
UNIVERSITÉ DE STRASBOURG

ÉCOLE DOCTORALE MSII 269

Mathématiques, Sciences de l’Information et de l’Ingénieur

Institut national de recherche en sciences et technologies du numérique

Thèse présentée par :

Alban ODOT
soutenue le : 7 novembre 2023

pour obtenir le grade de : Docteur de l’Université de Strasbourg
Discipline/ Spécialité : Informatique

Data-driven computational biomechanics
using Deep Neural Networks – Application to

augmented surgery

THÈSE dirigée par :

Dr Stéphane Cotin Directeur de recherche INRIA, Strasbourg

MEMBRES DU JURY :

Rapporteurs :

Dr Maud MARCHAL

Dr Jérémie Dequidt

Examinateurs :

Dr Stéphane BORDAS

Dr Florence Zara

Professeur des Universités, INSA Rennes

Professeur des Universités, Université de Lille

Professeur des Université, Université du Luxembourg

Maître de conférence, Université Claude Bernard Lyon 1

Alban ODOT

Data-driven computational biomechanics using Deep Neural
Networks – Application to augmented surgery

Résumé
Cette thèse aborde le problème de la simulation des tissus mous pour les applications de réalité
augmentée dans l’assistance à la chirurgie du foie. En particulier, nous mettons en œuvre un pipeline
de recalage non rigide pour générer des déformations interactives d’une représentation virtuelle du
foie des patients. Les méthodes traditionnelles de calcul de déformations réalistes ne peuvent pas
fonctionner à une fréquence interactive (60 images par seconde) avec des données spécifiques au
patient. Récemment, des chercheurs ont utilisé des réseaux neuronaux artificiels pour calculer des
déformations réalistes d’objets virtuels similaires en deux millisecondes avec précision et une relative
stabilité. Nous proposons d’utiliser une approche similaire, utilisant cependant une architecture de
réseau neuronal artificiel différente offrant une précision égale tout en étant dix fois plus rapide.
Avec cette proposition, nous présentons également une nouvelle méthode pour générer un ensemble
de données qui minimise les entrées de l’utilisateur tout en maintenant le contrôle sur le contenu
grâce à une analyse des propriétés mécaniques de l’objet. En outre, nous montrons qu’il est possible
d’améliorer la fiabilité du réseau neuronal artificiel en utilisant sa prédiction comme initialisation de
l’algorithme de Newton-Rapshon utilisé par les méthodes traditionnelles. A l’aide de nos contributions
précédentes, nous construisons un pipeline de recalage non rigide en utilisant le cadre du contrôle
optimal et l’algorithme de rétropropagation. Ce pipeline effectue le calcul plusieurs ordres de grandeur
plus rapidement que les méthodes traditionnelles au prix d’un bruit de reconstruction de contrôle.
Enfin, nous construisons un second pipeline de recalage non rigide en mettant en œuvre un moteur
physique de corps mou entièrement différentiable qui est plus lent que les réseaux neuronaux artificiels
mais plus flexible dans le type de contrôles, fiable et précis.
Mots clés : Méthode aux éléments finis, Apprentissage profond, Solveur differentiable, Recalage de
forme, Contrôle optimal.

Alban ODOT

Data-driven computational biomechanics using Deep Neural
Networks – Application to augmented surgery

Abstract
This thesis addresses the problem of soft tissue simulation for augmented reality applications in liver
surgery assistance. In particular, we are implementing a non-rigid registration pipeline to generate
interactive deformations of a patient-specific liver virtual representation. Traditional methods to
compute realistic deformations cannot run at an interactive framerate (60 frames per second) with
patient-specific data. Recently, researchers have used artificial neural networks to compute realistic
deformations of resembling virtual objects in two milliseconds with accuracy and a relative stability.
We propose using a similar approach but with a different artificial neural network architecture having
equal precision while being ten times faster. With this proposition, we also present a new method to
generate a dataset that minimizes user inputs but maintains control over the content using an analysis
of the mechanical properties of the object. Furthermore, we show that it is possible to improve the
reliability of the artificial neural network by using its prediction as the initialization of the Newton-
Rapshon algorithm used by the traditional methods. Using our previous contributions, we build a non-
rigid registration pipeline using the optimal control framework and the backpropagation algorithm.
This pipeline performs the computation multiple orders of magnitude faster than traditional methods
at the cost of control reconstruction noise. Finally, we build a second non-rigid registration pipeline
by implementing a fully differentiable soft-body physics engine that is slower than artificial neural
networks but more flexible in the type of controls, reliable and precise.
Key words : Finite element method, Deep learning, Differentiable solver, Non-rigid registration,
Optimal control.

ACKNOWLEDGMENTS

J’aimerais remercier mon directeur de thèse, Stéphane Cotin, qui m’a permis de réaliser

ce projet de thèse, et par la même occasion un rêve d’enfant. Merci Stéphane pour ton

soutient, tes sages conseils et ta patience.

Je voudrais aussi exprimer ma gratitude envers les membres du jury de mon comité

de thèse: Jérémie Dequidt, Maud Marchal, Stéphane Bordas et Florence Zara. Je tiens à

remercier plus spécialement les rapporteurs Maud Marchal et Jérémie Dequidt. Avoir eût

cette thèse lue et rapportée par deux experts de renoms est un honneur.

Je tiens à remercier Hugo Talbot et Jean-Nicolas Brunet pour m’avoir si bien intégré

dans l’équipe à mon arrivée, puis pour votre disponibilité durant le reste de celle-ci.

Merci à Paul Baksic, mon camarade de thèse ami, pour tous ces bons moments, fous

rires et conseils.

Je voudrais remercier Virginie Marec, pour son appui incommensurable durant ces

deux dernières années et l’aide que tu m’as apporté lors de la rédaction et la relecture de

ce manuscrit.

Merci aussi à mes parents et grand-parents pour leur soutien tout au long de mes

études et plus spécialement dans le supérieur.

Finalement, j’aimerais remercier les enseignants qui ont cru en moi et m’ont redonné

goût à l’école: Mme Yap, Mme Colomier, M. Laissac

CONTENTS

Contents i

Notations iii

1 Introduction 1

1.1 Motivation . 2

1.2 Numerical model . 4

1.3 Partial surface shape matching . 7

1.4 Objectives and scientific contribution of this thesis 9

2 Finite element method 13

2.1 Mesh definition . 14

2.2 Isoparametric elements . 16

2.3 Tensors and quantities transformations . 18

2.4 Hyper-elastic material . 22

2.5 Strong and weak forms . 25

2.6 Solving the equation . 27

3 Deep learning 29

3.1 Generalities . 30

3.2 Core components of an artificial neural network 34

3.3 Architectures . 36

3.4 Loss function . 39

3.5 Network optimisation . 40

3.6 Example of training process . 43

4 Fast and accurate deformations using deep learning 49

4.1 Dataset generation . 55

4.2 Toward faster simulations using artificial neural networks 60

i

CONTENTS

5 Hybrid solver 69

5.1 Newton method . 70

5.2 Artificial neural network and solver . 72

6 Optimal control for augmented surgery 79

6.1 Context . 81

6.2 Shape matching . 84

7 Lastest optimisation tool: Differentiable simulation 103

7.1 DiffEn : A differentiable solver based on energy 105

7.2 Results and future works . 118

8 Conclusion 135

8.1 Summary and achievements . 135

8.2 Outlook and futur work . 137

9 Résumé en français 139

Bibliography 161

List of Figures 173

List of Tables 179

ii

NOTATIONS

Acronymes

AI

ANN

AR

CNN

DOFS

FEA

FEM

GNN

ML

MLP

TRE

Artificial intelligence

Artificial Neural Network

Augmented Reality

Convolutional Neural Network

Degrees Of Freedom

Finite Element Analysis

Finite Element Method

Graph Neural Network

Machine Learning

MultiLayers Perceptron

Target Registration Error

iii

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Motivation . 2

1.2 Numerical model . 4

1.3 Partial surface shape matching . 7

1.4 Objectives and scientific contribution of this thesis 9

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

According to the World Health Organization (WHO), nearly twenty million new cancers

were diagnosed in 2020. This disease can affect any body part, but the main affected

parts are the breast, lungs, and colon. Among other factors, one-third of deaths from

cancer are due to excessive consumption of alcohol and tobacco, high-fat mass index, lack

of vegetable intake, and physical activity. Thanks to the recent advances in medications

and medical procedures, many cancers can be cured if detected early. Nevertheless, all

cancers are not equal regarding treatment response and death rate.

Figure 1.1: Pie-charts displaying worldwide newly diagnosed (left) and deaths (right) by
cancer type in 2020 based on World Health Organization data. Note that there are no nec-
essary intersections in populations between figures since people appearing in the second
figure could have been diagnosed multiple years prior.

Liver cancers are especially deadly, as shown in Figure 1.1, where they account for

approximately one in twenty diagnoses but represent one in twelve deaths induced by

cancer. The most common primary liver cancers (originating from the liver) are hepa-

tocellular carcinoma and cholangiocarcinoma. Such pathologies are usually treated via

liver resection using either open abdominal or laparoscopic surgery.

During open abdominal surgery, a single long incision, or a laparotomy, is made to

gain access to the abdominal cavity. This approach allows direct visualization of the or-

gans within the abdomen and is most commonly used for more complex surgical proce-

dures.

In laparoscopic surgery, the entire procedure is carried out through small incisions

that resemble keyholes while the surgeon watches the images transmitted by a camera on

a screen. Specially designed instruments are used to perform liver resection, and robotic

arms can also be utilized. Although movement may be somewhat restricted, laparoscopic

2

1.1. MOTIVATION

or robotic techniques are frequently used for less complex liver resections. With advance-

ments in surgical techniques, however, more intricate procedures such as major liver re-

sections or living donor liver resections are now feasible through a laparoscopic or robotic

approach.

During the manipulation, surgeons must remember and project patient-specific data

such as tumor locations and sizes, blood vessels, and arteries in an environment that is

constantly moving due to respiration and blood flow. On top of this tracking which al-

ready requires much focus, they have to perform precise and complex surgical acts while

commanding the whole operation room.

One idea to facilitate the task and reduce the surgeon’s mental load would be to en-

hance the surgeon’s visual perception of the patient using augmented reality (AR). This

can be achieved by combining a live video feed from the laparoscope (a small camera

inserted into the patient’s body through a small incision) with virtual images and data

overlaid. This can include 3D models of the patient’s anatomy, surgical instructions, and

real-time data such as vital signs.

Figure 1.2: Illustration of a laparo-
scopic liver biopsy [21].

One of the main benefits of AR in laparoscopic

surgery is that it allows the surgeon to see inside the

patient’s body more intuitively and naturally, which

can help to improve accuracy and precision dur-

ing the procedure. 3D images and virtual overlay

can also help to enhance the visualization of com-

plex anatomy and internal structures, which can

be challenging to see with traditional laparoscopic

techniques.

AR technology can also assist surgeons with

tracking and visualization of surgical instruments,

guides, and implants within the body, which can

help to reduce the time of surgery and complica-

tions.

Finally, AR can also improve communication and collaboration between surgical teams,

with the ability to share images and data and even remotely operate surgical instruments.

When overlaying 3D models of the patient’s anatomy during surgery, one has to con-

sider the deformation induced by the surgeon and reproduce them on the 3D models.

The complexity arises in detecting deformations and preserving the internal properties

of the organs. Such technology would require the ability to compute in real-time com-

plex deformations of organs from partial surface observations, thus, asking two important

questions :

3

CHAPTER 1. INTRODUCTION

1. How to compute the deformations of detailed objects in real-time?

2. How to process partial surface data from the laparoscope video feed to compute the

corresponding deformations?

The following sections present our choices to answer these questions, which the re-

sults in the subsequent chapters will further support.

1.2 Numerical model

This section provides an introductory answer to the first question by placing the thesis

work in its context.

Picking the proper set of equations is essential to correctly model a physical phe-

nomenon. In our case, the liver is an object with a defined rest shape and can undergo

deformations that we assume are non-damaging for the organ. This places us in the elas-

ticity framework and, more specifically, nonlinear elasticity with a set of equations de-

tailed in Chapter 2. The simulation of such objects is called "Soft body simulation" and

can be achieved using multiple techniques such as mass-spring systems, finite element

analysis (FEA), and many others.

Simulations that focus on realism use a subfield of the FEA called finite element meth-

ods (FEM). The Finite Element Method is a powerful numerical technique widely used to

solve various physical problems in various fields, such as solid mechanics, fluid dynamics,

heat transfer, and electromagnetism. FEM can simulate the behavior of elastic materials,

such as cloth, rubber, and skin, under different physical conditions.

The simulated object is represented by many interconnected elements, known as fi-

nite elements. A set of nodes and edges defines these elements, and each element has a

specific set of physical properties, such as density, stiffness, and mass.

The simulation process involves the calculation of the quantities acting on each ele-

ment based on the object’s properties and the environment’s physical conditions, such as

gravity, collisions, and temperature. These quantities are then used to update the position

and velocity of each element, creating a realistic and dynamic simulation of the object’s

behavior.

Such simulations are used in various applications, including animation and cloth sim-

ulation. It is also used in engineering and manufacturing to simulate the behavior of soft

materials such as rubber and in medical simulation to simulate the behavior of human

tissue.

FEM-based soft body simulations can be computationally intensive, and the accuracy

of the simulation depends on the quality of the underlying finite element model and the

4

1.2. NUMERICAL MODEL

computational resources available. However, recent advances in computing power and

the development of more efficient algorithms have made it possible to create highly real-

istic and accurate simulations of soft bodies.

One of the critical aspects of this method is that it can handle various types of bound-

ary conditions and works with both linear and nonlinear systems. Nonlinear systems are

handy when dealing with complex problems using elastic, plastic, or viscoelastic materi-

als.

This versatility also applies to the type of system. It can handle static and time-dependent

problems on complex geometries and topologies, making it useful for various engineering

problems.

The accuracy of the solution can be improved by refining the mesh and increasing the

number of elements. Since the method is not defined for specific elements, it can be ap-

plied to large-scale problems with millions of degrees of freedom. Developing specialized

algorithms, hardware, and parallel computing has enabled solving large, complex systems

with high computational efficiency and scalability.

However, all of these advantages come with their associated drawbacks.

The previously mentioned mesh refining for accurate solutions relies on excellent

mesh generation. One of the first steps in FEM is to divide the system into small, sim-

ple, and manageable finite elements. This process, known as mesh generation, can be

challenging, especially for complex geometries and topologies. Creating an accurate and

efficient mesh is crucial for the accuracy and convergence of the FEM solution.

Furthermore, FEM solutions are usually obtained by iteratively refining the mesh and

solving the equations on each element. This process can be sensitive to the initial con-

ditions, the choice of numerical solvers, and the mesh quality. Ensuring the solution

converges to the correct solution can be challenging, especially for nonlinear and time-

dependent problems.

FEM can be computationally intensive, requiring significant computational power.

This can be incredibly challenging for large and complex systems or simulations requir-

ing real-time performance. In real-world applications, most models require dealing with

large-scale problems with millions of degrees of freedom. These can be computationally

demanding, and ensuring that the algorithms are efficient and scalable is essential.

Complex problems are often assumed to be represented by nonlinear systems, but

such modeling can be challenging. Nonlinear systems can have multiple solutions, and

the FEM solution may not be unique or may not converge to the correct solution. This is

partly because solutions are based on assumptions and approximations, and it is essential

to validate and verify the solutions against experimental data or analytical solutions. This

can be challenging, especially for complex systems and simulations that involve multiple

5

CHAPTER 1. INTRODUCTION

physical phenomena.

Having discussed the pros and cons of the finite element method for simulating soft

bodies, we will now discuss the role of deep learning in realistic physical simulations.

1.2.1 Fast computation using deep learning

The main idea behind using deep learning in physics simulation is to use artificial neural

networks (ANN) to learn the underlying physical laws of a system from data and then use

this knowledge to make predictions about the system’s behavior under different condi-

tions.

Deep learning can be used to model complex physical systems, such as fluid dynam-

ics, granular materials, and soft body dynamics, that can be difficult to simulate using

traditional physics-based methods. This is done by training neural networks on large

amounts of data generated from simulations or experiments and then using the trained

networks to predict the system’s behavior.

One of the main benefits of using deep learning in physics simulation is that it can

alleviate some limitations of the finite element method. It can learn from real-world data,

making the simulation more accurate and realistic. This can be achieved by changing

simulation parameters such as element-wise properties or boundary conditions.

Furthermore, as seen, the finite element method is versatile and precise, but introduc-

ing complexity in simulations significantly increases computation time. This increase in

computation time is usually due to a large number of solver iterations or a poorly con-

strained problem. One could use an artificial neural network to predict the result of a

simulation and feed this result to a classic simulation. The fed simulation only corrects

minor imperfections due to the neural network approximations, thus requiring a rela-

tively low number of solver iterations. This idea has been successfully developed in this

thesis and shows drastic improvement in computation time (Chapter 5).

It is important to note that deep learning in physics simulation is still an active area

of research and is still in its early stages. There are challenges, such as the need for large

amounts of high-quality data, interpretability, and generalization of the models. Addi-

tionally, it is essential to ensure that the predictions made by the neural network are phys-

ically meaningful and consistent with the laws of physics. This can be achieved by adding

physics-based terms in the learning policy, which we will discuss in the Chapter 4 De-

spite these challenges, combining deep learning and physics simulation has shown great

promise in creating more realistic and accurate simulations of various physical systems.

It has the potential to revolutionize how we simulate and understand complex physical

phenomena and is expected to have a wide range of applications in fields such as en-

6

1.3. PARTIAL SURFACE SHAPE MATCHING

gineering, science, and computer graphics. However, more research is needed to fully

understand its capabilities and limitations and address the above mentioned challenges.

1.3 Partial surface shape matching

This section provides an introductory answer to the second question by placing the thesis

work in its context.

Successful surgery usually follows detailed pre-operative planning. This planning is

achieved via tomographic imaging of the zone of interest, creating detailed 3D models of

the patient’s organ, arteries, tumors, and other specificities. Adding a volumic element

to this existing mesh puts us in a context where we can simulate organ deformations us-

ing the finite-element method, as presented in the previous section. This part is already

interesting since it could be automatized without adding any cost or delay to the surgery.

During surgery, the liver undergoes significant deformations due to the practician ma-

nipulations. We want to be able to deform the 3D model to match its current real shape.

This way, we can overlap them on the screen and keep realistic track of the points of in-

terest. One way to observe the real liver is to use the camera’s video feed in laparoscopic

surgery. Using already existing techniques [97], we can convert the observations into par-

tial surfaces 3D point-cloud.

We now have two important pieces of data: the organ at rest and the partial surface

reconstruction of the same deformed organ.

How to use the video to deform the 3D model? Our answer is in three steps:

1. Generate a 3D point cloud from the video feed

2. A rigid registration where we fit the undeformed organ into the point cloud.

3. An elastic registration that deforms the 3D model to fit the observed data.

While the first and second steps are open research topics, we will focus on the last one

that fits the rest of the ideas developed in this thesis.

Helping the surgeon to visualize internal structures during surgery requires comput-

ing a displacement field of the 3D model that fits the observed data. This fitting raise

multiple challenges.

The first one is realism; to provide helpful information, the displacement of each

model node is as close as possible to reality, which requires much computation.

The second one is real-time. Interactivity between the surgery and the simulation re-

quires the simulation to run smoothly at a decent framerate (≈60 frames per second). This

7

CHAPTER 1. INTRODUCTION

constraint opposes the first one, which will require a trade-off since, for each frame, we

have to compute the three previously mentioned steps. Though we are not expecting to

meet the real-time requirement for the whole process in this work, we should remember

that involved procedures should be as fast as possible.

The third challenge is that a point cloud of a part of the surface is insufficient to iden-

tify a unique solution. Consequently, other information, such as physical hypotheses,

should be added before we start thinking about registration accuracy. The chosen model

and methods should result from a trade-off between the physical acceptability of the so-

lution and the efficiency required by real-time execution.

The problem of organ registration in augmented surgery is familiar; so far, two main

methods exist.

The first is inspired by the Iterative Closest Point algorithm [7] (ICP). A term is added to

the minimized equation that can be understood as fictitious forces between the observed

data and the liver model. In the case of Haouchine et al. [39], these forces are generated

using linear spring; Plantefève et al. [93] proposed to change these springs to an attractive

nonlinear force.

The second method relies on the formulation of an inverse problem. For example, a

displacement could be imposed on the posterior face of the liver. At the same time, the

anterior is observed by a camera as done by Rucker et al. [102] or by Heiselman et al. [41].

The latter also adds a displacement constraint on the liver ligaments. Both works use

linear elasticity, significantly reducing computation time since it can be preprocessed.

It is interesting to note that Özgür et al. [87] proposed to take into account the effect of

gravity in pre- and per-operative computation and pneumoperitoneum pressure in intra-

operative conditions to determine the final shape of the liver.

All of these methods lead to accurate results. However, they are too specific to a given

problem and are often tailored for linear elasticity, which does not accurately model or-

gans under essential deformations.

Recently, Mestdagh et al. [78] proposed a third method to formulate the optimization

problem in the generic optimal control framework. This generic framework makes it easy

to incorporate additional pre- or intra-operative data in the computation. Their results

are presented on a model with nonlinear elasticity properties, which is an improvement

compared to other methods. Furthermore, they implement it using the adjoint method,

which allows for a naturally integrated neural network, as presented in chapter 6. For

these reasons, we decided to continue with this approach, where we mostly worked on

improving the computation speed using an artificial neural network, as we will see in

Chapter 6.

In the next section, we present the contributions of this thesis.

8

1.4. OBJECTIVES AND SCIENTIFIC CONTRIBUTION OF THIS THESIS

1.4 Objectives and scientific contribution of this thesis

This thesis aims to propose new approaches to real-time numerical simulation to meet

the expectations in the field of per-operative assistance. As a result, the surgeon can see

the organ’s internal structures, such as blood vessels or tumors, during the operation.

Achieving these goals requires overcoming many challenges. In particular, realistic

numerical models of the patient must be developed while remaining compatible with

real-time computing constraints. In the context of per-operative assistance, organs do

not show an important dynamic because they do not bounce, fall or spin and, thus, are

accurately represented by static simulations. The finite element method is one of the

most widely used techniques for predicting the deformation of human tissue. However,

this method involves complex calculations resulting in computation times incompatible

with the constraints of the applications listed above.

These methods are based on simplifying behavioral law or specific numerical strate-

gies. In this thesis, we propose the use of Machine Learning techniques. This idea fits very

well in the context of image-guided surgery since it is possible to collect much informa-

tion during an intervention and thus continuously learn to improve the modeling. Today,

learning techniques, particularly Deep Learning, have shown spectacular results in com-

puter vision or image processing. However, apart from very recent and still preliminary

work, few results have been demonstrated in biomechanics.

This thesis continues the previous works of the team (based on deep neural networks)

to model an organ’s biomechanical behavior according to nonlinear behavioral laws to

guide surgeons during interventions where it is essential to take into account movements

and deformations of the anatomy. Thus we propose to replace the classical steps of ex-

perimentation, modeling, and simulation, typically used in biomechanics, with a single

step capable of generating a solution based on a set of experimental and synthetic data.

This thesis has three main objectives.

The first is to give a better understanding of artificial neural network training and im-

prove it using the finite element method in real-time soft body simulation.

The second one consists in improving the computation time of the FEM using artificial

neural network.

The last one is to provide a new way to achieve the required surface matching in aug-

mented reality coupled with FEM simulation.

Contributions are split into two parts, code and scientific contributions.

Scientific contributions :

1. The journal paper "DeepPhysics: a physics aware deep learning framework for real-

9

CHAPTER 1. INTRODUCTION

time simulation"[84] has three contributions :

• A novel method to sample the deformation space of an object using the eigen-

decomposition of the tangent stiffness matrix.

• A formulation of the loss function based on the relative value of the force resid-

ual in the system.

• An improved Newton-Raphson scheme using a neural network prediction as

an initial guess.

2. Conference paper "Real-time elastic partial shape matching using a neural network-

based adjoint method"[85] has two contributions :

• Forward simulation using an artificial neural network in the optimal control

framework.

• Adjoint method using the backpropagation through the ANN.

3. Book chapter "Deep learning for real-time computational biomechanics"[76] offers

a comparison between two architectures for real-time computational biomechan-

ics.

Code contributions:

1. The DeepPhysX project provides Python packages allowing users to interface their

numerical simulations with learning algorithms easily.

2. The DiffEn project provides a fully differentiable soft-body physics engine based on

energy formulation.

This thesis is split into seven chapters starting with the introduction (Introduction).

The second one (Finite element method) focuses on developing tools and notations

to understand the finite-element method.

The third chapter (Deep learning) is in the same spirit but on the subject of deep learn-

ing.

The fourth chapter (Fast and accurate deformations using deep learning) contains our

first contribution and answers the first question about how to improve the computation

speed of the finite-element method.

The fifth chapter (Hybrid solver) is in the continuity of the fourth and presents our

contribution to improving the robustness of the neural network prediction.

10

1.4. OBJECTIVES AND SCIENTIFIC CONTRIBUTION OF THIS THESIS

The sixth chapter (Optimal control for augmented surgery) presents our answer to the

second question on how to process partial surface data to compute 3D model deforma-

tions.

The seventh chapter (Lastest optimisation tool: Differentiable simulation) presents

our latest results with the development of a fully differentiable soft-body physics engine.

We will finish with a conclusion on the overall work of the thesis and the openings it

created.

11

C
H

A
P

T
E

R

2
FINITE ELEMENT METHOD

2.1 Mesh definition . 14

2.2 Isoparametric elements . 16

2.3 Tensors and quantities transformations . 18

2.4 Hyper-elastic material . 22

2.5 Strong and weak forms . 25

2.6 Solving the equation . 27

13

CHAPTER 2. FINITE ELEMENT METHOD

In this thesis we discuss numerical models that are derived from basic elasticity prin-

ciples originating from the field of continuum mechanics. Using some well-known me-

chanical concepts we are then able to compute the deformation of an object subject to

external load. One of these concepts is the displacement function.

The displacement function returns a vector between the initial and terminating posi-

tions of a deformed point of the object for any point inside the object. Researcher shave

been studying different kind of elastic object through the years and have established re-

lationship between the applied forces and the object responses. These relationships are

formulated as function of the derivative of the displacement functions. A set of Partial

Differential Equation (PDE) must be solved to get an explicit representation of the defor-

mation.

This deformation can be seen as the balance between internal elastic forces of the

object and the external forces exerted on it. In reality, it works the other way around where

the object deforms to store potential elastic energy in order to regain its initial shape when

the load is removed. Yet, to the equilibrium state this potential energy is equal to the

external energy applied. This is why solving the displacement function from PDE yields

the displacement of any points from the rest position to its deformed position when the

balance of energy is reached.

In this chapter we present the mathematical framework behind these concepts. We

will start by defining what is a mesh and how we interpolate quantities in its elements.

Then we will present the different tensors associated with the problem and how they are

combined to construct the system of PDE we will solve. Finally, we will present a common

formulation to solve such set of equation using the Newton-Rapshon method.

2.1 Mesh definition

Most continuous problems cannot be solved directly and thus require an approximation.

This approximation usually uses a variational approach. One formulation of such vari-

ational methods is the Galerkin Method. They convert a continuous PDE in its integral

(weak) form into a discrete problem by applying linear constraints determined by a finite

set of basis functions. If this sentence might be blurry right now, it should be clearer by

the end of this chapter. Basically, this says that Galerkin’s methods give a way to solve

continuous problems by discretizing them into smaller elements. A mesh describes a

continuous surface or volume into smaller discrete elements on which we know exists a

way to approximate the solution of the governing PDE.

A mesh is a set of nodes and edges that approximate the real continuous shape of

14

2.1. MESH DEFINITION

Figure 2.1: Reference surface elements. Quadratic elements have more integration points
(black dots) than linear, thus, generating bigger systems to solve.

an object. These edges and nodes are arranged in elements on which we will perform

computations. Meshing a two- or three-dimensional domain is a complicated task and

remains a research subject today. Multiple meshing techniques exist to fit as many reg-

ular polygons as possible in a given shape. They all try to minimize the loss or gain of

volume without introducing too many irregular polygons. In the context of finite element

methods, these polygons are called elements. Before we continue and define mechanical

properties on meshes, let us have a rapid introduction to the type of elements used in

FEM.

Simulations usually use triangular or quadrilateral elements when dealing with 2D

objects such as cloth and paper. Each type of element has its pros and cons. Regard-

ing geometrical correctness, triangles are usually more accurate but provide less stable

simulations, which is the opposite of the quadrilateral elements. A third type of element,

called shell element, is used to model objects primarily 2D (understand very thin) but

poorly represented by 2D elements. For example, the eye sclera requires shell elements to

model its behaviour[18, 112] correctly.

Objects too thick to be represented by shell elements are considered volumic. Usually

made of tetrahedral or hexahedral elements, the volumic version of triangular and quadri-

lateral elements. They have the same properties as their lower dimensional counterparts

in convergence and representativeness.

It exists meshes called hybrid meshes that are composed of multiple types of elements.

Usually, tetrahedra (resp. triangles) mesh regions with high spatial variations, and hexa-

hedra (resp. quadrilaterals) mesh mostly flat regions. This way, one benefits from repre-

sentativeness and simulation stability at the cost of code complexity.

In the context of this thesis, we focus on the simulation of homogeneous volumic

meshes. For simplicity and to avoid redundancies, the following sections and subsections

will only present examples and figures dealing with tetrahedral elements. The theory re-

mains the same for all the previously presented element types.

15

CHAPTER 2. FINITE ELEMENT METHOD

Nodes and degrees of freedom

Each element of a mesh is composed of nodes which very often are the vertex of the ele-

ment.

The Gauss node is a broader type of node that includes geometrical nodes. Gauss

points are also called integration points because numerical integration is carried out in

these points. In our case, each Gauss node represents three degrees of freedom.

Hence, an object X is represented by its Gauss points Xi :

X =



X1

X2

. . .

Xn


Where n is the number of degrees of freedom. We denote X the reference position of the

object and x the same object subject to a displacement u such that x = X+u . We denote

Xi , xi , ui the i-th node of the respective vectors. In the next section, we present how we

interpolate mechanical properties inside an element function called the shape function.

2.2 Isoparametric elements

In the context of elastic deformations, the finite element method is based on approximat-

ing a continuous displacement function û by interpolating the function u on nodes ui .

We define the nodal displacement field as the difference between corresponding degrees

of freedom on the deformed and initial state ui = xi −Xi . Thus we have:

û ≈ u =
ndo f s∑

i=1
Ni (X) ·ui (2.1)

Where Ni (X) is the shape function (interpolation function) associated with the node i .

Shape functions represent the element-wise weights associated with each node and allow

the computation of the field’s evolution in the integration domain by interpolating the

nodal quantities. To ensure stable convergence of the elements, shape functions must

satisfy four essential conditions.

Shape functions must:

1. Ensure continuity and unicity of the element field. The approximated field must be

16

2.2. ISOPARAMETRIC ELEMENTS

continuous and differentiable on the whole element. Given a set of nodes, this field

is unique since a material point can only move in a single direction.

2. Ensure continuity and unicity on the boundary of the element. Displacement com-

patibility must be ensured on the boundaries. This way, neighboring elements re-

main neighbors and have coherent displacements.

3. Model constant strain state. All normal and shearing strains have a fixed value ev-

erywhere in the element.

4. Model rigid body motions. When a rigid translation or rotation is applied to an

element, it must not generate any deformation. A rigid body motion can only intro-

duce null deformations.

The formulation of the shape function is essential in the quality and convergence of

the simulation. The usual example given to illustrate shape functions uses Lagrange’s

interpolation polynomials.

A particular case of shape functions is found when we use isoparametric elements

to discretize the domain. Using this concept, the same shape functions can interpolate

the field variables (e.g., displacement field) and the geometry (e.g., position vector field)

inside an element. Thus, if we have an element e having ne dofs we can modify (2.1) to

become:

Xe (ξ) =
ne∑

i=1
Ni (ξ) ·Xi (2.2)

xe (ξ) =
ne∑

i=1
Ni (ξ) ·xi (2.3)

Where ξ= (a,b,c) is called the local coordinates vector. These coordinates represent the

relative position of a point within a reference element Ωe . Therefore, using the shape

functions of an isoparametric element, one can map the positions of a point in the refer-

ence element in either the initial or deformed element. Shape functions being invertible,

one can also compute the inverse transformation.

When dealing with physical phenomena, one usually wants to compute the variations

of physical properties. This is achieved by computing gradients and jacobians. Here, the

quantity of interest is the gradient of the displacement. The displacement gradient at any

point inside the element can be approximated using the displacement of the dofs and the

gradient of their shape functions with respect to the material points.

∇X ue =
ne∑

i=1
ui ⊗∇X Ni (2.4)

17

CHAPTER 2. FINITE ELEMENT METHOD

Where ⊗ is the classic tensor product (here, second order). Transforming the gradient

from local to material coordinate can be achieved by taking the jacobian of the transfor-

mation given at (2.2) and (2.3). This is obtained by differentiating Xe and xe with respect

to the local coordinate ξ .

Je = dXe

dξ
=

ne∑
i=1

Xi ⊗∇ξNi (2.5)

je = dxe

dξ
=

ne∑
i=1

xi ⊗∇ξNi (2.6)

Where ∇ξNi is the gradient with respect to ξ of the scalar valued shape function Ni .

This gives us the gradient of the shape functions with respect to the material coordinates:

∇XNi = J−1
e ·∇ξNi (2.7)

This leads us to be able to compute the displacement gradient at any point on the

reference element using the following:

∇X ue =
ne∑

i=1
ui ⊗ (J−1

e ·∇ξNi) (2.8)

The term J−1
e · ∇ξNi only depends on reference material coordinates and can therefore

be precomputed for each mesh.

2.3 Tensors and quantities transformations

The problem is computing a body’s deformation at rest subject to external forces. This

thesis will cover nonlinear deformations since they are required to model our application

cases. We start by defining the notations, and we continue by presenting the different

quantities and tensors.

Deformation tensor

Let Ω0 be the initial domain and X a material point of the domain. Through time Ω0

moves and deforms in space, and this new domain is named Ω . Therefore, the material

point X in Ω0 is now situated at x in Ω .

As such, elements of length d X , area d A or volume dV in Ω0 are transformed in

d x , d a et d v in Ω . The transformation from the initial domain to the deformed one is

18

2.3. TENSORS AND QUANTITIES TRANSFORMATIONS

given by:

d xi = ∂xi

∂X j
d X j

We observe that ∂xi
∂X j

describe a tensor known as the deformation tensor noted F . Its

inverse is given by ∂Xi
∂x j

.

Figure 2.2: The domain Ω0 is deformed by the external forces (green arrows) applied to
its surface. The deformation gradient tensor F give the transformation from Ω0 to Ω .

One usually computes displacement u = x−X and expresses the deformation gradient

using the displacement gradient.

F = I+∇X u (2.9)

Where ∇X means that the gradient is computed with respect to X .

Volume of a deformed element

The initial state of a volume element can be written as the triple product dX1 ·(dX2×dX3)

where dXi = d Xi ei , with ei being unitary vectors. We have dxi = F ·dXi = ∂x
∂Xi

d Xi such

that :

dx1 · (dx2 ×dx3) = ∂x

∂X1
· (
∂x

∂X2
× ∂x

∂X3
)d X1d X2d X3

Where the right-hand side triple product is the determinant of the transformation. This

way, one can write the volume change equation as:

dx1 · (dx2 ×dx3) = JdX1 · (dX2 ×dX3)

Or in terms of volume:

d v = det (F) dV = JdV (2.10)

19

CHAPTER 2. FINITE ELEMENT METHOD

Area of a deformed element

Since d v = JdV we have

dx ·da = JdX ·dA

where dA is an oriented area element dA = Nd A and its normal N on the initial domain

written as da = n d a and n respectively on the deformed domain.

Given dx = F ·dX

(F ·dX) ·da = JdX ·dA or dX · (FT ·da) = JdX ·dA

for all dX . We obtain the Nanson formula that gives the relationship between the initial

and deformed oriented area element.

da = J (X)F−T ·dA or n d a = J (X)F−T ·N d A (2.11)

Green-Lagrange tensor

The Green-Lagrange deformation tensor usually noted E is defined by:

E = 1

2
(C− I) (2.12)

Where C = FT ·F is the Cauchy-Green tensor.

Using the polar decomposition theorem, a tensor T can be decomposed into a ro-

tation tensor R and an elongation tensor U such that RT R = I and U symmetric

positive-definite. The other way around is also true with a tensor V that has the same

properties as U .

T = R ·U = V ·R

Since F is invertible, C is symmetric and positive-definite such that it can be diago-

nalized.

C = FT ·F = Q ·Λ2 ·QT

Where Q is orthogonal, Λ is a diagonal tensor containing the square roots of the eigen-

values of C .

Let U = Q·Λ·QT , since U2 = Q·Λ2 ·QT = FT ·F then U is symmetric positive-definite.

Let R = F · U−1 , R is orthogonal by construction since RT · R = U−T · (FT · F) · U−1 =
U−T ·U2 ·U−1 = I since U is symetric.

20

2.3. TENSORS AND QUANTITIES TRANSFORMATIONS

Thus, the C tensor can be rewritten as U2 and the Green-Lagrange tensor as

E = 1

2
(U2 − I)

Showing the Green-Lagrange tensor is invariant by rotation since it only depends on U.

Finally, we can express the Green-Lagrange tensor using displacements.

E = 1

2
(FT ·F− I) = 1

2
((I+∇X u)T · (I+∇X u)− I)

Which gives

E = 1

2
(∇X u+∇T

X u+∇X u ·∇T
X u) (2.13)

We can neglect the quadratic term when dealing with small deformations and thus fall

back on linear elasticity.

E ≈ 1

2
(∇X u+∇T

X u) (2.14)

Cauchy and Piola-Kirchhoff tensors

One of the most important tensors is the tensor of constraint σ acting on the deformed

configuration Ω . The geometry being in constant variation makes it hard to evaluate

such a tensor directly. To do so, we will fall back on the initial domain Ω0 and define the

transformation tensor between domains.

Let db be an element of force acting on a surface element d a with normal n on Ω .

