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Résumé 
L’apprentissage profond supervisé repose largement sur une grande quantité de données étiquetées, 
souvent difficile à obtenir. L'adaptation de domaine résout ce problème en appliquant les 
connaissances acquises à partir d'un jeu de données étiqueté à un autre jeu lié, mais non ou 
faiblement étiqueté. L'adaptation de domaine hétérogène est particulièrement complexe car les 
domaines se situent dans différents espaces. Ces méthodes sont très intéressantes pour les champs 
où une variété de capteurs est utilisée (comme la télédétection), capturant des images de différentes 
modalités. Cette thèse propose des approches novatrices pour l'Adaptation de Domaine d'Images 
Hétérogènes (ADIH) basées sur l'extraction de caractéristiques invariantes de domaines. La thèse 
examine différents scénarios de supervision dans le domaine cible : non supervisé, semi-supervisé et 
avec des contraintes. Les résultats montrent que l'approche proposée surpasse de manière cohérente 
les méthodes concurrentes. 

 

 

Résumé en anglais 
Supervised deep learning heavily relies on a large amount of labelled data, often difficult to obtain. 
Domain adaptation addresses this issue by applying knowledge acquired from a labelled dataset to 
another related dataset, which is either unlabeled or sparsely labelled. Heterogeneous domain 
adaptation is particularly challenging as domains lie in different spaces. These methods are very 
interesting for the fields using a variety of sensors (such as remote sensing), capturing images of 
diverse modalities. This thesis proposes novel approaches for Heterogeneous Image Domain 
Adaptation (HIDA) based on extracting domain invariant features. The thesis considers different 
supervision scenarios in the target domain: unsupervised, semi-supervised, and with constraints. The 
results demonstrate that the proposed approach consistently outperforms competing methods. 
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Abstract

Supervised deep learning relies heavily on the existence of a large amount of labelled
data, which in many cases is difficult to obtain. Domain adaptation deals with this
problem by learning on a labelled dataset and applying that knowledge to another,
unlabelled or scarcely labelled dataset, with a related but different probability dis-
tribution. Heterogeneous domain adaptation is an especially challenging area where
domains lie in different input spaces. These methods are very interesting for the field
of remote sensing (and indeed computer vision in general), where a variety of sensors
are used, capturing images of different modalities, different spatial and spectral res-
olutions, and where labelling is a very expensive process. However, this challenging
problem is rarely addressed, the majority of existing heterogeneous domain adapta-
tion work does not use raw image data, or they rely on translation from one domain
to the other, therefore ignoring domain-invariant feature extraction approaches.

This thesis proposes novel approaches for Heterogeneous Image Domain Adap-
tation (HIDA) that are based on extracting domain invariant features using deep
adversarial learning. The thesis considers different scenarios for integrating the
supervision information in the target domain. Firstly, an unsupervised setting is
considered, in which the impact of pseudo-labelling is investigated. With two hetero-
geneous domains, however, unsupervised domain adaptation is difficult to perform,
and class-flipping is frequent. At least a small amount of labelled data is there-
fore necessary in the target domain in many cases. Therefore a semi-supervised
variant of the HIDA model is proposed. This thesis also proposes to loosen the
label requirement by labelling the target domain with must-link and cannot-link
constraints instead of class labels. The constrained variant of the HIDA model,
based on constraints, contrastive loss and learning domain invariant features, shows
that a significant performance improvement can be achieved by using a very small
number of constraints. This demonstrates that a reduced amount of information, in
the form of constraints, is as effective as giving class labels.

The models are evaluated on two heterogeneous remote sensing datasets, one be-
ing RGB, and the other multispectral, for the task of land-cover patch classification,
and also on a standard computer vision benchmark of RGB-depth map object classi-
fication. The results show that the proposed domain invariant approach consistently
outperforms the competing methods based on image-to-image/feature translation,
in both application domains.
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Chapter 1

Introduction

We live in a society of data, which has become the principal asset and an important
resource. The immense amount of data generated on an everyday basis is impossible
for humans to treat, and requires some level of automatic processing. However, the
classical algorithmic and explicit programming approach cannot provide intelligent
insight into data, that is to draw conclusions and make predictions. Artificial intel-
ligence (AI), therefore, became the focus of much research in the last decade, and
the main driving force of industry and technology.

A recent breakthrough of machine learning methods, notably the introduction
of powerful deep learning methods, led to a renewed interest in AI-based approaches
and gained much attention in the research community and real-world applications.
Machine learning is based on the idea of training a model on data to solve a certain
task. Inspired by the way the human brain works, artificial neural networks are
currently one of the most popular and most powerful algorithms available. They
are used for solving problems that require non-linear and complex hypotheses. The
recent development of hardware allowed for the training of very big neural networks
with a large number of layers, that can learn very abstract and hierarchical represen-
tations of data. The field that is concerned with training such big networks is called
deep learning (DL). Nowadays, deep learning found its application in almost every
sphere of science and technology and is constantly making breakthroughs, especially
in computer vision (object detection and recognition, image/video generation), nat-
ural language processing (translation, text analysis, chat-bots, text generation),
speech recognition, etc.

1.1 Motivation

Supervised deep learning methods rely heavily on the existence of large-scale labelled
datasets. However, reference data is often difficult and expensive to obtain. Most
of the time data points have to be labelled manually. The success of deep learning
currently lies in the continued global data growth. However, the labelling process
cannot cope with the pace of generating the data. This is especially true in the field
of remote sensing (RS) that deals with the acquisition of data about distant objects,
notably by monitoring the Earth’s surface with satellites. Satellites like Sentinel,
WorldView, Landsat etc. generate hundreds of terabytes of data on a daily basis; e.g.
Sentinel fleet acquires ca. 6TB per day, while Planet Labs’ constellation of miniature
satellites can image the whole Earth in one day, producing more than 30TB of data
per day. The labelling of such enormous amounts of data is a slow and expensive
manual process. Collecting reference data from the field may be complicated by
climate, natural disasters, conflict, etc. Moreover, the Earth’s surface is constantly
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evolving, meaning that reference data may not be reusable for images taken at a
later date.

This leads to the question — can existing labelled data be enough to provide
reliable predictions on new unlabelled data? If there is an abundance of labelled
data taken by one satellite, will the model trained on this data always work well on
new acquisitions from the same satellite? Will it be able to predict well on the data
acquired by other satellites as well? Using knowledge from labelled data seems to
be crucial in remote sensing to be able to deal with the large amounts of incoming
new data and to reduce the need for experts providing labels. This is often not
directly possible, however. If there are differences in acquisition conditions of two
datasets, deep learning methods (and machine learning methods in general) will
generalise poorly across these datasets. Existing models are specialised for the data
they are trained on, and most often cannot be applied to other datasets, even if
the data is similar and the task to be solved is the same. The reason for the poor
generalisation is domain shift. Different acquisition conditions lead to data with
different distributions. If the distribution of the dataset that the model is trained
on (training set) is different from the distribution of the dataset on which the model
will be applied (test set), there is a domain shift, and the model cannot generalise
from one domain/dataset to the other.

Some causes of domain shift in remote sensing are presented in Figure  1.1  . Im-
ages may be captured at different times of the year, and as a result, what is vegeta-
tion in one season can be covered with snow in another. A more severe domain shift
can occur when two satellites are using sensors of different resolutions. An extreme
case is shown on the right side of the figure, where urban areas from different conti-
nents differ so much that they can barely be considered as the same class. Different
sensors such as RGB, SAR, multispectral, etc. capture very different types of images.
All of these cases of shift lead to very different data distributions between datasets.
This thesis does not intend to solve all of the mentioned problems but focuses on
the domain shift between RGB and multispectral data, including data with different
resolutions, and to a lesser extent including different seasonality and locations. The
developed method could, however, be applied to other types of sensors.

To overcome the problems introduced by domain shift, the focus has turned
to transfer learning and domain adaptation (DA) techniques. Transfer learning is
a broader term and it represents studying ways in which existing trained models
can be reused for other data and tasks for which there are not sufficient labels and
therefore supervised training is not possible. Domain adaptation is a subfield of
transfer learning, which involves learning a model on one data distribution (named
source domain - typically labelled) and applying it to another, different but related
data distribution (called target domain - typically with little or no reference data)
by reducing the shift between domains. The task to be solved on the target domain
is typically the same as on the source domain. Domain adaptation methods proved
to be very successful, especially with image data, for which numerous methods have
been developed (see Chapter  2 ).

Most of the DA methods in computer vision assume RGB images in both domains
(homogeneous DA). It is not easy, however, to use such methods in remote sensing,
as remote sensing images often contain non-RGB data (infrared, radar). If, at least,
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RGB SAR Panchromatic Multispectral Hyperspectral

Different season, 
same location

Different location, 
same class

Different resolution, 
same class

Different sensors

Figure 1.1: Causes of domain shift in remote sensing — different seasons, resolution,
location, and sensors. Images taken from Google Earth, Maxar Open Data Program,
Sentinel-1, WorldView-2, EuroSAT and Indian Pines datasets.

the domains have images with the same channels, whether RGB or not, homogeneous
DA can serve as a good basis for solving temporal or geographical shifts. Sometimes,
however, the domains may not lay in the same space and may have a different
dimensionality (heterogeneous domain adaptation – HDA). This is often the case in
remote sensing where different satellites use different kinds of sensors for capturing
images. We therefore differentiate two cases of heterogeneous data in remote sensing
(which can also occur simultaneously):

• Domains having a different spatial resolution,

• Domains having different (numbers of) channels.

Depending on the height and type of the airborne sensor, the same objects can
be represented by different numbers of pixels according to the spatial resolution
(i.e. the surface covered by a pixel). For instance, at a resolution of 1 ⇥ 1m a
house covers a number of pixels, whereas at a resolution of 10 ⇥ 10m it is barely
visible as an individual object. When images have different spatial resolutions,
they could theoretically be resampled to the same resolution and homogeneous DA
used. However, due to vastly different object appearances, this is a very challenging
problem. Furthermore, different sensors can capture images of different modalities,
with non-corresponding and possibly different numbers of channels (referred to as
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spectral bands in remote sensing). Homogeneous DL domain adaptation approaches
cannot be applied here at all because their structure (number of input neurons)
is fixed, preventing images of different dimensionality from being used within the
pipeline and this is the central problem addressed in this thesis.

1.2 Remote Sensing

Remote sensing implies obtaining information about an object or area from a dis-
tance. It refers to non-invasive measurements of the surface. Most often, remote
sensing is performed with satellites observing the Earth’s surface. Depending on
the field of application, different kinds of remote sensing platforms can be used for
data acquisition. Drones, UAVs and airplanes can be used to carry sensors that take
high-resolution images of the local area. Satellites orbit at much greater heights and
have much bigger coverage of the Earth’s surface, but consequently, they capture
images at lower resolutions than airplanes.

The mentioned platforms carry aboard sensors, which in general measure the
reflectance of signals from the Earth’s surface. Depending on the manner in which
the measurement is performed, these sensors can be divided into two categories:

• active sensors,

• passive sensors.

Active sensors send out signals themselves. The signal reaches the surface and
is then reflected to the originating sensor. An example of an active sensor is a
synthetic aperture radar (SAR). Passive sensors do not send out any signal. They
instead measure the sunlight reflected from the surface. Optical sensors on Earth
observation satellites operate in this way. The difference between active and passive
sensors is shown in Figure  1.2 .

Active sensor Passive sensor

PULSE

BACKSCATTER

EMITTED 

LIGHT

REFLECTED 

LIGHT

Figure 1.2: The difference between active and passive sensors. Figure adapted from
 https://gisgeography.com/remote-sensing-earth-observation-guide/ .

Most of the time, remote sensing sensors capture the signals from the electro-
magnetic spectrum. Electromagnetic waves can range from long-wavelength radio
waves and microwaves (ranging from millimetres to kilometres), all the way to short-
wavelength X-rays and gamma rays. In between are infrared (about 700 nm–1mm),
visible light (about 400 nm–700 nm), ultraviolet waves (about 100 nm–400 nm) etc.
The scheme of the electromagnetic spectrum is shown in Figure  1.3 . Visible light

https://gisgeography.com/remote-sensing-earth-observation-guide/
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represents only a small portion of the whole spectrum that the human eye can de-
tect. For all the other wavelengths, humans need to rely on instruments to be able
to visualise them.

Visible Light

700nm 600nm 500nm 400nm

Radio waves Microwaves Infrared Ultraviolet X-rays Gamma

LONGER WAVELENGTH (meters) SHORTER

102 101 1 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13

Figure 1.3: The electromagnetic spectrum with different types of waves and
their wavelengths shown. Figure adapted from  https://www.ces.fau.edu/nasa/
module-2/radiation-sun.php .

Signals from different parts of the spectrum have different properties. Visible
light is reflected by clouds, preventing satellites from capturing images of the surface
when the sky is not clear. Radio waves used by radar can travel through clouds and
can provide very valuable information even in bad weather conditions. The drawback
however is that radar images are not nearly as clear and detailed as optical images.

Some sensors capture signals from several different intervals of wavelengths. For
each such interval, a separate image channel is created; these channels are referred
to as spectral bands. For visible light, optical sensors usually capture three bands
— red, green, and blue. Sometimes, the whole visible light spectrum is captured as
one panchromatic band. Multispectral sensors can have tens of bands, such as red,
green, blue, near-infrared (NIR), shortwave infrared (SWIR), etc. Hyperspectral
sensors use much narrower bands than multispectral and can have hundreds or even
thousands of bands.

One important characteristic of images is resolution. In remote sensing, four
types of resolution can be distinguished:

• radiometric,

• spatial,

• spectral,

• temporal

Radiometric resolution refers to the bit depth — how many bits are used to store
a pixel value. The depth of 8 bits commonly used in images signifies that a pixel in a

https://www.ces.fau.edu/nasa/module-2/radiation-sun.php
https://www.ces.fau.edu/nasa/module-2/radiation-sun.php
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band can have values ranging from 0 to 255. The images captured by the Sentinel-2
satellite can have 12-bit depth with values from 0 to 4095 but they can also have
16-bit depth with an even bigger range of values, the bit depth of Sentinel-2 images
depends on the level of correction and the atmospheric correction algorithm used.
The higher the bit depth, the finer shades can be captured by an image.

Spatial resolution is defined by the area of the Earth’s surface represented by
one pixel. High-resolution sensors can have a resolution of 10 cm, meaning that one
pixel equals an area of 10⇥ 10 cm. Lower resolution sensors could have resolutions
of approximately 10m, in which one pixel represents a 10⇥ 10m area.

Spectral resolution depends on the width of the spectral bands. The wider the
bands are, the lower the resolution. Hyperspectral images with narrow bands have
very high spectral resolution.

Finally, temporal resolution is defined by the time passed between two captures
of the same area. It usually depends on the time needed for a satellite to make a full
orbit. The more often the same area is filmed, the higher the temporal resolution
is.

Once remote sensing images are captured, they need to be interpreted. This
thesis will focus on land cover land use mapping. In this process, areas in the images
are assigned to classes such as forest, river, urban area, etc, and land cover maps are
created. Land cover is classified based on different spectral signatures. It is worth
noting that land cover land use mapping is not the only possible application that can
be conducted from remote sensing image analysis, some other notable applications
include dwelling mapping, yield estimation, degradation forest tracking, etc.

Different objects on the Earth’s surface have different chemical compositions.
This composition is responsible for what happens when the object is exposed to
sunlight. The objects can reflect some parts of the spectrum and absorb others.
Every type of material will reflect/absorb different parts of the spectrum, meaning
it will have a unique spectral signature. Human eyes can perceive the visible light
reflected from the surface of the objects. We see different colours because of different
spectral signatures. Snow reflects almost all of the visible spectrum and is therefore
white. Water bodies absorb most of the visible spectrum, and their appearance
is usually dark on remote sensing images. While a certain number of objects can
be classified solely using colours, i.e. RGB images, for some others the information
from other parts of the spectrum is very valuable. Infrared light, for example, is
very important when classifying vegetation, because vegetation reflects even more
infrared light than green light.

Remote sensing has a vast field of applications, some of them being to create
maps and digital elevation models, to monitor the environment, climate change,
deforestation, urban growth, detect changes, manage natural catastrophes, weather
forecasting, military information collection, etc.

1.3 Domain Adaptation and Transfer Learning

In classical supervised machine learning, the model is trained on the training set of
labelled data. The trained model is later used to predict the labels of unlabelled test
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data which was not used during training. It is usually assumed that the data from
the training and the test set have the same probability distribution. However, this
is not necessarily the case: labelled and unlabelled data may come from different
domains. In transfer learning and domain adaptation, these domains are usually
named source (labelled) and target domain (unlabelled). Moreover, the task solved
in one domain can differ from the task that should be solved in another domain.

Though multiple source and target domains can be used at the same time, for
the sake of simplicity, in this thesis only the case with one source and one target
domain will be considered. The goal of transfer learning is to use the knowledge
gained from solving the source task in the source domain to improve the learning
for the target task in the target domain, where these domains or tasks might differ
[  1 ].

Transfer learning can be split into categories depending on whether a difference
exists in the domains or tasks (or both). When domains and tasks are the same, the
setting in question is classical machine learning. Otherwise, the following transfer
learning settings exist:

• Inductive transfer learning: source and target tasks differ, regardless of
whether the domains differ or not. At least a small amount of labels for the
target domain is necessary, while the source domain may or may not have
labels.

• Transductive transfer learning: Source and target tasks are the same,
while domains differ. Here target data is usually not labelled at all, or there
is a very small amount of labels for them, while for the source domain, a high
amount of labelled data is available. Transductive transfer learning is also
called domain adaptation.

• Unsupervised transfer learning: Source and target tasks differ, and the
labels are not available either for the source or the target domain. Having no
labels, the focus here is on performing transfer learning when using unsuper-
vised learning methods, such as clustering and dimensionality reduction.

This thesis focuses on transductive transfer learning or domain adaptation. Here,
the task to solve is the same in both domains, e.g. for each domain it is necessary
to categorise the data into the same set of classes. What sets domains apart is
the probability distribution of the input data. These distributions are related but
still different. In computer vision, this difference can originate from factors such
as different backgrounds, lighting, image quality, different capturing angles, etc.
Domain adaptation is learning the model on the source domain and applying the
learned model to the target domain. This is, however, not possible by itself — even
if the same objects are present in both domains, if a model is simply trained on
source data, it will not perform well on target data since the aforementioned factors
will prevent the generalisation of the model across domains. The solution generally
used to solve this problem is to create a method that will align the data from the
source domain and the target domain, or their representations, into the same space,
so that they are invariant to the factors that create domain shift.
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Figure 1.4: Categorisation of domain adaptation methods according to label avail-
ability and input space of domains.

Depending on the presence of labelled and unlabelled data in the target domain,
domain adaptation can be divided into supervised, semi-supervised, and unsuper-
vised [  2 ]:

• Supervised domain adaptation – the only data present in the target do-
main is a small amount of labelled data, but this amount is not sufficient for
training a model by itself.

• Semi-supervised domain adaptation (SSDA) – in the target domain,
other than a small amount of labelled data, a larger amount of unlabelled
data is also present, allowing for a distribution of the target domain to be
learned.

• Unsupervised domain adaptation (UDA) – there are no labelled data in
the target domain, but a large amount of unlabelled data is available.

If the data of the source and the target domain lay in the same space, then the
problem is called homogeneous DA, and if the space is different, the problem is
called heterogeneous DA. In heterogeneous DA, the dimensions of the space could
differ, but not necessarily. An overview of the above categorisations of the domain
adaptation is presented in Figure  1.4 .

1.4 Contributions

This thesis proposes a novel approach to heterogeneous domain adaptation (HDA)
for image data. The methodology presented in the thesis will enable training an
image classifier in one domain, and allow it to be applied to another, close but
different domain. The method will also work with heterogeneous domains.

The originality of this work comes from developing a DA method based on
extracting domain invariant features, capable of working with two unpaired image-
data domains of different modalities. The goal of the thesis is to develop a novel
model based on learning domain invariant representations of heterogeneous domains.
Notably this approach resolves the problem of transferring knowledge between image
domains that have different numbers of channels (bands) or different resolutions.
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Figure 1.5: The proposed domain invariant feature extraction approach that can
work with images of different numbers of channels and/or different resolutions.

The developed method does not require the existence of pairs of corresponding
images in different domains. The schema of the proposed approach is presented in
Figure  1.5 .

The presented work focuses on image data. The task to be solved is image
classification. More precisely, the developed method should assign one label per
given image. It is assumed that in each image of the dataset, only one class is
present, or the objects of one class will be dominant compared to the other classes,
either by covering the majority of the image or by being positioned in the centre
of the image. If the original images contain multiple classes, they can be cut into
smaller patches before being used within the developed model. In remote sensing,
it is often the case that satellites provide images of high resolutions, representing
big areas with multiple land covers. It is a common practice when creating remote
sensing datasets that these images are cut into smaller patches containing mainly
one type of land cover, which is assigned as a patch label. The other possibility is
to assign a label to each pixel of the image and use the dataset to train a semantic
segmentation model. This is very common nowadays in remote sensing but the
labelling process for semantic segmentation is more demanding and expensive.

Furthermore, in HDA, due to the very different domain distributions, it is very
important to consider in which way target label information is integrated. The
results of HDA methods in unsupervised domain adaptation (UDA), when there are
no labels at all in the target domain, are very limited. The problem of class flipping
occurs frequently, where samples of one class in the target domain are matched
with the wrong class in the source domain. This happens because it is difficult for
algorithms to associate samples from the same class between domains when such
large domain shifts are present without any supervision. This thesis, therefore,
inspects the following means of integrating target domain supervision information:

• pseudo-labels,

• hard labels,
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• constraints.

In UDA, methods often try to compensate for the absence of supervision in
the target domain by using pseudo-labelling. This technique is based on trying to
estimate the label for at least a part of the target domain. Most often, the estimation
is done by the predictions of the classifier trained on the labelled data. Even though
pseudo-labels can often be noisy, and are only partially correct, they can still provide
means to improve an algorithm’s performance. This thesis inspects how to apply
pseudo-labelling in HDA and if it can bring benefits in such a setting.

Even when the labels are difficult to obtain, labelling at least several samples in
the target domain is a reasonable assumption, and can be another way to introduce
target supervision information. This setting is semi-supervised domain adaptation
(SSDA). It is known that existing UDA methods often do not scale well to the semi-
supervised setting. Methods specifically designed to use few target labels easily
outperform UDA methods [ 3 ]. Furthermore, many works state that the presence of
at least a small amount of reference data is required to perform HDA [ 4 ,  5 ]. All
of these reasons motivate the need for semi-supervised HDA methods specifically
developed to take advantage of existing target labels.

An alternative way to incorporate certain knowledge about the target domain,
rarely addressed in DA so far, is to use constraints. Constraints provide alternative
knowledge about the data and the task a hand in the absence of exact hard labels.
They are usually given in the form of must-link and cannot-link constraints between
pairs of samples. The constraints are most often used for constrained clustering, and
there is a growing base of literature in this field. The paradigm is gaining in popu-
larity due to the fact that it does not require classes to be defined (since constraints
only act upon pairs of samples) and offers a much weaker form of supervision than
labelled samples. It is much easier for an expert to express their preference that
two samples should be grouped together (or not), rather than defining absolute la-
bels. This is particularly useful when samples are hard to interpret and interactive,
iterative approaches are preferable. Using constraints in HDA is another original
contribution of this thesis.

Several variants of the general model proposed in this thesis can be derived based
on the way the information from the target domain is integrated:

• unsupervised, named U-HIDA;

• unsupervised with pseudo-labelling, named UPL-HIDA;

• semi-supervised based on hard labels, named SS-HIDA;

• semi-supervised based on constraints, named Constrained-HIDA.

Together they are referred to as Heterogeneous Image Domain Adaptation (HIDA)
models. Such approaches are designed to be general and therefore are not strictly
limited to satellite images, the goal is to have a method capable of working with other
kinds of heterogeneous images as well, such as RGB-depth images. The effectiveness
of the methods is therefore demonstrated in a remote sensing application and a
robotics problem.
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1.5 Thesis Outline

The remainder of this thesis is structured in the following manner:

• Chapter  2 gives an overview of the relevant domain adaptation literature, and
of existing work concerning heterogeneous domains and multi-modality, both
for remote sensing and in general computer vision.

• Chapter  3 describes the two unsupervised HDA methods developed in this
research, one based on existing homogenous DA models, and the other based
on pseudo-labelling. The chapter also provides their experimental results.

• Chapter  4 describes two semi-supervised HDA methods, one using labels as
a means of supervision, and the other using constraints. The description is
followed by the experimental results of the methods.

• Chapter  5 provides concluding remarks, summarises the contribution of the
thesis, describes the perspective of the method and potential applications, and
gives possible directions for future work.





Chapter 2

Literature Review

In this chapter, an overview of relevant domain adaptation literature is given. Nota-
tion and definitions related to transfer learning and domain adaptation are adopted
from the first extensive transfer learning survey by Pan et al. [ 1 ].

A domain D consists of a data space X and of a marginal probability distri-
bution P (X) where X = {x1, . . . , xn} 2 X , a domain is therefore denoted as
D = {X , P (X)}. A task T is also defined by the two components: a space of
labels Y and a predictive function f(·), and it is denoted as T = {Y, f(·)}. The
function f(·) is not known in advance but can be learned/approximated from the
training data {xi, yi} where xi 2 X and yi 2 Y. The function can also be considered
as a conditional probability P (y|x). Although there can exist multiple source and
target domains, for the sake of simplicity of notation, only the case of one source
domain DS = {X S

, P (X)S} and one target domain DT = {X T
, P (X)T } will be

considered.

Definition 1 (Transfer learning). Given a source domain DS , a learning task T S , a
target domain DT and a learning task T T , the goal of transfer learning is to improve
learning of the target predictive function fT (·) in DT using the knowledge from DS

and T S , where DS 6= DT or T S 6= T T .

Definition 2 (Domain adaptation). Given a source domain DS , a learning task
T S , a target domain DT and a learning task T T , the goal of transductive transfer
learning or domain adaptation is to improve learning of the target predictive function
fT (·) in DT using the knowledge from DS and T S , where DS 6= DT and T S = T T .

If the data of the source and the target domain lay in the same space (X S = X T ),
then the problem is called homogeneous DA, and if the space is different (X S 6= X T ),
the problem is called heterogeneous DA. In heterogeneous DA, the dimensions of the
space may, or may not, differ (dS 6= d

T ).
Depending on whether or not deep neural networks are used for solving the

problem, domain adaptation methods can be categorised as either deep or shallow.
What we call shallow methods now, are historically the first DA approaches created
before the advancement of deep learning, and they are mostly based on statistical
methods. The development of deep neural networks influenced the field of domain
adaptation, numerous deep DA models have been created, and nowadays shallow
methods are rarely used for complex problems.

In early (shallow) works the problem that motivated their development was re-
ferred to as covariate shift [  6 ] or sample selection bias [  7 ]. Covariate shift was
described as a problem where the input variable, also called covariant, has a differ-
ent probability distribution when choosing the parameters of the model and when
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evaluating the model. In other words, there is a shift between the training and test
sets. Sample selection bias is defined as a problem that appears when training data
is not sampled randomly, and there is a certain bias in the process of acquisition,
e.g. it is easier to gather data from certain geographical areas rather than from the
others. The model is expected, however, to be able to work on the whole probabil-
ity distribution of the data, and not just the subset, hence the difference between
training and test data distribution.

Shallow DA methods were based on techniques such as:

• reweighting of the data from one domain to match the distribution of another
[  6 ,  7 ,  8 ],

• sample selection to equalise the distributions of the domains [  9 ],

• feature augmentation to have equal corresponding features in both domains
[  10 ,  11 ,  12 ],

• domain alignment to align the spaces of feature representations of the domains
[  13 ,  14 ,  15 ],

• optimal transport to translate the data from one domain to the space of the
other domain [ 16 ,  17 ,  18 ] etc.

These methods are, however, limited, and cannot model the complex non-linear
transformations that occur in real-world problems. In the rest of the chapter, only
deep learning domain adaptation methods will be considered, more precisely image-
based DA methods which generally originate from the computer vision community.

One of the key concepts in domain adaptation is reducing the distance between
probability distributions of the source and target domains. This distance can be
explicitly defined as a part of the loss function using an appropriate measure which
should be minimised while training the model. When the distance between domains
drops to zero (or as close as possible), the probability distribution of all the data is
the same (or as similar as possible), and the model trained on the source labelled
data should give the correct predictions for the target data as well, even if the model
did not see any target labels during the training. Reducing the distance can also be
implicit, such as in adversarial methods.

In computer vision, there are typically two types of approaches for reducing the
distance between domains:

• Extracting domain invariant features,

• Translating data between domains.

In the first approach, the distance is reduced at the level of features. In DL meth-
ods, features from both domains are extracted by certain layer(s) of a deep neural
network, and guided to a new common latent space where the distance between
their distributions should become zero.

In contrast, the translation approach seeks to reduce the distance between do-
mains by translating the data from one domain directly to the other domain, so that
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the distribution of the first domain becomes equivalent to the distribution of the
other domain. The translation can be performed at the level of input data (pixels
in the case of images), or the level of extracted features.

The rest of this chapter describes the existing related methods, starting from the
most frequently used distance measures, and then continuing with a description of
domain-invariant methods for both homogeneous and heterogeneous DA, followed by
a description of the translation-based approaches. Applications in remote sensing are
presented afterwards. Finally, different types of integrating supervision information
in DA are demonstrated, including pseudo-labelling, semi-supervised DA with hard
labels, and using constraints.

2.1 Statistical Measures of Distribution Distance

Some of the most commonly used measures for domain distance are:

• Kullback-Leibler (KL) divergence [ 19 ],

• Maximum Mean Discrepancy (MMD) [ 20 ],

• Wasserstein distance [ 21 ,  22 ].

Kullback-Leibler divergence comes from information theory and is also known
as relative entropy. It represents the amount of information that is lost if one
probability distribution is approximated by the other. In practice, if a domain is
represented as a finite set of discrete samples, minimizing the KL divergence between
two domains leads to matching the mean values of two distributions. In DA, KL
divergence is used to match the means of representations of the source and target
domains learned by autoencoders [  23 ]. The disadvantage of KL divergence is that
it does not consider the variance, other statistical moments, or the shape of the
distribution function. KL divergence is not a metric, it is asymmetric and does
not fulfil the triangle inequality. Jensen-Shannon (J-S) divergence is a symmetric
variant of KL divergence, and therefore a real metric.

