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Abstract – Résumé

Abstract
This thesis explores assistive robotic behaviors for the realization of robot-assisted
minimally invasive surgery (MIS), with a focus on laparoscopy and flexible endoscopy.
In the first part of this document, we present novel approaches to perform the online
backlash model identification of cable-actuated flexible endoscopes. Backlash in cable
transmission degrades open-loop positioning accuracy and increases the cognitive load
of the practitioner. However, its compensation requires an accurate model identification,
which should ideally be done in-situ, i.e., just before or even during the surgical procedure.
We propose several methods that can be applied to different relevant robot architectures
and scenarios. The algorithms are evaluated in simulation and implemented on robotized
endoscopic platforms for experimental validation. In the second part of this thesis, we
investigate the online learning of the task and robot model parameters to continuously
improve assistance to the operator using such a learning. We consider the case of haptic
guidance during teleoperation, a scenario especially relevant to surgical robotics. In this
context, we avoid relying on exteroceptive sensors as the main source of information as
they could be limited or intermittently unavailable. Instead, we rely on the presence
of the operator to extract the information necessary for learning. The algorithms we
propose are evaluated in different simulated and real telerobotic scenarios, demonstrating
the applicability of the methods to online registration problems.

Keywords:
Medical robotics; Haptic guidance; Registration; Backlash; Online parameters learning.



Abstract – Résumé

Résumé
Dans cette thèse, nous développons des stratégies d’assistance à la chirurgie minimale-
ment invasive robotisée et plus précisément à la coelioscopie et à l’endoscopie flexible.
Différents défis rendent l’exécution automatique de tâches complexes en MIS : d’une part,
l’environnement est non structuré et déformable ; d’autre part, les capteurs extéroceptifs
sont limités et leur mesure parfois indisponible. De plus, les outils chirurgicaux utilisés
sont souvent flexibles, ce qui rend leur positionnement précis compliqué.

Dans la première partie de ce document, nous présentons de nouvelles approches
pour réaliser l’identification en ligne du modèle du jeu mécanique présent dans les
transmissions à câble utilisées par les endoscopes flexibles. Le jeu dans les transmissions
à câbles dégrade la précision du positionnement en boucle ouverte et augmente la
charge cognitive du praticien qui devra le compenser. Cependant, sa compensation par
la commande nécessite une identification précise du modèle, qui devrait idéalement
être effectuée in-situ, c’est-à-dire juste avant ou durant la procédure chirurgicale. Nous
proposons plusieurs méthodes qui peuvent être appliquées à différentes architectures
de robots et dans différents scénarios pertinents pour des applications médicales. Les
algorithmes sont évalués à travers des simulations et évalués expérimentalement sur une
plateforme endoscopique robotisée.

Dans une seconde partie, nous étudions l’apprentissage en ligne des paramètres des
modèles de la tâche et du robot afin de générer une assistance à l’opérateur qui pourra
s’améliorer en cours d’utilisation. Nous considérons le cas du guidage haptique lors de
la téléopération à distance d’un robot, un scénario classique en robotique chirurgicale.
Dans ce contexte, nous évitons d’être dépendant de capteurs extéroceptifs et exploitons
la présence de l’opérateur pour extraire les informations nécessaires à l’apprentissage.
Les algorithmes que nous proposons sont évalués dans différents scénarios télérobotiques
simulés et réels, démontrant l’applicabilité des méthodes aux problèmes d’apprentissage
en ligne pour l’assistance à la téléopération.

Mots-clefs :
Robotique médicale ; Guidage haptique ; Recalage ; Jeu mécanique ; Apprentissage
automatique.

N.B. : Un résumé détaillé en français est inclu dans l’annexe F de ce document.
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Chapter 1 Introduction

1.1 Robotic assistance for endoscopic surgery
1.1.1 Evolution of the surgical practice
Until the end of the 1980’s, open surgery was the only way to operate a patient: the
surgeon would cut the skin and other tissues in order to directly visualize the area
to operate. Other medical procedures such as the exploration of natural cavities had
already begun to involve less invasive approaches. They were pioneered as early as 1806
by the invention of the Lichtleiter, considered to be the first documented prototype of
what is now called an endoscope (Spaner et al. 1997). This device used to inspect the
urethra, consisted of a slim tube connected to a chamber illuminated by a candle. A
set of mirrors provided sight of the inside of the cavity while illuminating it. Numerous
subsequent technical innovations allowed these devices to increase in versatility towards
the endoscope we know today. Most notably, the development of bending or flexible
endoscope sections in the first part of the 20th century and later, in the 70s, the
development and miniaturization of the charge-coupling device (CCD) technologies
led to the first flexible endoscope with an embedded camera in 1983 (Wheeler 1986).
Since then, the field of flexible endoscopy has evolved from an explorative to a surgical
technique with the additions of channels allowing the surgeons to insert tools in the
endoscope to perform biopsies, dissection, and various other surgical acts.

Endoscopy
Laparoscopy Laparoscopic surgery Single-port surgery

NOTES surgeryEndoscopic surgeryFlexible endoscopy

Figure 1.1: Illustration of the evolution of endoscopic techniques.

As illustrated in Figure 1.1, another major surgical innovation was developed in
parallel to flexible endoscopy: the laparoscopy, a technique used to access the internal
cavities, usually in the abdomen, through small incisions at the surface. It was initially
used for exploration as early as 1901, with a rudimentary apparatus consisting of a
slender hollow tube allowing the physician to observe the inside of an inflated abdomen
(Peter et al. 2008). Progress in rigid endoscopy throughout the 20th century, including
the distal integration of a CCD sensor, led to more sophisticated laparoscopes and a
shift from exploration to surgical procedures, with a first laparoscopic surgical procedure
– a cholecystectomy – in 1987 (Peter et al. 2008). With the potential to be used for
numerous types of surgeries, this innovation would quickly become a routine technique;
millions of laparascopic surgeries are now performed worldwide each year.

Endoscopic surgeries are considered to be minimally invasive surgery (MIS), due
to the reduced patient trauma and minimized scaring. Beyond the obvious aesthetic
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improvements, MIS significantly reduces overall patient trauma, leading to faster
recovery times, reduced post-operative pain, and shorter hospital stays (Darzi et al.
2004). We also saw in recent years the rise of new MIS techniques, including single-port
procedures that consist in inserting multiple tools through a single entry point, usually
located at the umbilic, and NOTES, i.e., Natural Orifice Translumenal Endoscopic
Surgery (Bardaro et al. 2006). NOTES procedures consist in reaching the surgical site
through natural orifices (i.e., mouth, anus, or vagina) by making a small internal incision,
for instance in the stomach wall, through which endoscopic tools are inserted. This
technique also motivated the development of more complex flexible endoscopic systems
with multiple distal tools and triangulated configuration of these tools (Swanström et al.
2008).

However, in spite of a clear advantage for the patient, MIS techniques are usually less
convenient for the surgeons who have to perform long surgeries in awkward postures
(see Figure 1.2 for the case of laparoscopy), monitor the surgical site through a screen,
and lose the sense of direct touch (Schostek et al. 2009). Thus, a robotization of
these medical devices was proposed to allow a single surgeon to perform the complex
manipulation of the devices while increasing the comfort and making the control of MIS
tools more intuitive.

Figure 1.2: Laparoscopic surgery performed manually1.

1.1.2 Robot-assisted minimally invasive surgery
Robot assistance for laparoscopy

One of the first uses of robots in the operating rooms was to hold the laparoscope
(equipped with the endoscopic camera) that had until then to be either held by an
assistant, sometimes for hours, or rigidly attached to the operating table using a passive
endoscope holder. The first commercially available robotic endoscope holder was the
Automated Endoscopic System for Optimal Positioning (AESOP® by Computer Motion
Inc.), a voice controlled robot assistant for the operating room that is now discontinued.
Subsequent systems introduced a robotization of the tools, allowing a single surgeon
to remotely perform the surgery from a master console. An iconic example of these
robots is the da Vinci® laparoscopic platform by Intuitive Surgical whose four arms
can be teleoperated from a master console (see Figure 1.3a) using 3D visual feedback.

1Source: annistongeneralsurgery.com
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Although the da Vinci robot had a monopoly in the last decade, other robotic platforms
for laparoscopy are now entering the market, for instance Versius® (CMR surgical),
Ottava (Johnson & Johnson), or HugoTM (Medtronic).

(a) (b)

Figure 1.3: Intuitive Surgical da Vinci robot Si for robot-assisted laparoscopy. The
surgeon remotely controls the robot (b) from the master console (a). Source:
Pugin et al. (2011).

Robotic assistance for flexible endoscopy

Flexible endoscopy is also an interesting target for robotization due to the complex
mapping between proximal actuation and distal motions, typically the bending of
endoscope in one or two planes. The manipulation of classical flexible endoscopes
(e.g., gastroscopes) is not intuitive since both bending are controlled by coaxial knobs.
Robotization of the endoscopes enables a more intuitive control, for instance using a
joystick (Lee et al. 2019) or an haptic interface (Reilink et al. 2011). Moreover, complex
devices such as the Anubiscope (Dallemagne et al. 2010, see Figure 1.4a) were developed
to perform NOTES and, more generally, endoluminal or transluminal surgeries. The
manipulation of the endoscope and the two endoscopic tools inserted in the channels
(10 DOF in total) require two or more highly trained surgeons to coordinate their actions
in order to perform a surgery (see Figure 1.4b). Robot assistance was then naturally
proposed to simplify the control of such systems. In the case of the aforementioned
Anubiscope, the STRAS robotic platform (Zorn et al. 2018, see Figure 1.4c) allows a
single surgeon to control the 10 DOF of the system from a master interface. Similarly,
the MASTER (Phee et al. 2010), ViaCath (Abbott et al. 2007), or FlexTM (Robotics
Surgical) systems are designed to provide a dexterous and intuitive control of complex
endoscopic tools (see Figure 1.5).

Robotic-assistance is also impactful or even necessary for single-port laparoscopic
surgery. In single-port surgery, all the surgical tools are inserted through a single entry-
point such that their manipulation is complex due to the limited view and cluttered
space causing blockage or tools collisions (Kaouk et al. 2009). Therefore, complex
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(a) (b) (c)

Figure 1.4: (a) Anubiscope endoscopic system (Dallemagne et al. 2010). (b) NOTES
surgery with the Anubiscope (Nageotte et al. 2020). (c) Using a robotic
platform (STRAS, Zorn et al. 2018), a single surgeon can control the 10
DOF of the Anubiscope.

(a) (b) (c) (d)

Figure 1.5: Robotized platform for endoluminal and transluminal surgeries.
(a) MASTER (Phee et al. 2012). (b) ViaCath (Abbott et al. 2007).
(c) MONARCHTM (Auris Health). (d) FlexTM (Robotics Surgical).

robotized tools were introduced to increase dexterity, including curved, flexible, or
articulated tools (Nelson et al. 2017). An example of recent single-port surgical robot is
the Intuitive Surgical SP (see Figure 1.6).

1.1.3 Autonomy levels in robot-assisted surgery
Regardless of their final application, robotic technologies for surgical assistance aim
first to provide dexterous and ergonomic control over surgical tools. To date, these
robots have been endowed with little to no autonomy and are designed to precisely
replicate the motions performed by the surgeon on the master console. This direct
telemanipulation scheme is typical of surgical robots used in laparoscopy and endoscopic
surgery in general. However, there is a trend towards an increased robot autonomy level
to reduce the cognitive load on the surgeon (Ciuti et al. 2020; Mayor et al. 2022).

The question of autonomy level is central in medical robotics as, besides the purely
technical considerations, ethical and regulatory concerns naturally limit the extent to
which such systems can make decisions on their own. Surgical robots can be characterized
by their degree of autonomy, ranging from none at all, such that the surgeon is in charge
of every decision and initiates every action, to total autonomy, such that the robot
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Figure 1.6: Distal end of the Intuitive Surgical SP robot for single-port surgery.

can operate without human intervention or supervision. Different subdivisions of the
autonomy levels have been proposed with, for example, six levels (Yang et al. 2017)
or four levels (Yip et al. 2017), but there is a consensus on the six levels of autonomy
proposed by Yang et al. (2017) in recent literature (Haidegger 2019; Attanasio et al.
2021). Regardless of the exact subdivision used, the general stages of automation are as
follows:

• No autonomy – the surgeon initiates and executes every actions; automatic
behaviors are limited to basic control, including motion scaling, master-follower
DOF mapping, or tremor filtering;

• Assistance – although the surgeon retains full control, the system provides
assistance that can either be passive (e.g., augmented reality) or active as in the
case of haptic feedback or guidance (Attanasio et al. 2021);

• Partial autonomy – part of the procedure is autonomously performed by the
robot, but under supervision of the surgeon. It is the subdivision of this level
of autonomy that, based on the level of decision making entrusted to the robot,
differs between classifications. The consensus is to further divide this autonomy
level in three: task autonomy, conditional autonomy, and high autonomy (Yang
et al. 2017). We will keep using the term partial autonomy as this level of detail
is sufficient in the following sections;

• Full autonomy – the robot can autonomously perform the surgery, with no need
for human supervision.

No surgical robot can yet be qualified as fully autonomous and commercial systems
with partial autonomy are typically only used when the environment and the task to
perform are perfectly defined. This is the case, for example, of the CyberKnife system
(Accuray) used to perform robot-assisted radiotherapy – although, not strictly surgical.
The robot trajectory is planned from preoperative data (reconstructed 3D images) and
subsequently executed automatically using intra-operative registration from real-time
X-ray imaging. The high level of automation is made possible by the fact that targets
are usually fixed relative to rigid structures (e.g., skull or spine) or, if the former is
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not true, located using fiducials visible on X-ray images (Kilby et al. 2010). Ongoing
research aims at providing partial autonomy in the form of sub-task automation for
applications such as automatic suturing, knot tying, or needle insertion. However, to
date, most of the robots clinically used for MIS have no autonomy: these robots are
designed to provide an accurate teleoperation such that the robot only executes the
motions performed by the surgeon at the master side.

Some commercial robots are at the so-called assistance level, characterized by the
fact that although the system performs autonomous actions, the surgeon remains in full
control of the procedure. Commercial products include assistive robots for orthopedic
surgery such as the ROSA Knee robot (Zimmer Biomet), which automatically positions
a physical guide for cutting or drilling bone. Similarly, the MAKO robot (Stryker)
provides tools (e.g., drill or saw) attached to a robotic arm that can constrain the
surgeon motion (e.g., along a straight line) or prevent dangerous actions through the
application of forces. Both of these systems are manipulated in a way such that the
robot and the surgeon physically share the operating room and operate side by side as
opposed to teleoperated systems, which are controlled remotely. Various challenges have
limited the spread of robotic assistance based on automatic execution modes mostly to
fields such as orthopedic or neurosurgery, where the rigid environment simplifies the
planning and registration of the pre-operative plan. Even if most of these techniques,
regardless of their level of autonomy, have not yet reached clinical use in the field of
MIS, they have been the subject of a significant body of research over the last two
decades. In the following section, a brief overview of the literature on assistive behaviors
in the field of MIS is provided.

1.2 Assistive robotic behaviors for MIS
A so-called assistive behavior aims at reducing the cognitive workload of the surgeon
by relying on automation to perform low-level tasks (e.g., filtering or control aspects),
repetitive actions (e.g., scanning), or other aspects of the task for which an automatic
mode is more suited. This allows the surgeon to take advantage of the capability
of the robotic system, for instance the presence of sensors, to improve the overall
performance of the surgery, including accuracy, execution time, or repeatability. Ideally,
the automation will control aspects of the task that require little to no decision making,
leaving high-level control to the surgeon. In the following, assistive behaviors are
presented, following their level of autonomy.

1.2.1 Assisted robot control
This type of assistance has no autonomy. It consists in control algorithms augmenting
or improving robot control by the operator.

Scaling and tremor suppression

The majority of surgical robotic systems, especially for MIS, are teleoperated such that
the motions performed by the surgeon are first processed by the system. This allows
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the implementation of control schemes designed to enhance the accuracy of the surgeon.
In particular, position scaling can be used to map master displacements into smaller
displacements of the follower robot, hence reducing the inaccuracies introduced by the
surgeon on the master side (Prasad et al. 2004). Filtering techniques were also used
to reduce tremors, both for teleoperated robots (e.g., implemented on da Vinci robots,
Leal Ghezzi et al. 2016) and for hand-held robots (Taylor et al. 1999).

Backlash compensation

Due to the need for miniaturization, many robotic systems for MIS are actuated from
the proximal side using tendon-sheath mechanisms (TSM) or other cable actuation
technologies that suffer from mechanical backlash in the transmission. Backlash in
TSM is caused by the necessary slack in the antagonist cables (see Figure 1.7a), their
elasticity, and the friction between the cable and its sheath (Do et al. 2014). This is
especially the case with flexible endoscopes, for which the effects are amplified by their
long actuation path that makes backlash effects especially strong. Backlash introduces
hysteresis-like effects in the transmission that are experienced as control latencies by
the surgeon. It was demonstrated that an operator can cope with small backlash in
the transmission during telemanipulated robot-assisted MIS (Kim et al. 2020), but this
backlash tends to degrade performance and increase mental load (Peine et al. 2012).
Furthermore, backlash also impairs robot positioning, with significant tracking errors in
the operational space as visible in Figure 1.7b. Such inaccuracies have to be corrected
to implement advanced robot behaviors such as shared control or physiological motion
compensation (see Section 1.2.2).
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Figure 1.7: (a) Illustration of cable actuated bending, adapted from (Bardou et al. 2012).
(b) If not compensated, backlash in the transmission results in significant
tracking errors in operational space, here with a flexible endoscopic tool of
the STRAS platform (Aleluia Porto 2021).

Then, regardless of the system level of autonomy, appropriate control strategies
have to be implemented in order to compensate for backlash. Approaches for backlash
compensation are typically based on a model and implemented as a feedforward controller
that directly compensates the apparent deadzone (i.e., backlash width at a given position)
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by model inversion (Bardou et al. 2012; Aleluia Porto et al. 2019). Alternatively, one
can use a switching controller that increases actuator velocity when said actuator crosses
a deadzone, hence reducing the backlash experienced by an operator (Reilink et al.
2013b).

1.2.2 Shared control paradigms
Another approach especially pertinent to MIS is shared control, an intermediary auton-
omy level where a human operator effectively shares the control with the automation
(Yip et al. 2017; Niemeyer et al. 2016) and that would fall within the assistance level
described by Yang et al. (2017).

A brief taxonomy

Shared control (SC) is a general term referring to control paradigms where the operator
shares the control with automation. The division can sometimes be such that the
operator and automation control distinct DOF of the robot, which can then be seen as a
form of semi-autonomous control since the automation has full control over a partition
of the DOF. For instance, in a bi-manual robotic setup for laparascopic surgery, the
operator could control the tools while the robot arm holding the camera is automatically
controlled (Weede et al. 2011). However, in many cases, the control of the DOF of the
system is shared such that both operator and automation simultaneously control the
same DOF.

More generally, SC algorithms can be classified by the method used to combine
the commands of the operator and automation. State shared control (SSC) consists
in combining these commands at robot state level, typically through a weighted sum
(Dragan et al. 2013). In the literature, this type of SC is also referred to as “input-mixing
SC” (Katzourakis et al. 2011), “mixed initiative control” (Saeidi et al. 2017), or “policy
blending” (Dragan et al. 2013). Alternatively, the commands can be combined through
a physical interaction. More precisely, both the operator and the automation apply
forces on the master interface and the resulting velocity or position is directly used as
a command (see Figure 1.8). In the case of collaborative robotics, the same applies
except that forces applied by the operator and the automation directly affect the state
of the robot. This type of SC is referred to as haptic shared control (HSC, Abbink
et al. 2012).

Automation

Haptic
interface

Follower
robot

Operator

Assistive forces

Position/velocity
command

Human forces

Figure 1.8: Simplified illustration of the general HSC concept for telemanipulation, see
Abbink et al. (2012) for a more detailed representation.
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A major difference between these two schemes lies in how the arbitration between
operator and automation is handled or, in other words, how authority is allocated
(Abbink et al. 2018). HSC provides an effective way to arbitrate between operator
and automation. Limiting the maximal force that can be applied by the automation
effectively ensures that the operator will always be able to take back control if needed.
Additionally, the haptic interaction clearly and continuously communicates the intentions
of the automation to the operator (Abbink et al. 2012). On the contrary, SSC does
not provide a continuous feedback of the system and the operator does not necessarily
have the final control over task execution. Although this is generally not desirable in
surgical scenarios, the complexity or high dynamics of a task can justify the use of SSC
strategies, for instance, in the case of physiological motion compensation. Applications
of SSC and HSC to robot-assisted MIS are presented in the following sections.

State shared control

SSC is generally used to combine the actions of the operator with an automatic prediction
of what is intended. As this is done at the state level, no physical interaction with the
operator is required such that other communication chanels can be used. For instance,
outside the context of surgical robotics, SSC has been used to assist robot control from
motion capture (Dragan et al. 2013; Javdani et al. 2018).

In the field of robot-assisted MIS, SSC is predominately used to stabilize the robot
with respect to tissues moving because of breathing, heartbeat, or other physiological
motions. SSC can be used to track the displacements and compensate for them such that
the surgeon operates guided by the static display of the environment. This approach
was for instance applied to minimally invasive cardiac surgery, where the surface of
the beating heart can be tracked in endoscopic images (Ortmaier et al. 2005; Richa
et al. 2010). Respiratory motions can be compensated during robot-assisted needle
insertion using real-time intra-operative imaging, for instance X-ray (Baksic et al. 2021).
Similarly, an approach for respiratory motions compensation was proposed to assist
the manipulation of a robotized flexible endoscope (Ott et al. 2011). Besides motion
compensation, SSC was for instance used during contactless sub-tasks (e.g., large motion
from A to B) such that the robot motion was the super-imposition of automatic and
operator motions (Padoy et al. 2011). The automatic trajectory was learned beforehand
from demonstrations and its execution triggered by gesture recognition.

Haptic shared control

The first use of HSC consisted in implementing so-called virtual fixtures (VF) to
physically constrain the operator’s motion through the application of forces on the master
interface (Rosenberg 1993). Intuitively, VF are used to generate virtual interactions
that the operator can feel through forces applied on a force-enabled master interface,
hence exploiting haptic communication rather than relying on visual or auditive cues. A
survey by Bowyer et al. (2014) provides a comprehensive overview of VF methods, which
can be broadly divided in two categories. First, VF can be used to prevent forbidden
(e.g., dangerous) motions by virtually restraining the operator inside or outside a given
region. In robot-assisted MIS, this approach is typically used to protect critical tissues
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such as veins, arteries, or nerves. Dynamic forbidden region VF were also introduced to
cope with moving environnements such that the VF effectively tracks the motion of the
tissue (Gibo et al. 2009; Marinho et al. 2019), with applications such as beating heart
surgery (Ren et al. 2008; Rydén et al. 2012).

A second type of VF, usually referred to as guidance VF, consists in applying
continuous forces to guide the motion along a path or a surface. This type of VF is
best described by the more general HSC framework introduced by Abbink et al. (2012)
previously discussed, since operator and automation simultaneously apply forces to
the master robot to achieve a same task. Haptic guidance schemes can be used to
assist path following tasks during contact-free (Xiong et al. 2017; Olivieri et al. 2018)
or contact-rich (e.g., dissection tasks, Moccia et al. 2019; Feng et al. 2021) trajectories.
Similarly, planar haptic guidance was used to assist knot tying (Chen et al. 2016) and
Selvaggio et al. (2019) proposed a HSC method to guide the surgeon towards optimal
needle grasping poses to assist robot-assisted suturing. HSC was also used to physically
guide the surgeon towards the center of the lumen during the insertion of a teleoperated
flexible endoscope (Reilink et al. 2011).

1.2.3 Automatic sub-task execution
It is usually preferable to keep the surgeon in-the-loop during robot-assisted surgery for
safety and responsibility reasons, but the automation of some aspects of the surgery
remains interesting in many scenarios. This is especially the case for repetitive gestures
that are complex to execute or require high dexterity, but little to no decision-making.
For instance, the automation of suturing or knot tying sub-tasks has been extensively
investigated in the literature (Fontanelli et al. 2018). The proposed approaches range
from geometrical planning of automatic trajectories (Nageotte et al. 2009; Liu et al.
2016) to the use of machine learning to learn the skills from human surgeons (Schulman
et al. 2016; Osa et al. 2018). Methods were also proposed to perform automatic scanning
using ultrasound (US) probes (Zhan et al. 2020) or optical coherence tomography (OCT)
devices (Zhang et al. 2021). Similarly, tissue stiffness mapping from force sensing is a
likely candidate for automation, for instance to subsequently provide haptic guidance
based on the generated tissue topography (Wang et al. 2017). Although far from
exhaustive, this list illustrates the range of tasks or sub-tasks for which a higher level of
automation would be of interest during surgery.

1.3 Challenges to assistive robotic behaviors for MIS
Of all the assistive robotic behaviors previously introduced, very few are currently
implemented outside controlled environments, i.e., research testbeds. Although that
could be explained by regulatory and technological maturity issues, there are inherent
challenges in MIS that make automation very difficult. As discussed in the follow-
ing, these challenges include organ motions and deformations, limited intra-operative
measurements, and robot positioning inaccuracies.
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1.3.1 Intra-operative task registrations
A typical robot-assisted surgical procedure starts with the acquisition of preoperative
patient-specific data, e.g., using magnetic resonance imaging (MRI) or computed
tomography (CT), which is used to plan the surgical task. An additional step consists
then in the registration of the corresponding path or trajectory into the operational
space of the robot so that the task can be executed. Note that if the robot has no
autonomy at all (e.g., in telerobotics), then the surgeon performs this registration using
available visual feedback and knowledge of the anatomy. In any other scenario, whether
the task has to be automatically executed by the robot or exploited to assist the surgeon,
the system will have to perform this registration automatically. This is typically done
by matching intra-operative measurements of fiducials or other recognizable structures
with some acquired from the preoperative data initially used to plan the task (Troccaz
2013, Chapter 3).

