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French Summary

Selon les données publiées par I'Organisation mondiale de la santé (OMS) en 2020, 37,7
millions de personnes vivent avec le virus de l'immunodéficience humaine (VIH) et 68%
millions d'entre elles sont africaines. Outre le traitement, le développement d'un vaccin
prophylactique efficace est crucial et urgent pour lutter contre la pandémie croissante du VIH.
Différentes stratégies vaccinales ont été développées afin d’induire une réponse immunitaire
spécifique efficace contre le VIH. Cependant, de nombreuses questions demeurent. 1) Les
anticorps (Abs) inhibiteurs protecteurs peuvent-ils étre induits par la vaccination ? 2) Cette
réponse est-elle similaire partout dans le monde ou la variation ethnique ou géographique a-
t-elle un impact sur la réponse immunitaire et sur la protection contre I'infection ? 3) Quel est

le profil de la réponse Ab protectrice induite tét apres l'infection ?

Le VIH est un lentivirus infectant les cellules immunitaires humaines et présentant une
diversité extrémement élevée. En comparaison avec les isolats prédominants de sous-type B
du VIH-1 d'Europe et d'Amérique, I'Afrique a élargi la diversité du VIH, les sous-types A et D
étant majeurs en Afrique de I'Est ; C en Afrique australe ; A, G, CRF02_AG et CRFO6_cpx en
Afrique de I'Ouest ; et sous-type B et CRFO2_AG en Afrique du Nord.

Pour lutter et éradiquer la pandémie de VIH, un vaccin protecteur efficace sera nécessaire.
Pourtant, en raison de la grande diversité des sous-types de VIH, l'induction d'Abs avec des
fonctions largement inhibitrices sera nécessaire. Les anticorps neutralisants (Nabs) sont des
Abs capables de protéger les cellules contre les particules infectieuses, conduisant a
I'inhibition de la réplication du VIH. Induire de tels Abs est considéré comme le Graal.
Cependant, ce type d'Ab est difficile a induire en raison de la nécessité d’une longue
maturation de la réponse humorale et essentiellement de la différentiation des lymphocytes
B en types et sous-types d'immunoglobulines (Ig). En plus de ces NAbs difficiles a induire, des
Ab capables d'inhiber le VIH par la fonction médiée par le domaine Fc des Abs ont été décrits.
Dans ce cas, les Abs vont se lier aux récepteurs Fc (FcR) a la surface des cellules immunitaires
effectrices afin d'activer ces fonctions inhibitrices médiées par les FcR. Il est intéressant de
noter que le polymorphisme spécifique du FcyRIIA de génotype rs 10800309 s'est avéré

significativement augmenté dans une cohorte de patients VIH qui contrélent leur infection



(cohorte de contréleurs VIH). Ce polymorphisme s’accompagne d’une expression accrue du
récepteur FcyRIl a la surface des cellules dendritiques, suggérant un renforcement de la
réponse immunitaire grace a la régulation positive du FcRIl. Nous proposons donc que ce
polymorphisme pourrait servir de marqueur prédictif a un meilleur contréle du VIH par les
Abs. Ainsi, aussi bien les types d'lg ainsi que les polymorphismes des FcR a la surface des

cellules effectrices pourraient contribuer a la protection du VIH par les Abs.

Les approches vaccinales actuelles proposent d'induire des Abs neutralisants ainsi que des Abs
inhibiteurs médiés par les FcR. Par conséquent, les types et le sous-types d’lg induites, ainsi
qgue la quantité et la qualité des récepteurs Fc (FcR) exprimés sur les cellules immunitaires
devront étre pris en considération. Comme ces facteurs varient selon I'ethnicité, les futurs
vaccins devront peut-étre adapter leurs stratégies a |'origine ethnique génétique de la
population ciblée ainsi qu’aux souches locales de VIH en circulation.

L'objectif de ma these est d'analyser la réponse immunitaire humorale, en particulier la
neutralisation et l'inhibition médiée par les domaines Fc des Abs, dans le cadre de nouvelles
stratégies vaccinales, et de décrypter l'implication de I'origine génétique dans les fonctions

inhibitrices des Abs induits.

1) Développement de nouvelles stratégies vaccinales

En collaboration avec le consortium européen Horizon 2020 EHVA, de nouvelles stratégies
vaccinales ont été développées. Mon objectif était de caractériser les réponses Ab induites

afin de sélectionner les protocoles vaccinaux les plus prometteurs.

) Trimeéres env modifiés :

a. Masquage sélectif des épitopes immunogenes non fonctionnels

1) Modele Lapin versus 2) modéle Macaques
1) Modéle lapin
Un trimére d'enveloppe stabilisée (env) BG505-SOSIP et CON ont été généré. Sur la base de
ce trimere stabilisé, différentes nouvelles constructions de trimére env (ConC-GT ou ConC-GT-
CL) ont été produites par notre partenaire H2020 (groupe de R. Wagner, Regensburg,

Allemagne). Ces nouveaux trimeres du VIH contiennent une délétion ou un masquage de la
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glycosylation afin de rediriger la réponse immunitaire vers le domaine conservé de liaison du

VIH au CD4.

Suite a I'immunisation de lapins avec ces envs modifiées, je détecte des Abs spécifiques du
VIH. Ces Abs apparaissent plus précocement avec la construction ConC-GT. Cette
immunisation est rattrapée avec la construction ConC-GT-CL des la deuxieme immunisation.

Ces réponses Ab sont maintenue pour les 3éme et 4éme immunisations.

J’ai évalué I'activité neutralisante des Abs induits vis-avis de diverses souches de VIH. Pour ce
faire j’utilise un test de neutralisation TZM-bl conventionnel, standardisé et validé et je calcule
I'IC50 (concentration inhibitrice 50). Pour ces conditions expérimentales, nous avons détecté
une activité neutralisante contre les souches faciles a neutraliser (souche de VIH classifier Tier
1 comme MW956.26. Fait intéressant, une neutralisation homologue contre le virus ConC a
également pu étre détectée chez certains animaux. Par contre, nous ne détectons pas

d’activité neutralisante vis-a-vis de virus primaires hétérologues

Ces résultats ont montré que nos nouvelles constructions env sont hautement immunogéenes

dans le modele lapin.

2) Modeéle Macaque

Dans le modéle de primates non Humains (NHP), je détecte des Abs spécifiques du VIH a la
semaine 6 apres les deuxiemes immunisations avec ConC-G. Pour I’env BG505 ancestral, une
troisieme immunisation est nécessaire pour la détection des Abs spécifiques du VIH. La
réponse Ab induite est donc plus lente et le niveau d ‘immunisation est plus faible que dans le

modele Lapin.

Ces résultats démontrent I'amélioration de I'immunogénicité de nos nouvelles constructions
d’enveloppe modifiées. Cependant, par rapport a la réponse Ab détectée chez le lapin, les
IC50 sont de 10 a 100 fois inférieures chez le NHP. De plus, cette réponse diminue apres

chaque immunisation.



Ainsi, les Abs spécifiques du VIH ainsi que I'activité neutralisante ont été plus fortement induits
dans le modele Lapin que dans le modele NHP. Cette forte diminution de l'efficacité de

I'immunisation dans le modeéle NHP a été reportée dans des études antérieures.

) Nouvelles plateformes vaccinales

a. Vaccination avec le vecteur VSV chez le lapin

Outre les différents candidats protéine/env, des plateformes de délivrance ont été
développées pour potentialiser la réponse Ab. Ici, nous avons évalué la plate-forme VSV-GP
exprimant les envs du VIH a leur surface (Figure 8). Cette plateforme a été testée dans le
modele lapin soit sous forme de deux immunisations VSV successives suivies de rappels
protéiques, soit sous forme d'immunisation protéique VSV séquentielle

Des Abs anti-VIH élevés ont déja été détectés apres la 1ére immunisation (semaine 4) avec
VSV-GP-sC23vA4. Il n'y a pas de différence significative dans l'induction d'Abs entre les groupes
(VSV/ VSV/ Env/ Env et VSV/ Env/ VSV/ Env). Par conséquent, la réponse immunitaire
potentiellement induite contre le vecteur VSV n'a pas modifié I'induction de la réponse Ab

spécifique du VIH contre les envs ConC et sC23.

Une activité neutralisante contre le virus Tier 1, MW965.26 a été détectée a 6 et 26 semaines
apreés immunisation, dans les deux groupes et quelle que soit la stratégie d'immunisation,

c'est-a-dire VSVenv/ VSVenv/ Env/ Env versus VSVenv/ env/ VSVenv/ env.

Ces résultats démontrent I'amélioration de la réponse Ab par la plateforme VSV utilisée seule

ou en association avec les protéines env.

b. Vaccination avec le vecteur VSV chez le Macaque et libération prolongée de

I'immunogénes (Pompe Osmotique)

Les plates-formes vectorielles VSV ont été testées plus avant dans le modele NHP. Afin

d'améliorer la réponse Ab induite dans les NHP, la protéine env ConCv5 KIKO a été administrée



en tant que rappel, soit en utilisant la voie d'administration intramusculaire (IM) classique,
soit par libération lente et persistante a I'aide d'une pompe osmotique (OP). Ce processus de

délivrance lent a récemment été décrit comme capable d’améliorer la réponse Ab induite.

Cette immunisation de la protéine par OP a permis d’induire une activité neutralisante contre
le pseudovirus sCON KIKO a la semaine 28. Au contraire, I'immunisation classique en IM n’a

pas permis d’induire des Abs neutralisants.

Ainsi, I'immunisation avec I'’env sCON KIKO par voie OP augmente les Abs spécifiques du VIH
et I'activité neutralisante contre le virus sSCON KIKO autologue. Ces résultats démontrent les
avantages de l'immunisation en OP par rapport a la voie IM classique. De nouvelles stratégies
d'immunisation avancées, y compris I'administration lente d'immunogenes, devraient étre

entreprises pour améliorer I'immunogénicité des nouveaux candidats vaccins.

2) Interaction hote-vaccin

e Réponses immunitaires humorales et Impact génétique/ Ethnicité

Un projet soutenu par HIP (HVTN Initiative Project) a été développé en collaboration avec le
College of Health and Allied Sciences (UDSM-MCHAS, Tanzanie) et le Medical Center de
I'Université de Munich (LMU, Allemagne). Ce projet vise a comparer l'induction de la réponse
Abs spécifique au VIH et leur fonction entre les individus d'origine caucasienne et africaine.
Pour ce projet, I'essai clinique de phase Il HVTN 204 a été choisi car le méme protocole vaccinal
a été mené aux Etats-Unis et en Afrique du Sud. Nous avons eu accés a des échantillons
historiques (sérum et cellules) de 137 volontaires de vaccination a deux moments : la visite 2
(V2) collectée avant la premiére injection de vaccin et la visite 10 (V10) collectée apres que les

volontaires ont regu trois immunisations et un rappel.

J'ai déterminé les Abs IgG et IgA totaux et spécifiques au VIH, la neutralisation, la fonction
médiée par le Fc (cytotoxicité dépendante des Abs, ADCC) et le polymorphisme du FcR et j’ai
comparé ces activités entre Africains et Caucasiens. Pour |'étude statistique, j’ai bénéficier de
I'aide technique de E. L'Homme, de I’Unité de Soutien Méthodologique a la Recherche clinique

et épidémiologique (USMR), Service d’Information Médicale (SIM) - CHU de Bordeaux.



Pour cette étude, nous avons observé :

- une quantité statistiquement significativement plus élevée d'immunoglobine totale G
et A chez les Africains par rapport aux Caucasiens

- un génotype AA du polymorphisme rs 10800309 du FcyRIIA significativement plus
élevé (10 %) chez les Caucasiens, par rapport aux Africains (2 %) (p < 0,0001). Des études
antérieures de notre équipe avait montré une augmentation de ce polymorphisme AA dans la
population de personnes « contréleurs du VIH » et une augmentation de hausse I'expression
de FcyRIl sur les cellules dendritiques associés a ce polymorphisme. Le génotype AA du
polymorphisme rs 10800309 FcyRIIA pourrait donc participer a la protection de I'infection ou
de la maladie.

Concernant la réponse a la vaccination (visite 10 — Visite 2) nous avons observé que :

- Les Caucasiens ont un rapport plus élevé entre les Abs spécifiques du VIH et les IgG
totales par rapport aux Africains. Cette différence est due a un plus faible taux d'lgG totales
chez les Caucasiens. Si nous comparons |'Abs spécifique au VIH a V10 avec le résultat pré-
immun, les Africains ont un ratio plus élevé en raison du faible bruit de fond dans leur sérums
pré-immuns.

- Les Caucasiens ont une activité neutralisante contre les virus MW965.26 a la visite 10

significativement plus élevée que celle détectée chez les Africains.

Ainsi, bien que la réponse Abs spécifique au VIH induite soit faible pour cet essai vaccinal, nous
avons observé un rapport significativement plus élevé d'Abs spécifiques chez les Caucasiens
par rapport aux Africains. De plus, la quantité totale d'lg et les polymorphismes du FcR
different significativement entre les Caucasiens et les Africains, suggérant fortement que la

réponse immunitaire globale induite pourrait varier selon I'ethnicité.

3) Analyse de la réponse Ab précoce suite a une infection par le VIH

En plus de I'étude de la réponse Ab humorale induite dans les vaccins, j'ai participé a I'analyse

de la réponse Ab précoce induite suite a une infection. Notre objectif final est d'améliorer la

réponse immunitaire vaccinale sur la base de nos connaissances sur la réponse Ab suite a une
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infection. Comme le vaccin doit induire une réponse immunitaire précoce et efficace, nous

avons concentré notre étude sur la réponse induite lors d'une infection aigué précoce.

Nous avons analysé la réponse Ab fonctionnelle induite précocement apres infection dans les
sérums prélevés dans la cohorte ANRS PRIMO a 2 temps : Jour 0 (JO) correspondant au jour
d'inclusion dans la cohorte (jour de détection, moins de 3 mois aprés l'infection) et 6 ou 12
mois plus tard (M6/M12). S'agissant d'une cohorte historique, les patients sélectionnés

n'étaient pas traités au moment du prélevement.

Concernant l'activité neutralisante, nos résultats ont montré que certains patients étaient
capables d'induire des Abs neutralisants a large spectre (bNabs) contre les virus
transmis/fondateurs (T/F) peu de temps aprés l'infection. Ces résultats different de ce qui était
précédemment publié pour les virus non-T/F, virus isolés plus tardivement au cours de
I'infection. En effet, les études précédentes ne détectaient pas de bNab au début de I'infection.
Il fallait attendre plus de deux ans pour la mise en place d’une réponse bNabs dirigé contre
des isolats primaire (non T/F). La détection de bNabs contre les virus T/F chez les individus
infectés apres quelques mois ouvre de nouvelles perspectives pour le développement de tels

Abs fonctionnels par vaccination.

Conclusion

Les différents résultats obtenus au cours de ma these sur la réponse Ab induite dans
différentes stratégies vaccinales et suite a l'infection donnent des informations originales sur

le type d'Ab a induire par la vaccination.

Ainsi, la réponse Ab spécifique du VIH induite par vaccination:

- est plusieurs fois inférieure chez les NHP et les humains par rapport a celle détectée chez
les rongeurs. Ces résultats montrent les limites du modele de petit animal et renforcent la
nécessité de confirmer l'induction des Ab chez I'homme. Ces résultats suggérent
également qu’il faudrait améliorer l'induction des Abs par de nouvelles stratégies

d'immunisation plus efficaces.
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- dépend du contexte génétique et ethnique. Ce résultat indique la nécessité de
caractériser la réponse immunitaire vaccinale dans les différents pays géographiques du
monde afin de fournir des informations supplémentaires pour la conception future de

vaccins.

Par ailleurs, la réponse Ab fonctionnelle détectée dans les prélevements collectés au tout

début de l'infection fournit de nouvelles données inspirantes pour le développement de

nouveaux immunogenes pour les essais de vaccins futurs.
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Introduction: Human Immunodeficiency Virus (HIV)

With the expansion of new technologies and the further understanding of virus pathologies,
vaccines recently developed against pathogenic viruses saved millions of lives. For the most
recent Sars-Cov-2 pandemic, which already killed more than 6 million people, Covid-19

vaccines show significant efficacy against hospitalization, severe disease and death rate.'?

Despite this considerable progress in vaccine design, there are still some pathogens for which
vaccines need to be developed.>™ Among them, vaccines against dengue or respiratory
syncytial virus are under investigation. Remarkably, for human Immunodeficiency virus (HIV),
vaccine have been examined since it’s discovered in the 1980s. For more than 30 years,

researchers have dealt with developing a protective vaccine to fight against HIV pandemic.
1.1. Human Immunodeficiency Virus (HIV)

1.1.1. General information

HIV belongs to the genus Lentivirus (a group of retroviruses) from the Retroviridae family
Retroviruses are enveloped viruses that replicate from a positive-sense single-stranded RNA
diploid genome. Their name comes from the enzyme they possess, reverse transcriptase,

which allows the reverse transcription of viral RNA into DNA.”8

Retroviruses show common morphological, structural, and functional characteristics. They
possess gag, pol and env genes which respectively lead to structural, enzymatic and envelope
proteins.” HIV belongs to the Lentivirus genus: the name of the genus is from Latin (lenti =
slow), and the viruses from this genus are characterized by needing a long incubation period

before diseases break out due to their cytopathogenicity. °

The long incubation period of HIV viruses allowed their spreading in the early 80s. At that time,
there were no screening tests available. The hosts did not notice that they were infected

before the syndromes appeared after years of infection.

1.1.1.1. Discover and Origin

HIV infect human and AIDS over time.!%!! In the middle of 1981, one report described
Pneumocystis pneumonia in previously healthy homosexual men in Los Angeles. This

document has been identified as the first official document reporting the acquired
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immunodeficiency syndrome (AIDS) pandemic. 12 Sooner, Kaposi’s sarcoma, candidiasis and
tuberculosis within isolated clusters were found to be potential disease outcomes with long

tern HIV-infection the United States. 1314

Shortly after the first formal report of AIDS was published, the disease was detected in the
heterosexual population in Central and East Africa, suggesting the African HIV pandemic was
older.121>16 Scientists started searching for the origin of HIV viruses. They found viruses in the
blood and tissue samples previously collected in 1959-1960, demonstrating that HIV was
hidden in history. "1 Two types of HIV viruses were found to cause AIDS at the advanced
stage of infection: human immunodeficiency virus type 1 (HIV-1) and human
immunodeficiency virus type 2 (HIV-2). According to sequencing analysis, HIV-1 and HIV-2
were predicted to enter the human population around the 1920s and 1940s, respectively.

Then they rapid grow exponentially around the 1960s to 1970s. 1721

1.1.1.2. Classification and phylogenetic evolution

HIV-1 is a zoonotic infection of staggering proportions and social impact. The groups M and N
emerged from the chimpanzee simian immunodeficiency virus (SIV), and groups P originate
from the SIV-infected gorillas.?1™2*  HIV-2, which is less prevalent, comes from the inter-

species transmission between SIV-infected mangabey and is divided into eight groups (A-H).

20,21,25

Phylogenetic studies of different retroviruses have shown the tremendous genetic diversity of
HIV-1, which constitutes one of the major obstacles to its eradication. %2226 (Figure.1) As what

is mentioned above, HIV-1 can be classified into four groups?%2427 :

e Group M (major) : This group is the oldest lineage and responsible for more than 97%
cases in humans. 28 This group is divided into nine subtypes (A, B, C, D, F, G, H, J, K) and
all of these subtypes are genetically distinct. What’s more, there are sub-subgroups in
subgroups A and F (A1, A2, A3, A4, F1 and F2).26 Recombinant form appears (circulating
recombinant form (CRF)) when a patient is co-infected with several virus subtypes.
Some of these recombinant forms take the lead and are responsible for around 18%

of infections worldwide. 212
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e Group N (non-M, non-0): It’s a rare lineage, and the circulation of the variants of this

group is only detected in Cameroon.?
e Group O (Outlier): group O is rare and mainly spreading in West Central Africa. 273931

e Group P: As the most recent discovered group, group P is closely related to the gorilla
simian immunodeficiency virus (SIVgor) and shows no evidence of recombination with

other HIV-1 lineages.3?
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Figure 1. Phylogenetic relationships between the HIV-1, SIVcpz, and SIVgor lineages.
Phylogenetic tree of HIV-1 and related simian immunodeficiency viruses (SIV) sequences

reveals the multiple virus cross-species transmission events that originated HIV-1 groups. 33
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The diversity of HIV-1 gives it the advantage of spreading widely and makes it more difficult
to be detected. It also points out the importance of monitoring humans for primate
lentiviruses and studying the viral and host factors that govern cross-species infection and

onward transmission.?%3! | will mainly focus on HIV-1, further shortened as HIV for simplicity.

1.1.1.3. Epidemiological data

The distribution of HIV-1 group M subtypes varies according to geographical location. Subtype
Ais distributed mainly in Eastern Europe and Central Asia, while subtype B is the pre-dominant
subtype in western Europe and America. Subtype C is mainly distributed in East Asia. Africa
shows the highest HIV-1 diversity with subtypes A and D in eastern Africa, Cin southern Africa,
A, G, CRF02_AG, and CRF06_cpx in western Africa, and B and CRFO2_AG in northern Africa

(figure 2). 3435

North America

u -~

CRFO1_AE,
CRF07_BC

Africa

South America

Oceania

Figure 2. Global distribution of major HIV subtypes. Map showing the localization of the major

HIV subtypes and circulating recombinant forms (Bbosa et al. 2019).3>

According to data from the World Health Organization (WHO) and the Joint United Nations
Program on HIV and AIDS (UNAIDS), 38.4 million people were living with HIV globally in 2021,
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and two third of them are living in African regions.?® (Figure 3A). During 2021, 1.5 million
people were newly infected with HIV (Figure 3B) and 650,000 AIDS-related deaths were
counted (Figure 3C).
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Figure 3. 2021 World HIV situation (UNAIDS, 2021).3’

Estimated number of adults and children

A) living with HIV in 2021.
B) newly infected with HIV in 2021
C) deceased due to HIV infection

Each region is presented by different color.

Compared with previous years’ data, the number of new infection and death are decreasing.
However, the limitation of medical resources in Africa makes the HIV pandemic harsher in
these regions of the world. Moreover, the diversity of HIV-1 and the number of infection are

highest in Africa (figure 3).
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1.1.2. Structure and replication of HIV-1
1.1.2.1. HIV-1 genome and structure

HIV-1 comprises two strands of noncovalently linked, unspliced and positive-sense single
strain-RNA.38 The nine genes of the HIV-1 genome can be classified into three parts: viral
structural proteins (gag, pol, env), essential regulatory elements (tat, rev) and auxiliary
regulatory proteins (nef, vpr, vif, vpu). All these genes are surrounded by non-coding LTR (Long
Terminal Repeat) sequences, which are essential for the replication of the virus.3®#! (figure

4).
e Viral structural proteins:

o Gag (group-specific antigen): It codes for CA (capsid protein, P24), MA (matrix
protein, p17), NC (nucleocapsid protein, p7), p6 and two small peptides SP1
and SP2 (Spacer peptide 1 and 2).

o Pol: encodes three enzymes: integrase (IN), reverse transcriptase (RT) and

protease (PR).

o Env (envelope): the env encodes the envelope proteins, gp160. After gp160
being cleaved by host protein and post-translational processing produces, it

can turn to surface protein (gp120) and transmembrane (gp41) glycoproteins.
e Essential regulatory elements:

o Tat (HIV-trans-activator): it is in charge of regulating the reverse transcription
of viral genome RNA, ensuring efficient synthesis of viral mMRNAs and regulating

the release of virions from infected cells.

o Rev (regulator of expression of virion proteins): Rev is important for the

synthesis of major viral proteins.
e Auxiliary regulatory proteins

o Nef (negative regulatory factor): N-terminal myristoylated membrane-

associated phosphoprotein. Nef, historically called negative factor, favor

Characterization of the protective antibody response induced 34

following vaccination or infection



Introduction: Human Immunodeficiency Virus (HIV)

infection by rerouting a variety of cell surface proteins to disrupt host immunity

and promote the viral replication cycle.

o vpr (lentivirus protein R): It’s a virion-associated, nucleocytoplasmic shuttling

regulatory protein.
o vif: A conservative phosphoprotein that can assist viral infection.

o vpu: A class | oligomeric integral membrane phosphoprotein that is involved in
CD4 degradation and in the release of virions from infected cells. Recently, it is

proposed as inhibitor of antibody-dependent cellular cytotoxicity (ADCC).#%43

HIV-1 genome

5'LTR ga

|U3I B IUSILI MA/C.

Figure 4. HIV-1 genome. 4!

1.1.2.2.  HIV-1 envelope proteins and virus particle

The env gene encodes the glycosylated polyprotein gp160 (obtained by translating mono-
spliced viral messenger RNA).** It is synthesized at the level of the endoplasmic reticulum.
Then it reaches the Golgi apparatus, cleaved by a cellular protease to produce surface (gp120)

and transmembrane (gp41) glycoproteins. 414546

1.1.2.2.1. Gpl120

Gp120 is a glycoprotein that is exposed on the surface of the HIV envelope, and its molecular
weight, 120kDa, names it*. It has five conserved (C1 to C5) and five highly variables (V1 to V5)
regions that can be targeted by antibodies. 4% Gp120 is anchored to the viral membrane and
variable sequences form a structure in loops exposed and linked together by disulfide bridges.

The conserved regions form discontinuous structures interacting with the ectodomain of
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gp41.*° These two proteins, both combined in trimers, form the envelope spike that can
interact with the receptor CD4 and mediate the attachment and viral entry into the host

cell.>%>2 (figure 5).

Binding to CD4 induces conformational changes, causing displacement of the V1/V2 loops and
resulting the exposure of third variable (V3) loop of the gp120, in order to bind the CCR5 or

CXCR4 chemokine co-receptors. >34

The variable regions of gp120 are highly exposed, immunogenic and targeted by neutralizing
antibodies.*® However, as they are highly variable, virus rapidly escape the humoral response.
Moreover, the most conserved epitopes (or antigenic determinants) as the CD4 binding site
are masked in pockets and, therefore, not easily accessible for the immune response. A few
infected patients are able to develop a humoral immune response targeting these conserved
masked epitopes. The strategies used to develop these neutralizing antibodies will be

described in chapter 3.

Figure 5. Structure of the HIV-1 Env trimer.>>

1.1.2.2.2. Gp4l
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Gp41 is a highly glycosylated transmembrane glycoprotein organized into three major
domains: the extracellular, transmembrane, and cytoplasmic domains.’® The N-terminus of
gp41l is a fusion peptide necessary for membrane fusion. It is followed by two helical heptad
repeat (HR) regions : N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR).>’~
% The CHR is followed sequentially by a membrane proximal external region (MPER). This
region has been proposed to be a very promising target for drug and immunogen

development. 60-62

Furin cleavage site

" 20 MPER
rom gpl2
l =3 Loop l
v [T ) e SR T ¢
512 527 546 581 628 661 684 705 856
™
Disulfide
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C598-C604

Figure 6. The primary structure of gp41.52

1.1.2.2.3. Virus particle

The mature HIV-1 virus particle is spherical and 100-120 nm in diameter. It comes from the
assembly and maturation of the polyproteins Pr55Gag, Pr160Gag-Pol and Envgp160. (Figure
7) Its envelope is a lipid bilayer originating from the host cell's plasma membrane. The particle
contains the viral Env glycoproteins in the form of polyproteins exposed on the surface of the
viral particle (gp120) or anchored in the membrane (gp41). These envelope proteins have
specific so-called “fusogenic” properties, allowing the virus to fuse to the target cell's plasma

membrane.”

The inner side of the envelope is lined by matrix proteins (MAp17), which are closely
associated with the lipid envelope by their myristoylated N-terminal end. The capsid proteins
(CAp24) form the retroviral core. Assembly of the p24 protein into hexamers and pentamers
forms a cone-shaped capsid. This capsid contains viral RNA in dimeric form and is associated

with nucleocapsid proteins (NCp7), allowing protection against nucleases.”*
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It also contains the viral enzymes (PR, IN and RT), the auxiliary proteins Vpr, Vif and Nef, and
the cell transfer RNA (tRNA), serving as a primer for reverse transcription. The capsid also

contains cellular proteins and encapsidated cellular nucleic acids.*+6364

HIV-1 mature virion " Ew |

SU (surface, gp120)
TM (transmembrane, gp41)

membrane K

PR (protease., p12) —ﬁ. MA (matrix, p17)

RT (reverse transcriptase, ‘; '
p66, p51) o.

IN (integrase, p32) ©

NC (nucleocapsid, p7)

2 § BP (budding protein, p6)
RNA
Vpr i’f’/ \‘ﬁi :

Figure 7. HIV-1 virion structure. **

1.1.2.3.  HIV-1life cycle

HIV spread mostly thought mucosa contact to a naive host, by transmission of a single variant,
called the Transmitted/Founder (T/F) virus selected from the multiple quasi-species present
in the chronically infected donor .77%° The precise characteristics of the selected T/F virus is
not well defined yet. The virus infects a target cell and spread to other target cells in the

average of 1.2 days.%>%®

The viral replication cycle (Figure 8) is divided into an early and a late phase. The early phase
(Figure 8 on the left part) includes the steps of interactions of surface proteins of the viral
particle with cell receptors, reverse transcription of viral RNA into proviral DNA and
integration of proviral DNA into the genome of the host cell. 33707t The late phase (Figure 8
on the right part) concerns the transcription and expression of the genome, as well as the

budding and maturation of new viral particles.”?

The first steps in the viral replication cycle are recognition, fusion, and entry of the virus into

target cells. This interaction changes gp120's conformation and binds it to a second receptor
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next to CD4: the co-receptor, CXCR4 and CCR5. Besides fusion, HIV-1 can enter cells by a the

cell-to-cell transmission pathway via Env-induced, actin-dependent viral synapse.”?

The cone shaped viral capsids move along the microtubules of the cell towards the nuclear
pore complex (NPC), then enter the nuclear.”®”> On contrary to what was previously described,
this reverse transcription step occurs in the nucleus.”>’® As the capsid enters the host cell
nucleus, uncoating and reverse transcription are completed.’*’” The viral genome in its RNA
form is associated with reverse transcriptase (RT) and other proteins (viral and cellular) within
a reverse transcription complex. Viral RNA is back-transcribed into double-stranded DNA.”87°
The reverse transcriptase can cause errors frequently, which leads to the origin of the genetic

variability of HIV and contributes to resistance to antiretroviral treatments.®

Integrase is the viral protein responsible and sufficient to catalyze the integration reaction. It
cleaves a few nucleotides at both 3' ends of the DNA and integrates the linear viral DNA into
the host cell genome. The integrated viral DNA is called provirus.882 The provirus can remain

silent through different mechanisms for several years, creating the latent phase.®?

During productive infection, proviral DNA is transcribed into messenger RNA (mRNA). The viral
proteins Tat and Nef hijack the cellular transcriptional machinery to synthesize mRNA from

the integrated proviral DNA.”%84

Viral mRNAs are translated into precursors in different cellular compartments. Gag, Gag-Pol,
Vif, Vpr, Nef, Tat and Rev mRNAs are translated into cytosolic polysomes, then mediated by
the interaction of Rev-bound viral RNAs with the nuclear transport receptor, serving as a

binding molecule to the nuclear pore complex (NPC).%

The new viral particles are assembled from two copies of viral genomic RNA, viral proteins
(Gag, Gag-Pol, Env, Vif, Vpr and Nef) and cellular cofactors. Viral particles assemble and escape

from the cell by budding.”?8>

The final stage of the cycle is virion maturation. The maturation is carried out by the viral
protease cleaving the Gag and Gag-Pol precursors sequentially into structural and non-
structural proteins; then, the viral particles achieve their final structure to become

infectious.8>80
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Figure 8. The Early and late phases of productive HIV infection. The early phase comprises
attachment, viral fusion, reverse transcription, uncoating and proviral integration (left). The

late phase includes viral replication, assembly, budding and HIV-1 maturation (right).

1.1.2.4. HIV-1 target cells and reservoir

Different cell types present through the body express both the CD4 receptor and a co-receptor
but not all are targeted by HIV’. The main HIV-1 target cells are CD4+ T lymphocytes (CD4+,
CCR5+, CXCR4+). Monocytes/macrophages (CD4+, CCR5+), dendritic cells (CD4+, CCR5+,
CXCR4+), microglial cells (CD4+, CCR5+) and astrocytes (CCR5+, CXCR4+) can also be infected
by HIV-1.87-8 NK cell (CD4+, CCR5+, CXCR4+) were described to replicate HIV by one team but

this replication could never be confirmed.*°

CD4 T cells are the principal HIV targets. When activated, their cellular machinery will be
deviated to allow HIV replication. A small set of these cells which have integrated the virus
into their genome establish latent infection and become HIV-1 cell reservoirs. These latent

reservoirs will allows HIV to persist despite immune responses and antiretroviral therapy.9%2
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The anatomical compartments identified as HIV-1 reservoirs are mainly the lymphoid tissue
associated with the digestive tract and the lymph nodes. (Figure 9) The other compartments

are blood, the central neuron system, bone marrow, the genital tract, etc.9:3

The diversity of cell types and their multiple anatomical locations, ranging from the genital

tract to the central nervous system, create many sanctuaries that can harbor HIV-1.9%9
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Figure 9. Latent cellular reservoir cells in tissue. A schematic representation of latently infected
cells in tissues is depicted. The reservoirs are established in unique cell types and are localized
across different tissues. CD4+ memory T cell subsets are found in the peripheral blood, the

lymphoid tissue, gut-associated lymphoid tissue, and the central nervous system.*?
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1.1.3. Biological and clinical characteristics of HIV-1

1.1.3.1. Modes of transmission

HIV-1 is present in most of the body's biological fluids (blood, semen, seminal fluid, vaginal

secretions, and breast milk) in different concentrations. Therefore, virus transmission occurs

through these biological fluids by unprotected sex, contaminated blood transfusion,

hypodermic needles, or mother to child transmission during pregnancy, delivery or

breastfeeding.

There are three main models of HIV-1 transmission:

Unprotected sex (major): The virus enters through vaginal, oral, or anal mucous
membranes. The risk of infection increases sharply if these mucous membranes have
lesions and/or if there is the presence of other sexually transmitted diseases. Using

condoms remains the best way to limit infection by this type of transmission.

Contaminated blood and sharing needles: This route of transmission of HIV-1 was
demonstrated soon after discovering the virus. Nowadays, this mode of transmission
persists mainly among drug addicts (intravenous drug injection) or medical personnel

who are injured by contaminated objects.

Mother to child (vertical transmission): It occurs mainly during childbirth but also
during pregnancy or breastfeeding. Disproportionately affects low- and middle-

income countries, in particular the countries of Southern Africa.3”%

HIV-1 infection typically results from the transmission of a single viral variant, the

transmitted/founder (T/F) virus.®’The T/F virus selected is transmitted to a new host.%® Virus

evolve by numerous mutations and immune selections to form quasispecies. The virus directly

isolated form the patient is called primary isolate®

1.1.3.2. Pathophysiology

HIV-1 infection leading to AIDS develops in three phases (Figure 10):
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Primary infection (acute viremia phase): Couple days to weeks post-exposure, HIV-1
replicate actively, the number of helper CD4+ T cells gradually decreases, and the virus
spreads through the body. It takes adaptive immune systems six to eight weeks to
develop an immune defense leading to reduced viral load. The decreased viral load is
concomitant with a partial recovery of the number of CD4+ T lymphocytes. At this
stage, patients might develop opportunistic infection as influenza or mononucleosis-
like illness as fever, lymphadenopathy, pharyngitis, rash, myalgia etc. 190101 These
symptoms are nonspecific and often not recognized as signs of HIV infection. (Figure

11)

Asymptomatic phase (latency phase): Patients have no symptoms at this stage, which
can last more than ten years. During this period, HIV-1 virus load is relatively
maintained, although numerous variants are generated and the total number CD4+ T
lymphocytes decreases. Besides, the virus can remain latent in reservoir cells (memory

CD4+ T lymphocytes or macrophages).102-104

The symptomatic phase (AIDS): In this phase, the host immune system is no more able
to contain HIV viral load due to the progressive decline of CD4 T lymphocytes (CD4+ T
cell count below 200 cells per pL). A sharp increase of viral load pushes the immune
system to collapse. The symptoms in this phase are mostly opportunistic infections
caused by bacteria, viruses, fungi and parasites.'% These infections like Pneumocystis
pneumonia and Kaposi's sarcoma do not usually develop in individuals with healthy
immune systems.131% |t might also lead to variety of neuropsychiatric sequelae.l%’ The
occurrence of opportunistic infections associated with the loss of immune system

(AIDS) leads to death.1%®
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Figure 10. Evolution of the natural HIV-1 infection in the absence of therapy. The number of
CD4+ T lymphocytes decreases (blue curve), unlike the viral load (RNA copies/mL of plasma)

which increases (red curve) over time. 1%°
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1.2.  HIV infected patient and the immune responses

1.2.1. Immune response to HIV-1 infection

HIV- infected individuals exhibit solid adaptive cellular responses (activity of CD4+ and CD8+ T
cells) and humoral immune responses (production and activity of antibodies).

1.2.1.1. Adaptive cellular response
1.2.1.1.1. CD4* T cells

CD4+ T lymphocytes (helper T lymphocytes) are the main targets of HIV-1. They express the
CD4 on their surface, which enables them to recognize the molecules of the major
histocompatibility complex (MHC) or human leukocyte antigen (HLA) class Il, present on the

surface of cells presenting the antigens.110-112

These cells participate in the fight against infection through their central function of
stimulating B lymphocytes and CD8+ T lymphocytes, and through their direct antiviral activity

thanks to the production of cytokines (interferon (IFN)-y and B- chemokines).11°

Helper T lymphocytes (ThL) can be divided into LTh effectors and regulatory LThs.113114 (Figure
12) The ThL (Th1, supporting the cellular response; Th2, involved in the humoral response;
Th17, Th9, Th22 and helper follicular T lymphocytes (Tfh)) participates in immune responses,
and the latter (natural Treg (nTreg), induced Treg (iTreg) and regulatory Tfh (Tfr)) can control

the immune responses, 112114115

Notably, the Tfhs have emerged as the key cell type required for the formation of Germinal
Centers (GCs) and the generation of long-lived serological memory. 112116117 They interact
with B cells in secondary lymphoid organs, the organs where antigens are presented for the
initiation of the adaptive immune response. This interaction stimulates B lymphocytes
differentiation into plasmocytes producing high-affinity antibodies. Pathogen specific Abs are

induced to constitute a practical and durable barrier against infection.!2
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Figure 11. Overview of T cell development and differentiation. Following a series of DN (1-4)
stages, DP cells develop into naive CD4+, naive CD8+, or natural killer T cells (NKT). Several
transcription factors regulate this process. Different T cells secrete various cytokines to exert
their activity. Signature transcription factors and cytokines designated to different cell types
are shown. (Tex= exhausted T cells; TEM = T effector memory T cells; TCM= T central memory

T cells; TEFF = effector T cells; Th= T helper T cells; Tfh= T follicular helper T cells; Treg=

CD8+ T lymphocytes (cytotoxic T lymphocytes) are a critical subpopulation of MHC class I-

restricted T cells and are adaptive immunity mediators. The expression of CD8 on the cell
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surface allows these cells to recognize class | MHC molecules present on all nucleated cells in

the body.1?