Maximum Mean Discrepancy is a measure very often used in domain adaptation.
It is calculated by mapping the original distributions to a new space and taking the
difference between the means in that new space. Of all the possible mappings,
the one maximising the mean difference has to be chosen. The space of mappings,
however, needs to be limited to prevent trivially finding functions that will give
arbitrarily high values for MMD. A unit ball in Reproductive Kernel Hilbert Space
(RKHS) proved to be a good choice for this space. In DA, MMD is usually calculated
on the extracted features of the source and target domain [ 24 ,  25 ]. The advantage
of MMD is that, depending on the choice of the mapping, it can match multiple raw
moments, or even all of them [  26 ], compared to the KL divergence which matches
only the means (the first raw moment).

Wasserstein (or Earth-Mover) distance comes from the theory of optimal trans-
port. The theory explores how to transform one probability distribution into another
optimally and find a plan of transport between distributions with the minimum cost.
Wasserstein distance is defined as the cost of such an optimal transportation plan,
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Figure 2.1: Deep Domain Confusion method

it represents the amount of effort needed to perform the transformation. In terms
of calculation, Wasserstein distance can be expressed in a form similar to MMD,
except that the space of mapping functions is 1-Lipschitz constrained instead of
being limited to a unit ball in RKHS like in MMD. Optimal transport found wide
applications in DA [  16 ,  18 ,  27 ], and Wasserstein distance is also very important in
adversarial learning [ 28 ,  29 ].

2.2 Domain Invariant Feature Extraction

In this section, an overview of DA work based on extracting domain-invariant fea-
tures will be presented. Firstly, the most important works in homogeneous DA
will be described, mostly the ones based on adversarial learning. Followed by an
overview of the existing work on domain-invariant methods in heterogeneous DA.

2.2.1 Homogeneous Domain Adaptation

Reducing domain distance explicitly. As stated before, a key goal in domain
adaptation is to reduce the distance between the domains’ data distributions. A
simple example of a deep image-based method that explicitly reduces this distance
is Deep Domain Confusion (DDC) [  25 ], shown in Figure  2.1 . The authors use a
pre-trained ImageNet architecture [ 30 ] and add a new adaptation layer before the
last classification layer. The features of the source and target domain extracted by
the adaptation layer are brought to the same common latent space by reducing the
MMD distance between their distributions. DDC is finetuned with the loss function
which is a sum of classification loss and MMD loss. A similar principle is commonly
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Figure 2.2: The architecture of the Domain-Adversarial Neural Network (DANN)
method. Source: [ 32 ].

used for other methods based on domain invariant feature extraction [ 24 ,  23 ].
Generative adversarial networks. The distance between two distributions

can also be reduced implicitly. Such is the case with adversarial methods, which
are inspired by Generative Adversarial Networks (GANs) [ 31 ,  28 ]. The emergence
of GANs inspired numerous domain adaptation techniques for computer vision
[  32 ,  29 ,  33 ,  34 ,  35 ]. The idea of making real and fake data indistinguishable is
naturally extended to DA where two domains should be brought to the same space.
GANs have two main components - a generator, whose role is to generate new images
from random noise; and a discriminator, which is a binary classifier whose role is to
distinguish between real and generated images. The generator is trained through an
adversarial game to generate realistically looking images such that the discriminator
can not differentiate them from the real images.

DANN. The idea of GANs inspired new methods and incited big advancements
in domain adaptation. Ganin et al. [  32 ,  36 ] were one of the first in the field to
use the principle of adversarial learning. Instead of a generator and a discriminator
their method, Domain-Adversarial Neural Network (DANN) whose architecture is
presented in Figure  2.2 , uses a feature extractor and a domain classifier. While
the feature extractor has the task of extracting domain invariant features from two
domains, the domain classifier is trained to predict to which domain the extracted
features belong. The competing goals of these two networks are integrated by in-
serting a gradient reversal layer (GRL) between them. During forward propagation,
GRL leaves the input unchanged, while during the backpropagation phase, GRL
changes the sign of the gradients before updating the feature extractor. In this way,
the domain classifier is encouraged to better differentiate domains, but at the same
time, the feature extractor is incited to make that differentiation harder. Once fea-
tures from the domains are indistinguishable, a classifier trained on features from
the labelled source domain should perform well on the features of the unlabelled
target domain.

Wasserstein GAN and WDGRL. The original GAN minimises the Jensen-



18 Chapter 2. Literature Review

Source

Target

Feature 
extractor

Latent 
space

Class 

discriminator
Classification 

Loss

Domain critic
Wasserstein 

Loss

Batch

Figure 2.3: The architecture of Wasserstein Distance Guided Representation Learn-
ing (WDGRL) method [ 29 ].

Shannon (J-S) divergence between the spaces of real and generated images [ 31 ].
However, this formulation suffered from problems such as unstable training, mode
collapse etc. These issues were addressed with the introduction of Wasserstein GAN
[  28 ], which shows that minimising the Wasserstein distance instead of J-S divergence
resolves the above-mentioned problems. Calculating Wasserstein distance is com-
putationally expensive, so it is approximated with the help of a neural network.
This network replaces the discriminator in the original GAN and is referred to as
a domain critic. The improvements of Wasserstein GAN found their application
in domain adaptation with Wasserstein Distance Guided Representation Learning
(WDGRL) [  29 ] whose architecture is presented in Figure  2.3  . WDGRL is similar
to DANN in that it also extracts domain invariant features from two domains but
instead of a domain classifier, WDGRL uses a domain critic. Through adversarial
training, the Wasserstein distance between features extracted from each domain is
minimised.

2.2.2 Heterogeneous Domain Adaptation

A large majority of DA methods for computer vision, based on domain-invariant
feature extraction are concerned with RGB domains [ 32 ,  29 ,  33 ]. Such methods,
however, cannot be directly applied to the heterogeneous domains having spaces
of different dimensions. Heterogeneous domain-invariant DA methods have been
studied in order to deal with the domains having different features, e.g. SURF and
DeCAF, of image-data [ 37 ,  38 ]. And others tackle the problem of image-text DA
[  4 ].

Projection to a common space. Li et al. [ 37 ] introduce a method capable of
working with inputs of different sizes. The original inputs are projected to the space
of the same size, then they are encoded into a shared sparse latent representation.
Features are extracted by matrix projection, rather than DL. The MMD distance
between feature distributions is reduced. The property of locality is also enforced
— neighbouring samples in the original input space should stay neighbours in the
feature space as well. High distances in the feature space between samples which are
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neighbours in the original input space are penalised. The method was evaluated in
3 adaptation scenarios: image-image, text-text, and text-image classification. For
the image-image case, SURF and DeCAF features were used.

A similar, but DL-based, approach is proposed by Wang et al. [ 38 ]. The
method is named Heterogeneous Domain Adaptation Network based on Autoen-
coder (HDANA). Projection to the space of the same size is achieved by autoen-
coders and domain divergence is reduced by minimising MMD distance. The local
structure of the data is preserved using a manifold alignment term that keeps neigh-
bouring same-class samples close in the feature space. As such, this method requires
a small amount of labelled data in the target domain. Pseudo-labels are also em-
ployed to augment the number of target labels.

Weakly shared layers. Deep Transfer Network (DTN) [  4 ] is a DL approach
whose architecture has separate input branches and several shared layers. But DTN
is specifically designed for transferring from textual to image data. Shared layers are
weakly shared, meaning that they can have different weights, but the difference in
weights is penalised by a regulariser. This enforces the extraction of shared features
but also allows domain-specific traits to be retained, which might be important with
data coming from domains with such different natures as text and images. DTN
assumes that there is a co-occurrence set of paired text and image data, which
simplifies the discovery of relations between domains and also needs at least a small
amount of labelled target data. The method is evaluated on image features extracted
from AlexNet.

Aligning centroids. In addition to learning a domain-invariant feature sub-
space, more recent HDA methods [  39 ,  40 ] started exploring the alignment of the
class centroids to improve discriminability in the target domain. Yao et al. [  39 ] pro-
pose enlarging the distance between the class centroids while using pseudo-labels to
include the unlabelled data in the process. Li et al. [ 40 ] state that semantic proper-
ties in data are under-explored and the authors, therefore, look for the correlations
between classes and align the class centroids across domains while preserving these
correlations.

2.3 Translation Methods

In this section, methods based on translating the samples of one domain to the
other will be presented. Some methods are based on optimal transport for both
homogeneous and heterogeneous data. The others perform translation at the level
of extracted features. Finally, the usage of adversarial image-to-image translation
architectures is also reviewed.

Optimal transport. There are several non-DL approaches to DA based on
Wasserstein distance and optimal transport [  16 ,  18 ]. Here, the idea is to ‘trans-
port’ the source distribution into the target distribution’s space, which reduces the
Wasserstein distance between the distributions to zero. As such, the transporta-
tion moves the input data and the classifier can be trained on the transported
labelled source data in target domain space [  16 ]. Nevertheless, Joint Distribution
Optimal Transport (JDOT) [  18 ] shows that it is better to learn transportation and
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classification simultaneously. This is achieved by transporting the joint probability
distribution of the input data and labels. Deep Joint Distribution Optimal Trans-
port (DeepJDOT) [  27 ] extends this to combine JDOT with deep learning, in which
optimal transport is performed on the feature representations from the layers of a
convolutional neural network. The training process alternates between calculating
the optimal transport from source to target in each minibatch and training the
convolutional classifier on the transported source data in the target space.

The previously described methods are intended for homogeneous domains, but
optimal transport also found its application in HDA. Yan et al. [  41 ] present a semi-
supervised shallow method using Gromov-Wasserstein (GW) distance to find the
transport plan. GW distance is convenient for heterogeneous domains, as it is only
based on preserving the distance between samples of the same domain when trans-
porting, thus domains can have different dimensionality. Labels are incorporated
into the transport phase by matching source and target class centroids. The method
is evaluated on SURF and DeCAF image features. Vayer et al. [ 42 ] improve upon
GW distance by introducing a co-optimal transport (COOT) measure, which does
not only take into account the correspondence between samples but also the re-
lations between features. Two transports are learned simultaneously, one for the
samples, and one for the features. COOT can be used as both an unsupervised
and semi-supervised method, and it is evaluated on DeCAF and GoogleNet image
features. Though very promising for HDA, these methods cannot be applied to raw
image data.

Translation at the feature level. Transfer Neural Trees (TNT) [ 5 ] is a deep
learning HDA method based on feature translation. It works in a semi-supervised
manner since it requires a small amount of labelled data in the target domain. Sim-
ilarly to the already mentioned DTN architecture [ 4 ], TNT has two input branches
to handle inputs of different sizes. These branches are followed by a Neural Decision
Forest for label prediction. The source input branch and decision forest are first
trained (on source data). They are then fixed, and the target branch is trained
to adjust the extracted target features to the already trained classifier while giving
correct predictions for the labelled subset of the target domain. Unlike DTN, TNT
does not require a co-occurrence set of paired data in two domains. TNT is evalu-
ated for image-image adaptation but, as with previous methods, DeCAF and SURF
features were used.

An example of an adversarial method based on feature translation primarily
designed for homogeneous data but which could be used for heterogeneous image
domain adaptation is Adversarial Discriminative Domain Adaptation (ADDA) [  34 ].
Similarly to TNT, ADDA uses separate branches for the source and target data.
The training algorithm is also very similar to TNT, except that a softmax layer
is used as a classifier instead of a neural forest, and that the domain difference
is reduced in an adversarial manner by using a domain classifier. Contrary to all
previously described HDA methods, ADDA can be used with raw-image data of
different modalities, thanks to separate convolutional input branches for source and
target domains. It is evaluated on the cross-modal case of adaptation between RGB
and depth images. There is, however, a limitation, the input spaces of the domains
have to be of the same dimensionality, constraining the application field to those
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in which image modalities have the same number of channels. The 3-channel HHA
encoding [ 43 ] was, therefore, used for the depth images to match the 3-channel RGB
images.

Image-to-image architectures. Image-to-Image translation GANs [  44 ,  45 ] are
a group of methods that can translate images from one domain to another at the
pixel level by using adversarial learning. These methods are very popular for style
transfer and can generate realistic images of high visual quality. The potential of
image-to-image architectures in domain adaptation is obvious, translating from one
domain to the other is effectively reducing the domain distance, and the powerful
GAN-based models allow for working with raw images. It should be noted, how-
ever, that training deep architectures for the translation on the level of pixels is
computationally expensive.

Even though image-to-image translation GANs are mostly meant to work with
homogeneous domains, often there is no limit on the image type, therefore they hold
the potential to translate images between domains of different dimensionality. One
of the most famous architectures is CycleGAN [ 44 ]. Unlike many similar methods,
CycleGAN does not require matched pairs between domains. The network consists
of two generators and two discriminators and is trained in an adversarial manner to
translate both from the source domain to the target, and vice-versa. The success of
CycleGAN lies in its cycle consistency loss — images translated from one domain
to the other have to be correctly translated back by the opposing generator. Thus
generators are forced to be consistent with each other, and the structure and salient
information are preserved during translation. It is worth noting that technically,
CycleGAN can work with heterogeneous datasets of different dimensionality, but in
that case one of the terms in CycleGAN’s loss function—identity loss—needs to be
removed.

Hoffman et al. successfully applied CycleGAN to DA with RGB images [ 35 ].
Their method, CyCADA, performs both pixel-level and feature-level adaptation so
that both visual content and semantic knowledge are taken into account. However,
the introduced semantic loss prevents this method from being used in HDA. The
semantic loss uses a pre-trained source classifier as a noisy labeller for the target
data, it, therefore, cannot work with domains of different dimensionality.

2.4 Remote Sensing

Transfer learning. Transfer learning in remote sensing is a much more difficult
task when compared to computer vision. For many computer vision object classifica-
tion datasets, models pre-trained on ImageNet give transferable features. However,
there is no equivalent widely adopted dataset in remote sensing with the variety of
pre-trained models for transfer learning, though several large-scale curated remote
sensing datasets were collected over the past few years [ 46 ,  47 ].

Neumann et al. gave an interesting study [  48 ] on transfer learning across multiple
remote sensing datasets. The authors pre-trained a model on a source dataset and
fine-tuned it on target data, this achieved state-of-the-art results when using fully
labelled target datasets, and also achieved competitive results when using a low
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amount of labelled target training samples. Nevertheless, the approach is meant to
work with RGB datasets only, and cannot be applied in the same manner to data
with > 3 and/or non-RGB bands.

SemI2I. Image-to-image translation methods are often used in remote sensing
when working with data acquired by different satellites. Tasar et al. propose an
approach that uses image-to-image translation for domain adaptation for the task
of semantic segmentation of remote sensing images [ 49 ]. Source images are trans-
lated to the target space by an image-to-image architecture named SemI2I, and
those translated images, with their ground truth data, are used to train a semantic
segmentation model in the target space. SemI2I uses the notion of cycle consistency
as in CycleGAN but is based on autoencoders and cross-reconstruction. One au-
toencoder is trained for the source and another for the target domain. Then, the
encoded embedding of the source domain has its distribution changed to resemble
the distribution of the target domain’s embedding. This altered embedding is passed
through the decoder of the target autoencoder, thus generating the image with the
target domain style. The whole approach is evaluated on two RGB domains with
images from different cities.

Optical-SAR translation. Other than translating between two RGB domains,
some attempts have been made to use image-to-image translation models for differ-
ent modalities in remote sensing. CycleGAN has been used for translating between
optical and SAR images [  50 ]. Optical images refer to images with visible, infrared,
and short-infrared spectral bands. They can include RGB, multispectral, hyperspec-
tral, panchromatic etc. Conditional GANs have been used for the same purpose [ 51 ],
deep features are then used from a SAR-to-optical generator to perform semantic
segmentation of SAR images. This method proved very useful when the amount of
labelled SAR data is low. Combining the previous two approaches, deep features of
the CycleGAN generator have also been used in change detection [  52 ]. All of these
works agree that the problem of optical-SAR translation is suboptimal and ill-posed.
The translations are, therefore, not of high visual quality since the distributions of
original and translated images are not entirely matched, and the potential to per-
form domain adaptation is very limited. Moreover, Ley et al. [  51 ] had to use a subset
of paired optical-SAR data in order to be able to perform semantic segmentation in
the target SAR domain. Despite limitations, the task of an optical-SAR translation
turns out to be very useful as a proxy task, especially for change detection [ 52 ], as it
helps with the global understanding of the image, and provides meaningful semantic
features for differentiating between land cover classes.

Semantic segmentation. If the translation between very different modalities
(such as optical and SAR) is challenging and limited, it could be a somewhat easier
task for more similar modalities e.g. two optical sensors. There have been works
on DA for the semantic segmentation of land cover maps using data from different
optical sensors in different domains [ 53 ,  54 ]. In one case [ 53 ], a CycleGAN-like
architecture was used to translate from the source to the target domain, and then a
semantic segmentation model trained on source images was fine-tuned on the same
images translated to the target style. However, though the spectral bands may
be different across domains, their number still has to be the same. In the other
case [  54 ], labelled segmentation masks are needed in the target domain, and these



2.5. Integration of Supervision Information 23

(segmentation masks) are used as an intermediate space during the translation from
the target domain to the source domain. The existence of segmentation masks for
the whole target training set is a requirement that is not always possible to fulfil.
Moreover, this approach does not extend to classification.

Different resolution. In order to handle the cross-sensor images of different
spatial resolutions, the LoveCS framework by Wang et al. [  55 ] learn multi-scale
features. The framework is composed of an encoder-decoder network with skip
connections, where outputs from every encoder block are fed to and fused by the
decoder with cross-scale layers. Spectral differences between the different sensors
are addressed by introducing cross-sensor normalisation which replaces batch nor-
malisation. Pseudo-labelling is also adjusted to the setting of different resolutions,
this is achieved by augmenting the target images to multiple scales and fusing the
predictions. The model is evaluated on aerial and satellite images. Even though
LoveCS is able to handle images with different resolutions acquired by different
types of sensors, it is used exclusively on RGB data in both domains and it cannot
be applied to domains with different numbers of channels.

CycleGAN for HDA. Voreiter et al. [  56 ] propose a method for image classifi-
cation which is not limited to having domains with the same number of channels.
Moreover, it is specifically made to handle remote sensing datasets of different res-
olutions. The authors use a variant of CycleGAN, in which the generator for super-
resolution from SRGAN [  57 ] is used to handle the image resizing operation during
translation. After CycleGAN is trained, it is used for translating images from the
target to the source domain. Translated images are assigned pseudo-labels with a
pre-trained source classifier, which are then used for training the final classifier in the
target space. The method can be used for both unsupervised and semi-supervised
HDA.

Data fusion. It is worth noting that the majority of existing works on different
modalities in the remote sensing community have focused on data fusion [ 58 ] where
different domains have corresponding paired images. The information from domains
is complementary here, it is used together to solve a certain task, and the methods
look for the best ways to fuse the information, which can be done at the input level
(early fusion) or the feature level (late fusion). The benefit of data fusion is the
ability to take advantage of each modality. Optical images provide a lot of detail
and are the best choice for classifying land cover. Optical waves, however, cannot
penetrate the clouds, but radar waves can. SAR images of the Earth’s surface
can be captured in any weather conditions and provide different information from
the optical images, they, therefore, complement optical images well. Data fusion
methodologies are not useful in heterogeneous domain adaptation when paired data
is not available.

2.5 Integration of Supervision Information

2.5.1 Pseudo-Labelling

As mentioned before, unsupervised heterogeneous DA models achieve very limited
results. When there are no labels available in the target domain, auxiliary pseudo-
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labels may provide some improvement. It is, therefore, necessary to study the
pseudo-labelling techniques in domain adaptation. Numerous such methods exist in
homogeneous DA.

The idea of pseudo-labelling, which is also called self-training, comes from the
field of semi-supervised learning, where only a limited amount of labelled data is
available, but there is an abundance of unlabelled data that algorithms can use.
The concept naturally extends to domain adaptation.

The simplest form of pseudo-labelling is to use a classifier trained on the labelled
data to give predictions for the unlabelled data. The predictions are turned into one-
hot labels, and the class with the highest predicted probability is chosen as a pseudo-
label. The obtained pseudo-labels are then integrated into the learning process,
the source classifier is trained on both labels and pseudo-labels in the subsequent
epochs [ 59 ]. The reason why pseudo-labelling works is entropy regularisation. High
entropy in the data distribution occurs because the classes overlap and the model
predictions are ambiguous. Entropy regularisation occurs because converting the
predictions of unlabelled samples into one-hot labels will force the model to predict
them with high confidence, which in turn favours grouping the unlabelled samples
into clusters/classes with low-density separation between them, lowering entropy.
Other commonly used self-training strategies are retaining only the most confident
pseudo-labels, i.e. those with the highest probability at the output, and progressively
adding more pseudo-labels during training as the model gradually generalises to
unlabelled data [  60 ].

Pseudo-labels can be unreliable, a classifier trained on labelled data may not
always give correct predictions for the unlabelled data. Incorrect pseudo-labels can
cause overconfident wrong predictions, and hurt training performance. In order to
overcome these issues, techniques like soft pseudo-labelling [  61 ] or co-training can be
used [  62 ,  63 ]. Zou et al. [  61 ] propose using soft pseudo-labels, where a pseudo-label
is a continuous variable which represents the probability distribution, contrary to
the discrete hard labels. This approach accounts for uncertainty in the predictions.
Another strategy is co-training of two classifiers with different viewpoints [  62 ,  63 ].
The two classifiers have to agree in order for the pseudo-label to be retained. A
different viewpoint is imposed by dividing the features into two disjoint partitions
and training a classifier on each. The paradigm of co-training is further extended
into tri-training for domain adaptation [  64 ], where three classifiers are used, two
for pseudo-labelling, and the third that is target-specific and trained exclusively on
pseudo-labelled target data. A pseudo-label is retained if the first two classifiers
agree on the label prediction and if the prediction is confident, i.e. the assigned
probability for one class is higher than the predefined threshold.

Many recent pseudo-labelling methods are based on the FixMatch [ 65 ] approach,
which is based on augmentation and consistency regularisation. When generating
pseudo-labels, weakly augmented unlabelled samples are fed to the model and only
the pseudo-labels with a prediction confidence higher than a threshold are conserved.
Furthermore, consistency is imposed by forcing the model to give the same prediction
as the pseudo-label when fed a strongly augmented version of the sample. Another
recent and widely used approach is the student-teacher paradigm [ 66 ]. A teacher
network is trained on labelled data and serves to generate pseudo-labels, which are
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then filtered according to confidence but keep the number of samples for each class
balanced. The other network called the student, is then trained on both labelled and
pseudo-labelled data, with injected noise for stronger generalisation. Afterwards,
the student network becomes a teacher, relabels unlabelled data, and a new student
network is trained. The process is repeated iteratively.

All of the mentioned pseudo-labelling techniques assume that labelled and un-
labelled data are of the same dimension. In heterogeneous domain adaptation, this
is often not the case, and unlabelled data cannot be fed to the classifier trained on
the labelled data. The unlabelled data from the target domain, therefore, needs to
be projected to the space where it will have the same size as the labelled source
data, before applying pseudo-labelling methods. There are two ways pseudo-labels
can be obtained in HDA:

• Learning a common domain-invariant feature space, then feeding the features
of target unlabelled data to the classifier trained on labelled data.

• Translating the target data to the space of the source domain, then feeding it
to the source classifier.

The first case is used in some domain-invariant HDA methods. The model
HDANA [  38 ] uses a simple pseudo-labelling scheme by assigning hard labels to the
unlabelled target data using the source classifier. Yao et al. [ 39 ] use soft labels
instead of hard ones, they choose the most confident predictions, and gradually
increase the number of pseudo-labels as the predictions on target become more and
more confident. Li et al. [ 40 ] also use soft labels, but the refinement of pseudo-labels
is done according to the geometrical similarity with the class centroids.

CycleGAN for HDA method [ 56 ] is representative of the second case. After
translation, pseudo-labels are assigned based on the source classifier predictions,
and a new target classifier is trained on the pseudo-labels.

2.5.2 Semi-Supervised Domain Adaptation

In the literature, unsupervised domain adaptation is addressed more often than semi-
supervised domain adaptation. However, not all UDA methods can be extended to
SSDA learning task, and for the ones that can, it was shown that they do not
scale well to the semi-supervised setting [ 3 ]. It would be expected that adding a
small portion of the labelled target data to the training process of a UDA method
would improve performance, however, UDA methods trained in this manner struggle
to outperform simple baselines that use the same small amount of labelled target
data (in addition to the source data) without domain alignment. Furthermore,
methods that are specifically designed to use the available (few) target labels [ 3 ]
easily outperform UDA methods. This shows that there is a need for developing
methods specifically tailored for SSDA.

Saito et al. [ 3 ] propose the minimax entropy (MME) method. This approach
calculates the prototypes of the class based on the labelled data (both from the
source and the target domain). The class prototypes are, however, dominated by
source examples, and they need to be moved towards the target distribution. This
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is done by entropy maximisation w.r.t. the classifier — the higher the entropy, the
less the prototypes can be distinguished from the target samples. At the same time,
in order to improve the discriminative properties of the target features, entropy
is minimised w.r.t. the feature extractor, which will cluster features around the
prototypes. The idea is further extended by Qin et al. [  67 ]. Since the decision
boundary is biased to the source domain, moving prototypes from MME is replaced
by scattering the source features. Target features are still clustered by minimising
entropy, but now they are surrounded by scattered source features, which prevents
the decision boundary from passing through the high-density target regions.

Yang et al. propose an approach named Deep Co-training with Task decomposi-
tion (DeCoTa) [  68 ] in which the problem of semi-supervised DA is decomposed into
two tasks:

• Unsupervised DA on source labelled and target unlabelled data,

• Semi-supervised learning on target labelled and unlabelled data.

The authors train two separate classifiers for these tasks and employ co-training.
The classifiers have different views of the data, they are therefore complementary
and can teach each other. Each classifier provides pseudo-labels based on high-
confidence predictions, and these pseudo-labels help the other classifier to improve.

Another work [  69 ] points out the problem of intra-domain discrepancy in the
target domain. SSDA algorithms tend to align features of the labelled target data
with the source data, separating it from the unlabelled portion of the target dis-
tribution. The solution proposed is an attraction-perturbation-exploration scheme.
Unlabelled target data should be attracted to the labelled data, both labelled and
unlabelled portions are perturbed to get into intermediate space, but at the same
time, class prototypes are used to preserve the discrimination capability.

All of the mentioned works encourage developing methods targeted specifically
for SSDA (MME [  3 ], UODA [ 67 ], DeCoTa [ 68 ], attraction-perturbation-exploration
[  69 ]) because they can make use of labelled target data better than extending UDA
methods to SSDA (as shown by Saito et al. [  3 ]) but also because the issues introduced
by SSDA are different from those in UDA (class prototypes dominated by source
examples, decision boundary biased to the source domain, unlabelled portion of the
target distribution separated) and need to be specifically addressed. Also, many
HDA methods require the presence of several labelled target samples, motivating
the need to develop semi-supervised DA methods for heterogeneous domains as well.

2.5.3 Constraints

When hard, explicit labels in the target domain are not available, there are still other
means of supervision, and certain knowledge about the domain might be available
in a different form. One such idea comes from the field of constrained clustering.
Wagstaff et al. [ 70 ] propose incorporating background knowledge about the data
into the clustering process in the form of instance-level constraints. The authors
develop COP-KMEANS, a constrained clustering algorithm where constraints on
pairs of data samples are used to guide the clustering. These constraints can come
in two forms:
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Must-link constraints state that the pair of samples should belong to the same
cluster.

Cannot-link constraints state that the pair of samples should not belong to the
same cluster.

Enforcing must-link and cannot-link constraints in COP-KMEANS is easy to im-
plement. The COP-KMEANS brings only one modification to the original k-means
algorithm — if an assignment of a sample to the closest cluster violates the con-
straint, the sample will not be placed in that cluster.

Zhang et al. propose the deep constrained clustering framework [  71 ,  72 ]. Inspired
by the works on deep clustering such as DEC [  73 ], this framework takes advantage
of the benefits of deep learning to learn embedding features and clustering in an end-
to-end manner. The model should output the probabilities of a sample belonging
to a certain cluster in the same manner as deep classification models do for classes.
Pairwise constraints are enforced through the cross-entropy loss function — a pair
under a must-link constraint is penalised if the cluster prediction for two samples
differs, and vice-versa for a pair under a cannot-link constraint. The framework
also allows for the use of different forms of constraints. The examples are specify-
ing instance weight, using triplet in addition to pairwise constraints, cluster level
constraints such as cluster size, etc.

Contrastive loss is often used with pair-wise constraints, for example in face
recognition [  74 ]. Its simple formula pushes must-link pairs closer in latent space,
and cannot-link pairs farther apart. Contrastive learning is therefore a natural
choice when learning features for constrained clustering. Hsu et al. used contrastive
KL loss on logits of their neural network for constrained clustering [ 75 ].

Constraints found their application in homogeneous DA. Liu et al. [  76 ] pose the
problem of unsupervised DA as semi-supervised constrained clustering with missing
target labels. The source labels are used to create partition-level constraints and
the samples with the same label are forced to stay in the same partition during
clustering. Such an approach preserves the structure of the source domain in the
projected common space. This is especially useful in multi-source DA since it allows
for preserving the structure of multiple domains. The work, however, does not
explore how to use knowledge or preserve the structure in the target domain.

An interesting SSDA work proposes the adversarial adaptive clustering loss [  77 ].
The unlabelled target samples are assigned pairwise pseudo-constraints based on
their similarity to facilitate the clustering process. The training is then guided by
both real constraints deduced from labels, and pseudo-constraints. The proposed
loss function enforces grouping target samples into clusters and aligning those clus-
ters across domains in an adversarial manner.

Sometimes enforcing each and every available constraint can diminish perfor-
mance, e.g. respecting a must-link constraint on two distant samples can make it
difficult to form a correct cluster. Soft-constrained clustering is proposed in such
cases [  78 ], which allows constraints to be violated. The authors propose an SSDA
method with soft constraints based on target labels. Another contribution of the
work is to use the information about the proportion of the classes in the target
domains to affect the size of the clusters. This is very important for problems where
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Table 2.1: Overview of existing methods and where the HIDA-based approaches fit
into the categorisation.

DA Homogenous Heterogeneous

Vectorial Image-Text Image

Same Channel # Different Channel #

Semantic
Segmenta-

tion

Image Clas-
sification

Domain
Invariant

DANN [ 32 ]
WDGRL [  29 ] HDANA [  38 ] DTN [ 4 ] LoveCS [  55 ] HIDA

models

Translation
OT [  16 ,  27 ]

CyCADA [  35 ]
SemI2I [  49 ]

GW [ 41 ]
COOT [ 42 ]
TNT [ 5 ]

TNT [  5 ]
ADDA [  34 ]
Benjdira
et al. [ 53 ]

Benjdira
et al. [ 54 ]

CycleGAN
for

HDA [  56 ]

classes are highly imbalanced, like in medical imaging [ 78 ] and remote sensing. The
constraints included, however, are based on the labels in the target domain that are
already used by the algorithm, with the sole purpose of preserving the structure,
and they do not introduce any new knowledge about the target domain.