In the case of endoscopic robot-assisted surgery, the camera images or other real-time
medical images (e.g., US or OCT) are usually the only available source of intra-
operative information, making registration of preoperative data especially challenging
for the following reasons. First, the in-situ image measurements are 2D, whereas
pre-operative images are typically 3D. A stereoscopic camera-based depth estimation
would partially alleviate the problem, but many MIS robots are not equipped with them.
Additional technical limitations of endoscopic images include intermittent measurement
unavailability due to occlusions, smoke, or specular reflections. Furthermore, the tissues
might be deformable such that their surface has to be tracked in real-time. All of the
aforementioned issues limit the achievable accuracy of the in-situ registration of a task
planned intra-operatively and, consequently, also limit the precision of its execution.

To make the challenges more explicit, let us assume that the task to perform can
be defined as a trajectory located with respect to tissues of interests, for instance
a tumor. To do so, this tumor is segmented in some pre-operative image and a
desired robot tool trajectory is computed (e.g., for dissection or scanning). During the
procedure, endoscopic images are used to track visual landmarks and reconstruct the
environment, for instance through visual simultaneous localization and mapping, i.e.,
SLAM (Mahmoud et al. 2019). In the absence of tissue deformation, organ motion,
or image artifacts, the registration error might be reasonable, e.g., 1 to 2 mm surface
reconstruction RMSE (root mean square error) for state-of-the-art SLAM methods
(Mahmoud et al. 2019), but it could also be much larger. This tissue registration is
used to express the previously planned trajectory in the reference frame of the robot.
In the following, this registered trajectory will be referred to as the planned trajectory;
it is the one that would, in the absence of robot positioning inaccuracies, be executed
by the robot. Due to registration errors, it can be different from the trajectory actually
preferred by the surgeon as illustrated in Figure 1.9a. It should be noted that if the
trajectory is directly planned in-situ, from intra-operative endoscopic images, then the
previously discussed issues impact also the planned trajectory. For example, the surgeon
could plan a trajectory directly in the endoscopic image, but subsequent tissue tracking
or depth-estimation errors can introduce registration inaccuracies (see Figure 1.9b).
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Pre-op. planning Intra-op. registration

(a)

Intra-op. planning Intra-op. tracking

(b)

Figure 1.9: Illustration of in-situ task registration errors arising from preoperative to
intra-operative registration (a) or errors introduced over time due to tissue
tracking inaccuracies (b).

1.3.2 Inaccurate robot modeling
Once a trajectory is planned, it has to be executed by the robot. Medical robots typically
lack task space sensors (i.e., distal) such that position control is often performed in
open-loop from kinematic models. Then, even assuming a correct hand-eye registration
allowing to perform the registration from camera to robot reference frames, positioning
errors can be introduced by inaccurate robot models. In the case of a robot with
actuation backlash, these errors are potentially very significant (see Section 1.2.1).
Furthermore, if the robot has to execute the task using a tool attached in-situ to its
end-effector (e.g., a needle seized to perform suturing), then an additional hand-tool
registration error might appear.

1.3.3 Effects of task and robot model inaccuracies
The task registration and robot positioning issues discussed in the previous sections
can be seen as modeling errors on:

• the model of the task, typically in the form of a trajectory expressed in the robot
frame of reference;

• the kinematic model of the robot and its transmission that can include a backlash
model for many medical robots as previously discussed.

Together, they introduce inaccuracies during automatic task execution as can be
expected, but also adversely impact the performance of shared control strategies.

Effects on automatic task execution

First, let us consider the case of a task planned intra-operatively and executed automat-
ically by a surgical robot. Once registered in the robot frame of reference, the planned
trajectory is the reference sent to robot the controller. Due to robot modeling errors,
the trajectory actually executed might differ from the planned trajectory. However, in
the presence of task modeling (e.g., registration) errors, the planned trajectory sent as
a reference to the controller is itself different from the one actually preferred by the
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surgeon. As illustrated in Figure 1.10, a surgeon supervising the task execution (e.g.,
from visual feedback) might then not be satisfied by the executed trajectory.

Planned robot
trajectory

Executed robot
trajectory

(estimated)
Robot model

Automatic executionPlanning

Planned robot trajectory

Surgeon preferred 
trajectory from 
intra-operative 

feedback

Figure 1.10: Illustration of an inaccurate automatic task execution resulting from the
task and robot modeling errors.

Effects on shared control

Challenges to robot-assisted MIS were so far presented with the point of view of
automatic task execution. However, the presence of the surgeon in-the-loop does
alleviate the need for accurate modeling, as this person will still be able to perform the
task using the available visual feedback. This advocates for shared-control as a way
to use the automation while leaving the operator in charge of coping with modeling
inaccuracies.

As the surgeon should maintain as much control as possible, HSC should be preferred
when possible such that the surgeon gets continuous feedback about the intention of the
assistive system – and can override it if necessary. Haptic guidance, a form of HSC that
guides the motion of the operator through the application of forces, has been shown
to improve task execution accuracy and reduce cognitive load in telerobotics (Enayati
et al. 2016). However, although final control remains with the surgeon, the robot still
needs a correct representation of its environment to provide useful assistance. The
required models depend on the nature of the shared control scheme considered, but
they typically include one or several of the following list: a model of the environment, a
task model in the form of a trajectory, the registration of said task in the operational
space of the robot, and the kinematic model of the robot.

In the presence of such modeling errors, the assistive behaviors implemented will
likewise be inaccurate. For instance, in the case of HSC approaches, the surgeon would
be physically guided towards a trajectory that is not the preferred one, which can be
disturbing and most likely unhelpful. A study carried out by Oosterhout et al. (2015)
demonstrated that inaccurate haptic guidance degrades performance. Other studies
also point towards the same conclusion (Smisek et al. 2015; Lee et al. 2017), which
would advocate for an in-situ correction of the models to reduce conflicts and improve
performance. Therefore, an ideal assistive HSC system should adapt its internal models
online to improve the provided assistance.
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It is important to note that these task modeling issues could sometimes be solved
using exteroceptive measurements to improve the haptic guidance online. For instance,
the path of VF has been updated online from scene reconstruction using endoscopic
images to assist polyp dissection (Moccia et al. 2019) or LASER surgery (Olivieri
et al. 2018). Force sensing can also be used to map the environment (topology and
stiffness) through palpation, which in turn can be used to update task models for the
generation of VF (Wang et al. 2017; Yasin et al. 2021). However, such approaches
exploit sensor information that could be unavailable or inaccurate, especially visual
information as previously discussed. Furthermore, sensor-based approaches ignore the
fact that the operator might be in disagreement with the generated haptic guidance
because of surgery circumstances.

1.4 Content of the thesis
1.4.1 Organization of the manuscript
In this thesis, we explore several ways to refine task and robot models in-situ, with a
focus on online task registration and backlash identification, both critical in many MIS
scenarios as previously discussed.

In the first part of the document, we propose new methods for the in-situ identification
of backlash in flexible endoscopic robots. The work is organized as follows.

Chapter 2 After introducing the scientific literature on flexible endoscope backlash
modeling and estimation, we present an approach for online and in-situ backlash
learning adapted to the case of flexible endoscopy. To do so, we build on the
notion of discontinuous Kalman filtering to propose a unified learning method
for multi-DOF backlash estimation. The proposed approach is validated through
comprehensive simulations of a flexible endoscopic robot.

Chapter 3 Existing methods for automatic backlash width estimation and compen-
sation most often consider eye-to-hand endoscopes. In this chapter, we propose
an original problem formulation inspired by the concepts of SLAM to perform the
in-situ backlash identification of eye-in-hand endoscopes from endoscopic images
only. The learning algorithm presented in Chapter 2 is then used to implement the
learning method, which is validated both in simulation and on a real endoscopic
robot.

Chapter 4 Finally, we explore how degraded image measurements that are insufficient
to reconstruct the pose of the robot can still be used to extract information about
the backlash model. We present a backlash width estimation method that uses
discrete motion detection events to learn the backlash width model, with no need
for robot pose estimation. We also demonstrate through experimental results
that the proposed approach can be combined with more traditional robot pose
estimation methods to reconstruct the complete backlash model.
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In part 1, the proposed methods use traditional sensor-based approaches whereas in
Part II, it is the presence of the operator in-the-loop that is exploited. This second
approach does not rely on exteroceptive sensors that could become unavailable or
erroneous, but rather uses the operator as an information source. In the second part of
the document, we explore adaptive SC schemes to correct task and robot models online,
while these models are simultaneously used to assist the operator. As it is most relevant
to surgical applications, we will consider haptic guidance throughout Part II, but our
work could apply to other HSC or SSC paradigms. The work is organized as follows.

Chapter 5 After introducing the state-of-the-Art methods for adaptive HSC and
human-robot interaction, we derive the problem formulation for online task and
robot models learning. Then, we propose an optimization-based approach to
refine these models using the operator in-the-loop as an information source. The
proposed algorithm is illustrated on simulated toy scenarios.

Chapter 6 The method introduced in Chapter 5 is experimentally evaluated on
generic teleoperation tasks. Relevant implementation details are discussed, includ-
ing the question of parameters identifiability and hyperparameters tuning. Then,
comprehensive experimental results are reported, demonstrating the performance
of the proposed method on a remote drawing task.

Chapter 7 In this chapter, the effectiveness of the proposed adaptive haptic guidance
method on human operators is evaluated in a user study. Furthermore, practical
questions are addressed, including the effect of so-called “workspace clutching” on
the performance of haptic guidance.

Finally, we conclude and present potential research avenues for our work, including
how multimodal learning could be used to combine sensor information with the infor-
mation extracted from the operator in-the-loop. Preliminary work on the simultaneous
correction of backlash and task registration is also presented, using concepts from
chapters 2 and 5.

1.4.2 Contributions and scientific communications
The main contributions of this thesis and associated publications are listed below (a
more detailled list can be found in Appendix A).

Contributions to the image-based online identification of endoscopic robot
models:

• we build on discontinuous Kalman filtering to propose an unified and general
framework for multi-DOF backlash estimation adapted to flexible endoscopy online
model identification. The method and results are presented in Chapter 2 and
were accepted for publication (Poignonec et al. 2023a);

• we propose a novel approach for image-based in-situ backlash estimation suited
to eye-in-hand endoscopes and validate this method experimentally on a clinical
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endoscope. The method and results are presented in Chapter 3 and were submitted
for publication (Poignonec et al. 2023b);

• we propose a novel approach for in-situ backlash estimation that is based on
image-based motion detection and that therefore does not require robot pose
estimation. The method and results are presented in Chapter 4 and a journal
publication is ongoing.

Contributions to the online task and robot models from user inputs:

• we propose a new method for simultaneous task and robot model learning. This
is a unified framework that allows the online correction of model parameters from
the observation of operator actions. We present a recursive implementation based
on Kalman filtering and thorough simulation and experimental validation. The
theoretical developments are presented in Chapter 5 and the experimental results
in a telerobotic context in Chapter 6. Journal publication is ongoing;

• As an alternative to Kalman filtering, we propose a novel approach for online task
registration from the observation of operator actions based on adaptive size sliding
window optimization. The method, including its application to adaptive haptic
guidance, and experimental results with an operator in-the-loop are partially
presented in Appendix E and discussed in the closing chapter of Part II. This
material was published in (Poignonec et al. 2021);

• we present comprehensive results concerning the effect of adaptive guidance on
operator performance and perceived arduousness collected during a user study.
The user study design and main results are presented in Chapter 7. Journal
publication is ongoing.
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Chapter 2 A Bayesian approach for online endoscopic robots model identification

Backlash is a common issue for the accurate control of medical robots and especially
cable-actuated flexible endoscopes. Accurate backlash estimation and modeling can be
used to improve the control of robotic flexible endoscopes, thus leading to improved user
experience in telemanipulation, or to enable automatic or semi-automatic sub-tasks. As
presented in the following section, there is a vast literature concerning the identification
of cable actuation backlash models. Existing solutions can be divided between off-line
and in-situ approaches, the former allowing a more precise modeling, but the later a
greater robustness to modifications of the hysteretic behavior that often occurs during
the insertion or manipulation of the endoscope. In this chapter, we propose an approach
to perform backlash estimation in-situ while maintaining a model complexity greater
than that of existing in-situ approaches, allowing to capture the shape of the hysteresis
more accurately.

2.1 Related work
2.1.1 Structure of cable-driven flexible endoscopes
Cable-actuated flexible endoscopes are typically composed of a passive flexible section
and an actuated bending section at the distal end (see Figure 2.1). Depending on the
system, the distal end is also equipped with an endoscopic camera or with a surgical
tool (e.g., gripper). There is generally one or two actuated bending DOF, such that
the distal section can bend in one or two planes, respectively. The cable actuation
is motorized at the proximal end such that each DOF is driven by a pulley as was
illustrated in Figure 1.7a: the pulley, when actuated, changes the relative length of the
two antagonist cables (i.e., Bowden cables, see Figure 2.1), which in turn causes the
bending of the endoscope.

Bowden cables {{ {

Proximal actuation Passive flexible shaft
Actuated 

bending section
Distal end

Figure 2.1: Illustration of cable-driven bending in one plane (i.e., 1 bending DOF).

Other DOF can be actuated, typically the orientation of the endoscope or its transla-
tion. For instance, the endoscope structure that will be considered in this chapter is a
robotized endoscopic tool inserted in the channel of a larger endoscope. The endoscopic
tool has three actuated DOF: the bending, the orientation within the channel, and the
translation along the channel. It should be noted that although backlash is particularly
present in the cable-actuated bending DOF, the rotation of the endoscope also exhibits
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Chapter 2 A Bayesian approach for online endoscopic robots model identification

a hysteretic behavior caused by the deformation of the passive flexible shaft and the
friction with the channel or environment (Aleluia Porto et al. 2019). For the same
reasons, the translation of the endoscope can also suffer from backlash if robotized,
although to a lesser degree.

2.1.2 Backlash modeling and estimation
Some work alleviate backlash identification by relying on closed-loop control of the
endoscopic system, using embedded sensors such as shape sensing devices or endoscopic
cameras. In such cases, the underlying backlash model is not identified, and its effect
has to be repeatedly rejected by the closed loop, which can be slow and induce delays
in task execution. Consequently, model-based backlash compensation based on feed
forward strategies is usually preferred.

The modeling of backlash in cable actuation can focus on the underlying physical
phenomena: the elongation of the cables and the friction in the conduits. For instance,
Chiang et al. (2009) proposed to model the mechanics of the cables and to estimate
the cable’s elongation and distal pulling force from proximal force and position sensors.
Similarly, Sun et al. (2014) estimate physical parameters such as friction and curvature to
model the elongation of the cable. Such physical models were used for the compensation
of backlash in cable-actuated flexible endoscope (Xu et al. 2017): after training the
cable elongation model offline, the authors use it to compensate backlash online with
a feed-forward controller. However, physical parameters such as cable/sheath friction
coefficients are generally not known and can change over time. Furthermore, the
measurement of cable tension is generally not available, even on the proximal side, such
that precise mechanical modeling of the cable is challenging.

Approaches not relying on exact mechanical models, but directly on hysteretic
relationships between actuators positions and effector pose have also been proposed. The
mathematical parameters of the models can be estimated from off-line identification as
proposed by Do et al. (2014). The authors estimate the parameters of a simplified Bouc-
Wen model (see Figure 2.2c) using proximal and distal cable displacement measurements.
Although not necessarily applied to the modeling of cable actuation, other methods
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Figure 2.2: Illustration of most common analytical hysteresis models for parametric
backlash modeling where the red arrows denote the direction of motion. (a)
Linear branches and constant width. (b) Linear branches. (c) Asymmetric
Bouc Wen model.
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for parametric backlash model identification have been proposed. For instance, Vörös
(2010) used iterative least square optimization to identify offline the parameters of a
backlash model with linear branches (see Figure 2.2b).

Finally, non-parametric model identification can also be used to learn the inverse
kinematic model linking distal endoscope configuration and proximal cable displacements,
thus directly using the measured relations to implement the compensation scheme.
Aleluia Porto et al. (2019) used neural networks to model the inverse kinematics of an
endoscopic robot and Bardou et al. (2012) used a lookup table to record the backlash
width, i.e., the deadzone crossed at each change of direction, for different actuator
positions.

At this point, it should be noted that it is not possible to directly measure the
distal cable displacements on endoscopic systems: only indirect measurements are
available. External sensors are then used for offline backlash identification, for instance
electromagnetic trackers (see Figure 2.3a) or stereoscopic cameras to track an optical
marker (see Figure 2.3b). However, these solutions are not applicable to in-situ model
identification (i.e., at the surgical site, using intra-operative sensors) and, consequently,
neither are the identification methods previously presented. Of course, models identified
offline can subsequently be used in-situ to implement backlash compensation, but the
hysteretic relation between proximal and distal displacement is highly dependent on
the shape (i.e., curvature) of the endoscope (Ott et al. 2011). The effect of shape
on hysteretic behavior was also studied in the context of cable actuation for other
applications, with similar conclusions (Dinh et al. 2016). Since the shape of the
endoscope changes between the offline identification and the surgery due to the insertion
of the endoscope at the beginning of the procedure, the models can potentially become
inaccurate once in-situ. For instance, one can observe in Figure 2.4 that strong variation
of the backlash model appears between subsequent acquisitions on the same robot.
Therefore, in situ identification of backlash should be preferred.

(a) Magnetic tracker (b) Optical marker (c)

Figure 2.3: The endoscope end-effector pose can be obtained through external tracking
(a-b) or in-situ pose estimation from endoscopic images (c). Sources (ordered
list): Bardou et al. (2012), Aleluia Porto et al. (2019), Reilink et al. (2013b).

2.1.3 In-situ backlash estimation
Reilink et al. (2013b) used marker-based pose estimation from endoscopic images (see
Figure 2.3c) to learn the parameters of a backlash model. The method consists in
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Figure 2.4: Hysteretic behaviors measured on a tendon driven DOF of a flexible en-
doscopic robot, between proximal actuator and distal configuration. The
different colors correspond to different dates of measurement between in
vivo (Poignonec et al. 2020).

continuously comparing actual motor positions with estimated ones and updating the
model parameters to reduce the discrepancy. The backlash model has two parameters
per DOF, as it assumes constant width and slope as depicted in Figure 2.2a. More
recently, Baek et al. (2020) proposed a hybrid method relying on a model of backlash
learned offline and an online pose estimation from endoscopic images. The authors used
a Kalman filter to fuse the two joint angles estimations, resulting respectively from the
backlash model and the online pose estimation, to improve the closed loop performance
of the K-FLEX robotic system. However, the backlash model is not strictly learned
in-situ and, besides, mostly used to replace pose estimation when it becomes unavailable
due to occlusions.

2.2 Proposed approach
To the best of our knowledge, the approach proposed by Reilink et al. (2013b) is the only
existing online method for in-situ multi-DOF backlash model identification. Its main
limitation lies in the fact that two-parameter models are often unable to capture realistic
backlash, and that variable width should be incorporated into the model. Another
limitation of previous works is related to the fact that sensor noise is not taken into
account, which may be critical as computer vision algorithms provides noisy estimations.

Therefore, we propose a generic online multi-DOF backlash learning method based
on the concept of discontinuous EKF (DEKF, see Chatzis et al. 2017b). The proof of
concept is demonstrated with a simulated scenario with realistic dimensions and model
parameters. The approach has the advantage of being more general than the method
proposed by Reilink et al. (2013b) as it allows to include additional backlash parameters.
Moreover, by relying on a Bayesian formulation, the proposed approach allows to take
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into account measurements noise and to explicitly incorporate correlations. This last
point will later be exploited in Chapter 3 to implement a SLAM-like algorithm, further
demonstrating the versatility of a Bayesian approach.

2.2.1 Robot kinematic modeling
Let us consider a robot with actuators non-linearities, typically transmission backlash
or dead-zone. Let q ∈ Rn denote the controlled parameters, e.g., the rotation angles
of the motors, and x ∈ Rm denote the robot tip pose, with m ⩽ 6. At discrete
time k, the system model can be obtained by combining dynamic nonlinearity due to
backlash, represented by a function B, and static non-linearities resulting from the robot
kinematics and denoted as K

xk = K(ck) (2.1)
ck = B(θk, ck−1, qk) (2.2)

where ck = [c1,k . . . cn,k]T ∈ Rn is the output of the backlash model, and θk =
[θT1,k . . . θTn,k]T is the set of parameters that characterize the dynamic non-linearities in
B(·). The parameter estimates vary during their identification, at the end of which they
should converge to constant values. However, for the sake of clarity in the notations,
the time-dependence of model parameters is omitted in the following. It is assumed
that backlash elements are independent from one another. Then, the output of the ith
backlash element ci,k is only function of the previous output ci,k−1 and of the associated
system input qi,k, such that ci,k = Bi(θi, ci,k−1, qi,k) as depicted in Figure 2.5.

qk

B1(θ1, c1,k−1, q1,k)

Bi(θi, ci,k−1, qi,k)

Bn(θn, cn,k−1, qn,k)

· · ·

· · ·

q1,k

qi,k

qn,k

c1,k

ci,k

cn,k

K(ck)
ck xk

Figure 2.5: Kinematic chain of an n-DOF robot with actuation backlash.

It is important to notice that the number of parameters, and then the dimension
of vector θ depend on the system non-linearities and on the model refinement. In
this work, each backlash element Bi(·) models a classical hysteresis characteristics.
This corresponds to experimental measurements that were acquired with the STRAS
robotized flexible instruments (Zorn et al. 2018), plotted in Figure 2.6, left. One can
observe that these experimental data can be approximated by a model with linear
branches, as illustrated in Figure 2.6, right.
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Figure 2.6: Left: real data illustrating backlash characteristics for three DOF of a
robotized endoscope, acquired with the STRAS robotic endoscope (Zorn
et al. 2018). Red is for rotation, blue for bending and green for translation.
Right: backlash model Bi(·) relating the ith actuator input and output.

The associated model is written as

Bi(θi, ci,k−1, qi,k) =



mL,i (qi,k − CL,i) , if qi,k ⩽ ci,k−1
mL,i

+ CL,i (L)
and qi,k ⩽ qi,k−1

mR,i (qi,k − CR,i) , if qi,k ⩾ ci,k−1
mR,i

+ CR,i (R)
and qi,k ⩾ qi,k−1

ci,k−1, otherwise (DZ)

(2.3)

where θi = [CR,i CL,i mR,i mL,i]T is the set of parameters characterizing the ith backlash
element. Note that this can be adapted if the considered backlash model is different or
if additional assumptions are made, e.g., if the branches (L) and (R) are parallel. Only
one branch is active at any time, depending on the direction and history of actuator
motion, such that the transformation from qi,k to ci,k is the linear function associated
to that branch. When the branch (DZ) is active (i.e., when crossing the dead zone),
ċi,k = 0 even if there is actuator motion.

2.2.2 State and parameters estimation
Let Xk = [X T

1,k . . . X T
n,k]T represent the state of the robot with transmission backlash,

where Xi,k = [cTi,k θTi ]T . From qk and the backlash model of Equation (2.3), the state
transition can be modeled as

Xk = f(Xk−1, qk) + wk (2.4)

where wk ∼ N (0, Qk) is an additive Gaussian process noise of covariance Qk and each
element of vector f(xk−1, qk) is defined by

fi(Xi,k−1, qi,k) =
[
Bi(Xi,k−1, qi,k)

θi

]
(2.5)
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Similarly, an observation model relates the current state Xk to measurements, gathered
in vector zk such that

zk = h(Xk) + vk (2.6)

where vk ∼ N (0, Rk) is an additive Gaussian measurement noise of covariance Rk.
Function h(·) may result from measurements provided by a 3D sensor measuring the
tip pose, when available (e.g., a magnetic sensor). In this case, h(Xk) = xk where xk is
the Cartesian position of the tip of the robot defined by Equation (2.1). Alternatively,
h(·) can be the projection into the endoscopic camera image of fiducials attached to
the robot tip. In this case, the measurement zk corresponds to the coordinates of the
segmented fiducials in the image (Reilink et al. 2013b; Poignonec et al. 2020).

Regardless of the nature of the observations and associated observation model h(·),
measurements can be exploited to estimate Xk, which includes the unknown model
parameters θ. However, due to the switching conditions in Equation (2.3), every function
Bi(·), and by extension the transition model (see Equation 2.4), are discontinuous.
Furthermore, only a subset of the θi parameters impacts the model at a given time.
Assuming that the ck variables are observable given the measurements zk, the state Xk
is still only partially observable and identifiable at any given time, since the subset of
parameters appearing only in momentarily inactive branches will be unidentifiable.

A so-called Discontinuous Extended Kalman Filter (DEKF) was proposed by Chatzis
et al. (2017b) to implement Bayesian filtering (i.e., EKF or UKF, see Chatzis et al.
2017b; Chatzis et al. 2017a) on switching systems that, although discontinuous, are
composed of composite branches that are smooth functions of the state and input.
Before each update of the estimate covariance, the DEKF decomposes the predicted
state X̂k|k−1 between observable and unobservable subsets, denoted as X̂ o

k|k−1 and X̂ u
k|k−1.

To do so, a row ordering matrix Tk is defined (see Figure 2.7) at each time step based
on which state variables are observable as proposed by Chatzis et al. (2017b) such that[

X o
k|k−1
X u
k|k−1

]
= TkX̂k|k−1 (2.7)

The subscript conventions Xk|k−1 and Xk|k denote the current prior and posterior
estimates respectively.

Figure 2.7: Using a row ordering matrix T as proposed in Chatzis et al. (2017b), the
state X can be separated into observable and unobservable subsets denoted
as X o and X u, respectively. The state estimation covariance P matrix,
among others, can likewise be decomposed.
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The observable state variables and the associated covariance terms are updated
using classical EKF equations. The unobservable state variables estimation and their
covariance are kept unchanged, but the cross-covariance is updated using the update
rule of the Schmit Kalman filter. Not updating the estimation of unobservable state
variables prevents them from diverging, while the cross-covariance update allows the
filter to retain a consistent covariance for the state estimation.

