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Résume

Les lacs jouent un réle essentiel dans I'écosysteme hydrologique et donc sur la régulation de
cette ressource cruciale que constitue I'eau douce. En raison de leur sensibilité au climat et leur
capacité a s'adapter rapidement aux changements, ils sont considérés comme des sentinelles
du changement climatique. En complément du suivi des surfaces/hauteurs, de la fréquence de
formation de glace sur les lacs, et des évolutions de la qualité des eaux, la température de
surface de I'eau du lac (LSWT — Lake surface Water Température) est une mesure physique
cruciale pour I'étude des phénomenes hydrologiques et météorologiques liés au changement

climatique.

La LSWT mesure la température d'une fine couche de surface du lac. Cependant, elle a un
impact significatif sur I'environnement aquatique et la chimie de I'eau, ce qui en fait une
indication cruciale de I'état de santé des lacs. En outre, les conditions météorologiques et
I'atmosphere qui entourent les grands lacs sont influencés par la température de l'eau de
surface du lac. De nombreuses applications nécessitent des données sur la température de
I'eau avec des résolutions spatiales et temporelles accrues, comme par exemple I'étude du
cycle hydrologique et du changement climatique, de I'habitat de I'ecosysteme aquatique, la

péche et I'aquaculture ainsi que la gestion de la qualité de I'eau.

La recherche presentée dans cette thése vise a acquérir et a analyser la LSWT a l'aide de
capteurs satellitaires TIR tels que Landsat 8-9, ECOSTRESS, Sentinel-3 et MODIS. Ces capteurs
fournissent des informations précieuses en prévision de nouvelles missions TIR telles que
TRISHNA en 2025 (CNES-ISRO) et de missions a plus long terme telles que LSTM (ESA
Copernicus) et SBG (NASA), toutes deux en 2028. Cette thése estime la LSWT de plusieurs lacs,
tels que le lac Issyk-Kul au Kirghizstan et les lacs Gerardmer, Longemer et Plobsheim en France.
Pour évaluer la LSWT, des résolutions temporelles et spatiales modérées et élevées sont
envisagées afin d’obtenir des mesures spatiales et temporelles plus denses. Ces densités de
résolutions sont nécessaires pour comprendre les processus et la dynamique dans le domaine

thermique et ses changements dans le temps et I'espace. En outre, plusieurs validations de Ia



LSWT par comparaison avec des mesures in situ et de données issues de campagnes de

validation ont été menées sur les lacs considérés dans cette étude sur différentes années.
L’organisation de cette these est la suivante :

Le chapitre 1 présente le contexte de |'extraction de la LSWT avec une approche multirésolution
multi-capteurs. La littérature existante dans le domaine de l'infrarouge thermique provenant de
différentes études et applications a été étudiée. Les objectifs de cette these sont également

présentés dans ce premier chapitre.

Le chapitre 2 décrit les différents algorithmes permettant d’obtenir les données LSWT au
niveau 1 de I'imagerie Landsat 8, 9 et ECOSTRESS, ainsi que |'analyse des produits LSWT utilisés
dans cette recherche et leurs étapes de géotraitement, telles que I'application de masques de

nuages pour certains des produits.

Le chapitre 3 décrit les caractéristiques physiques et climatologiques des régions considérées
comme zones d'étude. Il présente également la liste et la description des ensembles de
données utilisés pour cette recherche, tels que les produits LST (Land Surface Temperature),
utilisés pour extraire le LSWT et les images de niveau 1 utilisées pour exécuter les algorithmes

d’extraction avec ses parameétres atmosphériques d'entrée.

Le chapitre 4 présente les résultats de la comparaison des algorithmes pour Landsat 8-9 et
ECOSTRESS, la performance des produits LST et de leurs masques de nuages, ainsi que
validation croisée entre tous les capteurs TIR et les ensembles de données in situ. En outre, ce
chapitre explique les résultats obtenus, leurs implications ou conséquences, en décrivant les

limites de cette recherche par rapport aux contributions a la littérature antérieure.

Le chapitre 5 présente la somme des principaux résultats, conclusions et perspectives, ou

certains de ces résultats donnent lieu a des suggestions pour I'avenir.

Le chapitre 1 présente I'importance de |'eau douce en tant que ressource naturelle, le réle des
lacs dans I'écosysteme hydrologique. Il décrit également les méthodes de détermination de la
température de surface de l'eau (LSWT) a l'aide de techniques multi-capteurs et multi-

résolution, ainsi que l'ensemble de la littérature actuelle dans le domaine de l'infrarouge



thermique classé par type de résolution spatiale et temporelle : moyenne et haute résolution.

Ce chapitre énonce aussi les objectifs de cette thése, qui peuvent se résumer ainsi :

Obtenir et analyser la LSWT a partir de plusieurs capteurs avec des résolutions spatiales,
temporelles, et spectrales différentes. Cette synergie permettrait d'obtenir des mesures
spatiales et temporelles de la LSWT plus denses nécessaires a la compréhension des
processus et de la dynamique dans le domaine thermique et de ses changements dans
le temps et I'espace. Les capteurs TIR utilisés dans cette étude sont classés en fonction
de leurs résolutions spatiales et temporelles. Pour la basse résolution spatiale, nous
avons utilisé MODIS (Terra) et SLSTR (Sentinel-3), tous deux avec une résolution de 1 km
et un temps de revisite quotidien. Comme haute résolution spatiale nous avons utilisé (i)
ECOSTRESS, qui est un capteur a bord de I'lSS (International Space Station) ayant une
résolution de 70 m et un temps de revisite de 3 a 5 jours, et (ii) TIRS, embarqué sur les
satellites Landsat 8 et Landsat 9, avec une résolution de 100 m et un temps de revisite
de 16 jours.

Valider la LSWT en la comparant avec des mesures in situ. Des campagnes de validation
ont été menées sur le lac Issyk-Kul (Kirghizstan), ainsi que sur trois lacs de la région

francaise du Grand-Est (lacs de Gerardmer, Longemer, et Plobsheim).

Le chapitre 2 décrit les différents algorithmes permettant de récupérer les données LSWT et les

produits LSWT utilisés par satellite :

Landsat 8/9

Les algorithmes d’obtention de la LSWT a partir de Landsat 8/9 ont été obtenus a partir de la

littérature afin d'effectuer des comparaisons et de déterminer la méthode la plus fiable dans le

cadre de cette recherche. Les méthodes utilisées sont les suivantes :

Algorithme mono-canal (MWA — Mono Window Algoritm)
Algorithme a canal unique (SCA — Single Channel Algorithm)
Canal unique basé sur le contenu en vapeur d'eau (PSCwvc — Practical Single Channel)

Algorithme a deux canaux (SWA — Split Window Algorithm)



Ces méthodes utilisent une approche a un seul canal (TIR1 - Bande 10), laissant de c6té le TIR2 -
Bande 11, en raison des effets de lumiére parasite qui affectent ce canal. Cependant, la NASA a
récemment mis a jour et mis a disposition la Collection 2 pour Landsat 8 et 9, ou les
performances des instruments radiométriques ont été améliorées, rendant possible I'utilisation
de la méthode SWA. L'information obtenue de cette maniere devrait étre plus précise que les

méthodes utilisant un seul canal.

Sentinel-3, MODIS, ECOSTRESS

En outre, I'analyse LSWT utilisant les produits dérivés LST des capteurs TIR a moyenne et haute

résolution a été réalisée :

e [SWT de Sentinel-3 (SLSTR)

e LSWT de MODIS (Terra)

e LSWT de ECOSTRESS (Algorithme a deux canaux (SWA) pour ECOSTRESS : Cet algorithme
a été développé car les résultats fournis avec le produit original (ECO-LSTE) obtenus

avec l'algorithme TES ont montré étre surestimés.

Les températures obtenues a partir des données multi-résolutions et multi-capteurs provenant
des satellites a haute résolution (Landsat 8-9, ECOSTRESS) et des satellites a résolution
modérée avec un temps de revisite quotidien (Sentinel-3 et MODIS) sont comparées avec les
données de la station météorologique, des bouées, des instruments installés sur la planche
Torrent, du radiométre CIMEL 312-2 et de la caméra FLIR. L'utilisation de plusieurs capteurs et
la synergie de leurs données permettent de surmonter les inconvénients de capteurs

individuels et d'améliorer la précision et la couverture globales des mesures de LSWT.

Des zones d'intérét ont été définies pour les quatre lacs afin d'évaluer les températures
représentatives de ces zones et de réduire l'incertitude de l'utilisation de pixels qui pourraient

ne pas étre associés a l'eau.

Le chapitre 3 présente les caractéristiques physiques et climatologiques des régions d'étude.

Pour cette thése, nous avons considéré le lac Issyk-Kul (Kirghizstan, Asie centrale) comme



premier cas d'étude. Le lac Issyk-Kul est le septieme lac le plus profond du monde avec une

profondeur maximale de 668 m, une altitude de 1 607 m et une surface d'eau de 6 230 km?2.

Les autres lacs étudiés dans le cadre de cette recherche sont des lacs de la région Grand-Est
(France) : Le lac de Gérardmer, d'une superficie de 1,16 km?, d'une profondeur de 36,2 m et
d'une altitude de 660 m ; le lac de Longemer, d'une superficie de 0,76 km?, d'une profondeur de
29,5 m et d'une altitude de 668 m. Ce sont des lacs glaciaires situés dans le massif des Vosges
en France. Enfin le lac de Plobsheim, avec une superficie de 6,6 km2, est le plus grand plan
d'eau du département du Bas-Rhin et est une retenue artificielle aux eaux claires et peu

profondes de 3 m en moyenne.

Ce troisieme chapitre présente également la liste et la description des ensembles de données
utilisés pour cette recherche, tels que les produits LST, I'imagerie de niveau 1 pour exécuter les

algorithmes de détermination de la LSWT et les paramétres atmosphériques d'entrée :

Données d'imagerie

Un ensemble d'images de 2019 a 2023 a été sélectionné a partir des satellites avec leurs

capteurs et produits correspondants

e Landsat 8-9 (TIRS)

e MODIS (Terra)

e Sentinel-3 (SLSTR)

e ECOSTRESS

e CCl Lakes (produit LSWT)

e Colonne de vapeur d'eau atmosphérique (wvc) et température de l'air prés de la
surface (Tp)

Données sol et atmosphérigues

Fichiers des données des stations fixes météorologiques
e Données in situ provenant de bouées
e Planche Torrent: contient des capteurs pour mesurer la température de l'eau, la

température de l'air et I'humidité.



e Radiomeétre CIMEL 312-2

e Caméra infrarouge FLIR T-560
La station météorologique située sur le site dans la zone nord de la région du lac Issyk-Kul
fournit deux valeurs journalieres de température de |'eau. Pour les lacs de Gerardmer et
Longemer, des données in situ ont été fournies par des bouées qui ont mesuré les
températures de profil depuis 50 cm jusqu'a la profondeur maximale (34 m pour Gérardmer et
29 pour Longemer), enregistrant une température chaque heure. Les mesures des bouées du
lac de Plobsheim sont effectuées a I'aide d'enregistreurs multi-parametres fixés sur 7 bouées
situées a environ 1 m sous la surface de l'eau, réparties du nord au sud du lac, avec une

fréquence d'acquisition de 30 minutes.

D'autre part, les ensembles de données CCl Lakes v. 2.0.2 qui sont une combinaison de produits
ATSR-2, AATSR et AVHRR-3, avec une résolution spatiale de pres de 1 km (1/120 degrés), avec

une résolution temporelle journaliére ont été utilisés.

Le chapitre 4 présente les résultats obtenus et leurs analyses et la comparaison des
estimations de LSWT avec les études précédentes. Lors de I'étude du lac Issyk-Kul, les LSWT
obtenues avec les algorithmes PSCwvc et le SCA pour Landsat 8 ont montré une meilleure
fiabilité dans I'approximation des LSWT avec d'autres sources (MWA, SWA), autour de 1 a 2 °C.
Des études précédentes utilisant ces algorithmes ont conclu que le SWA et SCA sont fiables par
rapport aux mesures in situ, et les erreurs d'estimation ont été attribuées a la qualité des

données de la vapeur d'eau atmosphérique.

En termes d'intercomparaison des capteurs, Sentinel-3 et les données de la station
météorologique ont montré des valeurs LSWT cohérentes entre elles (1 °C), tout comme
ECOSTRESS et MODIS, bien qu'avec une plus grande variation (1-2 °C). Des études antérieures
comparant ces capteurs avec des mesures in situ ont montré qu'ECOSTRESS sous-estimait la

température de surface au printemps et en été, comme observé dans la présente étude.

La validation au sol a été effectuée en octobre 2021 sur le lac Issyk-Kul. L'instrumentation
utilisée pour cette campagne comprenait des capteurs pour mesurer I'humidité, la température

de l'eau et de l'air, installés sur une plateforme flottante appelée planche Torrent, un

\



instrument assemblé dans le cadre de cette thése au laboratoire ICube (équipe TRIO). Une
seconde mission Issyk-Kul s’est déroulée en avril 2023, permettant de receuillir des mesures de

températures de surface cette fois a I'aide d’un radiometre CIMEL 312-2.

Aux dates d’acquisition terrain, certains capteurs satellitaires (ECOSTRESS et Landsat 8)
n'étaient pas disponibles. Cependant, il y a eu un passage de Sentinel-3 et un de MODIS.
Malgré la couverture nuageuse, les mesures de terrain effectuées par la planche Torrent ont pu
étre comparées avec ces deux capteurs. Les mesures a 5 cm et a 10 cm de profondeur
affichaient des valeurs légérement inférieures aux températures plus profondes (15 et 35 cm),
la différence entre ces deux plages étant inférieure a 0,2 °C environ. La température de I'air n'a
pas montré de forte corrélation avec les températures de |'eau, avec des températures de l'air
entre 14,5 et 16,5 °C. Les LSWT de Sentinel-3 sont les valeurs les plus proches des LSWT de la
planche Torrent (0,3 °C), et les LSWT de MODIS montrent une différence de 1,3 °C par rapport a

la planche Torrent ce qui tend a montrer que Sentinel-3 fournit des valeurs plus fiables.

Pour les zones d'étude situées en France, plus précisément pour les lacs de Gerardmer et de
Longemer, des séries temporelles d’'images Landsat 8-9 et ECOSTRESS couvrant la période de
janvier 2021 a mai 2022 ont été traitées. Une analyse spatio-temporelle a été réalisée afin
d’observer les différentes variations de températures et de comparer ces résultats avec les
mesures in-situ. Les températures de la collection 2 de Landsat 8-9 ont été obtenues a I'aide de
I'algorithme SWA. Les ensembles de données fournis par Landsat 8-9 sur Gérardmer et
Longemer sont plus proches des mesures in situ (écart de 2-3 °C) que ceux d'ECOSTRESS (écart
de 5 °C), ou les températures ont chuté a des niveaux trés bas, ce qui pourrait étre associé a la
présence de nuages au-dessus de la région. En outre, les valeurs de I'écart-type sont plus

élevées pour ECOSTRESS dans la plupart des dates représentées.

Sur le lac de Plobsheim, les températures des bouées dans le lac sont plus proches des
températures de ECOSTRESS (1-2 °C) que de celles de MODIS ou de Landsat 8-9 (3-4 °C). Pour la
validation sur le terrain, la différence entre le radiomeétre CIMEL 312-2 et la planche Torrent est
inférieure a 1 °C, alors que les différences sont inférieures a 2 °C par rapport aux autres

capteurs (ECOSTRESS, Landsat 8-9, MODIS et Sentinel 3). D’autre part, les valeurs dérivées de la
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caméra FLIR-T560 présentent des différences supérieures a 2 °C par rapport au reste des

capteurs, mais inférieures a 2 °C par rapport aux valeurs de la planche Torrent.

Le chapitre 5 présente la somme des principaux résultats, conclusions et perspectives.
Différentes approches d’extraction des LSWT a partir de satellites a haute et moyenne
résolution ont été testées et comparées. Les satellites et leurs capteurs correspondants utilisés
pour cette recherche sont Landsat 8-9 (TIRS), MODIS (Terra), Sentinel-3 (SLSTR) et ECOSTRESS.
Une premiere série d'images a été sélectionnée, sur la base de critéres tels que la date
d’acquisition, un temps clair et une couverture aussi large que possible, avec au moins une

image par mois ; cependant la disponibilité d’ECOSTRESS était réduite a Issyk-Kul.

Les premiers résultats de cette analyse ont été I'application du processus de détermination de
la LSWT sur le lac Issyk-Kul avec MWA, PSCwvc et SCA, apres avoir exclu SWA en raison de la
lumiere parasite dans Landsat 8 collection 1, provoquant un effet de bande ou de stripping,
fortement visible dans la bande 11 (TIRS-2). D’autre part, pour les algorithmes a canal unique
appliqués a la collection 1 de Landsat 8, la MWA n’est pas aussi cohérente que la PSCwvc ou la
SCA a la méthode de validation croisée, ce qui explique que ces deux derniéres méthodes aient
montré une meilleure fiabilité pour I'approximation de la LSWT entre les différents ensembles

de données et produits.

Pour effectuer la validation dans le lac Issyk-Kul la planche Torrent transportant les capteurs
pour mesurer 'humidité, les températures de I'air et de I'eau (jusqu’a 35 cm de profondeur) a
été développée. Elle a permis de montrer que les LSWT pour Sentinel 3 sont les valeurs les plus
proches des LSWT de la planche Torrent, avec une différence de 0,3 °C et une difference
d’heure d’acquisition de 4 heures. Pour les LSWT par MODIS, comparées aux valeurs de la
planche Torrent, les températures ont des différences de 1,3 °C et une difference d’heure
d’acquisition de 3 heures. Cela peut étre expliqué par un couvert nuageux a |I’"heure du passage

du MODIS.

D’autre part, I'analyse sur les lacs de Gérardmer et de Longemer a montré que les données
d’ECOSTRESS ont des valeurs sous-estimées de 5 °C et les données Landsat 8-9 de 2 °C. Pour

I'analyse a la méme date entre ces deux sources, les jeux de données sont généralement
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cohérents entre eux. Cependant, les températures obtenues avec I'algorithme de SWA pour
Landsat 8-9 sont plus proches des données in situ. L’analyse de ECOSTRESS a été limitée au
masque de nuages pour présenter une image plus propre, mais ce masque n’a pas réduit

I’écart-type des résultats.

Dans le cas du plan d’eau de Plobsheim, les mesures de température issues de Landsat 8-9 ont
présenté des différences plus élevées que ECOSTRESS et MODIS (ce qui pourrait étre lié a une
limitation de la détection du masque nuageux pour Landsat 8-9), bien qu'elles soient
cohérentes entre elles. Les valeurs de ECOSTRESS et MODIS sont plus fiables par rapport aux
mesures in-situ. D'autre part, pour la validation sur le terrain, les valeurs de LSWT issues
d’ECOSTRESS et de Landsat 8-9 sont plus proches des mesures in-situ dérivées de la planche
Torrent et du radiometre CIMEL. Il faut noter que les mesures dérivées de la caméra FLIR-T560
ont montré le plus grand écart par rapport a celles obtenues par I'ensemble des capteurs
déployés sur le terrain, mais moins de différence avec les valeurs de la planche Torrent. Cela
peut étre da a des difficultés de manipulation de la caméra ou a des problémes de calibration

de cet instrument.

De facon générale, en ce qui concerne la performance des produits LSWT utilisés, on peut dire
gue ceux qui utilisent la méthode SWA pour leur génération, contrairement a ceux qui utilisent
I'algorithme TES (ECOSTRESS), ont démontré une meilleure proximité par rapport aux valeurs
in-situ. Nous pouvons conclure que SWA ne demande pas de corrections atmosphériques
préalable au contraire de l'algorithme TES, ou la précision peut étre affectée par des

perturbations dans les conditions atmosphériques.

Sentinel-3 est une nouveauté dans cette étude car, jusqu'a cette recherche, il n'y a pas eu
d'études antérieures ol les températures des lacs ont été estimées avec ce capteur. La
nouveauté réside également dans la comparaison de Sentinel-3 avec des satellites a haute
résolution tels que ECOSTRESS et Landsat 8-9, ou Il'approche sectorielle pour ECOSTRESS est
testée pour comparer la méme méthode d'extraction en utilisant des méthodes d'approche

sectorielle.



Les estimations LSWT du radiométre CIMEL CE 312-2 montrent une bonne fiabilité par rapport
aux capteurs de la carte Torrent, avec moins de 1 °C de différence de température,
contrairement a la caméra FLIR-T560, qui montre une plus grande différence de température
entre tous les capteurs et moins de 2 °C de différence avec les capteurs des valeurs de la carte

Torrent. Cela pourrait étre d a des problemes d'étalonnage de I'instrument.

En termes de perspectives, pour obtenir une validation et un suivi optimaux des températures
des lacs, des mesures expérimentales et par satellite doivent étre mises en ceuvre. Certaines
recommandations pourraient étre envisagées a cette fin Collecte de données au sol (in situ) et

des satellites :

o Déployer des capteurs de température compris a la surface, au milieu et au fond du

lac.

o Mettre en place un systeme de contréle et de mise a jour continus afin de garantir
I'exactitude de I'ensemble des données relatives a la température des lacs. En outre,
des radiométres et des caméras FLIR pourraient étre utiles pour compléter la

surveillance.

o Combiner des mesures multipoints au sol avec des données LSWT a haute résolution
spatiale acquises a partir de plates-formes de véhicules aériens sans pilote (UAV) -

des drones ou des avions équipés de capteurs thermiques.

o Acquérir des données de télédétection par satellite avec des capteurs les plus fiables
comme Sentinel-3, voire de MODIS pour les grands lacs d'extension principalement,

et celles de Landsat 8-9 et d'ECOSTRESS (SWA) pour les lacs plus petits.

o En ce qui concerne la mesure de la température a différentes profondeurs,
I'imagerie satellitaire et aérienne peut étre utilisée pour estimer la profondeur des
lacs. En effet, le LIiDAR (Light Detection and Ranging) et l'altimétrie satellitaire
peuvent fournir des informations sur I'élévation de la surface de I'eau, qui peuvent

ensuite étre utilisées pour déduire la profondeur.



Dans le futur, une analyse plus approfondie des images pourrait étre envisagée a partir de
capteurs a faible résolution tels que Fengyun-4 (FY-4A), équipé de l'instrument AGRI (Advanced
Geosynchronous Radiation Imager) pour le produit LST, avec une résolution spatiale de 4 km,
une résolution radiométrique IR de 10,3 a 13,8 um et une résolution temporelle de 15 minutes.
AGRI constitue donc I'outil optimal pour couvrir la résolution temporelle limitée offerte par les

capteurs TIR a résolution modérée et élevée.

Analyser les possibilités de synergie entre le domaine optique thermique et les micro-ondes
passives (ensembles de données en bande C et en bande L) pour éviter le probleme de la
couverture nuageuse, en appliquant un processus de réduction d'échelle, reste une voie a

explorer.

Xl



Chapter 1. Introduction

This chapter introduces the context of freshwater as an essential resource, the role of lakes in
the hydrological ecosystem, and Land Surface Water Temperature (LSWT) retrieval using a
multi-sensor, multi-resolution technique. The aims of this thesis are also stated in this chapter,
along with the body of current literature on the thermal infrared domain used in various

investigations and applications.