An example of clustering and contrastive loss being used together in DA is the
Contrastive Adaptation Network (CAN) [  79 ]. Here, the domains are aligned by
reducing a novel Contrastive Domain Discrepancy metric, which combines MMD
distance and contrastive loss. While MMD globally aligns domains, the contrastive
loss preserves the structure of the target domain. The target domain is pseudo-
labelled by clustering at each epoch, and the most confident samples are chosen to
apply the contrastive loss.

2.6 Discussion

Table  2.1  gives an overview of the approaches described in this chapter. As pre-
viously demonstrated, existing work on domain adaptation can be split into two
groups: methods based on domain-invariant feature extraction, and methods based
on translation. In homogeneous DA both approaches are widely used on raw image
data. On the other hand, the majority of existing work on heterogeneous DA does
not use image data. Existing heterogeneous DA methods for computer vision focus
on adapting between vectorial features (tabular data) extracted from the images of
different sizes, such as between SURF and DeCAF [  37 ,  38 ,  39 ,  40 ,  41 ,  5 ] and DeCAF
and ImageNet features [  42 ,  40 ], or on adapting from image to text data [  4 ,  5 ,  37 ,  40 ].

There are some HDA methods capable of working with raw image data, but
most of them have limitations. Some can handle images of different modalities,
but assume the same number of channels in the domains, like ADDA [ 34 ], LoveCS
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[  55 ], and the work of Benjdira et al. [  53 ]. The others are designed only for semantic
segmentation [ 54 ]. Some, like the LoveCS framework [  55 ], can work with domains of
different resolutions, but the number of channels again has to be the same. Finally,
image classification in remote sensing with domains having different resolutions and
different numbers of channels can be handled by CycleGAN for HDA [  56 ].

Almost all of the HDA methods for raw image data are based on translating data
from one domain to the other, either in pixel space (image-to-image) [  56 ,  53 ,  54 ],
or in feature space [  34 ], therefore ignoring the potential of domain-invariant feature
extraction approaches. When trained in this manner, the resulting models are only
applicable to the target domain. Since the target data’s distribution is made to
match the source’s, they are bound to either simplify or invent the difference between
domains.

Domain-invariant feature extraction approaches are widely and successfully used
in homogeneous DA, therefore their potential should also be explored in heteroge-
neous DA. And although domain-invariant HDA methods exist, all of them are
evaluated on tabular data. Raw images contain more information than extracted
SURF features, and ImageNet models can extract features only from RGB images. It
is, therefore, very important to explore image-based domain-invariant HDA meth-
ods, especially in fields such as remote sensing, to be able to use the full spatial
and spectral information provided by remote sensing images. Table  2.1 , however,
clearly presents that there is a lack of research in the development of HDA methods
for image data based on extracting domain-invariant features, there is no domain-
invariant method adept at handling images with different numbers of channels in
different domains, neither for image classification nor semantic segmentation. Even
LoveCS [  55 ], the only existing domain-invariant method for heterogeneous image
data, is evaluated on 2 RGB domains and is meant only for images with different
resolutions. It does not even handle different modalities, and different spectral bands
across domains, contrary to ADDA [ 34 ] and the work of Benjdira et al. [ 53 ,  54 ].

The existing HDA methods do provide some interesting ideas like projecting
inputs to a shared space, in which features of both domains will be of the same size.
They, however, have certain limitations. The method of Li et al. [ 37 ] is shallow,
while a deep learning approach is required to successfully perform DA with raw-
image data. Both Li et al. [ 37 ] and Wang et al. [ 38 ] rely on preserving the distance
between neighbouring samples when projecting from input to feature space. This is,
however, not an easy task when inputs are raw images. The dimensionality of the
input space is too big, with a lot of redundant information, rendering the distance
measure less meaningful. The method also requires the existence of a subset of paired
data in both domains, which is not always available. Finally, DTN [ 4 ] is specifically
tailored for DA between image and text domains, and as such not applicable to two
raw-image domains. The ideas of projecting to a shared space with autoencoders,
or with weakly shared layers, are however certainly something worth considering.
Recently, growing attention has been given to exploiting pseudo-labels, and aligning
class centroids in the target domain [ 39 ,  40 ].
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2.7 Conclusions

This chapter reviewed the related literature, with special attention to image-based
HDA methods, and methods applied to remote sensing. As demonstrated, there
is a lack of development in domain-invariant methods for image data, especially
for domains with different numbers of channels. This thesis aims to deal with this
unexplored part of the research in heterogeneous DA. It therefore introduces Het-
erogeneous Image Domain Adaptation (HIDA) models, based on extracting domain-
invariant features from the image data. The proposed approach is inspired by homo-
geneous DA methods such as DANN [  32 ], WDGRL [  29 ], and DSN [ 33 ] which extract
domain invariant features, but are limited to working with homogeneous domains.

Table  2.1 shows the positioning of the HIDA-based models proposed in this thesis
compared to existing models. As can be seen, the proposed HIDA approaches are
the first attempt at creating an HDA domain invariant method capable of working
on raw image data using images of different modalities.

Methods like DANN [ 32 ], DSN [ 33 ] and ADDA [ 34 ] use a domain classifier to
extract domain-invariant features by reducing the Jensen–Shannon (J-S) divergence
between them. Another possibility is to use domain critic like in WDGRL [ 29 ].
This component reduces the Wasserstein distance, which is proven to have better
properties than J-S divergence [  28 ], its use will therefore be investigated in this
thesis.

As stated before, the existing work on different modalities in remote sensing
has focused on data fusion [  58 ] where different domains have corresponding paired
images. In the proposed work, however, such a constraint is not enforced, and
therefore the aim is to use datasets with completely independent, unpaired images,
possibly taken from different parts of the world, therefore, dealing with multiple
sources of domain shift simultaneously.

This thesis proposes variants of the HIDA models for several different scenar-
ios of supervision – semi-supervised SS-HIDA, constraint-based Constrained-HIDA,
unsupervised U-HIDA, and unsupervised pseudo-labelled UPL-HIDA. Since HDA
problems have large domain shifts, it is very important to consider a semi-supervised
DA setting since this shift sometimes cannot be resolved without at least a small
amount of labels in the target domain. Another important aspect is that SSDA
methods can take advantage of existing target labelled data better than simply ex-
tending UDA methods, so it makes sense to have a separate SSDA variant. To relax
labelling requirements, using constraints instead of labels in the target domain is
also considered, which is a novel concept for HDA. Finally, if there is no supervision
available in the target domain, pseudo-labels can be used to improve performance
in the challenging unsupervised HDA setting.



Chapter 3

Unsupervised Heterogeneous

Domain Adaptation Methods

Domain adaptation and transfer learning are much more difficult tasks in remote
sensing than in common computer vision tasks. In computer vision, ImageNet
pre-trained networks can be finetuned to solve a new task with very little labelled
data. To inspect the potential of transferring the knowledge from ImageNet to a
remote sensing dataset, the following experiment is performed — data from two
common computer vision benchmarks and from two remote sensing datasets are fed
to the ResNet network, and the features before the classification layer are extracted.
The Office31 Amazon and Office31 webcam computer vision datasets [ 80 ] are used,
which contain images of products on the Amazon website and images of the same
items in indoor environments. For the remote sensing datasets, the high-resolution
RESISC45 and low-resolution EuroSAT RGB datasets are used. From each dataset,
ten classes were chosen randomly.

Figure  3.1  presents one subplot for the features of each dataset individually
and the features of all datasets together (bottom subfigure). It can be seen that
the classes of both of the Office datasets are well separated in the feature space.
Even though the ResNet model was trained on ImageNet data, it still provides good
features for other computer vision datasets. On the contrary, the features extracted
from the remote sensing datasets result in overlapping classes. The bottom subplot
of Figure  3.1 demonstrates that the remote sensing datasets are located in a much
smaller part of the feature space than the Office datasets, they are condensed and
do not form distinct clusters. As such, ImageNet does not transfer to these remote
sensing datasets well. Moreover, there is no widely adopted equivalent to ImageNet
in remote sensing (though very recently several promising foundational models like
RingMo [ 81 ] and Satlas [ 82 ] were developed). All of this demonstrates the difficulties
of transfer learning in remote sensing compared to computer vision.

Domain adaptation in remote sensing is even more challenging when working
with different data modalities, particularly when there are no labels available in the
target domain (unsupervised heterogeneous domain adaptation). The domain shift
is large, making it very difficult to find correspondences between domains without
any supervision in the target domain.

The existing HDA methods mostly focus on tabular data. Image data is ad-
dressed less often, and these methods are mostly based on translation between
domains. The drawback of translation is that it either simplifies or invents the
information when going from one domain to the other. The alternative is domain-
invariant methods, but even though they are often used in homogeneous DA, there
is a lack of research on such methods in heterogeneous domain adaptation.
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Figure 3.1: PaCMAP visualisations of ResNet features extracted from two common
computer vision benchmarks and two remote sensing datasets.

This thesis introduces the Heterogeneous Image Domain Adaptation (HIDA)
models. The developed HIDA architecture serves as a basis for several variants
that are derived from it. Unlike translation methods, these HIDA-based approaches
explore the potential of extracting domain invariant features that are neither in
the source, nor target data space, but exist in a learnt common latent space. The
hypothesis is that this will allow the model to enhance the latent representation
using information from both domains. Moreover, HIDA models are constructed to
have the ability to work with images of different numbers of bands and different
resolutions.

HIDA models are inspired by homogeneous DA methods based on extracting
domain-invariant features like Domain-Adversarial Neural Network (DANN) [ 32 ],
Domain Separation Network (DSN) [ 33 ] and Wasserstein Distance Guided Repre-
sentation Learning (WDGRL) [ 29 ]. In order to use a neural network with hetero-
geneous data, architectures such as those developed for homogeneous DA need to
be modified. One possible approach is to split the feature extractor into two input
branches, one for the source domain, and the other for the target domain, similarly
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to DTN [ 4 ]. This approach brings certain challenges though, which will be described
in the following sections.

Another possible approach is to use autoencoders to reduce the images from
different domains to the same size. Here, the reconstruction loss would be used to
preserve the input information in the encoded representation. The training would
be performed in two phases and after training the autoencoders, the encoded data
could be used as an input to any homogeneous domain adaptation architecture.
However, preliminary experiments showed that an end-to-end solution with two
input branches has better performance.

Many homogeneous DA methods such as DANN [ 32 ], DSN [  33 ], and ADDA [ 34 ]
use a domain classifier, as in the original GAN [ 31 ], to achieve domain invariance
of the extracted features, indirectly reducing the Jensen–Shannon (J-S) divergence
between the domains. It was shown, however, that there are several issues in the
training of the original GAN. The Wasserstein GAN [ 28 ] reduces the Wasserstein
distance instead, as it has better properties than J-S divergence, and fixes the issues
of the original GAN. It is, therefore, interesting to consider reducing the Wasser-
stein distance in a domain-invariant method. One such homogeneous DA approach
is WDGRL [  29 ], and this method serves as a basis for the HIDA models. The
possibilities of applying WDGRL on heterogeneous image data will be considered.

Different variants of the HIDA model are developed, depending on how the target
supervision information is integrated. In this chapter, the assumption is that there
are no available target labels and therefore a variant of the HIDA model for Unsu-
pervised Heterogeneous Image Domain Adaptation (U-HIDA) is first presented. The
method is a convolutional architecture based on WDGRL, with two separate input
branches for source and target data, reducing the Wasserstein distance between the
extracted features to make them domain-invariant. Afterwards, the Unsupervised
Pseudo-Labelled Heterogeneous Image Domain Adaptation (UPL-HIDA) variant is
described, which uses pseudo-labels to advance performance and account for the
absence of supervision in the unsupervised DA setting.

The rest of the chapter is organised as follows:

• Section  3.1 presents the U-HIDA method for unsupervised heterogeneous do-
main adaptation and experimental results on remote sensing datasets.

• Section  3.2 describes the UPL-HIDA method for unsupervised heterogeneous
domain adaptation using pseudo-labels, and shows the experimental results
on both remote sensing and RGB-depth datasets.

3.1 Unsupervised Heterogeneous Image Domain Adap-
tation

The Unsupervised Heterogeneous Image Domain Adaptation (U-HIDA) method is a
variant of the basic HIDA architecture that does not use any supervision information
in the target domain. U-HIDA uses Wasserstein Distance Guided Representation
Learning (WDGRL) [ 29 ] as a basis, as will also be the case with all the other models
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Figure 3.2: Homogeneous DA Wasserstein Distance Guided Representation Learning
(WDGRL) method cannot accept inputs with different numbers of channels.

presented in this thesis. WDGRL is a homogeneous, unsupervised domain adapta-
tion approach for tabular data. Herein, it is extended to the case of heterogeneous
image data.

WDGRL has a feature extractor that takes as its input a batch consisting of
both source and target samples, as presented in Figure  2.3 . Being a homogeneous
DA model, it expects source and target data to be of the same dimension. The
architecture of WDGRL is a fully-connected neural network, the first layer of the
feature extractor has a fixed number of nodes and WDGRL, therefore, cannot accept
inputs of different sizes from different domains.

In order to deal with image data, WDGRL should be built as a convolutional
architecture analogous to the original fully-connected one (a possible alternative
could be a vision transformer architecture but this thesis will focus on the convo-
lutional solution). Nevertheless, the problem persists, the first convolutional layer
of the feature extractor would have convolutional filters of a fixed dimensionality
that would accept the inputs of a fixed depth, and it is not possible to feed it with
images having different numbers of channels (Figure  3.2  ).

Instead, this thesis proposes an architecture which has two separate input
branches in order to work with the data coming from two different spaces, pos-
sibly of different input sizes. The schema of the U-HIDA variant of this model is
presented in Figure  3.3 .

3.1.1 Method

The U-HIDA model consists of five neural network components:
• three feature extractors,
• a domain critic,
• and a class discriminator.
Let X

s =
�
(xsi , y

s
i )
 ns

i=1
be a labelled source dataset of n

s samples from the

domain Ds following the data distribution Pxs . Let also X
t =

n
(xtj)

ont

j=1
be an
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Figure 3.3: The proposed unsupervised heterogeneous image domain adaptation
(U-HIDA) model.

unlabelled target dataset of nt samples where target samples come from the domain
Dt and follow the data distribution Pxt . The domains are heterogeneous, that is the
source and target data come from different spaces, i.e. xs 2 X s, xt 2 X t, X s 6= X t

where the dimensions d
s and d

t of spaces X s and X t may or may not differ.
Source and target feature extractors are denoted as FEs : X s ! Rd1 and FEt :

X t ! Rd1 — they represent two separate input branches that can work with two
heterogeneous domains, and have the task to bring the data to a feature space of
the same size

g
s = FEs(x

s), gt = FEt(x
t). (3.1)

Furthermore, once the features of different domains have the same dimensions, an-
other invariant feature extractor FEi : Rd1 ! Rd2 is employed to model the simi-
larity of the data domains and to extract domain invariant features

h
s = FEi(g

s), ht = FEi(g
t). (3.2)

In Figure  3.4 the evolution of features is presented. The source and target
input data of different sizes are brought to the same dimensionality by source and
target feature extractors. There is still, however, a certain distance between feature
distributions at this point since separate feature extractors are used, which are acted
upon by different losses. The invariant feature extractor, FEi, reduces this distance
and brings the distributions closer together. The domain critic makes it possible for
FEi to extract domain invariant features. This component measures the Wasserstein
distance between domains, which is used as a loss of the model. By training the
model to reduce the Wasserstein loss, the source and target feature distributions
in FEi are drawn closer until (ideally) the distance drops to zero and distributions
completely overlap.

The Wasserstein distance metric that is used to measure the distance between
domains comes from the theory of optimal transport. The basis of the theory is the
so-called “earth moving problem” defined by Monge in the 18th century [  21 ]. The
problem consists of transporting a pile of the earth of a certain shape into a hole
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Figure 3.5: Optimal transport theory. a) Moving a pile of earth to a hole of a differ-
ent shape. b) Probabilistic representation of the optimal transport plan. Adapted
from [  83 ].
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of a different shape with the least possible effort (Figure  3.5 a). The pile of earth
and the hole can be regarded as two different probability distributions µ and ⌫. It
is necessary to find the best possible plan of transport to transform µ to ⌫.

Kantorovich reformulated the problem [  22 ] and represented the optimal trans-
port plan as a joint probability distribution of marginals µ and ⌫ (Figure  3.5 b).
Let ⇧(µ, ⌫) be the space of all such joint probability distributions. The optimal
transport plan P

⇤ 2 ⇧(µ, ⌫) is calculated such that

P
⇤ = argmin

P2⇧(µ,⌫)

ZZ
c(a, b)P (a, b) da, db,

s.t.

Z
P (a, b) da = ⌫(b),

Z
P (a, b) db = µ(a),

(3.3)

where c(a, b) is the cost of transport (usually the Euclidean distance), and P (a, b)
is the amount to be transported. The Wasserstein distance between distributions µ
and ⌫ is the total transport price using the optimal plan, which is defined such that

W [µ, ⌫] =

ZZ
c(a, b)P ⇤(a, b) da, db. (3.4)

The distance defined in Equation ( 3.4 ) is specifically called the 1-Wasserstein
distance and is part of a family of p-Wasserstein distances, which are defined as

Wp[µ, ⌫] =

✓
min
P

ZZ
c
p(a, b)P (a, b) da, db

◆ 1
p

. (3.5)

The dual formulation of the 1-Wasserstein distance, equivalent to Equation ( 3.5 ), is
expressed as

W1[µ, ⌫] = max
f

✓Z
f(a)µ(a) da�

Z
f(b)⌫(b) db

◆
,

s.t. f 2 LC = {f : R! R | f(a)� f(b)  c(a, b)},
(3.6)

which is the difference between the mathematical expectations of function f under
µ and under ⌫, with the Lipschitz contraint LC that bounds the growth of f by c.

Since finding f is computationally expensive, in U-HIDA the domain critic DC :
Rd2 ! R is trained to approximate it instead [ 28 ,  29 ], accelerating the training
process. The loss of this component is defined such that

Lwd(h
s
, h

t) =
1

ns

nsX

i=1

DC(hsi )�
1

nt

ntX

j=1

DC(htj). (3.7)

In order to calculate the empirical Wasserstein distance, Equation ( 3.7 ) needs to be
maximised, and the Lipschitz constraint enforced. The domain critic component is
therefore trained by solving

max
✓dc

(Lwd � �Lgrad), (3.8)
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where ✓dc are the domain critic’s weights and �Lgrad is a regularisation term enforc-
ing the Lipschitz constraint. In the original version of the Wasserstein GAN [ 28 ],
the critic function f was constrained by simple weight clipping. This choice had
drawbacks such as exploding/vanishing gradients, and capacity underuse — result-
ing in simple functions for f . Gulrajani et al. [ 84 ] proposed an improved training
procedure for Wasserstein GANs. They proved that the optimal choice for f has
a gradient norm of 1 almost everywhere under two domains, making f 1-Lipschitz.
Therefore, a regularisation term Lgrad, which penalises gradient norms different from
1, is added. When training the domain critic [ 29 ], this regularisation term amounts
to

Lgrad(ĥ) =

✓���rĥDC(ĥ)
���
2
� 1

◆2

, (3.9)

where ĥ is the union of source and target representation points — h
s and h

t — and
the points sampled from the straight lines between coupled points of hs and h

t. The
effect of this regularisation is sufficiently close to enforcing the norm of 1 on the
entire space of the two domains [ 84 ].

Finally, the class discriminator C : Rd2 ! Rc (where c is the number of classes)
is trained on the extracted features of the (labelled) source samples (hs, ys). If labels
y
s
i are one-hot encoded, the cross-entropy classification loss is used, such that

Lc(h
s
, y

s) = � 1

ns

nsX

i=1

cX

k=1

y
s
i,k logC(hsi ). (3.10)

Once the extracted source and target features are domain-invariant, a classifier
trained on source labelled data will also correctly predict the class of the target
samples, even though the classifier did not “see” any target data during training.

It is evident that the model should be trained to minimise the classification
loss from the Equation ( 3.10 ). As for the Lwd loss, since Wasserstein distance is
calculated as a solution of the maximisation problem, the domain critic is trained to
maximise the loss, as defined in Equation ( 3.8 ). The goal of the feature extractor(s)
is, however, the opposite — to obtain domain-invariant features, i.e. to minimise the
Wasserstein distance. This leads to a min-max adversarial problem. If the weights
of all the feature extractors are denoted as ✓fe and the class discriminator’s weights
are denoted as ✓c, the final optimisation problem to be solved is

min
✓fe,✓c

⇢
Lc + �max

✓dc

⇥
Lwd � �Lgrad

⇤�
. (3.11)

3.1.2 Experimental Results

In this section, the U-HIDA approach is validated in a remote sensing problem.
Remote sensing data is very different to standard computer vision data, in which
the task is often to recognise a natural object(s), while in remote sensing land
cover classes are usually identified. This requires an understanding of the complete
image/patch to identify the area contained. Therefore computer vision methods
often cannot be successfully directly applied to remote sensing. Another problem, is
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Table 3.1: Characteristics of NWPU-RESISC45 and EuroSAT datasets.

Name Source Image Size # Patches Classes Resolution
RESISC45 Aerial 256⇥ 256⇥ 3 31,500 45 0.2m�30m
EuroSAT Satellite 64⇥ 64⇥ 13 27,000 10 10m

River Forest
Rectangular 
Farmland

Dense 
Residential

Industrial 
Area

RESISC45

EuroSAT

Freeway Lake Meadow

River Forest Crop Residential Industrial Highway Sealake Pasture

Figure 3.6: Examples of chosen corresponding classes from RESISC45 and EuroSAT
datasets. For EuroSAT, the RGB version of the dataset is shown.

the lack of reference data in remote sensing, whereas, in computer vision, large-scale
public datasets exist, e.g. ImageNet, that allow large models to be trained to high
performance. Furthermore, such models provide high-quality transferable features,
meaning a broad spectrum of tasks can be solved. These, however, tend not to
generalise to remote sensing as previously presented in Figure  3.1 .

3.1.2.1 Data

The proposed approach is evaluated on the following eight corresponding classes
from two heterogeneous remote sensing datasets (details given in Table  3.1  and
examples of classes given in Figure  3.6  ):

• NWPU-RESISC45 [ 85 ] (high-resolution aerial RGB images extracted from
Google Earth) — dense residential, forest, freeway, industrial area, lake, mead-
ow, rectangular farmland, and river.

• EuroSAT [ 86 ] (low-resolution multi-spectral images from the Sentinel-2A satel-
lite) — residential, forest, highway, industrial, sealake, pasture, annual crop
and permanent crop (two classes merged into one), river.

The problem to be solved is image classification. Each sample is an image (patch)
having a single land cover label. The RESISC45 dataset is composed of images taken
from 100 countries and regions all over the world, throughout all seasons and all
kinds of weather. The EuroSAT dataset covers 34 European countries and also
consists of data from throughout the year. Both datasets, therefore, have in-domain
temporal and geographic variability. This variability, when intra-class, can make
even the in-domain problem of classification difficult. Consider Figure  3.7 a, which
shows the large variability that can be found in the same class: resolution can vary
greatly in RESISC45, in one image a car is clearly visible on a road and in another
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Figure 3.7: Examples of issues when classifying remote sensing datasets: a) intra-
class variability, b)inter-class similarity, c) patches with multiple classes present.

the road itself is barely visible; the appearance of the ‘Crop’ class in the Eurosat
dataset contains many different vegetation types.

The problem becomes even worse with intra-class similarity on top of inter-class
variability. Industrial and residential areas can easily be confused, Figure  3.7 b. In
RESISC45, dense forests can resemble meadows since they have similar colour and
texture in aerial images. In low-resolution EuroSAT images, forests sometimes look
like flat green patches without texture and can resemble patches of green water in
the lake/sea class. Pasture images can be a combination of vegetation and bare soil,
much like crops.

Furthermore, multiple land cover classes can exist within a single patch. The
label is usually taken as the dominant class or the class on which the patch is
centred, however, the presence of other classes is sometimes significant and can be
misleading to a model. This especially holds e.g. when a river or road is passing
through a residential or agricultural area, such as in Figure  3.7  c.

As in-domain classification is already a challenging problem in remote sensing,
transfer learning brings another level of difficulty, especially with the large domain
shift that exists in the presented datasets. Figure  3.8 visualises some classes that
tend to be misaligned between domains. The Lake class in RESISC45 shows the
entire lake with the surrounding area, whereas in EuroSAT only a patch of water
is shown, making it more similar to meadow and forest which also present uniform
colours.
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Figure 3.8: Examples of issues that can arise during transfer learning between RE-
SISC45 and EuroSAT.

Figure 3.9: The bands of a multispectral image. Red, green and blue channels are
shown as an RGB image and the other channels are shown as greyscale images.

One advantage of the proposed HIDA-based approaches is that information in
all channels can be used. The information provided by non-RGB channels can be
discriminative but is often neglected. For example, aside from the visible RGB
bands, the multispectral EuroSAT data also contain near-infrared (NIR), short-
wave infrared (SWIR) and red-edge bands. The 13 channels of a EuroSAT image
are shown in Figure  3.9 .

The datasets are split into the train, validation, and test sets with the proportion
of 60:20:20 while keeping the classes balanced in all sets. The test set was set aside
during development and only used for the final experiments presented herein.

3.1.2.2 Implementation Details

Unlike WDGRL, whose components are fully-connected neural networks, U-HIDA,
along with the other HIDA models, are convolutional architectures (see Figure  3.10 

for details). Note that Figure  3.10 presents an architecture for the RESISC45 dataset
as the source domain and the EuroSAT dataset as the target domain; this can be
adapted as needed. The feature extractor for RESISC45 consists of two convolu-
tional layers with 16 and 32 filters respectively. Each convolutional layer is followed
by 4⇥4 max-pooling. The feature extractor for EuroSAT is the same, except that it
has 2⇥ 2 max-pooling after every convolutional layer. The shared invariant feature
extractor has two convolutional layers with 32 and 64 filters respectively, and one
fully-connected (FC) layer of 100 nodes. All of the kernels have size 5⇥5. The class
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Figure 3.10: The architecture of the proposed HIDA-based models, specifically used
for the case when the source dataset is RESISC45 and the target dataset is EuroSAT.
The kernel size of all convolutional layers is 5⇥ 5.

discriminator has one FC layer with softmax activation. The domain critic (DC) is
identical to that in WDGRL — it has an FC layer with 100 nodes followed by an
FC layer with 1 node.

In each training step, the domain critic is trained for 10 iterations with a learning
rate of 10�3. This is to allow the domain critic to learn how to calculate the
Wasserstein distance between the new source and target representations since the
representations change after each iteration. The domain critic is then frozen and
the rest of the model is trained for 1 iteration with a learning rate of 10�4. The
domain critic’s loss weight � is 0.1. The Adam optimiser is used.

The input data is standardised per channel so that each channel has a mean of 0
and a standard deviation of 1. Experiments showed that this kind of standardisation
provides better results than data normalisation (scaling pixel values between 0 and
1). The following augmentation transformations are used: flipping with a probability
of 0.45, rotation with a probability of 0.75 for 90°, 180°, or 270°, changing contrast
with the probability of 0.33 by multiplying the values of the pixels with the coefficient
ranging between 0.5 and 1.5, changing brightness with the probability of 0.33 by
adding the coefficient ranging between �0.3 and 0.3 scaled by the mean of pixel
values per channel before standardisation, blurring with the probability of 0.33 with
Gaussian filter with � parameter values ranging from 1.5 to 1.8, and finally adding
Gaussian noise with mean 0 and standard deviation between 10 and 15 with the
probability of 0.33. The batch size is 32, and in each iteration, half of the training
batch (16) comes from the source and the other half from the target domain. The
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Algorithm 1 Unsupervised Heterogeneous Image Domain Adaptation (U-HIDA)
Require: Source data X

s; source labels y
s; number of source samples n

s; target
data X

t

m = 32 . minibatch size
steps = 10 . critic training steps per iteration
epochs = 40 . Number of training epochs
↵1 = 10�3

. learning rate for domain critic
↵2 = 10�4

. learning rate for FEs and classifier
� = 10�1

. Wasserstein loss coefficient
Initialise randomly ✓dc, ✓sfe, ✓

t
fe, ✓

i
fe, ✓c . weights of DC, FEs and classifier

for k = 1 . . . epochs do
for iter = 1 . . . ns

/(m/2) do
Sample

�
(xsi , y

s
i )
 m/2
i=1

,
�
(xti)

 m/2
i=1

from X
s and X

t

for t = 1 . . . steps do
✓dc  ✓dc + ↵1r✓dcLwd(xs, xt) . Update domain critic

L(k)
wd = Lwd(xs, xt)

L(k)
c = Lc(xs, ys)

✓c  ✓c � ↵2r✓cL
(k)
c . Update classifier

✓
s
fe  ✓

s
fe � ↵2r✓sfe

h
L(k)
c + �L(k)

wd

i
. Update source FE

✓
t
fe  ✓

t
fe � ↵2r✓tfe

�L(k)
wd . Update target FE

✓
i
fe  ✓

i
fe � ↵2r✓ife

h
L(k)
c + �L(k)

wd

i
. Update invariant FE

model is trained for 40 epochs.
The convolutional architecture used is not rigorously optimised but was found

through initial experiments by evaluating both supervised and domain adaptation
performance. The hyper-parameters related to the domain critic, as well as learning
rates, optimiser, and loss weights, are taken from the WDGRL method [ 29 ]. The
above-mentioned data augmentation was chosen based on remote sensing domain
experience. The detailed training procedure is presented in Algorithm  1 .

