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Abstract

Vision-based approaches for the diagnosis of digestive diseases with optical imaging sensors
are highly desirable in the luminal environment. Optical coherence tomography (OCT)
is an imaging technique of great importance in biomedical applications. Backscattered
light of the internal structure of biological tissues is measured by OCT to provide high-
resolution axial and three-dimensional images of tissue inspection, which could potentially
replace the traditional endoscopic biopsy procedure. Endoscopic OCT has been applied
to the cardiovascular, respiratory, and digestive systems for imaging internal structures. In
gastroenterology, balloon and capsule catheters have been developed for esophageal imaging.
However, these conventional solutions are not suitable for imaging larger lumens, such
as the colon, because of the small field of view (FOV). This problem could be solved by
integrating the OCT and robotic surgical endoscope. In addition, a catheterized OCT can
perform simultaneous image registration and tissue identification for accurate navigation
of the robotic endoscope, and the resulting cross-sectional image stream can be used for
volumetric imaging, providing an intuitive representation of the tissue. Information from the
endoscopic camera can provide global navigation for the OCT catheter, while accurate local
navigation and diagnosis can be achieved with OCT information.

Following the development of the steerable OCT catheter and imaging system and
their integration with the robotic endoscope, This thesis focuses on further automatizing
robotic imaging by enabling closed-loop operation to overcome current limitations, and
enable automatic scanning with high accuracy and speed in the presence of tissue motion.
First, we investigate a specific problem of rotational scanning OCT catheters, named Non-
uniform Rotational Distortion (NURD), which hinders both diagnostic and navigation tasks
using OCT catheters. A novel solution that can be used for online correction (certainly
also suitable for offline applications) is proposed for different types of OCT catheters and
scanning modes. Then we develop an algorithm for multi-surface segmentation of side-
viewing OCT images, based on the encoding of A-lines information of a B-scan. This is
an efficient way of extracting position information from OCT, which serves as intuitive
feedback for surgical robots. The A-line-based segmentation algorithm is also suitable
for another imaging modality that shares a similar scanning mechanism - Intravascular



viii

Ultrasound (IVUS). By additionally estimating the presence probability, A-line encoding can
be used to segment/locate pathological tissue in IVUS images. Moreover, a decentralized
federated learning pipeline is demonstrated to train the A-line encoding network with both
OCT and IVUS images, which further improves the network performance by increasing the
distribution without sharing data between institutions. By stabilizing and segmenting OCT
images with the proposed NURD compensation and A-line encoding algorithms, real-time
intuitive feedback is provided to keep the moving soft tissue in the field of view of OCT
probe for robotic volumetric scanning, while constraining the contact force.
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Chapter 1

Introduction

1.1 Endoscopic diagnostic procedures in gastrointestinal
tract

Endoscopy is a common and a safe way to examine the Gastrointestinal (GI) tract in real-
time, including esophagus, stomach, and duodenum (esophagogastroduodenoscopy), small
intestine (enteroscopy), bile duct (Endoscopic Retrograde Cholangiopancreatography), large
intestine/colon (colonoscopy, sigmoidoscopy), rectum (rectoscopy), and anus (anoscopy)
(Dhumane et al., 2011). During an endoscopic procedure, the medical doctor inserts a flexible
tube with a light and camera located at the distal end to view live images of the digestive tract
on an external color monitor. During an upper endoscopy, an endoscope is typically passed
through the mouth (transnasal access is also possible but less common) and throat and into
the esophagus, allowing the doctor to view the esophagus, stomach, and upper part of the
small intestine. Similarly, endoscopes can be passed into the large intestine (colon) through
the rectum to examine this area of the intestine. This procedure is called sigmoidoscopy or
colonoscopy depending on how far up the colon is examined (Rex, 2000). A special form
of endoscopy called Endoscopic retrograde cholangiopancreatography (ERCP) (Jorgensen
et al., 2016), is used for taking pictures of the pancreas and gallbladder ducts and for stent
placement in the bile duct.

However, endoscopy only provides macroscopic information from the superficial mucosa
tissue. To obtain microscopic information that is necessary for accurate diagnosis and to
further validate the presence of disease, biopsies must be excised, which usually requires
sedating the patient. Mucosal biopsies are thus routinely performed during each of the
aforementioned endoscopic procedures to obtain tissue for medically indicated histologic
examination (Yao et al., 2009). After a healthcare provider obtains tissue samples, they are
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sent to a histopathologic laboratory for analysis. The sample may be chemically treated or
frozen and sliced into very thin sections. The sections are placed on glass slides, stained
to enhance contrast and studied under a microscope. A biopsy can help the care provider
to confirm the presence of the disease and in the case of cancer to stage its progression. In
some situations, the sample of cells may be examined during surgery and results are available
to the surgeon for further decision-making. But most often, the results of the histological
analysis are available in a few days (Mansell and Willard, 2003).

Although rare, significant complications resulting from endoscopic mucosal biopsy have
been documented in the literature, consisting mostly of reports of hemorrhage. The majority
of these cases involve the use of electrocoagulation (“hot”) biopsy, but there are isolated
reports of major hemorrhage after the use of standard (“cold”) biopsy forceps for tissue
sampling (Eckardt et al., 1997; Vu et al., 1998). Existing data concerning the safety of
multiple specimens taken during colonoscopies come from reports of dysplasia surveillance
in patients with long-standing inflammatory bowel disease, specifically ulcerative colitis
(Koobatian and Choi, 1994; Rutter et al., 2006).

Due to the possible risk, pain and additional cost of biopsy in the endoscopic procedure,
not all the lesions or potentially pathological tissue are sampled for biopsy. Standard
excisional biopsy could be affected by unacceptable sampling error. In the endoscopic
surveillance procedure of patients with early Barrett’s neoplasia of the esophagus, a study
suggests miss-diagnosis due to sampling error (Peters et al., 2008). It is shown that of the
patients with a surveillance history, 79% had shown low-grade intra-epithelial neoplasia
prior to high-grade intraepithelial neoplasia /early cancer diagnosis. Only 21% of patients
had a surveillance history without any dysplasia, which generally encompassed endoscopies
with an insufficient number of biopsies, suggesting sampling error (Peters et al., 2008). In
the endoscopic diagnosis of colorectal cancer, a study showed sampling errors occurred in
217/962 (22.6%) of flexible endoscopies for colorectal adenocarcinomas (Johnson et al.,
2021). Negative biopsies were associated with a longer median time to surgery compared
to true positive biopsies. Repeated endoscopy occurred following 62/217 (28.6%) cases of
sampling errors, yielding a correct diagnosis of cancer in 38/62 (61.3%) cases. However,
repeat endoscopy means re-insertion which involves another cycle of diagnostic procedures
which could be time-consuming, costly, and uncomfortable for patients.

To improve the successful detection rate of digestive cancer in endoscopic in vivo
diagnosis procedures, new optical imaging systems are developed. They involve detecting
vascular recruitment, metabolite consumption, oxygen consumption, or observing micro-level
tissue structures (Yun and Kwok, 2017). These new optical imaging technologies can allow
real-time diagnostic performance, without taking biopsies out of the patient’s body.
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1.2 Endoscopic treatment for GI

If a lesion is detected early, doctors can perform minimally-invasive surgical procedures using
an endoscope, such as polypectomies. Other examples of endoscopic surgical procedures are
Endoscopic Submucosal Dissection (ESD) (Akintoye et al., 2016), used for treating large
polyps and superficial cancers in the digestive tract, and Endoscopic Full Thickness Resection
(EFTR)(Pimentel-Nunes et al., 2015), used to remove more advanced lesions located in the
deeper layers than the submucosa (that have not yet invaded local lymph nodes).

Small polyps (diameter < 10 mm) are effectively resected by means of snare polypectomy
(cold or hot, depending on the presence of electrocautery) (Ichise et al., 2011), and collected
through the working channel of the endoscope. Large polyps (diameter > 20 mm), are
conventionally treated by means of Endoscopic Piecemeal Mucosal Resection (Endoscopic
Piecemeal Mucosal Resection (EPMR)) in Western countries (Ichise et al., 2011). The
piecemeal approach consists of snaring small pieces of the polyp and retrieving them through
the working channel of the endoscope, as shown in Figure 1.1. A valid alternative to EPMR
is represented by ESD, originally pioneered in Japan, where it has already established itself
as the optimal and first-line treatment of large laterally spreading tumors, supplanting EPMR.
In 2017, the number of safely and effectively performed ESD reached more than fifteen
thousand ((Saito et al., 2017)). Since then, the number of publications on ESD has increased
from 1166 to 2131 (Wu et al., 2022). ESD is an outpatient procedure to remove deep tumors
from the gastrointestinal (GI) tract. Gastroenterologists use flexible endoscopes to perform
ESD, after which most people can go home the same day. ESD allows “en bloc” resection,
unlike the EPMR procedure which gradually cut the whole lesion, as shown in the bottom
row of Figure 1.1. First, the endoscope approaches a large polyp and surrounds it with cautery
marks (A), a saline solution is injected to lift the polyp (B), the lifted region is dissected (C)
and the polyp is retrieved by withdrawing the endoscope outside of the patient (D).

In the United States and Europe, only a few medical centers perform ESD because the
procedure requires a high degree of expertise with the procedure. In some cases, ESD is a
more effective option than endoscopic mucosal resection for removing growths or tumors.
ESD’s outcomes are comparable to those of surgical interventions.

ESD can be applied to the following clinical conditions (Maple et al., 2015):

• Barrett’s esophagus

• Early-stage cancerous tumors or colon polyps

• Tumors of the esophagus, stomach or colon that have not yet entered the deeper layer
of the GI wall, with minimal or no risk of cancer spreading.
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• Staging of cancer (determining the cancer level) to develop treatment plans

Several works show a local tumor recurrence rate significantly higher with EPMR than
with “en bloc” resection via ESD: the local recurrence rate after EPMR has been reported to
be up to 50 %, compared with a rate of 0% to 17.8% after “en bloc” resection (Seo et al.,
2010, 2018, 2017). Additionally, ESD allows a more accurate histological analysis of the
lesion (Kandiah et al., 2017). However, studies point out a marked difference in procedure
time, with the mean operating time for ESD versus EPMR being 66.5 vs 29.1 min, and higher
perforation rate with ESD (4.9% vs 0.9%) (Arezzo et al., 2016). Despite the well-established
long-term advantages in the oncological clearance of ESD over EPMR, ESD still fails to
achieve acceptable levels of performance in non-Asian countries.

In both EPMR and ESD procedures, accurate margin check is important before/after
the endoscopic treatment. If the margin of pathological tissue is detected correctly right
after the diagnosis procedure, the endoscopist can ensure a clean polyp removal without
over-cutting the tissue. After the endoscopic procedure, a margin check is carried out by
means of histological examination to determine whether the cut sample has a positive or
negative margin. A positive margin shows that the cut boundary crosses the cancerous
tissue that potentially still remains in the patient’s body. While a negative margin shows
additional healthy tissue is cut beyond the cancerous area. The decision regarding subsequent
management is affected not only by pathological outcomes but also by the endoscopist’s
opinion on whether complete resection was obtained. After the first surgery, a subsequent
surgery was usually chosen when positive margins were found (Park et al., 2019). Presumed
completeness of the resection can be helpful for guiding the subsequent management of
patients who undergo endoscopic resection of early colon cancer.

1.3 Robotic surgical endoscope

Robotics and computer assistance aim at overcoming the limitation of diagnosis and Minimal
Invasive Surgery (MIS) in GI endoscopic procedures, by enhancing dexterity, sensing, guid-
ance, stability, and motion accuracy (Vitiello et al., 2012). In 1994, the first robotic system
intended for the manipulation of a camera endoscope called the Automated Endoscopic
System for Optical Positioning (AESOP) was developed by Computer Motion (Sackier and
Wang, 1994). This system was a voice-controlled robotic arm for holding and moving the
camera endoscope in different positions (Kraft et al., 2004). Similar to this work, some
examples of other works related to telerobotic systems holding a camera endoscope are the
TISKA system (Schurr et al., 1999), the FIPS Endoarm (Buess et al., 2000), the telerobotic
assistance for laparoscopic surgeries (Taylor et al., 1995), EndoAssist (Nebot et al., 2003)
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Fig. 1.1 Steps of EPMR and ESD. In the EPMR (Top row of the figure), the endoscope
approaches a large polyp, then snares off a piece of it and retrieves it through the working
channel. The procedure is repeated until the whole polyp is resected. In the ESD (bottom
row), The endoscope approaches a large polyp and surrounds it with cautery marks (A),
a saline solution is injected to lift the polyp (B), the lifted region is dissected (C) and the
polyp is retrieved by withdrawing the endoscope outside of the patient (D). Adapted from
(Milanowski, 2018; Pelikán et al., 1970).

and the ViKY robotic scope holder (Voros et al., 2010). After being the predecessor of the
DaVinci system (Ng et al., 1993), the concept of arranging several robotics arms was intro-
duced by Computer Motion with the AESOP/ZEUS system (Butner and Ghodoussi, 2003).
Endoluminal approaches with steerable catheters were developed to access/operate restricted
regions not reachable with rigid laparoscopy, and were first demonstrated in transurethral
resection Harris et al. (1997) and Vascular surgery Riga et al. (2013). Miniaturization of
flexible robots represents an important advance for MIS in transluminal/endoluminal proce-
dures, defining the concept of natural orifice transluminal endoscopic surgery (NOTES). In
NOTES, laparoscopic-style external manipulation is not required, instead, flexible-robotized
endoscopic procedures have been proposed to enhance access and manipulation through
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Table 1.1 Robotic flexible endoscopy platforms for Gastrointestinal applications (Yeung and
Chiu, 2016). Comm. indicates Commercialized.

System Company Description Comm.
Aer-O-scope (Pfeffer et al.,
2006; GIview, 2022) GI View Ltd, Israel Self-propelled disposable colonoscope. Yes

NeoGuide (Eickhoff et al.,
2007)

Intuitive Surgical,
United States

Computer-aid colonoscope with 16-
segment insertion tube controlled inde-
pendently. It also incorporates a position
sensor at the tip.

N

Viacath (Abbott et al.,
2007)

Hansen Medical,
United States. Cur-
rently, Auris Health,
Inc.

Robotic endoluminal surgical system incor-
porates an articulated overture to insert a
flexible endoscope and articulated instru-
ments into the GI tract.

N

Invendoscope (Rösch et al.,
2008)

Invendo Medical
Gmbh, Germany.
Currently Ambu A/S,
Denmark

Single-use colonoscope concept N

Endodontics (Cosentino
et al., 2009; Tumino et al.,
2010)

ERA Endoscopy SRL,
Italy

Flexible, steerable and disposable LED
camera probe with special tank with electro-
pneumatic connector.

Yes

MASTER (Ho et al., 2010) EndoMASTER Pte,
Singapore

Multitasking platform using electromechan-
ically controlled cable actuation. N

Scorpion-shaped endo-
scopic robot (Suzuki et al.,
2010)

Kyushu University,
Japan

It consists of two cable-driven robotic arms,
haptic feedback and a position sensor. N

Endoscopic operating robot
(EOR) (Kume et al., 2012)

University of Occu-
pational and Environ-
mental Health, Japan

Master-slave robotized system for the ma-
nipulation of a conventional endoscope by
two joysticks.

N

Endomina (Cauche et al.,
2013)

Endo Tools Therapeu-
tics, Belgium

System that can attached to a conventional
endoscope to add triangulation capabilities N

CUHK robotic gripper
(Poon et al., 2014)

Chinese University of
Hong Kong, China

Bio-inspired flexible robot with shape mem-
ory alloy wire actuation. N

Imperial College robotic
flexible endoscope (Seneci
et al., 2014)

Imperial College,
United Kingdom Snake like robot for endoluminal surgery N

Robotic steering and auto-
mated lumen centralization
(RS-ALC) (Pullens et al.,
2016)

Meander Medical
Center, Netherlands

Consisting of a drive unit allowing docking
of the angulation wheels of a conventional
endoscope.

N

CUHK double-balloon en-
doscope (Poon et al., 2016)

the Chinese Univer-
sity of Hong Kong,
China

Double balloon endoscope with a capsule
camera at the tip. N

ISIS-Scope/STRAS system
(Zorn et al., 2017)

Karl Storz/IRCAD,
Europe

Robotized interventional flexible endo-
scope with multiples modules based on the
Anubis platform.

N

Flex® Robotic System
(novusarge, 2022) Medrobotics Snake-like multi-articulated endoscopic

system Yes

natural or transluminal ports. Some examples of robotized flexible endoscopic solutions are
the Aer-O-Scope colonoscope (GIview, 2022), the Endotics system (Tumino et al., 2010), the
Flex® Robotic System (novusarge, 2022), and the STRAS robotics system developed at the
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University of Strasbourg (De Donno et al., 2013; Zorn et al., 2017). Other robotic platforms
for gastrointestinal applications are summarized in Table 1.1, including those commercially
available and under development.

The STRAS robot is also known as the ISIS-scope is based on the manual ANUBISCOPETM

platform (Dallemagne and Marescaux, 2010) for gastrointestinal procedures. The manual
ANUBISCOPETM platform requires more than one operator to perform the surgical proce-
dure, one clinician to operate the endoscope and another operator to manipulate the surgical
instruments. Figure 1.2 a shows the distal part of the Anubiscope platform. It has three
channels for surgical instruments, the fluid channel, bending instruments, camera, lighting,
rotation, translation and deflection motion for the main endoscope. The STRAS robot adds
robotization to provide telemanipulation and single-user operation to control the motions of
the main endoscope and the surgical instruments (Figure 1.2 b). The modular design of the
STRAS robot makes it easy to set up and to change the surgical instruments if needed. The
global view of the slave system with its main components is described in Fig. 1.2 c. The slave
robot can be teleoperated using master interfaces specifically designed to intuitively control
all available DoFs, or be automatically controlled by computers relying on the navigation
information from the sensory system.

1.4 Optical Coherence Tomography Technologies

To visualize in vivo organs or tissues inside the body, 3D tomographic medical imaging
systems have been developed based on penetrative waves (e.g. X-ray, Ultrasound) or magnetic
resonance. Each of these techniques measures a specific physical property with different
resolution and penetration range for each method. The resolutions vs. penetrations as shown
in Fig. 1.3 will determine specific application of each method. Among them, ultrasound
based imaging achieved visualization of living tissues at microscopic resolution, and this is
attracting attention in several fields. Linear high-frequency ultrasound biomicroscopy (UBM)
(Foster et al., 2000) offers a lateral resolution of 60 µm and an axial resolution of 35 µm
with a depth of focus of 12 mm for applications in medicine and basic biology. However,
UBM requires immersion of the tissue in fluid and could be inapplicable to some medical
diagnostic scenarios including the GI system. OCT (Huang et al., 1991) is an alternative
cross-sectional imaging modality that is light-based and fluid transmission medium is not
necessary. Moreover, by decoding the time-of-flight information from the interference of
light, OCT provides a higher resolution (typically 2µm axial resolution) than ultrasound-
based imaging. Another developing light-based in vivo diagnostic technique is confocal
microscopy (Nwaneshiudu et al., 2012) that uses point illumination via a spatial pinhole to
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a b

c

Fig. 1.2 STRAS surgical robotics system (Nageotte et al., 2020). (a) distal side of the
Anubiscope/STRAS with the main components (blue arrows), DoFs (green arrows) and
dimensions (orange arrows). (b) Close view of the T/R modules at the proximal side, with the
right instrument installed. (c) Global view of the STRAS slave system ready for teleoperation
when all modules have been mounted.

eliminate out-of-focus signals. Confocal microscopy achieves higher resolution (cell level)
than OCT, however the penetration depth and FoV is even smaller (Swaan et al., 2018), and
it is difficult for such a small visible range to tolerant displacement caused by tissue motion.
In this work, the white light camera-based endoscope (STRAS) is augmented with OCT,
since it has the potential of performing real-time optical biopsy to distinguish cancer tissue
(Nwaneshiudu et al., 2012), it provides a good trade-off between resolution and FoV, and
does not require tissue contact or fluid transmission medium.

OCT is increasingly used in biomedical and clinical imaging because of its high-speed
and high-resolution optical sectioning (Yonetsu et al., 2013). A one-dimensional (1D) image,
called A-line, is obtained by pointing an OCT light beam onto the tissue. The OCT light
propagates up to a few millimeters within the tissue and is reflected back by the internal
tissue structure to the imaging system. A standard two-dimensional (2D) OCT frame, called
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Fig. 1.3 The resolution and penetration depth of different medical imaging technologies.
Adapted from Malm (2016).

B-scan, is created by moving the light beam in a plane. In ophthalmology, which is the most
common application of OCT, the OCT beam is typically raster scanned over a square field
of view to create a three-dimensional (3D) volume. 2D images are displayed in real-time
and the volume is also typically visualized as an en-face projection to provide orientation
and to follow disease progression longitudinally (Costello, 2017). When combined with
a miniaturized optical catheter, OCT light can also be delivered into the cardiovascular,
respiratory or digestive systems for imaging of internal organs (Gora et al., 2017). Such
catheters usually require an outer diameter smaller than 2mm and a length of up to 2m. To
enable volumetric imaging of tubular organs, in the majority of the designs, a side-viewing
micro-optics is simultaneously rotated and pulled back within a surrounding static sheath
to create a helical scan. In cardiology, 2D radial OCT frames are displayed in real-time
during the longitudinal pullback to assist cardiologists in intravascular stent strut placement
(Nam et al., 2016). In gastroenterology, OCT frames are also reviewed in real-time to find
suspicious lesions and consequently to guide biopsy collection (Suter et al., 2014). Recently,
real-time OCT guidance during endoscopic submucosal dissection has been proposed by our
research team (Mora et al., 2020).

1.4.1 Basic principles of optical coherence tomography

In order to contrast with low-coherence interferometers, one should revisit a more conven-
tional Michelson interferometer based on a coherent light source. As shown in Fig. 1.4, the
light from the light source is split into a sample path and a reference path, and a light detector
is used to measure the intensity of interference between the reference light and the sample
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light. Following the notation in (Drexler et al., 2015), for a monochromatic (coherent) light
source, the light intensity at the detector side is the superposition of two waves with the same
wavelength:

I(⃗r) = IS + IR +2
√

ISIRcos[φS(⃗r)−φR(⃗r)] (1.1)

where r⃗ is the detection position along the light propagation direction. φR = 2π

λ
2L and

φS =
2π

λ
2(L+d) are the phase of reference light and sample light respectively. λ is the light

wavelength, L is the length of the reference arm and d is the difference between the sample
and reference arms. IS and IR are the amplitude of light in the sample path and reference path
respectively. As the split ratio of the reference and sample light is 1:1, IR = IS = I0, which
leads to I as a periodical function of sample/reference path length difference d:

I(d) = 2I0[1+ cos(
4π

λ
d)] (1.2)

According to equation 1.2, for an interferometer with a monochromatic light source the
distance information encoded within I(d) is not singular, which is not sufficient for reflecting
geometrical relations (e.g., distance or depth). To carry more information and result in a
singular detected intensity function, a broad spectrum (low-coherent) light source, with a
central wavelength λ0, is used for tomographic imaging purposes. Following the formulation
of (Drexler et al., 2015), as shown in Fig. 1.4 (b):

Ioct(d) = 2I0[1+ |S [S(k)]|cos(
4π

λ0
d)] (1.3)

where S [S(k)] =
∫

∞

0 S( f )e− j2π f τd f contributes an envelope to the periodical intensity func-
tion (the intensity function can be approximated as a superposition of interference of all
light wavelengths), and k = 2π/λ is the spatial frequency. S( f ) =

∫
∞

−∞
(R(τ)e− j2π f τdτ), and

R = E[x(t)x∗(t − τ)], where f is the temporal frequency. The relation between temporal and
spatial frequencies is k = 2π f/c, where c is the speed of light.

Based on the intensity vs. light path difference function which has a singular peak
location, OCT can determine the intensity and depth at the same time. The first generation of
OCT implemented a time-domain detection with a scanning reference arm, low-coherence
light source and interferometer, which is referred to as Time Domain Optical Coherence
Tomography (TD-OCT). The reconstruction of one axial signal information consists of
scanning the reference mirror along the length of a reference arm, to acquire the signal by
using a single fixed detector and detecting the envelope of the interference signal, where
the amplitude of the successive interference signals corresponds to each scattering layer
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Fig. 1.4 A schematic illustration of Michelson interferometer. (a) The light source of an
interferometer can be a coherent laser or a low-coherence source with a wide wavelength
distribution. (b) The detected light intensity changes regarding the change of length difference
of reference path and sample path: for coherent light, the intensity vs. path difference is a
periodical function; while for low coherence light the interference is only observed when the
2 path length matches with the coherence length of the light and have a singular peak point.
Figure was adapted from (Chen et al., 2011).

detected in the sample arm. The image quality and frame rate of TD-OCT highly rely on the
mechanical motion accuracy and speed of the scanning reference mirror. Later, Frequency
Domain Optical Coherence Tomography (FD-OCT) was developed to increase imaging
speed (Fercher et al., 1995; Chinn et al., 1997). Different from TD-OCT, which detects the
light intensity of the superposition of all wavelengths of light while changing the reference
arm, FD-OCT fixes the location of the reference arm while detecting the interference for
each individual wavelength. By doing so, more information is encoded on the detector side
including both intensity and distance/depth, which can be achieved by two frequency domain
techniques in OCT. One is spectral domain OCT (SD-OCT), which uses a spectrometer
as a light detector, and the other is swept-source OCT (SS-OCT), which effectuates the
real-time change of wavelength at the light source. SD-OCT was first demonstrated in
retinal images in 2002 by Wojtkowski et al. (Wojtkowski et al., 2002), a collaboration
between the Nicolaus Copernicus University (Poland) and the University of Vienna (Austria).
SS-OCT was demonstrated in the first experimental results between 1996 and 1997 at the
Massachusetts Institute of Technology (MIT) (Chinn et al., 1997; Golubovic et al., 1997).
The space-intensity information of FD-OCT of one axial line that is able to penetrate the
tissue can be decoded by inverse Fourier-transforming the spectrum-intensity information.
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Fig. 1.5 (a) Schematic illustration of an A-line (left) and a 2D image (B-scan) obtained by
transverse scanning and (b) main parameters defining OCT image: axial resolution dz that
does not depent on the numerical aperture (NA) of the lens, lateral resolution dx and depth of
field DF that both are linked to NA.

In medical diagnostics, 2D or even 3D imaging is required to visualize the internal
structure and correctly render diagnosis. Fig 1.5 (a) shows an example of shifting the
scanning beam to acquire a B-scan (2D) of the tissue specimen. One of the most important
parameters of OCT in the axial resolution (Fig 1.5 b), which is related to the coherence length
of the light source that affects the sharpness of peak point location of superposition of all
wavelength (Fig. 1.4 b). The axial resolution dz is:

dz =
2ln2
nπ

λ 2
0

∆λ
(1.4)

where λ0 and ∆λ are the central wavelength and bandwidth of the light source respectively;
n is the refractive index of the sample. Choice of source affects axial resolution (dz) but
also the penetration depth. For example, near-infrared light allows for better penetration, but
it will suffer from a lower axial resolution as typical light sources have limited bandwidth
available. On the other hand, OCT working with light source in visible range will provide
very good axial resolution, but similarly to confocal microscope will only penetrate in the
first few hundreds of microns of the tissue. The transverse (lateral) resolution dx=dy of OCT
is mainly affected by the choice of focusing optics (lens), which is:

dx = dy =
4λ0

π

f
d

(1.5)

Where f is the focal length of the lens, and d is the size of the incident beam on the lens. The
choice of focusing lens will also affect the depth of field:

DF = n
πdx2

λ0
(1.6)
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1.4.2 Raster scanning OCT system and its application

100 μm

100 μm

a b

c

d

e

f

Fig. 1.6 Application of OCT in ophthalmology and dermatology with a raster scanning system.
(a) Two OCT B-scans samples of the retina, and (b) reconstructed 3D volume from 2D B-
scans. (c) A typical 2D B-scan representing a cross-section of skin tissue, and (d) The same
2D B-scan from (c) overlaid with vascular information, showing the locations of functional
blood vessels in relation to tissue structure. (e) A 3D OCT volume scan highlighting how
segmented slabs might be positioned. (f) The component scans that produce a 3D OCT
angiography of the skin. Figures are adapted from (Drexler and Fujimoto, 2008) and (Deegan
et al., 2018).

To effectuate 3D tomographic imaging based on OCT technology, a raster scanning
pattern was first realized by sweeping the mirror that redirects the light to the sample
(Brancato, 1999). Such 3D imaging techniques were first applied in ophthalmology, where
OCT provides images of retinal structures that cannot be obtained by any other noninvasive
diagnostic technique. Ocular media are essentially transparent, and transmitting light has
only minimal optical attenuation and scattering, which provides easy optical access to the
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retina. For these reasons, ophthalmic diagnosis is one of the most clinically developed OCT
applications where OCT became a new standard of care (Bowd et al., 2002; Brancato, 1999;
Chauhan et al., 2000). Fig. 1.6 (a) depicts two samples of OCT B-scans for the human
fovea, and Fig. 1.6 (b) is the rendering of 3D volume acquired by the raster imaging system
(Drexler and Fujimoto, 2008).

The same type of benchtop raster scanning OCT system can be directly adapted to other
open space scenarios, once the target sample can be fit into the working distance and FoV of
OCT. In dermatology, most studies of OCT were on nonmelanoma skin cancer followed by
pigmented lesions, inflammatory skin diseases, nail diseases, anatomical and physiological
features investigated by OCT (Olsen et al., 2015). In non-melanoma skin cancer diagnostic
OCT criteria have been proposed and recent studies have shown a high diagnostic accuracy
of 87.4% and identified objective scoring criteria for diagnosing non-melanoma skin cancer,
showing the potential of replacing the microscope diagnosis procedure. In pigmented lesions,
morphological features for differentiation of benign naevi and malignant melanoma has also
been suggested, though only included small samples of malignant lesions were used in most
studies.

Another adopted technology for OCT in dermatology is skin angiography (Deegan et al.,
2018). The aim of angiography is to visualize the vasculature under the skin, which can
be achieved by detecting the blood flow. With OCT, this is enabled by taking two B-scans
at every slice location, and the final scan acquired by the OCT system will be 4D data (or
equivalently, two 3D volumes at two closed time steps). Eventually the blood flow of each B
scan can be computed using a optical microangiography (OMAG) algorithm (Wang et al.,
2010a), and the structure of vessels can be reconstructed in 3D for all B-scans (Fig. 1.6 f).

The raster scanning OCT system has also been applied to the ex-vivo examination of
tissues dissected from the patient’s body (Testoni et al. (2006); Rashed et al. (2017)). Intra-
procedural check for margins in the specimen can enable fast diagnosis and immediate
surgical correction, which can be hardly reached while using histopathological tissue prepara-
tion, staining and microscopic evaluation. However, similar to the microscopic examination
of histopathology specimens, this procedure still requires surgery to remove the suspicious
pathological tissue, which is usually combined with the usage of anesthetic medicine.

1.4.3 Endoscopic OCT catheter

Thanks to the development of fiber optics, the OCT light can be transmitted into internal
organs for in vivo diagnosis purposes. Catheterized OCT (or equivalently, endoscopic OCT)
that uses optical fibers has been applied to internal organs which can not be easily accessed by
bench-top raster scanning systems. OCT catheters can be divided into forward-viewing and
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side-viewing catheters based on the design of the focusing lens and scanning mechanism. A
forward-viewing catheter is generally more suited for image guidance of biopsies (Gora et al.,
2017). A side-viewing catheter is more suited for surveying luminal or tubular organs/systems
including circulatory system (Brezinski et al., 1996; Ughi et al., 2014), pulmonary system
(Hanna et al., 2005; Lee et al., 2011) and gastro-intestinal tract (Gora et al., 2013; Zagaynova
et al., 2008; Rollins et al., 1999; Westphal et al., 2005; Adler et al., 2009).
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Fig. 1.7 Schematics of two rotational scanning mechanisms: a proximal-scanning with a
fiber-optic rotary joint and a distal-scanning endoscope with a micro-motor.

A circumferential two-dimensional scan of side-viewing catheters can be performed by
rotation of an optical beam reflected on the side of the probe using a micro-motor on the
distal tip, or by a proximal rotational actuation, which is remotely connected to the distal
optical components with a torque coil (see Fig. 1.7 a). Similar to raster scanning OCT, one
B-scan of side-viewing endoscopic OCT is composed by a sequence of A-lines. Since the
scanning beam is rotated around the probe center, the B-scan needs to be converted from the
polar domain to the Cartesian domain to present the intuitive geometry of the tissue. Fig. 1.8
a shows one side-viewing OCT B-scan in Cartesian domain for vascular system (Ughi et al.,
2014), which is corresponding to the histological hematoxylin-eosin stained slice image of
the vessel (Fig. 1.8 b). Volumetric scanning (3D scan), in both proximal and distal systems,
is typically effectuated by pulling back the rotating optical core to create a helical scan. This
procedure usually requires a guide wire to add passive navigation for the OCT probe, and
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Fig. 1.8 3D imaging using rotational scanning side-viewing OCT. (a) shows how A-line
signals (i) compose B-scans (ii) and then a 3D scan (iii). (b) shows histological hematoxylin-
eosin stained crosse-sectional image in stented vascular (i) and a 3D rendering result of
OCT volumetric scan (ii). (c) shows 3D rendering of OCT volumetric scan in the respiratory
airway. Adapted from (Ughi et al., 2014; Lee et al., 2011).

was originally developed for cardiovascular applications where the region of pullback needs
to be overlapped with a blood occlusion (Okamura et al., 2010). An exemplar rendering
image of 3D pullback in vascular stent assessment is shown in Fig. 1.8 b (Ughi et al., 2011).

The same volumetric imaging mechanism applies to other small luminal environments
like the pulmonary system. Fig. 1.8 c shows a volumetric rendering of the respiratory
tract obtained with pullback scanning (Lee et al., 2011). The side-viewing system was then
adapted in gastrointestinal imaging both in low-profile and balloon catheters (Gora et al.,
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2013), which are inserted in the digestive system using a working channel of an endoscope
(Lee et al., 2016). More recently, an internal pullback scanning system was also developed
for a tethered capsule device (Liang et al., 2015). A high precision short segment pullback
enabled high-quality en-face imaging that could not be achieved with standard tethered
capsule devices typically pulled back manually.

1.4.4 Steerable OCT catheter

OCT catheters are mainly used for small lumen environment due to their small FoV, and have
not been applied to larger internal environments like the colon and stomach. Robotization of
the OCT catheter has potential for addressing this problem and enabling diagnosis of colon
cancer in one shot. This could potentially replace the traditional time-consuming and error
prone procedure that requires biopsy and histopathology specimen examination.

To overcome the limitation of small FoV when using OCT in combination with passive
catheters, an integration between the aforementioned surgical robot (STRAS, see the section
1.3) and OCT has been implemented. The STRAS robot (De Donno et al., 2013) provides
an actuation system for the robotized flexible interventional endoscope, which could offer
the capability for fully automatic diagnosis and surgery. The performance of the robotized
flexible interventional endoscope is augmented by insertion of a custom endoscopic OCT
catheter (Fig.1.9) (Mora et al., 2020). This catheter could be employed to actively follow the
lumen wall. We use a previously developed in-house endoscopic OCT system with a steerable
catheter (Mora et al., 2020), which provides flexibility in tailoring to the specific application.
For example, by self-defining the shape of the probe sheath, the acquired information can
help the image calibration procedure. By changing the lens, the system can be adapted to
lumens of different sizes.

Compared to a conventional endoscope that is only equipped with a white light camera,
the OCT augmented endoscope can provide higher resolution images during diagnostic tasks
or surgical procedures. At the same time, OCT images can provide additional and more
accurate navigation feedback for controlling the robotic system. With the endoscopic camera
at the distal part, rough global navigation can be realized to assist the OCT system in local
scanning tasks. In the local scanning process, ideally, the distance between the OCT probe
and the tissue should be controlled to be constant. This keeps the tissue always in the FoV of
the OCT, which is especially interesting for luminal tissues with complex geometry, like the
colon. This feature is important because manual navigation is difficult and imprecise and can
thus easily lead to missing the pathological target. This type of local robotic scanning can
also be realized with contact between the OCT catheter and the colon tissue surface. OCT
images can allow for assessing the deformation caused by contact and prevent the catheter
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Fig. 1.9 Integration of the steerable OCT catheter with the robotic flexible endoscope.
(a) Schematic of the steerable OCT. (b) Distal tip of the interventional robotized flexible
endoscope with the OCT instrument arm. (c) One sample image from the endoscopic camera
in colon. Adapted from (Mora et al., 2020).

from applying too large pressure on the colon tissue. In addition, this robotic endoscope
could potentially realize simultaneous localization and mapping when it is reconstructing
online a large piece of surface/volume of the colon lumen. In return, the map built from this
reconstruction could help to estimate the exact location of the probe.

