of significant PTMs were modelled using 
a linear model, which represents features for which msqrob2 does not fit any model at all because 
biological repeats are lacking. Moreover, when examining the significant PTMs together with their 
parent proteins, it became apparent that for most features the PTM and protein intensities were 
modelled with a different model. This can lead to artifacts such as shown in figure 8 (top panels), where 
the protein data contains information about only one of the two bio repeats, but is still used to make 
the adjustment for the other bio repeat! To avoid these ambiguities, we conducted an MSstatsPTM-
like analysis while enforcing the use of the full mixed model. Only PTMs with associated parent proteins 
were included in the analysis. Subsequently, the full mixed model was applied to both the PTM and 
protein-level data. The adjustment for protein abundance followed the standard MSstatsPTM 
procedure, and the resulting p-values were adjusted using the Benjamini-Hochberg method. Using the 
native MSstatsPTM implementation the “CCCP” vs “Ctrl” comparison identified 359 significant PTMs. 
However, when solely employing the full mixed model, only 55 PTMs remained significant, which is in 
line with our msqrob2 results. 
 
Second, the two methods employ distinct conceptual approaches. In msqrob2PTM, within-sample 
normalisation according to protein level abundance is performed first, followed by statistical analysis. 
MSstatsPTM, however, uses the modelled PTM and protein results for normalisation, ignoring the 
inherent biological correlation between PTMs and their parent proteins within a sample. Analysing 
these separately can sometimes generate ambiguities. Figure 9 illustrates this issue, demonstrating a 
PTM that was flagged as significant for the “Combo” vs "Ctrl” comparison by MSstatsPTM, but not by 
msqrob2PTM. Specifically, the peptidoform carrying PTM O60260_K369 closely mirrors the intensity 
pattern of its parent protein, resulting in minimal differences, and therefore no significant regulation, 
in PTM intensities after normalisation for protein abundance in our msqrob2PTM workflow. However, 
as MSstastPTM first fits models to the PTM and protein level data separately, and only afterwards uses 
these model estimates to correct for the difference in protein abundance, differences in PTM usage 
are artificially enlarged, leading to a significant PTM according to MSstatsPTM in this comparison.  

https://github.com/statOmics/msqrob2PTMpaper


 

 
 

Figure 9: line plot displaying PTM log2 intensity values (pink dotted line) or peptidoform log2 intensity values (dark grey dotted 
line) and log2 intensity values of its parent protein (light green dotted line) in each sample. MSstatsPTM first fits a model to 
PTM (dark pink line) and to protein intensities (dark green line) to estimate average intensity in each condition. Subsequently, 
fitted average protein abundances are subtracted from fitted average PTM intensities to obtain average PTM abundances in 
each condition corrected for protein abundance (yellow line). Conversely, msqrob2PTM first normalises peptidoform 
intensities using parent protein abundance, resulting in a normalised peptidoform (light grey dotted line). From normalised 
peptidoforms, normalised PTM intensities are calculated (yellow dotted line). Estimated log2 intensity values of the PTM are 
depicted in dark pink. MSstatsPTM corrected PTM abundances seem to indicate differential PTM usage. Moreover, the 
comparison between “Combo” vs “Ctrl” is returned by MSstatsPTM as statistically significant. This, however, appears to be 
an artifact of MSstatsPTM as the correction for protein abundance does not account for the link between protein and PTM 
intensities within-sample. Indeed, when comparing “Combo” and “Ctrl” sample level intensities, the pattern at PTM-level 
closely follows that of its parent protein. 
 
 
Phospho dataset 
 
Two different workflows were employed for this dataset. The first workflow uses the non-enriched 
counterpart dataset to normalise for differences in protein abundance, while the second workflow 
only used the enriched dataset, also for the normalisation step. It is important to note that two distinct 
instrument platforms were used to analyse the total proteome and phosphoproteome samples. The 
chromatographic conditions were identical as well as the MS instrument geometry but two 
consecutive generations of Q-Orbitraps were used (Q-Exactive Plus versus Q-Exactive HF-X). This partly 
explains  the observed heterogeneity between enriched and non-enriched datasets. Indeed, we 
observed a substantial proportion (approximately 25%) of proteins present in the enriched dataset 
that were absent in the non-enriched one. This led to some PTMs that could not be normalised, which 
we opted to exclude from subsequent analysis in workflow 1. 
 