3.1.2.3 Comparison Methods

To the best of our knowledge, the only possible comparison method is CycleGAN for
HDA [ 56 ]. This is the only classification model besides the proposed HIDA models
that can be used with heterogeneous image data having different numbers of chan-
nels. Moreover, it is tailored for data with different spatial resolutions. CycleGAN
for HDA is representative of an image-to-image translation model, contrary to the
proposed domain-invariant HIDA models. It can be used in both semi-supervised
domain adaptation (SSDA) and unsupervised domain adaptation (UDA) settings,
in the experiments in this chapter, the unsupervised DA version of the algorithm is
used. Since there is no publicly available implementation of CycleGAN for HDA,
the model is implemented for the purpose of this study. In the following paragraphs,
the unsupervised version of CycleGAN for HDA method will be described in more
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Figure 3.11: The architecture of the unsupervised DA version of CycleGAN for
HDA: a) CycleGAN is trained to translate from the source to the target domain
and vice-versa; b) Data translated from the target to the source domain are fed to
a source classifier to obtain pseudo-labels – these are used to train the final target
classifier. Blue arrows denote source data flow and red arrows denote target data
flow. Dashed arrows signify data flow to calculate cycle consistency loss.

detail.
CycleGAN is one of the most famous image-to-image translation GAN architec-

tures, and CycleGAN for HDA is its extension to heterogeneous domain adaptation.
The architecture of CycleGAN for HDA is presented in Figure  3.11 . The goal is to
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translate images from one domain to the other, to change the style and appearance
of objects and backgrounds such that they mimic the other domain. The component
in charge of translating is called a generator. Let X

s =
�
(xsi , y

s
i )
 ns

i=1
be a source

domain following the data distribution Pxs , and X
t =

n
(xtj)

ont

j=1
be a target domain

following the data distribution Pxt . The source-to-target generator Gs!t translates
source images x

s to the target domain, generating the fake target images x̂
t

x̂
t = Gs!t(x

s). (3.12)

The generated fake target images need to be realistic and similar enough to
the real target domain data. In order for the generator to produce such images, it
is trained in an adversarial manner, competing with the discriminator. The target
discriminator Dt has the task of differentiating between the real and generated target
images. A GAN loss to train the generator and the discriminator is defined as

LGAN (Gs!t, Dt) = E
xt⇠Pxt

h
logDt(x

t))
i
+ E

xs⇠Pxs

h
log(1�Dt(x̂

t))
i
. (3.13)

Since the translation is done in both directions, there exists a second, target-
to-source generator Gt!s which translates target images x

t to the source domain,
producing fake source images x̂

s, such that

x̂
s = Gt!s(x

t). (3.14)

This generator competes with the source discriminator Ds, analogously with the al-
ready described adversarial game between the source-to-target generator and target
discriminator. The GAN loss in this case is defined as

LGAN (Gt!s, Ds) = E
xs⇠Pxs

⇥
logDs(x

s))
⇤
+ E

xt⇠Pxt

⇥
log(1�Ds(x̂

s))
⇤
. (3.15)

In order to perform translation, it is not enough to solely generate the images
mimicking the other domain. The content of the original image needs to be pre-
served, otherwise, the generator can simply create random images and hallucinate
content that does not exist in the source domain in the target style (and vice-versa).
To force the translations to be meaningful, the cycle-consistency loss is used, and
this is where the real strength of CycleGAN lies. When a fake image produced by
one generator is translated back to the original domain with the other generator
(dashed arrows in Figure  3.11 a), it has to resemble the original image from which
it started. This way the consistency of the content is enforced. A simple recon-
struction loss (mean absolute error) is used to define the cycle consistency loss. It
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is applied in both directions, such that

Lcycle(Gs!t, Gt!s) = E
xs⇠Pxs

���xs �Gt!s
�
Gs!t(x

s)
����

1

�

+ E
xt⇠Pxt

"����x
t �Gs!t

⇣
Gt!s(x

t)
⌘����

1

#
.

(3.16)

The original CycleGAN is an unsupervised method developed only for the pur-
pose of translating. Its goal is to provide translations of good visual quality, i.e.
images looking realistic and in the style of the domain to which it is translated.
CycleGAN for HDA is different though, its ultimate goal is to correctly classify the
samples from the unlabelled target domain. The problem that may arise is that two
samples that are supposed to share the same label may be translated to different
parts of the other domain space and look very different in the translated domain.
Since there are no target labels available to help guide the training of the Cycle-
GAN, a metric loss is used instead. This loss ensures that the distance between two
samples in one domain will be preserved after translating them to the other domain
by penalising any changes in the distance caused by the translation. The metric loss
for translating from the source to the target domain is defined as

Lmetric(Gs!t) = E
(xs

i ,x
s
j)⇠Pxs


d(xsi , x

s
j)� d

⇣
Gs!t(x

s
i ), Gs!t(x

s
j)
⌘�2

. (3.17)

The same metric loss for translating from the target to the source domain is defined
correspondingly. Now two close samples in the source domain will also be close in
the target space.

The total loss of CycleGAN of HDA is simply a weighted sum of all the loss
components, such that

L(Gs!t, Gt!s, Dt, Ds) = LGAN (Gs!t, Dt) + LGAN (Gt!s, Ds)+

+ �1Lcycle(Gs!t, Gt!s)+

+ �2
�
Lmetric(Gs!t) + Lmetric(Gt!s)

�
,

(3.18)

and the min-max optimisation problem to solve is

min
Gs!t,Gt!s

max
Ds,Dt

L(Gs!t, Gt!s, Dt, Ds). (3.19)

Compared to the original CycleGAN, the differences when defining the loss func-
tion are the addition of the metric loss and the absence of the identity loss. The
identity loss is an optional term in CycleGAN, ensuring that if the generator is fed
with the image from the opposite domain, the image should remain unchanged after
translation. This implies that the same generator is able to accept images from
both domains as input, which is not possible if the domains have different numbers
of channels. With the identity loss removed, there is nothing preventing generators
from accepting images of different dimensionality. Images of different resolutions
are also a possibility, in this case, one generator of CycleGAN for HDA will perform
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super-resolution, while the other will do the opposite and downgrade the resolution.
Once the translation model is trained, the translations can be used to facilitate

the classification of the target samples. The best way to take advantage of the
translations, as proven in the original paper [ 56 ], is to obtain target pseudo-labels.
The whole process is presented in Figure  3.11 b. Firstly, a simple classifier Cs is
trained on the labelled source data. If a cross-entropy loss like the one defined in
Equation (  3.10 ) is denoted LCE , the classifier Cs is trained by solving the following
problem

min
Cs

LCE(x
s
, y

s). (3.20)

Afterwards, unlabelled target images xt are translated to the fake source images
x̂
s, which are in return fed to the already trained Cs classifier. The pseudo-labels

ŷ
t are obtained as the predictions of the classifier Cs given fake source images x̂s as

an input
ŷ
t = Cs(x̂

s). (3.21)

Finally, a classifier Cfinal is trained on the original target data by using target
pseudo-labels ŷ

t in the absence of the real labels

min
Cfinal

LCE(x
t
, ŷ

t). (3.22)

In homogeneous unsupervised DA, the results are often compared to a baseline,
a classifier trained only on the labelled source domain without using any target data
during the training. The classifier is then evaluated on the target test data, and
this result serves as a lower baseline. The idea is to demonstrate what performance
can be achieved without using any domain adaptation. In the heterogeneous case
evaluated here, however, the source classifier cannot accept images having different
numbers of channels than those it was trained on, therefore it cannot be evaluated
on the target domain. Because of this, in the following experiments, the baseline
classifier is not used as a comparison method and U-HIDA is compared only with
the CycleGAN for HDA method.

3.1.2.4 Results

In this section, the unsupervised DA results of U-HIDA are compared to CycleGAN
for HDA. Two cases are demonstrated, denoted as follows:

• R! E — with RESISC45 dataset as the source domain and EuroSAT dataset
as the target domain;

• E! R — with EuroSAT dataset as the source domain and RESISC45 dataset
as the target domain.

The accuracy of the proposed and comparison model for both cases averaged over
ten repetitions are presented in Table  3.2 . It should be noted that all 13 bands from
the EuroSAT dataset were used throughout, while RESISC45 is an RGB dataset,
therefore 3 bands were used. It is also worth noting that the images were not resized,
they were used in their original resolution which is 256 ⇥ 256 for RESISC45, and
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Table 3.2: Results of the unsupervised domain adaptation models. R! E: Accuracy
of unsupervised domain adaptation with RESISC45 as the source and EuroSAT as
the target. E ! R: Accuracy of unsupervised domain adaptation with EuroSAT as
the source and RESISC45 as the target. Standard deviations are shown in paren-
theses.

R ! E E ! R
CycleGAN for HDA 18.48 (8.00) 16.82 (5.74)
U-HIDA 13.61 (11.33) 17.77 (9.37)

64 ⇥ 64 for EuroSAT. The accuracies presented are the averages of ten repetitions
of training each model.

For the R! E case, U-HIDA is around 5% weaker than CycleGAN for HDA. For
the E ! R case, however, U-HIDA outperforms CycleGAN for HDA. It is assumed
that U-HIDA works better in E ! R because the source domain is multispectral,
and it seems more natural for U-HIDA to learn a domain-invariant representation
when the labels are in a more information-rich domain.

For the CycleGAN model, the situation is the opposite. CycleGAN for HDA
translates images from the target domain to the source and then feeds those images
to the pre-trained source classifier in order to obtain pseudo-labels. In the R !
E case, this translation is done from the low-resolution multispectral to the high-
resolution RGB domain. The multispectral domain already contains all of the RGB
information, which makes the translation much easier. Moreover, the lower resolu-
tion does not pose a problem, as the method uses a generator for super-resolution.
On the contrary, in the E ! R case, the said translation is done from RGB RE-
SISC45 to multispectral EuroSAT. The model is forced to hallucinate multispectral
information, which is not present in the RGB domain, explaining the weaker result
in this case.

The results demonstrate that heterogeneous UDA is indeed a challenging prob-
lem. When faced with RGB RESISC data on the one hand, and with the multi-
spectral EuroSAT data on the other, both models fail to achieve high accuracy. The
presence of the non-RGB channels in one domain, but not in the other, appears to
confuse the models rather than providing additional information. Without any su-
pervision in the target domain, the models struggle to find correspondences between
the features in such heterogeneous domains.

To better understand the learning process in the U-HIDA model, PaCMAP [ 87 ]
visualisations of the features at different layers of the model are presented in Figure

 3.12 for both the R ! E and E ! R case. On the left side, the features output by
the source and target feature extractors are shown. The extracted features are first
reduced to 100 principal components with PCA, and then a PaCMAP embedding is
calculated from this 100-dimensional representation. Source features are presented
in red circles and target features in blue asterisks. Up to this point, the layers
processing the source and target inputs are separated. The figure shows that source
and target feature extractors bring features to the space of the same dimensionality,
but still do not bring domains together. On the right side of Figure  3.12 , the
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Figure 3.12: PaCMAP visualisation of U-HIDA features in R! E and E! R case.
Left: Features from the last layers of source and target FEs. Right: Features from
the last layer of shared invariant FE.

features output by the shared invariant feature extractor are shown. The Domain
critic calculates the Wasserstein distance on these features. As can be seen, the
densities of the source and target domain are brought together and overlap, the
domain critic successfully reduces the distance between domains. The reason for
the low accuracy, therefore, lies elsewhere. Figure  3.13 shows that class flipping
occurs in the target domain. Even when inter-class separation is correctly preserved
in the target domain, the target classes can be aligned with the wrong source classes,
severely degrading the model’s performance on the target domain. These problems
will be explored further in Chapter  4 , where feature visualisations of U-HIDA are
compared to all the other HIDA models.
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Source and target domains together

Source domain only Target domain only

Confusion matrix - target

Figure 3.13: PaCMAP visualisation of U-HIDA features in R ! E case (source —
RESISC45, target — EuroSAT). Top left — the distribution of the domains. Top
right — the confusion matrix for the target domain. Bottom — class distributions
of the domains.

The standard deviation for both CycleGAN for HDA and U-HIDA models is
very high. For CycleGAN, the reason is that it occasionally fails to learn meaningful
translations, resulting in incorrect pseudo-labels. For U-HIDA, it is assumed that
this is caused by class flipping. Depending on how many classes are aligned correctly
or not, the performance of U-HIDA can be higher or lower, leading to a high standard
deviation.

Results on the source domain. An advantage of domain invariance over
translation is that the final model can work in both (or more) domains. When pre-
dicting on the source test data, U-HIDA outperforms the baseline classifier trained
on the source domain in R ! E and has the same performance as the baseline in E
! R case, see Table  3.3 . The model is able to improve the performance compared
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Table 3.3: Source domain performance of the baseline source classifier and U-HIDA.
R! E: Accuracy on the source domain with RESISC45 as the source and EuroSAT
as the target. E ! R: Accuracy on the source domain with EuroSAT as the source
and RESISC45 as the target. Standard deviations are shown in parentheses.

R ! E E ! R
Source classifier 86.16 (0.63) 93.07 (0.95)
U-HIDA 87.71 (1.33) 93.05 (0.74)

Invariant 
feature 

extractor

Class 
discriminator

Domain critic

Source
domain

Target
domain

Source feature 
extractor

Target feature 
extractor

Latent 
space

CL loss

Figure 3.14: The limitations of U-HIDA model

to the baseline possibly because by learning to extract domain-invariant features it
learns more general representations, the target domain serves as a regularisation for
learning general source representations.

CycleGAN for HDA is not included in this comparison. The final classification
in this method is done by the target classifier trained on the pseudo-labelled target
data. This classifier cannot accept source data of different size and, therefore, cannot
be evaluated on the source domain.

Limitations of U-HIDA In order to handle heterogeneous domains of different
dimensions, U-HIDA uses two separate feature extractors, one for the source, and the
other for the target data. Herein, however, lies the main weakness of the approach.
Calculation of the classification loss Lc depends only on the source samples (see Eq.
( 3.10 )), as there are no labels in the target data. Consequently, when training the
model, during the backpropagation phase, the classification loss will affect changes
to the weights of the source feature extractor (FEs) and invariant feature extractor
(FEi) components, but will not affect the target feature extractor (FEt) because
FEt only takes target samples that do not participate in the training of the classifier
(Figure  3.14 ). The target feature extractor is, therefore, updated only by the domain
critic’s loss Lwd (which also updates the source feature extractor). While this might
be enough to bring global representations of the domains into the same space, as is
demonstrated in Figure  3.12 , it is not enough to learn discriminative features for the
target data and to align classes between domains. Homogenous DA domain invariant
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methods do not have such problems, as they use a common feature extractor, which
is updated by the source classification loss, but also serves to extract features from
the target data.

3.2 Unsupervised Pseudo-Labelled Heterogeneous Im-
age Domain Adaptation

As shown in the previous section, the domain invariant approach with two sepa-
rate input branches (U-HIDA) can bring the features of the heterogeneous image
domains to the same space. The domain critic can reduce the Wasserstein distance
between domains and make their feature representations overlap. The problem that
remains is that the target representation of U-HIDA does not provide accurate clas-
sification results: samples of one class are often either dispersed or matched with
the wrong source class. Such behaviour is a consequence of the classification loss
not backpropagating into the target feature extractor.

In order to alleviate this problem, supervision information from the target do-
main needs to be included when training the model. In the unsupervised domain
adaptation setting, in the absence of real hard labels, one possible way is to use
pseudo-labelling. Pseudo-labels could be used to calculate a pseudo-classification
loss for the target data and help the target feature extractor learn a more discrimi-
native representation. Based on this idea, an approach named Unsupervised Pseudo
Labelled Heterogeneous Image Domain Adaptation (UPL-HIDA) is developed and
discussed in this section.

3.2.1 Method

Preliminary experiments showed that a completely unsupervised approach is not
always reliable since the classification loss does not affect updating the target feature
extractor FEt during backpropagation. To make up for the absence of labels in the
target data, pseudo-labels can be used by an unsupervised method. Pseudo-labels
are estimates of the labels for unlabelled data used during the training. Even though
they are not always reliable, they can help guide the classification model’s training
when there is not enough labelled data. The motivation for using pseudo-labels when
training an unsupervised HIDA model is clear — the classification loss calculated
on pseudo-labels will update the target feature extractor and help the model learn
discriminative representations for the target data, something that U-HIDA lacked.

There are numerous different pseudo-labelling techniques. Many of them rely
on using a pre-trained source classifier to obtain pseudo-labels for the target data.
In heterogeneous domain adaptation, this is not possible due to the different sizes
of the source and target inputs. If a common domain-invariant feature space of
two heterogeneous domains is learned, it is possible, though, to use the classifier
trained on the labelled data to provide pseudo-labels given features of the target
unlabelled data. This approach, however, does not prevent class flipping and does
not contribute much to solving a problem with a large domain shift.

Instead, in this thesis, the pseudo-labelling approach introduced by CycleGAN
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Figure 3.15: Schema for obtaining pseudo-labels from CycleGAN. The generator
Gt!s is translating target data x

t to the space of the source domain. These “fake”
source images x̂s are then labelled by the classifier Cs which was previously trained
on source data (xs, ys).

for HDA [ 56 ] will be employed. As previously seen, this technique is based on
translation between domains. Since translation offers a different point of view from
the domain-invariant U-HIDA, it can bring additional information to the domain-
invariant learning process. This approach is also interesting to investigate the po-
tential of combining translation and domain-invariant approaches. Furthermore,
translation methods are easily applied to heterogeneous data. Pseudo labels pro-
vided by CycleGAN for HDA are used instead of target labels when training the
domain-invariant unsupervised HIDA method. This approach is named Unsuper-
vised Pseudo Labelled Heterogeneous Image Domain Adaptation (UPL-HIDA). An
overview of UPL-HIDA is presented in Figure  3.15 .

The components of CycleGAN for HDA, the source-to-target generator Gs!t,
target-to-source generator Gt!s, source discriminator Ds and target discriminator
Dt are trained in the manner described in Section  3.1.2.3  . The generator Gs!t is
of interest herein. Since the unlabelled target images x

t are translated to the fake
source images x̂

s = Gt!s(xt), they are now positioned in the space of the labelled
source domain. The translated target images can, therefore, be assigned pseudo-
labels using a pre-trained source classifier. This classifier, denoted Cs, is trained on
the labelled source data with cross-entropy loss, such that

min
Cs

LCE(x
s
, y

s). (3.23)

As demonstrated in Figure  3.15 , the fake source images x̂s are fed to the trained
Cs classifier and the predictions of the classifier are used to obtain the pseudo-labels
for the target data ŷ

t. Pseudo-labels can, therefore, be expressed as

ŷ
t = Cs(x̂

s) = Cs

⇣
Gt!s(x

t)
⌘
. (3.24)
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In the original work of CycleGAN for HDA, the pseudo-labels ŷt are used to train
a final classifier in the target space. Instead, here in UPL-HIDA, the pseudo-labels
can be used as target labels alongside the real hard source labels when training the
domain-invariant method. Furthermore, CycleGAN for HDA uses a whole pseudo-
labelled target dataset, but this strategy might not be ideal when solving HDA
problems with large domain shifts. The translation between heterogeneous domains
is a difficult task and many translations will be assigned the wrong pseudo-label.

In order to eliminate unreliable pseudo-labels they are filtered to retain only
the most confident predictions. The usual approach is to set a threshold for the
probability produced by the softmax layer of Cs and use only those target samples
that exceed this threshold when fed to Cs. While improving the reliability of pseudo-
labels, this strategy has the drawback of creating an imbalanced pseudo-labelled
dataset. Some classes gain much higher prediction confidence with Cs and provide
many more samples than others. On the other hand, if the threshold is set too high,
none of the samples from certain classes will be chosen. Consequently, in order
to retain a balanced dataset and to avoid under-representing classes, a per-class
threshold is used.

Let the filtered target samples be denoted as x
tf , their extracted features as

h
tf , their pseudo-labels as ŷ

tf , and their number as n
tf . The class discriminator

of UPL-HIDA is trained on the union of extracted features of labelled source sam-
ples and filtered pseudo-labelled target samples (hl, ŷl) = (hs, ys) [ (htf , ŷtf ). The
classification loss is therefore defined as

Lc(h
l
, ŷ

l) = � 1

ns + ntf

ns+ntfX

i=1

cX

k=1

ŷ
l
i,k logC(hli). (3.25)

Defining the classification loss in this manner allows for the target part of the loss
to be backpropagated to the target feature extractor, alleviating the drawback of
U-HIDA.

The remaining details of UPL-HIDA are defined in the same way as in U-HIDA
in Section  3.1.1  . The Wasserstein loss between two distributions is still calculated
over the whole domains, including both the filtered pseudo-labelled target subset and
the remaining unlabelled target samples. The formula for Lwd, therefore, remains
the same as in U-HIDA, i.e.

Lwd(h
s
, h

t) =
1

ns

nsX

i=1

DC(hsi )�
1

nt

ntX

j=1

DC(htj). (3.26)

The final optimisation problem also remains the same, being

min
✓fe,✓c

⇢
Lc + �max

✓wd

⇥
Lwd � �Lgrad

⇤�
. (3.27)



3.2. UPL-HIDA 55

C
on

v

P
R

eL
U

k9n64s1

C
on

v

B
N

P
R

eL
U

E
le

m
en

tw
is

e 
S
u
m

k3n64s1 k3n64s1

16 residual blocks

C
on

v

B
N

E
le

m
en

tw
is

e 
S
u
m

k3n64s1

C
on

v

P
ix

el
S
h
u
ff
le

P
R

eL
U

k3n256s1

C
on

v

B
N

T
an

h

k9n3s1

k9n13s1

Figure 3.16: The architecture of the super-resolution generator used in CycleGAN
to translate between domains with different resolutions. The parameters of the
convolutional layers are shown above the layers, e.g. “k9n64s1” means that kernel
size is 9⇥ 9, the number of filters is 64 and the stride is 1. Adapted from [  57 ].

3.2.2 Experimental Results – Remote Sensing

In this section, the UPL-HIDA approach is evaluated in the same remote sensing
problem as previously presented in Section  3.1.2  . The datasets used are RESISC45
and EuroSAT datasets.

3.2.2.1 Implementation details

Unfortunately, there is no publicly available implementation of CycleGAN for HDA,
and therefore an implementation of the model was developed as a part of the thesis.
For the implementation details not described in the original CycleGAN for HDA
article [  56 ], decisions were taken based on experimentation.

The images from RESISC45 and EuroSAT datasets have different numbers of
channels and different resolutions — the size of images is 256⇥256⇥3 in RESISC45
and 64 ⇥ 64 ⇥ 13 in EuroSAT. CycleGAN for HDA does not require resizing these
images to the same size, it can be trained to translate between two image domains of
different resolutions. In order to achieve this, the generators need to resize the im-
ages when translating between domains, one generator has to upsample and another
to downsample the images. For this purpose, a generator from a Super-Resolution
Generative Adversarial Network (SRGAN) [ 57 ] is used to increase the resolution
and the corresponding opposite operation is used in the other direction to reduce
the resolution. SRGAN performs this super-resolution in an adversarial manner,
its generator is used to translate from low-resolution EuroSAT to high-resolution
RESISC45. The same generator but with a small modification is used to translate
from RESISC45 to EuroSAT, their architecture is presented in Figure  3.16 .

The generator that translates from EuroSAT to RESISC45 (E ! R) starts with
a convolutional layer having a 9 ⇥ 9 kernel size, a kernel depth of 13 to accept the
multispectral input of 13 channels and 64 convolutional filters. The activation of
the convolutional layer is PReLU — a leaky ReLU function with a negative slope
(the slope being a learnable parameter). This first convolutional layer is followed by
16 residual blocks with convolutions, batch normalisations and PReLU activations.
After another convolutional layer, two blocks in charge of super-resolution follow.
The key component of these blocks is a pixel shuffler [ 88 ]. This operation rearranges
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Figure 3.17: The architecture of the discriminator used in CycleGAN for HDA.

the elements of the feature maps so that the resulting tensor has increased height
and width and a reduced number of channels. It is often the case that convolutional
layers have many filters, producing an output with many channels, pixel shuffler
takes advantage of the depth of these outputs to increase the spatial resolution. If
the input to the pixel shuffler has the shape (H,W,C ⇥ r

2), the rearranged output
will have the shape (H ⇥ r,W ⇥ r, C). The final convolutional layer has 3 filters to
produce an RGB image as an output.

The other generator should perform the translation in the opposite direction,
from high-resolution RESISC45 to low-resolution EuroSAT (R ! E). The first con-
volutional layer needs to have kernels of depth 3 to accept the RGB images as input.
In this generator, the pixel shuffler does the opposite as in the E! R generator — it
reduces the spatial resolution by increasing the depth of the feature map. The final
convolutional layer has 13 filters to produce a multispectral image as an output.
The rest of the architecture is the same as in the E ! R generator.

The architecture of the discriminators is similar to the one commonly used in
CycleGAN [  44 ] and is presented in Figure  3.17 . The first convolutional layer needs
to have filters of the same depth as an input image (3 or 13). It has a leaky ReLU
activation with a negative slope of 0.2. This is followed by three convolutional-batch
normalisation-leaky ReLU blocks. The final convolutional layer outputs a matrix
with 1 channel. It contains probabilities that will be used to calculate the GAN
loss. To stabilise the training, CycleGAN uses a variant of the original GAN loss to
train the generators and discriminators — instead of log-likelihood, a least-square
loss is used, as in the LSGAN method [  89 ]. The loss from the Equation ( 3.13 ) is,
therefore, replaced with

LGAN (Gs!t, Dt) = E
xt⇠Pxt

h
(Dt(x

t))2
i
+ E

xs⇠Pxs

h
(1�Dt(Gs!t(x

s)))2
i
. (3.28)

The loss for the generator Gt!s and the discriminator Ds is defined correspondingly
in the same manner.

The CycleGAN part of CycleGAN for HDA is trained for 50 epochs. Even
though the original CycleGAN uses a batch size of one and instance normalisation,
in CycleGAN for HDA the metric loss component defined in Equation ( 3.17 ) requires
a batch size of at least 2. Preliminary experiments showed that increasing the batch
size further does not provide any benefit, moreover, batch normalisation replaces
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Figure 3.18: The architecture of the classifiers used in CycleGAN for HDA.

instance normalisation.
The input images are augmented with flipping and random cropping. Multi-

spectral images are clipped to remove outliers. The 2% of the highest values from
each channel are clipped. Both the RGB and multispectral input are then scaled
to the interval [�1, 1]. The final convolutional layer of both generators uses a tanh
activation function to bring the values of pixels in the generated images to the same
[�1, 1] interval. The learning rate is 2 · 10�4 and the optimiser used is Adam. The
weight �1 of the cycle consistency loss is 10, and the weight �2 of the metric loss is
10�4.

The source classifier used to assign pseudo-labels to the translated images and
the final target classifier trained on those pseudo-labels have the same architecture,
except the first layer whose filters have a depth of 3 for RGB and 13 for multispectral.
The architecture is presented in Figure  3.18 . There are 4 convolutional blocks, each
with a convolutional layer with a ReLU activation function and a 2⇥2 max-pooling
operation. This is followed by 3 dense layers. Dropout is used for the regularisation.

The classifiers are trained for 30 epochs with a batch size of 16. Input images
are not augmented this time. Multispectral images are clipped and all images are
scaled to the interval [�1, 1]. The Adam optimiser is used with a learning rate of
10�4.

The UPL-HIDA method is implemented in the same manner as U-HIDA, except
for including pseudo-labels when calculating the classification loss. The model uses
the same convolutional architecture as U-HIDA, see Figure  3.10 . However, UPL-
HIDA depends upon a threshold to define how many samples should be pseudo-
labelled. A per-class threshold of 12.5%, i.e. 50 images per class, was found to be a
good choice in preliminary experiments. The sensitivity of the model’s performance
to this parameter is explored in Section  3.2.2.4  .

The training procedure is described in Algorithm  2 . In each iteration of the train-
ing loop, the domain critic is updated 10 times to learn to calculate the Wasserstein
distance between the new source and target representations. The batch for training
the domain critic is formed from two halves, the first half is randomly sampled from
the source domain and the other half from the target domain. The same batch is
used throughout all 10 steps of training the domain critic. When training the clas-
sifier, the source half of the batch is preserved from training the domain critic, but
the target half of the batch is resampled to include only pseudo-labelled samples.

It should be noted in the algorithm that the feature extractor weight updates are
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Algorithm 2 Unsupervised Pseudo-Labelled Heterogeneous Image Domain Adap-
tation (UPL-HIDA)
Require: Source data X

s; source labels y
s; number of source samples n

s; target
data X

t

Train CycleGAN’s Gs!t, Gt!s, Ds, Dt

x̂
s  Gt!s(xt)

Train source classifier Cs

ŷ
t  Cs(x̂s) . Assign pseudo-labels

x
tf
, ŷ

tf  Filter 50 most confident pseudo-labels per class
m = 32 . minibatch size
steps = 10 . critic training steps per iteration
epochs = 40 . Number of training epochs
↵1 = 10�3

. learning rate for domain critic
↵2 = 10�4

. learning rate for FEs and classifier
� = 10�1

. Wasserstein loss coefficient
Initialise randomly ✓dc, ✓sfe, ✓

t
fe, ✓

i
fe, ✓c . weights of DC, FEs and classifier

for k = 1 . . . epochs do
for iter = 1 . . . ns

/(m/2) do
Sample

�
(xsi , y

s
i )
 m/2
i=1

from X
s

Sample
�
(xti)

 m/2
i=1

from X
t

Sample
n
(xtfi , ŷ

tf
i )

om/2

i=1
from X

tf

for t = 1 . . . steps do
✓dc  ✓dc + ↵1r✓dcLwd(xs, xt) . Update domain criticn

(xli, ŷ
l
i)
om

i=1
 

�
(xsi , y

s
i )
 m/2
i=1
[
n
(xtfi , ŷ

tf
i )

om/2

i=1

L(k)
wd = Lwd(xs, xtf )

L(k)
c = Lc(xl, ŷl)

L(k)
cs = Lc(xs, ys)

L(k)
ct = Lc(xtf , ŷtf )

✓c  ✓c � ↵2r✓cL
(k)
c . Update classifier

✓
s
fe  ✓

s
fe � ↵2r✓sfe

h
L(k)
cs + �L(k)

wd

i
. Update source FE

✓
t
fe  ✓

t
fe � ↵2r✓tfe

h
L(k)
ct + �L(k)

wd

i
. Update target FE

✓
i
fe  ✓

i
fe � ↵2r✓ife

h
L(k)
c + �L(k)

wd

i
. Update invariant FE

different than in U-HIDA (Algorithm  1 ). This time, the target feature extractor is
not only updated by the Wasserstein loss but also with the part of the classification
loss calculated on the target samples and their pseudo-labels. The invariant feature
extractor is affected by the classification loss of both source samples and target
pseudo-labelled samples.
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Table 3.4: Results of the unsupervised domain adaptation models. R! E: Accuracy
of unsupervised domain adaptation with RESISC45 as the source and EuroSAT as
the target. E ! R: Accuracy of unsupervised domain adaptation with EuroSAT as
the source and RESISC45 as the target. Standard deviations are shown in paren-
theses.