1.1 Context

Between 1992 and 2020, 53% of the most extensive worldwide lakes had substantial storage
decreases. Around one-quarter of the world's population resides in a basin of a draining lake,
where a combination of climate warming, increasing evaporative demand, human water
consumption, and sedimentation contribute to the decrease in natural lake volume (Yao et al.,
2023). Within the freshwater resource context, as a fundamental need for our society, lakes are
essential for social and economic processes and for the sustainable development of the regions.
These processes and development include food production and water provision for agricultural,
domestic, and industrial use. Lakes are also significant as a hydrological ecosystem related to
the quality of the environmental status of a region. They are considered sentinels of climate
change due to their ability to respond to changes in various climate factors rapidly and convey
multiple signals of climate change (Alsdorf et al., 2007; Dokulil, 2014; Williamson et al., 2009; K.
Yang et al., 2019). The lakes are part of the water cycle, where the evaporation, condensation
and precipitation may take place, interacting with the atmosphere, surface water, and
groundwater throughout the hydrological cycle (Figure 1). The exchange between lakes and the
atmosphere affects the heat budget, which regulates lake water temperatures. Water
temperature determines ecological conditions, influencing lakes' water chemistry and biological
processes and affecting their living organisms (Peng et al., 2021). Rising water temperatures can

lead to the extinction or altered distribution of cold-water species, as warm-water species may



outcompete or replace them (Solheim et al., 2010). For instance, in aquatic ecosystems, the
increase in temperature affects primary production and algal community composition, leading
to changes in community structure, especially in environments with tempertures between 25 to
30 °C (Dallas, 2008). Yang et al. (2022) state that the rise in lake surface water temperature
(LSWT) has several consequences on the growth and reproduction of aquatic creatures and
plants in the lake. Higher water temperatures impact the metabolic rate of organisms in the
environment, resulting in changes in the species of aquatic plants and a decrease in
phytoplankton numbers. Changes in LSWT can also affect the algae composition in the lake. The
warming of LSWT can affect temperate fish's reproductive and life cycles. Furthermore,
warming LSWT can impact the biochemical activities of many species in the lake, such as
nutrient release and the creation of distinct development conditions for some algae groups

(Yang et al., 2022).
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Figure 1. The hydrological cycle in a natural ecosystem (Water Cycle | National Oceanic and Atmospheric
Administration, n.d.)



The study of surface energy and water balance and other applications, including
evapotranspiration, climate change, and vegetation monitoring, rely heavily on land surface
temperature (LST) (Dash, 2005). LST provides valuable information about surface energy and
water balance processes at regional and global scales (Zheng et al., 2019). Due to surface
features and atmospheric factors, estimating LST with high accuracy using satellite thermal
infrared (TIR) data is complex. Uncertainties aspects like atmospheric transmittance/radiance
coding, understanding of land surface emissivity, atmospheric profiles, and topographic
influences all affect how well LST is estimated, resulting in errors in LST estimation from
satellite data, making it challenging to find representative and thermally homogeneous areas
for ground LST validation (Li et al., 2017). The same authors highlighted the challenges in
current LST products, such as spatial discontinuity and short periods. They suggested effective
methods to overcome them, discussing the significant applications of LST products in various
fields, including agricultural drought monitoring, thermal environment monitoring, and climate
change studies. It also suggested the necessity of spatiotemporal seamless LST data. It offered
perspectives to optimize retrieval methods and promote their applications, concluding that
satellite observation provides the only way to measure LST worldwide, allowing for large-area
coverage and regular temporal revisiting. Regarding TIR imagery, the study acknowledges the
continuous development of LST retrieval algorithms, newly launched TIR instruments, and new

releases of LST products (Li et al., 2023).

LSWT is an essential physical parameter in studying meteorological and hydrological
phenomena (Yang et al., 2019). Climatic factors such as air temperature, solar radiation, and
cloud cover, additionally to geographical factors including depth, lake altitude, surface, and
continentality, could influence the variation of the LSWT (Layden et al., 2015; Sharma et al.,
2015). Like the oceans, the water temperature of lakes is controlled by the exchange between
the atmosphere, showing a strong correlation with the air temperature and producing
variations in the heat fluxes composing the high heat budget (Peng et al., 2021; Schneider et al.,
2019). Maps representing the LSWT, revealing patterns or variations that hint at the underlying

structure and behavior of water, can help to provide information on the vertical thermal



structure of the lake, determined by the turbulence, particularly in the upper mixed layer,
influencing the local weather helpful in monitoring the quality of the water and as a good

indicator of climate change (Fiedler et al., 2014; Woolway, 2014).

Validation is the process of assessing, by independent means, the quality of the data products
derived from the system outputs (Justice et al., 2000). The validation for LST products derived
from satellite-borne observations determines LST product uncertainties, which is vital for
various applications and provides feedback to the developers of LST retrieval algorithms for
improvements (Coll et al., 2009; Li et al., 2014). The temperature-based (T-based), the radiance-
based (R-based), and the intercomparison methods are three methods for validating LST
products (Guillevic et al., 2014; Li et al., 2013). They provide different levels of information
about the quality of LST (Guillevic et al., 2018; Guillevic et al.,, 2014) and can be operated
complementary to gain a more comprehensive assessment of the uncertainty of LST products
(Gomis-Cebolla et al., 2018; Liu et al., 2015). The following sections present these three

methods' principles, advantages, and disadvantages.

In terms of ground validation sources for LSWT, one of the methods to measure water
temperature is using in-situ sensors, either automatic or manual thermometers, such as buoys
distributed at different lake locations and at different intervals and depths. Thus, datasets are
produced more heterogeneously; however, for studying the lakes' dynamics, datasets must
have spatial coverage (Lieberherr et al., 2018). Besides, these methods have logistics
limitations, are costly and time-consuming, and the instrumentation sometimes could be
exposed to outdoor damage (Dyba et al., 2022). Another excellent method for identifying the
dynamic of the temperature, having localized spatial coverage and homogeneous datasets for
evaluating how these temperatures could affect a lake's ecosystem, is the use of airborne
sensors. However, a disadvantage of employing these instruments is that only specialists can
execute this technology, which adds substantial time and extra effort to their deployment (Glen

George, 2012; Rahaghi et al., 2018).

Besides the in-situ measurements, satellite-based observations are another method to study

the variation of the LSWT by using instruments measuring in the thermal infrared range



(Battarbee et al., 2008; Guo et al., 2022). This technique offers the advantage of obtaining
information in challenging or inaccessible areas on Earth. Thermal Infrared Radiation (TIR),
within the electromagnetic spectrum, is the wavelength range from 8 to 14 um (Schneider et
al., 2019). The amount of electromagnetic radiation (light) emitted, reflected, or transmitted by
a surface or object at a specific wavelength or frequency is referred to as spectral radiance, a

key term in remote sensing (Shaw et al., 2013).

g 50 L ] 1 1 10
- )
= &)
~ C
C 40 - 0.8 O
~ o
< =
oy 2
(e - .
= 30 0.6 &
© o
© —

50+ L 0.4
: ;
- %
£ 10- 0.2 O
O
3 <
W 9 : ' . . 0.0

3 5 8 13 25 50

Wavelength (um)

Figure 2. Spectral irradiation for a 300 K blackbody with an example of atmospheric transmittance (Zhao et al.,

2019)

According to Wien's Displacement Law, all materials with a temperature over 0 K produce
radiation. This Law is a fundamental principle in thermal radiation that describes the
relationship between the wavelength of the maximum intensity of radiation emitted by a
blackbody and its temperature. It states that the wavelength of maximum intensity (4,,4,) is
inversely proportional to the temperature (T) of the blackbody (Becker & Li, 1990). Wien's

displacement law states that the spectral radiance of black-body radiation per unit wavelength



peaks at the wavelength 4,4, it is given by 4,4, = @ (in um/K) (Radiant Flux - Wikipedia,

n.d.). For instance, the temperature of a blackbody at 300 K (Figure 2), which is the earth's
average temperature, has its peak of the radiated energy emitted at the longer wavelength of
9.7 um. The wavelength range between 8 and 13 um, which is also the spectral region used by
the sensors considered in this research, is usually termed the atmospheric window due to the
high atmospheric transmittance (highlighted in blue), which refers to the measure of how much
electromagnetic radiation can pass through the Earth's atmosphere without being absorbed or

scattered (Zhao et al., 2019).

Measurements from sensors of satellite missions facilitate temporal and spatial temperature
variations at different scales from different surface temperatures in the TIR domain, helping to
understand the physical processes in the water cycle (Michel et al., 2021). The remote sensing
observations and in-situ measurements agreed with the warming trend of global and regional

lakes (Peng et al., 2021).

Unfortunately, instrument noise and drift, sun glare, residual cloud contamination,
misspecification of air attenuation, and surface emissivity effects are the principal sources of
inaccuracy in satellite-derived LSWTs. Additionally, other innacuray can be derived from the
possible differences in measurement at different levels of a lake (Figure 3), known as
stratification, which is a common occurrence in many lakes and reservoirs when comparing
temperatures from the skin surface (satellites) and in-situ temperatures at different levels. The
stratification describes the vertical layering of water in a lake that results from the equilibrium
of buoyancy and turbulence forces. During stratification, the lake consists of different layers,
including the epilimnion, or mixed layer, it is the part of the water column immediately below
the water surface; the thermocline, which it is layer in a thermally stratified lake where there is
a rapid change in temperature with depth; and hypolimnion, which is the most dense and
coolest layer in contact with the lake's bottom and it is separated by the thermocline. The
specific depths of these layers can vary from lake to lake, and factors such as lake size, wind
speed, water clarity, and geographical location influence the depths of each stratification layer

(Woolway, 2014).



These sources of inaccuracy can cause discrepancies between radiometric skin surface
temperatures associated with satellite retrievals and bulk water temperatures recorded by
surface buoys. The cold skin (the very thin layer of water at the very surface of a lake that is
slightly cooler than the underlying water), and warm layer (below the cold skin layer, there is
often a layer of warmer water) influence the temperature variations between the skin and bulk
water temperature, which it refers to the average temperature of the entire water mass within
the lake (Crosman et al., 2009). Besides the limitations, such as cloud cover or sensor failure,
there are TIRS sensors that provide frequent revisit times (once per day). However, they offer a
spatial resolution of 1 km or, in the case of the geostationary meteorological satellites, 15-
minute measurements with a 4 km spatial resolution. In contrast, there are sensors with lower
temporal resolution (16 days) but presenting a better spatial resolution (70-100 m) (Silvestri et
al.,, 2020). Considering this, the use of missions with TIRS channels restricts the number of
sensors exploited to retrieve temperatures, where the lack of studies by combining multi-
sensors at different resolutions exists. Hence, using and analyzing multi-spatial and temporal
resolution sensors should be able to extract the LSWT more accurately for a better

interpretation of the dynamics in the regions of interest (Tavares et al., 2019).

thermocline

hypolimnion

Figure 3. Illustration of stratification in a lake and the LSWT acquisition using satellites (Perrone et al., 2021)



Moreover, the current satellites will serve as precursors of new missions, carrying onboard
multispectral bands with high spatial resolutions in the TIR domain below 100 m. Missions such
as the Thermal Infrared Imaging Satellite for High-resolution Natural Resource Assessment
(TRISHNA) is a collaboration between The French (CNES) and Indian (ISRO) space organizations.
This satellite, planned for 2025, contains five bands to measure the visible and the near-
infrared and four bands to measure the thermal infrared signal of the surface atmospheric
system worldwide. Moreover, the TRISHNA mission will have daytime and nighttime overpasses
with a 1- to 3-day repeat cycle and a 60-m spatial resolution, contributing to the water
temperature study (Lagouarde et al., 2018; Michel et al., 2021). Besides, the European Space
Agency (ESA) is launching the LSTM (High Spatio-Temporal Resolution Land Surface
Temperature Monitoring) mission, equipped with two satellites, which will complement the
existing Copernicus Sentinel system in 2028. Thermal infrared (TIR) surveillance capabilities
across land and coastal areas in support of agriculture management services are part of this
objective, providing enhanced measurements of LST. Although it may offer various other
services, this mission will also contribute to water temperature study (Koetz et al., 2018).
Another future mission planned for 2028 called SBG (Surface Biology and Geology) from NASA
will aim to gather spectroscopic and multispectral data on the whole planet to understand
better the nature, functioning, and health of Earth's ecosystems, including those found in the
aquatic environment to study the water quality (Cawse-Nicholson et al., 2021). Overall, the new
thermal infrared missions are essential for expanding our understanding of the Earth's surface
and meeting societal requirements. These missions offer good spectral and thermal imagery,
enabling a variety of uses and improving our knowledge of the Earth's ecosystems and

processes.



1.2 State of the art

Various studies have extensively used TIR sensors to study water surface temperature. These
studies are essential for understanding the thermal behavior of oceans, lakes, rivers, and other
water bodies and their interactions with the environment. Previous studies utilized TIR sensors
to analyze the vertical profiles of lakes and reservoirs to help the monitoring of the water
temperature and their stratification, thermal pollution, and changes in aquatic ecosystems.
Derived from this, and as the LSWT is a recognized Essential Climate Variable (ECV) that
complements water quality data in environmental monitoring of several lakes throughout the
world, the Copernicus Global Land Service (CGLS) includes applications derived from satellite
observations such as the The LSWT product Version 1. It consists of two components: a
historical dataset of Collection of 1 km LSWT from 2002 until 2012 generated from the AATSR
instrument on Envisat and a Near Real Time (NRT) dataset of 1 km LSWT from the SLSTR
instrument on Sentinel-3A from April 2018 until the present (Lake Surface Water Temperature |
Copernicus Global Land Service, n.d.; VITO Earth Observation - Lake Surface Water Temperature

Product Catalogue, n.d.).

The LSWT observations and reconstructions are valuable for numerical weather prediction, lake
model validation, and expanding our understanding of the climatology of lakes globally
(Globolakes: Data, n.d.). An example of the use of remote sensing to inland water is the
generation of datasets derived from global data on open and permanent water bodies obtained
from the Land Cover Climate Change Initiative (LC CCl) project. The purpose of these datasets
was to provide auxiliary information for measuring LSWT, where the main findings were the
generation of a global map of open permanent water bodies at a resolution of about 300
meters created using satellite imagery and other sources; the derived datasets, including
distance-to-land, distance-to-water, water-body identifiers, and lake-center coordinates, were
made available for use by the scientific community in various applications related to climate
change, water resources, and regional environments; overall they provided valuable
information for studying inland water and its relation to climate and water cycles (Carrea et al.,

2015a, 2015b; Dataset Record: GlobolLakes: High-Resolution Global Limnology Dataset V1, n.d.;



Dataset Record: GlobolLakes: Lake Surface Water Temperature (LSWT) v4.0 (1995-2016), n.d.).
Another study by MacCallum et al. (2012) developed a method to obtain estimates of LSWT
using satellite imagery from the along-track scanning radiometers (ATSRs) for large lakes
worldwide. This method is called optimal estimation (OE) and probabilistic cloud screening,
which is a Bayesian approach that utilizes look-up tables (LUTs) to quantify the joint distribution
for cloud observations. These LUTs define the expected distribution for cloud conditions based
on observations of brightness temperatures in all channels, 1.6 mm reflectance, and the local
standard deviation (LSD) of 11 mm brightness temperatures. Additionally, there is a separate
LUT that defines the LSD distribution for clear sky. However, it’'s mentioned that these LUTs
were generated empirically for observations over the ocean and may not be entirely suitable
for lakes. The method considers various physical properties such as elevation, salinity, and
atmospheric conditions through forward modeling of observed radiances. The authors obtained
LSWTs for 258 of Earth's largest lakes from 1995 to 2009 and compared them to in situ
observations, finding satellite in-situ differences of around 0.1 to 0.7 K. The method improves
coverage and consistency between channel-view combinations (MacCallum et al.,, 2012).
Additionally, the authors applied empirical orthogonal function (EOF) techniques to reconstruct

the complete time series of LSWT from observations with gaps due to cloud cover.

A study of global lake responses to climate change combining the satellite-derived and in-situ
data, in terms of LSWT, observed the rapid and widespread warming of lakes globally from
1985 to 2009, influenced by the lake surface energy budget and associated atmospheric and in-
lake drivers (Woolway et al., 2020). In another study in terms of global lake response, Ades et
al. (2019) analyzed the LSWT of 923 lakes in 2018 and found temperature anomalies averaged
+0.17 °C compared to the 1996-2016 average, where the satellite data showed a continuing
warming trend. According to regional analysis, lakes in Europe and East Asia had the most
positive anomalies, strongly in European lakes, but lakes in North America, notably in the area
around Canada, presented a cooling trend. These results show a consistent rise in LSWT, with

East Asia and Europe warming the most (Lake Surface Temperatures | Copernicus, n.d.)

LSWT can be effectively measured from space using satellite remote sensing techniques,

allowing for large-scale and continuous monitoring of LSWT globally. It helps study climate
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change effects, assess water quality, and manage water resources, providing information such
as lake water temperature's spatial and temporal variability. Integrating multiple satellite
sensors and ground-based measurements can help improve the accuracy of satellite-derived
lake water temperature estimates. In the future, developing increasingly sophisticated satellite
sensors and data processing methods would enhance the precision and dependability of
satellite-derived lake water temperature observations (Measuring Lake Water Temperature

from Space | Weather and Climate @ Reading, n.d.)

Some studies analyzed and retrieved surface water temperature data derived from the TIR
sensors classified by the different types of spatial resolution: moderate spatial resolution such
as AVHRR, ATSR, MODIS, and Sentinel-3; and High spatial resolution such as ASTER, Landsat
ETM+, Landsat 8, Landsat 9 and ECOSTRESS; however, all these studies have focused mainly on
each satellite individually or compared with few other sensors with similar type of spatial
resolution generally. Some of the characteristics of the medium and high spatial resolution

satellites are listed inTable 1.

1.2.1 LSWT retrieval from moderate spatial resolution satellites

Previous studies analyzing the LSWT using moderate spatial resolution satellites such as AVHRR,
ATSR, MODIS, and Sentinel-3 are covered. This type of sensor’s resolution are well-suited for
observing and monitoring a variety of Earth's surface features due to their intermediate level of
detail. While these satellites allow the observation of various surface extensions, considering
their spatial resolution of 1 km, they may not provide the level of detail required for very high-

resolution applications.

A study evaluated the radiometric accuracy of MODIS TIR imagery by comparing it with in situ
data collected during a calibration field campaign conducted in Lake Titicaca. It examined its
sensitivity to changes in atmospheric temperature and water vapor profiles. The study results
show good agreement between the MODIS TIR data and atmospheric radiative transfer code
MODTRAN4.0 in bands 31 and 32 (11 to 12 um), where the accuracy of MODIS TIR was
evaluated with measurements in-situ from that Lake. The sensitivity analysis revealed that
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changes in atmospheric temperature and water vapor profiles have negligible effects on the
calculated radiances in certain bands. However, the error analysis indicated that accurate
atmospheric temperature and water vapor profiles are necessary to estimate calibration
accuracies in certain bands. The study also highlighted the use of Lake Titicaca as a vicarious
calibration site due to its clear-sky conditions and accurate emissivity calculation. The results of
the field campaign showed that the lake surface kinetic temperatures measured with well-
calibrated TIR radiometers provide valuable data for evaluating the absolute calibration

accuracy of the MODIS TIR data (Wan et al., 2002).

Schneider et al., 2009, analyzed the trend of LSWT using ATSR-1, ATSR-2 on board the ERS-1
and the ERS-2 missions, and MODIS data for six lakes in California and Nevada. The LSWT data
derived from these satellites showed high accuracy, with an RMSE of less than 0.3 K. Schneider
& Hook (2010) analyzed nighttime LSWT of 167 large inland lakes worldwide using AVHRR data,
finding an average temperature increase rate of 0.045 + 0.011°C/yr-1 from 1985 to 2009, with
an RMSE of 0.013 °C yr7l, the satellite-derived trends from 1985 to 2009 were in good

agreement with the trends from in situ data.

Politi et al., 2012, used the NOAA AVHRR thermal data to monitor LSWT in European lakes,
highlighting the lack of studies focusing on lake response to environmental changes in Europe
and the importance of monitoring the condition of European lakes towards sustainable systems
with good ecological status as required by policies such as the EU Water Framework Directive
(WFD). The main findings of the study were that the NOAA AVHRR thermal data has been
demonstrated as a reliable tool for estimating LSWT in lakes with different characteristics and
across multiple sites in Europe, showing that both the multichannel SST estimation (MCSST) and
non-linear SST estimation (NLSST) split window algorithms have a solid potential to estimate
LSWT in European lakes. The MCSST algorithm's accuracy was slightly higher than the NLSST
algorithm, with a bias of 1.22 °C and an accuracy (measured with RMSE) of 2.29 °C. The NLSST
algorithm had a bias of -0.89 °C and an accuracy of 2.22 °C. The proposed remote sensing
approach methodology shows promising results toward replacing resource-intensive field-

based lake monitoring programs. Sharma et al. (2015) constructed a dataset of lake surface
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water temperature (LSWT) using AVHRR and ATSR data for 291 lakes worldwide. They found
high accuracy between the remotely sensed LSWT data and in-situ measurements, with a root
mean square error (RMSE) ranging from 0.03°C to 1.15°C. Another study using AVHRR focused
on the impact of climate change on surface water temperatures in the Great Lakes. It aims to
predict future water temperatures in Lakes Superior, Huron, Erie, and Ontario under different
CO2 emission scenarios. The study utilized empirical models based on the relationships
between surface water and local air temperatures. It analyzed the annual cycles of surface
water temperatures in the lakes using remotely sensed data and historical temperature
records. LSWT in the Great Lakes exhibit linear warming in spring, plateau in mid-summer, and
linear cooling in fall. The warming and cooling rates remain relatively constant yearly, while
plateau values vary substantially across years. Substantial increases in surface water

temperatures and increases in summer stratification were expected (Trumpickas et al., 2009)

Some previous studies using MODIS imagery found that using one of the products (MOD11) to
analyze the LSWT provided by this satellite, retrieved by using the generalized split-window
algorithm, has provided good RMSE values and small biases compared to other sources such as
Landsat 7 ETM+, MODIS-Aqua, and in-situ measurements (Crosman et al., 2009; Liu et al., 2015;
Reinart et al., 2008a; Tavares et al., 2019; Wan et al., 2010; Xiao et al., 2013). Wan et al. (2017)
used MODIS data to create comprehensive datasets of LSWT for 374 lakes on the Qinghai-Tibet
Plateau. These datasets included LSWT measurements during both daytime and nighttime. The
study was mainly based in the use of MODIS data for understanding the LSWT dynamics in this

region.

Additionally, the studies mentioned that NOAA/AVHRR and MODIS satellite data have higher
temporal resolution (capturing data at frequent time intervals) but lower spatial resolution
(offering less detailed information) compared to Landsat and ATSR data. In another study, (Luo
et al., 2019) analyzed the spatiotemporal changes of LSWT in Dianchi Lake in China from 2001
to 2017 using MODIS (MOD11A2) images, showing a rise of LSWT over the 17 years of study by
0.12°C/yr 1 (P < 0.002) in daytime and 0.09°C/yr ~* (P < 0.05) for nighttime. Besides, Crosman
and Horel (2009) determined that the MODIS level 2 LST product (MOD11) effectively monitors
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variations in LSWT of Utah's Great Salt Lake using thermal imagery from MODIS between 2000
and 2007. This study utilized 3345 images from MODIS to monitor variations in LSWT, where
long-term in situ measurements are rarely available. The MODIS imagery provides a multi-year
record of the LSWTs of the lake, allowing the observation of spatial, diurnal, seasonal, and
annual variations, presenting a cold bias of around 1.5 °C compared to in situ temperature
observations for the Great Salt Lake. Pour et al., 2014 investigated the impact of incorporating
MODIS imagery onboard the Terra and Aqua satellites and the Advanced Along-Track Scanning
Radiometer (AATSR) onboard the ENVISAT satellite-based observations of LSWT on the initial
state of the HIRLAM numerical weather prediction model, by analyzing of these variables for
two winter seasons in northern Europe. These experiments were compared to the results of
pure prognostic parameterizations and assimilation of in-situ LSWT observations. The objective
analyses of the lake surface state, based on the satellite observations, were found to improve
the description of the state compared to the other methods. The findings of this study showed
that the introduction of space-borne LSWT observations improved the description of the lake
surface state compared to the results of pure prognostic parameterizations or assimilation of
in-situ lake temperature observations. The validation of the objective analyses against
independent observations demonstrated the benefit of utilizing remote-sensing observations
for improving the operational weather forecast. This study concluded that introducing satellite-
based LSWT observations into the analysis of lake surface state can enhance the description of

these variables compared to existing parameterizations and limited in-situ observations.