Both workflows involved testing multiple contrasts based on two factors: condition (A or B), and subset 
(x or y). In the first workflow (utilising both datasets), 31 unique differential PTMs were found, of which 
25 phosphorylations. Most of these PTMs exhibited significant downregulation in condition A 
compared to B within subset y.  



 

 
 

In the second workflow (using only the enriched dataset), fourteen unique significant PTMs were 
identified, of which eight phosphorylations. The majority of phosphorylations showed significant 
differential usage between condition A and B within subset y and/or exhibited significant differential 
usage between condition A and B averaged over subsets x and y. Supplementary tables S5 and S6 
provide detailed results. 
Interestingly, the results differ between the two workflows. Of the 31 PTMs identified in workflow 1, 
ten were also found in workflow 2.  
 
Instead of solely focusing on significant PTMs, our method is capable of detecting differentially used 
peptidoforms as well. For this dataset, the first workflow detected twelve peptidoforms as 
differentially abundant, predominantly showing downregulation in condition A for subset y. 
In the second workflow, which lacked a global profiling dataset, seven significant peptidoforms were 
detected across the different comparisons. LPIVNFDYS[Phospho (STY)]M[Oxidation (M)]EEK was 
picked up as DU by both workflows and is particularly interesting, because both PTMs present on this 
peptidoform are also returned as significant in the differential PTM usage analysis. Hence, one of the 
PTMs might have been detected as differential because the other PTM is also present on the same 
peptidoform, potentially influencing its significance upon averaging with the remaining peptidoforms 
carrying this PTM. To assess the contribution of different peptidoforms to a single PTM, line plots can 
be used to visualise both the PTM intensities across the samples as well as the intensities of its 
contributing peptidoforms. Figure 10 illustrates this issue. Indeed, the top panel shows a 
phosphorylation that occurs in two peptidoforms, the bottom panel shows an oxidation that also 
occurs on one of these peptidoforms. The peptidoform with both modifications was significant, while 
the second peptidoform that did not carry the oxidation was not significantly DU. The intensity for the 
phosho-PTM is obtained upon summarisation over both peptidoforms, and was reported significant 
when assessing the data at the PTM-level. However, the significance of the phospho-PTM might be an 
artifact triggered by the presence of additional oxidation in one of its underlying peptidoforms.  



 

 
 

 
Figure 10: Line plots of normalised intensity values per sample for significant peptidoform (LPIVNFDYS[Phospho 
(STY)]M[Oxidation (M)]EEK) and its corresponding PTMs for the phospho dataset. At the top, the significant peptidoform is 
depicted in pink. In green is the PTM occurring on that peptidoform, in this case phosphorylation. In grey any other 
peptidoform carrying that same PTM, and in yellow, the PTM intensity value as estimated by the model. The PTM is 
represented by two peptidoforms that roughly follow the same pattern, resulting in a PTM that resides in the middle. At the 
bottom we see the other PTM occurring on that peptidoform, the oxidation. No other peptidoform carries that same 
modification, resulting in perfect overlap between the line of the significant peptide and that of the PTM. Here, it is possible 
that the oxidation is only significant because the phosphorylation is. Indeed, the driving force of the significance of this 
particular peptidoform could be coming from the phosphorylation (which has two associated peptidoforms). Note that, while 
these particular line plots were derived using the workflow without a non-enriched dataset, the corresponding plots from 
workflow 1 are extremely similar. 
 
Some PTMs are also significant because they enable aggregating evidence over multiple non-significant 
peptidoforms that all have a similar expression pattern. An example of this can be seen in figure 11 for 
sp|P10451|OSTP_HUMAN (Phospho (STY)) 280. 
 