In the following, the DEKF filter is used to estimate the backlash parameters online.
As the tuning of the process noise covariance matrix Qk is difficult and very task-
dependent, the DEKF is endowed with a fading memory mechanism such that older
measurements are progressively forgotten (Simon 2010). Algorithm 1 details one step
of the proposed fading memory DEKF (FM-DEKF) where the fading factor α ⩾ 0 is
introduced at line 10.

Algorithm 1 One step of fading memory DEKF (FM-DEKF)
Input: X̂k−1|k−1, Pk−1|k−1, qk, zk
Output: X̂k|k, Pk|k

1: Initialisation: X̂0|0 ← E[X0], P0|0 ← V ar[X0]
2: Current state prediction :
3: X̂k|k−1 ← f(X̂k−1|k−1, qk) ▷ Update active branch(es)
4: Fk−1 ← ∂f(X ,q)

∂X |X =X̂k−1|k−1,q=qk

5: Decomposition observable/unobservable :
6: Compute the row ordering matrix Tk
7:
[

X o
k|k−1

X u
k|k−1

]
← TkX̂k|k−1 ;

[
P oo

k−1|k−1 (Puo
k−1|k−1)T

puo
k−1|k−1 Puu

k−1|k−1

]
← TkPk−1|k−1T

T
k ;

8: F oo
k−1 ← · · · , Qoo

k ← · · ·
9: Covariance propagation :

10: P oo
k|k−1 ← (1 + α)F oo

k−1P
oo
k−1|k−1(F oo

k−1)T +Qoo
k

11: P uo
k|k−1 ← P uo

k−1|k−1(F oo
k−1)T

12: Measurement update :
13: Hk ← ∂h(X )

∂X |X =X̂k|k−1
,
[
Ho
k H

u
k

]
←
(
TkH

T
k

)T
14: Kk ← P oo

k|k−1H
o
(
Ho
kP

oo
k|k−1(Ho

k)T +Rk

)−1

15: X o
k|k ← X o

k|k−1 +Kk(zk − h(X o
k|k−1)) ▷ See note below

16: P oo
k|k ← P oo

k|k−1 −KkH
o
kP

oo
k|k−1

17: P uo
k|k ←

(
(P uo

k|k)T −KkH
o
k(P uo

k|k)T
)T

18: X u
k|k ← X u

k|k−1, P uu
k|k ← P uu

k−1|k−1 ▷ No update
19: Recompose X̂k|k and Pk|k

As only the observable state variables impact the output of the (estimated) model, h(X o
k|k−1) is in

practice h(X̂k|k−1) where X̂k|k−1 = T T
k [ (X o

k|k−1)T (X u
k|k−1)T ]T .
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2.3 One DOF illustration
The learning method is first applied to a one-dimensional case study to illustrate the
different features of the algorithm. We also discuss the advantages of the proposed
method over a classical EKF filter and its main limitations.

2.3.1 One-dimensional simulation
Let ck ∈ R be the output of a backlash element as defined in Equation (2.3). The
actuator input position qk ∈ R is sampled from an arbitrary continuous sequence of
values that are generated by the superposition of several periodic functions. The values
of qk are kept in the range [−1; 1] (see Figure 2.8, left). In the following numerical
examples, we do not mention the units of the reported values that could describe an
angle, a distance, etc. The ground truth backlash element has constant parameters
CL = −0.15, CR = 0.25, mL = 1.15, and mR = 0.9. Its simulated output ck computed
from qk, Equation (2.3), for an initial value c0 = 0 is reported in Figure 2.8 (left) along
with the hysteretic cycle (right).
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ĉk (no learning)

zk

−1 0 1

qk

−1.0

−0.5

0.0

0.5

1.0

c
k

Ground truth

Estimation at k = 0

Figure 2.8: Left: input actuator position qk, backlash element output ck, and noisy
measurement zk used for the simulation. The estimation of ck computed
using the initial model estimation is reported. Right: input-output charac-
teristics of the backlash element from the ground truth model and from the
estimated model at k = 0.

The online model identification consists in estimating Xk = [ck CL CR mL mR]T given
incorrect initial parameters estimates assuming that the output is measured but noisy,
i.e., zk = h(Xk) + vk and h(Xk) = ck. The measurement noise vk is sampled from a
zero-mean Gaussian distribution of standard deviation σv = 0.02. The estimated state is
initialized with X̂0|0 = [0, −0.35, 0.1, 1, 1]T , which results in a backlash characteristics
quite different from the one corresponding to the ground truth, plotted in Figure 2.8
(right). The FM-DEKF was implemented with hyper-parameters

α = 2.10−3 P0|0 = 1.10−3I5×5

Rk = (5.10−2)2 Qk = 05×5
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where In×n is the identity matrix of dimension n and 0n×n the null matrix of dimension n.
The filter estimated state variable ck is reported in Figure 2.9 along with the parameter
estimation errors. Modeling errors are significantly reduced by the filter such that the
mean state estimation residual error (absolute value) is X̃k = Xk − X̂k = [37.10−5,
26.10−5, 21.10−5, 15.10−3, 16.10−3] for k ∈ [4000; 5000] in normalized units. The
active branch of the backlash element is also reported in Figure 2.9. As desired, any
unobservable state variable remains constant until it becomes observable again (e.g.,
CL and mL are only observable when branch (L) is active). Model parameter errors
are reduced by 99.3% (i.e. error roughly divided by 100) on average by the end of the
identification process (see Figure 2.9, center). When using the initial model estimation
only (see Figure 2.8 for initial model prediction), the mean and standard deviation of
the ck prediction errors over the whole simulation is 0.19 ± 0.05 in normalized units.
This error is reduced here down to 0.0037± 0.009 when using the FM-DEKF.
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Figure 2.9: Top: State variable ck, its estimation ĉk|k by the FM-DEKF, and estimation
errors c̃k = ck − ĉk|k. Center: Estimation errors of the state variables
associated with the model parameters. Bottom: estimated active branch of
the backlash element.
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2.3.2 Comparison with classical EKF
For comparison purposes, a classical fading memory EKF (FM-EKF) was also im-
plemented. Its design is identical to the FM-DEKF, but without the observability
management (i.e., supposing X o

k = Xk). The performance of such a FM-EKF was
evaluated with the same hyperparameters α, P0|0, X̂0|0, and Qk, and in the same sce-
nario. Figure 2.10 (top) reports the state variables estimation errors associated with
the backlash model. The errors converge towards 0 even faster, if less smoothly, than
with the FM-DEKF (see Figure 2.9, center).

Figure 2.10: Left: Estimation errors of the state variables associated with the model
parameters when using a classical FM-EKF. Right: The variances of the
estimates are displayed on a logarithmic scale for the two parameters
associated with the branch (L).

However, as the parameters observability is not taken into account, the covariance of
an estimate grows whenever the variable is not observable (see Figure 2.10, bottom).
This is to be expected since process noise is continually injected through the fading
memory mechanism regardless of whether observations yield information. As each
branch is persistently activated (i.e., there is a constant motion on each DOF and its
direction varies), such periods of undesirable estimation covariance increase are limited
in duration. This can nonetheless lead to inaccurate measurement updates and even to
the divergence of the filter if the covariance increases in such a way for too long.

Although the FM-DEKF does not perform better than the FM-EKF in terms of
convergence rate, it increases the robustness of the overall learning process. A thorough
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sensibility and observability analysis are out of scope, but it should be noted that the
filter convergence is contingent on persistent actuator excitation (i.e., there must be
actuator displacements).

2.4 Simulation results
In order to demonstrate the efficiency of the FM-DEKF method to learn the input
backlash model of a cable-driven robot, the filter performance is evaluated for a simulated
3 DOF robotized endoscope, whose kinematics is described Figure 2.11, corresponding
to a common architecture for robotized endoscopes (Zorn et al. 2018). In this case, the
ck ∈ R3 variables are the axial translation, the bending of a flexible section, and the
rotation around the Z axis.

Y X
Y

Bending angle

Translation

Z

X

Z

Rotation

Figure 2.11: Endoscopic robot with 3 DOF, characterized by its axial translation along
Z, the bending angle of the bending section of the body, and the rotation
w.r.t Z axis.

The three backlash elements associated with the three actuators of the robot are
modeled using Equation (2.3) such that 12 initially incorrect model parameters have to
be estimated. The online model identification procedure is performed with the presented
FM-DEKF approach from a noisy measure of the distal Cartesian position of the robot
xk ∈ R3. Although model parameters used for the simulation are realistic, we do not
claim that they fully capture the complexity of real-world cable-actuated endoscopic
robots as will be discussed at the end of Part I. This is foremost a proof of concept that
demonstrates the advantages of the proposed method.

2.4.1 Simulation setup
The bending angle c2,k is actuated using two antagonist bowden cables such that the
actuator position q2,k is a cable length variation. As depicted in Figure 2.6 (left),
backlash phenomena can appear in all three DOF of the robot. The kinematic chain
depicted in Figure 2.11 can be modeled using a constant curvature model of the bending
section (Webster III et al. 2010). Under this approximation, there is an analytical form
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for the kinematic function xk = K(ck) as detailed in (Nageotte et al. 2020) and reported
in the appendix (see Equation B.1).

Persistent excitation similar to the one used in Section 2.3 are generated for each
actuator positions qi,k, but adapted so that their respective ranges match that of existing
robotized endoscopic tools (Zorn et al. 2018). The values of c2,k and c3,k are kept in
the range [−π/2; π/2] rad (see Figure 2.13, top). The observations zk = xk + vk are
simulated by modeling vk as zero-mean Gaussian noise vk ∼ N (0, σ2

v) of standard
deviation σv = 0.5 mm. Actuator positions qk and observations zk are sampled at 50 Hz
over a time period of 180 s. The FM-DEKF is implemented with hyperparameters
α = 2.10−3 (equivalent to a decay time-constant of 20 s), Rk = (2.10−3)2I3×3 and
Qk = 015×15. The initial state estimate X̂0|0 is significantly inaccurate, with estimation
errors on all model parameters (see resulting characteristics in Figure 2.12). The initial
state estimate covariance P0|0 is arbitrarily computed by scaling a matrix (2.10−2)2I15×15
according to the respective qi,k and ci,k working ranges such that

diag(P0|0) =
[
diag(P1,0|0) diag(P2,0|0) diag(P3,0|0)

]
where

√
diag(Pi,0|0) = 2.10−2

[
∆ci ∆qi ∆qi

∆ci
∆qi

∆ci
∆qi

]
(2.8)

is a row vector containing the initial parameter standard deviations of ĉi,0, ĈL,i,0, ĈR,i,0,
m̂L,i,0, and m̂R,i,0 (in this order). The function diag(·) returns the row vector containing
the diagonal terms of a matrix and the square root in Equation (2.8) is computed
element-wise. Finally, ∆ci and ∆qi are the ith actuator and configuration variables
expected ranges, respectively.

0.04 0.06

q1,k (m)

0.03

0.04

0.05

0.06

0.07

c
1
,k

(m
)

B1(·)

−0.005 0.000 0.005

q2,k (m)

−1

0

1

c
2
,k

(r
a
d
)

B2(·)

Ground truth Initial estimation

−2 0

q3,k (rad)

−2

−1

0

1

c
3
,k

(r
a
d
)

B3(·)

Figure 2.12: Input-output characteristics of the backlash elements Bi(·) from the ground
truth models and from the estimated models at k = 0.
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Figure 2.13: Top: Ground truth values for ci,k. Bottom: FM-DEKF prediction error
c̃i,k = ci,k − ĉi,k.

2.4.2 Results
All backlash model parameter errors are reduced by 80% or more after 90s of simulation
(see Figure 2.14), for an average error reduction of 99.6% at the end of the simula-
tion. Likewise, the estimated variables ck are correctly predicted once the FM-DEKF
converges (see Figure 2.13, bottom). The mean estimation error for ck over the time
period t ∈ [120 s, 180 s] is

[
3.10−6 m, 9.10−5 rad, 6.10−4 rad,

]
and the same error is[

1.10−4, 2.10−3, 8.10−3
]

over the whole simulation. To put this in perspective, the
mean ck estimation error over the whole simulation would be

[
0.0038, 0.17, 0.23

]
if

the initial model estimation was used to predict ck in the same conditions, but without
any model parameters updates.

In Figure 2.14, sudden relative error reduction can be observed at start-up for some
model parameters (e.g., ĈL,2,k or ĈL,3,k). This is partly explained by the smaller initial
absolute estimation error on these parameters (see (L) branches in Figure 2.12 for B2
and B3), but also by an aggressive hyperparameter tuning. Smoother, more gradual
parameters updates can be obtained by reducing the initial state covariance and choosing
a smaller value for α, but this would also increase the time required for convergence.

2.5 Conclusions
We proposed to use DEKF filtering for endoscopic robot backlash model identification,
allowing for the identification of more complex backlash characteristics than existing
online methods that deal with this problem. The DEKF was adapted to the case of
endoscopic robot model identification and a forgetting factor added to reduce the tuning

33



Chapter 2 A Bayesian approach for online endoscopic robots model identification

0 25 50 75 100 125 150 175

0.0

1.0

2.0

Relative estimation errors for B1

C̃L,1,k/C̃L,1,k=0

C̃R,1,k/C̃R,1,k=0

m̃L,1,k/m̃L,1,k=0

m̃R,1,k/m̃R,1,k=0

0 25 50 75 100 125 150 175

0.0

0.5

1.0

Relative estimation errors for B2

C̃L,2,k/C̃L,2,k=0

C̃R,2,k/C̃R,2,k=0

m̃L,2,k/m̃L,2,k=0

m̃R,2,k/m̃R,2,k=0

0 25 50 75 100 125 150 175

time (s)

0.0

0.5

1.0

Relative estimation errors for B3

C̃L,3,k/C̃L,3,k=0

C̃R,3,k/C̃R,3,k=0

m̃L,3,k/m̃L,3,k=0

m̃R,3,k/m̃R,3,k=0
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difficulty and task dependency. A simulation of an existing endoscope was used to
assess this approach on the intended use-case. Overall, the performance of the filter
is adequate: provided sufficient actuators excitation and reasonable hyperparameters,
the model parameters are correctly learned online in a limited time duration. The
learned models are sufficient to model non-constant backlash widths found in many
cable-actuated robots, but could be simplified if needed.

The main limitation of the method is the actuator excitation necessary to the filter
convergence, except when only CL,i and CR,i are learned, in which case the parameters
are observable regardless of the excitation. This is not an issue as long as the actuator
trajectories are automatically planned (e.g., automatic calibration procedure). However,
it could become a problem during the robot teleoperation by an operator. To be robust
against arbitrary trajectories, the FM-DEKF should be improved to cope with adversary
conditions.

In the simulation presented in Section 2.4, a measurement of the Cartesian position
xk was supposed readily available, which is unlikely in an in-situ medical scenario with
an endoscopic robot. Measurements can sometimes be acquired from images captured
by an endoscopic monocular camera in an eye-to-hand configuratio. In that case, zk can
be defined as the image measurements of several markers attached to the robot (Reilink
et al. 2013b; Cabras et al. 2017) or even the result of an intermediary markerless pose
estimation (Baek et al. 2020; Sestini et al. 2021). However, some endoscopic robots have
an eye-in-hand camera configuration, such that the camera is at the tip of the endoscope
and not directed at it, which makes direct robot pose measurements impossible. In
such cases, the FM-DEKF approach can be coupled with SLAM to use endoscopic
images of the environment to correct the models and the map of said environment (i.e.,
depth estimation) simultaneously. In the following chapter, this concept is explored
to implement online in-situ backlash width identification on eye-in-hand endoscopic
robots.
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Existing methods for in-situ automatic backlash identification from endoscopic images
were presented in Chapter 2, but they require a direct image measurement of the robot
to estimate its pose. Thus, they are not directly applicable to eye-in-hand endoscopic
robots such as conventional gastroscopes or colonoscopes (see Figure 3.1). It should be
noted that backlash estimation methods based on robot pose estimation can be used for
the offline identification of eye-in-hand endoscopes. For instance, a stereoscopic camera
was used to estimate the pose of the endoscope and learn the inverse kinematics from
data, backlash included (Aleluia Porto 2021). All the previously introduced works (see
Section 2.1) could similarly be extended to the case of eye-in-hand endoscopes provided
adequate external pose measurement. However, such external pose measurement will
not be available in-situ.

{ { {Bending sectionX

YZ

X
Y

Z
Passive flexible body

Uncertain transmission modelActuators

...

Endoscopic camera

Image 
measurements

Scene
landmarks

{{

(multi-DOF backlash)

Figure 3.1: Considered scenario with an eye-in-hand endoscope. We want to automati-
cally reconstruct the transmission’s backlash model from actuator and image
measurements only.

Ott et al. (2011) proposed an approach adapted to this scenario that relies on the
observation of a fixed point of environment tracked in the endoscopic image. The authors
measured the backlash width of the hysteretic cycle generated when tracking a feature in
the endoscopic image during actuator excitation. The main limitation of this approach is
that it can only be used during specific DOF-by-DOF actuator displacement sequences
and, therefore, not while the robot is executing arbitrary operational motions. To the
best of our knowledge, this is the only approach adapted to the in-situ identification of
eye-in-hand endoscopes.

Therefore, in this chapter, we investigate how the backlash model can be learned
in-situ and online from indirect measurements only, from several scene landmarks tracked
in the endoscopic image. We propose to estimate simultaneously the parameters of
the backlash model and the 3D position of the landmarks, provided some reasonable
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assumptions. In order to make the problem solvable, the backlash width model is
separated from the full backlash model so that only the part strictly necessary for
backlash compensation is learned. The approach is then implemented using the FM-
DEKF algorithm presented in Chapter 2.

3.1 Preliminary developments for endoscope and
backlash modeling

3.1.1 Forward kinematics of eye-in-hand endoscopes
The endoscope kinematics is modeled using an analytical model assuming constant
curvature of the 2 DOF endoscope during the bending in two orthogonal planes (Ott
et al. 2011). The actuation variables qk = [q1,k, q2,k]T are defined as proximal side cable
length variations, typically driven by a pulley system. Proximal cable displacements qk
results in a distal cable displacement ck = [c1,k, c2,k]T as shown in Figure 3.1. Note that
qk and ck would be identical in the absence of friction, cable slack, and other phenomena
that tend in practice to create hysteretic behaviors. The distal side cable displacements
ck are mapped into a configuration space composed of ϕk, the orientation of the bending
plane, and βk, the bending angle in this plane (see Figure 3.2) such that[

ϕk
βk

]
= Kc(ck) (3.1)

as detailed in Appendix B.2. The endoscopic camera is located at the tip of the
endoscope. Its Cartesian pose w.r.t. the base of the bending section, is modeled using
the homogeneous transformation matrix

bTc(ck) =
[

bRc(ck) btc(ck)
0 0 0 1

]
= Kp(ϕk, βk) (3.2)

where btc(ck) ∈ R3 is the Cartesian position of the camera in the frame Fb (see Figure 3.2,
right) and bRc(ck) ∈ SO(3) is the orientation matrix of the camera frame Fc w.r.t. Fb.
The full analytical expressions of btc(ck) and bRc(ck) are reported in Appendix B.2.

3.1.2 TSM backlash modeling
Backlash in the transmission from proximal to distal cables displacement is modeled as
two independent backlash elements B1 and B2 as illustrated in figures 3.1 and 3.3. Each
element (i.e., one per DOF) is described by two linear functions as was introduced in
Chapter 2, hence requiring 4 model parameters per backlash element denoted θi ∈ R4

(see Figure 2.6, right). This type of backlash model with two linear branches is a
reasonable local approximation for real systems (Ott et al. 2011). The backlash model
identification then consists in estimating the parameters mL,i, CL,i, mR,i, and CR,i that
were introduced in Equation (2.3).
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Figure 3.2: Left: TSM-actuated endoscopic robot with 2 DOF and an eye-in-hand
camera configuration. The camera is located at the origin of the frame Fc.
Right: constant curvature model (Ott et al. 2011).
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ck βk, ϕk xk

Figure 3.3: Kinematic chain of the robot with actuation backlash.

3.1.3 Backlash model parameterization
Backlash elements Bi(·) can be decomposed between the backlash width itself (dependent
on actuator position), denoted bi, and a linear mapping from actuator space to the distal
cable position space. The backlash width is most naturally expressed as a function of
ck such that

bi(ci,k) = ΓAi + γAi ci,k (3.3)

where ΓAi and γAi are combinations of the original model parameters. In order to isolate
these two parameters, the backlash model (see Equation 2.3) parameterization can be
modified such that

mO,i =
2mR,imL,i

mL,i +mR,i

γAi =
mL,i −mR,i

mR,imL,i

CO,i =
CR,i + CL,i

2 ΓAi = CR,i − CL,i

This backlash model parameterization will hereinafter be referred to as representation
A. The backlash width model bi can also be expressed as a function of the actuator
position, which results in the representation B depicted in Figure 3.4:

q̄i,k = ci,kmO,i + CO,i (3.4)
bi(q̄i,k) = ΓBi + γBi q̄i,k (3.5)
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where q̄i,k is the mean actuator position among those that could result in a given
output ci,k. Both representations are in fine equivalent: going from representation A to
representation B can be seen as a projection of the backlash width into the actuator
space (see Figure 3.4). The backlash width identification therefore consists in estimating
ΓAi and γAi (or ΓBi and γBi ) from available in-situ measurements. It should be noted
that with this problem formulation we do not learn the full backlash models (i.e., 4
parameters per DOF), but only a set of parameters sufficient to describe the variable
backlash width bi.

Figure 3.4: Two equivalent backlash model parameterizations where the variable back-
lash width (in green) is independent from the overall backlash characteristic
(in red).

3.2 Proposed backlash width identification method
3.2.1 Problem formulation
If only the endoscopic images are available for learning, as is typically the case for
in-situ estimation, then the only information comes from image measurements of the
environment as depicted in Figure 3.1. Let pk =

[
pT1,k · · · pTj,k · · · pTN,k

]T
, with pj,k ∈ R3,

be the Cartesian positions of N scene landmarks tracked in the endoscopic camera
image such that their measured positions in the image are zk (see Figure 3.1). From a
sequence of measurements zk, we wish to reconstruct the (possibly variable) backlash
width of the robot under the following assumptions:

• the intrinsic model of the camera has been correctly identified during an offline
calibration;
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• the geometric parameters of the distal bending section are known (lengths L and
d, see Figure 3.2);

• the environment is rigid such that the distances between landmarks pj,k remain con-
stant. Additionally, the endoscope body is not displaced during the identification
procedure (i.e., pj,k constant in Fb).

Let pk/Fb
and pk/Fc denote the landmarks positions expressed in the base (i.e.,

proximal) frame Fb of the endoscope and distal camera frame Fc respectively (see
Figure 3.1). The measurements zk can be modeled using a pinhole projection model
and the robot distal kinematics such that

zk =
[
zT1,k · · · zTj,k · · · zTN,k

]T
(3.6)

zj,k =


u0 +Kx

pxj,k/Fc

pzj,k/Fc

v0 +Ky

pyj,k/Fc

pzj,k/Fc

 (3.7)

where u0, v0, Kx, and Ky are camera intrinsic model parameters (central point coordi-
nates and magnification factors, respectively) and

pj,k/Fc =

p
x
j,k/Fc

pyj,k/Fc

pzj,k/Fc

 =
(
bRc(ck)

)T (
p,k/Fb

− btc(ck)
)

(3.8)

Then, we define the state Xk as the concatenation of the distal cable displacement ck,
the parameters θk = [θT1,k θT2,k]T , and the landmark Cartesian positions expressed in Fb
such that

Xk =
[
cTk θTk pTk/Fb

]T
= f(Xk−1, qk) + wk, wk ∼ N (0, Qk) (3.9)

and
zk = h(Xk) + vk, vk ∼ N (0, Rk) (3.10)

where h(Xk) is derived from equations (3.7) and (3.8). Note that θ1,k and θ2,k are
the parameters of B1 and B2, respectively. The matrix Qk encodes the covariance of
the process noise wk and the matrix Rk that of the measurement noise vk. The state
transition model is defined as

f(Xk−1, qk) =


B1(θ1,k, c1,k−1, q1,k)
B2(θ2,k, c2,k−1, q2,k)

θk
pk/Fb

 (3.11)

Provided system identifiability and sufficient actuators excitation, Bayesian filtering
approaches can then be used to learn online the parameters θk considering the state
transition and the observation models defined by equations (3.9) and (3.10), respectively.
We propose to use an EKF to learn the backlash width parameters. Nevertheless, a
standard EKF cannot be used due to the discontinuous nature of the backlash model
and its parameters local unidentifiability. Therefore, a practical implementation that
can cope with the presence of backlash is detailed in Section 3.2.4.
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3.2.2 Comparison with visual SLAM
The proposed problem formulation is similar to (and inspired by) SLAM. Monocular
SLAM has been applied to medical endoscopic images (Grasa et al. 2014; Mahmoud
et al. 2019) to reconstruct the 3D shape of the environment and the pose of the camera
during motion, independently from the kinematic model of the robot (i.e., backlash
and robot kinematics). However, reconstructing the camera trajectory in such a way is
not directly useful to learn the backlash in the transmission, as it is the position of the
camera w.r.t. the base of the kinematic chain that would be necessary, an information
not recovered by the SLAM. Nonetheless, the backlash identification approach proposed
in this paper can be seen as a SLAM-like problem, but where the estimated state
contains the parameters of the TSM backlash models and not the pose of the camera
w.r.t. the environment.

3.2.3 Choice of parameters to be learned
Intuitively, the configuration of the endoscope is hard to retrieve from image measure-
ments since, for small displacements, the camera moves on a sphere (see Figure 3.5 for
planar illustration). As a result, the absolute position on this sphere (parameterized
by CR,i and CL,i or by CO,i) cannot be estimated because the configuration does not
impact the apparent motion of scene landmarks (see Figure 3.5, right). To a lesser
degree, it is also challenging to retrieve the slope parameters (i.e., mR,i and mL,i or
mO,i) due to model sensitivity issues. Locally, a variation of the landmarks depth and a
variation of the slope parameter(s) have the same effect on image measurements (see
Figure 3.5, right).