Other moderate TIR resolution satellites are the Sentinel-3A and Sentinel-3B. Although there is
a lack of studies using these satellites to estimate the LSWT, previous studies have used this
sensor to estimate the land surface temperature, showing high-quality observations and
providing reliable results. One study by (Pérez-Planells et al., 2021) suggested two dual-angle
algorithms and two emissivity-dependent split-window methods with viewing angle
dependency for obtaining Land Surface Temperature (LST) using Sentinel-3 SLSTR sensor data.
The operational LST product of Sentinel-3 SLSTR and in-situ data from a rice paddy location
validated these methods. The same authors stated that the operational Sentinel-3A SLSTR

product has a systematic uncertainty of 1.3 K and a precision of 1.3 K. In comparison, the
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Sentinel-3B SLSTR operational LST product revealed a systematic uncertainty of 1.5 K and a
precision of 1.2 K. In terms of uncertainty and precision definitions, we have that the first one
addresses how well we know the true value, taking into account various sources of errors.
Precision, on the other hand, focuses on the consistency and reproducibility of measurements.
Compared to the present iteration of the operational SLSTR product, the results show that the
emissivity-dependent split-window methods suggested in the study, coupled with previously

published algorithms without angular dependency, produce more exact and accurate LSTs.

Another study by Yang et al. (2020) investigates alternative algorithms for retrieving LST using
the SLSTR onboard Sentinel-3A and 3B satellites. As potential algorithms, 17 split-window
algorithms (SWAs) specifically focus on investigating and validating land surface temperature
(LST) from Sentinel-3 SLSTR data. The SWAs were tested for sensitivity and accuracy using
simulation data and in-situ LST measurements after being trained using a worldwide simulation
dataset. Eleven SWAs had high training accuracy; nine showed minimal sensitivity to the LSE
and the uncertainty of the column water vapor content. According to evaluation based on
various simulated datasets and in-situ LST observations, these nine SWAs have similar accuracy
with minor systematic errors and RMSEs lower than 1.0 K. The same accuracies of the SWAs
were validated based on in-situ LST measurements at six locations, including water sites with
RMSE ranges of 1.57-1.62 K and 0.49-0.61 K for Gobabeb Lake (Namibia) and Lake Constance

(Switzerland), respectively (Yang et al., 2020).

Additionally, a study by Zarei et al. (2021) assessed the Sentinel-3 SLSTR LST product's
correctness, and two validation methods—direct and indirect—were used. Indirect validation
compared to the MODIS LST product and LST using the non-linear split-window (NSW)
technique, whereas direct validation compared the product to field data. Sentinel-3 estimated
the LST using two emissivity estimation techniques: the classification-based emissivity method
(CBEM) and the NDVI thresholding method (NDVI-THM). When calculating LST, the NDVI-THM
technique produced superior results. Sentinel-3 LST data, MODIS LST products, and LST
approximated using NSW displayed comparable accuracy findings for LST fluctuations over the
seasons. In the summer season, the lowest accuracy for Sentinel-3 LST products was estimated,

as shown by the most significant bias, standard deviation, and root mean square error (RMSE)
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values. The highest accuracy was during winter, with the lowest bias, standard deviation, and

RMSE values.

As mentioned, the accuracy reduction in measurements obtained from TIR sensors is mainly
caused by meteorological and climatological conditions such as cloud cover and water vapor.
Some previous studies have found that using NOAA AVHRR used to be adequate as it provided
an excellent spatial accuracy result in terms of the water temperature of a lake (1° K accuracy).
However, due to the temporal resolution of 1 day, the possibility of studying the temperature's
long-term variation during a day added higher uncertainty (Li et al., 2017). On the other hand,
data from most modern satellite sensors have improved their spectral, radiometric, temporal,
and spatial resolutions. Even though the LSWT provided by these sensors refers to the top layer
temperatures or skin temperature (Figure 3), this can be associated to the temperature of the
air-water interface and can differ from the bulk temperature by as much as a few degrees
(Woolway, 2014). However, this information is still precious to study the variation of
temperatures in lakes for different applications such as water-quality variables, heat budget,

evaporation estimation, and climate change happening on the lakes (Tavares et al., 2019).

In conclusion, the choice of using moderate TIR resolution depends on the specific research
objectives and the scale of the study. Moderate-resolution sensors are advantageous for
broader coverage, temporal frequency, and statistical significance, while high-resolution
sensors excel in capturing fine detail and small-scale phenomena. Researchers often choose the
resolution that aligns with their study goals and the characteristics of the water bodies they are

investigating.

1.2.2 LSWT retrieval from high spatial resolution satellites

This section references previous studies that analyze the LSWT using high spatial resolution
satellites such as ASTER, Landsat ETM+, Landsat 8, Landsat 9, and ECOSTRESS. This spatial
resolution data allows us to study smaller lakes when considering their decametric resolution.
High spatial resolution data provides more accurate temperature measurements. In a coarse-

resolution dataset, temperature values represent averages over larger areas, potentially
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masking critical local variations. Thus, high spatial resolution data allows for a more precise

characterization of temperature patterns.

Using imagery from the Landsat satellites makes it possible to study various aspects related to
the variability of the LSWT. For example, in a study for the LSWT variation conducted on 35
lakes and reservoirs and 24 estuaries in America using Landsat 5 Thematic Mapper (TM) and
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data, the temperature mean absolute error
was 1.34 °C in lake pixels >180 m from land, 4.89 °C at the land-water boundary, and 1.11°C in
estuaries based on comparison against discrete surface in situ measurements (Schaeffer et al.,
2018). Giardino et al., 2001 used Landsat Thematic Mapper (TM) data to map LSWT
distribution in @ mountainous area of Italy, with a root mean square error of 0.3°C. Simon et al.
(2014) extracted LSWT of freshwater lakes in France (Lakes Bimont and Bariousses) using single-
band thermal infrared Landsat data, obtaining high accuracy with an r? value higher than 0.9
and an RMSE of 1 and 2°C. Another study using Landsat 8 was compared with field
measurements of the vertical temperature gradient at different depths for 23 Arctic lakes in the
summer of 2013, demonstrating high precision with an error range of 0.11°C ~ 0.46 °C, where
the RMSE with the in-situ bulk temperatures were 0.41 °C (Huang et al., 2017). Also, a study
investigated the variations in water temperature and their impacts on ecosystem processes in
Poyang Lake, the largest freshwater lake in China, using remote sensing data to assess the
temperature cycle of the lake. The study demonstrated the effectiveness of using Landsat 7
thermal imagery to assess the spatial heterogeneity of water temperature in Poyang Lake. It
compared the spatial distribution of water temperature derived from a hydrodynamic model
with the temperature derived from Landsat data and found good agreement between them.
This comparison suggests that remote sensing data can be a valuable tool for monitoring and
understanding the behavior of water temperature in large floodplain lake systems like Poyang
Lake (Li et al., 2017). Also, a study showing the advantages and limitations of using satellite
imagery to assess the physical, chemical, and biological characteristics of water bodies,
precisely the surface water temperature, explored different atmospheric correction algorithms,
such as the split-window algorithm, that can improve the accuracy of satellite temperature

data; this study performed in three lakes, Bimont and Treignac in France, and Lake Geneva in
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Switzerland. The perspectives for using satellite data in water ecosystem studies include
optimizing models for French terrains, utilizing recent data from Landsat 8, and the necessity of
synchronous data during satellite passes. The temperature variability in water bodies was
significant, ranging from 2 to 5 °C. The authors concluded that combining satellite and in-situ
data is crucial for a holistic assessment of water body conditions, adding the perspectives for
future research to improve atmospheric correction algorithms, utilizing Landsat 8 imagery, and
the importance of synchronous data during satellite passes (Danis et al., 2014). In addition to
this study, Tormos et al. (2016) discussed in their report “Estimation of the surface temperature
of water bodies using Landsat imagery: Algorithms and Results” the estimation of the surface
temperature of water bodies using Landsat 4, 5, 7 and 8 satellites, developing algorithms to
estimate surface temperature, considering calibration coefficients, and atmospheric water
vapor content. This report highlighted the importance of surface temperature estimation as it is
a significant characteristic of lacustrine ecosystems and plays a role in vertical mixing and
stratification processes. The findings in this study indicate that the estimation of surface
temperature using Landsat imagery is satisfactory, with an accuracy of approximately 1.5 to 2

°C. However, the errors in estimation referred to the quality of atmospheric water vapor data.

Being Landsat 9 the latest launch for a Landsat series satellite, there is already a study showing
a split window algorithm designed for Landsat-8 based on Jimenez-Munoz et al. (2014) to
estimate the LST, achieving accuracy after being validated over sites in the U.S.A., with four
SWA methods. The accuracy and noise sensitivity of the results under various observation
settings were calculated using the simulation dataset to choose the optimum algorithm. The
findings reveal that the ground validation accuracy is around 1.574 K, better than the previous
Landsat-9 LST product. Furthermore, the obtained LST pictures exhibit a geographical
distribution comparable to the Landsat-9 LST products, with RMSEs ranging from 0.31 to 2.87 K
in different places. (Ye et al., 2022a). Recently, there are no studies found using Landsat-9 to
analyze the LSWT. Another study using Landsat 5 and Landsat 7 imagery from 1999 to 2016
created the LakeSST dataset, containing the LSWT data for 442 French inland water bodies. The
quality of the temperature measurements was assessed by comparing them to in situ data,

considering the cold skin and warm layer effects on the satellite temperature measurements,
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which can impact the accuracy of the data. The overall RMSE was about 1.2 °C, concluding that
the LakeSST dataset can be used for studies on the temporal evolution of the LSWT and
geographical studies of temperature patterns (Prats et al., 2018). Another recent study in 2023
analyzed satellite data from Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 for 535 lakes in the
North Slave Region of the Northwest Territories in Canada from 1984 to 2021 to estimate their
LSWT. This study showed good agreement with in-situ observations with the single channel
algorithm as the method of LSWT retrieval used, resulting in a RMSE value of 1.7 °C, where
spatial and temporal changing temperature trends over the past 38 years were found (Attiah et

al., 2023).

Another of the latest high-resolution satellites is the mission ECOSTRESS, where previous
studies compared the performance of this sensor, showing compatibility with existing TIR
sensors with similar radiometric characteristics (ASTER and Landsat-8) and an improvement in
terms of temporal availability for sampling LST (Li et al., 2021; Shi et al., 2021; Silvestri et al.,
2020). (Li et al., 2021) evaluated (LST) products, including ECOSTRESS, GOES-R, Landsat
Provisional, Sentinel-3, MODIS LST products (MOD11A1 and MYD11A1), MODIS/Aqua LST
product (MYD21A1), and VIIRS/NPP LST product (VNP21A1), showed generally good agreement
with in-situ measurements of LST in the U.S. Corn Belt. The biases of all LST products, both
nighttime and daytime, were generally within 2 °C and +3 °C, respectively, indicating
reasonable accuracy for agricultural applications. Among the LST products evaluated,
ECOSTRESS achieved the highest agreement with ground observations for daytime LST, with an
overall absolute bias of less than 0.9 °C and a root mean squared error (RMSE) of less than 2.3
°C. MODIS LST products (MOD11A1 and MYD11A1) slightly underestimated daytime LST but still
had overall absolute biases of less than 0.9 °C and RMSEs of less than 2.9 °C. In another study
by Shi et al. (2021), ECOSTRESS thermal data was evaluated for several South Florida estuaries,
Chesapeake Bay, and Lake Okeechobee. It may not be possible to accurately determine the
surface temperature of tiny bodies of water with operational coarse-resolution satellite thermal
sensors built for the global seas. Sea Surface Temperature (SST) from ECOSTRESS substituted
the ECOSTRESS (LST) product. A modest underestimating of SST using ECOSTRESS LST was

discovered, with the underestimation being more pronounced at night (-1.13 °C) than during
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the day (-0.64 °C). Compared to fall and winter (-0.57 0.98 °C), the underestimation of
ECOSTRESS LST was considerably more apparent in spring and summer (-1.25 1.39 °C). The
ECOSTRESS SST's root-mean-square uncertainties were typically 1-2 °C. One more study by
Silvestri et al. (2020) established that heat-related events, including heat waves, volcanic
eruptions, and fires, may be studied using ECOSTRESS. The Advanced Spaceborne Thermal
Emission and Reflectance Radiometer (ASTER), the Landsat 8 TIRS sensors, and ECOSTRESS
temperature data were compared in the study's analysis of thermal anomaly locations. The
study revealed that the three sensors had a robust correlation and mean value agreement.
According to this, using ECOSTRESS, coupled with ASTER and Landsat 8, may increase the
accessibility of satellite high-resolution thermal data. Surface temperatures were extracted
from ECOSTRESS and ASTER data using the Temperature and Emissivity Separation (TES)
technique, while Landsat 8 data were estimated using the single-channel algorithm. The
moderate-resolution atmospheric transmission (MODTRAN) radiative transfer model

eliminated atmospheric impacts in the data.

As shown on some of the previous studies using moderate and high spatial resolution TIR
sensors to retrieve and analyze the LSWT, in most of the lakes around the world, it was found
that the LSWT is rapidly increasing at a rate of 0.3°C/decade (O’Reilly et al., 2015; Witze, 2015).
In some lakes, the warming rate of LSWT is faster than the local air temperature. However, a
study conducted in lakes on the Qing-Tibet Plateau found that the warming rate of LSWT was
almost the same as that of the regional air temperature. In the USA, the LSWT in summer
shows a significant warming trend, with a warming rate double that of the air temperature

(Yang et al., 2022).

Although there are different studies to understand the LSWT, there is still a lack of global
observations to monitor better the dynamics of the surface water, leaving some incertitude
about the temporal and spatial variability of the surface water and the accuracy in the
predictions for these variations (Alsdorf et al., 2007). Overall, these studies demonstrate the
advancements in remote sensing technology for obtaining accurate LSWT data and provide

valuable insights into understanding lake temperature dynamics across different regions.
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1.3 Objectives

Some of the multi-resolution and multi-sensor satellite missions carrying onboard thermal
infrared sensors are evaluated in this research, which will provide valuable resources and
information as predecessors of the new TIR missions such as TRISHNA in 2025 (CNES-ISRO) and
more long-term missions such as LSTM (ESA Copernicus) and SBG (NASA) both in 2028. This
analysis has been developed by using temperature retrieval methods per sensor and observing
the compatibility of measurements between them, where this will be helpful to improve their
spatial, spectral, and temporal resolution, as typically, sensors in this domain have lower spatial
resolution than those in the visible or near-infrared domain such as Spot 6 and 7 (1.5 m),
Landsat-9 (30 m) and Pleiades (50 cm). Their revisit times are limited or might be affected by

the cloud cover.

1) The first objective will be the retrieval and analysis of the LSWT from multiple sensors
with different spatial, temporal, and spectral resolutions and thus make a comparison to
obtain denser measurements, both spatially and temporally, of the LSWT to obtain
accurate information for the understanding of the processes and dynamics in the
thermal domain and its changes in time and space. Hence, the multi-resolution, multi-
sensor approach can help overcome some of the shortcomings of individual TIR sensors
and provide a more comprehensive and accurate observation of the thermal properties

of the LSWT.

The TIR sensors considered in this research have at least two thermal channels to apply the split
window algorithms, even though mono-channel algorithms were applied to Landsat 8, and are

classified according to the type of resolution as follows:

e Moderate spatial resolution: MODIS (Terra) and SLSTR (Sentinel-3), with 1 km and daily

revisit time.

e High spatial resolution: ECOSTRESS with 70 m and revisit time every 3-5 days, TIRS

(Landsat 8 and Landsat 9) with 100 m and revisit time every 16 days.
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By using multiple sensors and with the comparison of their data, drawbacks of individual
sensors could be overcome and improve the overall accuracy and coverage of LSWT

measurements.

2) As another critical point, the validation of the LSWT, defined as the assessment of the
quality from measurements provided by the products, can be reached by applying the
inter-comparison with the different surface temperature products, comparison against
in situ observations, and by observing the time-series analysis (Schneider et al., 2019).
Hence, validation was carried out with the available in situ data from the various
measuring devices deployed on the lake Issyk-Kul, located in the eastern region of
Kyrgyzstan in Central Asia, and over three lakes in the Grand East region of France
(Gerardmer, Longemer, and Plobsheim Lakes). A significant part of the validation was
made by a cross-validation method evaluated with other LSWT products, such as CCl
Lakes and Meteorological Station datasets, where access to in situ data was provided

through the LEGOS Institute.

1.4 Structure of the thesis

This thesis comprises five chapters: Introduction, methodology, study area and data, results of

the LSWT and discussion, conclusions, and perspectives.

The first chapter introduces the context of the retrieval of LSWT with a multi-resolution multi-
sensors approach. The existing literature on the thermal infrared domain from different studies

and applications and the objectives for this thesis are also presented in this chapter.

The second chapter describes the different algorithms to retrieve LSWT at Level 1 imagery from
Landsat 8, 9, and ECOSTRESS, as well as the analysis of the LSWT products used in this research

and their geoprocessing steps, such as the cloud masks application for some of the products.

Chapter three describes the physical and climatological characteristics of the considered

regions as the areas of study. It also presents the list and description of the datasets used for

22



this research, such as the LST products, Level 1 imagery to perform retrieval algorithms, and its

atmospheric parameters inputs.

Chapter four, results for the intercomparison of the algorithms for Landsat 8-9 and ECOSTRESS.
Performance of the LST products and their cloud masks. Cross-validation between all the TIR
sensors and the in-situ datasets. Besides, an explanation of the obtained results and the
comparison of the LSWT estimations to previous studies. Discuss its implications or
consequences by describing this research's limitations and contributions to the previous

literature.

This fifth and final chapter states the sum of the main findings, conclusions, and perspectives,

where some of these findings give rise to suggestions for further study in this area.
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Chapter 2. Methodology

There are various spatial and temporal resolutions of the most common sensors (Table 1), not

limited to this list, aboard different satellite missions providing Thermal Infrared bands to

estimate land and sea surface temperatures.

. Spatial Revisit Years of . Type' of
Satellite/Sensor . . Main purpose spatial
resolution time coverage .
resolution
Meteosat-7-
1 1 -
11/MSG-MVIRI- 3 km 5 997-To High impact weather Low
minutes date
SEVIRI
Himawari-8- 10 2015-To
9/MTSAT 5 km minutes date SST and Water vapor Low
AGRI-GIIRS/Feng 15 2016 - To
4k HSST and Wat L
Yung (FY-4A/B) m minutes date and YWater vapor ow
AHVRR/POES 1km 1 day 1989 - To Global sea surface Moderate
date temperature
Terra & 2000 - To Global dynamics in
1k 1-2d Moderat
Aqua/MODIS m ays date oceans/land oderate
AATSR/Envisat 1km 35 days 2002 - 2012 Sea surface temperature Moderate
Sentinel-3A/SLSTR 1 km 1-2 days 2016 - To 26 Bl [ VAR Moderate
date temperature
Sentinel-3B/SLSTR 1 km 1-2 days 2018 - To Sea and land surface Moderate
date temperature
Landsat 4-5/TM 120 m 16 days 1982-2013 Global land areas in HR High
Landsat 7/ETM 60 m 16 days 32?: -To Global change and land cover High
Terra & 2000 - To . .
Aqua/ASTER 90 m 16 days St Land surface climatology High
Landsat 8/TIRS 100 m 16 days jgtl: -To Global climate surface High
ECOSTRESS 70 m I The temperature of High
date plants/Evapotranspiration
2022 -To . .
Landsat 9/TIRS 100 m 16 days date Global climate surface High
TRISHNA 60 m 3-5 days 2025 Surface temperatures all over High
the globe
SBG 60 m Sub- 2028 Inland and coastal aquatic High
monthly ecosystems
LSTM 50m 1-3 days 2028 Land and coastal regions in High

support of agriculture

Table 1. Standard Thermal Infrared Instruments and Future Missions
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Several algorithms exist linked to the different products derived from the TIR sensors to

retrieve the LSWT. However, the performance of these algorithms is based on different factors,

such as the spectral and spatial characteristics of the sensors, required accuracy, computational

time, the atmospheric conditions and the availability of the atmospheric profiles, the land

surface emissivity (Jimenez-Munoz et al., 2009; Li et al., 2017; Zheng et al., 2019). The most

used algorithms for measuring LSWT are:

The single channel algorithms use a single TIR band to estimate LWST, assuming a
constant surface emissivity and do not consider atmospheric changes, leading to results
with less accuracy (Cristdbal et al., 2018; Jiménez-Mufoz, 2004; Jimenez-Munoz et al.,
2009; Jiménez-Munoz et al., 2003). These algorithms were used for Landsat 8 imagery

from 2019.

Split window algorithms (SWA) use two TIR bands (typically around 10 and 12 um) to
estimate the LSWT(Becker et al., 1990). This algorithm considers the atmospheric
correction and the atmospheric transmittance of thermal radiation and surface
emissivity. The SWA has been used for several sensors, such as Landsat, MODIS,
Sentinel-3, and AVHRR, and has shown a good level of accuracy for water bodies, such
as lakes, rivers, and coastal regions (Rongali et al., 2018; Sobrino et al., 1993; Sobrino et
al., 1994; Yu et al., 2014). As well as in the single channel, these algorithms were

performed to retrieve LSWT for Landsat 8 from 2019 and Landsat 9 from 2022.

The Temperature and Emissivity Separation algorithm (TES) is a physics-based algorithm
that estimates the land surface temperature from at least three TIR channels within 10
and 12 pm (Gillespie et al.,, 1998; Schmugge et al.,, 2002). Firstly, atmospheric
corrections are applied to transform the TOA (Top of Atmosphere) into BOA (Bottom of
Atmosphere) radiances. Then an iterative process allows to separate the temperature
and emissivity (Payan et al., 2004; Wang et al., 2015). The key to this algorithm is an
empirical relationship, carried out on various laboratory samples, which links minimum
emissivity to the difference between maximum and minimum emissivity (Gillespie et al.,

1999).
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Compared with the land surface temperature, the emissivity of the water surface is relatively
known. However, the temperature and emissivity of the water surface can vary depending on
the surface reflection (change of the viewing and illumination angles), depth, currents, and

spatial and temporal gradient, leading to errors in the TES algorithm performance (Schneider et

al., 2010).
1.0 -
~———____ Vegetation, snow,
\nd water
09 4 - .
08 &4
€ min
07 4
r2=10.983
n=_386
06 4
0.0 0.2 04 0.6
MMD 0.74

Figure 4. The empirical relationship between &min and MMD (spectral contrast), based on 86 laboratory reflectance
spectra of rocks, soils, vegetation, snow, and water (Gillespie et al., 1998). 95% of the samples fall within +0.02
emissivity units of the regression line, corresponding to an error in T of about +1.5 K at 300 K. The Emin-MMD
relationship follows a simple power law: &wnin=0.994-0.687*MMDO0.737

Previous studies have discussed the sensitivity of these methods considering the input
parameters, like water emissivity, near-surface air temperature, and atmospheric water vapor

content, which could impact the estimation of temperatures significantly (Tavares et al., 2019).