 

 
 

 
Figure 11: Line plot of normalised intensity values of significant PTM sp|P10451|OSTP_HUMAN (Phospho (STY)) 280 and its 
associated peptidoforms. In green the summarised and normalised intensity value of the PTM, in grey all peptidoforms 
(normalised) containing this PTM, in purple the PTM intensity values as estimated by the model. While none of the 
peptidoforms are individually significant, these all contribute to a PTM that can be picked up as differentially abundant 
(downregulated in condition A for samples from subset y). 
  
 
Mock analyses 
 
As the phospho datasets are biological experiments, the ground truth is unknown. Therefore, we 
cannot assess the performance of each method. We also do not know if the method provides reliable 
false positive control. To assess if our workflows provide good type I error control for the case study, 
we therefore perform a mock analysis. In particular, we introduce a factor for a non-existing effect, 
implying that all features that are returned significant upon testing for this factor are false positives. 
Here, we focus on subset y from condition B, so that ample samples remain. When the method 
provides good false positive control, the p-values upon assessing the mock effect will be uniform. 
 
The p-value distribution for the workflow that only uses the enriched dataset is given in Figure 12. The 
top panels show the results for the PTM-level analysis and the bottom panels for peptidoform analysis. 
Both workflows with and without robust regression provide fairly uniform p-values. Supplementary 
figures 7-10 show similar plots for four other random mock datasets, showing consistency of 
performance.  



 

 
 

 

Figure 12: Distribution of p-values for mock analysis of the phospho dataset without global profiling run, for analysis on PTM 
level (top) as well as peptidoform level (bottom). Left panels are for workflows without robust regression in the modelling 
step; Right panels correspond to workflows with robust regression in the modelling step. All p-values are fairly uniform, 
indicating acceptable type I error control. 
 
We did a similar mock analysis for the workflow that uses the non-enriched dataset for usage 
calculation (Figure 13). The workflow on peptidoform level using robust regression showed a slight 
increase in low p-values, which is also observed in some other random mock datasets (Supplementary 
Figures 11-14). The remaining workflows generated fairly uniform p-values for all random mock 
datasets (Figure 13 and Supplementary Figures 11-14). We therefore did not adopt robust regression 
for the peptidoform analysis. 
 



 

 
 

Figure 13: Distribution of p-values for mock analysis of the phospho dataset using the non-enriched dataset to estimate the 
usages. Results at PTM level (top panels) as well as at peptidoform level (bottom panels). Left panels are based on a workflow 
without robust regression; right panels on a workflow with robust regression. 
 

Discussion 
We here introduced msqrob2PTM, a novel workflow in the msqrob2 universe, designed for performing 
differential abundance as well as usage analysis on PTM and peptidoform level. These two analyses 
are distinguished by their normalisation strategies. In abundance analysis, only a normalisation to 
reduce technical variation is included, while the novel usage workflow incorporates normalisation 
against parent protein intensities. Both approaches have their relevance in PTM research. DPU enables 
the discovery of differential PTMs that respond differently than their parent protein. However, in 
certain scenarios, DPA might be of interest instead. Indeed, when an increase in total protein 
concentration leads to a corresponding increase in PTM concentration, there may be biological 
implications associated with this elevation in PTMs, regardless of whether it is driven by changes in 
parent protein levels or not. Therefore, the choice between DPA and DPU depends on the specific 
research question at hand, or they can both be performed to complement each other. 
 
Through analysis of simulated and biological datasets, we have demonstrated that our workflows 
improve upon the state-of-the-art MSstatsPTM. We showed the advantage of first normalising the 
peptidoform intensities by the parent protein abundance before conducting the differential analysis. 
In this way, we can immediately model the usages as opposed to MSstatsPTM that estimates the fold 
changes for the PTM and protein values separately before differencing these to estimate DPU. Indeed, 



 

 
 

the peptidoform and protein values from the same sample are correlated, which is explicitly accounted 
for in our DPU workflow but is ignored by MSstatsPTM. We showed for the latter method that this can 
lead to artifacts in the estimated fold change for some PTMs upon correction for the fold change in 
the parent protein. Moreover, MSstatsPTM also ignores the correlation when calculating the variance 
on the difference in fold change leading to incorrect inference.  
 