Acute viremia is associated with the activation of CD8+ T cells, while the number of CD4+ T
lymphocytes decreases sharply. In the acute phase, CD8+ T cell responses can efficiently
suppress viral replication via directly destroying HIV-infected cells or secreting cytokines (IFN-

vy, tumor necrosis factor (TNF)-a, IL-2).111118,119

1.2.1.2. Humoral response

The specific humoral response is characterized by the production of HIV-1 specific antibodies
following the activation of B cells and their differentiation into antibody-secreting plasma
cells.120

1.2.1.2.1. Bcells

B lymphocytes can be divided into five populations:12122

1)Immature/transitional B cells: Precursor to naive mature B cells.

2)Naive mature B cells: Precursor to GC, memory and antibody-secreting cells.

3)Germinal center (GC) B cells: After receiving T cells help in secondary lymphoid tissue
follicles, activated B cells can become germinal center (GC) B cells. These cells can
proliferate and class-switch the B-cell receptor (BCR) constant region from IgM/IgD to
IgG, IgA, or IgE.1%

4)Memory B cells. These long-lived quiescent cells can quickly be mobilized during a
second encounter with the antigen for which they have been selected. They are
essential for maintaining long-term humoral immunity.?*

5)Antibody-secreting cells:
a) Plasma cells: Differentiating in the bone marrow and have a long lifespan.
b) Plasmablasts: Short-lived plasma cells that secrete large amounts of antibodies

into secondary lymphoid organs and the blood.'®

HIV infection lead to imbalanced B-cell perturbations, that may impact on HIV-specific Ab

production..124126,127
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1.2.1.2.2. Kinetics of appearance of HIV-1 specific antibodies

in vivo
The initial humoral responses directed against HIV-1 can be detected approximately one week
after infection. These antibodies are first directed against the fusion glycoprotein gp41, then

against the envelope glycoprotein gp120 (around four weeks post-infection). 125130
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The first autologous neutralizing activities, the antibody binds to the viral particle and makes
it no longer infectious, appear several months post-infection. These so-called autologous Abs
recognize the strains transmitted before, during the first events of the infection: the
transmitted/founder (T/F) viruses.}?91317133 This lag of neutralizing antibodies production
makes them rarely target the contemporaneous viruses.’* Virus have time to mutate. As a
result, the new viral particles produced are able to escape autologous antibodies produced.
131,134

Two to four years post-infection, neutralizing antibodies directed against different viral strains
(so called cross-neutralizing Abs) can be detected However, only 10 to 30% of HIV-1 infected
individuals develop this type of Abs.13>13% An even smaller subset (1-10%) termed elite
neutralizers produce broadly neutralizing Abs (bnAbs) which efficiently neutralize the majority
of circulating primary isolates. 13>137.138 These bnAbs result from a long immune response
maturation. They need repeating contacts with the antigen, and are characterized by
numerous somatic mutations and a long heavy chain HCDR3 (heavy chain complementarity-
determining region 3).136139.140 The |ong maturation required for acquiring broad-spectrum
NAbs is an obstacle for the development of a preventive vaccine which seeks to induce this

type of response.4?
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Figure 13. The antibody response to human immunodeficiency virus type 1 (HIV-1) occurs in a
clockwise direction starting at the top A, Initial antibody response to HIV-1 is nonneutralizing
and directed at gp41. B, Nonneutralizing antibodies directed against gp120 arise soon
thereafter. C, after a delay of weeks to months, autologous neutralizing antibodies (NAbs)
arise that apply selection pressure on the virus. D, Viral mutation results in neutralization
escape by HIV-1, represented here by a change in the shape of gp120. E, In some patients,
antibodies that neutralize a wide range of HIV-1 isolates arise, represented here by a variety
of shapes of gp120. Mixing of envelope shapes on a single virus particle is shown for illustrative

purposes only. bnAbs, broadly neutralizing antibodies.***

1.2.1.3. Immunoglobulins and IgG subtypes of HIV-1 control

The humoral immune response is an antibody-mediated immune response that induces
immunoglobulins (Ig) specifically directed to antigens: the so-called antibodies (Ab). The

structure of Ig can be divided into four polypeptide chains that are identical in pairs: two heavy
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chains (H for heavy) and two light chains (L for light). Each H chain consists of an N-terminal
variable domain (VH), three constant domains (CH1, CH2 and CH3), and an additional region:
the hinge region, located between the CH1 and CH2 domains. Similarly, light chains consist of
an N-terminal variable domain (V) and a constant domain (C).1#%43 (Figure 14) The fragment
antigen binding (Fab) portion of the antibody determines the antigen-binding specificity, and
the crystallizable fragment (Fc) portion mediates complement component binding and a
myriad of Fc receptor-mediated activities of natural killer (NK) cells, monocyte/macrophages

and dendritic cells.1#*
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Figure 14. The four-chain structure of an antibody, or immunoglobulin, molecule. The basic
unit is composed of two identical light (L) chains and two identical heavy (H) chains, which are
held together by disulfide bonds to form a flexible Y shape. Each chain is composed of a variable

(V) region and a constant (C) region. 4

Humans have five types (isotypes) of Igs: IgM, gD, IgG, IgA, and IgE determine by different
heavy chains. During infection, Ig H chain class switching occurs rapidly after activation of
mature naive B cells, resulting in a switch from expressing IgM and IgD to expression of 1gG,
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IgE, or IgA. This switch improves the ability of antibodies to remove the pathogen. Class
switching occurs by a deletional recombination between two different switch regions, each of
which is associated with a heavy chain constant (CH) region gene; the variable region of the
heavy chain stays the same. After HIV infection, antibodies of IgM type directed to gp41 are

first induce followed by class switching to IgG and IgA antibodies (Figure 15).12°:146
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Figure 15. Sequentially elicited IgG antibodies to HIV-1 envelope epitopes. After HIV-1
transmission, antibody isotypes and specificities to the HIV-1 envelope are elicited sequentially.
The first HIV-1-specific antibodies detected in the plasma are anti-gp41 IgM (red line). Anti-
gp41 IgM undergoes class switching to IgG and IgA, making gp41 the first protein also
recognized by IgG and IgA antibodies. Gp41 (green), gp120 (purple), CD4bs (dark blue), MPER
(non-neutralizing) (light blue), autologous neutralizing antibodies (orange line (Modified from

Tomaras, G.D. and Haynes, B.F., 2009).14¢

1.2.1.4. IgM

IgM is the first antibody appearing in response to the initial exposure to antigens.'?%7 |t’s a
pentamer composed of five four-chain units, giving it a total of 10 antigen-binding sites and

participates in tissue homeostasis by regulating inflammatory processes and autoimmune
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diseases (Figure 16).148149 The anti-HIV-1specific gM is the first antibody class to emerge after
HIV infection. Several human IgM-derived monoclonal Abs (MoAbs) obtained from healthy
donors showed high non-specific binding avidity to gp120 antigens.'®®%! This non-HIV-1
specific IgM present in HIV-1 non-infected individuals has been proposed to prevent mucosal

transmission, suggesting it may be able to stop HIV from crossing epithelial cell membranes.

152,153
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Figure 16. The five main classes of antibodies (immunoglobulins): IgG, IgA, IgD, IgE, and IgM.1%

1.2.1.5. IgA

IgA antibodies are secreted in the respiratory or the intestinal tract and act as the main
mediators of mucosal immunity.'>* They are monomeric in the serum, but appear as a dimer
termed secretory IgA (slgA) at mucosal surfaces. The secretory IgA is associated with a J-chain
and another polypeptide chain called the secretory component. IgA antibodies are divided
into two subclasses that differ in the size of their hinge region. IgA1 has a longer hinge region
which increases its sensitivity to bacterial proteases.'®>> Therefore, this subclass dominates the

serum IgA, while IgA2 is predominantly found in mucosal secretions.

HIV is mainly transmitted through mucosal surfaces. Kaul et al. found that the HIV-specific IgA
is present in the genital tract of most HIV-1-resistant Kenyan sex workers which suggest
mucosal HIV-1-specific IgA responses might play a role in HIV-1 resistance. *® Mucosal HIV-1-
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specific IgAs have been shown to inhibit the transcytosis of HIV-1 migration through epithelial
cells.>”158 Moreover, IgAs found in cervicovaginal fluids can inhibit HIV-1 via Fc receptor-
mediated functions, such as ADCC.'>°-11 Besides, secretory IgA directed to V1/V2 loop of HIV
demonstrated cross-neutralizing capacity against various HIV-1 clades (A, B, and C). 12 Lastly,
IgA isolated from sera of HIV infected individuals are able to neutralize HIV efficiently.1%3

On contrary, some studies found that IgA response might be a risk factors. Indeed, HIV-specific
plasma IgA were associated with increased risk of HIV acquisition in RV144 vaccine trial. In

vitro, vaccine-induced IgA decreased the ADCC activity of Env-specific vaccine-induced IgG.1%4

166

From passive and active immunization studies in macaques, we learn that mucosal IgA can
prevent SHIV acquisition. However, whether anti-HIV IgA responses is beneficial or harmful
for the host is still questioned.67-16°

1.2.1.6. IgG

Among five types of antibodies, I1gG is the major Ig isotype (75%) and accounts for 10-20% of
all plasma proteins. IgG can be classified into four subtypes: 1gG1, 1gG2, IgG3 and IgG4 in order

of decreasing abundance.’%171

Y

—
\

A g gD CHZ{')/__)
& S o & hwa

g ;
IgG1 IgG2 1gG3 IgG4

Figure 17. Structure of IgG subclasses, indicating how the different heavy and light chains are
linked, the length of the hinge, and the number of disulfide bridges connecting the two heavy

chains.’?

The four IgG subtypes are highly conserved and differ in the structure of their constant

domain, particularly in the hinge region and the CH2 domain (Figure 17).17? It broadens IgG Fc
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domain-mediated functions and structural differences depending on the IgG subtype. The
interaction between naive B cells with follicular dendritic cells and follicular helper T cells, that
happens in the germinal centers of lymphoid follicles, induces IgG isotype diversification 112173
By recombining immunoglobulin heavy chain genes, Abs switch to IgG2 and IgG4 downstream
of 1gG3 and 1gG1.17* The IgG subtypes have various affinities for the different Fcy receptors
(FcyR) present on the surface of immune cells (Figure 18). In addition, the affinity varied
according to the FcyR polymorphism. This difference of affinity will directly impact on Abs Fc-
mediated functions. Numerous studies pointed out the interest of the different IgG subtypes

in controlling HIV-1 infection. This will be discussed in the following paragraphs.

A HUMAN
ACTIVATING INHIBITORY
FcyRI FcyRIIA FcyRIIC  FcyRIIIA FcyRIIB FcyRIIB
Out = H !
1] 11
O | PR I ;
V2 Y2
Variants R/H131 F/V158
1gG1 6x107 3-5x10° 1x10% 1-2x10% 2x10° 1x10°
1gG2 - 1-4x10° 2x10* 3-7x10% = 2x10*
1gG3 6x107 9x10° 2x10° 0.8-1x107 1x108 2x10°
1gG4 3x107 2x10° 2x10° 2x10° - 2x10°%

Figure 18. Human and murine Fcy receptors. Schematic of human classical Fcy receptors
(discussed in 2-3-2-1) embedded in the plasma membrane 1gG affinity-altering variants are
highlighted beneath the respective human FcyR, with the low- and high-binding variants and
associated IgG affinities colored in purple and orange, respectively, in the table. Binding

affinities are indicated as KA (M™).175
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1.2.1.6.1. IgG1

Richardson et al.’s study showed that there is a link between the diversity of IgG subtypes and
the development of broad-spectrum neutralizing antibodies, also correlated with the

polyfunctionality of the Fc domains of the antibodies.’®

IgG1 is the main Ig subtype in the blood. Anti-HIV antibodies of IgG1 subtype are the efficiently
induced rapidly, during acute infection and persist in chronic stage. They are mainly directed
against Env, Gag, and Pol proteins. 177717° According to the individuals' HLA typing and clinical
parameters, the HIV-1 specific responses, the proportions of the different IgG subtypes, are
variable. 189182 Most monoclonal NAbs (MoNAbs) developed so far against HIV are of the IgG1
subtype (2F5, 1gG1 b12, 2G12, etc.). Only a few Abs of other IgG subclasses were directly
isolated from blood. In vitro modification of IgG subclasses demonstrated that, indeed, the Fc

domain of Ab participate in HIV inhibition.8

IgG1, together with igG3,has strong affinities for six classic FcyRs.}”®> HIV-1-specific IgG1 can

bind to FcR and mediate antibody-dependent cellular cytotoxicity (ADCC) of HIV-1-infected

cells 175,184

1.2.1.6.2. 1gG2

Anti-Env 1gG2 can be detected at various stages throughout HIV-1 infection but the
concentration is lower than 1gG1.18187 The low anti-gp41 IgG2 levels could be correlated with

clinical manifestations.88

In addition to neutralization and weak Fc-mediated inhibition, IgG2 could also regulate the
immune response. Studies also found a correlation between the level of HIV-1-specific (Env or
Gag) 1gG2 antibodies and virus control.24%189 Classically, 1gG2 antibodies are induced by
bacteria and recognize phospholipids and carbohydrates. The role of 1gG2 HIV specific Abs

remain elusive.
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1.2.1.6.3. 1gG3

IgG3 are described to be a sign of B cell maturation. IgG3 has been proposed to have increased
in-vitro neutralizing ability compared with IgG1. IgG3 have also a strong affinity to FcyR which
might lead to potent inhibitory Fc-mediated Ab functions. They are therefore be considered
as good prognostic in HIV disease.lt.17%190191 |ndeed, several studies found a decreased anti-
HIV 1gG3 during disease progression.184188 |n HIV-1 infected individuals, 1gG3 is associated with
enhancing the neutralization potency and Fc-mediate function of HIV-1 V2 specific BNAbs.1°2
As for vaccination, the studies from the RV144 phase lll and HVTN702 phase llb/Ill vaccine trial
demonstrated that vaccine-induced anti-V1V2 Abs of IgG3 subtype correlated with a reduced
risk of infection.1%3719° How exactly these anti-V1V2 1gG3 may contribute to the decreased risk

need further investigations.%®

1.2.1.6.4. 1gG4

IgG4, the less predominant 1gG subclass, is typically induce following chronic antigenic
stimulation. During HIV-1 infection, HIV-1-specific 18G4 was found more readily during the
chronic phase.8197 Till now, no study has identify a specific role of 1gG4 subtype in HIV

infection.

1.2.1.7. Mechanisms of HIV-1 inhibition by antibodies
1.2.1.7.1. Neutralization

Neutralization has been defined as the loss of infectivity which ensues when antibody
molecule(s) bind to a virus particle without other components, such as complement molecules
or antibody Fc domain (Fc) receptors.'®® Neutralization requires the interaction between the
paratope located at Fab domain of the antibody and the epitope present on the virus. This
interaction prevents virus entry into target cell. The NAb can therefore protect cells from
pathogens or infectious particles by inhibiting various steps leading to infection via the binding

of their Fab domain to the infectious agent.1981%

1.2.1.7.1.1. Neutralizing antibodies directed against
the HIV-1 envelope.
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HIV-specific NAbs recognize epitopes on the surface glycoproteins of the virus. Several MAbs
directed against defined epitopes of the virus envelope have been described for their abilities
to neutralize a broad spectrum of primary isolates of HIV-1. These specific virus targets are
highlighted in figure 19. Noteworthy, HIV-1 isolates display different sensitivity to
neutralization. They were therefore classified from easy to difficult to neutralized by Tier 1 to
Tier 4.200201 Thijs classification has important implications for the monitoring and
interpretation of vaccine-elicited neutralizing antibody responses.?®® Most of the primary
isolates are classified as Tier 2, with a few exceptions for the other Tiers. bNAbs need therefore
to neutralize a broad range of Tier 2 stains to inhibit the majority of the circulating HIV strains
BNADbs directed to HIV-1 epitopes (including VRCO1, 3BNC117, 10-1074, VRCO1-LS, VRCO7-
523LS, PGT121 and N6LS) have been used in clinic as potential therapeutic agents. The clinical

trial performed so far have shown that Ab treatment is safe and well tolerated.2%8-212

However, administration of anti-HIV-1 bNAbs to humans shown modest and transient
suppression of viremia, lowering viraemia and maintaining viral suppression of Ab-sensitive
viruses for a short period in the absence of ART.292207 Rapidly, Ab escape variants are
generated, strongly indicating that therapies using multiple bNAbs in combination will be

necessary for virus eradication.
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Figure 19. Major sites of vulnerability to neutralizing antibodies on the pre-fusion closed HIV-
1 Env trimer. The target sites for CD4-binding site antibodies, the V1V2 apex antibodies, the
glycan V3 antibodies, the fusion peptide-targeting antibodies, the gp120-gp41 interface

antibodies, the MPER antibodies and silent face.?'?

1.2.1.7.1.2.  CD4-binding site antibodies

The CD4-binding site on HIV-1 gp120 is a conserved and conformational epitope responsible
for CD4 receptor binding. It mediates the initial step of virus-host interaction is functionally
conserved for efficient association with the CD4 receptor. This epitope is located in a pocket,
therefor highly masked for the immune response. However, various Abs directed to this
epitope have been identify. These Abs with potent and broadly neutralizing activity
demonstrate specific characteristics, as the recognition via the heavy chain for b12. 213214 Or
a highly mature phenotype with long CDR3 (complementarity determining region 3) domain,

or high mutation from germline for VRC01, VRC0O7, NIH45-46, 3BNC117, VRC-PG04, N49-P7,

etC.213’215’216

1.2.1.7.1.3.  V1V2 apex antibodies
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The V1V2 site is another major site of vulnerability to NAbs. BNAbs PG9, PG16, CH01-04,
PGT141-145, and PGDM1400 are among them. These antibodies target the top of the Env
trimer. They also have a long heavy chain (long CDR3 domain), which allows them to reach the

71 epitopes through the glycan shield.?!212

1.2.1.7.1.4. Glycan V3 antibodies

The V3-glycan epitopes are considered as the “supersite of vulnerability” and depend on the
N332 glycan. The Abs that target this region are commonly induced following HIV infection,
but only a few of them (include PGT121-123, PGT135, 10-1074, 2G12, etc.) are able to display

broad neutralizing activity.

1.2.1.7.1.5. Fusion peptide-targeting antibodies

The fusion peptide (FP) is thought to be sequestered. However, bNabs VRC34 and PGT151
directed to this region display neutralizing activity. This demonstrates FP to be a neutralizing

epitope that could be target for vaccine design.?7-21°

1.2.1.7.1.6. MPER region antibodies

The gp41 MPER is a highly conserved and critical component of the viral entry process. It thus
represents an exciting site to target for the inhibition of early fusion stages.??922! BNAbs
directed against the MPER region of gp4l, such as 4E10, 2F5, 10E8, etc., recognize
hydrophobic residues, specific peptides, and sequences located before the transmembrane

domain. 210.222,223

1.2.1.7.1.7. gp120/gp41 interface antibodies

Recently, additional bNabs, Abs 35022, 8ANC195 and PGT151-158, have been isolated form
infected individuals. They recognize a new viral epitopes on the pre-fusion closed HIV-1 Env

at the interface of gp120 and gp41.22422°
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1.2.1.7.1.8. Silent face of the antibodies

One of the most glycosylated regions on the HIV-1 Env trimer is located on the outer domain
of gp120.53 This highly glycosylate sites allow an efficient escape from immune response.
Nonetheless, after several years of infection, Abs recognizing these glycosylated sites are
induced. The most original one is Ab 2G12 with a dimer structure to allow the binding to two

related carbohydrates.?2°

As a trimer, the region in the center is not accessible by the immune response and therefore
call the "silent face".*® However, following gp120 dissociation, this silent face becomes
immunologically active, although the Abs induced recognize gp120 monomer and have
therefore no neutralizing activity. Recently, anAb recognizing the center of the “silent face”
on the gp120 subunit, VRC-RG505, was found to display neutralizing activity suggesting that

this part of the env structure can be recognized by the immune response.??’

1.2.1.7.2. Mechanisms related to Fcy receptors

The family of Fc receptors for IgG (FcyRs) is broadly expressed by cells of haematopoietic origin
and consists of one inhibitory and several activating receptors. They show distinct affinities
for the different IgG subtypes (IgG1 to 4).228-230

1.2.1.7.2.1.  Fc receptor structure and immunology

There are nine FcyR human express: FcyRI (CD64), FcyRlla (CD32a), FcyRIlb (CD32b), FeyRlic
(CD32c), FeyRllla (CD16a), FcyRlllb (CD16b, specific for neutrophils), FcnR (neonatal), FCRL5
(CD307) and TRIM21 (tripartite motif-containing protein 21) (Figure 20).23! These receptors
expressed on the surface of immune cells bind to the different 1gG subtypes (IgG1 to 4) with

distinct affinities.
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Human IgG receptors

Name FeyRI FcyRIIA FeyRIIB FeyRIIC FeyRINA FeyRINB FcRn TRIM21 FcRLS
CcD CD64 CD32A CD32B CD32C CD16A CD16B - - CD307
Gene FCGRI1A FCGR2A FCGR2B FCGR2C FCGR3A FCGR3B FCGRT TRIM21 FCRLS
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Figure 20. Human IgG receptor family and its major role. ITAM, immunoreceptor tyrosine-
based activation motif; y2, dimer of FcRy subunits; ITIM, immunoreceptor tyrosine-based
inhibitory motif; GPI, glycosyl-phosphatidylinositol; 82m, 82-microglobulin.(modified from
Gillis et al. 2014) 3!

The six classic FcyR (FcyRI, FcyRlla, FcyRllb, FeyRlic, FeyRllla, and FeyRIlIb)trigger different
intracellular signals (Figure 21).172231.232 FcyRIIb is transmitting an inhibitory signal via an ITIM
(immunoreceptor tyrosine-based inhibitory motif) and FcyRlllb is anchored by GPI
(glycosylphosphatidylinositol). The other four receptors transmit activating signals via an ITAM
(immunoreceptor tyrosine-based activation motif).1’%233 The expression of activating FcyR can
be stimulated by pro-inflammatory factors like lipopolysaccharide (LPS), Th1 type cytokines
(IFN-y) or certain components of the complement system (C5a). Th2-type cytokines
(interleukin (IL)-4, IL-10, transforming growth factor (TGF)-B), on the contrary, can induce
dysregulation of the expression of activator-type FcyR in favor of increasing the expression of

inhibitory FcyR.239231 The role of these FcR were highly investigated in HIV-1 research.

Characterization of the protective antibody response induced 62

following vaccination or infection



Introduction: HIV infected patient and the immune responses

DA QDA DA 2D

FcyR
Cell membrane ! N | ! H |
l 4 . 1
ITAM ITAM ’ ITIM ' ITAM ' ITAM I
FCyRI FcyRlla FcyRIlb FcyRllc FcyRllla FcyRIllb
CD64 CD32a CD32b CD32c CD16a CD16b
FovR Main cbC ADCC/ ADCP
v . Phagocytoss Antigen presentation, ADCC, ADCP CcDC
Functions o .
Opsonization degranulation
SR Mo, Mo, DC, Mo, M@, DC, Mo, Mé, DC, MC,
Distribution R Neu, PLT Neu, Bas, BC NK Mo, M@, DC, NK MC, Neu, Eos
B
FcyR | lla Ib Ila Iib
Polymorphism H131 R131 V158 F158 NA1 NA2
1gG1 ++ ++ +H+ + +++ ++ +++ ++
1gG2 - — + - -
1gG3 ++++ ++++ ++++ ++ ++++ ++++ ++++ +++
1gG4 + + + + ++

Figure 21. Six classic Fc gamma receptors and the binding affinities to IgG subclasses. (A) Six
classic Fc gamma receptors (FcyRl, FcyRlla, FcyRllb, FcyRllc, FcyRllla, FcyRlllb), their main
function, polymorphisms, and distribution on immune cells. (B) FcyR binding affinities of IgG
subclasses. CDC complement dependent cytotoxicity, ADCC antibody-dependent cellular
cytotoxicity, ADCP antibody-dependent cellular phagocytosis, Mo Monocyte, Mg Macrophage,
DC Dendritic cell, MC Mast cell, Neu Neutrophil, Bas Basophil, Eos Eosinophil, NK Natural killer
cell, BC B cell, PLT Platelet.( (modified from Lin et al, 2022). 172

Different FcyR induces different function (Figure 21). The interaction between Abs and FcyR
plays a key role in the immune response against HIV-1, via the activities of ADCP (antibody-
dependent cellular phagocytosis), ADCC (antibody-dependent cell-mediated cytotoxicity) or

ADCVI (antibody-dependent cell-mediated virus inhibition).23*
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1.2.1.7.2.2. Antibody-dependent cellular

phagocytosis (ADCP)
After the antibody's Fab domain recognizes the viral particle, the Fc domain of the antibody
engages with the FcRs expressed by innate immune cells (monocytes, macrophages,
neutrophils, dendritic cells (DCs), and mast cells). These interaction lead to phagocytosis of

the opsonized viral particle.183:228,235,236

Moreover, ADCP, the phagocytosis of infected cells, can be induced by Nabs or specific non-
NAbs. Several studies indicate that the detection of ADCP in vitro leads to efficient inhibition
of HIV infected cells.183228:235 |t 3lso associates with the protection and reduced viremia in the
macaque model. 2377240 ADCP was correlated with decreased risk of infection in HVTN505

vaccine trials.1%*

1.2.1.7.2.3. Antibody-dependent cell-mediated
cytotoxicity (ADCC)

ADCCis a potent Fc-mediated effector function involved in clearing malignant or infected cells.
It’s the most considered Fc-mediated function in the field of HIV-1. ADCC is observed with
neutralizing as well as non-neutralizing 1gG, mainly from IgG1 and IgG3 subclasses.?*! The
antibody's Fab domain bonds to the infected cell (expressing the HIV-1 envelope proteins on
the surface), and its Fc domain recognizes the FcRIll of the NK cells. The cytotoxic granules
(granzymes and perforin), chemokines, nitric oxide or reactive oxygen species released from
the NK cells destroy the infected cells.234242243 ADCC seem to play a critical role in protection
against HIV-1 acquisition.'® Also, the ADCC activity of IgG in breast milk correlated inversely
with infant infection risk.24* Moreover, analysis of Ab responses in the RV144 trial reveals that
ADCC correlate with lower infection risk. 194> Anti-HIV-1 Abs with ADCC activity can be a key
to reducing HIV latent reservoirs and some HIV-1 bNAbs have been proposed to diminish

latent reservoirs by Fc-mediated mechanisms such as ADCC.246-251
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1.2.1.7.2.4. Antibody-dependent cell-mediated virus
inhibition (ADCVI)

Antibody-dependent cell-mediated virus inhibition (ADCVI) is focuses on the overall effect of
Abs on virus replication in the presence of effector cells in vitro.?>??>3 |t detects ADCC and
other Fc-related inhibitory functions. Even though ADCVI and ADCC activities likely overlap,
the non-cytolytic mechanisms, such as the FcyR-triggered production of B-chemokines, can
also participate in the virus inhibition measured in ADCVI assays.??%252 The ADCVI is detected
as early as the first week after symptom onset or the first month after exposure, much earlier
than what was reported for the NAb response.?*42>2 ADCVI antibody activity is not associated
with the risk of HIV-1 superinfection; however, higher serum ADCVI activity against a clinical

R5 strain of HIV-1 correlated inversely with the infection rate.?>%2°

1.2.1.7.2.5. Antibody-dependent complement
deposition (ADCD)

The complement system comprises several proteins and is a crucial component of the innate
immune response. It can also link the innate and adaptive response by activation following
the recognition of a pathogen (alternate pathway and lectin pathway) or following the
detection of an antibody attached to the surface of a pathogen or infected cell.?>® There are
three complement pathways: classical, lectin pathway and alternate pathway; all converge
towards the formation of the membrane attack complex, which allows the lysis of the

pathogens or the infected cells. 2°7

Cellular proteins, such as CD46 (MCP, membrane cofactor protein) or CD55 (DAF, decay-
accelerating factor), are involved in complement regulation during HIV-1 budding. They are
incorporated into the viral particle's envelope, allowing the virus to escape the complement
system.2°%259 Although the classical complement pathway plays a role in HIV-1 lysis during
infection, some studies show this activity is weak compared to other viruses and might play a
detrimental role by promoting the infection of cells attracted by chemotaxis (dendritic cells,
macrophages or T lymphocytes).?>7:2%.260 Begides these, some studies suggested that ADCD
might have a strong association with neutralization breadth, which might be associated with

the binding of C3 to complement-receptor-2 on follicular dendritic cells. 176261262 |t may
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improve antigen presentation in the germinal centers leading to higher affinity maturation

and improved antibody breadth.26%.262

1.2.1.7.2.6. Antibody-dependent cellular
trogocytosis (ADCT)
Trogocytosis is a biological process during which fragments of the plasma membrane are
transferred between two immune cells within an immunological synapse. There are two types
of trogocytosis (Figure 22).263.264

1. Adhesion molecule-mediated trogocytosis: MHC molecules are damaged on antigen-
presenting cells to CD8+ T lymphocytes.

2. Antibody-dependent cellular trogocytosis (ADCT): Involving the binding of an antibody

to an antigen on the target cell's surface and the concomitant binding of the Fc portion

of the antibody to an Fc receptor on the effector cell.

It has been proposed that patients with high ADCT activities develop broad-spectrum
neutralizing Abs later on.}’® In 2018, Richardson et al. developed a test measuring anti-HIV
ADCT, and proposed that this new antiviral Fc effector function mediated by HIV-specific Abs

could be harnessed for vaccination and cure strategies.?®®
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Figure 22. Characteristics of two types of trogocytosis. In the process of trogocytosis, recipient
cells nibble the cell body of donor cells. Trogocytosis results in either (1) the death of target
cells (trogocytosis-mediated cell death) or (2) the transfer of cell surface molecules, together
with membrane patches, from donor cells to recipient cells (trogocytosis-mediated material

transfer).?%3

1.2.1.8. Study of the Ethnicity impacts on immune responses and

Fcy receptor polymorphism
Research focusing the impacts of ethnicity/ genetic on Fcy receptor polymorphism and
humoral immune responses are currently under investigation. The studies analyzing the
impact of ethnicity on HIV infection and vaccination will be discussed in the following

paragraphs.

1.2.1.8.1. Immunoglobulins

Several studies have shown that serum Ig concentrations vary according to ethnicity, sex, and
age. Total IgG and IgA levels increase with age and reach the adult concentration at around
ten years of age.?%%2%” The levels of serum IgG were found to be significantly reduced with age,

and the level of IgA was found to be maintained.®®
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The IgA, 1gG1, 1gG2 and total IgA were found to be higher in people with African origin when
compared to Caucasian populations living in the same country.?5°7272 A similar result of higher
total IgG levels in Africans than in Caucasians and Hispanics was found HIV-infected
individuals.?’2727> Other studies extend the analysis to Asians, Amazonians, or Melanesians,

and consistently found higher total IgG in these populations compared to Caucasians. 271276~

281

Notably, all these studies comparing Ab profiles according to ethnicity were performed with

individuals living in the same country.

For sure, geographical location plays a role in immunoglobulin concentration.?8%282 E g.:
Mexico City residents' low IgG and IgM levels, especially IgM, might be a compensatory
mechanism for the increase in blood viscosity caused by high-altitude erythrocytosis.?8?
Among same ethnicity, there are still some difference between tribes and genders, which
might be related to environment or diet.?83-2%> New studies need therefore to integrate other
factors as geographic origin in order to better evaluate the difference of immune response in
people living in different countries and continents. This may drastically influence the vaccine

immune response.

1.2.1.8.2. Fcy receptor polymorphism

As discussed in chapter 2-3, FcR mediates Fc-Ab-functiona that are important for HIV
protection. The FcR genes significantly differ by single-nucleotide polymorphisms (SNPs)
frequencies among ethnic groups?®%2% These differences might modify FcR binding efficacy
and impact on FcR mediated function.?8672% |ndeed, an association was found between FcR

polymorphisms and HIV-1 protection or disease outcome.?9172%3

However, FcGR association differed according to vaccine modalities, targeted HIV-1 subtypes,
study populations, mode of HIV-1 transmission (Figure 23). A general association of FcR with
vaccine outcome could not be evidenced so far. The FCGR2C rs114940536, rs138747765, and
rs78603008 polymorphisms vas associated with a decreased risk for HIV acquisition in the

RV144 trial.?** In VAX004, enhanced HIV-1 acquisition occurred in vaccinees homozygous for
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the FcyRllla-176V allele. Vaccinees with minor FCGR2A and FCGR2B alleles enhanced ADCVI
and ADCP in VAX004 and HVTN505 and were associated with reduced risk of HIV-1
acquisition.?>>2% On contrary, the vaccinated ones carrying the FCGR2C-TATA or the FCGR3B-
AGA haplotype had significantly higher incidences of HIV acquisition in HVTN505 trial.2%®
Moreover, an FCGR2A SNP (rs2165088) and two FCGR2B SNPs (rs6666965 and rs666561)
influenced the anti-gp140 ADCP which associated with HIV risk.2%®

All these results indicate that, for future vaccine or therapy designs, ethnicity (related to Ig
concentration and FCGR polymorphisms) need to be taken into account in addition of other

factors as gender, and age (Further discussed in section 4 of the result).297:2%8
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Figure 23. FCGR variant associations with HIV-1 vaccine efficacy trial outcomes. Three HIV-1
vaccine efficacy trials investigated the association between FCGR variants and HIV-1
acquisition risk: VAX004, RV144 and HVTN505. The trials differed concerning vaccine
modalities, target HIV-1 subtypes, study populations, mode of HIV-1 transmission, and host
ethnicities.?®’
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1.3. Chapter 3. Prevention, Treatment and Vaccine development

1.3.1. The 90-90-90 strategy to end the HIV Pandemic

With the aim of ending the AIDS epidemic by 2020, an ambitious target was set by UNAIDS in
2014: 90% of people living with HIV should be screened, 90% of those these should be on long-
term antiretroviral treatment and 90% of those treated should have an undetectable viral load
(Figure 25). 2°° This target would allow to triple the number of people with an undetectable
HIV load. As HIV infected individual with undetected virus load are potentially non-infectious,

epidemic modelling predicts, that AIDS epidemic would end by 2030 if this goal is achieved.

299

Onit 14 countries, sadly not including France, have already achieved the 90-90-90
targets.39%301 However, in most of the countries, the goal will only be achievable by addressing
gaps in the HIV testing and treatment cascade. The global target could be accomplished with

combined efforts to improve testing and treatment from all key players.302-304

20%  90%  90%

of all of all of all
living with HIV will know living with HIV will receive receiving antiretroviral
their HIV status antiretroviral therapy therapy will have viral

suppression

Figure 24. The 90-90-90 strategy. From the left to the right are: 90% of people living with HIV
should know their HIV status, 90% of those these should receive antiretroviral treatment, and

90% of those treated should have viral suppression. 3%

1.3.2. Prevention and treatment of HIV-1 infection
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To achieve the 90-90-90 strategy to end the HIV pandemic, people with unknown HIV status
should accept screening tests and get access to treatment. HIV prevention methods are also

essential to reduce newly infected patients.

1.3.2.1. Prevention

In order to avoid being contaminated or infecting someone, several prevention strategies are
now available. In addition to the use of condoms, regular screening for HIV but also for other
sexually transmitted infections will allow to limit transmission. Preventive medicines have
been developed, such as pre-exposure prophylaxis (RrEP) and post-exposure prophylaxis

(PEP).306

1.3.2.2.  Screening

There are three types of HIV tests: 307

- Antibody test (most used): They detect antibodies produced by the immune system
in response to viral infection. They cannot be used immediately after risk exposure
since several weeks are necessary for the body to produce a quantity of antibodies
high enough to be detectable. These tests allow a diagnosis in a few minutes by
sampling blood or saliva. This method is generally used in self-tests which provide a
reliable result on the serological status of an individual. In the event of a positive result,
these tests must be confirmed by tests coupling the detection of antibodies and viral
antigens.

- Antigen/Antibody test: It is also called combined ELISA (enzyme-linked
immunosorbent assay) tests. This type of test allows the coupled detection of
antibodies directed against HIV-1 and the p24 antigen (corresponding to the capsid
domain of the Gag protein or the mature capsid protein). A negative result of this test
carried out six weeks after the supposed exposure can consider the absence of HIV
infection.

- Nucleic acid detection test: This test directly measures the quantity of virus in the
blood. The quantitative RT-PCR (reverse transcription polymerase chain reaction)
technique allows viral RNA to be quantified. This test is quite expensive and cannot be

used for routine screening. However, it can detect people with primary infection.
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1.3.2.3.  Antiretroviral therapy

Antiretroviral therapy has significantly altered the prognosis of HIV infection. In 1987 the Food
and Drug Administration (FDA) approved zidovudine (AZT), a nucleoside reverse transcriptase
inhibitor, to use on HIV-infected patients.3%83%9 Years later, combining medicines for HIV
treatment was demonstrated to be highly effective, currently known as Highly Active
Antiretroviral Therapy (HAART) or cART (combined Antiretroviral Therapy).3'° HAART typically
consists of three medications of at least two different classes.311312 The medicines used for
HAART are classified into six classes from their mode of action, including co-receptor
antagonists, fusion inhibitors, nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs),
non-nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors and protease
inhibitors (PlIs) (Figure 24).3117313 Current antiretroviral therapies are highly efficacious in
maintaining undetectable viral loads for an extended period. A prolonged virological success
allows restoration of immune functions, a reduction of inflammation and thus, a virtual

normalization of life expectancy.?!!313
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Trends in Pharmacological Sciences
Figure 25. The mechanism of antiretroviral therapy and medicine. The mode of antiretroviral
therapy actions includes co-receptor antagonists, fusion inhibitors, nucleoside/nucleotide
reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors

(NNRTIs), integrase inhibitors and protease inhibitors (Pls). 313

The goal of cART includes decreasing viral replication, preventing the early onset of diseases
with an inflammatory component, preventing the emergence of resistance to antiretrovirals,
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improve or preserve the patient's quality of life and prevent the transmission of the virus
(treatment as prevention or TasP).3* However, cART is not curative since the viral reservoir

cannot be completely eliminated and inflammation persist.

1.3.2.4. Prophylaxis therapies

Besides cART, there are two categories of HIV prophylaxis therapy which depend on the time

therapy is started: Pre-exposure (PrEP) and post-exposure (PEP) prophylaxis.3%®

- PrEP therapy: It uses antiretroviral drugs in high-risk, HIV-negative patients to prevent
future HIV infections. This therapy consists of a single daily pill containing two
nucleoside reverse transcriptase inhibitors: tenofovir disoproxil fumarate and
emtricitabine. When taken as prescribed, PrEP has been found to be over 90% effective
in preventing HIV infection 315317

- PEP therapy: It is a combination of three drugs, including tenofovir, emtricitabine like
PrEP and raltegravir, an integrase inhibitor that prevents provirus insertion into the

host genome.318320 This therapy must start within 72 hours following potential

exposure and it might reduce the risk of infection by 80%.31318

Until now, no universe therapy can cure HIV. Thus, effective HIV vaccines are urgently needed

to fight against the HIV pandemic.

1.3.3. HIV Vaccine trials

The AIDS pandemic continues to challenge us with unique scientific and public health issues.
The development of a preventive vaccine against HIV represents one of the principal axes in

the fight against this virus.