R ! E E ! R
CycleGAN for HDA 18.48 (8.00) 16.82 (5.74)
U-HIDA 13.61 (11.33) 17.77 (9.37)
UPL-HIDA 18.84 (7.34) 21.14 (5.33)

3.2.2.2 Comparison Methods

In this section, UPL-HIDA is compared to CycleGAN for HDA to compare the
performance with the translation-based methods, and with U-HIDA to demonstrate
the advantage of using pseudo-labels.

3.2.2.3 Results

Table  3.4 shows the accuracies of the models averaged over ten repetitions. These
results demonstrate that UPL-HIDA manages to outperform the other methods in
all of the cases. For the R! E case, the performance of UPL-HIDA and CycleGAN
for HDA is very similar, with UPL-HIDA being slightly better. U-HIDA is around
5% weaker. As pointed out in the section  3.1.2.4  , U-HIDA has difficulties adapting
from RGB to multispectral data. UPL-HIDA takes advantage of the pseudo-labels
provided by CycleGAN to guide learning on the target domain, and improve upon
U-HIDA, reaching the same level of performance as CycleGAN for HDA but only
barely outperforming it. It can be concluded that using the domain-invariant UDA
method is limited when images from the target domain have more channels than
the images in the source domain.

For the E ! R case, U-HIDA already outperforms translation-based CycleGAN
for HDA, showing the advantage of the domain-invariant method when adapting
from a domain with more spectral information, to one with less. Even if CycleGAN
for HDA is weaker than U-HIDA, the pseudo-labels it provides did not negatively
affect the performance of UPL-HIDA. On the contrary, using the most confident
pseudo-labels given by CycleGAN for HDA while learning domain-invariant features
allowed UPL-HIDA to boost its performance, gaining more than 3% over U-HIDA
and more than 4% over CycleGAN for HDA.

Figure  3.19 shows that class flipping, though exists, is less present than with
U-HIDA, there are more classes correctly matched between domains. On the other
hand, samples of the same class are more dispersed and mixed up with the samples
of other classes than with U-HIDA, making them hard to discriminate in the learned
target representation. A more detailed analysis and comparison with feature visu-
alisations of the other models will be presented in Chapter  4 . The performance and
impact of CycleGAN for HDA will also be further explored in Chapter  4 .
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Source and target domains together

Source domain only Target domain only

Confusion matrix - target

Figure 3.19: PaCMAP visualisation of UPL-HIDA features in R ! E case (source
— RESISC45, target — EuroSAT). Top left — the distribution of the domains. Top
right — the confusion matrix for the target domain. Bottom — class distributions
of the domains.

3.2.2.4 Ablation study

In order to assess the impact of using different thresholds for pseudo-labelling, we
show the results of UPL-HIDA on different amounts of pseudo-labelled target data,
ranging from 100% (whole dataset) to 1.25% (the most confident 5 images per class
are pseudo-labelled). The results without using any pseudo-labels (0%), i.e. those
of U-HIDA, are also included. The performance of CycleGAN for HDA is given as
a horizontal line. The comparison is shown in Figure  3.20 . The accuracies of all
models are averaged over 10 repetitions. These results are not comparable to those
above in Table  3.4  as the ablation study is performed on the validation set of the
target domain (rather than the test set). This is done so that the decision about
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(a) Source: RESISC45, Target: Eu-

roSAT

(b) Source: EuroSAT, Target: RE-

SISC45

Figure 3.20: Accuracy of the unsupervised pseudo-labelled solution with varying
thresholds for choosing the most confident pseudo labels. The horizontal dashed
line shows the performance of CycleGAN for HDA. The numbers are expressed in
percentages of labelled images.

the choice of threshold parameter is not affected by the test set which should only
be used for final evaluations.

When RESISC45 is the source and EuroSAT is the target domain (R! E), only
the model not using pseudo-labels (0%) has lower performance than CycleGAN for
HDA. Already with 1.25% of pseudo-labelled target data, the model has a strong
growth in accuracy. The performance then remains similar for the other amounts
of pseudo-labels with small oscillations but in general, having a slightly increasing
trend. With any amount of pseudo-labelled target data, from 1.25% to 100%, UPL-
HIDA outperforms CycleGAN for HDA and since the differences are small, any
choice of threshold can be deemed good.

In the opposite direction when EuroSAT is the source and RESISC45 is the
target (E ! R), the performance of CycleGAN for HDA is somewhat weaker. The
model without using any pseudo-labels (0%) already outperforms CycleGAN for
HDA. Afterwards, there is a strong growth in accuracy when using 1.25% of pseudo-
labelled target data and even more when using 2.5%, where the model reaches its
peak performance. Afterwards, with small oscillations, the accuracy slowly decreases
until the threshold of 50%. The performance then strongly drops with 100% of
pseudo-labelled target data. It can be concluded that the global quality of the
pseudo-labels produced by CycleGAN for HDA is not very high to begin with in this
case. When using 50% of the target domain that has the most confident pseudo-
labels, the performance is still high, but the remaining 50% of the pseudo-labels
is less reliable and harms performance. CycleGAN for HDA also uses the whole
pseudo-labelled target domain and it results in a similar performance to UPL-HIDA
with the 100% threshold. Both of them are outperformed by all other cases and
both of them even have lower accuracy than the model with a 0% threshold. This
confirms that filtering the pseudo-labels is a very important step, otherwise, the
performance can be degraded by pseudo-labels instead of improving it.

There is no obvious choice of the best threshold parameter. In the experiments
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whose results are shown in Table  3.4 , the threshold of 12.5% (50 pseudo-labels per
class) was used. This choice seems to give consistently high results, it is the third
best choice in R ! E and the second best choice in E ! R. As can be seen, better
performances could have been obtained using threshold values of 25% and 50% in
R ! E case and 2.5% in E ! R case, however optimising this parameter would
require using a certain amount of additionally labelled target data, so it was not
done for these experiments.

3.2.3 Experimental Results – RGB-Depth Adaptation

Apart from the intended application to remote sensing, the U-HIDA and UPL-HIDA
methods are also evaluated on a common computer vision benchmark of adaptation
between RGB and depth images with the goal to demonstrate that the developed
model is general-purpose and could be applied in various fields.

Robots are often equipped with a depth sensor in addition to an RGB camera
to be able to measure the distance to the objects and have better orientation in
space. One benefit of RGB-depth adaptation is the ability to recognise objects in
bad visibility, i.e. during the night. In this case, only depth images are available,
but there are much fewer labelled depth datasets in comparison to the abundance
of RGB-labelled data. It is, therefore, a logical choice to transfer knowledge from
related RGB datasets.

3.2.3.1 Data

The methods are evaluated on the NYU depth V2 dataset [ 90 ], which consists of
paired RGB and depth images (RGB-D) of indoor scenes captured by cameras from
the Microsoft Kinect. The protocol described in other works on object classification
using this dataset [  34 ,  91 ] is followed: patches of tight bounding boxes around the
objects of interest are extracted. Each patch is, therefore, single-label, and the
objects are categorised into 19 classes. The dataset is highly imbalanced, with some
classes having very few examples. Figure  3.21 shows the original RGB and depth
images and extracted patches. The problem is obviously very challenging even for
in-domain classification in both domains and more so for domain adaptation. The
patches are sometimes of very low resolution and are often blurry, so it is difficult
even for a human to do the correct classification.

The original NYU depth V2 dataset has paired RGB-depth images showing the
same scene, but this is ignored in these experiments. To avoid using paired data,
the training set is split into two halves: from the first RGB images are used for the
source domain, and from the second depth images are used for the target domain.
Both the source and target domains consist of 1958 patches. The number of patches
belonging to a certain class in the source domain is always equal to the number of
patches of that same class in the target domain. Validation and test patches are
extracted from the images in the validation and test sets of the original dataset,
there are 775 RGB-D patch pairs in the validation set and 3859 in the test set.

Raw depth values are encoded as one-channel greyscale images. Instead of raw
depth images, the HHA encoding [ 43 ] is used here, which converts raw depth maps to



3.2. UPL-HIDA 63

table chair boxchair chair table

Figure 3.21: Visualisation of RGB and HHA encoded depth data from NYU depth
V2 dataset. Two whole scenes are displayed — one RGB and one depth map — and
several patches extracted from them.

three-channel images, the channels being horizontal disparity, height above ground,
and the surface normal’s angle to the inferred gravity direction.

3.2.3.2 Comparison Methods

The proposed U-HIDA and UPL-HIDA approaches are compared to Adversarial
Discriminative Domain Adaptation (ADDA) [ 34 ]. This is another translation-based
method, contrary to the domain-invariant HIDA methods. Unlike CycleGAN which
translates on the pixel level, the translation is done in the feature space. Although
ADDA is several years old it is the only general-purpose DA method that has been
evaluated on cross-modal adaptation between unpaired RGB and depth domains for
object classification task.

Having two separate feature extractors for source and target data, ADDA is able
to work with heterogeneous domains with different channels, like RGB and HHA-
depth. The limitation, however, is that the domains must have the same number of
channels, as in the following experiment where HHA and RGB both have 3 channels.
This limitation prevents ADDA from being used in the remote sensing comparisons
above.

The results are also compared to the baseline classifier which is only trained on
source data and then evaluated on target data without performing any adaptation.

3.2.3.3 Implementation details

For this adaptation task, ADDA uses the VGG-16 architecture [ 92 ] with pre-trained
weights from ImageNet. For a fair comparison, U-HIDA and UPL-HIDA use the
same VGG-16 architecture as ADDA as a basis for the model. The first two convolu-
tional layers are separated into source and target feature extractors; the other layers
form the common feature extractor. The convolutional layers are initialised with
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pre-trained ImageNet weights, with source and target feature extractors initialised
identically; the fully-connected layers are initialised randomly.

At the first phase of training of HIDA models, the convolutional part of the
network is frozen, and only the fully-connected layers are trained with the learning
rate 10�4. Then the whole network is fine-tuned with a smaller learning rate of
10�5. The training protocol for U-HIDA and UPL-HIDA is as follows:

• UPL-HIDA — uses the CycleGAN (ResNet generator) to obtain pseudo-labels
(trained for 50 epochs) with a source classifier initialised with a VGG-16 back-
bone (fully-connected layers trained for 40 epochs, then finetuned for 40 ad-
ditional epochs), the most confident 10 images per class (where available) are
used for pseudo-labelling; UPL-HIDA (VGG-16 backbone) fully-connected lay-
ers are trained for 1 epoch, then the whole network is finetuned for 5 epochs.

• U-HIDA — (VGG-16 backbone) fully-connected layers trained for 40 epochs,
then finetuned for 30 epochs.

The domain critic has a similar architecture to ADDA’s domain classifier: a
fully-connected neural network having 3 layers with 1024 nodes, 2048 nodes, and
1 node in the output layer. The rest of the training process is as described in the
remote sensing experiments.

The data is preprocessed as is required for the pre-trained VGG network — all
the patches are resized to 224 ⇥ 224 pixels, and all the channels are zero-centred
without scaling. Data augmentation is not used here to be fair in comparison to
ADDA which also does not use it. The batch size used is 256, 128 samples per
domain. Note that VGG can be easily replaced with any other architecture, e.g.
ResNet.

3.2.3.4 Results

The accuracy per class and overall accuracy for each method are shown in Table
 3.5 . The results show that both HIDA variants give a higher overall accuracy than
ADDA, showing the advantage of domain-invariance over translation approaches,
with U-HIDA giving a stronger performance than UPL-HIDA. The pseudo-labels
provided by CycleGAN are not of sufficient quality in this case, CycleGAN could
not be trained well because the dataset has a high number of classes (19), and is
highly imbalanced. The usage of pseudo-labels, therefore, degrades UPL-HIDA’s
performance, which results in U-HIDA having higher overall accuracy. Looking into
accuracy per class, U-HIDA has the best performance in 9 classes, and UPL-HIDA
in 4 classes. The worst performance, in general, is seen with the least represented
classes — bathtub (13 images only) is never predicted by any model, and toilet (16
images) and dresser (31 images) are rarely predicted.

The results presented herein prove that HIDA-based methods can outperform
translation approaches and achieve state-of-the-art performance not only on remote
sensing but also on computer vision benchmarks. Taking into account the high num-
ber of classes, the low-resolution patches, the difficulty to classify even for humans,
and the large difference between domains, the improvement in performance that
HIDA brings on this challenging problem is significant.
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Table 3.5: Results of unsupervised DA methods on NYU depth V2 dataset, per
class and overall, expressed in accuracy.
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3.3 Summary

In this chapter, two novel approaches to unsupervised heterogeneous domain adapta-
tion, called U-HIDA and UPL-HIDA are presented. The methods are first evaluated
on remote sensing datasets with different numbers of channels (RGB-multispectral),
where it is shown that U-HIDA can outperform translation-based CycleGAN for
HDA when adapting from the labelled domain with rich spectral information to
a domain with fewer channels, while CycleGAN struggles to translate images from
RGB to multispectral space. Using pseudo-labels boosts the performance, and using
only the most confident labels provided by CycleGAN allows UPL-HIDA to outper-
form both U-HIDA and CycleGAN for HDA, showing how to successfully combine
the domain-invariant and translation points of view. Evaluation on the RGB-depth
adaptation problem demonstrates that HIDA models are general-purpose, with U-
HIDA strongly outperforming the ADDA comparison method.

The feature visualisations showed that the class-flipping phenomenon can occur
when using U-HIDA. Even when the classes in the target domain are well separated
they can be associated with the wrong class in the source domain. This problem is
due to a lack of supervision in the target domain and due to large domain shifts.
UPL-HIDA improves upon this and reduces the amount of class-flipping thanks
to pseudo-labels. However, with UPL-HIDA, classes are not well separated in the
target domain and there is a certain overlap. This is the consequence of the fact that
CycleGAN often provides incorrect pseudo-labels and, therefore, misleads learning
the correct representation in the target feature space. Since all the results in the
unsupervised setting are limited due to the difficulty of the task, Chapter  4 will
investigate different means of using additional supervision information.





Chapter 4

Semi-Supervised Heterogeneous

Domain Adaptation Methods

The previous chapter presented two unsupervised methods for heterogeneous image
domain adaptation (HIDA) — unsupervised HIDA (U-HIDA) and Unsupervised
Pseudo-Labelled HIDA (UPL-HIDA). Even though these unsupervised HIDA meth-
ods can outperform comparison methods, as was shown, the results are still limited.
The accuracy is low, and class flipping is frequent. Moreover, UPL-HIDA relies on
CycleGAN for heterogeneous domain adaptation (CycleGAN for HDA) to provide
pseudo-labels, which means that it is necessary to train both a domain-invariant
and a translation method, which can be computationally expensive. Domain shift
in heterogeneous image domain adaptation is usually very large, especially in remote
sensing. As seen in Figure  3.1 of the previous chapter (page  32 ), the class features
are not well separated in remote sensing datasets. Solving this task is, therefore,
very difficult and challenging.

In certain situations, the benefit achieved through acquiring a certain (small)
amount of labels far outweighs the effort and investment required. It is reasonable
to assume that it is possible to label at least a few samples per class in the target
domain. The presence of this small amount of supervision information can poten-
tially bring large gains in performance. The U-HIDA method had a problem with
training the target feature extractor because the classification loss has no impact on
it since the target feature extractor is separate from the source feature extractor.
While pseudo-labels alleviated this problem to some extent, they were only partially
correct. However, if a small number of accurate labels exist in the target domain,
the target feature extractor can be trained with them instead. Better correspon-
dences should be found between the classes across domains and this should help
towards resolving the problem of domain structure not being aligned. Experiments
in this chapter will demonstrate whether this is enough to obtain discriminative
target representations. A semi-supervised HIDA (SS-HIDA) model is developed to
take advantage of the presence of the hard labels in the target domain and perform
domain adaptation over two heterogeneous image domains.

Another means of incorporating target supervision information is considered.
Hard labels can still be difficult to obtain even in small quantities, it can happen
that not all classes are known in advance, or it might be very expensive and time-
consuming to precisely label the data, for example in remote sensing it can even
be necessary to physically visit the location. On the other hand, some background
knowledge about the dataset can be more easily obtained. For example, in order to
differentiate between different two types of vegetation in a satellite image, it might
be necessary to go to the exact location and verify the ground truth data. Differen-



68 Chapter 4. Semi-Supervised Heterogeneous DA Methods

tiating vegetation from the urban area is, however, relatively easy and therefore in
some cases, it is possible, from looking at the images, to state with high confidence
that they do not represent the same class, even if it is not certain to which class
they belong. To express this kind of knowledge, constraints can be used. These are
a weaker form of supervision that is usually attributed to pairs of data samples. For
two samples, it can be defined that they belong to the same class (i.e. must link),
or to a different class (i.e. cannot link). This type of supervision is often used in
constrained clustering. As an unsupervised method, clustering is a natural choice to
be extended with these type of constraints. In this chapter, the Constrained-HIDA
method is proposed that seeks to integrate constraint information into the training
process of HIDA models by using contrastive loss.

The rest of the chapter is organised as follows:

• Section  4.1 presents the SS-HIDA method for semi-supervised heterogeneous
domain adaptation and experimental results on remote sensing datasets.

• Section  4.2 describes the Constrained-HIDA method for heterogeneous do-
main adaptation guided by constraints, and shows the experimental results on
remote sensing datasets.

4.1 Semi-Supervised Heterogeneous Image Domain
Adaptation

This section presents the Semi-Supervised Heterogeneous Image Domain Adaptation
(SS-HIDA) method. This is a variant of the general HIDA model to be used when
there is (at least) a small amount of labelled data in the target domain available.
Since the existence of this data in the target domain can bring large performance
improvements, it is very important to develop such models that can incorporate and
make the best use of it. The basic architecture previously used in U-HIDA and UPL-
HIDA remains the same for SS-HIDA but in this case, SS-HIDA takes advantage of
the existing target labels to learn a discriminative target representation. In order
to achieve this, a small amount of labelled target data will be used to assist in the
classifier’s training, meaning that the target part of the classifier’s loss can now
be backpropagated to the target feature extractor. This increases the balance of
the training between the source and target feature extractors and discriminative
invariant representations of both domains can be learned.

4.1.1 Method

Herein SS-HIDA, a variant of the HIDA model meant for semi-supervised domain
adaptation of heterogeneous image data is presented. The architecture of SS-HIDA
is similar to the previously described U-HIDA and UPL-HIDA and is presented in
Figure  4.1 . The specificity of SS-HIDA is the use of a certain (small) amount of
target labelled data, which leads to a classification loss backpropagating to both
the source and target feature extractors, as can be seen in Figure  4.1 . Contrary to
UPL-HIDA, the weights of the target feature extractor are now updated with hard
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Figure 4.1: The semi-supervised HIDA method (SS-HIDA). Classification loss (blue
dashed arrows) backpropagates to both source and target feature extractor.

labels instead of the not-always-reliable pseudo-labels, which should lead to stronger
performance in the target domain.

Let X
s =

�
(xsi , y

s
i )
 ns

i=1
be a labelled source dataset of n

s samples from the
domain Ds following the data distribution Pxs . As for the target domain, SS-HIDA
uses a small amount of target labels, so let two separate sets of target data be

defined, one being labelled X
tl =

n
(xtlj , y

t
j)
ontl

j=1
, and the other being unlabelled

X
tu =

�
x
tu
k

 ntu

k=1
, ntl

<< n
tu, where target samples x

t 2
n
x
tl
j

ontl

j=1
[
�
x
tu
k

 ntu

k=1
come

from the domain Dt and follow the data distribution Pxt . The source and target
domains are heterogeneous, the spaces of the source and target data are different
X s 6= X t and their dimensions d

s and d
t could also be different.

Similarly to the methodology described in Chapter  3 and as presented in Figure
 4.1 , SS-HIDA has two separate feature extractors to work with the data coming
from two different spaces — FEs : X s ! Rd1 and FEt : X t ! Rd1 — which bring
the data to a feature space of the same size, and another invariant feature extractor
FEi : Rd1 ! Rd2 to extract domain invariant features.

The features are brought into the same latent space and made domain-invariant
by reducing the Wasserstein distance between the domains. The domain critic DC :
Rd2 ! R is trained to calculate this distance. Since the domain critic is trained
on unsupervised domains, there is no reason to limit it to supervised data only,
therefore, in addition to the whole source dataset x

s, it also uses the whole target
dataset x

t including both the labelled x
tl and the unlabelled part x

tu, i.e. a total
of n

t = n
tl + n

tu samples. In this way, the sample of the target data on which
the Wasserstein distance is calculated is bigger and the result is more reliable. The
inputs to the domain critic are the source and target features extracted by the
invariant feature extractor FEi, such that

h
s = FEi(FEs(x

s)), h
t = FEi(FEt(x

t)), (4.1)
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and the loss of this component is defined such that

Lwd(h
s
, h

t) =
1

ns

nsX

i=1

DC(hsi )�
1

nt

ntX

j=1

DC(htj). (4.2)

The loss represents the Wasserstein distance between the domains, reducing it will
bring the domains closer. The distance is backpropagated to the feature extractors,
forcing them to update the weights such that the loss is reduced. This process
will eventually make the features domain-invariant with the Wasserstein distance
between them ideally minimised to zero.

The class discriminator C : Rd2 ! Rc (c — the number of classes) is trained
on the extracted features of all the existing labelled samples, both from source and
target domain — (hl, yl) = (hs, ys) [ (htl, ytl), where

h
tl = FEi(FEt(x

tl)). (4.3)

Labels y
l
i are one-hot encoded and the cross-entropy classification loss is used, such

that

Lc(h
l
, y

l) = � 1

ns + ntl

ns+ntlX

i=1

cX

k=1

y
l
i,k logC(hli). (4.4)

Since both source and target samples are used to calculate the classification loss,
both source and target feature extractors will be affected by it. As demonstrated in
Figure  4.1 , the weights of the source feature extractor FEs will get updated by the
source part of the classification loss. Here the gradient of the target part of the loss
is zero because FEs does not depend on the target input data. In the same way,
the weights of the target feature extractor FEt are affected only by the target part
of the classification loss, the gradient of the source part of the loss is zero. On the
contrary, the weights of the invariant feature extractor FEi are updated by the whole
classification loss as FEi depends on both source and target input data, in this way,
it will be able to consider both domains together and bring them to the common
latent space while keeping the representations of both domains discriminable.

The final adversarial optimisation problem is:

min
✓fe,✓c

⇢
Lc + �max

✓wd

⇥
Lwd � �Lgrad

⇤�
, (4.5)

where Lgrad enforces the Lipschitz constraint as explained in Section  3.1.1  and de-
fined in Equation ( 3.9 ).

4.1.2 Experimental Results

The SS-HIDA approach is evaluated on the same remote sensing problem as U-
HIDA and UPL-HIDA in Sections  3.1.2  and  3.2.2  , on two heterogeneous datasets,
RGB RESISC45 and multispectral EuroSAT.
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4.1.2.1 Comparison Methods

SS-HIDA is compared to the CycleGAN for HDA method, as in Chapter  3 , but this
time a variant for semi-supervised domain adaptation is used. This variant includes
a source and target classifier in the training process to take advantage of available
labelled data. In this manner, the classification losses should preserve the discrim-
inability of translated images. The architecture of semi-supervised CycleGAN for
HDA is presented in Figure  4.2  .

Let X
s =

�
(xsi , y

s
i )
 ns

i=1
be a source domain following the data distribution Pxs .

Let also two separate sets of target data be defined, a labelled X
tl =

n
(xtlj , y

t
j)
ontl

j=1

set and an unlabelled X
tu =

�
x
tu
k

 ntu

k=1
set, n

tl
<< n

tu, where all target samples

x
t 2

n
x
tl
j

ontl

j=1
[
�
x
tu
k

 ntu

k=1
follow the data distribution Pxt . As usual, the spaces of

source and target data differ X s 6= X t, the resolution and/or number of channels of
source and target images can be different.

Before training the CycleGAN translation model, two classifiers are pre-trained,
one for the source and one for the target domain. A source classifier Cs is trained
on the labelled source data. If the cross-entropy loss is denoted LCE , the classifier
Cs is trained by solving the following problem

min
Cs

LCE(x
s
, y

s). (4.6)

While the source classifier is trained on the whole source domain, in the target
domain only a small amount of labels are available. A target classifier Ct is trained
on the labelled subset of the target domain by solving the following problem

min
Ct

LCE(x
tl
, y

tl). (4.7)

These two classifiers will help with the training of the CycleGAN. The data will
need to be translated such that the pre-trained classifier gives the correct prediction
of the translated image label.

The CycleGAN translation model is mostly trained in the same manner as de-
scribed in Section  3.1.2.3  . Two generators are trained – a source-to-target generator
Gs!t to translate source images x

s to the fake target images x̂
t, and a target-to-

source generator Gt!s which translates target images x
t to the fake source images

x̂
s, such that

x̂
t = Gs!t(x

s), x̂
s = Gt!s(x

t). (4.8)

The generators compete with two discriminators in an adversarial manner in
order to produce realistic images that look like they originate from the domain to
which they are in fact translated. Discriminators are trained to differentiate between
the real and generated images while generators try to trick them. A GAN loss to
train the source-to-target generator Gs!t and the target discriminator Dt is defined
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Figure 4.2: The architecture of the semi-supervised DA version of CycleGAN for
HDA: a) Source and target classifiers are pre-trained on available labelled data; b)
CycleGAN is trained using the classifiers to preserve the labels of the translations;
c) Translated images are assigned pseudo-labels by the source classifier — these are
used to train the final target classifier. Blue arrows — source data flow; red arrows
— target data flow; dashed arrows — data flow to calculate cycle consistency loss;
dashed and pointed arrows — the flow for the classification loss.
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as

LGAN (Gs!t, Dt) = E
xt⇠Pxt

h
logDt(x

t))
i
+ E

xs⇠Pxs

h
log(1�Dt(x̂

t))
i
. (4.9)

The GAN loss for the target-to-source generator Gt!s and the source discriminator
Ds is defined in the same manner.

To prevent the generators from creating random images and hallucinating the
non-existing content, cycle-consistency loss is used. It forces the image generated by
one generator to be translated back to the original image with the other generator,
consequently enforcing generators to preserve the content of the image. Cycle-
consistency loss is applied in both directions, such that

Lcycle(Gs!t, Gt!s) = E
xs⇠Pxs

���xs �Gt!s
�
Gs!t(x

s)
����

1

�
+

+ E
xt⇠Pxt

"����x
t �Gs!t

⇣
Gt!s(x

t)
⌘����

1

#
.

(4.10)

The metric loss is used to preserve the geometrical structure of the domain when
translating. The Euclidean distance d between two samples in one domain should
not be changed after translating to the other domain, such that

Lmetric(Gs!t) = E
(xs

i ,x
s
j)⇠Pxs


d(xsi , x

s
j)� d

⇣
Gs!t(x

s
i ), Gs!t(x

s
j)
⌘�2

. (4.11)

The metric loss for the Gt!s generator is defined in the same manner.
The classification loss is added to the semi-supervised version of CycleGAN

for HDA. For this purpose, two previously pre-trained classifiers Cs and Ct are
used. They calculate the classification loss of the translated images using their
original labels. This ensures that the translated images will be classified correctly
so that reliable pseudo-labels can be generated afterwards. The source images x

s

are translated to the target domain, i.e. to fake target images x̂
t, and the loss on

them is calculated by the target classifier Ct using one-hot encoded labels from the
source domain y

s, such that

Lclassif (Ct, Gs!t) = E
xs⇠Pxs

2

4
cX

k=1

y
s
k logCt

�
Gs!t(x

s)
�
3

5 . (4.12)

where c is the number of classes.
In the other direction, the labelled subset of target images x

tl is translated to
the source domain, i.e. to the fake source images x̂

s, then the classification loss
is calculated using the pre-trained source classifier Cs and the available one-hot
encoded labels from the target domain y

tl, such that

Lclassif (Cs, Gt!s) = E
xtl⇠Pxt

2

4
cX

k=1

y
tl
k logCs

⇣
Gt!s(x

tl)
⌘
3

5 . (4.13)
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The total loss of the semi-supervised CycleGAN of HDA is a weighted sum of
all the loss components, such that

L(Gs!t, Gt!s, Dt, Ds) = LGAN (Gs!t, Dt) + LGAN (Gt!s, Ds)+

+ �1Lcycle(Gs!t, Gt!s)+

+ �2
�
Lmetric(Gs!t) + Lmetric(Gt!s)

�

+ �3
�
Lclassif (Ct, Gs!t) + Lclassif (Cs, Gt!s)

�
,

(4.14)

and the min-max optimisation problem to solve is

min
Gs!t,Gt!s

max
Ds,Dt

L(Gs!t, Gt!s, Dt, Ds). (4.15)

Once the translation model is trained, the next step is pseudo-labelling. The pre-
trained source classifier Cs that was already used during the training of CycleGAN
is now used again to assign the pseudo-labels. The unlabelled portion of the target
domain x

tu is translated to be fake source images and then fed to Cs. The pseudo-
labels ŷ

tu are assigned based on the prediction of the classifier Cs, such that

ŷ
tu = Cs

⇣
Gt!s(x

tu)
⌘
. (4.16)

The obtained pseudo-labels for the unlabelled part of the target domain ŷ
tu are

combined with the available target hard labels y
tl to train the final classifier Cfinal

on the whole target domain

min
Cfinal

LCE(x
t
, y

tl [ ŷ
tu). (4.17)

The results are also compared to a simple target baseline, i.e. a classifier trained
on the same amount of labelled target data, that does not use any source data or
any domain adaptation. The semi-supervised domain adaptation models and the
target baseline classifier are evaluated on different amounts of labelled target data
— 25 (6.25%), 10 (2.5%), and only 5 labelled samples per class (1.25%).

The results of the unsupervised DA methods from Chapter  3 are also included
to demonstrate the progress made with using hard labels. The unsupervised models
do not use any labelled target data. To distinguish the unsupervised and semi-
supervised variants of the CycleGAN for HDA method, the unsupervised version will
be denoted as CycleGAN for U-HDA and the semi-supervised variant as CycleGAN
for SS-HDA.

4.1.2.2 Implementation Details

The convolutional architecture used for SS-HIDA is identical to that of U-HIDA
and UPL-HIDA used in the remote sensing experiments presented in Chapter  3 , it
is described in Section  3.1.2.2  and presented in Figure  3.10 . The training protocol
is very similar to UPL-HIDA, except that in the target domain, the hard labels are
now used instead of pseudo-labels. The algorithm alternates between training the
domain critic for 10 steps and then training the feature extractors and classifier for
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1 step because the domain critic needs to adjust to the current source and target
feature representations and learn how to calculate the Wasserstein distance between
them before this loss is used to train the feature extractors and the classifier. When
the domain critic is trained, half of each training batch is randomly sampled from
the source domain, and the other half from the target domain in its totality, without
separating labelled and unlabelled parts. This way, the domain critic will have a
sufficiently big sample of the target domain (the amount of labelled target data
will be very small) and will correctly learn how to calculate the distance between
domains. Throughout all 10 steps of training domain critic, the same batch is used,
and for the next 10 steps, the new batch is sampled.