As has been shown by Mora et al. the steerable OCT catheter (Mora et al., 2020)
provides the potential for real-time diagnosis of large intestinal lumen with high-resolution
crossectional imaging. As shown in figure 1.10, with a pre-programmed scanning trajectory,
the steerable OCT provides better motion smoothness, and trajectory accuracy and potentially
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Fig. 1.10 Scanning trajectory, speed profile and normalized magnitude of the spectrum of the
speed profile for programmed, teleoperation and manual scanning trajectories. Adapted from
(Oscar Caravaca-Mora et al., In revision).

extends the field of view. However, due to the small FoV of OCT, even a small displacement
caused by the change of endoscope location or tissue movement can make the OCT lose its
diagnostic target (i.e. tissue). Manual displacement compensation or tissue following could
introduce operation burdens to the surgeon. Thus automation for the navigation and scanning
control of OCT probe is necessary. The miniaturized OCT catheter, however, is susceptible
to (non-uniform rotational distortion) NURD, a type of artifact caused by scanning instability.
This artifact is difficult to eliminate completely through hardware optimization alone, as
demonstrated in a study by Mora et al. (2020) (Mora et al., 2020). Moreover, the motion
of the catheter can also affect NURD, as shown in Figure 1.11. As a result, it is necessary
to perform a step of OCT image correction in order to achieve a higher level of automatic
control of the robotic endoscope.



20 Introduction

a b
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Fig. 1.11 NURD problem of rotational scanning system. (a) Steerable tool placed in the
position of 74° of angle of flexion. (b) Rotational distortion versus angle of flexion for
the frame rates of 16.67, 33.33, 83.33 and 125 fps. Exemplary OCT cross-sections of a
rectangular phantom obtained with the steerable OCT catheter showing (c) very high NURD
at 17 fps and (d) very low NURD at 125 fps. Adapted from (Mora et al., 2020).

1.5 Autonomous robotic system with visual perception

As shown in figure 1.12, the information flow of a typical robotic system starts from the
sensing hardware to the information interpretation and the control system, then eventually
the actuation system. The interpretation of sensory information for control guidance is often
related to a navigation problem x̂k = f (Ik,xk−1,xk−2, ...), where x̂k is the latest estimated
navigation states (i.e. location, velocity, shape and map points), which can be mapped
from latest information Ik (i.e. information from imaging, shape sensing and localization
sensors) and historical states xk−1,k−2,.. by making use of kinematics or kinetics. For medical
diagnosis, the perception of information is usually not involved with states transition, thus a
simpler extraction process yk = g(Ik) mapping from sensory information to diagnostic states
(i.e. presence, size) yk is needed. Solving control problems is often based on the estimation
of navigation states, and acquiring the latest control signal uk. A solver for computing control
signal can be optimization algorithms relying on objective functions and the knowledge of
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Fig. 1.12 Schematic of a typical robotic system. Usually the actuation and sensory modules
compose the hardware of the robotic system, while key software modules include navigation
and control algorithms.

xk+1 = A(xk,k−1,...,uk,k−1,...), where A is the mapping (i.e. transaction function) from latest
& historical navigation states and control signals to future states xk+1.

Navigation state updating algorithms are mostly based on probability density and can be
estimated with Bayesian recursive relations(Vercauteren et al., 2005; Anderson and Moore,
2012). Recently practical real-time solutions are designed for linear systems with different
types of probability distributions. Kalman filter and its variants are introduced for linear
Gaussian models (i.e. Gaussian state noise, measurement noise) (Urrea and Agramonte, 2021;
Giannarou et al., 2012). In the form of non-gaussian probability distribution, the gaussian
sum filter (Šimandl and Královec, 2000), particle filter (Zeng et al., 2019), and point-mass
filter (Duník et al., 2018) have attracted considerable attention. These methods require no
assumption of any conditional probability distribution but heavily introduce computation
burden when the scale of information increases.

Often, vision sensors are used to provide feedback information, and the interpretation of
such information is related to computer vision techniques. Recently with the development
of Graphics Processing Unit (GPU) for matrix or tensor-like data processing, deep learning
(Goodfellow et al., 2016) and data-driven approaches have become the state-of-the-art of
computer vision. Deep learning has been demonstrated in a variety of visual diagnosis
systems including different types of OCT modalities (van der Putten et al., 2019; Li et al.,
2019; Yong et al., 2017; van der Putten et al., 2020; Zeng et al., 2020). Deep learning-based
object detection, segmentation, and key points matching algorithms have been applied as the
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front end of the navigation state estimation systems (Huang et al., 2022; Wada et al., 2020;
Sarlin et al., 2020; Huber et al., 2022).

Conventional kinematic modeling is sufficient for designing and optimizing the low-level
controller of robots made of rigid materials. The latest studies on robotic OCT system fall
into the category of controlling the interaction between the rigid end effector and target
(Huang et al., 2021; Draelos et al., 2019). However, recent studies have explored the design
and control of soft-bodied robots composed of compliant materials, which are safer and
draw more attention in surgical or interventional applications(Rus and Tolley, 2015). Soft
robots with compliance are safer and are drawing more attention in surgical or interventional
applications. On the other hand, soft robots have unprecedented adaption, compliance, and
flexibility to deform continuously with high degrees of freedom (DOFs) (Rus and Tolley,
2015). Thus control of the such type of robot is quite challenging, especially when the
interacting environment (i.e. tissue) is soft as well. In the robotics field, tactile or haptic
sensing is often integrated when considering the interaction between elastic robots and
deformable objects (Yue and Henrich, 2002; Yamakawa et al., 2007; Hellman et al., 2017;
Donlon et al., 2018). To resolve the grasping control problem in soft object manipulation,
new high-resolution vision-based tactile sensors are integrated with robotic fingers (Donlon
et al., 2018; Cui et al., 2021). In the medical robotics field, a variety of haptic devices have
been integrated (Culmer et al., 2020), but lack of work on automatic interaction with soft
moving tissue. It is an un-explored challenge to control the cable-driven continuum flexible
endoscope integrated with an elastic OCT probe with high compliance, for interaction with
moving soft tissue.

1.6 Thesis contributions

Our team’s previous work was focused on the development of the steerable OCT catheter and
imaging system hardware and their integration with a robotic endoscope (Mora et al., 2020).
The preliminary OCT images were collected with the OCT-enhanced robotized flexible
interventional endoscope in ex-vivo and in-vivo pre-clinical experiments. The results from
a comparison of the robotic operation of the steerable catheter to a manual endoscope or a
teleoperation (see section 1.4.4) showed the potential of this method for extending the field
of view of high-resolution imaging while maintaining good accuracy and speed of operation.
Further automatizing of this process by enabling closed-loop operation can overcome current
limitations, and enable automatic scanning with high accuracy and speed in the presence of
tissue motion. Endoscopic OCT provides a set of features that makes it a suitable candidate
for providing feedback to a closed-loop operation:
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Fig. 1.13 Schematic of the automatic diagnosis system. Following the previous work on
the steerable OCT catheter, this thesis’s contribution falls into three topics: (i) online image
stabilization for OCT, (ii) real-time image perception of OCT (also compatible for IVUS)
and (iii) automatic control of the flexible endoscope.

• OCT provides a good trade-off between resolution, sensitivity and FoV, which can
be optimized to the tissue geometry and the nature of the disease. In comparison to
confocal ednomicroscopy where micrometer resolution comes with a very small FoV.

• Even though OCT has a fixed working distance to the tissue required for acquiring high
resolution images, in typical endoscopic catheters capable of differentiating disease
in the digestive system the depth of focus has few hundred microns, in comparison
to only few microns depth of focus of confocal endomicroscopy probes. In addition,
it also has few millimeter long imaging range, where the tissue is visible but image
resolution is non-optimal. This allows a larger margin of positioning error (4 mm
or more) in comparison to the confocal endomicroscopy where an image is visible
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only if full tissue contact is obtained or ultrasound probes that requires water medium
coupling.

• Modern FD-OCT can provide fast imaging capability for real-time diagnosis and for
fast position feedback for visual servoing (i.e. a typical FD-OCT system can achieve
A-line update rate 85 kHz, resulting in a frame rate of about 90-110 Hz).

• Rotational scanning OCT catheter is easy to miniaturize (with proximal scanning
mechanism, the diameter of the probe is around 2mm), and is well suited in the channel
of a steerable instrument arm.

• With the active navigation of the robotic system and the assistance from the CCD
endoscopic camera a global-to-local navigation scheme can be developed, where CCD
provides global and coarse navigation and OCT provides local a,d precise positioning
needed for extending the small FoV of the OCT catheter, while maintaining optimal
image quality.

In order to enable automatic scanning in a closed loop operation it was crucial to develop
a multi-functional software and implement hardware changes to the existing system. More
specifically, it involved automatic image correction, analysis for navigation and diagnosis in
GI using catheterized OCT, and implementations of a controller for automatic volumetric
imaging of moving soft tissue. Figure 1.13 shows a schematic of the system with highlighted
aspects of the overall system that were developed as part of this thesis.

This thesis is a part of AuTonomous intraLuminAl Surgery (ATLAS) International
Training Network (ITN) that was funded by the European Marie-Curie project. The main
objectives of this project are to train doctoral students to become experts in intraluminal
navigation, a particularly challenging branch of robotic surgery. My specific research project
was developed under a joint thesis between ICube Laboratory affiliated with the University
of Strasbourg where the robotized OCT catheter was previously developed and ALTAIR
Robotics team affiliated with the University of Verona, which specializes in advanced robotic
systems. During the thesis I spend six months at the University of Verona, where I worked
on image processing of intravascular ultrasound (IVUS). This was motivated by the fact that
side-viewing catheters using either OCT or ultrasound share a certain level of similarity and
OCT driven solutions can potentially be useful for IVUS. Thus, due to the joined nature of
this thesis, this manuscript shows results achieved both in the field of OCT and IVUS with
the following main contributions:
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• A deep learning based approach to tackle the problem of non-uniform rotational
distortion (NURD), which hinders the automation and precision of robotic diagnosis
with side-viewing OCT.

The quality of beam scanning in side-viewing rotational OCT strongly depends on the
actuation mechanism, and miniaturized OCT typically suffers from image distortions,
which hamper image reconstruction and further perception. Such distortions are often
referred to as NURD in the literature. A new solution to tackle the distortion and
instability problem using deep Convolutional Neural Network (CNN) is developed,
which can be generalized for scanning situations in different targets and with different
catheters. This CNN based algorithm was trained on semi-synthetic data and applied
to real videos acquired in various scanning conditions. A full validation on in vivo data
is nearly impossible, due to the fact that annotating rotational distortions on such data
is very complex. The results presented, however, suggest that the proposed algorithm
generalizes well over relevant in vivo pre-clinical data and clinical data from another
modality of rotational scanning OCT, which was never seen during the training.

• A novel network architecture with a new encoding scheme to extract layer information
for both the navigation and diagnosis with side viewing rotational scanning catheter.
This method is also applied to clinical data of another modality, intravascular ultrasound
(IVUS).

Automatic segmentation of object boundaries or surfaces in side-view catheter images
can be useful for real-time diagnosis or offline image analysis. For example, it allows
quantification of luminal cross-sectional area, provides layer distribution for tissue
characterization and allows correction of refractive distortion for optical modalities.
The geometric information provided by the segmentation results also allows quantita-
tive estimation of the distance and contact between the catheter and the tissue, which
provides feedback for navigation. This thesis proposes a new network architecture
called A-line coordinates encoding networks (ACE-Net) with a new encoding scheme
for surface segmentation, which outperforms state-of-the-art methods in terms of ac-
curacy and speed. In addition, ACE-Net efficiently provides localization information
without post-processing on the segmentation mask, and is validated on clinical IVUS
data and pre-clinical OCT data.

• Furthermore, OCT and IVUS images share a certain level of similarities and the
same deep learning architecture (ACE-Net) can be trained and applied to both. This
thesis seeks to maximize the learning of commonly shared knowledge within two
image modalities (i.e., geometry) while allowing networks to handle the gap between
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the domains (i.e., signal intensity and attenuation). A federated learning pipeline
solves the problem of statistical heterogeneity between institutional datasets and
improves network performance when institutions holding multi-domain data join the
collaborative learning pipeline. This pipeline requires no data sharing between different
medical centers, by securely aggregating models using a protected cloud.

• Global-to-local navigation for automatic scanning with a robotized, steerable OCT
catheter

Following the development of the aforementioned stabilization and segmentation
algorithms, which allow for the fast extraction of accurate navigational and diagnostic
information, an autonomous control approach is proposed to allow for safe interaction
between the elastic probe of the instrument and the soft tissue. The imaging quality of
the tomographic system and the force are evaluated side-by-side on the phantom that
mimics the mechanical and optical properties of colon tissue.

Technically, besides the diagnostic capability, OCT has a higher resolution than existing
optical tactile sensors and is capable of detecting local deformation. Catheterized OCT
is also an optical position and tactile sensor with orientation, distance and deformation
perception based on the previously introduced ACE-Net. The tactile state from the
OCT image is estimated for local closed-loop scanning after the probe is brought to
the rough location of the target by the endoscopic camera. By doing so, the surgical
robot can constrain the contact force in the local scanning process, while following
the moving tissue. Experiments are designed with a moving soft phantom and another
optical phantom that mimics the layer distribution of colon tissue. The closed-loop
robotic volumetric scanning is shown to maintain a small amount of force around 50
mN on moving tissues of two levels of stiffness which has a speed of 14 mm/s and a
range of 30 mm. Within all the 3D scans, 93% of the B-scans allowed tissue visibility
despite the moving phantom. Similar performance on imaging quality and motion
compensation is achieved on the optical phantom, where the layer distribution can
always be seen by the OCT probe under moving conditions. By regressing the mapping
between force and deformation extracted from OCT images, a high correlation is found,
suggesting that the tactile perception of OCT is capable of estimating contact forces
applied to tissue with a certain degree of softness.

• Moreover, as part of ATLAS project, this thesis co-developed an automatic robotic
diagnosis system with four other Ph.D. projects in parallel, by exploring a higher level
of automation with the robotic endoscopic OCT system. In this collaboration work, the
image processing technique for the endoscopic camera (developed by another parallel
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Ph.D. project) serves as the global navigation of the surgical robot, while OCT serves
for local navigation and diagnosis. The integration system is demonstrated with a
colon phantom.

In the following three chapters, more focused introductions on state-of-the-art covering
topics of stabilization, image perception and robotic imaging are presented, followed by the
proposed methods and results.
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Chapter 2

De-NURD for rotational scanning OCT

2.1 Overview

Reference image Stretch-shrink only Stretch-shrink + shaking + drift

1mm 1mm 1mm

Fig. 2.1 Illustration of distortion and instability in endoscopic OCT systems. First column: a
selected reference IVOCT frame (Wang et al., 2015) with considerable geometry accuracy
that shows the anatomical structure of cardiovascular cross-section. Middle column: An
simulated OCT frame distorted by stretch-shrink A-line level orientation error. Third column:
Simulation of a situation when both distortion, shaking and drift artifacts exist. To highlight
the presence of artifacts, three consecutive frames were assigned to one of three channels of
the Red, Green& Blue (RGB) image and overlapped (third column).
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The previously developed steerable OCT has been incorporated in the robotized flexible
endoscope and tested in teleoperation mode by an experienced user in an animal experiment
in-vivo (Mora et al., 2020). However, the instability of the acquired images caused by the
imperfection of the actuation mechanism of the catheter hinders the real-time analysis, fully
automatic diagnosis and extraction of feedback information for the robot.

To effectuate the helical motion of the probe, a scanning device can be placed either at the
proximal side (outside of the patient) (Nam et al., 2016; van Soest et al., 2008; Ahsen et al.,
2014; Uribe-Patarroyo and Bouma, 2015) or at the distal end (Tran et al., 2004; Wang et al.,
2013; Herz et al., 2004). Compared with distal-scanning OCT systems, proximal-scanning
probes are more compact (Gora et al., 2013) and easier to be miniaturized (Abouei et al.,
2018). Both scanning approaches typically suffer from image distortions, which hamper
image reconstruction and interpretation. Such distortions are often referred to as non-uniform
rotational distortion (NURD), while in fact NURD encompasses several distinct phenomena
including stretch and shrink and shaking/drift.

Within-frame stretch and shrink distortions are an A-line level rotation non-linearity
within a B-scan image in the polar domain (Mavadia-Shukla et al., 2020; van Soest et al.,
2008; Ahsen et al., 2014; Uribe-Patarroyo and Bouma, 2015). In proximal scanning OCT,
they are usually caused by mechanical friction during the bending of the catheter, which in
turn affects the transmission of rotation from the proximal actuator to the distal focusing
optics typically realized using a torque coil. In distal scanning, it is usually much less
prominent and is typically linked to the mechanical design and short-term stability of the
motor speed. Between-frames shaking and drift distortions are present in both proximal
and distal scanning approaches, and are caused by variations of the motor speed (both in
the proximal actuator or at the distal tip), and/or by synchronization errors between the
acquisition of images and the scanning speed. Such synchronization problems are also
common in raster scanning systems (Ricco et al., 2009). Both Within-frame, between-
frame or a hybrid NURD can be formulated as rotation error vector of one OCT B-scan
P = [ε0 · · ·ε i · · ·εH ]T , where H is the total number of A-lines in one B-scan, and ε i is shifting
error of one A-line with index i. Thus De-NURD algorithm is a process of estimating error
vectors that can be used to re-warp the OCT images.

Within-frame and between-frame distortion/artifacts reduce the image quality and intro-
duce geometry changes (see Fig. 2.1), which impair correct recognition and diagnosis of
anatomical structures of interest. Because it is almost impossible to eliminate all these arti-
facts by hardware improvements (i.e. the friction between the rotational optical components
and the protecting sheath cannot be completely eliminated), computational approaches are
required to correct the raw images acquired by OCT systems.
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In the computer vision field, deep learning based methods have been applied to solve off-
line or online white light camera video instability problems (Wang et al., 2018c; Huang et al.,
2017; Gast and Roth, 2019), with state-of-the-art efficiency. Deep learning has been recently
applied to OCT image processing, by using CNN for tissue layer segmentation (van der
Putten et al., 2019; Li et al., 2019; Yong et al., 2017), classification (van der Putten et al.,
2020) and cancer detection (Zeng et al., 2020), but not for OCT video stabilization.

In this chapter, a CNN based method is proposed to reduce shaking and drift NURD
artifacts in OCT videos. While it is more focused on shaking and drift, stretch-shrink artifacts
may also be eliminated if they are transient. We introduce a dual-branch architecture to
estimate the A-line level positions errors with respect to a given reference frame that has
minimal NURD (see Fig. 2.3). In the first branch, to estimate an A-line level shifting vector,
a correlation matrix between axial scanning lines in the latest image and the previous one is
calculated (van Soest et al., 2008; Abouei et al., 2018; Gatta et al., 2009). Inspired by the
boundary contour detection algorithms based on CNN (Maninis et al., 2017), we designed a
network to find an optimal path within the computed correlation matrix, which represents
the shifting angle of each individual A-line. A similar problem can be found in the inertial
navigation field, where the rotation angle is iteratively computed with data from a gyro-
scope. The gyroscope provides a type of relative measurement and introduces accumulating
error. A typical solution for this problem is to fuse direct angular measurements (coming
from an accelerometer) with the indirect measurements (gyroscope) (Mahony et al., 2005).
Inspired by this, another CNN branch estimating overall orientation is separated from the
shifting vector estimation. The network design of this orientation/group rotation estimation
is also inspired by a method that applied deep neural network to estimate homographic
transformation for sports camera video stabilization (Wang et al., 2018c). A multi-scale
estimation strategy using both local and global features is applied, which has been designed
for estimating optical flow between frames in video sequences (Ilg et al., 2017; Dosovitskiy
et al., 2015). The shifting vector and the group rotation estimation branches are running in
parallel and are deployed to correct the OCT images online: at a given latest time step k, only
past information from time steps [0, ...,k] is needed.

To train the proposed networks, a dataset containing OCT images that are clinically
relevant and ground truth information for NURD is required. Such a dataset is however
not readily available, since it is almost impossible to manually annotate the non-uniform
shifting for each frame of OCT videos. Few reliable approaches exist for generating complex,
realistic synthetic OCT images. Therefore, we trained our networks with semi-synthetic OCT
videos generated by randomly adding realistic warping vectors and group rotation values to
real OCT images. We then deployed the networks for real OCT video stabilization.
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A summary of this chapter’s contributions is as follows:

• We propose a stabilization method to correct geometry information on the fly when
the OCT system is capturing scanning data, which is beneficial for efficient online
diagnosis.

• A robust deep CNN architecture is designed to estimate the A-line level distortion
error for different OCT modalities and different tissue types.

• A drift compensation method inspired by inertial navigation is developed for rotational
scanning stabilization.

• We trained the networks on semi-synthetic scans generated by adding distortion to real
images, which avoids the need for manual annotation.

• We assessed the performance of the proposed method with unseen in vivo pre-clinical
and clinical data.

2.2 Related work

In this section, we provide an overview of previous research on NURD correction for catheter-
based imaging systems, followed by an introduction to the state-of-the-art video stabilization
research and CNN research for the white light cameras, which inspired the proposed method
for endoscopic OCT stabilization.

2.2.1 NURD Correction

Earlier than for OCT, NURD was investigated in IVUS (Sathyanarayana, 2006; Kawase
et al., 2007; Gatta et al., 2009). IVUS is a standard of care for cardiovascular imaging that
also requires rotational scanning. In the work of (Kawase et al., 2007) frequency analysis of
the texture of the IVUS image was used to estimate the rotational speed. Cross-correlations
between image blocks in different IVUS frames was used to track image appearance changes
caused by NURD (Gatta et al., 2009). This local feature, marker-free matching based method
for IVUS was eventually adapted to OCT, using A-line distance (van Soest et al., 2008) or
image block correlation (Uribe-Patarroyo and Bouma, 2015; Abouei et al., 2018). These
iterative matching based methods, however, suffer from accumulating residual error. There-
fore they cannot track the A-line level position error for long scans and are not applicable
to the drift problem. However, the between-frames distortion can be solved by providing a
physical reference point in each B-scan of the frame stream. Ahsen et al. (Ahsen et al., 2014)
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a

b

c

1 mm

Fig. 2.2 Representative NURD correction methods. (a) Marker-based approach that will affect
image quality (Ahsen et al., 2014). (b) focuses on the removal of repeat A-lines in rotational
scanning, which is based on (c) space-frequency analysis algorithms (Mavadia-Shukla et al.,
2020). Adapted from (Ahsen et al., 2014; Mavadia-Shukla et al., 2020).

achieved that by adding extrinsic markers on the OCT sheath and tracking the overall shifting
with the image features of the makers (figure 2.2 a). However, the markers block the OCT
light and thus remove information about the tissue. Intra-vascular stents can also be used as
landmarks that help to register the rotational distortion in OCT pullback videos, however,
this method is only applicable in stent strut assessment tasks (Ughi et al., 2012). Recently, a
correction algorithm based on space-frequency analysis was proposed for endoscopic OCT
to remove repeated A-lines caused by an extreme occurrence of the stretch-shrink distortion,
called stick-slip effect of the torque coil (Mavadia-Shukla et al., 2020) (figure 2.2 b and c).
However, this algorithm is not designed for stretch and shrink distortion when the rotation
non-linearity is not so strong and no repeated A-lines can be seen.

2.2.2 Data Fusion for Rotation Estimation

Similar to iterative NURD estimation, the estimation of attitude angle with integral gyroscope
data also has the problem of drift (Crassidis et al., 2007; Allgeuer and Behnke, 2014). The
integral drift of a gyroscope is usually compensated by another different angle estimation
from sensors such as accelerometers and magnetometers (Justa et al., 2020; Wu et al., 2018;
Gebre-Egziabher et al., 2004; Suh, 2019). While a gyroscope provides excellent information
about rapid orientation changes, it only provides relative orientation changes that gradually
drift with their lifetime and temperature. An accelerometer or magnetometer, on the other
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hand, has a direct measurement of orientation but with lower accuracy. Various classes of
filters were demonstrated to fuse accurate rapid relative (indirect) measurements with less
accurate direct measurements such as with the Extended Kalman Filter (EKF) (Suh, 2019),
the complementary filter (Mahony et al., 2005; Wu et al., 2018; Gebre-Egziabher et al., 2004)
and a gradient-based filter (Justa et al., 2020). In a similar way to the role of an accelerometer
or a magnetometer, another additional overall rotation can be estimated using the data of OCT
sheath images and fused with the NURD estimation, which compensates the accumulative
error.

2.2.3 Video Stabilization

CNN based deep learning approaches are the most widely used framework in computer
vision, and CNN has been applied to tissue layer segmentation (van der Putten et al., 2019;
Li et al., 2019; Yong et al., 2017), classification (van der Putten et al., 2020) and cancer tissue
identification (Zeng et al., 2020) for OCT images. However, there is no evidence of applying
deep learning techniques for OCT stabilization. On the other hand, the literature on video
stabilization is richer for white light cameras than for medical imaging systems (including
the OCT). We seek to fill in the gap between the common computer vision research field and
that of OCT imaging, by relying on the CNN to enhance the efficiency of OCT frame stream
stabilization.

For white light camera video stabilization, there are two types of approaches to model the
problem. One seeks to directly estimate the camera path (position), and the video stabilization
can be considered as a camera path smoothing problem (Grundmann et al., 2011). This
formulation aims to stabilize homographic distortion caused by camera shake, and recently a
deep learning based method has been developed to learn from data registered by a mechanical
stabilizer (Wang et al., 2018c), which shows greater efficiency than traditional algorithms.
The other type of approach models the instability of the video (or frame stream) as an
appearance change (Liu et al., 2014). This modeling methodology can be adapted to different
imaging systems beyond the white light camera. To formulate the appearance change,
features matching algorithms or optical flow (Sun et al., 2010; Ilg et al., 2017) can be used.
A recent study uses deep learning techniques to estimate an optical flow field representing a
shift map of pixels in the video frames, and then applies another CNN regression module
to estimate a pixel-wise warping field from the optical flow field to isolate the effects of
foreground and background (Yu and Ramamoorthi, 2020). This a close approach to part of
our method, as we deploy a branch of CNN to estimate the A-line NURD warping vector
from a correlation map which roughly represents the NURD distortion of a single frame.
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2.2.4 CNN for path searching

An essential step of the NURD estimation is to search for a continuous optimal path with
a large correlation value from a correlation map between two adjacent frames. Solutions
applied in previous OCT stabilization studies (Uribe-Patarroyo and Bouma, 2015; Abouei
et al., 2018; Gatta et al., 2009) are mainly based on graph searching (GS), and rely on local
features of gradients, maxima, textures, and other prior information. This type of technique
is also a traditional way of contour tracing (Sonka et al., 2014). Recently deep learning based
contour prediction techniques (Shen et al., 2015; Bertasius et al., 2015; Yang et al., 2016;
Maninis et al., 2017) have been demonstrated to be faster and more robust than traditional
methods.

The state-of-the-art deep learning models for pixel-wise segmentation are based on
adaptations of convolutional networks to achieve pixel-wise classification. To solve dense
prediction problems such as semantic segmentation, which are structurally different from
image classification, striding and dilated CNN (Yu and Koltun, 2015) is proposed to system-
atically aggregate multiscale contextual information without losing resolution. Path detection
can be achieved with a pixel-wise segmentation architecture (e.g. predict a binary map where
the path position and background pixels have different values). This is a high-cost approach ,
which usually adopts a U-shape CNN (Bertasius et al., 2015; Yang et al., 2016; Maninis et al.,
2017) using up-convolution layers (Zeiler et al., 2011; Long et al., 2015). We deploy a CNN
to predict a single vector representing path coordinates from the correlation map instead of
predicting a pixel-wise path probability map, this approach is efficient in deployment and no
post-processing is required. Moreover, by doing so the continuity of prior knowledge about
the warping path can also be integrated into the loss function for network training.

2.3 Dynamic time warping with A-line level shift error

A rotational scanning OCT catheter captures a continuous stream of A-lines. To reconstruct
full images (i.e. B-scans), one typically makes the assumption that the optical components at
the distal tip of the fiber are rotating with an ideal constant speed. Under this assumption,
the OCT data acquisition system arranges H equally-spaced A-lines to cover a 360 degrees
region in polar coordinates. We consider a reference frame F0 acquired at the start of the
correction algorithm. The newest frame F̃k is composed of H A-lines Ai

k (i ∈ [0,H)), where
i is the position index of a given A-line Ai

k in the image in the polar domain. Note that in
this chapter k indicates the index of the newest data or results, the tilde ,̃ the bar¯and the hatˆ
are used to denote a raw value (original measurement), a prediction and a final estimation
respectively. Because of the scanning artifacts, Ai

k differs from its correct position which
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should be aligned to A j
0 in frame F0, where j is the correct position index. The position

error of A-line Ai
k is expressed as ε i

k = j− i, and composes one element of an error vector
Pk = [ε0

k · · ·ε
i
k · · ·ε

H
k ]T . The Pk can be decomposed to a uniform and non-uniform part as

Pk = rk1+Pa,k, where 1 is a vector of ones, rk is an overall rotation error with respect to
the reference frame. The scalar r̄k contributes to the frame level dynamic shift with respect
to the first frame, and the vector Pa,k is a non-uniform A-line level shifting part, which
contributes to the within-frame nonlinear displacement of individual A-lines in the polar
domain(stretch-shrink distortion). On the other hand, r̄k constitutes to a shaking and drift
between-frames shifting. One should note that it is the variation of r̄k in time (i.e. between
frames) that constitutes the shaking and drift phenomenon.

Considering both the stretch-shrink distortion, shaking and drift artifacts, the position
error Pk of A-lines in the latest raw frame F̃k can be estimated in an iterative way. Given a
position error vector Pk−1 for the previous frame and A-line level shifting vector P̄k between
the two raw frames F̃k−1 and F̃k, each element of the latest A-line position error Pk can be
obtained with an iterative computation operation Φ, as follows:

Pi
k = Φ

(i)(P̄k,Pk−1) = P̄i
k +P j

k−1 (2.1)

j = P̄i
k + i (2.2)

Using these definitions, the previously mentioned stretch-shrink, shaking and drift prob-
lems can be described in terms of values in the relative/indirect between-frame shifting
vector P̄k (instead of using the direct error vector Pk). One can write P̄k = ∆r̄k1+ P̄a,k, where
1 is a vector of ones, r̄k is an overall rotation error with respect to the reference frame.
The scalar ∆r̄k contributes to the frame level dynamic shift with respect to the first frame,
and the vector P̄a,k is a non-uniform A-line level shifting part. Here the stretch-shrink dis-
tortion is represented by P̄a,k, and the shaking and drift is linked to the between-frames
shifting ∆r̄k. Eventually, the position error of each A-line in one frame can be expressed as
Pk = ∑

k
n=1 ∆r̄n1+Φ(P̄a,k,Pa,k−1). Similarly to equation (2.1), Φ(P̄a,k,Pa,k−1) is computed

from P̄a,1. The accumulation of successive non-zero values will provoke a drift, while quick
variations of individual values of ∆r̄k from one image to the next model the shaking phe-
nomenon. Finally, note that computing Pk from the estimated P̄k could accumulate estimation
errors, which could lead to an even more notable drift. This type of issue also exists when
iteratively computing the shifting error vector between the latest frame and the previous cor-
rected frame, due to the residual correction error. In the following subsection, we introduce a
solution for estimating the A-line level shifting error considering these problems.
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2.4 De-NURD networks

The proposed distortion and instability compensation algorithm has a two-branch architecture.
As shown in Fig. 2.3, the upper branch (A) is designed to estimate the non-uniform warping
vector between two consecutive frames. In each iteration of the algorithm, the latest original
OCT image F̃k and the previous buffered original frame F̃k−1 enter a correlation module,
and a correlation matrix Mk is calculated. Then a CNN estimates the shifting vector P̄k from
Mk. One direct way to correct the distortion is to calculate the position error vector Pk by the
iterative computation Φ (see eq. 2.1), and then apply each element of Pk to shift each A-line
of OCT frame F̃k. This works for a temporary period, but the estimation error accumulates
along the processing time.

Similar to how the accelerometers are used to solve the accumulative error of the gy-
roscope dead reckoning, another CNN branch (B) (shown in the red dashed block of Fig.
2.3) is proposed to estimate a direct group rotation value r̄k. Running in parallel with the
branch (A), the input of the lower branch (B) is composed with the newest frame F̃k, previous
corrected frame F̂k−1 and the reference frame F0. F0 is cropped to remove the area outside
the OCT sheath. This allows to take into account only the constant features corresponding to
the sheath, which will not be affected by the outside environment. Since the sheath is almost
transparent and has limited features, it is not suitable for element-wise (A-line level) shifting
estimation, but it still has the potential for a single rotation value that is essential for both
the drift estimation and accumulative error compensation of the branch (A). The relation
between F̃k and F̂k−1 can also reflect the group rotation and these complete frames provide
more features than sheath images. However, using only these two frames will introduce an
iterative drift. Alternatively, by combining the 3 frames as an input, branch (B) can estimate
a robust and smooth group rotation value.

After each algorithm iteration, the group rotation value r̄k is fused with the warping vector
P̄k, and a new estimation of warping vector P̂k is obtained. P̂k is applied to shift each specific
axial line of F̃k to get a corrected frame F̂k. Details of the two-branch CNNs and fusion are
presented following subsections 2.4.1, 2.4.2.

2.4.1 A-line level shifting estimation

To reflect the angular mismatch between the latest frame F̃k and the previous frame F̃k−1,
we compute the correlation between local image rectangular patches from the latest frame
and the previous one. Correlation can better deal with situations when local brightness is
not uniform along the B-scan direction compared with the L2 distance (Uribe-Patarroyo and
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Fig. 2.3 Scheme of the proposed two-branch algorithm architecture for rotational distortion
warping vector estimation. Branch (A) in blue dashed block estimates the shifting vector
with an input of image pair, and branch (B) in red dashed block estimates the group rotation
from the newest frame to reference with an image array as an input.

Bouma, 2015), and using a patch of A-lines instead of single A-lines can reduce the effect of
noise.

As shown in Fig. 2.4, the correlation matrix is obtained in the polar domain. One image
patch f i with dimension h×W ×1 (h ≪ H, W is the width of the OCT frame, and h depends
on the noise level of image, for example h = 3 is a practical value) centered at index position
i (i ∈ [0,H)) of the newest frame F̃k is used for shifting correlation with w image patches
f ′i−w/2+ j in a window of the previous frame F̃k−1, where j ∈ [0,w). Each shifting operation
outputs one array mi, which composes one row of a correlation matrix Mk. Mk has width
w that is equal to the shifting window, and height H equal to the height of F̃k in polar
coordinates. The value of w is a parameter that depends on the maximum shifting error,
which is discussed in the experiment section. For display reasons, the correlation matrices
shown in this chapter are transformed by 255× (1−Mk) (the warped “valley” in the center
of the demonstration correlation matrix is marked out with a white line in Fig. 2.4). If there
is no rotational artifact in the data stream, Mk should have a straight “valley-like” minimum
region in the center. We used the Pearson correlation coefficient oi, j to reflect the similarity
between two image patches f i and f ′j:

oi, j =
∑

n
l=1 f i,l f ′j,l −n f̄ i f̄ ′j√

∑
n
l=1 f 2

i,l −n f̄ 2
i

√
∑

n
l=1 f ′2j,l −n f̄ ′j

2
(2.3)
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Fig. 2.4 Correlation operation between adjacent frames. In the upper part of the figure, the
images are shown in the Cartesian coordinate system for intuitive visualization. For the
angular distortion correction, the images of the sequence are buffered and processed in the
polar domain.

where the pixel index l operates through the rectangular patch n = h×W . f̄ i and f̄ ′j are the
mean values of patch f i and f ′j respectively. To get one element oi, j of correlation matrix
Mk, 3×w×n2 multiplications are operated, thus the correlation matrix calculation for one
frame needs 3×H ×W 2 ×h2 ×w multiplications. Converting the correlation operation into
matrix (or, equivalently, tensor) operations (Jia et al., 2014) is a standard way for computation
acceleration, and is for the convenience of CNN input as well.