1.3.3.1. Animal models

Animal models offer apparent advantages in studying HIV/AIDS. The animal models are pre-
request, allowing for more invasive investigations of the disease and preclinical testing of
drugs and vaccines efficacy. Two types of HIV animal models have been developed: small

animal and non-human primate (NHP) models.321-323
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- Small animal model: This model includes mice, rats, and rabbits. Among these small
animal models, only the humanized mice, which are genetically immunocompromised
and have been engrafted with human tissues to reconstitute the human immune
system allows experiment challenge. This mouse model is now wildly used in HIV
research.3??

- The Non-human primate (NHP) models: Vaccine studies are hampered by the lack of
animal models infected by HIV-1. In particular, studying the efficacy of Nabs depends
on the ability to challenge the animals with viruses encoding the HIV-1 ENV gene.3?*
Although NHP are not infected by HIV, the innate and adaptive immune responses that
NHPs elicit against the related simian virus (SIV) are, for the most part, very similar to
human responses.3?> Compared to African monkeys, which are the natural host of SIV,
the non-natural monkey host suits for HIV/AIDS research. In addition, chimeric simian-
human immunodeficiency viruses (SHIVs), SIV viruses contain the env from HIV, were
developed to overcome the limitations due to SIV/HIV differences.326327 There are
three old world monkey species that are routinely used as animal models for HIV/AIDS
studies: the rhesus macaque (Macaca mulatta), the pig-tailed macaque (Macaca
nemestrina) and the cynomolgus macaque (Macaca fascicularis) (Figure 26).32132>
Besides them, the marmosets (Callilthrix jacchus) from new world monkey species and
Ape species also play a vital role in HIV research to help us better understand the post-

infection and post- vaccination immune response.32132>327

Notheworthy, animal models are different to human. Especially, their humoral system is
different. For example, Ig isotypes differ between species. Mice only have one IgA isotype,
hominoid primates (with the exception of orangutan) have two IGHA, and rabbits have 15.32%~
330 Therefore, the animals are good models to screen for new vaccine concepts but they give
incomplete results on the safety and the immunogenicity that will be effectively observed in

humans3?!
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Figure 26. The geographical range of the common monkeys used in NHP models. A) Rhesus
macaque (Macaca mulatta), exsist in western India and Pakistan across China. B) Pig-tailed

macaque (Macaca nemestrina) is native to Southeast Asia, Malaysia and Indonesia. C)
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Cynomolgus macaque (Macaca fascicularis) is native to regions of Indochina, Malaysia,

Indonesia and the Philippines.3?

1.3.3.2. Immunogen

Several HIV vaccine designs are available and perform in different vaccine trials (Figure 27).

1.3.3.2.1. Envelop proteins

The structure of recombinantly produced Env is thought to be critical to HIV-1 vaccine design
because it can display bNAb epitopes in a conformation-dependent manner that may
stimulate the bNAb unmutated common ancestors.>>331332 The first two phase Il trials using
the env protein as vaccine is VAX003 and VACO004. Sadly, there is no protectivity shown in
these two trails.3*3733¢ Nowadays, there are several strategies to improve and stabilize the
native-env-like trimers.33”-342 |In animal models, the new modified trimers were found to
induce tier 2 neutralizing Abs and deserved testing in human clinical trials.3*3-34> Additional
modified trimers need to be developed. Especially, envs focusing on conserved neutralizing
epitopes need to be constructed in order to induce Abs with broad activity controling virus

immune escape.34®

1.3.3.2.2. Vectors expressing envs

Besides improving the proteins used in HIV vaccine, the safety profile, immunogenicity, and
variety of available candidates make the nonreplicating viral vectors attractive in HIV vaccine
development.?*’ They are mainly four types of nonreplicating vectors used in HIV vaccines:

- Poxvirus vectors: The canarypox (ALVAC), modified vaccinia virus Ankara (MVA),
Copenhagen-derived NYVAC, and fowlpox (FWPV) belong to this category. Studies
show this type of vector can increased HIV-specific T-cell responses and expanded pre-
existing T cell responses. 348730 |n prophylactic clinical trials, the attenuated poxvirus
vectors ALVAC, MVA, NYVAC and fowlpox have proven to be suitable activators of
specific immune responses (Review in ref 3°1).3°1 MVA and NYVAC are given higher
immune response parameters than the other vectors.3>13>2

- Adenoviruses: This category includes Adenovirus serotype 5 (Ad5), adenovirus

serotype 26 (Ad26), adenovirus serotype 35 (Ad35) etc.3>3>3>5 Ad5 has been well-
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studied and used in Step study (HVTN505), it shown no efficacy but elicited IFN-g
ELISPOT responses and polyfunctional T cells.3°%3%7 Ad26 is used in the
Ad26.COV2.S vaccine (Johnson & Johnson) to fight against the Sars-Cov-2
pandemic.3°®3>9 In HIV vaccine studies, Ad26 utilizes different cellular receptors,
exhibits different in vivo tropism, interacts with dendritic cells and improves preclinical
protective efficacy compared with Ad5.360-3%% Adenovirus 35 (Ad35) offers similar
advantages to Ad26. It can elicit more robust cellular immune responses to HIV
proteins.3®®
- Rhabdoviruses: Rhabdovirus vector as vesicular stomatitis virus (VSV) are suitable HIV
vaccines vectors. They has become the focus of intense research due to their low
seroprevalence and little pre-existing immunity in humans.3¢¢37° Moreover, they are
able to replicate at high titers without safety issues. They are therefore good
immunogens that may elicit a potent anti-HIV Env humoral response and may provide
adequate or optimal protection.
- Alphaviruses: The AVX101 alphavirus-based HIV vaccine was studied in two consecutive

phase | clinical trials (HVTN 040 and 059) and passed the safety test. However, the

cellular and humoral immune responses it induced were limited.3”*

1.3.3.2.3. DNA and RNA vaccine

DNA-based vaccines have excellent immunogenicity in animals and are easy to manufacture,
which makes excellent scalability, and storage.3’2 Their poor immunogenicity in human can be
improved with intradermal delivery or administration in conjunction with molecular
adjuvants.3’3376 The phase | HVTNO87 trial using HIV-1 DNA vaccine showed increased CD8+

T-cell responses but decreased CD4+ responses compared to vector-based immunization.

375,377

RNA based vaccines provides us a fast responses to Covid-19 pandemics. 37837° This type of
vaccines can induce high anti-HIV protective Abs and CD4+ cell responses in animal
models.389381 |n a recent study, mRNA vaccine shows the ability of inducing tier 2 NAbs and
decreasing the risk of SHIV infection in monkeys.382 Until now, there is no HIV mRNA vaccine

entering human clinical trial.
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Figure 27. Current HIV vaccine Designs. 1) Whole-inactivated / inactivated HIV; 2) synthetic
peptide / laboratory-made piece of protein; 3) recombinant viral vector / another virus carries
pieces of HIV; 4) mRNA / mRNA carries pieces of HIV; 5) DNA / DNA carries pieces of HIV; 6)
broadly neutralizing antibodies / binds to and neutralizes HIV; 7) virus-like particles / same
shape as HIV, insides changed; 8) recombinant bacterial vector / bacteria used to carry pieces
of HIV; 9) recombinant sub-unit / HIV protein made in a lab; 10) live-attenuated / weakened

HIV ( HVTN, Lisa Donohue). 383

1.3.3.3. Adjuvants

Adjuvants are critical to enhance the immunogen response. They will increase humoral
response's magnitude and persistence of the immunogen used for vaccination. Still, the
characteristics of the immunogens may sometimes be altered by adjuvants. Protective
response to vaccination has been exceptionally challenging for HIV vaccination. Several
adjuvants have been applied on HIV vaccine (Figure 28)38438 but the immune response still
need to be improved. 383 Tailoring adjuvant choices may help to improve the immune

response and consequently HIV vaccines protection.
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Adjuvant Description Proposed Mechanism

placebo alum only no antigen Negative control

Most used, broad safety profile across both antigens and populations

Alhydrogel® . . . g .
alum Used in VAX003, VAX004, RV144 Immu_nost!mulatory effect includes both antigen retention and immune
cell signaling
MPL Monophosphoryl lipid A* MPL potentiates the immune system as a toll like receptor 4 (TLR4)

agonist

MPL and antigen in oil-in-water emulsion Oil-in-water emulsions enhances recruitment of macrophages to

Liposomal MPL | 2 4orbed to Alhydrogel® injection site

oil-in-water emulsion comprised of
squalene and surfactants, Tween80 and In context of influenza vaccines, Ag specific antibody titers increase and
Span85 it is useful in antigen sparing.

Used in HVTN702 and HVTN 100

Muramyl tripeptide-phosphatidyl
ethanolamine (MTP-PE)
Syntex adjuvant formulation, oil-in-water

SAF/2 emulsion comprised of squalene and
surfactants, pluronic L121 and Tween 80

MF59

MF59 + MTP-PE MTP-PE is an immunopotentiator acting as a NOD2 ligand

In contrast to MF59, the chemical properties of L121 bind antigen
proteins to emulsion droplet surface

MDP is another immunopotentiator and NOD2 ligand, smaller in size

SAF/2 MDP Muramyl dipeptide (MDP) than MTP-PE

Figure 28. The adjuvants uses in HIV vaccine research (Modified from Xu et al. 2022).38

1.3.3.4. Immunize strategies

Several immunization strategies were tested in previous HIV vaccine clinical trials.387:38 They
have been developed based on difference immune approaches according to vectors,
adjuvants and ethnicities (Table 1). Four vaccine concepts have been evaluated in efficacy
trials: protein subunit vaccine, recombinant adenovirus vector, vector prime followed by a
protein subunit boost, and DNA prime followed by recombinant adenovirus vector boost. The
first vaccine trials aiming to develop immunogens capable of inducing broad-spectrum NAbs
from envelope glycoproteins (recombinant gp120 and gp160 proteins) failed. Thereafter, the
vector prime followed by a protein subunit boost in the RV144 vaccine trial showed 31%
efficacy.?*® The other two concepts, recombinant adenovirus vector or DNA prime followed

by recombinant adenovirus vector boost did not show efficacy.

Several vaccine strategies has already been tested. The difficulties for these vaccine strategies
is to generate the appropriate immunogen at the right place and at the right time to
orchestrate a potent and durable response.3®3%° New vaccine platforms, such as
nanoparticles, hydrogels, osmotic pump and microneedles has be engineered to spatially and
temporally control the interactions of vaccine components with immune cells.3°173% New

immunization strategies are still desperately needed to improve efficacy, by inducing more
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sustain functional antibody responses, T cell responses and/or long-lasting immune memory

response.

1.3.3.5. Current vaccine trails

Despite the difficulties encountered during the development of vaccine trials, the search for
new immunogens, vectors, adjuvants, and immune strategies capable of inducing effective
humoral and cellular responses continues. However, so far, no human HIV vaccine trial has
been shown to be effective in inducing broad-spectrum NAbs.260:333:397-400 5ome research
teams focused on developing immunogens capable of inducing an effective cytotoxic cellular

response, particularly cytotoxic CD8+ T lymphocytes.?01402

Sadly, there is no available vaccine to fight the HIV pandemic yet, but the precious experience

from HIV research assists the Sars-Cov-2 vaccine development and saves millions of lives.
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Ab function Fc Receptor
Vaccine Target
) Year Location ) Vaccine Neutral Fc Association Vaccine Efficacy Ref
Trial population FcR Polymorphism
ization | mediate with risk
Recombinant
envelope
Low Tier
VaxSyn 1987 Canada 72 adults glycoprotein NFD - - - No 403,404
1
subunit (rgp160) of
HIV
Recombinant
35 male vaccinia virus
HIVAC-1e 1988 USA N/F NFD - - - No 405
adults designed to express
HIV gp160
5,417 MSM FCGR2A rs1801274
1998- AIDSVAX B/B gp120 ADCC v 255,295,4
Vax004 North America and 300 Tier 1 No
2002 with alum ADCP 06-408
women FCGR3A rs397991 0
2,545 mem
1999- AIDSVAX B/E gp120 333,406,4
Vax003 Thailand and women Tier 1 ADCC - - - No
2003 with alum 08,409
IDUs
3,000 MSM
North America,
and MRKAd5 HIV-1
STEP/HVTN 2004- Caribbean South Low Tier 356,410-
heterosexu gag/pol/nef NFD - - - No
502 2007 America and 1 412
al men and trivalent vaccine
Australia
women
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Phambili/H 2003- Low Tier
South Africa 801 adults | rAdS (gag/ pol/ nef) NFD - - No 413-415
VTN503 2007 1
16,402 ALVAC-HIV
rs114945036 166,294,4
2003- community- (vCP1521) and Low Tier ADCC
RV144 Thailand FCGR2C rs138747765 31.2% 09,413,41
2009 risk men AIDSVAX B/E 1 ADCP
rs78603008 6-420
and women vaccine
Three vaccines with
DNA encoding HIV-
1 subtype A gp120,
subtype B
gp140ACFI,
480 HIV- subtype C Gag.
2005- USA and South Low Tier
HVTN204 negative Follow by a booster - - - No 397,421
2008 Africa 1
adults rAd5 expressing the
same env gene
(subtype A, B, C)
and a subtype B
Gag-Pol fusion
protein.
2,504 men Three vaccinations FCGR2A rs2165088
or with DNA encoding s138747765
transgender | HIV clade B gag, pol
2009- Low Tier |  ADCC - rs78603008 194,296,3
HVTN505 USA women and nef as well as rs373013207 No
2013 1 ADCP 97
who have env from HIV clades 1s201984478
sex with A, B and C followed 1534085961
FcGR3B
men by an Ad5 vector- rs34322334
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based vaccine rs61803026
encoding clade B
gag and pol as well rs6666965
FCGR2B
as env from clades rs6665610
A,BandC
ALVAC-HIV and
2012- 162 women Low Tier ADCC 416,422,4
HVTN305 Thailand AIDSVAX B/E - - No
2017 and men 1 ADCP 23
vaccine
360 men
ALVAC-HIV and
2013- and women Low Tier ADCC
HVTN306 Thailand AIDSVAX B/E - - No 424,425
2020 aged 20-40 1 ADCP
vaccine
years old
100 black
Africans ALVAC-HIV
2012- (men and (vCP1521) and Low Tier ADCC
HVTNO097 South Africa - - No 426,427
2013 women) AIDSVAX B/E 1 ADCP
aged 18-40 vaccine
years old
ALVAC-HIV
2015- 252 men (vCP2438) and Low Tier ADCC
HVTN100 South Africa - - No 428-430
2018 and women bivalent subtype C 1 ADCP
gp120/MF59
ALVAC-HIV
2016- 5,400 men (vCP2438) and Low Tier
HVTN702 South Africa - - - No 431-434
2020 and women bivalent subtype C 1

gp120/MF59
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VRCO1 broadly

2016- Sub-Saharan 1900 neutralizing Low Tier
HVTN 703 No 435-437
2020 Africa women monoclonal 1
antibody
2701 men VRCO1 broadly
Brazil Peru
2016- and neutralizing Low Tier
HVTN 704 Switzerland, No 435-437
2020 transgender monoclonal 1
United States
persons antibody
2,637 Ad26.Mos4.HIV, Comparing with RV144,
HVTN705/ 2017- Sub-Saharan women adjuvanted clade C unable to improve the | 419438~
Imbokodo 2021 Africa ages 18 to and Mosaic gp140 efficacy on Sub-Saharan 440
35 years HIV bivalent vaccine Africa women
3,800 HIV-
negative
men and
transgender
people Ad26.Mos4.HIV,
HVTN706/ 2017- America and aged 18 to adjuvanted clade C 438,441,4
- No
Mosaico 2023 Europe 60 years and Mosaic gp140 42
who have HIV bivalent vaccine
sex with
men and/or
transgender
people
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Mozambique DNA/AIDSVAX and
2018- South Africa, DNA/CN54gp140 +
PrepVacc 1668 adults - - - - - Pending 438,443
2024 Tanzania, and MVA/CN54gp140)
Uganda with PrEP

Table 1. lllustration of completed and documented or on-going major phase 1b to phase 3 HIV trials that analyzed the Ab and/or Fc Receptor

functions. NFD: no Fc-mediated function detected, —: no related publications found
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Objective of thesis

The current vaccine approaches expect to induce neutralizing as well as Fc-mediated
inhibitory Abs. Therefore, the type and subtype of the immunoglobulins (Ig) induced, and the
guantity and quality of the Fc-receptors (FcRs) expressed on immune cells will need to be
taken into consideration. As these factors varied according to ethnicity, future vaccines may
need to adapt their strategies to the genetic ethnicity background of the targeted population

in addition to the choice of immunogen according to the local HIV circulating strains.

The aim of my thesis is to select new vaccine strategies with improved Ab responses. We have
therefore characterize the humoral immune response, especially the neutralization and Fc-
mediated inhibition by Abs induced:

1. early after HIV-1 infection (PRIMO Cohort)

2. by New vaccine strategies (Horizon 2020 and Labex VRI)

3. in association with genetic ethnic background (HVTN initiative program)

My thesis work is presented in the form of two published manuscripts, one submitted

manuscript and one manuscript in preparation, which will soon be submitted for publication.

In the appendix are presented published works to which | have contributed within the

laboratory.
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Material and Methods

3.1. Material and methods

3.1.1. Cohorts
3.1.1.1. PRIMO

The primo Cohort is a cohort of patient sampled early after the detection of HIV infection.
Sera from 24 patients from the ANRS PRIMO cohort were obtained at 2 time points: Day O
(DO) corresponding to the day of inclusion in the cohort (day of detection, less than 3
months after infection) and 6 or 12 months later (M6/M12). As this is a historical cohort,
early treatment at HIV detection was not yet recommended. The patients selected were
therefore not treated at the time of sample collection. 1gG were purified by protein G
columns (Sepharose™ 4 Fast Flow, Amersham Biosciences) according to manufacture

instructions.

All subjects provided their written informed consent to give their blood sample for
researchpurposes. The PRIMO cohort was funded and sponsored by ANRS and approved by
the lle de France Ill Ethics Committee, July 2, 1996, with amendment N°15 approved June
08. The study was conducted according to the principles expressed in the Helsinki

Declaration.

3.1.2. Vaccine trails
3.1.2.1. EHVA studies on animal model

Different vaccine trails were developed under the Horizon 2020 European HIV Vaccine Alliance
(EHVA) consortium. The aim of this consortium was to discover and evaluate novel
prophylactic and therapeutic vaccine candidates. We were involved in the characterization of
the antibody response induced following immunization with novel vaccine immunogens,

adjuvants and delivery routes.

3.1.2.2. HVTN204

A grand from HVTN Initiatives Program (HIP) was obtained as a Pilot study for systematic
comparison of HIV vaccine-induced immune responses between Caucasian and
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African/African American populations. The proposed study aims to systematically compare
HIV vaccine-induced immune responses in African vs Caucasian vaccinees in relation to
ethnicity, host genetic and geographic background. For this study HVTN204 vaccine trial was
chosen as this vaccine was preform using with exactly the same protocol in South Africa and
US. We receive serum and cryopreserved cells form the HVTN repository to perform this

comparison.

3.1.2.3. VRIO6

As participants of the Labex Vaccine Research Institute (VRI) sponsored for more than 10 years
in France, we were actively involved in the characterization of the Ab response induced by the
phase | clinical trial VRIO6. This project aims to increase antobody response via using the

envelopes targeting CD40 on the surface of DC cells.

3.1.3. ELISA (enzyme-linked immunosorbent assay)
3.1.3.1. Total and HIV- specific Ab detection

MAXISORP 96-well plates (Sigma) were coated overnight with a sheep anti-human 1gG/ IgA (1
ug/mL in carbonate buffer, Binding Site) overnight at 4 degree for the detection of total IgG
and IgA. Plates coated with gp160 MN LAI (A hybrid oligomeric gp160 Env with gp120 derived
from HIV-1 MN and gp41 derived from HIV-1 LAI, subtype B), gp160 MN LAl did (Recombinant
Env with gp120 from HIV-1 92THO023 linked to gp4l from LAl, with a deletion in the
immunodominant region, subtype CRFO1-AE), gp70 V1V2 (a murine leukemia virus gp70
scaffold containing HIV-1 gp120 variable regions 1 and 2 from HIV-1 isolates 92TH023, subtype
AE) and gp140 ConS (corresponding to the consensus envelope antigen, subtype B) (0.5ug/mL
in carbonate buffer for HIV-specific IgGs and 2 pg/mL in carbonate buffer for HIV-specific IgAs)
were used to detect the anti-gp 160 IgGs, anti-gp70 V1V2 IgGs, anti-gp140 I1gGs and anti-gp160
IgAs.

Plates were washed and saturated with PBS (Gibco) contain 10% milk (1h, at 37 °C) and with
the diluted sera (2 h, at 37 °C). Then plates were washed and a secondary goat anti-human

IgG-HRP (HorseRadish Peroxidase) or anti-human IgA-HRP added (1 h at 37 °C, 0.2 pg/mL in
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PBS, Southern Biotech). After all the incubation, 100 upuL of TMB (3,3’,5,5'-
tetramethylbenzidine) (KPL) substrate is added before a kinetic reading. After 30 minutes of
incubation in the dark and at room temperature, the reaction is stopped with sulfuric acid (25
uL of 1 M H,S04 per well) and the endpoint optical density (OD) is read at 450 nm (reference
650 nm).

The total 1gG and IgA concentrations are calculated using a range of concentrations
established with a reference serum.

3.1.4. Cellular culture
3.1.4.1. Celllines
3.1.4.1.1. TZM-bl

TZM-bl cell is a HeLa-derived indicator, adherent cell line. These cells express CD4 and CCR5
as well as the luciferase reporter gene under the control of the LTR regions of HIV-1444

The maintenance of these cells is done every three to four days. They are cultured in 75 cm?
culture dishes in DMEM medium (Dulbecco/Vogt modified Eagle's minimal essential medium)
1 g/L of glucose (Gibco) supplemented with 10% FBS (fetal Bovine serum) (Dutscher) and
supplemented with penicillin (50 IU/mL) and streptomycin (50 ng/mL) (Gibco). After removing
the depleted culture medium by pouring it into a waste bottle, the cells are washed with 5 mL
of cold PBS. Then 2.5 mL of room temperature trypsin-EDTA (tetraacetic ethylenediamine)
(Gibco) is added to cover the cell layer for 1 minute at room temperature. Eliminating part of
the trypsin then put the culture dish in the incubator at 37°C, 5% CO, for 3 minutes to enhance
the action of the trypsin. The cells are later resuspended in 7 mL of fresh 10% FBS DMEM
medium. 1 mL of cell suspension is taken up in a 75 cm? culture dish with 12 mL of 10% FBS

DMEM medium. The cells are finally incubated at 37°C, 5% CO,.

3.1.4.1.2. CEM.NKR.CCR5

CEM.NKR.CCRS5 are suspension cells from a cloned human T lymphoblastoid cell line (T-LCL).

They are resistant to lysis by NK cells and express the HIV-1 coreceptor CCR5. 44°
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The maintenance of these cells is done every three to four days. They are cultured in 75 cm?
culture dishes in RPMI-1640 medium (Roswell Park Memorial Institute medium) (Gibco)
supplemented with 10% FBS (Dutscher) and supplemented with penicillin (50 IU/mL) and
streptomycin (50ng/mL) (Gibco). 1.5 mL of cell suspension are diluted in 13 mL of 10% FBS
RPMI medium. The cells are finally incubated at 37°C, 5% CO..

3.1.4.1.3. HEK293T

HEK293T are adherent cells. It is a human cell line, derived from the HEK 293 cell line (human
embryonic kidney 293 cells), which expresses a mutant version of the large T antigen of
SV40.4%% The maintenance of these cells is done every three days on the same principle as the
TZM-bl. They are cultured in DMEM 4.5 g/L glucose medium (Gibco) supplemented with 10%
FBS (Dutscher) and supplemented with penicillin (50 IU/mL) and streptomycin (50 ng/mL)
(Gibco).

3.1.4.2. Primary cells

Peripheral blood mononuclear cells (PBMC) are isolated from leucocyte concentrates (buffy
coat) of anonymous donors who are HIV-negative and hepatitis C virus (HCV)-negative. All the

buffy coat are from the French Blood Establishment (EFS).

To isolate the PBMC, the Ficoll® gradient sedimentation technique is used (Eurobio).The
leukocyte concentrate is diluted 1/4 in PBS Ca2+/Mg2+ (containing 0.68 mM CaCl2 and 0.05
mM MgCl2) (Gibco), supplemented with citrate at 1/100 (9 mM tri-sodium citrate dihydrate
and 1.55 mM citric acid monohydrate). Then, 25 mL of this cell dilution are gently placed on
20 mL of separation medium (Ficoll®) with a density of 1.078. The tubes are then centrifuged
for 25 minutes at 1200 g and the cells at the interface are removed and then washed three
times with PBS. The cells thus obtained are taken up in 50 mL of PBS and counted using a

KOVA® Glasstic® Slide (Hycor) counting cell after 1/10 dilution in trypan blue.

3.1.5. Virus Preparation

Characterization of the protective antibody response induced 96

following vaccination or infection



Material and Methods

Pseudoviruses used in Neutralization assay were produced by cotransfecting 293T cells with

HIV-1 env expression plasmid and the env-deficient HIV-1 backbone plasmid (pSG3AEnv).

3.1.6. Neutralization Tests

Pseudoviruses used in Neutralization assay were produced by co-transfecting 293T cells with

HIV-1 env expression plasmid and the env-deficient HIV-1 backbone plasmid (pSG3AEnv).

The neutralizing ability is determined by a luciferase test and the values obtained in RLU
(relative light unit or relative light unit) are expressed as a percentage of the control. The
samples are diluted in 10% FBS DMEM. Serial dilution of sera beginning at 1 : 20 dilution and
25 uL of these dilutions are deposited in a 96-well plate and incubated for 1 hour at 37° C with
25 pL of diluted virus. 25 pL of TZM-bl at 4.105 cells/mL diluted in DMEM 10% FBS+DEAE
(diethylaminoethyl) Dextran (Sigma) at 37.5 pug/mL are then added. After 36 hours, the cells
are incubated for 10 minutes at room temperature and in the dark with Bright-Glo™ (firefly
luciferase assay system) (Promega) diluted 1/2 in sterile water. The reaction is then stopped
by adding 25 uL of sterile water and the luminescence is detected by passing the plates

through a luminometer (PerkinElmer).

The inhibitory reciprocal dilution 50% (IRD50) were defined as the sample’s dilution that can

cause 50% reduction of relative luminescence units. IRD50> 60 will be considered as positive.

3.1.7. Celllysis activity test (Antibody dependent cellular cytotoxicity: ADCC)

The ADCC assay was performed using purified PBMCs as effector cells and the CEM.NKR.CCR5
cell line as target cells. four HIV-1 clones expressing the viral envelope and the Renilla

luciferase reporter gene were used for infection.

Serial fold diluted samples (beginning at 1/50 for sera) were added to the 96 well flat bottom
plates. 4 day-post infection, HIV-1 infected CEM.NKR.CCR5 cells were incubated with PBMCs
(30:1, effector: target ratio) in the medium contains RPMI-1640, 10% FBS, and 50 IU
interleukin-2 (R&D Systems) for 5 hours. Renilla-Glo luciferse assay substrate substrate

(Promega) was added to determine the luminescence intensity generated by infected target
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cells. To define lysis of target cells by Abs, the percentage of infected target cell in presence

of Abs was normalized to control wells without Abs using the following formula:

% of lysis = ( RLU of infected target cells with effectors-RLU of infected target cells with effectors and samples > %100

RLU of infected target cells with effectors

The AUC was calculated as the integrated background-subtracted net activity truncated above

zero over a range of dilutions using the trapezoidal method.

For the HIV-1 that were not modified to express the luciferase, we developed another ADCC
assay. The CEMNKR cells infected or non-infected were stained with arboxyfluorescein
Diacetate Succinimidyl Ester (CFSE) in day 4 before incubating with PBMC. Serial fold diluted
samples (beginning at 1/50 for sera) were added to the 96 wel half-areal flat bottom plates
togeteher with cell mixture: 4 day-post infection, HIV-1 infected CEM.NKR.CCR5 cells were
incubated with PBMCs (30:1, effector: target ratio) in the medium contains RPMI-1640, 10%
FBS, and 50 IU interleukin-2 (R&D Systems) for 5 hours. P24 stained (APC) was performed and

infected cells were measured by flow cytometry.

3.1.8. FcR

Genomic DNA was extracted from 3x 10° PBMCs with the Qiagen QlAamp DNA Mini Kit
(Qiagen, Hilden, Germany), following manufacturer’s instructions. The rs1801274 (H131R) in
FCGR2A (FcyRlla) and rs10800309 in FCGR2A (FcyRlla) were genotyped with custom Tagman
assays (Thermo Fisher Scientific, Waltham, MA, USA).?%

3.1.9. Flow cytometry

To characterize the target cell population, cells are marked by fluorescent antibodies specific
for the various chosen determinants. The acquisition of the results is carried out on an
Attune™ NxT Acoustic Focusing Cytometer (ThermoFisher), calibrated by Attune™
performance tracking beads (performance test, ThermoFisher) to ensure the quality and

consistency of the measurements between the different experiments.
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3.1.10. Statistical analyzes

Comparisons between groups are analyzed using a two-tailed Mann-Whitney test. P values
less than 0.05 are considered statistically significant (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

Part of the statistical analyzes are performed with Prism 10 software (GraphPad, San Diego,
CA).
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4.1. Analysis of the early Ab response following HIV infection

As vaccine need to induce an early effective immune response, we first focused our study on

the response induced during early acute infection.

This study aimed to improve our knowledge of early potential Ab response in order to induce

such Abs by vaccination.

We analyzed the functional Ab response induce early after infection in sera collected from the
ANRS PRIMO cohort at 2 time-points: Day 0 (DO) corresponding to the day of inclusion in the
cohort (day of detection, less than 3 months after infection) and 6 or 12 months later
(M6/M12). As it is an historical cohort, the patients selected were not treated at the time of

sample collection.

In collaboration with Julie Lucas, student in our group, we detected broadly neutralizing Abs
(bNabs) in some sera collected early after infection. This activity differ from what was
previously publish. Indeed, previous studies detected bNabs against non-T/F viruses only after
one to two years of infection. Noteworthy, in our study, we analyzed neutralizing activity
directed against Transmitted/Founder (T/F) viruses and not against the Tier 2 primary viruses
classically used for neutralization assessment. Results from this study have been publish in
AIDS (see publication below). For this study, | participated in neutralizing activity detection,
Ab detection, IgG purification from serum samples to confirm that the activity was related to

the Ab, not other particles.

The early detection of bNabs against T/F viruses in infected individuals open new perspective

for the development of such functional Abs by vaccination.
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vaccine development. However, they display features of highly matured antibodies,
hampering their induction by vaccination. As protective broadly neutralizing antibodies
should be induced rapidly after vaccination and should neutralize the early-transmitted
founder (T/F) viruses, we searched whether such antibodies may be induced following
HIV infection.

Design: Sera were collected during acute infection (Day 0) and at viral set point (Month
6/12) and the neutralizing activity against T/F strains was investigated. Neutralizing
activity in sera collected from chronic progressor was analyzed in parallel.

Methods: We compared neutralizing activity against T/F strains with neutralizing
activity against non-T/F strains using the conventional TZM-bL neutralizing assay.
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Introduction

Treatment with anti-HIV broadly neutralizing anti-
bodies (bnAbs) has shown that the predominant
mechanism of antiviral activity of these antibodies is
through neutralization of virus entry, their Fc-mediated
functions contributing only to 21% of plasma-virus
decay slopes [1]. BnAbs are therefore considered to be
the Grail for the development of an effective HIV
vaccine. Kinetics of neutralizing antibody (nAb) induc-
tion have been largely studied. Following HIV infection,
autologous nAbs are first detected [2], followed about 1
year by heterologous nAbs [3,4]. Neutralization breadth
against Tier 2 strains is only detected in a subset of
individuals during the chronic phase and following
numerous rounds of viral replication and neutralization
escape [4]. This delay of bnAbs response led to the
postulate that the presence of viral quasispecies is needed
to drive the humoral response for the selection of B cells
directed to conserved epitopes [5]. Vaccine efforts have
therefore focused on targeting conserved epitopes under
evolutionary constraints thereby limiting the virus’s
adaptive space. However, so far, these approaches have
failed in wvivo. Indeed, antibodies displaying the
characteristics of bnAbs have all the same features with
high levels of somatic hypermutation, insertions and/or
deletions (indels) and, often, unusually long CDRH3
(heavy chain complementarity-determining regions)
[4,6]. These specific Ab characteristics have strong
disadvantages in the setting of vaccine strategies, as they
require long-lasting maturation and the path to bnAbs
induction will therefore be difficult.

Another vaccine approach would be to focus on
transmitted founder (T/F) viruses that have established
the actual infection, given the hypothesis that transmissi-
ble phenotypes are limited or antigenically conserved [7].
This is indeed the case during sexual HIV transmission as
only a limited number of HIV variants are transmitted.
The unique traits of these T/F variants and their
evolutionary trajectories with antibody response remain
an unresolved question [8].

Different studies have been performed to identify
common features for T/F viruses. Shorter V1V2 regions
[9], lower glycosylation sites [3] and less efticient binding
to CD4™ [10] have been identified. These characteristics
may increase infectivity and affinity to mucosal receptors
or reduce sensitivity to neutralization [9,11]. However,
these special features could not be confirmed by others
describing increased neutralizing sensitivity [12] and less
infectivity for viruses isolated early after infection [11],
further suggesting that the pattern of Env evolution
observed may be specific to the host and infecting strains
[11]. The explanation of the viral bottleneck selecting
T/F strains remains elusive. However, vaccine should
induce antibodies able to neutralize these selected
transmitted variants.

As only a limited number of HIV variants are acquired
during transmission, we hypothesized that less potent
nAbs, with limited breadth, but nonetheless able to
neutralize T/F strains may be sufficient for protection.
Noteworthy, previous studies have analyzed the neutrali-
zation of T/F vs. chronic viruses but did not specifically
focus on serum samples from very early infection. We
searched for such antibodies in sera collected from
infected individuals grouped according to the time
following infection. Remarkably, we detected nAbs
against T/F in some samples collected during early acute
infection. Neutralization was waived over time in favor of
nAbs against non-T/F viruses. These results demonstrate
that nAbs against T/F strains can be induced rapidly the
following infection. As they were induced rapidly, they
may not display the highly maturated and difficult-to-
induce profile of the nAbs detected after several years of
infection. They may therefore be of high interestin future
vaccine designs.

Methods

Patient cohorts

Sera from 24 patients from the ANRS PRIMO cohort
were obtained at two time points: Day 0 (D0)
corresponding to the day of inclusion in the cohort
(day of detection, <3 months after infection) and 6 or 12
months later (M6/M12). As this is a historical cohort, the
patients selected were not treated at the time of sample
collection. We used a historical non-treated, HIV-
infected chronic progressors cohort (n=16) of individu-
als infected with a median of 8 years. These chronic
progressors had normal CD4T cell levels (median of 696/
mm” at the time of blood sampling) but high viral load
and went on therapy shortly after sample collection
because of disease progression. IgG were purified by
protein G columns (Sepharose 4 Fast Flow, Amersham
Biosciences, Amersham, UK) according to manufacturer
instructions.

All patients provided their written informed consent to
give their blood sample for research purposes. The
PRIMO cohort was funded and sponsored by ANRS and
approved by the Ile de France IIT Ethics Committee, 2
July 1996, with amendment No. 15 approved 8 June. The
study was conducted according to the principles
expressed in the Helsinki Declaration.

TZM-bl neutralization assays

The conventional TZM-bl neutralization assay was used
[13]. Serial dilution of sera (beginning at 1:20 dilution)
was tested for its ability to neutralize various HIV-1 strains
(Supplemental Table S1, http://links.lww.com/QAD/
C626), and the inhibitory reciprocal serum dilution 50%
(IRD50), the inhibitory reciprocal serum dilution 70%
(IRD70) or the inhibitory antibody concentration 50%
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(IC50) were calculated [13]. The capacity of individuals’
sera to neutralize murine leukemia virus (MulV) was
assessed as a control. Two sera (M6/12) with IRD more
than 50 for MuLV pseudovirus were excluded from the
study. Samples with values at least 50 IRD50 and samples
with values of less than 1 pg/ml IC50 were recorded as
positive for neutralizing activity.

HIV-specific Ig detection

HIV-specific antibodies directed against gp41S30, gp160
HIV MN LAI (kind gift from R. El Habib, Sanofi
Pasteur) or trimer folded JRFL NFL TD (kind gift from
R. Wyatt, Scripps Research, San Diego, CA, USA) were
detected by ELISA as previously described [14].

Statistical analysis

The statistical significance (Pvalues) was evaluated using a
two-tailed paired (T/F versus non-T/F) Wilcoxon test of
the median neutralizing activity of sera using the Prism
software (GraphPad Software Inc., San Diego, California,
USA).

Results

Distinct patterns of neutralizing antibodies
against T/F variants compared with non-T/F
strains over time

We searched for nAb in sera collected early after infection
(D0), 6-12 months after infection (M6/12) or in sera
from chronic progressors. In opposition to what has been
previously described, antibodies able to neutralize some
HIV strains were already detected at DO of infection
(Fig. 1a and Supplementary S2, http://links.lww.com/
QAD/C625). In sera from patients 350115, 440138,
680115, 750518 and 751 206, IRD50 titers with values
of at least 50 against T/F viruses were detected. At that
time point, the median IRD50 was significantly higher
for T/F viruses compared with non- T/F viruses
(P=0.016). 426¢, CH077, CHO058 and RHPA- T/F
viruses were the best neutralized (Fig. 1d). Moreover, we
analyzed the neutralizing activity after IgG purification.
We found a similar neutralizing profile (Supplemental
Fig. S1, http://links.lww.com/QAD/C625) indicating
that the neutralization detected was not due to non-
specific factors present in the sera. These results show that
nAbs against some T/F strains can be induced very rapidly
during acute infection.

At M6/12, Samples with IRD50 of at least 50 increased
with the highest neutralizing activity in patients 330 209
and 940 106. At that time point neutralization was similar
for T/F and non-T/F strains (P=0.14) (Fig. 1b) and was
recovered in the IgG fraction (Supplement Fig. S1,
http://links.lww.com/QAD/C625).

In chronic progressors, on contrary, we detected
significantly more neutralizing activities against non-T/
F strains compared with T/F viruses (P> 0.0005),
suggesting that the neutralizing activity is redirected
against non-T/F viruses after several years of infection
(Fig. 1c).

Indeed, by following the neutralizing profile over time,
neutralizing activity against T/F viruses did not
increases at M6/12 and in chronic progressors
compared with a gradually increased neutralization
for non-T/F Tier 2 and Tier 1 strains (Fig. 1d). The
general profile of neutralizing responses depicted by the
radar plot showed that the mean neutralizing activity
against T/F viruses was similar for the three time points
(Fig. 2a). Therefore, T/F strains may display special
features supporting early nAb development by the
humoral immune response.

