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Abstract 

This dissertation arises from context of the digitization of cultural heritage, and from 

the emerging and growing need to define standards, procedures and workflows to 

operatively contribute at the conservation, protection, and dissemination of cultural 

heritage in the world throughout digital technologies. Building Information Modeling 

(BIM) has become increasingly significant in managing and documenting cultural 

heritage, and nowadays, Heritage Building Information Modeling (H-BIM) has 

become a new design methodology paradigm. It consists of an as-built digital 

representation of an existing building, which includes a wide range of useful 

information, and it turned out to be a powerful tool for the management and the 

preservation of cultural heritage. The overall process of creating an as-built model is 

called Scan-to-BIM, and it encompasses all the phases starting from building data 

acquisition, up to the 3D modeling and the creation of a digital twin. However, the 

production of as-built models is still an open problem in real-world and large-scale 

applications, and it still presents numerous issues and challenges. Currently, one of the 

main issues of the Scan-to-BIM process is the management of the large-scale data 

resulting from the acquisition campaign. The high level of detail and automation 

achieved by the latest acquisition technologies, like 3D laser scanner or 

photogrammetry, allow collecting a large amount of data in short time with an 

impressive accuracy, but properly and efficiently processing such data is still a 

challenging procedure. The effective production of BIM-based models has not yet 

reached an adequate level of automation, and it still requires time consuming manual 

interventions by specialized operators. This research focuses on supporting and  

improving the automation in the Scan-to-BIM pipeline, providing an effective strategy 

for the management of large-scale point clouds, and an efficient tool to improve the 

automatic transition from point cloud data to 3D digital models. One of the key point 

to support 3D model generation from point cloud is the process of semantic 

segmentation. It involves dividing the raw point cloud data into smaller, meaningful 

segment, and assigning a label or category to each segment, according to the objects 

present in the scene and to the list of categories of interest. It is a step towards the 



 

 
machine interpretation and understanding of the 3D environment, which can be 

exploited for the automatic execution of other complex tasks. Over the last years, the 

recent progress on artificial intelligence, machine learning, and deep learning turned 

out in a new era, characterized by the availability of powerful algorithms for semantic 

segmentation, which have already shown to ensure remarkable results in several 

applications, such as autonomous driving, robotics and medical diagnosis. Such 

recently developed methods are still not fully exploited for heritage buildings semantic 

segmentation: and at this time, few research works have explored the potential of 

artificial intelligence in this field. Hence, the main goal of this research is to investigate 

the effectiveness of artificial intelligence, and more specifically the deep learning 

branch, on the problem of semantic segmentation of heritage building point clouds. 

To this aim, a novel semantic segmentation workflow for 3D heritage point cloud is 

proposed. It is based on a deep learning multiview approach, in which the 

segmentation is carried out at first on a set of images coming from a photogrammetric 

survey, and then the determined labels are projected on the related point cloud by 

exploiting the interior and exterior camera parameters, already estimated in the 

photogrammetric workflow. Three main contributions can be identified in this 

dissertation. First, a new image-point dataset for heritage building semantic 

segmentation has been produced. It is composed by five building point cloud scenes, 

and the related photogrammetric images, both with their respective ground truth 

segmentation. All the phases of the dataset generation are illustrated in detail, including 

acquisition, processing, annotation standards and the labelling procedure. Secondly, 

three state-of-the-art image segmentation architectures, namely Fully Convolutional 

Network, SegNet and Deeplabv3+, have been trained, tested and compared on the 

new dataset. Finally, a labelling projection procedure, based on the majority vote 

principle, has been developed and tested. It leverages on the exterior and interior 

camera parameters calculated during the photogrammetric workflow in order to 

transfer the labels, outputted by the deep network, to the point cloud, producing a 3D 

segmented scene. Several tests and experiments are shown and discussed in detail. The 

obtained results are quite promising, as they showed a quite good robustness and 

functionality of the overall process on most of the conducted tests. However, the 

procedure still needs some improvements: despite modern deep learning networks 

often guarantee an impressive capability, the implemented segmentation step still 

provides not fully satisfactory results on unseen scenarios, probably due to the 

inadequate number of buildings in the training set, which hence should be enlarged, 

and due to the high complexity and variety of heritage scenes. 
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Chapter 1 

Introduction 

1.1 Digitization of cultural heritage 

Over the last years, computer-aided digitization has emerged as a powerful technology 

to enhance documentation and preservation of cultural heritage, producing new 

knowledge forms and deeper comprehension levels. Digital technologies create new 

opportunities, providing innovative ways for the public to access, discover, explore, 

and enjoy cultural assets, and they increase the possibilities for reusing cultural assets 

for original and creative services and products in various sectors. Nowadays, the 

development of advanced digital technologies, such as 3D modeling, artificial 

intelligence, cloud computing, virtual and augmented reality, has brought new 

opportunities for digitization, online access, and digital preservation. They lead to a 

more efficient execution of processes such as the automated generation of metadata, 

knowledge extraction, automatic features recognition, computer-aided simulations 

and, in general, a deeper understanding and an improved analysis level. Since the 

extraordinary perspectives of digitization, on 26 January 2022, the European 

Commission proposed an inter-institutional solemn declaration on digital rights and 

principles for the Digital Decade. To contribute to the objectives of the Digital Decade 

the Commission has published the recommendation 2011/711/EU (European 

Commission, 2011) on a common European data space for cultural heritage. The aim 

is to accelerate the digitization of all cultural heritage monuments and sites, objects, 

and artefacts for future generation, to protect and preserve those at risk, and boost 

their reuse in domains such as education, sustainable tourism, and cultural creative 

sectors. With further recommendation (EU) 2021/1970 (European Commission, 



2 Introduction 

 
2021), the Commission encourages EU Member States to digitize by 2030 all 

monuments and sites that are at risk of degradation and half of those highly frequented 

by tourist, and it encourages Member States to put in place appropriate frameworks to 

enhance the recovery and transformation of the cultural heritage sector to become 

more resilient in the future (European Commission, 2019). With the 2019 Declaration 

of Cooperation on advancing the digitization of cultural heritage, the European 

Commission’s Expert Group on Digital Cultural Heritage and Europeana (DCHE 

Expert Group) contributed to the development of common guidelines for 

comprehensive documentation of European 3D cultural assets, providing a list with 

10 basic principles for 3D digitization of tangible cultural heritage (European 

Commission, 2019). Among the guidelines provided for the different principles, those 

that mostly summarize the general aim of the project are the following ones: 

• Define the rationale or purpose of the digitization project, considering the 

target user groups, examining the features of what is digitized, and defining the 

required strategy. 

• Take into consideration long-term preservation from the beginning, including 

all aspects such as formats, storage, future migrations and re-use, ongoing 

maintenance, and the corresponding long-term costs. 

• Select an archive able to accept incoming digital data in multiple formats, 

including raw data and metadata with the necessary storage space, making 

contents easily accessible, and supporting open format. 

• Determine the minimum quality needed for the highest affordable, collecting 

and including rich metadata and annotations throughout the workflow, aiming 

for the highest 3D capture quality for the largest number of assets, investigating 

how high the capture resolution could be, and what the costs in time, money 

and skills needed are. 

• Protect the assets both during and after digitization, avoiding as much as 

possible direct handling of the assets in question, using instead the digital twin 

created. 

• Use the right equipment, methods, and workflow, promoting the use of 

advance acquisition technologies that match the category of the cultural 

heritage involved and the quality needed. 

This dissertation arises from the general context of the digitization of cultural heritage, 

and from the growing necessity to define standard procedures and workflows to 

operatively contribute at the principles and aims of Digital Decade for the 

preservation, protection and maintenance of built heritage. Built heritage represents a 
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crucial part of our collective inheritance as a society. It not only provides physical 

evidence of our past but also serves as a reminder of the cultural and economic 

achievements of previous generations. These monuments and buildings represent our 

history, cultural values and traditions. Therefore, preserving and protecting heritage 

buildings should have major importance in our society.  

 

1.2 Motivation and challenges 

In recent years, Building Information Modeling (BIM) began to play a significant role 

in managing and documenting heritage buildings, as proved by the new Heritage Building 

Information Modeling (H-BIM) paradigm that has been recently established. It consists in 

a digital representation of an existing building at present (as-built), which includes a 

wide range of information such as geometry, materials, technological systems, 

quantities, performance, documentation, maintenance information and many others. 

Several recent works have shown that this design methodology turned out to be a very 

powerful tool for the digitization of heritage buildings, and they proved the 

effectiveness of this modeling procedure in a wide range of applications. In addition, 

H-BIM is consistent with the principles of the European guidelines. The common 

pipeline for the creation of an as-built model is called Scan-to-BIM: such pipeline 

includes the whole process, starting from the data acquisition, up to the modeling 

phase. However, the reconstruction of as-built models still presents a number of issues 

and challenges in real-world and large-scale applications. One of the main issues of the 

Scan-to-BIM process is the management of the large-scale data resulting from the 

acquisition campaigns. The high level of detail and automation achieved by the latest 

acquisition technologies, like 3D laser scanner or photogrammetry, allow collecting a 

large amount of data in short time with an impressive accuracy, but efficiently and 

effectively processing such data is still a challenging procedure. The acquired data are 

usually represented by means of 3D point clouds, set of points in a three-dimensional 

coordinate system, often containing information on colour or reflectance. Several steps 

are required to transform a point cloud in a 3D standard BIM object. They need to be 

carefully supervised, and they necessitate time-consuming and manual operations. 

Improving the automation of such process is a key point to improve and speed up the 

Scan-to-BIM procedure.  

Among the operations that can be executed in order to support the generation of H-

BIM models, the Point Cloud Semantic Segmentation (PCSS) is one of the most challenging 

ones. Nevertheless, lots of benefits can derive from its automation. It involves dividing 

the point cloud data into smaller, meaningful segments, and assigning a label or 
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category to each segment, according to the objects present in the scene. It can be 

considered as a step towards the machine understanding of the 3D scene. 

The other processing operations, such as registration, cleaning, or down-sampling, are 

relatively simple operations, and several implementations are already available and 

exploitable to automatize and speed-up the Scan-to-BIM. Instead, point cloud 

semantic segmentation still usually requires a significant amount of human interaction 

in order to obtain a semantically structured point cloud. Despite 3D parametric 

elements are part of the final output of the Scan-to-BIM procedure, the development 

of an automatic procedure to build the related 3D shape geometries, meshes, or 

surfaces, always starts from a proper segmented element. By separating and detecting 

each constructive element from the context and by defining its relationship within the 

other constructive elements, the algorithms could be more easily able to extract the 

features necessary to a proper transformation of the implicit point cloud data to a solid 

parametric object. In addition, several works have shown that the quality and the 

accuracy of the final extracted geometry are strictly related to the segmentation quality, 

and such relation is even more strong when dealing with complex elements like curved 

surfaces or irregular shapes. Heritage buildings are mainly composed by complex and 

irregular constructive elements, such as columns, vaults, arches or mouldings, and 

without a proper semantic segmentation of these elements the development of 

automatic modeling algorithms remains a challenging task. Currently an algorithm able 

to proper modeling complex elements in a fully automatic way is still not available, and 

the state-of-the-art approaches allow only the automatic reconstruction of simple 

elements, such as planar surfaces, (walls, roofs, or floors), openings (door or windows), 

and is some cases curved surfaces, like regular cylinders or spheres. In most of the 

practical H-BIM applications, the shift from point clouds to object-oriented elements 

is still obtained by means of manual operations, with only a partial support provided 

by some semi-automatic tools. Semantic segmentation of the raw point cloud is a 

fundamental operation even in the manual modeling case since it supports the operator 

during the modeling phase. It helps the operator by increasing the understanding of 

the building, enhancing the analysis of its components, improving the management of 

complex and detailed point clouds, improving the visualization of the point cloud in 

the CAD or BIM environment, and reducing the computational power required to 

manage massive clouds often composed by millions of points.  

Over the last years, recent achievements on artificial intelligence (AI), machine learning 

(ML) and deep learning (DL) turned out in a new era, characterized by the availability 

of powerful algorithms for semantic segmentation, which have already shown to 

ensure remarkable results in several applications such as autonomous driving, robotics, 

medical diagnosis, and many others. Given the fundamental role played by semantic 
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segmentation in several applications, this research area is particularly active, with 

numerous algorithms that are proposed every year. Currently, such interesting 

developments are still poorly applied in the field of heritage buildings semantic 

segmentation, and at this time, few research works have explored the potential of AI 

in the heritage field. This dissertation aims at investigating the effectiveness of this 

approach, in particular the branch of DL, on the problem of semantic segmentation 

of point clouds, to improve the automation of the Scan-to-BIM process. Despite PCSS 

may appear a limited contribution to the complex process of digitization, this task is 

the key point towards the automation of the Scan-to-BIM process, and hence its 

improvement can play an important role in making easier the digitization of cultural 

heritage. 

 

1.3 Overall goal, objectives, and contributions 

1.3.1 Overall goal 

The overall goal of this thesis is to improve the automation in the digitization of 

cultural heritage, providing an effective strategy for the management of large-scale 

point clouds, and providing an efficient tool to facilitate the automatic transition from 

point cloud data to 3D digital models. These challenges should be critically 

investigated, and innovative methodologies should be proposed to address them in a 

constructive way. The target objective should be the development of a functional tool, 

adequately stable and robust, usable for a wide range of real-word buildings, and able 

to generalize among different building typologies. The proposed approach should be 

a powerful easy-to-use instrument, easily reproducible, open-source accessible and 

available for other researchers for future developments. It intends to overcome the 

current state-of-the-art approaches, providing a faster way to generate 3D heritage 

digital models. 

1.3.2 Objectives 

Considering the overall goal, a summary of the main aim of this thesis can be found in 

the following questions: 

“Which are the main bottlenecks in the Scan-to-BIM workflow that make challenging the creation of 

3D models starting from point cloud data?” 

“Can machine learning or deep learning be leveraged to facilitate 3D model generation, and can they 

provide an effective help for the architectural heritage digitization?” 
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“Can semantic segmentation support 3D model generation, and can it help the development of tools 

and techniques to automatize the Scan-to-BIM?” 

“Is there an effective procedure for the semantic segmentation of 3D point clouds, and can it be 

successfully applied in the context of heritage buildings?” 

“Considering the more advanced techniques for heritage building data acquisition, what might be an 

ideal semantic segmentation pipeline globally relevant for the cultural heritage domain?” 

“Can this segmentation pipeline be applied to a wide range of architectural heritage, and can it be able 

to generalize among several building typologies, multiple constructive elements, complex and non-

standardize geometries?” 

To address the resulted issues of these questions, the following objectives have been 

defined: 

Objective 1. Identify the major issues and challenges in the Scan-to-BIM process, 

analysing each step that leads to the creation of 3D digital models, and providing an 

exhaustive literature review of the state-of-the-art algorithmic approaches to address 

each phase of the Scan-to-BIM workflow. 

Objective 2. Explore how the recent advances in machine learning and deep learning 

can be exploited to support the 3D model generation in the Scan-to-BIM process. To 

this end, the main ML and DL semantic segmentation techniques should be reviewed 

and compared, underlying the strengths and the weakness of each method, and 

identifying the best strategies applicable to the heritage building domain. 

Objective 3. Propose an effective semantic segmentation procedure suitable for the 

heritage building point clouds. The main aim is to create an approach applicable to a 

wide range of real-world scenarios with different conditions that fully exploits the data 

resulting from advanced acquisition technologies. 

Objective 4. Create a specific dataset to develop and test the segmentation procedure 

of Objective 3. The new dataset should be composed by several buildings relevant to 

the heritage domain and guarantee an appropriate level of generalization. It should 

allow the integration with existing similar dataset, and it should be easily extendable 

with new data. To guarantee future developments and improvements it should be 

freely available, user-friendly and easily accessible by the research community. 

Objective 5. Test the proposed procedure of Objective 3 on the new dataset, assessing 

and optimizing the performances in the case of unseen scenarios. The critical aspects 

and the limitations of the approaches should be pointed out, and the performance 

should be compared with existing methods or other approaches. The proposed 

procedure should overcome the state-of-the-art performances.  
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1.3.2 Main contributions 

The main contributions of this thesis can be summarized: 

• An overview of Heritage Building Information Modeling (H-BIM), looking in 

particular at the algorithmic approaches for the creation of 3D informative 

models. To this end, the various phases of the Scan-to-BIM process are 

identified and widely analysed. The state-of-the-art methods and techniques to 

address each of these phases are presented. They include point cloud 

acquisition, point cloud registration, point cloud sub-sampling, point cloud 

segmentation, and the BIM modeling from point cloud (Objective 1). 

• An exhaustive review of the state-of-the-art algorithms for the 3D semantic 

segmentation of point cloud, including reprojection-based approaches and 

point-based approaches. Among them, the multiview approaches are widely 

analysed and discussed to better understand their principles and impact, along 

with the major open challenges (Objective 2). 

• The development of a new multiview semantic segmentation pipeline, suited 

for the semantic segmentation of photogrammetric point clouds. It leverages 

on the features extraction from the images by deep neural networks, and their 

reprojection on the 3D point cloud by means of the intrinsic and extrinsic 

camera parameters (Objective 3). 

• A new image and point based dataset for the semantic segmentation of heritage 

buildings has been introduced. It is composed by five heritage buildings 

labelled according to the guidelines of ARCHdataset. It has been used to train 

the deep models at the core of the segmentation pipeline (Objective 4). 

• The development of a semi-automatic image labelling procedure, that enables 

to automatically label a set of photogrammetric images starting from a manual 

segmentation of the related point cloud. It allows to produce simultaneously 

hundreds of images ground truth, with a remarkable decrease of the labelling 

time and manual interventions (Objective 4). 

• The implementation of three semantic segmentation deep architectures, Fully 

Convolutional Network, SegNet, and Deeplabv3+. They have been trained with the 

generated image dataset, and their performances have been assessed to find 

out the most efficient on the new heritage benchmark (Objective 5). 

• The development of a labels transfer procedure from the 2D images to the 3D 

point cloud, leading to the completion of the segmentation pipeline. Assuming 

that the interior and exterior camera parameters are known, it allows to project 
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the labels predicted on a set of images to a point cloud. It has been tested with 

the available buildings of the dataset, and its accuracy has been assessed 

(Objective 5). 

 

1.4 Thesis outline 

Chapter 2. Semantic Modeling of Heritage Buildings introduces the notion of semantic 

modeling, and how this designing approach can be applied to heritage buildings 

modeling. The concept of Heritage Building Information Modeling (H-BIM) is 

introduced, and the goals, strengths and drawbacks of such modeling technique are 

analysed. The chapter focuses then on the Scan-to-BIM workflow, and an exhaustive 

literature review on the state-of-the-art algorithmic approaches to automatize the Scan-

to-BIM is provided. The problem of point cloud semantic segmentation is 

comprehensively review, and the motivations that led to address this research topic are 

pointed out. 

Chapter 3. Semantic Segmentation Algorithms introduces at first the concepts of Artificial 

Intelligence (AI), Machine Learning (ML) and Deep Learning (DL), and it briefly 

explains the functioning of the Convolutional Neural Networks (CNNs), since they 

are at the core of the further proposed segmentation procedure, and they are going to 

be widely used in the context of this thesis. The state-of-the-art algorithms for the 

semantic segmentation of 3D point clouds are then exhaustively presented. They are 

categorized into two main approaches: projection-based and point-based. Both the 

approaches are presented and discussed, focusing in particular on the multiview 

approaches, a subset of the projection-based methods that uses images as intermediate 

representation of the point cloud. The proposed procedure for the semantic 

segmentation of heritage buildings is then presented. The procedure is particularly well 

suited for the segmentation of photogrammetric point clouds, since it uses images for 

the feature extraction, and it leverages on the camera intrinsic and extrinsic parameters 

for the label projection on the point cloud. 

Chapter 4. The Dataset presents in detail the image/point-based benchmark specifically 

designed to test the developed procedure. At first a review of the existing datasets, 

including image-based (2D), RGB-D based (2.5D) and point-based (3D) datasets is 

provided. In the second part, the buildings, their acquisitions and processing are 

illustrated in detail. The dataset is structured following the classification guidelines of 

the ARCHdataset, an existing large-scale benchmark for point cloud segmentation. A 

semi-automatic procedure to speed-up the image labelling is presented, and its 
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functioning is widely explained. Finally, the structure and statistics of the dataset are 

shown. 

Chapter 5. Semantic Segmentation Results provides exhaustively the outcomes of the 

semantic segmentation procedure applied to the buildings of the developed dataset. 

The first part is focused on image segmentation, and it illustrates the model 

implementations, the neural networks settings, the hyperparameters tuning, and the 

structure of the experiments. The second part is focused on the second step of the 

procedure, the reprojection of the labels from the images to the point cloud. The 

parameters used as settings of the procedure are described, and the final results are 

reported. Finally, the results are critically discussed. 

Chapter 6. Conclusion and Future Development is the final chapter, and it summarizes the 

work presented in this thesis. The main contributions are recapped, and according with 

the obtained results, the main challenges and limitations are discussed, and future 

directions and developments are given. 

 

 

 

 



  

 

Chapter 2 

Semantic Modeling of Heritage 

Buildings 

In this chapter the concept of Semantic Modeling and how this designing approach could 

be applied to the heritage building modeling is introduced (§2.1). In the second 

paragraph (§2.2) the concept of Building Information Modeling (BIM) applied to 

heritage constructions is illustrated and discussed, defining what H-BIM (§2.2.1) is, 

which are the goals of H-BIM (§2.2.2), and finally, illustrating the most relevant 

applications and case studies (§2.2.3). The creation of “as-built” informative models, a 

process generally called Scan-to-BIM, is a labour-intensive procedure that requires lot 

of manual intervention and time-consuming operations. In the paragraph §2.2.4 the 

state-of-the-art algorithmic approaches developed to support and speed-up the Scan-

to-BIM process are widely analysed. Paragraph (§2.3) is focused on the point cloud 

processing phase, one of the most challenging step in the Scan-to-BIM, and a key point 

to improve the automation in such process. The state-of-the-art algorithms and 

methodologies for each phase of the point cloud processing are analysed in detail, 

including point cloud acquisition (§2.3.1), point cloud registration (§2.3.2), point cloud 

down-sampling (§2.3.3), point cloud segmentation (§2.3.4), and the BIM modeling 

from point cloud (§2.3.5). The chapter ends with a general summary (§2.4). 
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2.1 Introduction 

Semantic modeling is a type of modeling procedure that is used to define and describe the 

semantic meaning of a physical objects. Semantic modeling is a method of structuring 

data in order to represent it in a logical way through an organized set of models, 

predefined rules, and data sources. This modeling technique is often used to segment, 

describe, and analyse various components of physical objects, as well as to represent 

the meanings associated to different objects and their relationships. The purpose of 

semantic modeling is to create a model that is highly detailed, complete, and accurate, 

so that physical objects can be accurately described in terms of their significance and 

in terms of how they are related and connected with their context. For example, 

semantic modeling can be used to describe the meaning of a building or structure, such 

as representing the structure historical importance, its cultural values, or its 

architectural features. This means that the model can provide information about the 

components of an object in terms of its physical parameters, such as its shape, size, 

orientation, etc. Additionally, semantic modeling can be used to represent more 

abstract aspects of a physical object, such as its human-related meaning, its connection 

to its cultural context, or its symbolic significance. The use of semantic modeling has 

become increasingly popular in a variety of fields, such as architecture, engineering, 

and urban planning. In these areas, semantic modeling is used as a basis for making 

decisions regarding the design and construction of structures and environments. By 

creating detailed models of physical objects that contain layers of information, this 

modeling technique can be utilized by architects, engineers, and urban planners to gain 

a greater understanding of their target object and optimize the design and construction 

process.  

The importance of preserving and protecting heritage buildings is quickly becoming 

evident, and as such, there is a growing need for effective modeling techniques. Semantic 

modeling provides a solution to this need, as it is able to represent the physical and 

abstract characteristics of a heritage building in a meaningful way. By quantifying and 

assessing the various components and features of a heritage building, it is possible to 

gain a detailed understanding of the cultural and historical significance of the site. By 

creating a detailed model of a heritage building, it is possible to gain valuable insight 

into its physical characteristics, its spatial parameters, and its semantic meaning. This 

information can then be used when making decisions regarding the design and 

construction of structures and environments. The use of semantic modeling to study 

heritage buildings can also be invaluable when it comes to monitoring and preserving 

their cultural value. By understanding the meaning behind certain components of the 

buildings, such as their history, their characteristics, their symbolic value, it is possible 

to form effective conservation strategies to protect them and ensure their longevity. In 



2.2 Heritage Building Information Modeling (H-BIM) 13 

 
the last years, the use of semantic modeling in the architectural field, and in particular 

to study and analyse heritage buildings, is becoming increasingly popular, and one of 

the most popular tools that changed completely the approach of representing and 

managing the cultural heritage is the use of Heritage Building Information Modeling. 

 

2.2 Heritage Building Information Modeling (H-

BIM) 

2.2.1 What is H-BIM? 

The term Building Information Modeling (BIM) was introduced in the latter part of 

last decade, when BIM replaced 3D digital modeling and computer aided design 

(CAD) as the expression generally used to describe the use of information and 

communication technology (ICT) for the design of the modern built environment. 

Heritage Building Information Modeling (H-BIM) is the extension of Building Information 

Modeling in the Heritage or Historical environment. According to the Centre for 

Digital Built Britain (CDBB), BIM is a digital approach that enables faster and more 

efficient creation, analysis and management of 3D buildings, as well as supporting 

decision-making in conservation of existing infrastructures. The utilization of the ICT 

design digital approach is increasingly prevalent, and it is well defined and normatively 

regulated in most country. ISO 19650-1:2018 defines BIM as “Use of a shared digital 

representation of a built asset to facilitate design, construction and operation processes to form a reliable 

basis for decisions”. The US National Building Information Model Standards Project 

Committee provides the following definition “Building Information Modeling (BIM) is a 

digital representation of physical and functional characteristics of a facility. A BIM is a shared 

knowledge resource for information about a facility forming a reliable basis for decisions during its life-

cycle; defined as existing from earliest conception to demolition”. From April 2016, with the D.lgs. 

50/2016, Italy has included the European directives 2014/24/EU on Public 

Procurement, that promote the "rationalization of designing activities and of all connected 

verification processes, through the progressive adoption of digital methods and electronic instruments 

such as Building and Infrastructure Information Modeling". The Getty Conservation Institute's 

Recording, Documentation, & Information Management (RecorDIM) Initiative (2003 

- 2007) provided one of the earliest definitions of Heritage Information Modeling, 

along with its principles and purpose (Eppich & Chabbi, 2007). With H-BIM models, 

historical buildings are represented as a digital twin, allowing virtual simulations and 

analysis of building performance over the life cycle of the physical building. In the last 

decades, the application of BIM in heritage contexts is increasing, as the benefits of 
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using a digital approach are becoming more and more recognised. It offers the 

advantage of connectivity, accuracy and continuity across different phases of a building 

life-cycle and the ability to integrate data from different sources. H-BIM project files 

provide a live document, which allows for collaboration and consensus between all 

stakeholders, as well as providing a richer description of buildings, increasing 

traceability and data exchange. H-BIM offers further properties that are particularly 

well adapted to the needs of heritage buildings, such as the ability to carry out 3D 

reconstructions at different scales, visualisation in augmented or virtual reality, 

high-definition digital terrestrial scanning and the rendering of traditional features and 

details. It can create digital replicas of historical buildings and sites, to support better 

conservation, intervention and development, as well as sharing information among 

various stakeholders. Its accuracy and efficiency of data exchange among stakeholders 

are also useful in working with archaeological sites, allowing for a workflow that 

achieved previously unimaginable levels of detail in the spatial and temporal resolution 

of data. Its use is increasing in the last years, its efficiency and accuracy are increasingly 

recognised, and it is likely to continue to grow in the future. The implementation of 

Heritage BIM should be primarily focused on realising the value and significance of 

cultural heritage assets in the built environment and supporting the long-term 

sustainable conservation of these assets for all stakeholders. However, there is a lack 

of research on user engagement in the specifications or development of H-BIM, and 

few published prototypes for Heritage-focused BIM, in contrast with the definitions 

of “new construction” BIM. Consequently, there is a need for research that addresses 

the differing requirements of Heritage-focused BIM from new construction BIM, 

making this an area worthy of study. 

2.2.2 What are the goals of H-BIM? 

Currently, Building Information Modeling (BIM) protocols are being developed to 

make construction more efficient, with most of the focus on new construction, and, 

in most of the cases, these protocols might not be appropriate to approach BIM for 

existing buildings. As-built BIM protocols are still variously defined and described, so 

it is not surprising that most of applications and approaches show equal or greater 

diversity, even more in the case of heritage or historical constructions. The author in 

(Linning, 2014), in the context of Sydney Opera House management project, defined 

H-BIM as “an information resource for future generation”  underlining the main goal of 

“ensuring  the  effective  sustainable  conservation  and  management  of  the heritage complex for a 

projected further lifespan of 250 to 300 years”, and pointing out that “an integrated information 

model opens up the way for more automated intelligence in the model incorporating rules and best 

practices”. The American Institute of Architects defined the broad goal of BIM as “a 
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collaborative  alliance  of  people,  systems,  business  structures  and  practices  into  a  process  that  

harnesses the talents and insights of all participants to optimize project results, increase value to the 

owner, reduce waste, and maximize efficiency through all phases of design, fabrication, and 

construction” (AIA, 2007). A useful summary of the value and aims of BIM as process 

can be found in (Kemp, 2014): (i) it converges information production with 

engineering judgement and design, (ii) it provides wider, faster access to 

comprehensible and integrated information, (iii) it fosters instinctive but rigorous 

collaboration and better decision making, (iv) it harnesses innovative technologies and 

harvests intelligence from big data, (v) it enables reflective, adaptive thinking to 

incorporate whole life and integrated systems approach within the wider geographic 

context. According to ICOMOS guidelines the “record of a building should be seen as 

cumulative with each stage adding both to the comprehensiveness of the record and the comprehension 

of the building that the record makes possible.”, and “recording should therefore so far as possible not 

only illustrate and describe a building but also demonstrate significance.” Despite several 

definitions, and many works that tried to define a common design workflow, lot of 

questions in the H-BIM approaches are still open, and there is a lack of a clear vision 

on end objectives. Some key points could be summarized in these four goals: 

Preserve Heritage Buildings: H-BIM provides a holistic understanding of a heritage 

building’s condition and its associated risks, allowing stakeholders to make informed 

decisions about preservation and maintenance. This information can also be used to 

develop conservation strategies that aim to protect the building’s fabric and integrity.  

Improve Management: By digitizing the entire building, H-BIM can provide stakeholders 

with an up-to-date view of the building’s condition. This can help to identify and 

address any issues in a timely manner, preventing further damage. It can also be used 

to improve the management of the building’s resources, including energy and 

materials.  

Enhance Collaboration: H-BIM enables stakeholders to collaborate more effectively on 

the restoration and maintenance of a heritage building. By providing a shared platform 

to discuss, plan and monitor the building’s condition, stakeholders can work together 

to ensure it is preserved to the highest possible standard.  

Create a Digital Record: H-BIM provides a digital record of a building’s condition, which 

can be used to monitor its progress over time. This can be invaluable for future 

generations, allowing them to access detailed information about the building’s history 

and condition. 
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2.2.3 Recent applications of H-BIM 

Several works have been proposed in literature, and in this section the most relevant 

and recent applications in the context of Heritage Building Information Modeling (H-

BIM) will be presented. The concept of H-BIM was introduced for the first time in 

the work of (Murphy et al., 2009). The authors proposed a new design methodology 

for historical structures that leverages on parametric BIM objects. The workflow 

involves several stages: data collection and processing, identifying historic detail from 

architectural pattern books, building of parametric components, mapping these onto 

scan data, and producing engineering survey drawings and documentation. The 

product is a 3D model containing detail about the object's construction and material 

make-up, which automatically produces engineering drawings for conservation 

purposes, including 3D documentation, orthographic projections, sections, details and 

schedules. In (Baik et al., 2014) the authors created a parametric library to model the 

architectural elements of the constructions in Jeddah City, focusing on Hijazi 

architectural elements. The main aim of the work was to offer a rich digital architectural 

element library to be used in any heritage projects in Old Jeddah, reducing time to 

complete the model and ensuring a high-level standard of detail. As part of this 

process, three stages are involved, starting with the capture of data using range/image-

based methods, then the processing of data, and finally the definition and modeling of 

the historical objects as parametric components. The work presented in (Quattrini et 

al., 2015) showed the possibility to develop a high-quality 3D model semantic-aware, 

able to connect geometrical and historical survey with descriptive thematic databases. 

For this purposes they started from point clouds by TLS, they built a centralized H-

BIM model of the Church of Santa Maria at Portonovo, and they developed a 

procedure for its semantic management. Dore et al., 2015 presented the research 

output to date of a H-BIM model of the Four Courts, an historical building in Dublin 

City. After creating a 3D model using laser scans, they developed simulations of 

structural damage and decay for documentation and conservation analysis using the 

H-BIM model. In this work (Stober et al., 2018) the authors applied  recording 

technologies, laser scanning, and thermal scanning, as support for H-BIM. Simulation 

of non-existent constructive elements is presented as the preceding step of creating a 

H-BIM library that allows for broader dissemination of heritage information. Through 

the modeling logic, which is closely related to the logic of construction, the results 

demonstrate the advantages of the model building approach to valorisation and 

interpretation of constructive changes over time. To overcome the complexity of 

conservation practices and the lack of knowledge of historical buildings, this research 

(Osello et al., 2018) aims to ensure the preservation of relevant information through 

the use of BIM methodology. A H-BIM model that ensures the accuracy of values 
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related to space management and component conservation was developed based on 

the application of the methodology to a real case study. Using the modeling approach, 

the management and maintenance processes of the building could be optimized in line 

with the project's goal. This paper (Oreni et al., 2014) described the generation of the 

H-BIM of the Basilica di Collemaggio in L’Aquila, and its use in the on-going 

restoration project with a particular attention to the procedures used to preserve the 

complexity given by photogrammetric and laser scanning data. In order to achieve a 

detailed H-BIM, it was necessary to exploit the photogrammetric and laser scanning 

survey, interpret and model the structural behaviour of the building, and perform 

economic evaluations of the project. In the work of (Nieto et al., 2016) the Pavillion 

of Charles V was selected to set up a H-BIM model and to propose  an  innovative  

methodology  of  analysis  and  treatment  of  the  information  based  on  a 

representative 3D graphic model of the flooring and wall tiling of a historic building. 

BIM generates graphic models of parametric objects that enable refined 

systematization and efficient data management. The authors in (Castellano-Román & 

Pinto-Puerto, 2019) developed a H-BIM model of the Charterhouse of Jerez 

considering all the information required for the strategic planning for heritage 

management including research, protection, conservation and dissemination. They 

transferred the two concept of BIM Dimensions and Level of Development (LOD) 

to the heritage environment introducing the Level of Knowledge (LOK). In 

(Sztwiertnia et al., 2021) the authors showed how effective H-BIM can be in accurate 

spatial documentation of small-scale heritage site. For this purpose, they developed an 

accurate 3D model of the Wand Temple of Karpacz, in Poland, evaluating the use of 

Grafisoft ArchiCAD software regarding the interaction with point cloud, the accuracy 

of the obtained model, the level of detail that is possible to obtain in the case of 

modeling old wooden structures and the type of data that can be store using this 

platform. The H-BIM methodology has been used recently by the authors in (Conti et 

al., 2022), in which they test the use of BIM as design tool for the modeling of Carlo 

III bridge in Moiano. The bridge, almost without previous drawings and documents, 

was surveyed with an integrated approach using laser scanner, photogrammetry and 

topography. Based on the data, a metrically reliable H-BIM model was produced, along 

with graphical and non-graphical information, for use in maintenance and restoration. 

They used Autodesk Revit to model the bridge, exploiting group of parametric objects, 

and “in-place models” without parametric proprieties, to better represent the 

irregularities of the structure. This article (Rocha et al., 2020) addressed the creation of 

an H-BIM model of heritage assets using photogrammetry and 3D laser scanner. Based 

on point cloud data, the authors described the modeling phase of the House Pacos 

Reais in Lisbon, that was carried out using Revit mostly with manual operations. 
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In recent years, several works have explored methods and strategies to automatize and 

speed-up the process of creating 3D and parametric objects starting from survey data, 

such as point clouds, images or vector drawings. In this paper (Chiabrando et al., 2017) 

the authors proposed a workflow to automatize and speed-up the construction of H-

BIM models of two case studies, Palazzo  Sarmatoris  and  Smistamento  RoundHouse. 

In order to avoid the manual modeling from scratch of the parametric objects, they 

tested PointSense, a plug-in for Revit that allows to easily extract ortho-view from the 

point cloud and section to simplify the 3D modeling phase. (Dore & Murphy, 2013) 

developed a semi-automatic method for generating façade models using an existing 

parametric library of object built using the Geometric Description Language (GDL) in 

ArchiCAD. By using procedural modeling techniques, the procedure automatically 

combines library objects based on architectural rules and proportions, creating the 

façade. In the work of (Costantino et al., 2021) a procedure to transform the point 

cloud into parametrized object was developed. The procedure consists in a two-way 

transformation of the object between the modeling software of Rhinoceros and the 

BIM software Revit, by using the plug-in Grasshopper. The procedure has been tested 

on a religious heritage building, and it showed a remarkable efficiency and potentiality, 

simplifying the modeling step. In a similar way, the authors in (Andriasyan et al., 2020) 

developed a workflow that enables the automatic conversion of TLS and SFM point 

cloud data into textured 3D meshes and then in parametric H-BIM objects, exploiting 

the combination of three software: Rhinoceros, Grasshopper and ArchiCAD. They 

tested the procedure on a study case demonstrating a good interoperability between 

the software. The authors in (Pepe et al., 2020) developed a procedure to build H-BIM 

models starting from geomatics surveys, using the support of Rhinoceros. At first, they 

imported the point cloud in the software environment, and secondly, they built the 

NURBS surfaces from point cloud exploiting the plug-in EvoluteTools to generate 

highly complex and sophisticated surfaces. The model was then parametrized by using 

Grasshopper and imported in the Revit environment. Such as this last works, the paper 

(Antón et al., 2018) proposed an approach for the generation of H-BIM model, 

including manual and automatic processes. The workflow is composed by three main 

steps: the laser scanning, the meshing process, and the 3D solid modeling. The 

meshing process has been performed automatically with Rhinoceros and the Mesh 

Flow plug-in, and the modeling process involves converting the mesh into closed 

NURBS. Such objects were then imported in the BIM environment considering the 

IFC file format. The authors in (Rolin et al., 2019) proposed a semi-automated 

geometrical H-BIM-oriented modeling step with Rhinoceros 5 software and 

VisualARQ plugin that has allowed the construction of a hybrid model by reverse 

engineering from the point clouds in a semi-automatic way, using cross-sections and 

edges extracted directly from the point cloud inspired by the tomography process. 
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2.2.4 Algorithmic approach to BIM 

Since a long time, parametric models have successfully been used in the design of new 

buildings as they contain a high level of semantic information added or implanted by 

the designer during the modeling phase. For as-built BIMs however, this level of 

knowledge is not available, and, in most of the cases, it is not cost-effective or time 

expensive achieving a good level of knowledge and modeling this information in detail. 

Despite these drawbacks, it is sometimes useful to create as-built models, and, in order 

to obtain as much detailed geometrical information as possible, this is usually done by 

using a point cloud as reference, and by modeling the building features and elements. 

This process in generally called Scan-To-BIM.  

As illustrated in Figure 2.1 the Scan-to-BIM workflow is composed by five main phases: 

Data collection. This is the first step in the process, and it involves collecting all the 

information useful for reaching a good level of understanding of the building, strictly 

related to the Level of Knowledge (LOK) and the Level of Detail (LOD) that we want 

to achieve for the as-built model. The geometrical and space data are usually collected 

using reality capture technologies such as laser scans, photogrammetry, often 

mounting the acquisition sensors on Unmanned Aerial Vehicle (UAVs). These 

methods allow both a fast acquisition and a high level of detail. More detailed 

information about data collection techniques will be provided in the next paragraph 

(§2.3.1). Data collection also includes capturing metadata to support other tasks such 

as cost estimation, energy analysis, structural analysis, etc. In the case of heritage 

buildings, it is often useful to carry out a detailed historical analysis and the recovery 

of historic drawings, past interventions, or monitoring data that allow a clever and 

careful interpretation of the construction. 

Figure 2.1 – The Scan-to-BIM workflow. 
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Data processing. It involves processing all the acquired data in order to produce as 

output a reliable and easy-to-use dense point cloud. Therefore, the raw point cloud 

needs to pass through a series of processing steps so that the post-processed data can 

be used for further 3D modeling. Commonly the processing procedures consists of 

these phases: (i) data registration, it aims to align multiple point clouds collected from 

different locations in a common reference system, (ii) data sub-sampling, it consists of 

reducing the dimension of the data to make it more handle, (iii) data cleaning, it aims to 

remove noise, outliers and gaps generated by environmental or technical limitations of 

sensors, and lastly (iv) semantic segmentation that allows to group points that share similar 

features in continuous regions, spatially related and organized. Data processing will be 

analysed and discussed in detail in the next paragraph (§2.3). 

Data organization. This phase allows to ensure that all the acquired information are 

accurate and consistent by properly comparing and organizing the various data into 

sections or structured layers, according to a predefined standard or system. It can help 

to save time and money, as errors and discrepancies can be identified and addressed 

early in the workflow, and it allow to easily access to the data during the modeling 

phase. 

BIM modeling. This is the phase in which the point cloud and all the other collected 

information are used and combined for the creation of the 3D model in the virtual 

environment of the BIM platform using parametric objects and defining the attributes 

and the relationships for each elements of the model. The modeling involves three 

tasks (Tang et al., 2010): (i) modeling the geometry of the components, (ii) assigning 

the object category and the material propriety to the component, and (iii) establishing 

relationships between components. BIM modeling will be discussed in the next 

paragraph (§2.3.5). 

Information Extraction. This is not a proper phase of the Scan-to-BIM process, but 

it involves the use of the BIM model for practical applications, such as the 3D 

visualization of the model, the information extraction for energy evaluation, structural 

analysis, etc. However, interventions on the building, or some applications such as the 

monitoring, can involve the transformation of the construction or the collection of 

new data that could be taken into account by updating the BIM model. 

It is well known that Scan-to-BIM is an error-prone procedure that often requires 

manual and time-consuming interventions (José López et al., 2017), (Bruno et al., 

2018). In order to speed up the production of as-built models in the Scan-to-BIM 

workflow and improve the accuracy of the results, algorithmic improvements are 

constantly developed to automate the translation of point data to parametric models. 