Before the operation of shifting correlation, 2 stacks (or, equivalently, 2 tensors) S,S′ ∈
RH×w×h×w are created for correlation acceleration. S and S′ stack the image patches of
current frame and previous frame as shown in Eq.(2.4) and Eq.(2.5).

S =


f H f H · · · f H

f H+1 f H+1 · · · f H+1
...

...
...

...
f 2H f 2H · · · f 2H

 (2.4)
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S′ =


f ′H−w/2 f ′H−w/2+1 · · · f ′H+w/2

f ′H+1−w/2 f ′H+2−w/2 · · · f ′H+1+w/2
...

...
...

...
f ′2H−w/2 f ′2H−w/2+1 · · · f ′2H+w/2

 (2.5)

Since the OCT image stream is acquired by a continuous circular scanning, the generation of
S′ covers 2 areas with w/2 A-lines from the edge of F̃k−2 and F̃k respectively, in addition
to F̃k−1. So f ′i in Eq.(2.5) is sampled from an extended image F ′

L = [F̃k−2, F̃k−1, F̃k]

which concatenates F̃k−2,F̃k−1 and F̃k. The strategy is similar for S. Because one frame is
corresponding to one cycle of circular scanning, the image patch in the bottom can copy the
top A-lines of F̃k when f i exceeds the boundary, which means that f i in Eq.(2.4) is sampled
from FL = [F̃k−1, F̃k, F̃k], where F̃k is reused in the concatenation. This way, Mk is obtained
by 7 multiplications and additions between tensors.

The correlation matrix provides a general interpretation of the angular matching likelihood
between image patches at different positions. In order to handle the situation of missing
correlation and achieve a fast estimation NURD, we propose a CNN based approach to finally
estimate the shifting vector for image correction.

As shown in the blue dashed block (A) in Fig. 2.3, first Mk is computed with a predefined
shifting window (in OCT videos the estimated maximum error value is 15 pixels in the polar
domain, but we increased the margin to ensure the robustness and set the correlation window
as w = 64). Then two convolution sub-branches with different strides extract features from
Mk in parallel and produce hierarchically coarse-to-fine responses.

Both the upper sub-branch and the lower sub-branch of shifting vector estimation nets
have 6 convolutional layers, and a LeakyReLU activation (Maas et al., 2013) is used after
each convolution layer.

The upper sub-branch has unequal strides size and rectangular convolution kernels (from
1st layer to 5th layer), to involve more information in the horizontal direction than the
vertical direction. Importantly, this sub-branch always keeps the vertical stride as 1, which
emphasizes the spatial correspondence (information at/around each row of Mk represents the
angular shift information of F̃k at the same A-line position). By doing so, the front 5 feature
extraction layers can gradually reduce the feature map width from 64 to 1, while maintaining
the feature map height H as input’s height. The depth of each convolution operation’s output
is twice as deep as its input (here we set the output depth of the first layer as 8). The 5th
feature map A5

F ∈ R832×1×128 extracts 128 local features, which could include the minimal
value position, edge, and boundary position. A final layer with kernel size 1×1 and channel
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depth 128, reorganizes the 5th feature map and decreases channels to a sub-branch output P̄′

with size 832×1.
In the ideal situation where the correlation matrix has a good quality (when calculated

with images having dense features), P̄′ can represent the angular mismatching between F̃k

and F̃k−1. However, sometimes Mk can miss valid information for some row mi when there
is no feature in a patch (window) f i of F̃k. In this situation, since the estimation P̄′ has a low
spatial correlation in the vertical direction, the angular distortion estimation at point i of P̄′

can have a significant error. Inspired by the inception module of GoogLeNet (Szegedy et al.,
2015), we introduce another sub-branch that loosens the stride step length in the vertical
direction to 2, expanding the involved vertical spatial information in every convolution. In
each convolution operation of this sub-branch, the output depth is 3 times the input depth.
This form of design has been widely used in CNN to extract high-level abstract features
from images (Simonyan and Zisserman, 2014). A development based on this architecture to
train very deep CNNS is widely used recently (He et al., 2016). Compared with the upper
sub-branch, this lower sub-branch will extract a high-level feature map A5

F2 ∈ R26×1×1728,
which is less sensitive to noise and high-intensity speckle artifacts. A final layer with kernel
size 2×2 re-organizes this feature map, and outputs a matrix P̄′′

m of size 13×64. This matrix
contains 13 groups of path position information, which represent the warping paths of 13
connected small patch areas (size 64×64) of Mk.

The lower sub-branch output P̄′′
m ∈R13×1×64 is reshaped to P̄′′ ∈R832×1 with less dimen-

sions by connecting all 1×64 rows. P̄′′ is concatenated to the upper sub-branch output P̄′,
and then it is operated by a 3×1 convolution kernel (with zero padding on the edges), to
provide the final estimation vector P̄ of adjacent frames.

The loss function for training the shifting vector estimating nets uses the conventional L2

loss function and continuity loss function. A standard L2 loss is described by:

L2 =
1
np

∑
np

i=1 (Pi − P̄i)
2

(2.6)

where Pi is an element of the true shifting vector P (ground truth), and np = 832 is the vector
length. The L2 loss function is commonly used for value estimation, while for this estimation
task, to take into account the prior knowledge on continuity of distortion vector (van Soest
et al., 2008; Ahsen et al., 2014; Uribe-Patarroyo and Bouma, 2015), a continuity loss is added
as follows:

Lc =
1

np −1∑
np−1
i=1 (P̄k,i − P̄k,i+1)

2
(2.7)
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where Pk,i is one element of the vector Pk at index i. By calculating Lc, and combining
it with L2 in the network training, the attraction towards local minima with discontinuous
vector estimation will be suppressed. The final loss for branch (A) is:

LA = αLc +(1−α)L2 (2.8)

where α gradually decreases from a large value to a smaller value in the training process (see
training details in section 2.6).

2.4.2 Group rotation estimation

The CNN branch (B) (red dashed box in Fig. 2.3) estimates an overall rotation from an
image array. This branch consists of a contracting path, an expansion path, and a fully
connected layer. There are two encoder layers (indicated by convolution in red color) in
the contracting path and two decoder layers (indicated by convolution transpose in green
color) in the expansion path, and both the encoder and decoder layers are connected with
LeakyRelu activation.

The encoder layers are used for learning the contextual feature hierarchy. On the other
hand, the decoder layers use transposed convolution (also referred as up-convolution (Long
et al., 2015) or de-convolution (Zeiler et al., 2011)) to perform the refinement, and they are
concatenated with the corresponding encoder blocks. In this way, the multi-scale information
passed from low-level local feature maps to high-level coarser feature maps is preserved.
This form of architecture has been used to estimate optical flow in white light camera videos
(Ilg et al., 2017), which is quite similar to the problem of estimating the overall rotation in
the OCT data stream. The difference in OCT videos is that the Aline shifting only occurs in
one dimension thus another dimension of optical flow should be constrained. Our method
of reorganizing the three multi-scale feature maps is to apply three small kernels with 1×1
strides to reduce their channel depth from 512 to 1, and then apply average pooling to each
fine local estimation to get equally resized 4×1×1 estimations. By doing so, higher scale
estimation R̄′′ and R̄′′′ are aligned to coarser estimation R̄′. A fully connected layer is used to
interpret the estimation from three scale levels to get a final robust estimation ∆r̄k, and the
overall rotation is obtained by r̄k = r̄k−1 +∆r̄k .

The loss function for training the group rotation estimating nets in the branch (B) is a
multi-scale loss, because it should not only ensure the estimation accuracy in the final output
of ∆r̄k, but also maintain the accuracy of higher scale estimation in a certain level:
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LB =β1 |∆r−∆r̄k|+β2
∣∣∆r−∆r̄′k

∣∣
+β3

∣∣∆r−∆r̄′′k
∣∣+β4

∣∣∆r−∆r̄′′′k
∣∣ (2.9)

where ∆r̄′k is the mean of the 4×1 estimation vector R̄′ extracted from the final encoder
result, ∆r̄′′k and ∆r̄′′′k are the mean of estimation vectors resized from 26× 32 map and
104×128 map respectively. The weights βi are adjustable during the training process, but
β1 remains predominant (see training details in section 2.6). For instance, one practical
set of weights is β = [0.5,0.3,0.1,0.1]. It is worth mentioning that besides the merit of
improving the generalization by ensuring the accuracy at different scale levels, this design of
loss function can also improve the convergence in the network learning process.

2.4.3 Fusion and online correction

The proposed online rotational distortion correction algorithm takes 3 buffered historical
frames as an input, and estimates the NURD vector P̄k between adjacent frames, and group
rotation r̄k between the reference frame and uncorrected frame. The fusion of P̄k and r̄k

can be considered as the problem of fusion between an integral indirect variable with high
accuracy and another robust direct variable. Practical filtering techniques to solve this kind
of problem can rely on a form of probabilistic fusion like the extended Kalman filter, or
alternatively use complementary filters (Allgeuer and Behnke, 2014). For computational
efficiency and robustness, we use the concept of a PI Complementary Filter (Mahony et al.,
2005) to fuse the P̄k vector with the r̄k value. The complementary filter has been widely
used as an efficient way to fuse the data of gyroscopes and accelerometers, which combines
high-pass easily drifting measurements with low-pass stable measurements to form a robust
high bandwidth estimate of the rotational attitude (Mahony et al., 2005).

A discrete form of PI complementary filter for algorithm implementation can be expressed
as:

P̂k = kpΦ(P̄k, P̂k−1)+(1− kp)r̄k1+ kiIk (2.10)

Ik = Ik−1 +(r̄k1− P̂k) (2.11)

where kp and ki are PI compensating gains. Ik is the integral component vector. 1 is a vector
of ones. Φ(P̂k−1, P̄k) is the element-wise reckoning operation in formula (2.1). Each element
P̂k,i of the final warping vector P̂k represents the angular shift between the position of the ith

A-line of F̃k and its correct position in polar domain. Here, by applying this fusion filter to
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estimate the current frame’s rotational distortion warping vector, the drift error of P̂k can be
well suppressed.

2.5 Reference registration for internal pullback stabiliza-
tion

A

B

C

sheath

sheath

sheath

sheath

ruler

ruler ruler

ruler

ruler

OCT catheter 
probe

Fig. 2.5 (A) Setup for sheath registration. (B) Original registration data in front and side 3D
views. (C) Calibrated registration data in front and side 3D views.

The aforementioned techniques are suitable for robotic pullback scanning where the distal
optics is moving together with the protecting sheath. Because in this situation the relative
location/orientation between the sheath and focus lens is still, and one singular B-scan can
perform as the reference frame for the drift compensation. In conventional pullback scans
the lens will move inside the protecting sheath, thus one reference frame is not sufficient. To
resolve this, the overall rotation can be observed by matching real-time sheath images with
pre-recorded reference sheath image buffer instead of a single reference frame. However,
when using unstabilized pullback scanning to record the reference sheath images, it still
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suffers from rotational distortion. To ensure that the orientations of reference frames are
correct, we follow a calibration procedure.

The setup of the sheath registration/calibration is shown in Fig. 2.5 (A), which relies on
an external calibration object with periodic patterns (a straight and flat ruler). As shown in
Fig. 2.5 (B), the raw reference data originally has rotational distortion, which shifts both the
ruler and sheath images to the wrong direction. We extract the contour surface of the ruler
and align the raw reference frame stack by minimizing the surface distance of all frames.
By doing so, the rational error of the raw reference volumetric data is reduced from 59.4◦

to 2.79◦ (see Fig. 2.5 (C)). This calibrated reference data composes one of the inputs of the
overall rotation estimation. Another input is composed of real-time B-scans, where the image
outside the sheath is masked out and only the sheath part is used.

A sheath image stack Sr ∈ RH×W×N (N is the number of frames in the entire reference
stack, which is also equal to the maximum frame number of a real scan applying the OCT
catheter) is recorded for the conventional internal pullback scanning. To compensate drift
of F̃k, the reference frame is no longer the F0 from the beginning, instead it is a image F0,k

taken from Sr. F0,k is switched in real-time depending on the location of the lens inside the
protecting sheath that is associated with the index of the raw B-scan.

2.6 Data and network training

In medical image processing, there is often limited availability of open-access training sets
due to ethical and practical reasons. It is even more complicated for the OCT artifacts, since
it is impossible to label the A-line level shifting within in vivo videos without the presence
of strong artifacts and landmarks (e.g. a stent), and no public data set with ground truth is
available. Using a calibration phantom might increase the accuracy of ground truth annotation.
However, it will be difficult to manufacture a variety of such calibration phantoms covering
different tissue or material types that allows to afterward generalize to real tissues. For
these reasons, we trained the networks of the proposed framework with semi-synthetic OCT
videos by intentionally shifting each A-line in real OCT images (see details in subsection
2.6.2). In this way, the distribution of rotational distortion in the data can be adjusted to cover
the real distribution, but the distribution of scanning noise (e.g. speckle noise, Gaussian
noise) is not simulated. To solve this, we used a variety of image augmentation strategies to
mimic the real scanning noises (details in subsection 2.6.3). We test the trained networks on
both semi-synthetic videos and real videos. Additionally, we collected in vivo pre-clinical
and clinical OCT videos, which are not included in the training dataset, to evaluate the
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generalization and robustness of the framework to previously unseen data. This section
describes the experimental setup, data generation and network training.

2.6.1 OCT data sources

We have applied a data set synthesis strategy to generate training image sequences by
intentionally distorting real OCT images. We used previously published data obtained
with low-profile OCT catheters in the cardiovascular system (Wang et al., 2015) and the
respiratory system (Lee et al., 2011), as well as with a capsule OCT catheter in the digestive
tract (Gora et al., 2013) (5000 images in total). In addition, OCT videos are also collected
using the custom endoscopic OCT system introduced in Chapter 1. Volumetric OCT data was
collected using an internal pullback of the probe (1K images) or by pulling back the whole
sheath during 2D rotational scanning (1K images) in a rectangular phantom tube with known
geometry (Fig. 2.6(A)). The same OCT probe was also used for endoscopic examination of
a colon phantom custom made to represent optical properties of the normal and diseased
colonic tissues (Zulina et al., 2021) (shown in Fig. 2.6(B)), where a continuous stream of 2D
images (3K) with no pullback was displayed in real-time for inspection. We split all the OCT
images (including published and self-collected videos) by 7: 2: 1 into training, validation,
and testing data.

2.6.2 Semi-synthetic OCT for training

To train the warping vector estimation nets in branch-A, we generated image pairs, while to
train group rotation estimation nets in branch-B, we generated image arrays.

Image pairs with element-wise shifting

To generate one training pair (two images) for the warping vector estimation network (branch-
A), we first take one OCT image from the database as the initial image. Then each individual
A-line within this initial image is shifted by a warping vector Ps. The distorted image is
paired with the initial one as network input, while Ps performs as ground truth in training. Fig.
2.7 shows several training pair samples generated from public and self-acquired original OCT
images. Ps is randomly drawn from a distribution that should be representative of distortions
in real situations. This distribution is estimated by applying the Graphic Searching (GS)
algorithm (Abouei et al., 2018) to real videos and measuring the warping vector P̄t . The
GS algorithm search an optimal continuous path within the highest correlation value within
the map and is a learning-free algorithm. By doing so, an estimated maximum value mt of
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Fig. 2.6 Endoscopic OCT data acquisition. (A) The OCT probe inserted in the rectangular
phantom. (B) A steerable OCT catheter is inserted in an instrument channel of a robotized
interventional flexible colonoscope, and it is applied to scan a colon model. (C) The steerable
OCT catheter is applied to in vivo testing of a swine colon. (D) The experimental setup of
the colon model.

rotational shifting is obtained. In our case, mt = 15 pixels in the polar domain. To ensure
proper coverage of extreme cases, we chose a maximum value ms = 25 pixels.

Each element of the synthetic warping vector Ps is uniformly sampled in the [−ms,ms]

range. To guarantee the continuity of the synthetic warping vector, a 1D Gaussian filter is
applied to smooth Ps, and the filtering parameter (sigma) is randomly chosen from 3, 5 or 7.

Image arrays with group rotation

The training set for group rotation contains image arrays and corresponding group rotation
ground-truth values rs. One input image array for the pure group rotation estimation nets
is built from 3 images that are cropped and resized: the reference image F0, algorithm
stabilized image F̂k−1, and newest distorted image F̃k (see Fig. 2.8). To generate such image
array, first, one reference frame is directly selected from the original image database, the
left part of F0 is cropped out to keep rightmost region of shape H ×0.2W of the image. As
for mimicking the newest unstable frame, the reference frame F0 is distorted to F̃0 with
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Fig. 2.7 OCT image pairs of the generated data set in polar domain. Local areas of each pair
are enlarged to highlight the distortion. (A) An image pair generated from OCT image with
fiducial markers (Wang et al., 2015), so that horizontal strips can be screened in the OCT
image. (B) Ordinary OCT image pair without the marker. (C) In the source images of this
pair, the sheath has been cropped out (Lee et al., 2011), but these images are still useful for
algorithm training.

a random warping vector Pa = Ps − pm, where the mean value pm of Ps is removed. Then
the distorted F̃0 is rotated by a group rotation value rs to get F̃k. In the acquired videos the
estimated maximum rotation between two adjacent frames is 15 pixels in the polar domain
image, and considering the estimation error, we set the rotation limitation to 35 pixels to
cover the distribution and ensure robustness. rs serves as the ground truth in the learning
process. In the ideal situation, F̂k−1 could be a copy of F0, however, F̂k−1 is taken from the
algorithm output where residual correction errors are expected. To prevent the networks from
“over-trusting” the stabilized frame, a small random correction error value δ is used to shift
the synthetic stabilized frame F̂k−1 (the tuning of δ in the training process is presented in
subsection 2.6.3).
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Fig. 2.8 OCT image arrays generated for training of group rotation nets, on each row from
left to right are: latest raw frame F̃k and previous stabilized frame F̂k−1, cropped and resized
latest frame F̃k, cropped and resized reference frame F0. (A) is an example of images with
OCT sheath, so a normal cropping is used. (B) is an example of lung airway OCT images
(Lee et al., 2011).

2.6.3 Training process

The training pipeline is implemented with Nvidia Qt1000 graphic card and Intel i5-9400H
CPU. The code is implemented using the Pytorch framework (Paszke et al., 2017) for tensor
operation and gradient backward propagation. We adopt the following implementation
choices: Batch Normalization (BN) is used right after convolution and before activation
(Ioffe and Szegedy, 2015), dropout is not used (Hinton et al., 2012) and weight initialization
is performed following the method described in (He et al., 2015). The final result is hardly
affected by the optimization method, both Adam (Kingma and Ba, 2014) and Stochastic
Gradient Descent (SGD) solvers can fine-tune the networks’ weights. The results presented
in this chapter are trained with the SGD weights optimization method (we used a weight
decay of 0.0001 and a momentum of 0.9). We first pre-trained the networks on a small dataset
to improve the efficiency of determining hyper-parameters and reducing time consumption
(Bengio, 2009). We created two small training sets in order to train branch A and branch
B, respectively. 16 images were randomly selected (4 from each cardiovascular, digestive,
lung, and colon phantom image), and 500 warping vectors Ps and shifting scalars rs were
randomly generated. In total, both sets feature 8000 image pairs and 8000 image arrays for
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Table 2.1 Parameters values for the different training stages (SDS: Small Data Set, OLG:
On-Line Generating, S1: Stage 1 of OLG, S2: Stage 2 of OLG, S3: Stage3 of OLG; LR:
Learning Rate, BS: Batch Size).

SDS
OLG

S1 S2 S3

LR A 3×10-4 3×10-5 3×10-6 1×10-8

BS A 50 20 8 2
α 0.2 0.1 0.1 0.02

LR B 5×10-4 5×10-5 5×10-6 1×10-8

BS B 20 10 6 2
δm 0 0 0 ±4.32◦

β

β1 0.25 0.3 0.4 0.5
β2 0.25 0.3 0.3 0.3
β3 0.25 0.2 0.15 0.1
β4 0.25 0.2 0.15 0.1

warping vector learning and group rotation learning respectively. After the networks of the
two branches converge on this small data set, training pairs and arrays are generated online -
an image pair or array is never seen twice during training.

Data augmentation

Data augmentation is vital for machine learning algorithms to avoid over-fitting and enhance
robustness. After image pairs and image arrays are generated, we additionally enable data
augmentation online for training. Geometric transformations (shift in 2 directions, and
scaling in the polar domain) are applied equally to each image within image pairs or image
arrays. For the group rotation training array’s translation augmentation, the rightmost part
in the polar domain (the central part in Cartesian coordinates) is kept, to ensure that mainly
sheath features exist in this area because this branch of networks primarily relies on the
sheath features to estimate a group rotation value. Noise addition, and brightness and contrast
modification are also applied to OCT images. This kind of pixel intensity modification is
applied differently to each image of a generated pair or array.

Gradual parameter tuning

Besides the training mode switching strategies, several parameters are gradually changed
from the beginning to the final fine-train stage. Table 2.1 gathers the parameters used initially
for the small data set (SDS) and online data generation (OLG). The fine-training on data with
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Fig. 2.9 The estimation error in the different training stages. The error is reported in pixels,
and each pixel in polar coordinates corresponds to 0.432◦ The sub-plots in the top row are
the training errors of the two branches with a small dataset (SDS). The average validation
errors in 3 stages (S1: stage1, S2: stage2, S3: stage3) of online data generation (OLG) are
presented in the sub-plots below.

Table 2.2 Mean square error value in different synthetic video tests. The unit of all values is
Pixel2, and each pixel in Polar coordinates represents 0.432◦.

GS Proposed
Noise Noise+Spec. Noise Noise+Spec.

Vascular 20.05±18.50 48.68±72.93 1.88±1.04 6.43±3.59
Air Way 35.39±64.89 58.27±105.2 3.98±2.45 9.24±5.60
Digestive 66.61±224.8 354.8±461.8 6.44±4.50 28.5±13.2
Phantom 19.57±16.51 41.40±39.86 1.21±0.73 5.23±2.56
Model 36.26±25.90 71.09±81.11 1.68±1.00 9.31±5.30

on-line generating (OLG) is divided into 3 stages, where the learning rate, data batch size,
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Fig. 2.10 Heatmap of warping vector estimation mean error (the unit of scale bar is pixel).
The columns from left to right are from 5 groups of semi-synthetic videos generated with:
cardiovascular, lung air way, digestive tract, rectangular phantom, and tissue phantom OCT
images. The proposed method is compared to GS method against two conditions: mimicking
high intensity A-line speckles, or adding noise (including Gaussian, pepper&salt and shot
noise).

max/min limitation δm of additional rotation δ , continuity loss weight and multi-scale loss
weight β = [β1,β2,β3,β4] are gradually modified. The training on the small data set takes 2
hours to converge, whereas the training with online data generation approximately takes 48
hours to flatten the variation of loss value. Fig. 2.9 shows estimation loss in different training
stages. The sub-windows in the top row present the training loss of the two branches on the
small limited data set, where the group rotation learning of branch (B) takes more time to
converge compared with the warping learning of branch (A). In the online data generating
mode, we calculate the average estimating error after each iteration using generated image
pairs and image arrays from the validation database, where the validation data batch size is
equal to the training batch size. Each time when the average validation error converges to a
small value, the parameters are tuned and the training pipeline switches to another training
stage. The whole process reduces the average validation error of branch (A) and branch
(B) to approximately 0.1 and 3 pixels respectively (1 pixel in the polar domain represents
0.432◦ in the Cartesian domain), and at the end of the training stage 3 the gradient of the loss
function is close to zero.

2.7 Evaluation experiments

All the trained CNNs are deployed with Python codes on Ubuntu 18.04.4 system with the
same computer used for training. The networks in branches (A) and (B) take 40 ms and
10 ms respectively in parallel mode, the correlation costs 96 ms with parallelization, and
the fusion and warping process additionally take 9 ms. The processing time of an entire
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algorithm iteration is therefore 145 ms. After the network training, the correction algorithm
is tested on both synthetic videos and real videos (on phantom and in vivo) to assess its
performance.

2.7.1 Accuracy assessment

Semi-synthetic videos for testing are generated with individual original OCT images, and
each of them contains 501 frames. To generate one semi-synthetic video, one image is
selected from the validation database to be the first frame, and then 500 warping vectors
P are randomly sampled with a limit value of 8.65◦ (corresponding to 20 pixels), and 500
group rotation deviation values ∆r are randomly sampled with varying limit values (for a
period of a synthetic video, the group shift variation is limited to a positive value; while for
another period, it is limited to a negative value). Then the first frame is iteratively rotated
with ∆r and then distorted with P to simulate a video stream.

In the state-of-the-art rotational artifacts correction algorithms, tracking-based approaches
(Abouei et al., 2018) are more suitable for the scenario when both stretch-shrink and shaking
artifacts exist. Tracking-based algorithms are less threshold sensitive in comparison to within-
frame space-frequency analysis-based algorithms (Mavadia-Shukla et al., 2020), especially
if there are no visible repeated A-lines. Based on these factors, we compare our proposed
method to the GS based method (Abouei et al., 2018), which is capable of A-line level error
estimation and correction.

The estimation Mean Square Error (MSE) value of each frame in videos is calculated by
using true vectors as references, and the results are shown in Table 2.2. The proposed method
is compared to GS under two conditions: adding noise (including Gaussian, pepper&salt, and
shot noise), and mimicking high-intensity A-line speckles in every B-scan. The deep learning-
based algorithm surpasses the GS based method in all of these situations, and estimation
errors are one or two orders of magnitude lower than the GS based method. Among these
videos, the performance in digestive tract OCT suffers more from speckle artifacts due to
the limited features in capsule OCT images, and also due to the reduced resolution in the
available public videos. But still, the proposed method has a lower MSE than GS method
(9.24±5.60 vs. 354.8±461.8 pixel2). Mean error heatmaps of 5 videos in different scenarios
are shown in Fig. 2.10, where the estimation error of every individual frame (2500 frames in
total) are presented. The GS method is affected by the addition of speckle artifacts, and more
occasionally has significant estimation errors (larger than 12 pixels) in comparison to the
proposed method, which maintains estimation errors under 3 pixels in most cases.

Figure 2.11 shows examples of warping vector estimation within the 832×64 correlation
matrices. The vector estimated by the proposed algorithm (red line) is closer to the ground
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Fig. 2.11 Comparison of warping vector estimations. Images in each row (from left to right)
are the source image for video synthesis and two 832×64 correlation matrices of adjacent
frames. In each correlation matrix, the white line indicates the ground truth vector, the green
line indicates the result of a GS algorithm(Abouei et al., 2018), and the red line indicates the
estimation of the proposed algorithm. The dashed yellow circles highlight situations when
the GS based method has a larger error than the proposed method. Images from top to bottom
are results of synthetic videos generated with different original images: (A) Rectangular
phantom, (B) Cardiovascular system, (C) Digestive tract, and (D) Lung air way OCT images.

truth vector (white line) than the vector obtained by the GS algorithm (green line). In the
yellow dashed circles in Fig. 2.11, a significant estimation error of the GS algorithm can be
seen. The reason for this is that in the correlation matrix the "valley-like" feature which the
GS algorithm highly relies on is not obvious. Cases (C) and (D) are more problematic for
path searching, since some part of the original OCT image does not have adequate features
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Table 2.3 The mean value and variance of STD value of different algorithm’s output in
rectangular phantom video.

Original GS
Proposed Algorithm

Branch-B kp = 0.55
ki=10-3(P1) kp = 0.85

ki=10-4 (P2) kp = 0.95
ki=10-5 (P3) Branch-A

σ3
mean 13.06 9.375 11.82 8.108 7.152 7.277 8.407
variance 9.571 7.612 4.925 2.306 1.685 1.682 3.192

σ10
mean 19.18 15.35 16.74 13.68 12.61 12.78 14.26
variance 9.470 8.873 5.021 3.377 2.720 2.673 3.780

σ17
mean 21.21 17.90 18.89 16.07 15.02 15.22 16.30
variance 8.448 9.076 5.389 4.143 3.181 2.978 3.662

(A)

(B)

(C) 0.05

1.00

Fig. 2.12 En-face image comparison of synthetic videos before correction and after algorithm
correction . The color bar indicates the intensity scale normalized by the maximum value.
Images in each row (from left to right) are the source image for video synthesis (in polar
coordinates), the en-face image of synthetic video and the corresponding en-face image of
the stabilized video. Images from top to bottom are results of synthetic videos generated
with different original images: (A) Rectangular phantom, (B) Digestive tract and (C) Lung
air way OCT images.

for correlation. In these situations, the value of path searching diverges frequently from the
true value. Nevertheless, the CNN estimated warping vector can still follow the ground truth.

We obtained mean value en-face projections (Abouei et al., 2018) of the OCT videos
where each A-line is accumulated to one single value after the sheath part is cropped out,
so that the OCT data stream in the polar domain is projected into 2D images. In this case,
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Fig. 2.13 The STD value of videos from different algorithms’ output. The top row and bottom
show curves of σ3 and σ17 and corresponding statistical box-plots respectively.

the vertical Y axis corresponds to a circumferential scanning (B-Scan) and the horizontal
X axis corresponds to a longitudinal volumetric scanning (3D Scan) or time. Fig. 2.12
shows results of the proposed two-branch networks with fusion parameters kp=0.85 and
ki=0.0001. Before the algorithm correction, the rotational artifacts existing in the synthetic
video are visualized by a combination of overall intensity shift and local fluctuation along
the longitudinal direction of en-face projections. After the algorithm correction, the overall
shift is eliminated, so that horizontal straight line patterns can be seen in the en-face images.
Moreover, the local fluctuation is significantly reduced by 86% in polar domain (measured
by the deviation of max intensity points between 2 adjacent frames).
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Fig. 2.14 Correction algorithm test on objects with symmetrical shapes. (A) scanning
correcting in a rectangular hollow hole. (B) Results for a tube with 4 equally distributed
edges. 3 sequential OCT images are assigned to 3 RGB channels of color images. We select
channels with obvious artifacts and connect the image corners with dash lines (using color
corresponding to the RGB channel) to highlight the object position and the general shape.
Part of the images is enlarged for better visualization. The yellow asterisk marks out the
guide wire shadow.
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Fig. 2.15 Results from the anatomical colon model by robotic displacement of the catheter
with the experimental setup shown in figure 2.6. (A) shows mean value en-face projections
of a scan around a polyp, and two exemplary cross-sections re-sliced along the translation
axis. Re-slices from two locations (indicated by red and light-green dashed dot lines) are
presented. The intensity scale of en-face projection images is normalized by its maximum
value. (B) Exemplary rotational cross-sections were obtained from three positions marked by
gray lines. In each position three consecutive frames are encoded in RGB. The presence of
significant colorful pixels caused by artifacts is pointed out by yellow arrowheads. Asterisks
mark out over-stretched images, that appear in the GS output.
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2.7.2 Robustness assessment

We assess the robustness of the proposed method by qualitatively evaluating the drift reduc-
tion, geometric distortion reduction, as well as quantitative metrics. Synthetic videos provide
direct ground truth for validation, while in real OCT videos only objects with significantly
distinguishable geometries can provide reliable reference value/ground truth. When no
guaranteed distortion ground truth value is available, we calculate the normalized Standard
Deviation (STD) σ to estimate the correction performance (van Soest et al., 2008). The
definition of STD is:

σn =
1

Nsig
∑

Nsig
i=1, j=1 σ̄( fi, j) (2.12)

where n is the number of frames in the stack for calculation. σ̄( fi, j) is the standard deviation
calculated with pixels fi, j in one stacked frame stream, i and j are selected pixel indices
in horizontal and vertical axis respectively. Nsig is the number of pixels used to calculate
σ̄ . Since different noises and uncorrelated high intensity speckles occur in different frames,
alignment algorithms are expected to decrease the STD value, but not to zero (van Soest
et al., 2008).

Benchmark quantitative evaluation

For quantitative evaluation of the performance of the CNN based algorithm we use a stream
of 2D frames obtained by pulling back the catheter in the rectangular phantom with a known
geometry while maintaining a constant orientation of the catheter (Fig. 2.6 (A)).

Fig. 2.13 shows the results of STD values with different frame stack lengths. We analyze
the instability over both a short-term period with σ3 and a longer period with σ17. Here
STD curves of the original video, the video corrected by the conventional GS algorithm, and
videos corrected with two parameter combinations, referred to as “P1” and “P2”, are shown.
The “P1” parameters combination is given by kp=0.55 and ki=0.001 and it is introduced to
assess the behavior of the algorithm when relying more on the group rotation estimation
branch. Parameter combination “P2” is the same as the one used for accuracy assessment in
section 4.1. Both the parameter combinations obtain better correction results than the GS
algorithm in both σ3 and σ17. Detailed statistic analysis of STD is presented in Table 2.3,
which shows the mean value and variance of STD with different stack lengths σ3, σ10 and
σ17 of different algorithms outputs. Under these metrics, the proposed algorithm has better
performances compared with the graphic path searching algorithm regardless of the choice
of fusion parameters, except when disabling branch (A). Generally, compared with the fusion
parameters kp=0.55, ki=0.001 (combination “P1”), which already have a considerable video
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Table 2.4 Evaluation on different symmetric objects. 3 metrics are used for evaluating the
algorithm performance on 6 different objects.

symmetric similarity(↑) shape corner angle error/◦(↓) orientation error/◦(↓)
original corrected original corrected original corrected

rect plastic 0.857±0.030 0.905±0.025 18.26±4.471 10.50±3.499 42.72±16.63 2.043±0.606
folded paper 0.797±0.040 0.903±0.021 27.12±5.894 12.40±2.547 4.088±3.548 1.146±0.675
3D printed 0.863±0.023 0.936±0.023 17.93±5.649 11.00±3.802 8.247±9.973 0.879±0.455
rect PVC 0.824±0.056 0.895±0.039 23.92±9.902 12.16±4.600 15.40±15.77 1.920±1.059

4-edge tube 0.867±0.070 0.944±0.034 16.48±10.57 6.948±3.240 8.978±11.64 1.906±1.450
spline connector 0.860±0.047 0.949±0.025 23.12±13.45 8.220±4.466 18.62±21.89 1.755±0.634

correction ability, larger kp and smaller ki make the fusion algorithm rely more on branch
(A), which can improve the correction in the short term, reducing the short term STD mean
value significantly (combinations ”P2” and ”P3” in Table 2.3). However, if the weight of
branch (A) is tuned up to over-rely on the warping vector estimation branch (when kp=1.0,
ki=0, last column of the table), not only the geometry of individual images will be distorted
due to the drift error, but also the performance on STD reduction will be affected because of
lacking compensation of branch (B).

To evaluate the performance of the proposed method on real scans we collected scanning
data from validation objects with different symmetrical geometries (i.e. square and rectangle)
and materials. It is worth mentioning that none of these data were seen in the training
process of the CNNs. Three metrics are used for the evaluation of symmetrical objects. First,
we calculate the euclidean similarity of symmetric face/edge. The formula of symmetric
similarity is Sim = (∑ |⃗bi|/(|⃗bi|+ |⃗ai − b⃗i|))/n, where n is the number of symmetric pairs,
a⃗i and b⃗i are a pair of vectors generated by symmetric key points that should therefore be
identical. The second metric is the sum of shape corner angle errors, where the ground truth is
the ideal corner angle of a multi-face object (i.e. the ground truth for a rectangular tube is 90◦).
The third metric is the orientation error, which is calculated by subtracting the orientation
of the reference frame. Table 2.4 shows the evaluation with these 3 metrics on 6 types of
objects. They are a plastic object with a rectangular hole, a multi-face object manufactured
with paper, a 3D printed tube, a rectangular tube manufactured with Polyvinyl chloride (PVC)
material, a round tube with 4 equally distributed outside prongs, and a spline connector
that has a symmetric hole. In the original videos the objects are distorted but still have a
certain level of symmetry (around 0.85 symmetric similarity value). However, the shape
corner angles are affected with large errors (with the highest error around 27.12± 5.89◦).
The proposed algorithm restores the geometric shapes of all the scans, and the symmetry
scores increase above 0.90. The reduction of the shape corner angle error is obvious. For the
worst case, the algorithm is still able to half the shape angle error, i.e. for an object with 4
corners the total angle error is restored to around 10◦, which means that the average shape
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angle error is reduced to 2.5◦. We also compare the orientation error that reflect the drift and
shaking artifacts. These artifacts cause large orientation errors in the original scans with high
variation (the higher error is 42.72±16.63◦). These errors are significantly reduced by the
proposed algorithm with average errors around 2.0◦.