Detection of cross-neutralizing activity against
T/F viruses at DO

For the vaccine design, induction of cross-neutraliza-
tion against different strains is essential for a large
coverage of HIV protection. We hence analyzed the
capacity of the sera to cross neutralize several strains
(Fig. 2b). Significantly, 17% of sera collected at DO
already neutralized four to five of the seven T/F
viruses analyzed with an IRD value of at least 50,
whereas none of them cross-neutralized four to five
non-T/F Tier 2 strains. Cross-neutralization of non-
T/F viruses appeared later with 29 and 56% of sera
neutralizing more than four non-T/Fs Tier 2 strains at
M6/12 and for chronic progressors, respectively. This
cross-neutralization only slightly evolved for T/F
viruses from 17 to 29% and 31% cross-neutralization
of more than four T/F viruses at M6/12 and for
chronic progressors, respectively. Similar profile with
neutralization detected against T/F viruses at D0 was
observed by using an IRD70 read out (Supplemental
Fig. S2, http://links.lww.com/QAD/C625). Again,
this point to a different neutralizing activity against T/
F viruses that switch over time to nAbs against non-
T/F strains. Whether this cross-neutralizing activity
refers to bNAbs or to polyclonal responses with
induction of various nAbs needs further investigation.
Moreover, to identify specific env-binding features
associated with this cross-neutralizing activity, we
analyzed antibody-binding capacity to various envelop
proteins (Supplemental Fig. S3, http://links.Iww.
com/QAD/C625). Binding to gp41 protein, gp160
monomer or JRFL-folded trimer did not allow to
discriminate cross-neutralizing activity (colored dots)
from the other samples (black dots) as the color dots
were distributed all over the panel. More precise
immunomapping should be performed to identify
epitopes involved in cross-neutralize activity in sera
collected at DO.
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Fig. 1. Distinct pattern of neutralizing activity against tramsmitted founder (T/F) variants over time in HIV-1-infected patients.
Neutralization for each serum collected at PRIMO DO (a), month M6/12 (M6/12) (b) and chronic progressors (c) against T/F (red)
and non- T/F (green) strains. Box plots indicate median inhibitory reciprocal dilution 50% (IRD50) values. Mean neutralizing
activity for each virus: T/F, non- T/F and Tier 1 strains at different time points (d). Seven T/F s Tier 2 viruses (CH058, CH077, RHPA,
THRO4156.18, REJO4541.67, 426¢ and TRJO4551.58), seven non- T/F Tier 2 viruses (QH0692.42, YU2, X1632_S2_B10,
TRO.11, CH119.10, BJOX2000.03.2 and CE1176_A3) and three Tier-1 reference strains (SF162.LS, MW 925.26 and Bal) were
used. Two-tailed paired (T/F versus non- T/F) Wilcoxon test of the median neutralizing activity was performed for each serum.
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Fig. 2. Detection of cross-neutralizing activity against transmitted founder (T/F) viruses at DO. Radar chart against T/F viruses (in
blue) and non- T/F (in green) for mean inhibitory reciprocal dilution 50% (IRD50) neutralizing activities of sera collected at three
time points (a) or inhibitory concentration 50 (IC50) of four bmNAbs: 10-1074 and PGT121 targeting V3 glycan-dependent
epitopes, 10E8 targeting the remarkably conserved gp41 membrane-proximal external region and VRCO1 targeting the
conformational CD4 *-binding site. (c). Pie charts representing the percentage of viruses neutralized with an IRD50 value of
at least 50 for sera collected at DO, M6/M12 and chronic progressors or IC50 less than 1 pg/ml for bmNAbs 10-1074, PGT121,
10E8 and VRCOT1 for Tier 2 T/F (blue), non- T/F (green) and Tier 1 (orange) strains (b).
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Effects of neutralizing antibodies against T/F
strains on viral load

We further searched for an association between nAbs
detected at DO and viral load evolution. We did not detect
any correlation between nAbs responses directed against
T/F or non- T/F strains and their corresponding viral
load (Supplemental Table S2, http://links.lIww.com/
QAD/C626 and Fig. S4, http://links.Iww.com/QAD/
C625). We also analyzed whether nAbs detected at DO
may associate with lower viral load at DO or at set point at
M12. Although patients displaying cross-neutralizing
activity at DO had often low post-acute viral load, no
significant association could be detected between nAbs
and viral load at the set point (Supplemental Fig. S4,
http://links.lww.com/QAD/C625). This shows that the
unexpected cross-neutralizing response detected at DO
did not influence post-acute viral load evolution at the
set point.

Neutralizing sensitivity of T/F strains

Next, we determined if differences of cross-neutralizing
activity between the T/F and non- T/F could be
attributed to differences of virus-neutralizing sensitivity.
We therefore analyzed the neutralizing capacity of four
well-known monoclonal bnAbs (mbnAbs) against our T/
F and non- T/F viruses (Fig. 2c). We found that these
mbnAbs poorly neutralized (Fig. 2¢) and cross-neutral-
ized (Fig. 2b and Supplemental Table S3, http://links.
lww.com/QAD/C626) T/F viruses (with only 25%
neutralization against four or five T/F), whereas 100% of
them neutralized more than four non-T/F strains tested
(Fig. 2b). This low neutralization sensitivity corroborated
the resistant phenotype described for transmitted founder
viruses. Of note T/F viruses were significantly less
inhibited by bnAbs PGT121 and 10E8 (Fig. 2c¢ and
Supplemental Table S3, http://links.Ilww.com/QAD/
C626) further suggesting that V3 glycan-dependent
epitopes and the conserved MPER may be less exposed
on these viruses.

Discussion

In this study, we assessed the neutralization sensitivity
against T/F strains and compared them with other Tier 2
variants. We found a modest cross-neutralizing activity
against T/F strains in sera collected during acute infection
(D0). This unexpected neutralizing activity barely
increased over time. On the contrary, nAb response
shifted to the development of neutralization against non-
T/F Tier 2 strains suggesting that the early humoral
immune response developed against T/F viruses was
discarded in favor of other non- T/F strains. Moreover,
the highly potent monoclonal bnAbs that display more
than 60% coverage at IC50 less than 1 pg/ml using a large
panel of selected Tier 2 isolates [4], were found to poorly
neutralize the T/F viruses. This further indicates that

these T/F viruses display a neutralization-resistant
phenotype. Although the number of T/F strain analyzed
was relatively small, this unexpected cross-neutralizing
activity detected at DO against our ‘neutralization
resistant’ T/F viruses deserve further investigation.

Whether this unexpected cross-neutralizing activity has
potential, protective effects need to be further assessed on
larger cohorts of acute patient and against multiple types
of T/F and non- T/F viruses. Moreover, it is unknown
whether vaccine targeting more specifically T/F viruses
with unambiguous identification of transmissibility
signatures will give promising protection. Our data
clearly demonstrate that nAbs against T/F viruses can be
induced during acute infection. As these nAbs were
induced very early after infection, they may display
specific features (epitope recognized, less constrained
maturation phenotypes) distinct from the currently
identified mbnAbs. nAbs directed against T/F strains
therefore open new perspectives for the development of
such antibodies in future vaccine designs.
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Supplementary Figures:
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Figure S2
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Figure S3
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Figure S4
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Neutralization
Virus name Abbreviations Clade T/F strains
level (Tier) Supplementary Tables:
= Bal Bal : No Table S1
% SF162/BB SF162 B No
E MW 925,26 MW 925,26 C No Virus strains analyzed for neutralizing activities. T/F
QHO692 QHO B No are Infection Molecular Clones corresponding to the
2 YU2 YU2 B No first virus acquired following transmission. Non-T/F
g BJOX2000.03.2 BIOX CRFO7 No strains were mainly isolated from patients during
E CE1176_A3 CE1176 C No their acute phase.
E CH119.10 CH119 CRFO7 No
E TRO11.IMC.LucR TRO11 B No
X1632_S2_B10 X1632 G No Table S2: Neutralizing titer (IRD50, blue colors) for
THRO4156.18 THRO B Yes sera against Tier 1, Tier 2 non-T/F and T/F strains;
TRJO4551.58 TRIO B Yes Total and HIV-specific Abs (ng/mL, green/yellow
é REJO4541.18 REJO B Yes colors)
; p.RHPA.c/2635 RHPA B Yes
g pCHO058.¢/2960 CHO58 B Yes
= pCHO77.t/2627 CHO77 B Yes
426¢ 426¢ C Yes
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Tier 2 T/F strains Tier 2 non-T/F strains Tier 1 Specific IgG concentration
Sérums 426c CHO77 CHOS8 RHPA REJO TRIO THRO X1632 TRO11 CH119 CE1176 BJOX yu2 QHo  |Mw 925,26 SF162 Bal 1gG total | gpa1530 “";‘;0::' JRFL NFLTD|
310104 60 20 20 20 10 10 10 40 15 20 10 10 15 10 100 50 10 7725 402,75 151,5 10,95
330209 10 20 10 10 20 10 10 80 15 20 20 20 15 10 200 80 10 18615 122,75 11,2
330235 10 10 10 10 10 10 10 20 10 15 10 10 10 20 85 100 10 23925 1455 8,85
350115 80 80 80 50 20 30 10 25 15 40 20 10 10 10 40 10 10 18710 72,95 1,24
440138 150 300 100 40 100 10 10 180 100 40 30 40 10 10 330 500 20 45635 218
440141 10 20 20 40 10 10 10 20 10 10 10 15 10 10 20 10 10 24910 676,55 11,75
680115 200 100 70 50 25 15 10 40 70 10 10 10 15 20 100 100 10 13815 149,75
690122 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 15050 70,8 11,7
690123 200 50 30 40 10 10 10 40 20 10 10 15 15 10 100 10 10 11225 96,4 12,35
750304 50 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 17690
° 750312 10 10 10 10 10 10 10 120 10 10 15 15 10 10 20 10 10 36660 87,55
§ 750518 50 80 60 50 30 10 10 40 20 25 100 40 10 10 40 10 10 52140 253
H 750609 10 100 60 40 15 10 10 60 10 15 20 15 10 10 80 10 10 17290 115,35 11,9 3,74
& 750806 10 50 20 20 10 10 10 10 10 10 10 20 10 10 10 10 10 12015 29,4 127,5 9,05
751116 10 10 10 10 10 10 10 30 10 40 10 20 10 10 18 10 10 34825 525,35 2,17
751206 250 20 80 80 10 10 10 10 20 15 10 10 20 10 120 10 10 51865 983,05 2,3
751501 10 20 30 30 10 10 10 15 10 15 10 10 10 10 20 10 10 817,15 103,2 15,75
751506 10 10 10 10 10 10 10 10 10 60 10 20 10 10 10 80 10 187,4 19,05
751702 10 10 10 10 10 10 10 20 10 10 10 10 10 10 18 10 10 3711 4,47
770101 10 20 20 10 20 10 10 20 10 10 10 10 10 10 60 10 10 50100 538,15 7,74
830105 50 20 10 10 10 10 10 20 20 10 10 10 10 10 18 200 10 345,7 30,9
910102 50 10 20 20 20 10 10 10 15 20 15 20 10 10 22 10 10 847,45 22,79
940106 50 20 40 50 20 30 10 15 25 10 10 10 10 10 320 10 10 43840 853,85 2,57
940107 10 20 10 10 10 10 10 10 10 15 10 25 10 10 600 35 10 47450 261,65 34,5
310104 50 100 20 20 20 20 10 10 15 10 20 20 10 10 1000 2000 50 23575 | 1628 | 1545 | 141
330209 80 400 100 100 280 70 10 320 250 320 150 320 100 50 1200 1500 150 42440 586 1460 197
330235 80 400 70 20 30 40 10 100 25 40 45 120 10 20 300 1000 50 26685 1405 117
350115 10 10 10 10 10 10 10 10 10 10 15 10 10 10 5000 500 10 14260 370 299 98
440138 60 100 70 50 200 60 10 100 300 120 100 120 15 20 1300 2000 75 44075 434
440141 10 100 20 20 10 30 10 80 10 80 15 80 10 20 3000 3000 60 35310 301
680115 10 200 10 20 10 70 10 100 10 80 20 100 10 20 1000 3000 200 35900 887 | 1755 | 523
690122 10 10 10 10 20 10 10 40 10 10 15 60 10 10 800 500 15 27285 1151 237
690123 10 10 10 10 60 10 10 10 10 10 10 100 10 10 500 250 10 20055 360 1365 177
k) 750304 10 10 10 10 20 10 10 120 10 10 10 20 10 10 6000 30 10 37620 254 340 26
H 750518 10 20 20 20 15 10 10 250 20 100 60 350 20 10 800 100 10 48015 786 1325 103
g 750609 50 80 60 80 30 10 10 300 10 20 40 80 10 10 3000 30 10 35690 214 216 13
H 750806 50 10 10 20 10 10 10 20 10 10 10 10 10 10 2000 130
= 751116 80 100 80 60 10 30 10 90 20 60 10 100 10 20 320 700
751206 10 10 10 10 10 10 10 10 10 100 10 90 10 10 13000 500
751501 10 20 20 20 10 10 10 20 10 50 10 30 10 10 280 80
751506 10 20 10 10 10 10 10 100 10 60 10 450 10 10 1000 2000
751702 20 100 40 40 10 10 10 200 10 80 15 300 10 20 1000 3000 63
830105 50 50 20 20 10 10 10 10 20 20 10 300 10 50 60 2000 224
910102 150 20 30 30 20 10 10 90 20 85 75 60 10 10 1800 120
940106 >320 400 160 160 220 100 10 500 280 400 320 310 20 120 1000 5000
940107 10 100 20 400 60 10 10 20 20 150 120 140 10 10 6000 800 10
SKU/CH 10 10 10 40 10 20 10 20 80 60 20 200 10 15 4500 2500 400
NOE/OL 10 15 15 80 10 40 10 40 50 80 40 200 500 80 5000 5000 700
LEV/JE 200 70 15 500 10 70 40 80 100 300 90 400 90 50 4000 5000 500 940
MOL/SE 10 10 10 10 10 10 10 10 40 15 15 50 10 10 10 15 10 8
RIO/RO 10 10 10 15 10 40 10 100 15 1000 100 250 60 15 800 2500 120 22352 993 1090 300
SEK/LA 10 10 10 15 10 60 10 15 20 20 15 80 10 10 1300 200 100 40565 620
2 FOU/NI 150 60 75 1000 20 70 10 500 300 500 250 1000 400 60 2500 1000 300 690
% CHA/FE 10 10 10 10 10 10 10 10 20 20 15 40 10 10 500 150 10 25446 465 185 15
® ONF/AL 100 15 55 150 15 50 20 80 90 100 40 100 100 15 2500 5000 180 53284 230
& PAP/PH 10 55 55 150 10 200 20 500 300 200 150 300 60 15 4500 5000 720 41605 1280
ENN/MO 10 25 10 15 10 200 10 20 20 100 20 250 15 10 1500 2000 160 30599 540
BAL/DO 10 20 10 15 10 60 10 30 20 100 40 90 15 10 350 15000 80 43033 330
AzI/CO 50 75 30 120 10 20 10 10 400 250 70 200 15 10 1300 1500 40 50203 280
LES/CH 10 20 10 15 10 70 10 20 15 80 20 80 10 10 1000 1000 120 20422 1363 500
BON/OL 10 40 30 120 10 200 10 90 150 150 20 250 300 15 5500 3000 700 33325 820
MAK/MA 60 150 55 300 15 100 40 400 200 500 300 500 500 100 5500 1500 750 52691 600

IRD 50

Concentration (ug/mL)

Concentration (ug/mL)

50-150

<50
50-300

300-2000

<10 000
10 000-40 000
40 000-60 000
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Table S3
Tier2 non-T/F strains
mNAbs X1632 TRO11 CH119 BJOX QHO YU2 CE1176 median % coverage
10-1074 8,000 15 200 60 150 60 30 60 86
PGT121 10,000 30 80 50 10,000 100 150 100 71
F 10E8 500 70 20 20 1,000 3,000 400 400 86
VRCO1 200 100 350 5,000 800 10 400 350 86
Tier2 T/F strains
mNADbs 426¢ pCHO58 PCHO77 pRHPA pREIO pTRIO pTHRO median % coverage
10-1074 30 150 10,000 800 10,000 100 10,000 800 43
PGT121 10,000 150 10,000 200 10,000 10,000 10,000 10,000 29
F 10E8 250 10,000 1,500 1,000 800 10,000 10,000 1,500 43
VRCO1 350 800 600 800 15 300 2,500 600 86
IC50
(ug/ml) 100-1 000
10-100
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4.1.2. Discussion

The results from this paper demonstrated that Abs induced in the early phase of HIV infection
already displayed neutralization against T/F viruses. Later on, a shift of neutralizing activity

against tier 2 T/F viruses to tier 2 non-T/F viruses was observed.

To further characterize the Ab response induced early after infection, | investigated the Fc-
mediated inhibitory activity of these samples against different HIV strains. We performed
ADCC experiments against three non-T/F viruses and one T/F virus. The three tested non-T/F
viruses were CE1176 (Clade C), CH119 (Clade CRF07) and X1632 (clade G). As described in the
material and method, ADCC was evaluated by the detection of the RLU (associated with HIV
inefectd cells. Results were expressed as the peak area under the curve (PAUC). We used an

HIV-positive patient sample (Bon/OL) as positive control.

For ADCC assay, we made several technical modifications to improve the experiment. For
detecting the ADCC ability against CE1176, we performed several experiments (Figure 29). As
we detected variations of our internal control from one experiment to another, we performed
larger experiments allowing the testing of all the samples at ones. Moreover, we used half
area plates to increase the effector cells/infected cells interactions. After improving the
experiment method, the ADCC ability against virus CH119 (Figure 30) and virus X1632 (Figure

31) were tested.
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PRIMO ADCC CE1176
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Figure 29. The ADCC ability against clade C non-T/F virus CE1176. P= 0.0198

PRIMO ADCC CH119

2.0

1.5+

* %
1

1.0+ =3 DO/MO1
Q oo =1 M6/M12
2 —_—r=
g === =3 Bon/OL

0.5+

0.0+

-0.5 T T T

DO0/M01 M6/M12 Bon/OL

Figure 30. The ADCC ability against clade CRFO7 non-T/F virus CH119. P= 0.0036
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PRIMO ADCC X1632
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Figure 31. The ADCC ability against clade G non-T/F virus X1632. P < 0.0001

ADCC results for these three non-T/F viruses showed that some ADCC was detected at early

time point and increased in M6/M12 samples.

As our T/F viruses do not express Renilla Luc in their genome, pCHO58 T/F virus infected cells
were revealed by flow cytometry (Figure 32). Under these conditions, we could not detect
ADCC ability against pCHO58 in PRIMO samples and in our control infected sample. Whether
this difference of ADCC sensitivity is due to the virus used (TF versus non-T/F strain) or to the
protocol used (readout of infected cells by luciferase versus p24 staining) will need further

investigations.
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PRIMO ADCC pCHO058 (p24)
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Figure 32. The ADCC ability against clade B T/F virus pCH0O58. P = ns

Mielke et al. suggest that HIV-1 could be sensitive to neutralization and resistant to ADCC or
vice versa but were rarely sensitive or resistant to both responses.**” In our results,
neutralizing as well as ADCC abilities against CH119 and X1632 were high in M6/M12 samples.
For CE1176 virus, the samples had high ADCC ability but low neutralization. We detected some
neutralizing abilities against pCHO58 at early time points, but no ADCC against this virus.
Additional viruses should therefore be teste for neutralizing and ADCC activities of PRIMO

samples in order to complete their functional characterization.

In conclusion, these results inform on the functional activity induced after infection. We found
that the neutralizing ability against T/F viruses can be detected in PRIMO samples at the early
stage of HIV-1 infection. In addition, early Fc-mediated functions might be able to provide
productive help. This early functional Ab response is encouraging as it gives new hits for the

development of functional Abs that should be induced with new vaccine strategies.
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4.2. Development of new vaccine strategies

New vaccine strategies have been developed in collaboration with the Horizon 2020 European
consortium European HIV Vaccine Alliance (EHVA). | aimed to characterize the Ab responses
(binding and neutralizing activity) induced by several new immunogen constructs, new vectors
and new immunization routes on animal models (rabbit or NHP). These studies will allow to

select the more promising vaccine candidates to be tested in humans.

In these studies, | determined the HIV specific Ab response induced by newly generated
immunogen on rabbit and NHPs, by VSV vectors expressing HIV envs on rabbits, and a slow
delivery immunization route on NHP model. The HIV-specific antibodies were detected by
“direct ELISA”, and the neutralizing antibodies were detected using the conventional “TZM-bl

neutralizing assay”.

Characterization of the protective antibody response induced 123

following vaccination or infection



Result

4.2.1. Defining the immunogenicity of new envimmunogens
4.2.1.1. Generation of new envelope immunogens

Recently, a stabilized envelope (env) trimer BG505-SOSIP was generated. Based on this
stabilized trimer, different new env trimer constructs were produced by our H2020 partner
(group of R. Wagner, Regensburg Germany). These new HIV trimers contain glycosylation
deletion or masking in order to redirect the immune response to the conserved CD4 binding

domain of HIV (Figure 33).

N-glycan deletion Enhanced CD4bs
to enhance CD4bs Accessibility &

accessibility gIVRCO1 binding
unmodified Kl KIKO GT CL

Figure 33. Chemical modifications of the env trimers

Three envs (sC22, sC23 and ConC) have been selected based on their stability and well-folding

as env trimers (Figure 34).
Figure 34. Structure of the env trimers

4.2.1.2. The immunogenicity of these new constructs were tested
in animal models.

4.2.1.2.1. Characterization of the Ab response induced
following rabbit immunization

ConCv5 sC23v4 sC22v4
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This assay aimed to analyze the immunogenicity of new env ConC constructs carrying various
modifications of the env glycosylation sites (GT, KIKO, CL). Prime/boost strategies was
conducted (Table 2) on rabbit immunized with 40 pg modified protein mix with a new
adjuvant LMQ (neutral liposomes containing monophosphoryl lipid A (MPL) and Quillaja
saponaria derived QS21 saponin). This adjuvant can not be currently used in human as it is

not yet approved by the FDA.%48

Group | DObleed | W0-DO IM | D14 bleed | W4-D28 IM | D42 bleed D‘g“lf{w D98 bleed DK(Z)OI'M Dlsl‘:::l““l
1 ConCv5-GT ConCv5-GT ConCv5-GT ConCv5-GT
2 ConCv5-GT ConCv5-GT ConCv5-KiKo ConCv5-Ki
3 ConCv5-GT- ConCv5-GT- CpnCvS- ConCv5-Ki-
2 cL cL KiKo-CL cL

Table 2. Prime/boost protocol using various modified ConCv5 envs for rabbit immunization

First, the induction of HIV-specific antibodies was analyzed by ELISA. We identified the
presence of Abs able to bind two distinct env, either the classical env trimer BG505, or the
homologous ConC env trimer in sera from rabbits following immunization. This binding was
measured at different sera concentration in order to determine the half-maximal effective

concentration (EC50) of specific Abs induced over time (Figure 35)

A B

Binding to BG505 Binding to ConV5

1000000+

100000+ 100000+

10000 10000

@ Grouwp 1
@ Grouwp2
@ Group3

EC50

1000+ 1000

100 100

Week Week
Figure 35. IC50 of HIV specific antibody binding to A) BG505 env and to B) ConC env. High level

of HIV specific antibody was detected following the first two immunizations. HIV-specific-Ab

concentrations are maintained at the 3rd and 4th immunization.
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HIV-specific Abs were already detected following the first immunization (Week 2) with ConC-

GT (group A and B) compared to ConC-GT-CL (group C). After the second immunization, the

group C immunized with ConC-GT-CL induced specific Abs similar to group 1 and 2. This Ab

response is maintained over time at the 3rd (W14) and 4th (W22) immunization.

The neutralizing ability was assessed against various HIV strains using the conventional TZM-

bl assay and the IC50 (inhibitory concentration 50) was calculated. We detected neutralizing

activity against the easy-to-neutralize Tier 1 strains MW956.26 in all three groups but not

against the Tier 1 strain SF162 (Figure 36). Interestingly, homologous neutralization against

virus ConC could also be detected for some animals (Figure 37).

A Neutralization of MW965.26 B Neutralization of SF162
. - 10000+
o—9 ° ® o 8
1000+ . . - 1000+
° Q002 ° °
1004 @@ ettt ettt en 1004 [ ]
Seo ) D P . o S -
*
1l —gssse—essse—ooee =
¢ 14 0
Week Week
Figure 36. Neutralizing activity against two tier 1 viruses : A) MW965.26 and B) SF162.
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Figure 37. Neutralizing activity against the homologous strains ConC.

These results showed that our new env constructs are highly immunogenic in rabbits.

4.2.1.2.2. Characterization of the Ab response

induced

following immunization of non-human-primates

As the various env constructs ConC-GT and ConCv5- KIKO demonstrated efficient inductions

of Ab responses in rabbits, these constructs were further analyzed in the non-human-primates

(NHP) model. NHP model is a highly relevant as macaques are genetically close to human and

can be challenges with viruses (SIV or SHIV) similar to HIV. Immunization protocol comparing

the ancestral env BG505 with the new constructs ConC-GT and ConCv5- KIKO were performed

as described in Table 3. For this immunization, MPLA (Liposomes Containing Monophosphoryl

Lipid A) was used as FDA approved adjuvant.49-451

Size Route
6 IM
6 IM
6 IM

Protein Dose WkO Wk4 Wk12 W24
100 pg BG505 BG505 BG505  BG505
100 pg ConCv5-GT ConCv5-GT  BG505  BG505

ConCv5- ConCv5-
100 pg ConCv5-GT ConCv5-GT
KIKO KIKO

Table 3. Immunization protocol using several env trimers conducted in NHP.
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First, the induction of HIV-specific Abs able to bind two distinct env, either the classical env
trimer BG505 or the homologous ConC env was measured by ELISA. The binding capacity of
the induced Abs were analyzed in sera at different dilutions in order to define the EC50 of HIV-

specific Abs induced over time (Figure 38)

Binding to BG505 Binding to ConCV5-GT

10000~ 10000
- Group A

-8~ Group B
-o- Group C

1000

1004

Figure 38. EC50 of HIV specific antibody binding to BG505 env A) or to ConCV5-GT env B)

induced over time following prime boost-immunization strategy in NHP.

In the NHP model, HIV-specific antibodies were detected at week 6 after the second
immunizations with ConC-G (group B and C). A third immunization with the ancestral env

BG505 was necessary for HIV-specific Ab detection.

These results demonstrated the improvement of immunogenicity of our new constructs.
However, compared to the Ab response detected in rabbit, the IC50 was 10 to 100 folds lower

in NHP. Moreover, this response decreased after each immunization.
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The neutralizing activity was assessed against the easy-to-neutralized Tier 1 MW965.26 in pre-
immune sera and in sera collected at Week 26 (Figure 39).

Neutralization of MW965.26

100007 ® Group A

B GroupB
A GroupC

1000+
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L 1 L |
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Figure 39. IC50 Neutralizing activity against virus MW965.26 in sera collected at Week 26 for

the three immunization groups.

The neutralizing activity detected against this easy-to-neutralized Tier 1 virus was borderline.
Compared to rabbit immunization, HIV specific Abs as well as neutralizing activity were
strongly reduced in NHP. This strong decrease of immunization efficacy observed in NHP
compared to small rodents was observed in previous studies. The decrease of immunogenicity
may also be explained by the use of a different adjuvant, MPLA, which may be less potent as

the newly developed adjuvant MLQ.

4.2.2. Improvement of immunization delivery

4.2.2.1. Immunization with the VSV (vesicular stomatitis virus)

vector platforms in the rabbit model
Besides the different protein/env candidates, delivery platforms have been developed to
potentiate the Ab response. Here we evaluated the VSV-GP platform expressing the HIV envs
at their surface (Figure 40). This platform was tested in the rabbit model either as two
successive VSV immunization following by protein boosts or as sequential VSV protein
immunization (Table 4). Immunization was performed with 40 pug protein (with MPLA, ratio

2:1) and 2E08 TCIDso VSVenv..
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DL VSV-GP-sC23 VSV-GP-sC23v4 sC23v4 sC23v4
D VSV-GP-sC23v4 sC23v4 VSV-GP-sC23v4 sC23v4

Table 4. Sequential VSV-GP immunization in the rabbit model.

High HIV-specific Ab were already detected following the 1st immunization (Week 4) with VSV-
GP-sC23v4. There is no significant difference in the Ab induction between group A and B (VSV/
VSV/ Env/ Env and VSV/ Env/ VSV/ Env). Therefore, the potential immune response induced
against the vector did not modify the induction of HIV-specific Ab response against ConC and

sC23 envs (Figure 41).
B
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Figure 41. Ec50 of HIV-specific Abs against ConCV5-GT env A) and against sC23V4 env B). HIV
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specific antibody was already high following first two immunization.

Neutralizing activity against tier 1 virus MW965.26 was detected after W6 in the two groups
irrespective of the immunization strategy, i.e., VSVenv/ VSVenv/ Env/ Env versus VSVenv/ env/

VSVenv/ env (Figure 42).
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Figure 42. IC50 Neutralizing activity against tier 1 virus MW965.26 following different VSV Env

or Envimmunization strategies (Table 4).

The neutralizing activities against tier 2 viruses sC23-R6 and sC23 KIKO were also tested (Figure
43, 44). There was no neutralizing activity detected against sC23-R6 at all the time points but
the neutralizing activity against sC23 KIKO was detected at W6 and follow up in the two

groups.

Rabbit MUI pLibl.2-sC23-R6 Neutralization

10000

22nd immunization 3rd immunization 4th immunization
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# GroupB
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100+
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Figure 43. Neutralizing activity against tier 2 sC23-R6 following different VSV Env or Env

immunization strategies (Table 4)
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Figure 44. Neutralizing activity against tier 2 sC23-KIKO following different VSV Env or Env

immunization strategies (Table 4).

These results demonstrate the improvement of the Ab response by the VSV platform used
alone or in combination with env proteins. Moreover, the switch VSP protein boost did not
improved immunogenicity compared to the VSV first and protein boost strategy (manuscript

in preparation with our colleagues under EHVA consortium).

4.2.3. Testing of different immunization routes with the NHP model

The VSV vector platforms and protein boost immunization were further tested in the NHP
mode using different immunization routes. In order to improve the Ab response, the env
protein ConCv5 KIKO (at 100 pg) was further given by slow persistent release using an osmotic

pump (OP) (Table 5). This slow delivery process has recently been described to improve Ab

Group Size WeekO Week4 Size Week 12 Week 24
la 5 Protein (IM) Protein (IM)
10 VSV (IM) VSV (IM)
1b 5 Protein (OP) Protein (OP)
2a 5 VSV (IM)+ Protein (IM) VSV (IM)+Protein (IM)
10 VSV (IM) VSV (IM)
2b 5 VSV (IM)+ Protein (OP) VSV (IM)+ Protein (OP)
response.
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Table 5. Immunization protocol comparing IM versus OP delivery in NHP model

The induction of HIV-specific Ab response binding to the autologous env ConC-V5 KIKO was
analyzed over time (Figure 45). The two VSV vector prime (VSV-GP vector expressing the
ZM96gp140 env, 2X10® TCID50) gave similar HIV specific Ab response (EC50 around 800) as
two env ConC-GT immunization (Figure 46), suggesting the VSV platform did not increased
NHP immunization on its own. But it demonstrated the relevance of the use of the VSV
platform as a prime. In addition, the slow delivery by OP significantly increased (P=0.0007)
HIV-specific Ab binding to the autologous ConC-V5 KIKO env response (group G1lb and G2b)
compared to the classical intramuscular (IM) delivery route (group Gla and G2a). OP

immunization also increases HIV specific Abs against BG505 SOSIP env (not shown).
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Figure 45. EC50 HIV specific Ab response directed against ConC-V5 KIKO env.
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Figure 46. EC50 HIV specific Ab response directed against ZM96gp140 env.

Neutralizing activity induced against Tier 1 viruses MW965.26 (Figure 47) and against the
homologous sCON KIKO virus (Figure 48) was analyzed over time following immunization. We
detected high neutralizing activities with IC50 > 1000 after the first protein boost. This activity

increased for OP delivery.
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Figure 47. 1C50 Neutralizing activity against Tier 1 viruses MW965.26.
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Neutralizing activity against SCON KIKO pseudovirus was detected following VSV+ protein OP
immunization at W16 (purple curve) and following OP immunization route at W28 (red curve)
(Figure 47). On the contrary, neutralizing activity against the homologous sCON KIKO virus
could not be detected following the classical IM immunization route (blue and green curves).

These results demonstrate the benefits of OP immunization compared to classical IM route.
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Figure 48. Neutralizing activity against sCON KIKO.

Immunization with sCON KIKO by OP route increases HIV-specific Abs and neutralizing activity
against the autologous sCON KIKO virus. New advanced immunization strategies, including
slow delivery of immunogens, should be undertaken to improve immunogenicity of vaccine

candidates.

To sum up, generating new immunogen, VSV vector and OP improved the immunogenicity
and neutralizing antibodies. However, the immune responses detected in NHP are lower as
what we observed in rabbit as previously observed. The humoral responses induced with this
new strategies need to be further assessed in Human in order to confirm the immunogenicity

of the new designed immunogens.
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4.3. New immunogen: Env targeting CD40 on DC

Human trials are necessary to evaluate whether the vaccine candidates are capable of
inducing an efficient immune response potentially able to protect from HIV infection.
Previous experiment on animal models showed that a new immunogen, env targeting CD40
at the surface of DC, demonstrated high immunogenicity.*>? This vaccine strategy was shown
to form germinal center and stimulate functional CD4+ T cell and B cell maturation.*>274>> This
immunogen was further selected for a phase | HIV vaccine trial in Human called VRIO6. |

participated in detecting the functional antibody responses, neutralization and ADCC.

VRIO6 is a phase |, multicenter, double-blind, placebo-controlled, dose-escalation trial of
CD40-HIVRI.Env (anti-CD40 monoclonal antibody fused with Env GP140 clade C ZM-96 of HIV)
adjuvanted vaccine, combined or not with the HIV-1 vaccine DNA-HIV-PT123 in healthy

volunteers (NCT04842682) (Figure 49). 4°¢

}
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Figure 49. Protocol design of the VRIO6 trial.

It aims to evaluate different doses of CD40.HIVRI.Env (adjuvanted with Hiltonol) alone and in
co-administration with DNA-HIV-PT123. There are six groups in this trail: Solo 0.3, Solo 1 and
Solo 3 (with 0.3, 1 and 3 mg/ml doses of CD40.HIVRI.Env), and Combi 0.3, Combi 1 and Combi
3 (CD40.HIVRIL.Env combined with DNA-HIV-PT123) (Figure 50). Notably, since it’s an on-goin

trial, not all the samples are yet tested.
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Médicaments expérimentaux (S0, S4, 524) :
CD40.HIVRI.Env: anti-CD40.Env GP140 (0.3, 1.0 et 3,0 mg)
DNA: DNA-HIV-PT123 (4.0 mg)

Adjuvant: Poly-ICLC (Hiltonol®, 1.0 mg)

Placebo: NaCl 0,9%

Total N=72

Solo CD40.HIVRLEnv/Hiltonol® 10

Placebo 2

Solo CD40.HIVRLEnv/Hiltonol® 10 Combi CD40.HIVRI.Env/Hiltonol® DNA 10

Placebo 2 e Placebo Placebo 2

Placebo Placebo Placebo 2

Placebo Placebo 2

Figure 50. The six groups of this trail. These six groups include: Solo 0.3, Solo 1, Solo 3, Combi
0.3, Combi 1, and Combi 3.

This immunization strategy induced high and sustained HIV specific Ab response (not shown).
| performed the neutralization abilities against Homologous 96ZM651 virus and two tier 1

viruses, SF162 and MW965.26 in Solo 0.3, Solo 1, Solo 3, Combi 0.3 and Combi 1 samples.

There is no neutralizing activity against homologous 96ZM651 detected in all the samples (not

shown).

Neutralizing activity against Mw965.26 viruses were detected in the W6 and W 26 sample of
the three solo groups (Figure 51). Interestingly, the neutralizing activity increased as the
envelope concentration of vaccine got higher. There is significant difference between the
neutralizing activities at W26, 2 weeks after 4th immunization, between Solo 0.3 and Solo 3
but not in other time points. This suggest that the higher immunogen treatment allow higher
neutralizing Ab maturation in Solo 3 compared to the groups with lower immunogen

treatments.
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The neutralizing activity decreased at W48 and there is no significant difference between Solo
0.3 and Solo 1 at this time point (Figure 50). The immunization group Solo 3 at W48 is not yet

available for Ab testing.

Neutralizing ability against MW965.26 (No placebo)

1000+

Wo W6 W26 w4s wo wWé W26 wa4s wo Wé w26

Solo 0.3 Solo 1 Solo 3

Figure 51. The neutralizing ability againsts MW965.26 pseudovirus. Three time points of three
groups’ result are displayed on the figure. There is significant difference between the

neutralzing activities at W26 between Solo 0.3 and Solo 3, P = 0.0002.

The ADCC abilities against clade C HIV-1 CE1176 and HIV BJOX of Solo 0.3 W0, W6 and W26
samples were tested (Figure 52). | could not detect ADCC against these two viruses induced
following vaccination (compared to pre-immune samples) using the ADCC protocol as
described in material and method. Bon/OL, a serum sample form an HIV infected individual
was used as positive control. ADCC was not detected against HIV-1 BJXO virus with Bon/Ol

suggesting this virus is less susceptible to induce ADCC as compared to HIV-1 CE1176.
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Figure 52. The ADCC abilities against CE1176 and BJOX viruses. There is no ADCC ability

detected in the Solo 0.3 samples at W6 and 26 after immunization.

Besides the Solo groups, the neutralizing abilities of two Combi group, combi 0.3 and combi 1,
were tested at two time points. | detected neutralizing activities against MW965.26 (Figure
53) but not against SF 162 and the homologous 96ZM651 strain (not shown). More time
points’ samples will be analyzed as they get available in order to evaluate the impact of the

DNA boost on functional Ab response induced with combined immunization.
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Figure 53. IC50 neutralizing activity against MW965.26 virus of Combi 0.3 and Combi 1. There

is no significant difference between two groups at We.

In conclusion, this new VRIO6 immunization strategy aiming to target DC is highly promising
as we could detect neutralizing Abs after only three immunizations with low doses of
immunogens. The Fc-mediated functions and, immune memories will to be investigate for
Solo 1 and Solo 3 in order to characterize more deeply the Ab response induced with this new

vaccine strategy.
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4.4. Fc-mediate function, FcR polymorphism and current pandemics

The interplay between IgG subclasses, multiple FcRs and polymorphisms thereof contribute
to the complexity of the Fc-mediated response.*”#® Multifaceted antibody functions and
demographic attributes of patients must be considered for a desperately needed effective
vaccine against HIV. Along with the HIV pandemic, the Sars-Cov-2 (Covid 19) pandemic caused
urgent medicine and vaccine needs. Comparing to HIV, there are efficient Covid-19 vaccines
to fight the pandemic, but the role Fc-mediated functions play still need further analysis and
investigation. In this part, we use two review articles to discuss the current known Fc-

mediated functions of two pandemics deeply.