We define Cauchy stress tensor as :

db =σ ·n d a or
db

d a
=σ ·n (2.15)

Writing this equation with respect to the initial domain introduces the first Piola-

Kirchhoff stress tensor.

db = P ·N d A or
db

d A
= P ·N (2.16)

Here we have an element of force db acting on a surface element d a with normal

n on Ω . Setting everything on Ω0 requires formulating a fictive element of force df0 =
F−1 ·db that act on the initial area element d A . Doing this introduces the second Piola-

21

CHAPTER 2. FINITE ELEMENT METHOD

Kirchhoff stress tensor

df0 = S ·N d A or
df0

d A
= S ·N (2.17)

P = F ·S (2.18)

When comparing equations, we can see the similarities between σ on Ω and S

on Ω0 . This relation can be quickly established knowing the definitions of the second

Piola-Kirchhoff stress tensor 2.17 and the Nanson formulae 2.11. We have :

db = F ·S ·N d A from 2.17

db =σ ·n d a =σ · (J F−T · (N d A)) from 2.11

Subtracting the first from the second, we obtain:

(J σ ·F−T −F ·S) · (N d A) = 0 for all N d A

Thus we have :

σ= 1

J
F ·S ·FT or S = J F−1 ·σ ·F−T (2.19)

which is equivalent to :

σ= 1

J
P ·FT or P = J σ ·F−T (2.20)

We have defined all the essential tensors associated with the finite element method

that we will use throughout this thesis. We will now discuss how we combine these differ-

ent tensors to model the material properties of different objects. We do so by presenting

the mathematical formulations of well-studied materials that can represent a wide range

of objects.

2.4 Hyper-elastic material

As presented in equation 2.14, Green-Lagrange is a tensor that can represent linear elas-

ticity. Linear elastic is called such because the stress-strain relation is linear. In other

words, the response of an object (strain) is proportional to the external force applied

(stress). This behavior is realistic under the assumption of small deformations and/or

for materials such as metals before they reach their yielding point, which changes their

22

2.4. HYPER-ELASTIC MATERIAL

behavior from elastic to plastic (permanent) deformation. Therefore, linear elasticity is

commonly used in fields such as civil engineering.

In this thesis, we deal with biological tissues undergoing important deformations not

correctly represented by linear elasticity [66]. One common approach when modeling bi-

ological tissues is to use hyper-elastic materials. For example, Gao et al. [32] use a hyper-

elastic material to model the chordae tendinae (tendons holding the heart valves). Fur-

thermore, Roan et al. [99] use a hyper-elastic model to estimate the nonlinear material

properties of liver tissue. The liver being our main subject of study, we chose to use hyper-

elastic material to compute our simulations. This section will present two hyper-elastic

materials, Saint-Venant-Kirchhoff and Neo-Hook, and one incompressible hyper-elastic

material.

In the case of a hyper-elastic material, the second Piola-Kirchhoff tensor comes from

deformation energy Ψ .

S = ∂Ψ

∂E
= 2

∂Ψ

∂C

We can express potential Ψ depending on C as a function of its invariants.
I1 = tr (C)

I2 = 1
2 (I 2

1 − tr (C ·C))

I3 = det (C)

(2.21)

We can now write

Ψ=Ψ(I1, I2, I3)

Thus we have :

S = 2
∂Ψ

∂C
= 2(

∂Ψ

∂I1

∂I1

∂C
+ ∂Ψ

∂I2

∂I2

∂C
+ ∂Ψ

∂I3

∂I3

∂C
)

Which is equivalent to:

S = 2(
∂Ψ

∂I1
I+ ∂Ψ

∂I2
(I1I−C)+ ∂Ψ

∂I3
I3C−1) (2.22)

23

CHAPTER 2. FINITE ELEMENT METHOD

Saint-Venant-Kirchhoff

Saint-Venant-Kirchhoff is the big deformation generalization of the linear elasticity. En-

ergy potential and second Piola-Kirchhoff is formulated as :

Ψ= 1

2
λ(tr (E))2 +µtr (E2)

S = ∂Ψ

∂E
=λtr (E)I+2µE

Neo-hookean

The other classic hyper-elastic model is the neo-Hookean material. Potential energy is

formulated as :

Ψ= µ

2
(I1 −3)+ λ

8
(lnI3)2 − µ

2
l nI3

This leads to the following:

S = ∂Ψ

∂E
=µ(I−C−1)+ λ

2
(lnI3)C−1

Mooney-Rivlin incompressible

The formulation of certain hyper-elastic materials is quite complex, and therefore, for

readability, we introduce new tensors:

F̂ = det (F)−
1
3 F = J − 1

3 F

Which gives the Cauchy-Green tensor:

Ĉ = F̂T · F̂ = J
2
3 Ĉ

The two first invariant of Ĉ are :J1 = tr (Ĉ)

J2 = 1
2 (J 2

1 − tr (Ĉ · Ĉ))
(2.23)

In this model, the penalty term is formulated as U (J) = 1
2 k(J −1)2 where k is the incom-

pressibility module.

24

2.5. STRONG AND WEAK FORMS

We introduce a new term that corresponds to the pressure p

p =−1

3
tr (σ) =−1

3
tr (S ·C) =−dU

d J

The potential has the same formulation where we only add a penalty term which only

depends on J .

Ψ= c1(J1 −3)+ c2(J2 −3)+U (J) (2.24)

S = 2(c1
∂J1

∂C
+ c2

∂J2

∂C
)−p JC−1 (2.25)

S = 2c1I
− 1

3
3 (I− 1

3
I1C−1)+2c2I

− 2
3

3 (I1I−C− 2

3
I2C−1)−p JC−1 (2.26)

We obtain the incompressible neo-hookean model by setting µ= 2c1 and c2 = 0

S =µI
− 1

3
3 (I− 1

3
I1C−1)−p JC−1 (2.27)

2.5 Strong and weak forms

Physical simulations of deformable objects require that a set of laws be defined on the

different kinematic quantities of the system. Here we define a physical system where the

known quantities are: external load (forces), topology (elements), geometry (positions),

material, and scalar quantities associated with it. The single unknown quantity is the dis-

placement field and its temporal derivatives. These laws constrain the displacement field

and its temporal derivative using the previously presented tensors stemming from the

known quantities. In continuum mechanics, these rules are called the balance of mass,

the balance of linear momentum (Cauchy’s first law of motion), the balance of angular

momentum (Cauchy’s second law of motion) and the balance of energy (first law of ther-

modynamics).

We will now present the strong form of these balance equations. To simplify notation

we define the usual ẋ = dx
dt as the velocity, ẍ = dẋ

dt as the acceleration, and ρ(X, t) = ρt

the mass density at X . The rules can be defined either in their Lagrangian formulation

(deformed state) or Eulerian (initial state):

25

CHAPTER 2. FINITE ELEMENT METHOD

Law

Balance of mass

Balance of linear momentum

Balance of angular momentum

Balance of energy

Eulerian description

ρ̇ = ρ∇· ẋ

ρẍ = ρb+∇x ·σ
σ=σT

ρu̇−ρr =σ ·d−∇x q

Lagrangian description

ρ0 = Jρt

ρ0ẍ = ρ0b+∇X ·P

PFT = FPT

ρ0ẋ−ρ0R = S · dE

dt
−∇X Q

Where the heat flux vector q (respectively Q) and the heat source r (respectively R)

have been introduced for the Eulerian (respectively Lagrangian) configuration. The vec-

tor b represents the external load. In this thesis, we only consider the material with con-

stant density, represented by the second Piola-Kirchhoff stress tensor, hence, assuming

the conservation of mass and angular momentum. We only consider simulation with-

out heat; hence, the balance of energy is equivalent to the balance of linear momentum,

which is the only law remaining.

Weak formulation

In the finite element method, we replace the exact solution of the system û by a piecewise

continuous approximation u . Inserting u in the balance of linear momentum yields :

ρ0ẍ−∇X ·P(u)−ρ0b = R (2.28)

Where R is the residual from the approximation error. Using a test function w and

integrating over the initial domain, one can minimize the error R . The resulting equation

is called the weak formulation of (2.28), and residual R is minimized in a weak sense.∫
Ω0

P : ∇X w d v −
∫
Ω0
ρ0ẍ ·w d v −

∫
Ω0
ρ0b ·w d v −

∫
∂ΩT

t ·w d a = 0 (2.29)

subject to

u = ud on ∂ΩD

where ∂ΩD ∪∂ΩT = ∂Ω0 the boundary of Ω0 . t and ud are respectively the natural

and essential conditions.

Discretized quantities

This thesis does not deal with how things are discretized; therefore, this part will not be

covered. We only give the resulting discretized weak formulation.

26

2.6. SOLVING THE EQUATION

Internal Virtual work We define internal virtual work as the first term of the weak for-

mulation. Its discretized formulation is written as:∫
Ω0

P : ∇X w d v =
∫
Ω0

FS : ∇X w d v = R(u) ·w (2.30)

Where R are the body’s internal forces.

Virtual inertia We define virtual inertia as the second term of the weak formulation. Its

discretized formulation is written as:∫
Ω0
ρ0ẍ ·w d v = Mẍ ·w (2.31)

Where M is the constant mass matrix of the system.

Virtual load work We define the virtual load work as the third and fourth terms of the

weak formulation. Its discretized formulation is written as:∫
Ω0
ρ0b ·w d v +

∫
∂ΩT

t ·w d a = B ·w+T ·w (2.32)

Where B is the body forces matrix, and T is the traction force matrix.

Finally, combining (2.30), (2.31), (2.32) and (2.29) we have:

(Mẍ−R(u)−B−T) ·w = 0 (2.33)

Often a damping matrix D is introduced in the equation to model the damping effect

in a structure undergoing dynamic motion. Which since x = X+u and w are arbitrary

can be written :

(Mü−Du̇−R(u)−B−T) ·w = 0 (2.34)

subject to

u = ud on ∂ΩD

This formulation leads to a system of the number of dofs equations and the number

of dofs unknown that we will solve in the following sub-section.

2.6 Solving the equation

The equation (2.34) presented previously can be solved in multiple ways. A review of these

methods can be found in [118].

27

CHAPTER 2. FINITE ELEMENT METHOD

Using an implicit scheme requires solving a system of nonlinear equations. One of the

most popular technics is the Newton-Raphson (NR) iterative algorithm. In this thesis, we

only deal with static simulation (no time dependency); thus, we will present the algorithm

in this context, although it easily extends to dynamic simulations.

Static simulation is achieved by simply dropping all the time-dependent terms of (2.34),

which gives us:

R(u) = b (2.35)

where b = B+T is the vector of the external forces applied to the body. Here the terms

R(u) is nonlinear in u due to the formulation of the Green-Lagrange tensor E . Thus, we

need to solve iteratively until a residual quantity is minimized. In the NR algorithm, each

iteration linearizes the problem before solving it and accumulating the solution into the

displacement. Thus we have the taylor series development of (2.35) at u :

R(u+du) = b+R(u)+J (R(u)) ·du+ r(u) (2.36)

Where J (R(u)) is the tangent stiffness matrix usually named K(u) and r the residual

vector of the Taylor approximation.

Dropping the residual term of the previous equation leads to the following linear sys-

tem that has to be solved for each iteration k:

K(uk) ·duk = b+R(uk) (2.37)

uk+1 = uk +duk (2.38)

The final solution is considered computed when the user-specified criterion is satis-

fied. Usually, the user criterion is either a threshold on the absolute/relative length of the

incremental displacement or a threshold on the absolute/relative force equilibrium.

With this, we have presented the different tools needed to understand the numerical

aspect of this thesis. The next chapter provides the tools to understand the different deep

learning concepts used and developed during this thesis.

28

C
H

A
P

T
E

R

3
DEEP LEARNING

3.1 Generalities . 30

3.2 Core components of an artificial neural network 34

3.3 Architectures . 36

3.4 Loss function . 39

3.5 Network optimisation . 40

3.6 Example of training process . 43

29

CHAPTER 3. DEEP LEARNING

3.1 Generalities

Artificial intelligence (AI) is currently one of the hottest buzzwords in the technology in-

dustry, and for a good reason. The last few years have seen several innovations and ad-

vancements that have previously been solely in the realm of science fiction slowly trans-

form into reality. Due to its overuse in the media, the words "artificial intelligence" or

"AI" have lost parts of their meaning. In reality, it refers to a program that can perform

tasks that require human or animal intelligence. This field of research was founded on

the idea that one could describe the human brain so precisely that it could be imple-

mented on a computer [70]. As the human brain has multiple functions, AI has multiple

subfields centered around tasks that, when combined, could create a general artificial in-

telligence. A general intelligence could address arbitrary problems and have human-like

intelligence with all the ethical and existential risks. Various subfields, such as reasoning,

planning, and natural language processing, have concrete applications in our daily lives.

Web search engines, recommendation systems, vocal assistants, and self-driving cars are

examples of artificial intelligence applications at the service of society. Most of the ap-

plications presented require dealing with billions of data points in order to start having

a grasp of the tasks. Processing and inferring links between all these data required the

development of a class of methods called machine learning (ML).

Machine learning is a subpart of artificial intelligence. It regroups methods that lever-

age data to improve task performance on abstract concepts. For example, in image pro-

cessing, a cat is an abstract concept that would be almost impossible to describe as a

list of instructions. However, we can use ML tools to create an AI that can detect cats in

pictures with human-like accuracy, if not better. All the previously mentioned subfields

use advanced ML tools to either satisfy current tasks or improve the quality of the next

task. Thus, ML has many applications and is a powerful tool for representing abstract

concepts. It builds a model or function based on sample data, referred to throughout this

manuscript as training data or sample, to predict or decide without being explicitly pro-

grammed. We usually split ML methods into three categories corresponding to learning

paradigms.

Supervised learning

Machine learning aims to build a model from a data set containing the features (inputs)

and the corresponding labels (ground truth). It infers a function from labeled data that

maps inputs to outputs. Each time the model is presented with an input, it produces an

output evaluated against the label by a function. This function represents the problem

30

3.1. GENERALITIES

and how close the labels are to each other. Supervised learning includes classification,

regression, and active learning.

As its name indicates, classification is classifying inputs according to an arbitrary cri-

terion. For example, one can create a binary classifier (a model that classifies) that detects

whether a cat is present in a picture.

Problems where value estimation, such as temperature or wind, falls under the hood

of regression problems. They consist of fitting patterns and behaviors of data points to

approximate the function that generated it.

Finally, active learning is a case of semi-supervised learning where the model can

query for certain inputs to improve its training.

Unsupervised learning

Unsupervised learning involves machine learning algorithms that analyze unlabeled data

to identify patterns, relationships, and structures. Unlike supervised learning, it does not

rely on predefined output labels and instead extracts meaningful information directly

from the data. The techniques employed in unsupervised learning include clustering,

dimensionality reduction, anomaly detection, and association mining.

Clustering algorithms group similar data points together based on their properties,

enabling the identification of natural clusters or subgroups.

Dimensionality reduction techniques simplify data by reducing the number of fea-

tures or variables while preserving essential information.

Anomaly detection algorithms pinpoint abnormal instances, highlighting outliers or

deviations from expected patterns.

Association mining algorithms uncover interesting patterns or associations in trans-

actional data, aiding in market basket analysis or recommendation systems.

Unsupervised learning finds practical applications in customer segmentation, exploratory

data analysis, and preprocessing. It provides valuable insights, reveals hidden structures,

and facilitates data-driven decision-making without relying on labeled examples or pre-

defined outcomes.

Reinforcement learning

Reinforcement learning is a subfield of machine learning that focuses on training agents

to make optimal decisions in dynamic environments through interaction and feedback.

In reinforcement learning, an agent learns by trial and error, receiving feedback as re-

wards or penalties based on its actions. The goal of reinforcement learning is to maximize

31

CHAPTER 3. DEEP LEARNING

the cumulative reward over time, guiding the agent to make better decisions to achieve

long-term objectives.

The agent interacts with an environment, taking action and receiving feedback through

rewards or punishments. Reinforcement learning employs a reward signal, which quanti-

fies the desirability of an agent’s actions based on the environment’s objective. The agent

learns through exploration and exploitation, exploring new actions and exploiting known

ones to maximize rewards. It has applications in various domains, including robotics,

games, autonomous vehicles, and recommendation systems.

One key component of these learning paradigms is that they all use models to deal

with data. So far, the term model has been swept under the rug by associating it with the

term function, which is true but needs to be more explicit. In the following subsection,

we discuss the historical evolution of models used in machine learning and how it led us

to deep learning.

Brief history and model evolution

Machine learning relies on the concept of models. A model represents an abstract learned

function using a dataset. This training aims to represent the data using the model, to

either classify or extrapolate from similar data. From a historical point of view, the first

model, perceptron, was invented in 1943 by McCulloch and Pitts [71] and implemented

by Frank Rosenblatt in 1957 at the Cornell laboratory.

The perceptron 3.1 is a binary classifier that consists of a single cell or neuron. Its

architecture and behavior are based on its biological counterpart. This mathematical

Figure 3.1: Schematic of the Perceptron

function works in three steps: First, it takes an input multiplied by a vector of learnable

weights. Second, the resulting scalar value is translated up or down using an additive bias.

Third, a step function of a desired threshold is applied. By construction, a perceptron has

several limitations. It can only learn linearly separable functions, thus, cannot classify

data that contain more than two classes. As exposed in a book titled Perceptrons [79] by

Marvin Minsky and Seymour Papert, this model type cannot represent simple logic such

as the XOR function. These shortcomings can be solved by setting multiple perceptrons

32

3.1. GENERALITIES

end-to-end and creating a multilayer perceptron (MLP). From here, the notion of deep

learning appears and designates a model composed of two or more inner/hidden layers.

Through the years, a plethora of network architectures have been invented in order to

solve specific problems. One of the more remarkable ones is the convolutional neural

network by Kunihiko Fukushima [31]. It consists of formulating the problem such that

the learning parameters are the weights of the convolution masks. This leads to great

recognition task results and makes the network position invariant.

With this increased complexity, one has to find the perfect set of parameters to rep-

resent its data. While it could be feasible when dealing with a handful of parameters, the

task becomes almost impossible if we add multiple layers. As for every task in computer

science, people quickly realized they would need an efficient algorithm that could do the

job for them, which led to the creation of the backpropagation algorithm.

In 1960, Henry J. Kelley published "Gradient Theory of Optimal Flight Paths" [48],

which proposed the basics of continuous backpropagation. Two years later, Stuart Drey-

fus proposed a more straightforward version based only on the chain rule. At this stage,

the algorithm is still long and inefficient. In 1970 a Finnish master’s student going by the

name Seppo Linnainmaa [61] proposed the final version that is still in use today. Unfortu-

nately, the idea was not applied to neural networks until 1985 when Rumelhart, Williams,

and Hinton [103] show that error propagation could lead to interesting distribution rep-

resentation in neural networks. Finally, in 1989, Yann LeCun combined a convolutional

neural network with backpropagation to recognize handwritten digits. This first use set-

tled backpropagation as the algorithm of choice to train ANN. Modern backpropagation,

or the reverse mode of automatic differentiation, is at the core of every deep-learning

framework and training.

For the next ten years, most of the improvements came from the hardware with the

development of graphics processing units (GPUs). Signal processing can now be highly

parallelized on the GPU, leading to 1,000-fold improvements in computation times. Peo-

ple can now use more profound and complex models for the same training time, leading

to better results. This improvement reached a limit around the year 2,000. Deeper artifi-

cial neural networks exposed the vanishing gradient problem. The upper layers were not

learning features formed in the lower layers. This problem only affected artificial neu-

ral networks that use gradient-based learning methods such as backpropagation. Certain

activation functions have been pointed out as the source of the problem. It concerns the

functions that condense the input range into a small output range. This mapped a large

area of input over an extremely small range. In these areas, significant input variations

will be reduced to a small output perturbation; thus, the gradient is near zero, resulting in

a vanishing gradient. One way to avoid that is to use other activation functions, such as

33

CHAPTER 3. DEEP LEARNING

Rectified Linear Units (ReLU), that have a gradient of either one or zero according to the

input sign.

In 2010, a breakthrough in training deep learning models was achieved by developing

a technique called "Dropout" which prevents overfitting during training. In 2012, a team

at the University of Toronto trained a deep learning model called AlexNet [54] to recog-

nize objects in images and won the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) with a margin much larger than the previous state-of-the-art. This achievement

demonstrated the power of deep learning for image recognition and sparked a renewed

interest in the field. In 2013, Google researchers proposed an architecture called Incep-

tion, which demonstrated that using convolutional layers of different sizes makes it possi-

ble to improve the performance of deep neural networks on image classification tasks. In

the following years, the field continued to grow and evolve with the development of new

architectures such as ResNet, which introduced the concept of residual connections, and

transformer architecture, which revolutionized the field of natural language processing.

In recent years, the field has seen significant advancements in computer vision and

natural language processing, with models such as U-Net for image segmentation, BERT

for natural language understanding, and GPT-3 for natural language generation. Deep

learning has also been applied in other fields, such as healthcare, finance, and trans-

portation. Currently, the field is focusing on developing new architectures and algorithms

to improve the performance and interpretability of deep learning models. Overall, deep

learning is a rapidly evolving field that has already had a significant impact and is likely

to continue shaping the way we interact with and make decisions based on data in the

future.

3.2 Core components of an artificial neural network

Definition

In artificial intelligence, an artificial neural network is an organized set of artificial neu-

rons allowing complex problem-solving such as computer vision, text generation, and

many other tasks. An important number of tunable/learnable parameters characterizes

this specific class of learning algorithm. It exists a wide variety of network architectures.

We will present a couple of them in this section.

Artificial neuron

We call an artificial neuron a mathematical function conceived as a model of biological

neurons. These functions are the building block of every artificial neuron network. As

34

3.2. CORE COMPONENTS OF AN ARTIFICIAL NEURAL NETWORK

their biological counterpart, they can have multiple input connections, process them,

and produce an output that can be spread to multiple other neurons. Each artificial neu-

ron has one or multiple parameters called weights that can be fine-tuned to improve its

response to an input signal.

Therefore, a neurons processing an input signal x composed of N channels and pro-

ducing an output y can be written :

y =
N∑

i=1
wi · xi = w ·x (3.1)

This linear function values 0 for a null input signal and thus cannot represent much.

For this reason, we add a bias term to the previous equation (3.3):

y = (
N∑

i=1
wi · xi)+b = w ·x+b (3.2)

The composition of linear functions only results in linear functions. To model complex

problems, one has to introduce nonlinearity. This is achieved using activation functions.

Activation function

Activation functions are the backbone of artificial neural network representativity. They

allow for complex responses to an input signal. The complete formulation of an artificial

neuron is then written:

y =Φ((
N∑

i=1
wi · xi)+b) =Φ(w ·x+b) (3.3)

Figure 3.2: Schematic of a neuron with an activation functionΦ

It has various activation functions. We will present the most used ones:

35

CHAPTER 3. DEEP LEARNING

Sigmoid : Standard sigmoid function.

Φ(x) = 1

1+e−x
(3.4)

∇Φ(x) = ex

(1+ex)2
=Φ(x)(1−Φ(x)) (3.5)

Simple to evaluate and easy to differentiate, this function was at the basis of all deep learn-

ing algorithms for a long time. Later it is the reason behind the vanishing gradient prob-

lem presented in the introduction 1.

Rectifier Linear Unit (ReLU) : This function is the positive part of its argument. It has

proven efficient at dealing with the previously mentioned vanishing gradient problem,

thus, allowing training deeper and more powerful ANN.

Φ(x) =
x if x > 0,

0 otherwise.
(3.6)

∇Φ(x) =
1 if x > 0,

0 otherwise.
(3.7)

tanh : The tanh is often used in natural language processing where it plays a key role in

the memory management of Long Short-Term Memory ANN. It also has the advantage of

behaving like the sigmoid but preserves the sign of the inputs.

Φ(x) = ex −e−x

ex +e−x
(3.8)

∇Φ(x) = 1−Φ(x)2 (3.9)

These three functions are the top three choices for activation functions as they can

easily be applied to all the ANN architectures. In the following subsection, we present

different types of architectural paradigms.

3.3 Architectures

Neural network architectures play an important role in data processing and learning.

More often than not, each architecture is problem-specific, but we can find similarities

from network to network. The global architecture aggregates the standard method/layers

that we will present.

36

3.3. ARCHITECTURES

Figure 3.3: Schematic of an MLP with three hidden layers, each with five neurons. There
are no restrictions on the number of neurons per layer.

Multi Layer Perceptron

The Multilayer Perceptron 3.3 or MLP is the most basic and older form of neural network.

It consists of a single fully connected layer that processes data as presented in (3.3), which,

when considering the whole layer, can be written as:

xk =Φk (Wk ·xk−1 +bk) (3.10)

Where xk−1 is the output of the (k−1)th layer and xk ,Φk ,Wk ,bk are respectively the out-

put, activation function, weights and biases of the current layer. This architecture is fast

and has been proven to be a universal approximator, meaning that given enough width

and depth, this network can learn anything.

One main drawback is the quadratic growth in the number of parameters. This causes

problems in terms of space and computation and the amount of data needed to learn

without over-fitting on the dataset. A network is said to be over-fitting when the network

performances on the evaluation data are terrible compared to the performance on the

training data. This is often because the network has too many parameters compared to

the number of training examples. Therefore, it tunes its weights and biases to perfectly fit

the training data compromising the overall performances on unseen data. As an image,

one can think about polynomial interpolation where you need N +1 data points to fit a

polynomial of degree N . Reducing the data points will cause the polynomial to poorly

approximate the real N +1 data points. One way to limit overfitting is to randomly freeze

weights during the training phase, thus, artificially reducing the number of training pa-

rameters without changing the input/output sizes. The other way, which usually costs

either time or money, often both, is to create a bigger dataset, thus reducing the weight

ratio per sample.

37

CHAPTER 3. DEEP LEARNING

Convolutional neural network

One of the most known architectures is the convolutional neural network or CNN. It has

been introduced to solve image recognition tasks [31] and has since been applied to al-

most every class of problems. As the name suggests, a convolution happens. This opera-

tion replaces the classic agglomeration of the MLP with a more local one.

Figure 3.4: Schematic of a famous CNN known as U-net due to its shape

The weights are disposed in a learnable mask or kernel of fixed size (usually relatively

small, three to eleven cells wide) and are convoluted with the image/data grid. A single

convolution layer can have multiple kernels dealing with possibly different grid channels.

This local agglomeration reduces the number of parameters since the same weights are

used for the whole grid. Convolutional layers are considered useful to summarize the

presence of features in data. Feature detection usually relies on local translation invari-

ance, as no matter where the cat is in the picture, we must detect it. As convolutions are

local, the resulting outputs are sensitive to the feature’s location in the input. One way

to reduce this sensitivity is to downsample the output. This down-sampling is usually

the result of a pooling policy. The two main pooling methods or policies are mean and

max pooling which respectively summarizes the average presence of a feature and the

most activated presence of a feature. While this operation reduces the dimensions of the

problem, we can augment it using the transposed convolution to go back to the desired

output shape. Thus, we are not constrained to dealing with outputs that are smaller than

the inputs.

All of this is well-defined because every computation of a CNN happens on a grid. This

grid is also the main limitation since CNN is not usable when dealing with unstructured

data such as mesh, point cloud, or even simple graphs.

38

3.4. LOSS FUNCTION

Graph neural network

This relatively new technic was introduced in "A new model for learning in graph do-

mains" [34]. The proposed architecture, now called graph neural network (GNN), uses

the topology or underlying link between data points. This explicit formulation removes

the need for the grid and the convolution operation while keeping the local information

flow since a graph node only communicates with its direct neighbors. This local dataflow

can be a problem, but different operations or structural choices exist that can bypass such

constraints. To discuss these choices, we must present GNN dataflow.

First, each node of the graph gathers all the neighboring values. Second, the aggre-

gate of data using an aggregation function (symmetric function since data order is not

guaranteed). Third, the pooled message is passed through an update function.

The first one is the introduction of message passing. As the name suggests, consists of

multiple calls of the first and second steps. Thus, for example, after two rounds of message

passing, you obtain the transformed data from the neighbors of your direct neighbors and

so on for subsequent calls. This is interesting but tends to average local data, leading to a

tradeoff between data flow and accuracy.

The second introduces a fictive global node connected to all the others. Data from one

side of the graph can now travel to the other side in a single step.

Both methods are not exclusive and lead to great improvement in output quality.

It is almost impossible to create an exhaustive list of architectures as the different

archetypes are often put together to create a solution to a problem.

One can see the architecture as a comprehensive image of the data flow and compu-

tations that append during a prediction. This data flow represents the generic form of

the function we are trying to model while we learn the value of the parameters in these

computations.

Learning these parameters is achieved using a learning policy or loss function that

computes for a given input data how far the prediction of the network is from reality. In

the following sections, we present the notion of the loss function and how we can use its

evaluation to modify the parameters of the network to learn.

3.4 Loss function

Basics of loss functions

Until here we presented the part of the process that learns (the networks). We will now

discuss the learning policy also called the loss function. Loss functions measure how well

39

CHAPTER 3. DEEP LEARNING

the ANN is performing for a given input. In its simpler version the function has two vari-

ables, the network output and the ground-truth or desired output. The distance between

the data points is measured and is then processed to update the neural network weights.

More often than not loss functions are quadratic. This is an important property of the loss

function. During training the gradient of the error is used ot update the weights. Linear

functions have constant gradient that do not take into account the error. When differ-

entiated, Their quadratic cousins are proportional to the loss, which positively affect the

weights variations.

The most famous loss function for regression tasks is the Mean Squared Error (MSE).

MSE(x,y) = 1

N

N∑
i=1

(xi − yi)2 (3.11)

Where x is the ground-truth and y is the network output. It is independent of the size of

the elements, fully represents the data and is quadratic. For the remaining of this thesis

we denote L an arbitrary loss that fits the context.

When optimizing for a problem one might want to optimize for multiple criteria. This

can be achieved by having a final loss, a weighted sum of the different criteria. The formu-

lation of the weights can be very simple and using constant weights or more sophisticated

with softmax function to consider the variation rate of the different members.

3.5 Network optimisation

Back Propagation

Backpropagation is used to compute the derivative of the loss function with respect to the

learnable parameters of the network. The loss function used for all the following demon-

strations will be the MSE (3.11), but it holds for any function that respects the following

two assumptions.

The first one is that the cost function can be written as an average. We need this

assumption because backpropagation computes the partial derivatives for each training

sample and average over a batch.

The second assumption we make about the loss is that it is written as a function of the

output from the neural network. This will allow us to use the chain rule to differentiate

through the network.

The backpropagation is based on four main equations. The first one computes the

40

3.5. NETWORK OPTIMISATION

error in the output layer:

εN = ∂L

∂ΦN

∂ΦN

∂xN
(3.12)

This formulation is natural as the first term on the right-hand side computes the variation

of loss as a function of the last activation function (usually passthrough when dealing with

regression problems). The second term gives the variation of the activation function as a

function of the output. Every part of this equation is easily computed as evaluating the

network gives xN thus a small overhead is required to compute ∂ΦN

∂xN . Given that the loss

L is quadratic we have ∂L
∂ΦN =α×(xN − y) where α is an arbitrary constant. Thus, when

computing the loss, we also compute its derivative.

The second important equation gives the error in terms of the error in the next layer.

εk = ((Wk+1)T εk+1)
∂Φk

∂xk
(3.13)

When we apply the transpose weight matrix, we can think intuitively of this as moving the

error back through the network, looking at the error at the output of the k th layer. Using

(3.12) and (3.13), we can now compute the error of any layer in the ANN.

The third important equation gives us the rate of change in the loss with respect to the

bias.
∂L

∂bk
= εk (3.14)

Which is trivial to compute using (3.12) and (3.13).

Finally, The rate of change of the loss with respect to any weight in the network is given

by:

∂L

∂Wk
=Φk−1 ×εk (3.15)

As a consequence of the last equation, a small activation lead to slow learning.

Using these four equations, one can write the backpropagation algorithm as follows:

When looking at step 3, we compute the error backward, which explains the name.

Algorithm 1: Backpropagation algorithm

1 Feedforward : Compute xN from x1 using the neural network.;

2 Evaluate error : εN = ∂L
∂ΦN

∂ΦN

∂xN ;

3 Backpropagate error : For k ∈ {N −1, ...,2} εk = ((Wk+1)T εk+1)∂Φ
k

∂xk ;

4 Gradient : Compute ∂L
∂bk = εk and ∂L

∂Wk =Φk−1 ×εk ;

At this point, we computed the sensibility of the loss according to both weights and

41

CHAPTER 3. DEEP LEARNING

biases. The gradient value is essential to learn but not enough. We can improve the last

step to not only compute the gradient but also use it to update the weights and biases.

There are multiple optimization methods to do so, but we will present the Gradient and

Adam gradient descent, which will be used in this thesis.

As the name suggests, the gradient descent algorithm uses the gradient of a function

f to minimize its value. Basically, one step of the algorithm can be written as:

Xn+1 = Xn −γ∇X f (Xn) (3.16)

Where γ is an arbitrary coefficient called the learning rate. It can be difficult to choose a γ

that can fit the network response at any point in the training and for any batch of data. The

Adam algorithm (short for Adaptive Moment Estimation) introduces a modified learning

rate computed from the average and second moment of the gradient. The algorithm is

looped over each training batch t .

Algorithm 2: Adam algorithm

1 mt =β1mt−1 + (1−β1)∂L∂W ;

2 vt =β2vt−1 + (1−β2)(∂L∂W)2;
3 Mt = mt

(1−βt
1)

;

4 Vt = vt

(1−βt
2)

;

5 Wt = Wt−1 −γ Mt
(
p

vt+ρ) ;

With m0 = 0 and v0 = 0 , γ= 0.001 the learning rate, and (β1,β2) = (0.9,0.999) . β1,β2

are tunable parameters called the forgetting factors for gradients and second moments of

gradients, respectively, that indicate how much we trust the new data compared to the

previous ones. The higher the values, the higher the smoothness of the descent, but the

less the new gradient is considered.

Implementing this within the previously presented algorithm 1, we obtain the full

backpropagation algorithm 3:

Algorithm 3: Optimisation algorithm

1 Feedforward : Compute xN from x1 using the neural network.;

2 Evaluate error : εN = ∂L
∂ΦN

∂ΦN

∂xN ;

3 Backpropagate error : For k ∈ {N −1, ...,2} εk = ((Wk+1)T εk+1)∂Φ
k

∂xk ;

4 Gradient : Compute ∂L
∂bk = εk and ∂L

∂Wk =Φk−1 ×εk ;

5 Update : Adam([∂L
∂b , ∂L

∂W]);

We obtain a full training loop if we repeat this algorithm for each training sample. Data

are usually grouped in batches to average error over multiple samples.

42

3.6. EXAMPLE OF TRAINING PROCESS

We have presented the different parts composing a deep-learning framework so far.

Starting by defining what neurons are and how they are assembled to create a layer of

neurons. We then explained how layers and activation functions are combined to create

a deep-learning model. Further down the line, we presented how we can evaluate the

output of a model using a loss function. Finally, how using the value of this evaluation, we

train the model by modifying the value of each neuron.

In the next sections, we will be more specific on our use case. We present how we

assemble the different building blocks and create a training dataset to train a neural net-

work to learn the relation between external forces and the corresponding displacement

field.

3.6 Example of training process

This section presents how to train a neural network to achieve a certain goal. In our case,

the goal is to predict a soft-body subject’s response to various external forces/loads. We

have isolated three main steps (each composed of multiple sub-steps) that define the

training process of a neural network.

Creating a dataset that fits the goal The name of the paragraph represents two objec-

tives. The first one, creating a dataset which is a simple thematic collection, is quite easy

to achieve. The hard part happens when we try to satisfy the second objective fitting our

goal. One important aspect of neural networks is to keep in mind that they are good at in-

terpolating properties but are not as good when dealing with extrapolation. For example,

a network trained to classify dogs from cats with a dataset that only presents one species

of white cats and black dogs will most likely perform well on different white cats and black

dogs but perform poorly when dealing with black cats or white dogs. In this case, we say

that the representativeness of the dataset is biased toward the white cats and black dogs

specific species. But we could also lack representativeness due to data being too sparse

for the problem. We want our dataset to be representative of our problem or the task we

are trying to achieve.

Returning to our problem, the goal is to create a dataset that represents the deforma-

tions of an object subject to external forces. For this, we use a simulation framework [28]

where we can apply external force on a deformable body and compute the correspond-

ing deformation. The first objective is simple and relies on saving the applied force and

its corresponding deformation field. The second objective, as mentioned previously, is

a bit more subtle. Simulated objects usually have a purpose, a bridge carries, a propeller

pushes, and a rope pulls. It would be interesting to create a dataset of meaningful samples

43

CHAPTER 3. DEEP LEARNING

that represent the average use of simulated objects and their most significant deforma-

tions. Engineered objects like bridges and propellers are designed to respond to various

stress; thus, we know by design where and how to apply external forces. Due to this lack of

design, non-engineered objects like organs are a bit harder to handle. Although we have

a rough estimation of where and how forces are applied thanks to surgeon knowledge, we

have no exact data. This is why creating a meaningful dataset that accurately represents

the response of an organ subject to external forces is difficult. We present our take on this

subject in Chapter 4.1, where we use a mechanical analysis of the object coupled with ex-

pert knowledge to sample the force and deformation space. For the rest of this section,

we consider the dataset D = (b,u) as being a set of pairs of forces and displacements. We

will now discuss how to create a model that suits the task we are trying to solve.

Building a model Building a model is very simple. You take the given predefined layers

(fully connected, convolution, max pooling, etc.) and assemble them in a computational

graph that defines the data flow through the model. The difficulty appears during the de-

sign phase. Both the layer picking and computational graph are defined at the same time

as they have a direct impact on each other. The idea is that the data flow represents a cer-

tain knowledge about the problem. For example, it is interesting to extract local features

with images. One can consider an image as a patchwork of extractable details. Therefore,

directly inspecting a whole image doesn’t make much sense. Small areas are subject to

smaller variations and thus often represent meaningful information like a wheel, a paw,

an eye, or a stop sign. One way to extract such data is to apply local operators such as

convolutions and reduce them to only keep the most meaningful information. This is one

of the reasons why CNN performs so well on image recognition tasks.

In our case, since the object is dense, the information of each point is instantaneously

transmitted to every other point. This represents a global process perfectly modeled by

dense / fully-connected layers where each neuron is connected to every other neuron.

Thus, we use dense / fully-connected layers in our architecture. The architecture will be

detailed in the next chapter (Chapter 4).