Another key distinction between both packages is how they handle PTMs that cannot be fitted with 
the desired model. MSstatsPTM prioritises automation and aims to infer on as many PTMs as possible. 
However, this leads to reporting on PTMs for which the fit is based on different models and often on 
insufficient data to draw reliable inference on the contrast of interest. Moreover, for PTMs that lack a 
corresponding protein expression fold change, results are returned based on the PTM fold change 
alone. Hence, MSstatsPTM silently combines inference on differential usage with inference on 
differential abundance in one output list depending on the degree of missingness at the protein-level. 
In general, a standard user is not fully aware of these issues, and the subtleties of interpretation that 
these require. In contrast, our msqrob2PTM workflow emphasises transparency and reproducibility. 
While this choice may lead to some PTMs that cannot be estimated using the default workflow, it does 
ensure that users are fully aware of what was modelled for each PTM. Moreover, we feel that PTMs 
for which no results are returned due to missingness require the intervention of a skilled data analyst 
to develop tailored solutions to infer on differential abundance and/or usage; solutions that are 
moreover supported by the msqrob2 universe. Indeed, we showed that automatic approaches can 
lead to biased results, and especially in experiments with more complex designs.  
 
These differences in normalisation approach and design concept elucidate the variations in 
performance across the different datasets that were used in our benchmark. In the simulated datasets, 
msqrob2PTM capitalises on the within-sample correlation between peptidoforms and proteins that is 
present in the data, resulting in superior performance compared to MSstatsPTM. However, in the 
spike-in dataset, where this correlation is absent due to its unrealistic design, the default msqrob2PTM 
workflow exhibits similar performance to MSstatsPTM. However, for this dataset we show that our 
workflow for assessing differential PTM abundance analysis uniformly outperforms both the 
msqrob2PTM and MSstatsPTM workflows assessing differential PTM usage. Indeed, the spike-in study 
is suited for assessing the performance on differential PTM abundance rather than on differential PTM 
usage, as the spiked PTMs were not correlated to their corresponding protein in the background. In 
the biological ubiquitination dataset, the high amount of missing data, and the absence of a global 
profiling dataset leads to a high number of PTMs that cannot be fitted with the required model. 
MSstatsPTM will then resort to other, simpler models that are often suboptimal or even mismatched, 
while msqrob2PTM will simply not return results for these PTMs, leading to a lower number of 
reported significant PTMs. 
 
These datasets bring to attention a broader issue in the field, specifically the scarcity of suitable 
datasets for accurately assessing Differential Peptidoform Usage (DPU). When designing such 
experiments, it is favourable to incorporate a global profiling dataset along with an adequate number 
of biological replicates. This comprehensive approach not only enables a more thorough evaluation of 
DPU but also enhances statistical power, yielding more reliable and robust results. Indeed, the 
approach benefits from multiple replicates per feature. As PTMs usually appear low abundantly, this 
is often challenging to achieve in practice (26).  
 
Although we recommend the addition of a global profiling counterpart to an enriched PTM dataset, 
this is conceptually not required as normalisation can be done using all peptidoforms mapping to the 
same protein. However, we showed that this approach has the risk of partially diluting the effect of 
the PTM as their underlying peptidoforms are now involved in the calculation of the PTM usage.  
 