4.4.1. Review 1: FcR polymorphism and the diversity of Ab Responses to HIV

infection and vaccination (Lin et al. Gene and Immunity)
Besides neutralizing and Fc-mediated activity, additional factors such as Ab type,
concentration and kinetics of induction, and Fc-receptor expression and binding capacity also
influence the protective effect conferred by Abs. As these immune responses varied according
to additional factors as ethnicity, age and sex, these additional factors should also be

considered for the development of an effective immune response.
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4.4.2. Review 1

Genes & Immunity
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Fc receptors and the diversity of antibody responses to HIV

infection and vaccination

Li-Yun Lin', Raphael Carapito
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'2, Bin Su® and Christiane Moog
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The development of an effective vaccine against HIV is desperately needed. The successive failures of HIV vaccine efficacy trials in
recent decades have shown the difficulty of inducing an appropriate protective immune response to fight HIV. Different correlates
of antibody parameters associated with a decreased risk of HIV-1 acquisition have been identified. However, these parameters are
difficult to reproduce and improve, possibly because they have an intricate and combined action. Here, we describe the numerous
antibody (Ab) functions associated with HIV-1 protection and report the interrelated parameters regulating their complex functions.
Indeed, besides neutralizing and Fc-mediated activity, additional factors such as Ab type, concentration and kinetics of induction,
and Fc-receptor expression and binding capacity also influence the protective effect conferred by Abs. As these parameters were
described to be associated with ethnicity, age and sex, these additional factors must be considered for the development of an

effective immune response. Therefore, future vaccine designs need to consider these multifaceted Ab functions together with the

demographic attributes of the patient populations.

Genes & Immunity (2022) 23:149-156; https://doi.org/10.1038/541435-022-00175-7

INTRODUCTION

According to World Health Organization (WHO) data from 2020,
37.7 million people are living with HIV-1/AIDS and 68% of them
are Africans [1]. In contrast to western Europe and America,
where subtype B is predominant, subtype A is largely distributed
in Eastern Europe and Central Asia and subtype C in East Asia.
Africa shows the highest HIV-1 diversity with subtypes Aand D in
eastern Africa, C in southern Africa, A, G, CRF02_AG, and
CRF06_cpx in western Africa, and B and CRFO02_AG in northern
Africa [2-4]. To fight against and end the HIV-1 pandemic, an
efficient protective vaccine is needed. However, due to the high
diversity of HIV-1 subtypes, vaccines need to induce antibodies
(Abs) with broad inhibitory activity, i.e., antibodies able to inhibit
numerous HIV-1 variants. This requirement is considered as one
of the main limitations for the development of an efficient HIV
vaccine [5, 6].

Over more than three decades, several HIV-1 vaccine trials have
been conducted all over the world [7]. However, in HIV-1 vaccine
history, only the RV144 phase IIl trial performed in Thailand
showed a statistically significant decreased risk for HIV-1 acquisi-
tion at 42 months (31.2%) [8]. Interestingly, analysis of immune
correlates for risk showed that Abs binding to the V1V2 region of
gp120 correlated with a decreased risk for infection [9]. The IgG1
and IgG3 subclasses mediating antibody-dependent cell-mediated
cytotoxicity (ADCC) seem to play a predominant role in protection
against HIV-1 acquisition [10]. Moreover, the concentration of
plasma envelope (Env)-specific IgA Abs was found to be directly

correlated with a higher risk for HIV acquisition [10, 11]. These
correlates of risk highlight the predominant role of isotypes and
Fc-mediated functions in addition to the previously known
protective role of neutralizing antibodies (NAbs). Knowledge of
these new factors opens windows of opportunities for innovations
in inducing a broad inhibitory humoral immune response to fight
HIV and introduces new parameters to be considered, such as Fc
domain/Fc receptor (FcR) interactions [12-17].

ANTIBODIES AND THE PLEIOTROPIC FUNCTION OF THE
HUMORAL RESPONSE

Induction of HIV-specific Abs of various isotypes

The B cells of the immune system produce Abs that are classified
into five major immunoglobulin (Ig) classes or isotypes: IgM, IgG,
IgA, IgD, and IgE [18]. IgG is further divided into four subclasses
(Fig. 1A) that are diversely distributed according to ethnicity, sex
and age, with IgG1, IgG2, IgG3, and IgG4 representing 60-72%,
20-31%, 5-10%, and <4% of total IgG, respectively [19]. IgG
subclass prevalence has been reported to change over time
following the course of disease and symptoms [20]. Following HIV-
1 infection, the adaptive immune response predominantly induces
1gG1, IgG3 and IgA [21]. In the RV144 vaccine trial, high levels of
HIV-1-specific 1gG3 and low Env-specific IgA correlated with a
decreased risk of HIV-1 infection [10]. The various Ab isotypes and
subclasses bind differently to Fc receptors at the surface of
immune cells, including dendritic cells and mainly macrophages
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Fig. 1 Antibodies and FcR-mediated functions. A IgG subclasses. B Fc gamma receptors (FcyRI, FcyRlla, FcyRIlb, FeyRllc, FeyRllla, FeyRlllb),
their main function, polymorphisms, and distribution on immune cells. C FcyR binding affinities of IgG subclasses. CDC complement
dependent cytotoxicity, ADCC antibody-dependent cellular cytotoxicity, ADCP antibody-dependent cellular phagocytosis, Mo Monocyte, M
Macrophage, DC Dendritic cell, MC Mast cell, Neu Neutrophil, Bas Basophil, Eos Eosinophil, NK Natural killer cell, BC B cell, PLT Platelet.
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Fig. 2 HIV antibody functions. The functions are dependent on different Ab domains: The Fab domain is involved in virus neutralization,
opsonization and aggregation; the Fc domain of Ab induces the activation of the complement system; dual binding of Ab via Fab and Fc
domains leads to Fc-mediated antibody function: antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity;
FcR internalization may lead to phagocytosis, antigen presentation or antibody-dependent enhancement.

(Fig. 1B). As these cells are the best-in-class antigen-presenting
cells, different Ab isotypes and subclasses directly affect Ab
binding to antigen-presenting cells, modulating immune cell
activation and consequently the quality of the humoral immune
response that is induced [22]. Comprehensively interrogating the
extensive biological Ig diversity in patients may provide critical
insights that can guide the development of effective Ab-based
vaccines and therapies.

Two main antibody functions observed in HIV-infected
patients and in vaccine trials: neutral and Fc-mediated
functions

NAbs protect cells from pathogens or infectious particles by
inhibiting any effect leading to infection via the binding of their
Fab domain to the infectious agent (Fig. 1B) [23, 24]. Studies of the
passive injection of broadly NAbs in nonhuman primate (NHP)
models demonstrate their high potential for conferring protection
against HIV acquisition [23, 25]. Considering these data, immuno-
gens aiming to induce the production of these NAbs were
developed [23, 26]. Many vaccines have been designed to induce
Abs targeting the envelope glycoproteins of the virus, mainly
gp120 or gp160 [26-28]. However, these vaccines failed to induce
broadly NAbs. Indeed, the production of broadly NAbs is
extremely difficult to induce due to the need for an extensive
maturation process [29, 30].

The success of the RV144 vaccine trial supported the develop-
ment of new vaccine designs for the induction of Abs with
additional functions, mainly Fc-mediated Ab functions [31, 32]. It
has been proposed that several Fc-mediated mechanisms,
including ADCC, antibody-dependent cellular phagocytosis
(ADCP), antibody-dependent complement deposition (ADCD),
aggregation and immune activation, participate in HIV inhibition
(Figs. 1B, 2) [14, 33-37]. In addition, viruses can be directly
opsonized by phagocytosis via Ab and FcR binding. The virus is
then destroyed, and digested peptides can be retrieved by
antigen-presenting cells for T cell activation (Fig. 2) [17, 34, 38, 39].
If the virus escapes this lysis process, opsonized virus entry may
also lead to increased infection by a process called antibody-
dependent enhancement (ADE) [40]. This ADE function should of
course be avoided [41-43]. All these different Fc-mediated
mechanisms involve the binding of the Fc domain of the Ab to

Genes & Immunity (2022) 23:149- 156

the Fc receptor present on immune cells. The Fc-mediated
functions of Abs are therefore also directly interconnected with
FcR expression at the surface of immune cells [44, 45].

MODULATING FCR EXPRESSION AT THE SURFACE OF IMMUNE
CELLS

FcRs are cell surface glycoproteins that bind to the Fc domain of
Abs. This binding varies according to the isotype and subclass of
the Ab but also according to the type of FcR (Fig. 1B, ) [44-46].
These FcRs are differentially expressed on most immune cells,
including natural killer (NK) cells, monocytes, macrophages,
eosinophils, dendritic cells, B cells and even some T cells
[17, 46]. There are three family classes of FcRs (I, Il, and ll), each
of which comprises a different number of proteins: FcyRI, FcyRlla,
FcyRllb, FeyRllc, FeyRllla and FeyRllb (Fig. 1B) [18]. All human FcyRs
except FcyRIIB signal through an immunoreceptor tyrosine-based
activating motif (ITAM), whereas FcyRIIB delivers inhibitory signals
through an immunoreceptor tyrosine-based inhibitory motif (ITIM)
[4, 46]. The diversity of human FcyRIl and Il is further increased by
single nucleotide polymorphisms (SNPs) in their extracellular
domains, the most studied of which are H131R in FcyR gene
FCGR2A, 126C>T in FCGR2C, F158V in FCGR3A, and NA1/2 in
FCGR3B (Fig. 1C). FcyRIC has an unusual structure and is
generated by an unequal crossover between FcyRIIA and FcyRIIB.
FCGR2C signals through the ITAM similarly to FCGR2A. FcyRIIC
(126C>T), rs114945036 presumably lead to an open reading frame
with an atypical FcR protein sequence.

Importantly, the different FcR polymorphisms of the host
need to be considered when analyzing FcR-mediated functions
of Abs. FcyR SNPs will impact both on the the binding to the
complementary Fc portion of the Abs and on the expression or
activation state of the cells [46] (Fig. 1B). Increasing evidence
suggests that FcyR SNPs impair receptor expression on DCs,
which in turn influences the risk for HIV infection and vaccine
efficacy [15, 16, 47]. Interestingly, a combination of polymorph-
isms may also influence FcR expression, such as the combina-
tion of rs1801274 and rs10800309 in the FcyRll coding gene
FCGR2A, which affects the expression level of FcR on immature
dendritic cells [48]. FcyRIIIA polymorphism appears to modify
NK cell activation and, as a consequence, ADCC activity [49].
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Specific polymorphisms at the FCGR2A (encoding Arg or His at
position 131) and FCGR3A (encoding Phe or Val at position 158)
gene loci have been associated with an HIV vaccine benefit [50].
The rs396991 SNP leads to an increased binding capacity of Abs for
FcyRIIA, which is the main receptor involved in ADCC, suggesting
that the vaccine efficacy may be related to an increased efficacy of
this function. More recently, Li et al. described that a tag SNP
(rs114945036) in FCGR2C (126C>T, presumably leading to a stop
codon or an open reading frame) was significantly associated with
protection against infection with a subtype AE HIV-1 strain in the
RV144 vaccine clinical trial [51]. The direct effect of this SNP is not
well documented. Authors propose that it may lead to an
alternative splicing, bypassing the FCGR2C-Stop codon to encode
a product with an atypical FcR protein sequence, thereby modifying
FcR expression or accessibility on cells [51].

Overall, the interplay between IgG subclasses, multiple FcRs and
polymorphisms thereof contribute to the complexity of the Fc-
mediated response [15, 46]. As a consequence, numerous studies
have analyzed the association between FcR genes or their
polymorphisms and the evolution of HIV disease or vaccine
protection (Table 1) [S0-55].

EFFECT OF ETHNICITY, SEX, AND AGE ON FC-MEDIATED AB
RESPONSE TO HIV

Several studies have shown that serum Ig concentrations vary
according to ethnicity, sex, and age. Total IgG and IgA levels
increase with age and reach the adult concentration at ~10 years
of age. Thereafter, the levels of serum IgG were found to be
significantly reduced with age, and the level of IgA was found to
be maintained. Total IgG and IgA concentrations are higher in
Black populations than in White populations [19, 56, 571. A similar
result of higher total IgG levels in HIV-infected Africans than in
Caucasians and Hispanics was also found [57-60]. Notably, all
these studies comparing Ab profiles according to ethnicity were
performed in individuals living in the same country. The difference
in Ab responses in Africans living in Africa and Caucasians living in
Europe or the USA needs to be investigated to integrate the effect
of geographic origin in these studies.

In addition, age-related differences in clonal expansion with
decreased IgA levels and skew toward IgG2 were observed after
influenza vaccination [61, 62].

These results illustrate the importance of Ab classes in vaccine
studies. This difference in Ab isotypes and concentrations
according to ethnicity, age and sex may directly impact FcR
functions and influence the efficacy of Ab induction in HIV-
vaccinated individuals.

The demonstration of the role of Fc-mediated function also
brings into question the importance of FcR features. The
frequencies of SNPs of FcR genes differ significantly between
ethnic groups [63-65]. These differences may strongly modify the
association found between FcR polymorphisms and HIV-1 protec-
tion or disease outcome. In Kawasaki disease for example, the
association with the FCGR2C-ORF haplotype becomes evident
only when Asians, in whom FCGR2C-ORF is a nearly absent
haplotype, are excluded from the cohort [64].

Overall, analyzing Fc-mediated Ab functions without consider-
ing ethnicity, sex, and age is hazardous. These factors need to be
considered for genotype/phenotype association studies, as well as
for the analysis of FcR involvement in HIV vaccine trials.

FCR AND AB FUNCTIONS IN VACCINE TRIALS

During the past three decades, several HIV-1 vaccine trials have
been performed all over the world. The first vaccine trial tested the
recombinant envelope glycoprotein subunit (rgp160) in 72 adults.
This vaccine showed induction of NAbs but not Fc-mediated
Ab responses [66, 67]. The second HIV-1 trial (HIVAC-1e) used
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recombinant vaccinia virus that expressed HIV-1 gp160, and its
administration resulted in no induction of neutralizing Ab or Fc-
mediated Ab responses, even though ADE was detected [68, 69].
Whether this lack of detectable Ab function was due to technical
issues needs to be further assessed. Thereafter the following
vaccine trials using envelop antigens succeeded in inducing both
neutralizing and Fc-medicated Ab responses (Table 1). Of note, the
CD4" T cell-driven HIV immunogens used in the HVTN502 and
HVTN503 vaccine trials did not contain envelop antigens, and led
to an increased risk of infection [70-75]. FcR variants and their
potential association with a decreased risk for infection were
further investigated in three vaccine trials: Vax004, HVTN505 and
RV144 (Fig. 1B). Although the Vax004 and HVTN505 vaccine
strategies did not show efficacy, distinct FCGR polymorphisms
have been associated with either an increased or decreased risk for
HIV-1 acquisition (Table 1). For the RV144 vaccine trial conducted in
Thailand, an association between the FCGR2C rs114940536,
15138747765, rs78603008 polymorphisms and a decreased risk
for HIV acquisition was shown [51]. While focusing on fighting the
HIV-1 pandemic in Africa, a similar strategy to that used in the
RV144 trial was initiated in the South African area [76-79]. This trial,
called HVTN702, did not reach the efficacy requirement of RV144
and was therefore stopped prematurely [80]. This failure could be
explained by the fact that Black South Africans do not possess the
FCGR2C haplotype that was associated with increased vaccine
efficacy in the RV144 trial [63]. Collectively, the differences in
FCGR2C polymorphisms in South Africa versus Thailand highlight
the need for further mechanistic investigations to define the
functional relevance of FcR polymorphisms in HIV-1 protection,
especially in the context of vaccination. Interestingly, HVTN505
conducted in the USA showed different FcyR SNPs associated with
a different hazard ratio of HIV-1 acquisition from that of RV144. In
the HVTNS505 trial, patients receiving the vaccine had significantly
higher incidences of HIV acquisition than those receiving placebo
among participants carrying the FCGR2C-TATA haplotype or the
FCGR3B-AGA haplotype. Moreover, an FCGR2A SNP (rs2165088)
and two FCGR2B SNPs (rs6666965 and rs666561) influenced the
correlation of anti-gp140 antibody-dependent cellular phagocyto-
sis with HIV risk [81]. Of note, the HVTN505 and RV144 trials
differed in a number of points, i.e., canarypox prime/protein boost
in a general low-risk Thai population in RV144 versus DNA prime/
rAd5 boost in a high-risk U.S. population of men who have sex with
men in HVTN505.

These results indicate that the functional impact of a given FcyR
polymorphism on the risk for HIV-1 acquisition is highly context
specific, depending on the specific vaccine regimen but also on
other factors, such as demographics, virus quasi-species, and
genetic background [53, 81, 82].

DISCUSSION OF FUTURE ASPECTS

RV144 was the sole HIV-1 vaccine trial that showed a limited but
statistically significant decreased infection risk [8, 10, 82]. As this
protection was not associated with neutralization but with specific
Ab types and Fc-mediated function, increased efforts were made
to obtain a more in-depth characterization of the induced HIV-
specific Ab response [10, 54, 82]. Indeed, in addition to HIV-specific
Ab response and neutralizing activity, the specificity of the
recognized epitope and Fc-mediated functions were investigated
(Table 1). In addition, the FcR polymorphisms associated with
infection outcome were explored [50-52, 54, 55, 81, 82]. However,
taken individually, none of these factors could be associated with
protection. For example, attempts to associate FcR genotypes with
HIV outcome resulted in variable, sometime contradictory, results
(Table 1). These results largely suggest that multiple Ab factors,
including Ab class and subclass, structures, Fc domain interactions
with Fc receptors, FcR locus copy number and FcR polymorphisms,
may impact vaccine efficacy with synergistic or sometimes
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antagonistic effects [83]. Moreover, as Ab concentrations and
FcR polymorphism frequencies vary according to ethnicities,
analysis of correlates of infection risk need to take these additional
parameters into consideration [63-65]. These results shed light on
the complexity of the humoral response that may be correlated
with a decreased risk of HIV-1 acquisition. Future vaccine
strategies need to address humoral Ab induction as a whole
challenging the different characteristics of the Abs and FcRs
required to obtain the most promising combination of humoral
responses associated with protection.
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4.4.3. Review 2 : Are induction of Fc mediated immune responses important
for HIV and SARS-Cov-2 vaccine protection ? (Submitted)

The major current pandemics involve two viruses, HIV and SARS-Cov-2. These pandemics
already cause millions of deaths. Neutralizing antibodies were found to be critical for vaccine
protection. However, it has to be recognized that additional Fc-mediate functional Abs
provided unexpected help to counteract virus mutations gained to escape from Nabs. In this
review, we discussed the current knowledge of Fc-mediated functions involved in HIV and
Sars-Cov-2 inhibition and the limitation of the current experimental methods evaluating these

Fc-mediated function.
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Abstract: The development of effective vaccine is crucial to fight against new virus pandemics.
For HIV and SARS-CoV-2, induction of neutralizing antibodies (NAb) were found to be key
for vaccine protection. However, it has to be recognized that additional Fc-mediate functional
Abs may provide unexpected help to counteract virus mutations gained to escape form NAbs.
These additional humoral functions are complex and will need further consideration to
understand the mechanisms underlying this protection in order to induce such Abs by
vaccination. This review provides a comprehensive update on the current knowledge of Fc-
mediated functions involvement in protection.

Keywords: HIV; SARS-CoV-2; Vaccine; Neutralizing antibody; Fc-mediated immune

response

1) Introduction

History of vaccine inducing protective Abs
For the previously developed and approved vaccines, detection of specific Abs
able to bind to the pathogen were used as surrogates for vaccine efficacy. This was
mainly performed by detecting Abs able to bind to pathogen-specific epitopes by
ELISA binding assay. The induction of such pathogen-specific antibodies was
generally associated with vaccine protection. It rapidly become clear that these Abs
were not associated with human immunodeficiency viruses (HIV) vaccine efficacy.
Discovered in 1983, HIV continues to be a major global public health issue, having
claimed 40.1 million lives so far [1]. According to the data release from WHO, there
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were an estimated 38.4 million people living with HIV at the end of 2021 [2]. To fight
against HIV pandemic, an efficient vaccine is urgently needed. However, after more
than 40 years of research, we are still deeply investigating new vaccine strategies
leading to protection. Indeed, HIV wickedly hijack the immune response towards
non-functional decoyed Abs. The HIV-specific Abs inducted by traditional vaccine
strategies were found to be completely inefficient for protection [3-5].

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus
that causes the respiratory illness, COVID-19 (coronavirus disease 2019) is responsible
for an on-going pandemic already leading to more than 6.4 million deaths [6]. As HIV,
tighting against SARS-CoV-2 rely on development of an efficient vaccine. For SARS-
CoV-2, vaccine was developed extremely quickly thanks to the new mRNA vaccine
platform [7]. These vaccines efficiently protect from ancestral vaccine driven strain,
but the protection drastically decline with the emergence of new variant of concerns
(VOCs) displaying numerous mutations [8]. However, despite becoming infected,

vaccinated people remain protected from server disease [9].

2) Role of neutralizing Abs in vaccine protection

For the development of an effective HIV vaccine, prototype immunogens able to
target highly conserved masked epitopes on the HIV envelop trimeric spike need to
be conceive. Abs directed to these specific epitopes were found to display functional
neutralizing activities. Neutralizing antibodies (NAbs) were considered as the best-
in-class functional Abs with the capacity to inhibit infectivity of pathogen [10,11]. This
inhibitory mechanism did not require other immune components. Noteworthy,
sterilizing protection against chimeric SIV/HIV (SHIV) acquisition could be
repeatedly achieved by passive transfer of NAbs in the non-human primate model
challenged experimentally [12, 13] These results of protection in the macaque model
completely re-boosted HIV vaccine research programs. Unfortunately, NAbs were
found to be very difficult to induce by vaccination. Indeed, virus mutations escape the
immune response and only a limited number of Abs directed to specific epitopes were
able to inhibit a broad range of HIV strains [14]. These broadly NAbs were only
induced in a few HIV infected individuals, also called ELITE neutralizer, after several
years of infection [14,15]. They need very high B cell maturation in order to target
neutralizing conserved epitopes that are often hidden by the virus. Such very complex
maturation cannot be obtained by classical vaccine strategies.

Concerning SARS-CoV-2 vaccination, mRNA platforms against this virus have
been rapidly developed. This vaccine induced high and efficient SARS-CoV-2 specific
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NAbs against the homologous vaccine strain [15]. NAbs have been consistently
associated with decreased risk of SARS-CoV-2 acquisition [17].

However, vaccine protection is not unambiguously associated with neutralizing
activity [18-21]. SARS-CoV-2 specific Abs rapidly decline and re-boosting is necessary
to re-activate the SARS-CoV-2 specific and protective NAb response [22]. Moreover,
the new VOCs progressively escape from these neutralizing responses response
leading to infection with the new variants [23-25]. Yet, despite this drastic decrease in
neutralizing potency, vaccinated individuals that became infected were still protected
from sever disease suggesting the participation of additional Ab inhibitory functions
[18, 26].

2) Role of Fc-mediated Ab inhibitory function in vaccine protection

In the HIV field, by searching for additional Ab functions, it became obvious that
Fc domain of the Ab play an additional inhibitory role [27]. Later on, Fc-mediated
functions were found to be associated with decreased risk of HIV acquisition in the
phase III RV144 vaccine trial. This trial involving more than 16 000 volunteers with
low risk of HIV infection showed a 31.2% decreased risk of HIV acquisition without
induction of neutralizing Abs [28, 29]. The decreased risk was correlated with non-
NAbs directed against V1/V2 and ADCC [29 - 33]. Interestingly, non-neutralizing anti-
V2 monoclonal Abs elicited in HIV-1-infected patients showed strong cross-reactive
ADCC activity using different primary subtype B and C isolates as well as subtype B
Transmitted/Founder viruses in vitro [30, 34]. Moreover, monoclonal Abs against
V1/V2 similar to those induced by RV144 vaccine trial demonstrated strong ADCC
activity in vitro against primary infected cells [34].

Following these findings, numerous studies were conducted to research for
correlates of protection distinct to neutralization. A new vaccine trial, HVTN 702, was
conducted in South Africa using a quite related regiment as for RV144. Despite a lack
of efficacy and distinct immunogenicity profile, HVTN 702 showed a similar
correlation of IgG V1V2 induction with decreased risk of HIV-1 acquisition in a subset
of volunteers [35]. Data obtained during HIV infection support the role of non-NAbs
in HIV protection. First, in mother to child HIV-1 transmission, pre-existing functional
Abs in mothers were found to correlate with lower morbidity, reducing the HIV-1
acquisition and improving the survival rate of infants [36 - 38]. Next, ADCC were
found to correlate with a slowdown of disease progression [39, 40]. In the non-human
primate (NHP) model, infusion of Abs with ADCC activities reduces viremia [41 —45].
These different results run alongside with a role of Fc-mediated Ab function in HIV

replication. However, whether induction of such Abs is key for fighting against HIV
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pandemic will need further investigations. Moreover, we need to identify the
mechanisms associated with this protection in order to improve the forthcoming
vaccine designs [11, 46—49].

For SARS-CoV-2 infection, the rapid decline of NAbs following vaccination and
the escape neutralizing response by VOCs clearly revealed additional functional Ab
activities [50]. Abs displaying ADCC were also found to be associated with protection
[561-53] [Table 1]. Abs displaying ADCC/ADCP activities were associated with lower
systemic inflammation following SARS-CoV-2 infection [19, 51, 54]. Moreover, hybrid
immunity of vaccinated individuals that previously experienced COVID-19 offers a
qualitatively improved antibody response able to better leverage Fc effector and
ADCC potential [54, 55]

Fc-mediated Ab SARS-CoV-
) Correlation with HIV
induced 2
Pre-exist |
(Mother to Kid) ¢ Reduced mortality Yes [36, 37] NA
e Slowed down disease Yes [38 - 40,
progre.ssm.n o 56, 57]
Following infection ¢ reduction in viremia
e lower systemic Yes [19, 20,
inflammation 54]
By vaccination e Related to prevention Yes [29-33, Yes [21, 50,
(vaccine efficacy) 35,58 - 62] 51,53]
Hybrid e increased binding, Therapeutic ~ Yes [54, 55,
Infection+vaccination neutrayzmg and ADCC [63] 64]
potential

Table 1. Induction of Fc-mediated function and correlations for HIV and SARS-CoV-
2. 1 NA: not available

These various results ascertain the potential participation of additional Ab
functions. However, it is not yet clear to what extend and how they exactly participate
to protection. Additional studies will be necessary to decipher the precise contribution
of Fc-mediated function, how and to what extend they participate to protection and
how we need to drive the immune response to efficiently induce such additional

functional Ab response.

Fc-mediated function detected in vitro
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In order to better understand the role of Fc-mediated function, we need to
characterize them in vitro. However, these functions involve complex mechanism with
Abs interacting with effector cells that make their detection highly challenging and in
vitro assays are difficult to develop [57].

Two Fc-mediated inhibitory functions have been mainly analyzed in vitro:
antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular
phagocytosis (ADCP). For these two Fc-mediated functions, the Ab need to recognize
an infected target cell via its Fab domain on one hand, and to bind via its Fc domain
to a specific Fc-receptor expressed on the surface of an effector cell (dendritic cells or
macrophages) [Figure 1]. This cross binding then lead either to the lysis of the infected
target cell (ADCC) or to the engulfment and digestion of virus by phagocytosis
(ADCP) [65, 66].

Antibody dependent cellular Antibody dependent cellular
Phagocytosis cytotoxicity

Macrophage NK cell
(\:L:‘,\B \,‘
"

. e ®
o o .. )
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Target cell
(infected)

Figure 1. Fc-mediated functions: antibody dependent cellular phagocytosis (ADCP)
and antibody dependent cellular cytotoxicity (ADCC).

A profusion of assays has been developed to allow in vitro measurement of the
ADCC and ADCP functions, mainly for HIV and more recently for SARS-CoV-2
[Table 2]. These assays sometimes record different events, as FcR binding or capture
of beads coated with antigens. However, these assays cannot exactly recapitulate the
intrinsic interaction leading to in vivo effector functions. In the HIV field, only a few
assays analyzing infected cell lysis with primary cells and replication competent virus
have been developed. Such type of assays still needs to be implemented for SARS-
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CoV-2. Noteworthy, assays analyzing cell lysis on primary cells do not necessarily
give comparable results to that analyzing binding or using cell lines. The former may
be more physiologically relevant but are time consuming and difficult to standardize.
The question of the relevance of these different in vitro assays and their correlates with

in vivo protection is questioned [57].

Target cell Effector Antigen/Virus Readout Ref
cell
=  CEM.NKR.CCR5 o
1. HIV-infected Binding to FeR
2. R t GzB uptake
eporter Coated FcR Antigen-Coated . P o
virus- . ) Expression of Luc in infected [63,66-
HIV infected Cell line beads Pseudovirus I 0
cells
3. Antigen- Primary cell Infectious virus
pulsed Target cell death
=  Primary CD4+T Virus production and release
cell
Binding to FcR
SARS- Reporter-only cell line Cell line Antigen-Coated . £ o [54,71-
. . ) Expression of Luc in infected
CoV-2 (S-protein expressed) Primary cell ~ beads Pseudovirus 73]

cells

Table 2. In Vitro ADCC assays for HIV and SARS-CoV-2

Conclusions

How can we ascertain the role of Fc-mediated function in protection?

The challenge now is to prove that the numerous associations between Fc-
mediated function and protection are indeed relevant. This question is crucial to
demonstrate that Abs displaying Fc-mediated function are worthy to induced by
vaccination.

To answer this question, passive transfer of HIV specific Abs displaying non-
neutralizing Fc-mediated functions have been performed in animal models. These
experiments have shown decreased virus load or numbers of founder viruses and
reduce virus burden following experimental virus challenge [42—45, 74]. However,
sterilizing protection was not observed with these experiments. Moreover,
modification of the fucosylation site in the heavy chain of Abs aiming to increase the
Fc-mediated function did not show improvement of protection in challenge
experiments with the NHP model [75]. The main concern of these experiments is the
relevance of the NHP model for the investigation of Fc-mediated function of human

Abs. Bias may be observed due to biophysical and functional differences of IgG
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subclasses and Fc receptors and their possible triggering of Fc functions between
human and NHP [76].

The use of passive transfer of Abs for these studies has other caveat for analyzing
Fc-mediated Ab functions. Indeed, passive transfer of Ab allow high Ab concentration
in the periphery, but the concentration of Ab in tissues is limited. It is nonetheless in
tissues that the Fc-mediated function may be of major interest [77]. It is in tissues that
antigen-presetting cells bearing Fc receptor mainly persist; thus, it is in tissues that we
may expect to detect protective Fc-mediated inhibitory function.

Noteworthy, recent studies show that HIV-1 has evolved to escape recognition by
NnAbs mediating ADCC. The “closed” conformation adopted by Env allows escaping
from NnAb recognition and Vpu auxiliary protein, by reducing Ab recognition of
infected cells, renders HIV resistant to ADCC [78][79]. This escape mechanism
indirectly highlights the potential in vivo protective activity of ADCC.

Additional studies are desperately needed to characterize the inhibitory steps
leading to virus destruction by Fc-mediated Ab in vivo. This crucial information will
help to ascertain the role of Fc-mediated Ab functions in HIV and now in SARS

protection and guide us for further vaccine strategy developments [46,80].
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4.5, Host-Vaccine interaction

A project supported by HIP (HVTN Initiative Project) have been developed in collaboration
with the College of Health and Allied Sciences (UDSM-MCHAS, Tanzania), and the Medical
Center of the University of Munich (LMU, Germany). This project aims to compare the
induction of HIV-specific antibody response and their function between individuals with
Caucasian and African ethnicity. For this project, the phase IIA HVTN 204 clinical trial was
chosen because the same vaccine protocol was conducted in both United States and South
Africa. We have gained access to historical samples (serum and cells) from 137 vaccination
volunteers at two time point: visit 2 (V2) collected before first vaccine injection and visit 10

(V10) collected after volunteers received three immunization and one boost.

Total and HIV specific antibody 1gG and IgA, neutralization, Fc-mediated function (antibody
dependent cytotoxicity, ADCC), and FcR polymorphism were determined. The statistical
analysis of the results was determined in an ethnicity aspect, grouping the volunteers in 3

groups: Caucasian, African living in USA, and African from SA only.

These results are currently being prepared for submission, so they are presented in

manuscript form.
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Abstract (150 words)

One recurrent question is whether the vaccine needs to be adapted to HIV clade,
geographic and/or ethnicity background. Recent attempt to reproduce and/or
enhance the Thai RV 144 vaccine efficacy in South Africa failed. The reasons for
this misleading outcome may be numerous.

In this study, we performed an in-depth characterization of the Ab response
induced by HVTN204 vaccine trial carried out with identical immunization
regiment in USA and South Africa. Multivariate Ab response analysis was
performed according to Fc receptor (FcR) polymorphism, sex, age, ethnicity and
geographic location.

We found that Africans displayed higher total Igs and induced in part distinct
HIV-specific antibody responses after HVTN204 vaccination compared to
Caucasian. Additional studies of immunological differences between ethnic
groups and regions need to be undertaken, especially with new vaccine platforms
inducing high HIV specific Ab response to better decipher the potential impact

of ethnicity on HIV vaccine efficacy.

Introduction
There is solid evidence that intrinsic factors such as genetics, sex, age, and
geographic region of origin strongly influence vaccine responses. Correlates with

these factors have been largely investigated for the classic available vaccines used
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worldwide as hepatitis B, Yellow fever, tetanus, etc.! These studies show that, for
most of the vaccines, females induce a higher antibody (Ab) response than males.
Moreover, MHC polymorphism dependency was observed. However, the effect
on genetics might be confounded with differences observed with geographic
regions, in addition to other factors such as preexisting immunity and adjoining

infections.

Since HIV vaccine still under development, the role of ethnicity on HIV vaccine
response and efficacy was largely questioned.>® Especially after the low but
significant 31% decreased risk of acquisition in the RV 144 Thai vaccine trial, the
potential benefit of such type of vaccine in Africa was rise.* Can this protection
be translated to Africa? Indeed, Africa has the highest infection rate and yet only
few phase III HIV vaccine trials were undertaken. HVTN705/Imbokodo vaccine
trial was initiated in Africa in order to decipher whether the Thai protection could
be reproduced.’ Unfortunately, HVTN705/Imbokodo vaccine trial did not strictly
reproduced the RV144 vaccine trial.* Numerous changes were introduced in
vaccine protocol as a different envelop, different adjuvant, modified vaccination
schedule etc. Moreover, the population targeted was at higher risk of infection
with new incoming HIV strains distinct to the infectious strain circulating in
Thailand during RV144 vaccine trial. The outcome of this vaccine trial was

disappointing and therefore stopped prematurely. The deviations made with the
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HVTN705/Imbokodo vaccine trial hampered any possible conclusions on the

involvement of ethnicity and geographic location in HIV vaccine efficacy.

In order to address the possible effect of ethnicity and geographic location on
HIV immune response, we compared the HIV specific response induced by
HVTN 204 vaccine trial performed with exactly the same protocol on volunteers
living in US and South African. For this study, we added the confounding
variables of sex, age, race in addition to geographic localization. We also add the
polymorphism of Fc receptors (FcR) frequencies of SNPs as these genes differ
significantly between ethnic groups.® These FcR polymorphisms were previously
described to modify HIV-1 protection or disease outcome. Indeed, the
polymorphism of FcRITA rs1801274 (GG and GA genotype for H and R at
position 131) and sr10800309 (AA genotype) were associated with the rate of

infection and HIV control respectively.’®

By multivariable analysis, we identify a stronger increase of global IgG in
Africans and a higher total IgA increase in male and volunteers with rs10800309
GG and AG FcRIIA genotype. These factors need to be considered for further
improvement of vaccine efficacy. Still, the overall Ab response induced by
vaccination was similar indicating that the difference of intrinsic genetic and

surrounding environment engenders only minor variations for this vaccine trial.
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Additional comparative studies should be undertaken with various vaccine trial
in different geographic regions to indorse these results.

Material and Method

Volunteer and samples

Historical HVTN204 samples (serum and cells) from 137 vaccination volunteers
at two time point: visit 2 (V2) collected before first vaccine injection and visit 10
(V10) collected after volunteers received three immunization and one boost, were
tested. The age, race, location, gender, and sexual orientation of samples are as
listed (Table 1).

Total and HIV- specific Ab detection by ELISA

96-well plates were coated overnight with a sheep anti-human IgG/ IgA (1 pg/mL
in carbonate buffer, Binding Site) for the detection of total IgG and IgA. Plates
were coated with MN/LAI, THO023/LAI, 92TH023 V1V2 and ConS (0.5ug/mL
in carbonate buffer for HOV-specific IgGs) to detect HIV specific Abs (Table 2).
Plates were washed and saturated with PBS contain 10% milk (1h, at 37 °C), then
washed again and incubated with the diluted sera (2 h, at 37 °C). After washing,
plates were incubated a secondary goat anti-human IgG-HRP (HorseRadish
Peroxidase) or anti-human IgA-HRP added (1 h at 37 °C, 0.2 pg/mL in PBS,
Southern Biotech). IgG and IgA were detected by addition of TMB (3,3, 5,5’

TetraMethylBenzidine) substrate. The reaction was stopped by 25 uL. of 1M
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H2S04 per well for 30 minutes. The optical density (OD) was read at 450 nm
(reference 650 nm).

Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood
received from healthy volunteers at the Blood Transfusion Center (EFS) in
Strasbourg using Ficoll-Hypaque sedimentation.

HIV-1 neutralization assay

Pseudoviruses used in Neutralization assay were produced by cotransfecting
293T cells with HIV-1 env expression plasmid and the env-deficient HIV-1
backbone plasmid (pSG3AEnv).

The neutralizing antibodies against HIV-1 were tested in TZM-bl neutralization
assay as described previously.’ Serial dilution of sera began at 1 : 20 dilution and
the capacity of individuals’ sera to neutralize murine leukemia virus (MuLV) was
assessed as control. Two easy to neutralize tier-1 HIV-1 strain, SF162NW and
MW965.26 were tested.

The inhibitory reciprocal dilution 50% (IRD50) was defined as the sample’s
dilution that can cause 50% reduction relative luminescence units and the
IRD50> 20 will be considered as positive.

Luciferase antibody-dependent cellular cytotoxicity assay
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The ADCC assay was performed using purified PBMCs as effector cells and the
CEM.NKR.CCRS5 cell line was infected with HIV-1 CE1176 (subtype C)

expressing the Renilla luciferase reporter gene as previously described.!”

Serial fold diluted samples (beginning at 1/50 for sera) were added to the 96 well
flat bottom plates. 4 day-post infection, PBMCs were mixed with HIV-1 infected
CEM.NKR.CCRS cells at 30/1 effector/target ratio and incubated for 5 hours in
the presence of fold dilution of sera in the medium contains RPMI-1640, 10%
FCS, and 50 IU interleukin-2 (R&D Systems).

Five hours later, Viviren substrate (Promega) was added to reveal the
luminescence intensity generated by living target cells. not lysed by ADCC-
mediating Abs present in the volunteers’ samples. The percentage of target cell
lysis (decreased living cells) in the presence of Abs was normalized to control

without Abs using the following formula:

% of lysis = ( RLU of infected target cells with effectors-RLU of infected target cells with effectors and samples ) * 100

RLU of infected target cells with effectors

The AUC was calculated as the integrated background-subtracted net activity
over a range of dilutions using the trapezoidal method and was truncated above
Zero.

FcR
Characterization of the protective antibody response induced 173

following vaccination or infection



Result

Genomic DNA was extracted from 3x 10° PBMCs with the Qiagen QIAamp
DNA Mini Kit (Qiagen, Hilden, Germany), following manufacturer’s
instructions. The rs1801274 (H131R) in FCGR2A (FcyRIla) and rs10800309 in
FCGR2A (FcyRlIla) were genotyped with custom Tagman assays (Thermo Fisher

Scientific, Waltham, MA, USA) following manufacturer’s instructions.