Automatic algorithms that could quickly and accurately generate BIM models directly 
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from a raw scanned geometry, would represent an incredibly powerful tool, but 

parametric model generation from point cloud is currently a bottleneck hard to 

overcome. To turn a point cloud into a BIM model, the data must be properly 

interpreted and separated, that is separated taking into account their characteristics and 

structured in a machine-interpretable context. Human brains are powerful enough to 

translate neuron pulses directly into parametric information based on previous 

experiences, but machines need a series of additional and easier operations. The 

development of algorithms that can interpret point data into a parametric model 

involves giving the machine the ability to interpret data with the same level of precision 

and understanding that humans have. To do that, the machine needs a frame of 

reference and encoding capabilities to compare the data with, not only to reading, 

classifying, and interpreting the context of the data, but also to retain information and 

apply it to future tasks. However, the development of such algorithms would not solve 

completely the issues of the interpretation of data, that is subjective and often depends 

on the human designer, as specified by (Adan & Huber, 2011) “modeling of surface 

shapes is an especially labour-intensive and error prone operation, and even trained 

modellers sometimes produce significantly different results”.  

Despite these drawbacks, over the last few years, several commercial software and 

academic research works have proposed various workflow and algorithms to automate 

the reconstruction of existing buildings in various phases and steps of the Scan-to-

BIM. From the academic point of view, the most popular and consolidated works are 

the research in (Jung et al., 2014), (Hong et al., 2015), (Wang et al., 2015) and 

(Zheliazkova et al., 2015). These research works proposed several approaches to 

extract geometrical features of the construction objects by segmenting the point cloud. 

Further detail will be provided in the section “Automatic approaches for as-built BIMs” in 

the paragraph §2.3.5. On the other hand, in recent years, several commercial software 

has investigated the automatic reconstruction of existing buildings from point clouds, 

and currently they allow various degrees of automation in various phase of the process. 

Following are reported some of the most popular and available packages. EdgeWise® 

was developed as complement software for Autodesk Revit, and it allows to classify 

and separate the point cloud into uniform surfaces. When the points are separated, the 

application automatically detects candidates points between pairs of similar horizontal 

planes, and it builds the parametric element based on the extracted shape. Scan-to-

BIM® is a plug-in for Autodesk Revit developed by IMAGINiT Technologies. It allows 

to automatically model walls or other simple elements surfaces in parametric objects, 

by detecting and adjusting points with similar features. Leica CloudWorx® is a popular 

plug-in for AutoCAD, and it provides various tools to manage and work with as-built 

point cloud directly in the CAD environment. It allows to automatically detect and 

recognize geometric features in the point cloud, that then can be manually modelled. 
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Other popular software are Trimble RealWorks, that allows the semiautomatic creation 

of geometry by manually segmenting the clouds Intergraph Smart3D used to 

automatically detect and model pipes, Kubit PointSense Buildings and PointFuse from 

Arithmetica. Over the last years, an important step towards the automatic modeling 

has been done by commercial and academic research. However, the fully automation 

of Scan-to-BIM is still in its infancy, and remarkable progress still need to be done. 

There are currently no methods or workflows to automate Scan-to-BIM that have 

gained wide acceptance in the AEC community (Giel & Issa, 2016). 

 

2.3 Point clouds and their manipulation 

In recent years, the tools and the technologies used to acquire 3D data or point clouds 

have remarkably been improved, enabling fast high resolution 3D geometric 

information acquisition and extraction. In addition, the available computing power has 

kept growing, being now sufficient to run even complex analysis algorithms on these 

data. Scanning methods may vary, but the result is usually a point cloud containing 

coordinates (x, y, z), colour (RGB), reflection intensity of the transmitted signal and 

gravity direction. An important distinction between 3D parametric models and point 

clouds concerns the knowledge on certain subject characteristics, which the raw point 

cloud geometry does not provide explicitly. Therefore, the implicit data concerning the 

position and reflective value of points must be evaluated and manipulated to determine 

its meaning compared to the values in the rest of the data set. By comparing available 

values of points (x-coordinate, y-coordinate, z-coordinate, red, green, blue, intensity 

and orientation), the human brain can detect patterns and interpret what the points 

represent onscreen. For example, a scanned scene can represent a room with a 

window, door, and some pipework on the ceiling. An experienced eye would recognize 

the type of window or the pipe diameter. This knowledge can be used to determine 

where the window was purchased or what type of liquid the pipes are likely to carry. 

However, the machine still has a limited capability in detecting pattern and interpret 

points, and for this reason there is an increasing interest and need to develop an 

efficient strategy of transferring the human ability to recognize and parameterize 

features in a point cloud onto a machine. This is already being done in broad terms 

and in specific environments, but the procedure to extend it to Building Information 

Models is still in its early stages. The process of interpreting point clouds to obtain 

parametric models is usually done manually, which is an expensive and time-

consuming task. In the next paragraphs, the steps of the Scan-to-BIM workflow 

involving the use and process of point clouds will be illustrated. For each step the 

state-of-the-art algorithms to automatize, speed-up, and improve each phase will be 
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analyzed and discussed. The paragraphs are organized as follow: (§2.3.1) Point Cloud 

Data Acquisition, (§2.3.2) Point Cloud Down-sampling, (§2.3.3) Point Cloud Registration, 

(§2.3.4) Point Cloud Segmentation, and (§2.3.5) BIM Modelling from Point Cloud. 

2.3.1 Point cloud data acquisition 

Four main methods are used for point cloud acquisition: Image-derived methods, 

Light Detection And Ranging (LiDAR) systems, Red Green Blue Depth (RGB-D) 

cameras, and Synthetic Aperture Radar (SAR) systems. Each of these techniques has 

its distinct data features and applications due to the varying survey principles and 

platforms used. A brief description of these techniques is provided in the following. 

Image-derived methods. Image-derived point clouds are generated indirectly from 

imagery, using electro-optical systems such as cameras in order to acquire stereo or 

multi-view images. Photogrammetric principles are then used to calculate 3D point 

information, either automatically or semi-automatically. There are four distinct 

platforms for creating this type of point clouds, including airborne, space-borne, UAV-

based, and close-range. Traditionally, aerial photogrammetry was used to create 3D 

points with a semi-automatic human-computer interaction in digital photogrammetric 

systems, where high survey accuracy was required. However, this was a time-

consuming and expensive process, making it difficult to generate dense spatial 

information for large areas. In surveying and remote sensing, these early point clouds 

were used in mapping and producing Digital Surface Models (DSMs) and Digital 

Elevation Models (DEMs). Due to resolution limitations and the inability to process 

multiple view images, traditional photogrammetry could only acquire close to nadir 

views from aerial/satellite platforms, making the generated point cloud a 2.5D, rather 

than full 3D. Close-range photogrammetry can also be used to determine the position 

of certain points on objects on small-area scenes, but manual editing is still required in 

the point cloud generating process. In recent years, the development of processes such 

as Dense Matching (Hirschmüller, 2005), (Hirschmüller, 2008), Multi-View Stereo 

(MVS) (Furukawa & Ponce, 2010), (Nex & Remondino, 2014), and Structure from 

Motion (SfM) (Westoby et al., 2012), (Snavely et al., 2006), (Snavely et al., 2008) have 

revolutionized the generation of image-derived point clouds and opened a new era of 

vision-based reconstructions. Through these methods, it is now possible to easily 

generate large 3D dense point clouds in city-scale areas. SfM has the power to 

automatically estimate camera positions and orientations, enabling the simultaneous 

processing of multi-view images, and dense matching and MVS algorithms enable to 

generate large point clouds. However, the use of SfM and MVS can be critical in certain 

applications, for instance when covering large areas (Xiao, Owens, et al., 2013a), not 

matching that of LiDAR and traditional photogrammetry techniques. In comparison, 
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a satellite stereo system may not have the same spatial resolution or availability of 

multi-view imagery as airborne photogrammetry, but it can map large spaces in a short 

period of time and at a lower cost. Along with the advancements in dense matching 

techniques, satellite imagery is slowly becoming an important source for image-derived 

point clouds due to increased spatial resolution. 

LiDAR systems. Light Detection And Ranging (LiDAR) is a powerful surveying and 

remote sensing technique, based on the use of laser in order to determine object 

distances from the sensor. LiDAR is typically pulse-based, and its point density or 

resolution can greatly vary depending on the sensor and platform, from less than 10 

points per m2 (pts/m2) to thousands of points per m2 (R. Qin et al., 2016). LiDAR 

systems are divided into four distinct categories: Airborne Laser Scanning (ALS), 

Terrestrial Laser Scanning (TLS), Mobile Laser Scanning (MLS), and Unmanned Laser 

Scanning (ULS). Early ALS point clouds compared with traditional photogrammetric 

point clouds are more expensive to acquire and they lack spectral information. In 

addition, they have a low density when the distance from the ground is large. 

Multispectral airborne LiDAR, which uses different wavelengths, is well-suited for 

extracting water, vegetation and shadows. TLS (also known as static LiDAR scanning) 

is based on the use of a sensor mounted on a stationary tripod. Its usage in a middle- 

or close-range environment provides high point cloud density and real, high quality 

3D models. So far, TLS has typically been used for modelling small urban or forest 

sites, heritage or artwork documentation, and for other similar tasks. MLS (mobile 

LiDAR scanning), on the other hand, is an acquiring process performed from a moving 

vehicle on the ground, most commonly a car. This technology is used in the creation 

of HD maps, which is currently an ongoing research topic due to its application in the 

development of autonomous driving. ULS (unmanned LiDAR scanning) systems are 

usually mounted on drones or other unmanned vehicles. They are relatively cost-

effective and very flexible, making them increasingly popular in recent times. 

Compared to ALS (aerial LiDAR scanning) which works above objects, ULS can 

provide shorter-distance LiDAR surveys with higher accuracy. Additionally, its small 

platform also allows for high operational flexibility, making it a suitable choice for tasks 

involving agriculture and forestry surveys. When it comes to LiDAR scanning, it is 

essential to combine point positions with Global Navigation Satellite System (GNSS) 

and Inertial Measurement Unit (IMU) data, due to the system being constantly in 

motion with the platform (Le Chang et al., 2020). LiDAR has been the most widely 

utilized source of point cloud data and has been often used to provide benchmarks to 

assess the accuracy of point clouds generated with other techniques. 

RGB-D cameras. An RGB-D camera is a type of sensor that can acquire both RGB 

and depth information. Its working principles can be based on three different kinds of 
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approaches: structured light (Han et al., 2013), stereo (Mattoccia & Poggi, 2015), and 

time of flight (Lachat et al., 2015). In contrast to LiDAR, an RGB-D camera is much 

cheaper and can measure the distance between the camera and objects pixel-wise. 

Microsoft’s Kinect is a well-known and widely used example of an RGB-D camera. 

The are several sensors that use different technologies to measure the depth, and the 

relative orientation between or among the different sensors is calibrated and known, 

so synchronized RGB images and depth maps can be easily acquired. From the known 

position of the camera’s optical centre, the 3D space position of each pixel in a depth 

map can be used to create a point cloud. RGB-D cameras have three main applications: 

object tracking, human pose or signature recognition, and SLAM-based environment 

reconstruction. As they are usually employed in close-range indoor environments, they 

can often be seen in indoor point cloud segmentation benchmarks (Jinyu et al., 2021), 

(Zhu et al., 2022). 

SAR point cloud. Interferometric Synthetic Aperture Radar (InSAR) is a key 

technique in remote sensing, providing maps of surface deformation and digital 

elevation through analysing multiple SAR image pairs. In recent years InSAR-based 

point clouds have become increasingly valuable, creating new possibilities in a 

multitude of point cloud applications (Zhu & Shahzad, 2014a), (Schmitt et al., 2015). 

Two main InSAR point cloud generating techniques are Persistent Scatterer 

Interferometry (PSI) (Bamler et al., 2009), and Synthetic Aperture Radar tomography 

(TomoSAR) (Zhu & Bamler, 2010). TomoSAR has demonstrated greater accuracy 

when reconstructing and monitoring infrastructure, particularly in urban areas. The 

point density of TomoSAR point clouds is comparable to ALS and can be employed 

for building reconstruction purposes (Zhu & Shahzad, 2014b). These point clouds 

have several features which make them advantageous for use in such applications. 

TomoSAR point clouds reconstructed from spaceborne data reach a moderate 3D 

positioning accuracy, around 1 m, with accuracy reaching even decimetre level when 

using geocoding error correction techniques. By comparison, ALS systems provide 

accuracy typically on the order of 0.1 m. Due to their coherent imaging nature and 

side-looking geometry, TomoSAR point clouds bring different advantages with respect 

to LiDAR systems. They specifically provide rich facade information, as pixel-wise 

TomoSAR was used for the high-resolution reconstruction of complex buildings with 

a very high level of detail from spaceborne SAR data. Temporarily incoherent objects, 

such as trees, cannot be reconstructed from multipass spaceborne SAR image stacks, 

however, and the full structure of individual buildings from space requires facade 

reconstruction using TomoSAR point clouds from multiple viewing angles.  InSAR 

point clouds offer a unique ability compared to LiDAR and optical sensors: the 

capacity to provide fourth dimension information from space, i.e., temporal 

deformation of the building complex and microwave scattering properties of the 
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facade. Two main shortcomings impede their accuracy, though. Limited orbit spread 

and the small number of images lead to an anisotropic location error of TomoSAR 

points: elevation error is typically one or two orders of magnitude higher than in range 

and azimuth. Additionally, multiple scattering may give rise to ghost scatterings, 

appearing as outliers far away from a realistic 3D position. Due to the remarkable 

advancements in image-derived, LiDAR-based, and RGB-D-based point clouds, the 

utilization of Synthetic-Aperture Radar (SAR) data has yet to be widely explored. 

However, mature SAR satellite such as TerraSAR-X, has collected a large amount of 

global SAR data, allowing for the generation of InSAR-based reconstructions at a 

global scale (Shi et al., 2019). In the future, SAR are expected to play an increasingly 

important role in point cloud acquisition. 

2.3.2 Point cloud down-sampling 

Due to the typically huge size of LiDAR and photogrammetric point clouds, 

processing them tend to be a difficult and time-consuming operation, usually requiring 

a multi-step procedure involving tasks such as registration, segmentation and data 

interpretation. To make these processes easier, down-sampling is often employed as a 

pre-processing step, alongside other operations such as filtering, smoothing and outlier 

removal. Quick and efficient down-sampling of 3D point clouds is essential for the 

sake of the computational efficiency of the data processing procedure: various 

algorithms exist for this purpose. For instance, software such as CloudCompare, Leica 

and Z+F Laser Control software, Autodesk, and Geomagic Suite can be employed to 

down-sample 3D point clouds. In the last years, several approaches have been 

proposed to sample point clouds. The authors in (Al-Durgham, 2019) suggested an 

adaptive down sampling approach that preserves points in low-density areas, while 

eliminating redundant points in high-density areas. This technique has been used in a 

variety of research and case studies. (Y. J. Lin et al., 2016) developed this method based 

on planar neighbourhoods, while the authors in (Al-Rawabdeh et al., 2020) combined 

planar adaptive down sampling and Gaussian sphere-based down sampling in order to 

work with irregular point clouds. Unfortunately, this method is time-consuming as it 

evaluates local density using neighbouring information, thus limiting its speed. The 

Spectral Decomposition Filter (SpDF) proposed in (Labussiere et al., 2018) is a novel 

sampling method aimed at reducing the number of points in large-scale point clouds 

while preserving geometric details with a non-uniform density. First, the input point 

clouds are analysed to identify geometric primitives and their saliencies. Then, density 

measures are computed for each geometric primitive based on their saliencies. If the 

geometric primitive density is higher than the desired density, the primitive is 

subsampled. This process is repeated until the density is less than the desired density, 
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ultimately providing an output as a uniformly sampled point cloud that can be used 

for efficient large-scale applications. Octree-based sampling, developed in (El-Sayed et 

al., 2018), is an approach that combines octree-balancing with down-sampling and 

principal component analysis (PCA). The initial step in this process is to divide the 

point cloud into small cubes using the octree approach. After the cubes are created, 

they are then down-sampled based on their local densities. NSS (Normal-Space 

Sampling) and DNSS (Dual Normal-Space Sampling) are two methods that work by 

down-sampling points within normal spaces. NSS (Rusinkiewicz & Levoy, 2001) 

focuses on the point translational components, while DNSS (Kwok, 2019) takes into 

account both translational and rotational components. These methods are simple and 

cost-effective, but do not perform well with large-scale point clouds due to their 

disregard for spatial distribution. (Błaszczak-Bąk, 2016) developed a method called 

OptD to reduce large datasets, specifically for digital terrain applications in ALS point-

cloud processing. OptD is a fully automated reduction technique that produces an 

optimal result by meeting optimization criteria. 

2.3.3 Point cloud registration 

Registration is the process of properly aligning or fitting a point cloud or data set, and 

it is a fundamental step to process point clouds in the Scan-to-BIM workflow. This 

alignment typically occurs in relation to a local grid, another point cloud, or global grid. 

In practical cases, a point cloud is often made up of multiple scans that need to be put 

together to create a complete representation of the object. The goal of registration is 

to find a correct transformation that optimizes data position in relation to the model 

(Gelfand et al., 2005). Terrestrial laser scanning often requires the scanner to be moved 

in order to capture a full view of larger objects. In these cases, a common coordinate 

system is established, and pair-wise registration is the standard procedure to merge the 

scans (Mitra et al., 2004). The cloud could be georeferenced, and in this case the 

coordinate system corresponds to the real-word position. Several methods have been 

proposed in literature, and they can be divided in two main group: traditional methods 

and deep learning methods. 

Traditional methods. According to (L. Cheng et al., 2018) traditional point-cloud 

registration methods are divided into two parts: an initial coarse registration and a 

subsequent fine registration. The coarse registration is designed to match the 3D 

features of two rough point clouds and is classified into point-based, line-based and 

surface-based methods. The coarse registration is used to roughly align the point 

clouds, followed by a fine registration using iterative approximation methods to 

improve accuracy, a process commonly referred to as coarse-to-fine registration. The fine 

registration method is used to attain the best alignment between two point clouds by 
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automatically minimizing an error function. This is accomplished by employing 

iterative closest point (ICP) algorithms (Segal et al., 2009a) , RANSAC (Fontanelli et 

al., 2007) and normal distribution transform (NDT) methods (Biber et al., 2003). The 

iterative approaches are utilized for fine registration, and they allow for a more precise 

transformation of the two point clouds. By minimizing a properly defined error 

function, the method determines a somehow optimum transformation matrix, thereby 

leading to a more accurate outcome. Iterative approximation is one of the most widely 

used techniques for accurate and stable 3D point-cloud data registration. This method 

starts by identifying correspondences between the two point sets and then determines 

the rigid transformation between them by minimizing the average distance between 

one of the two sets and the other one properly transformed. Unfortunately, classical 

ICP algorithm may end up on a local minimum, in particular when the initial condition 

is far from the correct registration (Y. He et al., 2017). Several approaches have been 

developed to deal with this issue and improve the ICP algorithms, such as the point-

to-line (Censi, 2008), point-to-plane (Grant et al., 2012), point-to-surface (Makovetskii 

et al., 2017), Generalised-ICP, and GO-ICP. Generalised-ICP (Segal et al., 2009b) is a 

method exploiting the combination of ICP and point-to-plane ICP in a single 

probabilistic structure, whereas GO-ICP (Yang et al., 2016) uses a branch-and-bound 

approach to address the global optimization. An evaluation and a comparison of the 

various iterative methods is presented in the work of (Li et al., 2020). RANSAC is 

another suitable method for fine registration, being usable also for pre-processing and 

segmenting point cloud data. By randomly selecting different sets of points to register 

it then fit a predefined model efficiently in the presence of noise and outliers. It has a 

high computing efficiency but due to its randomised nature it is not capable to 

guarantee a globally optimal solution (C. Yu & Ju, 2018). NDT is another method for 

fine registration, based on the probability density function. A 3D grid is used to 

represent point-cloud data, and a probability distribution is applied to each grid point 

to achieve optimal fine registration. It is faster and more reliable in real-time 

applications than ICP (Magnusson et al., 2009) because it does not require a good 

initial solution. However, due to the large number of calculations needed for this 

method, it is labour-intensive. ICP is the most used registration method for 3D point 

clouds, however, high-density data is necessary to achieve accurate results. This 

method is not well-suited for airborne LiDAR due to its large and noisy data. (Gressin 

et al., 2013) compared ICP algorithms on airborne, mobile and terrestrial LiDAR 

platforms and found that the highest accuracy was obtained on TLS and MMS datasets, 

while the results on ALS were quite unsatisfactory. So far, NDT has only been 

implemented on TLS datasets and it is not suitable for complicated and large 

environments. RANSAC, on the other hand, is used for ALS, TLS, and MLS datasets 

mainly as a pre-processing step to eliminate outliers and blockages. 
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Deep learning methods. The registration of 3D point clouds is still a challenging task 

due to their unordered and sparse nature. In recent years, deep learning has become 

increasingly important in point-cloud registration, leading to the development of state-

of-the-art deep-learning-based methods. Two of the most well-known geometric deep 

learning methods for 3D point clouds are PointNet and Graph Neural Networks. 

These methods have inspired the development of various deep learning registration 

methods. For example, the authors in (Deng et al., 2018b) proposed the Point Pair 

Feature Network (PPFNet), which learns 3D local feature descriptors from 

unorganised point sets. However, a major limitation of this approach is that it requires 

a considerable amount of annotated data. To address this issue, the authors in (Deng 

et al., 2018a) developed PPF-FoldNet, which employs unsupervised learning of 3D 

local descriptors. PointNetLK, developed by Aoki et al. (2019), combines the Lucas 

and Kanade algorithm with a global feature descriptor based on PointNet. It employs 

iterative approximation techniques to estimate the relative transformation PCRNet 

(Sarode et al., 2019) is another deep-learning method that also uses PointNet for the 

extraction of global features. This approach uses a Siamese architecture comprising 

five multi-layered perceptrons that are used to generate the global features, which are 

then fed into five fully connected layers, together with an output layer of the desired 

dimension for the pose. Despite being faster and more robust than methods that rely 

on iterations, PCRNet is less accurate. Fully Convolutional Geometric Features 

(FCGF) (Choy et al., 2019) is an effective method for extracting geometric features by 

computing a full convolution network. To improve the accuracy of this method, 

DeepGPMR (Yuan et al., 2020) was developed, which combines Gaussian Mixture 

Model (GMM) registration with neural networks and does not require costly iterative 

procedures. Deep Globalisation Registration (Choy et al., 2020) is a robust deep-

learning method that aligns 3D scans of the real world by using a 6D convolutional 

network to estimate the point sets correspondence and then applying the weighted 

Procrustes method for global optimisation. For real-time object tracking, AlignNet-

3D (Groß et al., 2019) was developed, which learns the predicted frame-to-frame 

alignments for estimating the relative motion between 3D point clouds. The most 

recent developed works are PREDATOR (Huang et al., 2021), RGM (Fu et al., 2021), 

and POintDSC (Yuan et al., 2020). 

 

2.3.4 Point cloud segmentation 

The task of segmenting 3D point clouds is an essential step in the processing of point 

clouds and in the Scan-to-BIM process (Rashdi et al., 2022). The goal of the 

segmentation process is that of partitioning the point cloud in subsets that share 
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common characteristics, e.g. homogeneous regions. The point regions determined in 

this way should be meaningful enough to be useful when analysing the scene in 

different ways, such as to locate and recognize objects, classify them, and extract 

features. This operation is a fundamental step to make machine-interpretable an 

implicit set of data. To avoid misunderstanding a brief clarification is necessary. The 

term “Point Cloud Segmentation (PCS)” refers to unsupervised methods used to group 

raw 3D points into non-overlapping regions, that correspond to specific structures or 

geometrical rules in the scene. The existing algorithms  are  mainly  based  on  hand-

crafted features derived from  statistical properties and geometric  constraints. Since 

the segmentation approaches are unsupervised, the results do not have any remarkable 

semantic information. The term “Point Cloud Semantic Segmentation (PCSS)” is widely 

used in computer vision, particularly in recent deep learning applications. It is also 

referred to as “point cloud classification” or, in some cases, “point labelling”, especially 

in photogrammetry and remote sensing applications. Similarly to PCS, PCSS aims at 

partitioning the point cloud, but, differently from PCS, PCSS techniques aim at 

generating rich semantic information for every point of the scene. Therefore, PCSS is 

often implemented by using PCS algorithms as a pre-segmentation step followed by a 

semantic information extraction phase, or, in recent years, using directly supervised 

learning methods. Since the high level of semantic information needed to develop a 

workflow to transform point clouds into parametric objects, PCSS should be at the 

core of any automatic approach (Tang et al., 2010), (Volk et al., 2014). Given the core 

role of this task in the as-built model development, 3D point cloud semantic 

segmentation applied to heritage constructions is the central topic of this thesis, and 

the PCSS state-of-the-art techniques will be largely discussed in the Chapter 3. Instead, 

this paragraph will illustrate and analyse the state-of-the-art PCS algorithms, which can 

be grouped into four categories: edge-based, region growing, model fitting, and 

clustering-based. 

Edge-based. Edge-based approaches were used in the early stage of PCS, and they 

were transferred directly from 2D images to 3D point clouds. The segmentation is 

carried out by detecting edges or discontinuities in the scene, and by locating points 

that have a rapid change in intensity or in geometrical features. The algorithms are 

based on a two-step procedure: (i) edge detection, where the boundaries are extracted, 

and (ii) grouping points, where the segmented region is defined by selecting the point 

inside the boundaries. For example, the authors in (Bhanu et al., 1985) developed a 

gradient-based method for edge detection by recognizing change in the direction of 

the unit normal vector on the surface, the work in (Sappa & Devy, 2001) proposed a 

method to extract close contours from binary edge map, or the authors in (Wani, 2003) 

a parallel edge-based segmentation algorithms extracting three type of edges. Edge-
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based algorithms are simple and fast, but they have a good performance only with 

straightforward scenes and with low-noise and low-density point clouds. 

Region growing. Region growing is a classic PCS technique that is still widely used. 

It uses growing criteria, combining features between two  points  or  two  region  units  

in  order  to  measure  the correlation  among  2D pixels,  3D points, or  3D voxels, 

and combine them together if they are spatially nearby and have similar  surface  

characteristics. These algorithms are composed by two main steps: (i) the selection of 

the seed points or seed units, and (ii) the region growing driven by determined features 

or principles. To develop an algorithm three factors should be taken into account: 

criteria, growth unit, and seed point selection. For the criteria are commonly used the 

normal vector (Ning et al., 2009), the distance between two points (Dong et al., 2018) 

or the distance of the neighbouring points to the adjusting plane (Tóvári & Pfeifer, 

2005). Three options are normally considered as growth unit: single points (Rabbani 

et al., 2006), region units with a K-d tree search in raw data (Deschaud & Goulette, 

2010), or hybrid units (Xiao, et al., 2013). Seed points are usually selected by designing 

a fitting plane for a certain point and its neighbours first, then selecting the point with 

the lowest residual to the fitting plane (Rabbani et al., 2006). Region growing 

techniques has been successfully applied in the segmentation of building plane 

structures (Xiao et al., 2013), (Dong et al., 2018). In order to be accurate, these 

algorithms need to be adjusted for different datasets based on seed growth criteria and 

locations.  Furthermore, these algorithms are computationally demanding and may 

require a reduction in data volume to achieve efficiency and accuracy. 

Model fitting. Model fitting approaches are normally used as shape detectors, since 

their purpose is to match point clouds to different geometrical shapes, such as planes, 

cylinders, etc. They can be used as segmentation approaches when parametric 

geometric shapes need to be extracted. The most used fitting methods are either based 

on the Hough Transform (HT) or on the RANdom Sample Consensus (RANSAC). 

HT is a technique introduced in (Hough, 1962) and it is composed by three main steps: 

(i) converting each input sample into a discretized parameter space, (ii) creating an 

accumulator with a cell  array  on  the  parameter  space  and  then,  for  each  input 

sample,  voting  for  the  basic  geometric  element  of which they are included in the 

parameter space, and (iii) picking the  cells  with  the  local  maximal  score,  of  which  

parameter coordinates  are  used  to  represent  a  geometric  segment  in original  

space. More detailed information could be found in (Limberger et al., 2015). This 

method is mainly used for planes, or other basic elements segmentation (Tarsha-Kurdi 

et al., 2007), (Hulik et al., 2014). RANSAC techniques are very popular, and detailed 

information could be found in literature (S. Choi et al., 2009), (Raguram et al., 2008). 

The algorithm has three main phases: (i) hypothesis generation, in which N sample 
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points are randomly chosen and a set of model parameter values are estimated using 

the sampled points. After N repetitions of step (i), in the (ii) hypothesis evaluation 

step, the most probable hypothesis among the N considered ones is determined based 

on a majority voting criterion. Finally, morel parameter values are estimated based om 

the inliers found at the previous step. RANSAC methods are very efficient, and they 

do not require complex optimization. They can process data with a high amount of 

noise or outliers, and they are widely used in building segmentation applications with 

remarkable results (Adam et al., 2018), (D. Chen et al., 2014), (Li et al., 2017). 

Unsupervised clustering-based. It involves different methods that share a similar 

goal of grouping points with similar geometric features, spectral features, or spatial 

distributions into homogeneous patterns.  Such patterns are usually not known in 

advance, in contrast with region-growing  and  model  fitting methods. Hence, 

clustering-based algorithms can be utilized for irregular object segmentation. The main 

unsupervised clustering algorithms are K-means (Shahzad et al., 2012), mean shift 

(Shahzad et al., 2015), fuzzy clustering (Sampath & Shan, 2010), DB-Scan (Ester et al., 

1996) and graph-based ones. 

2.3.5 BIM modeling from point cloud 

Given a reference point cloud of a structure or a building, the development of a BIM 

model involves three main tasks. At first, modelling the 3D geometry of the 

component or element, secondly, assigning the proprieties to the object, such as the 

category, the family, material characteristics, etc., and finally establishing relationships 

between the various components and elements. The aim of the geometric modelling 

task is to develop simplified representations of building elements by configuring 

geometric primitives to the point cloud data. These geometric primitives can either be 

surfaces or volumetric shapes. For instance, a basic wall can be modelled as a flat patch, 

or it could be a cube. Surfaces like carvings or moldings may not be accurately 

represented by a basic geometric primitive. In such cases, different modelling plans 

can be used. To build linear structures such as moldings, a cross-section of the object 

can be modelled by connecting splines to the data and then swiping the cross-section 

along a trajectory to form the object model (De Luca, 2006). More complex structures 

such as carvings, can be modelled non-parametrically, using triangle meshes or from a 

database of already known object models (Campbell et al., 2001). Since BIMs are 

normally established using solid shapes, surface-based representations must be 

transformed into solid models. As pointed out by (Patraucean et al., 2015) the creation 

of an as-built model cannot be expected to be as rich as an as-designed BIM. 

Manual creation of as-built BIMs. In most of the practical applications the creation of as-

built BIMs is still a largely manual operation (Fai et al., 2011), (Maietti et al., 2018). 
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Depending on the complexity of the building, completing a project requires several 

months of work by one or more skilled operators. Due to the relatively new concepts 

encompassed by as-built BIMs, the software supporting the Scan-to-BIM process are 

in continuous development, but currently they still have limited tools and 

functionalities. A single platform that covers all the aspects is not yet available, and 

while reverse engineering programs are great at creating detailed surfaces, they often 

lack the volumetric capability and BIM-specific features to create semantic models. On 

the other hand, BIM design systems have difficulty managing large data sets obtained 

by laser scanning. To tackle this challenge, modellers often transfer data between 

various programs during the modelling process, which may lead to data loss because 

of limitation in data exchange standards or implementation issues with the software 

tools.  

There are two main approaches for geometric modelling. The first method involves 

directly fitting geometric primitives like planes, cylinders, spheres, and cones to 3D 

data. Many software packages include specific tools suitable for this purpose, such as 

those designed for modelling pipes. These tools are not automated, and they require 

user input and decision making. For example, a plane may be fitted to a patch of data 

points chosen by the user, and then extended using a region growing algorithm. 

However, this can lead to irregular, imprecise boundaries. To achieve more regular 

boundaries, multiple primitives can be intersected; for instance, a corner of a room 

may be formed by intersecting three orthogonal planes representing two walls and a 

floor. Geometric modelling may be carried out on either point clouds or polygonal 

(usually triangular) surface meshes. Currently, many BIM packages are unable to 

convert geometric primitives created via reverse engineering into BIM objects directly. 

It is thus common to manually re-model the geometry in the BIM environment with 

the reverse engineered model serving as a guide. This data transferring process between 

several software packages may lead to data interoperability problems. The second 

geometric modelling approach utilizes both cross-sections and surface extrusion. 

Initially, both horizontal and vertical cross-sections are taken from the data, with lines 

fitted to the respective cross-sections to represent walls and slabs in plan views. Next, 

vertical cross-sections are taken to determine the heights of walls, doors and windows 

in relation to the floor and ceiling. Finally, walls are modelled through extruding the 

horizontal cross-section vertically as per the constraints specified by the vertical cross-

sections. This approach is less computationally intensive than the surface-fitting 

approach, yet it can lead to erroneous results when components do not comply with 

the idealized geometries, such as when the wall is not exactly vertical. Speeding up the 

modelling process can be achieved through various techniques. For example, when 

dealing with repeated components, such as a window, the initial model can be used as 

a template to generate the rest of them. However, this carries the risk of errors due to 
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differences in geometry between components. To avoid this, prior knowledge 

regarding component geometry, such as the diameter of a column can be used as 

constraints. Alternatively, a component library with known characteristics may be used. 

The category of a BIM component is determined by the modeller when the object is 

created in the design software. Relationships between components are then established 

manually or in a semi-automated way. In some cases, software may automatically 

connect two components that are created in touching positions. 

Automatic approaches for as-built BIMs. Several applications and case studies have shown 

that the creation of as-built BIMs needs manual, labour-intensive process that is long, 

tedious, and subjective, and it requires personnel with specialized training and skill. 

Geometric primitive modelling can be achieved rather quickly, however when it comes 

to modelling a complete building, it can take thousands of primitives and take months 

to finish for an average-sized building. The repetitive, tedious steps make this process 

the slowest part of the BIM creation project (Hajian et al., 2009). Though the modelling 

tools are complex, they are still not enough to address the uniqueness of each situation, 

which is why skilled personnel are often required. On top of that, due to the subjective 

nature of the manual work, there can be a wide range of models that could be built by 

different individuals. The need to optimize the as-built Building Information 

Modelling (BIM) process by utilizing semi-automated and automated techniques has 

been highlighted by several works. To further enhance the modelling process, the 

development of a system that takes a point cloud of any given facility as its input and 

creates a fully annotated as-built BIM of the same facility as its output would be the 

ideal framework. To reduce the manual operations, many commercial tools and 

algorithms have been developed in the last years. The most used ones are the Scan-to-

BIM plug-ins for the Autodesk Revit environment, such as ClearEdge3D Edgewise, 

IMAGINit Scan to BIM, Pointsense and Leica CloudWorx. Some works proposed their 

own algorithms to automatize the BIM elements extraction or reconstruction. The 

authors in (Macher et al., 2015) proposed an approach for the 3D reconstruction of 

indoors of existing building from point clouds. At first, they identified walls, ceilings, 

and floors thanks to a segmentation algorithm, and then, in the reconstruction step of 

the procedure, they automatically modelled the elements into the .obj file format using 

planes or volumes with the assumptions of horizontal slabs and vertical walls. In a 

second phase, they used FreeCAD to generate the Industry Foundation Class (IFC) 

files starting from the .obj object, and they imported them in the BIM environment. 

The verification and the assessment of the procedure is carried out in (Macher et al., 

2019). The work of (Thomson & Boehm, 2015) proposed the applicability to full 

automated reconstruction of object-based “intelligent” BIM geometry from point 

cloud. At first the horizontal plane representing floor and ceiling are detected using 

the RANSAC algorithm. Therefore, they applied a Euclidean clustering step to 
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separate the contiguous elements out, defining a tolerance. Once that the cluster are 

well defined the points are projected onto the RANSAC-derived plane. To create the 

BIM objects, they initialized an empty related IFC element, and they used the extracted 

information to define the boundary, the extrusion depth, or the thickness. The authors 

in (Croce et al., 2021) proposed a semi-automatic approach to the 3D reconstruction 

of Heritage BIM from point clouds. They leverage the RANSAC shape detection 

algorithm as proposed by Schnabel et al., (2007), with a hierarchically structured 

sampling strategy for candidate shape generation. Once the raw point cloud is 

segmented according to the chosen categories, this method decomposes it in a set of 

primitive shapes with associated point sets, it randomly samples minimal subsets of 

points to generate candidate shapes, and then outputs the best fit primitive by means 

of a probabilistic score function. For more complex shapes, new parametric objects 

were created from scratch. Although these works proved good results in modelling 

simple planar elements such as walls or floors, they are still quite inconvenient when 

dealing with the complex objects and shapes. 

2.4 Summary 

In this chapter, the concept of semantic modelling has been explained and the 

paradigm of Building Information Modelling applied to heritage building (H-BIM) has 

been introduced. The main aims, the goals, and the most recent applications of the H-

BIM have been illustrated and discussed. The process that leads to the creation of an 

as-built model is called Scan-to-BIM: it is composed by several phases, and it starts 

from data acquisition up to the final 3D model generation. In this chapter, the various 

steps of the Scan-to-BIM have been analysed in detail, focusing in particular on 3D 

point cloud processing. The algorithmic approaches to address each step of point 

cloud processing have been summarized, including point cloud acquisition, 

registration, down-sampling and segmentation. As turned out from the previous 

paragraphs, one of the most challenging phases of Scan-to-BIM is the point cloud 

segmentation, i.e. the process of partitioning a point cloud in subsets, where the points 

of each subset share common features and similar characteristics. Since the point cloud 

semantic segmentation problem plays a central role in this dissertation, it is 

comprehensively introduced and widely discussed in the next chapter. 



  

 

Chapter 3  

Semantic Segmentation Algorithms 

In this chapter, the state-of-the-art methodologies used to address the semantic 

segmentation problem are reported. First, paragraph (§3.1) introduces the concepts of 

artificial intelligence, machine learning and deep learning, and, afterwards, the basic 

structure of artificial neural networks (§3.1.1) and convolution neural networks (§3.1.2) 

are explained in more details. Paragraph (§3.2)  focuses on the semantic segmentation 

task, analysing and discussing and the main approaches for image (§3.2.1)  and point 

cloud semantic segmentation (§3.2.2). Paragraph (§3.2.3) presents the existing multi-

view approaches for point cloud segmentation, which are based on image 

segmentation and reprojection of the extracted classes or categories on the original 

point cloud. Finally, in the last paragraph (§3.3) the developed semantic segmentation 

approach is explained and discussed in detail. The proposed two-step workflow is 

particularly well suited for photogrammetric point clouds, for which the geometric 

relation between images and point cloud has already been established during the 

photogrammetric reconstruction. Semantic segmentation of the images used in the 

photogrammetric workflow is performed using the most popular convolutional neural 

networks, once properly trained. Then, the determined pixel-wise labels are reprojected 

from the images to the related photogrammetric point cloud, exploiting the already 

available intrinsic and extrinsic camera parameters. The chapter ends with a general 

summary (§3.4). 
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3.1 AI/Machine Learning/Deep Learning 

Over the past few years, artificial intelligence (AI) has been subject of an intense media 

hype. Studies on machine learning (ML), deep learning (DL) and AI led to a countless 

number of articles, publications, and academic researches. Nowadays, they are used in 

a wide range of different applications, also far from each other: economics, psychology, 

linguistics, philosophy, music, and many others. They underlie most of the common 

technological applications to solve complex tasks and alleviate problems such as self-

driving cars, image processing, web search, robotics, automated decision making, and 

many others. But firstly, what are artificial intelligence, machine learning and deep 

learning? How do they relate to each other? Artificial intelligence was born in the 

1950s, when few pioneers form the emerging fields of computer science started asking 

whether computers could be able to “think”. A formal definition of AI is as follows: 

the ability of a computer or a robot controlled by 

a computer to do tasks that are usually done by 

humans because they require human intelligence 

and discernment. AI encompasses machine 

learning and deep learning, but it also 

includes many other approaches that 

don’t involve any learning. Machine 

learning is a subset of AI, and a first 

definition was given by Arthur Samuel in 

1959: machine learning is the field of study that 

gives computers the ability to learn without being 

explicitly programmed. More recently Tom 

Mitchel (1998) defines machine learning 

by saying that a well-posed learning 

problem is defined as follows: a computer 

program is said to learn from experience E with 

respect to some task T and some performance 

measure P, if its performance on T, as measured by P, improves with experience E. While in classical 

programming, humans input rules and data to come out with an answer, with machine 

learning humans input data as well as the answer expected for such data, and the 

expected outcome are the relationships. These rules can then be applied to new data 

to produce original answers. A machine learning algorithm is trained with significant 

examples, aiming at allowing it finding the statistical structure in these examples, and 

hence allowing the algorithm to learn the rules for automating the task. This simple 

idea allows to solve a wide range of complex tasks, and ML has quickly become the 

most successful subfield of AI. Deep learning is a specific subset of machine learning 

Figure 3.1 – AI/Machine Learning/Deep 
Learning and their relationship (from 

datacatchup.com). 

Figure 3.2 – AI/Machine Learning/Deep 
Learning and their relationship (from 

datacatchup.com). 
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in which the learning process puts an emphasis on learning successive layers of 

increasingly meaningful representation. The term was introduced in the machine 

learning community by Rina Detcher (1986). The adjective deep in deep learning refers 

to the use of multiple layers in the model, and the term depth is used to define how 

many layers contribute to the model. Deep learning is particularly suited to contexts 

where the data are complex and where there are large datasets available. In modern 

deep learning the layered representations are learned using models called neural 

networks. 

3.1.1 Artificial Neural Networks (ANNs) 

Despite some learning-based models have been proposed in the first part of the 20th 

century (McCulloch & Pitts., 1943), (Kleene, 1956), (Rosenblatt, 1958), Artificial 

Neural Networks (ANNs), which are a class of artificial intelligence algorithms, 

emerged in the 1980s from developments in cognitive and computer science research 

inspired by the biological neural networks that constitute animal brains. A standard 

ANN is based on a set of connected basic units or nodes called artificial neurons, 

which aim at mimicking the neurons in a biological brain. Each neuron can send a 

signal to the others through the available connections, similarly to the functioning of 

the brain synapses. The power of an ANN to model complex relations emerges from 

the interactions between large sets of simple neurons. Figure 3.2 illustrates the 

structure of a standard neural network, in which the neurons are organized into layers.  