It is also common practice to split the data flow into multiple separated streams with

the idea of specializing each stream in a subfield of the problem. Returning to the image

recognition task, one could split its network into three streams, each specialized in deal-

ing with respectively red, blue, and green information in an image. As shown in Figure 3.5,

these streams can be created anywhere in the architecture and computed back to a single

one anywhere. Stream agglomeration is usually a simple operation like a concatenation

or a sum. This aims at helping the decision according to the activation quantities of each

stream.

44

3.6. EXAMPLE OF TRAINING PROCESS

Finally, one last common practice people use to create new architecture is the shortcut

architecture or skip connection.

Figure 3.5: Schematic of a 3-way split of the dataflow. A merge operation is computed in
the network to share the knowledge extracted by each stream.

Figure 3.6: Schematic of a shortcut architecture. A merge operation is computed in the
network to better propagate data and gradient potential through the network.

As shown in Figure 3.6 one takes the output of layers that appear early in the architec-

ture and merges it with the output of a layer further down the computational graph. This

usually helps by improving the gradient flow through the network, thus improving the

learning. As presented in the backpropagation algorithm, we use the chain rule. During

this operation, we multiply values that are often close to or less than one, and therefore,

the resulting value of the gradient is very small. The skip connections help by reducing

the number of multiplications in the chain rule, improving the potential learnability of

the first layers of the architecture.

As for the split architecture, the merge operation is usually a sum or concatenation.

We now have constructed a good dataset with a model designed to work on our prob-

lem. Now, Let’s discuss how we train the model to perform the required task.

45

CHAPTER 3. DEEP LEARNING

Training a model We start this paragraph by presenting a figure (Figure 3.7) that dis-

plays a general neural network training process. Throughout this paragraph, we will ex-

plain and refer to the five steps of the schematic.

Figure 3.7: Schematic of a general training process.

So far, we have created a dataset and built the model we want to train (Step 1 in Fig-

ure 3.7). The last part remaining is the actual training. This paragraph discusses how we

use the dataset to teach the chosen model the relation between inputs and outputs.

Training a neural network is based on iterating multiple times over the whole dataset.

A single iteration is called an epoch. Thus, training is composed of multiple epochs. Each

epoch consists of first splitting the dataset into multiple groups of data called batch (Step

2 in Figure 3.7), second feeding each batch to the network (Step 3 in Figure 3.7).

Initially, batches were introduced because one could not load the whole dataset, the

neural network, and the gradient of each sample on a single GPU. Picking the right batch

size (or, similarly, the number of batches) is an important hyperparameter in deep learn-

ing. Studies have been conducted to understand the impact of batch size on training

quality. All of them lead to the same point: The performances of a network and the train-

ing duration increase when the batch size decreases [49]. Although there are no rules of

thumb for selecting which batch size to use, a thousand is considered big, while a batch

size of ten is small. Therefore, selecting the correct size is more of a user tradeoff between

hardware memory, model capacity, and allocated training time.

Practically, what usually happens is that one will quickly verify that the model can

be trained to solve the problem using an important batch size. Once the verification is

passed, the model is fine-tuned with a smaller batch size to test its performance.

46

3.6. EXAMPLE OF TRAINING PROCESS

In our case we use batch sizes between ten and fifty.

As mentioned, a batch is fed to the network, producing a batch of predictions (Step

3 in Figure 3.7). These predictions are evaluated using a loss function such as the mean

squared error (Step 4 in Figure 3.7).

Once the network output is evaluated, we can proceed to the optimization part (Step

5 in Figure 3.7). As presented in 3.5, we can now use the backpropagation algorithm and

the network evaluation to compute the gradient of the error with respect to each neuron

of the network. With the help of this gradient and classic optimization algorithms such as

ADAM (Algorithm 2), we can update the value of each neuron. This update is the actual

learning part of the algorithm and is then essential.

We repeat steps two to five in Figure 3.7 until the whole dataset is processed. Once the

end of the dataset is reached, we slice it into new random batches and process the whole

dataset.

The training procedure ended when any set criteria were reached. This criterion ranges

from the number of epoch to more complex ones based on the value of the evaluation

variation.

In short, a neural network is trained by splitting the dataset into smaller slices called

batch (Steps 1 and 2 in Figure 3.7). Each batch is then fed to the network, which results

in a batch of prediction (Step 3 in Figure 3.7). This batch of predictions is evaluated us-

ing the loss function (Step 4 in Figure 3.7). Using the evaluation, we proceed to run the

backpropagation algorithm, which gives us the gradient used to update the neurons of

the networks.

With the presentation of the training process, we have now explained all the tools

needed to understand this thesis. The next chapter will present our first contribution

to dataset generation and how we chose the network architecture used throughout this

thesis.

47

C
H

A
P

T
E

R

4
FAST AND ACCURATE DEFORMATIONS

USING DEEP LEARNING

4.1 Dataset generation . 55

4.2 Toward faster simulations using artificial neural networks 60

49

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

As presented, numerical methods such as the Finite Element Method [127] (FEM) are

vastly used in science to solve partial differential equations (PDE) on complex domains,

for which analytical solutions are not possible. Computing the nonlinear deformation of

mechanical structures is one of the fields which deals with such equations and uses FEM

to approximate the solution.

The main benefits of the FEM are its accuracy and well-grounded mathematical foun-

dations. However, when the problem complexity increases, and accurate solutions are

sought, the combination of high-resolution meshes and nonlinear constitutive laws usu-

ally leads to computation times that are too high for certain applications.

Our main objective here is to leverage the advantages of deep learning methods (in

particular, the ability to learn complex relations between inputs and outputs of a model)

and the solid scientific foundations of the FEM to obtain very fast yet accurate solutions

to nonlinear elasticity problems. Since multiple strategies have been proposed over the

last decades to reduce the computation time of FEM, the following paragraphs describe

some of these techniques and discuss their limits compared to our expectations.

Domain decomposition As the name suggests, Domain Decomposition [9] relies on a

smart decomposition of the initial domain into multiple sub-domains. The associated

(simpler) sub-problems are coupled via disjoint or overlapping boundaries. Different al-

gorithms have been proposed to solve such problems. Sub-structuring algorithms such

as BNN [65] or FETI [27] can only handle non-overlapping domain decomposition, while

others like Schwarz [107] or Lions [62] methods can work on both overlapping and non-

overlapping sub-domains. Combined with parallel processing, it is possible to achieve

significant speedups while maintaining good convergence properties [38]. However, the

optimal gain for Domain Decomposition methods is observed when dealing with very

large problems (i.e. with millions of degrees of freedom) [38]. On smaller resolution

meshes, or when real-time computation is needed, the speedup obtained by this ap-

proach is more limited as the computation of boundary interactions becomes predom-

inant [38]. Since we want to favor fast or real-time computation of nonlinear elastic struc-

tures, domain decomposition techniques are not well suited. During the training phase,

the ANN, the batch of data, and the gradient of the network output have to fit on the GPU

memory simultaneously. With this memory space limitation, we only consider objects

up to 15,000 degrees of freedom which makes this method unsuited for our application

cases.

Proper Orthogonal Decomposition Another approach to improve computation times

is Model Order Reduction. Among this class of methods, Proper Orthogonal Decomposi-

50

tion (POD) [14] has proved to perform well on a wide variety of problems ranging from

fluid dynamics [5, 74] , soft robotics [35], aeronautics [63], optimal design [86] and many

others. This approach aims to reduce the number of Degrees of Freedom (DOFs) by an-

alyzing deformation modes and discarding the least significant ones. These modes are

obtained via a set of data of P samples that are put together as a matrix Q of size N ×P

where N is the number of DOFs. The eigenvalues and their associated eigenvectors are

then computed from the self-adjoint matrix QQT . When the displacement field is well-

behaved, the magnitude of the eigenvalues decreases quickly, showing that the object is

mostly characterized by the first few modes of deformation (i.e. the eigenvalues with the

highest norm). Follows a step where the lowest eigenvalues (usually anything 10−8 times

shorter than the magnitude of the first one) are removed. The simulation is computed in

the reduced space, thus speeding up the solving of the system. This method relies on a

trade-off between accuracy and speed. Multiple factors impact the quality of the simula-

tion and the gain, such as how magnitudes of eigenvalues decrease and the magnitude of

the cutoff value. Although it introduces errors in the simulation, the computed reduced

space can be used to solve "similar" problems with slight changes in the boundary condi-

tions or model parameters [64, 88] . This allows to reuse the reduced model for a variety of

scenarios, therefore reducing the overall computational cost of the method. Artificial neu-

ral networks have proven to be resilient to geometry variations; Pfeiffer et al. [91] trained

a neural network on randomly generated meshes to predict displacement fields. We will

demonstrate in this thesis that the presented approach is at least as fast as the POD while

providing more flexibility to model parameter variations.

GPU-acceleration Many publications have addressed the problem of computational

performance for FE simulations through GPU-accelerated approaches. A parallel imple-

mentation can speed up the computation of the local, element-wise, stiffness matrices.

These methods aim to solve the global linear system associated with the linearization of

the problem.

In the case of an iterative method, such as the conjugate gradient, most of the gain

can be achieved by improving the sparse matrix-vector operations. Multiple methods

have been explored to implement efficiently these operations on the GPU [3]. Mueller et

al. [81], or Martínez-Frutos et al. [67] use the fact that conjugate gradient iterations can

be performed without explicitly assembling the whole matrix. This has the advantage of

reducing the memory bandwidth while being fast and stable. For example, Allard et al. [2]

proposed a cache optimization process for a co-rotated formulation of a linear elastic

model. With this method, a mesh composed of 20,000 tetrahedra can be simulated in

about 2 ms [2]. However, This approach is too specific to be applied to other materials,

51

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

such as hyperelastic ones. In the case of direct solvers, the global matrix assembly is re-

quired to compute the decomposition or factorization of the system.

Dziekonski et al. [24] and Mueller et al. [82] proposed to assemble the matrix directly

on the GPU, thus reducing memory transfer and speeding up the assembly. In this case,

the method also requires a model-specific algorithm and cannot provide a good combi-

nation of heterogeneous CPU/GPU simulations. One could also optimize the construc-

tion of the matrices, using very efficient implementation such as the one provided by the

Eigen [36] library.

Despite some limitations, GPU-based FEM algorithms provide fast and accurate re-

sults. However, as for the POD, GPU-based FEM falls under task-specific algorithms. It

de facto encounters the same limitations when using different hyper-elastic laws to rep-

resent complex objects.

Physics Informed Neural Network In physics, neural networks have mainly been used

to find the relation between input and output data. This approach has multiple obstacles,

such as data quantity and data quality. In this context, data are generated using a simula-

tor or acquired from real-world sensors (camera, Pitot tube, heat sensor). Both perspec-

tives have their advantages and drawbacks. A simulation is repeatable and easy to set up

but only precise to the user’s domain knowledge. Micro variation in domain properties,

mesh quality, and boundary conditions definitions are examples of factors that lead to

imprecision in the results. On the other hand, acquisitions give a better representation of

the real world but are sensitive to the experimental setup and probe quality.

Physical phenomena are represented using partial differential equations (PDE) as pre-

sented in 2.5. These sets of equations provide all the necessary knowledge to solve the

problem and are an excellent and noise-free source of information.

It exists two main ways of using the PDE to learn. The first one, usually called inductive

biases, focuses on designing a neural network architecture that embeds the knowledge of

the predictive task. We briefly present examples of widely used architectures. The con-

volutional neural networks [31], which by construction respect the group of symmetries

and patterns found in images. Graph neural networks [33] that are designed to work on

unstructured data or data with changing structure. Fourier Neural operators [60] work on

frequency transformations and are translations independent. On the specific subject of

soft-body mechanics, multiple networks have been designed to satisfy Dirichlet [56, 109],

Neumann [72, 108] and Robin boundary conditions [55].

These designs are of interest and, most of the time, complementary to other learning

methods. They provide tools that enforce constraints on the results without using com-

52

plex loss functions. Most of the development of these new architectures has been done in

the last five years and is thus an active field of research.

The second approach relies on imposing constraints using the loss function, also called

learning bias. This method can be seen as a use case of multi-task learning. The network

is trained to predict quantities that satisfy physical properties such as volume, the bal-

ance of forces, energy conservation, etc. Examples of this approach are deep Galerkin

method [110] and Physics Informed Neural Network (PINN) [17, 94, 126].

Soft penalties offer great flexibility when incorporating domain-specific knowledge

into the network. For example, one can enforce the covariance of the prediction of a gen-

erative adversarial network [119] to better represent the dataset. It is also used to deal

with contacts [92], or even to conserve Lyapunov stability [26].

As said previously, these methods are often used conjointly, where data-driven learn-

ing is mixed with a physics-informed paradigm and inductive bias to create a performant

network. For example, one can use a low-fidelity model coupled with a multi-fidelity

strategy using observational and learning biases (data and physics-informed loss func-

tion) to facilitate complex systems learning as done in [30]. Another possibility is to em-

bed a neural network into a traditional numerical method, such as the finite element. This

approach was applied to solve problems in multiple fields such as dynamical nonlinear

systems [98], subsurface mechanics [58] and more [122].

Results on PINN [45, 50, 122] demonstrate that they are particularly effective in solving

ill-posed and inverse problems, whereas the forward and the well-posed problem is better

solved using grid-based solvers.

When dealing with incomplete models, recent research [95] proved that finding mean-

ingful solutions to ill-posed problems is possible. The examples usually include problem-

atic inverse and forward problems with no initial boundary conditions or missing pa-

rameters in the PDE. Noisy data is also well-supported by PINN with the introduction of

Bayesian PINN (B-PINN) [121] to quantify uncertainty.

Uncertainty quantification is important when dealing with the evolution of multiscale

and multi-physics systems [68, 113]. Physics-informed learning has proven to work with

three sources of uncertainty: physics, data, and the learning model.

The first source refers to an inherently stochastic problem described using stochastic

PDE (SPDE). As an example, in [47], the expectation of the energy functional of the PDE

over the stochastic variable is used to train a neural network parametrizing the solution

of an elliptic SPDE.

The second source of uncertainty comes from noisy data acquisition. The article [121]

shows that it is possible to compute an uncertainty bound of the same order of magnitude

as the error increases with the noise in the data. Although the question remains on how

53

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

to set a systematic prior when using B-PINNS.

The third source of noise refers to limitations in the learning model, which is hard to

quantify. Training their network with a probabilistic supervised learning procedure [117]

has been able to map the source term and the domain geometry of a PDE to the solution

and the uncertainty.

Having a neural network that is resilient to noisy data is important in the context of this

thesis. Each patient’s history and habits present variations in ligament locations, veins or

arteries rigidity, and organ composition. Since preventive surgeries are rarely practiced,

patients undergoing surgery are often pathological. Ill organs have a higher variation in

mechanical properties due to tissue composition being modified with inflammations,

necrosis, clogs, and others. Thus, training a network on data computed considering an

average healthy organ can be considered trained on noisy data (noise from simulation

and mechanical parameters).

Recently, Moya et al. [80] trained a network to predict the physics of a fluid with a

fixed viscosity. Then, using physics-informed learning and a video of a fluid in motion,

they show that it is possible to quickly retrain the network to adapt to the new viscosity.

Setting this result in our context could lead to being able to train a network on standard

organs and quickly retrain at the beginning of surgery using video footage to adapt its

parameters. This result interests us since we can reduce the range of variable mechanical

parameters in the dataset. Thus, we can train our ANN on sparser models with simpler

training policies and only train on a short video feed before the surgery to create a model

that produces patient-specific predictions.

Data-driven learning process Data-driven methods are a class of machine learning tech-

niques that can deal with a wide variety of physics-based problems ranging from radio-

frequency or microwave modeling [125] to fluid mechanics [53] and solid mechanics [75].

Data are generated from real-world acquisitions [100] or can be computer-generated [16].

Once the data are processed or generated, the inputs are fed to the network, and the

outputs are compared to the ground truth via a loss function (usually the MSE). The er-

ror gradient is then computed, and finally, the weights and biases of the artificial neural

network are updated using an optimization algorithm.

Such an approach is helpful to approximate problems that do not have a mathematical

model, such as image animation [43] or problems that do not fit into the PINN framework.

Prior work has been done on simulating hyper-elastic materials using data-driven ap-

proaches. Cloth deformation is an important subject in physics-based animation, and

Wang et al. [115] used measured data to build a piece-wise bending and stretching model

to compute the nonlinear dynamic of cloth material. Xu et al. [120] following the idea

54

4.1. DATASET GENERATION

of Kim et al. [51] proposed a technique of mix and match to generate meshes that fit the

desired pose. More recently, Santestaben et al. [105] used a neural network to generate

nonlinear garment wrinkles. For applications involving the deformation of elastic solids,

Brunet et al. [13] proposed a method to compute hyper-elastic volume deformation of a

liver in real-time from a set of Dirichlet boundary conditions. Finally, Meister et al. [73]

and Mendizabal et al. [75] proposed neural networks able to predict the deformation of

an elastic structure given variable external forces. The latter approximate static deforma-

tions using a Convolutional Neural Network (CNN). This method requires immersing the

object within a topological grid to perform convolutions. Neumann boundary conditions

are transferred to the grid through mapping. The network then computed the deforma-

tion on the grid and applied it to the object using inverse mapping. These methods pro-

vide a fast estimation of the displacement field. Their principal drawbacks are related to

the data generation process and the limited accuracy of the solution. The number of sim-

ulations required to train the network (several hundred simulations per boundary node)

becomes time-consuming when the grid resolution is increased, as does the training time.

The prediction accuracy is in the range [10−4;10−3] of the object scale, which is accept-

able for some applications but not sufficient for others.

In this chapter, the first section presents how we build our dataset following the idea

proposed in [84]. The second section focuses on our choice of ANN used throughout this

thesis.

4.1 Dataset generation

The creation of a dataset is the first step of the training of an artificial neural network.

This creation is achieved by collecting data but also generating them. For our application,

we want to predict an object’s deformation subject to an external load. Thus, our goal

is to create a dataset that represents the deformations of an object subject to external

forces. For this, we use a simulation framework [28] where we can apply external force

on a deformable body and compute the corresponding deformation. Creating a dataset

is simple and relies on saving the applied force and its corresponding deformation field.

Complexity arises when we want to consider the functionality of an object. It would

be interesting to create a dataset of meaningful samples representing the average use of

simulated objects and their most significant deformations.

Engineered objects are easier to deal with since their design is purpose-oriented. There-

fore, we have a good idea of where and how to apply load. This lack of design makes non-

engineered objects like organs harder to handle. Thanks to acquired knowledge through

55

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

discussions with surgeons and video feedback, we can estimate the zone of interest and

type of force applied to organs during surgeries. However, we have no exact data, and thus

the sampling of the space of force remains complicated. This is why creating a meaning-

ful dataset that accurately represents the response of an organ subject to external forces

is challenging. In this section, we present our take on the subject where we use an eigen-

values analysis of the mechanical properties of the object to sample the force and defor-

mation space. For the rest of this thesis, we consider the dataset D = (b,u) as being a set

of pairs of forces and displacements.

Two main difficulties arise when creating a dataset that represents an object’s defor-

mation.

First difficulty: Number of parameters. Applying an external load to an object requires

affecting force values to each degree of freedom of the mesh. In the context of this the-

sis, we are dealing with meshes composed of two to five thousand nodes, hence, six to

fifteen degrees of freedom. One solution to deal with the problem of dimensionality is

to apply forces that are constant over the whole object since we only have to consider

the X ,Y , Z component of the vector field, thus reducing the number of parameters to

three. Although applying such force is easy, it rarely represents real scenarios or scenarios

of interest. When we want to apply a more complex load to an object, the task quickly

becomes a burden. Defining the dofs-wise value over the entire mesh is already prob-

lematic at our scale, even though we deal with relatively small meshes compared to other

scientific fields. One must define the value of multiple thousand coefficients to generate

a single displacement when multiple thousands of displacements must be computed to

train an ANN. Therefore, one has to rely on a random sampling and naive approach to

generate a force vector and hope it provides interesting deformations, which is neither

time nor energy efficient. In this section, we present our take on reducing the dimension-

ality of the force generation problem while managing to generate a complex force vector

field.

Second difficulty: Relation between the load and displacement. When an object is

subject to an external load, its response is given by its material and geometry. While the

material response is direct and defined by the user, the geometry response can be very

complex, even for simple-looking geometry. For example, one can take a rope and apply

a twisting force. The rope will start to twist to some point, where it starts to roll on itself,

forming what is known as plectoneme. This type of response is unpredictable by the user;

therefore, forces resulting in such a response are hard to produce when creating a dataset.

While in our case, we do not have such an extreme case, the Dirichlet’s boundary condi-

56

4.1. DATASET GENERATION

tions of a liver are patient-specific. They can significantly influence the mechanics of the

organ. Therefore, producing a standard method to generate a dataset for any given liver

is challenging.

The number of nodes, material, and geometry are constitutive of an object and, there-

fore, cannot be modified without impacting its physics. While we cannot modify them,

they embed much information about how an object responds to stress. We can extract

information using our knowledge of the mechanics of deformable bodies. In particular,

we would like to have two things.

The first is a rough estimation of the displacement generated from stress to know if it

is worth computing the full deformation.

The second one is to generate interesting/complex force vectors easily.

The first request corresponds to creating a transformation that allows us to jump from

the force to the deformation space. This is achieved by using equation 2.37 where the tan-

gent stiffness matrix represents the transformation from the deformation space (du) to

the force space b . Since we want a rough approximation, we can consider that K(0) will

be our approximation transformation. The nonlinear material response depends, among

other factors, on the current deformation state of the object. Thus, using u = 0 , we do

not bias K toward any specific response, although for specific use-cases, one could use

K(u 6= 0) .

We will use our answer to the first to satisfy the second request and try to extract in-

formation from the equation 2.37. First, let us take a step back and present how engineers

have been studying systems like equation 2.37 and similar systems.

One common practice in engineering is to study the natural frequencies of vibration.

Called eigenvalues analysis, this practice is the most frequent system analysis method.

Using this method, the result is double since it gives us both the natural frequencies and

shapes of vibrations. These shapes of vibration are called undamped free vibration re-

sponse of the structure. The total number of frequencies or eigenvalues equals the to-

tal number of degrees of freedom in the model. Each eigenvalue/frequency has a corre-

sponding eigenvector/mode shape. Eigenvalues analysis usually only focuses on the first

few eigenvalues of the model. This is primarily because the finite element model approx-

imates the real shape. Therefore, it correctly models the lowest spatial frequencies while

dropping the higher spatial frequencies. This significantly impacts the values of the eigen-

values, which are inaccurate for the high frequencies. In other words, the first modes are

the most common deformations of the object, as shown in Figure 4.1. Furthermore, the

mode shapes are normalized to the maximum displacement of the structure.

57

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

(a) Undeformed 3D cantilever beam (b) First mode shape

(c) Second mode shape (d) Third mode shape

(e) Fourth mode shape (f) Fifth mode shape

Figure 4.1: A cantilever beam Neo-Hookean material attached by the left face (a) and its
five first modes shape (b,c,d,e,f). The complexity of the deformation increases with the
index of the mode.

From this, we have two interesting takes. First, we usually analyze a few modes to un-

derstand the object’s behavior. Most of the information is concentrated in a small portion

of the problem which could help us reduce the complexity of the force generation by ex-

plicitly targeting this region. The second is that since the mode shapes are normalized,

we can interact with them using normalized coefficients.

Going back to our problem we have equation 2.35 where u = 0 . We perform an eigen

decomposition on K(0) , therefore equation 2.35 becomes :

K(0)du = b+R(0) (4.1)

K(0)du = b , no strain at rest, R(0) = 0 (4.2)

ΦΛΦT du = b (4.3)

Φ(ΛΦT du) =Φq = b (4.4)

We obtain a vector q that we call control since it controls how much each mode shape

58

4.1. DATASET GENERATION

appears in the result. Now we observe that Φq is homogenous to a force. Since Φ is

the eigenvector matrix, we can exploit the mode shape to generate forces. Furthermore,

as mentioned earlier, we usually only use the first few modes, significantly reducing the

complexity of the force generation. In other words, we only need a handful of coefficients

to generate complex forces, as shown in Figure 4.2.

(a) q = 0 (b) q0 = (1,0, · · · ,0)

(c) q1 = (0,1,0, · · · ,0) (d) q2 = (0,0,1,0, · · · ,0)

(e) q3 = (0,0,0,1,0, · · · ,0) (f) q4 = (0,0,0,0,1,0, · · · ,0)

Figure 4.2: Examples of forces we can generate using only the first five modes shape of the
cantilever beam presented in Figure 4.1. Here the qi are presented as one-hot vectors,
but any linear combination of the qi can be used to generate a force. We can see the
similarities between the forces computed using the vector qi and the i-th mode shape in
Figure 4.1.

Using the Φq product, we can now generate complex forces using only a handful of

coefficients. We call q̄ the selected subset of indices of q . We can now interpolate the

coefficient of q̄ between -1 and 1 since we recall that the mode shapes are normalized to

the maximum displacement of the structure.

One observation remains. The generated force vectors are dense. While they present

interesting patterns, they remain dense. Thankfully, this can be easily solved by applying

a binary mask on the force. The mask coefficients are one on the nodes where we want to

59

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

apply a force and zero elsewhere. For example if we consider a twisting force applied on

the tip of the beam, then the force given by q2 in Figure 4.2 becomes the one presented

in Figure 4.3 :

(a) Force generated using q̄ = (0,0,1,0,0) (b) q multiplied by a mask which values at one
for every node of the tip, zero elsewhere.

Figure 4.3: Example of mask application to create sparser forces. Local forces are usually
more representative of object manipulation if we do not consider gravity.

Finally, we can rewrite equation 2.37 as :

K(uk +duk) ·duk+1 = m(Φq)+R(uk) (4.5)

Where m(x) = x ·m is a function that computes the Hadamard product between a

mask m and a vector of matching size x .

To conclude this section, we created a process that allows us to compute complex

forces using only a handful of coefficients. This is achieved by using the eigenvalues anal-

ysis of the system in equation 2.37 for u = 0 . The generated forces are automatically

scaled by the matrix of eigenvectors Φ , which allows us to sample the space between

minus one and one, reducing the complexity of the generation one step further. Further-

more, we can use a binary mask to apply the force on zones of interest instead of the whole

object.

Now that we have created a dataset, we can discuss the model we will train. In the

following section, we weigh the pros and cons of different model architectures and explain

our choice of architecture for all the following works.

4.2 Toward faster simulations using artificial neural net-

works

To effectively solve the problem described in Section 2.5 in real-time, we suggest using

deep neural networks in a direct FEM-based manner, as demonstrated in [19, 75, 84]. We

60

4.2. TOWARD FASTER SIMULATIONS USING ARTIFICIAL NEURAL
NETWORKS

plan to train the selected network with FEM-generated data, which we can thoroughly

control.

Selecting the appropriate network architecture is crucial and should consider the tar-

get application, available computational resources (both hardware and time limitations),

and the structure and amount of training data. For instance, in augmented surgery, the

time between the preoperative CT scan (which enables reconstructing the organ’s geom-

etry) and the intervention is often less than 12 hours. This short period implies that data

generation and network training must be accomplished in less than half a day. The strin-

gent time constraint and the desired accuracy for the virtual model make it challenging to

identify a suitable network architecture.

This section introduces two distinct architectures for physical simulation: multilay-

ers perceptron (MLP) and convolutional neural networks (CNN). Specifically, we present

the U-Mesh framework, a specific type of CNN. We evaluate the performance of these

networks in two different scenarios where we first consider a square section beam and,

secondly, a liver.

The U-Mesh framework In the following paragraphs, we will introduce the U-Mesh

framework [75], a specific type of CNN used for displacement field estimation. This frame-

work is built on a U-Net architecture [101], which gets its name from its U-shaped struc-

ture, resulting from a sequence of max-pooling and up-sampling operations. It has an

autoencoder architecture (see Figure 4.4) comprising an encoding path that transforms

the input into a low-dimensional space and a decoding path that expands it back to its

original size. We chose this framework due to its similarity to model order reduction tech-

niques, specifically the Proper Orthogonal Decomposition (POD). The number of singu-

lar vectors retained in POD can be related to the depth of the U-Net, which monitors the

quality of the predicted displacement [75].

Regular grid structure CNNs have a significant limitation in that they are only applica-

ble to structured matrices. These networks are designed to extract features from matrices

with spatially connected values, such as images. The input needs to be encoded in a grid

structure, as convolutional filters have a spatial representation of the information. There-

fore, to use CNNs for physical quantities of interest, we must encode them on regular

grids.

To overcome this limitation, we will use an immersed-boundary method to create a

regular hexahedral mesh directly from surface geometry. Regular hexahedral meshes offer

several advantages, including better convergence properties and stability [4]. The surface

mesh is embedded into a regular grid, and only the cells inside the surface or overlapping

61

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

Figure 4.4: Chosen network architecture with three steps and 128 channels in the first
layer for an input grid with 28× 12× 12 nodes Zero-padding is added in each spatial
direction to avoid any loss of information on edge nodes, which leads to a 32×16×16
shaped tensor At each step of the encoding phase, two padded 3×3×3 convolutions are
applied, followed by a ReLu activation function and a 2× 2× 2 max pooling operation
(which halves the spatial dimension) Each feature map doubles the number of channels
In the decoding phase, upsampling 2× 2× 2 transposed convolutions are applied, fol-
lowed by two padded 3×3×3 convolutions (doubles spatial dimension and halves the
number of channels) The output of each layer is concatenated along matching levels from
the encoding to the decoding path.

it are retained to build a sparse grid that will be used as a finite-element mesh. The volume

integration of displacement on boundary cells is handled using recursive subdivision, as

done in [25].

MLPs do not have the same requirement and can potentially work with any unstruc-

tured mesh. However, we will use the same structured meshes for both network architec-

tures presented in this study for clarity and fair comparison.

4.2.1 Case study - Cantilever beam

In this section, we consider a cantilever beam of size 1×0.25×0.25m3 modeled as a Neo-

Hookean material from Equation (2.27) with a Young’s modulus of 5,000 Pa and a Poisson’s

ratio of 0.45. It is discretized with 304 linear hexahedral (H8) elements.

The effect of node ordering

As demonstrated in [19], ordering degrees of freedom in a FEM mesh is critical in training

a U-Net. This is because convolution filters extract spatial information from input ten-

62

4.2. TOWARD FASTER SIMULATIONS USING ARTIFICIAL NEURAL
NETWORKS

sors, and neighboring nodes in the input tensors must be spatially adjacent in the FEM

mesh. To reduce the jumps between nodes in a convolution operation, we started node

numbering in the smaller dimension axis, as shown in Figure 4.5b, instead of the larger

dimension axis, as shown in Figure 4.5a.

x

y

z

0
1

2

3
4

5

6

7

8

9
10

11

(a) Configuration 1: The node numbering starts
in the object’s principal dimension (here x).
Nodes 0, 3, 6, and 9 are fixed. The network pre-
dictions are not convincing.

x

y

z

0

1

2

3

4

5

6

7

8

9

10

11

(b) Configuration 2: The node numbering does
not start in the object’s principal dimension.
Here it starts in z. Nodes 0, 1, 2, and 3 (which
appear to be consecutive in the input tensor) are
fixed. The network predictions are very good.

Figure 4.5: The effect of node ordering on prediction accuracy. For clarity, a beam with
only 12 degrees of freedom is represented here.

In this scenario, the deformation of the beam’s tip is insufficient due to the significant

physical distance between nodes 2 and 3 in Configuration 1’s FEM mesh (Figure 4.5a),

which is not represented in the input tensors. Furthermore, it should be noted that node 2

has the potential for significant deformations. In contrast, node 3 remains fixed, resulting

in a significant difference in the mechanical behavior of these two consecutive nodes in

the input tensor. To circumvent this issue, we prefer to adopt the node ordering approach

from Configuration 2, as illustrated in Figure 4.5b.

Random forces vs. modal forces

This section compares the innovative and brute-force data generation approaches intro-

duced in Section 4.1. The performance of an MLP with four layers (one input layer, two

hidden and output layers) trained on 20,480 samples is presented in Table 4.1. The sam-

ples were generated using random force amplitudes (second column) or modal force am-

plitudes (third column). In both strategies, a random area of variable size on the mesh

boundary is selected to apply forces, which improves the network’s ability to generalize

and reproduce local and global deformations. It is worth noting that only mechanically

stable samples are retained. The results indicate that the model-based force generation

63

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

approach produces larger deformations on average, resulting in higher prediction accu-

racy.

MLP - Random F MLP - Modal F

e 2.205×10−4 ±6.618×10−4 m 1.692×10−4 ±1.933×10−4 m

emax 0.0116±0.0293 m 0.0096±0.0107 m

u2 1.0070±1.7846 m 1.7095±1.6082 m

Table 4.1: Two MLP trained for 100 epochs with random or modal force amplitudes. u2

gives the distribution of the L2 norm of the displacement.

MLP vs U-Mesh

The performance of two networks, namely a four-layer MLP and a three-stepped U-Mesh,

were compared in this study. Both networks were trained on 20,480 samples generated

using modal forces for 100 epochs. The results are presented in Table 4.2a, which shows

the metric distribution over a testing dataset generated using the same strategy as the

training data (i.e., modal-based forces). In addition, Table 4.2b presents the metrics over

a dataset generated using random forces. The findings demonstrate that, for the beam

scenario, the MLP performs slightly better on average than the U-Mesh when tested on

data drawn from the same distribution as the training data (Table 4.2a). However, the

U-Mesh exhibits better generalization capabilities than the MLP (Table 4.2b). Absolute

training times were not reported since the two networks were trained on different ma-

chines. However, on similar problems, the MLP has proven to be much faster to train

than the U-Mesh. Moreover, the MLP is around ten times faster than the U-Mesh in mak-

ing predictions, making it the preferred option for this problem.

The FEM solution for this particular problem is computed in approximately 25 ms,

within the limits of real-time constraints. Therefore, even though the U-Mesh is ten times

faster than the FEM solver and the MLP is 100 times faster, the impact of our approach is

negligible in this context. However, in the upcoming section, we will implement the two

networks on finer mesh resolutions, where FEM solvers struggle to produce deformations

in real-time, even with highly optimized versions of the codes.

4.2.2 Case study - Liver

We explored augmented reality for hepatic surgery to apply our method to a clinical set-

ting. To achieve this, we trained an MLP and a U-Mesh using a real-life human liver ge-

ometry, modeled as a Neo-Hookean material according to Equation (2.27). The liver was

64

4.2. TOWARD FASTER SIMULATIONS USING ARTIFICIAL NEURAL
NETWORKS

MLP U-Mesh

e 1.692×10−4 ±1.933×10−4 m 1.872×10−4 ±1.410×10−4 m

emax 0.0096±0.0107 m 0.0103±0.0070 m

PT. 0.26±0.01 ms 2.39±0.05 ms

(a) Performance over a test dataset with samples drawn from the same
distribution as training samples. PT stands for prediction times on a lap-
top equipped with a Quadro M1200.

MLP U-Mesh

e 4.668×10−4 ±9.897×10−4 m 4.056×10−4 ±5.190×10−4 m

emax 0.0209±0.0436 m 0.0198±0.0257 m

(b) Generalization capacities, performance over a test dataset with sam-
ples drawn from a different distribution than training samples.

Table 4.2: Result of the MLP and U-Mesh on different dataset.

discretized into 3,309 H8 elements with a length of 0.2 m , Young’s modulus of 5,000 Pa ,

and a Poisson’s ratio of 0.45 . We fixed the mesh nodes that were near the vena cava, which

serves as an anatomical liver fixation. However, for accurate simulations, it is essential to

estimate the attachments of the organ precisely and specifically to the patient as they play

a significant role in the accuracy of the simulation [13].

We generated 20,480 samples by applying up to five random simultaneous forces on

the liver’s surface, and the data generation process took 19 h41 min50s for a grid reso-

lution of 25×22×21 nodes. We applied a data scale factor as a normalization technique.

Node ordering made little difference in this scenario since the fixed boundary conditions

were globally centered. Table 4.3 shows the performance of the two networks.

The results obtained from this experiment were satisfactory regarding accuracy and

prediction times. The MLP produced more accurate predictions on average than the

U-Mesh but had higher errors for some outliers due to its poor generalization capacity.

These outliers corresponded to the upper bounds of the testing dataset that were poorly

represented during training. The U-Mesh produced a deformation approximately 500

times faster than standard FEM solvers, which takes around 1,500 ms to compute a solu-

tion, and the MLP was about 5,000 times faster.

The results indicate that for small-resolution meshes, the MLP outperforms the U-

Mesh regarding prediction accuracy and training speed. This may seem surprising ini-

tially, but there are several potential reasons for this. Firstly, the U-Mesh requires a reg-

ular grid structure with many zeros, increasing input size without providing additional

information. This leads to a more significant performance gap between the two networks

65

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

MLP U-Mesh

e 5.879×10−6 ±3.064×10−6 m 7.619×10−6 ±4.874×10−6 m

emax 0.0052±0.0031 m 0.0038±0.0020 m

u2 0.6574±0.3524 m 0.6574±0.3524 m

PT 0.31±0.010 ms 2.61±0.030 ms

Table 4.3: Performance of the MLP and of the U-Mesh trained over a dataset generated
with random forces on the liver’s surface. Both networks are trained for 100 epochs over
20,480 samples and tested on 100 samples drawn from the same distribution. PT stands
for prediction times on a GeForce RTX 3090. u2 gives the distribution of the L2 norm of
the displacement.

Figure 4.6: Projected view of the liver geometry and its 3,309 H8 mesh. The nodes in the
middle of the trunk of the vascular tree (here in blue) are fixed.

in scenarios with more meaningless zeros, such as the liver scenario. A possible solu-

tion to reduce this gap is to use a geometry mask in the loss function, which can cre-

ate constraints on domain knowledge. A more sophisticated solution involving sparse

convolutions may be necessary for such cases. Secondly, the U-Mesh uses a reduced la-

tent space to represent the problem, which allows for better generalization but results

in slightly lower accuracy for patient-specific scenarios. However, the accuracy can be

increased by increasing the size of the reduced latent space, although this will increase

66

4.2. TOWARD FASTER SIMULATIONS USING ARTIFICIAL NEURAL
NETWORKS

training time and require a trade-off between accuracy and efficiency.