Statistical model (UBx)
New multivariable and univariable models were created by University of
Bordeaux, Department of Public Health, Inserm Bordeaux Population Health

Research Centre.

Results:

Total Immunoglobulins

First, we analyzed the humoral immune response in the sera from the HVTN 204
vaccine volunteers irrespective of their geographic origin (Table 1). We observed
significant intrinsic differences of Ig levels between African and Caucasians.
Indeed, Africans showed higher total IgG and IgA responses (Figure 1). Notably,
Africans who live in USA displayed intermediate total Ig lower that African
living in South Africa African but higher than the Caucasian in USA. On contrary
African show lower background of HIV specific Ab response (Abs binding to

viral envelopes (table 2)) at V2 (Figure 2) before vaccination than Caucasians.
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In order to get read of these intersect Ig variations, we determined the vaccine
induced Ig response by subtracting the Ig response before vaccination (V2) from

that observed after vaccination (V10).

HIV specific Ab responses

The HIV-specific Ab response induced in this vaccine trial was mainly observed
against ConS, a subtype C consensus env (Figure 2) (Supplementary Figure I).
The Abs induced against the other envs was low ((Supplementary Figure I).
Interestingly, a decreased HIV specific Ab was detected in Africans for the
MN/LAI, THO023/LAI, two env that have an unfolded env trimer. Interestingly to,
Caucasian demonstrated higher ratio of HIV specific Ab ratio to total IgG than
Africans, due to their lower total 1gG. If we compare the HIV specific antibody
with pre-immune result, Africans have higher delta due to the low pre-immune
background. As for the difference between pre- and post- immune, there is not

significantly difference among three groups (Supplementary Figure 1).

The subclass HIV specific Abs were tested for Abs directed against CH54. Both
South Africa Africans and USA Caucasians have anti-CN54 IgA, IgG1 and IgG3
induced after vaccination. There are no significant differences of these Abs
according to ethnicities or locations in pre-immune samples as well as following

vaccination (Figure 3).
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Neutralization

The capacity of this vaccine to induce functional neutralizing Abs was tested. For
this study, we used the conventional highly validated neutralizing assay on TZM-
bl cell line against two easy-to-neutralize tier 1 viruses: MW965.26 and SF162.
We found a significantly higher neutralization titer against HIV-1 MW965.26 in
sera from Caucasians at V10 compared to Africans living in US (p=0.027) and
Africans living in South Africa (p=0.007) (Figure. 4). Neutralization against
SF162 was not significantly different against HIV-1 SF162. Noteworthy, a
significant difference was also observed for the background neutralizing activity
between Caucasian and Africans (p=0.04) (Figure. 4). Consequently, when
analyzing the Delta of neutralizing activity (V10-V2) referring to vaccine
response, the differences between ethnicity and location was no more significant.
(Supplementary Figure 1) (Figure 5 and 6) We also tested Tier 2, more
difficult-to-neutralized viruses. However, we did not detect such Tier 2
neutralization, as previously described by GJ Churchyard et al.!!

The correlations between all these HIV-specific Ab immune responses were
analyzed as unavailable and multivariate analysis (Figure 5). High correlation
(red square) was observed for all IgG binding against all envs except env ConS
at V10. This env IgG specific response negatively correlated with Total IgG at
V2 and 10 (blue rectangle).

Antibody dependent cellular cytotoxicity (ADCC)
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We searched for ADCC in HVTN samples using the CEMLuc assay.
Unfortunately, no induction of ADCC activity against the clade C CE1176 virus
could be detected following vaccination (Supplementary Figure 2). Therefore,
on the impact of ethnicity and location on ADCC response could not be analyzed

1n this vaccine trial.

FcR polymorphism

As FcRIIA rs1801274 and sr10800309 were associated with the rate of infection
and HIV control respectively”$, we defined the frequency of these polymorphism
in the volunteer unrolled in HVTN 204 according to ethnicity. We found a similar
distribution of rs 1801274 gene in Caucasians and Africans. Interestingly, a
statistically significant difference was found for FcyRIIA rs 10800309 gene
between Caucasians and Africans (Table. 3). The AA genotype frequency of the
rs 10800309 FcyRIIA polymorphism was around 10% for Caucasians and 2%
Africans (p =0.00342).

To further investigate the genetic impact of vaccine-induced Ab, the univariate
analysis was performed for each polymorphism (Supplementary Figure 3, 4).
For rs1801274, a higher total IgG and a lower 92TH023 V1V2 specific IgG was
detected for the AA compared to the GG genotypes. For rs10800309, a higher
total IgG and IgA amount was detected at V10 for the AA compared to the GG

genotypes. The immunoglobulin response to vaccination in HVTN 204 cohort
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including the functional Abs responses are listed in the supplementary table 1

(Supplementary Table 1).

Multivariate analysis of vaccine induced response

The univariate and multivariate and analysis for HVTN204 vaccine response was
performed. The linear regression of the vaccine response depending on the
patients’ FcR polymorphism sex, ethnicity and location were also analyzed for better
understanding which factor impacts HVTN204 vaccine outcome (Figure 6)
(Supplementary Figure 5). The univariate analysis showed the only total 1gG
differ between locations (South Africa versus US) in response to this vaccine
trial.

The multivariate analysis considering FcR polymorphism, gender, and age in
addition to ethnicity and location confirmed the increased total IgG in South
Africa versus US already evidenced in the univariate analysis. Moreover, we
observed an increased delta response of total IgA for the rs10800309 phenotype
GG and AG, and in male compared to female. We also evidenced difference of
delta response for IgG3, IgGl and IgA directed to CN54 env according to
rs1801274, sex and ethnicity. Finally, a decreased delta response for total IgG

and IgA according to the rs1801274 Ag and GG genotype was detected.
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This analysis of the Ab response induced by the HVTNO024 vaccine showed some
intriguing  differences appealing to strengthening the complementary

investigations.

Discussion

With our increased knowledge of the immune factors involved in vaccine
efficacy, analysis of the impact of ethnicity and geographic localization turns out
to be highly pertinent. The role of the genic background on vaccines efficacy has
been addressed previously but the relevance of this question builds up for HIV
vaccine. Indeed, only one vaccine RV144 showed limited (31%) efficacy.
Minimal influence of ethnicity or geographic localization may therefore
drastically impact on vaccine efficacy. Besides, vaccine studies in Africa,
continent with the highest incidence rate, were only carried out recently. Our
knowledge of HIV vaccine outcome in Africa is therefore very unsatisfactory.
Previous analysis of humoral immune response showed higher total IgA, IgGl,
IgG2 IgG and IgA in people of African origin when compared to Caucasian or
Hispanic populations living in the same country.!?!® In these studies, the
geographic origin with possible outcomes of preexisting immunity or adjoining
infections could not analyzed as they used people living in the same country.

In order to gain insight into possible contribution geographic location and

ethnicity in HIV vaccine response, we compared the humoral response induced
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by the HVTNO024 vaccine trial performed with identical vaccine protocol in South
Africa and USA. We found higher total IgG and IgA in Africans compared to
Caucasian. This result support previous studies analyzing Ig in Africans versus
Caucasians of the same country. Interestingly, the immune responses of African
living in USA had intermediate Ig levels compared to African living in SA
Africans. This point to an additional impact of geographic location on total Ig
level. Noteworthy, the background level of HIV specific immune response also
significantly differed with higher inherent non-specific binding detected in
Caucasians compared to Africans. This highly suggest a distinct basal Ig profile
with higher HIV cross-reactive Ab in Caucasians. Whether this basal cross-
reactivity is due to adjoining infections or to genetic factors, and whether this
basal cross-reactivity participate in protection need additional investigations.
Interestingly to, the HIV specific Ig level was also significantly higher in
Caucasians for 3 of the 4 HIV sequences studied. However, when analysis
analyzing the net vaccine response by the Delta score, where the background level
is subtracted from the vaccine response, they were no significant differences of
vaccine responses detected between Caucasians and Africans.

The FcR polymorphism analyzed in this study showed significant differences of
FcR distribution. These differences may affect FcR-mediated inhibitory functions
and consequently vaccine efficacy in addition to other confounding factors as age

and sex.
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Multivariable analysis taking into account these different confounding factors
revealed so far increased total IgG in response to vaccine in peoples from South
Africa. This increase may correspond to a boosted general activation of the IgG
response following HIV immunization in Africans living in South Africa.
Moreover, IgA was increased with a specific rs10800309 genotype and in Male
compared to female further indicating genetic differences associated with the
overall IgA response. Therefore, although the delta HIV specific response not
significantly different between Caucasian and African, the inherent background
difference of the total Ig response in addition to genetic ethnicity related variation,
may significantly modulate the HIV vaccine response. These differences may be
further amplified if improved HIV-specific humoral response is induced.
Conclusion

In conclusion, the difference of humoral immune response induced HVTN204
vaccine according to the genetic and ethnicity background support the
investigation of additional vaccine induced humoral response. In particular,
analysis of genetic and ethnicity effects on new improved vaccines able to induce
high and sustained levels of HIV-specific Abs should be explored. Results of such
study may give additional insights for future “specific-design vaccine strategies”,
customized according to ethic or countries specificities, as what is currently

envisaged for personalized medicine.
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Overall (N=137)

Age
Mean (SD) 28.3 (8.46)
Median [Min, Max] 25.0[19.0, 50.0]
Race
black 88 (64.2%)
white 49 (35.8%)
Location
SA 76 (55.5%)
USA 61 (44.5%)
Sex
Female 76 (55.5%)
Male 61 (44.5%)

Sexual orientation
bi or homosexual 15 (10.9%)

heterosexual 122 (89.1%)

Table 1. Detail information of the 137 HVTN204 volunteers’ age, race,

geographical location, gender, and sexual orientation.
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Abbreviation Type Description

ConS Gp140 consensus envelope antigens

A hybrid oligomeric gp160 Env with gp120 derived from HIV-1 MN and

MN/LAI Gpl160 ‘
gp41 derived from HIV-1 LAL
Recombinant Env with gp120 from HIV-1 92THO023 linked to gp41 from LAI,
THO23/LAI Gpl160 ‘
with a deletion in the immunodominant region.
a murine leukemia virus gp70 scaffold containing HIV-1 gp120 variable
92TH023 V1V2 gp70 . .
regions 1 and 2 (gp70-V1V2) from HIV-1 isolates 92TH023
Recombinant Env trimer containing gp120+gp41 ectodomain from HIV-1
CN54 gpl40

CN54

Table 2. Information of envelope glycoproteins used in the ELISA binding experiments.
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Figure 1. Total IgG and total IgA of the HVTN204 samples.
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Figure 2. The HIV-specific antibody response before and after vaccination. The

capacity of HIV-specific Abs to bind to several viral envelopes: ConS, MN/LALI,
THO023, and V1V2.
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Figure 3. Subclass HIV specific antibody (CN54). The capacity of HIV-specific
IgA, IgG1 and IgG3 to bind to CN54.
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Figure 4. Neutralization ability against tier 1 HIV pseudovirus MW965.26 and
SF162. Neutralization against easy-to-neutralize tier 1 HIV pseudoviruses were

detected by TZM-bl neutralizing assay.
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Black White
P-value
(N=88) (N=49)
Age (years)
Mean (SD) 26.8 (7.38) 31.0(9.65) 0.015
Median [Min, Max] 25.0[19.0, 50.0] 27.0[19.0, 50.0]
Location
SA 76 (86.4%) 0 (0%) <0.001
USA 12 (13.6%) 49 (100%)
Sex
Female 51 (58.0%) 25 (51.0%) 0.476
Male 37 (42.0%) 24 (49.0%)
rs10800309
AA 2 (2.3%) 5 (10.2%) 0.00342
AG 32 (36.4%) 27 (55.1%)
GG 54 (61.4%) 17 (34.7%)
rs1801274
AA 14 (15.9%) 14 (28.6%) 0.221
AG 51 (58.0%) 25 (51.0%)
GG 23 (26.1%) 10 (20.4%)

Table 3. FcR polymorphism frequency (rs1801274 and rs10800309) of the

HVTN 204 volunteers. Comparisons are performed by Wilcoxon (quantitative)

or Fisher (qualitative) test.
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Figure 5. Correlation between V2 and V10.
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Figure 6. The multivariate and Univariate analysis for HVTN204 vaccination

outcome.
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Supplementary Figure 1. The delta difference between each ethnicity groups.
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Supplementary Figure 2. ADCC of virus CE1176 (subtype C). No ADCC activity

was detected against CE1176.
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Supplementary Figure 5. Linear regression of the vaccine response depending on

the patient’s characteristics.
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V2 V10 p-value p-value (BH) test
(N=142) (N=142)
IgA Total 0.078 0.102 student
Mean (SD) 5.87 (2.50) 5.50 (2.28)
Median [Min, Max] 5.64 [0, 12.3] 5.30 [0, 13.2]
Missing 5(3.5%) 5(3.5%)
IgG Total 0.181 0.200 student
Mean (SD) 16.3 (9.00) 15.8 (8.79)
Median [Min, Max] 15.2 [2.10, 53.8] 15.7 [2.43, 41.0]
Missing 5(3.5%) 5(3.5%)
IgG 92THO23 V1V2 0.200 0.200 student
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Mean (SD) 9.59 (10.2) 10.8 (15.6)
Median [Min, Max] 5.90 [0, 63.9] 5.30[0, 112]
Missing 5(3.5%) 5(3.5%)
IgA MN/LAI 0.058 0.083 student
Mean (SD) 0.228 (0.276) 0.304 (0.494)
Median [Min, Max] 0.138 [0, 1.93] 0.156 [0, 3.55]
Missing 5(3.5%) 5(3.5%)
IlgG THO23/LAI <0.001 <0.001 student
Mean (SD) 0.212 (0.197) 0.380 (0.413)
Median [Min, Max] 0.145 [0, 1.18] 0.237 [0.0322, 2.61]
Missing 5(3.5%) 5(3.5%)
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IgG MN/LAI <0.001 <0.001 student
Mean (SD) 0.257 (0.243) 0.522 (0.490)
Median [Min, Max] 0.170 [0.0463, 1.69] 0.361 [0.0468, 2.96]
Missing 5(3.5%) 5(3.5%)

IgG ConS <0.001 <0.001 student
Mean (SD) 0.184 (0.206) 1.13 (0.844)
Median [Min, Max] 0.114 [0.00935, 1.44] 0.880 [0.0821, 3.17]
Missing 5(3.5%) 5(3.5%)

MW965.26 0.009 0.015 student
Mean (SD) 15.8 (26.2) 89.1 (323)

Median [Min, Max]

10.0 [10.0, 216]

10.0 [10.0, 2960]
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Missing 5(3.5%) 5(3.5%)

SF162NW 0.005 0.010 student
Mean (SD) 12.3 (11.6) 31.1(79.3)
Median [Min, Max] 10.0 [10.0, 100] 10.0[10.0, 717]
Missing 5(3.5%) 5(3.5%)

IgA CN54 <0.001 0.002 student
Mean (SD) 0.122 (0.0792) 0.240 (0.359)
Median [Min, Max] 0.101 [0.0317, 0.572] 0.127 [0.0267, 2.53]
Missing 37 (26.1%) 37 (26.1%)

IgG1 CN54 <0.001 <0.001 student
Mean (SD) 0.0478 (0.0704) 0.311 (0.306)
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Median [Min, Max] 0.0320 [0, 0.503] 0.201 [0.0117, 1.62]
Missing 27 (19.0%) 27 (19.0%)
IgG3 CN54 <0.001 <0.001 student
Mean (SD) 0.0753 (0.0653) 0.858 (0.878)
Median [Min, Max] 0.0620 [0, 0.348] 0.520 [0.0290, 3.42]
Missing 8 (5.6%) 8 (5.6%)
ADCC 0.191 0.200 wilcoxon
Mean (SD) 0.0806 (0.115) 0.0818 (0.0582)
Median [Min, Max] 0.0374 [0, 0.331] 0.0722 [0, 0.193]
Missing 129 (90.8%) 129 (90.8%)

Supplementary Table 1. Description of immunoglobulin evolution after vaccination in HVTN 204 cohort. BH = Benjamini-

Hockberg correction.

Characterization of the protective antibody response induced 205

following vaccination or infection



Result

Characterization of the protective antibody response induced 206

following vaccination or infection



Bibiography

5. General Conclusion
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In order to fight against the HIV world pandemic, anti-viral agents are available. Their high
potency allowed them to decrease HIV until it was undetectable and almost abolished HIV
transmission. This finding of U=U: Undetectable = Untransmittable provides hope to get read
of the HIV epidemic, with the instauration the 90-90-90 treatment target by UNAIDS: 90% of
all people with diagnosed HIV infection will receive sustained treatment, and 90% of all people
receiving treatment will have viral load suppression. Unfortunately, this target is too long in
coming because even the first goal of diagnosis of 90% of all people with HIV infection is not
forthcoming. People with unknown infection will therefore continue to transmit HIV,
drastically limiting HIV eradication. This comes to the unavoidable conclusion that the
development of a safe and cost-effective vaccine, even if it is a difficult task, is the best
strategy to consider for the HIV epidemic. After more than 30 years of research dedicated to
HIV vaccine development, the requirements associated with protection are becoming

apparent. Yet, we still do not know how to reach these requirements.

5.1. The protective Ab response induced early after infection

Induction of broadly Nabs by vaccination is considered to be one of the main targets to
achieve. The currently characterized bNAbs all show drastic maturation features almost
impossible to induce with the currently known vaccine strategies. With this problem in mind,

we have searched for bNAbs induced early after infection.

Unexpectedly, we found some NAbs in sera collected early after infection. However, these
Nabs were directed against T/F viruses and not against the classical Tier 2 viruses tested
before. Later, we found a shift to NAbs directed against the classical non-T/F strains
reconsolidating previously published results.'3®* We could also detect ADCC early after
infection. Noteworthy, we did not find a correlation between neutralizing activity and
ADCC.*7 Additional viruses should be tested for both neutralization and ADCC activities in
order to complete the characterization of the breadth of HIV-specific Ab response induced
during the acute phase of the infection (PRIMO cohort). Moreover, the epitope recognized by
these Abs should be identify. What is the specificity these Abs that allow neutralization of T/F
viruses? This information may also give additional hints on the uniqueness of T/F viruses.

Currently, contradictory results have been published on T/F viruses. The analysis of these
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strains in the context of their neutralizing capacity of early induced HIV specific Abs may help

to unravel their specific features.

The information of NAbs against T/F viruses induced early after infection give new hope of
inducing such Abs by vaccination. Moreover, the early Fc-mediated functions detected suggest
that functional Abs induced by vaccination may possibly provide help for decreased risk of HIV

infection.

5.2. New Vaccine candidates and new concepts

Recently, Human clinical studies using bNAbs in passive transfer showed effectiveness
fortreatment of HIV infection. These results support the potential role of such Abs for
prevention, postexposure prophylaxis, and treatment of acute and chronic infection. We now
know that induction of bNAbs will be challenging, since such Abs need long maturation and
continued stimulation to be induced (Figure 54). Modified HIV env protein structures, new

vectors and new delivery pathways are in development to improve Ab maturation.

1}‘ 1}. l Y
I}a )‘ j_ )‘ }- ) ‘&
* <% -
_ - —i v d — v . y —

4 }‘ 4 ) }. 4 V-
Transmitted/ Plasma cells with
founder Env Transmitted/founder Upon diversification of HIV-1 in chronic functional, rare
primes to expand  mutants expand bnAb HIV-1 infection, mutated Envs select for mutations secreting
rare HIV-1 bnAb precursors with desired multiple functional mutations required for one or a few
precursor B cells antibody mutations bnAb potency and breadth specificities of bnAbs

Figure 54. The model of bNAb development in human. The bnAb development needs a tortuous
maturation pathway requiring the stimulation of multiple rare events by repeated evolving

viruses.?!

We tested the capacity of new vaccine candidates to induce bNAbs. In collaboration with
EHVA, different new directions have been tested as new modified env, VSV vector and OP that

all showed some benefit. These encouraging results gave new hits for immunogenicity
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improvement. Our subsequent immunization strategy will skillfully combine our newly
developed immunogens to promote complementary immune response enhancement.
Noteworthy, the immune responses detected were high in small animal models but decreased
when tested in NHP models. This variation of immune response strengthens the necessity to
perform vaccine trials in humans. This is currently under investigation with the VRIO6 vaccine
trial. The envimmunogen targeting CD40 that showed interesting immunogenicity in animal
models is now tested in clinical trial. The in-depth characterization of the humoral response

induced in human will help for future design of HIV protective vaccine development.

5.3. Impact of Ethincity and Geographic location on vaccine response?

Our increased interest in the Fc-mediated function of Abs in vaccine strategies directed our
attention to complementary immune factors as FcR polymorphism or FcR expression on the
surface of various effector immune cells. Indeed, FcR features directly impact Ig affinities.
These affinities are also related to Ig isotypes, strengthening the necessity to analyze isotype
switch following vaccination. Noteworthy, these parameters are related to genetic
background variations outlined with ethnicity. The question of the involvement of
polymorphism in Fc-mediated function is becoming central in our group and brought to the
writing of two reviews. These papers summarized the current knowledge of Fc-mediated
functions in infection and vaccine outcomes. In addition, a project was developed to estimate
the contribution of genetic background in humoral immune response development and
function. We got the opportunity to compare the humoral response induced by the HVTN204
vaccine trial according to ethnicity. By multivariate analysis, subtitle differences could be
observed according to ethnicity in addition to the other effects related to age, sex, and
geographic origin. This again points to a complex interplay of confounding factors involved in
immune response induction. It strongly suggests that these confounding factors should be

taken into account for future vaccine design.

In conclusion, my thesis's results gave additional insights into the humoral response that
should lead to an improved HIV vaccine strategy. Increased knowledge on the consequence
of subtitle modification of epitope recognition, isotype switch, genetic background etc., is still

required
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Future vaccine strategies will need to take the different factors highlighted in my thesis into
account. My current results, support aa new vaccine strategy based the combination of of
immnuogens that | have shown to demonstrated beneficial improved. According to my results,
| propose the usean envelope trimer based on T/F virus sequences and to modify then as
germline (GT) envs and chemically stabilized (CL) env or by focusing on CD4 binding site
epitope with the KI/KIKO constructs.. The (GT+CL) T/F envelope will be expressed on VSV
vector and used as prime and, the modified KI: KIKO envelope will be fused on a CD40 Ab to
improve antigen presentation and used as boost.. New adjuvant such as 3M052 my be applied
to support mucosa immune activation. Moreover, a more personalized tailored vaccine
strategy may be envisioned in the future. The new upcoming vaccine strategies will need to
take into account the human genetic and geographic background. in order to improve the

efficacy of the so difficult-to-develop HIV protective vaccines.
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For the first time in Homo sapiens history, possibly, most of human activities is stopped by coronavirus disease
2019 (COVID-19). Nearly eight billion people of this world are facing a great challenge, maybe not “to be or not
to be” yet, but unpredictable. What happens to other major pandemics in the past, and how human beings went
through these hurdles? The human body is equipped with the immune system that can recognize, respond and
fight against pathogens such as viruses. Following the innate response, immune system processes the adaptive

response by which each pathogen is encoded and recorded in memory system. The humoral reaction containing
cytokines and antibodies is expected to activate when the pathogens come back. Exploiting this nature of body
protection, neutralizing antibodies have been investigated. Learning from past, in parallel to SARS-CoV-2, other
coronaviruses SARS-CoV and MERS-CoV who caused previous pandemics, are recalled in this review. We here
propose insights of origin and characteristics and perspective for the future of antibodies development.

1. Introduction

In full social distancing crisis, far from lab work, in looking an-
xiously at the red dots growing every day in the graphic map of cor-
onavirus disease 2019 (COVID-19) pandemic [1], we wonder how were
the other major pandemics and how antibodies, natural or artificial, can
fight the diseases.

Several pandemics have occurred throughout history, some had
more effects on human's life and/or on economics than the others. As
scientists, a key step in vaccines research is to learn from the past. By
that mean, what we are doing now might be comerstone preparing us
for future pandemics.

In this review, we look for the diversity and variability of cor-
onaviruses, including SARS-CoV, MERS-CoV and SARS-CoV-2, which
cause pandemics from 21th century. The origins, impacts and molecular
structure with insights of vulnerable sites of viruses who are targets of
antibodies and its humoral responses will be described.

2. Overview of antibody and immunization

In response to pathogens including viruses, human body has evolved
its immune system to protect it from invasion. Following the virus in-
vasion, antibodies (Abs) are produced after a series of immune signaling
and these Abs are able to recognize a diverse array of antigens (Ag) [2].

* Corresponding author at: College of Pharmacy, Phenikaa University, Viet Nam.

E-mail address: hiep.trantuan@phenikaa-uni.edu.vn (T.H. Tran).
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More specifically, the paratopes (Ag-binding sites) of Abs bind epitopes
on virion-associated Ags. During an Ab response, B-cells which express
Ag receptors are clonally expanded [3]. Antibodies structurally are
composed of heavy (y, a, y, 8, €) chains that are linked by disulfide
bonds with light chains (k, A). In the progress of B-cell development,
immunoglobulin heavy (IgH) chain gene recombination typically oc-
curs before immunoglobulin light (IgL) chain gene recombination [4].

Neutralizing antibodies (nAbs) can inhibit the viral infection via
following the viral replication cycle. Attachment is the first critical step
blocked by Abs by interfering with the virion-receptor binding.
Moreover, Abs may induce the aggregation of viral particles which
cause a reduction of individual penetration. In post-attachment step,
Abs on the virion possibly dampen virus endocytosis internalization
leading to the lysosomal degradation. The Abs also block fusion of
virion when they intercalate between viruses and cell membrane. The
next stage of interference is to uncoat or appropriate intracellular lo-
calization of core or capsid. Lastly, Abs might bind virion surface then
inhibit the metabolic events that blocks the replication of viruses even
after internalization [3,5,6].

The approach to nAbs design relies on the identification of antigens;
in other words, the epitopes are the central of quests. However, the
variable regions of the antigen induce the largest fraction of the anti-
bodies whereas broadly nAbs represent only a minor proportion of the
response. The major challenges related to both sides were previously
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Fig. 1. Isolates of coronaviruses discussed in this review and their receptors, host and reservoirs. SARS-CoV and SARS-CoV-2 from the lineage B use ACE2 as receptor.
MERS-CoV from the lineage C enters into host cells by binding DPP4. SARS-CoV has the masked palm civets as an intermediate host in which the virus has adapted
from the Chinese Horseshoe bat reservoir to ultimately infect humans [13]. SARS-CoV-2 has bats and pangolins as natural reservoir and can infect ferrets or domestics
animals, with a high susceptibility in cats [14]. MERS-CoV has the origin from bats [15] but maybe this virus had an adaptation through camels before its emergence

into human [16].

described: viral antigen and the generation of antibodies to these sites.
In the detail, the antigen concerns are (1) epitope masking or shielding
by glycans or protein loops; (2) transient exposure during the entry
process or via other mechanisms such as viral “breathing;” (3) the size
of conserved epitopes is small resulting in the limitation of interaction,
(4) epitopes are constrainedly accessible, (5) the mutability of epitopes.
Regarding antibody production, (1) the need for extensive somatic
mutations and focused evolution; (2) the use of specific germline allelic
variants and HCDR3s of particular length and structure; and (3) the
molecular mimicry of host molecules are mentioned [6].

3. Coronaviruses

Coronaviruses are a group of related viruses in the family
Coronaviridae and subfamily Coronavirinae, order Nidovirales. In the
subfamily Coronavirinae, coronaviruses include 4 genres: alphacor-
onavirus, betacoronavirus, gammacoronavirus and deltacoronavirus
(Fig. 1). Coronaviruses infect a wide variety of hosts including many
species of birds, mammals and humans [7]. Alphacoronaviruses and
betacoronaviruses circulate among mammals, gammacoronaviruses
and deltacoronaviruses infect birds and mammals. Within betacor-
onaviruses, there are 4 lineages: lineage A contains human cor-
onaviruses HKU1 and OC43, lineage B to which SARS-CoV (Severe
Acute Respiratory Syndrome Coronavirus) belongs, lineage C belongs to
MERS-CoV (Middle East Respiratory Coronavirus Syndrome) and the
lineage D has the bat coronaviruses HKU4 and HKUS who are close to
MERS-CoV.

The first human coronaviruses 229E (HCoV-229E) and 0OC43
(HCoV-0C43) were isolated in the 1960s and are now classified re-
spectively as alphacoronaviruses and betacoronaviruses. As these

viruses were not very pathogenic and often associated with colds [8],
this family of viruses attracted little interest from scientists until the
2000s. In November 2002, SARS-CoV, first reported in Guangdong
province, China, became the first highly pathogenic coronavirus that
emerged in the human population. This virus was responsible for an
epidemic of severe acute respiratory syndromes that started in China
before spreading rapidly over the world with around 8000 infected
people and with a mortality rate of around 10%, depending on patients'
age [9]. However, this coronavirus from animal origin was initially
unable to use the human angiotensin 2 converting enzyme (ACE2) as
receptor [10-12]. It has been suggested that the masked palm civet
(Paguma larvata) may be an intermediate host in which the viruses have
adapted to ultimately infect humans. A recent study suggests that
Chinese Horseshoe bats in the family Rhinolophidae may be the natural
reservoir for SARS-CoV. One of these two viral isolates in this study,
WIV1, was able to recognize the human ACE2 receptor and to replicate
in certain human cell lines, suggesting that this virus can directly infect
humans without adaptation [13].

4. SARS-CoV: from 2002 to 2003

SARS-CoV, first reported in 2002, belongs to the SARS-related cor-
onavirus species that also includes many bat viruses.

Coronaviruses are spherical enveloped viruses with a diameter of 80
to 120 nm [17]. The viral capsid formed by the nucleoprotein (N) and
the genome is contained in the envelope and is of helical symmetry.
Three structural proteins are embedded on the surface of particles, the
membrane protein (M), the envelope protein (E) and the protein spike
(S). They give this aspect of crown in electron microscopy that inspired
the name of this viral family.
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The S protein of coronaviruses (~1255 amino acids) is a highly N-
glycosylated type I transmembrane protein, from 180 to 200 kDa, that
plays a major role in viral entry [18]. It insures a double function in
viral entry by binding the cellular receptor before conformational
changes and proceeding to the fusion of the viral envelope with the
membranes of the target cells. S protein has a long N-terminal domain,
a short C-terminal domain and assembles into homotrimers on the
surface of the viral particle [19]. S protein has a decisive role in cellular
tropism and for pathogenicity [20].

S protein of SARS-CoV is composed of two functionally distinct
subunits: the globular S1 subunit (~aa 12-680) allows receptor re-
cognition, whereas the S2 subunit (~aa 681-1255) facilitates mem-
brane fusion and anchors S into the viral membrane. S1 is organized in
four distinct domains A-D. Domains S1A and S1B may be used as a
receptor-binding domain (RBD, aa 318-510) containing the highly
conserved receptor-binding motif (RBM, aa 424-494) [21]. Moreover,
RBD contains 3 functional glycosylation sites located at amino acids
318, 330 and 357, which are necessary for S expression but do not
affect ACE2 binding [22]. S1B forms an extended loop on the viral
membrane-distal side and is a hypervariable region [20]. S2 contains
the fusion peptides (FP1 and FP2) [23], two heptad repeat regions
(HR1, aa ~889-972 and HR2, aa ~1142-1193) and the well conserved
transmembrane domain [24].

The mechanism of interactions with peptidases (aminopeptidase
APN, ACE2, DPP4) as a cellular receptor for most coronaviruses is not
known. Indeed, the binding of coronaviruses to their receptor is not
enough and S protein on the surface of the virus must undergo pro-
teolytic maturation. Coronaviruses do not use the catalytic activity of
peptidases serving as receptors for this maturation but enter after the
action of proteases located close to the receptors. The binding of SARS-
CoV to its ACE2 receptor is followed by internalization and decrease in
ACE2 enzyme activity on the cell surface, which may partly explain the
severity of SARS-CoV infections [25].

4.1. Anti-S1 & RBD antibodies

Neutralizing Abs can fight against viral infections by blocking
binding to cellular receptors or by interfering with viral fusion. Besides,
in the case of enveloped viruses, the Abs can recruit effector cells or the
complement, thus allowing the destruction of the infected cells or the
lysis of the viral particles [6]. The S1 domain contains most of the
epitopes recognized by nAbs during infection. The RBD located in this
S1 domain would be the most important target for nAbs against SARS-
CoV, MERS-CoV and the novel coronavirus SARS-CoV-2 [26-29]. More
specifically, certain secondary structures such as extended loops seem
to be particularly immunogenic.

RBD of SARS-CoV is composed of 193 amino acids (N318-V510)
within S protein. Five regions on the S glycoprotein of SARS-CoV (re-
sidues 274-306, 510-586, 587-628, 784-803 and 870-893), in which
three first regions belong to S1 subunit in the CID2 and CTD3 (C-
terminal domain) and two later belong to HR1 domain of the S2 sub-
unit, were predicted to be associated with a robust immune response to
SARS-CoV [30]. Several specific-nAbs for SARS-CoV were discovered;
unfortunately none of them are under clinical trial [31] (Fig. 2).

The human single-chain variable region fragment (scFv) antibody
80R blocked ACE-RBD interaction (epitope aa 324-503) [32] but some
80R-escape variants were found with the mutations mostly locating at
lysine D480 [33]. The target epitope of 80R is not conserved in SARS-
CoV-2 then it does not affect this novel virus [34]. Another nAb gen-
erated from a non-immune scFv library, named 256, could bind to an
epitope of RBD but did not inhibit RBD binding. 256 is weak but spe-
cific to D480A-muted strains of 80R-escape variants. Some engineered
broad nAbs, fm6 and fm39, also showed a high affinity to D480A-muted
strains [33]. m396 (epitope aa 482-491) from human antibody fab li-
brary was cross-reactive [35] and used the D95 of m396 to form a salt
bridge with R395 or an electrostatic interaction with D408 of SARS-CoV
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RBD [34]. m396 potently neutralized GDO3 strain isolated from the
second outbreak which resisted neutralization by 80R and S$3.1. m396
also neutralized isolates from the first SARS-CoV outbreak (Urbani,
Tor2) and from palm civets (SZ3, SZ16) [36]. Another human mono-
clonal antibody from scFv libraries CR3014 (epitope aa 318-510)
showed potent effects on SARS-CoV neutralization; however, this virus
can escape CR3014 upon P426L mutation in the S glycoprotein [37].
Same as 80R, m396 and CR3014 RBD-specific SARS-CoV antibodies
failed to bind the S protein of SARS-CoV-2 [34]. CR3022, always from
scFv libraries, could bind noncompetitively the SARS-CoV RBD (epitope
aa 318-510) and had a synergistic neutralizing effect with CR3014 on
SARS-CoV, even with the escaped P426L-muted variants [37].

By using Xenomouse in which mouse immunoglobulin genes were
replaced by human immunoglobulin genes, 19 neutralizing mAbs
bound S1 were found. 18 of them, 1B5 [38], 3A7, 3C7, 3F3, 3H12,
4A10, 4E2, 4G2, 5A5, 5A7, 5D3, 5D6, 5E4, 6B1, 6B5, 6B8, 6C1 and 6C2
bound RBD (aa 318-510) to avoid virus binding to the ACE2 receptor.
The last one, 4D4, bound an epitope (aa 12-261) located on the N-
terminal of RBD and inhibited post-binding event but not the RBD
binding. Truncation of the first 300 amino acids of S1 blocked the tri-
merization and the fusion of S protein [39]. Synergistic effects in some
SARS-CoV strains of 4D4 with other mAbs targeting S1 or S2 proteins
such as 3C7 (S1), 1F8 (HR1) or 5E9 (HR2) were also reported [38,40].
The tri-combination of 3C7, 3H12 and 4D4 could effectively neutralize
escape variants.

Other neutralizing human monoclonal Abs from transgenic mice
were also reported. Ab 201 interfered with ACE2 binding by targeting
S1 protein at the epitope aa 490-510. In contrast to 201, Ab 68 bound
epitope aa 130-150 at the N-terminal of RBD but did not affect ACE2
binding [41].

F26 family of monoclonal Abs generated from mice (F26G9,
F26G10, F26G18 and F26G19) showed neutralizing effect against
SARS-CoV [42]. F26G18 binding RBD at the epitope aa 460-476
showed the most potent effect [43]. F26G19 (epitope aa 486-492 on
RBD [44]) or 80R could also bind SARS-CoV by forming salt bridge
R426 (RBD)-D56 or D480 (RBD)-R162, respectively [34].

SARS-CoV mouse antibody 240CD had a nanomolar affinity for the
SARS-CoV-2 RBD but did not significantly block ACE-2 receptor binding
[45]. As 240CD, CR3022 also has high affinity to SARS-CoV-2 and
moreover, CR3022 had cross-neutralizing activity with this novel cor-
onavirus [34].

The effects of neutralizing human monoclonal antibodies, S3.1,
$215.13 [46] and $230.15, from Epstein-Bar virus transformation of
human B cells were observed. As m396, $230.15 had potent inhibitory
activity against isolates from the first, second SARS-CoV outbreaks and
from palm civets (SZ3, SZ16) [36].

4.2. Anti-S2 antibodies

In contrast to RBD, the fusion domains are more difficult to access
due to the tight folding of viral glycoproteins or the excessively tran-
sient exposure during the fusion stage. This is why few epitopes are
described in these regions [6]. Interestingly, the S2 specific mAbs can
neutralize pseudotyped viruses which expressing different S proteins
containing RBD sequences of various clinical isolates [47]. The S2
protein is highly conserved. No mutation in HR1 was reported in an
analysis of the amino acid sequences of the S protein from 94 SARS-CoV
clinical isolates. Only few mutations in HR2, at amino acids K1163 or
Q1183 for example, were observed in this study [47].

Some S2 epitopes inducing nAbs were reported. A peptide con-
taining aa 1055-1192 can elicit neutralizing activity [48]. Two other
proteins Trx-F3 and Trx-F9 containing linear antigenic determinants
(Leu 803 to Ala 828 and Pro 1061 to Ser 1093, respectively) on the S2
domain were identified by using sera from convalescent SARS-CoV
patients. Trx-F3 was capable of inducing nAbs in some animals [49].

Some human mAbs anti-HR1 (1F8, 1D12, 2A12, 2B12, 4A4, 4F9,
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Fig. 2. S protein of SARS-CoV, MERS-CoV, SARS-CoV-2 with its subdomains are the target of antibodies. The antibodies cited in this review have different origins or
techniques, and some of them have specific targets such as the receptor binding domain (RBD) containing the receptor binding motif (RBM), the heptad repeat
regions (HR1 and HR2). Some antibodies could bind SARS-CoV and SARS-CoV-2. Background color: Black for SARS-CoV, dark grey for MERS-CoV, grey for SARS-
CoV-2. SP: Signal peptide, FP: Fusion peptide, TM: Transmembrane domain, CP: Cytoplasm domain.

5C3, 6C9, 6H2) and anti-HR2 (1E10, 2D2, 2D6, 3A11, 3E10, 3H11,
5B9, 5B10, 5D7, 5E9, 5G8, 5G9, 6H1) were reported. With these Abs,
the authors showed that the combination of HmAbs targeting different
regions of the S protein would likely increase the broad neutralization
against different isolates [47].