Figure 3.3 – The basic structure of an Artificial Neural Network (ANN) (from Deep 
Learning, J.D. Kelleher). 
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The represented network has five layers: one input layer, three hidden layers, and one 

output layer. Deep learning networks are neural networks that have much more than 

two hidden layers. The circles in the figure represent the information processing 

neurons in the network. Each of these neurons takes a set of numeric values as input 

and maps them into an output value. Each input of a processing neuron is either the 

output of a sensing neuron or the output of another processing neuron. The arrows 

show how information flows through the network from a neuron to another one and 

from a layer to another one. Each connection has a weight associated, i.e. a scalar 

number. Weights are very important: they affect how a neuron processes the 

information it receives, and their estimation is the goal of learning. Training an artificial 

neural network entails the pursuit of the 

most suitable weight values: in the process 

of end-to-end learning, this exploration is 

achieved by minimizing an objective 

function that assesses how well the model 

output aligns with the correct values. 

How does a neuron process the input 

information? A neuron implements a 

two-stage process to map inputs to an 

output. The first stage of processing 

involves the calculation of a weighted sum 

of the inputs to the neuron. Then, the 

result of the weighted sum calculation is 

passed through a second function that 

maps the results of the weighted sum score to the neuron’s final output value. 

Typically, this second function is known as an activation function. Figure 3.3 illustrates 

how these stages of processing are elaborated in the structure of an artificial neuron. 

The symbol ∑ represent the calculation of the weighed sum, and the symbol φ 

represent the activation function generating the output. The neuron receives n inputs 

from n different connections, and each connection has an associated weight. The 

weighted sum is as follows: 

 

𝑧 = (𝑥1 × 𝑤1) + (𝑥2 × 𝑤2) + ⋯ + (𝑥𝑛 × 𝑤𝑛) (3.1) 

 

The weighted sum value is used as input of the activation function, whose outcome is the 

final output of the neuron. Examples of the typical activation functions used in 

modern deep networks are shown in Figure 3.4. The most used activation functions 

Figure 3.4 – The structure of a neuron (from 
Deep Learning, J.D. Kelleher). 
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are the threshold, logistic, tanh, and the rectifier. Currently the most used activation function 

is the Rectifier Linear Unit (ReLu), that showed to enable better training in modern 

deep networks. Such activation functions have a nonlinear behaviour: they apply a 

nonlinear mapping to the output of the weighted sum. This is the reason why these 

functions are used: the introduction of a nonlinear behaviour enables a neural network 

to learn more complex relations and to create more effective models. A neural network 

may use different activation functions, but generally all the neurons in the same layer 

use the same function. 

3.1.2 Convolutional Neural Networks (CNNs) 

Convolution Neural Networks (CNNs) are a class of artificial neural networks 

designed to work with multidimensional inputs: they are commonly used to analyse 

visual imagery. Similarly to ANNs, which are inspired by the connectivity between the 

human brain neurons, the architecture of a CNN was inspired by the organization of 

the visual cortex of the human brain, in which individual neurons respond to stimuli 

only in a restricted region of the visual field known as the Receptive Field. They were 

introduced and successfully applied for the first time for handwritten digit recognition 

(LeCun et al., 1989). Currently they are the most used neural networks in the computer 

vision domain, and they are used for a multitude of tasks such as Image & Video 

recognition, Image Analysis & Classification, Image segmentation, Object detection 

etc. The basic idea of the CNN functioning is the detection of the local visual features,  

whose extent is limited to a small patch, a set of neighbouring pixels, in an image. CNN 

architecture extracts the local visual features in the early layers and combine these 

features to form higher-order features in the later layers. Since the precise location of 

a feature is often not relevant to the image processing task, feature detection must 

work in a translation invariant manner. This property is achieved by using weight 

sharing between neurons of the same layer, leading to a filter-like interpretation of the 

Figure 3.5 – Typical activation functions used in modern deep learning (from Deep Learning, 
J.D. Kelleher). 
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layer behaviour. A typical CNN architecture is composed by a stack of specific layers 

that transform the input volume into an output volume through a differentiable 

function. Convolutional layer is the core building block of a CNN. It includes a set of 

filters (or kernels) which contain the parameters learned during the training. Each filter 

convolves with the image sliding across the height and the width of the image, and at 

every spatial position is calculated the dot product between every element of the filter 

and the input. The output of this operation is called feature or activation map. The 

output volume is generated by stacking the feature maps of every filter along the depth 

dimension. After the convolution, in the Nonlinearity layer, a non-linear map, the 

activation function (often the ReLu), is applied to each single value of the feature. 

Pooling layer is a form of non-linear down-sampling, and it serves to progressively reduce 

the spatial size of the representation, to avoid the curse of dimensionality, to reduce 

the amount of computation and to control overfitting. There are several functions to 

perform the down-sampling, max pooling, which returns the maximum value, average 

pooling, which returns the average, or RoI pooling, in which the input rectangle is a 

parameter. 

 This sequence of layers is relatively common across most CNNs, and they define a 

complete Convolutional layer, showed in Figure 3.5. At the end of the CNN, a Dense 

layer, that operates like a standard layer of a fully connected network, is usually used. 

Nowadays there are a lot of different CNN architectures. One of the most well-known 

CNN classification architectures is AlexNet (Krizhevsky et al., 2012). It has a depth of 

8 layers, and it is composed by five convolutional layers followed by three fully 

connected layers. The first layer has 96 different kernels, the second layer 256 kernels 

Figure 3.6 – The sequence of a basic convolutional layer (from Deep Learning, J.D. Kelleher). 
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and the last layer 384 kernels. In total AlexNet has 650,000 neurons and sixty million 

weights, but the sharing of the weights reduces the parameters to learn. VGG-16 and 

VGG-19 (Simonyan & Zisserman, 2014) are two other popular networks that have 

respectively the depth of 16 and 19 layers, and 138 and 144 million weights. In 2015 

Microsoft developers introduce ResNet (K. He et al., 2015), and the technique of the 

skip-connections. A skip-connection feeds the output of one layer directly into a 

deeper layer in the network, and it allows to train very deep networks and learning 

fewer parameters. The deepest version of ResNet has a depth of 152 layers and it 

allows to learn very complex relationships. 

3.2 Existing semantic segmentation methods 

3.2.1 Image semantic segmentation 

Image semantic segmentation is a key topic in many computer vision applications and 

a fundamental component in many visual understanding systems. In the last years, 

numerous algorithms have been developed in literature to address the task of  image 

segmentation. The earlier methods were based on thresholding (Saleh Al-amri & 

Kalyankar, 2010), region-growing (Nock & Nielsen, 2004), K-means clustering 

(Dhanachandra et al., 2015). More advanced methods were based on active contours 

(Kass & Witkin, 1988), graph cuts (Boykov et al., 2001), conditional and Markov 

random fields (Plath et al., 2009) and sparsity-based methods (Starck et al., 2005). Over 

the last years deep learning methods have yielded a new generation of segmentation 

methods, with an impressive performance improvement, overcoming the results of the 

former approaches.  

The first family of deep models for image semantic segmentation is based on fully 

convolutional networks (FCN). The first work was proposed by (Long et al., 2014). It is 

considered a milestone and it is the first work that introduced an end-to-end workflow 

to segment images of different size. FCN produces the segmentation map of the same 

size of the input by replacing the final fully connected layers with the fully 

convolutional layers, and by changing the classification scores output by a base 

network like VGG or ResNet with the segmentation map. Despite its effectiveness 

FCN showed some disadvantages: it does not consider the global context information, 

and it is not fast enough for real-time inference. To face these issues the authors in 

(W. Liu et al., 2015) proposed ParseNet. The model adds an extra global context to 

FCNs by using the average feature for a layer to augment the features at each location. 

The feature map is then pooled over the whole image resulting in a context vector, 

then normalized and unpooled to produce the new feature map. 
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Another popular family of models is based on encoder-decoder architecture. They were 

introduced by (Noh et al., 2015) with the transposed convolution. Their model is 

composed by two parts: an encoder, based on the VGG-16 convolutional network, 

and a deconvolutional network that starting from the feature vector generates a map 

of pixel-wise class probabilities. The deconvolution network is composed by the 

deconvolution operation and the unpooling layers, which predict the segmentation 

mask from the pixel-wise class labels. A well-known encoder-decoder network initially 

proposed for the segmentation of medical images is U-Net (Ronneberger et al., 2015). 

Its architecture consists of a contracting path to capture context and a symmetric 

expanding path that enables precise localization. The up-sampling step uses up-

convolution, reducing the number of feature maps while increasing their dimensions. 

The maps from the down-sampling part are copied to the up-sampling part to avoid 

the loss of pattern information. To improve its performance various extensions have 

been developed, for example nested U-Net (Z. Zhou et al., 2018) or U-Net for 3D 

images (Çiçek et al., 2016). Another popular network is SegNet (Badrinarayanan et al., 

2017). The main novelties are that this network has no fully connected layers, and the 

manner the decoder up-samples its lower resolution input features map: it uses pooling 

indices calculated in the max-pooling step of the corresponding encoder to perform 

non-linear up-sampling. This decreases the computing time because learning 

parameters is not needed in the up-sample operation. An interesting network for 3D 

image segmentation is V-Net (Milletari et al., 2016) in which a new objective function 

based on the Dice score (see eq. 5.7) was introduced, allowing the model to face 

situations in which there is an unequal distribution of pixels or regions among different 

classes or categories in the training dataset, for example between the background and 

the foreground. This situation in normally defined as class imbalance. 

One of the currently most used family of segmentation models is based on the dilated 

convolution or “atrous” convolution. These models introduce the dilatation rate, defined as 

𝑦𝑖 = ∑ 𝐾𝐾
𝑘=1 𝑥[𝑖 + 𝑟𝑘]𝑤[𝑘], where r in the dilatation rate that defines a spacing 

between the weights and the kernel w. Numerous recent models used this technique, 

and the most important ones belong to the DeepLab family, e.g. Deeplabv1 (L.-C. 

Chen et al., 2014) and DeepLabv2 (L.-C. Chen et al., 2016). In this kind of model three 

stages can be distinguished: first, the dilated convolution is used to address the problem 

of the decreasing resolution caused by pooling and striding. Secondly, Atrous Spatial 

Pyramid Pooling (ASPP), which searches initial convolutional feature layer with filters 

at multiple sampling rates, thus capturing objects as well as image context at multiple 

scales to robustly segment object at multiple scales. Finally by combining probabilistic 

graphic models and deep CNNs the localization of the object boundaries can be 

improved. These models reached the state-of-the-art performance on the 2012 
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PASCAL VOC challenge and on the Cityscape challenge. Two improvements have 

been done recently. Deeplabv3 (L.-C. Chen et al., 2017), that combines cascaded and 

parallel modules of dilated convolutions, and Deeplabv3+ (L.-C. Chen et al., 2018) 

that uses an encoder-decoder architecture, including separable convolution, a spatial 

convolution for each channel of the input (depth-wise convolution) and then a 1x1 

convolution on the output (pointwise convolution). The model extends DeepLabv3 

by adding a simple decoder module to refine the segmentation boundaries. This model 

obtained an 89.0% mean Intersection over Union (mIoU) (see eq. 5.9) on the 2012 

PASCAL VOC challenge, currently the best performance ever achieved. 

Another class of models is based on multi-scale analysis. One of the most remarkable 

architectures is the Feature Pyramid Network (FPN) developed in (T.-Y. Lin et al., 

2016) for object detection, but it can also be applied for segmentation. The model is 

composed of a bottom-up pathway, a top-down pathway, and lateral connections that 

are used to merge the high and low-resolution features output by a pyramidal hierarchy 

of deep CNNs. Finally,  two multi-layer perceptrons (MLPs) are used to generate the 

segmentation masks. In this work (Zhao et al., 2017), the authors proposed Pyramid 

Scene Parsing Network (PSPN), a multi-scale algorithm to better learn the global 

context representation of a scene by extracting several patterns from the input image 

using a residual network (ResNet) and a dilated network as feature extractor. To 

distinguish patterns of different scales the extracted features are then fed into a 

pyramid pooling module that works on four scales, each one corresponding to a 

pyramid level. Each level processes the features by means of a 1x1 convolutional layer 

to decrease the dimension. Finally, is generated the pixel-wise prediction by up-

sampling and concatenating the output with the initial feature maps to capture the local 

and the global features. 

The last class of models is based on regional convolution network (R-CNN), originally used 

for object detection, but applied with success also for instance segmentation. One of 

the most successful is Faster R-CNN (Ren et al., 2015) that uses a regional proposal 

network (RPN) to propose the object bounding box. It extracts the Region of Interest 

(RoI) and RoIPool layer computes the features from these proposals to assign the 

coordinates of the bounding box and the object class. Mask R-CNN (K. He et al., 

2017) is an extension of this model and it is the state-of-the-art network for instance 

segmentation. The model detects objects in an image with bounding boxes and 

simultaneously it creates a high-quality segmentation mask. It is composed by three 

branches: the first detect the bounding boxes, the second the associated classes and 

the third computes the binary mask. The loss function of the algorithm combines all 

the three losses and trains all of them jointly. Many other algorithms for image 

semantic segmentation have been developed in literature, and other categories of 



46 Semantic Segmentation Algorithms 

 
model could be group in graphical based, recurrent neural network based, attention-based 

generative models, adversarial training, and active control based (Ulku & Akagunduz, 2019). 

3.2.2 Point cloud semantic segmentation 

3D point cloud semantic segmentation (PCSS) is attracting increasing interest due to 

its applicability in a wide range of different applications (Xie et al., 2020). Despite the 

term semantic segmentation is widely used in computer vision, in photogrammetry and 

remote sensing applications, the following nomenclature is also often used for similar 

purposes: “point cloud classification” or “point labelling” (Boulch, Le Saux & 

Audebert, 2017).  Given a point cloud, the goal of semantic segmentation is to partition 

it into several subsets according to the semantic meaning of the points. Artificial 

Intelligence (AI), in particular the branch of machine learning, has become the basic 

building block for these tasks and nowadays PCSS is usually realized by supervised 

learning methods, including “regular” supervised machine learning (A), and deep 

learning (B) (Guo et al., 2019). 

 

A) Regular Supervised Machine Learning 

 Regular supervised machine learning methods for semantic segmentation of point 

clouds can be divided into two main groups (Weinmann et at., 2015):  

• Individual PCSS methods, which classify each point based only on its 

individual features. Four stages can usually be identified in these methods: 

neighbouring selection, feature extraction, feature selection, and semantic 

segmentation. These methods are usually computationally efficient, but their 

results are often affected by a significant level of noise. The most used 

classifiers in PCSS methods are Random Forest, AdaBoost, Support Vector 

Machine. 

• Methods based on statistical contextual models, which focus on point cloud 

statistics and relational information over different scales. Differently from 

individual PCSS they take into account contextual features. The most widely 

used model in this category is Conditional Random Fields (CRF) (Weinmann, 

2014; Vosselman, Coenen & Rottensteiner, 2017). 

 

B) Deep Learning 

Deep learning has been recently successfully used on several 2D vision problems, 

becoming more and more popular during the last years, in particular after the 
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introduction of Convolutional Neural Networks (CNN) (He et al., 2016), and 

nowadays it can be considered as a predominating technique in AI. Given the typical 

high performance of deep learning-based solutions, there is an increasing interest of 

the civil engineering sector on the extension of the use of such techniques also to data 

related to construction and building models. For instance, they may be used to extract 

information from 3D point clouds, for 3D Shape classification, 3D Object Detection, 

3D Object Tracking, and 3D Point Cloud Segmentation (L.-C. Chen et al., 2018), 

(Shelhamer & Darrell, 2015). Three-dimensional data provide richer spatial and 

geometrical information compared to two-dimensional data and could better 

characterize complex scenes.  However, the use of deep learning methods on point 

clouds still faces several significant challenges, due for instance to:  

• the large data size, which implies long computing time. 

• the unstructured nature of 3D point clouds, which complicates the use of 

network architectures commonly used for 2D data,  

• the unavailability of large-shared datasets, which makes the results of the 

training process hardly exportable to scenarios different from the one that 

motivated the network realization.  

According to the literature, semantic segmentation methods for 3D point cloud can 

be divided into two groups: (i) projection-based methods and (ii) point-based methods 

(J. Zhang et al., 2019), which are going to be described in the following. 

Projection-based methods. The main issues to be solved for using standard neural 

networks, such as Convolutional Neural Networks (CNNs) or Fully Connected Layers 

(FCs), are the unstructured nature of point clouds and to the presence of orderless 

data. To this aim, projection-based methods first apply a transformation to convert 

3D point clouds on data with regular structure, then they perform the semantic 

segmentation task by applying standard approaches, and finally they re-project the 

extracted features on the original shape or point cloud (Lawin et al., 2017a). The 

advantage of projection-based methods is that they leverage on well-established 

networks. However, any kind of transformation and intermediate representation 

involves inevitably a loss of information, in particular geometrical and spatial. 

Depending on the type of used representation, it is possible to distinguish four 

categories among these methods: a) multi-view, b) volumetric, c) spherical, and d) 

lattice. 

a) Multi-view representation. These methods first project the 3D shape into multiple views, 

then apply 2D image segmentation methods to extract information from each image. 

The results obtained on such images are compared and analysed, and eventually re-



48 Semantic Segmentation Algorithms 

 
projected on the original scene to obtain a semantically segmented point cloud. How 

to aggregate the multiple views in a global representation is still a key challenge for this 

method. MVCNN (Su et al., 2015) is a pioneering work, which proposed the use of 

Convolutional Neural Networks (CNN) with multiple perspective of the 3D object. It 

is suitable for individual objects rather than complex scenes because it ignores spatial 

relations between objects. Another important work is SnapNet (Boulch et al., 2018), 

that, in order to address the problem of information loss, selects some snapshots of 

the point clouds to generate RGB and depth images, and then it uses the marked points 

to project the segmentation on the 3D cloud. The more recent SnapNet-R improves 

the process of image generation and the overall accuracy. These networks ensure 

excellent image segmentation results, but the transposition of such results on the 3D 

cloud entails a large loss of spatial and geometrical information. 

b) Volumetric representation. Volumetric representation or voxelization of point clouds 

consists in the transformation of the unstructured 3D cloud into a regular spatial grid, 

and then the information distributed on such regular grid is exploited to train a quite 

standard neural network to properly perform the segmentation task. VoxNet (Daniel 

Maturana, 2015) converts the 3D clouds in a grid in which CNN operations can be 

applied and use CNN to predict the classes directly on the order grid. PointGrid uses 

the same transformation of VoxNet, but it addresses the problem of information loss 

and change of scale, and it has less memory requirements. SEGCloud (Tchampi et al., 

2017), to reduce the computational cost has introduced the methods of spatial partition 

such as K-d tree or Octree. In conclusion, the mentioned methods and others like 

OctNet (Riegler et al., 2017), VV-Net (Qi et al., 2016), ScanComplete (Dai et al., 2018) 

ensure the achievement of a reasonable segmentation of non-structured relatively small 

point clouds. Unfortunately, they are still unsuitable for the semantic segmentation of 

complex scenarios.  

c) Spherical representation. Spherical representation typically refers to a mathematical 

representation of data on a sphere surface or in a spherical coordinate system. This 

representation is often used in tasks related to spherical data, such as 360-degree 

images, 3D point clouds, or orientation data. These types of representation, compared 

with the multi-view representation, retain more geometrical and spatial information. 

However, they have some issues such as discretization errors and occlusion. The most 

important works are SqueezeNet (Iandola et al., 2016; Milioto et al., 2019), and 

RangeNet++ (Milioto et al., 2019) for real-time LiDAR data semantic segmentation. 

d) Lattice representation. Volumetric representation is naturally sparse, and it is inefficient 

to apply dense convolutional neural networks (DCNN) on spatially sparse data. Lattice 

representation converts a point cloud into discrete representation such as sparse 

permutohedral lattice (A. Adams et al., 2010). This method can control the sparsity of 
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the extracted features and reduces memory requirements and computational costs 

reducing the convolution output. One of the main works is SPLATNet (Su et al., 

2018). It interpolates a raw point cloud to a sparse lattice and then a Bilateral 

Convolutional Layers (BCL) is applied to convolve on occupied parts of lattice. Other 

works are LatticeNet (Alexandru Rosu et al., 2020), which achieves efficient processing 

of large point clouds, and MinkowskiNet (Choy, Gwak & Savarese, 2018), a 4D spatio-

temporal convolutional neural network for 3D video perception. 

Point-based methods. Point-based methods, or direct methods, work directly with 

point clouds and they do not introduce explicit information loss with intermediate 

representations. This direct approach leverage on the full use of the characteristic of 

the raw point cloud data and consider all the geometrical and spatial information. 

Despite point-based methods are still in development, they seem the most promising 

in the future and a series of networks have been proposed recently. Overall, these 

methods can be divided into four categories: a) pointwise MLP methods, b) 

convolution methods, c) RNN-based methods and d) graph-based methods. 

a) Pointwise methods. These methods usually use shared Multi-Layer Perceptron (MLP) 

as the basic unit in their network. The pioneering work for this method is PointNet 

(Qi et al., 2017a), it learns per-point features using shared MLPs and global features 

using symmetrical polling functions. However, MLP cannot capture local geometry in 

mutual interaction between points. In order to capture wider context and learn more 

local structures, a lot of network based on PointNet have been developed recently. 

These methods are based on neighbouring feature pooling such as PointNet++ (Qi et 

al., 2017b), PointSIFT, PointWeb, RandLA-Neton attention-based aggregation such 

as Gumbel Subset Sampling (GSS) or Local Spatial Aware (LSA), and on local-global 

concatenation such as EdgeConv and NetVLAD. 

b) Convolution methods. These methods tend to propose effective convolution operators 

for point clouds (Hua, Tran & Yeung, 2018). PointCNN (Wang et al., 2018) is a 

network based on parametric continuous convolution layers and kernel function of 

this layer is parametrized by MLPs. KP-FCNN is based on Kernel Point Convolution 

(KPConv), and the convolution weights are determined by the Euclidean distances to 

kernel points, and the number of kernel point is not fixed. ConvPoint proposed a 

point-wise convolution operator, where the neighbouring points are binned into kernel 

cells and then convolved with kernel weights. 

c) RNN-based methods. Recently Recurrent Neural Network (RNN) have been used for 

semantic segmentation, in particular to capture inherent context features from point 

clouds. G+RCU first transformed a block of points into multi-scale blocks and grid 

blocks to obtain input-level context. Then, the block wise features extracted by 
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PointNet are sequentially fed into Consolidation Units (CU) or Recurrent 

Consolidation Units (RCU) to obtain output-level context. 3DCNN-RNN (F. Liu et 

al., 2017) first learns spatial distribution and colour features using a 3D CNN, and then 

the final concatenated feature vector is fed into a residual RNN to obtain the final 

segmentation. However, these methods lose geometric features and density 

distribution from point clouds when aggregating the local neighbouring features with 

global structures. 

d) Graph-based methods. To improve the results and capture richer geometrical structures 

several methods leverage on graph networks. Graph Neural Network (GNN) is a type 

of Neural Network which directly operates on the Graph structure. The most 

important works are DGCNN (Wang et al., 2018), PyramNet based on Graph 

Embedding Module (GEM), and GACNet.  

Finally, a summary of the main network architectures with their typology, year, and 

accuracy (mIoU) on the ModelNet40 dataset (Fig. 3.6). 

 

 
Figure 3.7 – Main network architectures with typology, year and mIoU on ModelNet40. 
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3.2.3 Multiview approaches 

Multiview approaches are a class of projection-based algorithms that use a set of 

images as intermediate representation of the 3D object, shape or point cloud. These 

models could be used for different tasks, 3D shape classification, 3D object detection 

& tracking or 3D point cloud semantic segmentation. For shape classification they 

extract view-wise features and then fuse these features into a discriminative global 

representation. For object detection these models fuse proposal-wise features from 

different view maps to obtain a 3D rotated box. For semantic segmentation they 

extract a feature pixel-wise map for each image and then they aggregate the map 

information on the initial 3D representation by calculating the relationship between 

the 2D pixels and the 3D space. Despite the use of an intermediate representation 

could introduce a geometrical, spatial, and dimensional information loss on the 3D 

shape or point cloud, these approaches have shown remarkable results, and they are 

an effective strategy to deal with 3D semantic segmentation. At first, they allow to 

exploit the standard 2D segmentation architectures, and to leverage on the greater 

simplicity and clarity of image-based algorithms. As shown in the previous paragraph 

there are several available architectures, and the state-of-the-art networks have reached 

remarkable performance on different data typologies. Secondly, they benefit from the 

availability of several datasets and benchmarks for image semantic segmentation, 

enabling the use of pre-trained networks, the use of transfer learning, and reducing the 

training time, the computing power required and the craving of training data. The most 

challenging step of these approaches is the re-projection or the transfer of the 2D 

features on the 3D object. In most cases, label transferring results are affected by 

obstructions or occlusions, and by the low quality of the 2D segmentation boundaries, 

resulting in certain cases in a weak 3D segmentation quality, which can decrease the 

2D segmentation performance. Depending on the application and the available input 

data, several techniques have been tested to address these issues, and they differ 

according to the strategy used to connect the 2D environment with the 3D space: for 

example, some methods exploit depth information or intrinsic and extrinsic camera 

parameters, other methods leverage on Bayesian updates and close pairwise 

Conditional Random Fields (CFRs), others on graph-based approaches. In the last year 

several methods have been proposed in literature, and this section will provide an 

exhaustive summary of the main developed ones, both for semantic segmentation (A) 

and 3D object detection and recognition (B).  
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A) Semantic Segmentation 

Some of the pioneering works dealing with a multi-view approach are based on join 

segmentation, the simultaneous segmentation of registered 2D images and 3D points 

reconstructed from multiple view images. In their work (Xiao et al., 2007) treat the 

segmentation as a two-stage weighted graph labelling problem: first they constructed 

a graph for the joint 3D and 2D points, and then used a hierarchical sparse affinity 

propagation algorithm to segment 2D images and group 3D points. (Quan et al., 2007) 

revisited the quasi-dense approach to structure from motion, and they proposed a 

probabilistic framework for the joint segmentation of 3D points and 2D pixels into 

groups of meaningful objects. In their work, (Xiao & Quan, 2009) proposed a multi-

view semantic segmentation framework for labelling street images captured by a 

camera mounted on a car. They used Structure for Motion to reconstruct the scene 

geometry across multiple views, and, with both 2D and 3D information available, they 

exploited a Markov Random Field (MFR) representing superpixels as nodes, and the 

smoothness across superpixels as edges. For smoothness terms, they make use of 

colour differences to identify accurate segmentation boundaries, and dense pixel-to-

pixel correspondences to enforce consistency across different views. They tested the 

procedure on a manually segmented dataset achieving a high overall accuracy, but an 

unsatisfactory performance on small objects. The authors in (R. Wang et al., 2010) 

developed an automatic method to segment building outlines from multiple city-scale 

street view images. Different from joint segmentation this approach makes individual 

image segmentation obtained with a graph-cut-based algorithm consistent across 

views, by re-projecting the features from the neighbouring views using the 3D 

information and voting to find conflicting results. The proposed method is robust and 

efficient, and it allows precise pixel labelling despite inaccuracies of the 3D models and 

misalignments in the data. In (Hermans et al., 2014a) the authors addressed the 

problem of image sequences segmentation performing an efficient 2D semantic 

segmentation of RGB-D frames based on Randomized Decision Forests (RDFs) and 

then developed a novel way to transfer the 2D image labels into the 3D point cloud 

based on Bayesian updates and dense pairwise Conditional Random Field (CFRs) that 

allows to enforce temporal and spatial constraints. (Riemenschneider et al., 2014) 

proposed an alternative approach that exploits the geometry of a 3D mesh model 

obtained  from  multi-view  reconstruction.  Instead  of  clustering  similar views, they 

predict the best view before the actual labelling reducing the inherent data overlapping. 

For this, they find the single image part that best supports the correct semantic 

labelling  of  each  face  of  the  underlying  3D  mesh. (Vineet et al., 2015) presents a 

framework for real-time dense large-scale reconstruction and semantic segmentation. 

The segmentation pipeline extracts 2D features from stereo images based on random 

forest classifier, and it transfers the predictions into 3D volume, where they define a 
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densely connected CFR. The authors in (Pan & Taubin, 2016) proposed a graph-cut 

based method for segmenting point clouds from multi-view reconstruction removing 

the unwanted background points. The method is based on the observation that the 

objects of interest are usually located in central area of the image. The segmentation is 

carried out in two steps: first they built a weighted graph, whose nodes represent points 

and edges that connect each point to its k-nearest neighbours. Secondly, graph-cut is 

used to find the initial binary segmentation, and then it is refined with Gaussian 

mixture models (GMMs) using colour and density information. An interesting work is 

SemanticFusion (McCormac et al., 2016a), a pipeline for mapping RGB-D video. 

Firstly, a Simultaneous Localization and Mapping (SLAM) system provides the 

correspondences between the frames and a globally consistent map of fused surfels. 

Secondly, a CNN receives the 2D images and returns a set of per pixel class 

probabilities, and finally a Bayesian scheme updates the probabilities according to the 

correspondences of the SLAM system. In (Boulch et al., 2017), the authors introduce 

SnapNet, a framework which applies CNNs on multiple snapshots of the point cloud. 

It is composed by three core ideas: firstly, they generate two type of snapshots, RGB 

views and depth views containing geometric features. Secondly, for each snapshot, a 

fully convolutional network (FCN) is used to obtain a pixel-wise labelling. Finally, they 

perform fast back-projection using efficient buffering to label 3D points. (Hazirbas et 

al., 2017) proposed FuseNet investigating a solution on how to incorporate 

complementary depth information into a semantic segmentation framework by making 

use of convolutional neural networks (CNNs). They propose an encoder-decoder 

network type, where the encoder part is composed of two branches of networks that 

simultaneously extract features from RGB and depth images and fuse depth features 

into the RGB feature maps as the network goes deeper. In (L. Ma et al., 2017), the 

authors proposed a deep neural network approach to predict semantic segmentation 

from RGB-D sequences. The key innovation is to enforce consistency by warping 

CNN feature maps from multiple views into a common reference view using the 

SLAM trajectory and to supervise training at multiple scale. The network is inspired 

by FuseNet and it contains two branches to learn features from RGB and depth. The 

feature maps from depth are fused into the RGB branch at each scale. The authors in 

(Jaritz et al., 2019) propose Multi-View PointNet (MVPNet) where they aggregated 2D 

multi-view image features, calculated with an encoder-decoder network, into 3D point 

clouds using the camera intrinsics and poses. Complementary 3D geometry and 2D 

image features are fused in 3D canonical space using PointNet++, which predicts the 

final semantic labels. In (Lawin et al., 2017b), the authors proposed a framework for 

3D semantic segmentation that exploits the advantages of deep image segmentation 

approaches. The point cloud colour, depth and normal are first projected onto a set of 

synthetic images, which are then used as input to the deep network. The resulting pixel-
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wise segmentation scores are re-projected into the point cloud according to the 

intrinsic and extrinsic virtual camera information. In their work (Dai et al., 2018) the 

authors present 3DMV a novel method for 3D semantic scene segmentation of RGB-

D scans in indoor environments using a joint 3D multi-view prediction network. The 

network is composed of a 3D stream and several 2D streams that are combined in a 

joint 2D-3D network architecture. The 3D part takes as input a volumetric grid 

representing the geometry of a 3D scan, and the 2D stream stake as input the 

associated RGB images that are aligned with respect to their world coordinate system. 

In this contribution (Antonello et al., 2018) propose a batch approach and a novel 

multi-view fusion technique to exploit multiple views for improving the semantic 

labelling results. The batch approaches rely on 3D Entangled Forest Classifier (3DEF), 

an extension of Random Forest that is able to model complex contextual features, 

firstly over-segmenting the scene in a way that each segment contains one object, and 

secondly classifying each segment by means of the 3DEF depending on geometric 

relationship. In this work the approach is improved with a novel multi-view frame 

fusion technique at the end of the workflow which improves the semantic 

segmentation of single-frames and allows the creation of accurate semantic maps. 

(Kundu et al., 2020) propose an approach for the semantic segmentation of meshes 

based on multiple synthetic images. At first a 2D CNN model is used to make the 

prediction on the images, and then the features are fused on 3D mesh vertices. To 

project the 2D labelling to 3D, they rendered a depth channel for each view, and they 

accumulated the image feature only if depth of the pixel matched the point-to-camera 

distance. This paper introduces several new ideas that significantly improve labelling 

performance: virtual views with additional channels, back-face culling, wide field-of-

view, multiscale aware view sampling. As a result, it overcomes the 2D-3D 

misalignment, occlusion, narrow view, and scale invariance issues that have vexed most 

previous multiview fusion approaches. In this paper (Gerdzhev et al., 2021), they 

introduce TORNADO-Net, a neural network  for  3D  LiDAR  point  cloud  semantic  

segmentation. They  incorporate  a  multi-view  (bird-eye  and  range)  projection 

feature extraction with an encoder-decoder ResNet architecture with a novel diamond 

context block. To better  utilize  the  local neighbourhood  information  and  reduce  

noisy  predictions,  they introduce  a  combination  of  Total  Variation,  Lovász-

Softmax, and  Weighted  Cross-Entropy  losses. One of the more recent works that 

gained the new state-of-the-art for large-scale indoor/outdoor semantic segmentation 

on S3DIS and KITTI-360 datasets is proposed in (Robert et al., 2022). They proposed 

a multi-view aggregation model for the semantic segmentation of 3D scenes that uses 

an attention-based scheme to select and merge the most significant 2D features. The 

method starts computing an occlusion mapping between pixels and points, and then 

uses viewing conditions through an attention scheme to aggregate relevant image 
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features for each 3D point. This approach allows to learn both from point clouds and 

images in an end-to-end workflow. (Wang et al., 2022) proposed FSDCNet, a 

multiview 3D point cloud classification methods based on dynamic and static 

convolution fusion neural network. It devises a view selection method with fixed and 

random viewpoints, and a local feature extraction operator of dynamic and static 

convolution adaptive weight fusion was designed to improve the model adaptability. 

Compared with other methods it achieved state-of-the-art classification score on 

ModelNet40 and Sydney Urban Object datasets, and the results demonstrated that it 

could extract fine-grained detailed information, and it is suitable also for sparse point 

clouds with noise and local block defects. Like other CNNs based models, it requires 

a large dataset to support training and testing. 

B) Object Detection and Recognition 

One of the pioneering and most popular works in this class is MVCNN, a method 

proposed by Su et al., (2015) to recognize 3D shapes using multiple perspectives of 

the object. They used at first a standard CNN to extract features for each image, and 

then a pooling layer to aggregate the features from different perspective. The 

aggregated features are then input in a second CNN for processing and receiving the 

final classification or segmentation result. This approach achieved efficiency, 

compactness and a high performance compared with existing methods, but is suitable 

only for individual shapes because it ignores the spatial relationship between objects. 

(Qi et al., 2016) improved the MVCNN introducing a multi-resolution extension to 

capture information at multiple scales and performing a sphere rendering at different 

volume resolution. In their work (Pang & Neumann, 2016) used a multiview 

framework to perform object detection on 3D point clouds. They transformed the 3D 

representation in a set of multiple images, and they exploited Convolutional Neural 

Networks, that can easily handle all viewpoints and rotations for the same class, to 

predict the object class. Lastly, all 2D detection results are re-projected back into 3D 

space for a fused 3D object location estimation based on depth information. (X. Chen 

et al., 2016) proposed Multi View 3D networks (MV3D), a sensory-fusion framework 

that uses both LiDAR point cloud and RGB images as input and predicts 3D bounding 

box for autonomous driving applications. The network takes three inputs, the bird’s 

eye view, the front view of point cloud and the images. It first generates 3D object 

proposals from bird’s eye view map and project them to the three views. A deep fusion 

network is used to combine region-wise features obtained via ROI pooling for each 

view. The fused features are used to jointly predict object class and do oriented 3D 

box regression. (Papadakis, 2017) presented a study targeting the application of multi-

view hypothesis fusion scheme for the purpose of 3D object classification. For this 

purpose, they benchmarked a number of schemes for hypothesis fusion under 
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different environment assumptions and observation capacities. Their experimental 

results highlighted significant aspects that should be considered in the design of a 

multiview-based recognition pipeline for 3D shape detection. By exploiting the 

relationship between polynomial  kernel  and  bilinear  pooling (T. Yu et al., 2018) 

obtained  an  effective 3D object recognition by aggregating local convolutional  

features  through  bilinear  pooling.   They harmonize different components inherited 

in the bilinear feature to obtain a more discriminative representation. To achieve an 

end-to-end trainable framework, they incorporate the harmonized bilinear pooling as 

a layer of a network, constituting the proposed Multi-view Harmonized Bi-linear 

Network (MHBN). (N. Qin et al., 2018) presented a novel deep learning framework 

for 3D terrain scene recognition using 2D representation of point cloud. It is 

composed by two key components: Initially, several suitable discriminative low-level 

local features are extracted from airborne laser scanning point cloud, and 3D terrain 

scene is encoded into multi-view and multimodal 2D representation. Secondly, A two-

level fusion network embedded with feature and decision-level fusion strategy is 

designed to fully exploit the 2D representation of 3D terrain scene, which can be 

trained end-to-end. (C. Wang et al., 2019) improved the view-based strategies for 3D 

object recognition introducing a view clustering and pooling layer based on dominant 

sets. The pooled feature vectors are then fed as inputs to the same layer. In addition 

to the grey-scale representations the model uses also depth and surface information. 

This module, once inserted in the pretrained CNN, boosted the performance achieving 

a new state of the art accuracy on ModelNet40 databased. (Liu et al., 2019) proposes 

a multi-view hierarchical fusion network (MVHFN) for retrieval and classification of 

3D object exploiting the relevance and discrimination among multiple view. This 

approach consists primarily of two essential modules. The initial module, focused on 

visual feature learning, employs 2D CNNs to extract visual features from multiple 

views generated around the specific 3D object. Subsequently, they employ the multi-

view hierarchical fusion module that they have developed to combine these multiple 

view features into a concise descriptor. This module can fully exploit the relevance 

among multiple views by aggregating the view features in the same cluster and discover 

the content discrimination by learning information of the cluster-level features. (Q. Yu 

et al., 2020) developed a novel network called Latent-MVCNN that recognize 3D 

shape using multiple view-images from pre-defined or random viewpoints, 

overcoming the difficult to make prediction with a small number of images. It is 

composed by three types of CNNs: the first one outputs the category probability, the 

second one outputs a latent vector, the third one outputs the transition probabilities 

between the views. LMVCNN performs well and remains competitive with other 

related methods for the pre-defined and random viewpoints and achieves a promising 

performance when the number of view-images is quite small. 
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3.3 Proposed segmentation workflow 

In this paragraph the developed methodology used to address the problem of semantic 

segmentation of heritage building point clouds is illustrated. The procedure is based 

on a deep learning multi-view approach workflow, in which the segmentation is carried 

out at first on an intermediate image representation of the cloud, and then the extracted 

features are projected on the original point cloud. As already mentioned in the previous 

paragraph, working directly with the 3D point cloud could provide an opportunity for 

a better understanding of spatial and geometrical information. However, the choice to 

leverage on a multi-view approach can be an effective strategy. On one hand, it allows 

to exploit the existing models and networks for image segmentation, in particular the 

CNNs, that in recent years have reached remarkable results. On the other hand, the 

proposed procedure could be integrated in the standard photogrammetric pipeline, 

since it uses a set of images as input for the creation of a dense point cloud. Hence, it 

allows to develop an automatic workflow for the creation of a directly segmented 

clouds starting from the images acquired for the photogrammetric reconstruction. In 

addition, at this time, a multiview approach on heritage data has never been tested, and 

it is interesting to explore that approach. The segmentation workflow is shown in 

Figure 3.7, and the main steps of the procedure are five: (1) the photogrammetric 

survey, (2) the camera calibration and parameters estimation, (3) the dense cloud 

construction and preparation, (4) the semantic segmentation of all the images of the 

photogrammetric survey, used to create the related dense point cloud, and (6) the 

projection of the extracted 2D labels output by the segmentation system on the 3D 

reconstruction. The steps are comprehensively described in the following paragraphs. 

 
Figure 3.8 – Proposed semantic segmentation pipeline. 
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3.3.1 Photogrammetric survey 

The global procedure starts form the building image acquisition. The collected images 

are the basis of the entire semantic segmentation workflow, since they allow in parallel 

the generation of the point cloud, and the detection of the predetermined building 

categories or classes. Hence, a well-planned and structured photogrammetric survey is 

essential to achieve good and reliable results. A photogrammetric survey requires the 

collection of multiple overlapping photographs from different point of views to create 

an accurate three-dimensional representation of a subject. To obtain a reliable survey, 

several key points must be considered. These include using a high-quality camera and 

lenses, proper camera setup and calibration, sufficient image overlapping and coverage, 

establishing accurate ground control points, using advanced image processing 

software, and conducting accuracy assessments. However, achieving a good survey can 

be challenging due to a variety of factors. Some of the main challenges include dealing 

with varying lighting conditions, controlling for camera motion, managing image noise 

and distortion, and ensuring accurate and consistent measurement of ground control 

points. Additionally, the accuracy of the final model can be affected by errors in camera 

calibration, or image processing. Therefore, it is important to carefully plan and 

execute the survey, and to take measures to minimize these sources of error to achieve 

a high-quality result. Despite several types of photogrammetric surveys can be 

distinguished, two categories are usually those of major interest: aerial and close-range 

photogrammetry. Aerial photogrammetry is used to map large areas of land. It usually 

uses high-resolution aerial photographs taken from a plane (or, more recently by an 

Unmanned Aerial Vehicle, in the UAV photogrammetry case). Close-range 

photogrammetry is based on photos taken from the ground, such as those taken by a 

handheld camera. The datasets used in this dissertation falls in the close-range 

photogrammetry case, even if the adopted procedure could also be applied for instance 

in the UAV photogrammetry case. 

3.3.2 Camera calibration and exterior orientation estimation 

The following step of the pipeline is the geometric camera calibration, also known as 

camera resectioning. It is the process of determining the values of the camera 

parameters (in particular for what concerns its imaging system) so that measurements 

taken from photographs can be reliably related to real-world locations. Knowledge of 

the camera parameter values is a sine qua non condition for dense point cloud 

generation, and, in the proposed workflow, it is also required in the labelling projection 

on the point cloud. Camera intrinsic and extrinsic parameters can be distinguished: the 

first describe the camera behaviour in the camera reference system, whereas the second 

ones are used to express camera measurements in a different reference system. To be 
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more precise, the intrinsic camera parameters describe the internal workings of the camera, 

such as the size and shape of the imaging sensor, the lens focal length, and the optical 

centre of the camera. The extrinsic camera parameters describe the relative position and 

orientation of the camera with respect to the reference system used in the survey. This 

includes the position and orientation of the camera in 3D space, as well as the 

parameters of the camera viewing frustum, such as the field of view and the viewing 

direction. Extrinsic parameters are usually determined based on a known set of points 

in the 3D space, which should be visible in the acquired images.  