One topic we would like to discuss is the usage of structured meshes. While some may

view it as a limitation in certain applications, using regular hexahedral grids combined

with immersed-boundary methods for FEM simulation appears to be the most suitable

option for numerical convergence to the analytical solution, as mentioned in previous

sections. For instance, the works in [23] demonstrate that the Φ -FEM approach system-

atically outperforms the standard FEM on comparable meshes for structural mechanics

simulation. Despite the current success of graph neural networks, we believe that struc-

tured meshes are the right research direction to follow when high accuracy is desired.

However, graph neural networks can provide significant benefits for animation applica-

tions where speed and qualitative accuracy are the primary concerns.

However, structured meshes cannot accurately represent the geometrical complexity

of complex shapes such as left atria or the human brain. In such cases, to use the proposed

method in this chapter, one can voxelize complex triangular surface meshes by comput-

ing signed distance fields as proposed in [91], which enables accurate data encoding in

structured grids.

We have presented results for relatively coarse meshes to meet clinical constraints in

this chapter. We need to consider strategies that reduce training times and GPU memory

load to learn the behavior of finer-resolution meshes. One option could be to encode

fine meshes in coarser voxelization grids via barycentric weight functions or hierarchical

grids. Although the error of 5.2 mm is acceptable, it was obtained on synthetic samples.

When dealing with real, noisy, and sparse data, the error is likely to increase, which means

that extra efforts will need to be made to improve the accuracy of the approach.

4.2.3 Conclusion and network of choice

In summary, the MLP and the U-Mesh achieve similar accuracy in the studied scenarios

while being orders of magnitude faster than FEM solvers for simulating nonlinear defor-

mations. The MLP is notably, on average, an order of magnitude faster than the U-Mesh.

A notable advantage of this approach is the absence of fine-tuning in data generation and

training, enabled by an automatic force generation method based on modal analysis and

data normalization techniques. A generic numbering strategy was also proposed to opti-

mize CNN learning accuracy.

Each network has its specific strengths, with the MLP being much faster, more accu-

rate, and versatile, whereas the U-Mesh has better generalization capabilities. However,

the quadratic growth of the number of parameters needed by the MLP limits its applica-

bility to relatively small problems, as larger meshes quickly exceed the physical limits of

67

CHAPTER 4. FAST AND ACCURATE DEFORMATIONS USING DEEP
LEARNING

typical hardware.

The primary limitation of this work is the time-consuming data generation process,

which can take several hours due to the need for numerous iterations of the Newton-

Raphson algorithm to generate nonlinear deformations. One thing that could help to

solve or at least reduce the data generation cost could be to use physics-informed ma-

chine learning where physical quantities are added to the learning process to better un-

derstand each sample; thus, we might be able to limit the number of samples.

Considering this limitation and the properties of the networks, we decided to con-

tinue our studies and research with the multilayers perceptron. As stated previously, the

training speed is an important factor since, in augmented surgery, we have a short time

between data acquisition and the actual surgery. Moreover, it is often easier to take some-

thing fast and make it more reliable than doing the opposite. From this perspective, we

can add complexity to our network architecture or training to improve its generalization

capabilities where we cannot improve the computation speed of the U-Mesh.

The next chapter present our take on the reliability issue coming from the ANN pre-

diction. We will first present the Newton-Raphson algorithm in more detail, as well as its

convergence scheme and limitations. Then we will present the contribution of Odot et

al. [84] which uses the predictions of the ANN to accelerate the resolution of the problem,

which in turn improves the reliability of the solution.

68

C
H

A
P

T
E

R

5
HYBRID SOLVER

5.1 Newton method . 70

5.2 Artificial neural network and solver . 72

69

CHAPTER 5. HYBRID SOLVER

5.1 Newton method

This section presents the general Newton method from a mathematical perspective. The

presentation in 2.6 was succinct and applied to soft body mechanics.

Newton’s method is a second-order method for convex optimization. We first consider

unconstrained smooth convex optimization.

min
x

f (x) (5.1)

Consider the following quadratic approximation:

f (y) ≈ f (x)+∇ f (x)T (y −x)+ 1

2
(y −x)T∇2 f (x)(y −x) (5.2)

the newton update is obtained by minimizing the above with respect to y . This quadratic

approximation is better than the approximation used in gradient descent since it com-

putes more information about the function using the hessian. In the Newton method, we

move in the direction of the negative Hessian inverse of the gradient:

xk+1 = xk − (∇2 f (xk))−1 ·∇ f (xk) (5.3)

The previous equation does not provide any notion of step size and is thus called the pure

Newton’s method. As explained by the inverse, Newton’s method involves solving linear

systems in the hessian.

Given a smooth, convex function f the Newton’s decrement is given by:

λ(x) =
√
∇ f (x)T · (∇2 f (x))−1 ·∇ f (x)

This decrement is proportional to the difference between f (x) and the minima of the

quadratic approximation at x.

f (x)−min
x

(f (x)+∇ f (x)T (y −x)+ 1

2
(y −x)T∇2 f (x)(y −x))

= f (x)− (f (x)− 1

2
∇ f (x)T · (∇2 f (x))−1 ·∇ f (x))

=1

2
λ(x)2

This formulation gives an approximate bound for suboptimality gap f (x)− f ∗ . The

bound is not exact since it is computed on the minimum of the quadratic approximation.

This is an interesting criterion for backtracking line searches.

70

5.1. NEWTON METHOD

We have presented Newton’s method and a stopping criterion. We can now discuss

the convergence of the method.

5.1.1 Newton method convergence

Let us assume that f is strongly convex with parameter m and twice differentiable and

dom(f) = Rn . Let us also assume that ∇ f is Lipschitz with parameter L. Let addition-

ally assume that ∇2 f (x) is Lipschitz with parameter H. The following results hold for

Newton’s method with backtracking with parameters α,β and depend on two parame-

ters γ > 0 and 0 < η ≤ m2

H . Let k0 be the number of step until ‖∇ f (xk0+1)‖2 < η ·k0 with

η = min{1,3(1− 2α)}m2/H . This inequality will define the two stages of convergence.

When k ≤ k0 we are in the phase called the damped Newton phase,

f (xk)− f ∗ ≤ f (x0)− f ∗−γk

We are guaranteed to decrease the criterion by γ = αβ2η2m/L2 in every step. If the

function is poorly conditioned, γ is small, and thus, convergence is slow. When k > k0 ,

we enter the pure Newton phase, and the convergence rate is named quadratic.

f (xk)− f ∗ ≤ 2m3

H 2
(

1

2
)2k−k0+1

One important fact about this phase is that once we enter the quadratic convergence, we

never leave it.

To reach a desired precision ε , the number of iterations needed to leave the first phase

is:
f (x0)− f ∗

γ

For the second phase using strong convexity, we can prove that the number of iterations

required is:
f (x0)− f ∗

γ
+ log (l og (ε0/ε))

Where ε0 = 2m3

H 2 . The log (log (ε0/ε)) convergence term make the phase quadratic. This

convergence is only local and guaranteed in the pure Newton’s phase.

5.1.2 Failure analysis

We have seen that the Newton method can converge when the assumptions are met.

Sometimes it is hard to know if assumptions are all perfectly met when dealing with par-

71

CHAPTER 5. HYBRID SOLVER

tial differential equations when we do not know the exact solution to the problem. In this

section, we discuss some failures that can happen during the process.

We first discuss iteration points. Starting point problems can be extremely tricky since

the method might still diverge even when all the assumptions are met. For example, this

can append with functions that approach zero asymptotically when x goes to infinity.

The second type of problem occurs when an iteration point is stationary (the gradient

is null). The method will then diverge since we divide by the derivation of f . This also

causes a problem when the derivative is negligible since the next iteration will be worse

than the current one.

The final problem considering iteration points is that it may enter a cycle. As an ex-

ample, the function f (x) = x3 −2x +2 , when starting at 0, will alternate between 0 and

1 without converging. It is said to enter a stable 2-cycle since even a small neighborhood

around 0 and 1 will converge toward one of these values and eventually enter the 2-cycle.

Considering problems with the derivative, it could not exist or be discontinuous at the

root. Thus, the method diverges. Newton’s method is very sensitive to the quality of the

derivative.

We have now presented Newton’s method and will discuss the proposed contribution

that uses a neural network to improve the convergence rate of Newton’s method, which in

turn improves the reliability of the solution.

5.2 Artificial neural network and solver

As we have seen, Newton’s method has interesting convergence properties in the proper

context. Our goal here will be to use an artificial neural network to put ourselves in

the quadratic convergence phase as soon as possible. The idea is to initialize Newton’s

method with a prediction of a purposely trained ANN.

To present the contribution, we first explicit the algorithm in the context of the Fi-

nite element method applied to soft-body mechanics. The second part will consist of the

modified algorithm and a quick discussion of the bottlenecks of the method.

Newton method and Soft-body mechanics

We first need to identify a couple of terms.

Using (5.3) and (2.35) we can rewrite the newton step as:

uk+1 = uk −K(uk)−1 · (R(uk)−b) (5.4)

72

5.2. ARTIFICIAL NEURAL NETWORK AND SOLVER

Where K(u) is the tangent stiffness matrix. This Newton step presents the compu-

tation of two important quantities. The first one is the internal forces R(u) that are

parametrized by the material law and its associated parameters. The second quantity is

the inverse tangent stiffness matrix assembled or directly derived from the internal forces.

We define the vector r(u)k = R(uk)−b which represent the residual forces in the sys-

tem.

Using this, we can write the algorithm as follows:

Algorithm 4: Newton-Raphson algorithm

Data: k = 0 , u0 = 0 , du = 0
1 while ‖r(uk)‖ < ε or ‖du‖ < η do
2 Compute R(uk)

3 Compute K(uk)

4 Solve K(uk) ·du = r(uk)

5 uk+1 = uk −du
6 k = k +1

7 end

It exists multiple options in order to speed up the Newton-Raphson algorithm. One

can improve the computation speed of l i ne 3 using parallel computation as an exam-

ple. Usually, the bottleneck of the algorithm is at l i ne 4 where most of the time is spent

inverting the matrix K(uk), composed of the number of dofs squared coefficients. Multi-

ple approaches have been proposed to improve such computation. The Quasi-Newton-

Method [10] create a matrix B which is an approximation of K−1(uk), recently, Duff et

al. [22] proposed a new formulation of the LDLT solver using an a posteriori threshold

pivoting.

Finally, one can also reduce the number of iterations needed to satisfy the condition

on l i ne 1 using a good initial guess u0 = up. In this work, we choose this approach and use

the prediction of the network to set an optimal starting point. This reduces the number

of iterations of the algorithm most of the time while also guaranteeing that we obtain a

correct solution to our problem, even if the prediction is inaccurate or incorrect. Further-

more, this work does not interfere with previously presented methods and can be used as

a complementary upgrade for the algorithm.

The logic of the algorithm remains unchanged. There are multiple scenarios to con-

sider. First, the trivial one where up = u0, algorithm 5 introduces a slight computational

overhead at l i ne 3 but produces the same answer. The second scenario is the one where

‖R(u1)‖ <= ‖R(up)‖ at l i ne 12. In this case, the prediction does not provide any gain to

the simulation. This could be due to b being too different from the training data. The

73

CHAPTER 5. HYBRID SOLVER

artificial neural network cannot generalize enough to produce a good answer.

Algorithm 5: Hybrid Newton-Raphson algorithm

Data: k = 0 , u0 = 0 , du = 0

1 up = Pr edi ct i on(b)

2 Compute R(up)

3 if ‖r(up)‖ < ε then

4 exit

5 end

6 Compute R(u0)

7 while ‖r(uk)‖ < ε or ‖du‖ < η do

8 Compute R(uk)

9 Compute K(uk)

10 Solve K(uk) ·du = r(uk)

11 uk+1 = uk −du

12 if k = 0 and ‖r(u1)‖ > ‖r(up)‖ then

13 u1 = up

14 end

15 k = k +1

16 end

This can also happen if the force is too small and produces a displacement field in the

order of magnitude of the noise generated by the network. The last scenario appears when

the condition at either l i ne 4 or l i ne 12 is satisfied. In the best case, when it stops at l i ne 4

we can compute the displacement field in a couple of milliseconds. In the other case, the

prediction usually reduces the number of iterations needed to satisfy the condition on

l i ne 7, thus speeding up the algorithm compared to its classical version.

We now present the result of this contribution. First, we must show that the network

can quickly and accurately predict deformations. Then, we will discuss the gains of the

Hybrid Newton-Raphson algorithm.

5.2.1 General results

This section discusses the ability of the network to approximate deformations on various

geometries with different elastic laws.

This is another important test for the neural network. The different parameters of the

2 test cases are summarised in table 5.1. Both trainings lasted about 12 hours (including

dataset generation) on an NVidia TITAN RTX, with 4,095 generated samples each.

74

5.2. ARTIFICIAL NEURAL NETWORK AND SOLVER

Name #DOFs material L [m] E [Pa] Time [ms] emean emax SNRdB
mi n

Beam 12,000 S-V-K 100 4.5×103 0.4 8.0×10−6 0.03 8.4

Propeller 12,075 N-H 1.0 2.03×1011 0.4 2.7×10−6 0.01 18.9

Table 5.1: Results of a comparison between FEM simulations and ANN predictions over
100 randomly distributed forces with random amplitudes.

Both models with completely different simulation parameters provide similar mean

and max errors over 100 simulations. This, although demonstrated only on two models

in this thesis, can argue that the network and its framework provide accurate global and

local deformations of a mesh while handling a wide range of simulation parameters. The

displacement field is computed in a steady 0.4ms up to three orders of magnitude faster

than the reference FEM simulation. To compare, the simulation of the deformation of the

propeller takes around 500ms to compute. One hypothesis to explain the big difference in

SNR relies on the amount of near-null deformations seen by both models. The beam has

few samples where the displacement of the whole body is almost null and hence is less

trained at generating a value close to 0. Where with the propeller, most of the samples

require a null or almost null displacement field for most of the points. A proper in-depth

analysis of multiple models is required to conclude this hypothesis. Works on this per-

spective are currently being held.

(a) (b) (c) (d)

Figure 5.1: Examples of large nonlinear elastic deformations predicted by our neural
network. The colors represent the node-wise Euclidean distance to the solution of the
Newton-Raphson algorithm. For both beams, the color gradient goes from 3 × 10−4m
(blue) to 3×10−2m (red), and for both propellers, the color gradient goes from 3×10−5m
(blue) to 2×10−3m (red).

Beams (a) and (b) in Figure 5.1 undergo roughly the same amount of deformation

(with a deflection at the tip of ≈ 40m) yet lead to very different error values and patterns.

Beam (a) has a maximum error of 37mm near the beam’s free end, reducing gradually to

54 µm near the fixed end. Beam (b), on the other hand, provides a homogeneous error

with a maximum error of 5.0 mm and an average error of 6.6 µm. The same behavior can

be observed with the propeller model. Propeller (c) has a similar deformation to (d). It

75

CHAPTER 5. HYBRID SOLVER

Name emean emax SNRdB

Beam (a) 5.4×10−5 0.037 22.2

Beam (b) 6.6×10−6 0.0050 40.2

Propeller (c) 2.82×10−6 0.0036 33.9

Propeller (d) 8.2×10−7 0.0008 42.3

Table 5.2: Error values and SNR of the deformations shown at Figure 5.1. The deforma-
tions are highly nonlinear, yet the error values and SNR remain in the range of values
displayed in table 5.1.

has an average prediction error of 2.82 µm with a maximum value of 3.6 mm, about four

times as much as in the second scenario.

5.2.2 Hybrid Newton-Raphson results

The artificial neural network has proven precise, up to a couple of micrometers on av-

erage. Where one could be satisfied with the precision, another may want to ensure the

respect of some properties, such as incompressibility or fixed points on the boundaries.

As shown in section 5.2, the Hybrid Newton-Raphson algorithm proposes to use the pre-

diction of the network in order to speed up the algorithm. The experiment will compare

the speed and solution of the ANN, the classic Newton-Raphson, and its hybrid version.

The network trained for the beam at section 5.2.1 is used to obtain the following values.

Solver type Converged simulations Prediction picked Average iterations

Classic 68% - 9.1

Hybrid 99% 53% 5.0

Table 5.3: Results of comparing the classic Newton-Raphson algorithm and the presented
Hybrid Newton-Raphson algorithm over 100 randomly distributed forces with random
amplitudes.

These results are computed from a dataset of 100 random external forces. Among

them, 50 are within the amplitude range of the training dataset, and the 50 others have

an amplitude up to two times bigger. Although 50 have an amplitude within the training

bounds, they do not share orientation or location with any training datasets.

The classic Newton-Raphson manages to converge 68% of the time. On average, when

it converges, it does so in 9.1 iterations.

The Hybrid Newton-Raphson converges 99% of the time and 100% when the classic

version did too. Our algorithm leads to a gain of 45% in terms of convergence. In 53%

76

5.2. ARTIFICIAL NEURAL NETWORK AND SOLVER

of the cases, the solution of the neural network is preferred to the first Newton-Raphson

iteration. Over the 100 test samples, the Hybrid Newton-Raphson picked two out of three

times the prediction of the network as a better starting point than the result of the first

iteration of the Newton-Raphson algorithm. From this point, on average, the algorithm

converges in 5 iterations. This shows that from the prediction, the algorithm converges

on average in 4 iterations, adding up to 5 to account for the first one discarded when the

prediction is picked.

Overall the proposed algorithm converges more often and faster than the classic method

while keeping the ordinary convergence properties of the Newton-Raphson algorithm.

We have presented our take on the reliability issue from the ANN prediction. This first

use of our ANN is interesting as it leads to performance improvement, but computing ob-

ject deformation usually comes from a need. In the context of this thesis, the need for

such computations comes from augmented surgery. The next chapter presents our take

on augmented surgery, specifically augmented laparoscopic surgery. We start by present-

ing the context and why surgeons would benefit from accurate augmented reality during

surgery. We then introduce the contribution of Odot et al. [85], where they use an ANN to

perform the non-rigid registration task.

77

C
H

A
P

T
E

R

6
OPTIMAL CONTROL FOR AUGMENTED

SURGERY

6.1 Context . 81

6.2 Shape matching . 84

79

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

From the previous chapters, we have shown that we can accurately predict nonlin-

ear deformations of soft bodies such as, but not only organs. Using an artificial neural

network allows us to compute deformations in less than a millisecond, which is multiple

orders of magnitude faster than the traditional methods for the presented meshes. The

deformations are computed in real-time, which is a hard constraint if we want to apply

our work in the context of laparoscopic surgery. The real-time requirement emerges from

the fact that we cannot interfere with the operation flow by asking the surgeon to wait for

our network to predict the deformation, thus, slowing the operation.

The idea of this work is to give tools to introduce augmented reality in the operation

room by projecting the organ’s internal structures on the surgeons’ video feed. Introduc-

ing internal 3D information in the display could help the practician by offering a better

visualization of the operation and also help the decision-making. This projection requires

first extracting the current deformation of the organ from the video feed and second, de-

forming the internal structure and projecting them on the video feed. Once we have the

forces, we know that deforming a liver and its internal structure is a matter of milliseconds

using the previously presented methods.

In this section, we focus on the first task: Compute the current deformation of the or-

gan from the video feed. Extracting deformations from a video feed requires us to find

the rigid registration, extract the surface from the image then compute the deformation.

This thesis focuses more on the theoretical aspect of the method than the actual experi-

mental results. Thus, we make two hypotheses that allow us to only focus on retrieving

the deformation. The first one is that the rigid registration is already done. The second

one is that we can extract a 3D point cloud from RGB images. These two hypotheses are

actual research subjects and could be thesis subjects on their own. In order to have a

proper understanding of our work, we will study the impact of these two hypotheses on

our method.

From the video feed, we are left with a partial 3D surface of the object. This point cloud

is interesting because it provides valuable information on the deformation. Using this

deformation, we should be able to extract the force that has generated it. This reasoning

has been proven working by Mestdagh et al. [78]. In this work, they can retrieve the forces

that deform a liver composed of nonlinear material to fit a partial surface point cloud. In

other words, they find the forces such that the liver fits the observed data.

Our approach mainly involves speeding up the presented computation using an arti-

ficial neural network.

In this section, we first briefly present laparoscopic liver surgery to help contextualize

our work. We then briefly introduce the optimal control framework used by Mestdagh et

al. [78]. Finally, we present our contribution to the subject.

80

6.1. CONTEXT

6.1 Context

6.1.1 Liver resection

Liver resection or hepatectomy is a surgical procedure where part or all of the liver is re-

moved. Partially removed liver can grow to its former size, whereas total liver resection

requires a transplant. Due to the extreme regeneration ability of the liver, liver resection

is a common practice when dealing with liver disease. Although the operation is often

practiced, it remains a complicated surgery due to the density of vessels in the liver, which

can cause significant bleeding.

It exists two main methods to perform a liver resection. The oldest one is open ab-

dominal surgery, where a single long incision (Figure 6.1), also known as a laparotomy, is

made to gain access to the abdominal cavity. The more recent one is laparoscopic surgery,

where the procedure is carried out through small incisions in the abdomen.

Figure 6.1: example of incisions location and size in laparoscopic surgery (left) compared
to two examples of laparotomy (middle and right) performed in open surgery. Incisions
vary depending on the surgery and patient-wise characteristics.

The open surgery approach allows direct visualization of the organs within the ab-

domen and is most commonly used for more complex surgical procedures. In compari-

son, during laparoscopic surgery, the surgeon watches the images transmitted by a cam-

era attached to a specially designed tool called laparoscope.

The technic has improved since 1991, and the first laparoscopic liver resection [96]

(LLR). This method has become the primary curative treatment for liver malignancies

since it presents both pre and post-operative benefits with reduced operation times, blood

loss, and length of stay [15, 111]. For example, the LLR is recommended as the first line

of treatment for 0-A stage hepatocellular carcinoma (the most common type of primary

liver cancer) by the Barcelona clinic liver cancer [11]. With advancements in surgical

81

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

techniques, more intricate procedures such as major liver resections or living donor liver

resections are now feasible through a laparoscopic or robotic approach.

Existing technics allow using the video feed to create a surface mesh of the observed

part of the liver. For the rest of this chapter, we will consider the reconstruction and rigid

registration already done. The displayed point clouds are generated by randomly sam-

pling the surface of different parts of multiple deformed livers using classic simulation

techniques. For clarity, we will call these randomly sampled surfaces "reconstructed sur-

faces" to fit the arguments.

Random sampling is essential to remove any one-to-one correspondence between the

simulated mesh and the reconstructed surface, which would introduce biases in the re-

gression and not correctly reflect reality. As we can see in Figure 6.2, neither the density

nor the location of the points match between data and observation. Random sampling is

achieved by selecting multiple triangles corresponding to a zone of interest on the mesh.

For each triangle, we generate random barycentric coordinates, which gives us a point

that is not part of the geometry. An example of such sampling is presented in Figure 6.3.

Scholars have tackled the subject of per-operative nonlinear registration multiple times.

We present one of the works that is the closest to our method.

Rucker et al. [102] propose to optimize the displacement of a part of the liver that

they call support surface to fit the observed sparse surface data. To do so, they com-

pute at the same time the rigid and non-rigid registrations of a linear model of the liver.

Their rigid registration optimization is done on classical translational and rotational co-

efficients. The particularity appears with their non-rigid registration; they decided to use

the linearity of their model and optimize the coefficient of precomputed deformation ba-

sis. Therefore, The resulting deformation is a linear interpolation of their deformation

basis, which works since their liver material is linear. This method has the advantage of

being relatively fast but requires formulation to use linear material. Linear materials are

an important drawback since, during surgery, organs can undergo important deforma-

tions, which are poorly modeled by linear materials.

We chose to continue the work of Mestdagh et al.[78] on optimal control using the

adjoint method applied to laparoscopic surgery. It has shown promising results on non-

linear material with a key benefit. The key aspect of this work is that it aims at fitting

the mesh in the observed data by computing the forces responsible for the correspond-

ing deformation. Forces on which our method is based. As a very brief introduction, the

method is composed of two parts. One forward problem uses the forces to compute a dis-

placement, and one adjoint problem uses the geometrical error to the target to compute

an increment of force. One flaw of the method is that using nonlinear material requires a

Newton-based solver in the forward process, thus, drastically slowing down the compu-

82

6.1. CONTEXT

(a) Pointcloud acquired from a RGBD camera next to the corresponding mesh.

(b) Zoom-in : Acquired pointcloud (red) over-
lapped with the corresponding mesh

Figure 6.2

83

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

Figure 6.3: example of a mesh with a randomly sampled zone of interest. The mesh ap-
pears grey, while the zone of interest is orange, and the randomly selected points appear
as white dots.

tation compared to working with a linear problem. This nonlinearity is essential to model

the organ correctly but doesn’t allows them to fit the real-time requirements. Our work

will focus on improving the speed of the forward problem using an artificial neural net-

work. We will see that by using the neural network to its full advantage, we reduce both

the forward and adjoint problem computation times.

With this said, using our neural network, we can produce a displacement from a force,

and using Mestdagh et al.[78] work, we know how to compute the force of a corresponding

displacement. We will first focus our interest on a presentation of the method used by

Mestdagh et al.[78] and explain how our contribution fits in this framework. We will then

present our result on the matter and study the effect of our hypothesis on our precision.

6.2 Shape matching

6.2.1 Problem setup

Formulating the registration problem in the generic optimal control framework allows

more flexibility in the problem and type of data being dealt with. The optimal control

84

6.2. SHAPE MATCHING

framework offers various generic tools to study and solve the problem.

We now present the problem setup in its integral form to fit the general description of

the generic optimal control theory. Following the illustration of the problem in Figure 6.4,

we have a body Ω0 with its constitutive law. The surface of the organ noted ∂Ω can

be split into two parts, ∂ΩD and ∂ΩN , which represent the zones on which the respec-

tively Dirichlet and Neumann boundary conditions are applied. We define the Dirichlet

boundary condition at the zone where the hepatic veins enter the liver and where the fal-

ciform ligament attaches to the surface of the liver. We do not consider gravity in this

experiment, although it can be easily added as a parameter. Finally, we note ub the dis-

placement field u generated by the force distribution b .

Figure 6.4: Problem setup. The body at restΩ0 undergoes a deformation u becoming the
deformed bodyΩ . The distance from a point of the observed surface y to its orthogonal
projection on the surface of the body ∂Ω is noted d(y,∂Ω) . (Image from Mestdagh et
al.[78])

Data and objective function

Although the per-operative configuration is known, the current deformed state must be

computed using the observed data. This observed data is considered to be a two-dimensional

manifold noted Γ representing a part of the surface of ∂Ω . We can perform a rigid reg-

istration using the surgeon’s knowledge of the current part of the liver that is being ma-

nipulated. This first registration gives us a region noted S0 ⊂ ∂Ω0 , which we use to fit the

observed data. We consider Sub the region S0 displaced by ub .

Thus, we consider the registration done when :

Γ⊂ Sub (6.1)

85

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

The displacement ub is computed as the minimizer of a functional J : C (Ω̄0) → R

which goes to zero only when equation 6.1 holds.

We define the functional J :

J (u) = 1

2

∫
Γ

d 2(y,Su)d y (6.2)

where d 2(y,Su) = mi nx∈Su‖x − y‖2 . In the following part, we formulate the optimal

control problem.

Optimal control formulation

We have defined the role of the functional J , which computes the discrepancy between Γ

and Su . While we can find trivial solutions to this problem, the role of optimal control is

to ensure that the physical properties of the model are respected. The simplest form of

the optimal control problem reads :

i n fb∈B J (ub) (6.3)

Where b is a set of forces applied on the surface of the body (B = L2(∂ΩN)), which

will be our control. When solving equation 6.3 the algorithm will try to find a force b such

that Γ and Sub coincide perfectly. The formulation of equation 6.3 does not constrain the

set of force in any way. The problem is ill-posed; we need a way to constrain the space of

forces to optimize toward a more probable solution. This is achieved by putting external

knowledge in the previous equation, such as load location and force distribution. Load

location can be added by restricting the optimization domain to a subdomain B such that

(b ∈ B ⊂ B), and force distribution can be controlled by a penalty term in the objective

function.

One important knowledge we can add to the optimization is the concept of noise.

When we reconstruct the surface observed by the laparoscope, we introduce noise in

the data. This noise comes from multiple sources, such as the reconstruction method or

the camera, and must be considered when we compute the non-rigid registration. Thus

letting the algorithm perfectly fit the observation would introduce non-realistic high-

frequencies in the model surface. These high frequencies also reduce the computation

speed of the method by requiring more solver iterations due to the important fine-tuning

of the final steps. In other words, we want a smooth surface minimizing the distance to

the reconstructed point cloud without overfitting the observations.

86

6.2. SHAPE MATCHING

To do so we reformulate the equation 6.3 to :

i n fb∈BΨ(b) where Ψ(b) = J (ub)+G(b) (6.4)

Where the constraint is the equation 2.35 that corresponds to the elastic deformation of a

body subject to external forces b . Here G(b) is a penalisation term such as :

G(b) = α

2

∫
∂ΩN

‖b‖d s or (6.5)

G(b) = α

2

∫
∂ΩN

∇·b d s (6.6)

The first one aims to minimize the amplitude of the forces applied to the object. The

importance of this criterion in the equation 6.4 is weighted using the term α , which val-

ues between zero and one. This is interesting since the algorithm cannot apply important

local forces to perfectly fit the point cloud, which could result in the described high fre-

quencies.

The second formulation tries to minimize the divergence of the forces and thus pro-

duce a force distribution where the vectors collinear one another. The term α plays the

same role as mentioned before. This is interesting since surgeons usually apply local pull

or push forces to the surface, which can be considered local divergence-free vector fields.

These regularisation criteria wrap up the first part of the algorithm. We now know

how given a control b , we evaluate how well a deformation fits the observed data. The

whole idea of optimal control is to find the control that minimizes the equation 6.4 This

minimization requires updating the controls and, thus, finding a way to compute the cor-

rect updates. In order to compute the update of the control, they chose to use the Adjoint

method, as it is a standard method for solving optimal control problems.

Solving equation 6.4 using a first-order optimizer requires computing ∇Ψ(b) . This

can be done considering h an admissible direction in the space of controls (force) and

w its corresponding direction in the space of state (displacement). We recall that Ψ(b)

hides the elastic problem, but every evaluation of Ψ requires to solves equation 2.35 first.

From this observation, we have that w is the solution of the tangent system ∇R(ub)w = h ,

where ∇R(ub) is the Jacobian of the elastic residual also know as the tangent stiffness

matrix. Using this notation, the first order derivation of Ψ becomes :

∇Ψ(b)T h =∇J (u)w+∇G(b)h (6.7)

One problem remains, on the right-hand side, we have ∇J (u) that is expressed in the

space of displacement where we would like it to be expressed in the space of controls.

87

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

In the adjoint method, the adjoint state p is used to do just that. We define p as the

solution of the adjoint system :

∇R(ub)p =∇J (ub) (6.8)

Although we solve a single linear problem (the value of p do not affect R(ub)), we cannot

precompute (∇R(ub))−1 in the case of nonlinear materials since the response is not linear.

This gives us the following:

∇J (ub)w = pT∇R(ub)w = pT h (6.9)

Thus, we can rewrite equation 6.7 as:

∇Ψ(b) = p+∇G(b) (6.10)

Our favorite first-order optimizer can use this gradient to minimize Ψ .

We have now presented all the parts constituting the method proposed by Mestdagh

et al. [78]. We now present the algorithm in its entirety. As shown in Figure 6.5, the algo-

rithm starts with an initial guess, usually zero. The corresponding deformation is com-

puted to give a displacement u . This displacement is evaluated using a loss function that

computes the distance from the mesh to the observational data. From this evaluation,

the adjoint system is built and solved, giving us the increment in force we must apply to

minimize the loss of function value.

6.2.2 Our contributions

Our contributions to the subject will improve the algorithm’s computational performance.

The presented algorithm is subject to two main computational bottlenecks, which can be

removed using deep learning techniques. This acceleration is achieved using deep neural

networks trained to produce deformations from input forces.

First bottleneck: Simulation of nonlinear material. The first bottleneck we aim to tackle

appears in the forward simulation step. This step is the most computationally demanding

part of the algorithm. It computes the deformations of an object subject to a control using

the finite element method presented in Chapter 2. This can be easily computed in real-

time when dealing with linear material. This is done by observing that the left-hand side

of the system we are solving in equation 2.37 is composed of only two members, the vari-

able we are solving for and the tangent stiffness matrix K(u+du) The matrix K(u+du)

representing the mechanical properties of the object is constant since the material is lin-

ear. Therefore, one can precompute the value of (K(u))−1 and simply right-multiply the

88

6.2. SHAPE MATCHING

Figure 6.5: Schematic of the algorithm proposed by Mestdagh et al. [78] where J (u) cor-
respond to the function evaluated in equation 6.4.

inverted tangent stiffness matrix to the external force. The simulation results in a single

matrix-vector product that can be computed in real-time even for objects composed of

hundreds of thousands of degrees of freedom. While this is extremely fast, linear ma-

terials do not correctly model biological tissues and are more accurately modeled using

nonlinear material.

The bottleneck appears when we try to deal with nonlinear materials. Here, the ma-

trix K(u+du) is no longer constant; thus, we cannot precompute its inverse. Therefore,

we have to solve multiple subsequent linear systems where each system will most likely

take more time than a 1
60 of a second (real-time criterion) when dealing with meshes of

interest in this thesis. The full resolution of the systems can take multiple seconds and

therefore is not usable as such in the context of an operation room.

Our contribution to reducing this bottleneck is to use our artificial neural network to

compute the forward simulations. By identification, we can see similarities between the

control of this method and our previous work. Both inputs/control are external forces;

both outputs are the resulting deformations. We replace the simulation with an ANN that

performs the same operations but much faster, as shown in Chapter 4. With this improve-

ment, the cost of a simulation goes from multiple seconds to less than a millisecond. Fur-

thermore, the most important bottleneck of the algorithm now becomes its fastest part.

89

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

To keep track of the different improvements of the original algorithm, we transform the

previous Figure 6.5 into Figure 6.6:

Figure 6.6: Schematic of the algorithm with our solution to remove the first bottleneck.
The simulation step has been replaced with an ANN that does the same job.

Introducing a neural network in the loop has advantages over going fast. One of the

key advantages is that most deep-learning frameworks use a technique where a program

computes a value and a procedure to compute the derivative of that value. This tech-

nique is called automatic differentiation and has been key in developing deep learning

since one only needs to implement the forward computation to develop new models. The

backpropagation algorithm can use the graph given by the automatic differentiation with-

out being explicitly told by the user how to differentiate for each neuron. This remark is

of interest since the second bottleneck of the algorithm is the adjoint problem which re-

quires computing derivatives. In the next paragraph, we present our take on improving

the speed at which we compute ∇Ψ to update the control.

Second bottleneck: Adjoint problem Evaluating the adjoint problem is a mandatory

step in the algorithm. The step is responsible for computing the gradient of the loss func-

tion used to update the control. Gradient computation is achieved by solving the linear

system presented in equation 6.8. One term of the loss function (J (ub)) is computed in the

space of states, and thus the gradient of this function is expressed in this same state. This

90

6.2. SHAPE MATCHING

system transforms the gradient of this term (∇J (ub)) from the states space to the controls

space. Once solved, all the terms are expressed in the control space, and therefore, we can

update the control using our favorite first-order optimizer.

We have updated the forward simulation with a neural network that predicts defor-

mations in less than a millisecond for meshes denser than those of interest. We are now

stuck with a step that requires solving a linear system to change the base of a gradient.

While a single linear solve can be achieved in real-time for decently sized meshes, the al-

gorithm loops multiple times to update the controls. Therefore, we have to solve multiple

sequential adjoint problems. The linear solution reduces the algorithm’s scalability and

speed, which puts us out of the real-time criterion.

In order to speed up the computation, we would like to avoid this system while be-

ing able to compute ∇Ψ . Thanks to the neural network added in the loop, we already

use a deep-learning framework. Therefore, we can easily use the associated tools, such

as automatic differentiation and backpropagation. The backpropagation algorithm pre-

sented in section 3.5 relies on the chain rule to compute the gradient of the loss function

with respect to any variable involved in the computation. The chain rule does not require

solving a linear system but either rely on a graph of computation. This is a significant ad-

vantage but also restricts us in the range of tools we can use. In order to keep the chain

rule possible, every operation has to be computed in the framework of the neural network

(in our case PyTorch). Mainly the loss function has to be implemented using primitives

of PyTorch. This said the control is involved in the computation (input of the network),

meaning that we can differentiate Ψ with respect to b , thus obtain ∇Ψ . We are lead-

ing to our last contribution to the subject, where we replace the adjoint problem with the

backpropagation algorithm.

The Figure 6.7 presents our full contribution to the matter where the simulation is

replaced by a neural network and the adjoint problem by the backpropagation algorithm.

We have now presented our total contribution and will discuss the results.

6.2.3 Results

To assess the validity of our method, we first consider a toy problem involving a square

section beam with 304 hexahedral elements (Figure 6.8). The network is trained using

20,000 pairs (b,ub) , computed using a Neo-Hookean material law with a Young’s modulus E =
4,500 Pa and a Poisson’s ratio ν= 0.49 . We create 10,000 additional synthetic beam defor-

mations, distinct from the training dataset, using the SOFA finite element framework [28].

Figure 6.9 shows three examples of synthetic deformations, along with the sampled point

91

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

Figure 6.7: Schematic of the algorithm with our solution to remove the second bottle-
neck. The simulation step has been replaced with an ANN that does the same job, and the
backpropagation algorithm has replaced the adjoint system.

Figure 6.8: Beam used in this section (blue) attached to the grey wall which represents
Dirichlet’s boundary conditions

clouds. Generated deformations include bending (6.9a), torsion (6.9c), or a combination

of them (6.9b). We sample the deformed surface for each deformation to create a point

cloud. We then apply our algorithm with a relative tolerance of 10−4 on the objective gra-

dient norm. We computed some statistics regarding the performance of our method over

a series of 10,000 different scenarios. We obtained the following results: mean registra-

tion error: 6×10−5 ±6.15×10−5 , mean computation time: 48 ms ±19 ms and the mean

number of iterations: 27 ± 11.

92

6.2. SHAPE MATCHING

(a) TRE: 5.9×10−5 , time: 0.07 s,
iterations: 13

(b) TRE: 6.6 × 10−5 m, time:
0.09 s, iterations: 15

(c) TRE: 3.4×10−5 , time: 0.115
s, iterations: 19

Figure 6.9: Deformations from the test dataset. The red dots represent the target point
clouds, and the color map represents the Von Mises stress error of the neural network
prediction.