We present qualitative samples of Table 2.4 in Fig. 2.14. Fig. 2.14 (A) shows the scanning
in the plastic rectangular hollow hole. 2.14 (B) shows results for the round tube with 4 equally
distributed edges. 3 sequential OCT images are assigned to 3 RGB channels of color images.
We selected channels with obvious artifacts, and connected the image corners with dashed
lines to highlight the object’s position and general shape. Images in the original and corrected
sequence are shown for the same time indexes. For the rectangular shape, distortion can be
observed as the change of the corners, the straight edges and the nonalignment of sequential
channels. For the round tube, the distortion is easy to be obtained by the distribution of the
corner and the frame level nonalignment as well. In the corrected output, the ”colorful” parts
that indicate nonalignment are significantly reduced, and the correction of the distortion can
be visually observed by comparing the corner points’ position and the corner shapes.

For some scans, we attached a guide wire to the OCT probe that could block the light in
some directions (shadow indicated by the yellow asterisk marks in Fig. 2.14 (B)). It can be
seen that the guide wire artifacts did not affect the algorithm correction on the other parts of
the image.

Qualitative tissue phantom evaluation

We collected OCT data stream during translation of the OCT probe inside an anatomical
colon model using the robotized interventional endoscope (2.6(D)). The probe scanned the
colon lumen lengthwise near a polyp (figure 2.6(B)). The en-face projections and exemplary
cross-sections re-sliced along the translation axis show the instability of the original scan.
Although the GS-based algorithm reduces high-frequency instabilities, some instabilities are
still visible (Fig. 2.15 (A)). In comparison, the proposed algorithm reduces the fluctuations
and “smooths” the tissue surface and also keeps the intensity distribution of the original
en-face image.

For a benchmarking object, the image features are stable and the standard deviation
(STD) accurately reflects the NURD. However, in a scanning scenario of tissue phantom, the
cross-section features can change. In this case, metrics like STD are no longer valid, as the
change in the features itself can result in an increased STD value. Due to this reason, we
only qualitatively analyze the influence of the stabilization method on A-line distribution per
frame and in adjacent frames. In this experiment, three consecutive frames were assigned to
one of three channels of the RGB image and overlapped (Fig. 2.15(B)). Compared with the
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initial image sequences with rotational artifacts (represented by the colorful pixels and the
non-uniform orientations), the proposed method stabilized well the image sequences, while
maintaining information about the tissue characteristic and the relative distance between the
scanning center and tissue surface. A side-by-side comparison shows that the GS method
works fine at the beginning of the scanning (colorful pixels are reduced), but the drift error
grows when the OCT probe moves and introduces an extra distortion to the original image.
When estimation error is large, the OCT image will be over-stretched, and repeated A-lines
can be targeted in the correction results (seen from the tissue surface marked by asterisks in
the middle rows of figure 2.15(B)).

2.8 Generalization to unseen in vivo data

To evaluate the generalizability of the proposed method on unseen data, we collected OCT
data using a steerable OCT catheter compatible with a robotized interventional colono-
scope (Mora et al., 2020) in in vivo swine experiments (Fig.2.6(C)). The animal test
was approved by the Institutional Ethical Committee on Animal Experimentation (MESR:
#2016072209464427).

In the in vivo animal test the catheter was placed at one position upon the colon tissue, and
thus the tissue image should remain at a constant orientation. Overall rotation of the original
animal test video is visible in en-face images (see the shift of max intensity position in the
first row of Fig. 2.16 (A)), which has a max vertical shift of 219 pixels within the longitudinal
scan (measured by the shift of the max intensity point through the whole en-face projection).
Compared with the conventional GS algorithm, which still has an orientation shift of 139
pixels, the proposed algorithm can better warp the “curve of max intensity” to a straighter
line with only a small variation of 10 pixels, which reduces 91% of the rotational error.
Each row of Fig. 2.16 (B) shows cross-sectional OCT images taken from this data stream at
different positions, where rotational artifacts can be targeted. The proposed method corrects
the angular errors without changing the quality or other information of the images. To test
the proposed method in clinical OCT images, following the data reuse agreement we applied
the correction algorithm to OCT images collected previously in two subjects with a tethered
capsule endomicroscopy (TCE) in a human trial approved by Institutional Review Board
(IRB: #2011P002619). In the TCE technology, a rotational scanning OCT probe is enclosed
in a distal capsule and a tether that connects it to an external OCT system (Gora et al., 2013).
After the capsule is swallowed, typically up to four volumetric OCT images of the esophagus
are collected when the capsule descends to the stomach and is pulled up in the esophagus.
Bending and tension applied to the tether can add image artifacts. Figure 2.17 shows the
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Fig. 2.16 Results obtained for unseen in vivo data. (A) En-face projection comparison
(normalized intensity scale), and images from top to bottom row are original projections,
results of the GS algorithm and results of the proposed algorithm. (B) 2D cross-sectional
images corresponding to the gray lines in en-face projections; The red dashed circles enlarge
the area where additional distortion is introduced by the GS method, while the proposed
method corrects the geometric orientation without affecting the image quality. The dashed
white arrow lines point to the direction of the tissue.
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Fig. 2.17 En-face images (normalized intensity scale) of OCT data collected in the clinical
trial with the tethered capsule OCT catheter. The first and second columns show the same
region from 2 scans on the same patient, one with the capsule descending the esophagus
and the other with the capsule being pulled up. The third column shows a section from the
second ascending scan in the distal part of the esophagus where the original scan has strong
drift artifacts. Red arrowheads point to large non-alignment caused by artifacts. The red star
marks out small instabilities. Red arrows point to the same visible lesion. Asterisks mark out
incorrectly deformed parts of the en-face images, that appear in the GS output.

results of correction with the proposed algorithm and GS algorithm of three scans acquired
in the same subject. The first column shows en-face projections of 200th to 500th frames
obtained during the first descending scan, which is one section of the volumetric data. The
en-face image of the original data shows strong in-between frame instability visible as a
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Fig. 2.18 3D reconstructions of OCT data collected in the clinical trial with the tethered
capsule OCT catheter in another subject. The red arrowheads point to wavy patterns caused by
the artifacts. The white asterisks mark out the conjunction area between a healthy esophagus
and Barrett’s esophagus. The white arrows point to higher intensity patches in the Barrett’s
esophagus segment.

wavy pattern (red arrowheads in Figure 2.17). After correction with the proposed algorithm,
an irregular lesion with lower intensity can be noted (red arrows in Figure 2.17). A similar
lesion shape can be also seen in en-face images of the original 50th to 450th frames of the
ascending scan (middle column in Figure 2.17) where the capsule stability was very good.
As can be observed in the proposed algorithm also corrected small instabilities still present
in the original data set of the first ascending scan (red starts in the middle column of Figure
2.17). On the other hand, the graph search algorithm introduced lesion deformation in both
descending and ascending scans (red asterisks in the third row of Figure 2.17). The right
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column in Figure 2.17 shows 250th to 500th frames of the second ascending scan where a
strong drift of the OCT data can be seen. The drift is visualized as a continuous diagonal
shift in the en-face image that is almost completely removed by the proposed method. The
GS algorithm corrects the scanning data but introduces distortion of the shape of objects
in en-face image (red asterisk in the third row of Figure 2.17). In Figure 2.18 we present a
volumetric reconstruction of three-dimensional TCE data obtained in another subject. The 3D
reconstruction is rendered with ImageJ software (Schindelin et al., 2015). The comparison
of the reconstructed data before and after correction shows that the proposed algorithm
removes instabilities present in the original data set that are especially noticeable in the
areas of loss of contact visible as the darkest areas (red arrowheads in Figure 2.18). After
correction, typical irregularities of the junction between the tissues with features of the
normal esophagus on the left and of Barrett’s esophagus on the right can be well appreciated
(white asterisks in Figure 2.18). In addition, patchy areas of higher intensity in the Barrett’s
segment (white arrows in Figure 2.18) have more regular contours, which helps with their
visual assessment.

2.9 Discussion

One of our motivations for this work is to follow the previous work on the integration of OCT
with robotic endoscope (Mora et al., 2020), and online image processing is crucial in this
scenario because robot positioning and displacement could be guided by the OCT images. It
is however possible only if images are geometrically correct. The online correction algorithm
can also enable the use of en-face projection images in gastrointestinal applications, which
could help, for example, in the assessment of the length of Barrett’s esophagus or localization
of suspicious lesions (Liang et al., 2016). In this chapter we developed a new solution to
tackle the distortion and instability problem using deep CNN, which can be generalized for
scanning situations in different targets and with different catheters. We proposed a new A-line
level shifting error vector estimation network to extract an optimal path from a correlation
matrix, which has higher accuracy and robustness compared with the conventional approach
in situations where the images have few features. Moreover, we solved the problem of error
accumulation in iterative video processing, with a group rotation estimation network. This
CNN based algorithm was trained on semi-synthetic data and applied to real videos acquired
in various scanning conditions. A full validation on in vivo data is nearly impossible, due
to the fact that annotating rotational distortions on such data is very complex. The results
presented, however, suggest that the proposed algorithm generalizes well over relevant in
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vivo pre-clinical data and clinical data from another modality of rotational scanning OCT,
which was never seen during the training.

The proposed image-based solution relies on the assumption that the appearance change
caused by rotational artifacts is faster than the appearance change of the tissue itself. This
assumption is valid in most standard cases, as shown in the results section. Nevertheless,
the algorithmic reduction of distortion may be affected in some pathological cases, where
the screened tissue appearance changes very quickly, especially in the conjunction between
two different types of tissue. Note that the proposed method needs a reference frame for
correcting drift and accumulative error. At the beginning of scanning, the drift is small and the
stretch and shrink distortion happens less occasionally than the shaking. Therefore, a visually
accurate reference frame can be manually selected from a small period at the beginning of
a scan based on prior knowledge of normal image features. The initial implementation of
the De-NURD algorithm was not adapted for a conventional pullback scanning that moves
the rotating lens along the protective sheath. Indeed, for this type of pullback, the initial
frame cannot be used for drift suppression because of possible changes of the appearance of
the sheath along the pullback. When applying the proposed method to an internal pullback
scanning, where the lens moves inside along the protecting sheath, sheath registration and
calibration will be necessary. In this case, the reference should be a pre-recorded sheath
image stack rather than a single B-scan.

Although branch B could also affect the accuracy of A-line level correction, the fusion of
the two branches can still compensate a sudden stretch-shrink distortion that would emerge in
a B-scan. It is worth mentioning that in the algorithm testing we disabled branch-A (warping
vector estimation) or branch-B (group rotation estimation), and the results show that the
performance is degraded with only one of the two branches. Correction accuracy may be
improved by other probabilistic fusion filters, or by optimizing the parameters of the PI
complementary filter based on objective functions, or by implementing a network module to
learn the fusion.

The proposed algorithm is designed for online video processing with historical data as
input only. The current implementation of the algorithm has an update rate of around 7
FPS. It is not fast enough for correcting every frame of a real-time OCT imaging system
which could have a frame rate of 60 FPS due to hardware limitations and large input size.
An immediate solution to reduce computational consumption could be down-sampling the
input image or shortening the shifting window w, but it will negatively affect the quality of
the correlation matrix and angular registration range. Alternatively, code and algorithmic
optimizations, especially in the correlation stack, could also accelerate the computation.
Algorithm optimization or implementation on more powerful hardware could also help speed
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up the image correction and meet the requirements of online diagnosis (i.e. with an update
rate of 10-20 FPS). An alternative approach to resolving the bottleneck associated with the
computation of the correlation map is to use an end-to-end warping vector encoding and
learning method. This method may require a larger amount of data for training to achieve the
same level of accuracy.



Chapter 3

Side-viewing catheter image segmentation
for navigation and tissue identification

3.1 Overview

Image registration algorithms (Chapter 2) that provide corrected OCT images help medical
doctors in focusing on possible pathology present in images. However, the interpretation of a
video stream on the fly and rendering diagnosis requires significant effort and experience
in the intra-operative procedure. Thus, automatic diagnosis is necessary as new imaging
modalities are providing more detailed information and medical doctors need assistance.
Another type of assistance needed is to reduce the complexity of surgical gestures, which
also require high level of training or even more than one operator. This can be obtained
by automatic control of surgical tools, for which extraction of navigation information from
collected images is also needed. Developing imaging perception algorithms for side-viewing
OCT catheter is thus crucial for automatic navigation and diagnosis using the new robotic
endoscope integrated with OCT.

Catheter-based imaging systems are increasingly used in a variety of clinical applications
in order to obtain luminal and transmural images. Mainstream side-viewing catheters often
use ultrasound (i.e. IVUS) or light (i.e. OCT) as their source signal to acquire cross-sectional
views of the intraluminal environment. Figure 3.1 shows exemplar catheterized OCT and
IVUS circumferential images of coronary. Since these modalities share a certain similarity,
the development of OCT image perception algorithm also brings clinical value to other
side-viewing modalities. For instance, IVUS is commonly used for imaging intravascular
pathologies such as aneurysms or atherosclerotic plaque (Chaoyang Shi et al., 2018), and our
method for OCT image analysis can be directly applied to IVUS images as well. Furthermore,
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Fig. 3.1 Similarity between catheterized OCT and IVUS images. OCT image on the left is
adapted from (Wang et al., 2015).

some laboratories are currently developing catheters that can simultaneously acquire images
of two modalities, such as intravascular ultrasound (IVUS) and optical coherence tomography
(OCT), at the same cross-sectional location (Guo et al., 2018a). This has sparked interest in
developing image processing methods that can handle two-domain data.

Automatic segmentation of object boundaries (i.e. boundaries of lumen, tissue, plaque
and calcium) or surfaces in side-viewing catheter images can provide convenience for real-
time diagnosis or off-line image analysis. For example, It enables quantification of the
luminal area, and lumen segmentation is the first step toward tissue characterization. The
geometry information given by the segmentation results enables a quantitative estimation of
the distance and contact between the catheter and tissue. For some scanning tasks, it provides
feedback to guide the catheter to follow the tissue surface, especially in large lumens like the
colon. In esophagus diagnosis with the capsule OCT, the surface segmentation can quantify
the contact between the tissue and the catheter, which can be used to identify different stages
of translation and can also be used to crop out the catheter image with uneven shape from the
image to improve the 3D reconstruction result. Moreover, for the OCT image, the correction
of refractional distortion (Tian et al., 2022) also requires the tissue surface shape information.
Real-time automatic segmentation of intravascular structures in ultrasound images has the
potential to significantly improve the diagnosis of coronary artery disease, especially during
IVUS-guided Percutaneous Coronary Intervention (PCI), and mainly for operators with
limited experience (Kim et al., 2015; Wang et al., 2017).
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The automatic segmentation task usually requires image processing techniques based on
computer vision. Most of the state-of-the-art methods are based on pixel-wise classification
segmentation, and usually follow a down-sampling and up-sampling scheme (Ronneberger
et al., 2015). This type of pipeline is not suitable for multi-surface segmentation of side-
viewing catheters because of two reasons. First, pixel-wise segmentation is neither an efficient
way to represent object surface nor a convenient encoding method that is identical to manual
labels which are polygon/poly-line drawn by annotators. In order to predict clean surface
boundaries, and also to use the prediction as annotations that can be modified by annotators,
it would preferable to output surface coordinates directly. Second, side-viewing catheters
have quite different imaging mechanisms in comparison to cameras or other raster scanning
devices. They normally acquire axial information in a radial fashion, and the resolution of
the horizontal direction is determined by the scanning motion speed (usually called B-scan
speed), and the vertical image line (usually called A-line) resolution is the depth information
determined by the source signal (either Ultrasound or Laser) given a direction. For such
imaging modalities, the resolution between A-line (axial) and B-scan (lateral) directions is
imbalanced, which is a crucial factor that needs to take into account for designing image
perception algorithms.

We propose a new deep-learning learning-based encoding architecture that predicts the
coordinates of surface boundaries for side-viewing catheters. A more related fame-work
can be found in the shape encoding for instance segmentation (Xu et al., 2019), which
augments a shape encoder after a detection network to predict a vector representing the
shape of objects (Redmon et al., 2016). The proposed algorithm architecture is mainly
based on CNN, and encodes images to vectors that represent the boundary coordinates at
each A-line. To resolve the within-frame imbalance of tissue existence, we also propose
to predict the existence probability of the target, which can further refine noncontinuous
boundaries through a B-scan. For training, a multi-scale encoding and fusion structure is
used to ensure the explanations of each scale of abstract feature extractions. We use the
proposed architecture and encoding approach for segmentation tasks of images obtained with
two different catheters: side-viewing OCT and IVUS. The direct surface boundary prediction
allows a human annotator to interfere at any time and correct a polygon/poly-line if needed,
producing an accurate label for network training desired by the annotator. With the proposed
method an iterative annotation/training pipeline can be deployed to automatically generate
annotations. This pipeline requires an annotator to initially fully annotate a small amount
of data and eventually obtain a large number of ground truth labels by correcting machine
annotations. To enrich the distribution of training data, and combine clinical images from
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different institutions, a de-centralized federated learning pipeline is deployed to train the
ACE-Net with both OCT and IVUS images.

3.2 Related work

3.2.1 Localization of object of interests

One of the most widely used approaches for object localization in generic images is based on
bounding box detection networks (Redmon et al., 2016; Bochkovskiy et al., 2020). Typically,
bounding box models are designed to predict either an object’s height, width and center point,
or the location of at least four outermost points. A bounding box can be considered as a
high-level approximation of the contour of an object. Yet, it captures little information about
an object’s shape beyond its location, scale and aspect ratio (Jetley et al., 2017). Several
other methods propose to predict key-points in order to detect objects (Zhou et al., 2019; Law
and Deng, 2018; Zhou et al., 2020b). For example, CornerNet(Law and Deng, 2018) detects
two bounding box corners as key-points, while ExtremeNet (Zhou et al., 2019) detects the
top-, left-, bottom-, right-, and center points of targets of interest. In order to increase the
efficiency of object location representation, CenterTrack (Zhou et al., 2020b) has recently
introduced an object center point probability regression model at every pixel of an image.

For side-viewing imaging modalities, one dimension (i.e., lateral scanning direction)
localization approaches have been proposed to further increase localization efficiency (Ughi
et al., 2012; Kolluru et al., 2018; Lee et al., 2020) (see figure 3.2). Ughi et al. propose
a non-learning-based A-line classification approach, which selects and locates Region of
Interests (ROIs) in side-viewing OCT images, instead of classifying pixels to estimate the
coverage of pathological areas (Ughi et al., 2012). This A-line localization approach was
further explored by Kolluru et al., who develop a CNN-based approach for real-time plaque
classification in coronary intravascular OCT images (Kolluru et al., 2018). Also applied to
intravascular OCT images, a hybrid learning approach is explored in (Lee et al., 2020), which
combined deep-learning convolutional and hand-crafted, lumen morphological features for A-
line classification. Nonetheless, even though A-line classification is a fast approach to detect
the presence of a target in the lateral direction of side-viewing images, it does not estimate a
target’s exact location in the axial direction. In contrast, our method is able to further improve
localization accuracy by coupling coordinate regression with A-line classification.
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a b

c d

Fig. 3.2 Target localization in side-viewing OCT. (a) Aline classification shows angular
attributes of pathological area in intravascular OCT, and (b) enface-view of the attribute of
C-scan, Colors are green (fbrolipidic), red (fbrocalcifc), and blue (other). (c), (d) show more
examples of A-line classification of a deep learning based approach. Adapted from (Kolluru
et al., 2018; Lee et al., 2020).

3.2.2 Pixel-wise segmentation

The majority of image segmentation tasks can be identified as semantic segmentation, where
per-pixel classification or regression is employed. Many approaches are based on CNN (Guo
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et al., 2018b). For instance, FCN (Long et al., 2015), Unet (Ronneberger et al., 2015) and
DeepLabV3 (Bargsten et al., 2021) realize pixel to pixel mapping using CNNs. More recent
segmentation methods have adapted self-attention mechanisms from transformers (Vaswani
et al., 2017; Dosovitskiy et al., 2021) to achieve pixel-wise classification (Strudel et al., 2021;
Zheng et al., 2021), which enhances contextual information in comparison with conventional
CNNs. In the field of vascular Ultrasound (US), which includes the use of IVUS and external
US, pixel-wise semantic approaches based on CNNs for the segmentation of intraluminal
structures (e.g., lumen-intima layer, atherosclerotic plaque) have been investigated. Zhou et
al. use a U-Net architecture to automatically segment carotid plaque in longitudinal carotid
US images (Zhou et al., 2021). Mi et al. propose MBFF-Net, a Multi-Branch Feature Fusion
Network that fuses multi-scale features to produce semantic segmentation of carotid plaque
in US images (Mi et al., 2021). For IVUS, Li et al. report an end-to-end architecture based
on three modified U-Nets to simultaneously segment media–adventitia layers and luminal
regions, and locate calcified plaques (Li et al., 2021). Yang et al. propose IVUS-Net, a
Fully Convolutional Network (FCN)-based pipeline that predicts a pixel-wise mask followed
by a contour extraction post-processing step to obtain luminal and vessel walls boundaries
(Yang et al., 2018). Bargsten et al. directly compare two CNN architectures: a U-Net
with residual blocks and DeepLabV3 with a ResNet50 backbone to segment calcifications
(Bargsten et al., 2021). Liu et al. proposed a semi-supervised method for the segmentation of
multi-surface and fluid region in retinal OCT images using adversarial learning (Liu et al.,
2018). Wang et al. (2020a) proposed an adversarial convolutional network, which adopts
adversarial learning to train a fully convolutional pixel-wise classifier for esophageal tissue.
Despite their promising accuracy in region overlapping, all the aforementioned methods are
sub-optimal in representing object boundaries and addition modules for contour prediction
are required.

3.2.3 Shape encoding and prediction

Target contours are generally represented by polygon or boundary encoding approaches
(Castrejon et al., 2017; Jetley et al., 2017). Recently, several contour extraction techniques
have been investigated to simultaneously provide direct target localization coordinates and
semantic segmentation regions/masks. Castrejon et al. (Castrejon et al., 2017) deploy a
recurrent neural network to predict the vertices of a polygon representing a target shape. In
(Jetley et al., 2017), the shape of objects is encoded with different representations coupled
with a bounding box detection network that crops the target of interest. Moreover, Jetley et
al. compare three encoding schemes: fixed-sized binary shape masks, a radial representation
and a learned shape encoding (Jetley et al., 2017). Following the radial representation
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encoding approach, where a series of offsets between an object’s anchor pixel and points
on its contour are defined, Xu et al. predicts Chebyshev approximation terms to regress the
shape coordinates in the polar domain (Xu et al., 2019). More recently, PolarMask (Xie
et al., 2020) has been proposed, whereby two paralleled branches are used to first find the
center-of-mass of a region and then regress a dense distance between the region’s center and
its contour in polar coordinates. Unlike our proposed method, the aforementioned techniques
are not pixel-accurate and assume that every object has a continuous contour, which is not
always the case in US imaging, as image artifacts might cause contour discontinuities (e.g.,
a guide-wire can cast a shadow). Moreover, where PolarMask also couples detection and
contour regression, our method achieves target detection by means of A-lines instead of
bounding boxes, and further integrates a new approach of encoding contour coordinates
which is found to be more efficient for side-viewing imaging modalities.

3.2.4 Multi-surface segmentation of medical imaging

Automatic segmentation of the retinal layers (De Fauw et al., 2018; Kugelman et al., 2018;
Venhuizen et al., 2018), esophagus layers (Yong et al., 2017) and lumen (Celi and Berti,
2014; Wang et al., 2010b) aim to reduce the time for screening clinical dataset. Quantita-
tive thickness measurement and topographic thickness maps provide information of both
diagnostic and scientific purposes. As shown in figure 3.3, automatic surface segmentation
techniques have been applied to a variety of OCT and IVUS image processing tasks.

In the OCT image segmentation community, deep learning based approaches are also
treated as the state-of-the-arts (Romo-Bucheli et al., 2020; Wang et al., 2020b; Stegmann
et al., 2020). Compared to work that directly solves the lumen contour segmentation problem,
Another similar task that also requires the detection of boundary and contour is the multi-
surface segmentation of OCT images. An early commonly used idea is to identify tissue
layer boundaries by classifying image patches using a deep neural network (Fang et al.,
2017). To maintain the accuracy of segmentation of OCT image at each A-line in the polar
domain, (Kugelman et al., 2018) used a recurrent network to detect multi-surface boundaries
in retinal OCT images. The patch-based or recurrent architecture can segment the boundaries
well but have a high computational burden (Kugelman et al., 2018). In contrast to the patch
and recurrent method, a more elegant architecture using fully connected layers to organize
the final feature map of convolutional layers is proposed (Long et al., 2015). Then a more
efficient multi-scale architecture that utilizes up-convolution named U-net was proposed
(Ronneberger et al., 2015), which is widely used in a variety of biomedical segmentation
tasks. Based on U-net, Roy proposed a ReLayNet for fluid segmentation in macular OCT
image (Roy et al., 2017). Devalla et al. designed the DRUNET for optic nerve head tissue
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Fig. 3.3 Examples of multi-surface segmentation in OCT and IVUS. (a) Lumen surface
segmentation of intravascular OCT(Yong et al., 2017), (b) tissue surface segmentation for
TCE OCT in esophagus(Ughi et al., 2016), (c) layer segmentation for OCT catheter in
esophagus (Li et al., 2019), (d) IVUS lumen segmentation (Cui et al., 2020), (e) IVUS
lumen/media segmentation(Balocco et al., 2014), and and (f) IVUS carotid vessel-wall
segmentation (Zhou et al., 2020a).

segmentation in OCT image (Devalla et al., 2018). Venhuizen et al. implement retinal
thickness measurement and intraretinal cystoid fluid quantification using the convolution
and up-convolution framework (Venhuizen et al., 2018). The U-net was adapted to segment
the tissue layers in esophagus OCT (Li et al., 2019) and retinal OCT (Wang et al., 2019).
Specifically, for the lumen segmentation task of OCT, Yong et al. (Yong et al., 2017)
combined a sliding window with deep CNN to estimate the lumen boundaries in IVOCT
images. Su et al. (Su et al., 2017) adapted the popular U-net for segmentation, and improved
the robustness with multi-scale input.

For IVUS, Li et al. report an end-to-end architecture based on three modified U-Nets to
simultaneously segment media–adventitia layers and luminal regions, and locate calcified
plaques Li et al. (2021). Yang et al. propose IVUS-Net, a FCN-based pipeline that predicts
a pixel-wise mask followed by a contour extraction post-processing step to obtain luminal
and vessel walls boundaries Yang et al. (2018). Bargsten et al. directly compare two CNN
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architectures: a U-Net with residual blocks and DeepLabV3 with a ResNet50 backbone to
segment calcifications Bargsten et al. (2021).

3.2.5 Semi-automatic annotation

Most automatic annotation methods are investigated at the pixel level, i.e. using scribbles to
interact with images or videos provides a cue to the segmentation algorithm for producing
annotation (Boykov and Kolmogorov, 2004; Nagaraja et al., 2015). Scribble can also be
applied to train CNN for semantic segmentation (Lin et al., 2016; Wang et al., 2018a), which
makes the implementation of a learning-based auto annotation algorithm convenient. These
approaches rely on pixel level semantic segmentation pipeline to assist the human annotator,
usually adapting a region-based loss term to train the model, but it is hard to incorporate
shape priors. These are particularly important in ambiguous regions caused by shadows,
image saturation or low resolution of the object. However, phenomenons like the shadow are
quite common for echo-based medical imaging systems (i.e. OCT and IVUS).

3.2.6 Cross-domain federated learning

Training deep learning algorithms for medical imaging using a centralized data center raises
concerns about patient privacy, requiring data-sharing agreements. The process of data
sharing can be slow and may prevent deep learning models from quickly absorbing first-hand
knowledge as new data is annotated by medical experts. Federated Learning (FL) (McMahan
et al., 2017; Sheller et al., 2018) is a solution to help the deep-learning model to achieve
better performance than the model only trained with data from one institution. Recently, FL
(Sheller et al., 2018) was introduced to address this issue by sharing machine learning models
between different medical institutions instead of clinical data (i.e. images, reports). In a
FL process, all institutions compute the gradient for updating the machine learning model
locally with their private data and send the local gradient (or local models) to a server. The
server performs aggregation over the uploaded parameters from different institutions, and
then broadcast the aggregated model to different institutions to update local models. By
doing so, all the institutions collaboratively learn a machine learning model with the help of
a central cloud server.

FedAvg (McMahan et al., 2017) is one of the most commonly used methods. There are
some methods that utilize domain shift, and cross-domain learning, but they rely on data
centers to collect all the images. There are also some methods that address cross-domain
federated learning problems in the same modalities. The federated learning about IVUS/OCT
cross-modality has not been studied in the literature.
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Fig. 3.4 A-line coordinates encoding scheme . Two exemplar images from OCT and IVUS
are presented. For network input all images are converted to the polar domain. The object
surface is represented by dense A-line coordinates vectors covering all A-lines, and the
contour of any object can be divided into the top boundary (BDY-T) and bottom boundary
(BDY-B). For large objects that could potentially reach out of the field of view, they can still
be represented with one BDY (i.e. tissue in a large GI lumen).

3.3 ACE-Net: A-line Coordinates Encoding Networks

3.3.1 A general multi-surface coordinates encoding architecture

Cartesian-polar domains conversion

To illustrate the proposed encoding scheme, we define 1-D axial side-viewing image arrays
as A-lines. For external probes or raster scanning systems, images are acquired and analysed
when A-lines are stacked in parallel (Kolluru et al., 2018; Lee et al., 2020), which are usually
presented as rectangular images. Conversely, for radial or rotational scanning modalities (i.e.
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Fig. 3.5 An overview of the ACE-Net. The network is designed to achieve the proposed
A-line coordinates encoding scheme: first, an A-line feature extractor follows a backbone to
extract multi-scale features. Then two encoders follow a fusion module to predict the A-line
coordinates vectors and presence probability vectors.

IVUS or endoscopic OCT catheter), images are converted from parallel stacked A-lines (polar
domain) to circular arrangement (Cartesian domain) for analysis and annotation (Fig. 3.4).
The proposed A-line-based encoding scheme was devised for images where A-lines (i.e.,
columns) are stacked in parallel, thus for the case of labels in the circular image, every pixel
of the original frames and annotation coordinates (i.e., in the Cartesian domain) must first be
converted to polar coordinates for the necessity of training ACE-Net. For simplicity, polar
domain is used to refer to images where A-lines are stacked in parallel, while Cartesian
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domain is used to refer to images where A-lines are radially represented for the illustration
of ACE-Net.

Network overview

The architecture of the proposed ACE-Net is shown in Figure 3.5. Inspired by several
works that predict the high abstract representation of objects’ contour position instead of
coarse pixel-wise classification (Xu et al., 2019; Xie et al., 2020), the ACE-Net predicts
coordinates of multi-surface boundary in the polar domain directly. As can be observed,
images obtained by side-viewing catheters in the polar domain are fed into a backbone feature
extractor which produces high-resolution, semantically weak (i.e., low-level) feature map
f0 ∈ RH×W×n0 that has pixel-wise spacial correspondence. The details on the design of the
backbone feature extractor are discussed in the subsection 3.3.2. Then f0 is processed by
the core component of the ACE-Net that follows a parallel multi-scale encoding scheme. In
this component, compared to extracting hierarchical information in a purely cascaded way
that combines down-sampling and up-sampling, higher parallelism could be much faster in
the interference of network implementation (Ma et al., 2018). All the convolutional layers
in each branch have the same kernel size but different strides to control the reduction of
dimension. Note that in some branches the strides can be imbalanced in horizontal/vertical
directions (i.e. the first branch never reduces the horizontal dimension). As a result, the first
order of abstract positioning features f 1 ∈RW×2×nx extracted by the first branch matches the
width W of input image I ∈ RW×H . In contrast, lower scale features f 2 and f 3 have lower
spatial correspondence and can reason the coordinates value considering more surrounding
A-lines. A fusion encoder is applied to re-organize different levels of features and predict
coordinates of multi-surface c ∈ RW×1×2N at each A-line, where N is the type number of
objects that need to predict/segment. In order to resolve situations where some surface
will not continuously exist at every A-line of a B-scan, we additionally predict presence
vectors/matrix p ∈RW×1×N . The details of the fusion encoder are presented in the subsection
3.3.4. Note that figure 3.5 just illustrates the schematic of the ACE-Nets, in applications it
can have more than 3 coordinates features f i (i=1,2,3...), without affecting the inference time
too much by parallel GPU forward computation after f0. Details of sub-module blocks in
Figure 3.5 are presented in the following sub-sections.

3.3.2 Backbone feature extractor

The pyramid backbone feature extractor is composed of down-sampling and up-sampling
CNNs with shortcuts (Lin et al., 2017) (see Fig. 3.6 (a)). Using the multi-task training
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Fig. 3.6 Architectural details of feature extracting modules. (a) backbone feature extractor
follows a down-sampling and up-sampling scheme to produce dense feature map. (b) The
A-line feature extractor encodes the A-line feature as different horizontal scales to produce
different spacial correspondences.

technique, the backbone is trained with a pixel-wise loss. From the backbone, feature map
f0 is processed by a pixel-encoder producing a pixel-wise map. This pixel-encoder is a
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Fig. 3.7 Architectural details of Fusion encoding. The higher abstract features extracted by
lower-scale branches are expanded to align with image B-scan resolution and then fused with
one final encoding layer. Feature of all scales share the same auxiliary encoder to predict
lower scale coordinates, and loss will be computed with down-sampled ground truth.

1 × 1 convectional layer that reduces the channel depth of f0 from n0 to 1. By doing so,
the backbone can learn to achieve spatial correspondence. It is worth mentioning that the
backbone can be replaced with a simple ResNet block or even removed. The removal of the
backbone is further discussed in section 3.4.3.
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3.3.3 A-line feature extractor

We propose an A-line feature extractor that follows a parallel multi-scale encoding scheme, as
shown in Fig. 3.6 (b). Conversely to extracting hierarchical information in a purely cascaded
way combining down-sampling and up-sampling (Li et al., 2021; Yang et al., 2018), this
component is implemented with higher parallelism for faster network inference (Ma et al.,
2018). All the convolutional layers in each branch have the same kernel size but different
strides to control dimension reduction. In some branches, the strides are imbalanced in
horizontal/vertical directions (e.g., the first branch never reduces the horizontal dimension).
As a result, while the feature map f 1 matches the input image I width W , features f 2 and f 3

have lower spatial correspondence, since they consider extra surrounding A-lines.

3.3.4 Multi-scale fusion

As shown in Fig. 3.7, the multi-scale fusion module reorganizes the hierarchical coordinates
position features. Different scales of coordinates features are forced to represent features in a
similar way (supervised by re-scaled GT c′T , c′′T and c′′′T ) and maintaining the hierarchy. The
fusion encoder follows two steps to combine information. First, expanding layers based on
transposed convolutional layers are used to align positioning features with lower horizontal
scales. Second, aligned feature maps from different levels are concatenated and then fused
with a one-dimensional convolutional encoder, providing the final feature map f4, enclosing
information of different scales. In addition, a convolutional auxiliary encoder, shared by all
positioning features, is added directly after each feature. All coordinates features are thus
encoded to coordinates vectors corresponding to the input width, while avoiding assigning
different individual auxiliary encoders to each f i. The auxiliary encoder is composed of
(1,3) convolutions layers with linear activation, which reduce the channel dimension to 2N,
but they do not share weights. The A-line features f1, f2 and f3 share the same auxiliary
encoder, which is only employed for training and it is disabled during inference.