On the other hand, when training the classifier, only the labelled target samples
can be used, so the target half of the batch is resampled from the labelled target
domain subset, while the source half of the batch is preserved from the previous 10
steps of training the domain critic. The training procedure of SS-HIDA is presented
in Algorithm  3 .

The target baseline classifier is implemented such that it corresponds to SS-
HIDA. The same architecture is used: it starts with the same layers as in the target
feature encoder, followed by the same layers as in the invariant feature encoder,
and finally, it has the same classifier architecture. The input data is pre-processed
in the same manner as in SS-HIDA, it is standardised per channel so that each
channel has a mean of 0 and a standard deviation of 1. The same augmentation
transformations are also used: flipping with a probability of 0.45, rotation with a
probability of 0.75 for 90°, 180°, or 270°, changing contrast with the probability of
0.33 by multiplying the values of the pixels with the coefficient ranging between 0.5
and 1.5, changing brightness with the probability of 0.33 by adding the coefficient
ranging between �0.3 and 0.3 scaled by the mean of pixel values per channel before
standardisation, blurring with the probability of 0.33 with Gaussian filter with �

parameter values ranging from 1.5 to 1.8, and finally adding Gaussian noise with
mean 0 and standard deviation between 10 and 15 with the probability of 0.33. A
batch size of 16 is used, which is half the batch size of SS-HIDA but corresponds
to the same number of target samples that SS-HIDA uses in each iteration (each
batch for SS-HIDA consists of both source and target samples). Both SS-HIDA and
the target baseline classifier are trained for 40 epochs with the same learning rate
of 10�4 and the Adam optimiser.

The semi-supervised variant of CycleGAN for HDA is very similar to the unsu-
pervised counterpart, as described in Section  3.2.2.1  , except for the use of pre-trained
classifiers during the training of the CycleGAN translation model. These classifiers,
Cs for the source domain and Ct for the target domain, as well as the final target
classifier Cfinal, all have the same architecture, presented in Figure  3.18 . The only
difference exists in the first convolutional layer of the models, where the classifier
trained on the RGB RESISC45 dataset has a filter depth of 3, while the filters of the
first convolutional layer for multispectral EuroSAT have a depth of 13. All of the
classifiers are trained with the Adam optimiser, with a learning rate of 10�4 and a
batch size of 16. No data augmentation is used and the input is scaled to the [�1, 1]
interval. The classifiers are pre-trained for 30 epochs and then frozen while training
the translation model, where the translated images are passed through them to ob-
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Algorithm 3 Semi-Supervised Heterogeneous Image Domain Adaptation (SS-
HIDA)
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tain the classification loss, which then backpropagates and updates the weights of
the generators, but not the classifiers themselves.

The generators use the same architecture for super-resolution as presented in
Figure  3.16 with a pixel shuffler component. The same goes for the discriminators,
presented in Figure  3.17 , using the LSGAN loss defined in Equation ( 3.28 ). The
input is augmented with flipping and random cropping operations and scaled to the
[�1, 1] interval. The multispectral EuroSAT data is clipped to remove the outlier
values. The weights of the cycle consistency loss and the metric loss �1 and �2 are
the same as before, i.e. 10 and 10�4, while the newly introduced classification loss
has a weight of �3 = 1.

It should be noted that the target baseline classifier used as a comparison method
and the pre-trained classifiers used for training CycleGAN for HDA do not have
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the same architecture. The baseline classifier uses the same architecture and data
augmentation as the HIDA models, while the pre-trained classifiers Cs and Ct have
the architecture as proposed in the article proposing CycleGAN for HDA and do not
use any data augmentation. Using the same architecture for all of these classifiers
was considered, however using the HIDA classifier in CycleGAN for HDA produced
less reliable pseudo-labels, while the classifiers proposed in the CycleGAN for HDA
article achieved smaller overall accuracy on their respective datasets.

4.1.2.3 Results

The accuracy of the proposed and comparison models (averaged over ten repeti-
tions) are presented in Table  4.1 . As in Sections  3.1.2  and  3.2.2  , two cases are
demonstrated: when the source domain is RESISC45 and the target domain is Eu-
roSAT (R ! E), and vice-versa (E ! R). All 13 bands from the EuroSAT dataset
were used throughout, and the original resolution of 256 ⇥ 256 for RESISC45 and
64⇥ 64 for EuroSAT was used without resizing.

The results show that SS-HIDA outperforms the competing method CycleGAN
for HDA by a large margin in all cases. With RESISC45 as source and EuroSAT as
target (R ! E), SS-HIDA gains around 14–24% in accuracy, with the highest im-
provement observed in the case with 1.25% labelled data. With EuroSAT as source
and RESISC45 as target (E ! R), the difference in favour of SS-HIDA is around
15–18%. It should also be noted that the results of CycleGAN for HDA almost
always have a much higher standard deviation than those of SS-HIDA. As with all
GAN architectures, training CycleGAN is unstable, so the result may vary for dif-
ferent runs. Nevertheless, in these experiments, the maximal result that CycleGAN
achieved throughout all repetitions was lower than the minimal result of SS-HIDA
from repetitions in all cases.

The baseline classifier performs better than CycleGAN for HDA. For R ! E,
SS-HIDA is stronger than the baseline by around 5–7%. For E ! R, the gain of
SS-HIDA is 7–15%, the highest gain obtained with 1.25% labelled data. The reason
for the higher gap in E! R is the fact that RESISC45 is more difficult to solve than
EuroSAT, hence the baseline classifier for RESISC-45 cannot perform as well as that
of EuroSAT, while SS-HIDA is not as affected and retains strong performance with
RESISC45 as the target domain.

It is worth noting that the baseline performs surprisingly well with such few
labelled images, achieving almost 60% for R! E, and almost 50% for E! R when
only five labelled images per class are given. Keeping in mind that the specific
architecture used is not optimised to achieve state-of-the-art performance, this in-
dicates that the classification problem is relatively easy, especially for the EuroSAT
dataset (which is backed up by other findings in the literature [  48 ,  93 ]) and perhaps
more pronounced improvements could be found in more difficult applied problems.
It should be noted, however, that even if the in-domain classification problem is
relatively easy in RESISC45 and EuroSAT, domain adaptation between these two
datasets remains a difficult problem.

The unsupervised domain adaptation methods are also included in Table  4.1  

to compare to the performance without using any target labels. The results show
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Table 4.1: Top — Accuracy of domain adaptation with RESISC45 as source and
EuroSAT as target (R ! E). Bottom — Accuracy of domain adaptation with Eu-
roSAT as source and RESISC45 as target (E! R). The standard deviation is shown
in parentheses. In both RESISC45 and EuroSAT, 1.25%, 2.5%, 6.25% of labelled
data is 5, 10, 25 and images per class respectively, while 0% represents the results
of UDA models without using any target labels.

R ! E 0%

CycleGAN for U-HDA 18.48 (8.00)
U-HIDA 13.61 (11.33)
UPL-HIDA 18.84 (7.34)

1.25% 2.5% 6.25%

Target classifier 58.70 (4.19) 64.95 (3.25) 76.07 (1.75)
CycleGAN for SS-HDA 41.57 (9.20) 56.39 (6.70) 63.29 (3.80)
SS-HIDA 66.14 (2.92) 70.91 (2.13) 81.34 (1.24)

E ! R 0%

CycleGAN for U-HDA 16.82 (5.74)
U-HIDA 17.77 (9.37)
UPL-HIDA 21.14 (5.33)

1.25% 2.5% 6.25%

Target classifier 47.55 (5.11) 58.41 (1.73) 66.25 (2.90)
CycleGAN for SS-HDA 47.29 (1.53) 50.79 (5.40) 58.75 (6.91)
SS-HIDA 62.68 (3.24) 68.34 (2.59) 73.57 (2.64)

that a large gain can be obtained with only 5 labelled images per class (1.25%)
in the target domain. SS-HIDA more than triples the result of UPL-HIDA, the
best unsupervised DA model, in all the cases, even though UPL-HIDA is using
pseudo-labels. The other semi-supervised models, CycleGAN for SS-HDA and the
baseline target classifier, also have significantly higher performance than all of the
unsupervised DA models. This shows that in heterogeneous DA, it is very important
to have at least a small amount of labels in the target data. These labels, even if few,
will allow the model to match the domain feature representations correctly, which
would not be possible without any labels in such different domains. Moreover, SS-
HIDA, being a domain-invariant approach, can make better use of the existing target
labels to match the domain features than CycleGAN for HDA. It is more difficult for
a classification loss to impact the process of translating the data and to match the
raw images than to impact the matching of the extracted features. More discussion
on this is given in Section  4.1.2.5  .

4.1.2.4 Ablation Study

In order to uncover the impact of each of the model’s components, an ablation study
is performed. One comparison model is created in which the domain critic is removed
(SS-HIDA-NoDC), thus removing the domain adaptation component. A second
comparison model is obtained by separating all of the layers of source and target
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(a) Source: RESISC45, Target: Eu-

roSAT

(b) Source: EuroSAT, Target: RE-

SISC45

Figure 4.3: Ablation study of SS-HIDA, comparison with the model without domain
critic and without shared layers with varying numbers of labelled training images.
The numbers are expressed in percentages of labelled images.

architecture so that only the classifier is shared between them (SS-HIDA-SepFE),
thus reducing the capacity of learning a general representation. The multispectral
version of the EuroSAT dataset is used.

The results are shown in Figure  4.3  . Both cases confirm that removing the
domain critic leads to a significant drop in performance since there is no requirement
for the model to learn overlapping distributions which reduces the classifier’s ability
to generalise between domains. On the other hand, separating the source and target
layers has less effect on performance. When RESISC45 is the source and EuroSAT
is the target, SS-HIDA-SepFE is a little worse than SS-HIDA. But when EuroSAT
is the source and RESISC45 is the target, SS-HIDA-SepFE even outperforms SS-
HIDA when there is 6.25% labelled data in the target domain. The two models fare
about the same for 2.5%. But SS-HIDA remains significantly better when there is
only 1.25% target labelled data. From this, it can be concluded that, when there are
sufficient labels in the target domain, the domain critic is able to compensate for the
separation of source and target layers and still forces the model to extract domain
invariant features. It is also worth noting that none of these variations results in
performance worse than the baseline.

4.1.2.5 Discussion

Feature visualisations of HIDA models. To give deeper insight into the
learning process of the HIDA models and to better compare their performances,
PaCMAP [ 87 ] visualisations for all HIDA models are given in this section. The
features visualised are extracted from the last layer of the shared invariant feature
extractor, where the features of both domains are supposed to be domain-invariant.
The evolution of features while adding supervision information is presented, starting
from the completely unsupervised U-HIDA, over UPL-HIDA with pseudo-labels, all
the way to SS-HIDA with the growing amount of labels in the target domain.

In Figure  4.4 , the features of U-HIDA in the R ! E case are presented. In
the top left corner of the figure, the distributions of the domains can be seen. The
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Source and target domains together

Source domain only Target domain only

Confusion matrix - target

Figure 4.4: PaCMAP visualisation of U-HIDA features in R ! E case (source —
RESISC45, target — EuroSAT). Top left — the distribution of the domains. Top
right — the confusion matrix for the target domain. Bottom — class distributions
of the domains.

source and target domain are globally well matched, the distributions overlap, they
have a similar shape and are positioned at the same place in space, which shows
that the domain critic correctly reduced the Wasserstein distance between domains.
The situation is different with the class distributions, which are shown separately
for the source and the target domain, in the bottom left and the bottom right of the
figure respectively. In the labelled source domains, the classes are well separated
as expected and most of the samples are grouped with their own class. Other than
per class grouping, the samples are also divided into two bigger groups — natural
objects which comprise vegetation and water bodies (forest, crop, pasture, river and
sea-lake classes) and artificial objects like buildings and roads (residential, industrial
and highway classes).
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As for the target domain, even though it is unlabelled, here the separation of
classes is also clearly visible to some extent, though it is certainly weaker than
in the source domain. Most of the samples from the classes like industrial, crop,
sea-lake, pasture and river are grouped with other samples from their respective
classes. The samples from the highway class are the most dispersed but this is
understandable as other classes are often present on the patches labelled as highway,
e.g. highway can pass through the area with crops or with the buildings, see Figure

 3.7 c. The real problem here is class-flipping across domains. Even if a class in
the target domain is easily separable from the other classes inside the domain, it is
most often matched with the wrong class in the source domain. Only parts of the
forest, river and highway are matched with their corresponding classes. The most
obvious example of class flipping is that the target industrial class is matched with
the source sealake class. The reason for this wrong match might be that the target
EuroSAT patches labelled as industrial usually present large buildings that are often
blue, while the source RESICS45 lake patches usually show the entire lake with the
surrounding coast, also often blue. The target pasture samples are matched with
the source forest class, where both are vegetation. Target crop class samples are
mostly classified as pasture, another case of two flipped vegetation classes. The river
in target is matched with the highway in source — both are present in patches as
lines passing through the area that might have elements belonging to other classes.

UPL-HIDA is also an unsupervised method that still does not use any hard labels
in the target domains but it does use the pseudo-labels provided by CycleGAN for
HDA. The features of UPL-HIDA in the R ! E case are presented in Figure  4.5 .
In the top left part of the figure, it can be seen that the domain distributions
overlap and that the distance between them is reduced. There are, however, several
‘tails’ of red points, parts of the source distribution, that stand out and are not
matched with any part of the target distribution. Looking down at the bottom
left of the figure where class distributions of the source domain are presented, the
residential class stands out the most, followed by forest and pasture. The reason
for residential and forest classes standing out is very simple — almost none of the
images from the whole target dataset was assigned these pseudo-labels. The pre-
trained source classifier used for pseudo-labelling in CycleGAN for HDA did not
recognise almost any image translated from the target domain as residential or
forest, either correctly or wrongly. Consequently, no part of the target domain was
matched to these regions of the source domain. The situation with the pasture class
is slightly different. There are in fact many samples assigned with this pseudo-label,
however, almost all of them are sealake images. The bottom right part of the figure
shows that the target sealake images form a separate region from the rest of the
target domain and this actually occurs in all HIDA models and in both the R !
E and E ! R adaptation scenarios. Sealake patches in the EuroSAT dataset are
mostly unicolour and they do not resemble any other class in either domain, see
Figure  3.6  . Even the forest patches from EuroSAT are also often unicolour but have
a different texture and, as vegetation, a different spectral response from a water
body. The lake patches from the source RESISC45 domain show the entire lake
with its surrounding coast, while in EuroSAT the coast is rarely visible. All of this
leads to the separation of the target sealake samples from the rest of the domain.
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Figure 4.5: PaCMAP visualisation of UPL-HIDA features in R! E case (source —
RESISC45, target — EuroSAT). Top left — the distribution of the domains. Top
right — the confusion matrix for the target domain. Bottom — class distributions
of the domains.

After translation to the source domain, they were classified as a pasture class and
the PaCMAP visualisation also shows that the pasture in source is the closest class
to sealake target samples. Though numerous, sealake patches are (largely) the only
ones assigned with a pasture pseudo-label, and being far away from the rest of the
target domain, this prevented the real pasture source samples from being matched
to any target samples.

The bottom left part of Figure  4.5 shows that the source classes are well separated
as with U-HIDA in Figure  4.4 . The target class distribution of UPL-HIDA, however,
differs from U-HIDA’s. There is a much higher dispersion of the same-class samples,
notably (but not exclusively) highway, river and residential. Consequently, the
mixing of different-class samples occurs more often. This is probably due to noisy
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Figure 4.6: PaCMAP visualisation of SS-HIDA features with 1.25% of labelled
target data in R ! E case (source — RESISC45, target — EuroSAT). Top left —
the distribution of the domains. Top right — the confusion matrix for the target
domain. Bottom — class distributions of the domains.

pseudo-labels provided by CycleGAN for HDA. On the other hand, compared to
U-HIDA more classes in the target domains are at least partly matched with the
correct corresponding class in the source domain, notably the industrial class but
also parts of the forest, crop, highway and river classes.

The semi-supervised SS-HIDA method already shows much better performance
than UPL-HIDA when using only 1.25% of labelled target data. The features for
the R ! E case are presented in Figure  4.6 . The domain distributions overlap and
the class distributions between domains are very similar. All of the classes are well
matched, it seems that domain-invariant SS-HIDA needs only a few labels in the tar-
get domain to make good correspondences of the classes across domains. The only
class with weaker performance in the target domain is highway, the samples of this
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Figure 4.7: PaCMAP visualisation of SS-HIDA features with 2.5% of labelled target
data in R ! E case (source — RESISC45, target — EuroSAT). Top left — the
distribution of the domains. Top right — the confusion matrix for the target domain.
Bottom — class distributions of the domains.

class are very dispersed and mixed with several other classes. The residential class
is also slightly scattered but to a much smaller extent. The target forest samples are
not dispersed in the same way but one part is separated from the rest and matched
with the pasture class, which is not surprising as forest and meadow/pasture images
can look very similar in the source RESISC45 domain, see Figure  3.7 b. The sealake
target samples (brown points) are again separated from the rest of the target do-
main, however, they are closest to the source sealake class and, therefore, correctly
classified. The existing labels in the target domain made a correspondence between
the sealake samples of the two domains but with the patches being very different in
the source and target domains, the source and target sealake samples were placed
in nearby but separate places.
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Figure 4.8: PaCMAP visualisation of SS-HIDA features with 6.25% of labelled
target data in R ! E case (source — RESISC45, target — EuroSAT). Top left —
the distribution of the domains. Top right — the confusion matrix for the target
domain. Bottom — class distributions of the domains.

With the amount of labelled target data increased to 2.5% (10 images per class),
the performance continues to improve. Figure  4.7  presents features of SS-HIDA
using 2.5% of labelled target data in R ! E case. Even if highway is still the
most dispersed class in the target domain, it is much more compact than in the
representation of 1.25% SS-HIDA (Figure  4.6 ). There is also the opposite tendency,
the neighbouring classes of the highway class in the target domain, such as industrial,
residential and crop, are partially drawn to the region of the source’s highway class
and, therefore, incorrectly classified. The reason for the highway class being mixed
with these three classes is that the highway often passes through crops or nearby
buildings — the highway patches often have elements of other classes. Two building
classes are partially mixed up as well, residential samples tend to be classified as
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Figure 4.9: PacMAP visualisation of SS-HIDA features with 6.25% of labelled target
data in R ! E and E ! R case. Left: Features from the last layers of source and
target FEs. Right: Features from the last layer of shared invariant FE.

industrial. The edges of forest and pasture classes are mixed up. The extent of
the mixing is, however, much smaller than with the previously analysed 1.25% SS-
HIDA model. The target sealake samples are again slightly separated from the rest
of the domain but without impacting the results, they still fall in the region which
is classified as sealake.

Finally, the features of SS-HIDA when using 6.25% of labelled target data are
presented in Figure  4.8 . The highway class in the target domain is much more
compact than previously. Though a small number of highway samples are still
scattered towards neighbouring classes, the majority of samples are in place and
correctly classified. The target sealake samples are still slightly displaced from the
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source sealake class but being in the region that is classified as sealake, this class
achieved 100% accuracy on the test set, as confirmed by the confusion matrix in the
top right corner of the Figure  4.8  .

In general, it can be concluded that, despite two datasets having different dimen-
sionalities/modalities and passing through two separate feature extractors, SS-HIDA
successfully learns a latent space in which the domain distributions overlap, all of
the classes in target domain are well matched with their source counterparts, and
the overall accuracy is very high as demonstrated in Table  4.1 .

Visualisations of the features in the other adaptation scenario, in the opposite
direction E ! R, are very similar to the E ! R cases for all HIDA models and
similar conclusions can be drawn.

The comparison of the SS-HIDA features extracted from the last layers of the
source and target feature extractor and the last layer of the shared invariant feature
extractor is presented in Figure  4.9 . SS-HIDA with 6.25% labelled target data was
used and both adaptation scenarios R! E and E! R are presented. The top part
of the figure presents the features in the R ! E case and the bottom part is the E
! R case. On the left are features extracted from the separated feature extractors
and on the right are the feature outputs of the shared invariant feature extractor.
Red points represent the source samples and blue points are the target samples.
Despite using some labels in the target domain, the behaviour is similar to U-HIDA
— it is demonstrated here that the source and target feature extractor bring the
domains to a space of the same dimension but there is still a distance between the
domain distributions. Nevertheless, this distance is reduced by the invariant feature
extractor and the resulting domain feature distributions overlap.

Even though SS-HIDA trained using 6.25% labelled target data achieves very
high performance, there are still some failure cases. Figure  4.10 presents the com-
parison of some of the patches that are correctly classified and those that are mis-
classified. The model used is SS-HIDA trained in the R ! E case with 6.25% of
labelled target data. In one misclassification case, a highway passes a large white
building. This patch’s correct label is ‘Highway’, but SS-HIDA (understandably)
wrongly classifies it as ‘Industrial’. As illustrated there is a large overlap between
the two classes, there are plenty of similar buildings labelled as Industrial in the
dataset. In the other misclassification case, dark-green forests are correctly pre-
dicted but a lighter-green forest is misclassified as ‘Pasture’, especially if there is
some soil visible. Such examples are very difficult to correct, even when labels are
provided in the target domain.

CycleGAN translation. In order to understand the results of CycleGAN for
HDA, to give insight into how pseudo-labels are created and to understand why
domain-invariant HIDA models work better, translations of images with CycleGAN
are now inspected. The images generated by the unsupervised CycleGAN for HDA
are compared with the ones produced by semi-supervised CycleGAN for HDA mod-
els with 1.25%, 2.5% and 6.25%.

The image translations performed by the unsupervised CycleGAN for HDA are
presented in Figure  4.11 . The first column presents original EuroSAT images from
three different classes — river, residential and forest. In the second column, the
translations of these images to the RESISC45 domain are shown, and the third col-
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Figure 4.10: Examples of misclassified patches and their comparison to the cor-
rectly classified patches. Left and middle — correctly classified examples. Right —
wrongly classified examples

E R
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Residential

Forest

E→R R→ E

Figure 4.11: The translation of images with the unsupervised CycleGAN for HDA.
First column — original Eurosat images (E). Second column — Eurosat images
translated to RESISC45 (E!R). Third column — original RESISC45 images (R).
Fourth column — RESISC45 images translated to EuroSAT.

umn contains original RESISC45 images of the same classes. This demonstrates that
the fake RESISC45 images (second column) preserved the objects from the origi-
nal images while changing colours to resemble the style of the RESISC45 images.
The resolution of the translated images is, however, low. Even though CycleGAN
for HDA uses super-resolution generators, the low resolution of EuroSAT images
remains unchanged when translating to the high-resolution RESISC45 domain. An-
other thing that can be noticed is that the dominant colour in the translated images
is green. This can cause incorrect classification, e.g. a dark blue river in the Eu-



4.1. SS-HIDA 89

E E→R R R→ E

Crop

Industrial

Forest

Figure 4.12: The translation of images with the semi-supervised CycleGAN for HDA
using labelled RESISC45 as a source domain and the EuroSAT with 1.25% of the
labelled data as a target domain. First column — original Eurosat images (E).
Second column — Eurosat images translated to RESISC45 (E!R). Third column
— original RESISC45 images (R). Fourth column — RESISC45 images translated
to EuroSAT.

roSAT patch (first row) has become green after translation, which can be mistaken
for vegetation.

The fourth column presents the translation in the opposite direction (from the
original RESISC45 images in the third column). The translated images appear to
have lower resolution and are blurred compared to the original image, in order to
resemble the style of the EuroSAT dataset. On the contrary, the colours in the fake
EuroSAT images (fourth column) do not always look natural, the translated river
patch (first row) contains too much blue, both in the river and the surrounding area.

The translations of the semi-supervised CycleGAN for HDA with 1.25% labelled
target data are presented in Figure  4.12 . The visual quality of the generated im-
ages is degraded compared to the unsupervised CycleGAN for HDA. The first two
columns demonstrate translating from the target EuroSAT to the source RESISC45
domain. The translated images contain a lot of green colour, even if it is not present
in the original image, as is the case with the crop image from the first row of the
figure. Another thing that can be observed is the appearance of artefacts on the
fake RESISC45 images, such as square lines near the image edges.
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Figure 4.13: The translation of images with the semi-supervised CycleGAN for HDA
using labelled RESISC45 as a source domain and the EuroSAT with 2.5% of the
labelled data as a target domain. First column — original Eurosat images (E).
Second column — Eurosat images translated to RESISC45 (E!R). Third column
— original RESISC45 images (R). Fourth column — RESISC45 images translated
to EuroSAT.

The quality of the R!E translations decreased as well. Crop and industrial
patches from Figure  4.12 have so much blue colour after translation that the content
becomes hardly recognisable. The green and red colours are also present and do not
look natural. The reason for this behaviour might lie in the fact that here RGB
images are translated to the multispectral domain. Multispectral EuroSAT has 13
channels and for CycleGAN for HDA, it is difficult to find correspondences between
channels. It can easily happen that the information from the green channel in an
RGB image ends up in, e.g., the red channel of the generated multispectral image.
These ‘leaks’ between channels can result in an excessive amount of red, green or
blue colour in the translated images.

The visual quality of translations severely degrades as more supervision infor-
mation is added. The translations of CycleGAN for HDA using 2.5% labelled target
data are presented in Figure  4.13 . In the patches translated from EuroSAT to
RESISC45 (second column), the green colour becomes absolutely dominant, with
high-frequency artefacts all over the image. These artefacts might appear due to
the generator’s attempt to perform super-resolution and create higher-resolution
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Figure 4.14: The translation of images with the semi-supervised CycleGAN for HDA
using labelled RESISC45 as a source domain and the EuroSAT with 6.25% of the
labelled data as a target domain. First column — original Eurosat images (E).
Second column — Eurosat images translated to RESISC45 (E!R). Third column
— original RESISC45 images (R). Fourth column — RESISC45 images translated
to EuroSAT.

images. The artefacts are very strong and from the real content of the image only
contours and basic shapes are preserved. In the opposite direction, the visual quality
is also degraded but to a smaller extent compared to the E!R case. The shapes
and contours of the objects are more visible than in the E!R case. The colours
still seem to be inverted as was the case with the objects from the RESISC45 in the
smaller threshold of 1.25% (see Figure  4.12 ).

The trend continues when increasing the percentage of the target domain labelled
data to 6.25%. The translations are presented in Figure  4.14 . In the E ! R
translations (second column), the high-frequency artefacts are all over the image.
The translation of the river patch (third row) uses several different shades of green
to separate the river itself from the coast. The translation of the residential class
patch (second row) does not even preserve the contours of that patch itself. The
assumption here is that the contours possibly resemble the rudimentary contours of
the whole class, at the frequency at which buildings and streets interchange most
often. When translating from the RESISC45 to the EuroSAT domain (from third
to fourth column), contours and shapes are better preserved than in the E! R case
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Figure 4.15: Visualisations of RGB and non-RGB bands in real and generated
multispectral images. First row — bands of real EuroSAT image. Second row
— RGB RESISC45 image and the non-RGB bands generated after translation to
EuroSAT.

but not with much detail and with excessive amounts of fluorescent green.
The semi-supervised CycleGANs whose translations are presented in the previ-

ous figures are used in the adaptation scenario where the RESISC45 dataset is used
as a source and the EuroSAT dataset as a target domain. The translations that are
used for the classification in this case are E ! R translations, EuroSAT images are
translated to the RESISC45 domain and assigned pseudo-labels by a pre-trained
RESISC45 classifier. Even though the visual quality of these translations severely
degrades as more supervision information is added to the target domain, the classi-
fication performance of the entire method grows, as demonstrated in Table  4.1 . The
classification and reconstruction tasks do not have the same goal and the losses for
these tasks might affect the model differently. When no classification loss is used
and unsupervised CycleGAN for HDA is trained, the quality of the translations is
decent, having in mind that the difference in resolutions complicates the E ! R
translation and the difference in the number of channels complicates the R ! E
case. It is probable that adding labels to the EuroSAT dataset gradually removes
the visual properties that are not necessary and preserves only the features, shapes
and contours that the classifier actually uses to predict the label.

The previous visualisations demonstrated that in the R ! E (RGB to multi-
spectral) translations, the generated red, green and blue channels do not always
correspond to the original channels. Moreover, in RGB to multispectral translation,
the non-RGB bands must be generated from the RESISC45 images even though
these images do not have any information about these non-RGB bands. To inspect
if the invented non-RGB information is meaningful and if it has any correspondence
to the real non-RGB channels from EuroSAT, the real and generated non-RGB
bands are compared in Figure  4.15 . The non-RGB bands represented in the figure
are red edge 1, red edge 3, near-infrared and water vapour. These bands are pre-
sented in ascending order according to their wavelengths, with red edge 1 having
only a slightly higher wavelength than the red band.
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The first row of the figure presents a real EuroSAT crop image — the RGB part
of the image in the first column and non-RGB bands in the remaining columns.
The second row presents an RGB RESISC45 crop image in the first column and the
corresponding non-RGB bands generated by unsupervised CycleGAN for HDA. In
the first row (real image), it can be noticed that the green vegetation is darker in
the red edge 1 band and brighter in the red edge 3 and NIR bands. The reason for
this is that vegetation has high values in the green and NIR bands and consequently
low values closer to red. In the second row, the generated non-RGB bands indeed
captured this desired behaviour to the same extent — the vegetation is darker in
red edge 1 and brighter in the red edge 3 and NIR channels. Many other properties
are, however, not captured. In the real EuroSAT image, the NIR band visualisation
is sharper than the red edge bands (because NIR is captured at a resolution of 10m
rather than 20m for the red edge bands) and the water vapour band is very differ-
ent from all the others. In the image translated from RESISC45 to EuroSAT, all
non-RGB bands have similar sharpness and the water vapour band resembles the
others instead of capturing the real water vapour distribution. This demonstrates
that there is potential for learning to generate non-existing bands during transla-
tion but more research is required to correctly transfer and reconstruct the correct
information.