Ideally, complete and correct model parameters identification would then require
large endoscope displacements (i.e., large bending amplitude), which is not realistic in
medical applications. On the contrary, small endoscope motions should be preferred
so as not to deform the environment. With only small endoscope displacements, the
estimation of the complete model would therefore be highly sensitive to measurement
noise, unmodeled endoscope motions, and modeling errors in general.

Therefore, only the backlash widths bi will be identified using the alternative pa-
rameterization introduced in Section 3.1.2, leading to the set of estimated parameters
θk = [γA1,k ΓA1,k γA2,k ΓA2,k]T . We choose to use representation A because it is more intuitive
and results in a more compact representation. Nevertheless, even if representation B is
more cumbersome, it is relevant to practical applications such as backlash compensation
that requires backlash models expressed in the actuator space. We will therefore imple-
ment the identification method using representation A, but subsequently express the
results using representation B. The choice is motivated by the fact that the values of
γAi,k and ΓAi,k are dependent on the estimate of ci,k, which will most likely be inaccurate
since the parameters mO,i and CO,i are not identified, hence not corrected.
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Figure 3.5: Intuitions behind identification issues for the absolute orientation and the
angular velocity. They are due to the fact that for small displacements (i.e.,
small bending angle variations), the endoscopic robot can be approximated
by a simple revolute joint in 2D. The illustration shows states that result
in the same image measurements during the EKF-SLAM identification
procedure.

3.2.4 Practical filter implementation
We use the fading memory discontinuous EKF filter introduced in Chapter 2 to solve
the identification problem considering the state

Xk =
[
cTk θTk pTk/Fb

]T
∈ R9 (3.12)

where

ck =
[
c1,k c2,k

]T
θk =

[
γA1,k ΓA1,k γA2,k ΓA2,k

]T
(3.13)

pk/Fb
=
[
px1,k/Fb

py1,k/Fb
pz1,k/Fb

]T
such that only a single landmark is tracked in the image, which is in practice sufficient.
Given the first image measurements z0 and the initial estimation of c0, the landmark
position estimate is initialized as

p̂1,0 = g(z1,0, ĉ0, p̂
z
1,0/Fc

) (3.14)

where p̂z1,0/Fc
is an arbitrary initial depth estimate and the function g(·) is obtained by

inversion of equations (3.7) and (3.8) such that

g(z1,0, ĉ0, p̂
z
1,0/Fc

) = bRc(ĉ0)

p̂z1,0/Fc

[
1/Kx 0

0 1/Ky

](
z1,0 −

[
u0
vo

])
p̂z1,0/Fc

+ btc(ĉ0) (3.15)

Finally, the covariance of the initial state estimation is computed as

P0|0 =

Var(ĉ0)
Var(θ̂0)

0
0 P1,0|0

 (3.16)

43



Chapter 3 Eye-in-hand endoscopic robot in-situ backlash identification

where Var(·) denotes the variance-covariance matrix and P1,0|0 is the covariance of the
landmark initial estimate, computed by propagation of the initial robot configuration
uncertainty and measurements noise covariance such that

P1,0|0 = G0

R0 0 0
0 Var(ĉ0) 0
0 0 Var(p̂z1,0/Fc

)

GT
0 (3.17)

with

G0 =
[
∂g(·)
∂z1,0

∂g(·)
∂ĉ0

∂g(·)
∂p̂z1,0/Fc

]
(3.18)

3.3 Simulation results
The method is first illustrated in a simulated, but realistic scenario. This simulation is
well suited to validate the method and allows us to discuss the evolution of internal
variables not typically available during an experiment on a real robot as, for instance,
the ground truth distal cable displacements.

3.3.1 Simulation setup
An environment as illustrated in Figure 3.1 is simulated. It contains one landmark
positioned at p1,k/Fb

= [10, 10, 250] mm – i.e., 150 mm in front of the endoscopic
camera when in the straight position. The dimensions of the simulated endoscope are
D = 12 mm, d = 20 mm, and L = 80 mm. The ground truth backlash models B1(·)
and B2(·) both have a variable backlash width of approximately 1 mm (see green curves
in Figure 3.7).

Five minutes of periodic actuator motions, of amplitude chosen to maintain the
tracked landmark in the image, are simulated and sampled at Ts = 0.04 s. From
qk, the ground truth ck is obtained by using the ground truth backlash models (see
Figure 3.6). From ck and p1,k/Fb

, the image measurements zk are simulated as defined
by Equation (3.10) with an additive measurement noise vk whose standard deviation
is 1 pixel. The FM-DEKF filter is implemented with hyperparameters Rk = (4)2I2×2,
Qk = 0, and α = 2.10−3 (equivalent to a decay time-constant of 20 s). The state
estimate and covariance are initialized with√

diag(Var(ĉ0)) = 1.10−3
[
∆c1 ∆c2

]
√

diag(Var(θ̂0)) = 1.10−3
[

∆c1

∆q1
∆q1

∆c2

∆q2
∆q1

]
√

Var(p̂z1,0/Fc
) = 20 mm , p̂z1,0/Fc

= 200 mm

where ∆ci and ∆qi are the ith distal cable and actuator expected ranges (all set to
6.6 mm) introduced to normalize the initial covariance terms.
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}

Zoom

Figure 3.6: Input actuator positions qi,k and backlash element outputs ci,k in mm for
each DOF.

3.3.2 Backlash width estimation when m̂O,i is correct
First, we consider the scenario where m̂O,i and ĈO,i have been identified during an offline
procedure, but the values for ĈO,i are incorrect once in-situ. This is a realistic scenario
because the ĈO,i values are dependent from the configuration of the endoscope body
(including the passive flexible section) that can change during its insertion (Ott et al.
2011). The estimation errors on CO,i are −0.63 mm and 0.54 mm on the first and second
DOF respectively, which is very significant considering that the simulated backlash
widths are around 1 mm for both DOF. The mean slopes are set to m̂O,1 = mO,1 = 1.1
and m̂O,2 = mO,2 = 1.15.

Because the ĈO,i values are incorrect, the learned overall backlash model is incorrect as
can be observed in Figure 3.7 where the real and estimated hysteretic cycles are reported.
However, the backlash width itself is correctly estimated such that the estimated cycle
is identical to the real one, provided a translation along ci,k (see Figure 3.7). This is
evidenced by the fact that Γ̂Bi,k and γ̂Bi,k (reconstructed from the estimated parameters
Γ̂Ai,k and γ̂Ai,k) converge towards the ground truth values (see Figure 3.8, top). Although
both γ̂Bi,k values converge more slowly than the estimated parameters Γ̂Bi,k, all parameters
have converged after three minutes of simulated motion (see Figure 3.8, top). There is
a small residual error on the γ̂Bi,k values caused by the incorrect fixed parameters ĈO,i,
but there is no significant error on the resulting estimated backlash width model (see
Figure 3.8, bottom). In Figure 3.8, one can also note that the backlash width modeling
errors are already very significantly reduced after two minutes.
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Figure 3.7: Hysteretic cycles resulting from the ground truth (green) and estimation of
ck (red) during the learning process in the case where the estimates of mO,i

are correct. The initial model is also represented (blue).

3.3.3 Robustness to incorrect m̂O,i values
In practice, model identification is complex for this type of robot and the fixed parameters
m̂O,i could be slightly inaccurate. Consequently, both the m̂O,i and ĈO,i parameters
may – and probably will – be inaccurate in any real scenario. Under the same conditions
as in the previous simulation, an error is introduced on the estimated parameters m̂O,i

such that m̂O,1 = m̂O,2 = 1 (i.e., estimation errors are respectively 10% and 15%). The
learning process results in performances comparable to those obtained with correct
m̂O,i values, with a convergence of the parameters towards their correct values in three
minutes (see Figure 3.9, bottom). Similarly, although the final Γ̂Bi,k estimates are very
accurate (< 2% errors), there are small residual errors on the γ̂Bi,k estimates (≈ 10%).

3.3.4 Discussion
The proposed method is capable of learning the correct parameters of the backlash width
model even if the fixed parameters CO,i and mO,i are inaccurate. The residual parameter
estimation errors, resulting from the misspecification of the fixed parameters, only incur
small errors on the estimated backlash width b̂i(·): under 0.02 mm, i.e., less than 2% of
the mean backlash widths. The seemingly long convergence time (i.e., 3 minutes) is
partially explained by the nature of the learning method. The FM-DEKF filter only
updates the parameters when they are identifiable and, therefore, does not update them
when the associated DOF is in the deadzone. The simulated backlash width is quite
large when compared to the amplitude of the motions and, as a result, the two actuators
are respectively 53% and 44% of the time in the deadzone during the learning phase.
This effectively reduces by two the amount of data used for learning, which results in a
longer identification procedure. A more aggressive parameter tuning could increase the
learning rate, but at the risk of reducing robustness in a real life scenario. Additionally,
it should be noted that since we essentially perform a local identification around a given
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Figure 3.8: Top: relative backlash model parameter estimation errors in the case where
the estimates of mO,i are correct. The relative errors are computed as the
ratio of the current estimation error (e.g., γ̃B1,k = γB1,k − γ̂B1,k) by the initial
error. Bottom: Resulting estimated model b̂i(q̄i) and ground truth.

robot pose, the model can be simplified by setting γAi,k = γBi,k = 0 if the backlash width
is, at least locally, constant.

Although the scene reconstruction is not of interest here, it is worth commenting on
the estimated landmark position that is a by-product of the identification process. When
ĈO,i is incorrect (see Section 3.3.2), the estimated landmark position in the endoscope
base frame p̂1,k/Fb

cannot converge towards the correct value. However, the estimated
landmark position w.r.t. the camera frame Fc is correct (see Figure 3.10, top). This is
explained by the fact that the transformation bTc (see Equation 3.2) depends on ck and
that ĉk itself will be inaccurate if ĈO,i is incorrect (i.e., static offset). Finally, if both
ĈO,i and m̂O,i values are incorrect, then the landmark estimated position is incorrect
regardless of the frame of reference (see Figure 3.10, bottom).
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Figure 3.9: Top: hysteretic cycles resulting from the ground truth and estimation of ck
during the learning process in the case where mO,i and CO,i estimates are
incorrect. Bottom: relative backlash model parameter estimation errors in
the case where all mO,i and CO,i estimates are incorrect.

3.4 Experimentation on a robotic endoscopic platform
3.4.1 Experimental setup and ground truth estimation
Experimental validation was carried out on a flexible endoscope1 whose two bending
DOF are robotized. The test bed is composed of the endoscope, an environment
containing an ArUco marker visible in the endoscopic image, and a joystick used for
manual teleoperation (see Figure 3.11). The endoscopic images of resolution 720× 576
are acquired at a 25 Hz frame rate (Ts = 0.04 s) and synchronized with the motor
positions measurements. A data post-treatment is implemented to remove image
distortion (camera calibrated beforehand), track the marker, and compensate for the
image latency resulting from the image acquisition pipeline (evaluated at 2Ts).

A calibration sequence is first executed (twice) where the endoscope automatically
performs slow DOF by DOF motions resulting in the image displacements reported
in Figure 3.12 (left). The backlash width is manually measured from the figure for

1Gastroscope, model 13806PKS from Karl Storz, Germany.
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Figure 3.10: Top: RMSE of the landmark position estimation in the case where the
estimates of mO,i are correct. Bottom: Case where the mO,i and CO,i
estimates are incorrect.

different mean actuator positions q̄i (see Figure 3.12, right). This process is similar to
the one proposed by Ott et al. (2011), except that in our case it is the width between
the two envelope functions that is measured and not the pure backlash occurring when
the deadzone is crossed. The ground truth parameters and standard errors are then
retrieved by linear regression on the data collected during the two validation sequences
(also reported in Figure 3.14, bottom):

ΓB1 = 1.2± 0.01 (mm), γB1 = 0.02± 0.01 (unitless)
ΓB2 = 0.61± 0.02 (mm), γB2 = −0.1± 0.02 (unitless)

Two minutes of teleoperated motions are then realized and the learning method is
applied using the same hyperparameters and initial conditions than for the simulation

Figure 3.11: Experimental test bed with a robotized endoscope.
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Figure 3.12: Left: image measurements acquired during a calibration sequence composed
of slow, smooth DOF by DOF motions. Right: manual backlash width
measurement from calibration sequence and resulting linear regression.

presented in Section 3.3. The image trajectory is reported in Figure 3.13 and shows
the arbitrary teleoperated motions of the endoscope. The fixed model parameters are
ĈO,1 = ĈO,2 = 0, m̂O,1 = 0.8 and m̂O,2 = 1, the last two coarsely identified empirically
by ascertaining that equal actuator velocities q̇1,k and q̇2,k result in a similar image
velocity ∥żk∥.

3.4.2 Results
After two minutes of learning, the parameter estimation errors are Γ̃B1,k = ΓB1,k − Γ̂B1,k =
0.05 mm, γ̃B1,k = −0.003, Γ̃B2,k = 0.04 (unitless), and γ̃B2,k = −0.02 (see Figure 3.14,
top). The parameter γ̂B1,k happens to be already correct at startup (i.e., near constant
backlash width on this DOF) and varies little overall. The other backlash width model
parameters errors are significantly reduced over the identification procedure: by more
than 90% for Γ̂B1,k and Γ̂B2,k, and by 80% for γ̂B2,k (see Figure 3.14, top). At the end of the
identification process, the mean backlash width estimation error |bi(q̄i)− b̂i(q̄i)| over the
range of actuator positions is under 0.1 mm for both DOF (see Figure 3.14, bottom).
The backlash width estimation errors are then reduced by 95% and 90% for DOF 1 and
2, respectively, when compared to the initial model.

3.4.3 Discussion
Experimental results showed that the backlash widths could be correctly estimated
during the teleoperation of the endoscope, hence without the need for specific DOF-by-
DOF motions as in (Ott et al. 2011) or (Poignonec et al. 2020). This means that the
identification could be achieved during normal operational motions of the endoscopes,
which opens perspectives for continuous backlash learning during contactless surgeries
such as laser dissections. Furthermore, as the learning is performed online, the method
could potentially cope with in-situ variations of the endoscope configuration, including
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Figure 3.13: Image measurements collected during the experiments and (posterior)
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the passive flexible body.
There is a larger estimation error on γ̂B2,k, but this error is comparable to the uncertainty

(i.e., standard error) on the ground truth estimate. An explanation for this uncertainty
could be that the backlash model is affected by the velocity, but that would not explain
the uncertainty of the ground truth values since the velocity for both validation sequences
were similar. A second explanation is that artifacts are due to non-linear transitions in
the real hysteretic model of the robot as was investigated by Ott et al. (2011). Such
non-linear effects could also explain why the backlash width is underestimated (see
Figure 3.14): due to non-linear transitions, the system leaves the deadzones earlier than
it would if the backlash was as modeled in Section 3.1.2. Therefore, modeling these
transitions could be beneficial, e.g., by using a Bouc-Wen model (Chatzis et al. 2017b).

3.5 Conclusions
An automatic backlash width identification method applicable to eye-in-hand flexible
endoscopes was proposed. The main contribution lies in the novel problem formulation,
notably the separation of backlash width from the overall hysteretic model. An online
implementation based on discontinuous extended Kalman filtering was proposed and
validated, but other implementations of the approach could be investigated, e.g., methods
based on structure from motion. Simulation results showed that the correct backlash
width model parameters could be learned from endoscopic images and that the proposed
method was robust to modeling errors on the model parameters not updated online.
Experimental results on an endoscopic platform were also reported, showing that the
variable backlash width could be estimated in-situ with small residual errors (i.e., about
10% of the real width). Although it is out of scope here, it should be noted that an
online identification makes the simultaneous identification and compensation of backlash
possible. Compensating the backlash during the identification would allow to reduce the
time spent in actuator deadzones, which could in turn reduce the identification time.

Some limitations of the method as presented lie in the management of the tracked
features map. Firstly, experimenting with more features and different scenes (e.g.,
topology, distance) would be interesting. Secondly, the tracked landmark was voluntary
kept within the image limits (see Fig 3.13), but if the landmark(s) are very close to
the camera, they might disappear such that a map of the environment will have to
be managed, e.g., as in (Grasa et al. 2014). Not having to keep landmarks within the
image bounds would also allow the generation of predefined automatic motion, ideally
chosen to maximize the information available for learning.

It should also be noted that both the endoscope and the scene were static during the
experiments, but it may not be so in an in-vivo setting. An interesting perspective of
this work would consist in including the physiological motion in the learning process,
for instance by introducing a parametric model of the physiological motion similarly to
what is done in (Mountney et al. 2010).
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Chapter 4 Backlash width identification from motion detection events

In the last chapter, we demonstrated that the backlash width can be learned indepen-
dently from the overall hysteretic relation between proximal and distal displacements.
Such separation of the backlash properties allowed to relax the necessary conditions for
parameter identifiability, but a model of the endoscope and accurate measurements were
still critical to perform the backlash width identification. However, in principle, the
pose of the robot is of little consequence if only the backlash width is learned, since the
backlash width model only predicts whether an actuator is in the deadzone or not, given
the history of displacements. Then, we argue that, in some conditions, the backlash
width could be learned from a unique easily acquired measurement, such as a binary
signal encoding the presence or the absence of distal motion.

In this chapter, we propose a novel backlash estimation method adapted to the case
of eye-to-hand endoscopes. The proposed approach is complementary to methods based
on direct (see Chapter 2) or indirect (see Chapter 3) robot pose estimation. First, we
formulate the backlash estimation problem as two distinct sub-problems: the estimation
of the backlash width and the estimation of the remaining function. This leads to
a cascaded backlash as represented in Figure 4.1 where the two components can be
learned separately. Then, we propose a motion detection-based approach to learn the
backlash width referred to as the pure backlash component. The absence or presence
of motion are events directly visible in the endoscopic image. The acquisition of this
information does not require a 3D pose estimation process and, therefore, neither does it
need a model of the robot, of the camera, or any other kind of registration or kinematic
information. Finally, we propose a method based on pose estimation to recover the
remaining information that cannot be learned from motion detection alone. This process
is independent from the backlash width estimation, such that if the pose cannot be
reconstructed (e.g., because of insufficient measurements or lack of kinematic model),
the backlash width model can still be learned in-situ. The full identification process is
evaluated experimentally on a cable-actuated flexible tool of the STRAS endoscopic
platform (Zorn et al. 2018) displayed in Figure 1.4c.

Transmission
with backlash

Forward
kinematics

Distal
configuration

Actuators
position

Cartesian tip
position in      

Registration into
       and camera 
projection model{ Image

measurement

Observation model

Figure 4.1: Proposed modeling of the continuum robot, where transmission non-
linearities are split in two parts. Note that in practical applications, mea-
surements zk are sampled at a significantly lower rate that qk.
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4.1 Modeling of the backlash as cascaded non-linearities
Let us consider the ith DOF of a tendon-driven continuum robot whose non-linearity
is expressed as an hysteretic relation from proximal actuation qi,k to distal joint or
configuration variable ci,k. As a reminder, in chapters 2 and 3, an analytical model with
switching conditions of the form ci,k = Bi(θi, ci,k−1, qi,k) was introduced to model this
relation. Instead, let the backlash model be a combination of two cascaded elements as
illustrated in Figure 4.1: a “pure” backlash operator followed by a static non-linearity,
similarly to what is done by Rochdi et al. (2010) or Vörös (2018). These two components
are as follows:

• the pure backlash corresponds to a deadzone of possibly variable width appearing
at a change of direction of the actuator. Using the notations from Chapter 3, it is
defined as a backlash operator for which ci,k = q̄i,k

1 and whose backlash width b(q̄i)
is an arbitrary function (see Figure 4.2a-b); The pure backlash is then necessarily
symmetric such that, for a given distal position, the deadzone to “cross” spans the
same motor range, regardless of the direction of the motor motion. Intuitively, the
pure backlash is obtained by deforming the real hysteretic cycle such that across
the whole motor range, the deadzone is centered on the ci,k = qi,k characteristics
(see Figure 4.2b)

• the possibly non-linear function fremain(qi) links the actuator position to the
configuration variable value once pure backlash has been removed or compensated
as illustrated in Figure 4.2c. In the following, we call this function the remaining
function. This function can also be viewed as the central line of the hysteresis
curve (see Figure 4.2a). It should be noted that it is generally different from the
envelope functions of the hysteresis (see for instance Figure 4.4).

(a) (c)(b)

Figure 4.2: The backlash (a) is decomposed in a pure backlash component (b) and a
remaining function that is possibly non-linear (c).

1q̄i,k is the mean actuator position among those that could result in a given output ci,k. This notion
is introduced in Chapter 3 (see Equation 3.4).

55



Chapter 4 Backlash width identification from motion detection events

4.2 Estimation of the pure backlash component
4.2.1 Estimation of the backlash at a given motor position
Pure backlash can be characterized by the absence of end-effector motion after a change
of direction of the actuator at the proximal side. The backlash width is then defined
as the range of motor motion which does not create distal motion. The proposed
approach therefore consists in detecting the appearance of motion after a change of
motor direction. Distinguishing robot distal motion in the image resulting from one
actuator displacement or another would require very accurate models, which is not
desirable here. Therefore, the backlash estimation is performed for only one DOF
at a time, such that any displacement detected in the image is necessarily caused by
the commanded actuator motion. The continuous time notation used in the following
assumes that the motor positions are obtained at a high frame rate with negligible
delay, which is usually the case in mechatronic systems. The process for (local) backlash
estimation is illustrated in Figure 4.3 and can be described by the following steps:

• the position of the effector is tracked in the image and the motor position are
recorded;

• an actuator direction change (change of sign(q̇i)) is requested at time t−;

• a movement is detected in the image at time t+;

• the local backlash width is computed from the recorded motor positions.

New data point

Tip motion 
detection

Figure 4.3: Pure backlash estimation scheme. Left: actuator motions for a requested
change of direction, and the detected motion in the image. Center: cor-
responding evolution in the configuration vs actuator space. Right: The
measured backlash width provides a data point in the backlash width func-
tion.

As discussed in Chapter 3, the backlash width can be considered to be a function of
the distal configuration ci. However, since ci is not directly accessible (i.e., no distal
measurements), its estimation would require a correct model of the kinematics and
a pose estimation process. Therefore, it is more convenient to describe the backlash
width as a function of an actuator position, which is readily available. We express the
backlash width as a function of the mean actuator position in the backlash zone denoted
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as q̄i as was done in Chapter 3 and illustrated in Figure 4.3 (centre). In the absence of
time delays, the local value of the backlash width bi(q̄i) is then given by

bi(q̄i) =
∣∣∣qi(t+)− qi(t−)

∣∣∣
q̄i = qi(t−) + qi(t+)

2
(4.1)

It can represent backlash for both direction changes, either positive to negative or
negative to positive velocity. However, since different sources of information are used to
obtain t− and t+ a correction is needed to temporally align image measurements and
motor measurements. This is especially important when using low frame rate image
acquisition systems, which also introduce delays. Consequently, we use the following
relations instead: 

bi(q̄i) =
∣∣∣qi(t+ − tdelay)− qi(t−)

∣∣∣
q̄i = qi(t−) + qi(t+ − tdelay)

2
(4.2)

where tdelay is the motion detection delay introduced by the image acquisition and
processing pipeline.

4.2.2 Construction of the backlash width function
As the backlash width depends on qi, the method presented in Section 4.2.1 must
be performed at different actuators positions, in order to estimate the function bi(q̄i)
over a useful range of actuators positions. For an in situ estimation prior to use,
typically after the medical robot insertion in the body, but before the actual surgical
use, a pre-programmed motor trajectory can be used to reconstruct the backlash width
function bi(q̄i). This trajectory can consist in several small range back and forth motions
superimposed on a ramp which covers the full range of the useful motor positions.
Interestingly, since the sensor used for the backlash estimation (the endoscopic camera)
is the one which is also used in practice2 (e.g., visual feedback during teleoperation),
the useful range of values is actually the one where measurements are possible. Using
this pre-programmed trajectory, one can estimate values of bi(q̄i) over the desired
range, but only at discrete intervals. Using the backlash model for compensation (see
Section 4.2.3) requires, however, a continuous function for all motor positions. We
propose to interpolate and filter the obtained values by using cubic B-splines, with N
control points homogeneously spread over the motor range. This choice was made based
on the observation that some of the hystereses obtained with external sensors exhibit an
overall smooth variation, but with possible high local slopes (Aleluia Porto et al. 2019).

Given an initial coarse model of ci,k = fremain(qi,k) denoted fcoarse(qi,k), which can be
obtained from the kinematic modeling of the tool, the direct (complete) backlash model
can be obtained by combining the backlash model and the fcoarse function. Considering
a decreasing fcoarse

3 , the external envelope defined by functions fL and fR can be
2In the case of eye-to-hand endoscopes.
3The following is valid for deacreasing fcoarse and fremain functions, but also valid for increasing

function provided some (minor) changements (i.e., signs in equations mostly). The choice of decrease
for explanations is motivated by the actual experimental data of the considered robot.
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Figure 4.4: Reconstructed hystereses, by combining a linear fcoarse function with pure
backlash (top) and by combining estimated fremain with backlash (bottom).

obtained by a numerical reindexing of fcoarse such that
fR(qi) = fcoarse(q̄i), with qi = q̄i +

bi(q̄i)
2

fL(qi) = fcoarse(q̄i), with qi = q̄i −
bi(q̄i)

2

(4.3)

This is illustrated in Figure 4.4 (left), where fcoarse is linear. Note that because the
backlash width depends on qi, fL,R are generally not linear since the variable backlash
model enforces a deformation of the external envelope.
At a time index k the direct model can be numerically simulated by

ci,k =


fR(qi,k), if qi,k > qi,k−1 and ci,k ≥ fR(qi,k)
fL(qi,k), if qi,k < qi,k−1 and ci,k ≤ fL(qi,k)
ci,k−1, otherwise

(4.4)

4.2.3 Use for backlash compensation
The identified backlash width model can be used to compensate the backlash. Given a
reference trajectory cri,k for the configuration variable, the compensated reference motor
trajectory can be computed as:

qri,k =


FR(cri,k), if cri,k > cri,k−1

FL(cri,k), if cri,k < cri,k−1

qri,k−1, otherwise
(4.5)

where 
FR(cri ) = f−1

coarse(cri ) +
bi(f−1

coarse(cri ))
2

FL(cri ) = f−1
coarse(cri )−

bi(f−1
coarse(cri ))

2

(4.6)

f−1
coarse is the inverse function of fcoarse, which can be obtained by a numerical inversion

when no analytical form exists. Smoothing can also be added to transitions to avoid
actuator saturation (Ott et al. 2011).
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This compensation can advantageously be used in a telemanipulation framework, for
correcting the behavior of the robot when a change of direction of the distal configuration
variable is required. It can thus avoid apparent delays in executing the user’s reference
trajectories.