 

 
 

As opposed to MSstatsPTM we do not make use of converters. Hence, msqrob2 input is not restricted 
to certain search engines or quantification algorithms, providing the user with full flexibility. However, 
this does require the user to convert their data into appropriate input format, which is a simple flat 
text file format (as exportable from a spreadsheet) or a data frame in R that can be used by the 
constructor for QFeatures objects. Furthermore, our workflows are modular and provide the user with 
the flexibility to use custom pre-processing steps. Default workflows are presented in our package 
vignettes, but these can easily be altered by building upon methods in the QFeatures package. 
Moreover, the use of the QFeatures infrastructure also guarantees that input data is never lost during 
processing, but remains linked to the pre-processed and normalised assays as well as to the model 
output, insuring transparency, traceability, and reproducibility. This allows the user to perform 
differential usage (and/or abundance) analysis on both PTM and peptidoform (or even protein) level, 
while storing and linking all these different results in a structured manner in the same object. 
 
Another advantage of msqrob2PTM is that it can manage multiple modification sites per peptidoform. 
The peptidoform will then simply be used in the summarisation of multiple PTMs. This is particularly 
useful when using open modification search engines, which can often find multiple PTMs per peptide. 
Moreover, we also include workflows on differential abundance and usage analysis on the peptidoform 
level. Indeed, as shown in figures 10 and 11, it can be relevant to know whether a significant PTM 
stems from multiple (slightly) significant associated peptidoforms, or whether it is driven by one or a 
few very strongly significant associated peptidoform(s). In the latter case, it could be possible that 
these significant peptidoforms carry another modification that is driving the differential usage. Hence, 
we always advise users to conduct a peptidoform level analysis as well. 
 
Overall, we have shown that our msqrob2PTM workflow is a sensitive and robust approach compared 
to the state-of-the-art, while providing good fpr control and high accuracy. Our modular 
implementation offers our users full flexibility with respect to the search engine and pre-processing 
steps, while still offering a comprehensive, transparent, and reproducible workflow that covers the 
entire differential PTM analysis. 
Code and data availibility 
The analysis files and data are available on https://github.com/statOmics/msqrob2PTMpaper and 
PRIDE PXD043476. 
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Résumé 
L’analyse protéomique par spectrométrie de masse permet l’identification, la quantification et la 
caractérisation structurale des protéines impliquées dans de nombreux processus biologiques. Cette 
approche peut également être appliquée à l’étude des modifications post-traductionnelles des 
protéines, telle que la phosphorylation. Ce travail de thèse est axé sur le développement de méthodes 
analytiques pour l’analyse protéomique et phosphoprotéomique à haut débit. Ces développements 
ont été réalisés à différents niveaux : la préparation automatisée des échantillons, l’analyse LC-MS/MS 
avec l’évaluation de différentes méthodes d’acquisition et le traitement des données par diverses 
solutions algorithmiques. Ils ont ensuite été appliqués pour l’étude de large cohortes d’échantillons 
cliniques dans le but d’identifier et quantifier de potentiels marqueurs de la sclérose latérale 
amyotrophique. Enfin, des échantillons et métriques de contrôle qualité ont été implémentés à la fois 
pour l’analyse protéomique et phosphoprotéomique adaptés à des études de grands nombres 
d’échantillons. 

Mots-clés : Protéomique, Spectrométrie de masse, Phosphoprotéomique, Acquisition indépendante 
des données (DIA), Multi-omique 
 

 

Résumé en anglais 
Mass spectrometry-based proteomic analysis enables the identification, quantification and structural 
characterisation of proteins involved in numerous biological processes. This approach can also be 
applied to the study of post-translational modifications of proteins, such as phosphorylation. This PhD 
work focuses on the development of analytical methods for high-throughput proteomic and 
phosphoproteomic analysis. Developments were carried out at different levels: automated sample 
preparation, LC-MS/MS analysis with the evaluation of different acquisition methods and data 
processing using various algorithmic solutions. They have then been applied to the study of large 
cohorts of clinical samples with the aim of identifying and quantifying potential markers of amyotrophic 
lateral sclerosis. Finally, samples and quality control metrics have been implemented for both 
proteomic and phosphoproteomic analysis adapted to studies of large numbers of samples. 

Keywords: Proteomics, Mass spectrometry, Phosphoproteomics, Data Independent Acquisition (DIA), 
Multi-omics  
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