A human scFv antibody, named B1, showed a high affinity to an
epitope (aa 1023-1189) on S2 protein. This antibody also showed po-
tent neutralizing activities against SARS-CoV in vitro [50]. B1, 1F8 and
5E9 nAbs against epitopes on SARS-CoV S2 also showed effectiveness in
neutralization [51].

The protective immunity by the time in patients after SARS-CoV
natural infection was observed. After 6 years, the humoral immunity
continuously decreased and eventually disappeared in most infected
individuals. The IgG Ab could be an indicator of neutralizing Ab for the
humoral response to SARS-CoV infection [52].

5. MERS-CoV: from 2012 to present

MERS-CoV, a zoonotic virus, belonging to lineage C in the genre
betacoronavirus of the family Coronaviridae, caused the Middle East
respiratory syndrome, in 2012. As of August 11, 2016, the virus had
infected 1791 patients, with a mortality rate of 35.6% [53]. The natural
reservoir of MERS-CoV is assumedly bats whereas intermediate host is
possibly dromedary camels [54-57]. BtCoV-HKU4 and BtCoV-HKUS bat
viruses have been shown to be the closest phylogenetically even if these
viruses are not direct ancestors [15]. The first transmission of a bat

virus to camels for an adaptation before its emergence into human was
suggested. nAbs anti-MERS-CoV could accordingly be found in camels.
Moreover, the viruses circulating in dromedaries and in humans are
very close suggesting that the dromedary is a reservoir of the virus
[58,59]. The genomic structures of bat, human and camel MERS-CoVs
are similar but their genomic sequences are different [16].

Structurally, MERS-CoV is a spherical, enveloped, single-stranded,
positive sense RNA beta-coronavirus [60]. MERS-CoV utilizes its S
protein to mediates cell internalization via binding with the receptor
dipeptidyl peptidase 4 (DPP4) on the surface of cells instead of the
receptor ACE2 of SARS-CoV and SARS-CoV-2. S protein is therefore the
most exposed and immunogenic viral protein [61]. The association of
MERS-CoV S protein is similar to that of SARS-CoVs including: the
distal subunit S1 containing the RBD and the membrane-anchored
subunit S2 containing a putative fusion peptide, transmembrane do-
main and two heptad repeat regions HR1 and HR2. This S protein is also
the target to develop nAbs, particularly the RBD [62].

Using the fragment containing residues 358-588 of S protein, the
neutralization against MERS-CoV of induced Abs were observed [63].
Other studies, also approaching RBD, reported the generated Abs with
the epitopes aa 377-662 or aa 377-588 of MERS-CoV RBD. The latter
elicited the strongest effect which effectively neutralized MERS-CoV
infection [64,65]. The epitope aa 736-761 also induced nAbs [66].

Using a novel panning strategy, seven anti-S1 scFvs Abs, named
1E9, 1F8, 3A1, 3B12, 3C12, 3B11, and M14D3, which bind one or
several of these three different epitopes (aa 21-358, 349-751 and
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349-590) were identified. They neutralized MERS-CoV infection at
nanomolar of concentration [67].

Other Abs, such as MERS-4 and its variant MERS-4 V2, were in-
triguingly discovered to bind RBD and compete with DPP4 but from
outside. MERS-4 Fab and MERS-4V2 scFv interact with B5-p6, $6-p7,
and [7-B8 loops of RBD resulting in the inhibition of MERS-CoV in-
fection [68,69].

Three human monoclonal Abs, m336, m337, and m338 bind RBD of
MERS-CoV at extremely low concentration, 4.2, 9.3, and 15 nM, re-
spectively. m336, that neutralized 50% of both pseudotyped and live
MERS-CoV at 0.005 and 0.07 pg/mL, respectively, suggested the pro-
phylaxis and therapy of MERS-CoV infection [70].

In another study, using MERS-RBD to immunize mice, two mono-
clonal nAbs 4C2 and 2E6 recognizing an epitope that partially overlaps
the receptor-binding footprint in MERS-CoV RBD were identified. The
4C2 could further reduce the number of viral particles in MERS-CoV
infected mice [71].

Recently, other nAbs, such as human mAbs or Fabs (MERS-27,
MERS-GD27, or MCA1), humanized mAbs (hMS-1, 4C2 h), mouse mAbs
(Mersmabl, 4C2, or D12), single-domain antibodies (nanobodies Nbs)
HCADb-83 or NbMS10-Fc and transchromosomic cattle antibody SAB-
301 recognizing epitopes on the RBD have been demonstrated to neu-
tralize pseudotyped and/or live MERS-CoVs [31]. Only SAB-301 is
under phase I clinical trial [72].

Despite the efforts of scientists to find anti-MERS-CoV antibodies, no
vaccine has been found yet and the virus continues to circulate in
human beings and other species.

6. SARS-CoV-2: from 2019 to present

The novel SARS-CoV-2 coronavirus, first appeared in Wuhan, China,
in December 2019, is creating a pandemic over the world with the
number of confirmed cases reached 3,529,408, of which 248,025 were
dead up to the 4th May 2020 [1]. Phylogenetic analysis of SARS-CoV-2
demonstrated similarity with SARS-CoV and bat-derived SARS-like
coronaviruses (SL-CoVs) with 79.6% and 88% sequence identity, re-
spectively. They belong to lineage B of the beta coronavirus genus
[73,74]. SARS-CoV-2 seems to be more contagious but less pathogenic
than SARS-CoV [75]. COVID-19 is a self-limiting disease in > 80% of
patients. Same as Spanish influenza viruses, SARS-CoV and SARS-CoV-2
induce a “cytokine storm” but to different degrees. The difference of
some conserved interferon antagonists and of inflammasome activators
explains their abilities to modulate antiviral and proinflammatory re-
sponses.

Along with the race of finding therapeutic treatment, nAbs and
vaccine development are also important to control the spread in the
long run. SARS-CoV-2 entries the host via the binding of its spike S
protein to the ACE2 receptor - sharing receptor, but with higher affinity
than SARS-CoV S [76], suggesting a basis for the greater human-to-
human transmission of SARS-CoV-2 [51,77].

S protein of SARS-CoV-2 composed of 1273 amino acids [76] uses
its N-terminal S1 subunit to bind ACE2 receptor with a better affinity
than SARS-CoV S glycoprotein for entry [78]. Effectively, S1 subunit
divides into an N-terminal domain (NTD) and a receptor-binding do-
main (RBD). The latter is necessary for viral binding and a potential
target for nAbs. During infection, SARS-CoV-2 first binds the host cell
through interaction between its S1-RBD and ACE2, triggering con-
formational changes in the S2 subunit that is indispensable for virus
fusion and entry into the target cell [79,80]. Some recent studies also
confirmed that RBD is a conformational epitope [78]. Antibodies
binding RBD may sterically hinder binding to the nearby peptide S14P5
of ACE2 receptor, thereby abolishing virus infection [34].

SARS-CoV-2 nAbs could be detected in patients from 10 to 15 days
after symptoms onset and the positive rate for IgG reached close to
100% around 20 days [81,82] with the highest level during day 31-40
since onset. Some patients (5.7%) had neutralizing Abs titers under the
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detectable level (IDS0: < 40) [83]. The level of IgG antibodies was
different between gender, age and clinical classification. The average
1gG antibody level in female patients was higher than in male patients
[84]. Patient over 40 years old developed higher levels of SARS-CoV-2
specific nAbs than the younger persons. Patients with a worse clinical
classification had a higher antibody titer [83]. This remark is useful to
select a research candidate and to save research time. The passive an-
tibody therapy, such as plasma fusion containing polyclonal antibodies
from COVID-19 neutralized patients has been tested. This method was
tested as an option to treat other viruses such as influenza, Ebola or
SARS-CoV [85-89]. The lack of human sera, and the possibility of
contamination with other infectious agents limit this strategy. How-
ever, several groups have reported some positive results demonstrating
the potential of this approach. After one dose of 200 mL of convalescent
plasma derived from recently recovered donors with the neutralizing
antibody titers above 1:640, the patients with SARS-CoV-2 positive
revealed an improvement. Among ten patients, seven patients were
virus-negative post transfusion [90]. Whereas in another study, among
5 patients received transfusion with convalescent plasma with a neu-
tralization titer > 40, 3 have been discharged from the hospital (length
of stay: 53, 51, and 55 days), and 2 are in stable condition at 37 days
after transfusion [91]. More studies might brighter this approach but
evaluation in clinical trials are also still far from a bold conclusion.

6.1. Effect of cross-reactive antibodies on SARS-CoV-2 pandemic

Due to the high similarity of S proteins from SARS-CoV and MERS-
CoV [73], their specific cross-nAbs were tested against SARS-CoV-2
infection in the COVID-19 outbreak. Serum Abs from recovered SARS-
CoV patients could efficiently cross-neutralize SARS-CoV-2 but with
lower efficiency as compared to SARS-CoV [92]. Cross-reactive Abs
against SARS-CoV-2 S protein mostly target non-RBD regions [93].
Using simulation technique, the binding of five Abs against SARS-CoV,
six Abs anti-MERS-CoV to RBD of SARS-CoV-2 was predicted with Ro-
setta antibody-antigen docking protocols. The amino acid position
445-449 (VGGNY) and 470-486 (TEIYQAGSTPCNGVEGF) were found
to be conserved in SARS-CoV-2. Moreover, in addition to the amino acid
positions 71-77 (GTNGTKR) in the NTD region of the S protein, aa
445-449 and 470-486 are potential for further development [94].

The difference between RBD of SARS-CoV and SARS-CoV-2 is lo-
cated at the C-terminus residues. This change has an important impact
on the cross-reactivity of nAbs. This difference was observed using
bioinformatic approaches of epitope analysis. The antibody epitope
score of SARS-CoV-2 is higher than SARS-CoV. Moreover, compared
with the conserved regions, the non-conserved regions had a sig-
nificantly higher antibody epitope score indicating that non-conserved
regions of spike proteins are much more antigenic. The non-conserved
regions also showed significantly higher surface epitope accessibility
scores suggesting an easier accessibility for antibody recognition of
non-conserved regions. The divergence of spike proteins is considered
as a major change in the antibody epitopes. The search for SARS-CoV-2
requires more effort than simply screening SARS-CoV antibodies [95].

Antibody response to RBD is viral species-specific. Effectively, none
of the found SARS-CoV-2 antibodies nor the infected plasma cross-re-
acted with RBDs from either SARS-CoV or MERS-CoV. In a study, 206
monoclonal antibodies specific to the RBD SARS-CoV-2 were identified
in eight patients. These mAbs are different in: antibody heavy and light
chains, antibody clones, CDR3 length... which lead to different binding
and neutralizing capacities. ACE2 is out-competed with almost 100%
efficacity by some mAbs such as P2B-2F6 and P2C-1F11. Interestingly
the latter and a moderate antibody P2C-1C10 seems to target the dif-
ferent epitopes, and they could be combined for synergistic antiviral
effect [96]. CR3022, a SARS-CoV RBD-specific antibody, can bind
strongly with a kd of 6.3 nM to an epitope on RBD that does not overlap
with the SARS-Cov-2 ACE-2 binding site [34]. Despite its strong
binding, CR3022 could not neutralize SARS-CoV-2 [97].
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S1 is a specific antigen for SARS-CoV-2 diagnostics [98]. The S1
subunit of SARS-CoV or SARS-CoV-2 has four core domains S1A
through S1D. The human 47D11 antibody binds the S1B of both viruses,
without competing with S1B binding to ACE2 receptor expressed at the
cell surface, and showed cross-neutralizing activity by an unknown
mechanism that is different from receptor binding interference [99]. An
immunogenic domain in the S2 subunit of SARS-CoV S (aa 1029-1192)
was highly conserved in several strains of SARS-CoV-2. Four murine
monoclonal Abs, 1A9, 1G10, 2B2 and 4B12, against this S2 subunit of
SARS-CoV can also cross-reactive with the S protein of SARS-CoV-2.
Interestingly, 1A9 can strongly bind the S2 subunit of SARS-CoV-2
through a novel epitope (aa 1111-1130) and can detect S protein in
SARS-CoV-2 during infection [100]. This epitope also overlaps with one
of two cytotoxic T-lymphocyte epitopes (aa 884-891 and 1116-1123)
of SARS-CoV S2 subunit [101]. 1A9 is therefore suggested to induce
both humoral and cellular immune responses against SARS-CoV and
SARS-CoV-2.

In a serologic cross-reactivity test, Khan et al. found out that 4 out of
5 showed high IgG seroreactivity across the 4 common human cor-
onaviruses but all showed low IgG seroreactivity to SARS-CoV-2, SARS-
CoV, and MERS-CoV [102]. The weak cross-immunity against SARS-
CoV-2 from others betacoronaviruses, such as HCoV-OC43 and HCoV-
HKU], could restraint the transmission of SARS-CoV-2 but a resurgence
is possible in the future [103]. Moreover, spike- and non-spike specific
CD4+ T cell responses were detectable not only in SARS-CoV-2 in-
fected patients but also in uninfected individuals. If there is an absence
of antibody cross-reactivity, T lymphocyte cross-reactivity present in
50% of cases will be responsible for the epidemiological evolution of
SARS-CoV-2 infection [104].

6.2. Anti-SARS-CoV-2 specific antibodies

Up to this moment, only few tests of specific Abs against SARS-CoV-
2 have been reported. 311mab-31B5 and 311mab-32D4 human
monoclonal Abs could strongly and specifically bind the RBD protein.
These mAbs could efficiently block SARS-CoV-2-ACE2 interaction and
neutralize pseudovirus entry into host cells ectopically expressing ACE2
[105].

Peptides S14P5 and S21P2 in the two distinct peptide pools S14 and
S21 from SARS-CoV-2 S library were strongly detected in COVID-19
patients but not in SARS-CoV patients by using pools of overlapping
linear peptides and functional assays [78]. With the data from anti-
bodies depletion assays, researchers indicated that S14P5 and S21P2
were necessary for SARS-CoV-2 neutralization. Moreover, pool S51
contains very conserved fusion peptide in coronavirus [106,107] and is
partially overlapped in the sera of SARS-CoV and SARS-CoV-2 patients.
These results suggested that S51 may be a potential pan-coronavirus
epitope. Sera from recalled SARS-CoV patients could neutralize SARS-
CoV, but not the SARS-CoV-2 pseudotyped lentiviruses [78].

In an effort to screen a set of B cell and T cell epitopes of SARS-CoV
toward to the spike S and nucleocapsid (N) proteins of SARS-CoV-2, 27
epitope-sequences were identical within SARS-CoV-2 proteins among
115 T cell epitopes. However, 19 out of 27 epitopes are associated with
five distinct MHC alleles (at 4-digit resolution): HLA-A*02:01, HLA-
B*40:01, HLA-DRA*01:01, HLA-DRB1*07:01, and HLA-DRB1*04:01.
For B cell epitopes, they found 49 identical match epitope-sequences
that have potential for developing effective vaccines to combat the
SARS-CoV-2 [108]. Based on the sequence of the spike glycoprotein,
seven epitope residue/regions (491-505, 558-562, 703-704, 793-794,
810, 914, and 1140-1146) in the surface glycoprotein were predicted to
be associated with a robust immune response to SARS-CoV-2 [30].
Other candidate epitopes need to be confirmed [95,108].

Using the memory B cells from a survivor who was SARS-CoV in-
fected in 2003, one nAb anti-RBD named S309 was found to bind to
SARS-CoV-2 without interfering ACE2 binding. Besides, S309 could
recognize a N343-glycan epitope that is distant from the RBM of SARS-
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CoV-2. Interestingly, N343-glycan of SARS-CoV-2 corresponds to SARS-
CoV N330 and they are highly conserved. S309 potently neutralized
both pseudotyped SARS-CoV and SARS-CoV-2 and also the authentic
SARS-CoV-2 [109].

Using machine learning approaches with the data from other virus
outbreaks, some synthetic nAbs named C3, C7, C14, C17, C18, Col, Co2
and Co4 showed a potential to against SARS-CoV-2. The authors also
confirmed that the mutations of Methionine and Tyrosine could in-
crease the affinity of antibody-target binding [110].

19 potential immunogenicity B-cell epitopes, including 2 epitopes
located within the RBD region were reported using in silico analysis. 17
of them have > 14 amino acids. The B-cell epitopes which had highest
score in this study is the 1052-FPQSAPH-1058 located at position
1052aa of S protein. 499 T-cell epitopes bound 34 most popular HLA
alleles in the Chinese population were also found. Around 30 candidate
vaccine peptides in which 5 peptides located within the RBD region and
17 of them contained both B- and T-cell epitopes, were designed [111].
These vaccine candidates are theoretically able to induce either specific
humoral or cellular immune against SARS-CoV-2.

A panel of five humanized single domain antibodies (sdAbs) or
nanobodies, 1E2, 2F2, 3F11, 4D8 and 5F8, was recently discovered.
These sdAbs bound SARS-CoV-2 tightly but not SARS-CoV, except for
5F8 could bind both viruses but with weaker affinity to SARS-CoV. They
also showed neutralization activity against both pseudotyped and au-
thentic SARS-CoV-2. 1E2, 3F11 and 4D8 completely prevented SARS-
CoV-2 RBD-ACE2 binding but this effect of 2F2 and 5F8 was only
partial. Interestingly, the fusion of the human IgG1 Fc to these sdAbs
improved their neutralization activity by 10- to 80-fold [112].

Due to the lack of repairing mechanism of RNA virus replicase
complex, SARS-CoV-2 mutations frequently occur during viral replica-
tion [111]. The genetic drifts of SARS-CoV-2 are a selective evolution
toward less immunogenicity for host immune surveillance by T- or B-
cells. The latter appearing strains are less immunogenic than earlier
ones [113]. Antigenic drift is also reported in the COVID-19 pandemic.
The highly prevalent 23403A > G (p.D614G) variant in the European
population may result in vaccine mismatches with little protection to
that group of patients [114,115].

Though SARS-COV-2 genome has a much lower mutation rate and
genetic diversity than SARS, some of its mutations attract the special
attention of scientists. Single amino acid mutation R408I in RBD can
reduce the affinity of ACE2 receptor binding [115] that leads to a low or
ineffective vaccine for the future epidemic. Effectively, sequence
alignment showed that this 408R is strictly conserved in SARS-CoV-2,
SARS-CoV. 408R located at the interface between RBD and ACE2, but
positioned relatively far away from ACE2, does not have direct inter-
action with ACE2. 408R can form a hydrogen bond with the 90 N of
ACE2. This hydrogen bond is suggested to contribute to the high
binding affinity of ACE2 binding [115].

7. Discussion

Science, with new advances, somehow might find the therapy to
protect human beings from COVID-19. Among these, plasma therapy
composing of antibodies and humoral immune components has been
doing great and being one of the first solutions. Because of that, the
quest of an antibody always becomes a “must-do-first” when human
population facing new pandemic. However, only one lesson could be
obvious is we can never get the answer for every pandemic at ones.

Some coronaviruses can infect birds, bats and other species, some
are phylogenetically similar to known pathogenic human cor-
onaviruses. The search for the reservoir has resulted in the vast ex-
pansion of the library of known coronaviruses which suggests that ad-
ditional emergence events are possible.

Pandemics will create the urgent need for vaccines around the
world simultaneously. But it is not because of this urgency that we can
license a vaccine when its benefits and side effects are not clear.

Characterization of the protective antibody response induced

following vaccination or infection

270



Annex 1

P.-B.-V. Tong, et al.

Researching a vaccine for influenza viruses, HIV or SARS-CoV-2 is al-
ways challenging. Firstly, although the immunogen for protection of a
virus, glycoproteins gp120 or gp41 of HIV or S protein of SARS-CoV-2
for example, can be quickly detected, but the immune response needs to
be optimized with a good antigen design. Secondly, any drug has side
effects immediately or in long-term, directly by the composition of the
medication or indirectly by the response of the body to the medication.
Pre-clinical experiences with vaccine candidates for SARS-CoV and
MERS-CoV are typical examples in aggravating lung disease, either
directly or by antibody-dependent enhancement [116-118]. Thirdly, in
natural acquired infection, the time point of the detection of nAbs can
be easily observed, from 10 to 14 days post-infection in SARS-CoV-2
case for example [119,120], but the potential duration of immunity
response is not clear. Therefore, the use of singe-dose or several doses of
vaccines needs to be confirmed. Moreover, once a vaccine has been
approved, that does not mean that virus research and monitoring can
stop. Indeed, influenza and HIV viruses have been reported to have high
mutations, making it difficult to find broadly neutralizing vaccines. In
the actual pandemic of SARS-CoV-2, drift variants have been reported
and that can affect COVID-19 vaccine development [114,115]. No
vaccine is available against any coronavirus [121]. Monoclonal anti-
bodies cocktails including multiple epitopes targeting Abs could be
taken into account to broaden spectrum of therapy.

Vaccine development is a long and expensive process. From iden-
tifying a virus to producing vaccines to market, it takes us a few years. If
pandemic gets end before vaccines are approved, the research of vac-
cine candidates under development need to be continued and ready for
clinical trials, in order to get emergency authorization when an out-
break recurs. This statement draws on experience from Ebola pandemic
in which vaccine was still under development when the Ebola outbreak
ended in 2016. Ebola vaccine is recently approved [122-124] and al-
ready used in the recent outbreak in the Democratic Republic of Congo
[125].

Studying and understanding the antigen-antibody mechanism of a
virus can be used as a precondition to accelerate the studying another
virus during an outbreak. In the COVID-19 pandemic, some nAbs stu-
dies were based on the research of previous viruses such as SARS,
MERS, Ebola and HIV. Through machine learning approaches with the
data composed of HIV gp41-antibodies complexes and of 13 more dif-
ferent virus types, some potential nAbs against SARS-CoV-19 were
found [110]. This case shows the usefulness of this review of host-an-
tibody interactions from coronaviruses pandemics for young or mature
scientists working on vaccine research.

The key findings in coronavirus antibodies investigation could re-
veal S protein and its subunits as major frame for antibody generation
in which RBD seems to be the most efficient peptides. A lot of effort has
been tried but still plenty of gaps to fill up. Other approaches and
therapies are also needed to protect us from coronavirus infection.
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Abstract: Inhibition of the HIV-1 fusion process constitutes a promising strategy to neutralize the
virus at an early stage before it enters the cell. In this process, the envelope glycoprotein (Env)
plays a central role by promoting membrane fusion. We previously identified a vulnerability at
the flexible C-terminal end of the gp41 C-terminal heptad repeat (CHR) region to inhibition by
a single-chain miniprotein (named covNHR-N) that mimics the first half of the gp41 N-terminal
heptad repeat (NHR). The miniprotein exhibited low stability, moderate binding to its complementary
CHR region, both as an isolated peptide and in native trimeric Envs, and low inhibitory activity
against a panel of pseudoviruses. The addition of a disulfide bond stabilizing the miniprotein
increased its inhibitory activity, without altering the binding affinity. Here, to further study the
effect of conformational stability on binding and inhibitory potency, we additionally stabilized
these miniproteins by engineering a second disulfide bond stapling their N-terminal end, The
new disulfide-bond strongly stabilizes the protein, increases binding affinity for the CHR target
and strongly improves inhibitory activity against several HIV-1 strains. Moreover, high inhibitory
activity could be achieved without targeting the preserved hydrophobic pocket motif of gp41. These
results may have implications in the discovery of new strategies to inhibit HIV targeting the gp41
CHR region.

Keywords: fusion inhibitor; calorimetry; coiled-coil; envelope glycoprotein; N-terminal domain;
antiviral therapy; gp41

1. Introduction

The HIV/AIDS pandemic is still very active and continues to be one of the world’s
largest pandemics to date with more than 40 million people currently living with HIV
still representing a worldwide health issue [1,2]. What is more striking is the upsurge
in HIV infections over different populations around the world, such as the outbreak in
China’s students, where the number of newly diagnosed college students has seen an
annual growth rate ranging from 30 to 50% over the past several years [3]. All this together
with the fact that HIV newly infects 1.8 million people each year, makes the development
of an HIV vaccine a global health priority [4]. However, almost 40 years after the discovery
of HIV as the causative agent of AIDS we still do not have a licensed vaccine. Progress has
been hindered by the extensive genetic variability of HIV and our limited understanding of
the immune responses required to protect against HIV acquisition [5].
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This emphasizes the importance of therapeutics to treat the infection. Despite modern
Highly Active Antiretroviral Therapy (HAART) having helped to reduce the number
of deaths, the absence of an effective vaccine combined with the growing emergence of
multi-resistant HIV variants to several of these drugs urges the development of some new
anti-HIV compounds directed against the different stages of the virus life cycle, and in
particular against the entry of HIV into the cell [1,6].

In order to enter the target human cell, the virus must fuse its membrane with that
of the cell. This fusion process is mediated by the Envelope glycoprotein (Env), a non-
covalently associated trimer of heterodimers composed of two glycoprotein subunits, gp120
and gp41 [7]. CD4 receptor and co-receptor (CCR5 or CXCR4) binding to gp120 triggers a
series of conformational changes that ultimately cause the adoption of a more energetically
favorable conformation called the 6 helix bundle (6HB) formed by the N-terminal heptad
repeat (NHR) and C-terminal heptad repeat (CHR) regions of gp41. In this 6HB structure,
three CHR regions associate externally over an inner helical coiled-coil NHR trimer in
an antiparallel fashion. This energetically favorable interaction between NHR and CHR
brings viral and host-cell membranes into close proximity promoting fusion and eventually
causing infection. Consequently, compounds that interact with either CHR or NHR interfere
with this key process and thereby constitute HIV fusion inhibitors [8-10]. For this reason,
gp41 has become a very attractive target for the development of potential HIV-1 inhibitors.

Different kinds of fusion inhibitors have been described and classified into two major
categories regarding whether they interact with the NHR or CHR regions in gp41. Class-1
inhibitors target the exposed hydrophobic grooves of the NHR helical trimer and comprise a
variety of molecules including CHR peptide mimetics, artificial D-peptides, natural products
and small-molecule compounds and antibodies [11-15]. On the other hand, class-2 inhibitors
target the CHR region and generally encompass NHR peptide mimetics that have tradi-
tionally been regarded as low activity anti-HIV compounds. This limited potency may be
due to the low solubility and the tendency of NHR peptides to aggregate in solution. These
problems can be alleviated by engineered stabilized protein constructs that mimic exposed
trimeric NHR grooves. However, they have certain advantages, such as their activity against
strains resistant to CHR inhibitors [16,17]. Despite these promising therapeutic approaches,
the only FDA-approved fusion inhibitor of AIDS/HIV is T20 (enfuvirtide), a CHR-derived
peptide whose clinical use has been limited by its short half-life [18] (proteolysis-sensitive
and rapid renal filtration) requiring, therefore, high dosage injections at least twice a day.
Moreover, the continuous and expensive treatment generates the appearance of T20-resistant
viruses. Nevertheless, compounds that are able to interfere with the formation of the gp41
6HB continue to be very attractive targets for drug design strategies [19,20].

Recently, we have developed several protein molecules called covNHR which consist
of a single polypeptide chain with three helical regions that fold as an antiparallel trimeric
bundle with a structure highly similar to the NHR gp41 region [21,22]. These proteins
can be produced recombinantly by expression in E. coli with high yields, without any
post-translational modification, are easy to purify, very stable and highly soluble [23]. The
NHR binding surface has been described as composed of four different hotspots, namely
an N-terminal polar pocket (NTP), a shallow middle pocket (MP), a deep and prominent
hydrophobic pocket (HP), which has been widely used as a drug discovery target [14], and
finally a C-terminal pocket (CTP) adjacent to the HP [23] (Figure 1C). In a recent study,
we designed, produced and characterized two single-chain covNHR miniproteins each
encompassing only two consecutive pockets out of the four pockets of the NHR groove [24].
Each miniprotein mimics the N- and the C-terminal half of NHR, respectively, and they
were called covNHR-N (harboring only NTP and MP) and covNHR-C (exposing only the
HP and the CTP). These miniproteins folded autonomously and represent subdomains of
NHR, with very different intrinsic stability. Although both covNHR miniproteins could
bind their respective complementary CHR peptides with similar affinity, the covNHR-C
protein could not bind its target in soluble prefusion Env spikes and did not show any
HIV-1 inhibitory activity in vitro. This is probably due to the HP and CTP binding motifs
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being engaged in a tryptophan clasp involving the side chains of Trp623 (CTP muotif),
Trp628 and Trp631 (HP motif) that locks Env in its pre-fusion conformation [25,26]. On the
other hand, covNHR-N could bind its target in soluble prefusion Env spikes and showed
moderate HIV-1 inhibitory activity in vitro. However, it proved to be quite unstable and
required to be stabilized by engineering a disulfide bond connecting one of its two loops to
its C-terminal end. The stabilized versions of covNHR-N with one disulfide bond (called
covNHR-N-SS) showed a similar affinity towards its complementary CHR peptide and
similar capability to bind to soluble prefusion Env spikes. Strikingly, these stabilized
variants showed improved inhibitory potency against different HIV strains.

Disulfide Disulfide
A) Bond 1
N-term _--—=="" R

< Lo \
Cys63 |
\
Loop j
i

Disulfide

Bond 2

Loop 1

Y24L peptide

covNHR-SS

* covNHR-N-dSS

Figure 1. Design of covNHR miniproteins. (A,B) Ribbon models of covNHR-SS (A, blue) and
covNHR-N-dSS (B, green) showing the location of the residues chosen for mutations to form disulfide
bonds. Cysteines are shown in sticks and colored in yellow. (C) Model of the structure of the proteins
and peptides involved in this study depicted in molecular surface and colored green (covNHR-N-
dss), blue (covNHR-SS) and red (Y24L peptide, gp41 residues 638-661). CovNHR is a highly accurate
mimic of the full trimeric gp41 NHR coiled-coil, as such, its binding surface is also composed of four
different hotspots: CTP (C-terminal Pocket), HP (Hydrophobic Pocket), MP (Middle Pocket) and
NTP (N-terminal Pocket), see details in the text.

Here, we have furtherly increased the stability of covNHR-N by engineering an addi-
tional internal disulfide bond stapling the other end of the molecule to test the hypothesis
that an increase in stability can lead to a substantial improvement of the affinity to its
complementary CHR peptide accompanied by a subsequent improvement in anti-HIV
inhibitory potency. This stabilizing strategy has also been implemented in the complete
covNHR parent molecule. Therefore, both protein molecules, called covNHR-N-dSS and
covNHR-SS, respectively, (Figure 1) were designed, biophysically characterized and tested
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for direct Env binding upon several variants. Their capacity to inhibit different HIV-1
pseudoviruses and primary isolates, including T20-resistant strains, was also assessed. The
results provide valuable knowledge to the development of protein-based antivirals and
reveal new ways to exploit the vulnerability of the gp41 CHR region.

2. Results
2.1. Design and Stabilization of CooNHR Miniproteins

The initial designs of the parent molecules in this study, covNHR and covNHR-
N, contain, respectively, the four and two (NTP and MP) of the pockets described in
gp41 (Figure 1 and Figure S1). In order to design the new proteins covNHR-SS and
covNHR-N-dSS, we used the crystallographic structure of covNHR in complex with C34
peptide (PDB ID: 6R2G, previously determined by our group [22]) as a template. In our
previous study, we had achieved a considerable stabilization of over +20 °C in covNHR-
N (Tm =~ 41 °C) by engineering a disulfide bridge that connected the first loop of the
miniprotein with its C-terminal end (G33C/R94C mutations) resulting in a new variant
called covNHR-N-SS [24]. This “staple” strategy was recreated in this study in order
to achieve even further stabilization of the molecules. To accomplish that, Disulfide by
Design [27], a web-based tool for disulfide engineering in proteins, was used to predict
pairs of residues that will likely form a disulfide bond if mutated to cysteines. We found
one possibility for disulfide bond creation connecting different structural elements of the
protein by X-Cys mutations. For covNHR-N-dSS, residues Ala2 at the N-terminus and
Leu64 in loop 2 fulfilled the strict geometric constraints that disulfide bonds usually require
and were also mutated to Cys. Accordingly, covNHR-N-dSS contains mutations A2C/L63C
and G33C/R94C. The equivalent disulfide bond connecting the N-terminus and loop 2
was also engineered for covNHR-SS, which in this case contains mutations A2C/L111C
(Figure 1).

In order to validate and assess in silico the stability and dynamic behavior of the newly
designed miniproteins we conducted all-atom explicit-solvent molecular dynamics (MD)
simulations of the free molecules. Root mean square fluctuation (RMSF) values, which
are a measurement of the average atomic mobility of the residues in the protein, showed
an increase in the stability (i.e., lower values) in the sites where X-Cys mutations were
placed (Figure 2A,B). CovNHR-SS showed decreased RMSF values in the vicinity of the
mutated sites compared to covNHR (Figure 2A), which helped to decrease the overall
residue mobility of the N-terminal end and the second loop, two hotspots for protein
instability. A similar scenario occurred with covNHR-N-dSS if we compare its RMSF values
with those of the covNHR-N parent molecule (Figure 2B), in this case, the four hotspots in
the protein chain, the N- and C-term as well as the first and second loops were stabilized
by the addition of the two disulfide bonds. Moreover, the mean RMSF values for each new
protein were lower than their respective parent molecule (Figure 2A,B).

Figure 2C,D shows the time evolution of backbone root mean square deviations
(RMSD) of the miniproteins. All the molecules reached equilibrium within the first 5 ns
of MD simulation. However, the disulfide-stabilized miniproteins reached a more sta-
ble plateau and maintained it throughout the entire simulation time while their parent
molecules showed a less stable profile. This is also supported by the fact that the mean
RMSD values for the newly engineered miniproteins were also lower than those from their
parent molecules. These results indicate that the engineered disulfide bonds reduce the
overall conformational fluctuations of the new proteins compared to their parent molecules.
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Figure 2. Molecular dynamics simulations analysis of the two miniproteins: covNHR-SS (blue) and
covNHR-N-dSS (green) compared with their parent molecule covNHR and covNHR-N, respectively
(grey). (A) Root mean square fluctuation (RMSF) per residue for covNHR and covNHR-SS. (B) RMSF
per residue for covNHR-N and covNHR-N-dSS. (C) Evolution of mean backbone root mean square
deviation (RMSD) for covNHR and covNHR-SS. (D) Evolution of RMSD for covNHR-N and covNHR-
N-dSS. The locations of residues forming the disulfide bonds are highlighted with grey dashed lines
and with their residue number shown above in A and B. Mean values for the parameters throughout
the entire simulation time are also displayed in each panel with the same color code used above.

2.2. Biophysical Characterization of CooNHR Variants

Both disulfide-bonded mutants covNHR-N-dSS and covNHR-SS could be expressed
and produced recombinantly in E. coli with good yields even higher than those of their
respective parent molecule. All purification steps were made in the presence of 10 mM
{-mercaptoethanol, and a final oxidation step was carried out by extensive dialysis with
buffer without a reducing agent. The formation of the disulfide bonds was confirmed
in both mutants using Ellman’s assay (Thermo Fisher, Waltham, MA, USA). The protein
purity was assessed by SDS-PAGE, and the identity of each protein variant was confirmed
by mass spectrometry analysis.
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The structure and stability of the miniproteins were characterized using various
biophysical techniques (Figure 3). The two miniproteins showed far-UV circular dichroism
(CD) spectra typical of a mostly x-helical structure (Figure 3A,B); covNHR-SS has a similar
«-helical structure content to its parent molecule covNHR [22]. On the other hand, covNHR-
N-dSS has higher negative ellipticity values than covNHR-N and covNHR-N-SS, its parent
molecules [24], showing a higher «-helical structure percentage (72.4% against 64% and
67.1%, respectively). This indicates that the newly formed disulfide bridge is stabilizing
the antiparallel helical bundle. At the same time, mixtures between each protein and the
Y24L peptide, containing the NTP and MP binding motifs (Figure 1C), showed an increase
in negative ellipticity relative to the theoretical ellipticities of the spectra calculated as
the sum of the spectra of the free molecules (Figure 3A,B). This indicates the acquisition
of the helical conformation for the Y24L peptide as a consequence of binding onto the
NHR groove of both miniproteins. The ellipticity increase was similar in both complexes
indicating a comparable acquisition of helical structure. This was not the case for covNHR-
N, which showed a higher relative ellipticity increase when binding to Y24L peptide, as a
consequence of the protein acquiring a more ordered and helical structure when bound to
Y24L [24].

5 < 8
4]A covNHR-N-dSS S \B covNHR-SS
3] - - Y24l £ ‘ - - Y24L
—— covNHR-N-dSS + Y24L o 44 covNHR-SS + Y24L
29 —~ = Theoretical elipticity g Theoretical elipticity
14 o> 2
0] S of -
14 ‘Do 2
24 - :
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Figure 3. Secondary structure and thermal stability of covNHR-N-dSS (green) and covNHR-SS (blue).
(A) Far UV CD spectra of free covNHR-N-dSS (green, solid line) and (B) covNHR-SS (blue, solid
line) and in a (1:2) mixture with their complementary CHR peptide, Y24L (red and yellow lines,
respectively). Y24L peptide alone is shown in dashed grey lines in both panels. The red and yellow
dashed lines represent the theoretical sum of the spectra of the free molecules. (C) Thermal unfolding
of covNHR-N-dSS (green symbols) and covNHR-SS (blue symbols) followed by monitoring the CD
signal at 222 nm. The grey solid line corresponds to the best fitting carried out using a two-states
unfolding model. (D) Particle size distributions measured by dynamic light scattering with solutions
of covNHR-N-dSS (green) and covNHR-SS (blue). All experiments were carried out at pH 7.4 in
50 mm sodium phosphate.

Thermal denaturation experiments of covNHR-SS and covNHR-N-dSS indicated
strong stabilization of the proteins by the disulfide bonds. The melting temperature (T,)
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of covNHR-N-dSS was —79 °C (Figure 3C), a strong increase of +38 °C compared with
covNHR-N without any disulfide bridge and an increase of +18 °C compared with the
single disulfide bonded covNHR-N-SS [24]. Regarding covNHR-SS, no unfolding transition
was observed even after heating up to 98 °C, confirming its extremely high thermostability.
The thermal stability of covNHR-SS was estimated by differential scanning calorimetry
(DSC) —124 °C (Figure S2), compared to the 105 °C of the covINHR protein under the same
conditions [22]. The denaturation peak showed a sharp drop on the high-temperature
side of the peak suggesting thermally induced aggregation similar to what happens to
covNHR parent molecule. The thermal stability is thus increased by about 18-20 °C with
each disulfide bond engineered in both miniproteins.

Both protein variants are highly soluble at physiological pH and the particle sizes of
both proteins were assessed by dynamic light scattering (DLS) (Figure 3D). CovNHR-N-dSS
showed an apparent hydrodynamic radius (Rp) of 1.9 nm and covNHR-SS exhibits a Ry,
of 2.8 nm similar to their respective parent molecules and to their theoretical Ry,. This
demonstrates that both variants are monomeric at physiological pH in 50 mM sodium
phosphate buffer.

2.3. Binding of the CHR Peptide to CooNHR Miniproteins

To characterize in detail the thermodynamics of binding of the miniproteins to the
complementary CHR peptide, we performed isothermal titration calorimetry (ITC) analysis
(Figure 4 and Figure S3 and Table 1) by direct titration of the protein solutions with peptide
Y24L, corresponding to gp41 residues 638-661, at the second half of CHR. Previously, we
determined the interaction between Y24L and covNHR, which happened to be moderately
tight (Kq =90 & 7 nM at 25 °C) [23]. CovNHR-SS exhibited a similar K4 of 116 £ 11 nM at
the same temperature. The binding enthalpies and heat capacities are also very similar for
these two protein variants (—1.6 vs. —1.7 kJ-K~1-mol~!, Table 1) [23]. This indicates that
the presence of the disulfide bond at the N-terminus of the complete covINHR protein has a
small influence on the binding thermodynamics to the CHR peptide and suggests that the
presence of a continuous NHR coiled-coil structure already provides strong conformational
stability to the N-domain for a competent binding capability at the NTP and MP pockets.