4.3 Remaining function reconstruction
4.3.1 General method
For automatic motions realization, as described by Aleluia Porto et al. (2019), the
compensation of backlash alone is not sufficient for providing a good positioning accuracy.
Indeed, fcoarse is usually inaccurate, and therefore fR,L are also. There are for instance
dead zones near the straight configuration that are difficult to predict from models. This
means that even if backlash may be correctly compensated when changes of direction
are required, the link between the rate of variation of cri,k and of qri,k can be incorrect.
In other words, the task space position can be inaccurate. For improving accuracy,
one can estimate the complete hysteresis envelope, i.e., fR and fL, from data. These
functions link the actuator positions to the configuration variable values as long as no
change of direction is applied. This information can be obtained from the endoscopic
camera only if the configuration variable can be extracted from the image. This in turn
requires a geometric model of the continuum robot, a model of the camera and of the
eye-to-hand configuration. Such techniques have been used to reconstruct three (Reilink
et al. 2013a) or six configuration variables (Cabras et al. 2017).

4.3.2 Proposed implementation for 1 DOF identification
In the considered case where a single DOF has to be estimated, a marker at the tip of
the instrument coupled with a conventional geometric model (e.g., a constant curvature
model) is sufficient. We propose an approach similar to (Reilink et al. 2013a), but
instead of reconstructing a corrected motor position, we focus on the configuration
variable c (both are equivalent since the underlying model is known). Given a model of
the endoscopic camera and of the eye-to-hand calibration, we have

ẑk =
[
ẑxk
ẑyk

]
= h(ck) (4.7)

Given a position of the marker in the image zk, one can then estimate the optimal
value of ck by minimizing the cost function L(c) = ∥zk − h(c)∥2 by using an iterative
optimization process such as Levenberg-Marquardt. Note that this approach, as the
ones used in (Cabras et al. 2017; Reilink et al. 2013a), minimizes the error of a projection
in the image. This scheme can therefore succeed and provide very low projection errors
even when models are erroneous. In such cases, the obtained values for the configuration
variables will be inaccurate.

By applying this estimation process during the programmed motion of the instrument
used for pure backlash estimation as described in Section 4.2.2, one can reconstruct the
hysteresis characteristic curves for the DOF of interest (see Figure 4.6b). After this step,
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the functions defining the external envelope of the hysteresis could be used to compute
the width of the backlash in function of q̄i as for instance in (Aleluia Porto et al. 2019).
However, in this case the pure backlash estimation obtained previously (see Section 4.2)
would be overwritten. This is not desirable, because contrary to (Aleluia Porto et al.
2019) where accurate external sensors are used, the process used here to estimate c is
subject to modeling and measurements errors. We therefore propose to keep the initial
pure backlash estimation, which was obtained independently of any pose estimation,
and to estimate the remaining function. For this purpose the remaining function is
estimated as the central fiber of the characteristics, i.e., the horizontal median line of
the envelope. For extracting it, the characteristic is processed as an image by applying
morphological operations for filling holes, extremal horizontal value detection and spline
fitting. This provides function fremain as shown in Figure 4.6b.

4.3.3 Use for improved robot positioning
The complete obtained model can for instance be used for an automatic positioning
task as will be shown in Section 4.4. Given a desired trajectory cri,k for the configuration
variable, the required actuator position can be obtained using equations (4.5) and (4.6),
but replacing fcoarse with fremain. The complete estimation scheme is represented in
Figure 4.5.

Motion generation
and marker 

segmentation

Motion detection
from image

measurements

Local backlash
width estimation

Global backlash
model 

construction

Estimation of the
configuration

variables

Extraction of

(1) (2) (3)

(4) (5) (6)

Complete 
direct / inverse

model

Backlash

Figure 4.5: General scheme used for non-linearities estimation. The upper part of the
block-scheme (blocks 1 to 3) concerns estimation of pure backlash while the
lower part (blocks 4,5) processes the remaining function. They are combined
to provide the complete estimate (block 6).

4.4 Experimentation on the STRAS endoscopic platform
4.4.1 Experimental setup
We consider the left instrument of the STRAS robotic platform (see Figure 1.4c) visible
in Figure 4.9 whose kinematic model was given in Chapter 2 (see Section 3.1). The
instrument has three DOF : translation, rotation and bending. The bending DOF
actuated by antagonist cables is the main focus of the experiments. The robot DOF
are controlled in position by a real-time control PC (see Zorn et al. 2018, for details).
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Endoscopic images are acquired at 25 Hz through a Karl Storz Telecam acquisition
system. Images are then transferred via S-video connection to a Euresys Piccolo PCIe
frame grabber in a host computer where image processing and signal processing are
carried out. The processing codes are in C++ and the robot motions are commanded
by a network socket connection between the image processing PC and the control PC.
Inverse backlash models are implemented on the robot control PC in a layer between
joint references (coming from master interfaces or from pre-planned tasks) and the
low-level control of the motors.

4.4.2 Method implementation
Image measurements

The continuum robot end effector needs to be tracked in the image in order to reconstruct
the configuration variable for the identification of fremain. Since a single DOF is
considered, it is sufficient to track a single point. The focus of the present work is not
on the image processing aspects, so we used a simple colored marker attached at the
tip of the instrument, which can be efficiently tracked using simple image processing
techniques. More advanced marker-based (Cabras et al. 2017; Reilink et al. 2013a) or
marker-less (Baek et al. 2020; Reiter et al. 2011; Rosa et al. 2019) techniques can be
used for in vivo settings.

Backlash estimation

The delay of the image acquisition chain has been estimated to 2 frames (i.e., tdelay =
80 ms), with an uncertainty ∆tdelay = 20 ms (half period). Assuming a constant
velocity of the actuator v during backlash crossing, this creates an estimation error
∆qi = ∥∆tdelayvi∥ on qi(t+− tdelay). It is therefore recommended to apply a low velocity
for backlash estimation. Practically, the velocity is set to 5% of the maximum motor
velocity, which corresponds approximately to a maximum bending speed of 20◦/s at the
distal end. The corresponding uncertainty onto the actuator position is 0.025 mm of
cable displacement. For separating motion and absence of motion, the image position
of the marker zk is differentiated and a threshold is applied. This threshold was set to
0.2 pixels/frame after practically assessing that the noise for still marker localization
was less than 0.15 pixels.

Figure 4.6a shows the backlash estimation as a function of the motor position. The
continuous function has been obtained by B-spline fitting with N = 14 knots (8 central
and 3 at each extremity of the motor range). One clearly observes the strong increase of
the backlash near the center of the motor range (straight configuration of the instrument).
This behavior was already observed in (Bardou et al. 2012; Aleluia Porto et al. 2019) and
is linked to the need for re-tensioning the cable after a change of direction added to the
simultaneous slacking of both cables near the straight configuration of the instrument.
This clearly confirms the need of a variable backlash estimation method (see Section 4.1).
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Figure 4.6: (a) Backlash width in mm of cable displacement as a function of the mean
actuator position. Blue vertical lines indicate the positions of the spline
knots. (b) Characteristics between the actuator and configuration variable
obtained using configuration variable estimation from images.

Remaining function estimation

The remaining function was estimated using the same input images and motor data as
for the backlash width. The typical actuator / configuration characteristics are shown
in Figure 4.6b. fremain is then extracted as described in Section 4.3.

4.4.3 Results
Assessment of prediction capability

For assessing the validity of the pure backlash and the remaining function estimation, a
testing motion is used, which consists in periodic trapezoidal back and forth motions
realized with the motor actuating bending superposed on a linearly varying mean value
(see Figure 4.7). This trajectory includes many changes of directions, in order to exhibit
the effects of backlash. The position of the instrument is tracked in the endoscopic
image, and the actual trajectory is compared with the modeling obtained with fcoarse
(pure kinematic model of the instrument (De Donno et al. 2013)), with fcoarse combined
with backlash estimation only (fcoarse+ pure backlash) and with the complete estimation
(fremain+ pure backlash) (see Figure 4.8).

When using fcoarse only, the norm of the error in the image shows large pseudo-
periodic variations, with a mean distance error of 89 pixels. This is mainly due to the
prediction going on either side of the actual position, because the absence of movement
at the distal tip at the change of direction is not predicted. The combination of the
backlash with fcoarse allows to greatly decrease the amplitude of the squares because,
at each change of direction, the model predicts the range of motor motion that does
not create distal motion. Zoom A in Figure 4.7 shows that the appearance of motion
in the image at each cycle is well synchronized between prediction and measurement.
However, the prediction shows larger amplitudes of motions than the measurement,
and the mean distance error only decreases to 73 pixels. This arises from an incorrect
prediction of the rate of variation at the distal side. Namely, the rate is overestimated
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Figure 4.7: Pseudo-periodic trajectory used for testing prediction capability of differ-
ent models: fcoarse (black), fcoarse + B. (green) and fremain + B. (yellow).
The inlay is a zoom on a back and forth motion, which shows that when
backlash is modeled the appearance of motion is well synchronized with the
measurement.
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Figure 4.8: Reprojection errors between the measured position of the effector in the
endoscopic image and the prediction of effector position provided by fcoarse
(black), fcoarse +B. (green) and fremain +B. (yellow).
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because fcoarse does not correspond to the actual remaining function. This is especially
visible between 150 s and 175 s (see zoom B) because the instrument comes close to the
straight configuration, where the actual rate of motion is very low and the discrepancy
with fcoarse particularly large. Note, however, that the synchronization of motions
remains good, indicating that the backlash is well estimated. When using the complete
model with fremain, the velocity of distal movement is better predicted, which allows
an important reduction of the prediction error to 40 pixels. In zoom B, the remaining
function only allows to slightly decrease the error on the image position prediction.
The remaining error can be due to the transition movement between backlash and the
envelope function or to coupling effects.

It can be noted that the norm of the error never goes under 40 pixels. This comes
from errors in the registration between the endoscopic camera and the robot, which
mainly affect the vertical position (zy) of the instrument in the image. In the presented
experiments, the motion of the instrument is mainly along the horizontal axis of the
image, so that the error on zyk is almost constant. The prediction error along the
horizontal axis (zxk ) is therefore significantly reduced from 78 pixels to 17 pixels when
using fremain +B.

Assessment of compensation capability

The inverse non-linear models have been implemented onto the robotic system. For
assessing the effect of compensation, a 2D trajectory (an ellipse) is defined in the
task space of the continuum robot. The configuration trajectory (bending, rotation,
translation) is computed using the inverse geometric model of the instrument (De Donno
et al. 2013). The obtained trajectory is then performed in open-loop and observed by an
external camera parallel to the plane of the ellipse. Figure 4.9 provides the qualitative
results. The non-linearity compensation allows to largely improve the accuracy of the
trajectory.

4.4.4 Discussion
The obtained models can be used to compensate hysteresis and thus facilitate control
and improve positioning accuracy (see Figure 4.9). Although the obtained results are
satisfactory, it can be observed in figures 4.7, 4.8, and 4.9 that significant errors remain.
The sources of these errors are difficult to isolate, but we identified the following items
as having the most potential impact on modeling inaccuracies:

• firstly, the estimation of fremain(.) is subject to various modeling errors: camera
registration, non-uniform curvature of the robot, and marker position w.r.t. the
end-effector to name the main ones;

• secondly, it is assumed that the backlash width is equal to the motor range between
the two branches of the hysteretic model (see Figure 4.3, center) such that the
system directly switches from the pure backlash to the envelope function of the
hysteresis. This is not generally the case since smooth transitions can exist as
visible in Figure 4.6b, which leads to underestimated backlash width since motion
is detected as early as the first distal motion;
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Endoscopic 
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Figure 4.9: Open loop realization of a reference trajectory (yellow), by relying on
f−1
coarse (blue) and on the inverse model constructed from fremain +B. (see

Section 4.3.3) (green).

• furthermore, coupling effects between DOF could lead to non-symmetric backlash
that cannot be taken into account (i.e., backlash is assumed symmetrical by
design);

• finally, the velocity of the actuators have to be limited due to the low acquisition
framerate. However, it is possible that other dynamic effects appear at higher
velocities, for instance caused by stick-slip phenomena.

It should be noted that most of the aforementioned limitations would also affect
other techniques for hysteresis compensation relying on the use of endoscopic images as
discussed in the discussion after this chapter.

4.5 Conclusions
In this chapter, we have presented a method for estimating the non-linearities of cable-
driven continuum robots, which uses an endoscopic camera conventionally available in
endoluminal digestive surgery and which is thus suitable for in-situ use with eye-to-hand
endoscopic robots. The method is valid for free moving continuum instruments through
laboratory experiments, both for predicting the robot behavior and for compensating
the non-linearities. One originality of the approach is to separate hysteresis estimation
in two parts, and to estimate pure backlash without relying on pose estimation. This is
an interesting feature because pose estimation in in vivo environments is a complex task
(Cabras et al. 2017). Here, backlash estimation is obtained from motor measurements
and image measurements only. Tracking a single point on the instrument in the image is
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sufficient, and there is no need to combine several image information to estimate a pose
or a configuration as is realized in (Reilink et al. 2013b; Reilink et al. 2013a; Cabras
et al. 2017) or to use data acquired beforehand on the system as proposed in (Baek et al.
2020). Moreover, methods based on models need to handle singularities in the process of
3D information reconstruction. Such singularities can come from the kinematics of the
continuum robot (for instance rotation is ill-defined around the straight configuration
of the instrument) or from the image Jacobian which links instrument tip motion to its
apparent motion in the image.

The method also allows to take into account nonuniform backlash that can appear
in some endoscopic tools as shown in figures 2.4 and 4.6b. When identified, pure
backlash can be compensated, which can improve user experience during teleoperation.
If pose estimation can be obtained, it is possible to estimate the remaining proximal to
distal position relation. Interestingly, the proposed approach allows complementing the
backlash model, without changing it. Therefore, if pose estimation turns out erroneous
because of modeling or measurement errors, the backlash compensation will not be
affected. This is an interesting feature compared to other methods where complete
hysteresis estimation relies on pose estimation (e.g., Chapter 2 or Reilink et al. 2013b).
For the identification of fremain(·), other methods than the one proposed could be used.
A recent work by Cursi et al. (2022) used the motion detection approach to identify
the backlash (offline from external pose tracking) and to compensate it. They then
reacquired motion data with the backlash compensation active and learned fremain(·)
using a neural network. Although it is not in-situ or online, this work shows that the
general approach can be used with different types of sensors and learning methods.
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Discussion
Different novel methods for the in-situ identification of backlash were proposed. The
advantages and drawbacks of each method make them more or less suitable to different
scenarios, but the methods we proposed are generic overall. For instance, the FM-DEKF
approach was first designed for eye-to-hand endoscopes (i.e., Chapter 2), but extended
to the eye-in-hand case in Chapter 3. Similarly, the motion detection approach was
developed and tested on eye-to-hand endoscopes in Chapter 4, but could potentially
be used in the eye-in-hand case as well: if the endoscope and environment are static,
then image motion is sufficient to infer distal robot motion, although it might be quite
sensitive to unintentional motions (e.g., physiological).

In the following, we compare the methods we proposed with each other and with
other existing methods. Then, we conclude by a discussion about practical issues to
consider when using the learned models for backlash compensation.

Comparison of the in-situ backlash estimation
approaches
As different backlash identification approaches were presented in chapters 2, 3, and 4, it
is pertinent to compare them and to highlight their respective strengths and drawbacks.
Note that for the comparison of methods, the estimation of fremain(·) in Chapter 4 is not
taken into account since it is independent from the motion detection-based approach for
backlash width estimation. The main differences between methods for in-situ backlash
estimation are reported in Table 4.1 and discussed in the following.

Robot modeling and available measurements
A critical difference between the methods, both presented in this thesis and in the
literature in general, lies in their dependence on a correct modeling of the robot,
including forward kinematics and camera registration. The method based on motion
detection presented in Chapter 4 does not require a kinematic model of the robot,
contrary to more classical methods based on pose estimation as the one proposed in
Chapter 2 or by Reilink et al. (2013b). Model requirements for these methods also
include the registration of the endoscopic camera w.r.t. the endoscopic tool, which
is not necessarily trivial to obtain (e.g., camera itself mounted on a second flexible
endoscopic tool as in Figure 1.6). Therefore, the method we presented in Chapter 4
is advantageous if the kinematic model of the endoscope is unavailable or inaccurate.
The same is true with an eye-in-hand camera configuration: a method such as the
one proposed by Ott et al. (2011) should be preferred to a model-based method (i.e.,
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Table 4.1: Main characteristics of the considered image-based in-situ backlash model identification methods for eye-to-hand and
eye-in-hand flexible endoscopes. The advantages of the methods proposed in chapters 2, 3, and 4 over comparable
state-of-the-art methods are highlighted using bold font.
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Chapter 3) if the kinematic model is unavailable or very inaccurate. Then, an avenue
for future development lies in the kinematic model K(·) that was assumed correct in
chapters 2 and 3, but might in practice be incorrect. If such model inaccuracies can be
traced back to estimated model parameters, those could be taken into account by the
learning process.

The requirements in terms of measurement availability also differ between backlash
identification methods. Those based on pose reconstruction (i.e., Chapter 2 and
Reilink et al. 2013b) naturally require image measurements that are sufficiently rich to
reconstruct the pose. In the absence of such measurements (e.g., no markers on the
endoscopic tool), robot pose estimation-based method cannot be used, but a method
such as the one presented in Chapter 4 can still be used since it does not rely on pose
reconstruction.

In-situ VS online
Although all methods in Table 4.1 can be used in-situ with endoscopic image measure-
ments only, they cannot all be used online. In this context, online means while the
robot is performing operational movements, whether automatic or teleoperated. For
eye-to-hand robots, the method from Reilink et al. (2013b) and the one proposed in
Chapter 2 can be used online as long as there is no contact with the environment, but
the method based on motion detection presented in Chapter 4 cannot since it requires
specific DOF by DOF motions. The same is true in a eye-in-hand scenario, the method
proposed by Ott et al. (2011) cannot be used online due to slow DOF by DOF motion
requirements while the method we proposed in Chapter 3 can.

It should be noted that the estimation, prediction, and compensation of backlash are
realized for free motions of the robot, but that contacts would impact the validity of
all the methods mentioned in this document. Most backlash estimation methods, if
used online, are therefore mainly aimed at contactless tasks, such as optical coherence
tomography biopsy or laser dissection.

Backlash model complexity
Previous state-of-the-art in-situ methods only considered constant backlash width
models (Ott et al. 2011; Reilink et al. 2013b), but this is not always sufficient to
accurately model the cable actuation of flexible endoscopes. Therefore, increasing the
achievable backlash model complexity was one of the main motivations of our work
and we proposed in Chapter 2 and 3 approaches to incorporate generic parametric
hysteretic models in the in-situ learning process. We showed that we could learn
backlash width models in the form of a linear function of the actuator position and more
complex parametric functions could potentially be used to model the envelope (e.g.,
parabolic). In Chapter 4, we presented a method based on non-parametric backlash
width identification that allows arbitrarily complex backlash width functions. This
non-parametric model allows additional flexibility that is sometimes necessary to model
systems with especially complex backlash.

Another difference between identification methods lies in the scope of the learned
model. The method of Reilink et al. (2013b) and the one presented in chapter 2 both
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learn a complete hysteresis model that can be used to compensate the backlash and
accurately position the robot. On the contrary, the method based on motion detection
presented in Chapter 4 only performs the identification of the backlash width and
cannot be used to accurately position the robot, but only to compensate the backlash.
Although we showed that the backlash width model could be augmented to reconstruct
the full model, it requires an independent identification of the remaining function (see
Section 4.3).

Also, non-linear phenomena (grossly illustrated in Figure 4.10 and visible in Fig-
ure 4.6b) can appear during the transitions from or into the deadzone. These phenomena
are not taken into account by any of the in-situ identification methods, but they re-
main a potential issue with real systems as already commented by Ott et al. (2011).
These transitions cannot be directly modeled with the motion-detection-based approach
presented in Chapter 4 because they would require reconstructing a rate of change of
the configuration variable. However, Chatzis et al. (2017b) demonstrated that DEKF
filters could be used with Bouc-Wen differential models that explicitly take transitions
into account. Then, the FM-DEKF approach could potentially be extended to backlash
models based on differential equations (e.g., Bou-Wen hysteresis models) to take such
non-linear transitions into account. This is an interesting perspective to build on the
work presented in chapters 2 and 3.

Practical considerations for the compensation of
backlash
As previously discussed, the presence of non-linear transitions leads to two types of
deadzones:

• A pure deadzone entered at the change of motion direction, characterized by a
complete lack of distal motion;

• A smooth “non-linear transition” between the pure deadzone and the external
envelope. It is characterized by a reduced distal velocity and a varying motion
transmission rate (see blue curve in Figure 4.10, left).

However, the backlash identification methods from the literature, as well as those
presented in the previous chapters, assume that only a pure backlash is crossed when
switching between the envelope branches. The consequences of ignoring the presence of
this non-linear transition depends on the identification method. If the method is based
on motion detection (i.e., as in Chapter 4), then the identified backlash width is equal
to the width of the pure deadzone. Consequently, the identified backlash is narrower
than the total backlash defined as the total motor range between the branches of the
envelope: the backlash is then underestimated as illustrated in Figure 4.10 (right). On
the contrary, if the identification process is based on pose estimation (e.g., Chapter 2
and Reilink et al. 2013b), then the identified backlash width will be close to the real
one. In a way, it is the functions underlying the envelope’s branches that are identified.
Nonetheless, the non-linear effects may introduce a bias such that the backlash width is
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Figure 4.10: Left: illustration of the non-linear smooth transition between the deadzone
and the branches of the envelope. Right: the model resulting from the
identification process is illustrated, both for the case where pure backlash is
identified (e.g., Chapter 4) and the case where the functions of the envelope
are identified (e.g., Chapter 2).

slightly underestimated, depending on the range impacted by the non-linear transition
(i.e., how large is the non-linear region w.r.t. the pure backlash). Finally, if the backlash
is directly extracted from the hysteretic cycle (e.g., graphically), both the pure and
total backlash can be extracted as discussed by Ott et al. (2011).

It might then seem that the identification of the total backlash is superior to the
identification of the pure backlash, since the model resulting from the former matches
the envelope of the real hysteresis better. However, these backlash models are to be
used for backlash compensation during operational use of the robot (e.g., teleoperation)
and the biases introduced by the non-linear transitions can lead to over-compensation
if it is the envelope that is identified. Feedforward compensation approaches consist in
inverting the backlash model such that when a change of motion direction is detected,
the deadzone is crossed automatically. If it is the pure backlash that is identified, it
does not create any problem. However, if the identification process consisted in learning
the envelope, the feedforward controller will automatically cross from one branch to
another in a short time: consequently, the motor range with the non-linear transition
is also crossed, and an undesired distal motion appears. This overcompensation effect
was experimentally demonstrated in (Ott et al. 2011) and led the authors to only keep
the pure backlash in the model used for compensation. The alternative to cope with
this issue is to implement a controller that increases the transmission rate (i.e., velocity
gain) when the deadzone is being crossed, without actually crossing it automatically.
This approach significantly reduces apparent backlash while avoiding overcompensation
(Reilink et al. 2013b). Backlash compensation based on a Bouc Wen model or on a
bilinear backlash model (Vaiana et al. 2018) that includes a non-zero transmission rate
in the deadzone would also be an option.

71



Part II

Task and robot model correction from
human in-the-loop



Chapter 5
Simultaneous task and robot models
learning from user input

Contents

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Considered setup and modeling . . . . . . . . . . . . . . . . . . 77
5.2.2 User desired trajectory . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Haptic guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.4 Learning problem . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 User in-the-loop as an information source . . . . . . . . . . . . . 80
5.3.2 General optimization formulation . . . . . . . . . . . . . . . . . 81
5.3.3 Recursive implementation using an EKF . . . . . . . . . . . . . 82
5.3.4 Practical tuning of hyperparameters . . . . . . . . . . . . . . . . 83

5.4 Illustrative simulation results . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.1 Description of the 2D toy scenario . . . . . . . . . . . . . . . . . 85
5.4.2 Results with simulated user inputs . . . . . . . . . . . . . . . . 86
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Management of variable time parameters . . . . . . . . . . . . . . . . . 89
5.5.1 Modeling of the time parameters variability . . . . . . . . . . . 89
5.5.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5.3 Alternative time parameterization . . . . . . . . . . . . . . . . . 91

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Chapter 5 Simultaneous task and robot models learning from user input

In Part I, robot modeling errors have been corrected in-situ to improve the robotic
assistance. The different methods we proposed were complementary, but they all treated
the question of backlash modeling. However, robot modeling errors can take other
forms and, in addition, correcting these models in-situ would be of interest for medical
application. An accurate task model is also critical to many robotic assistive strategies,
including haptic or state shared control strategies. Therefore, the learning problem
should also be generalized to task modeling. In this chapter, we propose an original
approach to perform the online learning of task and robot models. Instead of relying on
exteroceptive sensors as in Part I, we propose to exploit information extracted from an
operator in-the-loop to perform the online models correction. This is especially relevant
to medical telerobotics since a surgeon is typically present to perform the procedure
and will be able to correct inaccurate follower robot positioning using visual feedback.