3.3.5 Coordinates encoding

Similar to the auxiliary encoder, Coordinates Encoder (CE) is composed of (1,3) convolutions
layers with linear activation, which reduce the channel dimension to 2N, but they do not share
weights. To enhance segmentation accuracy, a Presence Encoder (PE) layer was applied
to the final feature map f4. PE is a (1,3) convolution layer with sigmoid activation that
encodes the feature map into presence vectors p ∈ (0,1) with dimensions of W ×N. These
presence vectors represent the presence probability of each object at each line. By doing so,
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the presence probability p and the A-line coordinates vectors c are aligned for the N different
objects at all A-line locations (refer to Fig. 3.5).

3.3.6 Loss functions and training strategies

The ACE-Net training is divided into two stages: early training and fine-tuning, for which
supervision and network updates are scheduled differently. In the early training stage,
supervised with a GT map IT obtained from the GT annotation (within this subsection a
footnote T denote the ground truth), a pixel-wise semantic side-output image I0 (see Fig. 3.5)
with a pixel-encoding is enabled. Given that, in most cases, the pathological regions’ coverage
is smaller than the normal image area, a balanced distance loss is defined to optimize the
backbone feature extractor, as follows:

LI = β ∑
j∈I−T

∥ I j
T − I j

0 ∥+(1−β ) ∑
j∈I+T

∥ I j
T − I j

0 ∥ (3.1)

where β = |I+T |/|IT |, |I+T | and |I−T | denote the pathological and normal sets of pixels. For
optimization of the top model of the ACE-Net, which includes the A-line feature extractor
and multi-scale fusion module, coordinates loss Lc and presence loss Lp are used. Only the
area of pathological presence is used to calculate the coordinates loss Lc:

Lc =
WN

∑
j=0

(∥ c2 j
T − c2 j ∥+ ∥ c2 j+1

T − c2 j+1 ∥)p j (3.2)

It is worth mentioning that (3.2) is also used to calculate the auxiliary losses [L ′
c,L ′′

c,L ′′′
c]

for lower scale coordinates [c′,c′′,c′′′] from sub-feature maps.
The presence loss Lp is the cross entropy between GT and predicted presence probability

vectors:

Lp =−
WN

∑
j=0

(p j
T log(p j))+(1− p j

T )log(1− p j) (3.3)

Note that in this work, during the early training stage, the backbone feature extractor is
only optimized with LI , and the backbone layers are frozen for the backward propagation
step with Lc and Lp. Only in the subsequent fine-tuning stage, Lc and Lp are allowed to
optimize the whole network.

The loss for the fine-tuning stage is a weighted loss:

L = [Lc,Lca,Lp,LI]λ
T (3.4)
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where Lca is the average of multi-scale auxiliary loss [L ′
c,L ′′

c,L ′′′
c]. λ = [λ1,λ2,λ3,λ4]

is the weight for losses Lc, Lca, Lp and LI .

3.4 Multi-surface segmentation using ACE-Net for IVUS
images

Cardiovascular Diseases (CVDs) are the primary cause of death worldwide and represented
32% of all global deaths in 2019 alone (World Health Organization, 2021). Among CVDs,
Coronary Artery Disease (CAD) accounts for about a third of their global burden (Bauersachs
et al., 2019). Described as complete vessel occlusions present for at least 3 months due to
obstructive atherosclerotic plaque, coronary Chronic Total Occlusions (CTOs) are observed
in about 15-30% of CAD patients undergoing coronary angiography (Brilakis et al., 2019).
Furthermore, coronary calcification (and its extension) is a prominent marker of atheroscle-
rotic plaque burden, which is correlated with adverse cardiovascular events (Jinnouchi et al.,
2020; Wang et al., 2017). Selective CTO patients undergo PCI aiming at the revascularization
of the ischemic territory. Yet, a CTO is often described as the most challenging lesion subset
to treat in PCI practice, with high operator dependence and low historical success rates (i.e.,
60-70%) (Bennett et al., 2017). This is due to the fact that high plaque burden brings a
number of procedural challenges such as, difficulty in the crossing guidewires, lesions of
longer length, etc (Shah, 2011). Nevertheless, among others, increased operator experience
coupled with the improvement of materials and imaging have prompted a rise in success
rates (Bennett et al., 2017).

Ultrasound based cross-sectional imaging modalities are commonly used during CTO
PCI. For example, IVUS provides real-time pathological and morphological information
of intracoronary structures, which has the potential to improve PCI outcomes (Kim et al.,
2015). Regarding CTO lesions, IVUS provides qualitative and quantitative information,
allowing for highly accurate plaque morphology identification (Kimura et al., 2018). A
prominent marker of atherosclerotic plaque progression and adverse cardiovascular events
is the presence and extent of calcification, and its evaluation is paramount in planning and
guiding a CTO PCI (Wang et al., 2017). Reports indicate that Ultrasound based crossectional
imaging modalities show higher sensitivity and specificity in detecting calcium deposits
compared to other imaging modalities e.g., angiography and OCT.

Correct image interpretation for ultrasound-based cross-sectional imaging modalities
still remains challenging, especially during CTO PCI, and mainly for operators with limited
experience. Automatic segmentation of object boundaries or surfaces in ultrasound images
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can provide convenience for real-time diagnosis or offline image analysis. For example, It
enables quantification of the thickness and angular distribution of certain cross-sectional areas,
and segmentation is the first step toward tissue characterization. The geometry information
given by the segmentation results enables quantitative estimation of the distance and tactile
state between the imaging device and tissue. For some scanning tasks, it provides feedback
to guide the probe to follow tissue. In the scenario of IVUS, the intra-operative automatic
segmentation of atherosclerotic plaque components can potentiate the use of IVUS by PCI
operators. For example, improving the localization and characterization of CTO lesions
could lead to more widespread use of IVUS-guided CTO PCI and hereby improve patient
outcomes (Kim et al., 2015; Wang et al., 2017).

Furthermore, robust contour coordinates regression of intravascular structures in IVUS
images can provide not only direct information for the navigation of surgical instruments
but also precise quantitative information on plaque/calcium burden metrics e.g, calcification
angle, ratio of plaque relative to the vessel size, and thickness of different vessel layers. On
this matter, state-of-the-art segmentation methods (Ronneberger et al., 2015; Zhou et al., 2021;
Sofian et al., 2018; Bargsten et al., 2021; Zheng et al., 2021) predicting region masks require
a post-processing step to further extract contour coordinates and then possibly compute such
markers. Moreover, this post-processing step can be problematic in ambiguous areas where
e.g., a few falsely classified pixels could introduce significant boundary errors.

3.4.1 Datasets

IVUS-CTO

Considering the unavailability of public datasets of IVUS-guided CTO PCI, the proposed
algorithm was evaluated on a dataset of IVUS images collected between January and Novem-
ber 2021 at the University Hospitals (UZ) Leuven. IVUS images were acquired by two
cardiologists from 10 CTO patients (ages: 43-79; 8 males, 2 females; 5 patients showed
severe calcifications (i.e., ≥ 50% reference lesion diameter)). All patients provided written
informed consent to a protocol approved by the Ethics Committee Research UZ/KU Leuven
(Study number S63611). The images were collected at a pullback speed of 1.0 mm/s using
Boston scientific OPTICROSS™ HD, 60MHz Coronary Imaging Catheters with the PO-
LARIS Multi-Modality Guidance System. From the 10 patients, a total of 1000 images (100
per patient) were included by manually selecting representative images. Two approaches for
data splitting in training and testing experiments were utilized: 1) The entire dataset was
divided into a 666-image training set and a 334-image testing set, with both sets containing
images from different patients. 2) A patient-wise splitting approach was also adopted, where
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the networks were trained on data from 9 patients and tested on data from an unseen patient,
with three randomly selected patients serving as the unseen test patients.

CUBS

This is a public data from this publication (Meiburger et al., 2021). It contains 2176 images
of 1088 patients from 2 different modalities. Images are paired as left and right. The
pathological target is the inter-media layer. This dataset is applied for the purpose of testing
on effect of geometrical distribution, and it is randomly split into 1450 training set and 726
testing set.

IVUS-Lumen

This is another self-collected IVUS data-set containing healthy vessel images, and the surface
boundary of the catheter and lumen is annotated. It contains 800 images and is randomly
split into 400 training and testing images.

Synthetic

We proposed a specific semi-synthetic generation algorithm to change the shape of IVUS-
lumen based on random shift and recombine of A-lines. The source image for synthetic
generation is based on IVUS-Lumen images, and 5000 images are generated for training and
another 5000 images are generated for testing.

The annotation of plaque and calcium boundaries was performed by one observer super-
vised by two expert cardiologists. No image artifacts were removed before manual annotation.
The images were annotated in their original form (i.e., Cartesian domain) and each target
region was segmented as a separate boundary. Pre-processing was then carried out firstly,
by converting all images and lesion contours to the polar domain and secondly, by splitting
each contour into upper and lower vectors considering their local minima and maxima A-line
coordinates. All manual annotations were used as the GT to assess the proposed ACE-Net.
To test the trained networks on more images, no validation loss is used and the training
is stopped depending on the flattening of training loss, and then evaluate performance on
unseen test set.

3.4.2 Implementation and Evaluation

The model was implemented with PyTorch, using an NVIDIA GeForce RTX 3090 GPU for
training. The network was trained using the Adam optimizer with a learning rate of 1×10−3
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and 1× 10−4 for the early training and fine-tuning stages, respectively. Region/Area and
boundary distance-based metrics were computed to evaluate the segmentation performance.
Jaccard Index (JI) and Dice coefficient (DSC) are chosen as region metrics to quantify the
overall area overlapping between the GT segmentation and algorithm output. In order to
analyze the boundary prediction error, the MBD at each A-line was calculated. For the MBD
calculation, when an A-line does not contain any target, its GT coordinate value is set as
H. By doing so, a penalty boundary error is applied for false positive detection. For the
ACE-Net output, the threshold of p is set as 0.6 to binarize negative and positive presence per
A-line. Additionally, the inference time to segment one image was determined and averaged
over the dataset length to assess the possibility of using ACE-Net intra-operatively. This
speed evaluation was carried out with a laptop GPU (NVIDIA QT1000). Both the accuracy
and speed tests are implemented with a final feature depth nx = 256 for ACE-Net.

3.4.3 Results

State-of-the-Art Comparison Study

The ACE-Net performance was compared to various relevant state-of-the-art segmentation
methods, which are mainly based on CNN: PAN (Li et al., 2018), FCN (Long et al., 2015),
Res-Unet (Ibtehaz and Rahman, 2020), Unet++ (Zhou et al., 2018), DeeplabV3 (Bargsten
et al., 2021) and DeeplabV3+ (Chen et al., 2018). In addition, ACE-Net was compared to
a recently proposed transformer-based method (Zheng et al., 2021). These state-of-the-art
networks were trained with cross entropy loss, with loss of 0.001. Their training is stopped
when the training loss is flattened (around 100 epoches).Note that for these segmentation
methods, no boundary information is outputted directly. Nevertheless, in order to compare
the different boundary errors, we extract object boundaries from the segmentation mask of
these methods by searching the conjunction locations between positive and negative pixels
(Bradski, 2000a).

The state-of-the-art results on the IVUS-CTO dataset are shown in Table 3.1. While
the transformer-based method shows the highest region overlapping for plaque area (e.g.,
0.84±0.16 of DSC), it also shows large errors for calcium (i.e. calcified plaque) segmentation
(e.g., 0.52±0.44 of DSC)). Furthermore, although the calcium segmentation accuracy of ACE-
Net is close to the Unet-based variants (Res-Unet, Unet++), ACE-Net shows significantly
higher region accuracy for plaque. Also, the ACE-Net boundary errors are significantly
smaller both for plaque and calcium compared to all state-of-the-art methods. Moreover,
ACE-Net is a fast approach that can achieve more than 100 frames per second on a laptop GPU
(7.9 ms per frame), which meets the requirements of a real-time intra-operative application
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GT Unet ++ SETRACE_S ACE_CInput

Fig. 3.8 Qualitative comparison of ACE-Net and relevant state-of-the-art methods with 3
representative cases. First, two rows show images with both plaque and calcium. The third
row is an example with plaque only. The original IVUS image and its GT label are shown.
Green and orange masks indicate areas of plaque and calcium. In ACE_C, both ground
truth and output from other methods are represented by red and yellow lines that denote the
plaque and calcium contours, respectively. In ACE_S, the upper and lower boundaries are
presented as separate entities and are marked by red, green, yellow, and blue lines. These
lines distinguish the upper and lower boundaries of both plaque and calcium.

(typical update rate of 30 Hz). Fig. 3.8 shows the corresponding qualitative results (boundaries
and/or masks). For Unet++, the topological disorder can be targeted at the boundary of
calcium/plaque overlay, and this phenomenon is also reported in other layer segmentation
tasks of side-viewing images using U-net (Li et al., 2019). The transformer-based method
(SETR) (Zheng et al., 2021) achieved good segmentation for plaque and post-processed
images from the output mask show clear boundaries, but the quality of calcium segmentation
is lower and sometimes the calcium can be miss detected. ACE-Net is shown to directly
output clear segmentation results of target regions’ boundaries.

The evaluation pipeline is similar to the CUBS dataset, just it has only one type of object
class, which is originally annotated as the upper and lower boundaries by an expert. We
adopted the annotation from the original publication (Meiburger et al., 2021) and aligned the
upper and lower boundaries at their endpoints. Fig. 3.9 shows representative output images
from the state-of-the-art method and the ACE-Net. DeeplabV3 output covered the area well,
but the output can be oversized for some images (see the first row of Fig 3.9 ). For Unet ++
and SETR, the upper and lower can not be well separated at the endpoints, which contributes
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Table 3.1 State-of-the-art quantitative comparison on the calcium/plaque CTO dataset. The
mean value and the standard deviation of the test dataset evaluation metrics are shown. The
overall scores consider healthy tissue, plaque and calcium areas.

Jaccard index(↑) Dice coefficient (↑) MBD [pixel] (↓)
Method Overall Plaque Calcium Overall Plaque Calcium Plaque Calcium Time [ms] (↓)

PAN(Li et al., 2018) 0.45±0.19 0.17±0.19 0.22±0.37 0.52±0.21 0.25±0.26 0.34±0.35 35.49±18.95 17.72±15.73 16.5
FCN(Long et al., 2015) 0.61±0.21 0.40±0.33 0.45±0.28 0.69±0.21 0.48±0.38 0.60±0.24 24.62±19.52 7.51±7.67 64.7
Res-Unet(Ibtehaz and Rahman, 2020) 0.72±0.18 0.48±0.37 0.70±0.16 0.79±0.17 0.54±0.41 0.82±0.11 21.50±23.70 3.97±2.65 18.1
Unet++(Zhou et al., 2018) 0.71±0.18 0.47±0.37 0.68±0.18 0.78±0.18 0.54±0.41 0.80±0.12 21.36±23.37 3.44±2.30 34.7
DeeplabV3(Bargsten et al., 2021) 0.57±0.21 0.37±0.32 0.36±0.30 0.65±0.22 0.45±0.37 0.51±0.27 24.87±19.65 9.60±9.74 130.0
DeeplabV3+(Chen et al., 2018) 0.66±0.12 0.43±0.35 0.56±0.22 0.74±0.18 0.50±0.39 0.71±0.15 23.41±23.13 5.39±4.14 17.8
SETR(Zheng et al., 2021) 0.74±0.21 0.76±0.19 0.48±0.44 0.70±0.27 0.84±0.16 0.52±0.44 11.91±13.98 13.00±20.95 30.3
ACE-Net 0.80±0.12 0.72±0.19 0.70±0.16 0.88±0.09 0.82±0.17 0.82±0.10 4.25±3.20 2.27±1.62 7.9∗

*Note that except for ACE-Net, the computed inference time did not include boundary extraction.

Original/Input GT ACE-Net DeepLabV3+ Unet++ SETR

Lumen-Intima Media-Adventitia

Fig. 3.9 Qualitative comparison of ACE-Net and relevant state-of-the-art methods on the
CUBS ultrasound. The original IVUS image and its GT label are shown.

to a higher boundary error in comparison to the ACE-Net (3.49±2.26 vs 2.78±2.35). For a
thin layer (shown in the second row of 3.9), both the DeeplabV3+, Unet++ and SETR tend to
miss detect part of it, especially the SETR method. This is also in the consistence with the
comparison results for calcium in the IVUS-CTO dataset, which is also a thin layer, and it
can not be well handled by a patch-based segmentation transformer (SETR).

Patient-wise splitting evaluation

The previous benchmark comparison of the IVUS-Plaque/Calcium dataset with state-of-the-
art methods disregarded the impact of data leakage. However, in medical image analysis
using deep learning, there is a possibility that a new patient will be encountered who was
not included in the previous training. To address this, we adopted a patient-wise splitting
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Table 3.2 State-of-the-art quantitative comparison on the CUBS dataset.

Method JI(↑) DC (↑) MBD [pixel] (↓)

PAN(Li et al., 2018) 0.57±0.13 0.71±0.12 4.13±2.58
FCN(Long et al., 2015) 0.60±0.11 0.74±0.11 4.15±3.05
Res-Unet(Ibtehaz and Rahman, 2020) 0.63±0.10 0.77±0.08 3.41±2.09
Unet++(Zhou et al., 2018) 0.63±0.10 0.76±0.08 3.48±2.31
DeeplabV3(Bargsten et al., 2021) 0.56±0.07 0.71±0.06 3.77±2.40
DeeplabV3+(Chen et al., 2018) 0.71±0.08 0.83±0.06 3.49±2.26
SETR(Zheng et al., 2021) 0.40±0.15 0.55±0.17 4.73±3.94
ACE-Net 0.73±0.10 0.84±0.07 2.78±2.35

Table 3.3 Patient-wise splitting evaluation on the IVUS-Plaque/Calcium dataset.

Patient-A Patient-B Patient-C
Method JI ↑ DSC ↑ MBD (pixel) ↓ JI ↑ DSC ↑ MBD (pixel) ↓ JI ↑ DSC ↑ MBD (pixel) ↓

Baseline (Ibtehaz and Rahman, 2020) 0.65±0.17 0.71±0.16 13.89±14.23 0.63±0.15 0.73±0.14 15.53±10.5 0.60±0.16 0.67±0.17 37.83±33.19
ACE-Net One stage 0.61±0.18 0.68±0.17 17.7±10.32 0.59±0.17 0.67±0.17 18.35±12.54 0.60±0.17 0.69±0.15 26.07±25.12
ACE-Net full 0.71±0.12 0.81±0.56 16.7±12.59 0.64±0.12 0.74±0.11 14.43±10.05 0.62±0.18 0.69±0.17 22.98±19.05

approach, where the networks were trained on data from 9 patients and tested on data from
an unseen patient, with three randomly selected patients serving as the unseen test patients.
In this experiment, we selected Res-Unet (Ibtehaz and Rahman, 2020) as the baseline model,
as it achieved better overall accuracy and speed compared to other state-of-the-art methods
(Table 2). We also compared it to a one-stage training approach (details in subsection 3.4.3).
The results are presented in Table 3.3. The overall accuracy of ACE-Net on unseen patients
was lower than the results obtained from the random split training/testing experiment (the
IoU decreased from 0.8 to 0.65), but it was still higher than the baseline model, which had
an IoU of around 0.62. A full training strategy is crucial in helping ACE-Net to generalize
better on unseen patients, as a one-stage ACE-Net training without unfreezing the backbone
had a worse overall performance than the baseline, achieving only an average IoU of 0.60.

Ablation Study

Quantitative analysis An ablation study was carried out by removing the following
parts of ACE-Net: A-line feature branches fi, backbone module, auxiliary encoder and
presence probability p encoder.It is important to note that when the backbone is removed,
the input image is directly fed into the A-line feature extractor instead of generating the
feature f0. The obtained results are shown in Table 3.4. These indicate that all of ACE-Net
components contribute to the network’s accuracy, with the presence probability p encoder
removal primarily impacting its robustness. When using a single branch of the A-line feature
extractor and removing other parallel branches, the accuracy is lower than a full multi-branch
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Table 3.4 Ablation study for the different ACE-Net components (w/o: without). The best
results within the proposed method are indicated in bold.

Jaccard index (↑) Dice coefficient (↑) MBD [pixel] (↓)
Setup Overall Plaque Calcium Overall Plaque Calcium Plaque Calcium

w/o p 0.61±0.21 0.42±0.32 0.42±0.28 0.71±0.17 0.56±0.28 0.60±0.22 8.09±4.64 5.02±4.16
f1 only 0.65±0.20 0.45±0.32 0.50±0.26 0.73±0.18 0.63±0.34 0.60±0.24 8.68±5.77 4.54±2.84
f2 only 0.72±0.16 0.63±0.22 0.56±0.24 0.81±0.13 0.84±0.23 0.72±0.17 4.73±3.21 2.52±1.77
w/o backbone 0.72±0.16 0.57±0.26 0.60±0.20 0.81±0.12 0.70±0.23 0.75±0.14 6.65±4.51 2.73±2.02
w/o Aux 0.79±0.13 0.71±0.20 0.66±0.18 0.87±0.10 0.81±0.17 0.79±0.12 5.01±3.65 2.21±1.46
ACE-Net 0.80±0.12 0.72±0.19 0.70±0.16 0.88±0.09 0.82±0.17 0.82±0.10 4.25±3.20 2.27±1.62

architecture. Also note that ACE-Net can still have considerable accuracy in comparison
to other state-of-the-art methods without the backbone module, and by feeding images
directly to the A-line feature extractor. In this simplified version, a clean segmentation with
a small boundary error can still be determined. Lastly, even if having the least impact on
the network’s accuracy, adding an auxiliary encoder to the ACE-Net training forces the
A-line feature branches to perform in a similar fashion. The obtained results show that the
auxiliary encoder further improves the ACE-Net accuracy, particularly when considering
ROI overlapping.

Qualitative analysis Example output images of ablation study on the IVUS-CTO and
IVUS-lumen data set are shown in Fig. 3.11. For the setup without estimation of presence
probability p, we set the ground truth coordinates vector value as H in the polar domain
for non-existing objects/boundaries. This lead to the output coordinated jump from the
image center to the image border when an object disappears at a certain A-line (Second
column). Moreover, because of an average of loss between presence and non-presence area,
the estimation accuracy on presence is degraded. These phenomenons indicate that p is
essential for producing clean discontinues coordinate vectors, and as shown in Fig. 3.12, by
predicting p we can produce a clear A-line of Interest (AOI) mask with sharp edges.

When the network uses only the dense branch f1 to regress the coordinates, the output can
focus more on the local A-line but the coordinates value is noisier. When using branch f2 only
the coordinates vector is more smooth, however, the vector can sometimes underfit complex
shapes (first row, fourth column). This indicates that the multi-scale A-line coordinate
encoding is a highly accurate and efficient way of estimating coordinate vectors.

Accuracy vs Speed Figure 3.10 shows a trade-off between accuracy and speed of the ACE
net in ablation. By removing part of the network the speed increases and the accuracy is
degraded at different levels. Adding auxiliary loss will introduce minimal burden to the
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computation while increasing the boundary accuracy. Removing the backbone will reduce
7.9% of the Dice score in comparison to full ACE-Net, but still maintain a high Dice score of
0.81, and it requires 35.4% less inference time (reduced from 7.9 ms to 5.1 ms).
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Fig. 3.10 Trade-off between accuracy and speed of the ACE net in ablation. We compare
the inference time vs MBD error, and network size vs dice score for different setups of the
ablation study.

GT W/O P f1 only f2 only ACE full

Fig. 3.11 qualitative of ablation study on the CTO and IVUS-Lumen data set. For the IVUS-
Lumen data set, instead of encoding the Lumen, the image is labeled as catheter, lumen, and
tissue using the boundary between them.
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GT Plaque PACE Calcium P

Fig. 3.12 Aline Coordinates Encoding Networks (ACE-Net) output Cartesian (1st row) and
polar (2nd row) domain representations of a case from the IVUS-Plaque/Calcium dataset.
Ground truth contours are depicted on the first column. ACE-Net predicted boundaries and
presence probability masks (for all A-lines) of plaque and calcium are shown in the last three
columns. Green and orange masks indicate areas of plaque and calcium. Upper and lower
boundaries of plaque and calcium are delineated in red, green, yellow and blue, respectively.

Effect of Multi-Task Training and Freezing Strategy

To further evaluate the effect of the training strategy on the proposed ACE-Net, we performed
the following change on the proposed training strategy: First, the pixel loss LI is disabled
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Table 3.5 Effect of training strategy on the ACE-Net performance.

Training strategy JI(↑) DC (↑) MBD [pixel] (↓)

W/O LI 0.79±0.14 0.86±0.11 3.35±3.09
W/O frozen 0.76±0.14 0.84±0.12 4.48±4.71
One stage 0.80±0.12 0.88±0.09 3.26±2.41
Proposed 0.82±0.11 0.89±0.09 3.07±2.23

Table 3.6 Evaluation of the effect of data distribution and A-line encoding on ACE-Net using
the IVUS-Lumen dataset alone and mixed with synthetically generated data for training.

Original IVUS-Lumen Mixed with synthetic
Method JI (↑) MBD [pixel] (↓) JI (↑) MBD [pixel] (↓)
Baseline Chen et al. (2018) 0.93±0.02 6.46±1.99 0.93±0.02 5.63±1.92
f0-25-S W/O CE∗ 0.87±0.04 12.78±4.79 0.87±0.04 12.90±4.51
f0-25-S full 0.91±0.03 4.17±1.76 0.93±0.02 4.06±1.64
f0-500-L W/O CE∗ 0.94±0.02 5.90±1.91 0.93±0.02 6.07±2.12
f0-500-L full 0.93±0.02 3.95±1.84 0.94±0.02 3.71±1.65
*Note that without coordinate encoding, coordinates are extracted from IPE using the approach described in (Bradski, 2000a).

and the networks are optimized with only Lc and Lp in the training process. Second, we
use the LI to optimize the backbone module, and when back-propagating the Lc and Lp

the backbone is not frozen. Third, we use frozen the backbone when using Lc and Lp

throughout the training, which means the coordinates and presence losses are only used
to optimize the bottom module. Finally, we apply the full strategy by having two training
stages, that unfrozen the backbone for fine-tuning the networks after pre-training with the
third strategy. As shown in Table 3.5, The second strategy has worse performance because
in this multi-task training process, the gradient from Lc and Lp may be a conflict with the
gradient from LI . Simply using the pixel and presence loss (first strategy) is even better than
purely mixing all of them (second strategy). Nevertheless, the pixel loss is only useful when
separating the optimization of different modules with different losses (third strategy), and by
adding the proposed fine-tune stage the performance is further improved (the fourth row of
Table 3.5).

Effects of Data Distribution and A-Line Encoding

The effects of data distribution and of the proposed A-line coordinates encoding strategy in
the overall segmentation accuracy of ACE-Net were evaluated by investigating the contribu-
tion of coordinates encoding (CE) and the impact of widening the training contour coordinate
distribution with synthetically generated data, for two different backbones: a small convo-
lutional layer depth backbone with 25 output features ( f0-25-S) and a large convolutional
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layer depth backbone with 500 output features ( f0-500-L). All experiments were carried
out using the IVUS-Lumen dataset. 5000 synthetic images and upper/lower boundary sets
of the lumen region were generated by applying a tissue geometry warping algorithm to
this dataset (further details are included in the supplementary materials). These synthetic
images are mixed with the training set of the original IVUS-Lumen dataset to enrich the
contour coordinate distribution. The effect of data distribution on ACE-Net is thus assessed
by training ACE-Net using either the original or the mixed training sets and then evaluating
it on the same testing set, obtained from the original dataset only. To analyze the contribution
of CE, CE was removed from ACE-Net and lumen boundaries were extracted from the
pixel-wise semantic segmentation map IPE , using the approach described in Bradski (2000a).
The results are summarized in Table 3.6. Note that DeepLabV3+Chen et al. (2018) was set as
the baseline for comparison regarding its average performance for the IVUS-Plaque/Calcium
and CUBS datasets (Tables 3.1 and 3.2). Results indicate that the segmentation accuracy
of ACE-Net decreases without CE, in particular for a small backbone (i.e. f0-25-S), which
has shown to underfit for both training sets. On the other hand, when using CE and a mixed
training set, the performance of ACE-Net improves; ergo, a wider distribution of boundary
coordinates, even if by means of synthetic data, is beneficial for the learning of CE. Finally,
it can be noted that f0-25-S obtains comparable accuracy to f0-500-S, particularly for the
mixed training set. For the segmentation of simpler shapes of intravascular structures, e.g.,
the lumen region, a small backbone could thus be sufficient to achieve satisfactory accuracy.

3.5 Cross-domain Federated learning for IVUS and OCT

OCT and IVUS images share certain similarities (see example in Figure 3.13 a) and the
same deep learning architecture can be applied to both of them. We seek to maximize the
learning of common knowledge shared within two image modalities (i.e., the geometry),
while bypassing the procedure of data sharing/exchange.

3.5.1 Federated learning for A-line Coordinates Encoding Network

Assume n ∈ N medical institutions c ∈ C are participating in the federated learning (FL)
pipeline. Each medical institution holds a private dataset Dc = {(xc

i ,y
c
i ) : i ∈ (1, ...,nc)},

where nc is the cardinality of the dataset, and xi,yi are the i-th data sample (i.e. image)
and corresponding label. In our federated learning scenario, each institution holds the data
of either OCT or IVUS images. Let n = ∑c∈C nc donates the total amount of data in all
institutions.
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At iteration t of federated learning, a cloud server will send a global model weight Wt

to all institutions as parameter re-initialization. Then the local model weight W c
t will be

updated and trained with local private data. After a certain epoch of local optimization, all
W c

t , c ∈C are then sent to the cloud server and fused by FedAvg (McMahan et al., 2017):

Wt+1 = ∑
c∈C

nc

n
W c

t (3.5)

The new weight Wt+1 is used for the re-initialization for the next federated iteration. An
example of federated learning between institutions holding OCT and IVUS data is shown in
Figure 3.13 b. Here we apply the same network (the proposed ACE-Net) that is composed of
a backbone model and bottom model to segment both IVUS and OCT images. By using such
FL pipeline and computation method of Eq. 3.5, the final global model will gain knowledge
for both modalities and is able to segment both IVUS and OCT images.
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Fig. 3.13 Cloud-based Federated learning between different medical institutions.(a) OCT and
IVUS image samples. (b) A classical FL pipeline aggregate the whole model use the same
algorithm. (c) A partial FL algorithm treat local sub-modules/layers differently by different
average weights or partially disabling local update.

3.5.2 Partial federated learning for ACE-Net

Although OCT and IVUS images share a certain similarity, the domain gap can hinder the
accuracy if the purpose of FL is only to improve the accuracy on the personalized data type
(i.e., The model stored on the OCT institution will eventually only applied to the processing
of OCT images). Personalized FL (Fallah et al., 2020; Ma et al., 2022) addresses this problem
by allowing each institution has a customized model weight that is optimized for their own
data type while learning shared knowledge from each other.
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We adopt the partial federated learning (PartialFed) algorithm (Sun et al., 2021) for our
scenario of optimizing the ACE-Net. PartialFed can be realized by two different strategies
including PartialFed-fix which choose specific fixed layers for loading global weights, and
PartialFed-adaptive which dynamically changes the layer for loading weights after each
federated iteration. The crucial procedure of PartialFed is to determine which layer will
reload using a federated weight at the end of an iteration. We implement PartialFed-fix, and
always update the bottom model for weight loading while letting each institution optimize
the local top model with their own private data (Figure 3.13). As described in 3.3.1, the top
model of the ACE-Net is a backbone feature extractor that is supervised with a pixel-wise
segmentation map, and it transforms an input image to a low-level feature that describes
semantic at each pixel location. Thanks to the Multi-task Learning (MTL) introduced for
the training of ACE-Net, after the process of backbone, the f0 tends to be the same for OCT
or IVUS images that contain geometrical structures, even though the signal attenuation for
these modalities is different. This means that for both modalities an optimized bottom model
can have identical same weights, which means a Fed-Avg algorithm well suits the weight
loading of bottom models. If the performance on only one type of image is emphasized, the
top model should be only or mainly optimized with that type of data due to a significant
domain gap. Nevertheless, to learn some low-level semantic information for each other, we
enable weights loading of the top model for a pre-training that is equal to a standard fully
Fed-Avg algorithm, then switch to the PartialFed in the fine-tuning of the FL.

3.5.3 Implementation and evaluation

IVUS and OCT images are deployed separately at two sites, one runs the ACE-Net with
an NVIDIA QT1000 GPU, and the other one uses an NVIDIA GeForce RTX3090 GPU.
An IVUS probe embedded at the tip of a robotic catheter with an active distal segment was
steered in a poly(vinyl alcohol) (PVA) cryogel vessel phantom to collect the IVUS dataset
(3500 images). OCT images were acquired by steering an OCT probe in a colon phantom
with layered tissue (Zulina et al., 2021) (3000 images) as well as in an in vivo swine colon
(2000 images). The segmentation targets for both OCT and IVUS images are tissue, lumen,
and catheter.

The pre-training was carried out with standard FedAvg that optimizes the whole ACE-Net.
At a new iteration of FL, each local machine uploads the model weights once it finishes a
complete epoch of backward propagation. The cloud server checks the state of each machine
in real-time and uses formula 3.5 to compute global model weights once all local machine
uploaded their model. For standard FL (pre-train stage), each local machine updates the
whole local model with the federated model. We validate the pre-trained model on both
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IVUS and OCT images to see if the knowledge was learned from the other site by simply
transferring the model weights. In the fine-tuning stage, the local machine only reloads the
bottom model from the global cloud. The final trained model is tested on the local data type
to see it achieves better performance in comparison to a model trained with local data only.

3.5.4 Results

Fed-learning model evaluation on cross-domain data

First, we show the performance on heterogeneity distribution cross-domain data with FedAvg
of ACE-Net. As shown in Figure 3.14, site A only holds OCT data while site B only holds
IVUS data, and after federated learning the model is evaluated on both IVUS and OCT images
for tissue contour segmentation. Figure 3.14 (a) only shows Intersection-Over-Union (IoU)
accuracy on cross-domain data (locally unseen images for site A and B), and Fed learning
help each site to increase their performances on unseen images. Some qualitative samples
of this experiment are presented in Figure 3.14 (b). When only trained with OCT images
(without Federated Learning), the ACE-Net at site A struggled to segment the IVUS tissue
contour accurately. Site B, on the other hand, performed slightly better without Federated
Learning, possibly due to the additional domain knowledge gained from the IVUS images.
However, after applying FedAvg, the ACE-Net at both sites achieved significantly improved
contour segmentation, without the need for data transfer between the two sites.

Evaluation on local custom data

In some scenarios of medical applications, the deep learning model requires to have a good
performance on only one type of data. For instance, the OCT institution only wants to
improve its model performance on OCT. In this experiment, we evaluate the ACE-Net trained
with the proposed Fed learning method for each site with its local data.

Figure 3.15 shows the training error and test accuracy for one institution on its local data.
In the Pre-train process with Fed-Avg, as shown by Figure 3.15(a) and (b), due to the domain
gap between OCT and IVUS, the convergence of backbone loss is less smooth than that of
the bottom module. The learned backbone knowledge is frequently disturbed by knowledge
from the other domain, while eventually, it converged to understand cross-domain knowledge.
The bottom model only handles information on the geometry and is already de-coupled from
domain knowledge like signal attenuation and pixel-wise noise. The OCT and IVUS images
have highly similar geometries, as they both produce circumferential images of the lumen
and rely on radial imaging. As a result of this similarity, the convergence of the bottom model
of the ACE-Net (i.e., the coordinate encoding) is smooth.. As shown in Figure 3.15 (c) and
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Fig. 3.14 Evaluation on cross-domain performance with federated learning. (a) Quantitative
results. (b) Representative tissue contour segmentation results for IVUS and OCT data.

(d), the accuracy of the Fed-learned model surpasses the model trained only with local data
under both region metrics (Jaccard index and Dice coefficient) and boundary metric (MBD).
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Fig. 3.15 Training error and evaluation accuracy on custom local data. (a) Error curve of
backbone module in the pre-train process. (b) Error curve of pre-train coordinates encoding
module. (c) Region accuracy on custom data. (d) Boundary accuracy on custom data.