Calibration of intrinsic camera parameters is traditionally performed using an ad hoc 

procedure, involving the collection of a set of calibration images often of a specific 

pattern of points, even if recently self-camera calibration if also quite often used, i.e. 

exploiting images collected for the 3D reconstruction of an object also for determining 

the intrinsic camera parameters. Hence, in the Self-calibration case the camera 

parameters are estimated without the need for a calibration object, by exploiting feature 

points in the scene to estimate the camera parameters. Despite this kind of procedure 

is quite convenient in terms of easiness of use, the obtained results are usually less 

accurate and robust than those obtained with ad hoc calibration methods. It is clearly 

fundamental when an ad hoc camera calibration procedure cannot be performed. Self-

calibration is usually performed within the Structure from Motion (SfM) workflow: SfM 

identifies and robustly matches key feature points in multiple images, leading to the 

joint estimation of camera parameters and of the positions of a sparse set of points, 

namely the tie points, derived from the matched feature points.  

Direct Linear Transformation (DLT) is a simple and efficient algorithm that estimates the 

camera matrix by using a set of corresponding points in the image and world 

coordinate systems. The algorithm assumes a pinhole camera model and estimates the 

camera matrix by solving a linear system of equations. DLT is widely used due to its 

simplicity and efficiency, but it is sensitive to noise and can result in inaccurate 

parameter estimates. Bundle Adjustment (BA) is a widely nonlinear optimization 

approach to refine the camera parameters and the 3D positions of the considered 

points by minimizing the reprojection error, i.e. the distance between the observed 2D 

points and the projections of the corresponding 3D points on the image views. BA is 

computationally more expensive with respect to linear approaches, but it leads to more 

accurate and robust results. 

Zhang's Method is a widely used calibration technique that uses a planar calibration 

object to estimate the camera parameters. The algorithm requires at least two images 

of the planar object with known dimensions. Zhang's Method can estimate both the 

intrinsic and extrinsic parameters of the camera, including distortion coefficients. The 

algorithm is simple and efficient but requires a calibration object with known 
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dimensions. More detail about camera calibration algorithms can be found in several 

reviews (Salvi et al., 2002), (Q. Wang et al., 2010), (D’Emilia & Di Gasbarro, 2017), 

(Long & Dongri, 2019). 

The parameters obtained from the camera calibration process can be used to accurately 

estimate the 3D coordinates of the objects visible in the images of the considered 

scene.  

3.3.3 Dense cloud construction and preparation 

There are several algorithms that can be used to build a dense point cloud. Here are 

reported some of the most commonly used ones: 

• Patch-based multi-view stereo (PMVS): PMVS is a popular algorithm for generating 

dense point clouds from multiple images. It works by dividing the images into 

small patches, and then searching for matching patches in neighbouring 

images. These matches are used to generate depth estimates for each pixel in 

the images, which are then combined to produce a dense point cloud. 

• Semi-Global Matching (SGM): SGM is a stereo matching algorithm that can be 

used to generate dense point clouds from pairs of stereo images. It works by 

comparing the intensities of corresponding pixels in the two images, and then 

using these comparisons to estimate the depth of each pixel. SGM can be very 

accurate, but it can also be computationally expensive. 

• Multi-View Stereo (MVS): MVS is another photogrammetric technique that uses 

multiple images to create a dense point cloud. It involves the computation of 

depth maps from multiple images and the fusion of these depth maps into a 

single 3D point cloud. MVS algorithms use dense image matching techniques 

to compute the depth maps. 

Once the point cloud is generated, it requires some preliminary processing operation, 

in order to make the point cloud more suitable for the segmentation, and to prepare it 

for the reprojection phase. This operations include the cleaning and the denoising of 

the point cloud, in order to remove unwanted points, or elements in the scenes that 

are not relevant, for instance: vegetation, background buildings, people, etc. Despite 

this operations are not fundamental, they guaranteed a better accuracy and 

performance of the segmentation procedure. 

3.3.4 Image semantic segmentation 

Image semantic segmentation is the core step of the entire procedure. It allows to 

extract the target features of the building by producing a segmentation map for each 
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image of the photogrammetric survey, according to the chosen categories or classes. 

Image semantic segmentation can be carried out using various methods, already 

described in the previous paragraphs. This dissertation focuses on exploring the deep 

learning-based methods. Hence, image semantic segmentation can be obtained 

exploiting the most popular state-of-the-art convolutional neural networks. As turned 

out in the previous paragraph, several CNN architectures are available, and new 

architectures are constantly proposed every year. Currently, the most popular models 

are Fully Convolutional Network (FCN), U-Net, SegNet, the DeepLab family, and 

Mask-RCNN. However, the proposed segmentation procedure is not restricted to a 

single type of architecture: the image segmentation building block can be easily 

changed with new or more performing models, based on different image segmentation 

strategies.  

In order to be included in the overall pipeline, the deep learning-based image 

segmentation system should be properly set up. This involves several steps, reported 

in the following: 

• Data preparation: The first phase is to prepare the data to be used in the deep 

learning model. This involves collecting and labelling a dataset of images that 

will be used to train the model. The dataset should contain images with the 

desired semantic labels, such as object categories or scene types. Nowadays 

several existing datasets are freely available, but they are not so frequently 

relevant to the required task. Currently, a specific dataset for heritage building 

image segmentation is missing. Therefore, the next chapter (§4) is completely 

focused on the generation of a new dataset suitable for the specific purpose. 

• Model architecture selection: The second phase of the pipeline is to select the 

appropriate model architecture for the image segmentation task. There are 

many different deep learning models that can be used for image segmentation. 

In this dissertation FCN, SegNet and Deeplabv3+ are tested, but as mentioned 

previously, other networks could be used as well. 

• Model training: The third phase of the pipeline is to train the selected model on 

the labelled dataset. This is the most critical phase since during training, the 

model learns to recognize the patterns and features that correspond to the 

semantic labels in the images. It involves adjusting the network weights and 

biases through the process of backpropagation, which involves calculating the 

error between the network output and the expected one. The training goal is 

to find the optimal set of weights and biases that allows the network to 

accurately classify or predict new data. Training a deep learning model can be 



62 Semantic Segmentation Algorithms 

 
a time-consuming and computationally intensive process, often requiring 

specialized hardware. 

• Model validation: The fourth phase of the pipeline is to validate the trained model 

on a separate dataset of images. This is done to evaluate the performance of 

the model on images that were not used during training or were partially used 

in a preliminary test phase. Usually, the entire available dataset is split in 

training, validation and test set. The first two sets are used to train the network, 

and to select its parameter values, while the test set to evaluate its performance. 

Once the model is correctly trained and validated, it can be integrated in the overall 

3D point cloud segmentation pipeline, and it should be able to output a correct 

segmentation map for each input image. Once all the images of the photogrammetric 

survey are labelled, they could be projected onto the point cloud. 

3.3.5 Labelling projection 

The last step of the procedure is the projection of the labels on the 3D point cloud, in 

order to obtain the final cloud segmentation. The label transferring from the 2D 

representation to the 3D space is one of the most critical aspects in the multiview 

approaches. The procedure becomes more challenging when dealing with complex 

scenarios like the case of heritage buildings, in which complex shape, element 

uniqueness and irregular geometries require careful modeling. During the last years, 

several methods have been proposed to solve the problem of label projection from 

2D images to 3D space to obtain a consistent 3D point cloud segmentation from 

labelled images. For example, (Y. Wang et al., 2013) design an approach to propagate 

the pixel-wise image labels from ImageNet to point clouds. In the first step they used 

Exemplar SVMs to over segment individual images into “superpixels”, and then 

propagate their labels onto the visually similar superpixels in the reference images of 

point cloud. In the second step they used a graphical model to aggregate superpixel 

label candidates to jointly infer the point cloud labels. Some works on semantic 

mapping (McCormac et al., 2016b), (Hermans et al., 2014b) typically aggregated pixel-

wise semantic features onto 3D reconstructed surfaces via Bayesian fusion and used 

Conditional Random Field (CRF) models to regularize the resulting 3D segmentation. 

In (B. H. Wang et al., 2019), the authors present Label Diffusion Lidar Segmentation 

(LDLS), a method for instance segmentation of 3D point clouds which leverages a 

pretrained 2D image segmentation model. They obtain 2D segmentation prediction by 

applying Mask-RCNN, and then link the image to a 3D LiDAR point cloud by building 

a graph of connections among 3D points and 2D pixels. (R. Zhang et al., 2018) 

addressed the issue of the semantic segmentation of large-scale 3D scenes by fusing 

2D images and the last step of the procedure is the projection of the labels on the 3D 
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point cloud, in order to obtain the semantically segmented cloud. Label transferring 

from the 2D representation to the 3D space is one of the most critical aspects in the 

multiview approaches. The procedure becomes more challenging when dealing with 

complex scenarios like the case of heritage buildings, in which complex shapes, 

element 0uniqueness and irregular geometries require careful modeling. During the last 

years, several methods have been proposed to face the problem of label projection 

from 2D images to 3D space to obtain a consistent 3D point cloud segmentation from 

labelled images. For example, (Y. Wang et al., 2013) design an approach to propagate 

the pixel-wise image labels from ImageNet to point clouds. In the first step, they used 

Exemplar SVMs to over segment individual images into “superpixels”, and then 

propagate their labels onto the visually similar superpixels in the reference images of 

point cloud. In the second step they used a graphical model to aggregate superpixel 

label candidates to jointly infer the point cloud labels. Some works on semantic 

mapping (McCormac et al., 2016b), (Hermans et al., 2014b) typically aggregated pixel-

wise semantic features onto 3D reconstructed surfaces via Bayesian fusion and used 

Conditional Random Field (CRF) models to regularize the resulting 3D segmentation. 

In this work (B. H. Wang et al., 2019), the authors present Label Diffusion Lidar 

Segmentation (LDLS), a method for instance segmentation of 3D point clouds which 

leverages a pretrained 2D image segmentation model. They obtain 2D segmentation 

prediction by applying Mask-RCNN, and then link the image to a 3D lidar point cloud 

by building a graph of connections among 3D points and 2D pixels. (R. Zhang et al., 

2018) addressed the issue of the semantic segmentation of large-scale 3D scenes by 

fusing 2D images and 3D point clouds. According to this work the preliminary 

segmentation results with 2D images obtained by a DeepLab-Vgg16 based model, are 

mapped to 3D point clouds according to the coordinate relationship between the 

images and the point cloud calculated with DLT algorithm. More recently, (Genova et 

al., 2021) proposed a novel network 2D3DNet, that uses multi-view fusion to make 

best-guess semantic labels for as many 3D points as possible via back-projection and 

voting from labels of the corresponding pixels. (Mascaro et al., 2021) presented Diffuser, 

a novel framework that leverages 2D semantic segmentation to produce a consistent 

3D segmentation. They formulate the 3D segmentation task as transductive label 

diffusion problem on a graph, where multi-view and 3D geometric proprieties are used 

to propagate semantic labels from the 2D space to the 3D map. They show a significant 

accuracy compared to probabilistic fusion methods. The approach developed in 

(Lertniphonphan et al., 2018), propagate object label from 2D image to a sparse point 

cloud by matching a group of points that corresponds to the area within the 2D 

bounding box in the image. The method was used for producing training data, and it 

demonstrates that the label propagation can be used to train a classifier with a good 

average precision. In the specific context of building segmentation, (Murtiyoso et al., 
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2021) proposed an approach for the segmentation of 3D building façade based on 

orthophoto. The XY coordinates of each pixel in the orthophoto was used to 

determine the corresponding planimetric coordinates of the point in the point cloud 

and finally a winner-takes-all approach was applied to annotate the 3D points with the 

respective 2D pixel class. In a more recent work, (Murtiyoso et al., 2022) introduced 

semantic classification at the beginning of the classical photogrammetric workflow in 

order to automatically create a classified dense point cloud. In this regard, several image 

masks obtained by a trained neural network are employed during dense image 

matching in order to constrain the process into the respective classes. In the same 

context, (Stathopoulou & Remondino, 2019) proposed a semantic photogrammetry 

workflow, in which the label back-projection is based on the projection matrix P which 

connects the 3D with the 2D space. The segmented images are automatically generated 

using neural networks, and then the labels are used as constraints in the 

photogrammetric process. Giving the correspondence, all the images contribute to the 

labelling projection on the cloud, and if the assigned labels to each back-projected 

point do not match, the most weighted label wins 

The proposed methodology aims at projecting the labels, predicted by a deep learning-

based image semantic classifier on a set of N 2D images, on a 3D point cloud. The 

interior and exterior parameters of the images input in the deep-learning classifier are 

assumed to be known: despite such parameters could be computed aside of the point 

cloud generation, their availability comes for free when the point cloud is the outcome 

of a photogrammetric reconstruction procedure, and the images input in the classifier 

are taken among those used in the reconstruction. Hence, this could be considered as 

a quite ideal working condition for the proposed method. In accordance with the 

above consideration, hereafter the considered images are assumed to have already been 

aligned, and the exterior parameters are assumed to be expressed in a reference system 

compatible with the point cloud one. Then, the labels of the N predicted images are 

properly transferred to the point cloud, as described in the following. 

1) 3D points of the cloud are projected on the N images, by means of the known 

interior and exterior camera parameters. 

2) For each image Ij, each point class is assessed, if visible. 

3) For each point, the mostly voted class is selected. 

Let (uj,vj) be the pixel coordinates of the projection of point p on the image Ij. A 

straightforward implementation of step 2) is the assignation of the label of pixel (uj,vj) 

in Ij (if inside the image extent) as its vote to point p class. Despite being very simple, 

such a strategy does not take into account the obstructions, leading to unreliable 

outcomes in complex scenarios: the implementation of an effective procedure to check 
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obstructions is of vital importance for ensuring a good performance of the overall 

algorithm in a wide range of working conditions. Assume that the point cloud density 

is sufficiently high to ensure that at least one 3D point is projected in all the adjacent 

pixels, in image Ij, describing the same object surface. Down-sampling the image size, 

or, equivalently, enlarging the pixel size, could be necessary in order to ensure the 

validity of such assumption. According to the above hypothesis, at least two points 

should be projected on the same pixel (uj,vj) when an obstruction occurs. When such 

event is detected, a simple check on the distance between the camera and the points 

projected on the same pixel is used in order to determine if any of such points probably 

obstructs the others. Image Ij votes only for the non-obstructed points. The main 

advantages of such procedure are the implementation simplicity and the quite 

effectiveness in most of the examined conditions. Nevertheless, a more complex 

strategy will be considered in our future investigations in order to improve the semantic 

segmentation results in critical conditions. 

3.4 Summary 

This chapter widely illustrated the algorithms for point cloud semantic segmentation, 

including also the approach investigated more in this dissertation. In the first paragraph 

(§3.1) the concept of artificial intelligence, machine learning, and deep learning have 

been introduced, including more in detail the functioning of the artificial neural 

networks (ANNs) (§3.1.1) and the convolutional neural networks (CNNs) (§3.1.2), 

which are at the basis of most of the semantic segmentation  architectures. First, the 

image semantic segmentation algorithms have been presented (§3.2.1). They include 

four main classes: fully convolutional networks, dilated or “atrous” convolutional 

networks, multi-scale analysis, and regional convolution networks. In (§3.2.2), point 

cloud segmentation networks have been presented, including machine and deep 

learning-based ones. The main architectures can be grouped in two categories: 

projection-based and point-based networks. Both typologies have been illustrated and 

the state-of-the-art models have been comprehensively shown and discussed. 

Furthermore, (§3.3) presented the proposed procedure for the semantic segmentation 

of heritage building point clouds has been explained. It is based on a multiview 

approach, in which the features are extracted on the images, and then are projected to 

the point cloud. It is composed by five main steps: (i) photogrammetric survey, (ii) 

camera calibration and exterior orientation estimation, (iii) dense cloud construction 

and preparation, (iv) image semantic segmentation, and (v) label projection to the point 

cloud.  Each of the five phases has been explained and discussed.



  

 

Chapter 4 

The Dataset 

In this chapter a new benchmark dataset developed to improve machine learning and 

deep learning methods that leverage on image segmentation in the heritage sector is 

presented. Such dataset can be used for the training and the validation phase of a 

machine learning system, and for the comparison of new and already existing 

segmentation approaches. In the first paragraph (§4.1) the importance, the motivation, 

and the challenges in the creation of a new dataset are introduced. In the second 

paragraph (§4.2) the existing datasets are shown and analysed, both for image and point 

cloud semantic segmentation. In the third paragraph (§4.3) the structure of the dataset 

is analysed, and the buildings that are going to compose the dataset are illustrated and 

described (§4.3.1). Currently the dataset is composed by five buildings, from different 

historical periods and architectural styles, mainly located close to Florence. In the next 

sections (§4.3.2, §4.3.3), the data acquisition procedures and the pre-processing 

operations are illustrated. The standards and the categories chosen to generate the 

ground-truth are then pointed out (§4.3.4). Since a proper and well-functioning dataset 

should be composed by thousands of images, a semi-automatic procedure to quickly 

label all the images of the same building has been developed, assuming that a manual 

segmentation of the related photogrammetric point cloud is available. Such procedure, 

that significantly reduces the manual intervention and the labelling time, is illustrated 

and discussed in detail (§4.3.5). In the next section (§4.3.6) the statistics and the 

properties of the dataset are shown accurately. Finally in paragraph (§4.4) two main 

techniques to improve quality and size of a dataset are illustrated, i.e. data augmentation 

and synthetic data generation. The chapter ends with a general summary (§4.6). 
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4.1 Introduction 

Datasets play a central role in AI based applications, especially when talking about 

machine and deep learning applications (Dekker, 2006), (Koesten et al., 2020a). Given 

the huge number of parameters to be properly set, deep learning-based models are 

data-hungry, and they require a large amount of data to ensure a high level of reliability 

of the trained network (X. W. Chen & Lin, 2014), (W. Wang et al., 2016). But at first, 

what is a dataset in machine learning? A dataset is a collection of several typologies of 

data stored in a digital and structured format used to train and validate the models. 

Common types of data include texts, images, video sequences, audio sequences, points, 

numerical values, etc. Data are usually labelled or annotated in order for the algorithms 

to understand what the outcome needs to be. Dataset preparation, setting and 

understanding are certain of the most important aspects in a machine learning 

application lifecycle, and these operations underlie the success or the failure of a 

machine learning project (Jain & Nicholls, 2008). According to The State of Data Science 

2020 data scientists and AI developers spend nearly 70% of their time analysing and 

creating a properly functioning dataset, and only the 30% of the remaining time in 

other processes such as training, testing,  model selection and tuning. The importance 

of data can be understood following the concept of “Garbage in, Garbage out” 

(GIGO), a popular expression in the early era of computing, ‘if we feed low-quality data to 

ML model it will deliver a similar result’. Nowadays several open-source datasets are 

available to solve real-world problems in many fields (Gregory et al., 2019), but often 

they are not directly suitable for the specific application that we are working on, or 

they reveal some limitations that can compromise the success of the developed model. 

For this reason, solving a new problem statement can be quite challenging. The 

performance of a learning system strictly depends on four key points: quantity, quality, 

usability, and scalability of the training dataset (Koesten et al., 2020b) (Figure 4.1). 

Quantity is important because an algorithm needs enough data to be trained and to 

create robust predictions, especially the deep learning models. The lack of a large 

dataset could be the cause of overfitting and the model could be performed poorly 

when applied to new examples. There is no perfect recipe for how much data the 

model needs, but in general more complex is the task more data the model demands.  

Quality is essential for avoiding problems with bias and blind spots in the data. Low-

quality data could be cause of overfitting problems, and eventually leading low-quality 

output predictions. High-quality can be achieved cleaning and denoising the data and 

making it uniform and manageable before the annotation and the training processes. 

A key quality point is the balance of the dataset, that refers to the propriety of the data 

to represent all the classes or the categories of the problem with the same weight. 

Usability describes how much the data are easy to use, and how they are relevant for 
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the specific task that we are working on. The problem statement needs to be well-

defined, and the data need to be well-representative of the problem. Scalability is 

important because to accurately represent all aspects a dataset needs to be scalable.  

Structuring a new dataset needs to face many challenges: (i) insufficient data, in many 

cases the collection of multiple and different data can be difficult due to time 

restrictions or due to the non-availability of large samples in the real world, (ii) bias and 

human error, instruments and tools used for data acquisition lead to human errors or 

biases towards some aspects, (iii) quality, the real problems are often complex and 

giving a formal structure to data leads inevitably to a loss of quality and information, 

(iv) privacy and compliance, in some cases the sources cannot share their data due to 

privacy and compliance regulations, such as medical or security applications, (v) data 

annotation process, generally the labelling or the annotation of the data require manual 

and human interventions that are time-consuming, expensive and often prone to error. 

Nowadays there are many different platforms that allow to search and download open-

source data for machine learning tests and experiments. The most popular platforms 

are Kaggle Dataset, UCI Machine Learning Repository, AWS Public Datasets, Google 

Dataset Search. Publicly available datasets should be well organized and regularly 

updated, they should provide a high-quality data for several tasks and applications, and 

they should be directly and easily suitable for training. However, despite several 

datasets are currently available, in many cases they do not fit properly into a custom-

built model, and they are not relevant enough to describe and represent a specific 

problem. For these reasons a highly specific task, such as the mentioned semantic 

segmentation of heritage building point clouds, requires the careful construction of a 

dedicated dataset from scratch. In the next paragraphs, all the decisions and the 

procedures that have led to the definition and the creation of the new dataset are 

illustrated. 

Figure 4.1 – The four key points for a good dataset designing (from clickworker.com). 
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4.2 Existing Dataset 

In this section a summary of the most used and popular datasets and benchmarks for 

semantic segmentation are provided, including details about the structure, 

characteristics, and tasks in each case. The datasets have been grouped into three 

categories: 2D image datasets, 2.5D image datasets, including the datasets with depth 

information in addition to RGB colour, and 3D point cloud datasets. Moreover, a 

summary of the existing datasets in the specific context of heritage building is 

provided. It is worth noticing that is currently missing a precise dataset for the semantic 

segmentation of heritage images (Fiorucci et al., 2020). This reason led to the creation 

of a custom and personalized dataset. 

4.2.1 Image Datasets (2D) 

Since most applications deal with 2D image segmentation, more than two hundreds 

open-source datasets for different tasks are available. In this paragraph just the most 

popular ones are shown and briefly discussed. 

PASCAL VOC – Visual Object Classes (Everingham et al., 2010) is one of the most 

popular datasets. Images are annotated for 5 different tasks: classification, 

segmentation, detection, action recognition and person layout. Each image has a pixel-

level segmentation annotation, bounding boxes and object class annotations. For the 

segmentation task there are 21 classes of object labels, including vehicles, household, 

animals, and other common objects. This dataset is divided into three sets, training 

and validation, with 1,464 and 1,449 images, respectively and a private testing set. 

MS COCO – Microsoft Common Object in Context (T.-Y. Lin et al., 2014) is a 

large-scale collection of images for object detection, segmentation, key-point 

detection, and captioning. It is composed by 328k images with a total of 91 object 

types and 2.5 million labelled instances, mainly representing everyday scenes and 

common objects in their natural contexts. Objects are labelled using per-instance 

segmentation to aid in precise object localization. 

ADE20K (B. Zhou et al., 2016) is a scene-centric parsing benchmark with 150 object 

categories, which include stuffs like sky, road, grass, person, etc. For the task of 

semantic segmentation, the images are finely labelled with a pixel-wise annotation. 

There are 20,210 images in the training set, 2000 images in the validation set, and 3000 

images in the test set. 

The Cityscapes Dataset (Gählert et al., 2020) is a large-scale collection of diverse set 

of stereo sequences recorded in street scenes from 50 cities during several months, 

daytimes and in good weather conditions, mainly focus on semantic understanding of 
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urban scenarios. It consists of 30 classes grouped in 8 categories (flat surfaces, humans, 

vehicles, constructions, objects, nature, sky, and void) in 5k fine annotated images, and 

20k coarse annotated ones. It was originally a video sequence, so the images were 

created selecting manually the frames in order to obtain varying background, varying 

layout and a large number of dynamic objects. 

CamVid – Cambridge-driving Labelled Video Database (Brostow et al., 2009) is 

a road/driving scene understanding database composed by 701 images sampled from 

a video sequence with a resolution of 960x720 pixels, captured by a camera mounted 

on the dashboard of a car. The images were manually annotated in 32 classes, including 

street categories (road, car, train, vegetation, lane markings, etc.)  to support self-

driving car applications. 

CMP Façade Database  (Tyleček & Radimšára, 2013) is a dataset of façade images 

assembled at the Centre for Machine Perception of the Technical University of Prague. 

It includes 606 rectified images of façade from various sources, which have been 

manually annotated using a set of overlapping rectangles with a class label assigned. 

The façades are from different cities around the world and diverse architectural styles, 

labelled in 12 classes, including the main architectural elements such as window, pillar, 

door, balcony, etc. 

KITTI – Karlsruhe Institute of Technology and Toyota Technological Institute 

(Geiger et al., 2013) is one of the most popular datasets used in autonomous driving 

and mobile robotics. It contains traffic scenarios recorded with high-resolution RGB 

cameras, grey scale stereo cameras, and 3D laser scanners. Initially it did not contain 

the ground truth for image segmentation, however various researchers have manually 

labelled parts of the datasets for their purposes. For example, Zhang et al. (2021) 

annotated 252 acquisitions with ten object categories, or Alvarez et al. (2012) generated 

the ground truth for 323 images with three categories: road, sky, and vertical. 

Aerial Semantic Segmentation Drone Dataset focuses on semantic understanding 

of urban scenes for increasing the safety of autonomous drone flight and landing 

procedures. The images were acquired with a high-resolution camera at an altitude 

from 5 to 30 meters above ground, and at a size of 6000x4000 pixels. The images were 

labelled with a fine pixel-level annotation including 20 classes representing the main 

ground elements such as tree, grass, vegetation, gravel, etc. In addition, the dataset 

includes the bounding boxes for the task of person detection, thermal images, ground 

control points, and fish-eye stereo images with synchronized IMU measurements. 

Other popular datasets are SYNTHIA, Stanford background, Youtube-Objects, 

Adobe Portrait Segmentation, SiftFlow, Berkeley Segmentation Dataset (BSD). 
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4.2.2 RGB-D Image Datasets (2.5D) 

In recent years RGB-D sensors and range scanners have become more affordable, and 

RGB-D images have become popular in many research and industrial applications. 

They provide a per-pixel depth information aligned with corresponding image pixel, 

and they usually allow to better understand spatial features. Currently very little data 

are available, and they cover a small range of scenarios and annotations. The following 

datasets are the most popular benchmarks for this category. 

NYU-D V2 (Silberman et al., 2013) is composed of video sequences from a variety of 

indoor scenes recorded by both the RGB and Depth cameras from the Microsoft 

Kinect. It includes 1,449 RGB and depth images from 464 different indoor scenes of 

commercial and residential buildings recorded in three different US cities. Each image 

was labelled using Amazon Mechanical Turk with a fine and dense per-pixel 

annotation. The dataset contains 35,064 objects, spanning 894 different classes, and if 

the scene contains multiple instances, each instance received a unique instance label, 

to uniquely identify them. 

SUN-3D (Xiao, Owens, et al., 2013b) is a dataset composed by 8 annotated sequences 

from a large-scale RGB-D video database. The annotation was carried out with a semi-

automatic tool that uses a partial reconstruction to propagate labels from a frame to 

another. Semantic segmentation of the objects and information about the camera 

position are provided for each frame. It is composed by 415 sequences captured in 254 

different spaces, in 41 different buildings. 

SUN RGB-D (Song et al., 2015) is a benchmark similar to the PASCAL VOC 

composed by more than 10,000 RGB-D images captured by four different sensors 

(Intel RealSense, Asus Xtion, Kinect v1, Kinect v2). For each image they annotated 

the objects with both 2D polygons and 3D bounding boxes. The whole dataset 

contains 146,617 polygons and 58,657 3D bounding boxes, there are 14 objects in each 

image on average, and, in total, there are 47 scene categories and about 800 object 

categories. The dataset can be used for six different tasks, including semantic 

segmentation, object detection, scene categorization and object orientation. 

ScanNet (Dai et al., 2017) is very large instance-level indoor RGB-D dataset that 

contains 2,5M views in 1513 scenes acquired in 707 distinct spaces. What make this 

dataset interesting is its annotation with estimated calibration parameters, camera 

poses, textured meshes, 3D surface reconstructions, and dense object-level semantic 

segmentation. The frames were captured at a resolution of 640 x 480 pixels and colour 

at 1296 x 968 pixels. To collect the sequences, they used the Structure sensor, a sensor 

similar to the Microsoft Kinect v1, attached to a portable device such as an iPhone or 
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iPad. The considered categories include the main indoor elements such as chair, table 

door, window, bed etc. 

UW RGB-D Object Dataset (Lai et al., 2011) is a dataset recorded using a Kinect 

style 3D camera that records synchronized and aligned 640 x 480 pixels RGB and 

depth images at 30Hz. The images contain 300 distinct objects from multiple views. 

The chosen objects are commonly found in home and office environments. 

Other popular datasets are InteriorNet, SUNCG, Hypersim, OCID and TICaM. 

4.2.3 Point Cloud Datasets (3D) 

Nowadays 3D datasets are becoming more and more popular, and a lot of applications 

in robotics, remote sensing, and construction, leverage on these data typologies. Three-

dimensional data could be provided via meshes, shapes, voxel representation or, in 

many cases,  point clouds. Building a 3D dataset is always challenging due to the 

difficult of retrieve large amount of 3D data, the complexity of processing these types 

of data, and the time-consuming operations to finely annotate the scenes. In the 

following, some of the most popular 3D datasets are mentioned. 

ShapeNet (Chang et al., 2015) is a large-scale repository for 3D CAD models 

developed by researchers from the Princeton University and the Stanford University. 

It contains a multitude of semantic categories organized according to the WorldNet 

taxonomy. 

S3DIS – Stanford 3D Indoor Scene Dataset (Armeni et al., 2016) is a collection of 

RGB coloured 3D scans of indoor areas of large buildings with various architectural 

style, containing 6 large-scale areas with 271 rooms. The entire point clouds were 

automatically generated without any manual intervention using the Matterport scanner. 

All the points in the dataset are properly annotated, selecting their class among the 

available 13 semantic categories, including the main structural elements, and 

commonly found items and furniture. Compared with other 3D indoor point dataset 

the classes are more fine-grained and challenging. 

Semantic3D (Hackel et al., 2017) is a large point cloud outdoor dataset which covers 

a range of diverse urban scenarios: churches, streets, railroad tracks, squares, etc. It is 

composed by 15 training and 15 test scenes, with over four billion points acquired with 

static terrestrial laser scanners. The point clouds were manually labelled in 8 categories 

(terrain, pavement, grass, vegetation, tree, building, car, etc.) following both 2D and 

3D annotation techniques.  

STPLS3D (M. Chen et al., 2022) is a large-scale aerial photogrammetry dataset with 

synthetic and real annotated 3D point clouds for semantic and instance segmentation. 
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To create the synthetic scene the authors developed a pipeline using Computer 

Generated Architectural (CGA) shape grammar od CityEngineering tools, that create 

3D buildings starting from their footprints. The precise annotations were generated 

fully automatically while rendering the 2D images. The dataset covers more than 16 

square kilometres of landscape and up to 18 fine-grained semantic categories. 

SceneNet (Handa et al., 2015) is a synthetic dataset of indoor scenarios created 

starting from 10 3D scenes. Each scene is composed of 15-250 objects, but the 

complexity can be controlled algorithmically. The granularity of the annotations can 

be adapted by the user depending on the type of application. The scene can be 

classified in 11 categories, following the guidelines of NYU-V2 dataset. 

Paris-Lille-3D (Roynard et al., 2017) is a large and high-quality ground truth urban 

point dataset for automatic segmentation and classification. The dataset consists of 

around 2Km of Mobile Laser Scanner (MLS) mounted at the rear of a truck, acquired 

in Paris and Lille, reaching totally 143,1M of points with a density between 1000 and 

2000 points per square meter on the ground. The clouds were segmented and classified 

by hand using CloudCompare software. 

Sydney Urban Objects Dataset (De Deuge et al., 2013) contains a variety of 

common urban road objects annotated across classes of vehicles, pedestrian, signs and 

trees. The acquisitions were made with terrestrial laser scanner in the central business 

district of Sydney. 

Other popular datasets are Toronto-3D, SensatUrban, InteriorNet, SemanticPOSS, 

KITTI Road. 

4.2.4 Heritage Datasets 

In the context of heritage environment, few datasets are available, they are often small 

and not publicly available, and a specific dataset for semantic segmentation of image 

of historical buildings (Fiorucci et al., 2020) is still missing. The most remarkable 

heritage datasets are reported below. 

ArCH – Architectural Cultural Heritage dataset (Matrone et al., 2020) is a 

benchmark for large scale heritage point cloud semantic segmentation. It is composed 

of 17 fine manually annotated scenes, derived from the union of several scans and their 

integration with photogrammetric surveys. In addition to the point coordinates the 

dataset provides the RGB values for each point, and the point normal Nx, Ny, Nz, 

calculated with CloudCompare. The point clouds are labelled in 10 classes, which 

include the main BIM standard elements: column, arch, moulding, floor, window, wall, 

stair, vault, roof and other. The dataset was created to support the development of 
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machine learning and deep learning models in the heritage environment and is one of 

the most promising dataset in this context. 

CHAS – Cultural Heritage Architectural Segmentation (Pavia et al., 2019) is a 

point cloud dataset from cultural heritage aimed to provide data for semantic 

segmentation techniques. The data were generated by terrestrial laser scanning and 

UAV photogrammetric surveys. The dataset comprises relevant buildings representing 

religious and colonial Brazilian architecture. 

AHE – Architectural Heritage Elements (Llamas et al., 2017) is an image dataset 

developed for the task of classification of architectural heritage images. The dataset 

consists of 10235 RGB images classified in 10 categories, including some construction 

elements like Domes, Altars or Bell towers. Most of the images have been obtained 

from Flickr and Wikimedia Commons, all of them under creative common license. 

MonuMAI – Monument with Mathematics and Artificial Intelligence (Lamas et 

al., 2021) is a public image dataset labelled using two annotation types, which make it 

useful for several tasks, such as monument style classification, for the detection of key 

elements, and other potential applications. It contains 1514 RGB images grouped in 

four architectural styles. Some key elements are also identified using bounding boxes, 

which report element names and locations. 

Cultural Heritage Dataset – Orthodox Churches consists of 128 x 128 pixels 

images representing Christian Orthodox churches grouped in four categories: (i) 

chandelier, (ii) dome, (iii) frescoes, and (iv) lunette. There are 200 images per category, 

totalling 800 images. 

UNESCO Heritage sites (2021) simply provides the spatial data of 1121 World 

Heritage Sites that were listed by UNESCO. The dataset can be used to catalogue, 

preserve sites and enhance the protection of the value of these sites. 

 

4.3 Dataset Structure 

The main aim of the dataset creation is to design a large scale image-based benchmark 

for the semantic segmentation of heritage building images. The dataset will be used to 

develop and train a deep neural network model designed to be incorporated into a 

wider point cloud segmentation workflow. The model should be capable to output a 

high-quality per-pixel feature map of a new and never seen set of images. Hence, the 

dataset should be composed by as much images as possible (quantity), and, to guarantee 

a high level of generalization, the images need to represent multiple and variable 

scenarios, several buildings typologies, and different types of architectural styles 
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(relevance), and they should be annotated with a fine-grained per-pixel map, avoiding 

inaccuracy and lack of precision (quality). Most of the time, however, it is not easy to 

maintain both quality and quantity at the same time. Creating a fine and accurate ground-

truth often requires manual intervention and a careful supervision, rarely applicable to 

large scale datasets. A well-structured dataset should guarantee a good balance between 

both the proprieties. In this section the dataset structure is illustrated in detail, 

including the buildings, the data acquisition, and the processing phase. Furthermore, a 

semi-automatic labelling procedure developed to speed up the annotation of multiple 

images is shown, and its accuracy is assessed. Finally, the dataset is analyzed and 

discussed. 

4.3.1 The Buildings 

The first decision to be made in order to structure the benchmark is the choice of the 

scenes and the buildings to be included in the dataset. Since the main aim of the 

benchmark is to support machine learning models development in the 

heritage/historical sector, the first question is which kind of buildings could be 

included, and which attributes, qualities or characteristics should have a building to be 

defined as ‘historical’. A historical building is generally defined as a building or 

structure with an ‘historical value’ or an ‘historic interest’ such as the national or society 

value, the construction methods, the design, the architectural significance and so on. 

The current choice turned on Italian monumental buildings, with an important 

historical value, including churches and chapels, but future integration with different 

typologies will be taken into account. The initial goal was to collect and process nine 

3D scenes from nine historical buildings, but due to the long time for the acquisition, 

the challenging processing phases, and due to time limitation, currently the dataset is 

composed by five buildings. Despite it could be a reasonable number of case studies 

to start training a neural network, the generalization and the capability of the model 

strongly depend on the variety of the scenes, and training a more robust and reliable 

model certainly requires a larger number of buildings. For these reasons, future 

developments of the dataset will be focused firstly to increase the number of the study 

cases. These five buildings are located in Tuscany (Italy), they were built in different 

historical periods, and they are characterized by different architectural styles and 

designs. Nevertheless, they share some common features and design structures, such 

as the presence of loggia in the facade, the presence of classic orders, the proportion 

between different elements. These buildings and their characteristics are typical of the 

Florentine renaissance style. On one hand, the presence of common features could 

facilitate the model during training to match between the various classes. On the other 

hand, not providing the model with a wide range of heterogeneity throughout the same 
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classes, could constitute a drawback in the development of a well-generalizing model 

across multiple typologies of elements in the same category. This is a key and 

challenging point in the dataset definition, since historical and heritage buildings are 

generally characterized by a wide range of different element typologies without a clear 

standardization, many times unique or different in shape, geometry and dimension. 

Such a demanding context requires more case studies to be included in the benchmark, 

which increases the probability that the model will be successful. Below is reported a 

list with the buildings included in the dataset and a brief description of their 

characteristics. 

 

 

(1_SC) Spedale del Ceppo 

Spedale del Ceppo (Figure 4.2) is a medieval hospital founded in 1227 in Pistoia, 

Tuscany, but the current complex is the result of a series of additions and modifications 

dated back to 15th and 16th century. The symmetric façade is composed by a 

renaissance loggia with six arcades, and it is decorated by a ceramic glaze frieze and a 

series of ceramic medallions at the springers of the arches. The five stone columns are 

in Corinthian style, and the interior of the loggia, opened in both the sides, is composed 

by a series of sail vaults ribbed by stone arches.  

Figure 4.2 – (1_SC) Spedale del Ceppo, Pistoia. 
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(2_OSA) Ospedale Sant’Antonio 

The Ospedale Sant’Antonio (Figure 4.3) is located in Lastra a Signa, close to Florence, 

Tuscany, and its construction started around 1410. The façade is composed by seven 

arcades, one of which is blind. The loggia, composed by seven octagonal stone pillars, 

is blind on both sides and is closed on top by a series of cross vaults, ribbed by 

decorated arches. 

 

(3_SS) Basilica della Santissima Annunziata 

The basilica of Santissima Annunziata (Figure 4.4) is one of the most important 

churches in Florence, and it was built between 1440 and 1481 based on a project of 

the architect Michelozzo. The façade is inspired by the close Ospedale degli Innocenti 

and it is composed by a loggia with seven large arcades and six high stone columns. 

The interior of the loggia is surmounted by sail vaults ribbed by stone arches.  

Figure 4.4 – (4_SS) Basilica della Santissima Annunziata, Firenze. 

Figure 4.3 – (2_OSA) Ospedale Sant’Antonio, Lastra a Signa (FI). 
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(4_CG) Certosa del Galluzzo 

The Certosa of Galluzzo (Figure 4.5) is a charterhouse, or Carthusian monastery, 

located in the Florence suburb of Galluzzo, Tuscany. It was built starting from 1341, 

and it was expanded and reconstructed over the centuries. The dataset includes a 

portion of the Chiostro Grande, a large square cloister built around 1520, which each 

of the four sides is articulated in a loggia with columns and round arches with sixty-six 

ceramic glaze medallions above each column. The interior of the loggia is surmounted 

by cross vaults. 

 

(5_CB) Cappella Buontalenti 

The Cappella Buontalenti (Figure 4.6) is a little and elegant renaissance chapel built in 

1580 by the architect Bernardo Buontalenti, and it is located inside the large park of 

Villa Demidoff, not far from Florence. The chapel has a hexagonal plan, and is 

surrounded by a loggia, composed by twelve columns and arches, closed on one side. 

The chapel, accessible by a large stone staircase, is surmounted by a cloister dome on 

the top. 

Figure 4.5 – (4_CG) Certosa del Galluzzo, Firenze. 

Figure 4.6 – (5_CB) Cappella Buontalenti, Firenze. 
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4.3.2 Data Acquisition 

The terrestrial laser scanner data, collected over the past years in an educational context 

by the GECO laboratory (Geomatics and Conservation group of the Department of 

Civil and Environmental Engineering, University of Florence headed by professor 

Grazia Tucci), were already available for all the mentioned buildings. As a result, a 

georeferenced 3D point cloud was already available for all the considered buildings. 

The main aim of the new acquisition campaigns was to integrate these data with close-

range photogrammetric surveys, in order to collect a large number of images that are 

going to compose the new image dataset. Depending on the building, the 

photogrammetric survey was done using two digital single-lens reflex (DSLR) cameras, 

a Nikon D60 and a Nikon D80, both with 10.2 MP, and provided with a 23.6 mm x 

15.8 mm Nikon DX format RGB CCD sensor, 1.5 x FOV crop, with a maximum 

resolution of  3,872 x 2,592 pixels. Both the cameras were equipped with a zoom lens 

AF-P DX Nikkor 18-55 mm f/3.5-5.6G. The images were acquired in the .JPEG 

format with a horizontal and vertical resolution of 300 dpi. All the images were 

acquired with a focal length of 18 mm, ISO-200, and a fixed aperture not larger than 

f/14 to guarantee a good depth of field, helping the photogrammetric process, and 

increasing the number of usable pixels in the point cloud reconstruction. In the 

following table (Table 4.1) are reported some details for each acquisition. 

 

Table 4.1 – Photogrammetric acquisition information for the five buildings. 

Building TLS cloud Camera N° of photo Resolution 

1_SC yes Nikon D60 748 3872x2592 

2_OSA yes Nikon D60 755 3872x2592 

3_SS yes Nikon D80 473 3872x2592 

4_CG yes Nikon D60 1102 3872x2592 

5_CB yes Nikon D80 166 3872x2592 

 

After completing the acquisitions, the following operation is constructing the ground-

truth starting from the RGB images. The current total number of images considering 

all the five buildings is 3,244, that makes challenging and time consuming the manual 

annotation of each single image. For this reason, I developed a semi-automatic 

procedure that allows to label all the images of the photogrammetric survey starting 

from a manual segmentation of the related point cloud, less challenging and time 

consuming. In the next paragraphs, all the steps of the procedure will be explained and 

detailed. 
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4.3.3 Data Processing 

The collected data were processed firstly to create the 3D scene, and secondly to set it 

up for the projection phase. Data processing was the most time-consuming stage in 

dataset creation, it requires long manual and specialized interventions, and it is not easy 

to be automated. In addition, the performance of the image labelling procedure is 

strongly related to the quality of the processing phase, hence it requires a careful 

supervision. For each scene the processing operations followed these steps: 

• Photogrammetric 3D point cloud generation 

• TLS and photogrammetry cloud alignment 

• cleaning/denoising 

• subsampling 

• annotation 

• integration of missing points. 