Measurement Mean STD Minimum Maximum

Registration 5.99×10−5 6.15×10−5 1.30×10−7 6.20×10−4

Computation time 48 ms 19 ms 2 ms 210 ms

Number of iterations 27 11 0 122

Table 6.1: This table gathers statistics for 10,000 test cases and presents registration errors,
number of iterations, and computation times (in ms).

Using a FEM solver, each sample of the test dataset took between 1 and 2 seconds to

compute. This is primarily due to the complexity of the deformations as shown in 6.9.

Such displacement fields require numerous costly Newton-Raphson iterations to reach

equilibrium. The neural network provides physical deformations in less than a millisec-

ond regardless of the complexity of the force or resulting deformation, which highly im-

proves the computation time of the method. From our analysis, the time repartition of

the different tasks in the algorithm is consistent, even with denser meshes. Network pre-

dictions and loss function evaluations represent 10% to 15% each, and gradient com-

putations represent up to the last 80% of the whole optimization process. This allows us

to reach an average registration error of 5.37×10−5 in less time than it takes to compute

a single simulation of the problem using a classic FEM solver. Such error represents an

excellent mesh fit in the point cloud as shown in 6.9.

93

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

Due to the beam shape symmetry, some point clouds may be compatible with several

deformed configurations, resulting in wrong displacement fields returned by the proce-

dure. However, our procedure achieved a satisfying surface matching in each case. These

results on a toy scenario prove that our algorithm provides fast and accurate registrations.

In the next part, we apply our method in augmented surgery with the partial surface

registration of a liver and show that with no additional computation, our approach pro-

duces the forces that generate such displacements with satisfying accuracy.

We now turn to another test case involving a more complex domain. The setting is

similar to [78, Sect. 3.2]. In this context, a patient-specific liver mesh is generated from

tomographic images, and the objective is to provide augmented reality by registering, in

real time, the mesh to the deformed organ. Only a partial point cloud of the visible liver

surface can be obtained during the surgery. The contact zones with the surgical instru-

ments can also be estimated.

Figure 6.10: Mesh of the liver used in this section. Composed of 3,046 vertices and 10,703
tetrahedral elements, which represents a challenge compared to the one used in 6.9

In our case, the liver mesh contains 3,046 vertices and 10,703 tetrahedral elements.

Homogeneous Dirichlet conditions are applied at zones where ligaments hold the liver

and at the hepatic vein entry. Like previously, we use a Neo-Hookean constitutive law

with E = 4,500 Pa and ν= 0.49 , and the network is trained on 20,000 force/displacement

pairs. We create five series of synthetic deformations by applying a local variable force

distributed on a few nodes on the liver mesh boundary. Each series is composed of 50

incremental displacements and the corresponding point clouds. The network-based reg-

istration algorithm updates the displacement field and forces between two frames. We

also run a standard adjoint method involving the Newton algorithm to compare with our

approach. As the same mesh is used for data generation and reconstruction, the Newton-

based reconstruction is expected to perform well.

94

6.2. SHAPE MATCHING

liver partial surface matching for augmented surgery

This subsection presents two relevant metrics: target registration error and computation

times. In augmented surgery, applications such as robot-aided or holographic lenses re-

quire accurate calibrations that rely on registration. One of the most common metrics

in registration tasks is the target registration error (TRE), which is the distance between

corresponding markers not used in the registration process. In our case, we work on the

synthetic deformation of a liver. Thus, the markers will be the nodes of the deformed

mesh.

1 2 3 4 5
Sequence

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

TR
E

in
 m

m

1 2 3 4 5
Sequence

0

100

200

300

400

Co
m

pu
ta

tio
n

tim
e

in
 m

s

Figure 6.11: Average target registration error and computation times of each sequence.

The five scenarios present similar results with TRE between 3.5 mm and 0.5 mm .

Such errors are entirely acceptable and preserve the physical properties of the registered

mesh. We point out that the average TRE for the classic method is around 0.1 mm , which

shows the impact of the network approximations.

Due to the nonlinearity introduced by the Neo-Hookean material used to simulate the

liver, we need multiple iterations to converge toward the target point cloud. Considering

the complexity of the mesh, computing a single iteration of the algorithm using a classi-

cal solver takes multiple seconds, which leads to an average of 14 minutes per frame. Our

proposed algorithm uses a neural network to improve the computation speed of both the

hyper-elastic and adjoint problems. The hyper-elastic problem takes around 4 to 5 mil-

liseconds to compute while the adjoint problem replaced by the backpropagation algo-

rithm takes around 11 ms . This leads to significant improvement in convergence speed

as seen in 6.11 where we reduce the computation time by a factor of 6,000 on average.

95

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

6.2.4 Force estimation for robotic surgery

In the context of liver computer-assisted surgery, the objective is to estimate a force distri-

bution supported by a small zone on the liver boundary. Such a local force is, for instance,

applied when a robotic instrument manipulates the organ. In this case, it is critical to es-

timate the net force magnitude applied by the instrument to avoid damaging the liver.

(a) Frame 1

(b) Frame 26

(c) Frame 50

Figure 6.12: Synthetic liver deformations and force distributions (left), reconstructed de-
formations and forces using the Newton method (middle) and the network (right) for test
case 3.

To represent the uncertainty about the position of the instruments, the reconstructed

forces are allowed to be non-zero on a larger support than the original distribution, as

shown in Figure 6.13.

96

6.2. SHAPE MATCHING

Figure 6.13: On the left-hand side, the original simulation that produced the point cloud
used in the registration of the right-hand-side picture. A registration is performed on the
right-hand side to match the point cloud. The support in blue is larger than the original
zone where forces are applied, yet, the optimization gives forces similar to the original.

Figure 6.12 shows the reference and reconstructed deformations and nodal forces for

three frames of the same series. While the Newton-based reconstruction looks similar to

the reference one, network-based nodal forces are much noisier. This is primarily due to

the network only approximating the hyper-elastic model.

1 2 3 4 5
Sequence

0

10

20

30

40

50

60

Fo
rc

e
es

tim
at

io
n

er
ro

r i
n

%

Figure 6.14: Force estimation error of the five sequences using our method, in red the
average force reconstruction error with the classical method.

The remarkable improvement in speed comes at the cost of precision. The neural

network provides noisy force reconstructions, as shown in 6.12. This is primarily due to

prediction errors since the ANN only approximates solutions. These errors also propagate

through the backward pass, thus, accumulate in the final solution. Although the force

estimation is noisy for most cases, it remains acceptable as displayed in 6.14. The red

97

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

dotted line corresponds to the average error obtained with the classical adjoint method

(10.04 %). While we are not reaching such value, some sequences, such as 1 and 3, provide

good reconstructions. The difference in errors between scenarios is due mainly to training

force distribution. This problem can be corrected by adding more data to the dataset, thus

providing better coverage of the force and deformation space.

These results show that this algorithm can produce fast and accurate registration at

the expense of force reconstruction accuracy. This also shows that the force estimation

is not directly correlated to registration accuracy. For example, sequence 1 has the worst

TRE but a better force reconstruction than sequence 4.

Finally, these results are computed under the hypothesis of a perfect rigid registration

and surface acquisition. We will now discuss the impact of these hypotheses on a single

example where we will vary the amplitude of the noise for both parameters.

Impact of the hypothesis

Our presented results were computed assuming perfect rigid registration of the liver and

perfect acquisition of the surface. These assumptions can be considered strong thus to

finalize our work we have to study the impact of the registration and surface acquisition

on the method.

The study will consider a realistic scenario where noise appears in the rigid registra-

tion and target. We will then analyze its impact on the method by discussing the fluctua-

tion of the TRE and force reconstruction.

Our first hypothesis rely on the fact that we are able to compute a perfect rigid reg-

istration before we start our non-rigid registration process. Since perfect registration do

not exist we want to study the impact such error on the final registration and force recon-

struction. To do so we consider a transformation matrix T ∈R4×4 as follows:R t

0 1


Where R is a rotation matrix and t a translation vector. The rotation matrix and trans-

lation are generated using an unbiased Gaussian noise with variance between 10−4 and 10−3 .

The transformation matrix T is then multiplied to the position vector of the mesh which

will apply a rotation and translation of the geometry. To represent our second hypothe-

sis on target acquisition, we add a Gaussian noise vector with the same parameter as the

previous transformation to the target position. We chose this range of variance since this

kind of noise represents important error on the registration as shown in Figure 6.15. Fur-

98

6.2. SHAPE MATCHING

thermore, it represents the range in which we expect this method to be used for realife

application cases.

(a) σ= 10−4 (b) σ= 10−3

Figure 6.15: Two examples of noisy rigid registrations used in this study with in yellow
the reference position, in black the noisy rigid registration. The left and right-hand side is
generated using an STD of 10−4 and 10−3 respectively.

This study will compare the TRE and force reconstruction of a single frame where the

model is subject to random rotation and translation and target is subject to noise. To

give a point of comparison we want to first present these value in the case of perfect rigid

registration and target. For this example in the perfect scenario our method reach a TRE of

6.35×10−6 and a force reconstruction error of 27.34% . For this study we computed 10,000

registrations. These samples are distributed in 10 classes of uniformly distributed STD

({1.0×10−4,2.0×10−4 · · · ,1.0×10−3}). For each class we have drawn 1,000 random rotation

matrices, translation and noise vectors with the said STD then proceed to reconstruct the

force with the presented method.

99

CHAPTER 6. OPTIMAL CONTROL FOR AUGMENTED SURGERY

(a) Target registration error

(b) Force reconstruction error in %

Figure 6.16: Top : Graph of the target registration error as a function of the STD of the
gaussian noise. Bottom : Graph of the error on the force reconstruction as a function of
the standard deviation of the gaussian noise. Dark blue represent the mean of the sam-
ples, while light blue represent the standard deviation of the measured quantity. The red
line represent the value computed on the noise-free ground truth.

Let us first consider the target registration error in Figure 6.16a. The average TRE ap-

pears to slowly grow with the noise going from 6.4×10−6 to 7.5×10−6 . This represent

100

6.2. SHAPE MATCHING

an increase of approximately 10% when the noise increases by 1000% which tells us that

our method is on average resilient to the noise in the expected application range. The

standard deviation of the error also increases with the noise growing from 8.13×10−8 to

2.53×10−6 . While this represents an important relative growth (×31) at any point in our

test the standard deviation is multiple orders of magnitude smaller than the input noise.

The average and standard deviation of the target registration error are slightly affected by

input noise, yet, our algorithm keeps predicting an acceptable displacement fields. This

proves that our method is resilient to the expected noise and thus could be a solution to

the initial problem for the nonrigid registration aspect of the problem.

We now focus our attention on the force reconstruction aspect of the method (Fig-

ure 6.16b). We can observe a pattern similar to the TRE. The average reconstruction error

starts with an error slightly higher than the baseline with 28.0% and slowly increase to

32.2% . Here also our method has a relative growth two orders of magnitude smaller than

the noise proving that even for the force reconstruction the average solution is resilient

to the tested noise. Finally, the standard deviation of the reconstruction error increases

from 0.83% to 7.65% . Such results suggest that the force reconstruction is more prone

to producing outliers and therefore might not be applicable in all range of noise.

Overall for acceptable rigid reconstruction noises our method is able to perform an

efficient fitting of the observed data with an expected TRE between 6.4×10−6 and 1.0×
10−5 which remain acceptable for most applications. Although the force reconstruction

performs well on average this the standard deviation of this quantity is more susceptible

to the noise and thus might not be applicable when the data are not clean enough.

This chapter concludes our contributions to this thesis. The next chapter presents un-

published but promising results on a new concept called differentiable solver. We start by

presenting what is a differentiable solver and how we implemented it using PyTorch. We

finish by presenting the possibilities of this new concept by playing with different opti-

mization parameters.

101

C
H

A
P

T
E

R

7
LASTEST OPTIMISATION TOOL:

DIFFERENTIABLE SIMULATION

7.1 DiffEn : A differentiable solver based on energy 105

7.2 Results and future works . 118

8.1 Summary and achievements . 135

8.2 Outlook and futur work . 137

103

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

We have presented our approach at combining the optimal control framework with

deep learning. We have seen that most of the error on the force reconstruction comes

from the fact that the network only approximates the correct solution. Thus, might re-

quire a better training that what is already done.

A better training can be achieved by either letting the learning run much longer at the

risk of over fitting the dataset or giving the network a better feedback about the prediction

errors. We have presented the physics informed loss function that aim at giving informa-

tion about the physical properties of the prediction thus improving the feedback about

the predictions. Yet, similar to the data-driven learning the loss function will most likely

not reach zero during training. The optimization of the training process will minimize

the supervised terms and the residual terms as much as possible but non-zero contribu-

tion can remain. In that sense, the physical constraints only represent soft constraints,

without guarantees of minimizing these.

The ease of access to the different derivative of the model is one strong point of such

method. On the other side we are constrained by the learned representation regarding the

reliability of these derivatives. Also, each derivative requires backpropagation through the

full network and as we presented in the previous section this can be time-consuming.

Finally, the setup is simple but quite difficult to control. The model can refine the

solution by itself but requires using multiple technics to make sure it is focusing on the

regions of interest.

Removing this drawback requires going to the next step and writing a simulation en-

gine using automatic differentiation. This will allow to easily and naturally incorporate

deep learning in simulation without only relying on blackbox generated data and a phys-

ical loss function. Such simulators are called differentiable simulators, and, in our case,

differentiable physics simulator.

The goal of such methods is to use existing numerical method and reimplement them

using automatic differentiation framework. This allows to differentiate them with respect

to their inputs by running the backpropagation algorithm to let the gradient flow through

the simulator / neural network. This as multiple advantage such as improved feedback

and generalization, but also being able to solve larger classes of inverse problems very

efficiently.

Before we start presenting our results on the subject of differentiable simulators we

want to mention that it already exists multiple example of such physics engines. Yet we

haven’t found one that satisfy our needs. For example, DiffCloth [59] only works for cloth-

like objects, REDMAX [116] is designed for articulated bodies and PhiFlow [42] is poorly

designed for mesh deformation and would require a lot of workaround. The closest work

to our goal is GradSim [46]. This framework allows computing FEM simulations but only

104

7.1. DIFFEN : A DIFFERENTIABLE SOLVER BASED ON ENERGY

on tetrahedron meshes made of incompressible NeoHookean material which greatly re-

duce its use cases.

In this section we present unpublished promising results on the development of a

FEM differentiable simulator that is based on energy formulation. The simulator devel-

oped in PyTorch supports linear and quadratic tetrahedron and hexahedron as well as

multiple linear and nonlinear materials. We start by formulating the FEM elastic problem

in terms of energy and see how we derive it to fall back on equation 2.35. We then present

how we efficiently compute the different members of the equation in PyTorch. Once all

members are computed, we present the workflow of the engine and how it optimizes the

corresponding variables. Finally, we will present how to use it to solve complex forward

and inverse problems.

7.1 DiffEn : A differentiable solver based on energy

7.1.1 Energy formulation of the elastic problem.

In the FEM framework, the global energy is computed by accumulating local energy over

each element. Each local energy is an independent scalar. Therefore, the computation is

highly parallelizable and memory efficient, perfect for GPU computation.

These affirmations are not true when discussing internal forces deriving from inter-

nal energy. Internal forces are nodal quantities that derivate from an element quantity.

As shown in Figure 7.1, their computation requires adding the participation of each ele-

ment to which the node belongs, thus, creating memory access conflict and reducing the

computation speed.

105

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

(a) Computation of the global energy. (b) Computation of the internal force associated
with the fifth node.

Figure 7.1: Difference in computation, figure a) computes the global energy while fig-
ure b) computes the force for a single point of the mesh. Force computation requires to
use scatter operator, which is not vectorizable; hence, slower than simply computing the
energy.

Since our engine is written in PyTorch and this framework allows easy computation

on the GPU, we preferred to work with energy to maximize the performance. We now

present in detail how the elastic problem is formulated in terms of energy and how we

can fall back on equation 2.35 from it.

Let us consider a domain Ω ⊂ R3 filled with an elastic material. The global elastic

energy or internal elastic energy is computed by accumulating the local elastic energy

over the whole material. Namely, the global elastic energy reads:

W (u) =
∫
Ω

w(∇u)d x (7.1)

where w is a function of ∇u representing the local elastic energy invariant by any rigid

transformation. The deformation energy is minimal when the domain is at rest (Ω=Ω0).

The energy cost to bring the material from its rest shape to a given displacement u is

given by W (u)−W (0) .

Deformations are the result of external stress applied to the object using forces. Forces

summarize various types of interaction by describing the first-order variation of the total

energy around a given displacement u . In static elasticity, a force is represented by a

linear potential energy. Consider b a force distribution; the associated linear potential

106

7.1. DIFFEN : A DIFFERENTIABLE SOLVER BASED ON ENERGY

energy is as follows:

−〈b,u〉 =−
∫
Ω

b ·ud x (7.2)

The configuration then gives a stable equilibrium that minimizes the system energy.

In other word, the displacement u generated by b is a solution to the optimization

problem :

min
u∈U

W (u)−〈b,u〉 subject to ui = 0 ∀ui ∈ ∂ΩD (7.3)

where U is the set of admissible displacements. Feasible displacement in static elasticity

involves sets of Dirichlet boundary conditions ∂ΩD ⊂ ∂Ω to ensure the existence of a

solution.

We note that equation 7.3 comprises two terms. As the name suggests, the first one,

linear potential energy, is linear in u . The second one W (u) can be either linear or

quadratic in u depending on the material used to simulate the object. One key aspect of

W (u) is that ∀u ∈U,W (u) ≥ 0 . Meaning that the solution u will be the value at which the

derivatives of the minimized function values at zero. Hence, the minimization problem

can be written as follows:

min
u∈U

W (u)−〈b,u〉 ⇐⇒ (7.4)

∇uW (u)−∇u(〈b,u〉) = 0 ⇐⇒ (7.5)

R(u)−b = 0 (7.6)

This formulation loops us back to equation 2.35. From here, we know how to solve the

system with traditional methods.

We will now present how we compute the different members of equation 7.3.

7.1.2 Efficient computation of energy terms

The presented differentiable simulator works using the PyTorch framework. PyTorch al-

lows running computations on the GPU by simply setting a flag to the correct value. GPUs

have been developed to process massively parallel computations. In this context, vector-

ization of the computation is essential since we want to take full advantage of the hard-

ware architecture. Code vectorization is often a complex process that requires a deep

understanding of the problem and programming language. In order to have a better un-

derstanding of the fully vectorized source code coming after, we have to introduce some

Python and PyTorch tricks.

107

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

Topological representation in position space One interesting aspect of Python is the

notion of slice. A slice is an unordered collection of unique integers. A slice is also a

Python object usually used to access array values. As shown in Figure 7.2, the operation

returns a subset of the previous array where the values are ordered according to the slice

order.

Figure 7.2: Example of a sliced array in Python. Array sl i ced_A contains the fifth, first,
and second value of array A.

Slices are not limited to one-dimensional collection and can therefore represent a

topology. We can use this knowledge to have a topological representation in the position

space. By this term, we mean to have an array whose shape is the same as the topology

array where instead of indices, we have 3D coordinates as presented in Figure 7.3

This representation is one trick to vectorize the code, but as it often happens, vector-

ization is a tradeoff between memory and speed. In the given example (Figure 7.3), the

values of nodes one and three are duplicated in the array Pos_tr i . Therefore, the memory

footprint of this representation is quite important compared to the classical (Posi t i on,Topol og y)

pair. For example, for a mesh of 40 nodes and 100 triangles, the pair is around 3,600 bytes,

while the topological representation in position space weighs around 7,500 bytes. If we

consider a hexahedra topology, the weight reaches 19,000 bytes.

We now know that we can build a topological representation of a mesh in the position

space by indexing the position array by the topology, but why would we do that? The

answer is a vectorization of the energy computation. Each array line is an element we can

perform the computation to obtain the local elastic energy. Duplicating the data avoid

the random memory access collision and can perform the computation in parallel.

We can now proceed to the next trick, which allows fast, complex vectorized compu-

tations.

Einstein notation for vectorized tensor operation Einstein notation or Einstein sum-

mation convention is a notational convention that implies summation over a set of in-

dexed terms in a formula. While this is primarily useful when dealing with equations on

paper, most mathematical frameworks have implemented a function called einsum. This

function takes as a parameter a string that describes the operation according to Einstein

108

7.1. DIFFEN : A DIFFERENTIABLE SOLVER BASED ON ENERGY

Figure 7.3: Example of two topological representations in position space (Pos_quad and
Pos_tr i). Indexing the array of positions by the topology creates a topological representa-
tion in the position space of the object. We create an array in which the first dimension is
the number of elements in the topology, the second is the number of vertex per element,
and the third is the number of space dimensions.

notation and a list of corresponding tensors. This explanation might be blurry right now,

so let us have a couple of examples.

Assuming that a and b are vectors in Rn and A and B are tensors in Rm×p Figure 7.4

present some basic matrix/vector operations where n,m, p are compatible dimensions.

Figure 7.4: Example of the utilization of the enum function. This description of the com-
putation allows for parallel vectorized execution of the operations.

109

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

Is the increase in code complexity worth it? Let’s compare the execution time of a

single matrix-vector product using three different methods. As presented in Figure 7.5,

the first consists of implementing the product using two nested for-loops, the second uses

the built-in product operator, and the third uses the enum description.

Figure 7.5: The three compared product formulations written using the PyTorch frame-
work.

Given a 1,000×1,000 matrix, the first method takes around 20 seconds on the GPU.

This value seems absurd, but the nested for-loop introduces a lot of synchronization

points and data transfer between the CPU and the GPU, dramatically slowing the com-

putation. The built-in method takes a reasonable 9 ms to compute the product, while the

enum is four times faster at 2.2 ms per product.

The einsum function is exceptionally versatile in tensor manipulation, as presented in

Figure 7.4, where built-in functions are rigid in their behavior. Furthermore, even for sim-

ple operations, enum is significantly faster than built-in functions making it a must-have

in our code base. Finally, the relative complexity in development only appears during

the first few use of the Einstein notation. With a handful of tests, one quickly get used to

reading and understanding enum strings.

We now present how we compute the total elastic energy using these two tricks.

Elastic energy In order to compute the total elastic energy, we first have to compute the

element-wise elastic energy and then sum over all elements according to equation 7.1.

Computing local elastic energy requires information about the local deformation varia-

tion, i.e., we need to compute the deformation gradient. We know from equation 2.4 and

equation 2.9 that we can use the position and derivative of the shape function to compute

110

7.1. DIFFEN : A DIFFERENTIABLE SOLVER BASED ON ENERGY

the deformation gradient F .

We have F = I+∇X u

And also ∇X ue =
ne∑

i=1
ui ⊗∇X Ni

Furthermore, x = X+u and I = X⊗∇X N

Hence we can write, F = x⊗∇X N

From this mathematical formulation, we can now write the associated Python code

using the two presented tricks. We first create a topological representation in our object’s

position space, then apply the tensor product on the corresponding dimension.

Figure 7.6: Computation of the deformation gradient using PyTorch.

Using the presented formulation of the isoparametric element in section 2.2, we can

precompute dN_dx. The tensor J represents the scale of volume change; a gain of vol-

ume will produce a J bigger than one, whereas a loss of volume is smaller than one. The

position tensor is transposed to align the dimensions with the ones of dN_dx.

The deformation gradient is used to compute the right Cauchy-Green strain tensor at

the Gauss nodes noted C . Its computation is different if we consider both linear and

nonlinear material.

Figure 7.7: Computation of the right Cauchy-Green strain tensor using PyTorch for linear
and nonlinear case.

The right Cauchy-Green strain tensor is used to compute the Green-Lagrange defor-

mation tensor E .

Figure 7.8: Computation of the right Green-Lagrange deformation tensor using PyTorch.

Finally, using J and E , we can compute the material elastic potential energy W . This

response depends on the material used as suggested by equation 2.4 and equation 2.4.

111

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

Before presenting the associated code, we want to mention that Saint-Venant-Kirchhoff

extends linear material to essential deformations. Therefore, the difference in the formu-

lation appears in the choice of computation for the Cauchy-Green strain tensor.

Figure 7.9: Computation of the element-wise incomplete elastic potential energy using
PyTorch.

Finally, since we work with isoparametric elements, we have to multiply the element-

wise incomplete elastic potential energy by Gauss quadrature nodes weights (w) and

the determinant of the Jacobian of the Gauss nodes transformations mapping from the

elementary space to the world space (det (J)). These values are constant during the sim-

ulation if the topology remains constant and are therefore precomputed.

Figure 7.10: Computation of the element-wise elastic potential energy tensor using Py-
Torch.

Finally, the elastic potential energy is given by summing all the contributions.

Figure 7.11: Computation of the total elastic potential energy tensor using PyTorch.

We have presented how to compute the first member of the minimization problem.

We will now present the second one, the linear potential energy.

Elastic energy As presented in equation 7.2, the linear potential energy is the integra-

tion over the whole domain of an element-wise product, a dot product in our discrete

space.

The formulation of this potential then becomes:

Figure 7.12: Computation of the linear potential energy tensor using PyTorch.

112

7.1. DIFFEN : A DIFFERENTIABLE SOLVER BASED ON ENERGY

We have presented both terms of the minimization function; we now present the com-

putation of the Dirichlet conditions.

Dirichlet boundary conditions The Dirichlet boundary condition are defined by a fixed

value for a given node. This value can evolve in time, but, in our case, we work with a static

equation; hence we have constant Dirichlet conditions.

In order to solve the problem while keeping the chain rule active, we implement them

in a soft manner. The squared norm is added to the minimization function. Thus, equa-

tion 7.3 becomes:

min
u∈U

W (u)−〈b,u〉+‖ui‖2
2 ∀ui ∈ ∂ΩD (7.7)

min
u∈U

F (u) (7.8)

As for the last term, a squared l2 norm is a dot product, so the error on the boundary

conditions is implemented as such:

Figure 7.13: Computation of the Dirichlet boundary conditions tensor using PyTorch.

We conclude this section the Dirichlet boundary conditions. We now present how the

engine process these quantities to compute deformations.

7.1.3 Engine workflow

The engine has been designed to achieve two main goals. The first one is to be able

to compute the solution to soft-body problems for linear and nonlinear material com-

posed of linear or quadratic elements. The second one relies on the first one and imposes

the condition that the solution of the soft-body problem must be differentiable using the

backpropagation algorithm.

Having its own soft-body simulation engine is an exciting feat. However, another en-

gine with better performance and flexibility is likely to exist. The gain appears in the sec-

ond goal, where we want the solution to be differentiable. The gain is two-fold; with this

condition, we can train a neural network over a simulation since we can backpropagate

the error through the network. We also can use methods similar to the one presented in

the previous section 6.2 to optimize several simulation parameters to fit observations.

Solving the soft-body problem presented in equation 7.8 requires assembling the dif-

ferent terms. We implemented a manager called SystemManager to do so. The manager

113

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

handles two entities. The first ones are potentials, which are the minimized quantities.

The second ones are the constraints which are used to represent Dirichlet boundary con-

ditions but not only. The system manager runs as presented in Figure 7.14:

Figure 7.14: Presentation of the SystemManager workflow.

This gives us an evaluation of the system, yet, we want to optimize the displacement

field to minimize this function. To do so, we add a step of the Newton-Raphson algo-

rithm after the evaluation as presented in section 2.6. Thus, the schematic of the engine

becomes:

114

7.1. DIFFEN : A DIFFERENTIABLE SOLVER BASED ON ENERGY

Figure 7.15: Presentation of the differentiable physics engine workflow.

This schematic achieves the first goal of simulating the forward problem and com-

puting the solutions of soft-body simulations. Achieving the second goal is more compli-

cated. The forward problem requires the computation in the SystemManager to be dif-

ferentiable to optimize for the displacement. Having a differentiable solution forces us to

implement a differentiable Newton-Raphson algorithm since the resulting displacement

field is an algorithm output.

It would be redundant to present the Newton-Raphson code in its entirety since it is

implemented as described in section 2.6 In the next paragraph, we present some sticking

points when it comes to making the solver differentiable.

Differentiable Newton-Raphson First, we want to mention that the code is inspired by

the work of Reuben Feinman [29].

The first sticking point is the computation of the derivatives. Newton-Raphson’s steps

rely on the computation of the tangent stiffness matrix. This matrix is the derivative of

the internal force with respect to the positions. The internal forces are the derivation

of the internal elastic energy. Therefore, we need to compute the hessian of the energy

with respect to the positions. Doing so requires computing the derivation graph of the

energy we are currently differentiating. This is achieved by setting the create_graph and

retain_graph flags to Tr ue using PyTorch.

115

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

Figure 7.16: Differentiation of a scalar function (function_to_minimize) with respect to
the input variable x. The flags create_graph and retain_graph are set to Tr ue , meaning
that we will be able to differentiate grad_f another time to obtain the tangent stiffness
matrix.

With this computation, we obtain the internal forces of the domain. The question

remains about how to compute the matrix K(u) from R(u) . The grad function from

autograd uses the vector-Jacobian product to compute the gradient of a function. When

the function returns a scalar, we do not have to specify the vector in this product since

we differentiate the scalar with respect to all the passed variables. When dealing with a

vector-valued function, we have to specify which variable of the result we want to differ-

entiate. This is achieved by passing a tensor to the grad_outputs variable, its value is by

default None, but when vector-valued functions are differentiated, it has to be set.

In our case, we want the first row of K(u) to represent the gradient of the first coeffi-

cient of the internal forces with respect to the positions (i.e. dR(u)i
du j

). Computing the i−th

line of K(u) is done by passing a one-hot vector which values at one at the i − th coef-

ficient. Therefore, we can build the tangent stiffness matrix by passing the identity ma-

trix as the vector in the vector-matrix product. The framework does not accept this. The

vector cannot be a matrix, but we can still vectorize the computation using the vmap

functional.

The functional vmap takes a function as a parameter and returns a function that

accepts parameters with an additional dimension. Meaning that instead of evaluating a

function multiple times with a for loop, we can now vectorize the evaluation as shown in

Figure 7.17.

Figure 7.17: We use vmap to vectorize the computation of the matrix K(u) . This greatly
improves performances compared to the naive for-loop method.

Once again, we set both graph-related flags to true to be able to backpropagate through

116

7.1. DIFFEN : A DIFFERENTIABLE SOLVER BASED ON ENERGY

the solver once the computation is over.

The second sticking point comes when we want to solve the linear system. Working

with energies, we know that K(u) is a symmetric positive-definite matrix. Therefore, we

can compute the Cholesky decomposition and solve the linear problem extremely fast.

The Cholesky decomposition and solve can be easily differentiated, as shown by Mur-

ray [83]. Differentiating the call is done by PyTorch, that have implemented the corre-

sponding functions cholesky_ex and cholesky_solve.

With these, we presented how to solve the forward problem, as Figure 7.15 shows,

using the Newton-Raphson algorithm, we optimize the displacement field to minimize

equation 7.8. Thanks to the multiple tricks presented, the final solution is differentiable.

As mentioned, this is important since it means we can optimize other parameters to fit

our observations.

The optimization of another parameter is achieved by introducing a computation

graph similar to the one presented in Chapter 6. Here the control does not need to be

the force; it can be any parameters that are set during the simulation, such as Young’s

modulus that defines the stiffness of the object or Poisson’s ratio that affect the volume

change of the objects.

7.1.4 Optimal control using differentiable physics

As presented previously Mestdagh et al. [77] method was mostly limited by computation

time. Our contribution has improved this limitation, where we use a neural network in-

stead of a soft-body physics engine to compute the forward pass and the backpropagation

instead of the adjoint method. The gain in computation time is significant, but force re-

construction has proven to be noisy. This is primarily due to the neural network only

approximating the deformation of the liver. The proposed neural network can be con-

sidered a straightforward soft-body physics engine that could handle a single mesh and

material and give an approximation of the FEM solution. One key aspect of this engine is

that the solution is differentiable, making it possible to optimize for controls, as presented

in our results.

We have presented a second physics engine which is more complex and supports any

conforming mesh with either linear or quadratic elements and different nonlinear ma-

terials. The solution of the engine is also differentiable, meaning that we can swap the

neural network for the differentiable engine seamlessly in our contribution. This should

lead to an increase in computation time but more pertinent control optimization.

Swapping the engines changes Figure 6.7 to Figure 7.18:

117

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

Figure 7.18: Schematic of the algorithm proposed to optimize any simulation parameter
c . The neural network of Figure 6.7 has been changed to the presented differentiable
solver. Which computes slower but precise deformations according to the finite element
framework.

As we can see, most of the computation remains the same, with only the engine part

that has been modified. Furthermore, the code is not specific to any particular control.

Thus, we can seamlessly optimize the forces, Young’s modulus, or Poisson’s ratio by setting

the correct flag to Tr ue .

In the following section, we present the type of results we obtain using our differen-

tiable solver. We start by comparing our solution against other FEM solvers and then test

our optimization algorithm to retrieve forces, Young’s modulus, and Poisson’s ratio of sim-

ulations.

7.2 Results and future works

After presenting the formulation and implementation of our differentiable solver, we have

to prove our claim on the topic.

We will first see if we can compute accurate deformations by comparing ourselves

against SOFA Framework [28]. SOFA is a successful physics engine that has been devel-

oped since 2006. It gathers 17 years of research in physics simulation and many publica-

118

7.2. RESULTS AND FUTURE WORKS

tions [6, 12, 20, 106, 124]. It implements multiple physics topics such as solid mechanics,

soft-body mechanics [89], fluid dynamics [1], thermodynamic [106]. Given the number

of people who have worked and published with the engine, we built trust in the solutions

given by its computation and consider it our ground truth.

We will then present how the solver performs when used to optimize for simulation

parameters. We start by presenting the solver performances on force optimization. In

order to get more insight into force optimization, we lead a small study on the effect of

multiple parameters, such as initial value and support.

We then proceed to optimize for Young’s modulus and Poisson’s ratio.

7.2.1 Exactness of the solution

Before optimizing for a given control, we have to ensure that the simulator produces the

correct solutions. This verification is done by comparing ourselves against SOFA Frame-

work [28].

The test will consist in computing 1,000 deformations of randomly sampled forces.

The deformations will be computed on a square section beam in which width and height

measure 0.25m and length 1.0m. Although we are not limited to computing the deforma-

tions of a beam (see Figure 7.19), we find this example explicit and intuitive and will use it

to present all of our results. The beam is composed of 500 nodes or 1,500 dofs assembled

in 304 hexahedra see Figure 7.19.

119

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

(a) (b)

Figure 7.19: On the left-hand side, an example of a deformation computed on a dragon
made of tetrahedra. On the right-hand side, the beam used in this section (orange) is
attached to the grey wall, representing Dirichlet’s boundary conditions. The surface mesh
comprises triangles, but the physic is computed on hexahedra.

In terms of material, the beam is filled with a NeoHookean material with Young’s mod-

ulus of 4,500 and a Poisson’s ratio of 0.49. Considering our application case, Yeh et al.[123]

showed that the liver Young’s modulus values somewhere between 1,000 and 10,000 Pa de-

pending on the strain and fibrosis classification of the organ. Picking 4,500 is a reasonable

guess. Finally, Poisson’s ratio defines how compressible the object is. With 0, the object

has no volume restriction, and with 0.5, the object is incompressible. Although 0.5 is not

a value we can input in the computation due to division by 0, we can pick a value that is

close to it. Yet, the closer the value is to 0.5, the more unstable the simulation becomes

due to dividing by a value close to zero. Organs such as the liver are mostly water, and

water is not compressible. Therefore, we chose to go with 0.49, where the simulation can

still be complex with a volume that is almost constant.

Before presenting the numbers, we want to display the diversity of the deformations

we test in Figure 7.20.

120

7.2. RESULTS AND FUTURE WORKS

(a) (b)

(c) (d)

Figure 7.20: Sample of the deformations present in the test dataset. The deformation is
heteroclite with bending and twisting from all ranges.

The dataset presents all types of bending varying from low to high amplitude but also

different twisting ranges. Some of these deformations are a combination of the two mak-

ing the simulations even harder to compute. This dataset has been constructed to put our

solver to the test, which will enlighten us on its flaws as well as its qualities.

Our comparative study is based on the displacement field. SOFA’s Newton solver and

ours are set with the same convergence thresholds of 10−6 on the norm of the update.

Thus, if the object has moved less than a micrometer, we consider the simulation as con-

verged, which at the scale of the simulation (≈ 1 meter) is already strict.

One small detail about the test is that our Newton-Raphson uses a strong-Wolfe line

search algorithm to perform an adaptive update of the displacement field, while SOFA

Newton-Raphson doesn’t. This linear search algorithm dramatically improves the solver

stability. On the test dataset, which mainly consists of challenging cases, the solver con-

verges 100% of the time using strong-Wolfe line search and only 20% of the time for

the classic update method. This different update pattern slightly changes the final solu-

121

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

tion, which is why we expect it to lead to errors in the order of magnitude of the threshold

in the results. Constructing the dataset using the SOFA framework, which does not use

a strong-Wolfe linear search algorithm, required us to subdivide the input force and ap-

ply incremental load. Depending on the subdivision, this incremental load multiplies

the computation times by five to ten. While we could have done the same for our solver, it

would not bring more information about the exactness of the solution than if we obtained

an error in the order of magnitude of the threshold.

We compare and study the differences between the displacement fields produced by

the two engines. To do so, we introduce classic error metrics such as the l 2 norm, node-

wise max, mean, and STD error.

Mean l2 STD l2 Mean node-wise STD node-wise Max node-wise

2.6×10−6 1.2×10−6 9.3×10−8 4.5×10−8 2.6×10−7

Figure 7.21: Results of the computation of 1,000 deformations using a square section
beam filled with NeoHookean material. As expected, the mean l 2 is in the range of the
threshold.

Over 1,000 deformations, we obtain an error of 2.6×10−6±1.2×10−6m which is what

we expected. The error is in the order of the threshold with a slight variation given by the

strong-Wolfe linear search algorithm.

The results on the node-wise quantities are also satisfying. The node-wise error values

are almost negligible with a max error of 2.6×10−7m .

Now that we have asserted the exactness of the solutions, we can use our differentiable

solver to optimize for controls such as force, Young’s modulus, and Poisson’s ratio. In the

next part, we will present our results on optimizing these parameters, starting with the

force, then proceed to Young’s modulus and Poisson’s ratio.