3.6 Discussion

This Chapter proposes ACE-Net, a novel encoding method and efficient network architecture
for OCT and Ultrasound image segmentation of multiple anatomical structures for navigation
and diagnosis purposes.

By encoding ROI upper and lower boundaries in A-line coordinates, clean segmentation
masks are predicted by the proposed method. Moreover, ACE-Net is able to directly extract
coordinate information at a fast speed (about 8 ms for a frame using a labtop GPU, and 12 ms
for end-to-end processing including polar/Cartesian domain transformation). The obtained
results on all four datasets demonstrate the superior performance of ACE-Net compared to
several state-of-the-art methods, also confirming its potential intra-operative applicability for
real-time navigation and diagnosis.

The proposed A-line encoding scheme requires input images in a polar coordinates
system, and for such a polar domain image the A-line at the leftmost (0◦ location) is no
longer conjoined with the A-line at the rightmost (360◦ location) of the image. Because of
this, when converting the coordinates vector from the polar domain back to the Cartesian
domain, the predicted contour location at 0◦ A-line (or equivalently 360◦) could have a small
discontinuity. This phenomenon is more obvious when an image happens to have a weak
target feature at the left-most border or right-most border. A straightforward solution for this
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issue can be addressing the loss function or using a filter for the predicted coordinates vector,
which forces it to connect the left-most contour to the right-most contour. However, this
requires an additional process for the situation of no contour at the image border. Another
practical solution to solve this problem is to extend the polar domain image by duplicating part
of the input image and concatenating duplicated parts to the left and right sides respectively.
By taking such a concatenated image, the network will predict A-line coordinates for a longer
circular scanning in a single shot and only the central part will be cropped out and kept,
which is the predicted A-line coordinates vector for the original input image.

In this work, the proposed network architecture and training pipeline is suited for our
encoding scheme. In the ablation study, we validated the necessity of each part of the
ACE-Net, which is also shown to be still effective even without a backbone. We showed
that with a multi-task learning strategy applied to assist the backbone module to learn dense
special features, the coordinates regression accuracy is significantly increased in comparison
to training ACE-Net with only coordinates and presence probability losses. Nevertheless,
future development can relies on changing the backbone module and using different dense
feature extraction mechanisms for the backbone, which may lead to a new backbone module
requiring no additional pixel-wise loss for training to achieve the same performance.

The proposed network predicts contour boundaries directly for cross-sectional imaging
modalities including B-mode external or circular IVUS and endoscopic OCT, and shows
advantages for circular scanning modalities. In the deployment of ACE-Net, besides the
convenience of providing boundary location directly for navigation purposes, ACE-Net has
the advantage of producing pseudo boundary labels quickly in comparison to other pixel-wise
segmentation methods. This can help experts/annotators to auto-annotate part of the image
set fast, with a minimal correction on the predicted coordinates with off-the-shelf annotation
tools.

We further improve the generalization of networks by learning data from different
institutions without any data center to host all the images. A proposed FL pipeline resolves
the problem of statistical heterogeneity among institutions’ datasets and improves the network
performance when institutions holding multi-domain data participate in the collaborative
training pipeline. It also needs no medical image sharing between different medical centers,
by aggregating models using a protected cloud. Future work for federated learning could 1)
include more data centers in the federated training pipeline; 2) Implement layer-wise partial
aggregation, allowing each client to weigh each layer differently; 3) Accelerate the federated
update by increasing communication between different medical centers.



Chapter 4

Automatic OCT volumetric scanning with
robotic endoscope

The development of the OCT De-NURD algorithm (Chapter 2) and segmentation algorithm
(Chapter 3) provides the foundation for further work of this thesis on autonomous OCT
volumetric scanning with the robotic endoscope. In this chapter, we deploy the aforemen-
tioned OCT image analysis and correction algorithms on-the-fly for the control of the OCT
catheter and the flexible endoscope, and explore different control strategies for the precise
local scanning of moving soft tissues using the proposed system.

4.1 Overview

OCT has the ability to acquire cross-sectional images under tissue surfaces in real-time,
which can provide real-time tissue characterization. OCT embedded in continuum robots
offers minimally invasive inspection of internal tissues and organs with micrometer resolution
and millimeter penetration depth. However, due to the limited depth perception, and limited
precision of manual positioning, typically the probe should be placed in contact with the
tissue to improve the imaging quality when the tissue is moving. Performing the task of
robotic scanning over moving tissue requires controlling several DoFs of the endoscope and
instrument arm, while relying on OCT images. This is challenging because the operator
needs to verify the valid diagnostic information from the OCT image stream while looking at
the endoscopic camera video at the same time. This procedure has been proven to be difficult
to realize by users, even with telemanipulation (Mora, 2020). In this context, automatic
repositioning of the endoscope could allow deploying the OCT probe accurately and more
easily. In this chapter, we propose an automatic scanning with global-to-local feedback,
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where OCT is integrated with a robotic surgical endoscope to provide precise local position
feedback that is complementary to the white light endoscopic camera that can coarsely
guide the OCT probe to the potential pathological area. To accelerate the local scanning,
we explore different volumetric scanning strategies to find a good trade-off between large
lumen exploration speed and volumetric imaging quality. Based on the stabilization and
segmentation of the OCT images using deep learning techniques, information on tissue
location and deformation is extracted for autonomous control, as well as tactile information.
The proposed method allows an increase of FoV for OCT imaging in large lumen under
dynamic displacement caused by the motion of soft tissue.

In addition, as part of the ATLAS project, this thesis co-developed a robotic surgery
system with other four PhD projects in parallel, by integrating the home-built endoscopic
OCT system with the STRAS robotic flexible endoscopy system (De Donno et al., 2013). In
this collaborative work, we explored a higher level of automation for the robotic endoscope
that enables global-to-local navigation. Image processing techniques for the white light
endoscopic camera (developed with another Ph.D. project) serves as the global navigation of
the surgical robot to automatically locate OCT around the suspicious pathological region. The
OCT data stream stabilization, image segmentation and probe automatic control developed
by this thesis are applied to perform local scanning. To validate the integration system, this
thesis developed phantoms that mimic the optical and mechanical properties of colon tissue,
within which a variety of autonomous navigation and scanning experiments were conducted.

4.2 Related work

4.2.1 Volumetric imaging with catheterized OCT

To obtain OCT volumetric information, the side-focused optical probe is rotated and pulled
back inside a protecting sheath. The sheath can have a form of balloons, low-profile tubes
or capsules (Kang et al., 2010; Vakoc et al., 2007). OCT is originally catheterized for small
lumen environments including the vessel/cardiovascular circulatory system (Brezinski et al.,
1996; Ughi et al., 2014) and pulmonary system (Hanna et al., 2005; Lee et al., 2011). The
protecting sheath of this type of catheter is made of small tubes (typically an outer diameter
of 2.33 mm), and the pullback scanning can be achieved by moving the optical core inside the
sheath. For the GI track segment in the esophagus, which has a larger lumen diameter than
vessels, endoscopic OCT with balloon catheters was developed (Smith et al., 2019) to ensure
the tissue attaches to the sheath’s outer surface where the working distance of OCT is located.
The balloon OCT usually has a 6 cm internal pullback range and an outer diameter between 14
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mm and 20 mm. Tethered Capsule Endomicroscopy (TCE) typically uses a smaller diameter
than the balloon OCT for Barrett’s esophagus diagnosis, to allow easy swallowing. In this
case, the pullback is realized by directly moving the distal protecting sheath (transparent
capsule) together with the optical lens. TCE does not require an endoscope for insertions and
achieves the largest coverage area (typically 60 cm2 ).

The aforementioned catheterized OCT technologies passively locate the diagnosis target
(i.e. tissue) in the FoV by means of mechanical design and optics coupling. For diagnosis in
the segments of the GI tract with larger and more complex geometry (e.g. colon, stomach),
the balloon and capsule-based approaches are not suitable due to the size and motion of such
luminal tissue. Thus, the potential of applying OCT to the large intestine relies on active
scanning with a steerable system.

4.2.2 Robotic scanning for small FoV modalities

Research on imaging with robotic systems can be found for small FoV modalities. Dwyer et
al. (Dwyer et al., 2021) developed a steerable catheter that utilizes a line imaging Optical
Ultrasound system to effectuate 3D scanning. Rosa et al. proposed a robotic scanning
approach to provide online large area mosaicing that extends the FoV of confocal endomi-
croscopy (Rosa et al., 2012). Giataganas et al. described a robotic scanner that is capable
of performing programmed trajectories increasing confocal endomicroscopy (pCLE) field
of view and achieving 3 mm2 of scanning area for breast tissue (Giataganas et al., 2019).
Giataganas et al. also proposed a force-controlled pick-up probe for integration with the
robotized da Vinci instruments in intraoperative endomicroscopy imaging (Giataganas et al.,
2015a). Zhang et al. integrated pCLE and OCT for control of the da Vinci surgical robot
and performed extended field-of-view image scans with both optical technologies during
laparoscopic procedures (Zhang et al., 2017). Kristen et al. demonstrated expanding the
field of view of a scanning forward-viewing endoscopic OCT catheter from 0.95 mm2 spiral
patterns to cover an area of 19 mm × 10.4 mm intended for cystoscopy (Lurie et al., 2015).

Robotic scanning is also applied to raster scanning OCT (Huang et al., 2021; Draelos
et al., 2019). Huang et al. developed a 7-DOF robotic scanning arm integrated with an
OCT system to follow pre-programmed 3D trajectories for extending imaging FoV. This
method was reported to reconstruct a curved object of 67.8 mm on a skin surface phantom.
Draelos et al. reported the implementation of a robotized OCT probe to align and stabilize
OCT image acquisitions of a moving target for ophthalmology (Draelos et al., 2019), and
this system was demonstrated to be suitable for clinical diagnosis. Tracking moving tissues
using probe-based OCT is still challenging because of its small FoV, and for such a scenario,
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c

a b

Fig. 4.1 Robotic scanning for endomicroscopy (pCLE) FoV extension. (a) Test bench using
a Stäubli TX40 robot and (b) mosaicing results following circular and raster scanning path
that extend the FoV of confocal endomicroscopy (Rosa et al., 2012). (c) An overview of the
steps involved in autonomous optical biopsy probe scanning and multiscale fusion (Zhang
et al., 2017). The robotic system consists of a set of dVRK controllers, and both the pCLE
and OCT probes are grasped by a da Vinci PSM. The microscopic system consists of an
endomicroscope (pCLE) system, an OCT system, and a PC used to capture and process
pCLE and OCT images. The data flow streaming from the different imaging modalities is
processed for visualization and servoing purposes. From a pair of stereo images, the surface
of the scene is reconstructed as a point cloud. By stitching pCLE images, a mosaic image
can be created, and a 3-D volume can be built from OCT images. These results are fused
into a unified window for multiscale visualization. Adapted from (Rosa et al., 2012; Zhang
et al., 2017).

instrument compliance and tissue deformation are hard to handle especially when the operator
needs to pay attention to both the camera and OCT image.
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Table 4.1 Clinical studies on surgical robots with haptic capabilities (Culmer et al., 2020).

System Manufacturer Surgical area Haptic capabilities Clinical studies

Senhance (for-
merly ALF-X) TransEnterix General surgery Force feedback (Gidaro et al.,

2012)

Gynecology (Alletti et al.,
2016)
Colorectal (Spinelli et al., 2018)

REVO-I Meere, Korea General, surgery Force feedback (Abdel Raheem
et al., 2016)

Preclinical anastomosis (Ab-
del Raheem et al., 2016)
Preclinical cholecystectomy
(Kang et al., 2017)
Preclinical partial nephrectomy
(Kim et al., 2016)

MiroSurge Medtronic ( for-
merly Covidien)

General surgery Flexible arm configuration Laparoscopic surgery (non-
clinical)

Open surgery (car-
diac)

Bimanual force feedback Preclinical heart studies
(Hirzinger and Hagn, 2010)

NeuroArm
MacDonald, Det-
twiler and Asso-
ciates

Microsurgery
Tool tip force feedback

Glioma (Maddahi et al., 2016)Force scaling
Virtual fixtures (Sutherland
et al., 2008)

Sensei X and X2 Hansen Medical
Inc.

Endovascular

Catheter tip with three DoFs
force sensor

Stent grafting (Riga et al., 2009)

Full force feedback system (Al-
Ahmad et al., 2005)

Catheter ablation (Kanagarat-
nam et al., 2008)

Minimizes contact force
(Dello Russo et al., 2016)

Catheter ablation - robot versus
manual(Rillig et al., 2017)

4.2.3 Tactile sensing for soft tissue interaction

In medical applications, there are increasingly published works on applying force sensing for
instrument/tissue haptic feedback, and the most representative state-of-the-art systems are
presented in Table 4.1. Many of these systems are based on force feedback from the tip of
the instrument and catheter to assist in robotic surgery and diagnosis. In the research field
of robotic control, tactile sensing is demonstrated to achieve similar performance as force
sensing (Donlon et al., 2018). Unlike force sensing, which generally measures force through
strain gauges, piezoelectric sensors, and load cells, tactile sensing relies on materials that
deform under pressure and measure such deformation quantitatively.

For medical imaging, force and tactile sensing can also help to improve image qualities.
For scanning with small FoV imaging modalities, usually, the probe or catheter needs to
be precisely positioned within a fixed working distance, which typically requires the probe
to interact (i.e. make contact) with the tissue in order to ensure optimal image quality.
Giataganas et al. integrated an air pressure force sensor into the Da Vinci robot to assist
the local scanning using confocal microscopy (Giataganas et al., 2015b). In literature, most
research works about force or tactile sensing are for non-medical scenarios. They are based
on different sensing mechanism, e.g. pressure (Tai and Yang, 2015), impedance (Büscher
et al., 2015), capacity (Ge and Cretu, 2017) and optics (Büyükşahin and Kırlı, 2018). A
recent work (Donlon et al., 2018) achieved high-resolution tactile sensing using CCD camera
to detect local deformation, the tactile sensing is applied to sophisticated tasks like soft
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object (i.e. cable) manipulation. Technically, OCT has a higher resolution than CCD cameras
and is capable of detecting local micro deformation. Catheterized OCT can be used as a
position and tactile sensor, that can provide diagnostic information at the same time. Based
on this idea, we estimate the distance and tactile information (i.e. location, velocity, tissue
deformation, and tool compliance) from the output of the proposed ACE-Net. By doing
so, the surgical robot can use such information as feedback to constrain the contact force
in the local scanning process since the force applied to the tissue is correlated to the tactile
deformation.

4.3 Materials

4.3.1 STRAS robot

The STRAS robotic system consists of a main endoscope that accommodates three instrument
working channels, with two side channels where steerable instruments can be inserted
(Nageotte et al., 2020). The main endoscope is equipped with a camera at the distal tip, a
lighting system, and a channel for fluids such as air insufflation and water to cleanse the
camera. The distal part of the endoscope can be deflected in two orthogonal directions, which
are actuated by antagonist tendons. In total, the system provides 10 degrees of freedom
for controlling the end effectors: 3 degrees of freedom for each of the two steerable arms
(bending, rotation, and translation), and 4 degrees of freedom for the body (vertical and
horizontal bending, rotation, and translation). The overview of the system can be found by
revisiting Figure 1.2. In our setup, a motorized steerable OCT probe is inserted in the right
instrument channel and extends 25 mm out its distal tip (see Figure 4.2).

4.3.2 OCT Configuration

An endoscopic OCT catheter was manufactured with an outer diameter of 3.5 mm (Mora
et al., 2020), which is compatible with the instrument channel of the robotized flexible
interventional endoscope (Nageotte et al., 2020). The instrument is terminated at the distal
tip with a transparent elastic sheath, which allows three-dimensional OCT imaging using an
internal rotating side-focusing optical probe with two proximal external scanning actuators.
The instrument is connected to an OCT imaging system built around the OCT Axsun engine,
with a 1310 nm center wavelength-swept source laser and 100 kHz A-line rate. The OCT
catheter can be translated, rotated and bent in one plane.
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a
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Fig. 4.2 (a) Schematic drawing of the robotized flexible interventional endoscope with the
steerable OCT catheter attached to a slave cart that is connected to user controllers for
teleoperation of the device: instrument actuators (IM1, IM2), pullback scanning actuation
(RJ), OCT system (OCT), endoscope processor (Endo P), endoscope light source (Endo
LS). (b) Front view of the distal end of the robotized flexible interventional endoscope with
steerable OCT catheter. Adapted from (Mora et al., 2020).

4.3.3 Phantoms

We use two types of phantoms that simulate the optical and mechanical properties of layered
soft colon tissue for our experiments. The optical phantom is manufactured using the
silicone-based liquid polymer called Dragon Skin (Smooth-On Inc.). We adapted the optical
phantom that mimics layer distribution of colon tissue and simulates the signal attenuation
for OCT. The concentration of scatterers was adjusted to obtain corresponding contrast
in the tissue-mimicking phantom with concentrations of 0.2, 1 and 0.1%wt, for mucosa,
submucosa and muscular layers, respectively (tested with broadband laser source centered at
1310 nm) (Zulina et al., 2021). Polyps are manufactured with the same silicon material and
3D-printed molds, and then they are attached to the phantom surface. Higher scattering of
cancerous tissue was produced by increased concentration of TiO2. Finally, the sessile polyps
were covered by a thin layer of Dragon skin for color-matching. To ensure correct optical
properties for white-light images coming from the endoscopic camera, the healthy tissue
base and polyps were colored using an airbrush tool and silicone-based polymer (Psycho
Paint resin pro, Smooth-On Inc.). A mixture of yellow, beige and red pigments were used to
simulate human tissue coloring. OCT images of the optical phantom is shown in figure 4.3 d.

The mechanical mimicking phantoms used in these experiments are made from soft
polyvinyl chloride (PVC) gels in a liquid plasticizer (Chatelin et al., 2020). The PVC resin
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Fig. 4.3 Optical and mechanical phantoms. (a) Unfolded 23cm by 23cm colon phantom
with cancerous insertions and benign polyps and (b) internal views of the folded colon
phantom. (c) A piece of the soft phantom which is attached to a moving platform with force
measurement. (d) Volumetric rendering of 3D OCT data and cross-sectional OCT images
of different tissue types present in the optical phantom obtained with a custom benchtop
imaging system and compared with OCT images of corresponding tissue types obtained in
humans, adapted from (Zulina et al., 2021).

and plasticizer are mixed in which the PVC weight ratio can be varied between 40 to 80% of
the total mixture based on the required softness. To complete the curing process, the mixture
is heated up to 160◦C in an open glass beaker by a microwave oven with regular stirring.
Next, the mixture is degassed in a vacuum bell and poured into a mold. The mixture is left for
one day to properly finish the curing and cooling processes. Finally, the solidified artificial
phantom is removed from the mold. Soft phantoms with two levels of stiffness (with Young’s
modulus of 26.25 kPa and 569.2 kPa) were manufactured and used in the experiments.
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Fig. 4.4 Diagram of system integration. The whole STRAS/OCT integration system consists
of 4 machines to acquire raw information/images, estimate navigation states and control the
servo system.

4.3.4 Force measurement system

Inspired by Giataganas et al. (Giataganas et al., 2015b) we use a scientific scale for force
measurement when the imaging system is making contact with the phantom. We adopted a
scientific scale (Ozoffer, JS-30) embedded with a highly sensitive and high-resolution force
sensor (with a graduation of 0.001 gram) for the experiment (details in figure4.3 c). We
modified the scale by replacing the original plate with a larger lightweight flat plate and
attaching it to the sensing spot. By fixing the soft phantom on the plate and moving the
whole scale with a translational stage, the tissue motion can be simulated while monitoring
the force applied to the tissue. A fast digital industrial camera (JAI, CV-S3200) is set up for
capturing the image from the scale screen, thus allowing real-time force measurement by a
computer.

4.3.5 System integration

In order to realize automatic navigation in the colon, as well as localization, scanning and
assessment of potential lesions, the integrated robot/imaging system needs to process the
information (e.g. endoscopic images, OCT data) and coordinate the actuation system in real-
time. Diagram in Figure 4.4 shows how the hardware systems, information processing and
control modules are bridged. We deployed 4 computers/machines for the whole integration
system. First, machine-A controls the STRAS endoscopic robotic system motions including
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bending and rotation of the main endoscope and instrument arm. Second, machine-B acquires
and decodes the information from the OCT engine. Machine-D grabs information from all the
imaging modalities (endoscope and OCT); runs De-NURD networks for OCT stabilization
(details of the design of this module were introduced in Chapter 2); and deploys two ACE-
nets (see details in Chapter 3). The output of the ACE-nets is further processed for instrument
arm navigation and pathological state assessment. Finally, machine-C runs a series of
information processing and control modules. It gathers output and images from machine-D,
and runs a deep learning based algorithm to segment the lumen, polyp and instrument tool
for endoscopic images; it also receives the robot states from STRAS robot, and the control
module computes control signals based on the robot states and image processing results. The
commutation between the imaging system, the robot (machine-A, B) and the processing units
(machine-C,D) is based on Socket Protocols (IBM). We bridge the communication between
modules within machine-C,D using Robotic Operating System (ROS) (Stanford Artificial
Intelligence Laboratory et al.) nodes and topics.

While this system may still require an extra step toward compactness, it already offers
interesting possibilities for automation, powered by the availability of rich multi-modal data
such as white-light images, OCT images and robot kinematics.

4.4 Micro-level local scanning with tactile feedback

Two programmed scanning trajectories that extend the FoV of OCT are explored for local
scanning. For both scanning strategies, feedback from OCT is incorporated into the control
scheme to regulate the contact between the instrument and the tissue.

4.4.1 Scanning strategies

In comparison to a small luminal environment (e.g. vascular, respiratory tract, and esophagus),
the colon lumen is relatively large compared to the working space of a fully passive OCT
catheter. One solution, proposed by Mora et al., for adapting the developed steerable OCT
catheter to such environment was to effectuate a sweeping pullback scanning by controlling
the bending and the translation alternatively (as shown in figure 4.5 c). It has been shown
that the robotized scanning provided better motion smoothness, trajectory accuracy and a
larger field of view. However, in the presence of tissue local changes in topography related to
the presence of polyps or folds and tissue motion the sweeping pullback scanning strategy
needs feedback information to correctly adjust the trajectory. One possible solution is to use
information from the white light camera to extract landmark features to form a navigation
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Fig. 4.5 Scanning strategies for colon lumen with robotized endoscopic OCT. (a) shows
our system operating within a colon after gas inflation, and in (b) we warp the colon tissue
phantom to simulate such lumen environment. (c) shows OCT tip trajectory of a sweeping
pullback scanning, and (d) shows another scanning strategy that utilizes multiple parallel
transnational pullbacks.

map for planning scanning trajectory (Zhang et al., 2021). Another challenge of the sweeping
scanning is the fact that due to the curvature of this trajectory, the orientation of OCT probe is
rotating as the probe is moving on the scanning path, which leads to shifting and rotation of
the cross-sectional OCT imaging plane, resulting in a low rate of overlapping and information
association between two sequential B-scans. Consequently, this could hinder the quality of
data stream stabilization (De-NURD) and introduce difficulty in volumetric reconstruction.

Considering these issues, in this thesis, we focus on another scanning strategy, which
utilizes multiple parallel translational pullbacks with global-to-local feedback for automation
(see Figure 4.5 c). Firstly, as aforementioned in Chapter 2, this type of robotic pullback
already provides the convenience of De-NURD without registering to calibrate reference
information from a range of OCT sheath images. Secondly, this scanning strategy allows
acquiring stacks of B-scan slices that are highly correlated between two neighboring B-scan
for each pullback, which needs minimal correction (i.e. only needs surface alignment) for
volumetric reconstruction. Reconstruction for a larger volume would only need a volumetric
stitching algorithm (Laves et al., 2018) to connect small volumes from different, possibly
parallel pullbacks. Another reason for using multiple pullbacks instead of the sweeping
pullback strategy is that the colon lumen has a roughly cylindrical shape after gas inflation.
The instrument tool-sweeping motion itself can cause the probe/tissue distance change in
such an environment. While translational pullback is suited for any approximately cylindrical
lumen since the translation is at least coarsely aligned with the axis of the cylinder, and
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it also allows the probe to simply use instrument arm bending to compensate the tissue
displacement.

4.4.2 OCT image segmentation for navigation feedback

Endoscopic camera images can provide enough information to roughly estimate surgical
tools’ 3D shape and tool-tissue interaction. However, additional sensors mounted on the side
of the endoscope or on the integrated surgical tools (i.e. side-viewing catheters) can provide
more accurate quantitative information on the relative distance and contact with the tissue
(Fig.4.6). Contact between OCT catheter and soft tissue could cause significant deformation
and pressure on the tissue, while at the same time the contact is necessary for viewing
detailed cross-sectional structure under the tissue surface. To regulate the pressure/force on
tissue and reduce the pain or tissue damage during the diagnostic scanning procedure, a fast
autonomously quantitative assessment of contact is needed.

As described in Chapter 3, the output of ACE-Net, denoted as CO ∈ RW×2, contains
coordinates of two contours: the tissue and catheter sheath contours. Segmentation of the
OCT catheter with an irregular shape can be further used to calculate the contact between
the catheter and the tissue. Using the coordinates matrix CO (or its equivalent 2 coordinates
vectors), a distance vector D with dimensions of RW is created by computing the vertical
coordinate error between the sheath and tissue at each A-line position, where W is the number
of A-lines, equal to the width of the image. Additionally, the contact region size value c
is calculated as the total number of A-lines where the distance value D(i) = 0. Both the
minimum value dm of D and the c value are used as inputs to the instrument arm controller
to control the contact force while keeping the tissue within the OCT catheter’s field of view.
Finally, filters are employed to estimate d̂m and ĉ for denoising purposes.

4.4.3 Model of multi-continuum robot tip with compliance

In order to design and optimize a controller for tissue following and force regulation, we
integrated the compliance model into the previously developed STRAS position kinematic
model (De Donno et al., 2013). Both the OCT arm and main endoscope rely on a cable-driven
mechanism for their bending section control: βi = Ai(∆li), where βi is the bending angle, Ai

is the transformation function from ∆li cable displacement to bending angle. To compensate
for axial displacement of tissue, as shown in figure 4.7, OCT probe tip location T ET can
be manipulated by solely controlling the OCT arm bending βa (figure 4.7 b) or the main
endoscope bending βe (figure 4.7 c), or by controlling both of them simultaneously.
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Fig. 4.6 OCT image segmentation for navigation feedback. OCT images can be interpreted
and processed in either the Cartesian or polar domain. In the Cartesian domain, the image is
more geometrically intuitive, while in the polar domain it is easier for quantitative assessment.

When bending βe is fixed, the tip position T ET of OCT instrument core in the Cartesian
frame FET attached to the main endoscope is:

T ET = Rθ ,a

2La(sin(βa/2))2/βa +Lpsin(βa)−F/kacos(γ)
La(sinβa)/βa +Lpcos(βa)+ tk +F/kasin(γ)

0

 (4.1)

Rθ ,a =

cosθa 0 −sinθa

0 1 0
sinθa 0 cosθa

 (4.2)

where La is the length of the arm continuum part, tk is the current arm translation and Lp is the
length of the soft OCT probe outside the arm. θa is the arm rotation which is fixed as zero in
the tissue following control, thus rotation Rθ ,a is an identity matrix. γ is the arm tip orientation
angle. F is the force calculated with a simple elastic compression model (Puttock et al., 1969)
using OCT-measured tissue deformation: F = (rs− rscos(cπ/rs))E2rssin(cπ/rs)/dp, where
c is OCT measured contact area arc length, E and dp is Young’s modulus and thickness of a
soft phantom, rs is the radius of OCT sheath. Through a linear approximation between force
and OCT probe passive bending, ka is identified by fixing βa as zero and applying different
forces to the probe, and then measuring axial distance change. In order to compensate the
tissue displacement, the control objective is to regulate the axial dimension of tip location
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Fig. 4.7 Model of multi-continuum robot tip with compliance. (a) Schematic of interaction
between the elastic probe tip and soft tissue for contact scanning. (b) Control scheme
using OCT arm bending only to follow the tissue. (c) Control scheme primarily using main
endoscope bending.

T ET [0]. And mapping between cable ∆la and T ET [0] is obtained by βa = ∆la/ra (De Donno
et al., 2013) and Equation 4.1, where ra is the radius of the arm continuum section.

The control of the arm bending can cover a certain range of tissue movement, while the
main endoscope bending control can allow tracking a larger distance range. Following our
team’s previous work (Ott et al., 2011; Zhang et al., 2021), the transformation from initial
base Cartesian frame F0 to frame FET is denoted by translation matrix T and rotation matrix
RE :
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T =

Ltcosηesinβe +Le/βe(1− cosβe)cosηe

Ltsinηesinβe +Le/βe(1− cosβe)sinηe

Ltcosβe +Le/βesinβe

 (4.3)

RE =

 sin2ηe + cosβecos2ηe −sinηecosηe(1− cosβe) cosηesinβe

−sinηecosηe(1− cosβe) cos2ηe + cosβesin2ηe sinηesinβe

−cosηesinβe −sinηesinβe cosβe

 (4.4)

where βe and ηe are the axial and transversal bending of the main endoscope respec-
tively. Assuming that after a global repositioning the OCT arm is located in a plane that
is perpendicular to the tissue, thus the ηe is set to zero for the dynamic tissue following.
According to (Ott et al., 2011), when only one dimension of main endoscope bending is
enabled, the approximated relation between pulley cable displacement ∆le and bending angle
is βe = ∆le/(re −D/2), where re is is the radius of main endoscope flexible section, and D is
the diameter of the endoscope. Eventually, the OCT tip location T 0 in frame F0 is obtained
by T 0 = RET ET +T . As shown in figure 4.7 (c), if the arm bending is fixed, the control
objective is to regulate the axial dimension of tip location T 0[0], which can be achieved by
controlling ∆le. Since large positive arm bending (toward the tissue) will rely more on the
passive compliance of the elastic probe when following large tissue motion, the gesture of
the OCT arm needs to be contained to limit γ . In order to do so, we use a simple strategy by
reducing βa if a control target βe is larger than a certain value.

4.4.4 Incorporating tactile feedback within closed-loop control

Even for a multi-pullback scanning strategy, there are still displacements that can bring the
tissue out of the FoV of the endoscopic OCT, or bring the probe to be over-pressing on the
tissue due to a lack of intuitive feedback. In this scenario, the endoscopic camera can hardly
detect small distance changes between the tissue and the probe, or quantify the deformation
of tissue caused by contact. To resolve this, we incorporate the feedback from the OCT itself
to automatically control the endoscope during tool/soft tissue interaction.

In Chapter 3, we introduced a segmentation algorithm (ACE-Net), which can be used for
surface extraction. For the scanning, we design the distance and force regulating controller as
C (dm,c), where dm is the minimal distance between the catheter surface and tissue surface,
c is the size of the contact region in the current visible B-scan. The computation of dm and c
were presented in section 4.4.2. Since only c or d can exist at a time, the relation between c
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and d has the following constrain: dm > 0 if c = 0

dm = 0 if c > 0
(4.5)

Generally, dm is increased and c is decreased along one axial direction motion of T 0. The
opposite direction of T 0 decreases dm and increases c (after dm = 0). Thus in case contact is
required, the control input error e of C (dm,c) is co-defined with both the contact region size
and distance:

e = ct − (c−µdm) (4.6)

where ct is the target contact region, µ is a rescaling factor. The force between tissue and
the OCT probe is correlated to the value of ct when a closed-loop controller is applied to
minimize e. Because of the inherent inaccuracies and low bandwidth in the robot actuation,
a constant ct is difficult to achieve when tissue surface is moving. Thus we employ a
combination of a proportional and derivative (PD) controller and a reference adaptive strategy
to control the bending direction and speed, inspired by a grasp control design when the
precise force for soft object grasping is hard to achieve (She et al., 2021). First, the bending
speed is controlled by a PD controller:

vk = Kpek +Kd(ek − ek−1) (4.7)

where Kp and Kd are the coefficients for the proportional and derivative terms. vk is the
computed target speed of actuation. A new controller output is obtained by β ∗

i = βi,k + vk∆,
with a current bending βi,k. Note that β ∗

i can be realized by OCT arm bending βa or main
endoscope bending βe (with different PD control parameters optimized with the kinetic
model). ∆ is the control time interval (determined by OCT image processing output update
time).

We define a ratio of contact by δ = c/(dπ) to quantitatively reflect tactile deformation,
where c is the contact region arc length and d is the diameter of the OCT sheath. To adaptively
adjust reference contact for the controller, an image quality S is estimated by a contact ratio
threshold δs:

S =

1 if δ ≥ δs

0 if δ < δs
(4.8)
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Following a design of force control using tactile sensing (She et al., 2021), the controller
raises target ct of the PD controller if the image quality S is poor as follows:

ct,k = αct,k−1 +(1−α)(1−S) (4.9)

where α is the leakage at every time step. If S = 1, the target contact region size ct leaks.
If S = 0, the target contact region size ct increases. In this way, the control objective is
associated with the image quality, and the scanning system can optimize the scanning image
quality with minimal overall force, which is correlated to the contact region size.

The integration of the contact regulator controller can be seen in Algorithm 1. A repeating
translation arm motion is deployed to cover a range of 13 mm. The OCT arm is rotated to
ensure bending in a plane that is perpendicular to the local curvature of the colon wall, so
that changing of βi moves the probe towards or away from the colon wall surface.

Algorithm 1 OCT local scanning
1: while true do
2: Obtain translation position state tk
3: Set arm translation speed Vt , distal limiting location td and proximal limiting location

tp :
4: if Reach distal limit td then
5: Assign target translational location tk+1 = tp
6: else if Reach proximal limit tp then
7: Assign target translational location tk+1 = td
8: end if
9: Update current target contact as ct

10: Compute distance value dm,k and contact region size ck from OCT image
11: Update ct,k based on OCT image quality
12: Obtain current bending βi,k of the actuating
13: Compute contact error ek = ct,k − (ck −σdm,k)
14: Update β ∗

i using PD controller with error ek
15: Set target translation tk+1, and calculate cable displacement δ li
16: end while

4.5 Experimental setup

The robotic endoscope integrated with OCT is tested on the soft colon tissue mimicking
mechanical phantom. We use a servo stage to simulate the motion of the tissue that can be
caused by peristalsis or heartbeat, as shown in Figure 4.8 (c) and (d). We fix the external
camera to focus on the LED screen of the scientific scale for force monitoring (Figure 4.9).
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Fig. 4.8 Experiment setup for OCT robotic scanning. (a) Optical phantom setup and (b) an
endoscopic image from the STRAS system; (c) The mechanical dynamic phantom and (d)
its setup with the STRAS system; (e) and (f) show sample OCT images of the optical and
mechanical phantom respectively.

The camera image sequence is synchronized with the OCT data stream with the ROS topic
described in section 4.3.5. A series of conventional computer vision techniques (Bradski,
2000b) are adapted to extract digits from the camera video (Figure 4.9 (b)).

According to an investigation on colonic motor patterns(Spencer et al., 2016), we sim-
ulate tissue movement with a speed ranging from 3.6 mm/s to 18 mm/s and a maximum
displacement range of 30 mm With the programmable translational stage. The motion is
programmed to have a frequency of 9-45 cycles per minute. The initial orientation of the
main endoscope tip is set parallel to the tissue phantom surface. The OCT instrument arm is
programmed for repeating translation scanning with a range of 13 mm and a speed of 1.13
mm/s (around 3 cycles per minute). The proposed contact regulating control is compared to a
strategy where the OCT catheter is bent towards the tissue phantom with a fixed angle during
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Fig. 4.9 Force measurement with scientific scale and camera. (a) A camera that is synchro-
nized with the OCT acquisition system looks at the digital display of the scale. (b) Image
processing steps to extract scale digits for force measurement.

translational scanning. The force measurement is synchronized with OCT B-scan with an
update rate of 8Hz.

The integration system is also tested on the optical phantom. The optical phantom is
folded to give it a cylindrical shape with a diameter of 7.32 cm (Figure 4.8 (a)). Global-
to-local navigation/scanning experiments are performed in this environment. The optical
phantom is also used in its flat shape to be set up on a moving platform for a local scanning
experiment. The details of this setup are given in Figure 4.16, section 4.6.