The approach we propose is based on the formulation of the problem as an optimization
to minimize the errors between the executed and desired trajectories, both estimated
from parametric models. In order to learn the correct parameters of the task registration
and of the robot kinematics simultaneously, we model the presence of the user as a
constraint relating the task and robot models, and we solve the resulting problem using
a Bayesian filter. The problem is formulated in such a way that additional sensor data
can also be used for the learning, hence complementing the information extracted from
the operator in-the-loop. Furthermore, we use the learned models to provide assistance
in the form of haptic guidance, so that the final authority remains the operator.

After providing an overview of the most relevant related works, this chapter introduces
the theoretical developments of the proposed method and provides illustrative simulation
results. A thorough and comprehensive experimental validation is then provided by the
chapters 6 and 7.

5.1 Related work
A vast scientific literature is related to the work presented in this chapter, including
early work on compliant trajectory tracking for physical human-robot interaction (pHRI)
using impedance control (Hogan 1985)1. This type of controller for pHRI can be seen as
a way to adapt the robot trajectory from physical interactions with the operator. In the
case of impedance control, from an HSC perspective, the reference input of the controller
is the reference trajectory and the operator can apply corrective forces if his/her intent
differs (Abbink et al. 2012). The stiffness rendered by the controller then relates to the
authority of the automation. More involved pHRI strategies have also been proposed to
dynamically allocate this authority online, usually through a variable impedance, online
from an estimation of model inaccuracies, the operator’s skill level, or other relevant
metrics (Selvaggio et al. 2021). The allocation of authority can also be tuned offline
such that the task model uncertainty is included at the planning/learning stage and
then communicated to the operator during HSC. For instance, Zeestraten et al. (2018)
learned a trajectory from offline demonstrations and encoded the resulting uncertainty
as a covariance that is then used to adapt the stiffness of the haptic guidance during

1Impedance control was originally proposed for robot-environment interaction, not necessarily pHRI.
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the task execution. Human interventions can also trigger a transition from automatic
execution to shared control such that the operator can manually correct the inaccurate
execution of a task (Hagenow et al. 2021). Similarly, Losey et al. (2018b) proposed an
approach to deform a robot trajectory locally when the operator applies a corrective
force. However, none of the works presented so far actually treats the question of
task adaptation through learning, but rather the detection and mitigation of physical
conflicts between operator and robot.

The question of model learning or correction driven by operator action has been
extensively investigated, including in the context of adaptive VF for haptic guidance
and, more generally, of pHRI controllers. Although mostly proposed in the context of
collaborative robotics where kinesthetic interaction with a human partner is expected,
most of the pHRI literature is also applicable to telerobotics, given that the master
robot is force enabled, which is typically the case in robot-assisted MIS.

A first strategy is to rely on the operator to explicitly demonstrate the desired
corrections. For instance, Restrepo et al. (2017) proposed an approach to update a
path used for haptic guidance from demonstrated corrections: the operator physically
corrects the path followed by the robot and the task model defined through waypoints
is updated accordingly. However, such approaches are more adapted to repetitive tasks,
since they require the operator to momentarily stop performing the current task to
demonstrate what is the correct task. In (Masone et al. 2014), the authors used the
human input to globally deform a previously planned trajectory during its automatic
execution, but the operator is then relegated to a supervisory role and does not not
control the fine execution. Selvaggio et al. (2018) proposed to adapt the geometry of a
VF in-situ for robot-assisted surgery from detected tool-tissue interactions, but a distal
force sensor is then necessary and most surgical robots have none. Furthermore, it is
not applicable to free-air trajectories for which there is no contact to detect.

Previous works also considered online task adaptation strategies based on a library
of tasks or even simple primitives. For instance, Raiola et al. (2018) proposed to infer
the correct trajectory among multiple ones learned offline from forces applied on the
robot by the operator. Another approach consisted in decomposing offline a task in
simple primitives (lines) and to choose online the primitive that best matches the
operator actions (Aarno et al. 2005). The “active” primitive was then used to provide
haptic guidance during teleoperation. Such an online selection among a library of
predefined tasks has also been used to provide automatic task completion (Zein et al.
2020). It should be noted that these previous solutions adapt the provided assistance
online, but not the underlying models ; it is then not applicable if the correct task
is not among those learned offline, for instance due to registration errors. Actual
corrections have been predominantely proposed in the context of iterative learning from
demonstrations (Kastritsi et al. 2018). Similarly, task adaptation can be achieved by
iteratively minimizing the forces applied to the robot by an operator through updates
of the reference trajectory tracked by an impedance controller (Xia et al. 2020; Yang
et al. 2022).

The works most relevant to us are then those concerned with the online learning of
task parameters from the observation of a human partner. Early work focused on the
inference of goals in the form of the desired terminal robot position, i.e., a target to
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reach in Cartesian space (Javdani et al. 2018). The adaptation of actual trajectories
was also investigated. Losey et al. (2019) proposed to use corrective forces applied by
an operator during the collaborative manipulation of a robot to update a parametric
trajectory. This approach is based on a gradient descent that minimizes the interaction
force by updating the task parameters. A similar approach was proposed by Bajcsy
et al. (2017) to learn online the weights of a parameter-linear reward function from
human physical corrections. The adaptive reward function was then used to generate
the reference trajectory followed by the robot (Bajcsy et al. 2017; Losey et al. 2018a;
Bobu et al. 2020). These works on the online learning of task parameters are the closest
to the method we propose in this chapter. However, they are significantly different in
the following ways:

• firstly, they are not adapted to refine the potentially inaccurate task registration,
which is a critical point in surgical robotics;

• secondly, disagreements about the task execution velocity between operator and
automation are not considered. The point-to-point learning approach used in
(Bajcsy et al. 2017) or (Losey et al. 2019) assumes that the time parameterization
of the trajectory is correct, which is generally not true when the robot is teleoper-
ated by an operator. In a teleoperation context, the haptic guidance would be
continuous such that the operator should impose the pace to the automation;

• finally, robot modeling inaccuracies are not considered in previous works about
online task correction from interactions with an operator.

It should be noted that this last point is true for every method mentioned so far in
this section, the common implicit assumption being that the robot kinematic model is
perfectly known or that adequate measurements are available (e.g., possibility to use
external localizer). This is valid mostly for industrial-like robots evolving in structured
environments, but very much less for surgical robots. In practice, the robot model might
also be partially inaccurate, which invalidates the planning of the task expressed in the
joint space of the robot and leads to execution errors. Some methods were proposed
to adapt the robot model online using teleoperation execution where the state of the
robot is usually fully measured (Self et al. 2019; Broad et al. 2020). To the best of
our knowledge, simultaneous online learning of task and robot kinematic models has
received little attention to date. Existing methods are limited to offline learning. For
instance, Pignat et al. (2022) proposed a method to learn simultaneously the correct
task and robot kinematic models from human demonstrations, but the learning is then
performed offline, not online when the operator actually interacts with the robot to
perform the task. The correct models might then change between the time of their
offline learning and in-situ use.

On the basis of the state-of-the-art presented in this section, the main contributions
of the method we are going to develop can be summarized as follows:

• it consists in a unified approach for the online correction of task model parameters,
including registration parameters, and robot model parameters from the actions
of an operator in-the-loop;
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• this approach is well suited to teleoperation with haptic guidance since the task
execution velocity is imposed by the operator, not the automation;

• it is possible to include sensor data in addition to the observation of the operator’s
actions.

5.2 Problem formulation
Before detailing the proposed approach in Section 5.3, we introduce the considered
telerobotics scenario along with the different assumptions and models that will be used
throughout the chapter.

5.2.1 Considered setup and modeling
From now on, let us consider a robot operated remotely in order to perform a trajectory-
following task. Let xm,k be the Cartesian pose of the master robot in its frame of reference
Fm and xs,k be the follower robot Cartesian pose in a world frame Fw attached to its
base. The notation xm,k denotes discrete time such that xm,k = xm(tk), with tk = kTs
and Ts the sampling period. The master pose xm,k is mapped to the follower operational
workspace through a linear mapM(.) to generate the follower robot Cartesian reference
xrs,k. From this reference, a position controller computes the follower robot joint position
reference that is assumed to be ideally tracked by a low-level controller. The forward
kinematic model of the follower robot is written as xs,k = K(θr,k, qs,k), where θr,k is a
vector of robot model parameters and qs,k denotes the joint positions. The position
controller operates based on an estimate of the parameters θ̂r,k, yielding the kinematic
relation described on the block diagram given in Figure 5.1. The estimated robot
parameters θ̂r,k used by the controller can either be fixed (e.g., computed beforehand
from a calibration process or given by the robot data sheet) or updated during the
execution of the task. This whole process can be seen as a possibly non-linear mapping
from xm,k to the follower pose

xs,k = Ψ (xm,k) (5.1)

where

Ψ(xm,k) = K
(
θr,k,K−1(θ̂r,k, xrs,k)

)
(5.2)

= K
(
θr,k,K−1(θ̂r,k,M(xm,k))

)

5.2.2 User desired trajectory
The user aims at performing a desired task with the follower robot. To do so he/she
manipulates the master interface relying on a real-time visual feedback to determine the
desired task. This desired follower robot Cartesian trajectory expressed in the world
frame is denoted xds,k. It is assumed to be described by a family of parametric curves g
such that

xds,k = g(θg,k, tk) (5.3)
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Master
robot

M(xm,k)
Mapping

K−1(θ̂r,k, xrs,k)
Controller

θ̂r,k

K(θr,k, qs,k)
follower
robot

θr,k

xm,k xrs,k qs,k xs,k

xs,k = Ψ (xm,k)

Figure 5.1: Block diagram of the position control of the follower robot. The whole
process can be seen as a non-linear mapping xs,k = Ψ (xm,k) from master
pose xm,k to effective follower robot pose xs,k that depends on both the
estimated robot model parameters used by the controller and the real robot
model parameters.

where θg,k is a set of task parameters. These parameters should typically encode the
time parameterization of the task (e.g., the desired velocity) or its registration from a
planning frame to the world frame. Any parameterized expression of the form g(θg,k, tk)
can be used, as long as it is differentiable w.r.t. time and parameters.

Using the visual feedback, the user will try to adjust the master interface such that
the follower robot is at the desired pose at all time. Due to perception biases or intrinsic
human limitations (e.g., precision, response time, etc.), there is a time-varying execution
error ϵh,k between the desired and effective follower robot poses such that

xs,k = xds,k + ϵh,k (5.4)

5.2.3 Haptic guidance
The haptic guidance essentially helps the user to perform the desired trajectory by
applying guidance forces or torques to the master haptic interface. These forces are
computed to render a mechanical impedance whose equilibrium position is the guidance
reference pose xgm,k, itself evaluated from a model of the operator’s desired trajectory.
Note that the desired trajectory is not known and has to be estimated. As the desired
trajectory is modeled by a family of parametric curves, estimating the desired trajectory
amounts to estimating the parameters θg,k. Therefore, the estimated desired pose in
the world frame is

x̂ds,k = g(θ̂g,k, tk) (5.5)

where θ̂g,k is the current estimate of θg,k. Since the guidance forces are applied to the
master robot, the guidance reference must be mapped back into the master workspace
such that

xgm,k =M−1
(
x̂ds,k

)
(5.6)

The complete teleoperation setup is represented in Figure 5.2 along with the desired
trajectory xds,k and the guidance reference xgm,k resulting from Equation (5.6).
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Estimated
desired trajectory

Operator desired
trajectoryEstimated

robot model

Master robot Follower robot

Figure 5.2: Teleoperation setup where the operator remotely controls the follower robot
to execute a desired trajectory (green). An estimation of this desired
trajectory (orange) is used to provide a master side haptic guidance, though
this estimation is incorrect. The resulting guidance error is compounded
by follower robot positioning errors resulting from erroneous kinematic
modeling (gray vs. black).

An accurate estimation of the parameters θr,k and θg,k is critical to the performance of
the guidance. It is easy to understand that an inaccurate task parameters estimate would
cause the guidance to be inaccurate. The effect of errors on the kinematic parameters is
probably more difficult to understand, but it is actually similar. Equation (5.1) reduces
to Ψ(xm,k) =M(xm,k) if and only if θ̂r,k = θr,k as in this case Equation (5.1) is written
as xs,k = K (θr,k,K−1(θr,k,M(xm,k))). The user will be guided towards xgm,k under the
assumption that the model of the robot used by the controller is accurate as defined in
Equation (5.6). Therefore, even assuming that the follower robot pose desired by the
user xds,k is perfectly known, an error on the robot model parameters leads to inaccurate
guidance as, from equations (5.1) and (5.6) it then comes that:

θ̂r,k ̸= θr,k

θ̂g,k = θg,k =⇒
xm,k = xgm,k

xs,k = Ψ
(
M−1

(
xds,k

))
̸= xds,k

In that case, the guidance is also experienced as inaccurate by the operator who will have
to compensate for the follower robot’s positioning error. Additionally, if the kinematic
model is strongly non-linear or/and the robot modeling errors are large, the trajectory
that the user will have to follow at the master side will be deformed and potentially
non-intuitive as illustrated in Figure 5.3.

Regardless of the source of the guidance inaccuracies, the user will experience forces
pulling towards undesired directions, which is an inconvenience and can even lead
to degraded task achievement. Either way, the haptic guidance stops being assistive
when the guidance errors increase. It is therefore critical to correct the task and
kinematic parameters when either or both are incorrect and to do so online because the
optimal parameter values can change during the task execution (e.g., because the task
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(known) user  
desired trajectory

Estimated
robot model

Master robot trajectory resulting in 
the desired follower robot trajectory

Figure 5.3: Example of how a robot positioning error can lead to a deformation of the
desired master robot trajectory. In the absence of such errors, the desired
master pose is simply the mapping of the desired follower robot pose into
the master workspace M−1(xds,k).

registration changes). In the following, an approach to online parameters learning is
presented to cope with task and robot model inaccuracies.

5.2.4 Learning problem
The learning problem can be stated as two simultaneous parameters estimations that,
in their simplest forms, would be written as:

θ∗
r = arg min

θr

k∑
i=0
||xs,i −K(θr, qs,i)||2 (5.7)

θ∗
g = arg min

θg

k∑
i=0
||xds,i − g(θg, ti)||2 (5.8)

assuming that the parameters do not change over time for a considered time horizon
[0; tk]. Note that neither the follower robot’s Cartesian pose nor the desired one might
be directly measured. Usually, only partial observations are available, if any. Possible
sensor information can come from camera image measurements, force sensing, etc.,
but this information can sometimes be poor or intermittent. It is then advantageous
to exploit user inputs because they are dependent on both the real task and robot
kinematic parameters.

5.3 Proposed approach
5.3.1 User in-the-loop as an information source
The user will manipulate the master robot in such a way that the follower robot’s pose
xs,k is as close as possible to the desired position xds,k. Hence, xs,k can be seen as a
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noisy observation of xds,k as defined in Equation (5.4). However, if the follower robot
Cartesian pose is not measured by an external sensor, the only observation available
for learning is the joint position qs,k. Then, we propose to use the presence of the
operator to formulate an optimization problem that minimizes the discrepancy between
the estimation of the executed Cartesian trajectory and the trajectory predicted by the
task model.

5.3.2 General optimization formulation
The general learning problem is then stated as the minimization of a loss function
that penalizes the violation of the constraint resulting from Equation (5.4). The
aforementioned constraint is then written as

K(θr,k, qs,k)− g(θg,k, tk) = ϵh,k (5.9)
with ϵh,k ∼ N (0,Σh,k)

where N (.) represents a normal distribution such that Σh,k is the covariance of the
(presumably) normally distributed zero-mean error ϵh,k. Additional observations about
the state of the robot and the environment can be incorporated in the form of additional
terms in the cost function. Let zk be a vector containing the observations acquired at
time tk that depend on the parameters and can be predicted as

zk = h(θk) + wk, wk ∼ N (0, Rk) (5.10)

where h(.) is the observation model, θk = [θTg,k θTr,k]T contains the different model
parameters, and wk is the measurement error of covariance Rk. Small parameters
variations arising from online changes in the environment, in the kinematics of the
robot, or in the preferences of the human operator can be modeled by a Gaussian noise
vk with covariance Qk such that

θk+1 = θk + vk, vk ∼ N (0, Qk) (5.11)

The online learning problem can be seen as an optimization performed at time step
k considering the measurements z0:k−1 and qs,0:k−1 acquired at discrete times t0:k−1,
i.e., the sequence of times {t0; t1, · · · , tk−1}. The optimization is performed w.r.t. the
sequence of parameters θ0:k. If all available observations are considered, it can be written
as:

θ∗
0:k =arg min

θ0:k

lθ(θ0) +
k−1∑
i=0

li(θi, θi+1, zi) (5.12)

with

lθ(θ0) =∥θ̂0 − θ0∥2
P−1

0

li(θi, θi+1, zi) = ∥K(θr,i, qs,i)− g(θg,i, ti)∥2
Σ−1

h,i
+ ∥θi+1 − θi∥2

Q−1
i

+ ∥zi − h(θk)∥2
R−1

i

where the function lθ(·) penalizes initial parameters update, with θ̂0 the initial guess for
the parameters value at k = 0 and P0 the covariance of this initial estimate. The term
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lθ(·) allows to include prior knowledge about the initial parameters distribution. Its
effect fades over time as more observations are available. The function li(·) is a weighted
sum of prediction errors computed according to the models defined by equations (5.9),
(5.10), and (5.11). The learning framework can be used in conjunction with a vast class
of non-linear state/parameters estimation methods such as moving horizon estimation
(Rawlings 2015), or other non-linear Bayesian estimation techniques (e.g., extended or
unscented Kalman filters, particle filters, etc.). This flexible approach allows to use the
presence of an operator to augment the information available for learning. Although not
required, sensor measurements can be included for learning and, due to the Bayesian
formulation, the fusion of observations coming from multiple sensors is streamlined,
with the sole requirement that the covariance of the measurements can be estimated.

5.3.3 Recursive implementation using an EKF
In order to demonstrate how the learning method can be implemented, an EKF is devised.
It is one of the simplest ways to solve the optimization problem. The cost defined by
Equation (5.12) is computed based on the current estimates and measurements, so the
filter only stores the current parameters estimated values and covariance, computed
under approximations of Gaussian noise and linearized models. More precisely, a variant
of the EKF is used, which includes an exponential forgetting of past observations. The
state transition and observation model are defined as

θk+1 = θk + vk, vk ∼ N (0, Qk) (5.13)
z̄k = h̄(θk) + w̄k, w̄k ∼ N (0, R̄k) (5.14)

where z̄k is the observation vector zk augmented with the pseudo-measurement associated
to the constraint (5.4). This concept of pseudo-measurements has been used in the
past to include equality constraints in state estimation schemes to improve tracking by
explicitly including kinematic or dynamic constraints (De Geeter et al. 1997; Simon
2010). The derivative of this constraint modeled by the pseudo-measurement is also
used in order to exploit the joint velocity measurements q̇s,k in addition to the joint
positions qs,k such that

z̄k =

ϵh,kϵ̇h,k
zk

 =

 0
0
zk

 (5.15)

h̄(θk) =

 K(θr,k, qs,k)− g(θg,k, tk)
JK(θr,k, qs,k)q̇s,k − ġ(θg,k, tk)

h(θk)

 (5.16)

JK(θr,k, qs,k) = ∂K(θr,k, qs)
∂qs

∣∣∣∣∣
qs=qs,k

(5.17)
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and

R̄k =


Σh,k 0 0

0
2
T 2
s

Σh,k 0

0 0 Rk

 (5.18)

where the term 2
T 2

s
Σh,k is the noise covariance matrix of ϵ̇h,k. This expression arises from

a naive time derivative of the noise model defined in Equation (5.9) that assumes a
constant Σh,k, but in practice other expressions can be chosen. The parameters values
and covariance estimates are computed with the EKF from this augmented observation
using the update rule

θ̂k|k−1 = θ̂k−1 (5.19)
P̂k|k−1 = (1 + αk)P̂k−1 +Qk (5.20)

θ̂k = θ̂k|k−1 +Kk

(
z̄k − h̄(θ̂k|k−1)

)
(5.21)

P̂k = P̂k|k−1 −KkH̄kP̂k|k−1 (5.22)

where the subscript k|k−1 denotes a prior estimate at sample time k, αk ≥ 0 is a factor
tuning the weight given to past observations, Kk is the Kalman gain matrix such that

Kk = P̂kH̄
T
k

(
H̄kP̂kH̄

T
k + R̄k

)−1
(5.23)

and H̄k is the Jacobian of the augmented observation model w.r.t. the parameters :

H̄k =
∂

∂θ
h̄(θ)

∣∣∣∣∣
θ=θ̂k,t=tk

(5.24)

=
[
∂

∂θg
h̄(θ)

∂

∂θr
h̄(θ)T

]
θ=θ̂k,t=tk

=



−
∂

∂θg
g(θg, t)

∂

∂θr
K(θr, qs,k)

−
∂

∂θg
ġ(θg, t)

∂

∂θr
JK(θr,k, qs,k)q̇s,k

∂

∂θg
h(θ)

∂

∂θr
h(θ)


θ=θ̂k, t=tk

This version of the EKF is often referred to as a fading memory Kalman filter (Simon
2010) and the so-called fading factor αk in Equation (5.20) allows to discard past
observations. When αk = 0, the method is equivalent to a classical EKF. As the value
of αk increases, less weight is given to past observations.

5.3.4 Practical tuning of hyperparameters
Hyperparameters have to be tuned in order to reach satisfactory learning performances.
Some of them may differ depending on the implementation of the proposed method, such
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as the fading factor that is specific to the fading memory EKF. But overall, the reasoning
would be the same with other implementations. Although hyperparameters would have
to be tuned according to the situation, some general insights are provided thereafter
to illustrate their effect on the learning performance. Experimental determination of
optimal hyperparameter values for a given scenario would allow for a better tracking of
the parameters, but a compromise can be found such that the learning performs well
on a wide variety of tasks.

The fading factor αk allows to tune the weight given to past observations such that
their effect becomes negligible after a certain time. This allows to cope with potential
parameter drift and modeling errors arising from the linearization of the possibly non-
linear models (Simon 2010). Large values of αk improve the learning performance, but
reduce the robustness to execution errors. This is explained by the fact that if all
past data is discarded, a local deviation from the desired trajectory (i.e., execution
errors) will cause the estimated parameters θ̂k to degrade or even oscillate. The value
of αk should therefore be chosen as a trade-off between robustness and learning rate.
Interestingly, the fading factor αk can be tuned independently from the chosen models
parameterization.

An intuitive way to characterize the exponential fading memory effect over time is to
consider the relative weight given to past observations. The decay time constant τ of
this weight is

τ =
Ts

ln (1 + α) (5.25)

Equivalently, Equation (5.25) can be rearranged as α = eTs/τ − 1 and using this expres-
sion, a value of α can be computed from the desired decay time constant τ (Nelson
2000).

If there is no particular hypothesis on the state process noise covariance Qk, it can
simply be assumed that the parameters are fixed, such that the process noise covariance
Qk is null. The fading memory implementation will ensure that past observations are
gradually discarded. If a specific structure of Qk is known, an ad-hoc process noise
matrix can be used. Note that if there is no fading, i.e., αk = 0, then the process noise
should be introduced through Qk or the learning will eventually stop as the estimated
parameter covariance Pk decreases.

The human execution covariance Σh should be chosen to model the human behavior
and reflect the expected execution errors considering the sampling period. Generally, a
larger covariance matrix slows down the learning by decreasing the weight given to the
demonstrations. Overestimating the execution errors allows to smooth the parameters
estimation to obtain a more gradual learning. Similarly, the initial estimated parameter
covariance P0 should ideally encode the real uncertainty over parameter estimates to
reach an optimal performance, but most often this information is unknown. Then, the
initial covariance should be underestimated to avoid sudden updates of the parameters
at startup when the information is the least reliable. The transient behavior at startup
only depends on the chosen values for P0 and Σh, and the proposed implementation
with the fading memory limits the influence of inaccurate covariance modeling over
time.
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5.4 Illustrative simulation results
In this section, both the learning problem and the proposed approach to solve it are
illustrated through a simulation. The simulated scenario is very simple, but sufficient
to demonstrate how the proposed method can be used to correct task and robot models
simultaneously using the presence of an operator.

5.4.1 Description of the 2D toy scenario
A planar serial robot with 2 DOF is simulated. Its end-effector position xs,k is computed
using the forward kinematic model given the joint positions qs,k and the length L1 and
L2 of the two links of this serial robotic arm. Only L1 is known and the robot kinematic
model K(θr,k, qs,k) is parameterized such that θr,k = θr = L2 is a constant robot
parameters. Note that the location of the robot tip depends on the robot joint values
and on the robot model parameters such that xs,k = K(θr, qs,k). If some parameters are
not accurate (i.e., L2 in this scenario) the estimated robot position x̂s,k = K(θ̂r,k, qs,k)
differs from the real one. A 2D Cartesian trajectory is planned in a frame of reference
Ft (see Figure 5.4a) and subsequently registered in the world frame Fw attached to the
base of the robot (see Figure 5.4b). The task consists in following this reference while it
is not properly registered in Fw . The ground truth time-dependent desired trajectory
of constant parameters θg is of the form

xds,k = g(θg, tk) (5.26)

=
[
tx
ty

]
+
[
cos rz − sin rz
sin rz cos rz

]
Γ(a+ btk)

where θg =
[
a, b, tx, ty, rz

]T
∈ R5 is a vector of parameters, Γ(ψ) ∈ R2 is a smooth

curve parameterized by its arc length ψ ∈ [0; ψmax]. The parameters a and b encode
the time parameterization of the task under the assumption that the execution velocity
b is constant.

Estimated 
task model

Ground truth 
task model

 Estimated
robot model

Ground truth 
robot model

(a) (b)

Figure 5.4: Scenario with simulated planar task and robot. (a) The path Γ(ψ) is defined
in a frame of reference Ft. (b) The path is subsequently registered in the
world frame Fw attached to the base of the robot before its execution.

A scenario where there is a consequent error on the initial estimated parameters,
but where the correct parameters do not change over time is considered. It is assumed
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that a human operator is teleoperating the robot to execute the planned trajectory
such that xs,k = xds,k + ϵh,k. A perfect operator is simulated such that ϵh,k is null. The
articular positions qs,k are then computed such that qs,k = K−1(θr, xs,k). It should be
noted that the simulation is not at any realistic scale (see Figure 5.5), it uses normalized
unitless distances. It aims at showing that it is possible to extract information from
user inputs when there are known task execution constraints such as robot kinematics
and a preoperative plan that is followed by an operator.