7.2.2 Force as a control

Using the method presented in the previous section (Figure 7.18), we can optimize for

a simulation parameter such as the external forces, but not only. In this subsection, we

present the results of the optimization of the forces.

We chose to put our work to the test using the previously mentioned dataset. The goal

will be to find the forces such that the computed displacement field matches the target.

This is achieved using the same approach presented for the liver in Chapter 6 but replac-

ing the neural network by a differentiable solver. We first randomly sample the surface of

the deformed mesh to create a point cloud that is used as a target for the optimization.

The error to the target is computed using the same metric as the one presented in the said

122

7.2. RESULTS AND FUTURE WORKS

chapter. We then optimize the forces so the beam fits in the point cloud. The fitting is

considered correct if the norm of the gradient of the update is below a certain threshold.

In our case, we set this threshold at 10−5 .

This study is divided into three parts. We first see if the algorithm can find a solution

to fit the target point cloud. We will then study the impact of the initial guess on the

computed force. Finally, we will discuss the impact of the support on the reconstructed

forces.

Although the two last parts are not the subject of this thesis, we thought they could

bring a better understanding of the matter. We limit the presentation to general results

since a more in-depth analysis could be a thesis subject.

Force optimization In this paragraph, the support will be the same as the one in the

original simulation, and the force is set to 0 such that we do not introduce any bias in

the optimization. As displayed in Figure 7.22, we can fit the target point cloud by recon-

structing a force that generates the corresponding displacement. Since the loss function

computes the distance of the point cloud to the surface of the mesh, there is no point-wise

identification. We are not certain that the fit corresponds exactly to the original deforma-

tion; thus, measuring the force reconstruction doesn’t bring pertinent information here.

On average, over 100 forces optimizations, we reach a target registration error of 2.7±
10−6 . This error is in the same order of magnitude as the exactness of the solution. In

conclusion, we are able to compute a force on a given support such that a mesh fits a

target point cloud.

123

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

(a) (b)

(c) (d)

Figure 7.22: Reconstructed forces and resulting deformations. The target point cloud
appears in black.

Impact of the initial guess on the reconstruction We previously mentioned the bias

that the initial guess of the force vector could introduce. We mean by initial guess the

value at which the vector is set before the optimization process.

We will see that this parameter has so much influence that measuring the force re-

construction doesn’t make sense. Yet, we can still measure the target registration error to

ensure we correctly fit the point cloud.

The test was similar to the one presented in Figure 7.23. Half of the samples were

initialized with the opposite of the force, and the other half was initialized with Gaussian

noise with parameters (0,10−2).

We tested this over 100 samples from the dataset and found that the TRE has a value

similar to the previous test to validate the solution of the solver. The average TRE of 7.4×
10−6 shows that the solver manages to find an excellent fitting for the observational data

but also that the initial guess has a low impact on the TRE. Yet, as we can see in Figure 7.23

despite this excellent fitting the initial value of the force greatly impacts the reconstructed

force

124

7.2. RESULTS AND FUTURE WORKS

(a) Ground-truth (b) TRE = 5.2×10−6 (c) TRE = 3.4×10−5

(d) Ground-truth (e) TRE = 2.6×10−6 (f) TRE = 5.4×10−6

(g) Ground-truth (h) TRE = 1.1×10−5 (i) TRE = 3.8×10−5

Figure 7.23: Example of three force optimization (each row). The left column consists of
the groud-truth. The middle column consists of examples where the forces are initialized
with Gaussian noise with parameters (0,10−2). The right-hand-side column consists of
examples where the forces are initialized with the opposite of the ground truth.

Obtaining a more specific or close-to-ground-truth force reconstruction requires putting

as much knowledge as possible into the target registration metric. This can be done by in-

troducing penalization terms with a solution such as the one presented in Chapter 6.

Impact of the support on the reconstruction So far, we have shown that we can fit a

point cloud by controlling the force we apply on the object. Even when the initial guess is

far from the solution, we can maintain a relatively low TRE.

These tests correspond to a problem where we have perfect knowledge of the loca-

tion of the applied force but zero knowledge of the force itself. We have shown that even

125

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

though the force reconstruction is very different, we obtain similar target registration er-

rors.

We now take the opposite hypothesis, where we have a bad knowledge of where the

force is applied. To do so, we initialize the force vector to 0 and only optimize for a specific

location on the object. In this study, the location will be the opposite of the ground-truth

support and the tip of the beam.

We now study the impact of the support on the TRE.

(a) TRE = 5.3×10−5 (b) TRE = 1.4×10−4 (c) TRE = 1.2×10−5

(d) TRE = 6.4×10−5 (e) TRE = 5.0×10−4 (f) TRE = 5.5×10−5

Figure 7.24: Example of three force optimization (each row). The top row consists of
examples where the support is the opposite of the original. The bottom row consists of
examples where the support is at the tip of the beam.

As presented in Figure 7.24, the choice of support has a lot of impact on the registra-

tion. The average TRE is higher than the worst TRE of the previous test over the whole test

dataset.

This can be explained by the fact that every support cannot represent every deforma-

tion. As an example, if one picks a support that corresponds to a point at the center of the

tip of the beam, one will not be able to represent any twisting motion of the said beam

since this point, in particular, cannot apply torque on Z-axis. By taking poorly suited sup-

port, one will not be able to perform satisfying registration.

Generally speaking, the bigger the support, the better the registration. For the tested

sample where the support corresponds to the tip of the beam (illustration in Figure 7.24),

126

7.2. RESULTS AND FUTURE WORKS

we measure an average TRE three times higher than the one where the support is the

opposite of the original support. This can be explained by the solver having not enough

variable to play with to fit the observed data.

We used our differentiable solver to optimize the force distribution to fit observational

data by setting different support and initial value. We have compared the impact on the

TRE of the two parameters and seen than the target registration error is more suscepti-

ble to support location than initial value of the force distribution. We now present some

results on the Young’s modulus and Poisson’s ratio optimisation.

7.2.3 Material parameters as a control

We use a similar setup as the one presented in the subsection 7.2.2 The goal will be to

find the material parameters such that the computed displacement field matches the one

computed by SOFA. The fitting is considered correct if the gradient norm of the update is

below a certain threshold arbitrarily fixed at 10−5 .

In this study, we consider two material parameters. Since these parameters only im-

pact the material response, the tests we can do are limited. They will mostly consist in

setting a first guess far from the actual value and seeing if we can still reach the correct so-

lution. This study’s first part focuses on Young’s modulus, while the second part focuses

on Poisson’s ratio.

Although these short studies are not the subject of this thesis and only aim at showing

the capabilities of the physics engine, we thought they could bring a better understand-

ing of the influence of these parameters. Therefore, we limit the presentation to general

results since a more in-depth analysis could be a thesis subject.

Young’s modulus optimization Young’s modulus is a positive real value that represents

the stiffness of a material. It is measured in Pascal and usually in Giga Pascal. The bigger

the value, the stiffer the object. For example, Young’s modulus of most metals ranges from

≈100 GPa (gold is 72 GPa) to 700 GPa (Tungsten carbide), wood is approximately 10 GPa,

and caoutchouc is around 0.1 GPa.

In this study, Young’s modulus is a constant defining homogenous material. Rep-

resenting more complex materials with non-homogenous stiffness can be achieved by

defining element-wise values. This solution is not yet implemented in our solver. Thus,

we cannot perform the appropriate tests.

Our test consists in setting a random value between 106 and 1010 and seeing if the

solver is capable of optimizing the value to reach the target point cloud. The real value for

the object is 4,500 Pa, which is multiple orders of magnitude smaller than the initial value.

127

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

While we always set an initial value bigger than the ground truth, the solver works just as

well with an initial value smaller than the ground truth. We estimate that the distance

between the initial and ground truth is insufficient if we pick a value between 0 and 4,500

which do not put the solver to the test. Yet, we allow Young’s modulus to reach any real

positive value during the optimization process. The space of solutions has been restricted

by using a constrained optimization solver with a lower boundary set to 10 Pa.

The test has been done on 100 samples; Figure 7.25 presents some results. The pre-

sented samples will be the same as the one used in the force estimation study to easily

compare the TRE.

(a) TRE = 5.4 × 10−16 , Young’s modulus =
4,500.003

(b) TRE = 6.8 × 10−16 , Young’s modulus =
4,500.004

(c) TRE = 6.4 × 10−16 , Young’s modulus =
4,500.003

(d) TRE = 2.0 × 10−16 , Young’s modulus =
4,500.002

Figure 7.25: Example of four Young’s modulus optimization. The TRE is minimal, which
represents an excellent fit. Young’s modulus is also extremely close to the actual solution.

128

7.2. RESULTS AND FUTURE WORKS

On average, we obtain a TRE of 4.6×10−16 , which can be considered exact up to ma-

chine precision. In terms of Young’s modulus, we have an average error of 3.1×10−3 Pa,

which represents an error of 6.9×10−5% and can be considered exact too. As Figure 7.26

displays, with a variation of 1%, the TRE is less than the solver threshold, meaning that

the impact on the solution is minimal.

(a) TRE = 7.5×10−7 , Young’s modulus = 4,500+
1%

(b) TRE = 7.75×10−7 , Young’s modulus = 4,500−
1%

Figure 7.26: Close-up on the tip of the beam. The ground truth with Young’s modulus
of 4,500 appears in red. The deviation is minimal for an error of 1%, showing that the
displacement field is relatively similar for small variations of Young’s modulus.

Young’s modulus is a coefficient with a range so important that variations of one to

two percent can be considered negligible in many application cases. This observation is

the total opposite of Poisson’s ratio. In the following paragraph, we present our result on

optimizing this parameter.

Poisson’s ratio optimization The Poisson’s ratio is a coefficient that is set between 0 and

0.5 excluded. It represents how much an object is compressible where 0 means that the

object has no volume restriction and 0.5− ε the object is totally incompressible. We will

see that the coefficient greatly impacts the final solution, even for small variations. Our

test consists of setting a random value between 0.2 and 0.499 and seeing if the solver can

optimize the value to reach the target point cloud. Optimizing the Poisson’s ratio is done

using an LBFGS. While the LBFGS is not constrained by default, we optimize the value of

a parameter that is projected in the space]0.2,0.5[using a parametrized logistic function

as shown in Figure 7.27

129

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

Figure 7.27: The projection P is used to keep the Poisson’s ratio in a reasonable value con-
sidering our problems. This function is a parametrization of the logistic function. There-
fore, it can be easily modified to project in any desired space. The additive constant value
defines the minimum value of the space, while the numerator is computed by subtracting
the extremes of the space.

This allows us to have more flexibility and optimize any floating point number while

still being able to compute deformations. We tried multiple times to use constrained

solvers, but the optimization parameter is so sensitive to perturbations that when it did

converge, it often took multiple minutes to do so.

This study is done on 100 samples; Figure 7.28 presents some results. Over the 100

tested samples, we obtain a relative error of 0.1%± 1% . One observation of the result

is that the more complex the deformation, the closer to ground truth the initial value of

the Poisson’s ratio has to be. For extremely complex deformation such as Figure 7.28a,

the parameter’s initial value has to be set around ±10% of the original value, or else the

FEM solver will not converge. This lack of convergence leads to a critically failing gradient

with values reaching 1040 ; thus, the whole algorithm fails. For simpler deformation, the

algorithm manages to converge with initial values up to 10 times smaller than the ground

truth.

130

7.2. RESULTS AND FUTURE WORKS

(a) TRE = 2.7×10−11 , Poisson’s ratio = 0.48999 (b) TRE = 4.1×10−10 , Poisson’s ratio = 0.48999

(c) TRE = 6.3×10−5 , Poisson’s ratio = 0.48461 (d) TRE = 7.1×10−11 , Poisson’s ratio = 0.49000

Figure 7.28: Example of four Poisson’s ratio optimization. The TRE is minimal, which
represents an excellent fit. The Poisson’s ratio is also extremely close to the actual solution.

Having a low error on this parameter optimization is crucial since it impacts the final

result, as shown in Figure 7.29. Estimating the Poisson’s ratio with an error of 1% leads

to errors a thousand times bigger than the same error on Young’s modulus (Figure 7.26).

This parameter sensibility is critical since it also affects the stability of the simulation.

With this, we wrap up the differentiable soft-body physics engine presentation. We

will now proceed to the conclusion of this work.

131

CHAPTER 7. LASTEST OPTIMISATION TOOL: DIFFERENTIABLE SIMULATION

(a) TRE = 1.0×10−4 , Poisson’s ratio = 0.49+1% (b) TRE = 3.2×10−5 , Poisson’s ratio = 0.49−1%

Figure 7.29: Close-up on the tip of the beam. The ground truth with Young’s modulus of
4,500 appears in red. The deviation is important for an error of 1%, showing that small
variations of Poisson’s ratio highly influence the displacement field.

7.2.4 Conclusion on the engine

We developed a differentiable physics engine using PyTorch. The engine can calculate the

mechanics of meshed objects with linear or quadratic elements for common topologies,

namely triangles, tetrahedra, and hexahedra. Linear and nonlinear materials such as Neo-

hookean and Saint-Venant Kirrchhoff are available in the framework. The engine allows

the formulation of forward simulations, where we compute the displacement field, and

inverse simulations, where we optimize simulation parameters to fit observational data.

This is achieved using a differentiable formulation of the solver, allowing us to optimize

parameters using the backpropagation algorithm. The mechanic is formulated using an

energy minimization problem allowing fast computation of the quantities since the com-

putation of the derivatives is usually computationally demanding. Constraints are softly

enforced for the moment, but we plan to change this behavior by manipulating the value

of the tangent stiffness matrix. During the development, we emphasized code vectoriza-

tion and optimization to reduce the computation time of the system state and its gradient.

Although the engine is stable and fulfills all our expectations there is still room for

improvement. The calculation time for the tangent stiffness matrix is currently too long

for real-time use (the forward simulation of the beam runs at around two frames per sec-

ond). It is not yet clear whether this is due to the short development time or a limitation

of PyTorch.

132

7.2. RESULTS AND FUTURE WORKS

We have presented the possibilities of the engine using the example of a beam, al-

though it is not limited to a single type of mesh. These examples include the optimization

of external forces applied to an object, the optimization of the object’s stiffness, and its

Poisson’s ratio. We briefly discussed the impact of initialization and force support on the

quality of the non-rigid registration. Finally, we discussed the sensitivity of forward and

inverse simulations to optimize Young’s modulus and Poisson’s ratio.

We have demonstrated that our engine can calculate forward and inverse simulations

by optimizing different simulation parameters.

The next chapter concludes this thesis by recapitulating our achievements and point-

ing out our contributions’ shortcomings. We end this conclusion by opening up on future

works that could help resolve part of the shortcomings.

133

C
H

A
P

T
E

R

8
CONCLUSION

8.1 Summary and achievements

This thesis produced contributions in multiple deep learning subdomains at the interface

of multiple fields, such as data-driven computational biomechanics, deep learning, and

augmented surgery.

Our first contribution [84] is about data generation (Dataset generation). Creating a

well-designed dataset is essential to train robust artificial neural networks. We use the

tangent stiffness matrix’s eigenvalue analysis to study the object’s deformation modes.

Obtaining the most common deformation of the object is achieved by sampling the first

few modes between -1 and 1 (i.e., create a vector where the first few coefficients are be-

tween -1 and 1). Once we obtain the deformation of interest, we can compute the cor-

responding force by a simple matrix-vector product. Therefore, we can produce a force

responsible for the linear approximation of the actual deformation using a handful of co-

efficients. We can now use this force in a simulation to obtain the associated nonlinear

deformation.

Although this is not a scientific contribution, our next section focuses on a compara-

tive study between the work of Mendizabal et al. [75] and a much simpler MLP architec-

ture (Toward faster simulations using artificial neural networks). This study compares the

result on a cantilever beam and liver mesh. The results indicate that the MLP outperforms

U-Mesh for small-resolution meshes regarding prediction accuracy and training speed.

Secondly, the U-Mesh uses a reduced latent space to represent the problem, which allows

135

CHAPTER 8. CONCLUSION

for better generalization but results in slightly lower accuracy for patient-specific scenar-

ios. However, the accuracy can be increased by increasing the size of the reduced latent

space, although this will increase training time and require a trade-off between accuracy

and efficiency. Regarding speed, the FEM simulation takes around 1,500 ms to compute

a solution. The U-Mesh reduces this time by 500 and the MLP by 5,000. Furthermore, on

similar problems, the MLP has proven to be much faster to train than the U-Mesh. Over-

all, both architectures perform similarly. The U-Mesh is more resilient to outliers, but the

MLP performs better on average and is faster to train and predict. Therefore, we decided

to continue this thesis with the MLP.

Our second contribution [84] is about the reliability of the ANN prediction (Hybrid

solver). As we have seen before, the chosen network performs well on average but is sus-

ceptible to outliers. During surgery, we cannot allow the predictions to behave poorly.

Therefore, we must create a way to correct them on the fly. In our contribution, we pro-

pose initializing Newton’s method with a prediction of a purposely trained ANN. This ben-

efits both the network prediction and the Newton-Raphson algorithm. Using this algo-

rithm, we are sure that the neural network’s prediction is acceptable, and we put ourselves

in the quadratic convergence phase as soon as possible. This way, we maximize quality

and speed at the cost of training an ANN. The study shows that the proposed algorithm

converges more often and faster than the classic method while keeping the ordinary con-

vergence properties of the Newton-Raphson algorithm. With this, we have a first answer

on how to quickly predict nonlinear deformations of a soft body and how to verify and

correct these predictions.

Our last contribution [85] uses our previous work to compute the non-rigid registra-

tion of an object from surface data (Optimal control for augmented surgery). In particular,

we present an application for laparoscopic surgery. This contribution follows the work of

Mestdagh et al. [78]. Their work uses optimal control and an adjoint method to retrieve

the forces that deform a liver composed of nonlinear material to fit a partial surface point

cloud. We identified two main bottlenecks the forward problem and the adjoint problem.

We propose to replace the forward problem with an equivalent neural network that takes

input forces and outputs a displacement field. Since we now have easy access to auto-

matic differentiation and backpropagation, we propose to replace the adjoint problem

with the backpropagation algorithm. This way, we can differentiate easily with respect

to the control (force). The study shows that we have similar results over the five practical

scenarios. The registration error is acceptable and preserves the physical properties of the

registered mesh. Considering the mesh’s complexity and the material’s nonlinearity, com-

puting a single iteration of the algorithm using a classical solver takes multiple seconds,

leading to an average of 14 minutes per frame. Our proposed algorithm uses a neural net-

136

8.2. OUTLOOK AND FUTUR WORK

work to improve the computation speed of both the hyper-elastic and adjoint problems.

The hyper-elastic problem takes around 4 to 5 milliseconds to compute while the adjoint

problem replaced by the backpropagation algorithm takes around 11 ms . This leads to

a significant improvement in convergence speed, where we reduce the computation time

by a factor of 6,000 on average. We also show that the method is resilient to the range of

noise expected from the hypothesis, making it suitable for this application.

In summary, we have worked throughout the whole deep-learning pipeline to extend

the possibilities of deep learning applied to soft-body physics. We used our contributions

to improve the non-rigid registration of an object from surface data and showed that it

performs well on synthetic laparoscopic data.

8.2 Outlook and futur work

Although considerable advances have been made toward efficient computations of soft

body deformations for liver surgery, shortcomings remain. These shortcomings can be

classified into generalization and performance improvements of the learning.

The generalization part intervenes when we consider our method as a product. Dur-

ing the time frame between the data acquisition (scanner / MRI) and the surgery, we have

around 24 to 48 hours to generate the dataset and train the network, which might not be

sufficient. At the moment, our ANN is specific to each mesh. Therefore, we need to create

a new dataset and retrain from scratch, which is time and resources demanding. One idea

would be to use transfer learning [114] to specialize a generalist pre-trained ANN on each

patient. The transfer learning technic proposes to train a network to perform decently

well on many tasks. This produces a set of good weights that can be easily specialized

in one of the previous tasks. The authors claim that the pre-trained network converges

faster and better than if we started with random weights. In our case, this would consist

in training a network to perform decently well on multiple livers and then retraining it

with patient-specific data. Therefore, it would converge faster on fewer data.

For our application, transfer learning raises an architectural challenge. The mesh of

the simulated object defines MLP architectures and cannot be modified after the training.

A single mesh cannot accurately represent a patient’s specific data due to patient-wise

variations in Dirichlet boundary conditions (arteries, ligaments). Therefore, we cannot

pre-train a single MLP for everyone. However, all hopes are not lost since a neural net-

work architecture called graph neural network has been specially designed to deal with

variable graph-like data structures. GNN for soft body physics is a hot topic as multiple

publications have recently appeared [40, 69, 104]. Today, GNN has not achieved satisfac-

137

CHAPTER 8. CONCLUSION

tory precision for our applications, but this approach is relatively new and already pro-

duces promising results [90].

The performance improvements mainly refer to the computation speed of the gradi-

ent and hessian, which raise concerns in the penultimate and last chapters. These two

items are computed using the automatic differentiation and backpropagation algorithm,

which becomes the main limiting factor of the methods. As mentioned in the conclu-

sion of the last chapter, these shortcomings are likely due to short development time or

problematic limitations from PyTorch. Using other frameworks such as JAX [8] we have

seen a significant reduction in computation time of the gradient and hessian of the sys-

tem. These promising results require more work in the future since we only implemented

the said computation and not the entire differentiable soft-body physics engine. Imple-

menting the remaining parts, such as differentiable Newton-Raphson, could be extremely

challenging.

Generalization and performance improvements of the proposed methods promise ex-

citing results from the research and development aspect. The continuation of this thesis

would most likely be centered on GNN and efficient differentiable solver. One could en-

able extreme versatility of the methods via a small sample of patient-specific data, while

the second will produce fast and differentiable simulations to train said ANN.

Furthermore, the differentiable solver could be used to optimize more abstract sim-

ulation parameters such as the mesh geometry/topology [37] or material of the patient

organs [57] to reduce the number of integration points and thus, speeding up the compu-

tations.

138

C
H

A
P

T
E

R

9
RÉSUMÉ EN FRANÇAIS

Selon l’Organisation Mondiale de la Santé (OMS), près de vingt millions de nouveaux can-

cers ont été diagnostiqués en 2020. Cette maladie peut toucher n’importe quelle partie du

corps, mais les principales parties affectées sont le sein, les poumons et le côlon. Néan-

moins, tous les cancers ne sont pas égaux vis à vis de la réponse au traitement et le taux de

mortalité. Les cancers du foie sont particulièrement meurtriers, puisqu’ils représentent

environ un diagnostic sur vingt, ainsi qu’un sur douze induit par le cancer. Ces patholo-

gies sont généralement traitées par résection du foie, soit par chirurgie abdominale ou-

verte, soit par chirurgie laparoscopique.

Grâce aux progrès des techniques chirurgicales, des procédures plus complexes telles

que les résections hépatiques majeures ou les résections du foie d’un donneur vivant sont

désormais réalisables par une approche laparoscopique ou robotique. En chirurgie la-

paroscopique, l’ensemble de l’intervention est réalisé par de petites incisions semblable

à des trous de serrure, tandis que le chirurgien regarde les images transmises par une

caméra sur un écran.

Pendant la manipulation, les chirurgiens doivent mémoriser et projeter des données

spécifiques au patient, telles que l’emplacement et la taille des tumeurs, les vaisseaux

sanguins et les artères dans un environnement en mouvement constant en raison de la

respiration et de la circulation sanguine. En plus de ce suivi qui demande déjà beaucoup

de concentration, ils doivent réaliser des actes chirurgicaux précis et complexes tout en

commandant l’ensemble de la salle d’opération.

Afin de faciliter la tâche et réduire la charge mentale du chirurgien il serait possible

139

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

d’améliorer sa perception visuelle du patient en utilisant la réalité augmentée (RA). Pour

ce faire, il est possible combiner un flux vidéo en direct provenant du laparoscope (une

petite caméra insérée dans le corps du patient par une petite incision) avec des images et

des données virtuelles superposées. Il peut s’agir de modèles 3D de l’anatomie du patient,

d’instructions chirurgicales ou de données en temps réel telles comme les signes vitaux.

L’un des principaux avantages de la RA en chirurgie laparoscopique est de permettre

au chirurgien de voir à l’intérieur du corps du patient de manière plus intuitive et na-

turelle, ce qui peut contribuer à améliorer l’exactitude et la précision de l’intervention.

Les images 3D et la superposition virtuelle peuvent également contribuer à améliorer la

visualisation de l’anatomie complexe et des structures internes, qui peuvent être difficiles

à voir avec les techniques laparoscopiques traditionnelles.

Lors de la superposition de modèles 3D de l’anatomie du patient pendant l’opération,

il faut tenir compte des déformations induites par le chirurgien et les reproduire sur les

modèles 3D. La complexité réside dans la détection des déformations et la préservation

des propriétés internes des organes. Une telle technologie nécessiterait la capacité de

calculer des déformations complexes des organes en temps réel à partir d’observations

partielles de la surface.

Les calculs de déformations complexes peuvent être effectués à l’aide de la méthode

aux éléments finis (MEF) et d’un modèle d’organe en 3D. La méthode des éléments finis

est une technique numérique puissante largement utilisée pour résoudre des problèmes

physiques dans divers domaines, tels que la dynamique des fluides, l’électromagnétisme

ou encore la dynamique des corps mous. L’objet simulé est représenté par de nombreux

éléments interconnectés, appelés éléments finis, définis comme un ensemble de pro-

priétés et de quantités physiques. Les éléments finis peuvent gérer diverses conditions

aux limites et travailler avec des systèmes linéaires et non linéaires. Dans notre contexte,

la simulation serait utilisée pour calculer la déformation du foie, qui est constitué de tis-

sus mous, principalement composés d’eau. Cette composition génère une réponse non

linéaire à la charge appliquée, créant ainsi un système non linéaire à résoudre.

En raison de sa formulation mathématique, la méthode des éléments finis peut être

très gourmande en ressources informatiques, nécessitant une puissance de calcul impor-

tante pour produire une solution. Cela peut constituer un défi pour les problèmes fine-

ment maillé ou les simulations nécessitant des performances en temps réel comme les

nôtres.

L’apprentissage profond est un domaine qui a été principalement conçu pour fournir

des solutions rapides à des problèmes complexes. Au cours des dix dernières années, le

développement de l’apprentissage profond a permis de s’attaquer à des problèmes com-

plexes à un rythme jamais atteint auparavant. L’idée principale derrière l’utilisation de

140

l’apprentissage profond dans la simulation physique est d’utiliser des réseaux de neu-

ronnes artificiel (RNA) pour apprendre les lois physiques sous-jacentes d’un système à

partir de données, puis d’utiliser ces connaissances pour faire des prédictions sur le com-

portement du système dans différentes conditions.

L’apprentissage profond peut être utilisé pour modéliser des systèmes physiques com-

plexes, tels que la dynamique des fluides, les matériaux granulaires ou encore la dynamique

des corps mous, qui peuvent être difficiles à simuler à l’aide des méthodes traditionnelles

basées sur la physique. Pour ce faire, on entraîne des réseaux neuronaux sur de grandes

quantités de données générées par des simulations ou des expériences, puis on les utilise

pour prédire le comportement du système.

L’un des principaux avantages de l’utilisation de l’apprentissage profond dans la sim-

ulation physique est sa capacité à atténuer certaines limites de la méthode des éléments

finis. Il peut apprendre à partir de données réelles, ce qui rend la simulation plus pré-

cise et plus réaliste. Cela est fait en modifiant les paramètres de simulation tels que les

propriétés des éléments ou les conditions aux limites.

Il est important de noter que l’apprentissage profond dans la simulation physique est

un nouveau domaine de recherche. De nombreux défis sont à relever, tels que la né-

cessité de disposer de grandes quantités de données de haute qualité, l’interprétabilité

et la généralisation des modèles. En outre, il est essentiel de s’assurer que les prédic-

tions faites par le RNA sont physiquement significatives et cohérentes avec les lois de la

physique. Malgré ces difficultés, la combinaison de l’apprentissage profond et de la simu-

lation physique s’est révélée très prometteuse pour créer des simulations plus réalistes et

plus précises de divers systèmes physiques. Elle pourrait révolutionner la façon dont nous

simulons et comprenons les phénomènes physiques complexes et devrait avoir un large

éventail d’applications dans des domaines tels que l’ingénierie, la science et l’infographie.

Toutefois, des recherches supplémentaires sont nécessaires afin de comprendre pleine-

ment ses capacités et ses limites et pour relever les défis susmentionnés.

Grâce à la MEF et à l’intelligence artificielle (IA), nous pouvons calculer les déforma-

tions complexes des tissus mous en temps réel. Cependant, un aspect essentiel du pro-

cessus reste la manière dont nous traitons les données d’observation pour les adapter à

notre modèle de corps mou.

Pendant la laparoscopie, les données d’observation sont acquises à l’aide du laparo-

scope. En utilisant des techniques existantes [97], nous pouvons convertir les observa-

tions en surfaces partielles de nuages de points 3D. Cependant, le calcul en temps réel de

la déformation qui correspond au nuage de points 3D soulève de nombreux défis.

Le premier est le réalisme. Des informations utiles sont fournies lorsque le déplace-

ment calculé est aussi proche que possible de la réalité, ce qui nécessite de nombreux

141

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

calculs.

Le deuxième défi est celui du temps réel. L’interactivité entre la chirurgie et la simula-

tion nécessite que la simulation fonctionne de manière fluide à une fréquence d’images

décente (≈60 images par seconde). Cette contrainte s’oppose à la première, exigeant le

compromis habituel vitesse/précision.

Le troisième défi est qu’un nuage de points d’une partie de la surface est insuffisant

pour identifier une solution unique. Par conséquent, d’autres informations, telles que des

hypothèses physiques, doivent être ajoutées avant de considérer la précision du recalage.

Le modèle et les méthodes choisis doivent résulter d’un compromis entre l’acceptabilité

physique de la solution et l’efficacité requise par l’exécution en temps réel.

Récemment, Mestdagh et al. [78] ont proposé une méthode formulant le problème

d’optimisation dans le cadre générique du contrôle optimal. Ce cadre générique rend

accessible l’incorporation de données pré- ou intra-opératoires supplémentaires dans

le calcul. Leurs résultats sont présentés sur un modèle avec des propriétés d’élasticité

non linéaires, constituant une avancée par rapport aux méthodes similaires. De plus, ils

l’implémentent en utilisant la méthode adjointe, ce qui pourrait permettre de remplacer

le solveur traditionnel par un réseau de neurones.

Cette thèse intitulée Data-driven computational biomechanics using Deep Neural Net-

works – Application to augmented surgery donne une première solution à ce problème de

chirurgie augmentée pour la résection du foie.

Finite element method

La bonne compréhension de ce travail nécessite une connaissance avancée de la méth-

ode des éléments finis. Nous proposons un premier chapitre sur ce thème afin que cette

thèse se suffise à elle-même. La plupart des problèmes définis par une équation aux

dérivées partielles n’ont pas de solutions analytiques et nécessitent donc une approxi-

mation. Cette approximation est réalisée à l’aide de la méthodes aux éléments finis et

un maillage d’éléments finis. Ces éléments peuvent être de plusieurs types : surface (tri-

angle, quadrilatère), coque ou volume (tétraèdre, hexaèdre). Ces éléments sont utilisés

pour calculer des quantités mécaniques locales, qui sont ensuite interpolées dans le but

de calculer la quantité globale correspondante. Le degré de l’interpolation est défini par

celui des éléments (linéaire ou quadratique).La différence entre les formes linéaires et

quadratiques n’apparaît que dans le nombre de nœuds d’interpolation. Il existe donc des

triangles quadratiques, ainsi que des triangles linéaires.

Cette interpolation est réalisée à l’aide de la fonction de forme, qui constitue la deux-

142

ième section de ce chapitre. Les fonctions de forme représentent les poids par élément

associés à chaque nœud et permettent de calculer l’évolution des quantités mécaniques

dans le domaine d’intégration en interpolant les quantités nodales. Nous présentons

un cas particulier de fonction de forme appelé fonction de forme isoparamétrique. Le

terme isoparamétrique est dérivé de l’utilisation des mêmes fonctions de forme (ou fonc-

tions d’interpolation) pour définir la forme géométrique de l’élément que celles utilisées

pour définir les déplacements à l’intérieur de l’élément. En outre, lorsqu’on traite des

phénomènes physiques, on souhaite généralement calculer les variations des propriétés

physiques. Pour ce faire, on calcule les gradients et les jacobiens. Ici, la quantité d’intérêt

est le gradient du déplacement. Le gradient de déplacement en tout point de l’élément

peut être approximé en utilisant le déplacement des nœuds et le gradient de leurs fonc-

tions de forme par rapport aux points matériels. La définition de l’élément isoparamétrique

étant générique, il n’est pas nécessaire de spécifier comment calculer le jacobien de chaque

type d’élément, ce qui facilite grandement le développement d’un moteur de simulation.

Dès lors, nous pouvons interpoler n’importe quelle quantité sur le maillage et calculer

la dérivée de cette quantité. Ceci est particulièrement utile puisque la MEF est basée sur

le calcul de la dérivée de quantités telles que le champ de déplacement et l’énergie poten-

tielle élastique. Le gradient du champ de déplacement est principalement utilisé pour cal-

culer une quantité essentielle appelée tenseur de déformation. Le tenseur de déformation

est à la base de tout calcul dans le cadre de la MEF. Par exemple, il nous permet de calculer

le tenseur de déformation de Cauchy-Green, qui nous donne le carré de la variation locale

de la distance due à la déformation. Il constitue un invariant intéressant pour calculer les

propriétés physiques, comme nous le verrons par la suite. Le tenseur de déformation est

également utilisé pour calculer le tenseur de déformation de Green-Lagrange, qui mesure

l’écart entre le tenseur de Cauchy-Green et l’identité. Sa formulation varie selon que l’on

considère l’élasticité linéaire ou non linéaire. Ce tenseur est particulièrement explicite

puisque ses termes diagonaux (respectivement non diagonaux) sont liés à la déformation

normale (respectivement de cisaillement). Tous ces tenseurs représentent des quantités

géométriques où seul le déplacement est considéré. En utilisant ces tenseurs et les pro-

priétés mécaniques de l’objet, nous pouvons calculer les premier et deuxième tenseurs

de contrainte de Piola-Kirchhoff. Ces tenseurs représentent la réponse à la contrainte

induite.

Cette réponse est donnée par le matériau associé à l’objet. Le second tenseur des con-

traintes de Piola-Kirchhoff est la dérivée de la fonction d’énergie par rapport au tenseur

de déformation de Green-Lagrange. Chaque matériau est défini par sa fonction d’énergie,

qui définit sa réponse à une contrainte donnée. En particulier, la loi des matériaux de

Saint-Venant-Kirchhoff, qui étend les matériaux linéaires en utilisant la formulation non

143

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

linéaire du tenseur de déformation de Green-Lagrange. Nous souhaitons mentionner la

loi des matériaux de Néo-Hookéen, qui nous aidera à modéliser le comportement du foie

dans cette thèse. Cette loi est un cas particulier du matériau incompressible de Mooney-

Rivlin.

Tous ces tenseurs sont assemblés dans un système représentant un ensemble d’équations

d’équilibre. Nous trouvons l’équilibre de la masse, du moment linéaire, du moment an-

gulaire et de l’énergie formulé à l’aide des tenseurs mentionnés précédemment. Ce sys-

tème est appelé forme forte, où les égalités doivent être satisfaites en chaque point du

domaine. Afin de résoudre le système, nous nous appuyons sur la recherche d’une solu-

tion continue par morceaux pour le champ de déplacement. C’est pourquoi, nous intro-

duisons une fonction de test qui nous conduit à la forme faible du système, dans laquelle

les conditions ne doivent être valables qu’en moyenne. Enfin, nous discrétisons ces quan-

tités et résolvons le système à l’aide des méthodes appropriées, telles que l’algorithme

de Newton-Raphson ou un simple optimiseur de gradient conjugué pour les systèmes

linéaires.

Après cette brève présentation de la MEF, nous pouvons maintenant passer au deux-

ième aspect important de cette thèse: l’apprentissage profond. C’est ce sujet que nous

abordons dans notre deuxième chapitre (chapitre 3).

Deep learning

L’intelligence artificielle (IA) est actuellement l’un des mots les plus à la mode dans l’industrie

technologique, et ce pour une bonne raison. Ces dernières années, plusieurs innovations

et avancées qui relevaient auparavant du domaine de la science-fiction se sont lentement

transformées en réalité. L’un des principaux acteurs de ces avancés est l’apprentissage au-

tomatique qui est une sous-partie de l’intelligence artificielle. Il regroupe des méthodes

qui exploitent les données pour améliorer la performance des tâches sur des concepts ab-

straits. Il construit un modèle ou une fonction sur la base d’un échantillon de données,

appelé tout au long de ce manuscrit "données d’apprentissage" ou "échantillon", pour

prédire ou décider sans être explicitement programmé. Les méthodes d’apprentissage

automatique sont généralement divisées en apprentissage supervisé, non supervisé et par

renforcement. Bien qu’initialement elles aient été parfaitement distinctes, la frontière en-

tre elles s’est estompée lorsque les scientifiques ont commencé à former leurs modèles à

l’aide de plusieurs paradigmes d’apprentissage simultanément.

L’apprentissage supervisé fait référence au type d’apprentissage dans lequel le modèle

voit des paires explicites d’entrées et de sorties. Son travail consiste alors à être capable

144

de reproduire l’ensemble de données en espérant qu’il interpolera correctement entre les

points de données.

L’apprentissage non supervisé est tout l’opposé : le réseau reçoit une entrée et une

politique à suivre. Pour une entrée donnée, tel qu’une force, le modèle doit produire un

déplacement tel que l’équilibre de la quantité de mouvement linéaire soit respecté.

Enfin, l’apprentissage par renforcement fait référence à l’apprentissage dans lequel le

modèle agit sur un environnement donné. Son retour d’information correspond à une

mesure de la qualité de son impact sur l’environnement.

Les modèles utilisés par les différents paradigmes d’apprentissage fonctionnent de

manière similaire bien que leur architecture soit souvent très différente. Ils sont tous

composés de neurones artificiels assemblés en couches. Leur assemblement et les opéra-

tions associées définissent le type de couche. La sortie de la couche est ensuite transmise

à une fonction d’activation qui introduit une non-linéarité dans la réponse du réseau de

neuronnes artificiel. Les fonctions d’activation peuvent par exemple être t anh,ReLU ou

encore si g moïde . Une architecture est définit par l’empilement de plusieurs couches.