4.6 Results

4.6.1 Tissue motion compensation on mechanical phantom

We first demonstrate tissue following for a small phantom motion with control of the in-
strument arm, where bending of the main endoscope is not used. For this experiment, the
phantom moving speed is 3.6 mm/s and the range is 12 mm. In figure 4.10, scanning with
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Fig. 4.10 OCT volumetric scanning with moving soft phantom, (a), (b) show results of
scanning with fixed small and large bending angles respectively, (c) shows the results of the
proposed method. Within each group, (i) is the curve of synchronized force measurement
and OCT tactile perception by resampling and alignment of data buffer, (ii) is the en-face
projection of the scan; (iv) shows sample B-scans where red, green and orange colors are the
segmentation output for OCT sheath, tissue surface and the contact region. Asterisks mark
out area where OCT signal is lost when the tissue is out of FoV.
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Fig. 4.11 Results of force, contact distribution and 3D reconstruction, (a), (b) show results
of scanning with fixed angles and (c) shows the results of the proposed method. Within
each group, (i) shows the force and contact ratio distribution plots; (ii) shows two views of a
backward-forward scan volume (composed of 170 frames), and the red arrows indicate the
direction of longitudinal scanning.

a fixed bending angle (the first and the second row), where contact only relies on the pas-
sive motion of the elastic sheath to absorb tissue motion, is compared to the closed-loop
force regulating scanning. The probe is controlled to follow the soft phantom, which has
a homogeneous stiffness. The results show 650 synchronized frames of OCT B-scans and
force output for 81.25 seconds. Maximum en-face projections of each 3D scan are obtained
by cropping sheath out for all the B-scans. OCT images are processed with the ACE-Net
(Chapter 3) to extract distance and contact information. Generally, a larger force introduces a
larger value for δ , while maintaining a certain δ ensures good quality of image B-scan. In
the contact regulating closed-loop controller, good image quality is defined by a threshold
of δ > 0.05. Figure 4.10 b shows the results of scanning by fixing the instrument arm with
5 mm of cable displacement with respect to the straight configuration (≈ 65◦ of bending).
In this case, the probe always keeps contact with the moving tissue, but a large force (179
mN average) is introduced. By reducing the bending angle, i.e. in 4.10 a where the arm is
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Fig. 4.12 New scanning conditions with a softer phantom. Fixed bending scanning is
compared to the proposed closed-loop scanning on three scanning conditions: Moving
phantom, translating arm, and a combination of these two motions. The bending angle is
adjusted from 13◦ to 65◦ for the fixed -bending scanning.

bent with 3 mm of cable displacement (≈ 39◦ of bending), force is significantly reduced,
however, the visibility of the scanned target is not ensured. The proposed closed-loop force
regulation (Figure 4.10 a) has the advantage of maintaining a low level of force (72 mN) and
high image quality simultaneously while the tissue phantom is moving. Figure 4.11 shows
distributions of measured force and tactile perception for each 3D scan and 2 views of the
corresponding 3D reconstructions.

4.6.2 Effect of tissue stiffness and scanning configuration

We are also interested in scenarios when only the individual B-scans are needed and the
translational motion of the OCT probe is fixed. This situation is simulated by keeping the
same configuration of the main endoscope for the experiment as described in subsection 4.6.1
and disabling the arm translation, and By doing so, the sole effect of tissue motion can be
analyzed. All three scanning conditions (moving phantom only, translating OCT arm only,
and combining phantom and arm motion) are additionally tested on another phantom with
softer stiffness. In every experimental configuration, fixed arm bending scanning with three
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Table 4.2 Scanning under different dynamic conditions, phantom stiffness, and probe control
methods. Force mean (F-mean), standard deviation (F-STD) and imaging visibility rate are
shown.

Moving Phantom only Arm translation only Moving Phantom + arm translation

Stiffness Method
F- mean
(10−2)

F - STD
(±10−2N)

Visible rate
F - mean
(10−2)

F - STD
(±10−2N)

Visible rate
F - mean
(10−2)

F - STD
(±10−2N)

Visible rate

Softer

Fix -13° 0.402 0.709 0.280 1.945 1.698 0.968 2.365 2.422 0.711
Fix -39° 5.053 2.898 0.603 9.424 2.340 1.000 10.913 4.148 0.975
Fix -65° 14.945 4.611 0.833 18.453 3.281 1.000 20.690 5.238 1.000
Proposed 4.643 2.088 0.996 8.592 5.685 1.000 3.660 3.134 0.938

Stiffer

Fix -13° 0.356 0.622 0.333 0.804 1.061 0.631 0.215 0.507 0.197
Fix -39° 5.818 3.135 0.393 3.581 2.002 1.000 1.413 1.795 0.587
Fix -65° 17.953 5.456 1.000 13.635 2.018 1.000 13.464 4.467 1.000
Proposed 6.415 4.382 0.979 9.994 3.973 1.000 7.232 4.814 0.946

Moving Phantom only Arm translation only

Fix -13° Fix -39° Fix -65° Proposed Fix -13° Fix -39° Fix -65° Proposed

Low force rate* - softer 1 0.959 0.195 0.998 1 0.637 0 0.585

Good quality rate - softer 0.248 0.569 0.814 0.992 0.953 1 1 1

Low force rate - stiffer 1 0.846 0.006 0.788 1 1 0 0.464

Good quality rate - stiffer 0.311 0.359 1 0.977 0.521 1 1 1
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1 1 0.300 0.684 1 0.948 0.102 0.645
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* Note that the low force rate is computed by using 100 mN as a baseline   

Low force rate* - softer

Good quality rate - softer

Low force rate - stiffer

Good quality rate - stiffer

Fig. 4.13 Force vs scanning quality on phantoms with two levels of stiffness. (a) visualizes
The average force and visible rate, under conditions of moving phantom only (MP), translat-
ing arm only (TA) and a combination of these two motions (MP + TA). (b) Shows the heat
map of low force rate and good imaging quality rate.

different angles is compared to the proposed closed-loop force regulating scanning. The
results are gathered in table 4.2. Here the good quality threshold for each B-scan is set as
δ > 0.05, and a good quality rate is calculated for every data stream. Considering that in
some cases tissue is not making contact while it is still visible in the FoV, we set a threshold
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for dm < 0.1H to determine the visibility of a B-scan, where dm is the distance between the
probe and tissue surfaces, and H is the length of A-line (FoV range). Figure 4.12 shows
force/tactile perception curves synchronized with maximum intensity en-face projection for
the softer phantom. Either moving phantom or translating the OCT arm introduces significant
displacement, and generally the larger displacement is associated with the combination of
translational scanning and the moving phantom. By manually giving a fixed arm bending
(i.e. with an angle of 13◦, 39◦, 65◦), the imaging system could barely maintain both visibility
and low force at the same time (for instance, with an angle of 65◦ the tissue is well observed
but force reaches 200 mN). On the contrary, the proposed closed-loop scanning method
always has good visibility (>93% regarding all B-scans) for these three dynamic conditions,
while maintaining the force to a relatively low level (36.6± 31.3 - 72.3± 48.1 mN). As
shown in the bottom half of table 4.2, the same conclusion of comparison between proposed
closed-loop scanning and bending fixed scanning under different conditions is drawn for a
stiffer phantom.

Figure 4.13 a visualizes force against visibility on phantoms with two levels of stiffness.
From the heatmap of Figure 4.13 b, the advantage of closed-loop scanning is confirmed with
overall low forces and high scanning quality rate regardless of the stiffness and the conditions
of the motion. When the phantom is still, a fixed bending angle like 39◦ of the arm can
provide good results for both the visibility and force. However, it does not maintain the image
quality when the phantom is moving. Note that for both levels of phantom stiffness, we set
the same good quality threshold for the contact reference adaptive controller, which leads to
slightly higher forces on the stiffer phantom, since the same amount of contact deformation
correlated to a higher force on the stiffer phantom.

4.6.3 Regression between force and tactile perception

Table 4.3 Regression accuracy on different data sets with different methods.

Fix bending control Closed loop control Mixed
softer stiffer softer stiffer softer stiffer

Sample points 3321 3893 2940 3000 6261 6893

regression RMSE
(c/πd)

Log 0.0728 0.0647 0.0809 0.0515 0.0776 0.0648
Polynomial 0.0748 0.0542 0.0839 0.0514 0.0812 0.0625
NN-8 0.0706 0.0471 0.0789 0.0532 0.0789 0.0536

To regress the relation between the force applied to tissue and OCT tactile perception,
we use a Neural Network (NN) with 8 hidden neurons to map from force to contact region
ratio δ . The regression algorithm is trained and tested under 3 pairs of datasets:1) datasets on
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Fig. 4.14 Regression between force and tactile perception. The horizontal axis represents the
force value (mN), and the vertical axis represents the contact ratio δ .

fix-bending (open-loop bending) scanning for two phantoms with different stiffness levels,
and both are composed with bending angle of 13◦ and 39◦; 2) closed loop scanning data for
both softer and stiffer phantoms; and 3) a mixing of open loop and closed loop data. For
each dataset, samples are divided into training, validation and testing set by percentages of
70%, 15%, and 15% respectively. The fit plot of NN based regression is shown in figure 4.14.
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Generally the OCT detected contact ratio δ increases with the increase of force. For stiffer
phantom, the contact deformation reaches a plateau at around 120 mN. On the contrary,
visible deformation change on the softer phantom can still be obtained when the force grows
to 200 mN. This confirms that the deformable compression region of the stiffer phantom is
smaller than the softer phantom. Note that within the OCT-visible elastic compression region
(before 120 mN), given the same amount of force, the contact region extracted from OCT
shows a greater value on the softer phantom in comparison to that on the stiffer phantom. It
is worth mentioning that, the regression error on the softer phantom is slightly larger than
that on the stiffer phantom, which could possibly be caused by dynamic damping since force
is actually affected by both deformation and speed of deformation, and dynamic interaction
causes faster deformation change of the softer phantom that leads to faster axial location
change of the probe.

Additionally, linear regression methods based on polynomial and log functions are used
as a regression comparison baseline. Table 4.3 summarizes the sample points and regression
results of each dataset. Generally the NN based regression method achieves lower root
mean square error (RMSE) in comparison to the linear regression method based on log or
polynomial terms. The open-loop dataset has a slightly lower regression error in comparison
to the closed-loop data set, which could possibly be caused by smaller dynamic press damping
in fixed bending gesture.

4.6.4 Effect of the phantom moving speed on imaging quality and force

We increase the moving range of the phantom up to 30 mm, using 5 levels of speed between
3.6mm/s and 18 mm/s to validate the robustness of the proposed tracking control method.
To safely follow the moving tissue in this new condition, we use the actuation of the main
endoscope bending to control the speed of the instrument tip. Because in comparison to arm
bending βa, the main endoscope bending βe has larger effect on the axial location T 0[0]. The
bending speed control of the main endoscope is based on the same proposed control algorithm
which was previously used for the single joints control that solely used the instrument arm.
For each scan, 1000 images are acquired for 125 seconds. We monitor the force and calculate
the visible rate as a metric of imaging quality. As shown in figure 4.15, for both softer and
stiffer phantoms, the stability of force and image visible rate starts to decrease when the speed
reaches 18 mm/s, and the translational scanning additional introduces instability. On the
softer phantom, the overall force and visibility are slightly better maintained in comparison
to that on the stiffer phantom, especially when the phantom moving speed is high. This
could be caused by the narrower visible elastic compression region of the stiffer phantom,
which led to an invalid measurement zone of the control feedback. Generally, these results
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indicate that using OCT only as feedback, the flexible endoscope is able to well follow (with
a visible rate higher than 85%, and interaction force around 50 mN) a moving soft tissue
with a maximum speed of 14 mm/s with a range of 30 mm.

4.6.5 Optical phantom evaluation

To simulate a local scanning of a moving colon, the optical phantom is flattened and placed
on a moving platform. The maximum speed of the phantom is around 7.5 mm/s and the
range of motion is around 30 mm. To account for the unknown stiffness of the new phantom,
we fine-tuned the tactile threshold parameter. By decreasing the threshold to δs = 0.01, the
controller was able to successfully track the moving optical phantom. This was possible
because the optical phantom has a much higher stiffness than the soft phantom, which results
in a smaller OCT-visible deformation when in tight contact. As shown in 4.16, the proposed
closed-loop scanning maintains visibility through the whole C-scan (800 B-scans in total),
and achieves a 98.8% visible rate.

4.7 Discussion

Following the development of the stabilization (Chapter 2) and segmentation algorithms
(Chapter 3), which allow fast extraction of accurate navigation and diagnosis information,
an autonomous control approach is proposed to enable safe interaction between the elastic
instrument tip and soft tissue. The imaging quality of the OCT system and the force applied
to the tissue with mechanical and optical properties mimicking phantoms are evaluated
side-by-side. The motion of either the endoscope or tissue can cause a displacement that is
not tolerated by the small FoV of the catheter. Thanks to the elastic property of the probe,
a fixed bending angle can still adapt the location of the optical core to a small amount of
displacement, however by doing so higher forces could be introduced for the purpose of
maintaining visibility. With the tactile perception of OCT images, a closed-loop approach
for regulating the force, while maintaining the imaging quality is achieved. This closed-loop
approach slightly relies on the passive bending of the elastic instrument core and works well
for phantoms of two stiffness levels that mimic the mechanical property of the intestinal
tissue. The proposed approach is also able to perform a scan in an anatomical optical phantom
with introduced motion while maintaining a high visible rate. The results show that the
proposed method is able to maintain robustness until the speed of the soft tissue reaches
14 mm/s. The performance evaluated with these metrics prepares this method for in vivo
experiments of inspecting living tissue. The FoV DF outside the OCT sheath is 4 mm, and
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Fig. 4.15 Effect of different phantom moving speeds on the force and visibility. The proposed
scanning method is tested with and without OCT arm translation on 5 levels of phantom
moving speed, and on 2 levels of phantom stiffness. For each scan 1000 images are acquired
for 125 seconds. (a) shows the distributions of the force with boxplots, and (b) shows
corresponding visible rates.

with the proposed De-NURD networks and ACE-Nets, the update rate f is 8 Hz with an
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Nvidia Qt2000 GPU. Thus, technically, the maximum tissue moving speed Vm that could
be captured by the OCT imaging system is 32 mm/s (Vm ≈ DF f ) without changing the
hardware system, and the tissue following control performance could be further improved by
correcting the nonlinearity of the flexible endoscope and instrument arm, by advancing the
modeling and system identification for the elastic instrument/tissue interaction model. The
same concept could be also installed on a multi-channel endoscopy without an instrument
arm, while using the bending and translation of the main endoscope for scanning and motion
compensation. Thanks to the elastic property of the OCT probe, this method could possibly
be adapted to soft tissue with a certain level of geometrical complexity. Last but not least, a
new mechanical design of the sheath (i.e with curvature) can improve the adaptability of the
probe.

Here we also demonstrate an ongoing work on integrating automatic camera image
guidance, and OCT pathological classification with the proposed local scanning method.
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disappears.

Example output images of this integration work is demonstrated in Fig. 4.17, where the OCT
arm and lumen center are localized with a segmentation algorithm of endoscopic camera
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images for the global-to-local navigation. Inspired by the work that differentiates healthy
colon tissue from pathological tissue using the layer feature of OCT cross-sectional images
(Zeng et al., 2020), we additionally realize unhealthy colon tissue identification based on the
ACE-Net. Based on the presence/absence of the submucosa layer, the system can be applied
to identify the pathological status of the tissue.





Chapter 5

Conclusion

This thesis provides a proof of concept for automatic micro-level tomographic imaging
of intraluminal soft tissues, by integrating a side-viewing OCT with a multiple sections
steerable continuum robots. Integrating OCT imaging and robotics allows to simultaneously
perform precise diagnosis and safe instrument/tissue interaction. To achieve this goal, first
this thesis developed a set of useful image analysis and video stabilization tools for side-
viewing imaging modalities. The proposed deep learning-based online image registration
and perception methods work well for a variety of side-viewing modalities and were tested
in both pre-clinical and clinical data. These results show improvement in accuracy and
efficiency in comparison to other state-of-the-art methods. Finally, this thesis integrated
the registration and perception algorithms into a home-built endoscopic OCT system for
real-time navigation. This thesis designed an experimental setup to validate the interaction
force and imaging quality in phantoms mimicking the mechanical and optical properties of
intestinal tissue. Chapters 2, 3 and 4 present details of the main contributions of this thesis,
which can be summarised as follows:

First, the distortion and instability problem, or NURD, was identified as a bottleneck
for using OCT information in robotized settings. To tackle this problem, we proposed
a new solution using deep learning techniques. This solution is based on the estimation
of A-line level NURD, and it was shown to significantly outperform the state-of-the-art.
Furthermore, we showed that the algorithm can be extended to improve real-time visualization
and volumetric reconstruction of OCT data collected with various types of catheters in
benchtop and clinical settings, including cardiovascular low-profile catheters and tethered
capsules used in the digestive system.

The second set of contributions concerns the image segmentation for navigation and
tissue identification for side-viewing catheter imaging modalities such as OCT and IVUS.
To extract tissue layers and surface information, we proposed ACE-Net, a novel encoding
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method and efficient network architecture for real-time identification and segmentation of
multiple anatomical structures. Furthermore, to improve the generalization of networks by
learning data from different institutions without any data center to collect all the images, a
federated learning pipeline is introduced to train ACE-Net. In collaboration with Beatriz
Farola Barata, a PhD student at KU Leuven who contributed to the clinical IVUS data and
segmentation experiments, this thesis showed that segmentation on both OCT and IVUS data
can be significantly improved thanks to the proposed pipeline, without ever sharing clinical
images between institutions.

Lastly, this research presents a novel method for realizing automatic OCT volumet-
ric scanning with a robotic endoscopic system. In addition to its diagnostic capabilities,
catheterized OCT can serve as an optical position and tactile sensor through the use of
the stabilization and segmentation algorithms presented earlier. This extracted information
enables the surgical robot to simultaneously gather micro-level diagnostic information and
track moving tissue while regulating instrument-tissue interaction forces. Compared to a
system without automatic closed-loop control, the proposed system and method can poten-
tially reduce the operator’s workload, while also ensuring the patient’s comfort during the
diagnosis procedure.

The main goal of this thesis was to perform the automatic scanning with a steerable OCT
using OCT information as feedback. Following the development of algorithms and methods
for image correction and feedback extraction, we implemented necessary changes to the
software and hardware on the OCT system and the STRAS robot to enable control of the
OCT-enhanced robot using a multi-sensor approach. The aforementioned contribution of this
thesis is crucial in such an integration system. This milestone was achieved in collaborative
work with researchers and engineers from the ICube Laboratory in Strasbourg who are experts
in robotic hardware systems and phantom manufacturing, but also thanks to other doctoral
students from the ATLAS project, who participated in the integration project towards a higher
level of autonomous endoscopes in the Lab in Strasbourg. Thanks to that we showed in
this thesis, in specially prepared phantoms, that automatic scanning using an OCT-enhanced
robotized endoscope is possible and it has the performance of following moving soft tissue
while maintaining low force and high visibility of information underneath the tissue surface.
In ongoing work, we demonstrated global-to-local navigation by combining an endoscopic
camera with OCT for the control of a flexible endoscope.

Future research based on this thesis can fall into the following topics:
1) Non-planar deformable tissue could be a challenge for the current system design,

but modifying the sheath curvature, using steerable sheaths, or changing tendon tension
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can improve the adaptivity of the probe for the scanning of such tissue. To control flexible
probes, an integration of a sheath shape perception module could be useful. No matter
for steerable sheath or elastic passive sheath, shape sensing can provide the tip location
information, or perform as an additional sensor for force estimation. A similar configuration
can be achieved by integrating OCT into a simpler robotic endoscope without additional
steerable arms, using the same proposed software tools, control scheme and aforementioned
potential variants of sheath modifications. Thanks to the dynamic evaluation system with
force monitoring developed by this thesis, the aforementioned potential modifications on
mechanical design can be effectively evaluated. To test the designed systems for moving
toward in vivo experiments, advanced phantoms with both optical, mechanical, and varying
geometrical properties (de Bruin et al., 2010) are highly in demand.

2) Changing the mechanical and geometrical characteristics of the protecting sheath of
the instrument core can ease the difficulty of interaction control, and the optical characteristic
of the sheath can be modified as well. For diagnostic purposes, the sheath is not necessary
to be 100 percent transparent, which is also impossible to achieve. If a lower NURD is
required the sheath can be modified to feature a certain level of optical pattern. This could
impact the imaging signal intensity but will not totally block the light, and with deep learning
techniques, the quality can be restored using a similar approach for OCT denoising using
CNN (Bayhaqi et al., 2022). Moreover, optimal properties of the protecting sheath can
be computationally obtained and characterized. For instance, one can apply image quality
analysis algorithms (Wang et al., 2018b) to find the best trade-off between resolvable imaging
noise and A-line correlation significance (for De-NURD) contributed by the optical pattern.
If the optical property of the OCT sheath is characterized, eventually the De-NURD for the
internal pullback where the OCT lens moves along the sheath can be realized with higher
accuracy even without sheath image registration.

3) For the robotic control part, machine learning can be utilized for control design. For
example, a machine learning-based system identification may be enough for estimating the
model of interaction between soft-probe-based robots and tissue. Then another machine
learning-based controller can be built upon the identified system model. Alternatively,
information perception and control can be designed as a whole tightly integrated machine
learning system (i.e. end-to-end reinforcement learning), if the robot is able to perform in a
realistic phantom environment for a large number of trials.

4) The proposed De-NURD algorithm could be potentially adapted to correct motion
artifacts for other rotational scanning imaging modalities which project light (or other source
signals) in a radial way. The proposed A-line encoding network could potentially be an
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efficient framework for multi-surface segmentation of other penetrative imaging modalities
beyond OCT and IVUS, such as photoacoustic imaging.

5) There is still improvement space for the design of learning-based algorithms. It
is unknown if CNN is the most efficient framework for deep learning, which is recently
questioned by new frameworks like transformer networks. The proposed De-NURD and
segmentation algorithms can be re-implemented with other frameworks including transformer
networks. However, the fusion estimation methodology and axial information encoding
scheme can still be an efficient approach for online or real-time stabilization and segmentation.
Federated learning is a new emerging hot topic in artificial intelligence, and we tested it
on our image segmentation CNNs, and it can also work well for the stabilization networks
as well. And unsupervised federated learning for De-NURD can be integrated to broadly
observe all types of tissue knowledge to further improve the generalization.

6) A further goal of such a robotic tomographic imaging system is to achieve large-
volume reconstruction for soft deformable tissue. This could potentially be achieved by
using off-the-shelf techniques like Structure from motion (SfM) (Schonberger and Frahm,
2016; Giannarou and Yang, 2011) and volumetric stitching (Koolwal et al., 2011; Ni et al.,
2009; Laves et al., 2018). To adapt those techniques (both traditional or learning-based)
that consider the environment as still and rigid, a step of flattening tissue volume by surface
(2.5D layered map) may be sufficient, and this is more achievable even if the shape of the
tissue is changing during the scanning process. The characteristic of soft-moving tissue is
a challenge, however, the softness/adaptability of the tissue can be limited by constraining
its shape with instruments. On the other hand, for diagnosis purposes (i.e. pathological
margin check), a strict geometrically correct 3D reconstruction is not necessary. The goal
of large map reconstruction can be realized when acquired tissue surfaces are all flattened.
Post-processing can align the tissue surface for mapping, but an always-contact strategy can
pre-align the tissue in a more natural way.

7) For the pre-clinal experiments using the proposed system and method, the validation
approach should be slightly different since the force on the tissue is difficult to obtain in vivo.
Thus an alternative validation approach is to evaluate if the probe is making damage to the
tissue. Another interesting evaluation metric could be the time and accuracy for scanning a
certain moving/deforming area, especially compared to manual teleoperation.

8) The objective of developing an automated diagnosis system is to deploy it in clinical
settings. Achieving this goal will necessitate further technical improvements, including
enhancing the robustness and safety of algorithms. Moreover, there will be regulatory,
ethical, and legal challenges to address. For instance, the process of obtaining CE marking
or FDA approval for deep learning-based systems can be complex and time-consuming.
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The development of the risk management policy for medical devices with higher levels of
autonomy could also affect the process of clinical translation (Yang et al., 2017).

In summary, this thesis developed software tools/algorithms and methods for the integra-
tion of a new optical imaging modality with a surgical robot. The methods of image analysis
and flexible instrument control will impact the future of surgical robotics and beyond.





Résumé en français

L’objectif de cette thèse est d’automatiser l’imagerie robotique en permettant une opération
en boucle fermée pour une numérisation automatique précise en présence de mouvement
tissulaire. Tout d’abord, un problème spécifique des cathéters tomographie par cohérence
optique (OCT) de numérisation rotative, appelé distorsion de rotation non uniforme(NURD),
qui entrave les tâches de diagnostic et de navigation, est examiné. Une nouvelle solution pour
la correction en ligne est proposée. Ensuite, un algorithme de segmentation multi-surfaces
d’images OCT à vision latérale est développé, qui est également adapté à l’échographie
intravasculaire (IVUS). Un pipeline d’apprentissage fédéré décentralisé est démontré pour
former le réseau d’encodage de lignes A avec des images OCT et IVUS, améliorant les
performances du réseau. Enfin, une rétroaction en temps réel est fournie pour la numérisation
volumétrique robotique, en maintenant les tissus mous dans le champ de vision et en limitant
la force de contact.

R1 Contexte de recherche

L’endoscopie est un moyen courant et sûr d’examiner le tractus gastro-intestinal en temps
réel, y compris l’œsophage, l’estomac et le duodénum (oesophagogastroduodénoscopie),
l’intestin grêle (entéroscopie), les voies biliaires (cholangiopancréatographie endoscopie
rétrograde), le gros intestin/côlon (coloscopie, sigmoïdoscopie), rectum (proctoscopie) et
anus (anoscopie) (Dhumane et al., 2011). Au cours d’une procédure endoscopique, le
médecin insère un tube flexible avec une lumière et une caméra à l’extrémité distale pour
visualiser des images en direct du tube digestif sur un moniteur couleur externe. Lors d’une
endoscopie haute, un endoscope est généralement passé par la bouche (l’accès transnasal est
également possible mais moins courant) et dans la gorge et dans l’œsophage, permettant au
médecin de visualiser l’œsophage, l’estomac et la partie supérieure de l’intestin grêle. . De
même, des endoscopes peuvent être passés dans le gros intestin (côlon) par le rectum pour
examiner cette zone de l’intestin. Cette procédure est appelée sigmoïdoscopie ou coloscopie
selon la profondeur de l’examen du côlon (Rex, 2000). Une forme spéciale d’endoscopie
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appelée cholangiopancréatographie rétrograde endoscopique (Jorgensen et al., 2016), est
utilisée pour prendre des photos des conduits du pancréas et de la vésicule biliaire et pour
placer un stent dans les voies biliaires.

Afin d’améliorer le taux de réussite de la détection des cancers digestifs dans les procé-
dures de diagnostic endoscopique in vivo, de nouveaux systèmes d’imagerie optique sont en
cours de développement. Ils concernent la détection du recrutement vasculaire, la consomma-
tion de métabolites, la consommation d’oxygène ou l’observation des structures tissulaires au
niveau micro (Yun and Kwok, 2017). Ces nouvelles technologies d’imagerie optique peuvent
permettre un diagnostic en temps réel, sans prélèvement de biopsies sur le corps du patient.

R2 Apport de la thèse

Comme le montrent Mora et al. le cathéter orientable de tomographie par cohérence optique
(OCT) (Mora et al., 2020) offre la possibilité d’un diagnostic en temps réel de la lumière
du gros intestin avec une imagerie en coupe à haute résolution. Avec une trajectoire de
balayage préprogrammée, l’OCT orientable offre une meilleure fluidité de mouvement et une
meilleure précision de trajectoire et étend potentiellement le champ de vision. Cependant,
en raison du petit champ de vision (FoV) de l’OCT, même un petit déplacement causé
par le changement d’emplacement de l’endoscope ou le mouvement des tissus peut faire
perdre à l’OCT sa cible diagnostique. c’est-à-dire le tissu). La compensation manuelle
du déplacement ou le suivi des tissus pourrait introduire des charges opératoires pour le
chirurgien. Ainsi, l’automatisation du contrôle de navigation et de balayage de la sonde OCT
est nécessaire. Le cathéter OCT miniaturisé, cependant, est sensible à la distorsion de rotation
non uniforme (NURD), un type d’artefact causé par l’instabilité du balayage. Cet artefact est
difficile à éliminer complètement par l’optimisation matérielle seule, comme l’a démontré
une étude de Mora et al. (2020) (Mora et al., 2020). De plus, le mouvement du cathéter
peut également affecter le NURD. Par conséquent, il est nécessaire d’effectuer une étape
de correction d’image OCT afin d’atteindre un niveau supérieur de contrôle automatique de
l’endoscope robotique.

Les travaux antérieurs de notre équipe se sont concentrés sur le développement du
cathéter orientable OCT et du matériel du système d’imagerie et leur intégration avec un
endoscope robotique (Mora et al., 2020). Des images OCT préliminaires ont été collectées
avec l’endoscope interventionnel flexible robotique amélioré par OCT dans des expériences
précliniques ex-vivo et in-vivo. Les résultats d’une comparaison du fonctionnement robotisé
du cathéter orientable avec un endoscope manuel ou une téléopération (voir section 1.4.4)
ont montré le potentiel de cette méthode pour étendre le champ de vision de l’imagerie
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Fig. R1 Schéma du système de diagnostic automatique. Suite à des travaux antérieurs sur
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: (i) stabilisation d’image en ligne pour OCT, (ii) perception d’image en temps réel OCT
(également compatible pour IVUS) et (iii ) contrôle automatique de l’endoscope flexible.

haute résolution tout en conservant une bonne précision et rapidité de fonctionnement. Une
automatisation plus poussée de ce processus en permettant un fonctionnement en boucle
fermée peut surmonter les limitations actuelles et permettre un balayage automatique avec une
précision et une vitesse élevées en présence de mouvement des tissus. L’OCT endoscopique
fournit un ensemble de fonctionnalités qui en font un candidat approprié pour fournir une
rétroaction au fonctionnement en boucle fermée :

• OCT offre un bon compromis entre résolution, sensibilité et FoV, qui peut être optimisé
en fonction de la géométrie tissulaire et de la nature de la maladie. Par rapport à
l’édnomicroscopie confocale où la résolution micrométrique s’accompagne d’un très
petit FoV.
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• Même si OCT a une distance de travail fixe par rapport au tissu nécessaire pour acquérir
des images à haute résolution, dans les cathéters endoscopiques typiques capables de
différencier les maladies du système digestif, la profondeur de champ est de quelques
centaines de microns, par rapport à seulement quelques microns de profondeur de foyer
des sondes d’endomicroscopie confocale. De plus, il a également une plage d’imagerie
de quelques millimètres de long, où les tissus sont visibles mais la résolution de l’image
n’est pas optimale.

• FD-OCT peut fournir une capacité d’imagerie rapide pour le diagnostic en temps
réel et pour un retour de position rapide pour l’asservissement visuel (c’est-à-dire
qu’un FD-OCT typique peut atteindre un taux de mise à jour de la ligne A de 85 kHz,
résultant en une fréquence d’images d’environ 90-110 Hz).

• Le cathéter OCT à balayage rotatif est facile à miniaturiser (avec un mécanisme de
balayage proximal, le diamètre de la sonde est d’environ 2 mm) et s’intègre bien dans
le canal d’un bras d’instrument orientable.

• Avec la navigation active du système robotique et l’aide de la caméra endoscope
CCD, un schéma de navigation global à local peut être développé, où CCD fournit
une navigation globale et grossière et OCT fournit un positionnement local et précis
nécessaire pour étendre le petit FoV du cathéter OCT, tout en maintenant une qualité
d’image optimale.

Afin de permettre une analyse automatique dans un fonctionnement en boucle fermée,
il était crucial de développer un logiciel multifonctionnel et de mettre en œuvre des mod-
ifications matérielles au système existant. Plus précisément, il impliquait la correction
automatique des images, l’analyse pour la navigation et le diagnostic dans GI à l’aide de OCT
cathétérisé et la mise en œuvre d’un contrôleur pour l’imagerie volumétrique automatique
des tissus mous en mouvement. La figure R1 montre un schéma du système avec les aspects
mis en évidence du système global qui ont été développés dans le cadre de cette thèse.

Cette thèse fait partie du réseau international de formation ATLAS (ITN) qui a été financé
par le projet européen Marie-Curie. Les principaux objectifs de ce projet sont de former des
doctorants à devenir des experts de la navigation intraluminale, une branche particulièrement
exigeante de la chirurgie robotique. Mon projet de recherche spécifique a été développé dans
le cadre d’une thèse conjointe entre le Laboratoire ICube affilié à l’Université de Strasbourg
où le cathéter robotique OCT a été précédemment développé et l’équipe ALTAIR Robotique
affiliée à l’Université de Vérone, spécialisée dans les systèmes robotiques avancés. Pendant la
thèse, j’ai passé six mois à l’Université de Vérone, où j’ai travaillé sur le traitement d’image
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des ultrasons intravasculaires (IVUS). Cela a été motivé par le fait que les cathéters à vision
latérale utilisant l’OCT ou les ultrasons partagent un certain niveau de similitude et que les
solutions basées sur l’OCT peuvent potentiellement être utiles pour IVUS. Ainsi, en raison
de la nature conjointe de cette thèse, ce manuscrit montre les résultats obtenus à la fois en
OCT et en IVUS avec les principales contributions suivantes :

• Une approche basée sur l’apprentissage en profondeur pour résoudre le problème de
la distorsion de rotation non uniforme (NURD), qui entrave l’automatisation et la
précision du diagnostic robotique avec l’OCT à vue latérale.

• Une nouvelle architecture de réseau avec un nouveau schéma de codage pour extraire
les informations de couche pour la navigation et le diagnostic avec un cathéter à
balayage rotatif à vision latérale. Cette méthode est également appliquée aux données
cliniques d’une autre modalité, l’échographie intravasculaire (IVUS).

• De plus, les images OCT et IVUS partagent un certain niveau de similitudes et la même
architecture d’apprentissage en profondeur (ACE-Net) peut être formée et appliquée
aux deux. Cette thèse vise à maximiser l’apprentissage de connaissances partagées
dans deux modalités d’image (c’est-à-dire la géométrie) tout en permettant aux réseaux
de gérer l’écart entre les domaines (c’est-à-dire l’intensité et l’atténuation du signal).
Un pipeline d’apprentissage fédéré résout le problème de l’hétérogénéité statistique
entre les ensembles de données institutionnels et améliore les performances du réseau
lorsque les institutions détenant des données multi-domaines rejoignent le pipeline
d’apprentissage collaboratif. Ce pipeline ne nécessite aucun partage de données entre
différents centres médicaux, agrégeant en toute sécurité des modèles à l’aide d’un
cloud protégé.

• Navigation globale à locale pour un balayage automatisé avec un cathéter OCT robotisé
et orientable. Suite au développement des algorithmes de stabilisation et de segmen-
tation susmentionnés, qui permettent l’extraction rapide d’informations précises de
navigation et de diagnostic, une approche de contrôle autonome est proposée pour
permettre une interaction sûre entre la sonde élastique de l’instrument et les tissus
mous. La qualité et la force d’imagerie du système tomographique sont évaluées côte
à côte sur le fantôme qui imite les propriétés mécaniques et optiques du tissu du côlon.
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R3 De-NURD avec Deep Learning

R3.1 Etat de l’art

Pour effectuer le mouvement hélicoïdal de la sonde, un dispositif de balayage peut être placé
soit du côté proximal (à l’extérieur du patient) (Nam et al., 2016; van Soest et al., 2008;
Ahsen et al., 2014; Uribe-Patarroyo and Bouma, 2015) ou à l’extrémité distale (Tran et al.,
2004; Wang et al., 2013; Herz et al., 2004). Par rapport aux systèmes OCT à balayage
distal, les sondes à balayage proximal sont plus compactes (Gora et al., 2013) et plus
faciles à miniaturiser (Abouei et al., 2018). Les deux approches de numérisation souffrent
généralement de distorsions d’image, ce qui entrave la reconstruction et l’interprétation de
l’image. Ces distorsions sont souvent appelées distorsions de rotation non uniformes (NURD),
alors qu’en fait NURD englobe plusieurs phénomènes distincts, notamment l’étirement, le
rétrécissement et la dérive.