In the following simulations, the filter is implemented with a sampling time period
Ts = 0.025 s (i.e., 40 Hz). The decay time constant of the fading memory mechanism
is set to τ = 20 s such that αk is constant and equal to 0.0013 and the process noise
covariance matrix Qk is set to Qk = 06×6. This means that after 45 seconds, the weight
given to an observation has decreased by 95%. The covariance matrix Σh,k, modeling
the execution errors introduced by the simulated operator, is set to Σh,k = σ2

hI, where
σh = 0.01 with normalized units. Finally, the covariance matrix Po is arbitrarily chosen
as a diagonal matrix modeling initially independent estimated parameters of small
standard deviations except for the initial position on the path encoded with â0 that is
larger to account for the initial uncertainty such that

diag(P0) =
[
0.012︸ ︷︷ ︸
on â0

10−9 10−9 10−9 10−9 10−9
]

(5.27)

5.4.2 Results with simulated user inputs
As visible in Figure 5.5, the simulated robot (pink) follows the ground truth desired
trajectory (green) that is the correctly registered path Γ(ψ) parameterized with the
correct time parameters. The estimation of this desired trajectory (red) is significantly
inaccurate, with parameter estimation errors of about 10% (see Figure 5.6). Finally,
the initial estimation of the robot model parameter L2 is also off by roughly 10%.

Estimated robot model

Ground truth robot model

Estimated task model

Ground truth task model

Figure 5.5: Evolution of the task and robot models at different tk ∈ {0.5; 5; 10; 20; 50}s.
See Video 5.1 for full animation.
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Chapter 5 Simultaneous task and robot models learning from user input

As the estimated execution error x̂s,k − x̂ds,k (see Figure 5.8) is minimized by the
learning algorithm, the task and robot parameter estimation errors are reduced over
time (see Figure 5.6). This includes the errors on time parameters ak and bk estimation
(see Figure 5.7). The estimated parameter b̂k that encodes the desired execution velocity
quickly converges to the correct value, but the estimated time offset âk only converges
towards the correct value later. The delayed convergence of âk is explained by the fact
that learning the time parameterization amounts to finding on the underlying path
the closest point to the estimated robot position x̂s,k, which cannot be done until said
path and robot position are correct. This happens after one minute of simulation,
when the task and robot model parameters have converged towards their correct values
(see Figure 5.7), such that the task and robot position prediction errors, respectively
∥xds,k − x̂ds,k∥ and ∥xs,k − x̂s,k∥ in Figure 5.8, become null.
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Figure 5.6: Parameter estimation over time.
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Figure 5.7: Time parameters estimation and resulting estimation error on ψk = ak+bktk
and ψ̇k = bk.
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Figure 5.8: Evolution of learning metrics.

5.4.3 Discussion
The simulation illustrates the fact that the proposed approach can successfully extract
information from the presence of an operator in-the-loop to correct online the task
registration and robot modeling inaccuracies. Furthermore, the desired execution
velocity is also learned such that the pace is not imposed by the automation.

One can notice in figures 5.6 and 5.7 that some estimated parameters vary quickly
at startup, with a near-instantaneous variation of âk, b̂k, t̂x,k, and L̂2,k over the span
of about 1 s. In the case of the time parameter estmates âk and b̂k, it is the intended
behavior. The initial position along the path is incorrect and it is therefore quickly
corrected (i.e., âk update). Similarly, the initial execution velocity estimate is incorrect
(b̂0 = 0) and is updated quickly. The larger initial uncertainty on â0 introduced in
P0 (see Equation 5.27) facilitates a fast time parameters update, explicitly for âk and
indirectly for b̂k that is correlated to âk.

However, the initial variation of t̂x,k and L̂2,k is due to the fact that the simulation
starts with the robot already at the desired position, hence introducing a consequent
initial prediction error. In a scenario with a real operator, the robot would more
realistically start at x̂s,0 = x̂ds,0 and the correction of the task by the operator would not
be instantaneous, hence mitigating this effect.

The other limitation of this simulation is the constant execution velocity, which
is highly unlikely in practice, and the unmodeled errors that a real operator would
introduce though the learning method itself does suppose that this errors exist. It
should be noted that simply introducing a Gaussian noise on ϵh,k is of little to no
interest since human errors would not be Gaussian. However, modeling accurately the
behavior of the operator is out of scope here. The method will instead be evaluated
directly with real human operators in the next chapter. However, the question of the
possibly variable execution velocity has to be treated for our method to be applicable
to real-world scenarios.
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5.5 Management of variable time parameters
In practice, the time registration of the task can be inaccurate due to the user slowing
down, delaying before starting the gesture, or pausing during the task execution. The
estimation error on the time parameters resulting from these events may propagate to
all other parameters. As an illustration of the need for a reactive tracking of the time
parameters, the execution velocity ψ̇k = bk is set to zero for tk ∈ [50; 55] to simulate
the worst-case scenario when the operator suddenly stops. As shown in Figure 5.9, this
results in a abrupt, but temporary change of the correct values for the time parameters
ak and bk. The filter cannot cope with this sudden change and the estimated time
parameters become very inaccurate. As a result, this estimation error propagates to the
other parameters, for instance t̂x,k (see Figure 5.9). The full animation of the evolution
of the task and robot models is provided as complementary material (see Video 5.2).

A naive solution would consist in decreasing the decay time constant of the forgetting
mechanism (i.e., increase the value of α), but this would decrease the adaptation time
of all parameters equally. In this case, not only a sudden change of the correct time
parameters would introduce errors on the other parameters, but the filter would also be
less robust overall since less data would be used for learning. Therefore, it is necessary
to model the possible variations of the time parameters independently from the tuning
of the global filter convergence rate.

0 50 100

0

1

2

u
n

it
le

ss

0 50 100
0

0.02

0.04

u
n

it
le

ss

0 50 100

0.45

0.5

0.55

0 50 100

0.15

0.2

0 50 100
0

0.1

0.2

0 50 100

0.55

0.6

Figure 5.9: Simulated pause during the task execution at t = 50s. The time parameters
(i.e., a and b) estimation becomes inaccurate as the filter does not adapt
quickly enough, which introduces significant errors on the other estimated
parameters.

5.5.1 Modeling of the time parameters variability
Tracking the correct time parameters amounts to track the current position along the
path ψk = ak + bktk and the current velocity ψ̇k = bk. In order to improve this tracking,
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we propose to model the possible variation of ψ̇k with the process noise covariance
matrix Qk of the filter such that

Qk =


Q(a,b),k 0 . . . 0

0 0 . . . 0
... ... . . . ...
0 0 0 0

 (5.28)

These additional terms only impact the process noise covariance associated to the time
parameters ak and bk. The matrix Q(a,b),k has to be carefully chosen, since simply
modeling additive Gaussian noise on the parameter ak would ignore the correlation
between the two time parameters

The transition from the current position and velocity along the path to the time
parameters is [

ak
bk

]
=
[
1 −tk
0 1

] [
ψk
ψ̇k

]
. (5.29)

Therefore, the modeled process noise covariance can be propagated from ψ̇k to the time
parameters such that

Q(a,b),k =
[
1 −tk
0 1

] [
0 0
0 σ2

ψ̇

] [
1 −tk
0 1

]T
=
[
t2σ2

ψ̇
−tσ2

ψ̇

−tσ2
ψ̇

σ2
ψ̇

]
(5.30)

where σψ̇ is chosen considering the shortest time the user would need to stop. The
acceptable values range from 0, equivalent to a hypothesis that the pace is near-constant,
to the value of the velocity measurement standard deviation, which would model the
worst-case theoretical scenario: the user can stop in only one time period.

5.5.2 Simulation results
The improved time parameters tracking scheme is implemented with σψ̇ = 10−4 in the
same conditions as previously: a sudden pause is simulated at tk = 50 s and lasts for
5 s. In Figure 5.10, one can observe that the time parameters ak and bk are correctly
tracked and quickly updated when the pause occurs. The convergence time of bk is
similar to that of the first simulation (see Figure 5.6, bottom), which is to be expected
since bk still cannot converge towards its correct value until the other task and robot
parameters have also converged.

The main difference between figures 5.9 and 5.10 is that in Figure 5.10, when the
pause occurs, the prediction errors are correctly identified as being a change in the time
parameters. As a result, the remaining parameters are not impacted, as evidenced by
the near-constant value of t̂x,k and r̂z,k during the few seconds when the execution is
paused. The full animation of the evolution of the task and robot models is provided as
complementary material (see Video 5.3).
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Figure 5.10: Simulated pause during the task execution at tk = 50s. Process noise is
injected to cope with variable execution velocity. The time parameters are
correctly tracked by the filter and, as a result, no error is introduced on
the other parameters estimation when the task execution is paused.

5.5.3 Alternative time parameterization
It should be noted that there is an alternative way to parameterize time evolution. The
desired trajectory xds(θg, tk) could have been directly modeled using a time-variable
state variable ψk, such that, at each time step, ψk+1 = ψk + Tsbk where bk is the
parameter encoding the desired execution velocity. Of course, the state transition
model would then have to be modified to perform the integration of bk, but this is
a minor change that would only affect the EKF filter in Equation (5.19). The two
parameterizations are equivalent, but the choice made in this work aims at only using
stationary parameters, hence removing the need for a state transition model and
facilitating extrapolation when the model is later used for haptic guidance. Additionally,
this facilitates the implementation of practical features such as a pause in the task
execution or synchronization. However, it has two drawbacks compared with the
alternative modeling with ψk included as a time-variable state variable. Firstly, it leads
to a more complex covariance matrix resulting in Equation (5.30). When modeling ψk
as a state variable, there is supposedly no correlation between ψk and bk such that a
single term σ2

ψ̇
in the matrix Qk is sufficient to model the time parameters uncertainty.

Furthermore, explicitly using tk in the matrix Qk might pose numerical problems for
very long tasks, as tk will get very large. However, the considered tasks are short and
this problem is not relevant in the scenarios considered for experimental validation.
We ascertained through simulations and experiments that both modeling choices are
equivalent, and we will then use ψk = ak + bktk in the following.
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5.6 Conclusions
We proposed an approach for the simultaneous correction of task and robot models.
Simulation results show that the correct model parameters can indeed be retrieved
from the operator actions and partial knowledge of the task being performed. We also
proposed an extension to cope with variable execution velocity, which is a necessary
feature if the approach is to be used with a real operator.

The simulation results demonstrate that the improved learning method can cope with
variable execution pace imposed by the operator. Even in the worst case for which the
operator suddenly stops, the filter correctly tracks the time parameters. The convergence
time of these parameters can be tuned by changing the value of σψ̇, independently from
the overall convergence rate of the filter. Beyond improving learning, this feature is
also interesting for haptic guidance. Large values of σψ̇ will make the time-parameters
tracking very reactive such that the operator is guided towards the closest point on the
path underlying the trajectory x̂ds,k. Therefore, the guidance would behave like a virtual
fixture. For smaller values of σψ̇, the dynamics of the filter will smooth the evolution of
ψ̂k, which would tend to also smooth the motion of the operator.

These results illustrate that using the proposed method, both the task and robot
models parameters can be adjusted from the user actions only. However, we only tested
the learning method with simulated data. The following chapter will further evaluate the
performance of the proposed method with actual teleoperation data, while addressing
theoretical and practical challenges.
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Chapter 6 Use-case: Online task and hand-tool registration during haptic guidance

In the previous chapter, a method for the simultaneous learning of task and robot
model parameters was presented, and the main features of the algorithm were demon-
strated with a simulated two-links planar robot. In the following, the method is further
evaluated in a telerobotics scenario with a general-purpose 7 DOF robot teleoperated by
a user. We chose a generic path-following task that consists in remotely drawing a path
using visual feedback. The long term application of our work remains robot-assisted
MIS, but the proposed experimental setup is more suited to objective task performance
assessment. Nonetheless, it should be noted that the setup presented in this chapter
could also be implemented with a surgical robot, although with many more practical
issues.

During the realization of the task by the operator, a haptic guidance is provided on
the basis of a model of the path to be drawn. However, the task registration, as well as
the registration of the tool w.r.t. the end effector it is attached to, are inaccurate. The
learning method proposed in Chapter 5 is then used to improve an initially incorrect
haptic guidance. The aim of this experimental validation is two-fold: to validate the
learning method in a practical scenario and evaluate the effectiveness of the adaptative
haptic guidance scheme.

6.1 Description of the considered scenario
We implemented the position teleoperation using a Franka Emika Panda robot teleop-
erated by a Force Dimension Omega 7 haptic interface. Visual feedback was provided
by a camera (webcam C930e, Logitech). The path to be drawn was printed on a tilted
(30 deg.) planar support as depicted in Figure 6.1. In this way, the position of the
support in the horizontal plane of the world frame and its orientation around the vertical
axis affect the task along all three dimensions.

The follower robot end effector was equipped with a force/torque sensor (nano 43,
ATI), a pen-holder, and a pen (see Figure 6.1.B). An impedance controller tracks the
pen-holder Cartesian pose reference imposed by the operator at the master station
(redundancy and inverse kinematics are handled by the controller). The end-effector
orientation is constant and computed such that the pen remains normal to the drawing
plane. The remaining 3 DOF that correspond to the position of the pen tip are
controlled to perform the drawing task. Since the orientation of the follower robot is
fixed, the master interface is used as a 3 DOF device and its orientation is ignored. A
controlled constant force of 1 N is applied to the pen to guarantee permanent contact
with the surface, which leaves 2 DOF for the operator to control. The force control
normal to the surface limits the cognitive load that more complex force feedback (even
admittance/impedance control) could generate in the presence of haptic guidance. It
also prevents possible interferences between force feedback and haptic guidance that
can sometimes compensate one another (Smisek et al. 2015). Although the operator can
only control 2 DOF of the follower robot, the trajectory to be performed on the master
side, as well as the provided haptic guidance, are three-dimensional. The end-effector
pose of the robot xee,k corresponds to the position of a point attached to the pen-holder,
i.e., to the base of the pen. Besides, xs,k is the position of the tip of the pen actually
used to perform the drawing task.
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Figure 6.1: (a) Experimental setup. (b) Close view of the task support, the robot end
effector, and the pen. The main frames of reference used in the following
sections are represented. FΠ is an additional frame aligned with the drawing
plane used for convenience when displaying results. The frame attached to
the tip of the pen is omitted for clarity. (c) Visual feedback from camera
available to the human operator to perform the teleoperation task.
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In the proposed experimental setup, a tool registration model defines the relationship
between the position of the end effector xee,k and that of the tip of the tool xs,k, such
that the transformation between xee,k and xs,k is a translation along the Z axis of the
end-effector frame. The robot model parameter θr,k = Lk is the distance between the pen
holder position and the tip of the pen. The tool registration model is combined with the
known forward kinematic model to obtain the follower robot model xs,k = K(θr,k, qs,k).
This scenario is similar to what could happen in another context if a gripper was used
to hold a tool: the exact tool configuration w.r.t. the end effector could indeed be only
partially known.

Let Γ(ψ) ∈ R3 be a smooth path planned in a planning frame Ft and subsequently
registered in the world frame Fw. In the experiment, the rigid transform from Fw to Ft
results from the combination of translations along X and Y axes, respectively denoted as
tx,k and ty,k, and a rotation about Z axis with angle rz,k as in the previous chapter (see
Figure 6.1.b). The time parameterization of the task is modeled by an affine function
of time, such that ψ(tk) = ak + bk tk as was presented in Chapter 5. The task model is
then:

xds,k = g(θg,k, tk) =

tx,kty,k
0

+ wRt(rz,k)Γ(ak + bktk) (6.1)

where θg,k =
[
ak, bk, rz,k, tx,k, ty,k

]T
is the set of task parameters and wRt(rz) ∈ SO3 is

the rotation matrix between frames Fw and Ft. The task parameters to be refined are
therefore the position and orientation of the support in Fw and the two time parameters
(i.e. 5 parameters in total).

The ROS2 framework was used to handle the different multi-rate components (see
Figure 6.2). Haptic guidance was computed according to Section 5.2.3 and implemented
using the Force Dimension SDK. The stiffness of the haptic guidance is set to 300 N.m−1

and the damping is chosen so that the equivalent system is a damped mass-spring system
with a damping coefficient of 0.9. The learning process takes as inputs both the current
execution time and the follower robot measurements with sampling period Ts = 0.02 s
and sends the current task and robot parameter estimates to the high-level controller as
detailed in Figure 6.2. This high-level controller computes the guidance reference and the
follower robot reference from, respectively, the estimated task model and the estimated
tool registration model. It also manages the position-position mapping between master
and follower. This architecture is implemented on a Linux platform (i7 / 32GB ram).

In the experiments, the fading factor is set to a constant value αk = α = 10−3 such
that the associated decay time constant is τ = 20s. It is a good choice if the parameters
do not vary a lot, because the errors introduced by the human operator are filtered out
over a span of nearly one minute. Results illustrating the effect of α are reported in
Section 6.3.2. The covariance matrix of the execution error introduced by the operator
is set to Σh,k = σ2

hI, where σh = 5 mm and Po is arbitrarily chosen as a diagonal matrix
modeling initially independent estimated parameters of standard deviations equal to
10 mm for â0, 10 mm.s−1 for b̂0, 1 deg. for r̂z,0, and 1 mm for t̂x,0, t̂y,0 and L̂0.

The model ψ(tk) is learned online to accommodate for the velocity and delays
imposed by the operator. Nevertheless the model may become inaccurate when the
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Figure 6.2: Overview of the software architecture and main variables. Details are
provided for the high-level controller handling the mapping from Fm to Fw,
the generation of the guidance reference xgm,k, and the generation of the
follower robot end-effector Cartesian reference xree,k.

operator is slowing down, delaying before starting the gesture, or pausing during the
task execution. In order to ensure that the tracking of ψ(tk) is done in a reactive
way, the possible change in pace is modeled with the process noise variance of ψ̇ set
to σψ̇ = 0.4 mm.s−1. As detailed in Section 5.5.1, this results in additional terms in
the process noise covariance matrix Qk that only impact the process noise covariance
associated to the time parameters ak and bk.

6.2 Identifiability of the task and robot parameters
The task and robot models parameters have to be identifiable to converge towards
the true values. Identifiability is a notion close to observability, which is used to
analyze a system in order to find if its state can be inferred from the observation of
the input and output. The parameters structural identifiability can be verified before
the task execution under the assumption that the operator will perform the correct
trajectory. To do so, we write the learning problem as a dynamic system with qs,k
as the input and ϵh,k as the measurement (i.e., the operator is modeled as a sensor);
the developments are detailed in Appendix C. Then, we build the observability matrix
using so-called extended Lie derivatives (Karlsson et al. 2012) and analyze its rank. We
used the STRIKE GOLDD toolbox (Villaverde et al. 2019) to compute the observability
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matrix and its rank symbolically. For this analysis, the correct task and robot models
parameters are assumed constant.

We found the parameters to always be (locally) structurally identifiable except when
the desired task execution velocity is null or when the desired task is a straight line
(i.e. no curvature). The former is explained by the fact that if ψ̇ = 0, then the operator
is not providing any information. The later is explained by the equivalent effect of
the time parameter a and the translation of the path underlying xds,k when the path
is a line. In this case, an execution error in the direction tangent to the trajectory
xds,k can be equally explained by an estimation error on ak or by a combination of
errors on tx, ty, and L. Consequently, when Γ(ψ) is a line, only the orientation of the
task rz and desired velocity ψ̇ = b are identifiable. This means that with an arbitrary
task model as implemented for the experiments, the task and robot parameters are
potentially intermittently unidentifiable when the local curvature is beyond a certain
range (see Appendix C). But this local lack of observability does not impact the global
performance of the learning as long as it indeed stays intermittent, because the EKF
filters information over a time horizon. In the present case, this time window can be
tuned by the fading factor α. Therefore, if the fading factor is chosen correctly, only
two scenarios should lead to a failure during the parameters learning:

1. the human operator does not move. However, this scenario could be detected
and solutions to cope with it can be implemented (e.g., pause the learning if the
execution velocity is below a given threshold);

2. the task model is such that the parameters are unidentifiable most of the time
(i.e., the path is a straight line).

The second scenario is more challenging, as even if it can be predicted a priori, it
would be difficult to decide at which point the model parameters are not “identifiable
enough.” However, it might be possible to monitor the estimated covariance matrix and
implement a fault-detection process that would stop the learning or reset the filter.

It is worth mentioning that the observability analysis we performed is structural,
meaning that it does not take into account the learning implementation and the
measurement noise. In a real-world application (e.g., in the following sections), the
observations will be noisy and, in our case, potentially biased due to the presence of a
human operator in-the-loop. However, the information would also be richer since the
task will be more complex than a simple arc, hence improving the observability.

6.3 Experimental validation of the learning method
6.3.1 Learning performance with a human in the loop
The performance of the learning method is demonstrated on a task consisting in drawing
a treble key (see Figure 6.4). An operator manipulates the haptic interface to follow
the path printed on the surface with the pen attached to the follower robot. The
estimated task and robot models, and consequently the generated haptic guidance,
are initially incorrect. Three arbitrary initial task registration errors are considered.

98



Chapter 6 Use-case: Online task and hand-tool registration during haptic guidance

In order to assess how the learning method would perform in the most favorable
scenario, the learning performance is also assessed for a perfect execution of the task
at a constant pace, which is not achievable perfectly by a human operator. To do
so, the end-effector reference xree,k sent to the robot controller is computed using the
correct models, estimated from offline registration and tool calibration. This condition
is referred to as AUTO, whereas the proposed method with an operator is referred to
as AG (Adaptive Guidance).

The ground truth path is given by the template printed treble key. The desired
trajectory xds,k used as a ground truth is computed offline once the task execution is
over such that, at all time, xds,k is the closest point from xs,k on the ground truth path
(see Figure 6.3). This computation is necessary to account for different execution paces
because, while the spatial registration can be calibrated beforehand, the correct time
registration is the one imposed by the human operator during the task execution. The
execution error is defined at each time step as the deviation from the correct path and
computed as ||ϵh,k|| where || · || denotes the Euclidean norm. The task and robot model
prediction errors at each time step are computed as ||x̃ds,k|| and ||x̃s,k|| respectively, with
x̃s,k = xs,k − x̂s,k. These metrics depend on the ground truth registration of Ft, which
is obtained through an offline calibration procedure consisting in manually pointing two
dozen points on the drawing surface with the robot.

Ground truth path

(a) (b) (c)

Figure 6.3: (a) Illustration of the collected trajectories xs,k and x̂ds,k. (b) The desired
trajectory xds,k is computed by finding on the ground truth path the points
closest to xs,k (for each sample), which then results in errors ||ϵh,k|| (see b)
and ||xds,k − x̂ds,k|| (see c).

In Figure 6.4, the paths underlying the desired trajectory xds,k and its estimation
x̂ds,k acquired during an AG scenario are displayed in FΠ for different times tk. At
startup, x̂ds,k is significantly different from xds,k due to the parameter estimation errors
and the operator is therefore initially guided along an incorrect trajectory. The drawing
plane being at an angle w.r.t. the horizontal plane in Fw, the task prediction error is
three-dimensional. Therefore, the incorrect estimation of the orientation rz impacts not
only the in-plane orientation of the estimated desired trajectory, but also the predicted
desired position along the normal to the plane. This can be observed in Figure 6.4
where the position and orientation of the initial estimated task model projected in the
XZ plane are incorrect. Regardless of guidance errors, the operator can perform the
desired task, although execution errors corresponding to imperfect task realization are
introduced. For the three AG executions (i.e., for the three initial registration errors),
this error can be as large as 7 mm at startup. It can reach 2.5 mm locally afterwards,
and it is 0.62 ± 0.09 mm on average (see Figure 6.5). As the operator performs the
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Figure 6.4: Estimated task model evolution over time for the scenario AG with initial
parameters estimation errors of θ̃g,0 = [ ã0, b̃0, r̃z,0, t̃x,0, t̃y,0 ]T = [ ∗, ∗, 10, −2, −5 ]T
in [ ∗, ∗, deg., mm, mm ] and θ̃r,0 = L̃0 = 10 mm. The task model is represented
as the path underlying x̂ds,k and all units for X, Y, and Z are in mm.
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task, the models are refined by the learning process and the estimated trajectory x̂ds,k
gradually converges towards xds,k, even if the optimal parameters are not yet reached
when the task ends (see Figure 6.6). The task prediction error (see Figure 6.5) decreases
over time, which can also be observed in Figure 6.4 where the task model converges
towards the correct ones. The estimated robot position x̂s,k, initially incorrect by 11 mm
along the Z axis of FΠ also converges towards its ground truth value as the estimation
of L is updated (see Figure 6.6). Note that, in the present experiment, L is the only
initially unknown robot model parameter and it encodes the length of the pen such
that the robot model estimation error is simply ||xs,k − x̂s,k|| = L̃k.

Figure 6.5: The norm of the execution (left) and prediction (right) errors under AG and
AUTO are reported for different initial task parameter estimation errors
[r̃z,0, t̃x,0, t̃y,0] in [deg., mm, mm]. The initial robot parameter estimation
error is L̃0 = 10 mm.