While the SWA and TES have advantages and limitations in deriving surface temperatures from
inland water bodies, the SWA has improved accuracy in long-term temperature retrievals.
Therefore, it can be considered better suited for this specific application than TES (Hulley et al.,

2011).
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2.1 Algorithms to retrieve LSWT from Landsat 8-9

For this thesis, imagery from the surface temperature products using Split Window Algorithms
for MODIS and Sentinel-3 and the TES algorithm for ECOSTRESS are obtained from their
platforms. However, for Landsat 8 and 9, available products atmospherically corrected to
analyze the LSWT are only offered for one channel — B10 (Single Channel method). Hence,
imagery at level 1 (radiance values) for both TIRS bands (B10 and B11) was used to retrieve the
LSWT using methods such as Split Window Algorithms. In addition, Mono Window, Single
Channel, and Practical Single Channel Algorithms validated the best approach suitable for using

Landsat 8 and Landsat 9 applied to the study regions considered.

2.1.1 Mono Window Algorithm (MWA)

Due to the stray light effect, which is more present in band 11 for Landsat 8, the MWA
correction method is considered to work with band 10 instead. This algorithm is the improved

mono-window algorithm, as shown in the following equation (Wang et al., 2015):

a10(1=C10=D10)+[b10(1=C19=D10)+C10+D101T10—D10T,
LSWT — 10 10 10 10 10 10 10 101410 10fa

o (1)
Where

a,o and by : coefficients for Landsat 8 band 10 (Table 2) (Wang et al., 2019)

Cio and Dy, : functions of LSE (water emissivity value €10 = 0.991)

T1o : atmospheric transmittance

Ti : the Brightness Temperature at the Sensor for band 10 in K

T, : the effective mean atmospheric temperature in K

LSWT: Lake Surface Water Temperature

Ci0, D19, T10, T1o and T, are given by the following equations:
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Ci0 = €10 X T1o (2)

Dip = (1 = 110) X [1 4+ (1 — &19) X T10] (3)
T10= -0.0735wvc + 0.9228 (for Mid-latitude winter atmosphere) (4)
T10=-0.1146wvc + 1.0286 (for US Standard atmosphere) (5)
T,=19.2704 + 0.9112 Ty (for mid-latitude Winter atmosphere) (6)
T, =25.940 + 0.8805 Ty (for USA 1976 Standard atmosphere) (7)
Temperature Range ag bio R?

20-70°C -70.1775 0.4581 0.9997

0-50°C -62.7182 0.4339 0.9996

-20-30°C -55.4276 0.4086 0.9996

Table 2. Coefficients a,, and b, for the Landsat 8 TIRS Band 10 and associate Root Mean Square

The wvc present in the study area will determine the standard atmosphere to choose the
suitable parameter when performing atmospheric correction. The standard atmospheres range

and classification are as follows (About standard atmospheres, 2020):

Standard Atmosphere Values of wvc (g/cm?)

Dry 0.75
Fall 1.14
Spring 1.14
Mid-latitude winter 0.85
Mid-latitude summer 2.92
Subarctic summer 2.08
Tropical 4.11
US Standard 1.42

Table 3. Values of wuc for Standard atmospheres

Thus, this algorithm was performed for Landsat 8 imagery from 2019 in the region of the Issyk-

Kul Lake.
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2.1.2 Single Channel Algorithm (SCA)

This algorithm was used for Landsat 8 band 10 for 2019 images over Issyk-Kul and is called an

improved single-channel algorithm with the following equation (Wang et al., 2019):

LSWT =y |(3) X W1Lsen + ) + a] + (8)
Where
LSWT: Lake Surface Water Temperature
€=0.991 is LSE (water emissivity in band 10).

y and & (values in K): two parameters depending on the Planck function, and which can be

calculated by equations (9) and (10) (Wang et al., 2019):

(T?sen)
~ sen) 9
(byLsen) ( )
T2
6 = (Tsen) — ( bsen) (10)
Y
Where:
Lgen, : is the at-sensor registered radiance [—(mz.sr.#m)]

Tsen : is the at-sensor brightness temperature (K)
b, : 1324 is a constant for Landsat 8 band 10 (K?)

Y1, Y5, and Y3 : are the atmospheric function parameters (unitless) calculated from the wuc:

—0.3833 —1.50294 0.20324 || wvc
0.00918 1.36072 —0.27514 1

Y17 [0.04019 0.02916  1.01523 ] [wwvc?
v} [
Y3
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2.1.3 Practical Single-Channel Algorithm (PSC\yc)

Previous studies found that the SCA has shown primary error sources in the linearization of
Planck’s function and atmospheric correction. Thus, this Practical Single-Channel (PSC,,,.)
algorithm, used for the same Landsat 8 band 10 imagery in 2019 over Issyk-Kul Lake, aims to
reduce the mentioned errors, and LSWT can be calculated with the following equation (Wang et

al., 2019):

LSWT = [ @ l (12)

Ln(XB(Ts)wyc+1)
With
B(T9)wve = Ao + aywvc + (a, + azwve + a,wvc?) % + (as + agwvce + a;wvc?) iLsen (13)
Where:
c1:1.19104x108 W-um* -m2 -sr'tis a Planck function constant
c2:1.43877 x 10* um-Kis a Planck function constant
A:10.904 um Effective wavelength Band 10
B(T;): represents Planck’s radiance with a temperature of T
B(Ts)yye: represents the wuc-dependent B(Ts) model

ao, a1, 42, a3..a7. Coefficients of the PSC method for wvc dependent model given in g/cm?

(values in Table 4)

£:0.991 LSE (water emissivity)

]

Lgeyn: At-sensor registered radiance [—(mz-sr-um)

wuvc: Water vapor content datasets from the ECMWEF in g/cm?

30



wvc
(g/cm?)

[0,2.0] -0.2801 1.2574 0.2751 -1.3288 -0.1696 0.9991 0.0335 0.0152

do ai az as ag as ds az

[2.0,4.0] -0.6034 1.6135 -4.9899 2.7727 -1.0427 1.7396 -0.5498 0.1290

[4.0,7.01 2.2805 0.9182 -38.3363 13.8258 -1.7546 5.0039 -1.6283 0.1967

Fullrange -0.4107 1.4936 0.2783 -1.2250 -0.3107 1.0220 -0.0197 0.0360

Table 4. Coefficients ax in B(Ts),,. Model for Landsat 8 TIRS1 Data for Different wvc subranges

2.1.4 Split Window Algorithm (SWA)

The SWA operates by correcting atmospheric and emissivity effects for different land cover
types with known band emissivity. It uses different coefficients for different humidity and
temperature ranges to address the non-linearity problem caused by high water vapor contents.
The method calculates the LST by analyzing thermal radiance values in two specific TIR bands.
By optimizing the parameters for viewing angle and water vapor content ranges, the method
can achieve accuracy better than 1 °K for land cover types with known emissivity (Becker et al.,

1990; Wan et al., 1999; Tormos et al., 2017).

The same imagery used for the previous algorithms over Issyk-Kul Lake in 2019, now by using
the SWA, can provide more accurate LSWT and is one of the standard methods used due to its
simplicity of operation. Hence, this atmospheric correction was based on the LSWT inversion

method, firstly, without considering the variation of the atmospheric wvc (Du et al., 2015):
LSWT = a0+ a1310 + a2B11 + a3(B10 - Bll)z (14)

Where a; are coefficients obtained by regression analysis, and Brightness Temperatures (K)
from B10 and B11 were obtained from Thermal Spectral Radiance: a,=3.228, a,=4.072, a,=-

3.081 and a3;=0.048.

On the other hand, another SWA atmospheric correction was calculated using the LSWT
inversion method mentioned before. However, the variation of atmospheric wvc was

considered this time (Du et al., 2015):
LSWT = ag+ a;Byg + a;B11 + as(Byip — B11)%+ a,wvc+ aswvc? (15)
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Where wuc is given in g/cm? and a,, are the coefficients obtained by regression analysis (Du et

al., 2015): ag=-0.992, a;=3.970, a,=-2.963, a3=0.044, a,=-0.328 and a;=0.091.

2.2 LSWT from Sentinel-3 (SLSTR)

The LST product used to retrieve the LSWT (Figure 5) by using Sentinel-3 obtained using a
regression-based algorithm that operates on two split-window thermal channels at 11 and 12
um of the Sea and Land Surface Temperature Radiometer (SLSTR). The algorithm utilizes
regression coefficients derived by regressing simulated brightness temperatures against a high-
specification line-by-line forward model. These coefficients account for variations in surface
temperature, surface spectral emissivity, atmospheric profiles of temperature and humidity,
and contaminant gases. The algorithm considers nadir split-window radiance only and considers
the angular effects on temperature and emissivity. The LST product is a gridded 1x1 km?, pixel-
by-pixel quantity, derived using the cloud-free top-of-the-atmosphere brightness temperatures

and ancillary information to correct for water vapor absorption and spectral emissivity effects

Reprojecting biome mask=26 Bayesian
and (class for water) probabilistic AOI
subsetting methods (shapefile)

(Goryl et al., 2009).

Figure 5. LSWT retrieval process for Sentinel 3 at Level 2.

In the split-window algorithm for this LST product, the emissivity of the water is not explicitly
considered. The algorithm assumes that the emissivity factors for the land surface are
sufficiently close to one for the approach to be appropriate. Therefore, there is no current
intention to determine the emissivities as part of the LST product or as a separate product.
Instead, the algorithm indirectly incorporates the dependence on emissivity via statistical

regression coefficients that are calculated offline and translated through biome/fractional
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vegetation maps for application to a particular SLSTR pixel. These regression coefficients
account for atmospheric temperature and humidity variations and provide an effective
atmospheric correction in clear sky conditions. The split-window method assumes linearity of
the variation of atmospheric transmittance with water vapor content amount, but it does not

explicitly consider the emissivity of water in the algorithm (Goryl et al., 2009).

The areas of interest were applied at different lake areas to fit the available pixels for the same

date from Landsat 8-9, MODIS, and ECOSTRESS (when possible) images.

2.3 LSWT from MODIS (Terra)

The process to extract the LSWT (Figure 6) is by using the LST product (MOD11A1v006) at level
3 from MODIS Terra thermal channel data by the implementation of a generalized split-window
LST algorithm, band emissivities were inferred from land-cover types based on either the
MODIS land-cover data or the IGBP-type 1-km global vegetation database. For pixels with
known band emissivities, the LST algorithm utilized a linear equation of the band brightness
temperatures of MODIS bands 31 and 32 (10.5-12.5um) to calculate LST. The algorithm
accounted for atmospheric and emissivity effects by considering factors such as viewing angle,
regional and seasonal variations in atmospheric absorption, and water vapor absorption.
Additionally, a day/night LST algorithm was developed to retrieve surface band emissivities and
temperatures for all cover types, including those with highly variable emissivities. This
algorithm employed a statistical regression approach and x? fit approach to handle emissivities
that are difficult to predict. The emissivity of water was taken into account in the modeling
process, including a correction for atmospheric and emissivity effects for land cover types with
known band emissivities, and the values of the band average emissivities of MODIS bands 31
and 32 from the emissivity knowledge base were used as inputs to the generalized split-window
LST, having that the canopy emissivity for water surfaces ranges from 0.96 to 1.0 (Wan et al.,

1999).
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Figure 6. LSWT retrieval process for MODIS at Level 3.

The areas of interest were applied at different lake areas to fit the available pixels for the same

date from Landsat 8-9, Sentinel-3, and ECOSTRESS (when possible) images.

2.4 LSWT from ECOSTRESS

The process to retrieve the LSWT from the ECOSTRESS products at Level 2 is described (Figure

7), where other products and algorithms were needed to follow this retrieval process:

ECO2LSTE.001 (L2): This product is generated using the Temperature Emissivity
Separation (TES) algorithm. It aims to separate the LST and spectral emissivity
components from the total radiance measured by the TIR multispectral scanner onboard
the ECOSTRESS mission, presenting challenges of separating these components and
providing a theoretical basis for the algorithm used to generate the LST and emissivity
products. The emissivity of water was measured or estimated using known values to
separate the LST from the total radiance and generate the LST product (Hook et al.,

2018).

ECO1BGEO.001 (L1): This product contains geolocation due to the LSTE 70m pixels
containing significant errors due to uncertainties of the ISS (International Spatial Station)
positioning system. It is obtained through back-propagation of the instrument pointing
model from the payload on the ISS Japanese Experiment Module Exposed Facility (JEM-

EF) to the different ISS elements until it intersects with the ground topography. This
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backpropagation of light from the focal plane to the ground location is achieved by
assuming a straight light propagation through the atmosphere. The geolocation of each
pixel is determined by iteratively intersecting the ray with a topography model, taking

into account the elevation from a digital elevation model (DEM) (Smyth et al., 2018).

e ECO2CLD.001 (L2): The cloud mask product for the ECOSTRESS mission is obtained using
the ECOCLOUD algorithm, which is based on previously established cloud algorithms
such as the Landsat ACCAA, MODIS, and AVHRR cloud algorithms. The ECOCLOUD
algorithm utilizes calibrated and geolocated L1B TIR radiance data as input and
generates a cloud mask at a spatial resolution of 70 meters. The algorithm determines
whether a given view of the Earth's surface is unobstructed by clouds or optically thick
aerosol. It outputs an 8-bit mask that provides pixel-by-pixel information on whether
the cloud was determined, along with the results of three individual thermal tests and a
land/water mask. The cloud mask product is distributed as a separate additional Level-2
product. It is an 8-bit flag, where bits associated with clouds areas bit1=1and bit3 =1

(Hulley et al., 2018).
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Figure 7. LSWT retrieval process for ECOSTRESS at Level 2.

During 2019, ECOSTRESS imagery was only available for a few dates in the second half of that

year. Hence, samples were taken from 2019 to 2023.
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2.5 Split Window Algorithm (SWA) for ECOSTRESS

The SWA utilizes the radiance measurements in two different spectral bands within the thermal
infrared region to estimate the LST. The ECOSTRESS instrument measures radiance in five
spectral bands in the thermal infrared region between 8 and 12.5 um. The basic principle
behind the SWA is that different wavelengths in the thermal infrared region are affected
differently by atmospheric wvc and other atmospheric components. The algorithm can correct
atmospheric effects and estimate the LST by comparing the radiance measurements in two
bands. In ECOSTRESS, the LST and land surface emissivity (LSE) estimates use the SWA method
in combination with the temperature and emissivity separation algorithm (TES). Separating the
effects of temperature and emissivity on the observed radiance is the responsibility of the TES
algorithm. The enhanced SW-TES method can concurrently extract the LST and LSE from
ECOSTRESS thermal infrared data by merging the SWA and TES techniques (Ru et al., 2023).

The equation for the SWA (16) represents a mathematical model that describes the value of the

LSWT (Ru et al., 2023):
LSWT = Ag;;(0,)+A11(0,)Tyi+A2:;(0,)(Tyi — Tpj) + Azij(0,) (Tpi — Ti;)? (16)
Where:

LSWT: This represents the estimated ground-level brightness temperature (T,) for a specific

thermal infrared band.

Aoij, Arij, Azij, and Az These are the VZA-dependent (view zenith angle) regression
coefficients for the combination of brightness temperature at the top of the atmosphere (TOA)
in two bands i and j (T,; and Tp;), respectively. However, the VZA-independent regression
coefficients were used because the ECOSTRESS sensor has near-nadir-viewing angles (+26

degrees).

0,: This is the view zenith angle, representing the angle between the line of sight from the

sensor to the Earth's surface and the vertical direction.
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Ty; and Tpj: These are the brightness temperatures at the TOA in the respective thermal

infrared bands i and j used for the combination in the SWA.

The coefficients for the SWA are determined using simulation datasets to minimize the root
mean square error (RMSE) between the actual and estimated ground temperature values for

different band combinations.

As a part of this methodology, ground-based validations are considered one of the reliable
techniques for validating temperature retrieval estimations (Li et al., 2013). Hence, validations
with ground measurements were obtained in four different study areas: Lake Issyk-Kul

(Kyrgyzstan), Lakes Plobsheim, Gérardmer, and Longemer (France).
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Chapter 3. Study area and data

This chapter describes the location and physical characteristics of the four lakes considered in
this research and the datasets used to retrieve the LSWT in those areas, from imagery derived

from the TIR satellites to in-situ measurements.

3.1 Location and Characteristics of the Lakes

Lakes with different characteristics such as altitude, size, and depth have been chosen as
regions of study to estimate the LSWT as follows: Issyk-Kul Lake, Kyrgyzstan (Central Asia
region); Gerardmer and Longemer Lakes, France (Vosges region); and the Plobsheim Lake,

France (Bas-Rhin department).
3.1.1 Issyk-Kul Lake

One of the lakes considered for this research is the Issyk-Kul Lake, which is an endorheic lake
situated between the coordinates 76° and 78°15’E, and 42°40’N (Figure 8) in the Central Asia
area in the eastern region of Kyrgyzstan, with a high altitude of 1,607 m, a maximum length of

178 km, and its maximum width is 60.1 km (Klerkx et al., 2002).
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Figure 8. Location of Issyk-Kul Lake, Kyrgyzstan, Central Asia (Alifujiang et al., 2020)
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This lake is the tenth largest (6,236 km?) and the seventh deepest (668 m) lake in the world
(Savvaitova et al., 1992; Delclaux et al., 2015), with a mean depth of 278.4 m, containing a

volume of 17,738 km3.

When considering the bathymetry of the Lake (Figure 9), the potential temperature in the Issyk-
Kul Lake generally decreases with increasing depth, which is typical for all profiles measured
during a study made in March 2003 in the Lake by Peeters et al. 2003. However, slight
deviations from this decreasing trend were observed, especially in the upper 200 m and deeper
regions just below 500 m depth. In the lake's deep water (> 600 m depth), the potential
temperature ranged between 4.33°C and 4.40°C, the highest values ever observed in the deep
water of Issyk-Kul. Additionally, the authors mentioned that the horizontal distribution of near-
surface temperatures indicates that the central region of the lake is generally warmer than the
shallow eastern region, specially during the spring season (March), where the coldest water

was found in the shallow northeastern region of the lake (Peeters et al., 2003).
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Figure 9. Bathymetry of the Issyk-Kul Lake, Kyrgyzstan (LEGOS Laboratory)

The Issyk-Kul Lake is located in the northern part of the Tien-Shan Mountains, with snow-

topped peaks, of the Kyrgyz Republic, Central Asia. It is over an arid zone, more desert on the

39



west, followed by semi-desert and steppe on the east. The predominant vegetation is
xerophytes. However, the vegetation type is a wetland region in certain areas where more

water is found (Torgoev et al., 2013).

The importance of this water body for the region is also for touristic purposes, with some
recreational centers receiving visitors annually (Savvaitova et al., 1992). The lake is affected by
several environmental threats, as well as natural as anthropogenic origin: decline of the lake
level resulting in a progressive increase in salinity of the water, incomplete vertical water
exchange which results in eutrophication of the deep waters, risk of contamination by former

or present industrial activities and uncontrolled agriculture (Klerkx et al., 2002).

Some of the atmospheric characteristics of the lake are moderate temperatures for air and
water, despite the relatively low temperatures in the area around the lake, it never gets frozen
during winter due to the high concentration of salt in its waters, and the sunny periods are
prolonged (Peeters et al., 2003). Generally, the water in this lake is clear and transparent due to

the overall salinity and the limited amount of organic life (Alifujiang et al., 2020).

Mostly, the average water surface temperatures in the lake are higher than their average air
temperatures due to the different air and water thermal capacities throughout the years

(Figure 10) (Alifujiang et al., 2020).

- Air

—a—\Water

Temperature, 'C

Months

Figure 10. Average annual air and water temperature variations of Issyk-Kul Lake at MS Cholpon-Ata (1972-2009)

(Alifujiang et al., 2020).
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More precisely, according to previous studies based on the data from the meteorological
station “Cholpon-Ata” (Figure 8), located 100 m near the north side of the lake, the mean
annual air temperature is 8.3 °C, and the water temperature is 12.1 °C. July and August
presented the maximum mean temperatures (18.3° for air and 20.6°C for water), and minimum
mean temperatures were registered in January and February (-1.9°C for air and 4.7°C for water)

(Romanovsky et al., 2013).

The Issyk-Kul Lake is considered one of the sites suitable for calibration and validation due to
the availability of ground measurements provided by the Cholpon-Ata meteorological station

(Crétaux et al., 2018).

3.1.2 Gerardmer and Longemer Lakes

Gerardmer and Longemer Lakes, two other lakes of study, both located in the Grand-Est region,
in the Vosges department of France, are two natural, dimictic lakes of glacial origin (Conseil

Scientifique Plan Grands Lacs, 2023) (Figure 11).

Gerardmer Lake

D Longemer Lake

Figure 11. Location of the Gerardmer and Longemer Lakes.

The Gerardmer Lake is situated in the Jamagne Valley and is fed by the Jamagne River, which

flows into the Vologne River. With its elliptical shape, this lake has a surface area of 1.16 km?, a
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perimeter of 5.22 km, and a depth of 36.2 m. Its Lake Biological Index (LBI) is 12.1,
corresponding to average quality. It offers activities for boating, fishing, and swimming

(AgroParisTech, 2017).

Figure 12. Lake of Gérardmer (ICube, 2021).

Longemer Lake is located as well in the Vosges region in France. The lake is classified as being in
a medium ecological state. Regarding its trophic potential, Longemer Lake has a good potential
for trophic productivity and high faunal biodiversity in the littoral zone. The lake is also
managed by the Association Agréée de Péche et de Protection du Milieu Aquatique (AAPPMA),
which holds the fishing rights and sells fishing permits. It covers an area of 0.73 km?, with a
perimeter of 5.15 km and a depth of 29.5 m. Its LBl is 13.7, which corresponds to average
quality. Its strong natural heritage is at the root of its urbanization. Like in the Gérardmer lake,

this lake offers activities for boating, fishing, and swimming (AgroParisTech, 2017).
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Figure 13. Lake of Longemer (ICube, 2021).

3.1.3 Plobsheim Lake

The Plobsheim Lake, located around fifteen kilometers south of Strasbourg, is a compensation
basin designed to regulate the levels of the Rhine and Il rivers at the entrance to the
Strasbourg conurbation. It is the largest body of water in the department of Bas-Rhin, covering
6.6 km?, with clear and shallow water, averaging 3 m in depth. This lake is known for its lush
flora and is home to various fish species, such as carp, tench, perch, and catfish. Moreover, the
Plobsheim lake has become a significant site for birds in Alsace. It is of great interest to avifauna
throughout the year, particularly in winter. It is also crucial for nesting, summering, and the
migration of various species. 234 bird species have been recorded on the lake and its banks
over the last 15 years. Also, this lake is an essential habitat for waterbirds, leading to the
implementation a biotope protection order for the site (Plans d’eau - Fédération de Péche Du
Bas-Rhin, n.d.). Several activities occur on the lake: professional and recreational fishing,
boating, and windsurfing. Fishing competitions and regattas are held here every year.

Recreational and tourist activities are also carried out along the water's edge.
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Figure 14. Lake of Plobsheim (Plans d’eau - Fédération de Péche Du Bas-Rhin, n.d.).

3.2 Imagery data

For this study case, in regards to the availability and access of the latest missions, the sensors
and products considered for this research are imagery from the TIRS sensors onboard Landsat
8 and 9 missions, LST products derived from the MODIS sensors of Terra satellite; LST products
from the SLSTR onboard the Sentinel 3 satellite; and imagery products from the ECOSTRESS

sensor.