Les distorsions d’étirement et de rétrécissement dans l’image sont une non-linéarité rota-
tionnelle de niveau Aline dans une image B-scan dans le domaine polaire (Mavadia-Shukla
et al., 2020; van Soest et al., 2008; Ahsen et al., 2014; Uribe-Patarroyo and Bouma, 2015).
En OCT à balayage proximal, ils sont généralement causés par un frottement mécanique lors
de la flexion du cathéter, qui à son tour affecte la transmission de la rotation de l’actionneur
proximal à l’optique de focalisation distale généralement effectuée à l’aide d’une bobine
torsadée. Dans le balayage distal, il est généralement beaucoup moins important et est
généralement lié à la conception mécanique et à la stabilité de la vitesse du moteur à court
terme. Les distorsions de gigue et de dérive entre les cadres sont présentes dans les approches
de balayage proximal et distal et sont causées par des variations de la vitesse du moteur (à la
fois dans l’actionneur proximal ou à l’extrémité distale) et par des erreurs de synchronisation
entre l’acquisition d’image et la vitesse de balayage. Ces problèmes de synchronisation sont
également courants dans les systèmes de balayage raster (Ricco et al., 2009). Le NURD
intra-trame, inter-trame ou hybride peut être formulé comme le vecteur d’erreur de rotation
d’un OCT B-scan P = [ε0 · · ·ε i · · ·εH ]T , où H est le nombre total d’Alines dans un B-scan, et
ε i est l’erreur de décalage d’une Aline avec l’indice i. Ainsi, l’algorithme De-NURD est un
processus d’estimation de vecteur d’erreur qui peut être utilisé pour re-déformer les images
OCT.

R3.2 De-NURD Réseaux

La distorsion rotationnelle du système OCT à balayage proximal est importante en raison
de la friction entre une fibre optique et une gaine de cathéter et de l’irrégularité de la
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Fig. R2 Schéma de l’architecture de l’algorithme à deux branches proposé pour l’estimation
du vecteur de distorsion de la distorsion de rotation. La branche (A) du bloc bleu en pointillés
estime le vecteur de décalage avec une paire d’images d’entrée, et la branche (B) du bloc
rouge en pointillés estime la rotation de groupe du cadre le plus récent par rapport à la
référence avec un ensemble d’images d’entrée.

vitesse du moteur. La compensation en ligne de la distorsion rotationnelle est essentielle
lorsque le cathéter OCT est utilisé pour l’assistance en temps réel pendant le diagnostic ou
le traitement mini-invasif. Dans ce travail, je propose une nouvelle méthode pour résoudre
le problème de la compensation en ligne de la distorsion rotationnelle. La distorsion est
modélisée comme une combinaison de distorsion rotationnelle non uniforme (NURD) entre
des images adjacentes avec un décalage rotationnel dynamique global. La méthode proposée
intègre un algorithme de prédiction des paramètres de déformation basé sur un réseau
neuronal convolutionnel (CNN) et une méthode de calcul de la matrice de corrélation des
lignes axiales pour corriger la position azimutale de chaque ligne axiale. En outre, cette
méthode résout le problème de l’erreur de dérive dans la compensation itérative en prédisant
le paramètre de déformation global à l’aide d’un groupe d’images contenant les images
historiques et la dernière image. Le réseau est entraîné à l’aide de vidéos OCT synthétiques
en ajoutant intentionnellement une distorsion rotationnelle à des images OCT réelles. Les
résultats montrent que les réseaux formés sur cet ensemble de données semi-synthétiques
se généralisent toujours très bien, et l’efficacité de l’algorithme est démontrée dans des
expériences ex-vivo et in-vivo, où de forts artefacts de rotation sont corrigés avec succès.

En étudiant le problème de la distorsion rotationnelle du système d’imagerie OCT, j’ai
développé un nouvel algorithme de stabilisation basé sur l’apprentissage automatique. Les
techniques basées sur l’apprentissage automatique se sont avérées capables de résoudre
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des problèmes dans des conditions complexes, qui sont difficiles à décrire par des modèles
mathématiques traditionnels. Dans le domaine du traitement d’images et de la vision par
ordinateur, l’apprentissage profond est un cadre puissant pour résoudre les problèmes de
classification, de segmentation, de détection et une variété de problèmes d’estimation de
valeur ou de reconnaissance des formes. La stabilisation du flux d’images OCT peut être
considérée comme un problème de stabilisation vidéo. Dans ce domaine, des méthodes basées
sur l’apprentissage profond ont été proposées pour résoudre les problèmes de stabilisation
vidéo des caméras à lumière blanche en ligne et hors ligne, et la plupart d’entre elles sont
plus efficaces que les approches conventionnelles. En ce qui concerne l’application de
l’apprentissage profond au traitement des images OCT, ces dernières années, le CNN a été
utilisé pour la segmentation des couches de tissus, la classification et la détection du cancer,
mais pas pour la stabilisation vidéo OCT.

Dans la nouvelle approche proposée (figure R2), la distorsion rotationnelle des images
OCT est décomposée en deux composantes : l’une est la NURD entre deux images con-
sécutives, et l’autre est une rotation de groupe entre l’image la plus récente et l’image de
référence initiale. Pour l’estimation du vecteur de déformation NURD, la méthode de calcul
de la matrice de corrélation entre les lignes de balayage axial de l’image la plus récente et de
l’image précédente est utilisée, et l’ensemble du calcul de corrélation est transféré dans des
calculs matriciels pour tirer parti de l’utilisation de l’unité de traitement graphique (GPU).
Ensuite, pour trouver l’angle de décalage non uniforme de chaque ligne de balayage, un
vecteur de déformation optimal passant par la matrice de corrélation est estimé. L’approche
de l’estimation du vecteur de déformation s’inspire des algorithmes de détection de lignes
continues et de contours de frontières basés sur le CNN. Les réseaux d’estimation NURD
utilisent une structure de champ réceptif double qui s’inspire également d’une architecture
d’exploitation spatiale, ce qui garantit à la fois la précision et la robustesse de l’estimation.

R3.3 Résultats scientifiques

Articles de journaux

1. Guiqiu Liao, Oscar Caravaca-Mora, Benoit Rosa, Philippe Zanne, Diego Dall Alba,
Paolo Fiorini, Michel de Mathelin, Florent Nageotte, and Michalina J. Gora. “Dis-
tortion and Instability Compensation with Deep Learning for Rotational Scanning
Endoscopic Optical Coherence Tomography.” Medical Image Analysis (2022): 102355.

2. Guiqiu Liao, Oscar Caravaca-Mora, Benoit Rosa, Philippe Zanne, Alexandre Asch,
Diego Dall’Alba, Paolo Fiorini, Michel de Mathelin, Florent Nageotte, and Michalina
J. Gora. “Data Stream Stabilization for Optical Coherence Tomography Volumetric
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Scanning." IEEE Transactions on Medical Robotics and Bionics, 3, no. 4 (2021):
855-865.

Présentations de conférences

1. Guiqiu Liao, Oscar Caravaca Mora, Philippe Zanne, Benoit Rosa, Diego Dall’Alba,
Paolo Fiorini, Michel de Mathelin, Florent Nageotte, and Michalina Gora. "Rotational
distortion compensation with deep learning for proximal-scanning endoscopic optical
coherence tomography." In Endoscopic Microscopy XVI. International Society for
Optics and Photonics, 2021.

2. Guiqiu Liao, Oscar Caravaca Mora, Benoit Rosa, Diego D’Allaba, Alexandre Asch,
Paolo Fiorini, Michel Mathelin, Florent Nageotte, Michalina J Gora. "Endoscopic
Optical Coherence Tomography Volumetric Scanning Method with Deep Frame Stream
Stabilization" In: Proc. of the 10th Conference on New Technologies for Computer
and Robot Assisted Surgery (CRAS) , pp. 20-21, 2020.

R4 Segmentation des images de cathéters en vue latérale
pour la navigation et l’identification des tissus

R4.1 Objectifs

Les algorithmes d’enregistrement d’images (chapitre 2) qui fournissent des images corrigées
aident les médecins à se concentrer sur les éventuelles pathologies présentes dans les images.
Cependant, l’interprétation d’un flux vidéo à la volée et l’établissement d’un diagnostic
nécessitent des efforts importants et une expérience de la procédure peropératoire. Le
diagnostic automatique est donc nécessaire parce que les nouvelles modalités d’imagerie
fournissent des informations plus détaillées et que les médecins ont besoin d’aide. Un autre
type d’assistance est nécessaire pour réduire la complexité des procédures chirurgicales, qui
requièrent également un haut niveau de formation et même plusieurs opérateurs. Cet objectif
peut être atteint par le contrôle automatique des outils chirurgicaux, pour lequel l’extraction
d’informations de navigation à partir des images collectées est également nécessaire. Le
développement d’algorithmes de perception d’images pour les cathéters à vision latérale est
donc crucial pour la navigation et le diagnostic automatiques à l’aide du nouvel endoscope
robotisé intégré à l’OCT.

Les systèmes d’imagerie par cathéter sont de plus en plus utilisés dans diverses ap-
plications cliniques pour obtenir des images luminales et transmurales. Les cathéters de
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visualisation latérale courants utilisent souvent les ultrasons (IVUS) ou la lumière (OCT)
comme signal source pour acquérir des vues transversales de l’environnement intralumi-
nal. Étant donné que ces modalités présentent certaines similitudes, le développement de
l’algorithme de perception de l’image OCT apporte également une valeur clinique à d’autres
modalités de visualisation latérale. Par exemple, IVUS est couramment utilisé pour l’imagerie
des pathologies intravasculaires telles que les anévrismes ou les plaques d’athérosclérose
(Chaoyang Shi et al., 2018), et notre méthode d’analyse d’image OCT peut également
être directement appliquée aux images IVUS. En outre, certains laboratoires développent
actuellement des cathéters capables d’acquérir simultanément des images provenant de deux
modalités, telles que l’échographie intravasculaire (IVUS) et la tomographie par cohérence
optique (OCT), au même endroit de la coupe transversale (Guo et al., 2018a). Cela a suscité
un intérêt pour le développement de méthodes de traitement d’images capables de traiter des
données à double domaine.

R4.2 ACE-Net : Réseaux d’encodage de coordonnées A-line pour la
segmentation d’images latérales

Le problème de la segmentation des régions pathologiques peut être divisé en deux parties :
la détection de la région d’intérêt (ROI) et la segmentation de la ROI. La détection des ROI
a été proposée à l’aide de boîtes englobantes, les réseaux YOLO étant l’une des approches
les plus connues(Redmon et al., 2016; Bochkovskiy et al., 2020). Inspirée par des travaux
qui permettent d’obtenir une segmentation propre et modifiable des ROI en prédisant des
polygones ou des masques à l’aide de boîtes englobantes, la tâche de segmentation des
régions pathologiques dans les images de visualisation latérale a été formulée comme un
processus de régression des limites. Au lieu de prédire le ROI, nous avons proposé de
prédire la ligne d’intérêt (AOI). La zone d’intérêt peut être considérée comme un cas moins
contraint de ROI, où les lignes A couvrant les zones cibles sont considérées comme des
prédictions valides (positives) et la régression des coordonnées de la surface/contour cible
n’est prise en compte que dans la zone d’intérêt. Par conséquent, ACE-Net a été introduit
pour prédire efficacement les coordonnées de la zone d’intérêt et des lignes A afin d’effectuer
une segmentation multi-surface en temps réel dans les images de vue latérale. En outre,
ACE-Net encode directement les coordonnées des limites d’une zone cible (c’est-à-dire une
plaque d’athérosclérose et/ou une calcification) dans deux vecteurs définis pour chaque ligne
A, tout en prédisant également la probabilité que des structures pertinentes soient présentes
dans chaque ligne A en temps réel.
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Pour la formation du réseau ACE, un pipeline d’apprentissage multitâche (MTL) a
été mis en œuvre afin d’accroître la robustesse du réseau. Ainsi, le réseau ACE apprend
simultanément différents niveaux de représentation de l’emplacement, y compris le centre
d’intérêt, l’emplacement de la frontière et une carte au niveau du pixel. Cette architecture
s’est avérée bien généralisée et plus performante dans les images complexes que d’autres
méthodes de segmentation d’images à la pointe de la technologie.

R4.3 Apprentissage fédéré pour des modalités d’images multiples

Bottom 
model

Back
bone

Bottom 
model

Back
bone

Bottom 
model

Back
bone

Fed-Aggregate

partial

Bottom 
model

Back
bone

Bottom 
model

Back
bone

Bottom 
model

Back
bone

Fed-Aggregate

partial

OCT Data IVUS Data

Institution1 Institution2

OCT Data IVUS Data

Institution1 Institution2

Phase A Phase B

Bottom 
model

Back
bone

Bottom 
model

Back
bone

Bottom 
model

Back
bone

Fed-Aggregate

OCT Data IVUS Data

Institution1 Institution2

Normal federated learning Partial federated learningb c
IVUS

OCT

OCT probe

Lumen

Shared 
knowledge

a

Fig. R3 Apprentissage fédéré basé sur le cloud entre différentes institutions médicales.(a)
Échantillons d’images OCT et IVUS. (b) Un pipeline FL classique agrège l’ensemble du mod-
èle à l’aide du même algorithme. (c) Un algorithme FL partiel traite les sous-modules/couches
locaux différemment en utilisant des poids moyens différents ou en désactivant partiellement
la mise à jour locale.

Les cathéters à vision latérale (OCT et IVUS) utilisent un mécanisme de balayage rotatif
pour acquérir des images circulaires dans le domaine cartésien, et ils sont souvent appliqués
à l’environnement endoluminal. La segmentation automatique de la lumière en temps réel
est une tâche cruciale, qui peut être utilisée pour fournir des informations géométriques pour
des applications telles que l’évaluation et le diagnostic de la lumière en temps réel ou le
contrôle robotique. Les images OCT et IVUS présentent certaines similitudes (voir l’exemple
de la figure R3 (a)) et la même architecture d’apprentissage profond peut être appliquée
aux deux. Notre objectif est de maximiser l’apprentissage des connaissances communes
partagées. Comme le montre la figure R3, un pipeline d’apprentissage fédéré interdomaines
est proposé pour former des modèles de traitement des images OCT et IVUS sans partager
les données entre différentes institutions détenant des données médicales privées. Basée sur
un réseau d’encodage de coordonnées proposé précédemment pour la segmentation d’images
d’observation latérale, la méthode d’apprentissage fédéré proposée traite de la mise à jour
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des poids pour l’extracteur de caractéristiques et les coordonnées de l’épine dorsale. Les
réseaux formés de manière fédérée ont obtenu de meilleures performances (à la fois sur les
images OCT et IVUS) par rapport à un réseau formé uniquement sur les images IVUS ou
OCT.

R4.4 Résultats scientifiques

Articles de journaux

1. Beatriz Farola Barata*, Guiqiu Liao* (∗ co-first author), Diego Dall’Alba, Gianni
Borghesan, Keir McCutcheon, Johan Bennett, Benoit Rosa, Michel de Mathelin,
Florent Nageotte, Paolo Fiorini, Michalina J. Gora, Jos Vander Sloten, and Emmanuel
Vander Poorten, “ACE-Net: A-Line Coordinates Encoding Network for Intravascular
Structures Segmentation in Ultrasound Images". En préparation (2023).

Présentations de conférences

1. Guiqiu Liao, Beatriz Farola Barata, Diego Dall’Alba, Gianni Borghesan, Keir Mc-
Cutcheon, Johan Bennett, Benoit Rosa, Michel de Mathelin, Florent Nageotte, Paolo
Fiorini, Michalina J. Gora, Jos Vander Sloten, and Emmanuel Vander Poorten, “Privacy
preserving federated learning for multi-modality multi-institution image segmentation".
Sensing and biophotonics for surgical robotics and in vivo diagnostics workshop,
Hamlyn Symposium on Medical Robotics 2022 .

2. Guiqiu Liao, Beatriz Farola Barata, Oscar Caravaca Mora, Philippe Zanne, Benoit
Rosa, Diego Dall’Alba, Paolo Fiorini, Michel Mathelin, Florent Nageotte, Michalina
J. Gora. "Coordinates encoding networks: an image segmentation architecture for
side-viewing catheters." In Endoscopic Microscopy XVI. International Society for
Optics and Photonics, 2022.

3. Beatriz Farola Barata∗, Guiqiu Liao∗ (∗ co-first author), Diego Dall’Alba, Gianni
Borghesan, Benoit Rosa, Michel de Mathelin, Florent Nageotte, Paolo Fiorini, Michalina
J. Gora, Jos Vander Sloten; Emmanuel Vander Poorten. "One-Shot Boundary Detection
Network for Multi-Modal Side-Viewing Imaging." In: Proc. of the 11th Conference on
New Technologies for Computer and Robot Assisted Surgery (CRAS), pp. 78–79, 2022.
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R5 Scanner OCT volumétrique automatique avec endo-
scope robotisé

R5.1 Aperçu des défis

L’OCT a la capacité d’acquérir des images en coupe sous la surface des tissus en temps réel,
ce qui permet de caractériser les tissus en temps réel. L’OCT intégré à des robots continus
permet une inspection peu invasive des tissus et organes internes avec une résolution de
l’ordre du micromètre et une profondeur de pénétration de l’ordre du millimètre. Cependant,
en raison de la perception limitée de la profondeur et de la précision limitée du positionnement
manuel, la sonde doit généralement être placée en contact avec le tissu pour améliorer la
qualité de l’imagerie lorsque le tissu est en mouvement. La réalisation d’un balayage robotisé
sur des tissus en mouvement nécessite le contrôle de plusieurs DoF de l’endoscope et du bras
de l’instrument, tout en s’appuyant sur des images OCT. Il s’agit d’un défi car l’opérateur
doit vérifier la validité des informations diagnostiques provenant du flux d’images OCT tout
en regardant la vidéo de la caméra endoscopique. Cette procédure s’est avérée difficile à
réaliser pour les utilisateurs, même avec une manipulation à distance (Mora, 2020). Dans ce
contexte, le repositionnement automatique de l’endoscope pourrait permettre de déployer la
sonde OCT avec précision et plus facilement.

Nous proposons un balayage automatique avec un retour d’information global à local, où
l’OCT est intégré à un endoscope chirurgical robotisé pour fournir un retour d’information
précis sur la position locale qui est complémentaire à la caméra endoscopique à lumière
blanche qui peut guider grossièrement la sonde OCT vers la zone pathologique poten-
tielle. Pour accélérer le balayage local, nous explorons différentes stratégies de balayage
volumétrique afin de trouver un bon compromis entre la vitesse du balayage à grand volume
et la qualité de l’imagerie volumétrique. La stabilisation et la segmentation des images
OCT à l’aide de techniques d’apprentissage profond permettent d’extraire des informations
sur la localisation et la déformation des tissus pour un contrôle autonome, ainsi que des
informations tactiles. La méthode proposée augmente le FoV pour l’imagerie OCT dans les
grandes lumières en cas de déplacement dynamique causé par le mouvement des tissus mous.

R5.2 Balayage local à micro-échelle avec retour d’information tactile

La modélisation cinématique conventionnelle est suffisante pour concevoir et optimiser le
contrôleur de bas niveau des robots faits de matériaux rigides. Les dernières études sur le
système robotique OCT entrent dans la catégorie du contrôle de l’interaction entre l’effecteur
rigide et la cible (Huang et al., 2021; Draelos et al., 2019). Cependant, des études récentes
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ont exploré la conception et le contrôle de robots à corps mou composés de matériaux
souples, qui sont plus sûrs et attirent davantage l’attention dans les applications chirurgicales
ou interventionnelles (Rus and Tolley, 2015). Les robots à corps mou composés de matériaux
souples sont plus sûrs et attirent davantage l’attention dans les applications chirurgicales ou
interventionnelles. D’autre part, les robots mous ont une adaptabilité, une flexibilité et une
agilité sans précédent qui leur permettent de se déformer continuellement avec un niveau
élevé de DoFs. Le contrôle de ce type de robot est donc un véritable défi, en particulier
lorsque l’environnement d’interaction (c’est-à-dire le tissu) est également mou. Dans le
domaine de la robotique, la détection tactile ou haptique est souvent incorporée lorsqu’on
considère l’interaction entre des robots élastiques et des objets déformables (Yue and Henrich,
2002; Yamakawa et al., 2007; Hellman et al., 2017; Donlon et al., 2018). Pour résoudre le
problème du contrôle de la préhension dans la manipulation d’objets souples, de nouveaux
capteurs tactiles haute résolution basés sur la vision sont intégrés dans les doigts robotiques
(Donlon et al., 2018; Cui et al., 2021). En robotique médicale, divers dispositifs haptiques
ont été intégrés (Culmer et al., 2020), mais les travaux sur l’interaction automatique avec
les tissus mous en mouvement font défaut. Le contrôle de l’endoscope flexible à continuum
entraîné par câble et intégré à une sonde OCT élastique à haute compliance pour l’interaction
avec les tissus mous en mouvement est un défi inexploré.

Après le développement d’algorithmes de stabilisation (chapitre 2) et de segmentation
(chapitre 3), qui permettent l’extraction rapide d’informations de navigation et de diagnostic
précises, une approche de contrôle autonome est proposée pour permettre une interaction
sûre entre la pointe élastique de l’instrument et le tissu mou Figure R4. La qualité d’imagerie
du système OCT et la force appliquée au tissu avec des propriétés mécaniques et optiques
semblables à celles d’un fantôme sont évaluées côte à côte. Le mouvement de l’endoscope
ou du tissu peut provoquer un déplacement qui n’est pas toléré par le petit cathéter. En raison
des propriétés élastiques du cathéter, un angle de courbure fixe peut encore accommoder
l’emplacement du noyau optique à un petit déplacement, mais ce faisant, des forces plus
importantes peuvent être introduites pour maintenir la visibilité. La perception tactile des
images OCT permet une approche en boucle fermée de la régulation de la force tout en
maintenant la qualité de l’imagerie. Cette approche en boucle fermée repose légèrement sur
la flexion passive du noyau élastique de l’instrument et fonctionne bien pour les fantômes
avec deux niveaux de rigidité qui imitent les propriétés mécaniques du tissu intestinal.
L’approche proposée est également capable de scanner un fantôme optique anatomique avec
des mouvements introduits tout en maintenant un taux de visibilité élevé. Les résultats
montrent que la méthode proposée est capable de maintenir la robustesse jusqu’à ce que
la vitesse des tissus mous atteigne 14 mm/s. La performance évaluée avec ces métriques
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Fig. R4 Modèle de pointe de robot multi-continuum avec compliance. (a) Schéma de
l’interaction entre la pointe élastique de la sonde et les tissus mous pour le balayage par
contact. (b) Schéma de contrôle utilisant uniquement la flexion du bras de l’OCT pour suivre
le tissu. (c) Schéma de contrôle utilisant principalement la flexion de l’endoscope principal.

prépare cette méthode pour des expériences d’inspection de tissus vivants in vivo. Le
FoV DF à l’extérieur de la gaine OCT est de 4 mm, et avec les réseaux De-NURD et
ACE proposés, le taux de mise à jour f est de 8 Hz avec un GPU Nvidia Qt2000. Ainsi,
techniquement, la vitesse maximale de déplacement des tissus Vm qui pourrait être capturée
par le système d’imagerie OCT est de 32 mm/s (Vm ≈ DF f ) sans changer le système matériel,
et la performance du contrôle du suivi des tissus pourrait être encore améliorée en corrigeant
la non-linéarité de l’endoscope flexible et du bras de l’instrument, en faisant progresser la
modélisation et l’identification du système pour le modèle d’interaction instrument/tissus
élastiques. Le même concept pourrait également être installé sur une endoscopie multicanal
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sans bras d’instrument, tout en utilisant la flexion et la translation de l’endoscope principal
pour le balayage et la compensation des mouvements. En raison de la propriété élastique de
la sonde OCT, cette méthode pourrait potentiellement être adaptée aux tissus mous avec un
certain niveau de complexité géométrique. Enfin, une nouvelle conception mécanique de la
gaine (c’est-à-dire avec une courbure) pourrait améliorer l’adaptabilité de la sonde.

R5.3 Résultats scientifiques
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R6 Conclusions et recherches futures

Cette thèse fournit une preuve de concept pour l’imagerie tomographique automatisée de
micro-niveaux des tissus mous intraluminaux en intégrant un OCT à vue latérale avec un
robot à continuum orientable multi-sections. L’intégration de l’imagerie OCT et de la
robotique permet un diagnostic précis simultané et une interaction sûre entre l’instrument
et le tissu. Pour atteindre cet objectif, cette thèse a d’abord développé un ensemble d’outils
utiles d’analyse d’image et de stabilisation vidéo pour les modalités d’imagerie à vue latérale.
Les méthodes proposées d’enregistrement et de perception d’images en ligne basées sur
l’apprentissage profond fonctionnent bien pour une variété de modalités d’imagerie latérale
et ont été testées sur des données précliniques et cliniques. Ces résultats montrent une
amélioration de la précision et de l’efficacité par rapport à d’autres méthodes de pointe. Enfin,
cette thèse a intégré les algorithmes d’enregistrement et de perception dans un système OCT
endoscopique fait maison pour la navigation en temps réel. Cette thèse a conçu un dispositif
expérimental pour valider la force d’interaction et la qualité de l’imagerie dans des fantômes
imitant les propriétés mécaniques et optiques du tissu intestinal. Les chapitres 2, 3 et 4
détaillent les principales contributions de cette thèse, qui peuvent être résumées comme suit :

Tout d’abord, le problème de la distorsion et de l’instabilité, ou NURD, a été identifié
comme un goulot d’étranglement pour l’utilisation des informations OCT dans les environ-
nements robotiques. Pour résoudre ce problème, nous avons proposé une nouvelle solution
utilisant des techniques d’apprentissage profond. Cette solution est basée sur l’estimation
de la NURD d’Aline, et il a été démontré qu’elle est nettement plus performante que l’état
de l’art. En outre, nous avons montré que l’algorithme peut être étendu pour améliorer
la visualisation en temps réel et la reconstruction volumétrique des données OCT collec-
tées avec différents types de cathéters en laboratoire et en clinique, y compris les cathéters
cardiovasculaires à profil bas et les capsules attachées utilisées dans le système digestif.

La deuxième série de contributions concerne la segmentation des images pour la nav-
igation et l’identification des tissus pour les modalités d’imagerie des cathéters à vision
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latérale telles que l’OCT et l’IVUS. Pour extraire les couches de tissus et les informations de
surface, nous avons proposé ACE-Net, une nouvelle méthode d’encodage et une architec-
ture de réseau efficace pour l’identification et la segmentation en temps réel de structures
anatomiques multiples. En outre, pour améliorer la généralisation du réseau en apprenant des
données provenant de différentes institutions sans centre de données pour collecter toutes
les images, un pipeline d’apprentissage fédéré est introduit pour former ACE-Net. pour
former ACE-Net. En collaboration avec Beatriz Farola Barata, étudiante en doctorat à la KU
Leuven qui a fourni des données cliniques IVUS et des expériences de segmentation, cette
thèse a montré que la segmentation sur les données OCT et IVUS peut être améliorée de
manière significative avec le pipeline proposé, sans jamais partager d’images cliniques entre
les institutions.

Enfin, cette recherche présente une nouvelle méthode pour effectuer un balayage OCT
volumétrique automatique avec un système endoscopique robotisé. En plus de ses capacités
de diagnostic, l’OCT cathétérisé peut servir de capteur de position optique et de capteur
tactile grâce à l’utilisation des algorithmes de stabilisation et de segmentation présentés
précédemment. Les informations extraites permettent au robot chirurgical de recueillir
simultanément des informations diagnostiques au niveau micro et de suivre les tissus en
mouvement tout en régulant les forces d’interaction entre l’instrument et les tissus. Par
rapport à un système sans contrôle automatique en boucle fermée, le système et la méthode
proposés peuvent potentiellement réduire la charge de travail de l’opérateur, tout en assurant
le confort du patient pendant la procédure de diagnostic.

L’objectif principal de cette thèse était de réaliser un balayage automatique avec un
OCT orientable en utilisant l’information OCT comme feedback. Suite au développement
d’algorithmes et de méthodes pour la correction d’image et l’extraction de feedback, nous
avons implémenté les changements nécessaires au logiciel et au matériel du système OCT
et du robot STRAS pour permettre un contrôle du robot amélioré par l’OCT en utilisant
une approche multi-capteurs. La contribution de cette thèse est cruciale dans un tel système
d’intégration. Cette étape a été réalisée en collaboration avec les chercheurs et ingénieurs
du Laboratoire ICube de Strasbourg, experts en systèmes robotiques et en fabrication de
fantômes, mais aussi grâce à d’autres doctorants du projet ATLAS, qui ont participé au
projet d’intégration vers un niveau supérieur d’endoscopes autonomes dans le Laboratoire de
Strasbourg. Grâce à eux, nous avons montré dans cette thèse, sur des fantômes spécialement
préparés, que le balayage automatique avec un endoscope robotisé amélioré par OCT est
possible et a la performance de suivre les tissus mous en mouvement tout en maintenant
une faible force et une grande visibilité de l’information sous la surface du tissu. Dans un



R6 Conclusions et recherches futures 161

travail en cours, nous avons démontré la navigation globale à locale en combinant une caméra
endoscopique avec l’OCT pour le contrôle d’un endoscope flexible.

Les recherches futures basées sur cette thèse pourraient inclure les sujets suivants:
1) Les tissus déformables non planaires pourraient constituer un défi pour la conception

actuelle du système, mais la modification de la courbure de la gaine, l’utilisation de gaines
orientables ou la modification de la tension du tendon peuvent améliorer l’adaptabilité de la
sonde pour le balayage de ces tissus. Pour contrôler les sondes flexibles, l’intégration d’un
module de perception de la forme de la gaine pourrait être utile. Qu’il s’agisse d’une gaine
orientable ou d’une gaine élastique passive, la détection de la forme peut fournir des informa-
tions sur l’emplacement de la pointe ou servir de capteur supplémentaire pour l’estimation de
la force. Une configuration similaire peut être obtenue en intégrant l’OCT dans un endoscope
robotisé plus simple, sans bras orientable supplémentaire, en utilisant les mêmes outils
logiciels proposés, le même schéma de contrôle et les variantes potentielles susmentionnées
de modifications de la gaine. En utilisant le système d’évaluation dynamique avec contrôle
de la force développé dans cette thèse, les modifications potentielles susmentionnées de
la conception mécanique peuvent être évaluées efficacement. Tester les systèmes conçus
pour passer à des expériences in vivo, les fantômes avancés avec des propriétés optiques,
mécaniques et géométriques variables (de Bruin et al., 2010) sont très demandés.

2) La modification des caractéristiques mécaniques et géométriques de la gaine du cœur
de l’instrument peut atténuer la difficulté de contrôler l’interaction, et les caractéristiques
optiques de la gaine peuvent également être modifiées. À des fins de diagnostic, il n’est
pas nécessaire que la gaine soit transparente à 100 Pour ce faire, il convient d’analyser
la distorsion fractionnelle et le profil d’atténuation de l’intensité, ainsi que la quantité
de corrélation apportée par les différents motifs. Si la propriété optique de la gaine est
caractérisée, la De-NURD pour le pullback interne où la lentille OCT se déplace le long de
la gaine peut être réalisée avec une plus grande précision, même sans enregistrer l’image de
la gaine.

3) Pour la partie commande robotique, l’apprentissage automatique peut être utilisé
pour la conception de la commande. Par exemple, une identification du système basée sur
l’apprentissage automatique peut suffire à estimer le modèle d’interaction entre les robots à
sonde souple et les tissus. Ensuite, un autre contrôleur basé sur l’apprentissage automatique
peut être construit sur la base du modèle de système identifié. En outre, la perception
et le contrôle des informations peuvent être conçus comme un système d’apprentissage
automatique étroitement intégré (c’est-à-dire un apprentissage par renforcement de bout en
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bout), si le robot est capable de fonctionner dans un environnement fantôme réaliste pendant
un grand nombre d’essais.

4) L’algorithme De-NURD proposé pourrait être adapté pour corriger les artefacts de
mouvement pour d’autres modalités d’imagerie à balayage rotatif qui projettent la lumière
(ou d’autres signaux de source) radialement. Le réseau d’encodage A-line proposé pourrait
fournir un cadre efficace pour la segmentation multi-surface d’autres modalités d’imagerie
pénétrante au-delà de l’OCT et de l’IVUS, telles que l’imagerie photoacoustique.

5) La conception des algorithmes basés sur l’apprentissage peut encore être améliorée.
Il n’est pas certain que CNN soit le cadre le plus efficace pour l’apprentissage profond,
qui a récemment été remis en question par de nouveaux cadres tels que les réseaux de
transformation. Les algorithmes de De-NURD et de segmentation proposés peuvent être
réimplémentés avec d’autres cadres, y compris les réseaux de transformateurs. Cependant, la
méthodologie d’estimation de la fusion et le schéma d’encodage des informations axiales
peuvent toujours constituer une approche efficace pour la stabilisation et la segmentation
en ligne ou en temps réel. L’apprentissage fédéré est un nouveau sujet d’actualité en
intelligence artificielle, et nous l’avons testé sur notre segmentation d’image CNNs, et il
peut également fonctionner correctement pour les réseaux de stabilisation. Et l’apprentissage
fédéré non supervisé pour De-NURD peut être intégré pour observer largement toutes sortes
de connaissances sur les tissus afin d’améliorer encore la généralisation.

6) Un autre objectif de ce système d’imagerie tomographique robotisé est de réaliser la
reconstruction de grands volumes de tissus mous déformables. Cet objectif pourrait être
atteint à l’aide de techniques standard telles que Structure from motion (SfM) (Schonberger
and Frahm, 2016; Giannarou and Yang, 2011) et stitching volumétrique (Koolwal et al.,
2011; Ni et al., 2009; Laves et al., 2018). Pour adapter ces techniques (traditionnelles ou
basées sur l’apprentissage) qui considèrent l’environnement comme immobile et rigide, une
étape d’aplanissement du volume basée sur la surface (carte en couches 2.5D) peut être
suffisante, et cela est plus réalisable même si la forme du tissu change au cours du processus
de numérisation. La caractéristique des tissus mous et mobiles est un défi, cependant, la flex-
ibilité/adaptabilité du tissu peut être limitée en contraignant sa forme à l’aide d’instruments.
D’autre part, à des fins de diagnostic (c’est-à-dire la vérification des marges pathologiques),
une reconstruction 3D géométriquement correcte n’est pas nécessaire. L’objectif de la recon-
struction d’une grande carte peut être atteint lorsque les surfaces tissulaires acquises sont
toutes aplaties. Le post-traitement peut aligner la surface du tissu pour la cartographie, mais
une stratégie de contact permanent peut pré-aligner le tissu de manière plus naturelle.

7) Pour les expériences précliniques utilisant le système et la méthode proposés, l’approche
de validation doit être légèrement différente car la force sur le tissu est difficile à obtenir
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in vivo. Par conséquent, une autre approche de validation consiste à évaluer si la sonde
endommage le tissu. Une autre mesure d’évaluation intéressante pourrait être le temps et
la précision du balayage d’une certaine zone en mouvement/déformation, en particulier par
rapport à la téléopération manuelle.

8) L’objectif de la mise au point d’un système de diagnostic automatisé est de le déployer
dans un environnement clinique. Pour atteindre cet objectif, d’autres améliorations techniques
seront nécessaires, notamment pour accroître la robustesse et la sécurité des algorithmes. En
outre, des défis réglementaires, éthiques et juridiques devront être relevés. Par exemple, le
processus d’obtention du marquage CE ou de l’approbation de la FDA pour les systèmes basés
sur l’apprentissage profond peut être complexe et prendre du temps. L’élaboration d’une
politique de gestion des risques pour les dispositifs médicaux avec des niveaux d’autonomie
plus élevés pourrait également affecter le processus de traduction clinique (Yang et al., 2017).

En résumé, cette thèse a développé des outils/algorithmes logiciels et des méthodes pour
l’intégration d’une nouvelle modalité d’imagerie optique avec un robot chirurgical. Les
méthodes d’analyse d’image et de contrôle flexible des instruments auront un impact sur
l’avenir de la robotique chirurgicale et au-delà.
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