The first processing step was the cloud construction starting from the images. This 

operation was performed using Agisoft Metashape™, one of the most used proprietary 

licenced software for the photogrammetric pipeline. Alternatively, there are also some 

open-source software solution, such as PhotoCatch, Meshroom, MicMac and many 

others. Metashape workflow for the 3D reconstruction is composed by four main 

steps.  

• Feature matching across the photos. At the first stage Metashape detects points in 

the source photos which are stable under viewpoint and lighting variations and 

generates a descriptor for each point based on its local neighbourhood. These 

descriptors are used later to detect correspondences across the photos. This is 

similar to the well-known SIFT approach but uses different algorithms for a 

little bit higher alignment quality. 

• Solving for camera intrinsic and extrinsic orientation parameters. Metashape uses a 

greedy algorithm to find approximate camera locations and refines them later 

using a bundle-adjustment algorithm.  

• Dense surface reconstruction. At this step several processing algorithms are 

available. Exact, Smooth and Height-field methods are based on pair-wise 

depth map computation, while Fast method utilizes a multi-view approach. 

• Texture mapping. At this stage Metashape parametrizes a surface possibly cutting 

it in smaller pieces, and then blends source photos to form a texture atlas. 

In the following table (Table 4.2) some details on the reconstructions of the five 

buildings are reported, including the final number of points of the dense 

reconstruction.  
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Table 4.2 – Results of the point cloud construction with Metashape. 

Building N° of Images Tie Points Quality/Filtering Dense Cloud 

1_SC 748 413,405 High/Mild 43,839,637 

2_OSA 755 465,021 High/Mild 87,421,205 

3_SS 473 323,013 High/Mild 41,220,646 

4_CG 1102 746,884 High/Mild 149,000,912 

5_CB 166 142,082 High/Mild 65,677,457 

 

Clouds alignment. Since the photogrammetric surveys were made with no targets and 

reference points, the result of the reconstruction is a dimensionless and not 

georeferenced point cloud. However, it is possible to exploit the TLS point cloud to 

scale and georeferenced the photogrammetric reconstruction, via the alignment of the 

two clouds. The alignment was obtained with a two-step procedure using 

CloudCompare, a GPL open source software for point cloud processing. At first, the 

two clouds were roughly aligned picking manually some equivalent reference points, 

and minimizing an error metric, in this case the sum of squared differences between 

the coordinates of the matched pairs. The minimum number of points that need to be 

selected  is 3, but, depending on the complexity of the scene, the selected points were 

around 5-10. At the end of the procedure will be output the Root Mean Square (RMS) 

calculated on the picked points. It is possible to see also the error contribution for each 

pair of points, that can help to improve the result if not satisfactory, removing or 

adding new points. The first alignment has been considered acceptable if the RMS was 

less than 0.1 m. Secondly, the alignment was improved and refined by means of the 

Iterative Closest Point (ICP) algorithm (Y. Chen & Medioni, 1991), (Besl and McCay, 

1992). At the end of the procedure CloudCompare output the transformation matrix, 

the scale factor, and resulting final RMS. In the following table (Table 4.3) the 

alignment results are reported for all the five buildings composing the dataset. 

 

Table 4.3 – Results of the alignment procedure after the ICP alignment. 

Building Picked Points Scale Factor ICP RMS (m) 

1_SC 5 1.570 yes 0.19 

2_OSA 5 0.605 yes 0.09 

3_SS 5 0.977 yes 0.19 

4_CG 8 1.344 yes 0.16 

5_CB 10 1.273 yes 0.12 
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Is not surprising that the final RMS is higher than the first obtained with the manually 

picked points, in fact the error of the ICP tool is computed on up to 50,000 points, 

while the first only with the picked points. However, ICP tool always improves the 

overall alignment, and it makes sure the overlap parameter is realistic. 

The subsampling operation was necessary to face the high number of points in each 

scene, and to make all the scenes more homogeneous and regular. To perform this 

operation was used a random subsampling, setting a minimum space distance between 

the points. The minimum distance needs to be carefully selected, avoiding a loss of the 

level of detail, but at the same time reducing considerably the number of points and 

the size of the file. Moreover, the point cloud will be used to project the labels on the 

images, and a low density of points could make the process unsuccessfully. At the same 

time, a too large density could turn the process computational costly. After some tests 

a minimum space of 0.01 m turned out to be a reasonable distance to ensure the above 

mentioned properties. 

The cleaning/denoising operations was fundamental to eliminate the unwanted portion 

of the scene, to remove obstacles and obstructions, and to obtain a more precise and 

reliable point cloud. These operations were performed with two methods: manually, 

picking the unwanted points and deleting them from the scene, or by semi-automatic 

features selection, such as colour, particular suited for sky or vegetation removal, or 

geometric features like planarity, distance, altitude, etc. Another method used to 

remove noise and inaccuracy from the photogrammetric cloud was to exploit the more 

reliable TLS cloud, setting a maximum space between the clouds, and filtering out the 

points which do not respect the distance. This procedure could be performed during 

the following annotation stage, and it is explained more in detail in the next section. 

The annotation is the key operation of this stage: it consists in assigning to each point 

of the cloud a label according to the chosen categories. It is a labour-intensive 

procedure, that requires a lot of manual work. This operation was performed using 

CloudCompare and is based on two main steps. The manual annotation was carried 

out firstly on the TLS point cloud, which is usually more accurate and less noisy. The 

annotation was carried out manually picking the points with selection bounding boxes, 

or exploiting common geometrical features such as distance, planarity, altitude, 

symmetry, etc.  Secondly the labels set on the TLS cloud were transferred to the aligned 

photogrammetric reconstruction, based on a closest point criteria. Several tests were 

made to find the optimal distance to transfer the labels between the two clouds. A 

longer-range distance allows to select a larger part of the scene, and to avoid excluding 

some significant points, but at the same time it may generate inaccuracy especially in 

the connections between different elements. A shorter-range distance may cause loss 

of information, and a decreasing of the number of points, but simultaneously a positive 
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denoising and regularizing effect, that increase the precision of the photogrammetric 

point cloud. Figure 4.7 reports three labelling examples for the columns of (1_SC) 

Spedale del Ceppo with three different distances: a) 0.1m, b) 0.05m, and c) 0.02m. 

Based on the experiments the transfer distance was set to 0.05 m, a good balance 

between inclusion, precision and denoising, but depending on the specific case may be 

changed to refine the segmentation. 

Missing points integration. At the end of the processing some clouds have revealed some 

missing parts or some parts with a low point density. This issue could have been the 

consequence of (i) problems or errors during acquisitions, (ii) the presence of 

obstacles/obstructions or visibility constraints, (iii) the difficulty to match points 

between images with low-contrast or uniform textured surfaces. The absence of some 

elements could negatively affect the labelling projection, generating a low-quality image 

ground-truth. For this reason, the final stage consists in the integration of the missing points, 

in which the point cloud was fixed to make it more suitable for the labelling projection, 

adding the missing parts or increasing the density where required. In some cases, it was 

achieved integrating the photogrammetric reconstruction with the TLS point cloud, 

overlapping the two clouds where necessary. In other cases, when the problem occurs 

in both the clouds, this method is not applicable, and a reconstruction of the missing 

part is necessary. For this purpose, two tools were used. Rhinoceros®, a commercial 

3D computer graphics and computer-aided design (CAD) application software, and 

Grasshopper®, a visual scripting language add-on for Rhinoceros. At first a subsampled 

reference point cloud was imported in the 3D software environment, and with various 

modeling tools the missing parts were filled out with meshes or NURBS surfaces. 

Secondly the meshes/surfaces were imported in CloudCompare, populated with 

points according to the required density, and finally added to the initial point cloud. 

Figure 4.8 shows an example of integration of points for the vaults of (1_SC) Spedale 

del Ceppo. 

Figure 4.7 – Label transferring for (1_SC) columns, with three distance ratios: a) 0.1m, b) 
0.05m, c) 0.02m. 
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4.3.4 Standards and Class Definition 

The main aim of this dataset is to support the development tools for the automatic 

determination of heritage architectural elements starting from a raw point cloud. 

Automatic recognition allows to separate a constructive element from the wider 

building context, and to examinate all the geometric features necessary for the 3D 

reconstruction in a CAD environment. Since the main aim of these procedures is to 

support 3D model generation in a BIM environment, it is essential to choose the 

segmentation output according to the standards and the element category of the main 

BIM-based or object-oriented software (Simeone et al., 2019). Several standards have 

been developed, and they allow to guarantee the interoperability, the project continuity, 

and the interchange of information (Cursi et al., 2022). The main BIM interchange file 

format is the Industry Foundation Class (IFC), an open format founded by 

BuildingSMART in 1996, that allows interoperability between various software. 

CityGML is an open standardized format for storing and exchanging digital 3D models 

of cities and landscapes. It defines methods to describe the city object and their 

relationships, and it also define the concept of Level of Detail (LOD) of a 3D object. 

Other standards are the Building Topology Ontology (BOT), a minimal ontology for 

describing the core topological concepts of a building, or the Art & Architecture 

Thesaurus (ATT) of Getty Institute, a controlled vocabulary used for describing items 

of art, architecture, and material culture. One of the first work that deals with the issue 

of associating semantics in the domain of heritage element recognition using machine 

learning and deep learning techniques, was the work proposed by (Malinverni et al., 

2019). The authors showed the results of the application of PointNet++ to heritage 

segmentation, using some scenes annotated according to the IFC format and CityGML 

standard in 9 classes.  The authors in (Grilli & Remondino, 2020), following the idea 

proposed by this previous work, added other three classes, moulding, drainpipe and other. 

Figure 4.8 – Points integration workflow: a) import, b) mesh creation, c) points population. 
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In (Croce et al., 2021), the authors identified an articulated set of segmentation 

categories, composed by seventeen classes, that reproduce the architectural 

decomposition illustrated by Scamozzi in the 17th century in the ‘L’Idea Dell’Architettura 

Universale’. One of the most recent and interesting work in this context, is the dataset 

developed in (Matrone et al., 2020). The authors introduced the ARCHdataset, in 

which the point clouds are labeled in 10 classes, according with the IFC file format, 

the CityGML Level of Detail 3/4, and the Art & Architecture Thesaurus (ATT) of the 

Getty Institute. They selected the following classes from all the three standards: arch, 

column, moulding, floor, door/window, wall, stair, vault, roof, other (Figure 4.9).  

Given the heterogeneity of the architectural elements, the dataset also provides some 

annotation guidelines to allow other researchers to contribute to the expansion of the 

benchmark. The segmentation categories considered in this dataset are structured 

following the conventions and the guidelines defined in the ARCHdataset, hence the 

images of the benchmark will be segmented in 10 classes. Differently from point 

clouds, background is always present in the images, hence a new class was introduced: 

it includes all the pixels that cannot be classified as part of the previously defined 

classes. Such class is conventionally named “background”. Consequently, the class 

“other” comprises all the elements that are not included in the previous classes, but, at 

the same time, are included in or close to the building. Figure 4.10 shows an example 

of image segmented according to these classes. 

To the best of the current knowledge, ARCHdataset is currently the only benchmark 

realized to deal with point cloud-based machine and deep learning tools in the heritage 

field, and it is promoting crowdsourcing to enrich the already annotated scene. 

Consequently, the choice of maintaining the same class definition of ARCHdataset can 

Figure 4.9 – Segmentation classes of the ARCHdataset (Matrone et al., 2020). 
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be convenient for: (i) comparing the performance of an approach in both datasets, (ii) 

enabling a potential integration of the two datasets, hence increasing the number and 

typologies of labelled buildings, (iii) promoting the development of new image-point 

based models. Nevertheless, this dataset may be distributed in the future also with 

annotations made according to different class definitions or standards, according with 

a different Level of Detail, or according with different task, such as object detection 

or instance segmentation. Regarding this last point, making the dataset suitable for 

instance segmentation could be an interesting future development. However, the 

annotation procedure in this case is longer and more challenging: indeed, each instance 

of a category should be segmented with a specific pixel-level annotation, and each 

object or element requires a bounding box to define its relative position in the image. 

4.3.5 Labelling Projection Procedure 

As already mentioned, a fundamental characteristic of a machine learning dataset is the 

quantity, and training a NN semantic segmentation model in particular, requires 

assembling a very large dataset, composed by thousands of different labelled images. 

For this reason, it is fundamental to choose an appropriate tool to speed-up the 

annotation phase. There are several labelling tools for various Computer Vision tasks, 

and here are reported some of the most popular. Labelme, can be used for various tasks, 

but since it involves manual labelling is suitable for small dataset. LabelImg, fits for 

object detection task, and it is easy and fast to use. Hasty.ai, has a built-in assistant that 

allows to automatize the labelling starting from 10 manually annotated images. CVAT, 

Figure 4.10 – An image segmented according to ARCHdataset guidelines. 
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is suitable for teams looking to automate labelling with their model. Labelbox a versatile 

platform with useful label functionality. Other tools are V7, SuperAnnotate, Dataloop, 

Scale AI. Every mentioned platform or tool has its key features or functionalities, and 

its special tools to speed-up and to make easier the annotation, but, in every case, the 

manual operations are still essential, and they always require long time and tedious 

manual processing, especially to segment complex and articulated scene such as the 

heritage building ones. To give an idea, the manual labelling of an image of the 

proposed dataset typically requires between 1h and 3h of a specialized operator work, 

depending on the scene complexity. A medium-scale dataset should be composed by 

3000-4000 images, and, according to this timing, the dataset construction would 

require around 3 man-years. Hence, the development of an automatic image labelling 

procedure is essential to reduce the time to produce the ground-truth labelling and 

minimize the time-consuming manual operations. The developed procedure that will 

be described, allows to automatically project the labels set manually on the 3D space 

of the photogrammetric point cloud directly on the totality of the images used to 

generate the dense point cloud. Despite the segmentation of the 3D scene is still a 

manual and tedious operation, the procedure leads to a considerable saving of time, 

enabling the annotation of hundreds of images from just one labelled 3D scene. For 

instance, considering the scenes composing the dataset, their annotation required on 

average from 8h to 24h of manual work each. Each scene allowed to automatically 

annotate around 400 images that, according with the above-mentioned timing, they 

would have required from 400h to 1200h of manual work. It should be noted that the 

method has two weak points. Firstly, despite the large number of annotated images, 

they are representative of only one scene from different angles and perspective. 

Consequently, the images lack in generalization and they are representative of a small 

range of building typologies. Secondly, the direct manual segmentation of the image is 

more accurate and precise, and it allows to carefully process each image and its 

peculiarity. The automatic procedure leads inevitably to a loss of quality. The first issue 

can be address acquiring and introducing as many scenes as possible, also integrating 

existing datasets and already annotated scenes. The second issue will be analysed and 

discussed in the next sections, and the performance of the procedure will be assessed 

and compared with the manual segmentation. 
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In order to establish a precise correspondence between the points in the 3D space and 

their projection in the 2D image plane, a mathematical model should be defined. The 

most common and easiest geometric camera model is the pinhole one (Figure 4.11). 

Given a point p of coordinate [X, Y, Z]T, and its projection on the image plane x of 

coordinate [x, y]T, their relationship is described by the following expression, called 

ideal perspective projection: 

 

𝑥 =  −𝑓
𝑋

𝑍
 , 𝑦 = −𝑓

𝑌

𝑍
 (4.1) 

where f is referred to as the focal length. By using homogeneous coordinates, the 

projection can be expressed with a linear mapping: 

 

𝑍 [
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𝑦
1

] = [
−𝑓𝑋
−𝑓𝑌

𝑍

] = [
−𝑓 0 0
0 −𝑓 0
0 0 1

0
0
0

] [

𝑋
𝑌
𝑍
1

] (4.2) 

A realistic camera model that describes the transformation from 3D coordinates to 2D 

pixel coordinates, in addition to the prospective transformation, should consider two 

other aspects: (i) the rigid transformation between the scene and the camera, and (ii) 

the pixelization, including the CCD sensor shape and dimension, and its position with 

respect to the optical centre. The generic geometric relationship between a point of 

Figure 4.11 - Camera Pinhole model. 
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coordinates 𝑿𝟎  = [𝑋0, 𝑌0, 𝑍0, 1]𝑇 relative to the world frame and its pixel coordinates 

𝒙′ = [𝑥′, 𝑦′, 1]𝑇is captured by the following equation: 

𝜆 [
𝑥′

𝑦′

1

] = [
𝑓𝑠𝑥 𝑓𝑠𝜃 𝑜𝑥

0 𝑓𝑠𝑦 𝑜𝑦

0 0 1

] [𝑅 𝑡] [

𝑋0

𝑌0

𝑍0

1

] (4.3) 

Where sx and sy are the size in metric units of the pixels in the x and y directions, ox and 

oy are the pixel coordinates of the principal point relative to the image reference frame, 

and sθ is the skew factor. R and t are respectively the rotation matrix and the translation 

vector that describe the rigid-body transformation between the camera coordinates 

and the world coordinates. The expression is written with an arbitrary positive scalar 

𝜆 ∈ ℝ+. In matrix form the expression could be written as follow: 

𝜆𝒙′ = [𝐾𝑅, 𝐾𝑡]𝑿0 (4.4) 

where Π = [𝐾𝑅, 𝐾𝑡] is generally called projection matrix. The matrix K collects all the 

parameters that are ‘intrinsic’ to a particular camera, and is called intrinsic parameter 

matrix, or calibration matrix of the camera. R and T represent the external parameters of 

the camera and are called extrinsic parameters of the camera. The camera pinhole is an 

ideal model, and in real applications the use of wide-angle lenses may introduce a 

deviation from rectilinear projection and the problem of distortion, which can make 

the pinhole model fail. Various lens distortion models have been proposed in literature 

to correct such distortion. In this procedure the Brown-Conrady model has been used, 

and it corrects both for radial distortion and for tangential distortion. According to 

this mathematical model, the procedure was developed with Matlab®, with the support 

of the Camera Calibration Toolbox and the Computer Vision Toolbox. The procedure 

requires two main inputs: (i) the segmented 3D scene, and (ii) the camera parameters 

of the images used to generate the scene, calculated during the photogrammetric 

workflow. It outputs a set of images, corresponding to the original ones, but containing 

the ground-truth labelling, obtained according to the 3D scene annotations. This 

procedure is thought for the photogrammetric point clouds whose intrinsic and 

extrinsic camera parameters are known and already calculated during the 

photogrammetric workflow. 

Let us consider the generation of just one of the output (annotated) images, and, for 

the sake of notation simplicity, let us assume that the image distortion has already been 

corrected. The process, which is basically a label projection procedure from the 

annotated 3D scene to the image plane, is composed by several steps that are designed 
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in order to take into account the point visibility and possible issues related to the too 

low point cloud density on certain locations. First, the 3D points are projected on the 

image plane according to (4.4). Ideally, in this way the labels should be reported on the 

corresponding locations on the 𝑁 × 𝑀 output image. However, in the output image 

generation procedure the following rules should be taken into account: 

(i) the point should be projected, and hence its label potentially transferred to 

the output image, only if it is in front of the camera, e.g. positive coordinate 

along the optical axis. 

(ii) locations computed with (4.4) are rounded to the closest integers and only 

those within the image domain are considered. 

(iii) the point should be considered only if not obstructed by other objects (e.g. 

points) in the scene. 

(iv) gaps in the output image, if present, should be filled in accordance with the 

labels in the neighbours of the consider location. 

The first two rules can be easily checked as follows: 

(𝑖)  𝑍 > 0, (𝑖𝑖)  0 ≤ 𝑢 ≤ 𝑀 − 1, 0 ≤ 𝑣 ≤ 𝑁 − 1 (4.6) 

Indeed, some more effort is needed for the remaining two. 

In order to consider possible obstructions, if two different 3D points are mapped on 

the same 2D image position, then the value of the point closer to the camera is chosen. 

Therefore, the 3D point labels are transferred to the 2D image based on a distance 

hierarchy, starting from the closer points. Not sufficiently dense point clouds may lead 

to gaps on the image where the labels have been projected. For this reason, the area 

covered by a point is enlarged from one pixel to (2 size_neighborhood +1) × (2 

size_neighborhood +1) pixels. In practice, to increase the number of image pixels covered 

by a 3D point on the image, the procedure allows to fill also the corresponding 

neighbourhood, up to distance threshold named size_neighborhood, as shown in Figure 

Figure 4.12 – The functioning of the size_neighborhood parameter. 
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4.12. While the assignment proceeds, if a pixel label has already been set, it is not 

modified, because in order to take into account of the occlusions labels of the points 

closer to the camera are considered first. Hence, the parameter size_neighborhood also 

determines to which extent the foreground points hide the back positioned ones. At 

the end of the procedure, when all the N points are assessed and transferred, if a label 

has not been assigned to a pixel, its class is set to ‘none’. Figure 4.13 shows the output 

of the procedure with 3 different values of the parameter size_neighborhood for the same 

image. The three outputs reveal the benefits of the neighbourhood filling. It allows to 

decrease the number of unclassified pixels addressing the issue of point density, and it 

allows to properly hide the back positioned elements improving the assessment of 

occlusions due to points in the foreground. The value of this parameter has a 

remarkable impact on the quality of the ground-truth image segmentation generation: 

the choice of a proper value for such parameter is fundamental to obtain a high-quality 

output. Small values guarantee high labelling precision but, at the same time, a high 

percentage of unclassified pixels. Large values guarantee a good covering of the image, 

but they could cause labelling inaccuracy, making the occlusion problem worse than in 

reality. Its choice and impact will be assessed in the next sections. Despite the use of 

this parameter usually improves the output quality, in certain cases the generated image 

ground-truth may still show some inaccuracies, mainly caused by (i) unwanted non-

classified pixels, and (ii) isolated pixels with incorrect label. These issues are mostly 

related to the low density of the point cloud, which affects in particular the pixels close 

to the camera, to missing parts of the point cloud, that could reveal hidden elements, 

and to inaccuracy and noise that bias the projection with incorrect labels. To overcome 

these issues and improve the quality of the final ground-truth, the output is processed 

by two other functions. 

Figure 4.13 – The influence of the size_neighborhood on the procedure output. 
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The first function, SubstituteWithMostPopularVote( ), allows to address the problem of 

the isolated areas of pixels with incorrect annotation, by substituting labels in small 

connected regions, with the most popular label in their neighbourhood. The process 

is regulated by two parameters size_area and size_neighborhood, and their functioning is 

shown in Figure 4.14. 

A uniform label over a large image region is expected to be a quite reliable class 

projection. Instead, there is a quite high chance that the presence of a certain label over 

a very small region is incorrect, e.g. error due to noise. For this reason, Size_area 

determines the maximum size of the areas that have to be checked for label 

substitution: if the area of the connected region associated to a certain label value is 

smaller than the Size_area threshold, then such region is considered for a label 

substitution. Instead, Size_neighborhood selects the size of the neighbourhood area, i.e. 

the area that has to be considered in order to determine which is the label to be used 

for the substitution, i.e. the most frequently label in the neighbourhood. If at least one 

of the pixels of the region is not classified with ‘none’, the most popular label of that 

neighbourhood region is assigned to the investigated area, whereas if the most popular 

label is ‘none’, the second popular label is assigned.  

The second function, FillWithMostPopularVote(  ), allows to fill small areas of pixels 

classified as ‘none’. As in the previous function, the parameters that rule the process 

are size_area and size_neighborhood, which have roles similar to those described before:  

they indicate the maximum size of an isolated area to be checked, and the size of the 

neighbourhood region. Even in this case, the most popular label, excluding  ‘none’, 

within the neighbourhood region is assigned to the unclassified pixels. Figure 4.15 

shows the final output of the procedure after the use of the two functions, called with 

different parameter value combinations, keeping the initial size_neighborhood fixed to the 

value of 5 pixels. As shown in Figure 4.15, the use of the two functions has a quite 

Figure 4.14 – The functioning of the SubstituteWithMostPopularVote( ) function. 
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positive effect on the quality of the image annotations, decreasing the percentage of 

unlabelled regions, removing noisy pixels, and regularizing the general label map.  

To preserve the quality and the accuracy of the first generated label, the value of the 

two parameters needs to be carefully assigned. Increasing their value, the isolated areas 

and the unlabelled pixels decrease remarkably, but, at the same time, they could cause 

a loss of information, especially favouring and increasing the labels of the large areas 

at the cost of the small elements. This issue is shown for instance, in Figure 4.15d, in 

which, increasing excessively the parameter values, the small windows and mouldings 

at the end of the loggia disappear, and they are classified like wall. 

Given the remarkable influence of the parameters on the final quality of the ground, 

several tests were performed to find the optimal value combination, in order to 

guarantee the highest quality level and, at the same time, as many pixels as possible 

correctly annotated. In addition to several visual analysis on a wide range of images, a 

more rigorous test was performed by comparing two fine-manually annotated images 

Figure 4.15 – The influence of the two functions on the final procedure output. 

Figure 4.16 – Automatic labelling assessment: a) fine-manually segmented image, b) 
automatic segmented image, c) overlay between the two images. 
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with several generations obtained with different parameter combinations and assessing 

the percentage of correctly annotated pixels. Figure 4.16 shows an example of manually 

segmented image (Figure 4.16a), the corresponding automatically segmented image 

(Figure 4.16b), and the overlay-difference between the two: in black the pixels 

classified in the same way, whereas pixels wrongly classified by the automatic labelling 

procedure are shown in white (Figure 4.16c). Considering the two testing images, the 

highest percentage of classified pixels obtained was around 96-97%, which turned out 

to be useful to define an optimal range of the value of the various parameters. Table 

4.4) reports the optimal ranges of the parameters obtained from the test, which will be 

used for the further generation of the dataset. However, the range is still wide, and the 

precise value of the parameters will be set depending on the specific scene or 

depending on the single images. 

 

Table 4.4 – Optimal range of the parameters of the labelling procedure 

Labelling SubstituteWithTheMostPopular FillWithTheMostPopular 

Size (pixels) Area (pixels) Size (pixels) Area (pixels) Size (pixels) 

2-4 500-1500 5-15 500-3000 5-30 

In conclusion, the procedure has shown a positive overall performance, proving an 

outstanding save of time, which justifies the small loss of accuracy of the automatic 

labelling compared with a manual annotation. However, the results have still shown 

some issues and limitations, which are mainly caused by: (i) low density of the point 

cloud, that affects in particular the image areas close to the camera, (ii) missing points 

in some parts of the building, that could expose hidden points or elements, (iii) local 

noise of the point cloud, which could generate incorrect classified pixels, (iv) presence 

of objects and obstacles in front of the buildings, present in the images but not 

properly reconstructed in the point cloud, and (v) local differences between the LiDAR 

and the photogrammetric cloud, which, during the label transferring between the two 

clouds, cause incorrect classified points. Some of these issues, (i), (ii), (iii) in particular, 

could be easily corrected automatically during the procedure with a proper choice of 

the transfer parameters, which can be adapted depending on the scene, or depending 

on the single images. The issues describe in (iv) and (v), could be addressed by a careful 

processing of the point cloud, including the reconstruction of the background 

buildings and elements, and integrating the missing part with synthetic points if 

necessary. However, despite the correction parameters, the final accuracy is strictly 

related to the quality of the initial point cloud, and it is worth generally to spend more 

time processing the initial point cloud than to work directly on the parameter setting. 

At the end of the entire process, for each image of the survey the procedure output 

the ground-truth with the size of 𝑁 × 𝑀 pixels, and the relative undistorted input RGB 
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image with the same size, both in a .png or .jpeg file format. Such generated images are 

ready to feed a machine learning system, and to train, validate and test a semantic 

segmentation model.  
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4.3.6 Dataset Trend and Statistics 

In this section the structure and the composition of the dataset will be illustrated. For 

each building composing the dataset three types of data are available: (i) the manually 

annotated TLS point cloud, (ii) the annotated photogrammetric cloud obtained with 

annotation transfer, and (iii) the survey images annotated with the labelling projection 

procedure. At first, both the input point clouds will be shown together with the 

generated ground-truth. The number of points for each class are reported in the 

following tables and histograms, along with the percentage of the class on the total 

number of points of the scene for both the clouds (Fig 4.18 - 4.26). These data are 

useful to reveal the class balancing in the scene, and to assess the proper functioning 

of the annotation transfer between the point clouds, both TLS and photogrammetric. 

Secondly, the results of the labelling procedure will be illustrated for each building, and 

even in this case the number of pixels for each class and the percentage of the class on 

the total number of pixels will be shown (Fig. 4.27 - 4.36).  

The final structure of the dataset will be organized following the standards of the main 

semantic segmentation datasets. A set of RGB images and the corresponding set of 

labelled images with the same size, both in a .png file format will be provided. The 

labels in the ground-truth file are compatible with those of the ARCHdataset: 0 arch, 

1 column, 2 moulding, 3 floor, 4 door/window, 5 wall, 6 stair, 7 vault, 8 roof, 9 other. 

Differently from point clouds, background is always present in the images, hence a 

new class was introduced: it includes all the pixels that cannot be classified as part of 

the previously defined classes. Such class is conventionally named “background”, and 

it is labelled with the index 10. 

The starting size of the images is 2592x3872 pixels with a resolution of 300dpi. The 

generation of the ground-truth was performed while maintaining the initial size of the 

images. On one hand, that choice allows to guarantee the highest accuracy and 

versatility of the dataset, giving the possibility to resize the image just before inputting 

them into the machine learning model, and finding the optimal size during the training. 

On the other hand, it allows to perform other additional processing operations, such 

as cropping or rotation, without a remarkable loss of resolution. However, the size of 

the generated images could be variable, allowing the process of any type of images 

acquired with different cameras or sensors, and making easier the integration and the 

extension of the dataset with new data. In the next pages the details of each building 

are illustrated.  
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(1_SC) Spedale del Ceppo 

Figure 4.18 – (1_SC) Class distribution and percentage on the two clouds: TLS 
(blue) and Photogrammetric (Orange). 

Figure 4.17 – (1_SC) Spedale del Ceppo Point Clouds: a) TLS PC, b) TLS ground-truth, c) 
photogrammetric PC, d) photogrammetric ground-truth. 



4.3 Dataset Structure 99 

 
(2_OSA) Ospedale Sant’Antonio 

 

 

 

 

 

 

Figure 4.20 – (2_OSA) Class distribution and percentage on the two clouds: 
TLS (blue) and Photogrammetric (Orange). 

Figure 4.19 – (2_OSA) Ospedale Sant’Antonio Point Clouds: a) TLS PC, b) TLS ground-
truth, c) photogrammetric PC, d) photogrammetric ground-truth. 
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(3_SSA) Basilica della Santissima Annunziata 

 

 

 

 

 

 

Figure 4.22 – (3_SS) Class distribution and percentage on the two clouds: TLS 
(blue) and Photogrammetric (Orange). 

Figure 4.21 – (3_SSA) Basilica Santissima Annunziata Point Clouds: a) TLS PC, b) TLS 
ground-truth, c) photogrammetric PC, d) photogrammetric ground-truth. 
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(4_CG) Certosa del Galluzzo 

 

 

Figure 4.24 – (4_CG) Class distribution and percentage on the two clouds: TLS 
(blue) and Photogrammetric (Orange). 

Figure 4.23 – (4_CG) Certosa del Galluzzo Point Clouds: a) TLS PC, b) TLS ground-truth, 
c) photogrammetric PC, d) photogrammetric ground-truth. 
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(5_CB) Cappella Buontalenti 

 

 

 

 

 

 

Figure 4.26 – (5_CB) Class distribution and percentage on the two clouds: TLS 
(blue) and Photogrammetric (Orange). 

Figure 4.25 – (5_CB) Cappella Buontalenti Point Clouds: a) TLS PC, b) TLS ground-truth, 
c) photogrammetric PC, d) photogrammetric ground-truth. 
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(1_SC) Spedale del Ceppo 

Figure 4.27 – (1_SC) Spedale del Ceppo: RGB images and generated ground-truth. 

Figure 4.28 – (1_SC) Class distribution and percentage of the building images. 
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(2_OSA) Ospedale Sant’Antonio 

Figure 4.30 – (2_OSA) Class distribution and percentage of the building images. 

Figure 4.29 – (2_OSA) Ospedale del Ceppo: RGB images and generated ground-truth. 
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(3_SSA) Basilica della Santissima Annunziata 

Figure 4.31 – (3_SSA) Santissima Annunziata: RGB images and generated ground-truth. 

Figure 4.32 – (3_SS) Class distribution and percentage of the building images. 
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(4_CG) Certosa del Galluzzo 

Figure 4.33 – (4_CG) Certosa del Galluzzo: RGB images and generated ground-truth. 

Figure 4.34 – (4_CG) Class distribution and percentage of the building images. 
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(5_CB) Cappella Buontalenti 

Figure 4.35 – (5_CG) Cappella Buontalenti: RGB images and generated ground-truth. 

Figure 4.36 – (5_CB) Class distribution and percentage of the building images. 
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The five building point clouds composing the current dataset, their composition and 

characteristics were presented. The image dataset is currently composed by 3,244 

images and the relative ground truth of five heritage buildings. Despite the large 

amount of data, which is numerically adequate to train a neural network, it is worth to 

underline that, as shown in the example images of the various buildings, and since the 

images are collected in the photogrammetric survey context, they represent thousands 

of different views of the same building, at different distance, angles and perspective. 

Hence, they are actually representative of a small range of building typologies. 

According to the first training results, future integration will be considered, in order to 

increase the capabilities of the dataset with new architectural styles, constructive 

elements, and object typologies enabling the networks to learn and generalize new 

scenes. 

The tables and the histograms in Figure 4.37 show the final balancing of the dataset, 

considering all the five clouds and all the images. The Figure shows the percentage of 

the classes on: the LiDAR set (blue bars), the photogrammetric set (orange bars), the 

percentage referring to the images (green bars). The histogram shows an overall 

Figure 4.37 – Balancing of the classes on the final dataset: on the LiDAR set (blue), on the 
photogrammetric set (orange), and on the image set (green). 
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significant imbalance of the classes, with a remarkable predominance of the classes 

‘floor’ and ‘wall’, and a small representation of the classes ‘stair’, ‘door/window’ and 

‘other’. Class imbalance is a common issue in several semantic segmentation datasets, 

and, if not properly handled, it can be detrimental to the learning process, biasing the 

results in favour of dominant classes. There are several techniques to face the 

unbalancing issues: on one hand, operating directly during the training phase, using for 

example class weighting or online data augmentation, and choosing appropriately the 

correct evaluation metrics. On the other hand, operating on the unbalanced dataset, 

before feeding the neural network. For instance, selecting a specific set of the images, 

reducing images of classes over-represented, hence reducing such strong class 

imbalance, or using offline data augmentation. Future integrations and extensions will 

be focused also on the acquisition of scenes to privilege buildings with the prevalence 

of low percentage classes. The histogram in Figure 4.37 also reveals a predominance 

of the pixels labelled as ‘none’ in the image dataset. Differently from the point clouds, 

this class is inevitably present, and it comprises a wide range of element typologies, in 

some cases similar to the building elements. Hence, it could bias the training, and it 

may negatively influence the network learning procedure. The reduction of this class 

with a specific image selection will be taken into account during training, and its effects 

will be discussed in detail in the next chapter. Another important aspect in a 

benchmark design is data splitting, which is the partition of the images in training, 

validation and test set. Most of the existing datasets are provided with a specific 

partition, in order to allow the comparison with various models and assess the 

performance improvements. Currently the dataset is still under construction, and since 

the partitioning strictly depends on the full size of the dataset, the splitting strategy will 

be designed in the future, depending on the first training results. 

In conclusion, the main aim of this dataset is to offer the possibility to implement and 

compare multi-view approaches on heritage building scenarios and leverage on the 

existing 2D segmentation architectures to ease the development of new classification 

machine learning and deep learning techniques. For this reason, once that the dataset 

will have a definitive structure, it will be made freely available to the research 

community. On one hand, it can be useful to test and compare new algorithms, on the 

other hand, it allows to collaborate at the integration and at the extension of the 

dataset. In addition, TLS clouds and the photogrammetric clouds, both segmented 

following the same class definition used for the images, will be available in addition to 

the images for each building. These multiple-source data can be useful to perform 

comparisons and assessments such as: (i) compare the accuracy of point-based and 

multi-view based methods on the same dataset, (ii) compare the accuracy of multi-view 

based approach on heritage benchmark with that obtained on standard buildings, (ii) 

assess the accuracy of point-based networks on two types (TLS and photogrammetric) 
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of point cloud data. Hence, the presented dataset can be (i) integrated with 

ARCHdataset, (ii) used to tailor existing network architectures on the cultural heritage 

building case, (iii) exploited to develop new hybrid networks that can leverage on both 

images and point clouds. 

 

4.4 How to Improve Datasets? 

Since the remarkable difficulties and challenges to structure a dataset, especially in the 

first phase, there are several strategies and techniques that can be used to improve the 

quality, the quantity, and the generalization of the dataset without requiring the 

acquisition of new real data, and to improve the performance of the models always 

using the same data source. In this section two of the main techniques are briefly 

introduced: (i) data augmentation, and (ii) synthetic data generation. 

4.4.1 Data Augmentation 

Data augmentation is a technique widely used during model training in many 

applications, especially in the image classification and segmentation workflow. It 

consists in generating new data artificially altering the existing ones by applying a set 

of transformations to them, in such a way to increase the number of training samples, 

and to improve the performance and results of deep models by generating new and 

diverse instances for the training dataset. The key concept of data augmentation is that 

CNNs are invariant to translation, viewpoint, size, or illumination, and they are able to 

classify objects in different orientations. The images composing the training dataset 

are captured in real-world under specific set of conditions, but they may exist in a large 

number of variations, such as varying orientations, locations, scales, colours, 

brightness, and so on. Manipulating the images by adding synthetic transformations 

and by simulating different conditions help the model to increase its generalization 

ability. By performing these operations it can also be possible to prevent the model 

from learning irrelevant patterns, essentially boosting the overall performance and 

improving its robustness. The most used augmentation method can be divided into 

two main groups: position augmentation and colour augmentation. The most common 

transformations of the first group are flipping, rotation, mirroring, scaling, cropping, 

and translation. The second group comprises the transformation without a position 

modification, including brightness, contrast, saturation, and so on. For a classification 

problem, the task of assigning one category to an image, the output label remains 

always the same after each type of augmentation. For a semantic segmentation 

problem, the pixel-level ground-truth do not change with colour augmentation, but it 
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should be fixed according to the applied transformation if a position augmentation is 

applied. However, data augmentation has its challenges:  (i) quality assurance of the 

augmented dataset is often time expensive, (ii) the inherent bias of original data may 

persist in augmented data, (iii) finding an optimal augmentation strategy for the data is 

non-trivial, (iv) it is not possible to use data augmentation in every situation, (v) 

increasing the number of images will increase computational time. The 

transformations can be applied directly on the data before training or on the mini-

batch, just before feeding it to the machine learning model. The first method is known 

as offline augmentation and is preferred for smaller datasets, since the procedure ends up 

increasing the size of the dataset by a factor equal to the number of transformations 

performed. The second option is known as online augmentation and it is preferred for 

bigger datasets since it avoids the explosive increase in size and, consequently, in 

computing time. 

4.4.2 Synthetic Dataset 

The concept of synthetic data refers to artificial data that mimics real-world 

observations and it is used to train machine learning algorithms when actual data are 

difficult or expensive to collect. Binary, numerical, categorical, or unstructured data, 

such as images or videos, can be included in a synthetic dataset. There are many key 

reasons that promote the use of synthetic data, which allow data scientists to achieve 

several advantages: 

• Cost and time efficiency. It may be cheaper to generate synthetic data than to 

collect from real world events if you lack a proper dataset. The same is valid 

for the time factor: collecting and processing real data might take weeks, 

months, or even years for some projects, while synthesizing might only take 

hours/days. 

• Exploring rare data. There are cases in which data are rare to accumulate or are 

challenging to acquire. It may generate a lack in specific context or area of the 

dataset. With the use of synthetic data it is possible to simulate every type of 

conditions and situations, generating every type of image. 

• Privacy issues resolved. When sensitive data must be processed or given to third 

parties to work with, privacy issues must be taken into consideration. Unlike 

anonymization, generating synthetic data removes any identity trace of the real 

data, creating a new valid dataset without compromising privacy. 

• Easy labelling and control. Synthetic data makes labelling easy, fast, and accurate. 

In addition, it is possible to generate different types of annotations in every 
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moment, such as pixel-wise, bounding boxes, or others. And fully synthesized 

data can be easily controlled and adjusted, both in the input and output data. 

• Data quality. In addition to being difficult and expensive to collect, real-world 

data are often inaccurate or biased, which can affect the performance of a 

neural network. A high-quality, balanced, and varied dataset can be achieved 

by using synthetic data. By automatically filling in missing values and assigning 

labels to artificially generated data, more accurate predictions can be made. 

• Scalability. Machine learning requires massive amounts of data. The availability 

of sufficient data at a sufficient scale is often a challenge for training and testing 

a predictive model. By supplementing real-world data with synthetic data, we 

can achieve a greater scale of inputs. 

Regarding their composition, synthetic data generally falls into three main categories: 

(i) fully synthetic and (ii) partially synthetic, and (iii) hybrid. Fully synthetic retains nothing 

from the original data. Real-world characteristics of the data are usually identified by 

the data generating program, such as the feature density, to estimate realistic 

parameters. It then randomly generates data based on estimated feature densities or 

using generative methods. With this technique, no real data are used, so it offers robust 

privacy protection at the expense of data truthfulness. Partially synthetic data replaces 

some of the real data with synthetic values, while retaining some of the real data, or it 

permutes existing unstructured data. It is also useful for filling in gaps in the original 

data. In order to generate partially synthetic data, data scientists use methods such as 

model-based imputation. Hybrid data combines real and synthetic data. Hybrid 

synthetic data pairs random records from a real dataset with close synthetic records. 

As a hybrid of fully and partially synthetic data, it provides high utility as well as privacy 

protection. The disadvantage of this data type is that it requires more memory and 

processing time. Although synthetic data has many benefits, there are still cases when 

it would be better not to use it. Synthesizing data is faster and cheaper than collecting 

data, but it is still a complex process that requires experienced operators. Synthesizing 

data in a wrong way might not represent the events in the real world correctly,  

introducing a bias as well. If synthetic data are not sufficiently accurate, or they do not 

accurately represent the real-world data, they do not reflect the patterns crucial to test 

and train a machine learning system. 