The radiometric features of some of the exploited satellite imagery with moderate and high

spatial-spectral within TIR sensors and the future mission bandwidth are shown (Figure 15).
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Figure 15. Bandwidth of the exploited data and new future sensors for TIR imagery.
Access and availability for each of these satellites were considered, having at least one image
per month at the exact date and around the same time for Landsat 8-9, MODIS, Sentinel-3, and
ECOSTRESS as possible, from 2019 to 2023 in the regions of Issyk-Kul, Gerardmer, Longemer,

and Plobsheim Lakes.

3.2.1 Landsat 8-9 (TIRS)

Landsat 8, with its thermal infrared images, has been widely used to retrieve surface water
temperatures (Dyba et al., 2022; Herrick et al., 2023; Jimenez-Munoz et al., 2009; Prats et al.,
2018; Sharaf et al., 2019; Simon et al., 2014; Vanhellemont, 2020). This mission launched in
2013, including two thermal infrared bands (TIR) with a spatial resolution of 100 m and a range
spectral resolution from 10.6 to 11.2 um (Band 10) and 11.5 to 12.5 um (Band 11) (Khalil et al.,
2017).
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The performance of the TIRS instrument from Landsat 8 has shown stability and less noise
circumstances specially in the Band 10 for Collection 1. However, two side effects could not be
corrected after its launch: non-uniform banding and error in the absolute radiometric variation.
These adverse effects are correlated to the radiance magnitude outside the instrument view
range and caused by a problem in a stray light, where radiance out of view range interferes
with the optical system, adding noise in the signal for the focal plane detector (Gerace et al.,

2017).

The solution to these problems has been through the performance of the stray light correction
algorithm, based on using near-coincident thermal data (i.e., Terra/MODIS) to obtain functional
relationships between out-of-field radiance and stray light signal on TIRS bands, reducing the
banding from 2% or higher in terms of radiance (before correction) to under 0.5% (after
correction). The artifact absolute error is reduced as high as 9% in radiance (for Band 11) to
0.5% (in both bands). With the validation of this algorithm, it is possible to enhance the Band 10
and even the Band 11 performances, allowing the LST retrieving process by the split-window

approach (Gerace et al., 2017).

However, Landsat-9 as the latest satellite carrying TIRS instruments from NASA, released in
September 2021 and publicly available for access to data in February 2022, has changed the
design of the optical system to improve the stray light problem given in the Landsat 8 by adding
baffles placed within the optical telescope to block the stray light paths. As a preliminary result
of TIRS-2, total stray light has been reduced by approximately 1% (Mccorkel et al., n.d,;
Montanaro et al.,, 2018). Landsat-9 provides a higher radiometric resolution (increased the
guantization in 14-bit instead of 12-bits for its predecessor) and can still be complemented with
Landstat-8 to improve the revisit time, as they still share the exact temporal and spatial

resolution, showing a similar spectral response function between Landsat 8 and 9 (Figure 16).
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Figure 16. Spectral Response Functions (SRFs) of Landsat-8 and Landsat-9 bands (Ye et al., 2022b).

The Landsat 8-9 images were analyzed from 2019 to 2023 in Issyk-Kul, Gerardmer, Longemer,

and Plobsheim Lakes.
3.2.2 MODIS (Terra)

The Moderate Resolution Imaging Spectroradiometers (MODIS) onboard the satellite Terra of
NASA launched in 1988, have an extensive spectral range of 36 channels from 0.415 to 14.235
um, where its thermal bands are the band 31 (10.78-11.28 um) and 32 (11.77-12.27 um) with a
spatial resolution of 1 km in this range; this sensor has been helpful to study the water
temperature of lakes providing daily-basis monitoring capable of collecting information on

atmosphere, land, and water, (Lazhu et al., 2022; Reinart et al., 2008b).
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The analyzed images were collected from 2019 to 2023 in the Issyk-Kul and Plobsheim Lakes

regions.
3.2.3 Sentinel-3 (SLSTR)

The Sentinel-3A and 3B satellites by the European Commission’s Copernicus program, launched
on February 16, 2016, and April 25, 2018, respectively, carrying the Sea and Land Surface
Temperature Radiometer (SLSTR) sensor, have been designed to provide information on the
land and water temperature. It has channels in the middle-infrared (MIR) and TIR ranges
(centered at 3.74, 10.85, and 12.02 um), providing 1 km spatial resolution for Land Surface
Temperature values. The LST product is obtained using a split window algorithm (Nie et al.,

2021).

Sentinel-3 (SLSTR) images were analyzed from 2019 to 2023 in the Issyk-Kul and Plobsheim

Lakes regions.
3.2.4 ECOSTRESS

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS),
one of the modern missions, was launched at the International Space Station (ISS) in June 2018.
This satellite collects thermal data over both land and water with a spatial resolution of 70 m
and a revisit period of 4-5 days. It carries 5 thermal channels, with a spectral resolution from
8.29 to 12.09 um, providing data for land surface temperature and emissivity (L2_LSTE). The
orbit of the ISS is irregular (non-geostationary) or geosynchronous with earth, which means it is
syncrhronized with earth’s rotation. The ISS collects measurements continuously between
approximately 52°N and 52°S at different times of the day. The overpass return frequency for
any same spot on Earth is 1-5 days, depending on latitude, with some areas measured multiple
times in a single day, particularly at higher latitudes where the ISS orbital direction shifts. This
irregular orbit of the ISS provides a unique opportunity for the ECOSTRESS to capture thermal
infrared radiation data with good spatial and temporal resolutions, including diurnal cycle

sampling (Fisher et al., 2020).
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The LST data in the ECOSTRESS mission is obtained using the Temperature and Emissivity
Separation (TES) retrieval algorithm. The L2_LSTE product is generated from the ECOSTRESS
instrument and L1 products. The ECOSTRESS L2 product incorporates additional data from
numerical weather prediction for atmospheric correction and the generation of LST and

broadband emissivity (Fisher et al., 2020).

The collection of ECOSTRESS images analyzed was from the second half of 2019 to 2023 in the

regions of Issyk-Kul, Gerardmer, Longemer, and Plobsheim Lakes.
3.2.5 Datasets from CCl Lakes

An external database of surface water temperatures of lakes called CCl Lakes products,
conducted on the framework of the Climate Change Initiative of the European Space Agency
(ESA), has been exploited as a reference set. This dataset, recently developed (updated in July
2022 —v.2.0.2), contains global lake products for the following five thematic climate variables
derived from global satellite data: Lake Water Level (LWL), Lake Water Extent (LWE), Lake
Surface Water temperature (LSWT), Lake Ice Cover (LIC) and Lake Water-Leaving Reflectance
(LWLR). This data presents a spatial coverage of over 2,000 relatively large lakes worldwide,
with a 1/120 degree grid (=1 km) spatial resolution and a daily temporal resolution. It provides
one file (NetCDF format) per day, containing all parameters listed above, with a temporal
coverage from 1992 to 2020. The LSWT combines sensors (ATSR-2, AATSR, AVHRR-3) (Carrea et
al., 2023; Crétaux et al., 2018).
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Figure 17. CCl Lakes v.2.0.2 sample for 07 August 2019.
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3.2.6 Atmospheric water vapor content (wvc) and near-surface air temperature (To).

Atmospheric water vapor content (wvc), like a primary variable in the hydrological cycle, is
essential when retrieving land surface temperatures from Landsat 8 (TIRS) algorithms (Ren et

al.,, 2015). The wvc values were obtained from the ECMWF datasets at every 0.25 degrees

(www.ecmwf.int) for each analyzed date, averaging the latitude and longitude (Figure 18) array
values where the lake is located and at each hour according to the acquisition time of the

Landsat images for each of the considered dates:
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Figure 18. GRID values for water vapor content from ECMWEF.

The surface air temperature (7o) values were taken from ECMWF datasets at every 0.25 degrees

(www.ecmwf.int) and averaging the values of the latitude and longitude (Figure 19) array

where the lake is located and at each hour according to the acquisition time of the Landsat

images for each of the considered dates.
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Figure 19. GRID values for air temperature from ECMWEF.

3.3 Ground data

There were different sources considered within the in-situ observations provided and obtained

in the field, listed as follows:

e Meteorological datasets (Issyk-Kul Lake) and in-situ measurements from buoys
(Plobsheim, Gérardmer, and Longermer Lakes).

e Ground measurements were obtained with thermal sensors from a torrent board.

e Datasets from a radiometer (CIMEL CE 312-2) and a FLIR thermal camera.

e CCl Lakes datasets product.

e Atmospheric profiles (water vapor content and near-surface air temperature) help to

retrieve the LSWT from Landsat 8 and 9.

3.3.1 Datasets from Meteorological Stations

The meteorological station datasets at Cholpon-Ata, located a few meters from the Issyk-Kul
Lake, were provided by the LEGOS Laboratory from Toulouse, France, led by Jean Francois
Crétaux. The availability of these datasets was from January 2008 until September 2021.

However, some values were missing in the water and air temperatures in some months of each
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year. Therefore, assumptions like interpolation and retrieving temperatures from other years as

a reference were considered to fulfill these datasets.

Over this period, water temperatures in the Issyk-Kul Lake varied from 4.8 to 21.8 °C, with a
mean temperature of 12.9 °C. The highest monthly water temperature was recorded in August,
with an average temperature of 20.7 °C, and the lowest in February, with an overall
temperature of 5.5 °C. The highest variability of water temperatures was observed generally in

May and the lowest in February (Figure 20).
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Figure 20. Dataset example of the Cholpon-Ata Meteorological Station in 2020.

3.3.2 In-situ datasets from buoys

Data collected locally using buoys will be used to validate the process. These temperature data
were collected for lakes Gérardmer and Longemer for some months in 2021 and 2022 through

three data acquisition campaigns (Plan Grands Lacs - Communauté de Communes Gérardmer

Hautes Vosges, n.d.).

As well as the temperature, the buoy provides the time of acquisition. The buoys record a new
temperature for each hour. Under the buoys, probes are placed at several depths in the lake

(Figure 21). They provide the temperature at different lake levels to determine the thermocline.

52



The first temperature is collected at 50 cm. Temperatures are then measured every 1 meter
down to 10.5 m, and from this level onwards, measurements are taken every 4 meters. The last
measurement is taken at 34 m for Gérardmer and 29 m for Longemer (Suivi Climatique National

& Fonctionnement Des Lacs : Une Bouée Installée Sur Le Lac de Gérardmer - Gerardmer Info, n.d.).

Figure 21. Buoy in Gérardmerd Lake is used to measure the temperature at various levels of the lake (Suivi
Climatique National & Fonctionnement Des Lacs: Une Bouée Installée Sur Le Lac de Gérardmer - Gerardmer Info,
n.d.).

Other data from the buoys, but this time in the lake of Plobsheim, is provided, and
measurements are taken using multi-parameter loggers attached to 7 buoys approximately 1 m
below the water surface, distributed from north to south in the lake (Figure 22). The acquisition
frequency is every 30 minutes, and measurements of the temperature gradient were taken
from the surface to the bottom of the water, with a 50 cm increment up to 3 m depth. These

measurements have enabled us to observe the absence of temperature gradient in the water
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(only a few tenths of a degree difference between the surface and the bottom of the water

body).

W

Lake boundary i -
& Buoy e

utmM_ X utM_Y GC X
408,370.84 | 5,370,092.38 | 48°28'38"
408,295.70 | 5,369,853.20 | 48°28'30"| 7°45'33"

408,119.32 | 5,368,993.43 | 48°28'02"| 7°45'25"
408,004.84 | 5,368,183.32 | 48°27'36"| 7°45'20"
408,427.51 | 5,368,124.62 | 48°27'35"| 7°45'41"
407,529.35 | 5,367,088.51 | 48°27'01"| 7°44'58"
406,518.56 | 5,366,352.26 | 48°26'36"

Figure 22. On the left, a buoy in Lake of Plobsheim used to measure the temperature at various levels of the lake
(Plans d’eau - Fédération de Péche Du Bas-Rhin, n.d.); on the right, a map of the location of the seven buoys in
the Plobsheim lake.

3.3.3 Torrent Board

The instrumentation used for this device consisted of sensors to measure humidity, water, and
air temperature, which were set up on a floating platform called a Torrent board (Figure 23). It
contains four thermal immersion probes for measuring the surface temperature up to 35
centimeters of depth; 1 thermal probe set on the top of the buoy to measure the air
temperature and humidity; a GPS and a gyroscope. The ensemble of this device was made with
the collaboration of one of the TRIO team engineers from the ICube laboratory. The description

of the sensors and items carried out on the torrent board is as follows:
e The Torrent Board characteristics:
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The dimensions are 105 x 65 x 25 cm3 (L x W x H).

4.7 kg weight (not considering the sensors).

The material of this device can support temperature storage from -10 up to 70 °C
(Torrent Board, 2020).

A large and heavy traveling wood/metallic case and a light-carrying bag.

e Water temperature

O

e GPS

e}

O

A thermal immersion probe, PT100/Class A type, measuring the water
temperature on the first centimeters (35) of water depths.

4-wire connection with a range measuring from -50 to 200 °C.

Reaction time (T05/T09) of 2.5/6.5 s, 6 mm probe diameter, and 20 mm length
made of stainless-steel material.

IP67 protection and a 1.5 silicone cable.

Air temperature and humidity.

A thermal probe SHTS85 is set on the top of the buoy.

High-accuracy RH&amp; T sensor for demanding measurement and test
applications.

Typical accuracy of +1.5 %RH and +0.1 °C.

Pin-type packaging for easy integration and replacement, fully calibrated,

linearized, and temperature-compensated digital output.

165 dBm sensitivity, 10 Hz updates, 66 channels 5V friendly design and only
20mA current draw breadboard friendly + two mounting holes.

RTC battery compatible.

Built-in data logging.

PPS output on a fix.

25 km altitude.

Internal patch antenna + u.FL connector for external active antenna.

Fix status LED.

e Datalogger
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o Lopy4 - ESP32, a transmitter towards a data logger based on radio frequencies.
e Accelerometer

o Attitude system for roll, pitch, and yaw for water roughness measurement.
e Pack of energy

o Batteries with 5100mAh Li-lon.

Figure 23. Torrent Board

The results for this research concerning the Cal/Val of the skin water surface and near-surface
temperatures to study the spatial variability over the lake, and thus, compared to Sentinel-

3/MODIS satellite imagery.
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3.3.4 Radiometer CIMEL 312-2

The CIMEL CE 312-2 radiometer (Figure 24) is a six-band radiometer used to measure the
thermal infrared radiances of distant objects. It features five LWIR bands with a 10-degree field
of view comparable to the ASTER bands. It also features one wide band. The portable CIMEL CE
312-2 radiometer has a 10-degree field of view, supports automated acquisitions, and
measures the radiances of distant objects. In multi-band research, emissivity spectra are
interpolated and integrated using the spectral response of the CIMEL 312-2 radiometer. This
instrument's radiance measurement calculates the target's effective radiance. The device uses a
thermopile sensor with particular coefficients for the sensor's spectrum response (Payan et al.,

2004).
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Figure 24. On the left are the Spectral responses of the CIMEL 312-2 at the central wavelength of each band
(Payan et al., 2004); on the right, the CIMEL-312-2 is in operation in the field.
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3.3.5 Infrared Camera FLIR T-560

The FLIR T-560 (Figure 25) is an infrared camera type produced by FLIR Solutions, a firm
recognized for its thermal imaging cameras. The FLIR T-560 is intended for industrial and

research applications requiring precise temperature monitoring and thermal imaging. This

device has the following major features and characteristics:

e Thermal Sensitivity/NETD: <40 mK @ 30°C (86°F).
e Accuracy: +2°C (+3.6°F) or £2% of reading.
e Digital Camera 5 MP, with built-in LED photo/video lamp.

e Display4", 640 x 480-pixel touchscreen LCD with autorotation.

Figure 25. FLIR Camera T-560
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Chapter 4. LSWT Retrieval Results and Discussion

This chapter shows the results from comparing the moderate and high-resolution TIR sensors,
the results derived from the retrieval analysis of the algorithms applied for Landsat 8-9, and the
results between those TIR sensors and the in-situ datasets. Besides, an explanation of the
obtained results and comparison of the LSWT estimations to previous studies gives place to the
discussion of its implications or consequences by describing the limitations and the

contributions of this research to the previous literature.

Two standard metrics are used to assess the reliability of the results derived from the
intercomparison of the sensors and the sources considered in this research: the mean absolute
error (MAE) and the root-mean-squared error (RMSE). These methods are helpful in models,
data analysis, and evaluation, and they provide measures of the accuracy of data predictions or
estimates compared to the actual values of the data. The MAE and RMSE are for a sample of n
observations y (y;, i = 1, 2,..., n) and n associated model predictions J, their equations are

expressed as follows (Hodson, 2022):

1 ~
MAE = - ¥ily: = 9l (17)

RMSE = 51,0 - 502 (18)

The MAE measures a model's typical or average error and is calculated by taking the mean of
the absolute differences between predicted and reference values. The MAE is represented in
equation (17), where the fundamental differences are obtained by subtracting the predicted
values from the values of reference, taking the absolute value of the result, and then averaging
these absolute differences across all the observations in the dataset. On the other hand, the
RMSE conveniently represents the typical or standard error for normally distributed errors. It is
calculated by determining the difference between each predicted value (§;) and the
corresponding reference value (y;). The differences are then squared and summed up. Next,

the mean of the squared differences is calculated by dividing the sum by the total number of
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observations (n). Finally, the RMSE is obtained by taking the square root of the mean squared
difference, represented in the equation (18) (Hodson, 2022; Use Excel to Calculate MAD, MSE,
RMSE & MAPE - Dawn Wright, Ph.D., n.d.).

In the graphs of the results showing the LSWT estimates, the upward and downward error
lines/bars (positive and negative) represent the standard deviation of the LSWT mean for each
point, where the standard deviation values considered to show our estimates are from 0 to 1

°C. With this, we can observe the uncertainty associated with each data point.

4.1 Sensors Intercomparison

This validation method is sensitive to temporal and spatial resolutions between the LST
products considered. Hence, for this first set of images, the acquisition time for each date in
2019 over the Issyk-Kul Lake was relatively close to each other, considering the temperatures
from the meteorological station as the values of reference for the rest of the sources. The

acquisition time for each of the sources is given in local time as follows:

Source Acquisition time

Meteorological station | Noon

Landsat 8 Between 11:00 a.m. and noon

Sentinel-3 Between 10:30 a.m. and noon

MODIS Between 11:00 a.m. and 1:00 p.m.

CCl Lakes Daily aggregation interval pinned to 6:00 p.m. (12:00 UTC)

Table 5. The acquisition time for the sources to compare.
Areas of interest of 100 km? (identified as the light blue squares — Figure 26) are located at

different regions (East or West region of the lake) by date according to the availability of pixels

after retrieving to extract the LSWT over these regions.
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MWA - Landsat 8 (27/01/2019 SCA - Landsat 8 (27/01/2019
at 11:33 a.m. local time o3 at 11:33 a.m. local time)

[]

Sentinel-3 — (27/01/2019 at
11:56 a.m. local time)
' L

PSCuwvc — Landsat 8 (27/01/2019
at 11:33 a.m. local time)

MODIS - (27/01/2019 at 12:35
p.m. local time)

PNWAUON®A

Figure 26. Samples of LSWT in the Issyk-Kul Lake in 2019 derived from the Landsat 8 mono-channel algorithms and multi-
sensors in °C

For this LSWT estimation, one Landsat 8 image per month in 2019 is chosen to be compared
with the values from the exact date and closest time from other sources, such as the

meteorological station, which are the values of reference for this comparison, and the CCI Lakes

product, Sentinel-3, and MODIS.
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Figure 27. Sensors intercomparison (Landsat 8 mono-channel algorithms, Sentinel-3, MODIS, Meteorological
Station, and CCl Lakes) in the Issyk-Kul Lake in 2019

Generally, all the sensors follow a similar seasonal temperature trend throughout the year
(Figure 27). The SCA retrieval method underestimates the LSWT values on most dates

compared to the rest of the sources.

62



s § 5 5 3 s 3 2 § & 3 8
2019 &£ = £ = 2 3 & ¢ 9 £ S MAE Rvst
~ ] ] 8 ﬁ g A '5 8 8 g g
Station-S3
0 040 030 0.60 020 -050 -1.90 -0.60 -0.60 1.60 -1.94 -230 -2.20 1.10 1.34
Station-
MoDs(iq) | 020 090 090 140 -100 100 070 040 350 034 020 -030 090 125
f;fei";fc')“’ 010 090 1.70 1.10 260 -040 080 -0.10 220 026 -1.10 000 094 1.25
Station-
(PSCunc) 070 050 -030 010 -130 -1.40 -2.40 -2.60 080 -134 -1.50 090 115 1.37
(°0
Station-
A (0 060 1.40 090 1.70 1.30 140 120 090 350 046 020 210 1.31 155
Station-
Mwa(c | 29 170 120 020 020 030 230 050 230 194 400 070 152 191

Table 6. Differences in temperatures in the Issyk-Kul Lake in 2019 between the meteorological station and all the
sensors with their respective MAE and RMSE

SCA retrieval is the least corresponing algorithm to the in-situ data, with 1.55 °C of RMSE, and
also presents the more significant differences in temperatures concerning the in-situ data (MAE
of 1.31 °C). While the PSCw\. shows more correspondence when compared to the SCA, with
1.37 °C of RMSE. Besides, Sentinel-3 estimates show LSWT values consistent with in situ data,
with a RMSE of 1.34 °C to that from PSCw... However, for these data sets, the nearest sources to
the in-situ data are the MODIS sensor and the CCl Lakes product, as they provide 1.25 °C of
RMSE for both of them (Table 6).

4.2 LSWT Retrieval Analysis from Sensors

The findings of the retrieval study of the methods used for Landsat 8-9, the comparison
between the LSWT estimates from moderate sensors (Sentinel-3 and MODIS) and high-

resolution (Landsat 8 and ECOSTRESS) TIR sensors are displayed in this section.
4.2.1 Landsat 8

At Issyk-Kul Lake, as the first study case, LSWT obtained with the MWA, SCA, PSCy.., and SWA

were retrieved using Landsat 8 imagery. Using Landsat 8 Collection 1, after performing the SWA
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method, it was corroborated that a stray light effect caused banding or stripping (Figure 28)
mainly from the band TIR2 — B11 for most of the dates using this method. Thus, bias could be
generated when estimating LSWT values for intercomparison with the other sensors and the
Landsat 8 mono-channel algorithms. Hence, this method has been excluded for the rest of the
dates in 2019 in the Issyk-Kul Lake region, and no further comparison has been executed using

this algorithm from the Landsat 8 Collection 1.

SWA - Landsat 8 (16/03/2019
at 11:34 a.m. local time)

=
Ul OO N ® Vo

Figure 28. A sample from the Issyk-Kul Lake in 2019 of the SWA method showing the
Banding/stripping effect.

For those algorithms using a single channel (MWA, SCA, PSCu.c), the considered band is the B10
(TIR-1) from the Landsat 8 satellite. Areas of interest of 100 km? (identified as the light blue
square — Figure 29) are located at different regions (East or West region of the lake) by date
according to the availability of pixels after retrieving to extract the LSWT over these regions.
The differences in temperatures between MWA, PSCy., and SCA could be inferred until 4 °C
between them (Figure 30). However, SCA and PSCw.. showed closer values between each other

(differences of 2 °C).

PSCunc — Landsat 8 (27/01/2019 at 11:33
a.m. local time)

MWA - Landsat 8 (27/01/2019 at 11:33
a.m. local time)

Figure 29. Samples of LSWT in the Issyk-Kul Lake in 2019 derived from the Landsat 8 mono-channel algorithms
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For this LSWT estimation, one Landsat 8 image per month in 2019 was chosen to be compared
with the values from the exact date and closest time from other sources, such as the
meteorological station, which are the values of reference for this comparison, and the CCl Lakes

product (Figure 30).
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Figure 30. LSWT estimates in the Issyk-Kul Lake in 2019 derived from Landsat 8 mono-channel algorithms,
compared to in-situ data and CCl Lakes product.