Il n’y a aucune restriction à la définition d’une architecture tant que la sortie de la couche

précédente correspond à l’entrée de la couche suivante.

Historiquement parlant, si l’on exclut le traitement du langage naturel qui utilise des

mécanismes précis, il existe trois paradigmes d’architectures : le perceptron multicouche

(MLP), le réseau neuronal convolutif (CNN) et le réseau de neuronnes en graphe (GNN).

Un perceptron multicouche est un empilement de couches denses ou entièrement

connectées où chaque neurone des couches agit comme un perceptron, d’où son nom.

Ce type d’architecture est rapide et mathématiquement capable d’approximer n’importe

quelle fonction [44]. Ses principaux inconvénients sont la croissance quadratique du

nombre de paramètres et la tendance à suradapter les données d’apprentissage. Les per-

ceptrons multicouches ne peuvent accepter que des vecteurs comme entrées. Lorsqu’il

s’agit d’images, nous devons aplatir les tableaux de pixels en 2D pour les introduire dans le

modèle. Prenons l’exemple d’une petite image en niveaux de gris de taille 64 x 64, aplatie

en un vecteur de longueur 4 096. La connexion de deux couches denses composées de 4

096 entrées nécessite la création de 16 777 216 neurones. Cette valeur doit être multipliée

par le nombre de couches, ce qui nécessite rapidement un matériel spécialement conçu,

doté d’une bande passante et d’une mémoire importantes.

Les réseaux neuronaux convolutifs ont été introduits pour résoudre des tâches de re-

connaissance d’images [31] et ont depuis été appliqués à presque toutes les classes de

problèmes. Comme son nom l’indique, une convolution se produit. Cette opération rem-

place l’accumulation globale du MLP par une opération plus locale. Les poids sont dis-

posés dans un masque ou noyau apprenable de taille fixe (généralement relativement

145

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

petite, de trois à onze de large) et sont convolués avec la grille d’images/de données.

Une seule couche de convolution peut comporter plusieurs noyaux traitant des différents

canaux de la grille. Cette agglomération locale réduit le nombre de paramètres puisque

les mêmes poids sont utilisés pour l’ensemble de la grille. Les couches de convolution

sont considérées comme précieuses pour résumer la présence de caractéristiques dans

les données. Le principal inconvénient de cette architecture est qu’elle nécessite des don-

nées structurées en grille en raison de la convolution. Cette contrainte correspond par-

faitement à son objectif initial, qui est de travailler sur des images, mais lorsqu’il s’agit

de données non structurées, nous devons d’abord projeter les propriétés sur une grille.

Cette projection introduit beaucoup de bruit dans les données car elle modifie les entrées

réelles. De plus l’interpolation n’a parfois aucun sens car le lien entre les points de don-

nées peut représenter des concepts abstraits comme l’affinité, qui ne peuvent pas être

interpolés de manière adéquate.

Enfin, l’architecture la plus récente que nous souhaitons aborder est le réseau de neu-

ronnes en graphe. Cette technique relativement nouvelle a été introduite dans "A new

model for learning in graph domains" [34] mais a été principalement développée au cours

des cinq dernières années. L’architecture proposée, désormais appelée réseau de neu-

ronnes en graphe, utilise la topologie ou le lien sous-jacent entre les points de données.

Cette formulation explicite supprime la nécessité de la grille et de l’opération de con-

volution tout en conservant le flux d’informations local puisqu’un nœud de graphe ne

communique qu’avec ses voisins directs. C’est intéressant à bien des égards, mais jusqu’à

présent, nous n’avons pas été en mesure de produire des résultats ne serait-ce qu’un peu

similaires à ceux obtenus à l’aide de CNN ou MLP.

En général, les modèles ont tendance à combiner différents paradigmes pour accom-

plir leur tâche. On peut considérer l’architecture comme une image complète du flux

de données et des calculs qui s’ajoutent au cours d’une prédiction. Ce flux de données

représente la forme générale de la fonction que nous essayons de modéliser, tandis que

le model apprend la valeur des paramètres dans ces calculs.

L’apprentissage de ces paramètres s’effectue à l’aide d’une politique d’apprentissage

ou d’une fonction de coût qui calcule, pour des données d’entrée données, la distance en-

tre la prédiction du réseau et la réalité. Les fonctions de perte mesurent la performance

du RNA pour une entrée donnée. Dans sa version la plus simple, la fonction comporte

deux variables, la sortie du réseau et la vérité de base ou sortie souhaitée. La distance

entre les points de données est mesurée et est ensuite traitée pour mettre à jour les poids

du réseau neuronal. Le plus souvent, les fonctions de perte sont quadratiques. Il s’agit

d’une propriété importante de la fonction de coût. Au cours de la formation, le gradient

de l’erreur est utilisé pour mettre à jour les poids. Les fonctions linéaires ont des gradi-

146

ents constants qui ne tiennent pas compte de l’erreur. Lorsqu’elles sont différenciées, les

fonctions quadratiques sont proportionnelles à l’erreur, ce qui affecte positivement les

variations des poids. La fonction de coût la plus connue pour les tâches de régression

est l’erreur quadratique moyenne (MSE). Elle est indépendante de la taille des éléments,

représente entièrement les données et est quadratique.

Le résultat de cette évaluation est ensuite utilisé comme point de départ de l’algorithme

de rétropropagation. La rétropropagation est utilisée pour calculer la dérivée de la fonc-

tion de coût par rapport aux paramètres apprenables du réseau. Cette dérivée est utilisée

pour mettre à jour les poids/neurones du réseau, créant ainsi la partie apprentissage de

l’apprentissage profond. Cet algorithme s’appuie sur quatre équations présentées dans

la section 3.5 pour construire la dérivée de la fonction de coût par rapport à chaque neu-

rone de l’ANN. La présentation de l’algorithme de rétropropagation est faite dans la sec-

tion correspondante mais, malheureusement, elle est très mathématique et ne peut être

résumée de manière appropriée qu’à l’aide d’équations.

Enfin, l’apprentissage profond peut être résumé en trois étapes : la création d’un

ensemble de données, l’assemblage d’un modèle et la formation. Un aspect important

des réseaux neuronaux à garder à l’esprit lors de la création d’un ensemble de données

est qu’ils sont bons pour interpoler les propriétés, mais qu’ils pourraient être meilleurs

lorsqu’il s’agit d’extrapolation. Un ensemble de données peut être biaisé ou manquer de

représentativité, ce qui entraîne une extrapolation encore plus mauvaise. Nous souhaitons

que notre ensemble de données représente notre problème ou la tâche que nous essayons

d’accomplir. Dans certains cas, l’objectif pourrait être mieux défini, ce qui augmenterait

encore la difficulté de la génération de l’ensemble de données.

L’assemblage d’un modèle est une tache simple. Il suffit d’empiler les couches prédéfinies

(entièrement connectées, convolution, pooling max, etc.) dans un graphe de calcul définis-

sant le flux de données à travers le modèle. La difficulté apparaît lors de la phase de con-

ception. La sélection des couches et le graphe de calcul sont définis en même temps, car

ils ont un impact direct l’un sur l’autre. L’idée est que le flux de données représente une

connaissance spécifique du problème. Un flux de données spécifique peut également

être réalisé à l’aide d’une architecture fractionnée ou raccourcie (Figure 3.5 et Figure 3.6

respectivement).

Afin d’entrainer un RNA nous itérons plusieurs fois sur l’ensemble des données. Une

itération est appelée époques. L’entrainement est donc composée de plusieurs époques.

Chaque époques est divisé en lots de taille arbitraire qui sont ensuite donné un par un

au réseau. Ensuite, chaque lot est évalué à l’aide de la fonction de coût. Finalement,

l’erreur est rétropropagée et les poids sont mis à jour à l’aide d’un optimiseur linéaire,

généralement ADAM [52].

147

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

Fast and accurate deformations using deep learning

Après avoir présenté tous les outils dont nous avons besoin et leur fonctionnement, le

chapitre suivant (chapitre 4) de cette thèse se concentre sur la déformation rapide et pré-

cise à l’aide de l’apprentissage profond. Pour obtenir des déformations précises, il faut

d’abord disposer d’un bon ensemble de données. Nous commençons cette partie du

résumé en présentant une manière plus intuitive de générer un ensemble de données

de paires de forces et de déformations. Lors de la construction d’un ensemble de don-

nées, la complexité apparaît lors de la prise en compte la fonctionnalité d’un objet. Il

serait intéressant de créer un ensemble de données d’échantillons significatifs représen-

tant l’utilisation moyenne d’objets simulés et leurs déformations les plus courantes.

Les objets manufacturés sont plus faciles à traiter car leur conception est orientée

vers un but précis. Par conséquent, nous avons une bonne idée de l’endroit et de la

manière d’appliquer la charge. A l’inverse cette absence de conception rend les objets

non-manufacturé, tels que les organes, plus difficiles à manipuler. Grâce aux connais-

sances acquises lors de discussions avec les chirurgiens, nous pouvons estimer la zone

d’intérêt et le type de force appliquée aux organes pendant les interventions chirurgicales.

Cependant, nous ne disposons pas de données exactes et l’échantillonnage de l’espace

des forces reste donc une tache complexe.

Deux difficultés principales se posent lors de la création d’un ensemble de données

représentant la déformation d’un objet : le nombre de paramètres et la relation entre la

charge et le déplacement. Concernant le nombre de paramètres, dans le contexte de cette

thèse, nous avons affaire à des maillages composés de deux à cinq mille nœuds, soit six

à quinze mille degrés de liberté. L’application d’une charge externe à un objet néces-

site d’affecter des valeurs de force à chaque degré de liberté du maillage. Une solution

pour traiter le problème de la dimensionnalité consiste à appliquer des forces qui sont

constantes sur l’ensemble de l’objet en ne considérant que la composante X ,Y , Z du

champ vectoriel, réduisant ainsi le nombre de paramètres à trois. Bien que l’application

d’une telle force soit facile, elle représente rarement des scénarios réels ou des scénarios

intéressants. Définir la valeur des degrés de liberté sur l’ensemble du maillage est déjà

problématique à notre échelle. Il faut définir la valeur de plusieurs milliers de coefficients

pour générer un seul déplacement alors que plusieurs milliers de déplacements doivent

être calculés pour entraîner un RNA. Par conséquent, il faut s’appuyer sur un échantil-

lonnage aléatoire et une approche naïve pour générer un vecteur de force et espérer qu’il

produise des déformations intéressantes, ce qui n’est pas efficace en termes de temps et

d’énergie.

148

La deuxième difficulté apparaît lors de l’utilisation de modèles non-manufacturés qui

conduisent à des relations complexes entre la charge et le déplacement. Lorsqu’un objet

est soumis à une charge externe, sa réponse est donnée par son matériau et sa géométrie.

Alors que la réponse du matériau est simple et définie par l’utilisateur, la réponse de la

géométrie peut elle être très complexe. De ce fait, une géométrie d’apparence simple

telle qu’une corde peut avoir une réponse difficile à prévoire tel que la formation de plec-

tonèmes lorsqu’une torsion est appliquée.

Le nombre de nœuds, le matériau et la géométrie sont constitutifs d’un objet et ne

peuvent donc pas être modifiés sans avoir un impact sur sa physique. Bien que nous ne

puissions pas les modifier, ils contiennent beaucoup d’informations sur la façon dont un

objet réagit aux contraintes. Nous pouvons extraire des informations en utilisant notre

connaissance de la mécanique des corps déformables. En particulier, nous voudrions

obtenir deux choses.

La première est une estimation approximative du déplacement généré par la con-

trainte afin de savoir s’il est nécessaire de calculer la déformation totale.

La seconde est de générer facilement des vecteurs de force intéressants/complexes.

Si l’on considère la première demande, la matrice de rigidité tangente contient toutes

les informations nécessaires sur la géométrie, la topologie et le matériau de l’objet pour

un déplacement donné. Supposons que nous admettions que le comportement de l’objet

soumis à des déformations non destructives ne change pas radicalement. Il est alors pos-

sible d’utiliser la matrice de rigidité tangente de la forme au repos pour obtenir une ap-

proximation linéaire de la déformation finale.

En ce qui concerne la deuxième demande, nous pouvons jouer avec les modes de dé-

formation d’un objet. Une pratique courante en ingénierie consiste à étudier les fréquences

naturelles de vibration à l’aide de l’analyse des valeurs propres. Grâce à cette dernière, le

résultat est double puisqu’elle permet d’obtenir les les fréquences naturelles ainsi que les

formes des vibrations. Ces formes de vibration sont appelées réponses de vibration li-

bre non amorties de la structure ou modes de déformation. L’analyse des valeurs propres

se concentre généralement sur les premières valeurs propres du modèle. Cela s’explique

principalement par le fait que le modèle d’éléments finis se rapproche de la forme réelle.

Par conséquent, il modélise correctement les fréquences spatiales les plus basses tout en

négligeant les fréquences spatiales plus élevées. En d’autres termes, les premiers modes

correspondent aux déformations les plus courantes de l’objet, comme le montre la Fig-

ure 4.1. En outre, les formes de mode sont normalisées par rapport au déplacement max-

imal de la structure.

En combinant ces deux considérations, nous pouvons utiliser l’analyse des valeurs

propres de la matrice de rigidité tangente pour étudier les modes de déformation de

149

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

l’objet. En échantillonnant les quatre ou cinq premiers modes avec des coefficients entre

-1 et 1, nous pouvons générer les déformations les plus courantes de l’objet. De plus, un

simple produit matriciel permet d’associer cette déformation à la force correspondante.

Par conséquent, nous pouvons produire la force responsable de l’approximation linéaire

de la déformation réelle en utilisant seulement quatre ou cinq de coefficients. Nous pou-

vons maintenant utiliser cette force dans une simulation pour obtenir la déformation non

linéaire associée.

La seconde partie de cette section du résumé mène une étude comparative entre deux

architectures de réseaux neuronaux artificiels utilisées pour prédire les déformations non

linéaires à partir d’une force d’entrée. La première, utilisée par Mendizabal et al. [75], est

un CNN appelé U-Net ou U-Mesh dans notre context, tandis que la seconde est un MLP

composé de cinq couches.

Cette étude présente le premier cas de test sur une poutre à section carrée fixée d’un

côté par des conditions limites de Dirichlet. Les résultats montrent que, pour le scénario

de la poutre, le MLP est légèrement plus performant en moyenne que l’U-Mesh lorsqu’il

est testé sur des données tirées de la même distribution que les données d’apprentissage

(Tableau 4.2a). Cependant, U-Mesh présente de meilleures capacités de généralisation

que le MLP (Tableau 4.2b). Les temps de formation absolus n’ont pas été rapportés car les

deux réseaux ont été formés sur des machines différentes. Cependant, sur des problèmes

similaires, le MLP s’est avéré beaucoup plus rapide à former que l’U-Mesh. En outre, le

MLP est environ dix fois plus rapide que l’U-Mesh pour faire des prédictions, ce qui en

fait l’option préférée pour ce problème.

Le deuxième test a été réalisé sur un foie. Les résultats obtenus lors de cette expérience

sont satisfaisants en termes de précision et de temps de prédiction. Le MLP a produit des

prédictions plus précises en moyenne que l’U-Mesh, mais ses erreurs étaient plus élevées

pour certaines valeurs aberrantes en raison de sa faible capacité de généralisation. Ces

valeurs aberrantes correspondent aux limites supérieures de l’ensemble de données de

test qui ont été mal représentées pendant la formation. L’U-Mesh produit une défor-

mation environ 500 fois plus rapidement que les solveurs MEF standard, qui prennent

environ 1 500 ms par solution. Le MLP lui est environ 5 000 fois plus rapide.

Les résultats indiquent que le MLP est plus performant que l’U-Mesh pour les mail-

lages à petite résolution concernant la précision de la prédiction et la vitesse d’apprentissage.

Ces résultats, pouvant sembler surprenant de prime abord, peuvent être expliquer de la

manière suivante : Premièrement, l’U-Mesh nécessite une structure de grille régulière

avec de nombreux zéros, ce qui augmente la taille de l’entrée sans fournir d’informations

supplémentaires. Il en résulte un écart de performance plus important entre les deux

réseaux dans les scénarios comportant davantage de zéros sans signification, comme

150

le scénario du foie. Une solution possible pour réduire cet écart consiste à utiliser un

masque géométrique dans la fonction de coût, qui peut créer des contraintes sur la con-

naissance du domaine. Une solution plus sophistiquée impliquant des convolutions éparses

peut s’avérer nécessaire dans de tels cas. Deuxièmement, l’U-Mesh utilise un espace la-

tent réduit pour représenter le problème, ce qui permet une meilleure généralisation mais

se traduit par une précision légèrement inférieure pour les scénarios spécifiques aux pa-

tients. Toutefois, la précision peut être améliorée en augmentant la taille de l’espace la-

tent, bien que cela augmente le temps de formation et nécessite un compromis entre la

précision et l’efficacité.

En résumé, le MLP et l’U-Mesh atteignent une précision similaire dans les scénar-

ios étudiés tout en étant des ordres de grandeur plus rapides que les solveurs MEF pour

simuler les déformations non linéaires. Le MLP est notamment, en moyenne, un ordre de

grandeur plus rapide que l’U-Mesh. Un avantage notable de cette approche est l’absence

de réglage fin dans la génération des données et l’entraînement, grâce à une méthode de

génération automatique des forces basée sur l’analyse modale et les techniques de nor-

malisation des données. Compte tenu des limites et des propriétés des réseaux, nous

avons décidé de poursuivre nos études et nos recherches avec le réseau entièrement con-

necté.

Hybrid solver

Notre choix de réseau s’est principalement porté sur la prédiction rapide. En effet, il est

souvent plus facile de prendre quelque chose de rapide et de le rendre plus fiable que

de faire l’inverse. Le quatrième chapitre (chapitre 5) de cette thèse se concentre sur la

combinaison de notre réseau de neurones artificiels, qui produit des prédictions rapides,

et de l’algorithme de Newton-Raphson, qui produit des résultats fiables.

Nous commençons par une présentation plus approfondie de la méthode de Newton-

Raphson. La méthode de Newton ou de Newton-Raphson est une méthode d’optimisation

convexe du second ordre. Elle repose sur l’optimisation d’une fonction à l’aide de son ap-

proximation quadratique. Cette approximation calcule des informations sur la fonction

en utilisant le hessien, ce qui la rend plus pertinente que la descente de gradient clas-

sique. Dans la méthode de Newton, nous nous déplaçons vers le Hessien négatif inverse

du gradient. Cette opération est répétée jusqu’à ce que le pas soit arbitrairement consid-

éré comme trop petit ou que la fonction soit suffisamment proche de son minimum.

En outre, la convergence de l’algorithme peut être divisée en deux phases. Dans la pre-

mière phase, appelée phase de Newton amortie, le critère diminue d’une quantité prévis-

151

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

ible qui dépend des paramètres de l’algorithme de recherche linéaire à rebours. Après un

nombre de pas qui dépend de la simulation, nous satisfaisons un critère qui nous place

dans la phase de Newton pure, et le taux de convergence devient quadratique.

Il est parfois difficile de savoir à l’avance si le problème respecte le critère de conver-

gence de la méthode de Newton. Des problèmes surviennent lorsqu’un point d’itération

est stationnaire ou que le gradient est presque nul puisque nous multiplions par l’inverse

de la dérivée de la fonction. Un dernier problème lié aux points d’itération est que l’algorithme

peut entrer dans un cycle, ce qui signifie qu’il ne converge jamais. Les dérivées peuvent

également ne pas exister ou être discontinues à la racine. Globalement, la méthode de

Newton est très sensible au point de départ et à la qualité de la dérivée.

Notre contribution propose d’utiliser un réseau neuronal artificiel pour se placer dans

la phase de convergence quadratique le plus tôt possible. L’idée est d’initialiser la méth-

ode de Newton avec une prédiction d’un réseau neuronal artificiel formé à cet effet. Par

conséquent, la prédiction du réseau neuronal est utilisée si elle constitue un meilleur

point de départ que le résultat de la première itération. La comparaison est effectuée à

l’aide de l’équation minimisée. Bien que la méthode produise généralement des solutions

qualitatives, si la force d’entrée est trop différente de l’ensemble de données d’entraînement,

elle peut produire des solutions erronées qui seront préjudiciables à l’algorithme. De

cette manière, nous nous plaçons toujours dans le meilleur scénario possible en utilisant

la supposition initiale qui minimise la fonction.

Cette contribution est testée sur deux cas, l’un utilisant une poutre en porte-à-faux et

l’autre une hélice. Pour mettre en évidence la capacité de notre approche à apprendre

sur des formes et des propriétés matérielles très différentes, nous avons sélectionné un

maillage d’hélice avec une loi d’hyper-élasticité néo-hookéenne et une poutre en porte-

à-faux avec une loi d’hyper-élasticité de Saint-Venant-Kirrchhof. Les deux ont environ 12

000 degrés de liberté. En revanche, leurs paramètres de matériaux sont très différents,

avec une faible rigidité pour le modèle de poutre et une rigidité très élevée pour l’hélice,

afin d’évaluer la validité du processus d’apprentissage et des prédictions. Les dimensions

des deux structures ont également été choisies pour être très différentes pour la même

raison. La poutre extrêmement souple permet des déplacements de dizaines de mètres

à partir de petites forces externes. Ces scénarios extrêmes sont généralement le point

faible des réseaux neuronaux artificiels. En outre, compte tenu de sa géométrie, la poutre

a tendance à se déformer globalement, même sous l’effet de forces locales. Une prédic-

tion précise exige que le réseau transfère les informations de déformation nécessaires à

tous les nœuds. Au contraire, des forces importantes sont nécessaires pour que l’hélice

fournisse des déplacements relativement faibles, de l’ordre du centimètre. Cependant, sa

géométrie est telle qu’avec des forces locales, elle affiche des déformations au niveau des

152

pales sans aucun déplacement sur les pales voisines.

Tout d’abord, nous nous assurons que notre réseau neuronal prédit des déformations

exactes. Notre ANN obtient des résultats similaires pour les deux modèles, avec une er-

reur quadratique moyenne (EQM) d’environ 10−6 . Nous montrons ainsi que notre ap-

prentissage n’est pas spécifique à un type de problème.

Nous injectons ensuite notre solution telle que proposée par l’algorithme hybride de

Newton-Raphson. Sur les 100 échantillons de test, l’algorithme de Newton-Raphson hy-

bride a choisi deux fois sur trois la prédiction du réseau comme meilleur point de départ

que le résultat de la première itération de l’algorithme de Newton-Raphson. À partir de

ce point, l’algorithme converge en moyenne en 5 itérations. Cela montre qu’à partir de

la prédiction, l’algorithme converge en moyenne en 4 itérations, en ajoutant 5 pour tenir

compte de la première itération rejetée lorsque la prédiction est choisie.

Dans l’ensemble, l’algorithme proposé converge plus souvent et plus rapidement que

la méthode classique tout en conservant les propriétés de convergence ordinaires de l’algorithme

de Newton-Raphson.

Optimal control for augmented surgery

Nous avons ainsi une première réponse sur la façon de prédire rapidement les déforma-

tions non linéaires d’un corps mou et sur la façon de vérifier et de corriger ces prédictions.

Il est maintenant temps de plonger dans l’aspect médical de cette thèse avec le cinquième

chapitre (chapitre 6), qui introduit le problème du recalage non rigide.

La résection hépatique ou hépatectomie est une procédure chirurgicale qui consiste

à retirer une partie ou la totalité du foie. Le foie partiellement enlevé peut reprendre sa

taille initiale, alors que la résection totale du foie nécessite une transplantation. En raison

de l’extrême capacité de régénération du foie, la résection hépatique est une pratique

courante en cas de maladie du foie. Bien que l’opération soit souvent pratiquée, elle reste

une compliquée en raison de la densité des vaisseaux dans le foie, qui peut provoquer des

saignements importants.

Il existe deux méthodes principales pour réaliser une résection du foie : la chirurgie

abdominale ouverte et la chirurgie laparoscopique. La plus ancienne est la chirurgie ab-

dominale ouverte, qui consiste à pratiquer une longue incision unique, également ap-

pelée laparotomie, pour accéder à la cavité abdominale. La plus récente est la chirurgie

laparoscopique, où la procédure est effectuée par de petites incisions dans l’abdomen à

l’aide d’outils allongés et d’une caméra appelée laparoscope.

Ces travaux visent à fournir des outils permettant d’introduire la réalité augmentée

153

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

dans la salle d’opération en projetant les structures internes de l’organe sur le flux vidéo

des chirurgiens. L’introduction d’informations 3D internes dans l’affichage pourrait aider

le praticien en offrant une meilleure visualisation de l’opération et également aider à la

prise de décision. Cette projection nécessite tout d’abord l’extraction de la déformation

actuelle de l’organe à partir du flux vidéo et, ensuite, la déformation de la structure interne

et sa re-projection sur le flux vidéo.

Dans notre travail, nous nous concentrons sur la première tâche : Calculer la déforma-

tion actuelle de l’organe à partir du flux vidéo. L’extraction des déformations à partir d’un

flux vidéo nécessite de trouver le recalage rigide, d’extraire la surface de l’image puis de

calculer la déformation. Cette thèse se concentre davantage sur l’aspect théorique de la

méthode que sur les résultats expérimentaux réels. Nous émettons donc deux hypothèses

qui nous permettent de nous concentrer uniquement sur le calcul de la déformation. La

première est que recalage rigide est déjà effectué. La seconde est que nous pouvons ex-

traire un nuage de points 3D à partir d’images couleur. Ces deux hypothèses sont des

sujets de recherche réels et pourraient faire l’objet de thèses à elles seules. Afin de bien

comprendre notre travail, nous allons étudier l’impact de ces deux hypothèses sur notre

méthode.

A partir du flux vidéo, nous disposons d’une surface 3D partielle de l’objet. Ce nu-

age de points est intéressant car il fournit des informations précieuses sur la déforma-

tion. En utilisant cette déformation, nous devrions être en mesure d’extraire la force qui

l’a générée. Ce raisonnement a été prouvé par Mestdagh et al. [78]. Dans ce travail, ils

utilisent le contrôle optimal et la méthode adjointe pour récupérer les forces qui défor-

ment un foie composé d’un matériau non linéaire pour s’adapter à un nuage de points

de surface partielle. En d’autres termes, ils trouvent les forces telles que le foie déformé

correspond aux données observées.

Une fois que nous avons les forces, nous savons que la déformation d’un foie et de sa

structure interne est calculée en quelques millisecondes en utilisant les travaux présen-

tées précédemment.

Notre contribution consiste principalement à accélérer les calculs présentés à l’aide

d’un réseau neuronal artificiel.

L’algorithme proposé par Mestdagh et al. [78] comprend quatre étapes principales.

La première consiste à calculer la déformation du modèle sous l’effet d’une charge ex-

terne, également appelée problème à terme. La deuxième étape évalue la distance entre

le modèle et les données d’observation (surface reconstruite). La troisième étape utilise la

formulation d’un problème adjoint pour calculer le gradient de la charge externe. Enfin,

la dernière étape met à jour la charge externe pour réduire la distance entre le modèle et

la surface reconstruite. Ces quatre étapes sont répétées jusqu’à ce qu’un critère arbitraire

154

soit satisfait.

Dans ce processus, nous avons identifié deux goulots d’étranglement principaux : la

première étape (problème direct) et la troisième étape (problème adjoint).

Le problème direct est résolu à l’aide de l’approche MEF classique, où un algorithme

de Newton est utilisé pour calculer la déformation non linéaire d’un corps mou soumis à

une charge externe. Notre contribution à la réduction de ce goulot d’étranglement con-

siste à utiliser notre réseau neuronal artificiel pour calculer les simulations directes. Par

identification, nous pouvons voir des similitudes entre le contrôle de cette méthode et

notre travail précédent. Les deux entrées/contrôles sont des forces externes ; les deux

sorties sont les déformations résultantes. Nous remplaçons la simulation par un ANN

qui effectue les mêmes opérations mais beaucoup plus rapidement, comme le montre le

chapitre 4. Grâce à cette amélioration, le coût d’une simulation passe de plusieurs secon-

des à moins d’une milliseconde.

Le deuxième goulot d’étranglement apparaît lors de l’évaluation du problème adjoint.

Cette étape est responsable du calcul du gradient de la fonction de coût utilisée pour met-

tre à jour la commande. Le calcul du gradient s’effectue en résolvant un système linéaire

qui transforme le gradient de la fonction de coût de l’espace des déplacements à l’espace

des forces. La solution linéaire réduit l’évolutivité et la vitesse de l’algorithme, ce qui nous

écarte du critère de temps réel.

Afin d’accélérer le calcul, nous aimerions éviter ce système tout en étant en mesure

de calculer le gradient de l’évaluation de la simulation. Nous utilisons déjà un cadre

d’apprentissage profond grâce au réseau neuronal ajouté dans la boucle. Nous pouvons

donc facilement utiliser les outils associés, tels que la différenciation automatique et la

rétropropagation. L’algorithme de rétropropagation présenté dans la section 3.5 repose

sur la règle de la chaîne pour calculer le gradient de la fonction de coût par rapport à toute

variable impliquée dans le calcul. La règle de la chaîne ne nécessite pas la résolution d’un

système linéaire, mais repose sur un graphique de calcul. Cela signifie que le contrôle doit

être impliqué dans le calcul (entrée du réseau), de cette façon nous pouvons différencier

le résultat de l’évaluation par rapport à la force, obtenant ainsi ∇Ψ .

Nous avons remplacé le problème direct, qui prend du temps, par un réseau neuronal

artificiel et le problème de l’adjoint par l’algorithme de rétropropagation. Nous testons

notre méthode sur un exemple fictif de poutre en porte-à-faux et effectuons un test plus

approfondi sur cinq scénarios plus réalistes à l’aide d’un modèle de foie.

Concernant le test de la poutre, le calcul de chaque échantillon de l’ensemble de don-

nées de test a pris entre 1 et 2 secondes. En moyenne, recalage non rigide a pris 48

millisecondes pour une erreur moyenne de recalage de la cible de 5.37× 10−5 . Notre

méthode produit un recalage non rigide précis et presque en temps réel des matériaux

155

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

non linéaires. D’après notre analyse, la répartition temporelle des différentes tâches de

l’algorithme est cohérente, même avec des maillages plus denses. Les prédictions du

réseau et les évaluations de la fonction de coût représentent chacune entre 10 et 15 %

du temps de calcul, alors que l’évaluation du gradient représentent les 70-80% restant de

l’ensemble du processus d’optimisation.

Les cinq scénarios présentent des résultats similaires avec des erreur de recalage com-

pris entre 3,5 mm et 0,5 mm. Ces erreurs sont tout à fait acceptables et préservent les

propriétés physiques du maillage enregistré. Nous soulignons que l’erreur de recalage

moyenne pour la méthode classique est d’environ 0,1 mm, ce qui montre l’impact des

approximations du réseau.

En raison de la non-linéarité introduite par le matériau néo-hookéen utilisé pour simuler

le foie, nous avons besoin de plusieurs itérations pour converger vers le nuage de points

cible. Compte tenu de la complexité du maillage, le calcul d’une seule itération de l’algorithme

à l’aide d’un solveur classique prend plusieurs secondes, ce qui se traduit par une moyenne

de 14 minutes par image. L’algorithme que nous proposons utilise un réseau neuronal

pour améliorer la vitesse de calcul des problèmes hyperélastiques et adjoints. Le calcul

du problème hyperélastique prend environ 4 à 5 millisecondes, tandis que le problème

adjoint remplacé par l’algorithme de rétropropagation prend environ 11 ms. Cela con-

duit à une amélioration significative de la vitesse de convergence, comme le montre 6.11

où nous réduisons le temps de calcul par un facteur de 6000 en moyenne.

Enfin, nous examinons l’impact de notre hypothèse sur notre travail. Jusqu’à présent,

nous avons considéré une reconstruction parfaite de la surface et un recalage rigide. Dans

la suite de notre étude nous appliquons du bruit sur ces deux paramètres pour un échan-

tillon choisi arbitrairement. Les résultats montrent que notre méthode est assez résis-

tante dans la gamme de bruit que nous attendons de l’hypothèse et qu’elle est donc bien

adaptée à ce type de problème.

Nous avons présenté notre approche de la combinaison du cadre de contrôle optimal

avec l’apprentissage profond. La facilité d’accès aux différentes dérivées du modèle est

un point fort d’une telle méthode. D’un autre côté, le sujet de la représentation apprise

peu entacher la fiabilité de ces dérivées. De plus, chaque dérivée nécessite une rétroprop-

agation dans l’ensemble du réseau, ce qui peut être chronophage.

Enfin, le recalage est simple mais assez difficile à contrôler. Le modèle peut affiner

la solution de lui-même, mais nécessite de multiples techniques pour s’assurer qu’il se

concentre sur les régions d’intérêt.

Pour remédier à cet inconvénient, il faut passer à l’étape suivante et écrire un moteur

de simulation utilisant la différenciation automatique. Cela nous permettra d’incorporer

efficacement et naturellement l’apprentissage profond dans la simulation sans dépendre

156

uniquement des données générées par la boîte noire et d’une fonction de coût physique.

De tels simulateurs sont appelés simulateurs différentiables et, dans notre cas, simula-

teurs physiques différentiables.

Lastest optimisation tool: Differentiable simulation

Notre dernier chapitre (chapitre 7) porte sur les simulateurs différentiables. Dans ce chapitre,

nous présentons des résultats prometteurs non publiés sur le développement d’un sim-

ulateur MEF différentiable basé sur la formulation énergétique. Le simulateur développé

dans PyTorch prend en charge plusieurs types et degrés d’éléments et de matériaux. Nous

commençons par présenter comment nous calculons efficacement les différents mem-

bres de l’équation dans PyTorch. Enfin, nous présentons comment résoudre des prob-

lèmes direct et inverse similaires à ceux présentés dans le chapitre précédent (chapitre 6).

Dans le cadre de la MEF, l’énergie globale est calculée en accumulant l’énergie locale

sur chaque élément. Chaque énergie locale est un scalaire indépendant. Par conséquent,

le calcul est hautement parallélisable et efficace en termes de mémoire, ce qui est parfait

pour les calculs sur GPU.

Ces affirmations ne sont pas valables lorsque l’on parle de forces internes dérivant

de l’énergie interne. Les forces internes sont des quantités nodales qui dérivent d’une

quantité élémentaire. Comme notre moteur est écrit en PyTorch et que ce framework

permet de calculer facilement sur le GPU, nous avons préféré travailler avec l’énergie pour

maximiser les performances.

Le problème est alors formulé comme la minimisation de la différence entre deux én-

ergies potentielles. Celle-ci représente l’énergie potentielle élastique et dépend de la dé-

formation actuelle du modèle. La seconde est l’énergie potentielle linéaire et correspond

au produit du déplacement par la charge.

Pour paralléliser efficacement le calcul de chaque membre, nous avons dû introduire

une représentation topologique spécifique de l’objet. A la place de contenir les indices

des nœuds, le tableau topologique contient directement la position des nœuds associé

a chaque éléments. Bien que cela duplique les données, cela supprime le besoin d’une

boucle for lente. Toute optimisation a un effet double avec PyTorch puisqu’elle accélère

également la rétropropagation.

Le tableau de positions étant plus complexe, nous utilisons la notation d’Einstein pour

effectuer nos calculs. Grâce à cette notation, PyTorch permet de formuler rapidement

des opérations tensorielles complexes. Ainsi, nous n’écrivons que les indices sur lesquels

nous effectuons la multiplication et l’addition dans une chaîne de caractères qui sert de

157

CHAPTER 9. RÉSUMÉ EN FRANÇAIS

modèle pour le calcul des tenseurs donnés. Cette notation a également le bon goût d’être

extrêmement rapide à écrire et à calculer, même pour des opérations de base telles que la

multiplication matrice-vecteur, où elle est plus performante que la fonction par défaut.

Le calcul de l’énergie potentielle élastique se fait en calculant les tenseurs dans l’ordre

où nous les avons présentés dans le chapitre 2. Nous commençons par multiplier la po-

sition par la dérivée de la fonction de forme. Cela nous donne le gradient de déformation

F . Nous multiplions ensuite sa transposée par lui-même, ce qui nous donne le tenseur

de déformation de Cauchy-Green C . Nous y soustrayons l’identité, ce qui nous donne

le tenseur de déformation de Green-Lagrange E . Nous disposons de toutes les quan-

tités nécessaires pour calculer le second tenseur des contraintes de Piola-Kirrchhoff S ,

qui donne la réponse du matériau à une déformation donnée. Avec quelques étapes sup-

plémentaires qui introduiraient des équations dans ce résumé, nous aboutissons à une

somme de l’énergie par élément qui nous donne l’énergie potentielle élastique totale.

Un simple produit scalaire entre le champ de déplacement et la charge externe permet

de calculer l’énergie potentielle linéaire.

Enfin, un aspect essentiel de l’élasticité statique est constitué par les conditions aux

limites de Dirichlet, sans lesquelles le système n’a pas de solution. Afin de résoudre le

problème tout en conservant la chaîne de dérivation, nous les appliquons ces contraintes

de manière douce. Pour se faire nous ajoutons à la fonction de minimisation la norme

quadratique du déplacement des nœuds correspondants.

Cela nous donne une évaluation du système. Cependant afin pour minimiser cette

fonction nous devons optimiser le champ de déplacement. Pour ce faire, nous ajoutons

une étape de l’algorithme de Newton-Raphson après l’évaluation. Nous répétons ensuite

ce processus jusqu’à ce qu’un critère soit atteint.

Le moteur a été conçu pour atteindre deux objectifs principaux. Le premier est de

pouvoir calculer la solution de problèmes de corps mous pour des matériaux linéaires et

non linéaires composés d’éléments linéaires ou quadratiques. Le second s’appuie sur le

premier et impose la condition que la solution du problème de corps mou soit différen-

tiable en utilisant l’algorithme de rétropropagation.

Cela signifie que l’algorithme de Newton-Raphson doit être différentiable si nous voulons

utiliser le moteur pour effectuer l’optimisation du contrôle comme nous l’avons fait dans

le chapitre précédent (chapitre 6). Pour ce faire, nous avons dû implémenter un algo-

rithme de Newton-Raphson différentiable avec une résolution linéaire différentiable et

une recherche linéaire à rebours. Par conséquent, nous pouvons brancher notre moteur

différentiable à la place du RNA et effectuer le calcul exact, mais ici, la simulation directe

est une simulation MEF réelle, et l’algorithme de rétropropagation remplace le problème

adjoint.