The generation of synthetic data needs a robust model that can recreate a real dataset 

based on the probabilities that some types of data occur in real world. Neural Networks 

are particularly suitable at learning data distribution and at generalizing them. There 

are different methods and models to generate synthetic data: the state-of-the-art 

techniques are reported in the following. 
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Variational Autoencoders (VAEs) are unsupervised generative models that can learn 

the underlying distribution of data and generate a complex model. This type of 

approach takes an original distribution, transforms it into a latent distribution, and then 

returns it to its original space (this is known as encoded-decoded). In this process, a 

"reconstruction error" functional is generated, and the model aims at minimizing it. 

VAEs are very useful for continuous data but less effective at categorical data. They 

are not capable of generating unstructured data, such as images or videos. More detail 

can be found in (Papadopoulos et al., 2023), (Dai et al., 2023). 

Generative Adversarial Networks (GANs) were introduced by (Goodfellow et al., 

2014) and they are supervised generative models that can be exploited to generate 

realistic and highly detailed data. In this method, two neural networks are trained, one 

for generating fake data points (a generator), and the other for distinguishing fake from 

real data points (a discriminator). As the generator is trained thousands of times, it 

becomes more and more adept at creating highly realistic fake data points that can 

"fool" the generator. A GAN is particularly effective at synthesizing images, videos, 

and other unstructured data. They have the disadvantage that they require specialized 

knowledge to construct and train, as well as that the model can "collapse" and produce 

a limited set of very similar fake data points.  

Neural Radiance Fields (NeRFs) is a method of generating new views from a 

partially-known 3D scene. Using a set of images as input, the algorithm interpolates 

them and adds new perspectives to the same object. To predict the content of each 

voxel, a fully connected neural network is used to treat the static scene as a continuous 

5-dimensional function. For each ray, it provides a predicted volume for one voxel, 

and so it fills in an entire missing picture in the scene. NeRF is a very useful way to 

generate realistic images from an existing image set. This technique has the 

disadvantages of being slow to train, slow to render, and generating images that may 

be low-quality or aliased. It is now possible to address these challenges using neural 

rendering algorithms. More detail can be found in (Mildenhall et al., 2020). 

Simulated Data are a form of synthetic generation that uses a virtual camera to 

generate physics-based and photorealistic simulations. In order to produce realistic 3D 

data, simulated data include all the necessary annotations, dimensions and labels. 

Compared with the other methods, that typically are focused on a single task or 

scenario, this type of simulations allows a more flexible generation, and it is more 

suitable for complex scenarios. Simulated data allow to adjust light conditions, to 

modify textures, colours and layouts, to place several elements in the scenes, or to 

capture cases that rarely occur in the real world. Some recent applications can be found 

in (Mittal et al., 2022), (Huang et al., 2022), (Kerley et al., 2022). 
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There are several platforms or software that allow the creation of synthetic dataset, 

and support data generation. The most popular are Tonic.ai, GenRocket, MDClone, 

YData, Anyverse, DataGen, Neuromation. 

4.5 Summary 

In this chapter a new dataset for the image semantic segmentation of heritage buildings 

has been introduced. Its construction carried out from the lack of a specific benchmark 

for image segmentation in the context of heritage scenarios. The new dataset is 

particularly suited for training, validating, and testing machine learning and deep 

learning models, and it is mainly focused to support automation in three-dimensional 

and informative model generation via semantic segmentation. In the first paragraph 

(§4.1) the relevance of a benchmark for the training and the evaluation of a ML or NN 

model has been explained, and the challenges and the difficulties to define and to 

structure a dataset from scratch have been pointed out. In the second paragraph (§4.2) 

the most popular and interesting datasets for the semantic segmentation have been 

illustrated. The datasets have been divided into three categories according with their 

segmentation target: 2D image segmentation (§4.2.1), RGB-D image segmentation (§4.2.2), 

and 3D point cloud segmentation (§4.2.3). In addition, the heritage focused datasets have 

been examined (§4.2.4), and it turned out the missing of a specific dataset for heritage 

buildings image segmentation. In paragraph §4.3 the structure of the new dataset has 

been shown in detail, and it includes the buildings composing the current dataset 

(§4.3.1), the acquisitions (§4.3.2), the processing phase (§4.3.3), and the class definition 

(§4.3.4). To speed-up the image annotation process, a labelling projection procedure 

has been developed and illustrated (§4.3.5). It allows to annotate all the images of a 

photogrammetric survey starting from a manual segmentation of the related point 

cloud. The procedure has been tested and its performance assessed. Finally, the trend 

and the statistic of the dataset have been reported (§4.3.6). For all the five buildings 

the detail on the point clouds, including the number of points for each classes and 

their percentage have been reported. Moreover, the details on the generated image 

dataset, including the image size, the format, the resolution and the class indexing, have 

been shown. As discussed in the last paragraph the new dataset is promising, but it is 

still under construction, and it needs further improvements, in particular to increase 

its size and to enhance the variety among the scenes and the images. For completeness, 

two common techniques used to increase the size of a dataset have been introduced 

in paragraph §4.4: data augmentation, and synthetic data generation.



  

 

Chapter 5  

Semantic Segmentation Tests and 

Results 

In this chapter the overall results of the proposed semantic segmentation pipeline 

(§3.3) are described and widely discussed. The first section (§5.1) is a brief introduction 

about the challenging in structuring a machine learning project from scratch. In 

paragraph §5.2 the details about the implementation of the neural networks are 

illustrated, together with the details on the three exploited neural network 

architectures, FCN (§5.2.1), SegNet (§5.2.2), and DeepLabv3+ (§5.2.3). The first part 

of the chapter is focused on image segmentation. In the paragraph §5.3 the training 

settings are shown, including the image processing (§5.3.1), the tests organization 

(§5.3.2), the hyperparameters tuning (§5.3.3), and the evaluation metrics (§5.3.4). 

Afterwards the result for each planned tests are illustrated in detail (§5.4) . Three main 

test typologies have been carried out: Test A (§5.4.1), Test B (§5.4.2), and Test C (§5.4.3). 

The second part of the chapter is focused on the features transfer from the images to 

the point cloud. At first, the settings and the parameters that rule the reprojection 

procedure will be analysed, and the various test structures will be explained (§5.2.2). 

Three test typologies have been conducted: Test R.GT (§5.6.1), Test R.A (§5.6.2), and 

Test R.C (§5.6.3). In the paragraph §5.6 the results for each building composing the 

dataset will be reported in detail. The results will then be extensively discussed (§5.7) 

both for image and point cloud segmentation. The chapter ends with a general 

summary (§5.8). 
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5.1 Introduction 

Structuring a machine learning or deep learning project from scratch is a daunting task, 

and it requires multiple decision making, planning, and understanding. Training a deep 

learning model is a long process that needs lot of computing time, lot of efforts and 

attempts, hence the optimization of the available resources is a necessary requirement 

to obtain a successful project. Only in such 

way is possible to achieve a productive, 

reproducible, and understandable model.  

The lifecycle of a machine learning system 

is highly iterative, and each phase requires 

to reach a satisfactory level of performance 

before moving onto the next step. The 

main phases are illustrated in Figure 5.1 and 

are briefly described in the next sections. 

Planning and project setup. This is the first step 

of the machine learning pipeline, and it 

includes defining the task, specifying 

requirements, and determining the feasibility. The problem should be clear and well 

defined to find the optimal strategy or approach to solve it. 

Data collection and labelling. This phase was widely illustrated in Chapter 4, and it involves 

the definition of the ground truth, labelling the data if not available, and validating the 

quality of the data. It is one of the most time-consuming operations, in many cases the 

annotation is mainly manual, and it requires a careful labelling, since its quality has a 

large effect on the model performance. 

Model exploration. It consists of setting up baselines on the problem, useful to establish 

an expected or a target performance. Baselines turn out from published similar tasks, 

from human-level performance, and testing various existing architectures or 

approaches to face similar problem. In this phase the most suitable models and 

strategies will be carried on. 

Model refinement. It involves the fine setting-up of the model and the optimization of its 

performance, by tuning the hyperparameter, debugging iteratively the model as 

complexity is added, and performing error analysis to uncover common failure modes. 

In this phase the efforts should be focused on the distribution shift, the difference 

between the train set error and the validation set error, addressing the problem of 

underfitting and overfitting. 

Figure 5.1 – ML projects lifecycle (from 
jeremyjordan.me) 
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Testing and evaluation. It involves evaluating the performance of the model on test 

distribution, understanding differences and issues between train and test set 

performance. Test sets could change during time, and it is important that the model 

score does not degrade with new examples or new data. 

Ongoing model maintenance. If used consistently over time, a machine learning project 

requires maintenance and a continuous updating since its performance could decline 

or input signals may change over time. In addition, the model can be improved over 

time, adding new training examples, or changing the network architecture with more 

performing model. 

 

5.2 Algorithm implementation 

The development and the training of the various models, as well as the implementation 

of supporting functions and additional scripts, was carried out using the coding 

language of MATLAB® with the support of various add-on Toolboxes. The Image 

Processing Toolbox™ provides a set of reference-standard algorithms and workflow 

for image analysis, visualization, manipulation and processing. The Computer Vision 

Toolbox™ provides functions and apps for designing computer vision systems and 

tasks, such as feature detection or matching, and allow the calibration workflows. Deep 

Learning Toolbox™ provides several tools and frameworks for implementing and 

designing deep neural networks, using various algorithms and pretrained models. It 

helps to design and train graphically, and to manage complex deep learning 

experiments, keeping track of training parameters, and analyzing the results. 

As already mentioned in the previous paragraph (§3.3), the point cloud semantic 

segmentation pipeline involves firstly the segmentation of a set of images. As illustrated 

in the paragraph §3.2.1, there are several state-of-the-art models for image semantic 

segmentation, and depending on the specific tasks, some work better than others. In 

this study three neural network have been tested and implemented: Fully Convolutional 

Network (FCN), SegNet, and DeepLabv3+. 

5.2.1 Fully Convolutional Network (FCN) 

Fully Convolutional Network (FCN) (Long et al., 2015) is the first architecture trained 

end-to-end for pixel-wise prediction and from supervised pre-training. It allows to 

adapt standard classification networks such as VGG net, AlexNet or GoogLeNet into 
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fully convolutional networks and transfer their learned representation by fine-tuning 

to segmentation task. The structure of the architecture is shown in Figure 5.2. 

The network is composed by a down-sampling part and an up-sampling part. The first 

part is a standard CNN composed by series of layers, in which the image features are 

extracted via convolution, followed by activation functions and pooling layers. At the 

end of the down-sampling network the number of channels is transformed into 

number of classes with a 1 × 1 convolutional layer.  The up-sampling network 

transforms the height and width of the feature maps to those of the input image via 

deconvolution or transposed convolution. Just like standard convolution the layers are defined 

by the padding and stride, and they have a learnable kernel and activation functions. 

To refine the output by adding links that combine the final prediction layer with lower 

layers with finer strides. Depending on the type and the depth of the skip connections, 

three model types are available: FCN-32s, FCN-16s and FCN-8s. The function 

fcnLayers() in MATLAB, returns a fully convolutional network configured by 

default as FCN-8s, preinitialized using layers and weights from the VGG-16 based 

architecture (Simonyan & Zisserman, 2014) pretrained on the ImageNet database. 

With the function type()it is possible to specified other types of FCN model: FCN-

32s, that up samples the final feature map by a factor of 32, FCN-16s that up samples 

the final feature map by a factor of 16 after fusing the feature map from the fourth 

pooling layer, FCN-8s, that up samples the final feature map by a factor of 8 after 

fusing the feature map from the third and fourth pooling layers. In this study FCN-8s 

has been used since it provided finer-grain segmentation at the cost of additional 

computational. 

Figure 5.2 – Fully Convolutional Network architecture (Long et al., 2015) 
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5.2.2 SegNet 

SegNet (Badrinarayanan et al., 2017) is composed by an encoder network and a 

corresponding decoder network, followed by a final pixel-wise classification layer, as 

shown in Figure 5.3.  

The encoder network consists of 13 convolutional layers, and each encoder performs 

a convolution to produce a set of feature maps. The maps are then batch normalized 

and passed through an element-wise rectified linear unit (ReLU)𝑚𝑎𝑥(0, 𝑥). Following 

that, a 2 × 2 window with stride 2 max-pooling layer is applied, and the result sub-

sampled by a factor of 2. To avoid loss of spatial resolution it is necessary to capture 

and store boundary information before max-pooling and sub-sampling. The decoder 

network has the same number of layers of the encoder, and it up samples the input 

feature maps using the memorized max-pooling indices. The SegNet decoding 

technique consists in convolving the feature maps with a trainable decoder filter bank 

to produce a dense feature maps that is then batch normalized. The final high 

dimensional feature output by the last decoder is fed to a trainable soft-max classifier. 

The output is a K channel image of probabilities where K is the number of classes. In 

MATLAB the function segnetLayers() returns the SegNet architecture. It requires 

the specification of the input image size, the number of categories and the choice of a 

base model. The available models are VGG-16 and VGG-19, with an encoder depth 

of 5, pretrained on ImageNet database. The results presented below in this study are 

carried out with VGG-19. 

5.2.3 DeepLabv3+ 

Deeplabv3+ (L.-C. Chen et al., 2018) employs atrous convolution with upsampled 

filters to extract dense feature maps and to capture long range context. Atrous 

convolution allows to explicitly control how densely to compute the feature, and it 

allows to avoid signal decimation caused by stride and pooling. The encoder module 

Figure 5.3 – SegNet architecture (Badrinarayanan et al., 2016) 
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encodes multi-scale contextual information by applying atrous convolution at multiple 

scales, while the simple yet effective decoder module refines the segmentation results 

along object boundaries. The structure of the network is illustrated in Figure 5.4. 

MATLAB allows the implementation of this network architecture with the function 

deeplabv3plus(), that requires three inputs: the image size, specified as a 2-element 

or 3-elements vector in the format [height, width, 3], the number of the classes, 

specified as an integer greater than 1, and the base classification network. Several base 

architectures are available, and they have different characteristics mainly differing on 

precision, speed, and network dimension. The choice of the architecture is based on a 

compromise between these characteristics. In this study four based architectures have 

been tested: ResNet18, ResNet50, VGG-16, VGG-19. After several tests it turned out 

that ResNet18 was the most suitable on the data, and the best compromise between 

speed and precision. The results that are going to be illustrated are the results obtained 

with ResNet18 (K. He et al., 2015), pretrained on the ImageNet database. 

 

5.3 Training settings 

In this paragraph the setting used to evaluate the performance of the various models 

will be illustrated and explained, and they include the image processing and preparation 

(§5.4.1), the training tests (§5.4.2), the hyperparameter tuning (§5.4.3), and the 

evaluation metrics (§5.4.4). 

5.3.1 Image processing and preparation 

For all the tests, before starting the training procedure, the images generated by the 

labelling projection procedure (§4.3.5) have been processed and set up, to make them 

Figure 5.4 – DeepLabv3+ architecture (Chen et al., 2018) 
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more homogeneous and suitable to feed the network. Each image has been processed 

by four steps, described below:  

Resizing. To maintain the highest quality and accuracy, the ground-truth output by the 

labelling has been produced with the same dimension of the input images, and 

currently, the images composing the dataset have the dimension of 2592×3872 pixels. 

This input size is too large to train a deep network, and it would require long training 

time and high memory consumption. After a series of experiments, the images have 

been downsized to 720×1075 pixels. Furthermore, this operation allows to 

homogenize data of different size in case of an integration with new images captured 

with different cameras or sensors. 

Keeping Verticality. The images of the photogrammetric survey could be acquired with 

different camera orientations, hence, in some cases, they do not respect the correct 

verticality of the scene. To help the network to learn more easily some features during 

the training, each image has been rotated to keep the correct verticality of the building 

or the scene on the images. 

Cropping. Due to the rotation the images could have different aspect ratios between 

width and height, but the neural network needs the same input size for training. To 

avoid resizing and distortion the images have been cropped in a square format, 

producing two overlapping square tiles for each image. Hence the final size of the 

input is 720×720 pixels with a depth of 3 channels (RGB). 

Image Discarding. From a visual examination of the generated ground truth, turned out 

the presence of some useless tiles, mainly caused by three factors: (i) too high 

percentage of background, (ii) the occurrence of too few classes, and (iii) the 

predominance of one class on the others. To avoid biases during training, the images 

could be filtered through a series of selecting rules, discarding the images with the 

mentioned issues. Several rules could be set and implemented, and the selecting rules 

that have been used in the following tests are reported below: 

 

1) % 𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠 𝒃𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅 < 30% 

2) 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 > 5 

3) % 𝑝𝑖𝑥𝑒𝑙𝑠 𝟏𝒔𝒕 𝒄𝒍𝒂𝒔𝒔 < 2 × (% 𝑝𝑖𝑥𝑒𝑙𝑠 𝟐𝒔𝒕 𝒄𝒍𝒂𝒔𝒔) 

4) % 𝑝𝑖𝑥𝑒𝑙𝑠 𝟐𝒔𝒕 𝒄𝒍𝒂𝒔𝒔 < 2 × (% 𝑝𝑖𝑥𝑒𝑙𝑠 𝟑𝒓𝒅 𝒄𝒍𝒂𝒔𝒔) 
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5.3.2 Training tests 

Data distribution and splitting are two key points to structure a machine learning 

project, and they have a remarkable effect on the model performance and usability. 

The main aim is to develop a wide-range model able to generalize as many scenes as 

possible, and this ability can be obtained by providing a large training set, with a wide 

range of scenes, buildings, constructive elements and structure typologies, and a 

validation/test set quite different and varied in relation to the training set. 

Nevertheless, the available dataset is still limited in building typologies, and, currently, 

it does not allow a good level of flexibility in data organization and splitting, and it 

makes challenging reaching a wide capability. However, in this study three test 

typologies have been carried out, and they are described in the following sections. 

Test A. The first set of tests is the simplest and less challenging, and it consists in 

testing each building of the dataset one by one. The entire set of images of each 

building was randomly shuffled, and then partitioned in training set, validation set and 

test set, with the percentage respectively of 60%, 20%, and 20%. Since the images in 

the test set are similar to the images in the training set, the model should be able to 

generalize the solutions quite easily in this series of tests. Despite these tests do not 

provide a general model with a wide capability, they are helpful to set the 

hyperparameter of the networks, to compare the performance of the various 

architectures, to assess the quality and the correct functioning of the generated dataset, 

and, generally, to conduct easily preliminary evaluations. Figure 5.5 shows the structure 

of the test for the first building (1_SC) Spedale del Ceppo. 

Figure 5.5 – Structure of test A for (1_SC) Spedale del Ceppo 
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Test B. In this test all the images of the five buildings were used. The images were 

randomly shuffled, and then partitioned in training set, validation set and test set, with 

the percentage respectively of 60%, 20%, and 20%. Although the presence of several 

building typologies, even this test is not particularly relevant to achieve a general model 

with a wide capability, since some images in the training set are analogous to some 

images in the test set. However, the test is helpful to assess the capability with several 

building typologies, to fine-tune the hyperparameters, and to evaluate the effect of 

transfer learning and data augmentation on the performance. Figure 5.6 shows the 

structure of Test B, including the number of used images, and the percentage of images 

used to train and test the model. 

Test C. The last set of tests is the most challenging, and it represents the target task 

of a general semantic segmentation procedure. The tests consist of attempting the 

prediction of an unseen scenario. To perform these tests the images of four buildings 

were used for the training phase, splitting them in training set (60%), validation set 

(20%) and internal test set (20%), and the images of the remaining building were used 

to the external test of the model. Despite the number of images may seem large enough 

to perform this type of tests, the generalization of the solution will be a challenging 

task for the model, since the typologies of buildings to learn the features are limited. 

To obtain a comprehensive view of the performance, a cross-validation method was 

used, and each of the five buildings was used alternately as test set. Figure 5.7 shows 

one of the five cross validation test structures, in which (1_SC) Spedale del Ceppo has 

Figure 5.6 – Structure of test B 
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been used as test set, and the other four buildings to train and validate the neural 

network. 

5.3.3 Hyperparameter tuning 

In deep learning tasks, the choice of appropriate hyperparameters is important for an 

efficient training convergence, and for an optimal performance achievement. 

Hyperparameter tuning consists of finding a set of optimal hyperparameter values for 

a learning algorithm while applying this optimized algorithm to any data set. That 

combination of hyperparameters maximizes the model’s performance, minimizing a 

predefined loss function to produce better results with fewer errors. 

Figure 5.7 – Structure of test C 
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Learning Rate. It is an hyperparameter that controls how much to change the model 

in response to the estimated error each time the model weights are update. Too small 

learning rate may result in long training, while too large rate may result in unstable 

training process. After a series of tests, the initial learning rate was set to α = 0.001 

with a drop during training, updating the value every 5 epochs with a factor of 0.3. 

Batch Size. It is the size of the mini-batch to use for each training iteration. A mini-

batch is a subset of the training set that is used to evaluate the gradient of the loss 

function and update the weights. A large batch size allows a faster convergence but is 

more computationally expensive and lead to poor generalization. Depending on the 

number of images during training the size was set from 4 to 8, as a compromise 

between GPU and fast convergence. 

Loss Function. It is the function that maps onto a numerical value the difference 

between the predicted label �̂� and the ground truth label 𝑦 during the training. Various 

loss functions have been proposed in literature, and a detailed survey on existing loss 

function for semantic segmentation can be found in (Jadon, 2020). In the proposed 

tests the Cross-Entropy loss is used (Ma et al., 2004), and it is defined as a measure of 

the difference between two probability distribution for a given set of events. It is 

defined as follow: 

𝐿𝐵𝐶𝐸(𝑦, �̂�) = −(𝑦 log(�̂�) + (1 − 𝑦) log(1 − �̂�)) (5.1) 

Optimizer. The optimizer or solver is used to update the parameters at each iteration 

during training to minimize the loss function. There are many optimizers, and its 

choice is an important aspect to perform a good training. In this study three optimizers 

have been tested. The Stochastic Gradient Descent (SGD), the Root Mean Square 

Propagation (RMSProp) and the Adam. After a series of tests, the SGD with 

Momentum turned out to be the most suitable. The stochastic gradient descend (SGD) 

algorithm updates the weight and biases to minimize the loss function, by determining 

small steps at each iteration in the direction of the negative gradient of the loss, but it 

can oscillate along the path towards the optimum. The Stochastic Gradient Descent 

with Momentum (SGDM) reduces this oscillations adding an additional term. It is 

defined as follow: 

𝜃ℓ+1 = 𝜃ℓ − 𝛼𝛻𝐸(𝜃ℓ) + 𝛾(𝜃ℓ − 𝜃ℓ−1) (5.2) 

where ℓ is the iteration number, 𝛼 > 0 is the learning rate, 𝜃 is the parameter vector, 

𝐸(𝜃) is the loss function, and 𝛾 is the momentum. More detailed information about 

the optimizers can be found in (D. Choi et al., 2019). 
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L2 Regularization. In order to reduce the overfitting a regularization term for the 

weight to the loss function can be added, and the loss function takes the form: 

𝐸𝑅(𝜃) = 𝐸(𝜃) + 𝜆 ∑ 𝑤𝑖
2

𝑁

𝑖=1

 (5.3) 

Where 𝑤 is the weight vector, and  𝜆 is the regularization factor. After a series of tests, 

the regularization factor was set to 𝜆 = 0,005. 

Class Weighting. As already shown in the previous chapter, the classes of the new 

dataset are not balanced, and to improve the performance when class imbalance is 

present, class weighting can be used. Class weights define the relative importance of 

each class to the training process. They are inversely proportional to the frequency of 

the respective classes therefore they increase the importance of less prevalent classes 

to the training process. 

N° of Epochs. It is the maximum number of epochs during the training. One epoch 

is when an entire dataset is passed forward and backward through the neural network 

only once. As the number of epochs increases, a greater number of times the weights 

are changed in the neural network, and as it increases, the result goes from underfitting 

to optimal to overfitting. Experiments have shown that over 30 epochs there was no 

remarkable benefits in terms of loss, hence the maximum was set to 35 epochs. 

5.3.4 Evaluation metrics 

In addition to a visual evaluations and assessments based on human perception, it is 

fundamental that semantic segmentation systems are evaluated rigorously, in order to 

compare the performance in a systematic way. This evaluation must also be conducted 

using standard and well-known metrics that allow fair comparisons with other existing 

methods. Several aspects can be evaluated to assert the usefulness and the validity of a 

model: execution time, memory footprint, and accuracy. Depending on the task, the purposes, 

or the context some metrics could be more important than others. In this study the 

attention will be focused on the accuracy, not having to deal for example with real time 

applications, that require a certain execution speed, or not needing a specific threshold 

of memory usage. Nevertheless, they are two important aspects to deal with, since they 

have a relevant impact during the training. Many evaluation criteria have been 

proposed to assess the accuracy of semantic segmentation models. The predicted labels 

are divided into true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN). Common evaluation metrics for the semantic segmentation are the 

overall accuracy, the precision, recall and the F1 score. The overall accuracy is the ratio 

of the correct classified pixels to the total number of pixels, both correct and incorrect. 
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.4) 

Precision gives the percentage of correct predictions: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.5) 

while recall gives the percentage of the correctly predicted positives:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.6) 

And their harmonic mean is the so-called F1-measure: 

𝐹1 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.7) 

 

 

In the context of this study three main evaluation metrics will be used: Overall Accuracy 

or Global Accuracy, mean Intersection Over Union, and the Confusion Matrix. The Global 

Accuracy (GA) is the ratio of correctly classified pixels, regardless of class, to the total 

number of pixels. It is used to have a quick and computationally inexpensive estimation 

of the percentage of correctly classified pixels. The Intersection Over Union (IoU), also 

known as the Jaccard Index, is one of the most commonly used metrics for the task of 

semantic segmentation. In addition to being extremely effective, it is very 

straightforward to implement as well, and it is used mostly to penalize false positive. 

IoU is defined as the area of overlap between the predicted segmentation and the 

ground truth, divided by the area of union between the predicted segmentation and 

the ground truth. It ranges from 0-1 with 0 meaning no overlap, and 1 a perfect 

overlap. To evaluate multi-class segmentation problems, the mean IoU (mIoU) is 

employed, and it is calculated by averaging the IoU of each class. The Confusion Matrix, 

also known as error matrix, is a table layout that allows the visualization of the 

performance of the model. Each row represents the instances in the predicted class, 

while each column the instances in the true class. It allows a more in-depth analysis of 

the performance of the model, by comparing and identifying the error for each class. 

GA and mIoU are defined in the equation below: 
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𝐺𝐴 =  
∑ 𝑛𝑖𝑖𝑖

∑ 𝑡𝑖𝑖
 (5.8) 

 

𝑚𝐼𝑜𝑈 =  
1

𝑛𝑐
∑

𝑛𝑖𝑖

(𝑡𝑖  +  ∑ 𝑛𝑗𝑖  − 𝑛𝑖𝑖)𝑗
𝑖

 (5.9) 

 

where nc = number of classes included in ground truth 

           nij = number of pixels of class i predicted to belong class j 

           ti = total number of pixels of class i in ground truth 
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5.4 Image segmentation results 

In this paragraph the results obtained with the various semantic segmentation  models 

on the images will be reported. The related results on the point cloud will be illustrated 

in section 5.7. For each of the proposed test will be reported the selected evaluation 

metrics, the Global Accuracy, the mean Intersection over Union, the F1 Score, and the Confusion 

Matrix. In addition, some comparisons between the a) input, b) the ground truth, and 

c) the prediction output by the neural network on the test images will be shown. At 

first the results of Test A for each of the five building are reported. Each of the five 

tests have been performed with the 3 architectures: FCN, SegNet and DeepLabv3+. 

These series of tests were helpful to tune the hyperparameters, to set up the training 

options, and to evaluate the best working architecture on the data. Several trainings 

have been performed, and in the following paragraphs the best obtained performances 

will be reported. Secondly, the result of Test B will be shown. All the five buildings 

have been used to train and test the network, and the test was performed only with 

DeepLabv3+, that turned out to be the most suitable. Finally, the results of test C will 

be reported. This test is a cross validation between the five buildings of the dataset, 

hence five different results are available. For each test the performance on the internal 

and the external test set is compared, together with some examples of the image 

predictions on the external test set. For test C only DeepLabv3+ has been employed. 

A summary of the training tests is reported in Figure 5.8. 

 

Figure 5.8 – Summary of the training test and experiments 

TEST TRAINING SET TEST SET 

A 

A.1 (1_SC) (1_SC) 

A.2 (2_OSA) (2_OSA) 

A.3 (3_SS) (3_SS) 

A.4 (3_SS) (4_CG) 

A.5 (5_CB) (5_CB) 

B  (1_SC),  (2_OSA),  (3_SS),  (4_CG),  (5_CB) (1_SC),  (2_OSA),  (3_SS),  (4_CG),  (5_CB) 

 C 

C.1 (2_OSA),  (3_SS),  (4_CG),  (5_CB) (1_SC) 

C.2 (1_SC),  (3_SS),  (4_CG),  (5_CB) (2_OSA) 

C.3 (1_SC),  (2_OSA),  (4_CG),  (5_CB) (3_SS) 

C.4 (1_SC),  (2_OSA),  (3_SS),  (5_CB) (4_CG) 

C.5 (1_SC),  (2_OSA),  (3_SS),  (4_CG) (5_CB) 
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5.4.1 Test A 

 

A.1 (1_SC) Spedale del Ceppo 

 

 

Table 5.1 – (1_SC) Class metrics using Fully Convolutional Network (FCN). 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,67 0,77 0,48 0,78 0,60 0,68 0,76 0,84 0,90 0,78 0,43 

IoU 0,49 0,33 0,35 0,57 0,28 0,47 0,45 0,50 0,45 0,46 0,40 

F1 score 0,62 0,34 0,44 0,35 0,31 0,47 0,36 0,58 0,44 0,64 0,31 

 

Table 5.2 – (1_SC) Class metrics using SegNet. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,89 0,93 0,83 0,94 0,78 0,87 0,91 0,88 0,94 0,89 0,85 

IoU 0,67 0,73 0,70 0,88 0,55 0,78 0,75 0,81 0,70 0,55 0,82 

F1 score 0,77 0,71 0,70 0,73 0,59 0,71 0,68 0,76 0,62 0,74 0,55 

 

Table 5.3 – (1_SC) Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,90 0,95 0,90 0,96 0,91 0,92 0,93 0,91 0,95 0,91 0,92 

IoU 0,76 0,83 0,80 0,92 0,73 0,85 0,81 0,87 0,86 0,66 0,90 

F1 score 0,88 0,85 0,83 0,80 0,78 0,81 0,80 0,86 0,91 0,89 0,69 

 

Table 5.4 – (1_SC) Dataset metrics. 

 Global Accuracy mean IoU mean F1 score 

FCN 0,60 0,43 0,43 

SegNet 0,87 0,72 0,67 

DeepLabv3+ 0,92 0,81 0,80 
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Figure 5.11 – (1_SC) Confusion matrix and image predictions with DeepLabv3+. 

Figure 5.10 – (1_SC) Confusion matrix and image predictions with FCN. 

Figure 5.9 – (1_SC) Confusion matrix and image predictions with SegNet. 
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A.2 (2_OSA) Ospedale Sant’Antonio 

 

 

 

Table 5.5 – (2_OSA) Class metrics using Fully Convolutional Network (FCN). 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,52 0,53 0,67 0,64 0,09 0,26 - 0,24 0,54 0,69 0,70 

IoU 0,20 0,30 0,23 0,60 0,09 0,23 - 0,22 0,17 0,08 0,38 

F1 score 0,37 0,33 0,30 0,37 0,16 0,21 - 0,24 0,24 0,20 0,23 

 

Table 5.6 – (2_OSA) Class metrics using SegNet. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,84 0,85 0,75 0,95 0,95 0,82 - 0,84 0,95 0,81 0,87 

IoU 0,62 0,64 0,53 0,86 0,85 0,77 - 0,79 0,80 0,35 0,84 

F1 score 0,71 0,59 0,54 0,61 0,74 0,55 - 0,65 0,85 0,46 0,52 

 

Table 5.7 – (2_OSA) Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,90 0,93 0,87 0,97 0,98 0,92 - 0,91 0,99 0,82 0,94 

IoU 0,73 0,80 0,73 0,94 0,91 0,90 - 0,87 0,84 0,57 0,91 

F1 score 0,85 0,84 0,79 0,81 0,89 0,78 - 0,84 0,88 0,79 0,75 

 

Table 5.8 – (2_OSA) Dataset metrics. 

 Global Accuracy mean IoU mean F1 score 

FCN 0,44 0,22 0,25 

SegNet 0,85 0,70 0,58 

DeepLabv3+ 0,93 0,81 0,80 
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Figure 5.14 – (2_OSA) Confusion matrix and image predictions with DeeLabv3+. 

Figure 5.13 – (2_OSA) Confusion matrix and image predictions with FCN. 

Figure 5.12 – (2_OSA) Confusion matrix and image predictions with SegNet. 
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A.3 (3_SS) Basilica della Santissima Annunziata 

 

 

 

Table 5.9 – (3_SS) Class metrics using Fully Convolutional Network (FCN). 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,86 0,88 0,73 0,91 0,96 0,82 0,87 0,86 - 0,86 0,81 

IoU 0,58 0,59 0,67 0,68 0,62 0,74 0,08 0,79 - 0,28 0,77 

F1 score 0,79 0,56 0,67 0,55 0,65 0,75 0,31 0,82 - 0,49 0,58 

 

Table 5.10 – (3_SS) Class metrics using SegNet. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,89 0,92 0,87 0,91 0,96 0,91 0,86 0,90 - 0,82 0,90 

IoU 0,68 0,82 0,81 0,80 0,74 0,83 0,32 0,84 - 0,44 0,87 

F1 score 0,85 0,88 0,83 0,65 0,76 0,85 0,65 0,90 - 0,64 0,70 

 

Table 5.11 – (3_SS) Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,88 0,91 0,87 0,92 0,94 0,88 0,75 0,90 - 0,79 0,93 

IoU 0,65 0,75 0,80 0,84 0,74 0,81 0,37 0,83 - 0,48 0,90 

F1 score 0,84 0,76 0,80 0,70 0,76 0,84 0,66 0,88 - 0,71 0,73 

 

Table 5.12 – (3_SS) Dataset metrics. 

 Global Accuracy mean IoU mean F1 score 

FCN 0,81 0,58 0,64 

SegNet 0,89 0,70 0,76 

DeepLabv3+ 0,89 0,71 0,77 
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Figure 5.15 – (3_SS) Confusion matrix and image predictions with DeepLabv3+. 

Figure 5.17 – (3_SS) Confusion matrix and image predictions with FCN. 

Figure 5.16 – (3_SS) Confusion matrix and image predictions with SegNet. 
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A.4 (4_CG) Certosa del Galluzzo 

 

 

 

Table 5.13 – (4_CG) Class metrics using Fully Convolutional Network (FCN). 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,93 0,85 0,77 0,91 0,93 0,72 - 0,80 0,83 0,80 0,68 

IoU 0,35 0,54 0,42 0,79 0,19 0,67 - 0,68 0,67 0,49 0,63 

F1 score 0,51 0,55 0,55 0,53 0,36 0,50 - 0,57 0,73 0,50 0,40 

 

Table 5.14 – (4_CG) Class metrics using SegNet. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,89 0,84 0,79 0,92 0,86 0,71 - 0,84 0,84 0,74 0,62 

IoU 0,34 0,50 0,41 0,80 0,32 0,64 - 0,67 0,66 0,47 0,57 

F1 score 0,52 0,46 0,54 0,57 0,49 0,51 - 0,60 0,67 0,48 0,41 

 

Table 5.15 – (4_CG) Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,91 0,88 0,85 0,92 0,89 0,84 - 0,88 0,91 0,84 0,85 

IoU 0,51 0,65 0,58 0,87 0,51 0,79 - 0,78 0,76 0,64 0,78 

F1 score 0,77 0,69 0,73 0,67 0,76 0,67 - 0,77 0,84 0,70 0,59 

 

Table 5.16 – (4_CG) Dataset metrics. 

 Global Accuracy mean IoU mean F1 score 

FCN 0,77 0,54 0,49 

SegNet 0,76 0,53 0,50 

DeepLabv3+ 0,86 0,68 0,68 
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Figure 5.20 – (4_CG) Confusion matrix and image predictions with DeepLabv3+. 

Figure 5.18 – (4_CG) Confusion matrix and image predictions with FCN. 

Figure 5.19 – (4_CG) Confusion matrix and image predictions with SegNet. 
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A.5 (5_CB) Cappella Buontalenti 

 

 

 

Table 5.17 – (5_CB) Class metrics using Fully Convolutional Network (FCN). 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,62 0,70 0,59 0,76 0,60 0,56 0,18 0,73 0,53 0,55 0,82 

IoU 0,23 0,43 0,27 0,38 0,43 0,51 0,16 0,53 0,41 0,11 0,74 

F1 score 0,27 0,35 0,35 0,28 0,33 0,32 0,26 0,36 0,24 0,26 0,37 

 

Table 5.18 – (5_CB) Class metrics using SegNet. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,78 0,88 0,76 0,73 0,79 0,61 0,00 0,76 0,61 0,74 0,86 

IoU 0,28 0,63 0,31 0,41 0,59 0,57 0,00 0,61 0,49 0,15 0,80 

F1 score 0,35 0,39 0,36 0,33 0,43 0,37 0,00 0,44 0,34 0,26 0,37 

 

Table 5.19 – (5_CB) Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,76 0,88 0,73 0,91 0,91 0,83 0,90 0,85 0,87 0,70 0,89 

IoU 0,41 0,71 0,52 0,73 0,76 0,76 0,76 0,76 0,75 0,44 0,85 

F1 score 0,48 0,54 0,60 0,26 0,54 0,48 0,49 0,55 0,40 0,48 0,47 

 

Table 5.20 – (5_CB) Dataset metrics. 

 Global Accuracy mean IoU mean F1 score 

FCN 0,67 0,38 0,31 

SegNet 0,72 0,43 0,35 

DeepLabv3+ 0,86 0,67 0,49 
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Figure 5.23 – (5_CB) Confusion matrix and image predictions with DeepLabv3+. 

Figure 5.22 – (5_CB) Confusion matrix and image predictions with FCN. 

Figure 5.21 – (5_CB) Confusion matrix and image predictions with SegNet. 
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5.4.2 Test B 

 
 

 

Table 5.21 – Class metrics using Fully Convolutional Network (FCN). 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,89 0,89 0,86 0,93 0,92 0,84 0,91 0,88 0,89 0,81 0,87 

IoU 0,63 0,70 0,72 0,86 0,76 0,79 0,75 0,80 0,73 0,54 0,81 

F1 score 0,77 0,69 0,70 0,64 0,72 0,66 0,67 0,76 0,75 0,67 0,57 

 

Table 5.22 – Class metrics using SegNet. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,82 0,84 0,74 0,88 0,86 0,68 0,82 0,77 0,84 0,72 0,67 

IoU 0,45 0,55 0,51 0,77 0,58 0,60 0,56 0,67 0,55 0,29 0,60 

F1 score 0,56 0,48 0,48 0,49 0,44 0,44 0,39 0,55 0,49 0,38 0,34 

 

Table 5.23 – Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

accuracy 0,90 0,91 0,90 0,95 0,96 0,87 0,93 0,90 0,93 0,87 0,87 

IoU 0,68 0,75 0,76 0,88 0,76 0,83 0,76 0,84 0,76 0,61 0,84 

F1 score 0,83 0,78 0,77 0,68 0,74 0,73 0,70 0,81 0,78 0,75 0,61 

 

Table 5.24 – Dataset metrics. 

 Global Accuracy mean IoU mean F1 score 

FCN 0,87 0,73 0,67 

SegNet 0,74 0,55 0,45 

DeepLabv3+ 0,89 0,76 0,73 
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Figure 5.26 – Confusion matrix and image predictions with DeepLabv3+. 

Figure 5.25 – Confusion matrix and image predictions with FCN. 

Figure 5.24 – Confusion matrix and image predictions with SegNet. 
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5.4.3 Test C 

C.1 - (2_OSA, 3_SS, 4_CG, 5_CB) Training Set       (1_SC) Test Set 

 

Table 5.25 – Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

internal test set 

accuracy 0,90 0,89 0,88 0,95 0,95 0,88 0,92 0,90 0,90 0,86 0,83 

IoU 0,63 0,73 0,74 0,86 0,85 0,83 0,78 0,81 0,72 0,58 0,80 

F1 score 0,76 0,75 0,77 0,63 0,82 0,70 0,54 0,78 0,76 0,70 0,56 

external test set 

accuracy 0,53 0,77 0,39 0,94 0,20 0,49 0,00 0,91 0,25 0,25 0,52 

IoU 0,39 0,49 0,32 0,49 0,14 0,39 0,00 0,62 0,19 0,20 0,35 

F1 score 0,61 0,54 0,34 0,41 0,15 0,37 0,03 0,57 0,26 0,45 0,27 

 

Table 5.26 – Dataset metrics using DeepLabv3+. 

 Global Accuracy mean IoU mean F1 score 

internal test set 0,88 0,75 0,70 

external test set (1_SC) 0,56 0,32 0,39 

 

 

Figure 5.27 – (1_SC) Confusion matrix and image predictions with DeepLabv3+. 
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C.2 - (1_SC, 3_SS, 4_CG, 5_CB) Training Set       (2_OSA) Test Set 

 

Table 5.27 – Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

internal test set 

accuracy 0,91 0,90 0,87 0,93 0,94 0,86 0,92 0,90 0,90 0,88 0,86 

IoU 0,65 0,74 0,74 0,86 0,67 0,80 0,76 0,82 0,73 0,61 0,83 

F1 score 0,81 0,78 0,76 0,65 0,73 0,70 0,73 0,79 0,80 0,73 0,58 

external test set (2_OSA) 

accuracy 0,36 0,39 0,58 0,67 0,50 0,61 - 0,32 0,69 0,14 0,83 

IoU 0,20 0,34 0,25 0,60 0,47 0,50 - 0,24 0,34 0,10 0,47 

F1 score 0,40 0,35 0,31 0,43 0,32 0,33 - 0,24 0,47 0,28 0,28 

 

Table 5.28 – Dataset metrics using DeepLabv3+. 

 Global Accuracy mean IoU mean F1 score 

internal test set 0,88 0,74 0,70 

external test set (2_OSA) 0,58 0,31 0,31 

 

 

 

Figure 5.28 – (2_OSA) Confusion matrix and image predictions with DeepLabv3+. 
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C.3 - (1_SC, 2_OSA, 4_CG, 5_CB) Training Set       (3_SS) Test Set 

 

Table 5.29 – Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

internal test set 

accuracy 0,92 0,91 0,87 0,92 0,96 0,86 0,92 0,88 0,89 0,89 0,89 

IoU 0,63 0,71 0,71 0,87 0,79 0,82 0,76 0,82 0,77 0,59 0,83 

F1 score 0,76 0,75 0,77 0,68 0,78 0,70 0,74 0,76 0,82 0,73 0,61 

external test set (3_SS) 

accuracy 0,78 0,64 0,49 0,67 0,35 0,50 0,02 0,83 - 0,43 0,79 

IoU 0,30 0,44 0,41 0,57 0,25 0,42 0,00 0,65 - 0,20 0,54 

F1 score 0,44 0,40 0,39 0,31 0,23 0,34 0,03 0,59 - 0,37 0,35 

 

Table 5.30 – Dataset metrics using DeepLabv3+. 