The meteorological station at Cholpon-Ata guides the region's variability and it corresponds to
the rest of the sources. After this comparison, in terms of Landsat 8 mono-channel algorithms,

the PSCuvcis more agreed than the other two algorithms (SCA and MWA) to the meteorological
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station values, showing the lowest MAE (1.15 °C) and RMSE (1.37 °C) values (Table 7). On the
other hand, the least corresponding method, in this case, is the MWA, as it presents the more
significant differences, 1.52 °C of MAE, between the station and this method, and 1.91 °C of
RMSE. However, the CCl Lakes product estimates good results compared to the meteorological

station values, with a MAE of 0.94 °C and a RMSE of 1.25 °C.

2019 MAE RMSE

27/)an
19/Feb
16/Mar
01/Apr
28/May
04/Jun
15/Jul
07/Aug
08/Sep
10/Oct
04/Nov
04/Dec

Station-MWA (°C) 290 170 120 020 020 030 230 050 -230 194 400 0.70 1.52 191

Station-PSCuv (°C) 0.70 -0.50 030 -0.10 1.30 1.40 2.40 2.60 -0.80 1.34 150 -0.90 1.15 1.37

Station-SCA (°C) -0.60 -140 -090 -1.70 -1.30 -140 -1.20 -090 -350 -0.46 -0.20 -2.10 1.31 1.55

Station-CCl Lakes

(°c) 0.10 0.90 1.70 1.10 2.60 -0.40 0.80 -0.10 2.20 0.26 -1.10 0.00 0.94 1.25

Table 7. Differences of temperatures in the Issyk-Kul Lake in 2019 between the meteorological station and the
Landsat 8 mono-channel algorithms and CCI Lakes with their respective MAE and RMSE

Derived from these results, one of the advantages of the PSCy.. and the SCA methods is that
they require only two input parameters: the land surface emissivity (€) and the atmospheric
water vapor content (wvc). By not considering the effective mean atmospheric temperature
(Ta) parameter and directly using the wvc, these methods reduce the error of the final retrieved
LSWT caused by the errors in T;. On the other hand, the MWA requires the effective mean
atmospheric temperature (T,) and the atmospheric transmittance (t), where the Ty can

significantly impact the retrieved LSWT (Wang et al., 2019).

4.2.2 LSWT for Sentinel-3 (SLSTR)

The estimates of the LSWT using the Sentinel-3 satellite are derived from the product provided
by the SLSTR instrument (Level 2 Land Surface Temperature product). It is retrieved using a

split-window basic algorithm as described previously in the description of the data chapter.
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Figure 31. LSWT estimates in the Issyk-Kul Lake in 2019 from Sentinel-3, CCI Lakes, and in-situ data.

The area of interest of 100 km? is located at the East or West region of the Lake, according to
the availability of pixels, after applying the cloud mask for Sentinel-3, which is based on a
Bayesian probabilistic method. The images were selected according to the exact dates in 2019
with the meteorological station as reference values at noon, while the closest acquisition time
for Sentinel-3 images is between 10:30 a.m. and noon in local time. Besides, the CCl Lakes

product was added as another source of comparison (Figure 31).
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Station-CCl -\ 515 990 170 110 260 -040 080 -010 220 026 -110 000 094  1.25
Lakes (°C)

Table 8. Differences in temperatures in the Issyk-Kul Lake in 2019 between the in-situ data, CCl Lakes, and Sentinel-
3 with their respective MAE and RMSE

From the results derived after this comparison with other sources in 2019 (Table 8),
temperature differences from Sentinel-3 are more notable when compared to the CCl Lakes
source (MAE of 1.32 °C). Still, they were showing good agreement to the meteorological station
values with 1.10 °C of MAE and 1.34 °C of RMSE. On the other hand, CClI Lakes shows good

correspondence to the in-situ values, with the slightest differences (MAE of 0.94 °C) compared

to the other sources.

A time series analysis in 2020 was also estimated (Figure 32). Sentinel-3 shows a similar
seasonal tendency with values from the meteorological station and the CCl Lakes sources,

where temperatures during summer and fall show better correspondence between the

presented sources.
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Figure 32. LSWT time series estimates in the Issyk-Kul Lake in 2020 derived from Sentinel-3, in-situ data, and CCl

Lakes

CCl Lakes and Sentinel-3 showed good agreement between them (0.98 °C of MAE), mainly in

summer and fall, where CCI Lakes product is the least corresponding to in-situ data (1.05 °C of

MAE). The values between Sentinel-3 and the meteorological station agreed, with 0.79 °C of

RMSE, showing the slightest differences throughout the year (0.59 °C of MAE) (Table 9).

2020 MAE RMSE
Station-S3 (°C) 059 0.79
CCl Lakes-S3 (°C) 0.98 1.21
Station-CCl Lakes (°C) | 1.05 1.37

Table 9. MAE and RMSE derived from the differences in temperatures in the Issyk-Kul Lake in 2020 between the in-

situ data, CCl Lakes, and Sentinel-3
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4.2.3 LSWT for MODIS (Terra)

The estimates of the LSWT using the MODIS sensor are derived from the LST product
(MOD11A1v006) at Level-3 derived from the MOD11 Level-2; this product is retrieved by using
the algorithm a generalized split-window. The area of interest of 100 km? is located in the East
or West region of the lake according to the availability of pixels; besides, their acquisition time
is generally between 11:00 a.m. and 1:00 p.m. in the region of Issyk-Kul Lake local time in 2019.
Also, the reference values for this comparison are those from the meteorological station
(registered at noon), adding the CCl Lakes as another reference source, showing a similar

tendency throughout 2019 when comparing these three sources (Figure 33).
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Figure 33. LSWT estimates in the Issyk-Kul Lake in 2019 derived from MODIS, in-situ data, and CCI Lakes
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The product MODIS presents relatively good approximations between in-situ measurements
(1.25 °C of RMSE) and the CCI Lakes to in-situ data with the same accuracy as MODIS. Besides,
MODIS and the CCI Lakes product show little difference, with 0.98 of MAE and 1.35 °C of RMSE,

even when they differ in their acquisition time (Table 10).

Date MAE RMSE

27/Jan
19/Feb
16/Mar
01/Apr
28/May
04/Jun
15/Jul
07/Aug
08/Sep
10/Oct
04/Nov
04/Dec

-1.00 100 -0.70 040 350 -0.34 020 -0.30 0.90 1.25

o

0.90 1.4

o

Station-MODIS (°C) 0.20 0.9

CCl Lakes-MODIS (°C) | 0.10 0.00 -0.80 0.30 -3.60 140 -1.50 0.50 130 -0.60 130 -0.30 0.98 1.35

Station-CCl Lakes (°C) | 0.10 0.90 1.70 1.10 260 -040 0.80 -0.10 220 0.26 -1.10 0.00 0.94 1.25

Table 10. Differences in temperatures in the Issyk-Kul Lake in 2019 between in-situ data, CCl Lakes, and MODIS with
their respective MAE and RMSE

A time series analysis of 2020 using this MODIS LST product was also estimated. For this case,

MODIS follows similar tendencies as the meteorological station and CCl Lakes throughout this

year (Figure 34).
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Figure 34. LSWT time series estimates in the Issyk-Kul Lake in 2020 derived from MODIS, in-situ data, and CCI Lakes
However, in terms of agreement, MODIS does not show good performance compared to the in-
situ data with 1.93 °C of accuracy (Table 11), which could be attributed to the different
acquisition times in MODIS, as well as for CCl Lakes product, as they presented differences of
0.73 °C between them, but CCl Lakes is closer to in-situ values (1.05 °C of MAE); besides, clouds

are present in most of the dates in 2020.

2020 MAE RMSE

Station-MODIS (°C) 1.51 1.93

CCl Lakes-MODIS (°C) | 0.73 1.04

Station-CCl Lakes (°C) | 1.05 1.37

Table 11. MAE and RMSE derived from the differences in temperatures in the Issyk-Kul Lake in 2020 between the in-
situ data, CCl Lakes, and MODIS
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4.2.4 LSWT for ECOSTRESS

During 2019, ECOSTRESS imagery was only available for a few dates in the second half of that
year due to its recent mission launch. Hence, samples are taken from June to December 2019.
The results for these ECOSTRESS images provide underestimated temperatures on each date
compared with temperatures provide by the meteorological station and CCl Lakes (Figure 35).
The acquisition time for each date of ECOSTRESS images is different at each overpassing date
due to its non-geostationary orbit (from the ISS), and the overpassing time for the same region
will not always be the same. Hence, more significant variations in the acquisition time could

have derived greater differences when compared to the rest of the sources.
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Figure 35. LSWT time series estimates in the Issyk-Kul Lake in 2019 derived from ECOSTRESS, in-situ data, and CC/
Lakes
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Results after this comparison were identified with a low correspondence of ECOSTRESS to the
in-situ datasets, presenting a RMSE of 2.33 °C and differences of 2.00 °C between them. On the
other hand, the ECOSTRESS estimates are closer to the values provided by the CCl Lakes, with
differences of 1.29 °C of MAE, and 1.46 °C of RMSE; besides, CCl Lakes is also near to the values
of the meteorological station, with 1.42 °C of RMSE, and MAE of 1.08 °C.

2019 MAE RMSE
Station-ECOSTRESS (°C) 2.00 2.33
CCl Lakes-ECOSTRESS (°C) 1.29 1.46
Station-CCl Lakes (°C) 1.08 1.42

Table 12. MAE and RMSE derived from the differences in temperatures in the Issyk-Kul Lake in 2019 between the in-
situ data, CCl Lakes, and ECOSTRESS

In 2020, LSWT estimates with the ECOSTRESS sensor provide again underestimated
temperatures on each date compared to the temperatures from the meteorological station and
CCI Lakes product (Figure 36). They present a similar tendency throughout 2020 between the

sources.
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Figure 36. LSWT time series estimates in the Issyk-Kul Lake in 2020 derived from ECOSTRESS, in-situ data, and CC/
Lakes

ECOSTRESS shows differences in temperatures of 2.30 °C, presenting a RMSE of 2.47 °C to in-
situ data, where these differences are similar to those in 2019. On the other hand, values from
CCl Lakes product are near to the in-situ data with a MAE of 1.05 °C and a RMSE of 1.37 °C
(Table 13).

2020 MAE RMSE

Station- ECOSTRESS (°C) 2.30 2.47

CCl Lakes- ECOSTRESS (°C) | 1.60 171

Station-CCl Lakes (°C) 1.05 1.37

Table 13. MAE and RMSE derived from the differences in temperatures in the Issyk-Kul Lake in 2020 between the in-
situ data, CCl Lakes, and ECOSTRESS
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4.2.5 SWA for ECOSTRESS

After performing the SWA for ECOSTRESS, the estimations were retrieved by considering the
spectral signature for two bands (typically the bands 2 and 5). The variability of temperatures in
2019 increases these values by 1 °C in most of the dates relatively, compared to the original LST
product of ECOSTRESS (retrieved with the TES algorithm), which usually underestimates the

temperatures throughout the year when comparing to in-situ data and CCl Lakes (Figure 37).
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Figure 37. LSWT time series estimates in the Issyk-Kul Lake in 2019 derived from ECOSTRESS (SWA), in-situ data,
and CCl Lakes
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With this SW algorithm, the RMSE of the LSWT values from ECOSTRESS slightly decreased from
2.33 °Cto 2.15 °Cin 2019 (Table 14). Consequently, the temperature differences to in-situ data
also decrease by 1.78 °C (MAE).

2019 MAE RMSE

Station-ECOSTRESS (SWA) (°C) 1.78 215

Station- ECOSTRESS (°C) 2.00 2.33

CCl Lakes-ECOSTRESS (SWA) (°C) | 1.13 1.35

Table 14. MAE and RMSE derived from the differences in temperatures in the Issyk-Kul Lake in 2019 between in-situ
data, CCl Lakes, ECOSTRESS, and ECOSTRESS (SWA)

4.3 Ground Validation

Ground validations were carried over the four lakes considered for this research. Two
campaigns for in-situ measurements were performed in the Issyk-Kul Lake region (October
2021 and May 2023). Then, ground validation was derived from the buoys located in the lakes
of Gerardmer and Longemer, where datasets were provided from 2021 and 2022. Lastly, two
validation campaigns were performed in the region of Plobsheim Lake during the summer of
2023. The instrumentation used for the validation campaigns included sensors to measure
humidity, water, and air temperatures, installed on a floating platform called the Torrent board,
an instrument assembled in the Icube laboratory (TRIO team). For some of these campaigns, a

radiometer CIMEL CE-312 and a camera FLIR-T560 were used.
4.3.1 Validation campaign in Issyk-Kul in October 2021

A multidisciplinary, international mission, led by Jean Frangois Crétaux (LEGOS -Toulouse), was
done in October 2021 in the Issyk-Kul Lake area for 10 days to acquire in situ measurements
and obtain good correspondence datasets for validation. The Laboratory ICUBE (Unistra) has
participated in the Cal/Val of the skin water surface temperature to study its spatial variability

over the lake, and thus, compared to Sentinel-3/MODIS satellite imagery.
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The instrumentation used for this activity consisted of sensors that measured water and air

temperatures and humidity values, which were set up on a floating geolocalized dragged board.

During the field survey, Sentinel-3 and MODIS were overpassing over the lake. Despite the
cloud coverage, field measurements taken by the sensors of the Torrent board could be
compared with these two sensors on one of the dates, where sensors at 5 cm (wT1 ) to 10 cm
(wT2) depth showed slightly lower values than deeper temperatures (15 cm —wT3 and 35 cm —
wT4), the difference between these two ranges being less than around 0.2 °C. Air temperature
did not strongly correlate with water temperatures, or at least there was not easy to categorize
them for most of the samples, except for the sample 1, which air temperatures were in
between the water temperature values in this sample, ranging between 14.5 and 16.5°C. The
LSWT of Sentinel-3 was closest to the LSWT of the Torrent board (0.3 °C), and the difference in
LSWT from MODIS compared to the Torrent board was 1.3 °C. Consequently, the most good
correspondence sensor was Sentinel-3, which provided the closest values retrieved by the

Torrent board sensors.

Symbology
[issyk Kul Lake Boundary
5 km Inner Buffer
= 05 Oct 2021 (Test 1 Torrent Board)
© 05 Oct 21 (Test 2 Torrent Board)
— 05 Oct 2021 (Torrent Board Transect)
¢ 07 Oct 2021 (Torrent Board)
—— 08 Oct 2021 (Torrent Board Transect)

Figure 38. Spatial distribution of the collection of the data in the field campaign in Issyk-Kul October 2021
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A general description of the samples measured from the 5 to the 8 of October 2021 at different
times is presented (Figure 38), with a gap in the 6 of October, as due to the stormy weather

conditions, activities in the lake were stopped, spending the day near the coast.

e Sample 1: The first measurements were taken on the 5 of October 2021 from 10:34 a.m.
to 10:40 a.m. Temperatures at the skin surface (wT1) of the lake are around 13 °C, while
the deeper temperatures at 35 cm (wT4) are around 15 °C. Air temperature shows a

similar tendency for the sensor wT3 (at 15 cm).
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Figure 39. LSWT and air temperature measurements in the Issyk-Kul Lake by sensors on the Torrent Board on
05/0ct/2021 from 10:34 a.m. to 10:40 a.m. (local time)

e Sample 2: These measurements were taken on the 5™ of October 2021 from 12:03 p.m.
to 12:12 p.m. Temperatures from the four different depth sensors show similar values
around 16.0 °C. Air temperature does not strongly correlate with water temperature

sensors, with temperatures from 14.5 to 15.5 °C.
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Figure 40. LSWT and air temperature measurements in the Issyk-Kul Lake by sensors on the Torrent Board on
05/0ct/2021 from 12:03 a.m. to 12:12 p.m. (local time)

e Sample 3: The first transect measurements were taken on the 5™ of October 2021 from
4:45 p.m. to 5:40 p.m. Temperature variations are from 16.1 to 16.3 °C, where at skin
surface temperatures (wT1l and wT2) are slightly lower values than the deeper
temperatures at 15 cm and 35 cm (wT3 and wT4 respectively) by less than 0.2 °C. Air
temperature does not strongly correlate with water temperature sensors, with

temperatures from 13.0to 17.0 °C.
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Figure 41. LSWT and air temperature measurements in the Issyk-Kul Lake by sensors on the Torrent Board on
05/0ct/2021 from 4:45 p.m. to 5:40 p.m. (local time)
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e Sample 4: The measurements were taken on the 7 of October 2021 from 11:30 p.m. to
11:38 p.m. temperatures variations are from 14.8 to 15.6 °C, where at skin surface (wT1
and wT2) sensors are lower values than the deeper temperatures at 15 cm and 35 cm
(WT3 and wT4). The difference between them is less than 0.4 °C. Again for this sample,
the air temperature does not strongly correlate with water temperature from the

sensors, with temperatures from 6.0 to 6.6 °C.
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Figure 42. LSWT and air temperature measurements in the Issyk-Kul Lake by sensors on the Torrent Board on
07/0ct/2021 from 11:30 a.m. to 11:38 a.m. (local time)

After acquiring these measurements, there was no overpassing for any of the satellites of
interest (Landsat 8-9, MODIS, Sentinel-3, or ECOSTRESS), or the image quality is poor on those

dates due to the cloud coverage.

e Sample 5: The last transect measurements were taken on the 8™ of October 2021 from
3:20 p.m. to 4:23 p.m. Temperature variations are from 16.1 to 16.3 °C, where at skin
surface (WT1 and wT2) sensors are slightly lower values by less than 0.2 °C than the
deeper temperatures at 15 cm and 35 cm (wT3 and wT4). Air temperature does not
strongly correlate with water temperature sensors, with temperatures from 14.5 to 16.5

°C (see Figure 43).
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Figure 43. LSWT and air temperatures were measured in the Issyk-Kul Lake by sensors on the Torrent Board on
08/0ct/2021 from 3:20 p.m. to 4:23 p.m.

The local weather during the measurements was partially cloudy, and a bit windy with some
waves. Over the transect measurements retrieved by the torrent board on this date on the
North region of the lake, identified as a light blue line on the temperatures maps of Sentinel-3

and MODIS (Figure 44), Sentinel-3 temperature estimates are of 16.4 °C, and MODIS of 15.0 °C.

The LSWT by Sentinel-3 (11:19 a.m.) is the nearest value to the LSWT from the Torrent Board
(3:22 p.m.), with a difference of 0.3 °C. LSWT by MODIS (10:50 a.m.), compared with Torrent
board values (3:22 p.m.), is 1.3 °C. Values from the Sentinel-3 sensor provide the closest values
(16.4 °C) to those retrieved by the Torrent board sensors (16.1 °C). However, differences in

acquisition time, when in-situ measurements were taken, are around 4 hours for Sentinel-3 and

around 5 hours for MODIS.

MODIS
08/0ct/2021 - 10:50 a.m.

Sentinel-3
08/0ct/2021 - 11:19 a.m._
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Figure 44. LSWT derived from Sentinel-3 (left) and MODIS (right) in the Issyk-Kul Lake on 08/0Oct/2021




4.3.2 Validation campaign in Issyk-Kul in May 2023

The Icube Laboratory participated in a second mission over Issyk-Kul Lake, invited by the LEGOS
team. This time, the source to retrieve LSWT in situ was made using the radiometer CIMEL CE-
312. Over three days, from 10%™ to 12th May, at the time of the satellite overpass, temperatures
were measured over the lake's East region (Figure 45). The acquisition was also made on the

14™, but some technical incidents spoiled the data.

=

® [ Issyk-Kul Lake Boundary
/ v

: TRANSECTS MEASURED BY THE CIMEL B certit B
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Temperature (°C)
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1 116-120
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Figure 45. Spatial distribution of the data collection in the field campaign in the Issyk-Kul Lake on May 2023

The coincidence of satellite overpasses in this region during the data acquisition dates derived
from the CIMEL CE-312-2 radiometer is only for two dates. For the 10" of May, Sentinel-3
passes at 11:55 a.m. and MODIS at 12:12 p.m., while the CIMEL registered data from 11:18 a.m.
to 1:23 p.m., all in local time. On the 11* of May, Sentinel-3 overpasses at 11:56 a.m. and

MODIS at 12:55 p.m., when the CIMEL acquired measurements from 11:56 a.m. to 1:18 p.m., as
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well in local time (Figure 46). On the 12t of May, no overpassing satellites were to be validated

with the measurements registered with the CIMEL. These results represent the values of

temperatures from the radiometer with a maximum 1 °C of standard deviation.
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Figure 46. Temporal distribution of the data collection in the field campaign in the Issyk-Kul Lake on May 2023

On the 10" of May, the local weather on was sunny, and it was not windy and not wavy.

Sentinel-3 estimates a temperature of 11.4 °C; MODIS estimates 11.6 °C; and the CIMEL

registers 11.2 °C at 11:55 a.m. On the 11t of May, the local weather was partially cloudy, no

windy and calm waters. Sentinel-3 estimates a temperature of 10.8 °C, and MODIS estimates a

value of 11.5 °C, while the CIMEL registers 10.3 °C and 11.4 °C for each satellite, respectively.

Hence, the measurements from the CIMEL are a good source of comparison for both satellites

(MODIS and Sentinel-3) with differences of less than 1.0 °C in both dates.

Date CIMEL 312-2(°C) Sentinel-3 (°C) | CIMEL312-2 (°C) MODIS (°C)
10/May/23 11.2 11.4 11.2 11.6
11/May/23 10.3 10.8 11.4 11.5

Table 15. Measurements obtained in the Issyk-Kul Lake on the 10" and 11t of May 2023 with the Sentinel-3 and
MODIS satellites and comparison at the same time with the CIMEL 312-2
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4.3.3. Ground validation in Gerardmer and Longemer Lakes

For the Gerardmer and Longemer Lakes study areas, Landsat 8-9 and ECOSTRESS images were
processed from January 2021 to May 2022 to observe the temperature variations and compare
these results with in-situ measurements. Temperatures from Landsat 8-9 Collection 2 were

estimated using the SWA algorithm.

Firstly, LSWT estimates from ECOSTRESS and Landsat 8-9 were compared to in-situ data (used
as references) from Gerardmer Lake registered with a buoy in this lake, provided from June
2021 to April 2022. However, some values were missing from August 2021 to November 2021

for these datasets (Figure 47).
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Figure 47. LSWT estimates in the Gerardmer Lake from 2021 to 2022 derived from in-situ data, ECOSTRESS, and
Landsat 8-9 (SWA)
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Landsat 8-9 values estimates in the Gerardmer Lake are closer to the in-situ measurements
with the slightest differences in temperatures of 1.15 °C (MAE) than those from ECOSTRESS.
More significant differences are presented in most retrieved dates with ECOSTRESS (2.10 °C of
MAE), where temperatures are generally underestimated, which could be associated with
clouds over the region. Thus, the RMSE is better from estimates with Landsat 8-9 (RMSE of 1.40
°C ) than those from ECOSTRESS (RMSE of 2.52 °C).