SS-HIDA and Pseudo-Labels. Finally, it should be mentioned that the
pseudo-labelling strategy used in UPL-HIDA does not provide any improvement
when used with SS-HIDA. SS-HIDA already makes good use of the available tar-
get labels and vastly outperforms CycleGAN for HDA, therefore the pseudo-labels
provided by CycleGAN are not helpful. Filtering does not help either, as the most
confident samples are usually very similar to the available labelled images, thus not
bringing any new information to the model.

4.2 Constrained Heterogeneous Image Domain Adapta-
tion (Constrained-HIDA)

The previous section demonstrated that SS-HIDA can already achieve much better
performance than unsupervised domain adaptation methods by using only a small
amount of labelled target data. Sometimes, however, even this small amount is not
possible to obtain, or at least not with high confidence. Hard labels are, however,
not the only possible form of supervision. The results of SS-HIDA show that any
amount of supervision information on the target data, no matter how small, can
have a crucial effect in heterogeneous domain adaptation, where it is very difficult
to find correspondences between classes across domains. Other forms of information,
other than hard labels, should therefore be explored.

One possible form of supervision, which is sometimes used in clustering, is con-
straints [  70 ,  72 ]. They are used to boost the performance of unsupervised methods
when labels are not available. The most commonly used are pairwise constraints,
which for example in clustering, state if two samples should belong to the same
cluster (must-link) or not (cannot-link) [ 70 ]. In this section, a Constrained-HIDA
method is presented. This is a variant of the HIDA model based on learning with
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constraints. Here, target labels are not available, instead, the constraints are placed
on the pairs of samples. The learned representations are forced to respect the given
constraints through the usage of a contrastive loss, which will pull together must-link
pairs, and push apart cannot-link pairs. Especially important are the inter-domain
constraints, whose placing can allow for classes from the target domain to match
the corresponding classes from the source domain, a step that is crucial in HDA.

4.2.1 Method

Constrained-HIDA extracts deep domain-invariant features from two heterogeneous
domains. The learning of a common latent space of invariant features is guided
by cross-entropy loss on available (source domain) labels for class discrimination,
Wasserstein loss is used to reduce the distance between domains, and contrastive
loss on constraints helps to preserve the correct local structure of domains.

Let X
s =
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x
s
i

 ns

i=1
be a labelled source dataset of ns samples from the domain

Ds following the data distribution Pxs with labels y
s
i , and let X

t =
n
x
t
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ont

j=1
be

an unlabelled target dataset of nt samples from the domain Dt following the data
distribution Pxt . Constrained-HIDA is able to work with heterogeneous domains,
i.e. xs 2 X s, xt 2 X t, X s 6= X t, dimensions d

s and d
t of spaces X s and X t may or

may not differ.
A certain amount of domain knowledge is given in the form of pairwise con-

straints of two types — must-link and cannot-link. These constraints can be at-
tached to two samples coming from the same domain or different domains. In this
thesis, the focus is on the case where there are only inter-domain constraints, as
these affect the performance in HDA much more than intra-domain constraints.
The set of constrained samples X

c is usually a small fraction of the whole dataset
X = X

s [X
t. Two types of constraints are defined as follows:

• Let C= be a set of must-link constraints C
=
i , where C

=
i = (xi1, xi2) 2 C=

implies that xi1 and xi2 should belong to the same cluster/class.

• Let C 6= be a set of cannot-link constraints, where C
6=
j = (xj1, xj2) 2 C 6= implies

that xj1 and xj2 should belong to the different cluster/class.

where C=
, C 6= ⇢ X

s ⇥X
t, C= \ C 6= = ;.

The schema of the Constrained-HIDA method is presented in Figure  4.16 . As
with the other HIDA methods, Constrained-HIDA consists of two separate feature
extractors for heterogeneous source and target domains (denoted FEs and FEt

respectively), one invariant feature extractor FEi to extract domain-invariant fea-
tures, a domain critic DC to calculate the Wasserstein distance between domains,
and a class discriminator C that is only trained on the labelled source data.

The difference compared to previous HIDA variants is the addition of the con-
trastive loss, which is applied to the extracted features of the constrained pairs of
samples. Let I

= be an indicator function equal to one when the pair (xi, xj) is un-
der a must-link constraint, or equal to zero otherwise. Let also I

6= be an indicator
function for cannot-link constraints. The idea is that the Euclidean distance be-
tween samples that are under a must-link constraint should be reduced as much as
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Figure 4.16: Overview of the proposed method. Features of the labelled source
domain samples are shown in blue, with triangles and squares representing different
classes, while features of the unlabelled target domain samples are shown in red
circles. Must-link constraints force samples to move towards each other (green
arrows), and cannot-link constraints force samples to move apart (orange arrow).

possible. On the other hand, the Euclidean distance between pairs of samples under
a cannot-link constraint should be increased. There should, however, exist a limit
for how far the cannot-link pairs are pushed apart, as going too far can degrade the
global representation of the domain. The contrastive loss is therefore defined such
that

Lcon =
X

i,j

I
=(xi, xj)||hi � hj ||22 + I

6=(xi, xj)max
⇣
0,m� ||hi � hj ||22

⌘
, (4.18)

where hi and hj are the extracted features of samples xi and xj , and m is a threshold
that prevents the cannot-link loss from moving towards infinity, i.e. the features of
samples under a cannot-link constraint with the distance higher than m will not
influence the loss and will therefore not be pushed apart anymore.

The class discriminator C : Rd2 ! Rc is only trained on the extracted features
of the labelled source samples (hs, ys). As with U-HIDA in Section  3.1.1  , unlabelled
target data is not used:
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The domain critic is trained with the Wasserstein distance loss, as described in
Section  3.1.1  . It is trained on the whole source and target domains, regardless of
whether those samples have constraints defined on them or not:
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If the feature extractor’s weights are denoted as ✓fe and the class discriminator’s
weights as ✓c, the final min-max adversarial optimisation problem to be solved takes
into account all losses together and is defined as

min
✓fe,✓c

⇢
Lc + �1max

✓wd

⇥
Lwd � �Lgrad

⇤
+ �2Lcon

�
, (4.21)

where �1 and �2 are the weights of the Wasserstein loss and contrastive loss respec-
tively.

4.2.2 Experimental Results

The Constrained-HIDA approach is evaluated on the same heterogeneous remote
sensing problem as in previous sections — adaptation between the RGB RESISC45
dataset and the multispectral EuroSAT dataset.

4.2.2.1 Implementation Details

Constrained-HIDA uses the same convolutional neural network architecture as the
previously described HIDA models. The training protocol is also very similar. The
batch size used is 32, and in each iteration, half of the training batch (16) comes from
the source and the other half from the target domain. Each batch has to contain
4 pairs of source-target samples with a constraint, either must-link or cannot-link.
The remaining 24 samples in the batch (12 per domain) are without constraints. At
the start of every training step, the domain critic is trained for ten iterations with
the same batch. Afterwards, the feature extractor and classifier are trained for one
iteration with the same batch. For the next training step, the batch is resampled
again with four new constrained pairs and 24 new samples without constraints. The
process repeats iteratively and is described in detail in Algorithm  4 .

The hyper-parameters are chosen based on preliminary experiments (not using
the test data) in which it was found that increasing the batch size or percentage of
constrained pairs per batch further did not dramatically affect performance. The
parameter m, representing the margin, the distance above which the cannot-link
loss is not applied anymore, is chosen by inspecting the distances between samples
in the target domain. Several values close to the highest existing distances in the
domain were experimented with and the value m = 40 was chosen since it gave
the best performance when evaluated on the validation set. The values of the loss
weight coefficients used in the Equation ( 4.21 ) are �1 = 0.1 for the weight of the
Wasserstein loss and �2 = 0.3 for the weight of the contrastive loss Lcon.

4.2.2.2 Comparison Methods

To the best of the author’s knowledge, there are no other works on using constraints
instead of labels in the target domain in heterogeneous DA. Constrained-HIDA
is, therefore compared with HDA methods for image data in an unsupervised and
semi-supervised setting. The first comparison method is CycleGAN for HDA, the
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Algorithm 4 Constrained Heterogeneous Image Domain Adaptation (Constrained-
HIDA)
Require: Source data X

s; source labels y
s; number of source samples n
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unsupervised and semi-supervised variants of the method will be denoted as Cycle-
GAN for U-HDA and CycleGAN for SS-HDA. Constrained-HIDA is further com-
pared with unsupervised variants of the HIDA model — U-HIDA and UPL-HIDA,
and also with the semi-supervised variant SS-HIDA that uses labels in the target
domain, but no constraints nor the contrastive loss. Semi-supervised methods are
evaluated in the situation where 1.25% of labelled target data is available (5 labelled
samples per class, 40 in total).

Constrained-HIDA method is evaluated on a range of different amounts of con-
straints (40, 80, 160, 320, and 480 constrained pairs), where the ratio of must-link
and cannot-link constraints is 1 : 7. Constraints are generated by taking pairs of
samples and if their ground truth label is the same, a must-link constraint is created
between them, while if their ground truth labels differ, a cannot-link constraint is
added instead. This is repeated until the correct number and ratio of constraints
are found.

Each constrained pair has one sample from the source and one from the target
domain, they are all therefore inter-domain. No intra-domain constraints were used.
Note that in semi-supervised DA comparison methods, the existence of five labels
per class in the target domain, with eight classes and 400 samples per class in the
training sets of each domain, implies the existence of

• 5 · 400 · 8 = 16,000 inter-domain must-link constraints and 5 · (8� 1) · 400 · 8 =
112,000 inter-domain cannot-link constraints — the total number of inter-
domain constraints being 16,000 + 112,000 = 128,000;

• 5 · (5�1)/2 ·8 = 80 intra-domain must-link constraints and 5 · (8�1) ·5 ·8/2 =
700 intra domain cannot-link constraints — the total number of intra-domain
constraints being 80 + 700 = 780;

In total, there are therefore 128,000+780 = 128,780 constraints in the target domain
— a number far greater than those used by Constrained-HIDA!

For demonstration purposes, the results of Constrained-HIDA with all the inter-
domain constraints implied by 40 labels (five per class) in the target domain are also
shown. The number of these implied constraints is 16,000 must-link and 112,000
cannot-link — 128,000 in total. This model is trained without using any intra-
domain constraints, and without directly using any target labels for the training,
relying solely on the contrastive loss over constraints in the target domain.

4.2.2.3 Results

The overall accuracy of Constrained-HIDA and all the comparison methods (aver-
aged over ten repetitions) with RESISC45 as source and EuroSAT as target (R !
E) and vice-versa (E ! R) are shown in Table  4.2 .

For the R ! E case, the results show that Constrained-HIDA almost doubles
the performance of unsupervised CycleGAN for HDA (CycleGAN for U-HDA) and
pseudo-labelled UPL-HIDA with as few as 40 constraints, with even higher gains over
U-HIDA, which is the unsupervised equivalent of Constrained-HIDA. As more con-
straints are added, the better Constrained-HIDA performs. With 160 constraints, it
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Table 4.2: Accuracy of the proposed Constrained-HIDA model with different num-
bers of constraints, UDA methods are shown as lower baselines and SSDA methods
are shown as upper baselines. Standard deviations are shown in parentheses.

R ! E E ! R
CycleGAN for U-HDA 18.48 (8.00) 16.82 (5.74)
U-HIDA 13.61 (11.33) 17.77 (9.37)
UPL-HIDA 18.84 (7.34) 21.14 (5.33)
Constrained-HIDA 40 constraints 35.52 (7.70) 33.29 (13.59)
Constrained-HIDA 80 constraints 39.09 (10.02) 40.54 (9.43)
Constrained-HIDA 160 constraints 48.59 (7.46) 49.00 (7.17)
Constrained-HIDA 320 constraints 64.68 (3.68) 56.13 (7.12)
Constrained-HIDA 480 constraints 65.27 (2.53) 59.37 (5.48)
Constrained-HIDA all constraints for 40 labels 69.34 (3.60) 63.71 (2.12)
CycleGAN for SS-HDA 40 labels (1.25%) 41.57 (9.20) 47.29 (1.53)
SS-HIDA 40 labels (1.25%) 66.14 (2.92) 62.68 (3.24)

already gains 7% over semi-supervised CycleGAN for HDA (CycleGAN for SS-HDA)
that uses 40 labels (1.25%) in the target domain. From 320 constraints and on, the
results become comparable to SS-HIDA, which is the semi-supervised equivalent of
Constrained-HIDA when using 40 labels (1.25%) from the target domain.

For the E ! R case, the findings are similar. Constrained-HIDA with 40 con-
straints has around two times stronger performance than CycleGAN for U-HDA
and U-HIDA, and 12% stronger than UPL-HIDA, showing that a big improvement
is made compared to unsupervised methods by using as few as 40 constraints. With
160 constraints, Constrained-HIDA already outperforms semi-supervised CycleGAN
for HDA by around 2%, with the gain growing as more constraints are added. When
using 480 constraints, the results of Constrained-HIDA become comparable to SS-
HIDA.

Constrained-HIDA using all of the inter-domain constraints implied by 40 labels
in the target domain (i.e. 120,000 constraints) even outperforms SS-HIDA trained
with 40 target labels in both cases — by more than 3% in the R ! E case, and
around 1% in the E! R case. This is a very interesting finding, having in mind that
the classifier in Constrained-HIDA is trained only on source samples and that only
the contrastive loss and Wasserstein loss were affected by target samples, while the
classifier of SS-HIDA was trained with all available labelled data including from the
target domain. This implies that it might be more important to align the structure
of the target domain with the source domain than to use (a small number of) hard
target labels.

It should be noted, however, that in the case of Constrained-HIDA using 320
and 480 constraints, there are 40 and 60 must-link constraints respectively. This
means that there are 40 and 60 target samples, each associated with a source sample
that is labelled. One could argue that this indirectly brings information about
the labels to the target domain. This information is however still weaker than a
label in our experiments. The target labels are used when training the classifier in
SSDA comparison methods and directly introduce the information equivalent to a
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Figure 4.17: PaCMAP visualisation of Constrained-HIDA features with 40 con-
straints in the R ! E case. Top left — class distributions with constraints, both
domains together. Top right — the confusion matrix for the target domain. Bottom
— class distributions of the domains.

large number of must-link and cannot-link constraints, both inter-domain and intra-
domain. On the other hand, in our experiments, Constrained-HIDA only applies
the contrastive loss to inter-domain constraints. Furthermore, the numbers of 320
and 480 constraints still represent only 0.25%, and 0.375% respectively of the total
number of 128,000 constraints implied by 40 labels in the target domains.

4.2.2.4 Discussion of the results

Feature visualisations. Features extracted by Constrained-HIDA models using
different numbers of constraints in the R ! E case are visualised with PaCMAP
and presented in Figures  4.17 ,  4.18 , and  4.19 . For the models using 40 constraints,
the top left part of Figure  4.17 , shows that cannot-link constraints (grey dashed
lines) indeed push the pairs of samples far away in the feature space. The must-link
constraints (black solid lines) are also mostly respected, though not in every case.
The confusion matrix in the top right of the figure shows that samples of the same
class often form groups but those groups do not always match the corresponding
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Figure 4.18: PaCMAP visualisation of Constrained-HIDA features with 160 con-
straints in the R ! E case. Top left — class distributions with constraints, both
domains together. Top right — the confusion matrix for the target domain. Bottom
— class distributions of the domains.

source class. This class flipping is, however, different than with unsupervised U-
HIDA and UPL-HIDA models (see Figures  4.4 and  4.5 ). Here, the samples of
the same class are often separated into two or more groups under the influence of
different constraints. For example, the pasture class forms three distinct groups in
the target domain, none of which matches the correct source class. The introduction
of intra-domain constraints could potentially alleviate this problem and keep the
same-class samples in the target domain together.

As expected, the situation improves as more constraints are added. Figure  4.18 

shows that when the model has 160 constraints, the classes are much better matched
across domains. The cannot-link constraints meant that the contrastive loss led to
the formation of two big distant groups of samples — one with the artificially created
land covers (industrial, residential, highway) and the other with vegetation and the
water bodies. The problem of separating target classes into groups still persists to
some extent since highway and river are present in both distinct groups. This is not
completely surprising, as highway and river patches often contain elements of other
classes.
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Figure 4.19: PaCMAP visualisation of Constrained-HIDA features with all the con-
straints implied by 40 labels in the target domain (1.25%) and all source labels in
the R ! E case. Left — class distributions, both domains together. Right — the
confusion matrix for the target domain.

Finally, the Constrained-HIDA model using all of the constraints implied by 40
labels in the target domain (1.25%) and all source labels is inspected. The features
of this model are presented for both domains together in the left part of Figure  4.19 .
Here, all the classes are matched well. Due to the impact of constraints, three distant
groups are formed. The separation is meaningful — one group gathers the vegetation
classes (forest, pasture, crop), the second group brings together water surfaces (river
and sea-lake classes) and the third group consists of artificial land covers (industrial,
residential, highway). This model even slightly outperforms the SS-HIDA model
using the equivalent amount of labels (1.25%) in the target domain. Compared to
the feature visualisation of SS-HIDA (see Figure  4.6 ), it can be seen that SS-HIDA
does not create distant groups of samples, which can lead to mixing the samples
of the different classes. The contrastive loss, however, aligns the structure of the
domains better than when using hard labels.

Interactive supervision. Interactive supervision can further reduce the need
for constraints. If constraints are manually created with prior knowledge, on samples
representing classes that are known to be problematic, fewer constraints can be
more effective. By identifying and adding constraints to a certain number of target
samples that are misclassified by unsupervised HIDA in the R ! E case, 8 such
constraints are sufficient for Constrained-HIDA to achieve an accuracy of 40.92%,
and 80 gives 55.36%, which is 15% better than when using the same number of
randomly chosen constraints, and almost 7% better than when using 160 randomly
chosen constraints. This means that the number of constraints can be more than
halved by carefully choosing them without affecting performance. It should be noted,
however, that in these experiments the ratio of must-link and cannot-link constraints
is 1 : 1. Still, these initial results show that carefully chosen constraints can provide
strong results with very little supervision and that interactive supervision is a very
interesting future research direction.
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4.3 Summary

This chapter presented the development of semi-supervised methods for heteroge-
neous image domain classification. Two ways to integrate the supervision infor-
mation in the target domain were considered — hard labels and constraints. A
semi-supervised model using hard labels, named SS-HIDA, achieved very high per-
formance on a remote sensing adaptation problem. It exhibited a large improve-
ment over unsupervised methods by using a very small amount of target labels.
Furthermore, it strongly outperformed the comparison method based on transla-
tion, CycleGAN for HDA. This shows that when some amount of target labels is
available, domain-invariant methods are by far the better choice in HDA. While
translation methods are confused with the different spectral information present in
the domains, domain-invariant SS-HIDA can take advantage of this additional infor-
mation to improve the classification performance and also makes good use of (few)
available target domain labels to match classes across domains well.

Sometimes obtaining even a small amount of hard labels for the target domain
can be difficult or impossible. In this case, the requirement for target labels can
be loosened, and target supervision information integrated in another form, such
as constraints. The Constrained-HIDA method, a variant of the HIDA model, uses
pairwise must-link and cannot-link constraints to learn domain representations that
respect them, pushing apart cannot-link pairs, and pulling together must-link con-
straints with the contrastive loss. It is demonstrated that constraints greatly benefit
HDA, they can help match the classes across domains and avoid class-flipping and
strongly outperform unsupervised HDA models by using very few constraints. On
the other hand, with a sufficient amount of constraints, Constrained-HIDA out-
performs the semi-supervised version of translation-based CycleGAN for HDA and
becomes comparable to domain-invariant SS-HIDA, greatly reducing the need for
information in the target domain, without affecting performance. The prospect of
using interactive and active supervision can reduce the number of constraints needed
even further.





Chapter 5

Conclusions and Perspectives

Heterogeneous domain adaptation (HDA) is a research area in which the goal is
to use reference data from one labelled source domain in order to perform classifi-
cation in another, unlabelled or poorly labelled target domain, whose modality is
different from the source domain. The source and target data are sampled from
different spaces, which can also be of different dimensionalities. Such a large dif-
ference between domains — a domain shift — makes the problem of heterogeneous
domain adaptation very challenging. Existing research on HDA in computer vision
focuses on adaptation between tabular features of images obtained in different ways
— SURF, DeCAF, ImageNet features — or adaptation between image and text.
Only several methods exist that are capable of working with raw image data and
they are based on the translation between domains. Most of them are limited to
only image modalities with the same number of channels, or only specific tasks like
semantic segmentation.

This thesis proposes novel approaches for heterogeneous domain adaptation,
named Heterogeneous Image Domain Adaptation (HIDA) models, that are intended
for the classification of image data of different modalities. HIDA models can handle
domains having images of different spatial resolutions or images with different num-
bers of channels. The approach is based on extracting domain-invariant features,
contrary to the existing methods that perform domain adaptation by translating
data from one domain to the other. The originality of this thesis’ contribution lies
in the fact that the proposed HIDA models are the first HDA methods for image
data that can extract domain-invariant features from domains with different num-
bers of channels. The main drawback of translation methods is that, by translating
from one domain to another, they are bound to lose information that exists in one
domain and/or invent non-existing information in the other domain; they are also
bound to learn in the space of the domain to which the translation is done. The
methods based on extracting domain-invariant features try to find a common latent
feature space that will be the best choice for representing the shared information
from the domains and for achieving domain invariance. The results of the thesis
show that the domain-invariant HIDA approach significantly outperforms compet-
ing translation methods.

The models developed as a part of the thesis are deep convolutional neural
network architectures to allow for working with raw image data. The architecture
is based on adversarial learning and derived from domain adaptation methods using
generative adversarial networks (GANs) but adjusted for use with heterogeneous
data. The first layers of the architecture are separated into two input branches
to be able to handle image modalities of different dimensions. Extracting domain
invariant features is achieved by reducing the Wasserstein distance between the
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probability distributions in the new space of learnt representations.
The thesis inspects several different ways of integrating supervision informa-

tion in the target domain and proposes solutions for both unsupervised and semi-
supervised domain adaptation. Existing unsupervised HDA models have limited
success, it is very difficult to find correspondences without any labels in the target
domain when there exists a large domain shift. The development of such models
is, therefore, very important for the field as there is a lot of space for improvement.
Chapter  3 proposes two unsupervised models — Unsupervised HIDA (U-HIDA) and
Unsupervised Pseudo-Labelled HIDA (UPL-HIDA). U-HIDA is an initial attempt
to create a domain-invariant HDA model for image data, it already achieves results
comparable to the existing state-of-the-art based on translation. The other unsu-
pervised variant of the HIDA method, UPL-HIDA, tries to compensate for the lack
of labels in the target domain by using a pseudo-labelling technique. UPL-HIDA
outperforms the competing translation methods. Pseudo-labels in UPL-HIDA are
obtained by translating the data from the target to the source domain, therefore
showing that there is the potential of combining domain-invariant and translation
methods in unsupervised domain adaptation.

It may be even more important to consider semi-supervised HDA models. The
results of U-HIDA and UPL-HIDA are possibly approaching the limit of what is pos-
sible in unsupervised domain adaptation. Even with pseudo-labels in UPL-HIDA,
the performance is limited by the phenomenon of class-flipping. This problem must
be alleviated and it is a realistic assumption that at least a small amount of target
data can be labelled. Chapter  4 proposes the Semi-Supervised HIDA (SS-HIDA)
model where a certain (small) fraction of the target domain data has associated
labels. The proposed SS-HIDA model gains a large improvement over unsupervised
HIDA methods by using only a few labels. Using target labels, even in a small num-
ber, significantly helps in correctly matching the classes across domains. SS-HIDA
strongly outperforms the state-of-the-art semi-supervised HDA method based on
translation, showing the advantage of methods extracting domain-invariant features
— using the labels in the target domains to match the target samples to their cor-
responding same-class source samples is much more successful at the feature level
than at the pixel level.

Finally, for situations in which the hard labels needed to train the SS-HIDA
model are not obtainable, other, more loose, forms of supervision can be used.
Using knowledge of the target domain provided in the form of constraints is investi-
gated in Chapter  4 . This thesis introduces constraints to the HDA learning process
through the Constrained-HIDA variant of the proposed model. The purpose of
this approach is to reduce the labelling requirement. Constrained-HIDA forces the
samples to respect the constraints in the learned representation space through the
use of contrastive loss. The results show that HDA methods may greatly benefit
from just a few constraints to avoid incorrectly matching classes between domains.
Constrained-HIDA strongly outperforms UDA methods, and has comparable results
with semi-supervised HDA methods, thus greatly reducing the amount of informa-
tion needed in the target domain. From this, it can be concluded that hard labels
are not necessary to overcome the problem of large domain shifts. Replacing labels
with constraints in the target domain could facilitate the annotation task of experts
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for whom providing constraints might be easier and more natural than providing
hard labels. Interactive supervision can make the method even more efficient, by
assigning constraints to the samples that are known to be difficult to classify.

The models were evaluated on a remote sensing problem with an RGB high-
resolution aerial dataset (RESISC45) and a multispectral low-resolution satellite
dataset (EuroSAT). The results show that the development of models such as the
proposed HIDA approaches could be very beneficial to the remote sensing com-
munity where a variety of different sensors like RGB, multispectral, hyperspectral,
SAR, LiDAR, panchromatic etc. are used. The field of application, however, is not
limited to remote sensing, different sensors can be found in robotics (depth images,
radar), in medical imaging (e.g. CT and MRI) etc. Another evaluation was per-
formed on a common computer vision benchmark — NYU depth V2 dataset with
two multi-modal domains, one containing RGB and the other containing depth im-
ages of indoor scenes. The results prove that the HIDA approaches are not only
limited to remote sensing applications, and could be used for other problems involv-
ing heterogeneous images.

5.1 Perspectives

This section discusses several different directions that can be taken to extend the
existing work. Some of them are directly related to improving the proposed methods,
while others are related to applying the developed methodology to other fields.

For the unsupervised domain adaptation scenario, pseudo-labels are used in
the UPL-HIDA method to compensate for the absence of supervision in the target
domain. A CycleGAN-based method is used to translate data from the target
domain to the source domain to obtain the prediction from the pre-trained source
classifier and, therefore, to derive pseudo-labels for the target domain. In the future,
the pseudo-labelling in UPL-HIDA can be improved. There are already numerous
existing pseudo-labelling techniques for homogenous DA and how they could be
ported to heterogeneous DA should be explored, especially iterative models that
can update and improve pseudo-labels as training progresses [ 65 ,  66 ].

In the literature, it was shown that existing unsupervised DA methods do not
scale well to the semi-supervised setting [ 3 ]. Furthermore, a method that specifically
aims to use the fact that a few target labels exist easily outperforms unsupervised
DA methods. This shows that there is a need for developing methods specifically
tailored for semi-supervised DA. The SS-HIDA model, a DA method developed as a
part of this thesis, achieved very good results with multi-modal remote sensing data.
In the future, SS-HIDA can be combined with methods based on minimax entropy
[  3 ]. The core idea is to remove the bias caused by the fact that a majority of the
labelled data comes from the source domain. This can be achieved by moving class
prototypes towards the target data distribution. Furthermore, the bias in determin-
ing the decision boundary based on the source samples should also be addressed.
These approaches proved to work very well in homogeneous DA and, therefore, the
possibility of their application to heterogeneous DA should be explored.

The idea of using constraints comes from the field of constrained clustering
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[  70 ]. This paradigm is gaining in popularity because it does not require classes
to be defined and offers a much weaker form of supervision than labelled samples.
Constrained-HIDA uses a combination of constraints and contrastive loss and the
experiments showed that the labelling requirement can be loosened while preserving
performance. In the future, different constrained clustering methodologies can be
incorporated into the HIDA framework. Furthermore, the possibility of interactive
supervision can be explored which can further reduce the need for constraints. If
there is a suitable approach to select troublesome data points, as in active learning,
then proposing these constraints to the user could lead to fewer, more effective,
constraints. In addition to the inter-domain constraints used in the thesis, the
impact of using intra-domain constraints to preserve the domain structure should
also be evaluated. Future experiments should also investigate the possibility of
using NT-Xent [ 94 ], a cosine similarity loss that is used in self-supervised contrastive
methods like SimCLR [  95 ].

The HIDA models are evaluated for adaptation between RGB and multispectral
remote sensing domains. Another very useful scenario would be using optical and
synthetic aperture radar (SAR) images. These two modalities are complementary
— optical images can capture the colours and details of land cover but they cannot
capture images of the Earth’s surface through clouds. On the other hand, SAR
images show rudimentary details with a lot of noise but capturing these images is
not dependent on weather conditions. SAR images are invaluable when monitoring
natural catastrophes because they can be captured through clouds and smoke. In a
situation where there is much more labelled optical data than SAR, a heterogeneous
domain adaptation model like HIDA could use the supervision information from the
optical data to help in correctly classifying land cover classes in SAR images.

The models developed as a part of this thesis are created to solve the task of
image classification. This type of task requires assigning one label per image/patch.
Semantic segmentation, on the other hand, deals with classifying every pixel of
the image, producing the segmentation maps that, in remote sensing, can provide
detailed information about land covers. Labelling for image classification task is
much less expensive and time-consuming than labelling for semantic segmentation,
however, elements of different classes can be present in the same image, as described
in Section  3.1.2.1  , which can confuse the classification model. Training the model
for the task of semantic segmentation removes the ambiguity and provides precise
land cover maps. Future work should, therefore, include developing a version of the
HIDA models for semantic segmentation.

With the release of current satellite constellations, which can revisit the same
area with increasing frequency, satellite image time-series (SITS) expand the impact
of remote sensing. Exploring SITS (multiple images taken over a period of time)
can greatly help in tracking changes in the Earth’s surface. Exploiting SITS for
land cover classification enables more accurate classification of the objects and phe-
nomena within them (compared to individual images) and allows for fine-grained
change detection, meaning that the resulting land cover maps are more accurate
and provide more accurate information for policy decisions and further research.
Domain adaptation is particularly important in this case since labelled data is very
scarce. It is, therefore, crucial to develop models that allow the re-use of such data
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as much as possible, including data from heterogeneous domains. Future work could
include extending the HIDA models for use with time-series satellite data of different
modalities.
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Résumé

Contexte

L’intelligence artificielle (IA) a été l’objet de nombreuses recherches au cours de la
dernière décennie et demeure le principal moteur de l’industrie et de la technolo-
gie. L’introduction de puissantes méthodes d’apprentissage profond a suscité un
vif intérêt au sein de la communauté des chercheurs et dans les applications du
monde réel. L’apprentissage profond trouve des applications dans presque tous les
domaines de la science et de la technologie et continue de réaliser des percées, notam-
ment dans la vision par ordinateur (détection et reconnaissance d’objets, génération
d’images/vidéos), le traitement du langage naturel (traduction, analyse de texte,
chat-bots, génération de texte), la reconnaissance vocale, etc.