 Global Accuracy mean IoU mean F1 score 

internal test set 0,88 0,75 0,71 

external test set (3_SS) 0,62 0,34 0,37 

 

 

Figure 5.29 – (3_SS) Confusion matrix and image predictions with DeepLabv3+. 
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C.4 - (1_SC, 2_OSA, 3_SS, 5_CB) Training Set       (4_CG) Test Set 

 

Table 5.31 – Class metrics using DeepLabv3+. 

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

internal test set 

accuracy 0,88 0,95 0,90 0,96 0,95 0,91 0,93 0,91 0,97 0,91 0,92 

IoU 0,72 0,83 0,81 0,91 0,84 0,87 0,79 0,86 0,76 0,54 0,90 

F1 score 0,85 0,84 0,82 0,75 0,83 0,81 0,76 0,85 0,75 0,73 0,68 

external test set (4_CG) 

accuracy 0,37 0,44 0,46 0,41 0,31 0,65 - 0,55 0,34 0,05 0,55 

IoU 0,11 0,26 0,18 0,36 0,09 0,50 - 0,42 0,27 0,03 0,31 

F1 score 0,32 0,27 0,30 0,21 0,17 0,36 - 0,28 0,42 0,18 0,21 

 

Table 5.32 – Dataset metrics using DeepLabv3+. 

 Global Accuracy mean IoU mean F1 score 

internal test set 0,92 0,80 0,78 

external test set (4_CG) 0,51 0,22 0,26 

 

 

Figure 5.30 – (4_CG) Confusion matrix and image predictions with DeepLabv3+. 
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C.5 - (1_SC, 2_OSA, 3_SS, 4_CG) Training Set       (5_CB) Test Set 

 

Table 5.33 – Class metrics using DeepLabv3+.  

 arch colu. moul. floo. wind. wall stai. vaul. roof othe. back. 

internal test set 

accuracy 0,89 0,92 0,90 0,95 0,94 0,89 0,94 0,90 0,89 0,89 0,88 

IoU 0,69 0,76 0,78 0,89 0,82 0,84 0,75 0,84 0,77 0,60 0,85 

F1 score 0,84 0,79 0,80 0,69 0,81 0,76 0,69 0,82 0,85 0,74 0,64 

external test set (5_CB) 

accuracy 0,25 0,63 0,25 0,89 0,77 0,43 0,23 0,38 0,08 0,23 0,51 

IoU 0,17 0,46 0,12 0,51 0,58 0,38 0,17 0,36 0,08 0,02 0,31 

F1 score 0,36 0,46 0,18 0,28 0,36 0,25 0,10 0,33 0,18 0,13 0,29 

 

Table 5.34 – Dataset metrics using DeepLabv3+. 

 Global Accuracy mean IoU mean F1 score 

internal test set 0,90 0,77 0,75 

external test set (5_CB) 0,46 0,28 0,27 

 

 

Figure 5.31 – (5_CB) Confusion matrix and image predictions with DeepLabv3+. 
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5.5 Labelling projection on point cloud 

As already mentioned in paragraph §3.3 the 3D point cloud segmentation pipeline is 

composed by two main steps: the segmentation of the related photogrammetric 

images, and the projection of the extracted 2D features on the 3D point cloud. The 

detail about the functioning of reprojection procedure has been already explained in 

paragraph (§3.3.5). In this paragraph the settings and the detail about the application 

of the procedure on the dataset buildings will be illustrated and discussed. 

5.5.1 Settings and options 

The implementation of the reprojection procedure was carried out using MATLAB 

coding, and it allows to set up and to control the reprojection process by means of a 

set of parameters and options. The choice of the settings is fundamental to achieve a 

good performance and to optimize the results obtained by the neural network on the 

images. However, the optimal set of parameters could depend on the single building, 

and in any cases, the quality and the accuracy on the initial image segmentation is 

essential to achieve a high final point cloud segmentation accuracy. In the following 

sections the parameters that control the reprojection process will be illustrated and 

explained. 

Point Cloud Subsampling. In many cases, 3D dense point clouds are made up of 

millions of points, and the management of such huge data is often challenging and 

time consuming, and it requires a high memory consumption. These limitations could 

slow down and compromise the reprojection process, in particular during the test 

phases, in which several experiments were necessary, in order to improve the 

performance and to define the optimal range of parameters. For these reasons a 

subsampling factor has been introduced, and it allows to reduce the number of points 

and to speed up the procedure. As specified in paragraph §2.3.2 there are several 

methods to down-sample a point cloud. In the following tests and experiments a 

simple random sub-sampling has been used, and it is controlled by means of the 

percentage of points to reduce. Besides the improvement of the computing time, the 

subsampling factor helps to find out the optimal point cloud density or number of 

points to achieve the highest accuracy. 

Image Reduction Factor. The maximum number of images that can be involved in 

the reprojection can vary and it depends on the number of images acquired and used 

during the photogrammetric pipeline. However, not necessarily a higher number of 

images involved in the labelling projection guarantee a higher performance or accuracy. 

Some views could be most representative than others and they should have more 

weight during the features transferring. At the same time, some images with inadequate 
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angle views or occlusion problems could bias the label assignment. Several works have 

been proposed for multiview aggregation and they proposed various methods to merge 

2D features from multiple view in a meaningful way, addressing most challenges, like 

the large number of images, the image scale, blur, exposure or obstructions. (Robert 

et al., 2022), (Waechter et al., 2014). The proposed reprojection procedure is based on 

a voting label selection (§3.3.5), and most of these problems are implicitly addressed 

by selecting the most popular label between all the images involved in the vote. 

However, using a large number of images is computationally expensive and often 

useless. A reduction factor has been introduced, and it allows to reduce the number of 

involved images, to speed up the procedure, especially in a test phase, and to assess 

the effect of the number of images on the performance and on the accuracy. 

Pixel Enlarging Factor. The label assignment needs to take into account the point 

position with respect to the camera, hence the related occlusions and obstructions. 

The closest points to the camera should obstruct the points behind them, but due to 

the dimensionless nature of a point, a meaningful way to quantify the amount of 

obstruction needs to be verified. For this reason, the parameter pixel_enlarging_factor 

has been introduced, and it rules the amount of volume obstructed by a point. A line 

passing through the optical centre of the camera is associated with each pixel of the 

related image, and each 3D points on this line could be associated to that pixel. 

Specifically, the parameter rules the distance threshold from the line that determines 

the quantity of points to associate to the pixel. The factor should be expressed as an 

integer major than 1, and the higher its value, the higher the obstruction of the points 

behind the closest point during the label assignment. At the same time, the higher the 

value of the parameter, the lower the number of points  labelled at the end of the 

procedure. 

K_Thr. Once that the N points potentially linkable to the pixel are defined, is still 

remain to determine the N1 points that must be labelled, and the N2 points that are 

hidden by the closer ones. This check is done by computing the distance between the 

points and the camera. If the points are closer than a distance threshold, they are 

labelled and classified as obstructed otherwise. The threshold is computed by the sum 

of the minimum distance from the camera and the points, and the pixel dimension 

projected at that distance increasing by the factor k_thr. Hence, the larger k_thr is,  the 

lower the probability that a point is hidden. By increasing k_thr, the percentage of 

classified pixels grows up, but simultaneously, the accuracy and the precision could 

decrease. 

Min N Vote. A point should be represented at least by two pixels in two different 

images to be considered for the label assignment. Nevertheless, in most of the cases a 

point is represented by several pixels in more than two images, and the voting 
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procedure assigns the most popular label at the selected points. However, when the 

accuracy of the image segmentation network is not high, or the probability of a certain 

class is low, several labels could be assigned to a pixel ideally representative of just one 

point, without a remarkable prevalence of a label. For this reason, a minimum number 

of votes can be set, and it is expressed as a minimum percentage of votes that agrees 

on a certain label. In this way the procedure become more stable and reliable, ensuring 

the labelling only when a high probability is detected. 

Evaluation Metrics. As for the semantic segmentation of the images, it is 

fundamental to evaluate rigorously the performance of the reprojection, and to choose 

the appropriate evaluation metrics. To be able to compare the performance between 

images and point cloud during the reprojection process the same evaluation metrics 

have been used, the Global Accuracy, the mean Intersection over Union and the Confusion 

Matrix. 

5.5.2 Tests 

Due to the large number of parameters and settings, several experiments have been 

performed to find the optimal range of each single parameter, and the optimal 

combinations of settings. Three typologies of tests were carried out and are explained 

in the following sections. 

Test R.GT. The first series of experiments that are going to be reported consist in a 

systematic research of the optimal tuning of the parameters, testing various 

combinations and assessing the effect of each single parameter on the accuracy and 

the performance. The investigation was performed just on one building of the dataset, 

specifically (1_SC) Spedale del Ceppo. To avoid biases caused by an incorrect image 

segmentation, the ground truth has been used for the reprojection. It was thus possible 

to assess the actual performance of the procedure, without ambiguous interpretation 

of the results. Such analysis allowed the correct choice of the parameters to be used in 

the following tests. 

Test R.A. The second set of tests consists in the projection of the predicted label on 

the images by the classifier trained for the Test A (§5.5.1). The predicted labels are 

obtained using the model trained with Deeplabv3+ architecture, according to the 

illustrated results, achieved the best performance. For each of the five buildings in the 

dataset, the photogrammetric images were fed into the trained networks linked to the 

building, and the output labels were used for the projection process. This tests were 

performed with the optimal parameter combination turned out from the previous 

experiments. The tests were helpful to validate the procedure with predicted labels 

which, in contrast to the ground truth, could have lower accuracy and a higher 
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disaccording (offset ?) between pixel labels. This series of tests allows to assess the 

performance decreasing of the neural network results when transferring the image 

features to the 3D point cloud. 

Test R.C. The final set of tests consists in the projection of the predicted label on the 

images by the classifier trained for the Test C (§5.5.3). The results represent the final 

outcome of the entire 3D semantic segmentation pipeline of the point cloud, in the 

case of unseen scenario, and the accuracy of such tests can be considered as the current 

performance of the segmentation procedure. Due to the low precision obtained on 

image segmentation on Test C, a high final performance is not expected, since it could 

not overcome the image segmentation performance. Such as Test C for image 

segmentation, a cross validation between the five buildings of the dataset has been 

performed. 

 

5.6 Labelling projection tests results 

In this paragraph the results of the reprojection on the various tests will be reported, 

and they will be widely discussed in further paragraph (§5.7). The outcome of the 

procedure is the input 3D point cloud with each points associated to a label according 

with the categories of the input images. The points that are not labelled at the end of 

the procedure will be marked as “unclassified”. Two types of methods are used to 

evaluate and compare such procedure. At first, the GA and the mIoU considering all 

the points involved in the reprojection. Secondly, the GA and the mIoU considering 

only the classified points, discarding the “unclassified” points when computing the 

metrics. Therefore, it allows to assess the proper functioning of the procedure, and to 

distinguish misclassification from unclassification. For the tests R.GT, a series of table 

results will be reported, and the two evaluation methods will be compared. For tests 

R.A and R.C will be reported on one hand, the best results obtained on all points, and 

on the other hand, the best results considering only the classified points. The related 

image performance obtained by the neural network will be shown, together with the 

confusion matrices for the “only classified” points case, that allows a deep visual 

assessment of the reprojection on the various classes.  
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5.6.1 Test R.GT 

Point Cloud Subsampling. As shown in Table 5.33 five values of subsampling have 

been tested. Decreasing the percentage of points, the percentage of unlabelled point 

during the reprojection decreases, and, at the same time, the GA and the mIoU 

improve considering all the points, and they have a little decline considering only the 

classifying points. 

Table 5.35 – Reprojection results at different point cloud subsampling factor. 

Point Subsampling 100% 75% 50% 25% 10% 

Image Reduction 100% 100% 100% 100% 100% 

pxl_enlarging_factor 1 1 1 1 1 

k_thr 1 1 1 1 1 

n_votes 1 1 1 1 1 

RESULTS 

Unclassified points (%) 10,3 6,3 2,6 0,3 0,0 

ALL  
POINTS 

Global Accuracy (%) 85,1 87,7 91,4 93,3 92,5 

mean IoU (%) 72,7 74,1 78 79,8 78,2 

ONLY 
 CLASSIFIED 

Global Accuracy (%) 94,9 94,4 93,9 93,6 92,5 

mean IoU (%) 82,3 81,2 80,7 80,1 78,2 

Image Reduction Factor. The number of images used during the reprojection has a 

remarkable impact on the performance. As shown in Table 5.36 reducing the number 

of images involved, the unlabelled points increase and both the GA and mIoU 

decrease. Considering only the classified points the performance remains almost the 

same, revealing that with less images most of the points are unlabelled rather that 

misclassified. 

Table 5.36 - Reprojection results at different image subsampling factor. 

Point Subsampling 100% 100% 100% 100% 100% 

Image Reduction 75% 50% 25% 10% 5% 

pxl_enlarging_factor 1 1 1 1 1 

k_thr 1 1 1 1 1 

n_votes 1 1 1 1 1 

RESULTS 

Unclassified points (%) 12,3 15,6 23,1 39,1 53,5 

ALL  
POINTS 

Global Accuracy (%) 82,2 80,3 73,1 57,8 44,1 

mean IoU (%) 70,3 68,6 62,5 49 38,8 

ONLY 
 CLASSIFIED 

Global Accuracy (%) 94,9 95,1 95,2 94,9 94,5 

mean IoU (%) 82,1 82,4 82,6 82,2 82 
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Pixel Enlarging Factor. Five values of the parameters have been tested. As expected, 

the percentage of labelled points reduces with the increase of the factor, but 

simultaneously, enlarging the occlusions has a positive effect on the performance 

considering only the classified points. Depending on the required outcome, the factor 

could be set favouring the accuracy on one hand, or the number of classified points 

on the other hand (Table 5.37). 

Table 5.37 - Reprojection results at different pixel enlarging factor. 

Point Subsampling 25% 25% 25% 25% 25% 

Image Reduction 50% 50% 50% 50% 50% 

pxl_enlarging_factor 1 2 3 5 7 

k_thr 1 1 1 1 1 

n_votes 1 1 1 1 1 

RESULTS 

Unclassified points (%) 5,3 14,7 33,9 58,7 24,6 

ALL  
POINTS 

Global Accuracy (%) 85,2 80,7 63,7 40,1 31,5 

mean IoU (%) 73,3 68,9 55,6 35,6 27,6 

ONLY 
 CLASSIFIED 

Global Accuracy (%) 92,9 94,7 96,4 97,2 97,1 

mean IoU (%) 77,9 81,8 84,6 86,3 86,5 

 

K_thr factor. As shown in Table 5.38 the k_thr factor has remarkable benefits both 

for the percentage of classified points and for the accuracy with an improvement 

considering all the points involved, and only the classified points. 

Table 5.38 - Reprojection results at different k_thr factor. 

Point Subsampling 25% 25% 25% 25% 25% 

Image Reduction 50% 50% 50% 50% 50% 

pxl_enlarging_factor 1 1 1 1 1 

k_thr 1 2 3 5 10 

n_votes 1 1 1 1 1 

RESULTS 

Unclassified points (%) 5,3 0,7 0,5 0,3 0,1 

ALL  
POINTS 

Global Accuracy (%) 85,2 92,8 93,2 93,6 93,9 

mean IoU (%) 73,3 79,1 79,5 80 80,2 

ONLY 
 CLASSIFIED 

Global Accuracy (%) 92,9 93,5 93,7 93,9 94,1 

mean IoU (%) 77,9 79,8 80 80,3 80,3 

  



5.6 Labelling projection tests results 153 

 
N min Votes. The minimum number of votes chosen for the reprojection has a 

remarkable impact on the percentage of labelled points and on the accuracy. Its choice 

is strictly related to the number of images using during the process, and it is not 

possible to choose a correct value beforehand. As expected, increasing the votes 

reduces the number of labelled points, and the overall accuracy considering only the 

classified increases. Its effect will be better valued in the next tests, in which the pixel 

predictions could have remarkable discrepancy. 

 

Table 5.39 - Reprojection results at different number of voting factor. 

Point Subsampling 100% 100% 100% 100% 100% 

Image Reduction 100% 100% 100% 100% 100% 

pxl_enlarging_factor 1 1 1 1 1 

k_thr 1 1 1 1 1 

n_votes 1 2 3 7 10 

RESULTS 

Unclassified points (%) 10,3 17,1 23 40,8 49,9 

ALL  
POINTS 

Global Accuracy (%) 85,1 79,4 74,2 57,7 48,9 

mean IoU (%) 72,7 68,4 64,3 50,2 42,5 

ONLY 
 CLASSIFIED 

Global Accuracy (%) 94,9 95,5 96,4 97,5 97,8 

mean IoU (%) 82,3 83,9 85 86,8 87,4 

 

Despite the use of the ground truth images for the reprojection, the accuracy of the 

final point cloud has never achieved a GA of 100% and a MIoU of 100% as expected. 

Rather than a reprojection malfunctioning, it can be explained as the result of an 

imperfect ground truth, since it has been generated automatically from a labelled point 

cloud. The transition from point-to-image, and then from image-to-point, has 

inevitably led to a loss of accuracy. Depending on the choice of the parameters and 

their combinations, it is possible to favour the number of classified points with a loss 

of accuracy, or to favour accuracy with a decrease in classified points.  
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5.6.2 Test R.A 

R.A.1 (1_SC) Spedale del Ceppo 

 

Table 5.40 – (1_SC) Reprojection results of Test R.A.1. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 2,3 19,8 - 

Global Accuracy (%) 87,9 91,4 92,1 

Mean IoU (%) 68,4 76,3 81,7 

 

  

Figure 5.32 – (1_SC) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.33 – Test R.A.1 Point cloud confusion matrix (orange), related confusion matrix 
on neural network image prediction (blue). 
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R.A.2 (2_OSA) Ospedale Sant’Antonio 

Table 5.41 – (2_OSA) Reprojection results of Test R.A.2. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 1,6 22,4 - 

Global Accuracy (%) 87,8 92,4 93,1 

Mean IoU (%) 68,8 75,3 81,9 

 

  

Figure 5.34 – (2_OSA) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.35 – Test R.A.2 Point cloud confusion matrix (orange), related confusion matrix 
on neural network image prediction (blue). 
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R.A.3 (3_SS) Basilica della Santissima Annunziata 

Table 5.42 – (3_SS) Reprojection results of Test R.A.3. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 0,1 6,1 - 

Global Accuracy (%) 89,9 92,2 89,7 

Mean IoU (%) 64,2 68,8 71,6 

 

  

Figure 5.36 – (3_SS) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.37 – Test R.A.3 Point cloud confusion matrix (orange), related confusion matrix 
on neural network image prediction (blue). 
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R.A.4 (4_CG) Certosa del Galluzzo 

Table 5.43 – (4_CG) Reprojection results of Test R.A.4. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 9,3 35,3 - 

Global Accuracy (%) 67,3 83,2 86,8 

Mean IoU (%) 35,4 51,4 68,7 

 

  

Figure 5.38 – (4_CG) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.39 – Test R.A.4 Point cloud confusion matrix (orange), related confusion matrix 
on neural network image prediction (blue). 
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R.A.5 (5_CB) Cappella Buontalenti 

Table 5.44 – (5_CB) Reprojection results of Test R.A.5. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 0,6 8,2 - 

Global Accuracy (%) 73,9 79,1 86,1 

Mean IoU (%) 38,3 44,3 67,5 

 

  

Figure 5.40 – (5_CB) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.41 – Test R.A.4 Point cloud confusion matrix (orange), related confusion matrix on 
neural network image prediction (blue). 
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5.6.3 Test R.C 

R.C.1 (1_SC) Spedale del Ceppo 

 

Table 5.45 – (1_SC) Reprojection results of Test R.C.1. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 14,7 43,2 - 

Global Accuracy (%) 50,4 52,0 56,1 

Mean IoU (%) 30,6 32,6 32,5 

 

  

Figure 5.42 – (1_SC) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.43 – Test R.C.1 Point cloud confusion matrix (orange), related confusion matrix 
on neural network image prediction (blue). 
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R.C.2 (2_OSA) Ospedale Sant’Antonio 

Table 5.46 – (2_OSA) Reprojection results of Test R.C.2. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 2,6 26,0 - 

Global Accuracy (%) 48,1 54,8 58,4 

Mean IoU (%) 27,2 31,2 31,8 

 

  

Figure 5.44 – (2_OSA) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.45 – Test R.C.2 Point cloud confusion matrix (orange), related confusion matrix 
on neural network image prediction (blue). 
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R.C.3 (3_SS) Basilica della Santissima Annunziata 

Table 5.47 – (3_SS) Reprojection results of Test R.C.3. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 0,0 13,9 - 

Global Accuracy (%) 56,7 61,3 62,9 

Mean IoU (%) 27,9 32,2 34,4 

 

  

Figure 5.46 – (3_SS) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.47 – Test R.C.3 Point cloud confusion matrix (orange), related confusion matrix 
on neural network image prediction (blue). 



162 Semantic Segmentation Tests and Results 

 
R.C.4 (4_CG) Certosa del Galluzzo 

Table 5.48 – (4_CG) Reprojection results of Test R.C.4. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 7,6 22,3 - 

Global Accuracy (%) 39,3 53,4 51,1 

Mean IoU (%) 13,1 19,7 22,9 

 

  

Figure 5.48 – (4_CG) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.49 – Test R.C.4 Point cloud confusion matrix (orange), related confusion matrix 
on neural network image prediction (blue). 



5.6 Labelling projection tests results 163 

 
R.C.5 (5_CB) Cappella Buontalenti 

Table 5.49 – (5_CB) Reprojection results of Test R.C.5. 

RESULTS 

 All Points Only Classified Images 

Unlabelled Points (%) 0,0 32,7 - 

Global Accuracy (%) 35,2 42,3 46,9 

Mean IoU (%) 14,9 18,8 28,7 

 

  

Figure 5.50 – (5_CB) RGB input point cloud (upper left), ground truth point cloud (upper 
right), predicted point cloud (down left), and misclassified points (down right). 

Figure 5.51 – Test R.C.5 Point cloud confusion matrix (orange), related confusion matrix on 
neural network image prediction (blue). 
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5.7 Discussion 

In this chapter, the results of the 3D point cloud semantic segmentation procedure 

have been reported. As mentioned, the procedure is composed by two main blocks: 

the semantic segmentation of the images, and the reprojection of the features on the 

point cloud. In this paragraph the performance and the accuracy of each block are 

assessed and widely discussed, trying to figure out the main issues and challenges, as 

well as the strengths and the positive results. Altough the final outcome of the 

procedure is the segmented 3D point cloud, and the image segmentation is only an 

intermediate phase of the segmentation, both blocks are analysed and discussed 

separately. This method allows a better understanding of the overall performance, and 

it allows to figure out and localize the major issues and limitation of the procedure. 

5.7.1 Image semantic segmentation 

Test A. As already explained, this is the simplest set of tests, and just one building at 

once has been used for the training and the evaluation phase. This tests have been 

mainly used to tune the hyperparameters of the neural networks, and to evaluate the 

best performing model. In general, the performances of the three models are 

satisfactory for each of the five buildings. The accuracy of the three models is quite 

similar in terms of GA and mIoU, but though slightly, the best performances have 

been achieved in all the three cases by Deeplabv3+ (Figure 5.52).  

 
Figure 5.52 – GA of Test A for each building with FCN, SegNet and Deeplabv3+ 
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SegNet have been trained for 100 epochs, with a stabilization of the loss value after 

80-90 epochs. For the same results, Deeplabv3+ has been trained for 50 epochs, and 

it achieved the best performance and the stabilization of the loss value after 30-40 

epochs. This can be explained by the classification architecture used as based for the 

three models: FCN and SegNet use VGG-16, with a depth of 16 layers and 138 

millions of learnable parameters. ResNet18, used by Deeplabv3+, has a depth of 18 

layers, but just 11,7 millions of learnable parameters, that makes the training faster. 

Despite the lower number of parameters, ResNet based classification architectures are 

more efficient and ones of the best feature extractors for semantic segmentation. As 

shown in Figure 5.52, the first three buildings of the dataset, (1_SC), (2_OSA) and 

(3_SS) achieved a similar performance, with a GA around 90%. Each class is well 

predicted, without significant errors. From the confusion matrices turned out a general 

minor trend to confuse the class “arch” with the class “vault”, and the class “stair” 

with the class “floor”. It is not surprising since the similar nature of these class 

typologies. The last two buildings of the dataset (4_CG) and (5_CB) showed a lower 

overall performance compared to the first ones, and they showed a sparser matrix 

without a precise scheme of errors. It can be the result of a general lower precision of 

the ground truth caused by some issues in the 3D scene. In (4_CG) just a portion of 

the 3D scene has been reconstructed, and the remaining part has been classified like 

“background” in the images. Therefore, during the testing phase, the background is 

sometimes confused with other categories.  In (5_CB) the large presence of vegetation 

around the buildings led to a less accurate point cloud, hence to a less accurate ground-

truth caused by occlusion problems. These problems can be addressed and overcome 

by directly improving the accuracy of the initial point cloud. In conclusion, Test A 

allowed to tune the various networks and identify the most suitable and efficient one. 

As expected, the overall performance is good for each building, but it is not significant 

in terms of the generalization and capabilities of the model, since the images used to 

train the model are similar to the images used to test it, without relevant differences 

among the same class. 

Test B. This test allowed to evaluate the performance of the three network 

architectures with more than one building in the training set and in the test set, and to 

assess which one is more able to generalize among different building typologies. 

Moreover, these tests were helpful to fine-tune the hyperparameters and to find the 

optimal training settings. The performances of all the three cases are quite good, and 

once again, Deeplabv3+ turned out to be the most accurate and efficient, with a GA 

of 89% and a mIoU of 76% obtained with a training of 50 epochs. Similar results were 

obtained with FCN with a 100 epochs training, while SegNet achieved the worst 

performance with a GA of 74% of and a mIoU of 55%. The confusion matrices show 

the absence of remarkable prediction errors, with the same little exchange of Test A 
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between the classes “arch” and “vault”. As the previous set of tests, these results are 

not significant in terms of generalization of the model since similar images of the same 

building were used both for training and test the network. Due to the higher 

performance and efficiency of Deeplabv3+ compared to the other networks, the 

following tests have been performed using only this network architectures. 

Test C. The final set of tests was the most challenging, since the main aim was the 

prediction of an unseen scenario. A cross validation between the five buildings has 

been performed, using as training set four buildings, and as test set the remaining one. 

Considering the efficiency compared to the other networks, just Deeplabv3+ was used 

to carry on Test C. The general performance of the cross-validation test for all the five 

buildings is still unsatisfactory. The average GA of the cross-validation test is 55% and 

the average mIoU is 30%.  

 
Figure 5.53 – Performance on Test C for the five buildings 

At the same time, the GA and the mIoU on the related internal test set composed by 

an image subset of the training buildings are respectively 89% and 78%. This kind of 
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large amount of irrelevant or noisy information, (iii) the model trains for too long on 

a single sample of data, (iv) the model complexity is high, so it learns the noise within 

the training data. However, it is not surprising that the models show overfitting 

problems, since as already mentioned, the dataset still presents limitation in number of 
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samples and relevant data. Despite the number of images could be enough to train 

such models, the images in the training set represents just four buildings, hence they 

are not various and relevant enough to generalize different class typologies. Several 

methods have been used to address the overfitting problem during training: 

regularization, class weighting, dropout, early stopping. These methods showed no 

remarkable improvements, which implies the issue is mostly data related. In that case, 

data augmentation can be an effective strategy, but also in this case no improvements 

have been achieved. As example, the results of Test C.1 using data augmentation are 

reported. Online augmentation has been used, and it consists of applying the 

transformation directly on the minibatch during training with a random step. Various 

types of transformations can be used, and in this example vertical mirroring, cropping, 

blurring, noising, and colour filtering have been tested. The performance on the test 

set with data augmentation decrease from 56% to 47% for the GA and from 32% to 

24% for the mIoU. Figure 5.54 shows the confusion matrices obtained without data 

augmentation (blue) and with data augmentation (red), and it shows a remarkable 

decrease of the accuracy for each class. 

According with the performed tests and the related results, the other strategy to avoid 

overfitting and improve the overall performance of the model is to increase the 

number of building typologies in the dataset. Despite the evident weak results achieved 

in the case of unseen scenarios for all the five buildings, by looking deeper at the results 

in the confusion matrices some positive observations can be made. At first, generally 

the matrices maintain a good diagonality, and the prediction errors is mostly 

Figure 5.54 – Comparison of confusion matrix with (blue) and without (red) data 
augmentation. 
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concentrated in the last column of the matrix. Hence most of the incorrect pixels are 

classified like “none”, that can be considered as a non-classification rather than a 

misclassification. Generally, some classes always have a better accuracy compared to 

others. The best accuracies are always achieved on “column”, “floor”, “vault” and 

“none” that are the most prevalent classes in the scene. The worst accuracies are 

achieved on “stairs”, “roof” and “other” that are the lower percentage classes. The 

resulting mIoU is negatively affected by these errors equally, without considering the 

percentage proportion in the scene. The class “wall” is mostly well predicted with a 

good accuracy, but generally it is over segmented, and other classes are sometimes 

confused with it. Such the other tests, the class “arch” and “vault” are sometimes 

interchanged as well as “stair” and “floor”. Finally, the limitation of the class “none” 

or “background” during training is to underline. As shown in Figure 5.55 the labels in 

the ground truth are assigned only to the main building, while the remaining pixels are 

automatically labelled as “none” (in black). These pixels comprise several objects such 

as sky, vegetation, streets, etc., but often, they comprise other buildings in the 

background, moreover with elements similar to the main building. Figure 5.55 is a clear 

example of this issue, in which the windows, the wall and the roof of the background 

building are analogous to the related objects in the main building. This issue creates a 

bias during training, and it prevents the model to learn and generalize appropriately 

the various categories. Since the class “none” is the most represented in the dataset, it 

has a relevant weight during training, hence it partially explains the high percentage of 

“none” pixels in the predicted images. Moreover, this issue makes the correct 

evaluation of the model more challenging to interpret, since when the model correctly 

predicts a class in the background building, for instance a window or a wall, it is 

computed as an error. Two main strategies can be used to address the problem. Firstly, 

Figure 5.55 – An example of background bias of (1_SC) 
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by giving to the class “none” a small weight during training. It is a tricky and fast 

solution to overcome the issue, but some preliminary tests have shown that together 

with the improvements of “none” predictions, in general it involves a decrease of the 

overall performance. The second solution is to integrate and label the background 

buildings in the scene, hence, to correctly label as much as pixels as possible. Despite 

it requires longer annotation time, it would have lot of benefits in terms of 

generalization, class balancing and obstruction problems. The annotation of the 

dataset will be considered in further improvements of the dataset, as well as further 

expansion and integration. 

Overall Conclusion. Image segmentation is the first block of the segmentation 

procedure, and a fundamental step in obtaining a final good point cloud performance. 

The first two tests (A and B) have shown a good overall performance. Despite they 

are not significant in terms of generalization, they proved the effectiveness of deep 

neural network for semantic segmentation of heritage scenes when a relevant training 

dataset is provided. The last test (C) did not achieve sufficient results, but it was 

expected since the low number of building typologies in the dataset. Several measures 

and expedients have been used to overcome the dataset limitation during training, but 

they were not adequate, underlying a strong relevance of the weakness of the training 

data during the learning phase. As already mentioned, two strategies can be carried on: 

the expansion of the dataset with new buildings or with other existing datasets, and 

the improvement of the image ground truth by labelling the background buildings. 

5.7.2 Labelling projection on point cloud 

Test R.GT. This series of tests aimed to assess and evaluate the effect of the 

projection parameters on the final point cloud, and to find the optimal parameters 

combination. To simplify the valuation of the correct settings, the ground truth images 

have been used. Generally, the procedure works well, but considering a 100% GA and 

a 100% mIoU of the ground truth, a decreasing of the performance on the images is 

always present. Considering all the points of the cloud in the metrics computation, the 

best test achieved a GA of 86% and a mIoU of 73%, with a percentage of unclassified 

points of 10%. Taking out the unclassified points from the metrics computation, the 

best result achieved a GA of 97% and a mIoU of 86%. Hence, in best of the cases, a 

reduction of 3% of the GA and 14% of the mIoU was observed. Depending on the 

choice of the parameters, it is possible to privilege a high accuracy at the cost of a 

higher percentage of unclassified points and vice versa. This choice can be related to 

the use of the point cloud, and its applications. 

Test R.A. This set of tests consisted in the projection of the extracted features by the 

classifier of Test A on the related point cloud. The survey images of each building were 
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input in the trained classifier, and then used to transfer the label to the related point 

cloud. Generally, the results are promising, and the accuracy obtained on the images is 

maintained on the point cloud with no remarkable decreasing. In the figures below 

(Figure 5.56 and Figure 5.57) are reported the metrics for each of the five buildings, 

both for the images (blue) and for the point cloud (orange). 

 
Figure 5.56 – Reprojection results for the five buildings on Test R.A (GA) 

 
Figure 5.57- Reprojection results for the five buildings on Test R.A (mIoU) 

As shown in the histograms, all the five tests reported a little decreasing of the 

performance both for the GA and the mIoU, except the GA of (3_SS) in which a little 
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decrease of the GA of 1-2% and of the mIoU of 5-6%. The last two buildings have a 

general worst performance and a GA and mIoU decreasing after the projection of 5-

7% and 10-15% respectively. Looking deeper at the confusion matrices turned out a 

good performance for each class without errors during the label transfer. The wrong 

predictions are generally the same as the images, and they are propagated to the point 

cloud with the same percentages. As reported in the images, the final segmented point 

clouds show a good visual quality and accuracy, and they show a good overlapping 

with the ground truth. As shown in the misclassified point clouds, the wrong predicted 

or unclassified points are mainly located on the connection regions between different 

categories. In conclusion, the tests proved a proper functioning of the projection 

procedure, with a robust and stable performance even with predicted images with 

different level of accuracy.  

Test R.C. This set of tests consisted in the projection of the extracted features by the 

classifier of Test C on the external test building. The evident poor performances of 

this series of tests are not surprising, since the results are strongly related to the image 

segmentation performance of Test C discussed in the previous paragraph. The starting 

image segmentation accuracy was low, and the quality of the images was insufficient 

to expect good results. In the figures below (Figure 5.58 and Figure 5.59) are reported 

the GA and the mIoU obtained on the images (blue) and on the point cloud (orange). 

 
Figure 5.58 – Reprojection results for the five buildings on Test R.C (GA) 
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Figure 5.59 – Reprojection results for the five buildings on Test R.C (mIoU) 

Despite the overall performance is clearly unsatisfactory, the stability and the 

robustness of the projection procedure is validated even in this series of tests. There 

is no remarkable reduction of the accuracy achieved on the images, and there is no 

remarkable error propagation between the various classes. To make a comparison, in 

the figure below (Figure 5.60) are reported the results achieved with a masking-based 

methodology introduced in (Murtiyoso et al., 2022) and reported in (Pellis et al., 2022). 

 
Figure 5.60 – Masking-based results for the five buildings on Test A (GA) 
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reconstruction. The proposed projection procedure overcomes the performance of 

this methodology. 

Overall Conclusion. Labels projection on the point cloud is the second block of the 

segmentation procedure, and it allows to transfer the features extracted by the neural 

network from the images to the points cloud. The results have shown a good stability 

of the procedure, even in the case of low-quality images, with no notable loss of 

accuracy of the input image performances. However, the procedure leads to a good 

accuracy only if the input labelled images have an equally good accuracy. 

Unfortunately, when the accuracy of the images is low, the projection procedure is not 

still able to improve the performance during the transferring of the labels to the cloud. 

Future improvements could be done in order to allow the overcoming of the input 

accuracy. For instance, input labelled images selection or weighting depending on the 

view, angle or distance from the target building could be carried on. 

 

5.8 Summary 

In this chapter the results of the 3D semantic segmentation procedure have been 

illustrated and discussed in detail both for the image segmentation and the label 

transfer to the point cloud. In the first part of the chapter, the details about the 

implementation of the neural networks have been shown, including FCN (§5.2.1), 

SegNet (§5.2.2), and Deeplabv3+ (§5.2.3). Paragraph §5.3 reported the detail about the 

training phase, including the image processing (§5.3.1), the test structures (§5.3.2), the 

hyperparameter tuning (§5.3.3), and the metrics used to evaluate the models (§5.3.4). 

Finally, paragraph §5.4 reported in detail all the results achieved by the three neural 

networks on the three Tests A, B, and C. The second part of the chapter showed the 

results of the label projection from the image to the cloud. At first, paragraph §5.5 

explained the functioning of the procedure, illustrating the various parameters and 

options that rules the reprojection, and their effect on the final outcome. Secondly, 

paragraph §5.6 reported in detail all the results achieved on the point clouds, organized 

in three tests: Test R.GT, Test R.A and Test R.C. At the end of the chapter the results 

have been exhaustive discussed both for image segmentation (§5.7.1) and for labelling 

projection (§5.7.2). 

 



  

 

Chapter 6  

Conclusions and Future 

Developments 

This final chapter concludes the work presented in this thesis by first presenting a 

summary of the material discussed previously (§6.1), and then by a discussion on the 

conclusion of this dissertation (§6.2). Remarks and future developments are also 

presented and discussed in (§6.3). 

 

6.1 Summary 

This dissertation arises in the wide process of the digitization of heritage buildings, 

largely promoted and supported in recent years by European Union. This thesis is 

focused particularly on the 3D point cloud processing that leads to the creation of 3D 

informative models, through the process commonly known as Scan-to-BIM. The main 

goal of this thesis was to develop a new deep learning workflow for the semantic 

segmentation of 3D point clouds, aiming at supporting and speeding up the modeling 

phase of the Scan-to-BIM, currently the most tedious and time-consuming operations 

of the entire process. The first part of the thesis (§2, §3) provided a comprehensive 

background about the research topic, and the relative literature review. Chapter 2 

introduced the concept of H-BIM and the Scan-to-BIM, and it provided an exhaustive 

review about the algorithmic approaches to address each phase of the Scan-to-BIM. 

Point cloud processing has been widely investigated, starting from point cloud 
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acquisition, up to their manipulation including down sampling, registration, 

segmentation and the BIM modeling from point cloud. Chapter 3 deepened the 

problem of semantic segmentation of point cloud, one of the most challenging steps 

in the Scan-to-BIM process, and the main problem faced in this dissertation. The main 

algorithms and methods existing in the literature have been widely analysed and 

discussed, focusing in particular on the deep learning approaches. They are categorized 

into two main groups: projection-based methods, that leverage on an intermediate 

representation of the cloud to extract features, and point-based methods, that work 

directly with the raw point cloud. At the end of Chapter 3 the developed procedure 

has been introduced. It is based on a multiview approach, a projection-based method 

in which the segmentation of the point cloud is carried out at first on images, and then 

the features are transferred to the point cloud. This method is especially suited for the 

photogrammetric point clouds, since they are generated starting from images. The 

method could be integrated in the photogrammetric pipeline, aiming at generating a 

directly segmented point cloud. The second part of the thesis (§4, §5) provided the 

practical development and application of the proposed procedure. Chapter 4 

introduced the new dataset, specifically created for training and testing the procedure. 

The benchmark deployment has been illustrated in detail, including the acquisition and 

the processing phase, the choice of the categories, the labelling procedure, and the final 

statistic and trend. The benchmark contains several data typologies, and currently it is 

composed of five heritage scenes, each one including the TLS and photogrammetric 

point cloud labelled according to the ARCHdataset, and the photogrammetric images 

with their related labelling. Chapter 5 illustrated in detail the results of the segmentation 

procedure on the new dataset, both for image segmentation and labelling projection 

on the point cloud. Several experiments have been proposed, up to training and 

developing a model potentially able to predict an unseen scenario. Finally, the results 

have been widely discussed, and the weaknesses and the strengths of the procedure 

have been pointed out. 

6.2 Conclusions and remarks 

As mentioned in paragraph (§1.3) the overall goal of this dissertation was to improve 

the automation in the digitization of cultural heritage, providing an efficient strategy 

to speed up the transition from point cloud data to 3D digital model in the context of 

the Scan-to-BIM. Since the huge and complex structure of the Scan-to-BIM, the first 

research questions (§1.3.2) were focused on identifying the main issues that usually 

make challenging the shifting from point data to 3D models, and which could be the 

main instruments and approaches to face them. Chapter 2 and Chapter 3 widely 

analysed these two aspects: point cloud semantic segmentation turned out to be the 
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most challenging step in Scan-to-BIM and a key point to reduce manual intervention 

and time-consuming operations. It is worth to underline that semantic segmentation 

is only a small part of the extensive Scan-to-BIM process, and this research work set 

its confines in deepening just this limited aspect. The presented approach and the 

related results are focused on improving just the performance of point cloud semantic 

segmentation, excluding at the moment the integration of the segmented clouds in the 

BIM platforms, and the transformation of segmented clouds in parametric elements.  

However, the improvement of results in cloud segmentation would lead to a significant 

breakthrough, and a remarkable step ahead in the Scan-to-BIM process applied to 

heritage buildings.  Due to the recent and impressive progress in artificial intelligence 

in several fields, the second research question asked whether AI could be used 

effectively for the digitization of cultural heritage. Chapter 3 largely analysed all the 

semantic segmentation approaches, and the AI branches of machine learning and deep 

learning turned out to be the most efficient and promising techniques to address the 

problem of semantic segmentation of point clouds. Several approaches have been 

developed in literature, and they are grouped into two main categories: point-based 

and projection-based methods. As specified in the objectives (§1.3.2) this thesis aimed 

at proposing an innovative segmentation pipeline particularly suited for the heritage 

building point clouds. The resulting pipeline is a multiview based approach that 

leverages on image features extraction, and on the projection of the features on the 

point cloud. This approach turned out to be very suitable for heritage point clouds, 

and it showed several advantages reported in the following. 

• Higher performance on image semantic segmentation compared to point cloud 

segmentation, obtained in particular by means of CNNs. 

• Large availability of existing image segmentation datasets to pretrain the model 

or exploit transfer learning. 

• Large availability of high-resolution images acquired during the survey, 

remarkably relevant to capture geometrical details, articulated textures, or 

complex constructive elements of heritage buildings. 

• Possible integration of the segmentation approach in the photogrammetric 

pipeline, in order to obtain a directly segmented point cloud. 

• Larger availability and easier acquisition of images to increase and expand the 

dataset compared to point clouds. 