Gerardmer (2021-2022) MAE RMSE

Buoy-ECOSTRESS (°C) 210 252

Buoy- Landsat 8/9 (SWA) (°C) | 1.15 1.40

Table 16. MAE and RMSE derived from the differences in temperatures in the Gerardmer Lake from 2021 to 2022
between in-situ data, ECOSTRESS, and Landsat 8-9 (SWA)

On the other hand, regarding the imagery collection results in the Grand-East lakes, there were
more datasets in the Longemer region than in Gerardmer, even for the in-situ measurements,
as the datasets from the buoy in Longemer (considered as the values of references) were

provided from June 2021 to May 2022 (Figure 48).
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Figure 48. LSWT estimates in the Longemer Lake from 2021 to 2022 derived from in-situ data, ECOSTRESS, and
Landsat 8-9 (SWA)

The values from Landsat 8-9 are more related to the in-situ measurements, contrary to values
from ECOSTRESS, where temperatures are generally underestimated on most dates. For the
LSWT estimates in Longemer Lake, the MAE from Landsat 8-9 is lower (1.79 °C) than those from
ECOSTRESS (2.53 °C). LSWT values drop to deficient levels, as in the Gerardmer Lake, which
could also be associated with clouds over the region. Thus, the RMSE is not optimal from any of
the sources in this case, as Landsat 8-9 presents a RMSE of 2.04 °C and 2.87 °C for ECOSTRESS
(Table 17).
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Longemer (2021-2022) MAE RMSE

Buoy-ECOSTRESS (°C) 253  2.87
Buoy- Landsat 8/9 (SWA) (°C) | 1.79 2.04

Table 17. MAE and RMSE derived from the differences in temperatures in the Longemer Lake from 2021 to 2022
between in-situ data, ECOSTRESS, and Landsat 8-9 (SWA)

4.3.4 Validation campaign in Plobsheim Lake in April 2023

In the context of comparison using in-situ datasets, within the Plobsheim Lake, seven buoys

distributed from North to South of the lake provide temperature values every 30 minutes

(Figure 49).
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Figure 49. Spatial distribution of the data collection in the field campaign in Plobsheim Lake on April 2023

Datasets from these buoys were provided from May to November 2022, with some missing
values at different dates between the buoys. Datasets from buoys 2 and 4 are considered as the
values of reference to validate the estimates from ECOSTRESS (SWA), Landsat 8-9 (SWA), and

MODIS, where a similar tendency is followed throughout 2022 by all the sources (Figure 50).

88



30

30 1 T 1 : : I 7 : [~ T ~ T T 1T ~ T ~ T * T "1 T T T
[ ECOSTRESS (SWA) Ty L ECOSTRESS (SWA) ;:.
[ e Landsat8-9 (SWA) o gitoo, L o Landsat 8-9 (SWA) 5. 7% ]
[ A . v ]
25 v MODIS v 8V v ] 25 L v MODIS v S, F ]
r v Buoy?2 * ,.': B 2 [ v Buoy4 * Ve gv's 1
[ Y . 'v: v &Y v:
~_ vvely 1500 vy ]
o0} ve 7 Pr ve v
o | v ve v ,; g v ' ;
. v v 2 I v
B15F p ¥ 18" é ]
[ ] ® ® s
v®3 S v b4
ﬁ 10 [ ! . 1+ 10 ! P A
[ . [ .
5(e ¥ ] 5L® ¥ ]
re el
[ [* 3
¥ ¥
ol v vy L T Y S R iy J S T T TR RPN N SO TP TR B BN S
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2022 2022

Figure 50. LSWT estimates in the Plobsheim Lake in 2022 from in-situ data (buoys 2 and 4), MODIS, ECOSTRESS
(SWA), and Landsat 8-9 (SWA)

The LSWT values in 2022 derived from buoys 2 and 4 are closer to estimates from ECOSTRESS
(SWA) (1.10 and 0.79 °C of MAE, respectively) than to those from MODIS (2.70 and 2.46 °C of
MAE, respectively), and those to Landsat 8-9 (2.54 and 2.17 °C respectively). Hence, the lower
amount of RMSE is achieved with ECOSTRESS (SWA), especially when it validates with the
values from buoy 4 in the lake (a RMSE of 0.87 °C) (Table 18).

Plobhseim 2022 MAE RMSE
Buoy 2-ECOSTRESS (SWA) (°C) 1.10 1.18
Buoy 2- Landsat 8/9 (SWA) (°C) | 2.54 2.95
Buoy 2- MODIS (°C) 2.70 2.97
Buoy 4-ECOSTRESS (SWA) (°C) 0.79 0.87
Buoy 4- Landsat 8/9 (SWA) (°C) | 2.17 2.55
Buoy 4- MODIS (°C) 2.46 2.67

Table 18. MAE and RMSE derived from the differences in temperatures in the Issyk-Kul Lake in 2022 between in-situ
data, ECOSTRESS (SWA), and Landsat 8-9 (SWA)

Regarding the validation campaign made on the 21t of April 2023, where the local weather
during measurements had temperatures from 11 to 16 2C, partially cloudy, steady waters, with
winds of 5 km/h from the N. The measurements with the radiometer CIMEL 312-2 and with the

sensors on the Torrent board were acquired over the location of the first five buoys in the lake,
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with a trajectory starting from North to South, and returning to the same location where we
started the measurements acquisition (Figure 49). The datasets from the buoys on this date

show good correspondence with the measurements from the Torrent board, followed by the
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Figure 51. Multi-sensors validation in the Plobsheim Lake on 21/04/2023

The temperatures in this lake from the first measurements with the Torrent board start at 10.5
°C at 10:47 a.m. and increase until 12.0 °C at 12:40 p.m., considering two sensors from the
Torrent board (wT2 and wT4). While the temperatures registered from the CIMEL 312-2 follow
a similar tendency within the same time range. However, the temperatures are underestimated

generally at 1.0 °C or even less than that, starting from 9.8 °C and increasing until 11.6 °C at the
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end of the measurements. The satellites validated in this campaign were the ECOSTRESS,

Landsat 8, Sentinel-3, and MODIS sensors (Figure 51).

The LSWT values extracted from the different images, identified as the light blue marks (Figure
52), are spotted according to the measurements derived from the Torrent board’s sensors and

each satellite's acquisition time (local time).

Landsat 8 (SWA)
12:21 p.m.

Sentinel-3 12:03
p.m.

ECOSTRESS (SWA)
11:49 a.m.

Landsat 8 (NIR-R-G)
12:21 p.m.

Figure 52. Spatial variability from multi-sensors in the Plobsheim Lake on 21/04/2023
Concerning estimates from these satellites, differences in temperatures at similar acquisition
times for the same date with the Torrent board are as follows: 1.0 °C for ECOSTRESS, 0.1 °C for
Landsat 8, 0.7 °C for Sentinel-3, and MODIS a more significant difference of 3.2 °C is observed
(Table 18). From these results, it can be inferred that the nearest values are the LSWT estimates
with Landsat 8 regarding the measurements from the sensors on the Torrent board and the
radiometer CIMEL 312-2, followed by Sentinel-3 and Landsat 8. However, the spatial resolution
from the Sentinel-3 and MODIS (1 km) must be considered, having only a few representative

pixels due to the size of this lake (area of 6.6 km?).

oo | (IMEL3122 w12 wT4 ECOSTRESS Sentinel-3 (°C)  MODIS (°C) Landsat 8
Acquisition Time 0) °C) °0) (SWA) (°C) 12:03 o.m 12:20 o.m (SWA) (°C)
11:49 a.m. o2 p-m. < p-m. 12:21 p.m.
11:49 a.m. 10.8 108 108 9.8 : : :
12:03 p.m. 11.2 119 119 - 12.6 - -
12:20 p.m. 11.6 119 119 - - 15.1 -
12:21 p.m. 11.6 119 119 - - - 12.0

Table 19. Measurements validation in the Plobsheim Lake on 23 April 2023 with the Torrent Board, CIMEL 312-2,
ECOSTRESS, Landsat 8, Sentinel-3 and MODIS
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4.3.5 Validation campaign in Plobsheim Lake in June 2023

Another validation campaign was performed on the 16™ of June in the region of Plobsheim
Lake, with fair conditions as a local weather, sunny and slight waves, with winds up to 21 km/h
from the N. For this occasion, the radiometer CIMEL CE-312 was replaced, due to technical
problems with this device, with a thermal infrared camera (FLIR-T560) and the Torrent board.
The transect of the measurements follows the location of the seven buoys in the lake for

validation with them in the future (Figure 53).

utM X Ut Y GC.X
408,370.84 | 5,370,092.38 | 48'28'38"
408,295.70 | 5,369,853.20 | 48°28'30"
408,119.32 | 5,368,993.43 | 48°28'02"
408,004.84 | 5,368,183.32 | 48"27'36"
408,427.51 | 5,368,124.62 | 48°27'35"
407,529.35 | 5,367,088.51 | 48°27°01"
406,518.56 | 5,366,352.26

1
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Figure 53. Spatial distribution of the data collection in the field campaign in the Plobsheim Lake on June 2023

The temperatures in the lake from the first measurements with the Torrent board start from
23.0 °Cat 10:30 a.m. and increase until 25.0 °C at 1:55 p.m., considering two sensors from the
Torrent board (wT2 and wT4). In contrast, the temperatures registered from the camera FLIR T-
560 follow a similar tendency within the same time range. However, the temperatures were
underestimated at around 1.5 °C, starting from 21.5 °C and increasing until 23.5 °C at the end

of the measurements. The in-situ data from the buoys agree with the sensors from the Torrent
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board, followed by the FLIR camera. The satellites validated in this campaign were the Landsat

9, Sentinel-3, and MODIS sensors (Figure 54).

32 T T T ! T I L) T T L) T I T T T T I | T T L} T I T T T T T I T T L) T T I T T T T T
FLIR T-560

Landsat 9 (SWA)

Sentinel-3

MODIS

Buoy (St. 4) =
Buoy (St. 6)

— Torrent Board (wT2)
- = Torrent Board (wT4)
— Torrent Board (AirTemp
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Figure 54. Multisensors validation in the Plobsheim Lake on 16/06/2023

The LSWT values extracted from the different images, identified as the light blue marks (Figure
55), are spotted according to the measurements derived from the Torrent board’s sensors and

each satellite's acquisition time (local time).
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Sentinel-3

Landsat 9 (NIR-R-G) Landsat 9 (SWA)
s 11:50 a.m.

12:21 p.m.

Figure 55. Spatial variability from multi-sensors in the Plobsheim Lake on 16/06/2023

Regarding sensor intercomparison (Figure 54), Sentinel-3 is agreed to the measurements
acquired with the instruments from the Torrent board simultaneously (11:50 p.m.) with a 1.4 °C
difference. On the other hand, values derived from the FLIR-T560 camera show differences of
1.26 °C with the wT2 and 1.07 °C with the wT4 from Torrent Board, with RMSE of 1.29 and 1.12,

respectively (Table 20).

For the overpassing of Sentinel-3 and Landsat 9, some clouds were present at the time of the
measurements. Thus, it could explain the more significant differences (around 2.0 °C) between

the Torrent board sensors and the FLIR camera values.

16/Jun/2023 MAE RMSE

wWT2-FLIR-T560 (°C) | 1.26 1.29

wT4-FLIR-T560 (°C) | 1.07 1.12

Table 20. MAE and RMSE derived from the differences in temperatures in the Plobsheim Lake in 2022 between in-
situ data (Torrent Board) and the Camera FLIR-T560.
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4 .4 Discussions

This section describes the limits and contributions of this research to the prior literature,
followed by an explanation and comparison of the acquired results with the LSWT estimations

to earlier studies, leading to a discussion of its implications or repercussions.

4.4.1 Sensors Intercomparison

The results in the first part of this study derive from the intercomparison between multi-
sensors: Landsat 8 mono-channel algorithms, Sentinel-3, MODIS, and CCl Lakes, considering as
values of reference the datasets from the meteorological station. The methodology consisted
of taking at least one image per month 2019 for each sensor to compare at the same day and
time or the closest time available. An area of interest of 100 km? is set on the East or West
region of the Issyk-Kul Lake, according to the availability of the pixels in each image. This
comparison shows the highest correspondence of the PSCuy. method (Landsat 8), CCI Lakes, and
MODIS LSWT products when validating with in-situ data (values from the meteorological
station). However, MODIS shows the best correspondence, following a study by Wan et al.
(2002), who evaluated the absolute radiometric accuracy of the MODIS (TIR) data by comparing
it with in situ measurements collected in Lake Titicaca in Peru and Bolivia. These authors
suggest good agreement between MODIS TIR data and in situ measurements, particularly in
bands 31 and 32, with an accuracy within 0.4% in the daytime overpass. Thus, MODIS, like in
our study, could be suggested as a good agreement source for estimating the LWST. Another
study accords with our research; Tavares et al. (2019) retrieved the LSWT using MODIS (MOD11
product), retrieved using the Generalized Split-Window algorithm, and considered the

difference in emissivity between specific bands to estimate the LSWT.

Regarding the closest values to the in-situ measurements, the study found that MODIS
obtained the highest accuracy for LSWT estimation. The RMSE for the measurements from this

sensor was 1.05 °C, and our study's results (1.25°C) are within the same range of RMSE.
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Therefore, MODIS is recommended for LSWT studies. However, other sources with higher

spatial resolution are suggested for small lakes.

Another study by Liu et al. (2015) found that MODIS was reliable after validating and mapping
surface water temperatures in Lake Taihu, China. The study used MODIS level 3, 1-km nominal
resolution daily products called MOD/MYD11A1 (Collection 5) derived from MODIS TIR bands
31 and 32 and employ a generalized split-window land surface temperature (LST) algorithm.
These products provide land surface temperature (LST) information and include quality control
datasets. The validation involved comparing the MODIS-derived LSWT with the in-situ water
temperature. The accuracy was assessed using RMSE and a linear correlation analysis, which
showed a significant correlation with a coefficient of determination higher than 0.96. The RMSE
between MODIS-derived LSWTs and in situ water temperatures ranged from 1.2 °C to 1.8 °C,
indicating a lower accuracy (as the accuracy requirement for MODIS LST products is within 1 °C
at 1 km resolution), which was not achieved in this study. Due to the differences in the
measurements (bulk temperature in each depth vs. surface temperature) and the significant
spatial variation in LSTs. Thus, this study provided similar results compared to our time series
analysis with MODIS for 2020, as the in-situ data does not correspond well to in-situ values on

this year, with RMSE of 1.93 °C.

In the case of the mono-channel algorithms for Landsat 8, a study by Wang et al. (2019)
comparing the PSC algorithm to the general single channel (SC) found that the PSC algorithm
provides a more accurate estimation of land surface temperature (LST) compared to the SCA
algorithm, with RMSE of 1.77 °C for the PSC algorithm when validating with measurements from
the U.S. surface radiation budget network as actual values. However, the difference between
this last study was that the validation method was not made with field measurements, as we
validated using in-situ measurements over the Issyk-Kul Lake in 2019. Despite that, accuracy

was similar to our study (RMSE of 1.37 °C).

Based on the same LSWT estimates process as MODIS over the Issk-Kul Lake, where the LST
product from Sentinel-3 is obtained with the SWA method, these LSWT estimates with Sentinel-

3 correspond well overall to in-situ temperatures. Sentinel-3 shows RMSE of 0.79 °C derived
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from the time series analysis in 2020. In addition, derived from the intercomparison at the
same day and similar times with other sensors in 2019, Sentinel-3 provides a RMSE of 1.34 °C.
With this, overall, Sentinel-3, with its moderate resolution, provides a good correspondence
level when validated with in-situ measurements. On the other hand, in terms of comparison
with previous studies using the same or similar approach to estimate LSWT using Sentinel-3, at
the moment of this research, there are no current studies proposing estimates with the
approach of this satellite. Therefore, Sentinel-3 is recommended for LSWT studies. However, as

for MODIS, other sources with higher spatial resolution are suggested for smaller lakes.

The case of the results from CCl Lakes surprisingly shows good agreement to in-situ
measurements during 2019 over Issyk-Kul Lake, considering one image per month on the same
day as the other satellites, with RMSE of 1.25 °C and differences of 0.94 °C as MAE. On the
other hand, during the time series analysis in the same year (2019) and 2020, the RMSE
decreased by 1.42 °C and 1.37 °C, respectively. CCl Lakes could be considered a valuable
reference source when comparing the LSWT with other sources. However, this product is
inaccurate regarding temporal resolution when cross-validation, as its acquisition time is pinned

at 12:00 UTC daily.
4.4.2 LSWT Retrieval

Regarding the performance using the Landsat 8 mono-channel algorithms, our study spots the
PSCuwvc as the most stable method compared to the SCA and MWA, where this last one shows
the lowest agreement. These estimates are compared to the reference values from the
meteorological station 2019 in the Issyk-Kul Lake. One image per month is retrieved to perform
the one-channel algorithms from Landsat 8, using areas of interest of 100 km? at the East or
West region of the Lake according to the availability of the pixels in function of the cloud
coverage. The advantage of using the SCA lies in its simplicity, requiring only two input
parameters and not needing to estimate the effective mean atmospheric temperature.
However, its limitations include sensitivity to atmospheric wvc errors and the lack of
consideration for atmospheric transmittance (t). While the PSCw. method is an improved

version of the SCA, they have the same advantage: it requires only two input parameters, just
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as the SCA (LSE and wvc). This PSCuyc simplifies retrieval and reduces errors associated with
other parameters, such as the effective mean atmospheric temperature (7,;). The PSCuvc
addresses some of the limitations and errors associated with atmospheric wvc, providing a
more accurate retrieval of the LSWT. If there are errors in estimating the wvc, it can lead to

more significant errors in the retrieved land surface temperature.

In terms of sensitivity, the MWA and SC method are more sensitive to error with the increase in
temperature and humidity, specially in humid and hot conditions regions. On the other hand,
the advantage of the MWA is that it can achieve good results in retrieving LSWT from channel
TIRS-2 (B10) of Landsat. However, this method is sensitive to errors in wvc. When the error of
wvc reaches the maximum of 0.3 g/cm?, the error of the retrieved LST exceeds 1 K. Additionally,
the MWA is also sensitive to errors in the effective mean atmospheric temperature (75) (Wang

et al.,, 2019).

In terms of the results performance of the Practical Singe Channel (PSC) algorithm, a study
showed similar results to our analysis using this retrieval method. Wang. et al. (2019) found
that the better corresponding algorithm for retrieving LST was the PSC after evaluating the
performance of PSC and the generalized single-channel (GSC) algorithm using both simulation
data sets and satellite measurements. A previous study using these algorithms concluded, as
well as in our research, that SCA and PSCy.. show good agreement when compared to in situ
measurements, and estimation errors have been attributed to the quality of atmospheric wvc.
Wang et al. (2019) compared three algorithms (MWA, SCA, SWA), where SWA was found to be
the most reliable method for LST retrieval compared to the MWA and SCA. The SWA had the
lowest sensitivity to errors in input parameters, and its results were less affected by humid
environments. The MWA and SCA were more sensitive to errors in input parameters,
particularly in hot and humid conditions. These two algorithms were susceptible to errors in
atmospheric wvc. When the error of atmospheric wvc reached the maximum, the error of LST
exceeded 1.0 °C. On the other hand, the SWA demonstrated more stability, and the error of

input parameters did not cause a significant error in LST.
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Another study supports our results. Jimenez-Mufioz et al. (2014) tested the SCA and the SWA
using simulated data from atmospheric profile databases and emissivity spectra. The results
showed mean errors below 1.5 °C for both algorithms. The accuracy of the algorithms for LST
retrieval was assessed through bias values, standard deviation, root mean square errors
(RMSE), and linear correlation coefficients. Both algorithms showed promising accuracy for LST
retrieval from Landsat-8 TIRS data based on simulated data, with slightly better results for the
SWA method. However, further validation using ground data is necessary to determine the best

correspondence and performance of these algorithms.

Results from the LSWT estimates using ECOSTRESS show low correspondence level compared
to in-situ measurements, with RMSE of 2.47 °C over the Issyk-Kul Lake in 2019, and a RMSE of
2.33 °Cin 2020. The temperatures throughout the year are underestimated, with MAE of 2.0 °C
and 2.30 °C in 2019 and 2020, respectively. However, after using the SWA for ECOSTRESS,
temperatures enhanced their results regarding their LSWT underestimation, with 2.15 °C of
RMSE and a MAE of 1.78 °C in 2019. On the other hand, over the LSWT estimates in Gerardmer
and Longemer Lakes during 2020 and 2021, when we compare estimates from Landsat 8-9 and
ECOSTRESS, frequently they show similarity between their values and tendencies in most of the
cases, with a difference of less than 1 °C. Moreover, there are periods when there is a
remarkable variation between the two data, with a difference of up to 2 °C. One of the
observations we can make after validating with in-situ measurements is that ECOSTRESS
datasets are less stable than Landsat 8-9. In Gerardmer, for example, ECOSTRESS presents 2.52
°C of RMSE and 1.40 °C with Landsat 8-9, while in Longemer, ECOSTRESS gives 2.87 °C of RMSE
and Landsat 8-9 a RMSE of 2.04 °C. Thus, temperatures estimated by SWA with Landsat data
are generally very close to in-situ data compared to the estimation method with ECOSTRESS
products (TES), even if the difference between the two is not very large. Knowing the
performance of the SWA and TES algorithms, the discrepancies can be due to the sensors,
especially for ECOSTRESS, which often presents high spatial variations. In addition, processing
with ECOTRESS data has the advantage of acquiring data on several dates (revisit 1-2 days in

this region in France). However, even with ECOSTRESS’s cloud product, some dates were
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retained with abnormal temperatures. This could be due to inconsistencies in the cloud

detection.

4.4.3 Ground validation

We made different types of validations in this research work, such as sensors intercomparison,
meteorological station, in-situ data derived from buoys, Torrent board equipped with

temperature sensors, radiometer (CIMEL 312-2), and a FLIR camera (T-560).

In terms of validation of the retrieved LSWT from the intersensors comparison and the Landsat
8 algorithms, our results are similar to that of Wang et al. (2019), who evaluated the
temperature-based method, which directly compares the satellite-derived LST with in-situ LST
measurements at the satellite overpass; the cross-comparison process, which compares the
retrieved LST with the MODIS LST product; and the last method to validate was to compare the
retrieved LST with ground observation data. Then, compared to this research, similarities were
found regarding results and validation methods. The main difference in comparison with this
study was the SWA performance. Even when they recommended not to apply it due to the
stray light effect implication, especially for Band 11 (TIR-2), they still used a correction
algorithm called the stray light correction algorithm (SLCA); besides the application to this study

was applied into the land (LST).

However, we still performed the SWA by only using collection 2 from Landsat 8-9, where the
stray light effect implication is reduced significantly, especially for the TIR2 (B10). The results
derived from our retrieval analysis show good correspondence level in the validation campaigns
and with in-situ datasets in Issyk-Kul, Gerardmer, Longemer, and Plobsheim Lakes from 2021 to
2023. The results that the SWA method provide for Landsat 8-9, show better correspondence to
in-situ measurements than those results that SWA show when applied to ECOSTRESS, Sentinel-
3, and MODIS. Coincidences with a study from Ye et al. (2022), who validated results from the
SWA method to Landsat 9 with an accuracy of about 1.57 K, which was better than the existing

Landsat-9 LST product (mono-channel using the SCA). The retrieved LST images had similar
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spatial distribution to the Landsat-9 LST products, with RMSE ranging from 0.31 to 2.87 K in
different regions. Li et al. (2022) evaluated different waterbody extraction algorithms using
Landsat-9 data and the Google Earth Engine (GEE) platform in the Qinghai-Tibet Plateau. After
comparing Landsat-9 data with Landsat-8 data, they concluded that these two sources have

great consistency and can be used collaboratively to extract water and lake areas.