Les méthodes d’apprentissage profond supervisé dépendent fortement de l’exis-
tence des jeux de données étiquetées à grande échelle. Le succès de l’apprentissage
profond repose actuellement sur la croissance continue des données à l’échelle mon-
diale. Cependant, les données de référence sont souvent difficiles et coûteuses à
obtenir, car la plupart du temps, elles doivent être étiquetées manuellement. Le
processus d’étiquetage ne peut pas s’adapter au rythme de génération des données.
Ceci est particulièrement vrai dans le domaine de la télédétection, qui consiste à ac-
quérir des données sur des objets distants, notamment en observant la surface de la
Terre. Des satellites tels que Sentinel, WorldView, Landsat, etc. génèrent quotidien-
nement des dizaines de téraoctets de données. L’étiquetage de ces énormes quantités
de données est un processus manuel lent et coûteux. De plus, la collecte de don-
nées de référence sur le terrain peut être compliquée par le climat, les catastrophes
naturelles, les conflits, etc. Enfin, la surface de la Terre évolue constamment, tant
physiquement qu’en occupation des sols, ce qui signifie que les données de référence
peuvent ne pas être réutilisables pour des images prises à une date ultérieure.

Malgré cette difficulté, l’extraction de connaissances à partir de données éti-
quetées semble être cruciale en télédétection pour pouvoir traiter les grandes quan-
tités de nouvelles données entrantes et ne pourra se faire qu’en réduisant le besoin
d’experts fournissant des étiquettes. Toutefois, cela n’est souvent pas possible di-
rectement. S’il existe des différences dans les conditions d’acquisition de deux jeux
de données, les méthodes d’apprentissage profond (et les méthodes d’apprentissage
automatique en général) se généraliseront mal à travers ces ensembles de données.
La raison de cette mauvaise généralisation est la distorsion de domaine. Des con-
ditions d’acquisition différentes conduisent à des données ayant des distributions
différentes. Si la distribution du jeu de données sur lequel le modèle est appris (jeu
d’entraînement) est différente de la distribution du jeu de données sur lequel le mod-
èle doit être appliqué (jeu de test), cette distorsion de domaine fait que le modèle
ne peut pas se généraliser d’un domaine/jeu de données à l’autre. En télédétection,
les raisons de la distorsion de domaine sont présentées dans la Figure  5.1 et peuvent
inclure : la capture d’images à différentes périodes de l’année ou à différents en-
droits, des images ayant des résolutions différentes ou étant acquises par différents
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Figure 5.1: Causes de la distorsion de domaine en télédétection — différentes saisons,
résolutions, emplacements et capteurs. Images provenant de Google Earth, du pro-
gramme de données ouvertes de Maxar, de Sentinel-1, de WorldView-2, des ensem-
bles de données EuroSAT et Indian Pines.

types de capteurs.
Pour surmonter les problèmes posés par la distorsion de domaine, l’accent a été

mis sur les techniques d’adaptation de domaine. L’adaptation de domaine - AD
(eng. domain adaptation) est un sous-domaine de l’apprentissage par transfert, qui
consiste à apprendre un modèle sur une distribution de données (appelée domaine
source - généralement étiqueté) et à l’appliquer à une autre distribution de données,
différente mais connexe (appelée domaine cible - généralement avec peu ou pas
de données de référence) en réduisant le décalage entre les domaines. Les méthodes
d’adaptation de domaine se sont avérées très efficaces, en particulier pour les données
image, pour lesquelles de nombreuses méthodes ont été développées.

La plupart de ces méthodes d’adaptation de domaine dans le domaine de la vi-
sion par ordinateur supposent que les images des deux domaines soient de même
nature, RVB en général (adaptation de domaine homogène). Les images de télédé-
tection, cependant, contiennent souvent des données non RVB (infrarouge, radar).
En outre, les domaines peuvent ne pas se situer dans le même espace et avoir une
dimensionnalité différente (adaptation de domaine hétérogène) : Différents satellites
utilisent différents types de capteurs pour capturer des images, tels que RVB, SAR,
multispectraux, etc. Les différents capteurs peuvent capturer des images de modal-



ités différentes, avec des canaux non correspondants et éventuellement des nombres
différents de canaux. Les approches profondes d’adaptation de domaine homogènes
ne peuvent pas être appliquées ici car leur structure (nombre de neurones d’entrée)
est fixe, ce qui empêche d’utiliser des images de dimensionnalité différente dans le
pipeline.

La majorité des méthodes adaptation de domaine hétérogène – ADH (eng. het-
erogeneous domain adaptation), même dans le domaine de la vision par ordinateur,
sont évaluées sur des données tabulaires. Certaines méthodes ADH sont capables
de travailler avec des données d’images brutes, mais la plupart d’entre elles ont
des limites. Certaines peuvent traiter des images de modalités différentes, et même
de résolutions différentes, mais supposent le même nombre de canaux dans les do-
maines. Les autres sont conçues uniquement pour la segmentation sémantique et ne
peuvent pas être appliquées à la tâche de classification des images.

Presque toutes les méthodes ADH pour les données d’images brutes sont basées
sur la traduction des données d’un domaine à l’autre, soit dans l’espace des pixels
(image-à-image), soit dans l’espace des caractéristiques (eng. features), ignorant
ainsi le potentiel des approches d’extraction de caractéristiques invariantes au do-
maine. Lorsqu’ils sont entraînés de cette manière, les modèles résultants ne sont
applicables qu’au domaine cible. Étant donné que la distribution des données cibles
est calquée pour correspondre celle des données sources, ils sont voués à simplifier
ou à inventer la différence entre les domaines.

Objectif de la thèse

Cette thèse s’intéresse à l’extraction de caractéristiques invariantes au domaine.
Ces caractéristiques extraites ne se trouvent ni dans l’espace de données source, ni
dans l’espace de données cible, mais existent dans un espace latent commun ap-
pris. L’hypothèse est que cela permettra au modèle d’améliorer la représentation
latente en utilisant des informations provenant des deux domaines. Les approches
d’extraction de caractéristiques invariantes au domaine sont largement utilisées avec
succès dans l’AD homogène, et leur potentiel devrait donc également être exploré
dans l’AD hétérogène. Bien qu’il existe des méthodes ADH d’extraction de carac-
téristiques invariantes au domaine, elles sont toutes évaluées sur des données tab-
ulaires. Ainsi il apparait un réel manque de recherche dans le développement de
méthodes ADH pour les données image basées sur l’extraction de caractéristiques
invariantes au domaine. De même il n’existe pas de méthode invariante au domaine
capable de traiter des images avec différents nombres de canaux dans différents
domaines.

Cette thèse propose donc une nouvelle approche de l’adaptation de domaine
d’images hétérogènes. La méthodologie présentée dans la thèse devrait permettre
de s’entraîner pour le problème de la classification d’images dans un domaine, et de
l’appliquer à un autre domaine, proche mais différent.

L’originalité de ce travail réside dans le développement d’une méthode d’AD
basée sur l’extraction de caractéristiques invariantes au domaine, capable de tra-
vailler avec deux domaines de données d’images non appariées de modalités dif-



férentes. L’objectif de la thèse est de développer un nouveau modèle basé sur
l’apprentissage de représentations invariantes de domaines hétérogènes. Cette ap-
proche résout notamment le problème du transfert de connaissances entre des do-
maines d’images qui ont un nombre différent de canaux ou des résolutions différentes.
La méthode développée ne nécessite pas l’existence de paires d’images correspon-
dantes dans des domaines différents. Le travail présenté se concentre sur les données
d’image.

Contributions

Les modèles développés dans le cadre de cette thèse sont basés sur des réseaux
neuronaux convolutionnels profonds. L’extraction des caractéristiques invariantes
au domaine est réalisée en réduisant la distance de Wasserstein entre les distribu-
tions des caractéristiques dans l’espace latent commun. L’architecture est basée
sur l’apprentissage antagoniste. Afin d’utiliser un réseau neuronal avec des don-
nées hétérogènes, les architectures telles que celles développées pour l’AD homogène
doivent être modifiées. Les modèles d’AD homogènes ont généralement un ex-
tracteur de caractéristiques (eng. feature extractor), alors que dans cette thèse,
deux branches d’entrée séparées (extracteur source et extracteur cible) qui peuvent
fonctionner avec deux domaines hétérogènes sont utilisées. Ces branches servent à
projeter les données dans un espace où les caractéristiques des deux domaines seront
de même taille. En outre, une fois que les caractéristiques des différents domaines
ont les mêmes dimensions, les couches suivantes forment un extracteur partagé qui
est utilisé pour modéliser la similarité des domaines de données et pour extraire les
caractéristiques invariantes au domaine.

Dans l’ADH, en raison des distributions de domaines très différentes, il est très
important de considérer la manière dont les informations sur les étiquettes cibles sont
intégrées. Cette thèse examine donc les moyens suivants d’intégrer les informations
de supervision du domaine cible : les pseudo-étiquettes, les étiquettes dures et
les contraintes. En conséquence, plusieurs variantes du modèle général proposé
dans cette thèse sont dérivées en fonction de la manière dont les informations de
supervision du domaine cible sont intégrées :

• Non supervisée, appelée U-HIDA ;

• Non supervisée avec pseudo-étiquetage, appelée UPL-HIDA ;

• Semi-supervisée basée sur des étiquettes dures, appelée SS-HIDA ;

• Semi-supervisée basée sur des contraintes, appelée Constrained-HIDA.

Ensemble, ils sont appelés HIDA modèles. Les modèles sont évalués sur un prob-
lème difficile de déplacement de domaine en télédétection où un jeu de données
(RESISC45) contient des données RVB à haute résolution et l’autre (EuroSAT) des
données multispectrales à basse résolution.

La méthode d’Adaptation de Domaine d’Images Hétérogènes Non Supervisée
(eng. Unsupervised Heterogeneous Image Domain Adaptation, U-HIDA) est une
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Figure 5.2: Le modèle proposé d’adaptation de domaine d’images hétérogènes non
supervisé (U-HIDA).

Table 5.1: Résultats des modèles d’adaptation de domaine non supervisée. R !
E : Précision de l’adaptation de domaine non supervisée avec RESISC45 comme
source et EuroSAT comme cible. E! R : Précision de l’adaptation de domaine non
supervisée avec EuroSAT comme source et RESISC45 comme cible. Les écarts-types
sont indiqués entre parenthèses.

R ! E E ! R
CycleGAN for HDA 18.48 (8.00) 16.82 (5.74)
U-HIDA 13.61 (11.33) 17.77 (9.37)

variante du modèle de base HIDA qui n’utilise aucune information de supervision
dans le domaine cible. La méthode U-HIDA utilise l’architecture décrite précédem-
ment et présentée dans la Figure  5.2 . La seule méthode de comparaison possible
qui peut être utilisée avec des données d’images hétérogènes ayant des nombres de
canaux différents est CycleGAN pour HDA, représentant un modèle de traduction
d’image à image. Les modèles sont évalués dans deux cas, désignés comme suit :

• R ! E — avec le jeu de données RESISC45 comme domaine source et le jeu
de données EuroSAT comme domaine cible ;

• E ! R — avec le jeu de données EuroSAT comme domaine source et le jeu
de données RESISC45 comme domaine cible.

La précision du modèle proposé et du modèle de comparaison pour les deux cas
est présentée dans le Tableau  5.1 . Pour le cas R! E, U-HIDA est environ 5% moins
performant que CycleGAN pour HDA. En revanche, pour le cas E ! R, U-HIDA
surpasse CycleGAN pour HDA. On suppose que U-HIDA fonctionne mieux dans le
cas E! R car le domaine source est multispectral, et il semble plus naturel pour U-
HIDA d’apprendre une représentation invariante au domaine lorsque les étiquettes
se trouvent dans un domaine plus riche en informations. Les résultats démontrent
que l’ADH non-supervisée est effectivement un problème complexe.



Le problème avec U-HIDA est que, pendant la phase de rétro-propagation, la
perte de classification affecte les changements de poids de l’extracteur source, mais
n’affecte pas du tout l’extracteur cible, qui n’est donc mis à jour que par la perte de
distance de Wasserstein. Cela n’est pas suffisant pour apprendre des caractéristiques
discriminantes pour les données cibles et pour aligner les classes entre les domaines.

Un moyen possible d’atténuer le problème de la perte de classification qui n’est
pas rétro-propagée dans l’extracteur cible est d’utiliser le pseudo-étiquetage. Les
pseudo-étiquettes pourraient être utilisées pour calculer la pseudo-perte de classifi-
cation pour les données cibles et aider l’extracteur cible à apprendre une représen-
tation discriminante. Le pseudo-étiquetage est une technique basée sur la tentative
d’estimation de l’étiquette pour au moins une partie du domaine cible. Même si les
pseudo-étiquettes sont souvent bruyantes et ne sont que partiellement correctes, elles
permettent à un algorithme d’améliorer ses performances. Cette thèse examine com-
ment appliquer le pseudo-étiquetage dans ADH et s’il peut apporter des avantages
dans un tel contexte. L’approche de pseudo-étiquetage introduite par CycleGAN
for HDA est employée. Cette technique repose sur la traduction entre les domaines.
Étant donné que la traduction offre un point de vue différent de l’approche U-
HIDA invariante au domaine, elle peut apporter des informations supplémentaires
au processus d’apprentissage invariante au domaine. Cette approche est également
intéressante pour étudier le potentiel de combiner les approches de traduction et
d’invariance au domaine. De plus, les méthodes de traduction s’appliquent facile-
ment aux données hétérogènes. Les pseudo-étiquettes fournies par CycleGAN for
HDA sont utilisées à la place des étiquettes cibles lors de l’entraînement de la méth-
ode d’adaptation de domaine hétérogène non supervisée invariante au domaine. Afin
d’éliminer les pseudo-étiquettes peu fiables, elles sont filtrées pour ne conserver que
les prédictions les plus fiables. Cette approche est nommée Adaptation de Domaine
d’Images Hétérogènes Non Supervisée avec Pseudo-Étiquetage (eng. Unsupervised
Pseudo Labelled Heterogeneous Image Domain Adaptation, UPL-HIDA). Un aperçu
de l’UPL-HIDA est présenté dans la Figure  5.3 .

UPL-HIDA est comparé à CycleGAN pour HDA pour évaluer les performances
par rapport aux méthodes basées sur la traduction, et à U-HIDA pour démontrer
l’avantage de l’utilisation des pseudo-étiquettes. Le Tableau  5.2 présente les préci-
sions des modèles. Ces résultats montrent qu’UPL-HIDA parvient à surpasser les
autres méthodes dans tous les cas. Pour le cas R rightarrow E, les performances
d’UPL-HIDA et de CycleGAN pour HDA sont très similaires, UPL-HIDA étant
légèrement meilleur. U-HIDA est environ 5% moins performant, ayant du mal à
s’adapter des données RVB aux données multispectrales. UPL-HIDA tire parti des
pseudo-étiquettes fournies par CycleGAN pour guider l’apprentissage sur le domaine
cible et surpasser U-HIDA, atteignant le même niveau de performance que Cycle-
GAN pour HDA, mais à peine en avance. On peut conclure que l’utilisation de la
méthode d’AD non supervisée invariante au domaine est limitée lorsque les images
du domaine cible ont plus de canaux que les images du domaine source.

Pour le cas E ! R, U-HIDA surpasse déjà CycleGAN pour HDA basé sur
la traduction, montrant l’avantage de la méthode invariante au domaine lors de
l’adaptation d’un domaine avec plus d’informations spectrales à un domaine avec
moins d’informations. Même si CycleGAN pour HDA est moins performant qu’U-
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Figure 5.3: Schéma pour l’obtention de pseudo-étiquettes à partir de CycleGAN.
Le générateur Gt!s traduit les données cibles x
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Table 5.2: Résultats des modèles d’adaptation de domaine non supervisée. R !
E : Précision de l’adaptation de domaine non supervisée avec RESISC45 comme
source et EuroSAT comme cible. E! R : Précision de l’adaptation de domaine non
supervisée avec EuroSAT comme source et RESISC45 comme cible. Les écarts-types
sont indiqués entre parenthèses.

R ! E E ! R
CycleGAN for HDA 18.48 (8.00) 16.82 (5.74)
U-HIDA 13.61 (11.33) 17.77 (9.37)
UPL-HIDA 18.84 (7.34) 21.14 (5.33)

HIDA, les pseudo-étiquettes qu’il fournit n’ont pas négativement impacté les per-
formances d’UPL-HIDA. Au contraire, l’utilisation des pseudo-étiquettes les plus
fiables fournies par CycleGAN pour HDA tout en apprenant des caractéristiques in-
variantes au domaine a permis à UPL-HIDA d’améliorer ses performances, gagnant
plus de 3% par rapport à U-HIDA et plus de 4% par rapport à CycleGAN pour
HDA.

Même en utilisant des pseudo-étiquettes, notre méthode invariante au domaine
et la méthode de traduction concurrente atteignent probablement la limite de ce
qu’il est possible de réaliser en ADH non supervisée. Afin d’améliorer les résultats,
il est nécessaire d’acquérir des informations de supervision supplémentaires dans le
domaine cible. Même lorsque les étiquettes sont difficiles à obtenir, l’étiquetage d’au
moins plusieurs échantillons dans le domaine cible est une hypothèse raisonnable et
peut constituer une autre façon d’introduire des informations de supervision dans le
domaine cible. Il est prouvé que les méthodes d’adaptation de domaine non super-
visées existantes ne s’adaptent souvent pas bien à l’environnement semi-supervisé
et que les méthodes spécifiquement conçues pour utiliser peu d’étiquettes cibles sur-
passent facilement les méthodes d’adaptation de domaine non supervisée. Toutes
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Figure 5.4: La méthode HIDA semi-supervisée (SS-HIDA). La perte de classification
(flèches bleues en pointillés) est rétropropagée à la fois vers l’extracteur de carac-
téristiques de la source et de la cible.

ces raisons ont motivé le développement de l’Adaptation de Domaine d’Images
Hétérogènes Semi-Supervisée (eng. Semi-Supervised Heterogeneous Image Domain
Adaptation, SS-HIDA), une variante semi-supervisée de notre modèle d’AD, qui est
spécialement conçue pour tirer parti des étiquettes cibles existantes. L’architecture
de SS-HIDA est similaire à celle d’U-HIDA et d’UPL-HIDA décrite précédemment,
et est présentée dans la Figure  5.4 .

L’approche SS-HIDA est évaluée sur le même problème de télédétection comme
U-HIDA et UPL-HIDA (RESISC45 RVB et EuroSAT multispectral). Elle est com-
parée à la méthode CycleGAN pour HDA, mais cette fois une variante pour l’adapta-
tion de domaine semi-supervisée est utilisée. Les résultats sont également comparés
à une ligne de base cible simple, c’est-à-dire un classificateur entraîné sur la même
quantité de données cibles étiquetées, sans utiliser de données source ni d’adaptation
de domaine. Les modèles d’adaptation de domaine semi-supervisés et le classifica-
teur de ligne de base cible sont évalués sur différentes quantités de données cibles
étiquetées : 25 (6,25%), 10 (2,5%) et seulement 5 échantillons étiquetés par classe
(1,25%).

Les précisions des modèles proposés et des modèles de comparaison sont présen-
tées dans le Tableau  5.3  . Les résultats montrent que SS-HIDA surpasse largement
la méthode concurrente CycleGAN pour HDA dans tous les cas. Avec RESISC45
comme source et EuroSAT comme cible (R! E), SS-HIDA gagne environ 14 à 24%
en précision, le plus dans le cas avec 1,25% de données étiquetées. Avec EuroSAT
comme source et RESISC45 comme cible (E ! R), la différence en faveur de SS-
HIDA est d’environ 15 à 18%. Pour R ! E, SS-HIDA est plus performant que la
ligne de base d’environ 5 à 7%. Pour E ! R, le gain de SS-HIDA est de 7 à 15%,
le gain le plus élevé étant obtenu avec 1,25% de données étiquetées. La raison de
l’écart plus important en E ! R réside dans le fait que RESISC45 est plus difficile
à résoudre qu’EuroSAT, donc le classificateur de la ligne de base pour RESISC45 ne
peut pas performer aussi bien que celui d’EuroSAT, tandis que SS-HIDA n’est pas
autant affecté et maintient de bonnes performances avec RESISC45 comme domaine



Table 5.3: Haut — Précision de l’adaptation de domaine avec RESISC45 comme
source et EuroSAT comme cible (R ! E). Bas — Précision de l’adaptation de
domaine avec EuroSAT comme source et RESISC45 comme cible (E! R). L’écart-
type est indiqué entre parenthèses. À la fois pour RESISC45 et EuroSAT, 1, 25%,
2, 5%, 6, 25% des données étiquetées correspondent à 5, 10, 25 images par classe
respectivement, tandis que 0% représente les résultats des modèles UDA sans utiliser
aucune étiquette cible.

R ! E 0%

CycleGAN for U-HDA 18.48 (8.00)
U-HIDA 13.61 (11.33)
UPL-HIDA 18.84 (7.34)

1.25% 2.5% 6.25%

Target classifier 58.70 (4.19) 64.95 (3.25) 76.07 (1.75)
CycleGAN for SS-HDA 41.57 (9.20) 56.39 (6.70) 63.29 (3.80)
SS-HIDA 66.14 (2.92) 70.91 (2.13) 81.34 (1.24)

E ! R 0%

CycleGAN for U-HDA 16.82 (5.74)
U-HIDA 17.77 (9.37)
UPL-HIDA 21.14 (5.33)

1.25% 2.5% 6.25%

Target classifier 47.55 (5.11) 58.41 (1.73) 66.25 (2.90)
CycleGAN for SS-HDA 47.29 (1.53) 50.79 (5.40) 58.75 (6.91)
SS-HIDA 62.68 (3.24) 68.34 (2.59) 73.57 (2.64)

cible.
Une autre façon d’incorporer certaines connaissances sur le domaine cible, rare-

ment abordée dans l’AD jusqu’à présent, est d’utiliser des contraintes. Les con-
traintes fournissent des connaissances alternatives sur les données et la tâche à
accomplir en l’absence d’étiquettes exactes. Les contraintes les plus couramment
utilisées sont les contraintes par paire, qui, par exemple dans le regroupement, in-
diquent si deux échantillons doivent appartenir au même groupe (must-link) ou non
(cannot-link). Les contraintes ne nécessitent pas la définition de classes (car elles
agissent uniquement sur des paires d’échantillons) et offrent une forme de supervi-
sion beaucoup plus faible que les échantillons étiquetés. Il est beaucoup plus facile
pour un expert d’exprimer sa préférence pour que deux échantillons soient regroupés
(ou non), plutôt que de définir des étiquettes absolues. Ceci est particulièrement
utile lorsque les échantillons sont difficiles à interpréter et que des approches inter-
actives et itératives sont préférables. L’utilisation de contraintes dans ADH est une
autre contribution originale de cette thèse.

La méthode Constrained-HIDA est une variante du modèle HIDA basée sur
l’apprentissage avec des contraintes. Ici, les étiquettes de la cible ne sont pas
disponibles, au lieu de cela, des contraintes sont placées sur les paires d’échantillons.
Les représentations apprises sont contraintes de respecter les contraintes données
grâce à l’utilisation d’une perte contrastive, qui rapprochera les paires must-link et
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Figure 5.5: Aperçu de la méthode proposée. Les caractéristiques des échantillons du
domaine source étiquetés sont représentées en bleu, avec des triangles et des carrés
représentant différentes classes, tandis que les caractéristiques des échantillons du
domaine cible non étiquetés sont représentées en cercles rouges. Les contraintes
must-link forcent les échantillons à se rapprocher les uns des autres (flèches vertes),
et les contraintes cannot-link forcent les échantillons à s’éloigner les uns des autres
(flèche orange).

éloignera les paires cannot-link. Les contraintes inter-domaines sont particulière-
ment importantes, car leur placement peut permettre aux classes du domaine cible
de correspondre aux classes correspondantes du domaine source, une étape cruciale
en ADH. Le schéma de la méthode Constrained-HIDA est présenté dans la Figure

 5.5 .
Étant donné qu’il n’existe aucune autre étude sur l’utilisation de contraintes au

lieu d’étiquettes dans le domaine cible en AD hétérogène, Constrained-HIDA est
comparé aux méthodes HDA pour les données d’images dans un contexte non su-
pervisé et semi-supervisé. La première méthode de comparaison est CycleGAN pour
HDA, les variantes non supervisées et semi-supervisées de la méthode sont désignées
sous le nom de CycleGAN pour U-HDA et CycleGAN pour SS-HDA. Constrained-
HIDA est ensuite comparé aux variantes non supervisées du modèle HIDA, à savoir
U-HIDA et UPL-HIDA, ainsi qu’à la variante semi-supervisée SS-HIDA qui utilise
des étiquettes dans le domaine cible, mais pas de contraintes ni de perte contrastive.
Les méthodes semi-supervisées sont évaluées dans la situation où 1,25% des données
cibles étiquetées sont disponibles. La méthode Constrained-HIDA est évaluée avec
différentes quantités de contraintes (40, 80, 160, 320 et 480 paires de contraintes),
avec un rapport de 1:7 entre les contraintes must-link et cannot-link. La precision
de Constrained-HIDA et de toutes les méthodes de comparaison est présentée dans
le Tableau  5.4  .

Pour le cas R ! E, les résultats montrent que Constrained-HIDA multiplie
presque par deux les performances du CycleGAN non supervisé pour HDA (Cy-
cleGAN pour U-HDA) ainsi que de l’UPL-HIDA pseudo-étiqueté, avec seulement
40 contraintes, et offre des gains encore plus importants par rapport à U-HIDA,
l’équivalent non supervisé de Constrained-HIDA. À mesure que plus de contraintes



Table 5.4: Précision du modèle Constrained-HIDA proposé avec différents nombres
de contraintes. Les méthodes d’AD non-supervisées sont présentées en bas en tant
que lignes de base inférieures et les méthodes d’AD semi-supervisées sont présentées
en haut en tant que lignes de base supérieures. Les écarts-types sont indiqués entre
parenthèses.

R ! E E ! R
CycleGAN for U-HDA 18.48 (8.00) 16.82 (5.74)
U-HIDA 13.61 (11.33) 17.77 (9.37)
UPL-HIDA 18.84 (7.34) 21.14 (5.33)
Constrained-HIDA 40 constraints 35.52 (7.70) 33.29 (13.59)
Constrained-HIDA 80 constraints 39.09 (10.02) 40.54 (9.43)
Constrained-HIDA 160 constraints 48.59 (7.46) 49.00 (7.17)
Constrained-HIDA 320 constraints 64.68 (3.68) 56.13 (7.12)
Constrained-HIDA 480 constraints 65.27 (2.53) 59.37 (5.48)
Constrained-HIDA all constraints for 40 labels 69.34 (3.60) 63.71 (2.12)
CycleGAN for SS-HDA 40 labels (1.25%) 41.57 (9.20) 47.29 (1.53)
SS-HIDA 40 labels (1.25%) 66.14 (2.92) 62.68 (3.24)

sont ajoutées, Constrained-HIDA performe mieux. Avec 160 contraintes, il gagne
déjà 7% de plus que le CycleGAN semi-supervisé pour HDA (CycleGAN pour
SS-HDA) qui utilise 40 étiquettes (1,25%) dans le domaine cible. À partir de
320 contraintes et au-delà, les résultats deviennent comparables à ceux de SS-
HIDA, l’équivalent semi-supervisé de Constrained-HIDA lorsqu’il utilise 40 éti-
quettes (1,25%) du domaine cible.

Pour le cas E ! R, les résultats sont similaires. Constrained-HIDA avec 40
contraintes a des performances presque deux fois supérieures à celles de CycleGAN
pour U-HDA et U-HIDA, et 12% supérieures à celles de l’UPL-HIDA, montrant
qu’une grande amélioration est réalisée par rapport aux méthodes non supervisées
en utilisant aussi peu que 40 contraintes. Avec 160 contraintes, Constrained-HIDA
surpasse déjà le CycleGAN semi-supervisé pour HDA d’environ 2%, avec des gains
qui augmentent à mesure que plus de contraintes sont ajoutées. Lorsqu’il utilise 480
contraintes, les résultats de Constrained-HIDA deviennent comparables à ceux de
SS-HIDA.

Constrained-HIDA utilisant toutes les contraintes inter-domaines impliquées par
40 étiquettes dans le domaine cible (soit 120 000 contraintes) surpasse même SS-
HIDA entraîné avec 40 étiquettes cibles dans les deux cas, de plus de 3% dans le
cas R ! E, et d’environ 1% dans le cas E ! R. Il s’agit d’une découverte très
intéressante, compte tenu du fait que le classificateur de Constrained-HIDA est
entraîné uniquement sur les échantillons sources et que seules la perte contrastive
et la perte de Wasserstein ont été influencées par les échantillons cibles, tandis
que le classificateur de SS-HIDA a été entraîné avec toutes les données étiquetées
disponibles, y compris celles du domaine cible. Cela implique qu’il est peut-être
plus important d’aligner la structure du domaine cible avec celle du domaine source
que d’utiliser (un petit nombre de) dures étiquettes cibles.



Perspectives

Le développement de modèles tels que les modèles HIDA proposés pourrait être très
utile à la communauté de la télédétection, qui utilise toute une série de capteurs
différents tels que les capteurs RVB, multispectraux, hyperspectraux, SAR, LiDAR,
panchromatiques, etc. Le champ d’application ne se limite toutefois pas à la télédé-
tection. Les approches HIDA proposées sont conçues pour être générales et ne sont
donc pas strictement limitées aux images satellite. L’objectif est de disposer d’une
méthode capable de fonctionner avec d’autres types d’images hétérogènes, comme
celles que l’on trouve en robotique (images de profondeur, radar), en imagerie médi-
cale (par ex. CT et MRI), etc. L’efficacité des méthodes est donc également dé-
montrée dans un problème de référence CV commun de robotique (images RVB
et de profondeur), où les méthodes ADH existantes basées sur la traduction sont
surpassées par les modèles proposés.

Dans les travaux futurs, plusieurs directions différentes peuvent être prises pour
étendre les modèles HIDA. Des techniques de pseudo-étiquetage plus avancées et
des méthodologies d’AD homogène semi-supervisées peuvent être adaptées pour être
utilisées dans la ADH et combinées avec les modèles HIDA. La méthode Constrained-
HIDA peut être améliorée par l’utilisation d’un clustering contraint. Les méthodes
HIDA peuvent également être étendues à la segmentation sémantique et utilisées
pour les séries temporelles de données de télédétection, ce qui est très important
pour fournir des cartes d’occupation des sols plus précises.
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