The last research question was focused on the applicability and the generalization of 

the proposed approach in a large-scale context, and on the capabilities of the model to 

generalize among several building typologies, multiple constructive elements, complex 
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and non-standard elements. This question was largely faced in Chapter 4 and Chapter 

5, at first by introducing a new specific benchmark, and secondly by testing and 

assessing the procedure with several experiments.  

The aim of the benchmark was to train the convolutional neural network at the core 

of feature extraction block. Chapter 4 has shown in detail the procedures that led at 

the creation of an exhaustive dataset composed both by point clouds and images. A 

remarkable contribution was the development of the semiautomatic labelling 

procedure of the images starting from a manual segmentation of the related point 

cloud. The procedure turned out to be very effective in terms of time saving and 

accuracy. It could be applied to any point cloud aligned with a set of photogrammetric 

images, and it could be useful to extend the dataset in the future and increase its 

generalization and capabilities. The dataset turned out to be valuable and well-

structured, and it gives the opportunity to develop and test various segmentation 

strategies since the availability of both images and point clouds. However, it has three 

main limitations. At first, the generation of a dataset always requires lot of time, and 

currently it is composed by just five buildings. The current number of images is more 

than 3000, but they are representative of too few building typologies. Secondly, the 

current statistic shows a remarkable class imbalance, that could negatively affect the 

training, and bias the correct evaluation of the model. This issue could be faced on one 

hand directly during training (class weighting or data augmentation), and on the other 

hand by new targeted acquisitions. Finally, the current point cloud scenes did not 

consider the background, and as explained in (§5.7.1), it caused biases during the 

training phase. Future integrations and improvements will consider the background 

annotation. 

Concerning the achieved results, in the general case of unseen scenario, currently the 

performance is totally unsatisfactory: the average of the cross-validation test on the 

five buildings of the dataset achieved a GA of 54%. It proved the model to be still 

unable to generalize among several building typologies. As shown previously, this poor 

overall performance is caused just by the performance of the neural network on the 

image segmentation rather than the label projection step. However, these results are 

not surprising. As pointed out by several researches, deep learning model are data 

hungry, and image segmentation models particularly require thousands of relevant 

images to develop a highly capable network. Despite the number of images in the 

dataset is considerable, they are representative of only five buildings, hence they are 

not relevant enough. This is an inadequate number of architectural cases to enable the 

model to generalize among several buildings. To have a reference, the number of 

building typologies should be at least an order of magnitude higher: indicatively 50-

100 buildings could be a reasonable number to obtain a good capable model. 
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Nevertheless, despite this limitation, several methods have been used to improve the 

performance: data augmentation, transfer learning, class balancing, hyperparameter 

tuning and so on. The failure of these methods proved and confirmed the lack of an 

adequate number of data to train the models. However, despite the current limitation 

of the size of the dataset, simpler tests have shown the potentiality of the proposed 

approach. 

 

6.3 Future developments 

The overall results of the proposed method are still unsatisfactory, and the semantic 

segmentation procedure still needs further developments to improve the performance 

in the case if unseen scenario. The main limitations and bottlenecks of the procedure 

have been well identified, and in this last paragraph some possible future advancements 

are proposed for the dataset, for the image segmentation, and for the labels transfer to 

the point cloud. 

Dataset. As repeated several times, increasing the number of the building of the 

dataset should be the first priority. This can be achieved by several methods. The 

acquisition and the processing of new building scenes according with the mentioned 

procedure is a direct way. Despite its simplicity, it requires several manual steps and 

time-consuming operations, including the photogrammetric acquisition, the point 

cloud generation, the point cloud processing and the final manual segmentation. 

However, it allows to increase the dataset with specific target buildings that could 

improve the class balance, or that could improve the performance on some specific 

categories that require a better accuracy. The second method could be the integration 

with existing datasets that share common features. Unfortunately, at this time, the 

ARCHdataset is the only dataset that would allow an integration. The freely available 

point cloud scenes are already labelled, and together with some related images, they 

could be easily used by the labelling projection procedure to generate new image 

ground truth. The third method to increase the images in the dataset could be the use 

of synthetic data generation. It has been discussed in paragraph (§5.7.1), and two 

strategies could be effective. The first is the use of Generative Adversarial Networks 

(GANs) using as training set the available dataset, or secondly, the generation of 

simulated images. As instance, in this second case the use of rendered images created 

from a 3D or a BIM model could be an efficient strategy. Once created, the model 

allows to generate various rendered images, with different lights or weather condition, 

with several materials or colours, changing systematically the main constructive 

elements. Therefore, the images could be different enough, providing a good 

generalization and variety among the scenes. However, their proper functioning in a 
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real-world application should be carefully evaluated. The second issue concerning the 

dataset is the strong presence of the class background in the images. As it reported 

previously, it biased the training phase, and it made difficult the correct evaluation of 

the model. It could be addressed by adding the background buildings and elements at 

the already labelled point cloud. Subsequently, the background should be annotated 

according with the chosen categories, and a new ground should be generated. 

Nevertheless, any new acquisition and integration should consider the background and 

the building context. 

Image Segmentation. The image segmentation is currently the issue of the 

procedure, and as shown in previous paragraph is the key point to obtain a good 

accuracy. Despite the main problem is data related, some future improvements could 

be done directly on the neural network developments. Currently, the segmentation 

block uses 3-channels RGB images as input. To improve the segmentation 

performance, adding an additional depth channel could be an effective strategy. The 

depth information could be easily available, since the input images are the result of a 

photogrammetric survey, and they are used to generate the point cloud. It could 

provide useful spatial and geometrical information during training, enabling the 

network to learn more complex dimensional relationships. Several RGB-D neural 

networks are available in literature, and they could be easily applied to the new dataset 

with a quite simple integration of the depth in the existing images. Alternatively, depth 

information could be used at the end of the segmentation pipeline to improve and fix 

the output segmentation map (Hoyer et al., 2021). In addition, several post-processing 

modules are available to improve the output map at the end of the segmentation 

pipeline. For instance, the authors in (Chopin et al., 2022) proposed a graph-based 

structural knowledge method to learn more complex relationship. The authors in 

(Dhawan et al., 2019) proposed the use of Conditional Random Fields (CRF) to 

achieve better clarity in segmented images, or the authors (X. Cheng & Liu, 2020) 

proposed a novel post-processing enhancement framework and a weighted composite 

filter to improve the segmentation mask. However, several methods have been 

proposed in the literature to post-process the segmentation mask, and they could be 

tested and applied to the output of the segmentation block, before using the output 

labels in the projection process. Concerning the semantic segmentation models, 

Deeplabv3+ is currently the most performing, but any new architecture could be tested 

in future developments. In addition, an interesting step forward could be the shift to 

instance segmentation, a higher level of segmentation in which each instance of the 

same category is labelled separately and detected with a bounding box. For instance, 

Mask-CNN is the most popular instance segmentation architecture. To enable the use 

of this network, the dataset should be integrated with a new level of annotation, and 

the bounding boxes should be added. An improvement of the labelling transfer 
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procedure could easily automate this process. Finally, this dissertation did not consider 

the point-based approaches for the segmentation of the point cloud. However, it could 

be interesting to evaluate the performance of such approaches on the proposed 

dataset, since it includes the point clouds along with the images. In addition, such 

double data availability could allow the use of the technique of ensembling. It involves 

combining the output of multiple models to produce a more reliable final segmentation 

map. In this case an image-based and point-based model could be fused together to 

reduce errors and increase the overall robustness of the system. 

Labelling projection. The labelling projection from images to point cloud showed a 

good performance, and a good robustness even in the case of low accuracy images. It 

is able to maintain the accuracy achieved on the images after the projection on the 

cloud. Therefore, it does not need remarkable improvement or developments. 

However, it is not still able to overcome the performance of the images, and future 

developments could be focused to address this aspect. As instance, some 

improvements could be done in the voting procedure, assigning a weight to each vote 

depending on several factors, such as the distance from the target point cloud, the 

angle of view, the quality of the segmentation maps of each single image, the point of 

view of the images, or the light and the exposure condition. In that way, the most 

probable labels could have more weight during the assignment, removing noise and 

reducing errors. However, as already mentioned previously, the performance is strictly 

related to the accuracy of the images, and future advances should be done in that 

section. 

Finally, going a step ahead in the context of the digitization of heritage buildings and 

in the Scan-to-BIM, the required advancements of this work are the developments of 

well-structured workflows to proper manage the segmented point cloud in the CAD 

or BIM environment, and to use it to support the 3D model generation. Several works 

have been proposed to face this issue, and several tools are available in order to assist 

and help the modeling procedure. However, they still lack a good level of automation 

and accuracy, and  currently a specific workflow for heritage building point clouds is 

still missing. 
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Résumé en français 

Segmentation sémantique des nuages de points 

du patrimoine bâti : une approche multi-vues 

 

 

1. Introduction 

1.1 Numérisation du patrimoine culturel  

Au cours des dernières années, la numérisation assistée par ordinateur s'est imposée 

comme une technologie puissante pour améliorer la documentation et la préservation 

du patrimoine culturel, en produisant de nouvelles formes de connaissance et des 

niveaux de compréhension plus profonds. Les technologies numériques ouvrent de 

nouvelles perspectives à la société, en offrant au public davantage de moyens d'accéder, 

de découvrir, d'explorer et d'apprécier les biens culturels, et de possibilités de réutiliser 

les biens culturels pour des services et des produits innovants et créatifs dans divers 

secteurs. De nos jours, le développement de technologies numériques avancées, telles 

que la modélisation 3D, l'intelligence artificielle, l'informatique en nuage, la réalité 

virtuelle et augmentée, a ouvert de nouvelles perspectives en matière de numérisation, 

d'accès en ligne et de conservation numérique. Considérant les perspectives offertes 

par la numérisation, la Commission européenne a publié une série de 

recommandations sur un espace européen commun de données pour le patrimoine 

culturel. L'objectif est d'accélérer la numérisation de tous les monuments et sites, objets 

et artefacts du patrimoine culturel pour les générations futures, de protéger et de 

préserver ceux qui sont en danger, et de stimuler leur réutilisation dans des domaines 

tels que l'éducation, le tourisme durable et les secteurs culturels créatifs (Commission 

européenne, 2011). En outre, la Commission encourage les États membres de l'UE à 

numériser d'ici 2030 tous les monuments et sites qui risquent de se dégrader et la moitié 

de ceux qui sont très fréquentés par les touristes (Commission européenne, 2019). 

Cette thèse s'inscrit dans le contexte de la numérisation du patrimoine culturel et du 

besoin émergent et croissant de définir des normes, des procédures et des flux de 

travail pour contribuer de manière opérationnelle à la conservation, à la protection et 

à la diffusion du patrimoine culturel dans le monde par le biais des technologies 

numériques. 
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1.2 Motivation et défis 

Ces dernières années, la modélisation des données du bâtiment (BIM) a commencé à 

jouer un rôle important dans la gestion et la documentation du patrimoine culturel, et 

un nouveau paradigme de méthodologie de conception a été établi, la modélisation des 

données du patrimoine bâti (H-BIM). Il s'agit d'une représentation numérique d'un 

bâtiment existant à l'heure actuelle (tel que construit), qui comprend un large éventail 

d'informations telles que la géométrie, les matériaux, les systèmes technologiques, les 

quantités, les performances, la documentation, les informations sur la maintenance et 

bien d'autres encore. Plusieurs travaux récents ont montré que cette méthodologie de 

conception s'est avérée être un outil très puissant pour la numérisation des bâtiments 

patrimoniaux, en prouvant l'efficacité de cette procédure de modélisation dans un large 

éventail d'applications conformes aux principes des lignes directrices européennes. La 

chaine de traitement pour la création d'un modèle conforme à l'exécution est appelé 

Scan-to-BIM. Ce processus global comprend toutes les étapes depuis l'acquisition 

jusqu'à la phase de modélisation. Cependant, la reconstruction virtuelle de modèles 

conformes à l'exécution est une question ouverte dans le monde réel et les applications 

à grande échelle, et elle présente encore un certain nombre de problèmes et de défis. 

Actuellement, l'un des principaux problèmes du processus Scan-to-BIM est la gestion 

des données à grande échelle résultant de la campagne d'acquisition. Le haut niveau de 

détail et d'automatisation atteint par les dernières technologies d'acquisition, comme le 

scanner laser 3D ou la photogrammétrie, permet de collecter une grande quantité de 

données en peu de temps avec une précision impressionnante, mais le traitement 

correct de ces données reste une procédure difficile. 

Parmi les diverses opérations de traitement Scan-to-BIM, la segmentation sémantique des 

nuages de points est l'une des opérations les plus difficiles, et son automatisation 

présenterait de nombreux avantages. Elle consiste à diviser les données du nuage de 

points en segments plus petits et significatifs, et à attribuer à chaque segment une 

étiquette ou une catégorie en fonction des objets présents dans la scène. Cela permet 

une compréhension détaillée de l'environnement 3D et permet à la machine 

d'appréhender la scène dans son ensemble. Au cours des dernières années, les progrès 

récents de l'intelligence artificielle, de l'apprentissage automatique et de l'apprentissage 

profond ont ouvert une nouvelle ère, caractérisée par la disponibilité d'algorithmes 

puissants pour la segmentation sémantique, qui ont déjà donné des résultats 

remarquables dans plusieurs applications, telles que la conduite autonome, la robotique 

et le diagnostic médical. Ces méthodes récemment développées ne sont pas encore 

pleinement exploitées pour la segmentation sémantique du patrimoine bâti, et à l'heure 

actuelle, peu de travaux de recherche ont exploré le potentiel de l'intelligence artificielle 

dans ce domaine. L'objectif principal de cette recherche est donc d'étudier l'efficacité 
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de l'intelligence artificielle, et plus particulièrement de l'apprentissage profond, sur le 

problème de la segmentation sémantique des nuages de points des bâtiments 

patrimoniaux. 

1.3 Objectifs 

Pour répondre aux questions résultant de l'objectif principal de cette thèse, les objectifs 

suivants ont été définis : 

Objectif 1. Identifier les principaux problèmes et défis du processus Scan-to-BIM, en 

analysant chaque étape qui mène à la création de modèles numériques 3D, et en 

fournissant une revue exhaustive de la littérature sur les approches algorithmiques de 

pointe pour aborder chaque phase du flux de travail Scan-to-BIM. 

Objectif 2. Explorer comment les récentes avancées en matière d'apprentissage 

automatique et d'apprentissage profond peuvent être exploitées pour soutenir la 

génération de modèles 3D dans le processus Scan-to-BIM. À cette fin, les principales 

techniques de segmentation sémantique par apprentissage automatique et 

apprentissage profond devraient être examinées et comparées, en soulignant les forces 

et les faiblesses de chaque méthode et en identifiant les meilleures stratégies applicables 

au domaine du patrimoine bâti. 

Objectif 3. Proposer une procédure de segmentation sémantique efficace adaptée aux 

nuages de points du patrimoine bâti. L'objectif principal est de créer une approche 

applicable à un large éventail de scénarios du monde réel avec des conditions 

différentes qui exploitent pleinement les données résultant des technologies 

d'acquisition avancées. 

Objectif 4. Créer un ensemble de données spécifique pour développer et tester la 

procédure de segmentation de l'objectif 3. Le nouveau jeu de données doit être 

composé de plusieurs bâtiments pertinents pour le domaine du patrimoine et garantir 

un niveau de généralisation approprié. Il doit permettre l'intégration de jeux de 

données similaires existants et être facilement extensible avec de nouvelles données. 

Pour garantir les développements et améliorations futurs, il doit être disponible 

gratuitement, convivial et facilement accessible par la communauté des chercheurs. 

Objectif 5. Tester la procédure proposée dans le cadre de l'objectif 3 sur le nouvel 

ensemble de données, en évaluant et en optimisant les performances dans le cas de 

scénarios inédits. Les aspects critiques et les limites des approches doivent être 

soulignés, et les performances doivent être comparées aux méthodes existantes ou à 

d'autres approches. La procédure proposée devrait dépasser les performances de l'état 

de l'art. 
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2. Modélisation sémantique du patrimoine bâti  

2.1 Modélisation des données du patrimoine bâti (H-BIM) 

L'importance de la préservation et de la protection du patrimoine bâti devient 

rapidement évidente et, à ce titre, le besoin de techniques de modélisation efficaces se 

fait de plus en plus sentir. La modélisation sémantique apporte une solution à ce besoin, 

car elle est capable de représenter les caractéristiques physiques et abstraites du 

patrimoine bâti d'une manière significative. Ces dernières années, l'utilisation de la 

modélisation sémantique dans le domaine de l'architecture, et en particulier pour 

étudier et analyser le patrimoine bâti, est devenue de plus en plus populaire, et l'un des 

outils les plus populaires qui a complètement changé l'approche de la représentation 

et de la gestion du patrimoine culturel est l'utilisation de la modélisation des données du 

patrimoine bâti (H-BIM). Le terme de modélisation des données du bâtiment (BIM) a 

été introduit à la fin de la dernière décennie, lorsque la BIM a remplacé la modélisation 

numérique en 3D et la conception assistée par ordinateur (CAO) en tant qu'expression 

généralement utilisée pour décrire l'utilisation des technologies de l'information et de 

la communication (TIC) pour la conception de l'environnement bâti moderne. La 

modélisation des données du patrimoine bâti (H-BIM) est l'extension de la modélisation de 

l'information sur les bâtiments dans l'environnement patrimonial ou historique. Le 

BIM est une approche numérique qui permet de créer, d'analyser et de gérer plus 

rapidement et plus efficacement des bâtiments en 3D, ainsi que de soutenir la prise de 

décision en matière de conservation des infrastructures existantes. Avec les modèles 

H-BIM, les bâtiments historiques sont représentés comme un jumeau numérique, ce 

qui permet des simulations virtuelles et l'analyse des performances du bâtiment tout au 

long de son cycle de vie. Au cours des dernières décennies, l'application du BIM dans 

les contextes patrimoniaux s'est accrue, car les avantages d'une approche numérique 

sont de plus en plus reconnus. 

2.2 Le processus Scan-to-BIM 

Depuis longtemps, les modèles paramétriques ont été utilisés avec succès dans la 

conception de nouveaux bâtiments, mais pour les maquettes BIM de l'existant, il est 

plus difficile d'atteindre un bon niveau de connaissance et de modéliser les 

informations en détail. Afin d'obtenir autant d'informations géométriques détaillées 

que possible, on utilise généralement un nuage de points comme référence et on 

modélise les caractéristiques et les éléments du bâtiment. Ce processus est 

généralement appelé Scan-To-BIM. Il se compose de cinq phases principales : la 

collecte des données, le traitement des données, l'organisation des données, la 

modélisation BIM et l'extraction des informations. Ces dernières années, les outils et 

les technologies utilisés pour créer des ensembles de données 3D ou des nuages de 
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points se sont remarquablement améliorés et permettent l'acquisition et l'extraction 

rapides d'informations géométriques 3D à des résolutions plus élevées. Cependant, le 

processus d'interprétation des nuages de points pour obtenir des modèles 

paramétriques est généralement effectué manuellement, ce qui est une tâche très 

coûteuse et chronophage. Les principales étapes du flux de travail Scan-to-BIM qui 

impliquent l'utilisation et le traitement des nuages de points sont au nombre de cinq : 

l'acquisition de données de nuages de points, le sous-échantillonnage de nuages de points, 

l'enregistrement de nuages de points, la segmentation de nuages de points et la modélisation BIM à 

partir de nuages de points. Quatre méthodes principales sont utilisées pour acquérir des 

nuages de points dans les domaines de l’imagerie : les méthodes à base d'images 

(photogrammétrie), les systèmes à balayage laser (LiDAR), les caméras RGB-D (Red 

Green Blue Depth) et les systèmes de radar à synthèse d'ouverture (SAR). Les nuages 

de points générés par photogrammétrie ou par balayage laser ont tendance à être 

chronophages et difficiles à traiter en raison de leur taille, et l'échantillonnage est 

souvent utilisé comme étape de prétraitement, parallèlement à d'autres méthodes telles 

que les filtres et l'élimination des valeurs aberrantes. La consolidation est le processus 

d’assemblage ou d'ajustement d'un nuage de points ou d'un ensemble de données, et 

cet assemblage se fait généralement par rapport à une grille locale, à un autre nuage de 

points ou à une grille globale. La segmentation des nuages de points 3D est une étape 

essentielle du traitement des nuages de points et du processus Scan-to-BIM (Rashdi et 

al., 2022). L'objectif du processus de segmentation est de diviser les points qui 

partagent des caractéristiques communes ou qui respectent des classes prédéfinies en 

régions homogènes. Ces régions isolées doivent être suffisamment significatives pour 

être utiles lors de l'analyse de la scène de différentes manières, par exemple pour 

localiser et reconnaître des objets, les classer et extraire des caractéristiques. Dans un 

premier temps, il s'agit de modéliser la géométrie 3D du composant ou de l'élément, 

puis d'attribuer des propriétés à l'objet, telles que la catégorie, la famille, les 

caractéristiques matérielles, etc. et enfin d'établir des relations entre les différents 

composants et éléments. 

3. Algorithmes de segmentation sémantique  

L'apprentissage profond a récemment été utilisé avec succès sur plusieurs problèmes 

de vision 2D, en particulier sur la segmentation sémantique, et il est devenu de plus en 

plus populaire au cours des cinq dernières années, après l'introduction des réseaux 

neuronaux convolutifs (CNN) (He et al., 2016). Récemment, elle a été utilisée avec des 

résultats remarquables pour la segmentation de nuages de points en 3D. Les données 

tridimensionnelles fournissent des informations spatiales et géométriques plus riches 

que les données bidimensionnelles et pourraient mieux caractériser les scènes 

complexes. Cependant, l'utilisation de méthodes d'apprentissage profond sur les 
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nuages de points reste confrontée à plusieurs défis importants, dus par exemple à : (i) 

la grande taille des données, qui implique un long temps de calcul, (ii) la nature non 

structurée des nuages de points en 3D, qui complique l'utilisation des architectures de 

réseau couramment utilisées pour les données en 2D, (iii) l'indisponibilité de grands 

ensembles de données partagées, qui rend les résultats du processus d'apprentissage 

difficilement exportables à des scénarios différents de celui qui a motivé la réalisation 

du réseau.  

3.1 Algorithmes de segmentation sémantiques existants 

Selon la littérature, les méthodes de segmentation sémantique pour les nuages de points 

3D peuvent être divisées en deux groupes : (i) les méthodes basées sur la projection et 

(ii) les méthodes basées sur les nuages de points (J. Zhang et al., 2019). Pour répondre 

à la nature non structurée des nuages de points, les méthodes basées sur la projection 

appliquent d'abord une transformation pour convertir les nuages de points 3D sur une 

donnée avec une structure régulière, puis elles effectuent la tâche de segmentation 

sémantique en appliquant des approches standards, et enfin elles reprojettent les 

caractéristiques extraites sur la forme ou le nuage de points de départ (Lawin et al., 

2017a). Selon le type de représentation utilisé, il est possible de distinguer quatre 

catégories parmi ces méthodes : a) multi-vues, b) volumétriques, c) sphériques d) en 

grille. Les méthodes basées sur les points, ou méthodes directes, travaillent directement 

avec des nuages de points et n'introduisent pas de perte d'information explicite avec 

des représentations intermédiaires. Cette approche directe s'appuie sur la pleine 

utilisation des caractéristiques des données brutes des nuages de points et prend en 

compte toutes les informations géométriques et spatiales. Ces méthodes peuvent être 

divisées en quatre catégories : a) les méthodes MLP ponctuelles, b) les méthodes de 

convolution, c) les méthodes basées sur les RNN d) les méthodes basées sur les 

graphes. 

3.2 Méthodologie proposée 

La procédure de segmentation proposée est basée sur une approche multi-vues 

d'apprentissage profond, dans laquelle la segmentation est d'abord effectuée sur une 

représentation intermédiaire du nuage, puis les étiquettes extraites sont projetées sur le 

nuage de points de départ. Bien que le fait de travailler directement avec le nuage de 

points 3D puisse permettre une meilleure compréhension des informations spatiales 

et géométriques, le choix de s'appuyer sur une approche multi-vues est une stratégie 

efficace. D'une part, cela permet d'exploiter les modèles et réseaux existants pour la 

segmentation d'images, en particulier les réseaux neuronaux à convolution (CNN), qui 

ont obtenu des résultats remarquables ces dernières années. D'autre part, la procédure 

proposée pourrait être intégrée dans la chaîne de traitement photogrammétrique 
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standard, puisqu'elle utilise un ensemble d'images comme entrée pour la création d'un 

nuage de points dense. Elle permet donc de développer un flux de travail automatique 

pour la création d'un nuage directement segmenté à partir des images 

photogrammétriques. En outre, à ce jour, une approche multi-vues sur des données 

patrimoniales n'a jamais été testée, et il est intéressant d'explorer cette approche. Le 

processus de segmentation est composé de deux parties, qui partent toutes deux de 

l'étude photogrammétrique du bâtiment à traiter. Une partie permet la construction du 

nuage de points dense du bâtiment, au moyen de la chaîne de traitement 

photogrammétrique standard : la caméra est d'abord calibrée, les paramètres internes 

et externes de la caméra sont estimés, et le nuage dense est généré. L'autre partie permet 

la segmentation du nuage de points généré au moyen de deux opérations principales : 

la segmentation de toutes les images photogrammétriques respectives à l'aide d'un 

CNN, puis la projection des cartes de segmentation d'image sur le nuage de points en 

s'appuyant sur les paramètres internes et externes de la caméra déjà calculés. 

Trois contributions principales peuvent être identifiées pour développer cette 

procédure.  Tout d'abord, un nouvel ensemble de données « image-point » pour la 

segmentation sémantique du patrimoine bâti a été produit. Il est composé d’un jeu de 

données constitués de nuages de points de cinq bâtiments (sites historiques) et des 

images photogrammétriques correspondantes, toutes deux accompagnées de leur 

segmentation de vérité terrain respective. Toutes les phases de la génération du jeu de 

données sont illustrées en détail, y compris l'acquisition, le traitement, les normes 

d'annotation et la procédure d'étiquetage dans la thèse. Ensuite, trois architectures de 

segmentation d'images, à savoir Fully Convolutional Network, SegNet et Deeplabv3+, 

ont été entraînées, testées et comparées sur le nouvel ensemble de données. Enfin, une 

procédure de projection de l'étiquetage, basée sur le principe du vote majoritaire, a été 

développée et testée. Elle s'appuie sur les paramètres d’orientation interne et externe 

des caméras calculés au cours du traitement photogrammétrique afin de transférer les 

étiquettes produites par le réseau profond au nuage de points, produisant ainsi une 

scène segmentée en 3D. 

4. Le jeu de données 

Des jeux de données sont actuellement disponibles et accessibles, et pourraient être 

utilisés pour différentes tâches et à différentes fins dans de nombreux systèmes 

d'apprentissage automatique. Toutefois, il manque actuellement un jeu de données 

précises pour la segmentation sémantique des images du patrimoine (Fiorucci et al., 

2020). Cette raison a conduit à la création d'un jeu de données sur mesure et 

personnalisé. L'objectif principal de la création du jeu de données est de concevoir une 

référence basée sur l'image pour la segmentation sémantique des images de bâtiments 
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patrimoniaux. Le jeu de données sera utilisé pour développer et entraîner un modèle 

de réseau neuronal profond conçu pour être incorporé dans un flux de travail plus 

large de segmentation de nuages de points. Actuellement, l'ensemble de données est 

composé de cinq bâtiments, de périodes historiques et de styles architecturaux 

différents, principalement situés près de Florence. Pour chaque bâtiment composant 

l'ensemble de données, trois types de données sont disponibles : le nuage de points 

TLS annoté manuellement, le nuage photogrammétrique annoté obtenu avec une 

procédure de transfert d'annotations, et les images du relevé annotées avec une 

procédure de projection d'étiquetage, qui permet de projeter automatiquement les 

étiquettes définies sur un nuage de points sur les images photogrammétriques relatives. 

La structure finale de l'ensemble de données est organisée selon les normes des 

principaux jeux de données de segmentation sémantique. Un ensemble d'images RGB 

est fourni, avec l'ensemble correspondant d'images étiquetées de la même taille, toutes 

deux dans un format de fichier .png avec une taille de 2592x3872 pixels. Pour 

permettre des comparaisons ou des intégrations futures, les étiquettes du fichier de 

vérification sur le terrain sont compatibles avec celles de l'ensemble de données ARCH 

(Matrone et al., 2020), une référence pour la segmentation sémantique des nuages de 

points. Ainsi, les images sont annotées en 10 classes selon le format de fichier IFC, les 

normes ATT et CityGML 3/4. Il s'agit des classes suivantes : arc, colonne, moulure, 

plancher, porte/fenêtre, mur, escalier, voûte, toit, autre. Contrairement aux nuages de 

points, l'arrière-plan est toujours présent dans les images, c'est pourquoi une nouvelle 

classe a été introduite : elle comprend tous les pixels qui ne peuvent pas être classés 

dans les classes définies précédemment. Cette classe est conventionnellement appelée 

"arrière-plan". La procédure de segmentation proposée s'appuie sur un réseau entraîné 

sur des images. Cependant, l'ensemble de données proposé est un ensemble de 

données à sources multiples composé d'images et de nuages de points, et il peut être 

utile d'effectuer des comparaisons et des évaluations telles que : (i) comparer la 

précision des méthodes basées sur les points et sur les vues multiples sur le même jeu 

de données, (ii) comparer la précision de l'approche basée sur les vues multiples sur 

des références patrimoniales avec celle obtenue sur des bâtiments standards, (ii) évaluer 

la précision des réseaux basés sur les points sur deux types (TLS et 

photogrammétrique) de données de nuages de points. Par conséquent, le jeu de 

données présenté peut être (i) intégré au jeu de données ARCH, (ii) utilisé pour adapter 

les architectures de réseau existantes au cas du bâtiment CH, (iii) exploité pour 

développer de nouveaux réseaux hybrides qui peuvent tirer parti à la fois des images 

et des nuages de points. 
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5. Tests de segmentation sémantique et résultats  

5.1 Segmentation des images 

Plusieurs tests ont été effectués afin d'évaluer le fonctionnement de la procédure 

proposée. L'objectif principal est de développer un modèle de segmentation d'images 

à large spectre capable de généraliser autant de scènes que possibles, et cette capacité 

peut être obtenue en fournissant un grand ensemble d'entraînement, avec un large 

éventail de scènes, de bâtiments, d'éléments constructifs et de typologies de structures, 

et un jeu de validation/test assez différent et varié par rapport au jeu d'entraînement. 

Néanmoins, le jeu de données disponible est encore limité en termes de typologies de 

bâtiments et, actuellement, il ne permet pas un bon niveau de flexibilité dans 

l'organisation et la division des données, ce qui rend difficile l'atteinte d'une large 

capacité. Cependant, dans cette étude, trois typologies de tests ont été réalisées. La 

première série de tests est la plus simple et la moins difficile, et consiste à tester chaque 

bâtiment du jeu de données un par un. L'ensemble des images de chaque bâtiment a 

été mélangé de manière aléatoire, puis divisé en un jeu d'apprentissage, un jeu de 

validation et un jeu de test, avec des pourcentages respectifs de 60 %, 20 % et 20 %. 

Étant donné que les images du jeu de test sont similaires à celles du jeu d’apprentissage, 

le modèle devrait pouvoir généraliser les solutions assez facilement dans cette série de 

tests. Bien que ces tests ne permettent pas d'obtenir un modèle général doté d'une 

grande capacité, ils sont utiles pour définir l'hyperparamètre des réseaux, pour 

comparer les performances des différentes architectures et pour évaluer la qualité et le 

bon fonctionnement du jeu de données généré. Dans ce test, toutes les images des cinq 

bâtiments ont été utilisées. Dans le deuxième test, les images ont été mélangées de 

manière aléatoire, puis divisées en un jeu d’apprentissage, un jeu de validation et un jeu 

de test, avec des pourcentages respectifs de 60 %, 20 % et 20 %. Malgré la présence de 

plusieurs typologies de bâtiments, ce test n'est pas particulièrement pertinent pour 

obtenir un modèle général à large capacité, puisque certaines images du jeu 

d'apprentissage sont analogues à certaines images du jeu de test. Cependant, le test est 

utile pour évaluer la capacité avec plusieurs typologies de bâtiments, pour affiner les 

hyperparamètres et pour évaluer l'effet de l'apprentissage par transfert et de 

l'augmentation des données sur la performance. La dernière série de tests est la plus 

difficile et représente la tâche cible d'une procédure générale de segmentation 

sémantique. Les tests consistent à tenter de prédire un scénario inédit. Pour effectuer 

ces tests, les images de quatre bâtiments ont été utilisées pour la phase d’apprentissage, 

en les divisant en un jeu d’apprentissage (60 %), un jeu de validation (20 %) et un jeu 

de test interne (20 %), et les images du bâtiment restant ont été utilisées pour le test 

externe du modèle. Bien que le nombre d'images semble suffisamment important pour 

effectuer ce type de tests, la généralisation de la solution sera une tâche difficile pour 



220 Appendices 

 
le modèle, étant donné que les typologies de bâtiments pour apprendre les 

caractéristiques sont limitées. Pour obtenir une vue d'ensemble des performances, une 

méthode de validation croisée a été utilisée, et chacun des cinq bâtiments a été utilisé 

alternativement comme jeu de test. 

5.2 Projection des données étiquetées 

La mise en œuvre de la procédure de reprojection permet de configurer et de contrôler 

le processus de reprojection au moyen d'un ensemble de paramètres et d'options. Le 

choix des paramètres est fondamental pour obtenir de bonnes performances et 

optimiser les résultats obtenus par le réseau neuronal sur les images. Étant donné le 

grand nombre de paramètres et de réglages, plusieurs expériences ont été réalisées pour 

trouver la plage optimale de chaque paramètre et les combinaisons optimales de 

réglages. Trois types de tests ont été réalisés et sont expliqués dans les sections 

suivantes. La première série d'expériences qui va être rapportée consiste en une 

recherche systématique du réglage optimal des paramètres, en testant diverses 

combinaisons et en évaluant l'effet de chaque paramètre sur la précision et la 

performance. L'étude a été réalisée sur un seul bâtiment de l'ensemble de données, à 

savoir (1_SC) Spedale del Ceppo. La deuxième série de tests consiste à projeter l'étiquette 

prédite sur les images par le classificateur entraîné pour le test A. Les données 

étiquetées prédites sont obtenues en utilisant le modèle entraîné avec l'architecture 

Deeplabv3+, selon les résultats illustrés, a atteint la meilleure performance. Pour 

chacun des cinq bâtiments de l'ensemble de données, les images photogrammétriques 

ont été introduites dans les réseaux entraînés liés au bâtiment, et les étiquettes de sortie 

ont été utilisées pour le processus de projection. Ces tests ont été effectués avec la 

combinaison optimale de paramètres obtenue lors des expériences précédentes. La 

dernière série de tests consiste en la projection de l'étiquette prédite sur les images par 

le classificateur entraîné pour le test C. Les résultats représentent le résultat final de la 

chaine de traitement de segmentation sémantique 3D du nuage de points, dans le cas 

d'un scénario inédit, et la précision de ces tests peut être considérée comme la 

performance actuelle de la procédure de segmentation. 

5.3 Résultats et discussion 

La segmentation de l'image est la première étape de la procédure de segmentation et 

une étape fondamentale pour obtenir une bonne performance finale du nuage de 

points. Les deux premiers tests (A et B) ont montré une bonne performance globale. 

Bien qu'ils ne soient pas significatifs en termes de généralisation, ils ont prouvé 

l'efficacité du réseau neuronal profond pour la segmentation sémantique des scènes 

patrimoniales lorsqu'un ensemble de données d'entraînement pertinent est fourni. Le 

dernier test (C) n'a pas donné de résultats suffisants, mais cela était prévisible étant 
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donné le faible nombre de typologies de bâtiments dans l'ensemble de données. 

Plusieurs mesures et moyens ont été utilisés pour surmonter la limitation du jeu de 

données d’entrainement, mais ils n'ont pas été suffisants, ce qui met en évidence la 

pertinence de la faiblesse des données d’entrainement pendant la phase 

d'apprentissage. Comme nous l'avons déjà mentionné, deux stratégies peuvent être 

poursuivies : l'extension de l'ensemble de données avec de nouveaux bâtiments ou avec 

d'autres ensembles de données existants, et l'amélioration de la vérité de base de l'image 

en étiquetant les bâtiments en arrière-plan.  

La projection des étiquettes sur le nuage de points est la deuxième étape de la 

procédure de segmentation et permet de transférer les caractéristiques extraites par le 

réseau neuronal des images vers le nuage de points. Les résultats ont montré une bonne 

stabilité de la procédure, même dans le cas d'images de faible qualité, sans perte notable 

de précision des performances de l'image d'entrée. Toutefois, la procédure n’est précise 

que si les images étiquetées en entrée ont des résolutions similaires. Malheureusement, 

lorsque la résolution des images est faible, la procédure de projection n'est pas encore 

en mesure d'améliorer les performances lors du transfert des étiquettes vers le nuage. 

Des améliorations pourraient être apportées à l'avenir pour permettre de surmonter le 

problème de la précision des données d'entrée. Par exemple, on pourrait sélectionner 

ou pondérer les images étiquetées en fonction de la vue, de l'angle ou de la distance 

par rapport au bâtiment cible. 

6. Conclusion and développements futurs 

L'approche proposée s'est avérée très adaptée aux nuages de points du patrimoine et 

présente plusieurs avantages : (i) des performances supérieures en matière de 

segmentation d'images par rapport à la segmentation de nuages de points, (ii) une 

grande disponibilité d'ensembles de données d'images existants pour pré-entraîner le 

modèle ou exploiter l'apprentissage par transfert, (iii) une grande disponibilité d'images 

à haute résolution acquises au cours de l'enquête, pertinentes pour capturer les détails 

géométriques ou les éléments constructifs complexes, (iv) l'intégration possible de la 

procédure de segmentation dans la chaine de traitement photogrammétrique, (v) une 

plus grande disponibilité et une acquisition plus facile des images pour augmenter et 

élargir le jeu de données par rapport aux nuages de points. En ce qui concerne les 

résultats obtenus, dans le cas général d'un scénario inédit, les performances sont 

actuellement totalement insatisfaisantes : la moyenne du test de validation croisée sur 

les cinq bâtiments de l'ensemble de données a atteint un GA de 54 %. Cela prouve que 

le modèle est toujours incapable de se généraliser parmi plusieurs typologies de 

bâtiments. Toutefois, ces résultats ne sont pas surprenants. Comme l'ont souligné 

plusieurs recherches, les modèles d'apprentissage profond sont gourmands en 
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données, et les modèles de segmentation d'images nécessitent en particulier des milliers 

d'images pertinentes pour développer un réseau hautement performant. Bien que le 

nombre d'images dans notre jeu de données soit conséquent, il ne correspond qu’à 

cinq bâtiments et n’est donc pas suffisamment pertinent. 

Les principales limites de la procédure ont été bien identifiés, et certaines avancées 

futures possibles ont pu être définies. Tout d'abord, l'augmentation du nombre de 

bâtiments de l'ensemble de données (i) avec de nouvelles acquisitions, (ii) avec une 

intégration avec des ensembles de données existants, ou (iii) avec la génération 

d'images synthétiques. Deuxièmement, l'amélioration des performances de la 

segmentation des images (i) en exploitant les informations de profondeur au début ou 

à la fin du bloc de segmentation, (ii) en testant la segmentation par instance, (iii) ou en 

testant l'opération de post-traitement pour améliorer la qualité des cartes de 

segmentation. Enfin, l'amélioration de la procédure de projection de l'étiquetage afin 

d'améliorer la précision de la segmentation de l'image. 
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A multiview approach for the semantic segmentation of 
heritage building point clouds 

 

Résumé 

Cette thèse aborde la numérisation du patrimoine culturel en utilisant les méthodes 

de modélisation des données de bâtiments (BIM) et de modélisation des données 

du patrimoine bâti (H-BIM) comme un puissant outil pour la conservation et la 

préservation. Elle se concentre sur le processus  « Scan-to-BIM », qui rencontre des 

défis dans la gestion des données à grande échelle issues des technologies 

d'acquisition modernes comme le balayage laser 3D et la photogrammétrie. La thèse 

vise à automatiser certaines étapes du processus « Scan-to-BIM », en mettant 

l'accent sur la segmentation sémantique des nuages de points. Les recherches 

s'appuient sur les avancées de l'intelligence artificielle et de l'apprentissage profond 

pour améliorer le processus de segmentation du patrimoine bâti en utilisant une 

approche multi-vues. Trois contributions principales sont mises en avant dans la 

thèse. La création d'un jeu de données image-point3D pour la segmentation 

sémantique du patrimoine bâti, comprenant des scènes de nuages de points de 

bâtiments et des images photogrammétriques avec une segmentation de référence. 

Ensuite, l’entrainement, l’expérimentation et la comparaison de trois architectures 

de segmentation d'images reconnus (Fully Convolutional Network, SegNet et 

Deeplabv3+) sur le nouveau jeu de données. Enfin, le développement et le test d'une 

procédure de projection de données annotées, basée sur le principe du vote 

majoritaire, pour transférer les étiquettes générées par le réseau profond vers le 

nuage de points, aboutissant à une scène segmentée en 3D. Malgré le nombre limité 

de typologies de bâtiments dans le jeu de données, les résultats sont prometteurs, 

indiquant une amélioration de l'automatisation et de la fonctionnalité dans la 

préservation et la gestion du patrimoine bâti grâce à des modèles 3D. 
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Résumé en anglais 

This dissertation addresses the need for digitizing cultural heritage using Building 

Information Modeling (BIM) and Heritage Building Information Modeling (H-

BIM) as a powerful tool for conservation and preservation. It focuses on the Scan-

to-BIM process, which faces challenges in handling large-scale data from modern 

acquisition technologies like 3D laser scanning and photogrammetry. The study 

aims to improve automation in the Scan-to-BIM pipeline, particularly in semantic 

segmentation, which involves categorizing raw point cloud data for machine 

understanding. The research leverages advancements in artificial intelligence and 

deep learning to enhance the segmentation process for heritage buildings leveraging 

on a multiview approach. Three main contributions are highlighted in the 

dissertation. The creation of a novel image-3Dpoint dataset for heritage building 

semantic segmentation, including building point cloud scenes and photogrammetric 

images with ground truth segmentation. Secondly, the training, testing, and 

comparison of three state-of-the-art image segmentation architectures (Fully 

Convolutional Network, SegNet, and Deeplabv3+) on the new dataset. Finally, the 

development and testing of a labeling projection procedure, based on the majority 

vote principle, to transfer deep network-generated labels to the point cloud, 

resulting in a 3D segmented scene. Despite the limited number of building 

typologies in the dataset, the results show promise, indicating improved automation 

and functionality in the preservation and management of heritage buildings through 

3D models. 

 

 