For the LSWT estimates from Sentinel-3, values generally show good agreement in all the
comparisons made over the different study areas and years, being a good source of reference
when validating in-situ data and validation campaigns. Sentinel-3 is suitable for lakes with more
significant extensions due to its spatial resolution of 1 km. Thus, the Issyk-Kul Lake Sentinel-3 is
a decent source to estimate the LSWT, with RMSE of 1.34 °C or less for each comparison.
However, in smaller lakes, such as Plobsheim Lake, Sentinel-3 can be helpful as an additional
source of reference, and not as the main one, considering that only 4 to 5 pixels could be
available in the area, which sometimes cannot be representative in this lake. In comparison
with other studies, our research coincides with Pérez-Panells et al. (2021), who presented a
validation through ground-based validation and comparing in-situ measurements with satellite-
derived LST values for the Sentinel-3A and Sentinel-3B SLSTR LST Level-2 product, indicated that
the LST product from these sensors was accurate for nighttime data, with a median accuracy of
1 °C and a precision of 1 °C for the investigated surfaces. However, for daytime data, the
accuracy was determined to be 1.8 °C with a precision of 1.2 °C. The increase in daytime
precision is attributed to the more considerable thermal heterogeneity of the land surface. At
the same time, the rise in bias is thought to be caused by wrongly assigned biomes. The
validation results for Sentinel-3A and 3B showed that the accuracy and precision of LST over

water (flooded soil) were less accurate than other land covers.

From the LSWT estimates using ECOSTRESS, we could compare our research to a study from Li
et al. (2021) that evaluates LST products (MODIS, ECOSTRESS, GOES-R, Landsat, and Sentinel-3)
using in-situ measurements from 11 sites in the U.S. Corn Belt during the 2018 and 2019
growing seasons. The evaluation focused on the biases and accuracy of the LST products
compared to ground observations. This study indicates that all the LST products have

tendencies within 2 °C during nighttime and %3 °C during daytime. For daytime LST, the
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highest agreement with ground observations is achieved by ECOSTRESS, while MODIS and
MYD11A1 products slightly underestimate daytime LST. ECOSTRESS had an overall absolute bias
of less than 0.9 °C, an RMSE of less than 2.15 °C, and a standard deviation of less than 1.95 °C.
Contrary to our research, the ECOSTRESS satellite showed less agreement in underestimating
temperatures (4 °C) against the meteorological station values. These differences could be due
to the validation of the LST products, where the study of Li et al. (2021) primarily used ground
observations from agricultural sites rather than water surfaces, where the performance of the
LST product of ECOSTRESS retrieved by using the TES method could behave differently for

water.

Another study differs from this research in terms of agreement, as Shi et al. (2021) estimated
the LST by using the TES algorithm; the accuracy and reliability of the LST data were evaluated
through several validation processes, including comparisons with in-situ measurements and
well-calibrated MODIS measurements. The results demonstrated a high correlation between

the ECOSTRESS LST and in situ LST, indicating the effectiveness of the retrieval algorithm.

In addition, Ru et al. (2023) developed an extended SW-TES algorithm (combining the SWA and
TES algorithms) to retrieve LST and LSE simultaneously while considering the urban geometry
effect. The results show that the retrieved LST values with the extended algorithm are generally
lower than those obtained without considering the urban geometry effect. They concluded that
the performance of the SWA alone, with no urban geometry, may not be as reliable for LST
retrieval over urban areas using ECOSTRESS data. However, for our type of surface, the water is
considered almost a flat surface, except when there is roughness, wavelets, and swell; the
repercussion should not be as great on the estimates. Our comparisons with ECOSTRESS, using
the LST original product (TES algorithm), show a lower accuracy and more significant
differences in LSWT estimates within the different study areas. However, after performing the
SWA for ECOSTRESS, the LSWT values enhanced relatively by 1.0 °C. For instance, over Issyk-Kul
Lake in 2019, the RMSE values enhanced from 2.33 to 2.15 °C when validated to in-situ
datasets. With this, ECOSTRESS could be a good corresponding source of LSWT estimates by
using the SWA method, as when compared to Landsat 8-9, values between them rely, and they

could complement each other in temporal resolution.
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In the case of the results from the radiometer and the infrared camera over the Plobsheim Lake
validation campaign in April 2023, they show relatively good agreement. For instance, the
temperatures obtained from the sensors on the Torrent board validate the LSWT from the
CIMEL CE-312-2, with differences in temperatures of less than 1 °C. In addition, ECOSTRESS
shows a 1.0 °C difference, and Landsat 8 is only 0.1 °C. ECOSTRESS and Landsat 8 are good
agreement sources compared to in situ values derived from the torrent board sensors and the
radiometer. On the other hand, the LSWT from the camera FLIR T-560 in the validation
campaign in Plobsheim Lake in June 2023 show a higher difference in temperatures between all
sensors but less differences with the sensors from the values from the Torrent board sensors
wT2 and wT4 (RMSE of 1.29 °C and 1.12 °C respectively). This may be due to camera difficulties
when capturing the images in the field or to calibration problems of the camera. However, it
was impossible to compare the FIIR camera and the radiometer during the same validation
campaign due to the unavailability of these instruments at the time of each validation

campaign.
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Chapter 5. Conclusions and Perspectives

The Lake Surface Temperature (LSWT) indicates the temperature of the skin layer on the lake
surface. However, it is an essential indicator of the lakes' state and strongly influences water
chemistry and the aquatic ecosystem. At the same time, the LSWT has a driving effect on the
weather and climate around the large lakes. Typically, LSWT data are collected from in-situ
measurements. However, these in-situ data are often spatially rare and inaccessible.
Information on water temperature with improved spatial and temporal resolutions is needed in
many applications, such as climate change monitoring and hydrological cycle studies, and in the

habitat of aquatic organisms, fisheries, aquaculture, and water quality management.

Remote sensing sensors, with spectral ranges between 8 and 14 um (known as thermal infrared
radiation - TIR), are one of the techniques used to study the LSWT variation. This approach
provides temporal and spatial variations on different scales that help to understand the
physical processes of the water cycle by enabling a finer interpretation of the LSWT dynamics.
However, there is still a lack of research into data acquisition and analysis involving multiple

sensors with different resolutions.
The objectives of this thesis included:

1) To obtain and analyze LSWT from multiple sensors with different spatial, temporal, and
spectral resolutions, providing denser spatial and temporal measurements of LSWT is
needed to understand processes and dynamics in the thermal domain and its changes in

time and space.

2) To validate LSWT by comparing it with in situ measurements. Validation campaigns were
carried out on the Issyk-Kul Lake (Kyrgyzstan) and three lakes in the Grand-Est region of

France (Gerardmer, Longemer, and Plobsheim lakes).

Our research analyzed multi-resolution and multi-sensor satellite missions with onboard TIR
sensors (MODIS, Sentinel-3, ECOSTRESS, and Landsat 8 and 9) to perform these objectives.

Besides, these sensors provide valuable information in anticipation of new TIR missions such as
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TRISHNA in 2025 (CNES-ISRO) and longer-term missions such as LSTM (ESA Copernicus) and SBG
(NASA), both in 2028.

5.1 Conclusions

Different approaches for extracting the LSWT from high and medium-resolution satellites have
been implemented, tested, and compared. The satellites and their corresponding sensors used
for this research were Landsat 8-9 (TIRS), MODIS (Terra), Sentinel-3 (SLSTR), and ECOSTRESS on
board the ISS. An initial series of images were selected based on criteria such as date of
acquisition, clear weather, and the broadest possible coverage, with at least one image per
month; however, the availability of ECOSTRESS was limited to the Issyk-Kul Lake area. On the
other hand, for the rest of the regions (Gerardmer, Longemer, and Plobsheim), the imagery
availability was better, however, the regular cloud coverage over these regions limited the

imagery quality for their analysis, especially during autumn and winter seasons.

The first results are derived from the intersensors comparison retrieved in 2019 over the Issyk-
Kul Lake. One image per month on the same day and at an exact or similar time is compared.
They reveal that LSWT estimates from MODIS are nearest to the CCl Lakes product (RMSE 1.25
°C and MAE of 0.90 °C) compared to in-situ measurements. However, estimates from Sentinel-3
(RMSE 1.34 °C and MAE of 1.10 °C) and Landsat 8- PSCu.. (Collection 1) (RMSE 1.37 °C and MAE
of 1.15 °C) are also near to the in-situ measurements, but less than MODIS. However, derived
from the time series analysis over Issyk-Kul Lake in 2019 and 2020, Sentinel-3 is a good
agreement source of reference to the in-situ measurements, with RMSE of 1.34 °C and 0.79 °C,

respectively.

The performance of the LSWT estimates on the Issyk-Kul Lake in 2019 with MWA, PSCy., and
SCA methods after excluding SWA due to stray light in Landsat 8 collection 1, causing a band or
stripping effect, evident in band 11 (TIRS-2). Thus, from the mono-channel algorithms derived
from this satellite, MWA is not as consistent as PSCwv. or SCA in the cross-validation method

with the temperatures from the meteorological station and the CCl Lakes product. PSCyyc
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corresponds better to the in-situ reference values with a RMSE of 1.37 °C and 1.15 °C of MAE.
The low correspondence that MWA gives, RMSE of 1.92 and MAE of 1.52 °C, could be due to
MWA being sensitive to errors in wvc. As high as the wvc is, the error of the retrieved LSWT
exceeds. The MWA is also sensitive to errors in the effective mean atmospheric temperature

(Ta).

During the validation campaign in the Issyk-Kul Lake using the Torrent board carrying sensors
for measuring humidity, air, and water temperatures (to a depth of 35 cm), the LSWTs derived
from Sentinel-3 are the nearest to the LSWTs from the Torrent board, with a difference of 0.3
°C, and a difference of 4 hours regarding the acquisition time between these two sources. For
the LSWTs from MODIS, compared with the temperatures from the Torrent board,
temperatures differ by 1.3 °C and by 5 hours of the acquisition time difference between them.
Some cloud coverage during the MODIS overpassing was perceived at the time of the

validation.

On the other hand, the Gerardmer and Longemer Lakes analysis in 2021 and 2022 shows that
ECOSTRESS data underestimates values by 5 °C and Landsat 8-9 data by 2 °C. The datasets are
generally consistent for the same-date analysis between these two sources. However, the LSWT
estimates with the Landsat 8-9 using the SWA algorithm correspond better to the in situ data.
The ECOSTRESS imagery is limited to their cloud mask to present a cleaner image. However, this
mask did not reduce the standard deviation of their results. ECOSTRESS products are rich in
information but can be complex in the geoprocess. Each product contains multiple layers of
data, including land surface temperature evapotranspiration. Moreover, to enhance the LSTE
product geolocation of ECOSTRESS, due to the inaccuracy in the geolocalization derived in the
ISS, it is necessary to join extra products of geolocation as well as a cloud mask product to the

LSTE product, adding efforts in the LSWT retrieval.

Over the Plobsheim Lake in 2021 and 2022, the results from Landsat 8-9 are consistent, but
they show higher temperature differences than those with ECOSTRESS and MODIS. This could
be related to a limitation in cloud mask detection for Landsat 8-9 or a problem in the

instrument due to stripping. Hence, ECOSTRESS and MODIS values correspond better to the in-
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situ measurements (buoys) than those with Landsat 8-9 (SWA). On the other hand, for the
validation campaign in the same lake on 2023, ECOSTRESS and Landsat 8-9 show good
agreement with the in-situ measurements from the buoys and from sensors of the Torrent
board and the radiometer CIMEL CE-312-2. In contrast, the FLIR-T560 camera present larger
temperatures difference with ECOSTRESS and Landsat 8-9, but good agreement with the
Torrent board sensors values. This may be due to camera handling difficulties over the field

when capturing the images or even to calibration problems of the instrument.

Regarding the performance of the multi-sensors used to retrieve the LSWTs, those using the
SWA when retrieving the temperatures, unlike those using the TES algorithm (ECOSTRESS),
demonstrated better proximity to in-situ values. We can conclude that SWA requires no prior
atmospheric corrections, unlike the TES algorithm, where accuracy can be affected by
perturbations in atmospheric conditions. Besides, ECOSTRESS demonstrates to correct its LSWT

estimates by 1 °C when implementing its SWA correction method.
To sum up these conclusions, we can list them as follows:

e MODIS and Sentinel-3 provide good agreement LSWT estimates when compared to the
in-situ datasets. They are mainly proposed for greater extension lakes due to their
spatial resolution (1 km). Besides, for validation campaigns, the overpassing of these

satellites can be predicted.

e Sentinel-3 is a novelty in this study since, until this research, there are no previous
studies where lake temperatures are estimated with this sensor. Also, something new is
a comparison of Sentinel-3 with high-resolution satellites such as ECOSTRESS and
Landsat 8-9, where the SWA for ECOSTRESS is tested to compare the same method of

retrieval by using SWA methods.

e CCl Lakes also provides near estimates, a great reference of LSWT values product.
However, its temporal resolution is a daily aggregation interval pinned to 12:00 UTC,
which limits its correspondence compared to other sources at different acquisition

times. Besides, its spatial resolution does not provide estimates for small lakes.
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The performance of the mono-channel algorithms for Landsat 8 (collection 1), designed
for the B10 -TIR1, shows that the PSCu.c provides the best agreement when compared
to the in-situ measurements of MWA and SCA. It is due to MWA being susceptible to
wvc errors. The obtained LSWT error exceeds as high as the wvc. Errors in the effective

mean air temperature (Tg) can also affect the MWA estimates.

Regarding collection 2 for Landsat 8-9, the SWA method corresponds well when
validated with in-situ measurements. It is an excellent source to estimate LSWT for
smaller lakes. However, they are still limited, with their temporal resolution set at 16

days.

ECOSTRESS, with a better temporal resolution (3-5 days) than Landsat 8-9, in terms of
high spatial resolution (70 m), shows more difficulties when retrieving LSWT due to the
need to combine the LSTE product with the geolocation and cloud products. The LSTE
product is produced using the TES algorithm, and their results are generally unreliable in
our study regions. However, when performing the SWA method to retrieve the LSWT,
estimates were enhanced by 1 °C on most dates. It can be because SWA does not
require any previous atmospheric adjustments, in contrast to the TES algorithm, whose

accuracy may be impacted by atmospheric circumstances.

The LSWT estimates from the radiometer CIMEL CE 312-2 show good agreement to the
Torrent board sensors, with less than 1 °C of temperature differences, unlike the FLIR-
T560 camera, which shows a higher difference in temperatures between all sensors and
less than 2 °C differences with the sensors from the Torrent board values. This could be

due to calibration problems with the instrument.

This research considered small and medium-sized lakes such as Gerardmer, Longemer, and

Plobsheim. It means that future high-resolution thermal missions (60-70 m) will be able to

provide optimal regular information to study other lakes of similar size, considering that

each hectare contains approximately 140 pixels with such spatial resolution. Hence, a 10-ha

extension lake could provide representative valuable data of its LSWT.
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Finally, ground-based reference sites such as lakes are vital in validating, calibrating, and
accurately assessing satellite data collected by instruments like Trishna or LSTM missions.
Those sites serve as a basis for increasing trust in satellite-derived information, allowing it to
be used effectively in scientific study, environmental monitoring, and decision-making.
From our experience with the lakes used to perform the validation campaings in this
research, the Lakes of Gerardmer, Longemer, and Plobsheim in France and Issyk-Kul Lake in

Kyrgyzstan could be considered as good references for ground-based sites.

5.2 Perspectives

To achieve optimal validation and monitoring of lake temperatures, experimental and satellite
measurements must be implemented. Some recommendations could be considered to achieve

this:
e Ground data (in situ) collection:

o Deploy in situ temperature sensors, such as thermistors or data loggers, at various
depths within the lake. Ensure sensors are appropriately calibrated and regularly
maintained. Distribute sensors strategically to capture temperature profiles,

including the lake's surface, middle, and bottom layers.

Measure the temperature at different depths of a lake provides insights into the
thermal structure and dynamics of the lake ecosystem. These measures can
influence the distribution and behavior of aquatic organisms, nutrient cycling, and
overall lake productivity. Additionally, understanding the vertical temperature
profile of a lake is crucial for studying processes such as stratification and mixing,

thermal stability, and heat exchange between the water and the atmosphere.

o Collect high-quality in situ temperature data at frequent intervals, capturing diurnal

and seasonal variations.
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o Implement a continuous monitoring and update system to ensure the lake
temperature dataset remains accurate. Regularly assess data quality and make
necessary corrections. The approaches for this could be assessed with the help of a
device carrying sensors to measure the temperature of the first layers of the lake,
such as the Torrent board. Additionally, radiometers and FLIR cameras could be

helpful to complement the monitoring of the LSWT.

o Validate LSWT estimates for heterogeneous and non-isothermal surfaces, by
assessing the accuracy of temperature estimates against ground-based
measurements and combining it with high spatial-resolution LSWT acquired from
unmanned aerial vehicle (UAV) platforms — drones or planes equipped with thermal
sensors can cover large areas quickly. It is especially beneficial for monitoring the
surface temperature of large lakes, where traditional methods might be time-

consuming and less practical.
e Satellite measurements:

o Acquire satellite remote sensing data with suitable sensors for lake temperature
monitoring. Understand the specifics of the satellite data, such as spatial and
temporal resolution, spectral bands, and calibration information. As demonstrated
in this research, those with better correspondence include Sentinel-3, even MODIS
for great extension lakes mainly, and Landsat 8-9 and ECOSTRESS (SWA) for smaller

lakes.

o Validate satellite-derived lake temperature data against in situ measurements.
Ensure that in situ measurements and satellite overpasses are well-matched in time

and space.

o Use statistical techniques like RMSE (Root Mean Square Error), MAE (Mean Absolute
Error), regression analysis, and correlation coefficients to assess the agreement

between satellite and in situ data.
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o Regarding measuring the temperature at different depths, satellite and aerial
imagery can be used to estimate lake depths as LiDAR (Light Detection and Ranging)
and satellite altimetry can provide information about the surface elevation of the

water, which can then be used to infer depth.

In terms of satellites temporal resolution, more in-depth image analysis could be envisaged
using low-resolution sensors such as Fengyun-4 (FY-4A), equipped with the AGRI (Advanced
Geostationary Radiation Imager) instrument for the LST product, with a spatial resolution of 4
km, an IR radiometric resolution of 10.3 to 13.8 um and a temporal resolution of 15 minutes.
AGRI is, therefore, the optimum tool for covering the limited temporal resolution offered by
moderate and high-resolution TIR sensors. Thus, the data derived from the FY-4A satellite will
provide the daily dynamics of pixel temperature at low resolution (Fan et al., 2022; Meng et al.,
2019). The information from this dynamic would allow the modeling of the daily temperature
cycle, which could be applied to high-resolution, such as Landsat 8-9, ECOSTRESS, and the new
TIR mission TRISHNA in 2025 (CNES-ISRO), and medium-resolution (Sentinel-3 and MODIS)

pixels.

Another outlook for this research would be analyzing possible synergies between the optical
sensors and temperatures from passive microwaves to avoid the problem of cloud cover by
applying a downscaling process. The data that could be considered for passive microwaves are
the C-band (AMSR-E, ~50km; AMSR_2, ~40km) and L-band (SMQS, ~40km; SPAM, ~40km).
SMOS is a multiangular mission that gives access to horizontal (TBh) and vertical (TBv)
polarizations of the emitted radiation, allowing to invert the physical temperature, which is
constant according to polarization and angle, knowing that for SMAP we do not have multi-
angular data, only horizontal and vertical polarization. Finally, an interesting idea would be to
combine Band-C (AMSR-E AMSR-2) and Band-L (SMOS/SMAP). It would minimize the effects of
vegetation, such as algae, and the roughness of the water surface (wind effect); in terms of SAR
and optical sensors, exogenous data of the Sentinel 1 (roughness) and Sentinel 2/3 (vegetation)
types may be used to characterize the surface conditions. However, this aspect of the LSWT
synergy between optical and passive microwave sensor temperatures has a more exploratory

element, where research in this direction already exists, with statistical studies on IRT and
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microwave surface temperature relationships showing exciting correlations (Boutin et al., 2004;
Mao et al., 2007). Additionally, it could be available exclusively for large lakes due to the size of
the pixels (40 km) provided by these passive microwave datasets. Thus, only a few pixels could

be extracted for the downscaling process.

To sum up, optimal validation and monitoring of LSWT require a synergistic approach that
leverages the strengths of both in-situ measurements and satellite observations. This
integration enhances our understanding of lake dynamics, improves the accuracy of remote
sensing algorithms, and provides valuable information for various scientific, environmental, and

resource management applications.
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Etude multi-échelle/multi-temporelle de la température des eaux de
surface des lacs (LSWT) a l'aide de capteurs satellitaires thermiques :
application a des lacs de la région Grand-Est, France, et du
Kirghizistan

Résumé

La température des eaux de surface des lacs (LSWT) a un impact significatif sur I'environnement
aquatique et la chimie de I'eau, ce qui en fait un indicateur crucial de la santé des lacs. En outre, la
température de l'eau de surface des lacs influence les conditions météorologiques et I'atmosphére qui
entourent les grands lacs. De nombreuses applications, notamment I'étude du cycle hydrologique et du
changement climatique, I'habitat des créatures aquatiques, la péche, lI'aquaculture et la gestion de la
qualité de l'eau, nécessitent des données sur la température de I'eau avec des résolutions spatiales et
temporelles accrues.

Cette recherche vise a acquérir et a analyser la LSWT a l'aide de capteurs satellitaires TIR tels que
Landsat 8-9, ECOSTRESS, Sentinel-3 et MODIS. Ces capteurs fournissent des informations précieuses
en prévision des nouvelles missions TIR telles que TRISHNA en 2025 (CNES-ISRO), LSTM (ESA
Copernicus), et SBG (NASA), toutes deux en 2028. L'étude estime la LSWT du lac Issyk-Kul, au
Kirghizstan, et des lacs Gerardmer, Longemer et Plobsheim, en France. Pour évaluer la 'LSWT, des
multicapteurs fournissant des estimations spatiales et temporelles plus denses de la 'LSWT sont
nécessaires pour comprendre les processus et la dynamique dans le domaine thermique. En outre, les
estimations de la LWST provenant des satellites ont été validées par des intercomparaisons et des
campagnes in situ sur les lacs mentionnés au cours de différentes périodes annuelles.

Mots-clés : Température des eaux de surface des lacs (LSWT), capteurs infrarouges thermiques (TIR),
ECOSTRESS, Landsat 8-9, Sentinel-3, MODIS, CCI Lakes, campagnes de validation, lacs Issyk-Kul,
Gerardmer, Longemer, Plobsheim.

Résumé en anglais

The Lake Surface Water Temperature (LSWT) significantly impacts the aquatic environment and water
chemistry, making it a crucial indication of the lakes' health. Moreover, the LSWT influences the weather
and atmosphere surrounding the big lakes. Many applications, including studies of the hydrological cycle
and climate change, the habitat of aquatic creatures, fisheries, aquaculture, and water quality
management, require data on water temperature with increased spatial and temporal resolutions.

This research aims to acquire and analyze the LSWT using TIR satellite sensors such as Landsat 8-9,
ECOSTRESS, Sentinel-3, and MODIS. These sensors provide valuable information in anticipation of new
TIR missions such as TRISHNA in 2025 (CNES-ISRO), LSTM (ESA Copernicus), and SBG (NASA), both
in 2028. The study estimates LSWT from the Issyk-Kul Lake, Kyrgyzstan, and the Gerardmer, Longemer,
and Plobsheim Lakes, France. To assess the LSWT, multisensors providing denser spatial and temporal
LSWT estimates are needed to understand processes and dynamics in the thermal domain. In addition,
the LSWT estimates from the satellites were validated by intercomparisons and in-situ campaigns over
the mentioned lakes during different year periods.

Keywords: Lake Surface Water Temperature (LSWT), Thermal Infrared sensors (TIR), ECOSTRESS,
Landsat 8-9, Sentinel-3, MODIS, CCI Lakes, Validation campaigns, Issyk-Kul, Gerardmer, Longemer,
Plobsheim Lakes.
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