Table 1. Thermodynamic parameters of binding of gp41 CHR peptide Y24L to covNHR miniproteins

measured by ITC.
Protein Peptide = Temperature (°C) Kq (nM) AHjy, (kJ - mol—1) n ACpp, (- K~1-mol~?)

10 80+ 8 -304+1.0 0.75
15 85+9 —435+08 0.77

covNHR-SS Y24L 20 91+4 _50+12 08 -1.70+ 0.21
25 116 £ 11 —57.7+ 06 0.83
10 61+8 —60.7 + 04 0.76
15 943+ 24 —-721+21 0.77

covNHR-N-dSS Y24L 20 149 + 6 _840+13 0.78 -2.26 +0.11
25 243 + 10 -90+4 0.89

Uncertainties in the parameters correspond to standard errors of the fittings.
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Figure 4. Thermodynamic parameters of Y24L peptide binding to the covNHR proteins. Data have
been calculated from the parameters of Table 1 and data from [24], measured by isothermal titration
calorimetry (ITC) (A) Binding enthalpies; (B) binding entropies and (C) binding Gibb’s energies.
The symbols correspond to the values derived from experimental data and the lines represent the
temperature dependencies of each parameter according to the binding heat capacity changes.

On the other hand, the affinity of covNHR-N for Y24L peptide was determined to
be much lower (K4 =790 & 20 nM) and with more negative binding enthalpy and heat
capacity as a result of a considerable entropy penalty associated to structural stabilization
of covNHR-N upon interaction with the CHR peptide [24]. This binding entropy cost
was not reduced in the singly disulfide-bonded covNHR-N-SS [24], which showed very
similar binding parameters although slightly reduced binding heat capacity (Figure 4).
In marked contrast, the disulfide bond at the N-terminus in covNHR-N-dSS confers a
remarkably higher affinity to Y24L (Table 1 and Figure 4), about a 4.5-fold increase. The
thermodynamic magnitudes (Table 1, Figure 4A,B) showed significantly more negative
binding enthalpy, partially compensated by a higher entropy cost. These magnitudes
indicate a tighter interaction in the complex produced by the new disulfide bond. In fact,
the binding affinities and Gibb’s energies are close to those measured for the complete
covNHR proteins at low temperatures, although they decrease rapidly with temperature
due to a more negative heat capacity change.

2.4. Binding to Envelope Proteins

We investigated the influence of stabilization by disulfide bonding on the interaction
of covNHR-SS and covNHR-N-dSS with their target gp41 CHR region in various Env
proteins, both in uncleaved and cleaved trimeric pre-fusion conformations (Table S1).
ELISA experiments showed that the two miniproteins bind efficiently to all Envs (Figure 5),
comparable to each parent molecule [24], except for a slightly enhanced binding of covNHR-
N-dSS to gp140 CN54 Env compared to covNHR-N-SS.
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Figure 5. Binding of covNHR miniproteins to different soluble Envs (Table S1) measured by ELISA.
Miniproteins binding to Env was detected using anti-6X Histag Ab as primary antibody. Background
binding was measured without Env and subtracted from the data; 100% positive control was mea-
sured with wells directly coated with a His-tagged Env. Data correspond to mean =+ S.D. values of
three independent measurements. * p < 0.05, difference between covNHR-N-dSS and covNHR-N-SS.

Gp41 mimetics encompassing the four NHR pockets, i.e., covNHR and covNHR-SS,
displayed higher levels of binding than the miniproteins harboring only two pockets,
covNHR-N-SS and covNHR-N-dSS, except for the structurally folded trimeric JRFL Env,
in good agreement with their higher affinity for CHR. These and our previous results [24]
demonstrate that the C-terminal part of CHR in a prefusion-like Env conformation is
accessible to interaction by the covNHR miniproteins encompassing the MP and NTP.
However, stabilization by disulfide bonds has a small influence on the capability of each
protein to bind the CHR region in pre-fusion stabilized Envs.

2.5. HIV-1 Inhibition

The inhibitory activities of the miniproteins against HIV-1 infection in vitro were
analyzed using the conventional TZM-bl assay (Figure 6). In these studies, we used
different HIV-1 pseudovirus strains: two easy to neutralize pseudoviruses (SF162 and
MW0956.26) [28], two pseudoviruses with pNL4.3 backbone, (pNL4.3 XCS and pNL4.3
DIM) displaying mutations conferring resistance to T20 [22], and one difficult to neutralize
primary isolate (CE1176) [28].

The ICs) values were compared with those of the parent covNHR proteins (Table 2).
The two proteins containing the four NHR binding pockets, covNHR and covNHR-SS,
display similar ICs values in the low nanomolar range meaning that the addition of the
N-terminal disulfide bond did not significantly modify the inhibitory capacity of the entire
NHR groove mimetic. This is consistent with the fact that both proteins show very similar
binding to the CHR target, as shown above.

The inhibitory activity of covNHR-N (containing only two pockets) was very poor as
aresult of its low affinity for its CHR target [24]. However, conformational stabilization by
one disulfide bond in covNHR-N-SS and two disulfide bonds in covNHR-N-dSS increased
strongly and progressively the inhibitory activity (Figure 6 and Table 2). These observed
activity increments do not appear to be a result of an increase in target binding affinity but
rather a consequence of the improved conformational stability of the miniproteins. In fact,
the first disulfide bond in covNHR-N-SS did not alter the affinity for the Y24L peptide and
the three miniproteins show a similar capacity to bind CHR of prefusion trimeric Envs in
ELISA experiments.
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Figure 6. HIV-1 inhibitory activity of the miniproteins implemented in this study on different HIV-1
strains. In vitro inhibition of different HIV-1 strains infection of TZM-bL cells by fusion inhibitors,
covNHR (black), covNHR-SS (blue), covNHR-N-SS (red) and covNHR-N-dSS (green), added at
different concentrations. The different HIV-1 strains are (A) pNL4-3 XCS (pseudovirus designed
for resistance to T20); (B) pNL4-3 (DIM) (pseudovirus designed for resistance to T20); (C) SF162
(pseudovirus strain); (D) MW965.26 (pseudovirus strain) and (E) CE1176 (primary isolate). Data are
the mean =+ S.D. of three independent measurements. Continuous lines correspond to non-linear
regression curves using a sigmoidal Hill function as implemented in Origin software (Originlab,
Northampton, MA, USA).

Table 2. In vitro HIV-1 inhibition by covNHR miniproteins.

Pseudovirus covNHR-N-SS covNHR-N-dSS covNHR covNHR-SS

PNL4-3 XCS 2 256 +24 11+4* 13+02 14+ 0.1
pNL4-3 (DIM) 2 248 +£2.0 13+13* 16 £0.1 14402
SF162 n.d. 36+ 12 80+13 89+ 09
MW965.26 96 + 12 23 4 3 ¥ 15+03 20+ 05
CE1176° n.d 379 +1.1 108 +13 88+ 16
Inhibitory activity (IC5o nM + S.D. of triplicates) was measured with the standard TZM-bl assay using different
pseudoviruses; * T20-resistant strains. ® Primary isolate. ** p < 0.01; ** p < 0.001, differences between covNHR-N-
dSS and covNHR-N-SS.

Strikingly, covNHR-N-dSS exhibits ICsy values of 1-3 tens of nanomolar, only 4- to
10-fold higher than covNHR and covNHR-SS, despite the fact that the former miniprotein
does not harbor the HP and CTP pockets and has a consequently a much lower affinity for
the CHR region.

Compared to T20, the stabilized miniproteins show consistently higher and broader
inhibitory activity against the same virus strains, including T20-resistant strains [24]. Addi-
tionally, no cytotoxicity, monitored by microscopic examination, was detected even with
the highest concentration of the miniproteins used in the assay.
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3. Discussion

The NHR region has traditionally been considered as a low stability domain in gp41
with a strong tendency to aggregate, and therefore, NHR-based peptides are poor HIV-1
inhibitors. However, this highly preserved region remains to be an attractive target for
fusion inhibition and vaccine design. Different approaches to stabilize an exposed NHR
coiled-coil trimer have generally involved inter-helical tethering [29], fusion to foldon
domains [9], or partial association with CHR sequences [30]. In these studies, a substantial
correlation between coiled-coil stability and inhibitory activity has been repeatedly reported
but no clear explanation for this correlation has been provided. We have previously
demonstrated that using an innovative design and engineering approach, highly stable
mimics of a fully exposed NHR region can be produced in a single-chain form [21-24,31].
Within the NHR coiled coil, its N-terminal region has also been described as an intrinsically
unstable sub-domain compared to that of the C-terminal domain or the entire NHR [24,32].
Here we show how the versatility of our single-chain design allows for simple and effective
conformational stabilization by disulfide bond engineering. Each disulfide bond is formed
spontaneously in the correct configuration and thermally stabilizes the proteins by about
20 °C, consistently with a strong reduction in the conformational entropy of folding [33].

Despite the additive global stabilizing effect of each disulfide bond, only the addition
of the second disulfide bond at the N-terminus has a significant influence on the binding
affinity to the CHR peptide. The thermodynamics of binding suggest tighter interactions
of the doubly disulfide bonded variant with the CHR peptide, possibly due to a reduced
conformational dynamics at the peptide-protein complex interface, as a result of a local
stabilization effect produced by the disulfide bond as suggested by the MD simulations.
Nevertheless, both disulfide bonds contribute to marked increases in HIV-1 inhibitory
activity. Disulfide bond stabilization also produced strong increases in anti-HIV-1 activity
in other NHR coiled-coil trimer mimetics [10,34]. However, this high affinity, stability
and inhibitory activity has, to the best of our knowledge, never been seen before for a
NHR gp41 construct lacking the HP, which has been in the last decades the main focus of
attention to interfere with the NHR-CHR interaction of gp41 and thereby inhibit fusion and
infection [35-37]. For instance, stabilized NHR constructs IZN17, [ZN23 and 1ZN36, all
containing the HP but differing in the sequence extension of NHR towards the N-terminus,
were reported to have similar inhibitory activities, suggesting that the antiviral activity of
this class of chimeric NHR peptides is recapitulated in the HP region [10].

In marked contrast, we show here that the HP is not necessary to achieve a potent and
broad inhibitory activity in the tens of nanomolar range for an NHR based construct, such
as covNHR-N-dSS. The inhibitory activity is relatively close (only 4- to 10-fold lower) to
the activity of the complete NHR mimetic covNHR, as well as other NHR mimetics, with
IC5) values in the low nM range, even for a difficult to neutralize primary virus isolate
(Figure 6). This is surprising because the binding interface of the complete covNHR with
its complementary CHR region is much larger and can bind long CHR peptides that also
include the HP binding motif, such as C34, with sub-pM affinity [22], whereas the affinity
of covNHR-N-dSS for its complementary CHR region, encompassing only the MP and NTP,
is only in the high nM range. This suggests that not every CHR binding motif is equally
accessible to covNHR for inhibition. It has also been reported that inhibition potency of 5-
helix constructs is kinetically restricted by the rate of association of the inhibitor to its target
in CHR, which is only transiently exposed during fusion [38,39]. However, all NHR-based
inhibitors used in previous studies contain the HP and interact with the HP binding motif,
which is engaged in a tryptophan clamp stabilizing the prefusion Env conformation, and
therefore, needs Env activation to become accessible [25,26]. On the other hand, accessibility
of covNHR-N-dSS to its targeted CHR region may be facilitated by its small size reducing
steric impediments and by the high flexibility of the CHR C-terminus [40]. In fact, a recent
cryo-EM structure of full-length Env localizes the connection between the CHR end and
the membrane-proximal external region (MPER) at a flexible and disordered polar segment
composed of residues ES*KNEQE® [41]. This segment is actually part of the binding
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motif of the NTP and is engaged in a water-mediated network of hydrogen bonds in the
gp41 post-fusion 6HB structure [22]. Both the NTP and the NTP-binding motif are as highly
preserved as the HP and HP-binding motif (Figure S4), suggesting chief importance of this
interaction in gp41 function. It is, therefore, possible that this flexible segment connecting
CHR and MPER constitutes the primary target of covNHR-N-dSS in the virion context.
This would explain why a stabilization of the miniprotein favoring this conformationally
constrained interaction acts so strongly to increase inhibition potency.

Our results suggest two different and probably complementary modes of fusion
inhibition targeting gp41 CHR. First, inhibitors containing the HP, which mainly act by
targeting the HP binding motif and require its release and exposure by Env activation.
Second, inhibitors targeting the C-terminal part of CHR, immediately upstream of the
MPER, such as the covNHR-N miniproteins described here, which due to their small size
and the higher accessibility and flexibility of their target, are less sterically restricted, and
therefore, can achieve potent activities with less stringent requirements in binding affinity.

Our covNHR miniproteins have advantages over peptide-based fusion inhibitors,
such as T20. First, they can be produced in recombinant form by E. coli expression with
high yields. They spontaneously fold with the correct mimetic structure without any
posttranslational modification. They are monomeric, highly soluble and stable, and can
be lyophilized and reconstituted in standard buffers without structure or activity loss.
All these features facilitate the scaling up of production and storage. Second, as potential
antivirals, due to their polypeptidic nature, such as T20, they would need to be administered
by intravenous injection but, because of their folded structure and high stability, it is highly
likely that they will have a higher resistance to proteolytic degradation and longer life in
the bloodstream, allowing a considerable reduction of the dosage and /or the frequency of
injection, which are among the main drawbacks of T20 treatment.

These results shed light on the design of new inhibitors encompassing the N-terminal
subdomain of NHR gp41 traditionally less investigated, proving the potency of the stabi-
lized gp41’s NHR mimetics and opening up new ways of inhibiting HIV-1 by engineering
new modifications increasing the stability of this region, as well as by improving the already
high binding affinity for its target by adding, for instance, new motifs targeting the nearby
MPER region.

4. Materials and Methods
4.1. Molecular Dynamics Simulations

All-atom molecular dynamics simulations were performed using YASARA Structure
(v.17.12.24) [42] with explicit solvent (TIP3P water, the solvent density was equilibrated to
a final value of 0.997 g/mL) in a periodic box with a size 10 A larger than the protein in
every dimension. In order to describe long-range electrostatics, the Particle Mesh Ewald
(PME) [43] method was used with a cutoff distance of 8 A at physiological conditions
(0.9% NaCl, pH 7.4), constant temperature (298 K) using a weakly-coupled Berendsen
thermostat and constant pressure (1 bar). Ewald summation was used to assign amino
acids charge according to their predicted side chain pK, and was neutralized by adding
counterions (NaCl) [44]. The AMBERI14 [45] force field was used together with multiple
time step integration where intra-molecular forces were calculated every 2 fs and inter-
molecular forces every 2.5 fs. The structures were initially energy-minimized using first
steepest descent without electrostatics to remove steric clashes and conformational stress
and subsequently relaxed by steepest descent minimization and simulated annealing (time
step 2 fs, atom velocities scaled down by 0.9 every 10th step) until convergence was
reached, i.e., the energy improved by less than 0.05 k] mol~! per atom during 200 steps.
The minimized system was slowly heated up during an equilibration phase until the target
temperature and density was reached. Every system was simulated for a minimum of 50 ns
and coordinates were saved every 10 ps, yielding 5000 time points for each trajectory.
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4.2. Protein and Peptide Samples

The NHR and CHR gp41 sequences used in this work are described in Figure S1. The
reference gp41 sequence was taken from the full gp160 precursor glycoprotein of the HIV-1
BRU isolate (Swiss-Prot entry sp |P03377 | ENV_HV1BR). CovNHR miniproteins were com-
putationally designed using YASARA software. The DNA encoding the protein sequences
were synthesized and cloned into pET303 expression vectors (Thermo Fisher Scientific,
Waltham, USA). To facilitate purification by Ni- Sepharose affinity chromatography, the
protein sequences were histidine tagged at the C terminus with the sequence GGGGSHHH-
HHH. The covNHR proteins were produced and purified following the protocol previously
described [21]. Synthetic CHR peptides, both N-acetylated and C- amidated, were acquired
from Genecust (Luxembourg), with a purity >95%. Protein and peptide concentrations were
determined by UV absorption measurements at 280 nm using the extinction coefficients
calculated according to their respective amino acid sequences with the ExPasy ProtParam
server (https://web.expasy.org /protparam/ accessed on 2 February 2022) [46].

4.3. Circular Dichroism

CD spectra were recorded in a Jasco J-715 spectropolarimeter (Jasco, Tokyo, Japan)
equipped with a Peltier thermostatic cell holder. Measurements of the far-UV CD spectra
(260-200 nm) were made with a 1-mm path-length quartz cuvette at a protein concentration
of ~15 uM. Spectra were recorded at a scan rate of 100 nm/min, 1-nm step resolution, 1-s
response, and 1-nm bandwidth. The resulting spectra were usually the average of five
scans and the percentage of the a-helical structure was estimated from the far-UV CD
spectra as described elsewhere [47]. In thermal melting experiments, the CD signal was
monitored as a function of temperature at 222 nm. Each spectrum was corrected by baseline
subtraction using the blank spectrum obtained with the buffer and finally, the CD signal
was normalized to molar ellipticity ([0], in deg-dmol~!-cm?). The interaction experiments
with CHR peptides were carried out at a 1:2 molar ratio between the proteins and the
corresponding peptide.

4.4. Dynamic Light Scattering

The particle sizes of the covNHR proteins were assessed by DLS measurements
using a DynaPro MS-X instrument (Wyatt, Santa Barbara, CA, USA). Dynamics software
(Wyatt Technology Corporation, Santa Barbara, CA, USA) was used in data collection
and processing. Sets of DLS data were measured at 25 °C with an average number of
50 acquisitions and an acquisition time of 10 s.

4.5. Isothermal Titration Calorimetry

ITC measurements were carried out in a Microcal VP-ITC calorimeter (Malvern Instru-
ments, Worcestershire, UK). The protein solutions were typically titrated with 25 injections
of 5 uL of the peptide solution at 480 s intervals. Protein concentration in the cell was
~20 uM, while the ligands in the syringe were typically at ~300 uM. The experiments
were carried out in 50 mM sodium phosphate buffer, pH 7.4. As a blank, an independent
experiment with only buffer in the calorimeter’s cell was performed with the same peptide
solution to determine the corresponding heats of dilution. The experimental thermograms
were baseline corrected and the peaks were integrated to determine the heats produced
by each ligand injection. Finally, each heat was normalized per mole of added ligand. The
resulting binding isotherms were fitted using a binding model of identical and independent
sites, allowing the determination of the binding constant, Ky, the binding enthalpy, AHj,
and the binding stoichiometry, n, for each interaction. From these values, the Gibbs energy
and entropy of binding could be derived as AG, = —RT:In K}, and T-AS}, = AH}, — AGy,.
Binding heat capacities were determined from the slope of the dependences of the binding
enthalpies measured at different temperatures (ranging from 10 to 25 °C).
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4.6. Binding to HIV-1 Envelope Spikes

The capacity of the covNHR proteins to bind soluble HIV-1 envelope proteins (Env)
was determined by ELISA. Briefly, 96-well ELISA plates (Maxisorp, Nunc) were coated at
4 °C overnight with various Envs (Table S1) in 0.1 M bicarbonate buffer (pH 9.6). After
saturation with 2% BSA, 0.05% Tween in PBS for 1.5 h at 25 °C, 0.01 uM of covNHR
molecules, corresponding to the protein concentrations that allowed detecting optical
density changes within a linear range, (100 uL diluted in 1% BSA 0.05% Tween solution)
were added and incubated for 2 h at room temperature. The plate was then washed five
times and covNHR binding was detected with 100 uL anti-6X His-tag antibody conjugated
to horseradish peroxidase (HRP) (Abcam, Cambridge, UK) at 1/dilution incubated for
1h at room temperature. Antibody binding was then revealed with tetramethylbenzidine
(TMB) substrate buffer, the reaction was stopped with 1 M H,SO, and optical density was
read at 450 nm with a Molecular Device Plate Reader equipped with SoftMax Pro 6 program.
Background binding was measured in plates without Env and subtracted from the data. The
percentage of binding was calculated using the readings with wells coated with His-tagged
Env incubated with PBS buffer instead of covNHR molecules as a control for 100% binding.

4.7. HIV-1 Inhibitory Assays

The inhibition of HIV replication was determined using the conventional TZM-bl assay
measured as a function of reductions in Tat-regulated Firefly luciferase (Luc) reporter gene
expression [48]. Pseudoviruses expressing different Env were tested for HIV inhibitory
potential [28]. The ICs, the concentration (in nM) of inhibitor inducing a 50% decrease in
relative luminometer units (RLU), corresponding to a 50% decrease in virus replication
was calculated by non-linear regression using a sigmoidal Hill function, as implemented in
Origin software (Originlab, Northampton, MA, USA).

4.8. Statistical Analysis

All statistical analyses were performed using the Prism 6 scientific software. Data
were expressed as the mean &= SD of 3 experiments per group. An unpaired Student’s t-test
was used to compare the differences between two experimental groups. A p-value of 0.05
or less was considered to be statistically significant.
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Figure S1. Sequences and topology of the covINHR miniproteins and peptides. Mutations in red were engineered in this
work. A) covNHR-SS sequence. B) covNHR-N-dSS sequence C) CHR C34 and Y24L peptide sequences. Residues corre-
sponding to the different binding pocket motifs are colored as follows: CTP in orange, HP in cyan, MP in blue and NTP in

red.
Table S1. Description of envelope glycoproteins used in the ELISA binding experiments.
Abbreviation Type Description Reference
— ———— - a —
JRFL  Gpl40 A soluble uncleaved gpl140 Env stabilized trimer derived from HIV-1 JRFL containing a [

MN/LAI Gpl60

THO23/LAI Gpl60

C-terminal foldon sequence.
A hybrid oligomeric gp160 Env with gp120 derived from HIV-1 MN and gp41 derived from 5
HIV-1 LAL (2]
Recombinant Env with gp120 from HIV-1 92TH023 linked to gp41 from LAI, with a deletion in
the immunodominant region.

ZM 4096 Gpl40  Synthetic construct derived from gp140 sequence of the codon-optimized HIV-1 96ZM651. [4]
CN54  Gpl40 Recombinant Env trimer containing gp120+gp41 ectodomain from HIV-1 CN54. [5]
Int. J. Mol. Sci. 2022, 23, 2794. https://doi.org/10.3390/{jms23052794 www.mdpi.com/journal/ijms
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Figure S2. Differential scanning calorimetry thermogram of the thermally induced denaturation of covNHR-SS. The DSC
thermogram was recorded at a scan rate of 2°C-min! at a concentration of 30 uM.

Time (min) Time (min)

A 0 200 400 600 800 1000 1200 1400 B 0 20 40 60 80 100 120 140 160

0.2 T 11T 0.2 T

00 —_ a ‘rm?r‘v“rr*r- —_ 7 1

-0.2 UI ] 004, [ - i
0.4 ] I

B 06 187977 ]

L 08 12 041 §
® -1.0 i |

3 -1.2 4 3061 .
1.4 3 -

-1.6 b — 0.8 1 7
-1.8 3 1

T T T T T i T T T '10 T T 1T V1 7 1T 7T T

~ 07 1~ 01 R

S 204 | 5101 4 §

E E 20 , -

2 40 7 ¥ 301 | -

- 60 4 1 -40 / -

g | ] g 50 ] ’,‘ ]

3 807 Q60 eee® i

-100 -70

00 05 10 15 20 00 05 10 15 20 25
[Y24L]/[covNHR-N-dSS] [Y24L])/[covNHR-SS]

Figure S3. Isothermal titration calorimetry experiments of Y24L peptide binding to the covNHR proteins. A) Y24L bind-
ing to covNHR-N-dSS and B) to covNHR-SS. The experiments were measured at 25 °C by titration of 10 uM of each
miniprotein in the cell with ~300 uM of Y24L peptide from the syringe. The upper panels show the experimental ITC
thermograms and the lower panels the normalized binding isotherms. The symbols in the lower panels correspond to the
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experimental heats normalized per mole of injected peptide and the lines represent the best fittings using a binding
model of n identical and independent sites.
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Figure S4. Sequence conservation and consensus sequence of NHR and CHR in gp41. The plots have been made with
Jalview [6] using the 2018 Compendium sequence alignment [7] from Los Alamos Sequence Database
(https://www hiv.lanl.gov).
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Characterization of the protective
antibody response induced
following vaccination or infection.

RASBOUR

Résumé

Le développement de traitement efficace n’a pas permis d‘éradiquer la pandémie provoquée par le virus de
I'immunodéficience humaine (VIH). Le développement d'un vaccin prophylactique efficace contre le VIH
représente un des axes majeurs dans la lutte contre ce virus. Différentes stratégies vaccinales ont été
développées afin d’induire une réponse immunitaire efficace contre le VIH. Cependant, de nombreuses
questions demeurent. 1) Les anticorps (Abs) inhibiteurs protecteurs peuvent-ils étre induits par vaccination ?
2) Cette réponse est-elle similaire partout dans le monde ou la variation ethnique ou géographique a-t-elle un
impact sur la réponse immunitaire et sur la protection contre I'infection ? 3) Quel est le profil de la réponse Ab
protectrice induite tét apres l'infection ?

En raison de la grande diversité des sous-types de VIH, I'induction d'Abs avec des fonctions inhibitrices dirigés
contre un large spectre de virus sera nécessaire. Les Abs neutralisants (NAbs) sont des Abs capables de protéger
les cellules contre les particules infectieuses, conduisant a I'inhibition de la réplication du VIH. Induire de tels
Abs est considéré comme le Graal. Cependant, des Nabs a large spectre sont difficiles a induire en raison de la
nécessité d’'une longue et complexe maturation de la réponse humorale et de la différentiation des
lymphocytes B en différents types et sous-types d’immunoglobulines (Ig). En plus de ces NAbs difficiles a
induire, des Ab capables d'inhiber le VIH par la fonction médiée par le domaine Fc des Abs ont été décrits. Dans
ce cas, les Abs qui reconnaissent le virus se lient également aux récepteurs Fc (FcR) a la surface des cellules
immunitaires effectrices. Cette reconnaissance active des fonctions inhibitrices des Abs médiées par les FcR.
De ce fait, le niveau d’inhibition du VIH par les Abs est également dépendant du génotype des FcR de I'héte.
En effet, un polymorphisme spécifique du FcyRIIA de génotype rs 10800309 s'est avéré significativement
augmenté dans une cohorte de patients VIH qui contrélent leur infection (cohorte contréleurs). Ce
polymorphisme s’accompagne d’une expression accrue du récepteur FcyRIl a la surface des cellules
dendritiques, suggérant un renforcement de la réponse immunitaire grace a la régulation positive du FcRII.
Nous proposons que ce polymorphisme pourrait servir de marqueur prédictif au contréle du VIH par les Abs.
Ainsi, aussi bien les types d'lg que les polymorphismes des FcR a la surface des cellules effectrices
contribueraient a la protection du VIH par les Abs.

Les approches vaccinales actuelles proposent d'induire des Nabs ainsi que des Abs inhibiteurs médiés par les
FcR. Par conséquent, la quantité et la qualité des types et sous-types d’lg induites, ainsi que des récepteurs Fc
(FcR) devront étre pris en considération. Comme ces facteurs varient selon I'ethnicité, les futurs vaccins devront
peut-étre adapter leurs stratégies a 'origine génétique de la population ciblée ainsi qu’aux VIH localement en
circulation.

L'objectif de ma these a été d'analyser la réponse immunitaire humorale, en particulier la neutralisation et
I'inhibition médiée par les domaines Fc des Abs, dans le cadre de nouvelles stratégies vaccinales, et de
décrypter l'implication de I'origine génétique dans les fonctions inhibitrices des Abs induits.
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Au cours de ma these, j’ai pu démontrer que des Nabs étaient induits lors de la phase aigué de I'infection. Ces
Ab neutralisaient de maniére spécifique différents VIH transmis/fondateur (T/F), des virus isolés trés tot apres
leur transmission. Ces résultats sont différents de ceux précédemment publiés montrant I'absence de Nabs
dans les sérums prélevés lors de la phase aigué de l'infection. Cependant les virus testés étaient des virus
primaires non T/F. La mise en évidence de NAbs induit tot aprés I'infection est trés prometteuse car elle
redonne I'espoir induire de tels Abs par vaccination.

J'ai également analysé la réponse Ab induite par différents nouveau candidats vaccins. Ces essais vaccinaux ont
été menés dans le cadre de collaboration/consortium Frangais VRI (LabEx) et Européens EHVA (Horizon 2020).
Nous avons caractérisé la réponse Ab induite.

Jobserve que,

1) la réponse Ab est tres efficace lorsque I'antigene est couplé avec un anticorps dirigé contre le DC40.
Cette construction permet de cibler les cellules dendritiques CD40+ et ainsi d’activer efficacement la réponse
immune. Un essai de vaccination de phase | est en cours en France chez des volontaires a faible risque
d’infection par le VIH. Les résultats de cet essai montrent que 'immunogene est bien toléré et qu’il induit une
réponse Ab forte.

2) la présentation de I’enveloppe du VIH dans le contexte du vecteur viral VSV (vesicular stomatitis virus)
a permis d’obtenir une réponse Ab forte et maintenue dans le temps dans un modele de petits rongeurs
(lapins).

3) Linfusion lente et maintenue de I'antigene par I'intermédiaire d’'une pompe osmotique a permis
d’augmenter la réponse Ab induite dans le modéle primate non-humain (NHP).

Enfin, j’ai participé a I'étude du rdle de I'ethnicité dans la réponse induite par vaccination. Pour cette étude,
I’essai de phase IIA HVTNO24 a été sélectionné car un protocole similaire de vaccination a été administré a des
Africains et Caucasien vivant aux USA et a des Africains vivant en Afrique du Sud. Jobserve que, a la fois
I’ethnicité (Africains versus Caucasien) et la géographie (USA versus Afrique du Sud) impacte la réponse
immune induite par vaccination.

Conclusion :

Ce travail de these a permis de caractériser de maniere fine la réponse Ab induite par de nouvelles stratégies
vaccinales actuellement en cours de développement. Il a fourni des indications sur les orientations futures et
des approches vaccinales a venir. Les prochaines étapes consisteront a combiner nos immunogénes
nouvellement développés afin d’augmenter la qualité et la quantité de la réponse Ab induite. Un effort
particulier devra étre entrepris afin améliorer la durabilité des Abs et leur reconnaissance d’un large spectre
souches virales en circulation. L'identification des Nabs contre les souches T/F apporte également des
informations sur les futures env qui devraient étre analysées en tant que nouveaux immunogenes.
L'identification de l'impact génétique sur la réponse immunitaire et des conséquences potentielles sur la
protection vaccinale devrait nous orienter vers le développement de stratégies vaccination plus «
personnalisées », en proposant des vaccinations individualisées directement adaptées a I'environnement de
I'individu.
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Résumé en anglais

According to data published by the World Health Organization (WHO) in 2021, 38.4 million people live with the
human immunodeficiency virus (HIV), and 68% of them are Africans. Besides treatment, developmenting an
effective prophylactic vaccine is crucial and urgent to combat the growing HIV pandemic. Different vaccine
strategies have been developed to induce an effective specificimmune response against HIV. However, many
guestions remain. 1) Can protective inhibitory antibodies (Abs) be induced by vaccination? 2) Is this response
similar worldwide, or does ethnic or geographic variation impact immune response and protection against
infection? 3) What is the profile of the protective Ab response induced early after infection?

To eradicate the HIV pandemic, an effective protective vaccine is needed. Yet, due to the great diversity of HIV
subtypes, the induction of Abs with inhibitory functions against a broad spectrum of circulating viruses will be
necessary. Neutralizing Abs (Nabs) are Abs capable of protecting cells against infectious particles, leading to
the inhibition of HIV replication. Inducing such Abs is considered as the Holy Grail. However, Nabs inhibiting a
broad spectrum of HIV are challenging to induce due to the requirement of long maturation of the humoral
response and to the differentiation of B cells into immunoglobulin (Ig) different types and subtypes. In addition
to these difficult-to-induce NAbs, Abs capable of inhibiting HIV through the Fc domain-mediated function of
Abs have been described. In this case, Abs need to recognize the virus via the Fab domain and to bind to Fc
receptors (FcRs) on the surface of effector immune cells via their Fc domain. This dual binding will activate FcR-
mediated inhibitory functions. Consequently, the Ab inhibition level also relies on FcR genotype of the host.
Interestingly, the specific polymorphism of FcyRIIA of genotype rs 10800309 was found to be significantly
increased in a cohort of HIV patients who control their infection (HIV controller cohort). This polymorphism is
accompanied by an increased expression of the FcyRIl receptor on the surface of dendritic cells, suggesting a
reinforcement of the immune response thanks to the upregulation of FcRIl. We, therefore, propose that this
polymorphism may serve as a predictive marker of HIV control by Abs. Thus, both Ig types and FcR
polymorphisms on the surface of effector cells could contribute to the protection of HIV by Abs. Current vaccine
approaches propose to induce Nabs as well as FcR-mediated inhibitory Abs. Therefore, the types and subtypes
of induced Igs, as well as the quantity and quality of Fc receptors (FcRs) expressed on immune cells should be
considered. As these factors vary by ethnicity, future vaccines may need to tailor their strategies to genetic
variations of the target population and adapt the immunogens to the local HIV strains in circulation.

The objective of my thesis was to analyze the humoral immune response, in particular the neutralization and
inhibition mediated by the Fc domains of Abs, in the context of new vaccine strategies and to decipher the
implication of the genetic origin in the inhibitory functions of induced Abs.

During my thesis, | demonstrated that some Nabs were induced already during the acute phase of the infection.
These Abs specifically neutralized different HIV transmitted/founder (T/F) viruses isolated very early after their
transmission. These results are different from those previously published showing the absence of Nabs in the
sera collected during the acute phase of the infection. Noteworthy, the viruses previously tested were primary
strains isolated during the chronic phase and not T/F primary viruses. The demonstration of induced NAbs
against T/F strains early after infection is very promising because it reinstates the hope of inducing such Abs by
vaccination.

| also analyzed the Ab response induced by different new vaccine candidates. These vaccine trials were
conducted within the framework of a French (LabEx) VRI and European (Horizon 2020) EHVA
collaboration/consortiums. We have characterized the Ab response induced following different immunization
strategies.

Characterization of the protective antibody response induced 300

following vaccination or infection




Resume of thesis

| observe that:

1) the Ab response is very effective when the antigen is coupled with an antibody directed against DC40. This
construction makes it possible to target dendritic cells and thus effectively activate the immune response. A
phase | vaccination trial is underway in France sponsored by the VRI (LabEx) framework in volunteers at low
risk of HIV infection. The preliminary results of this assay show that this immunogen is well tolerated and,
indeed, induces a strong Ab response.

2) the presentation of the HIV envelope in the context of the viral vector VSV (vesicular stomatitis virus) made
it possible to obtain a strong and maintained Ab response over time in a model of small rodents (rabbits)

3) The slow and sustained infusion of antigen via an osmotic pump increased the Ab response induced in the
non-human primate (NHP) model

Finally, | participated in the study of the role of ethnicity in the response induced by vaccination. For this study,
the phase [IA HVTNO24 trial was selected because a similar vaccination protocol was administered to Africans
and Caucasians living in the USA and to Africans living in South Africa. | observe that both ethnicity (Africans
versus Caucasians) and geography (USA versus South Africa) impact the immune response induced by
vaccination.

Conclusion:

This thesis work has enabled us to conduct an in-depth characterization of the Ab response induced by the new
vaccine strategies currently under development. It provided insights into future directions and upcoming
vaccine approaches. The next steps will combine our newly developed immunogens to increase the quality and
guantity of the induced Ab response. A particular effort should be made to improve the durability and breath
of the Abs induced. The identification of Nabs against T/F strains also provides information on future envs that
should be analyzed as new immunogens. Identifying the genetic impact on the immune response and the
potential consequences on vaccine protection should direct us towards developing more "personalized"
vaccination strategies by offering individualized vaccinations directly adapted to the individual's environment.
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Résumé

Différentes stratégies vaccinales ont été développées afin d’induire une réponse immunitaire efficace contre
le VIH. Cependant, de nombreuses questions demeurent. 1) Quel est le profil de la réponse Ab protectrice
induite tot aprés l'infection? 2) Des anticorps (Abs) inhibiteurs protecteurs peuvent-ils étre induits par
vaccination? 3) Cette réponse est-elle similaire partout dans le monde ou la variation ethnique ou
géographique a-t-elle un impact sur la réponse immunitaire et sur la protection contre I'infection ? Mon travail
de these montre que, 1) une réponse Ab neutralisante est détectée trés tét apres infection, 2) des
immunisations avec une enveloppe exprimée dans le contexte du vecteur viral VSV (vesicular stomatitis virus)
ou avec un antigene qui cible les cellules dendritiques via un anticorps dirigé contre le CD40 ont permis
d’obtenir une réponse Ab forte et maintenue dans le temps. De plus L’infusion lente et prolongée de I'antigene
par I'intermédiaire d’une pompe osmotique a permis d’augmenter la réponse Ab induite dans le modele
primate non-humain (NHP). 3) A la fois I'ethnicité (Africains versus Caucasien) et la géographie (USA versus
Afrique du Sud) impacte sur la réponse immune induite et donc potentiellement sur la protection vaccinale. Ce
travail de thése a permis de caractériser de maniére fine la réponse Ab induite par de nouvelles stratégies
vaccinales et démontre que d’autres facteurs impactent la réponse immune induite. Il a fourni des indications
sur les approches vaccinales a venir. Nos résultats devraient nous orienter vers le développement de stratégies
vaccination plus « personnalisées », en proposant des immunisations individualisées directement adaptées a
I'individu et a I'environnement.

Mots-clés : VIH-1, vaccin, infection, immunoglobulines, ethnicité, Ab fonctionnel

Abstract

Different vaccine strategies have been developed to induce an effective immune response against HIV.
However, many questions remain. 1) What is the profile of the protective antibody (Ab) response induced early
after infection? 2) Can protective inhibitory Abs be induced by vaccination? 3) Is this response similar around
the world or does ethnic or geographic variation impact immune response and protection against infection?
My thesis work shows that, 1) a neutralizing Ab response is detected very early after infection, 2) immunizations
with an envelope expressed in the context of the viral vector VSV (vesicular stomatitis virus) or with antigen
targeting dendritic cells via an antibody directed against CD40 allow to obtain a strong and maintained Ab
response over time. In addition, the slow and prolonged infusion of the antigen via an osmotic pump made it
possible to increase the Ab response induced in the non-human primate (NHP) model. 3) Both ethnicity
(Africans versus Caucasians) and geography (USA versus South Africa) influence the induced immune response
and therefore potentially vaccine protection. This thesis work allowed to finely characterize the Ab response
induced by new vaccine strategies and demonstrated that other factors impact the induced immune response.
It provided insights into future vaccine approaches. Our results should guide us towards the development of
more “personalized” vaccination strategies, by offering individualized immunizations directly adapted to the
individual and the environment.
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