158

Comme le moteur n’est pas spécifique et qu’il comporte de multiples variables (mail-

lage, module d’Young, coefficient de Poisson, etc.), nous pouvons effectuer une optimisa-

tion en fonction d’un de ces paramètres.

Dans le résultat, nous montrons les capacités du moteur en mettant en évidence les

différents paramètres que nous pouvons définir comme contrôles. Comme ces résul-

tats n’ont rien de scientifique, nous ne ferons qu’une brève présentation de l’étude, sans

présenter de chiffres ni mener d’étude comparative dans le résumé. Nous commençons

par un aperçu de la force comme contrôle de la simulation, où nous discutons de l’impact

de la connaissance de l’utilisateur et de la valeur initiale sur le processus d’optimisation.

En utilisant notre moteur, nous présentons ensuite l’estimation du module d’Young’s et

du coefficient de Poisson. Nous laissons le lecteur intéressé sauter à la section correspon-

dante (section 7.2).

En résumé, nous avons construit un moteur de physique des corps mou différentiable

qui peut être optimisé pour n’importe quel paramètre de simulation à l’aide du cadre de

contrôle optimal et de l’algorithme de rétropropagation. Bien que le moteur soit stable

et réponde à toutes nos attentes, il peut être amélioré. Le temps de calcul de la matrice

de rigidité tangente est actuellement trop long pour une utilisation en temps réel. Il n’est

pas encore clair si cela est dû à la courte durée de développement ou à une limitation de

PyTorch.

159

BIBLIOGRAPHY

[1] J. Allard, H. Courtecuisse, and F. Faure. Implicit FEM and Fluid Coupling on GPU

for Interactive Multiphysics Simulation. In M. Elendt, editor, SIGGRAPH Talks, page

Article No. 52, Vancouver, Canada, Aug. 2011. ACM.

[2] J. Allard, H. Courtecuisse, and F. Faure. Implicit FEM Solver on GPU

for Interactive Deformation Simulation. In W. mei W. Hwu, editor,

GPU Computing Gems Jade Edition, Applications of GPU Computing Series,

pages 281–294. Elsevier, Nov. 2011.

[3] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on

throughput-oriented processors. In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, SC ’09, New York, NY,

USA, 2009. NVidia, Association for Computing Machinery.

[4] S. E. Benzley, E. Perry, K. Merkley, B. Clark, and G. Sjaardema. A comparison of all

hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic

analysis. In In Proceedings, 4th International Meshing Roundtable, pages 179–191,

1995.

[5] G. Berkooz, P. Holmes, and J. L. Lumley. The proper orthogonal decomposition in

the analysis of turbulent flows. Annual review of fluid mechanics, 25(1):539–575,

1993.

[6] A. Bernardin, E. Coevoet, P. Kry, S. Andrews, C. Duriez, and M. Marchal. Constraint-

based Simulation of Passive Suction Cups. ACM Transactions on Graphics, 42(1):1–

14, Feb. 2023.

[7] P. J. Besl and N. D. McKay. Method for registration of 3-d shapes. In Sensor fusion

IV: control paradigms and data structures, volume 1611, pages 586–606. Spie, 1992.

[8] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,

A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable

transformations of Python+NumPy programs, 2018.

161

BIBLIOGRAPHY

[9] S. Brenner and R. Scott. The mathematical theory of finite element methods, vol-

ume 15. Springer Science & Business Media, 2007.

[10] C. G. Broyden. Quasi-newton methods and their application to function minimisa-

tion. Mathematics of Computation, 21(99):368–381, 1967.

[11] J. Bruix and M. Sherman. Management of hepatocellular carcinoma. Hepatology,

42(5):1208–1236, 2005.

[12] J.-N. Brunet, V. Magnoux, B. Ozell, and S. Cotin. Coro-

tated meshless implicit dynamics for deformable bodies. In

WSCG 2019 - 27th International Conference on Computer Graphics, Visualization and Computer Vision,

Pilsen, Czech Republic, May 2019. Západočeská univerzita.

[13] J.-N. Brunet, A. Mendizabal, A. Petit, N. Golse, E. Vibert, and S. Cotin. Physics-based

deep neural network for augmented reality during liver surgery. In International

Conference on Medical image computing and computer-assisted intervention,

pages 137–145. Springer, 2019.

[14] A. Chatterjee. An introduction to the proper orthogonal decomposition. Current

science, pages 808–817, 2000.

[15] J. Chen, H. Li, F. Liu, B. Li, and Y. Wei. Surgical outcomes of laparoscopic versus open

liver resection for hepatocellular carcinoma for various resection extent. Medicine,

96(12), 2017.

[16] N. Chentanez, M. Macklin, M. Müller, S. Jeschke, and T.-Y. Kim. Cloth and skin

deformation with a triangle mesh based convolutional neural network. Computer

Graphics Forum, 39(8):123–134, 2020.

[17] E. Cueto and F. Chinesta. Thermodynamics of learning physical phenomena, 2022.

[18] S. Dastjerdi, B. Akgöz, and Ö. Civalek. On the shell model for human eye in glau-

coma disease. International Journal of Engineering Science, 158:103414, 2021.

[19] S. Deshpande, J. Lengiewicz, and S. Bordas. Probabilistic deep learning for real-

time large deformation simulations. 2021.

[20] R. Dreyfus, Q. Boehler, and B. J. Nelson. A Simulation Framework for Magnetic

Continuum Robots. IEEE Robotics and Automation Letters, 7(3):8370 – 8376, June

2022.

162

BIBLIOGRAPHY

[21] Drugs.com. Laparoscopic surgery. https://www.drugs.com/cg/laparoscopic-liver-

biopsy.html.

[22] I. Duff, J. Hogg, and F. Lopez. A new sparse ldlˆt solver using a posteriori threshold

pivoting. SIAM Journal on Scientific Computing, 42(2):C23–C42, 2020.

[23] M. Duprez and A. Lozinski. φ-fem: A finite element method on domains defined by

level-sets. SIAM Journal on Numerical Analysis, 58(2):1008–1028, 2020.

[24] A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski. Finite element matrix gen-

eration on a gpu. Progress In Electromagnetics Research, 128:249–265, 01 2012.

[25] A. Düster, J. Parvizian, Z. Yang, and E. Rank. The finite cell method for

three-dimensional problems of solid mechanics. Computer Methods in Applied

Mechanics and Engineering, 197(45):3768–3782, 2008.

[26] N. B. Erichson, M. Muehlebach, and M. W. Mahoney. Physics-informed autoen-

coders for lyapunov-stable fluid flow prediction, 2019.

[27] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. Feti-dp: a dual–

primal unified feti method—part i: A faster alternative to the two-level feti method.

International journal for numerical methods in engineering, 50(7):1523–1544, 2001.

[28] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,

H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin. SOFA:

A Multi-Model Framework for Interactive Physical Simulation. In

Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, volume 11

of Studies in Mechanobiology, Tissue Engineering and Biomaterials, pages 283–

321. Springer, 2012.

[29] R. Feinman. Pytorch-minimize: a library for numerical optimization with autograd,

2021.

[30] J. B. Freund, J. F. MacArt, and J. Sirignano. Dpm: A deep learning pde augmentation

method (with application to large-eddy simulation), 2019.

[31] K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition. In Competition and

cooperation in neural nets, pages 267–285. Springer, 1982.

[32] H. Gao, X. Ma, N. Qi, C. Berry, B. E. Griffith, and X. Luo. A finite strain nonlinear

human mitral valve model with fluid-structure interaction. International journal

for numerical methods in biomedical engineering, 30(12):1597–1613, 2014.

163

BIBLIOGRAPHY

[33] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message

passing for quantum chemistry, 2017.

[34] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains.

In Proceedings. 2005 IEEE International Joint Conference on Neural Networks,

2005., volume 2, pages 729–734. IEEE, 2005.

[35] O. Goury, B. Carrez, and C. Duriez. Real-time simulation for control of soft robots

with self-collisions using model order reduction for contact forces. IEEE Robotics

and Automation Letters, 6(2):3752–3759, 2021.

[36] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[37] R. Gulakala, B. Markert, and M. Stoffel. Graph neural network enhanced finite ele-

ment modelling. PAMM, 22(1):e202200306, 2023.

[38] R. Haferssas, P.-H. Tournier, F. Nataf, and S. Cotin. Simulation of soft tissue defor-

mation in real-time using domain decomposition. INRIA, 2019.

[39] N. Haouchine, J. Dequidt, I. Peterlik, E. Kerrien, M.-O. Berger, and S. Cotin. Image-

guided simulation of heterogeneous tissue deformation for augmented reality

during hepatic surgery. In 2013 IEEE international symposium on mixed and

augmented reality (ISMAR), pages 199–208. IEEE, 2013.

[40] J. He, D. Abueidda, S. Koric, and I. Jasiuk. On the use of graph neural net-

works and shape-function-based gradient computation in the deep energy method.

International Journal for Numerical Methods in Engineering, 124(4):864–879, 2023.

[41] J. S. Heiselman, W. R. Jarnagin, and M. I. Miga. Intraoperative correction of liver de-

formation using sparse surface and vascular features via linearized iterative bound-

ary reconstruction. IEEE transactions on medical imaging, 39(6):2223–2234, 2020.

[42] P. Holl, V. Koltun, K. Um, and N. Thuerey. phiflow: A differentiable pde solving

framework for deep learning via physical simulations. In NeurIPS workshop, vol-

ume 2, 2020.

[43] A. Holynski, B. L. Curless, S. M. Seitz, and R. Szeliski. Animating pictures with eule-

rian motion fields. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 5810–5819. University of Washington, June

2021.

164

BIBLIOGRAPHY

[44] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are

universal approximators. Neural networks, 2(5):359–366, 1989.

[45] A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis. Conservative physics-informed

neural networks on discrete domains for conservation laws: Applications to for-

ward and inverse problems. Computer Methods in Applied Mechanics and

Engineering, 365:113028, 2020.

[46] K. M. Jatavallabhula, M. Macklin, F. Golemo, V. Voleti, L. Petrini, M. Weiss, B. Consi-

dine, J. Parent-Levesque, K. Xie, K. Erleben, L. Paull, F. Shkurti, D. Nowrouzezahrai,

and S. Fidler. gradsim: Differentiable simulation for system identification and vi-

suomotor control. International Conference on Learning Representations (ICLR),

2021.

[47] S. Karumuri, R. Tripathy, I. Bilionis, and J. Panchal. Simulator-free solution of high-

dimensional stochastic elliptic partial differential equations using deep neural net-

works. Journal of Computational Physics, 404:109120, 2020.

[48] H. J. Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–954,

1960.

[49] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-

batch training for deep learning: Generalization gap and sharp minima. arXiv

preprint arXiv:1609.04836, 2016.

[50] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. hp-vpinns: Variational physics-

informed neural networks with domain decomposition. Computer Methods in

Applied Mechanics and Engineering, 374:113547, 2021.

[51] D. Kim, W. Koh, R. Narain, K. Fatahalian, A. Treuille, and J. F. O’Brien. Near-

exhaustive precomputation of secondary cloth effects. ACM Transactions on

Graphics (TOG), 32(4):1–8, 2013.

[52] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[53] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer.

Machine learning accelerated computational fluid dynamics. arXiv preprint

arXiv:2102.01010, 2021.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. Commun. ACM, 60(6):84–90, may 2017.

165

BIBLIOGRAPHY

[55] P. L. Lagari, L. Tsoukalas, S. Safarkhani, and I. Lagaris. Systematic construction of

neural forms for solving partial differential equations inside rectangular domains,

subject to initial, boundary and interface conditions. International Journal on

Artificial Intelligence Tools, 29, 05 2020.

[56] I. Lagaris, A. Likas, and D. Fotiadis. Artificial neural networks for solving ordinary

and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–

1000, 1998.

[57] M. Lefik and B. A. Schrefler. Artificial neural network as an incremental non-

linear constitutive model for a finite element code. Computer methods in applied

mechanics and engineering, 192(28-30):3265–3283, 2003.

[58] D. Li, K. Xu, J. M. Harris, and E. Darve. Coupled time-lapse full-waveform inver-

sion for subsurface flow problems using intrusive automatic differentiation. Water

Resources Research, 56(8):e2019WR027032, 2020.

[59] Y. Li, T. Du, K. Wu, J. Xu, and W. Matusik. Diffcloth: Differentiable cloth simulation

with dry frictional contact. ACM Trans. Graph., 42(1), oct 2022.

[60] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar. Fourier neural operator for parametric partial differential equa-

tions, 2021.

[61] S. Linnainmaa. The representation of the cumulative rounding error of an

algorithm as a Taylor expansion of the local rounding errors. PhD thesis, Master’s

Thesis (in Finnish), Univ. Helsinki, 1970.

[62] P.-L. Lions. On the schwarz alternating method. iii: a variant for nonoverlap-

ping subdomains. In Third international symposium on domain decomposition

methods for partial differential equations, volume 6, pages 202–223. SIAM Philadel-

phia, PA, 1990.

[63] D. G. MacManus, N. Chiereghin, D. G. Prieto, and P. Zachos. Complex aeroengine

intake ducts and dynamic distortion. AIAA Journal, 55(7):2395–2409, 2017.

[64] Y. Maday and E. M. Ronquist. The reduced basis element method: application to a

thermal fin problem. SIAM Journal on Scientific Computing, 26(1):240–258, 2004.

[65] J. Mandel. Balancing domain decomposition. Communications in numerical

methods in engineering, 9(3):233–241, 1993.

166

BIBLIOGRAPHY

[66] S. Marchesseau, S. Chatelin, and H. Delingette. Nonlinear biomechanical model of

the liver. pages 243–265, 2017.

[67] J. Martínez-Frutos, P. J. Martínez-Castejón, and D. Herrero-Pérez. Fine-grained

gpu implementation of assembly-free iterative solver for finite element problems.

Computers & Structures, 157:9–18, 2015.

[68] Y. M. Marzouk, H. N. Najm, and L. A. Rahn. Stochastic spectral methods for ef-

ficient bayesian solution of inverse problems. Journal of Computational Physics,

224(2):560–586, 2007.

[69] M. Maurizi, C. Gao, and F. Berto. Predicting stress, strain and deformation

fields in materials and structures with graph neural networks. Scientific Reports,

12(1):21834, 2022.

[70] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon. A proposal for the

dartmouth summer research project on artificial intelligence, august 31, 1955. AI

magazine, 27(4):12–12, 2006.

[71] W. Mcculloch and W. Pitts. A logical calculus of ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5:127–147, 1943.

[72] K. S. McFall and J. R. Mahan. Artificial neural network method for solution of

boundary value problems with exact satisfaction of arbitrary boundary conditions.

IEEE Transactions on Neural Networks, 20(8):1221–1233, 2009.

[73] F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu, A. Maier, and T. Mansi. Towards

fast biomechanical modeling of soft tissue using neural networks. arXiv preprint

arXiv:1812.06186, 2018.

[74] M. Mendez, M. Balabane, and J.-M. Buchlin. Multi-scale proper orthogonal decom-

position of complex fluid flows. Journal of Fluid Mechanics, 870:988–1036, 2019.

[75] A. Mendizabal, P. Márquez-Neila, and S. Cotin. Simulation of hyper-elastic materi-

als in real-time using deep learning. Medical image analysis, 59:101569, 2020.

[76] A. Mendizabal, A. Odot, and S. Cotin. Chapter 5 - deep learning for real-time com-

putational biomechanics. In F. Chinesta, E. Cueto, Y. Payan, and J. Ohayon, editors,

Reduced Order Models for the Biomechanics of Living Organs, Biomechanics of

Living Organs, pages 95–126. Academic Press, 2023.

167

BIBLIOGRAPHY

[77] G. Mestdagh. An optimal control formulation for organ registration in augmented surgery.

Theses, Université de Strasbourg, Dec. 2022.

[78] G. Mestdagh and S. Cotin. An Optimal Control Problem for Elas-

tic Registration and Force Estimation in Augmented Surgery. In

MICCAI 2022 - 25th International Conference on Medical Image Computing and Computer Assisted Intervention,

Singapore, Singapore, Sept. 2022.

[79] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational

Geometry. MIT Press, Cambridge, MA, USA, 1969.

[80] B. Moya, A. Badías, D. González, F. Chinesta, and E. Cueto. A thermodynamics-

informed active learning approach to perception and reasoning about fluids.

Computational Mechanics, pages 1–15, 2023.

[81] E. Mueller, X. Guo, R. Scheichl, and S. Shi. Matrix-free gpu implementa-

tion of a preconditioned conjugate gradient solver for anisotropic elliptic pdes.

https://arxiv.org/pdf/1302.7193.pdf, 2013.

[82] J. S. Mueller-Roemer and A. Stork. Gpu-based polynomial finite element matrix

assembly for simplex meshes. In Computer Graphics Forum, volume 37, pages 443–

454. Wiley Online Library, 2018.

[83] I. Murray. Differentiation of the cholesky decomposition. arXiv preprint

arXiv:1602.07527, 2016.

[84] A. Odot, R. Haferssas, and S. Cotin. Deepphysics: A physics aware deep learning

framework for real-time simulation. International Journal for Numerical Methods

in Engineering, 123(10):2381–2398, 2022.

[85] A. Odot, G. Mestdagh, Y. Privat, and S. Cotin. Real-time elastic partial shape match-

ing using a neural network-based adjoint method. In B. Dorronsoro, F. Chicano,

G. Danoy, and E.-G. Talbi, editors, Optimization and Learning, pages 137–147,

Cham, 2023. Springer Nature Switzerland.

[86] I. Oliveira and A. Patera. Reduced-basis techniques for rapid reliable optimization

of systems described by affinely parametrized coercive elliptic partial differential

equations. Optimization and Engineering, 8(1):43–65, 2007.

[87] E. Özgür, B. Koo, B. Le Roy, E. Buc, and A. Bartoli. Preoperative liver registration for

augmented monocular laparoscopy using backward–forward biomechanical simu-

168

BIBLIOGRAPHY

lation. International journal of computer assisted radiology and surgery, 13:1629–

1640, 2018.

[88] H. Park and D. Cho. The use of the karhunen-loeve decomposition for the model-

ing of distributed parameter systems. Chemical Engineering Science, 51(1):81–98,

1996.

[89] I. Peterlík, C. Duriez, and S. Cotin. Modeling and Real-

Time Simulation of a Vascularized Liver Tissue. In

MICCAI 2012 - 15th International Conference on Medical Image Computing and Computer-Assisted Intervention,

pages 50–57, Nice, France, Oct. 2012. Springer.

[90] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning mesh-

based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

[91] M. Pfeiffer, C. Riediger, J. Weitz, and S. Speidel. Learning soft tissue behavior of

organs for surgical navigation with convolutional neural networks. International

journal of computer assisted radiology and surgery, 14(7):1147–1155, 2019.

[92] S. Pfrommer, M. Halm, and M. Posa. Contactnets: Learning discontinuous contact

dynamics with smooth, implicit representations, 2020.

[93] R. Plantefeve, I. Peterlik, N. Haouchine, and S. Cotin. Patient-specific biomechan-

ical modeling for guidance during minimally-invasive hepatic surgery. Annals of

biomedical engineering, 44:139–153, 2016.

[94] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A

deep learning framework for solving forward and inverse problems involving non-

linear partial differential equations. Journal of Computational Physics, 378:686–

707, 2019.

[95] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: Learning

velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030,

2020.

[96] H. Reich, F. McGlynn, J. DeCaprio, and R. Budin. Laparoscopic excision of benign

liver lesions. Obstetrics and gynecology, 78(5 Pt 2):956–958, 1991.

[97] F. Remondino and S. El-Hakim. Image-based 3d modelling: a review. The

photogrammetric record, 21(115):269–291, 2006.

169

BIBLIOGRAPHY

[98] R. Rico-Martinez, J. Anderson, and I. Kevrekidis. Continuous-time nonlinear sig-

nal processing: a neural network based approach for gray box identification. In

Proceedings of IEEE Workshop on Neural Networks for Signal Processing, pages

596–605. IEEE, 1994.

[99] E. Roan and K. Vemaganti. The nonlinear material properties of liver tissue deter-

mined from no-slip uniaxial compression experiments. 2007.

[100] L. V. Romaguera, R. Plantefève, F. P. Romero, F. Hébert, J.-F. Carrier, and S. Kadoury.

Prediction of in-plane organ deformation during free-breathing radiotherapy via

discriminative spatial transformer networks. Medical image analysis, 64:101754,

2020.

[101] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomed-

ical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi,

editors, Medical Image Computing and Computer-Assisted Intervention - MICCAI

2015, pages 234–241, Cham, 2015. Springer International Publishing.

[102] D. C. Rucker, Y. Wu, L. W. Clements, J. E. Ondrake, T. S. Pheiffer, A. L. Simpson, W. R.

Jarnagin, and M. I. Miga. A mechanics-based nonrigid registration method for liver

surgery using sparse intraoperative data. IEEE Transactions on Medical Imaging,

33(1):147–158, 2014.

[103] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations

by error propagation. Technical report, California Univ San Diego La Jolla Inst for

Cognitive Science, 1985.

[104] Y. Salehi and D. Giannacopoulos. Physgnn: A physics–driven graph neural network

based model for predicting soft tissue deformation in image–guided neurosurgery.

Advances in Neural Information Processing Systems, 35:37282–37296, 2022.

[105] I. Santesteban, M. A. Otaduy, and D. Casas. Learning-based animation of clothing

for virtual try-on. In Computer Graphics Forum, volume 38, pages 355–366. Wiley

Online Library, 2019.

[106] N. Schulmann, M. Soltani-Sarvestani, M. De Landro, S. Korganbayev, S. Cotin,

and P. Saccomandi. Model-based thermometry for laser ablation procedure us-

ing kalman filters and sparse temperature measurements. IEEE Transactions on

Biomedical Engineering, 69(9):2839–2849, 2022.

170

BIBLIOGRAPHY

[107] H. A. Schwarz. Au-dessus d’une frontière "u transition par procédure alternée. Z

"u rcher et Furrer, 1870.

[108] R. Shekari Beidokhti and A. Malek. Solving initial-boundary value problems for

systems of partial differential equations using neural networks and optimization

techniques. Journal of the Franklin Institute, 346(9):898–913, 2009.

[109] H. Sheng and C. Yang. PFNN: A penalty-free neural network method for solving a

class of second-order boundary-value problems on complex geometries. Journal of

Computational Physics, 428:110085, mar 2021.

[110] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial

differential equations. Journal of computational physics, 375:1339–1364, 2018.

[111] K. E. Smiley, F. Wuraola, B. O. Mojibola, A. Aderounmu, R. R. Price, and A. O. Adisa.

An outcomes-focused analysis of laparoscopic and open surgery in a nigerian hos-

pital. JSLS: Journal of the Society of Laparoscopic & Robotic Surgeons, 27(1), 2023.

[112] J. D. Stitzel, S. M. Duma, J. M. Cormier, I. P. Herring, et al. A nonlinear finite element

model of the eye with experimental validation for the prediction of globe rupture.

In Sae conference proceedings p, pages 81–102. SAE; 1999, 2002.

[113] A. M. Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451–559,

2010.

[114] L. Torrey and J. Shavlik. Transfer learning. In Handbook of research on machine

learning applications and trends: algorithms, methods, and techniques, pages 242–

264. IGI global, 2010.

[115] H. Wang, J. F. O’Brien, and R. Ramamoorthi. Data-driven elastic models for cloth:

modeling and measurement. ACM transactions on graphics (TOG), 30(4):1–12,

2011.

[116] Y. Wang, N. J. Weidner, M. A. Baxter, Y. Hwang, D. M. Kaufman, and S. Sueda. RED-

MAX: Efficient & flexible approach for articulated dynamics. ACM Trans. Graph.,

38(4), July 2019.

[117] N. Winovich, K. Ramani, and G. Lin. Convpde-uq: Convolutional neural networks

with quantified uncertainty for heterogeneous elliptic partial differential equations

on varied domains. Journal of Computational Physics, 394:263–279, 2019.

[118] P. Wriggers. Nonlinear Finite Element Methods, volume 4. 01 2008.

171

BIBLIOGRAPHY

[119] J.-L. Wu, K. Kashinath, A. Albert, D. Chirila, Prabhat, and H. Xiao. Enforcing statisti-

cal constraints in generative adversarial networks for modeling chaotic dynamical

systems. Journal of Computational Physics, 406:109209, apr 2020.

[120] W. Xu, N. Umetani, Q. Chao, J. Mao, X. Jin, and X. Tong. Sensitivity-optimized rig-

ging for example-based real-time clothing synthesis. ACM Trans. Graph., 33(4):107–

1, 2014.

[121] L. Yang, X. Meng, and G. E. Karniadakis. B-pinns: Bayesian physics-informed neu-

ral networks for forward and inverse pde problems with noisy data. Journal of

Computational Physics, 425:109913, 2021.

[122] Y. Yang, M. Aziz Bhouri, and P. Perdikaris. Bayesian differential programming for

robust systems identification under uncertainty. Proceedings of the Royal Society

A, 476(2243):20200290, 2020.

[123] W.-C. Yeh, P.-C. Li, Y.-M. Jeng, H.-C. Hsu, P.-L. Kuo, M.-L. Li, P.-M. Yang, and P. H.

Lee. Elastic modulus measurements of human liver and correlation with pathology.

Ultrasound in medicine & biology, 28(4):467–474, 2002.

[124] Z. Zeng, S. Cotin, and H. Courtecuisse. Real-Time FE Simulation for Large-Scale

Problems Using Precondition-Based Contact Resolution and Isolated DOFs Con-

straints. Computer Graphics Forum, 41(6):418–434, June 2022.

[125] Q.-J. Zhang, K. C. Gupta, and V. K. Devabhaktuni. Artificial neural networks for rf

and microwave design-from theory to practice. IEEE transactions on microwave

theory and techniques, 51(4):1339–1350, 2003.

[126] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris. Physics-constrained deep

learning for high-dimensional surrogate modeling and uncertainty quantification

without labeled data. Journal of Computational Physics, 394:56–81, oct 2019.

[127] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, and J. Zhu. The finite element method,

volume 3. McGraw-hill London, 1977.

172

LIST OF FIGURES

1.1 Pie-charts displaying worldwide newly diagnosed (left) and deaths (right) by

cancer type in 2020 based on World Health Organization data. Note that there

are no necessary intersections in populations between figures since people ap-

pearing in the second figure could have been diagnosed multiple years prior. . 2

1.2 Illustration of a laparoscopic liver biopsy [21]. 3

2.1 Reference surface elements. Quadratic elements have more integration points

(black dots) than linear, thus, generating bigger systems to solve. 15

2.2 The domain Ω0 is deformed by the external forces (green arrows) applied to

its surface. The deformation gradient tensor F give the transformation from

Ω0 to Ω . 19

3.1 Schematic of the Perceptron . 32

3.2 Schematic of a neuron with an activation functionΦ 35

3.3 Schematic of an MLP with three hidden layers, each with five neurons. There

are no restrictions on the number of neurons per layer. 37

3.4 Schematic of a famous CNN known as U-net due to its shape 38

3.5 Schematic of a 3-way split of the dataflow. A merge operation is computed in

the network to share the knowledge extracted by each stream. 45

3.6 Schematic of a shortcut architecture. A merge operation is computed in the

network to better propagate data and gradient potential through the network. 45

3.7 Schematic of a general training process. 46

4.1 A cantilever beam Neo-Hookean material attached by the left face (a) and its

five first modes shape (b,c,d,e,f). The complexity of the deformation increases

with the index of the mode. 58

173

LIST OF FIGURES

4.2 Examples of forces we can generate using only the first five modes shape of the

cantilever beam presented in Figure 4.1. Here the qi are presented as one-hot

vectors, but any linear combination of the qi can be used to generate a force.

We can see the similarities between the forces computed using the vector qi

and the i-th mode shape in Figure 4.1. 59

4.3 Example of mask application to create sparser forces. Local forces are usually

more representative of object manipulation if we do not consider gravity. . . . 60

4.4 Chosen network architecture with three steps and 128 channels in the first

layer for an input grid with 28×12×12 nodes Zero-padding is added in each

spatial direction to avoid any loss of information on edge nodes, which leads

to a 32×16×16 shaped tensor At each step of the encoding phase, two padded

3×3×3 convolutions are applied, followed by a ReLu activation function and

a 2×2×2 max pooling operation (which halves the spatial dimension) Each

feature map doubles the number of channels In the decoding phase, upsam-

pling 2×2×2 transposed convolutions are applied, followed by two padded

3× 3× 3 convolutions (doubles spatial dimension and halves the number of

channels) The output of each layer is concatenated along matching levels from

the encoding to the decoding path. 62

4.5 The effect of node ordering on prediction accuracy. For clarity, a beam with

only 12 degrees of freedom is represented here. 63

4.6 Projected view of the liver geometry and its 3,309 H8 mesh. The nodes in the

middle of the trunk of the vascular tree (here in blue) are fixed. 66

5.1 Examples of large nonlinear elastic deformations predicted by our neural net-

work. The colors represent the node-wise Euclidean distance to the solution of

the Newton-Raphson algorithm. For both beams, the color gradient goes from

3×10−4m (blue) to 3×10−2m (red), and for both propellers, the color gradient

goes from 3×10−5m (blue) to 2×10−3m (red). 75

6.1 example of incisions location and size in laparoscopic surgery (left) compared

to two examples of laparotomy (middle and right) performed in open surgery.

Incisions vary depending on the surgery and patient-wise characteristics. . . . 81

6.2 . 83

6.3 example of a mesh with a randomly sampled zone of interest. The mesh ap-

pears grey, while the zone of interest is orange, and the randomly selected

points appear as white dots. 84

174

LIST OF FIGURES

6.4 Problem setup. The body at restΩ0 undergoes a deformation u becoming the

deformed body Ω . The distance from a point of the observed surface y to its

orthogonal projection on the surface of the body ∂Ω is noted d(y,∂Ω) . (Image

from Mestdagh et al.[78]) . 85

6.5 Schematic of the algorithm proposed by Mestdagh et al. [78] where J (u) cor-

respond to the function evaluated in equation 6.4. 89

6.6 Schematic of the algorithm with our solution to remove the first bottleneck.

The simulation step has been replaced with an ANN that does the same job. . 90

6.7 Schematic of the algorithm with our solution to remove the second bottleneck.

The simulation step has been replaced with an ANN that does the same job,

and the backpropagation algorithm has replaced the adjoint system. 92

6.8 Beam used in this section (blue) attached to the grey wall which represents

Dirichlet’s boundary conditions . 92

6.9 Deformations from the test dataset. The red dots represent the target point

clouds, and the color map represents the Von Mises stress error of the neural

network prediction. 93

6.10 Mesh of the liver used in this section. Composed of 3,046 vertices and 10,703

tetrahedral elements, which represents a challenge compared to the one used

in 6.9 . 94

6.11 Average target registration error and computation times of each sequence. . . 95

6.12 Synthetic liver deformations and force distributions (left), reconstructed defor-

mations and forces using the Newton method (middle) and the network (right)

for test case 3. 96

6.13 On the left-hand side, the original simulation that produced the point cloud

used in the registration of the right-hand-side picture. A registration is per-

formed on the right-hand side to match the point cloud. The support in blue

is larger than the original zone where forces are applied, yet, the optimization

gives forces similar to the original. 97

6.14 Force estimation error of the five sequences using our method, in red the aver-

age force reconstruction error with the classical method. 97

6.15 Two examples of noisy rigid registrations used in this study with in yellow the

reference position, in black the noisy rigid registration. The left and right-hand

side is generated using an STD of 10−4 and 10−3 respectively. 99

175

LIST OF FIGURES

6.16 Top : Graph of the target registration error as a function of the STD of the gaus-

sian noise. Bottom : Graph of the error on the force reconstruction as a func-

tion of the standard deviation of the gaussian noise. Dark blue represent the

mean of the samples, while light blue represent the standard deviation of the

measured quantity. The red line represent the value computed on the noise-

free ground truth. 100

7.1 Difference in computation, figure a) computes the global energy while figure b)

computes the force for a single point of the mesh. Force computation requires

to use scatter operator, which is not vectorizable; hence, slower than simply

computing the energy. 106

7.2 Example of a sliced array in Python. Array sl i ced_A contains the fifth, first,

and second value of array A. 108

7.3 Example of two topological representations in position space (Pos_quad and

Pos_tr i). Indexing the array of positions by the topology creates a topological

representation in the position space of the object. We create an array in which

the first dimension is the number of elements in the topology, the second is the

number of vertex per element, and the third is the number of space dimensions.109

7.4 Example of the utilization of the enum function. This description of the com-

putation allows for parallel vectorized execution of the operations. 109

7.5 The three compared product formulations written using the PyTorch framework.110

7.6 Computation of the deformation gradient using PyTorch. 111

7.7 Computation of the right Cauchy-Green strain tensor using PyTorch for linear

and nonlinear case. 111

7.8 Computation of the right Green-Lagrange deformation tensor using PyTorch. . 111

7.9 Computation of the element-wise incomplete elastic potential energy using

PyTorch. 112

7.10 Computation of the element-wise elastic potential energy tensor using PyTorch.112

7.11 Computation of the total elastic potential energy tensor using PyTorch. 112

7.12 Computation of the linear potential energy tensor using PyTorch. 112

7.13 Computation of the Dirichlet boundary conditions tensor using PyTorch. . . . 113

7.14 Presentation of the SystemManager workflow. 114

7.15 Presentation of the differentiable physics engine workflow. 115

7.16 Differentiation of a scalar function (function_to_minimize) with respect to the

input variable x. The flags create_graph and retain_graph are set to Tr ue ,

meaning that we will be able to differentiate grad_f another time to obtain the

tangent stiffness matrix. 116

176

LIST OF FIGURES

7.17 We use vmap to vectorize the computation of the matrix K(u) . This greatly

improves performances compared to the naive for-loop method. 116

7.18 Schematic of the algorithm proposed to optimize any simulation parameter c .

The neural network of Figure 6.7 has been changed to the presented differen-

tiable solver. Which computes slower but precise deformations according to

the finite element framework. 118

7.19 On the left-hand side, an example of a deformation computed on a dragon

made of tetrahedra. On the right-hand side, the beam used in this section

(orange) is attached to the grey wall, representing Dirichlet’s boundary con-

ditions. The surface mesh comprises triangles, but the physic is computed on

hexahedra. 120

7.20 Sample of the deformations present in the test dataset. The deformation is

heteroclite with bending and twisting from all ranges. 121

7.21 Results of the computation of 1,000 deformations using a square section beam

filled with NeoHookean material. As expected, the mean l2 is in the range of

the threshold. 122

7.22 Reconstructed forces and resulting deformations. The target point cloud ap-

pears in black. 124

7.23 Example of three force optimization (each row). The left column consists of

the groud-truth. The middle column consists of examples where the forces are

initialized with Gaussian noise with parameters (0,10−2). The right-hand-side

column consists of examples where the forces are initialized with the opposite

of the ground truth. 125

7.24 Example of three force optimization (each row). The top row consists of exam-

ples where the support is the opposite of the original. The bottom row consists

of examples where the support is at the tip of the beam. 126

7.25 Example of four Young’s modulus optimization. The TRE is minimal, which

represents an excellent fit. Young’s modulus is also extremely close to the ac-

tual solution. 128

7.26 Close-up on the tip of the beam. The ground truth with Young’s modulus of

4,500 appears in red. The deviation is minimal for an error of 1%, showing

that the displacement field is relatively similar for small variations of Young’s

modulus. 129

177

LIST OF FIGURES

7.27 The projection P is used to keep the Poisson’s ratio in a reasonable value con-

sidering our problems. This function is a parametrization of the logistic func-

tion. Therefore, it can be easily modified to project in any desired space. The

additive constant value defines the minimum value of the space, while the nu-

merator is computed by subtracting the extremes of the space. 130

7.28 Example of four Poisson’s ratio optimization. The TRE is minimal, which rep-

resents an excellent fit. The Poisson’s ratio is also extremely close to the actual

solution. 131

7.29 Close-up on the tip of the beam. The ground truth with Young’s modulus of

4,500 appears in red. The deviation is important for an error of 1%, showing

that small variations of Poisson’s ratio highly influence the displacement field. 132

178

LIST OF TABLES

4.1 Two MLP trained for 100 epochs with random or modal force amplitudes. u2

gives the distribution of the L2 norm of the displacement. 64

4.2 Result of the MLP and U-Mesh on different dataset. 65

4.3 Performance of the MLP and of the U-Mesh trained over a dataset generated

with random forces on the liver’s surface. Both networks are trained for 100

epochs over 20,480 samples and tested on 100 samples drawn from the same

distribution. PT stands for prediction times on a GeForce RTX 3090. u2 gives

the distribution of the L2 norm of the displacement. 66

5.1 Results of a comparison between FEM simulations and ANN predictions over

100 randomly distributed forces with random amplitudes. 75

5.2 Error values and SNR of the deformations shown at Figure 5.1. The deforma-

tions are highly nonlinear, yet the error values and SNR remain in the range of

values displayed in table 5.1. 76

5.3 Results of comparing the classic Newton-Raphson algorithm and the presented

Hybrid Newton-Raphson algorithm over 100 randomly distributed forces with

random amplitudes. 76

6.1 This table gathers statistics for 10,000 test cases and presents registration er-

rors, number of iterations, and computation times (in ms). 93

179

	Contents
	Notations
	Introduction
	Motivation
	Numerical model
	Partial surface shape matching
	Objectives and scientific contribution of this thesis

	Finite element method
	Mesh definition
	Isoparametric elements
	Tensors and quantities transformations
	Hyper-elastic material
	Strong and weak forms
	Solving the equation

	Deep learning
	Generalities
	Core components of an artificial neural network
	Architectures
	Loss function
	Network optimisation
	Example of training process

	Fast and accurate deformations using deep learning
	Dataset generation
	Toward faster simulations using artificial neural networks

	Hybrid solver
	Newton method
	Artificial neural network and solver

	Optimal control for augmented surgery
	Context
	Shape matching

	Lastest optimisation tool: Differentiable simulation
	DiffEn : A differentiable solver based on energy
	Results and future works

	Conclusion
	Summary and achievements
	Outlook and futur work

	Résumé en français
	Bibliography
	List of Figures
	List of Tables