In order to capture overall trends in model parameter estimation errors, the mean
relative parameter error w.r.t. the initial errors is computed as:

θ̃rel.,k =
1
4

(∣∣∣∣∣ r̃z,kr̃z,0

∣∣∣∣∣+
∣∣∣∣∣ t̃x,kt̃x,0

∣∣∣∣∣+
∣∣∣∣∣ t̃y,kt̃y,0

∣∣∣∣∣+
∣∣∣∣∣ L̃kL̃0

∣∣∣∣∣
)

(6.2)

At startup, θ̃rel.,k = 1 and if θ̃rel.,k = 0, then all parameter estimation errors have
converged to zero. The parameter errors on ak and bk are not included in Equation (6.2),
since they tend to vary locally as the velocity imposed by the operator changes. The
value of θ̃rel.,k is reported in Figure 6.6 (bottom), which shows that parameter estimation
errors are largely reduced (by 85% or more) over the task duration. The individual
parameter estimation error profiles are similar for AUTO and AG, which suggests
that the learning method can effectively cope with noisy human demonstrations. Even
if the human demonstrations lead to learning performances inferior to those obtained
under the AUTO scenario, the task prediction errors also decrease under AG: they
are reduced by more than 75% over the short execution time. The fact that a steady
state is not reached for any scenario is explained by the limited duration of the task
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Figure 6.6: Top: parameters absolute estimation errors under AG and AUTO for
different initial task parameter estimation errors [r̃z,0, t̃x,0, t̃y,0] in [deg., mm,
mm]. The initial robot parameter estimation error is θ̃r,0 = L̃0 = 10 mm.
Bottom: resulting mean relative errors θ̃rel.,k defined by Equation (6.2).
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execution, as discussed in Section 6.3.2, but also by the geometry of the task. The
downward motion from the top of the key up to the bottom (see Figure 6.4) provides
very little information about the translation of the task along the direction of said
motion and the associated task translation parameter t̂x,k is barely updated over this
time range (see for instance the orange curve in Figure 6.6 for tk ∈ [18; 23] s).

The same experiment was carried out with a variety of initial parameter estimation
errors and underlying paths Γ(ψ), including lemniscates (see Section 6.4), cursive words,
and repetitive patterns. The learning method was found to be task-independent in the
sense that the hyper-parameters (i.e., Rk, Qk, P0, and α) do not have to be changed
between an experiment and another to obtain satisfactory results.

6.3.2 Influence of the fading factor
The decay time constant (20 s) associated with the chosen value for α is rather slow
considering the total duration of the experiment presented above (≈ 30 s). This accounts
for part of the residual errors as the less reliable observations gathered at the beginning
have not been totally discarded yet when the task ends. To demonstrate the influence
of α on the learning, the AUTO condition is executed for various values of the fading
factor and θ̃rel.,k (see Equation 6.2) is reported in Figure 6.7. The choice of α does not
impact the initial updates of the parameters, but after a few seconds, the estimated
parameters converge faster towards their correct values for larger values of α. This is
due to the fact that the estimated covariance of the parameters is greater due to the
forgetting mechanism, leading to a better learning performance when the observations
are correct. The largest reported value is α = 0.01, equivalent to a decay time-constant
of 2 s such that only the last few seconds are considered for learning (see Equation 5.25).

Figure 6.7: Average parameter estimation errors as a fraction of its initial value for
different values of the fading factor α. The data was collected from 6 optimal
executions, i.e., the AUTO condition.
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6.3.3 Robustness to parameters shift
One of the advantages of the presented general method and its implementation with a
fading memory EKF is the possibility to cope with parameters shift. As a demonstration,
let us consider the same scenario: all but the path to draw is the same as the previous
experiment, including the hyper-parameter values. The participant is asked to follow
a path A for one revolution and then to follow a path B generated with different
parameters (translation w.r.t. world frame) for the second revolution, which effectively
displaces the desired path. In this scenario, our method can cope with small parameters
shift as demonstrated by Figure 6.8. The task model is able to adapt to the change
of path and no hyper-parameter tuning was necessary. The tracking performance
could further be improved by detecting such occurrences and temporally increasing the
learning rate, for example through a variable fading factor or process noise modeling.
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Figure 6.8: Illustrative scenario simulating a parameters shift when the first revolution
is completed (around tk = 18 s). Two paths A and B are visible on the
drawing surface such that path B is identical to path A, but translated by
10 mm the X axis of the drawing plane. The participant follows the path
A for one revolution and then path B. The task model initially converges
towards path A, but is quickly adapted when a new path is followed. All
distances are expressed in mm.
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6.4 Comparison with non-adaptive guidance
In the previous section, we showed that user inputs can be used to simultaneously
improve the task and robot models when they are initially incorrect. The online learning
method was used to provide an adaptive guidance to the human operator. To further
demonstrate the advantages of this approach, the task performance is evaluated in three
cases: adaptive guidance, with an incorrect non-adaptive guidance, and without haptic
guidance.

6.4.1 Experimental protocol
The context is the same as the one detailed in the previous section: the model of the
path to follow is known, but its registration is partially unknown. Initially, only rough
estimates of the parameters θg and θr are available. Under condition AG, a human
operator is teleoperating the robot in order to perform the task and haptic guidance is
provided. Two additional experimental conditions are considered:

IG A human user teleoperates the robot in order to perform the task and haptic
guidance is provided. The models of the task and of the robot are NOT corrected
(incorrect guidance);

NG A human user teleoperates the robot in order to perform the task and no haptic
guidance is provided (no guidance). However, the learning method is used to learn
the parameters.

Under condition IG, only the tracking of the parameters a and b is performed
to accommodate the execution velocity imposed by the operator. The other four
parameters, encoding the task and tool partial registration, are not updated such that
θk = θg,k = [ak, bk]T ∈ R2. This condition can be considered as a normal virtual fixture
whose registration is inaccurate and behaves as existing (non-adaptive) haptic guidance
methods, such as Guidance VF (Bowyer et al. 2014). The only particularity is that, due
to the proposed method, the guidance reference is not simply computed as the closest
point on the guidance path, but from the estimated parameters ak and bk. This tracking
introduces a dynamics in the VF that is experienced by the operator as inertia in the
direction tangent to the guidance path, which tends to smooth the execution by filtering
accelerations. Under the two other conditions, the proposed online learning method is
used to update the initially incorrect parameters from the observed user actions. What
differentiates the conditions AG and NG is how the models are used. The former
provides a haptic guidance whose underlying model is refined as the parameters are
updated whereas the later passively observes without providing any haptic guidance.

Six participants were recruited for this experiment. They were asked to teleoperate
the robot to draw a lemniscate by following a path printed on the drawing surface (see
figures 6.1c and 6.9). In order to give the learning algorithm enough time to reach a
steady state, the participants were asked to perform two complete revolutions for each
experimental condition. Before performing these tasks, they were allowed to practice
by drawing lines and circles without and with haptic guidance (correct models) for
at least 5 minutes. Then, they performed the actual task under each condition in a
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balanced pseudo-random order (single blind experimental protocol) for a total of 3 task
executions per participant. The visual feedback and evolution of task models for one of
the participants is included as supplementary material for illustration purposes: see
Video 6.1 for AG, Video 6.2 for IG, and Video 6.3 for NG. The learning performance
for six correct automatic executions (i.e., AUTO condition) was also added to provide
a baseline performance. The experimental setup, learning and guidance methods, and
all hyper-parameters are the same as those presented in the Section 6.4.1.

Executed trajectory Predicted trajectory

Figure 6.9: Top: executed, predicted, and desired trajectories are displayed as paths in
the drawing plane XY and projected orthogonally (XZ plane) for the three
task executions performed by one of the participants. Bottom: associated
errors. To facilitate the reading and to cope with disparities in execution
velocities, all values are expressed w.r.t. the task progress defined as the
normalized curvilinear abscissa such that the task execution starts at 0%
and ends at 100%. Thus, the first revolution around the lemniscate is over
when the task progress reaches 50%. All of the values are expressed in mm.

6.4.2 Results
When learning from optimal demonstrations (AUTO), the average relative parameters
error is reduced by 95% by the end of the first revolution that corresponds to 20 seconds
of task execution (see Figure 6.10). In this scenario, the average relative parameters
error converges to very small values (2%) such that the task and robot model prediction
errors were under 0.5 mm by the end of the task execution (see Figure 6.11). When
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learning from human demonstrations (AG and NG), the average relative parameter
estimation errors are also very significantly reduced by the end of the first revolution
(by 90%). The residual state parameter estimation error is larger than for the AUTO
scenario, in the vicinity of 5% for both AG and NG (see Figure 6.10)

The steady state of the learning process is reached, on average, for a task progress of
70% or 35-40 s of task execution. To characterize the residual errors, different metrics are
computed for the last 20% of the task and averaged across subjects. The residual task
prediction error is around 0.5 mm for both AG and NG, respectively 0.52± 0.32 mm
(max 0.86) and 0.56± 0.21 mm (max 0.83), where the number following the "±" symbol
is the standard deviation across participants. The residual robot model prediction error
is 0.25 ± 0.19 mm for AG and 0.28 ± 0.15 mm for NG. For comparison, under the
condition AUTO, the residual task and robot model prediction errors are, respectively,
0.19± 0.003 mm and 0.22± 0.01 mm. For this same last 20% of the task execution, the
mean relative parameter error w.r.t. initial ones are 5.88± 2.37% for AG, 6.32± 1.66%
for NG, and 2.1± 0.02% for AUTO (see Figure 6.10).

Figure 6.10: Top: the mean relative parameter estimation error θ̃rel.,k (see Equation 6.2)
is averaged over the participants (N=6) for each condition. The same is done
with 6 automatic executions of the scenario. Bottom: the correspondence
between task progress and execution time is displayed. Standard deviation
across participants is displayed as a shaded region.

The mean prediction and execution errors are computed for the full task duration
across subjects for each condition (see Figure 6.12). The mean task prediction errors
during AG (1.07 ± 0.24) and NG (1.03 ± 0.14) are significantly lower (p< 0.001)
than under IG (6.03 ± 0.17). The difference in mean task prediction errors between
AG and NG was found to be statistically insignificant (p ≈ 1). Similar results are
found for the mean robot model prediction error that is of 11.0± 0.0 for IG against
0.5± 0.06 and 0.54± 0.13 for AG and NG respectively. The results are comparable
between AG and NG (p≈ 1). The analysis of task execution errors shows that a
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Figure 6.11: Mean execution (top) and prediction (bottom) errors for each experimental
conditions. The mean values are displayed with solid lines and the standard
deviation (N = 6) with a shaded region. See Figure 6.10 for the legend,
Figure 6.9 for details for one participant, and Figure 6.12 for overall scores.
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correct haptic guidance leads to significantly (p< 0.005) lower errors (AG, 0.75± 0.13)
than both when the guidance is incorrect (IG, 1.22± 0.29) or when there is no haptic
guidance (NG, 0.98± 0.11). For reference, the average execution error under AUTO is
0.35± 0.01 mm. Although no guidance seems to be better than an incorrect guidance
in these experiments, it was not found to have a significant effect (p> 0.1).

6.4.3 Analysis
In this experiment, the automatic execution of the correct task (AUTO) results in
a mean execution error of 0.35 mm. The task prediction error is then considered to
be negligible below this value. Under this threshold, the residual errors are due to a
combination of intrinsic robot positioning inaccuracies and, more importantly, ground
truth registration inaccuracies (e.g., deformation of the pen tip or body and slight
orientation estimation errors during the offline calibration). When learning from optimal
demonstrations (AUTO), the estimated task and robot models are then found to be
as accurate as the offline models identification once the steady state is reached. Due
to execution errors and biases introduced by the participants, this level of accuracy is
never reached under AG and NG, but the prediction errors are reduced to satisfactory
levels under 0.5 mm (the width of the line drawn by the pen is 0.5 − 0.7 mm wide
and the task is 80 mm wide). The proposed method is then capable of retrieving the
correct task and robot model parameters online by exploiting only the teleoperation
data provided by the presence of an operator in-the-loop.

Updating the haptic guidance through online model corrections allows to improve
the overall performance when the models are initially incorrect. Compared with a
non-adaptive virtual fixture (IG), using adaptive guidance (AG) led to a task execution
error reduction of 40%. The results suggest that providing no guidance or providing an
inaccurate, not updated, guidance leads to similar performances.

It was initially supposed by the authors that improving the haptic guidance over
time (AG) would make task execution better over time, and in turn would improve
parameters estimation. It was shown that AG decreased execution errors, but the
presence of haptic guidance does not have a significant impact on the overall learning
performance as suggested by figures 6.10 and 6.11. This was confirmed by the mean
task and robot model prediction errors not being significantly different under AG and
NG, both for the complete tasks (see Figure 6.12) and once the steady state is reached.
Interestingly, this means that the models could also be learned online even though
they are not used to physically guide the user, for instance to provide other types of
information such as visual guidance by displaying the corrected plan with augmented
reality.

6.4.4 Necessity for joint robot and task models corrections
In order to demonstrate why we have to correct the follower robot kinematic model
in addition to the task model, we carried out the same experiments as presented in
Section 6.4 without updating the robot model parameter. The results under this
additional scenario AG-TO (AG Task Only) are reported in Figure 6.13, where the
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predicted desired trajectory, displayed as a path in the XY and XZ planes, clearly does
not converge towards the actual desired trajectory. Some of the underlying parameters,
namely the orientation r̂z,k and lateral translation t̂y,k, partially converge towards the
correct values, but significant errors remain for the other parameters. Notably, t̂x,k
converges towards an inaccurate value as clearly visible in Figure 6.13. The guidance
errors are not limited to the direction normal to the drawing plane, as the prediction
errors are also very significant in the XY plane (see Figure 6.13). The prediction error
is then on par with the non-adaptive IG condition, with a mean task prediction error
of 8 mm overall and of 7.3 mm over the last 20% of the task.

Figure 6.13: Executed, desired, and predicted trajectories for the AG-TO scenario. All
units for X, Y, and Z are in mm.

6.5 Conclusions
In Chapter 5, we proposed a flexible approach to use information provided by an operator
in-the-loop to augment available information for online task and robot kinematic model
parameters learning. The approach is applicable when models of the robot and of the
task are known, but that the values of some underlying parameters are not. This is
typically the case when a task has been defined but parameters have to be adapted
to the actual environment during its execution. Such parameters include, but are not
limited to, task and robotic tool registration parameters.

In this chapter, an implementation on a robotic platform with human participants was
provided to demonstrate the applicability of such an approach to simultaneously correct
a pre-planned trajectory and a nominal robot kinematic model from teleoperation data
only. The results further demonstrate that the learning can cope with small variations of
the correct parameters, which is of great interest for applications such as robot assisted
surgery where, due to environment deformations, the correct task model might change
during the execution of the task. As the learning is done online, while the operator is
performing the task, the updated parameters can then be used to provide an adaptive
assistance that improves over time. In a scenario with initially incorrect task registration
and robot tool calibration, the proposed adaptive haptic guidance significantly improved
task execution accuracy compared to a non-adaptive haptic guidance.
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Chapter 7 Qualitative performance of the adaptive haptic guidance

In the previous two chapters, we proposed and evaluated a method for simultaneous
task and robot model parameters learning. Results showed that the models could be
accurately learned from a human in-the-loop and that the adaptative guidance improved
the accuracy of the drawing task. However, some practical considerations were not
taken into account in this first experimental validation.

Firstly, the drawing task was roughly the size of the master workspace such that
it could be performed as a single continuous motion. However, in most real-world
telerobotics applications, including robot-assisted MIS, the range of master motions is
insufficient to cover the whole operational space of the follower robot. Secondly, the
adaptive guidance scheme was not compared with a haptic guidance generated from
correct models. Finally, only objective metrics were considered (i.e., task execution
accuracy), but subjective performance is critical to the acceptance of haptic guidance
by operators.

Therefore, we report more thorough qualitative results concerning the effect of
registration inaccuracies on haptic guidance while assessing how online learning can
improve the performance in such cases. The task spans a large space such that clutching,
a mapping recalibration approach commonly used in telerobotics, is necessary to adjust
the mapping between master and follower robot during the realization of the task.
We also introduce an additional experimental condition for which the models used to
generate the haptic guidance are correct. Both objective and subjective results are
reported, all collected during a study with twelve participants. Then, in a second
section, a preliminary analysis of the impact of mapping clutching on teleoperation
with haptic guidance is provided.

7.1 User-study design
An online method was proposed in Chapter 5 to correct initially inaccurate task and
robot kinematic model parameters from operator inputs. In this chapter, we evaluate
the effects of these inaccuracies on the performance of a path following task when
haptic guidance is provided. Although the robotic setup is the same (see Figure 6.1),
the task spans a larger volume of the follower workspace such that a mechanism to
modify the position teleoperation mapping M(·) is necessary. The task is also longer
(i.e., total underlying path arc-length) and therefore takes more time to perform. In
addition, while the experimental validation in Chapter 5 focused on the convergence
of the parameters and the evolution of errors resulting from inaccurate modeling, the
quality of the guidance and executed motion was not evaluated by the participants,
whereas it will be in the following.

7.1.1 Experimental protocol
Twelve participants, all right handed, were recruited as part of a study approved by
an ethical committee 1. After being given adequate information about the material
and asked to fill the consent forms, each participant practiced 5 minutes with and

1University of Strasbourg, France. Accreditation n° Unistra/CER/2022-09.
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without haptic guidance by drawing a circle. They then performed a wide motion
(e.g., line) to practice clutching and finally performed free form drawings. Once the
training phase was finished, each participant performed a task under 4 experimental
conditions. They started the task when engaging the position control by pressing a
master push button, reached the startup position, and then followed the path to its end
under visual feedback (see Figure 7.1). The same button, when released, triggered the
clutching of the mapping as detailed afterwards. The visual feedback recorded during
the realization of the task by one of the participants (under AG condition) is included
as complementary material (see Video 7.1).

1

2

3
4

Task execution - 4 conditionsTraining phase

31

2

(a) (b)

(end)

Figure 7.1: Overview of experimental protocol. (a) Participants are asked to practice
5 minutes with and without haptic guidance. (b) Then, they perform the
same task under 4 experimental conditions and fill a questionnaire at the
end of each condition.

In order to compare the effect of model inaccuracies and online corrections, both
adaptive and non-adaptive guidance were implemented, as well as a scenario where no
guidance at all was provided. With the exception of an additional non-adaptive, but
correct haptic guidance, the experimental conditions are the same as those presented in
Chapter 6:

• NG – no guidance forces are applied on the master interface;

• IG – A non-adaptive guidance is provided, but the model parameters are incorrect
(see Section 6.4.1);

• CG – A non-adaptive guidance is provided and the model parameters are correct.
This condition is identical to IG, but with correct model parameters;

• AG – Adaptive guidance as proposed in chapters 5 and 6.

Additionally, the task is automatically executed 12 times to have a baseline as was done
in Chapter 6. This last condition is referred to as auto.

Throughout the experiments, we tested further our main hypotheses than can be
stated as:

• H1 – when haptic guidance is provided, if the models of the task and/or of the
robot are inaccurate, the execution errors will be similar or larger than if no
guidance was provided;

113

https://media.hal.science/hal-04107816


Chapter 7 Qualitative performance of the adaptive haptic guidance

• H2.1 – although imperfect, human actions can be used to learn the correct task
and robot models;

• H2.2 – by correcting the models online, conflicts are significantly reduced, which
leads to better performances overall in comparison to a non-adaptive guidance.

An across-subjects experimental protocol was devised, such that all participants executed
the task under all conditions that were presented to them in a pseudo-random balanced
order. After completing each task under a particular condition, each participant filled a
NASA-TLX (Hart et al. 1988) questionnaire to evaluate subjective preferences between
conditions. The questions assess arduousness through items such as perceived frustration
and cognitive load (see questionnaire in Appendix D.2). In addition to the NASA-TLX
questionnaire, two questions were included to evaluate if the participants found the
haptic guidance to be useful (see Table 7.1). As the second question (Q2) requires the
haptic guidance to be activated, participants were told to ignore this question when
performing the task under NG condition.

Question Likert scale (5 points)
Q1 I felt in control while performing

the task.
1: Strongly disagree
2: Disagree
3: Neither agree nor disagree
4: Agree
5: Strongly agree

Q2 The forces generated by the mas-
ter interface helped me to perform
the task.

Table 7.1: Additional survey questions for each condition. Translated from French, see
original in Appendix D.2.

7.1.2 Experimental setup
The task to perform (see Figure 7.2) and the experimental protocol differ from those
in Chapter 6, but the underlying implementation of the adaptive haptic guidance is
the same. The haptic guidance is implemented with a stiffness of 300 N.m−1 and a
damping ratio of 0.9. The fading memory EKF is implemented with a constant fading
factor α = 10−3 (20 s decay time constant) and an isotropic Gaussian model of standard
deviation σh = 2 mm for the modeled human inaccuracies (see Σh,k in Chapter 5). The
noise modeled on the execution velocity imposed by the operator is σψ̇ = 0.1mm.s−1.
The initial parameter covariance matrix is initialized with small values encoding an
initial standard deviation of 10 mm for â, 10 mm.s−1 for b̂, 1 deg. for the in-plane task
orientation, and 1 mm for the three remaining task and robot parameters.

7.1.3 Clutching for mapping re-calibration
When the follower robot operational workspace is significantly larger than the master
robot operational workspace, the teleoperation implementation requires special care. In
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order for the operator to be able to execute a task spanning a significant part of the
follower robot operational space, one of four approaches can be considered:

• a scaling can be applied such that a small master displacement results in a large
follower displacement (Kobayashi et al. 1992), but this also scales the errors
introduced by the operator;

• rate control can be used to map the position of the master to the follower robot
commanded velocities (Horan et al. 2008);

• mapping clutching (Niemeyer et al. 2016) can be implemented such that the
operator can manually adapt the mapping between master and follower position
by repositioning the master independently from the follower when clutched (i.e.,
a button is pressed);

• mapping drifting consists in adapting the mapping continuously such that the
master robot stays in the center of its workspace (Conti et al. 2005; Dominjon
et al. 2007).

For surgical robotics, a scaling factor greater than 1 is not a viable option as it
would increase execution errors when the opposite is usually desirable (e.g., tremor
suppression Prasad et al. 2004). Rate control is also excluded since the position
mapping is crucial to dexterous gestures and would result in a higher cognitive load
during trajectory-following tasks. Therefore, the only options considered thereafter are
mapping clutching and drifting. Workspace clutching is a technique commonly used in
teleoperated surgical systems (e.g., Da Vinci) and more generally for position-position
(or, equivalently, velocity-velocity) teleoperation. We considered that mapping drifting
would introduce more complex effects that could interact with the adaptive guidance.
Therefore, mapping clutching was implemented. In practice, it was implemented by
modifying the mapping M(·) such that M(xm) stays constant during the so-called
clutching phases, therefore generating no follower robot displacement.

7.1.4 Collected experimental data
The collected experimental data for one participant under the 4 conditions is displayed
in Figure 7.2. Under IG and AG, the task model registration is incorrect when the task
execution starts, but it is refined under AG such that the task model is correct after
20 to 30s (see snapshots in Appendix D.1), which is 15% to 25% of the average total
task duration. The executed (xs,k) and predicted (x̂ds,k) trajectories are recorded and
compared with the ground truth task model (i.e., desired trajectory xds,k) to compute
the execution errors ||ϵh,k|| and task prediction errors, respectively. Likewise, the robot
estimated trajectory x̂s,k from the robot model is recorded and compared with executed
trajectory xs,k to compute the robot prediction errors. Additionally, the total execution
time, or task duration, is recorded and the smoothness of the executed follower trajectory
is evaluated using the so-called spectral arc-length metric (Balasubramanian et al. 2015).

115



Chapter 7 Qualitative performance of the adaptive haptic guidance

Executed trajectory Predicted trajectory

Figure 7.2: Path underlying the trajectories xs,k and x̂s,k, respectively the executed and
predicted trajectories, expressed in Ft for one of the participants under the
different experimental conditions. See figure Appendix D.1 for snapshots at
different time points (AG condition).
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7.2 Results
7.2.1 Objective results across participants
The results obtained during this experiment (see Figure 7.3) are in agreement with
those from Chapter 6:

• task execution errors under AG are significantly lower than under NG and IG;

• task prediction errors are significantly reduced by the learning process (AG and
NG against IG);

• robot prediction errors are also significantly reduced by the learning process (AG
and NG against IG);

• there is no statistically significant difference between the prediction errors, both
task and robot, under AG and NG.

Additionally, the analysis of the CG condition led to the following statistically
significant differences. As can be expected, task and robot prediction errors are
significantly smaller under CG than under AG, NG, or IG. Furthermore, task execution
errors are significantly smaller under CG than under NG or IG. However, there is
no statistically significant difference between the execution errors during AG and CG.
Finally, the total task duration (about 2 minutes on average) was not found to be
significantly impacted by the experimental condition.
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Figure 7.3: Task duration, execution errors (path deviation), and task and robot model
prediction errors (N = 12). Significance is reported ; the levels are ns
(p> 0.05, not represented), ∗ (p< 0.05), ∗∗ (p< 0.01), ∗∗∗ (p< 1.10−3), and
∗∗∗∗ (p< 1.10−4).
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The smoothness of the executed robot motion was also investigated. The spectral arc
length of the follower Cartesian velocity profile was computed for each participant under
each condition using the SPARC library (Balasubramanian et al. 2015). The method
was implemented with a cut-off frequency of 10 Hz and a threshold of 5.10−2 for signal
amplitude. As would be expected, the automatically generated motion (auto) is much
smoother than the ones performed by the participants. Interestingly, the results show
that the motion is significantly less smooth under NG than under any other condition
(see Figure 7.4). The only other significant result is that the motion is significantly
smoother under AG than under IG. It can also be noted that AG and CG have
comparable scores.
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Figure 7.4: Motion smoothness for the different conditions. The metric is the spectral
arc length and larger values indicate smoother movement (Balasubramanian
et al. 2015).

7.2.2 Subjective results across participants
The 6 individual NASA TLX scores and the resulting global score (unweighed mean of
the 6 individual NASA TLX scores) are averaged to compute subjective metrics across
the 12 participants (see Figure 7.5). Overall, the participants significantly preferred the
conditions AG and CG over the condition IG. They also significantly preferred AG
over NG. No other difference was found to be statistically significant. However, we also
found several significant effects of the experimental condition on the individual scores
(see Figure 7.5):

• the participants found that the IG condition resulted in significantly more Effort
and Frustration than the conditions AG and CG. Additionally, the NG condition
resulted in significantly more Effort and Frustration than AG;

• the same differences can be noticed in the performance as evaluated subjectively
by the participants. Participants found their Performance to be significantly
better during conditions AG and CG compared to both NG and IG;

• participants found the condition AG to be significantly less mentally demanding
than the condition NG;
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• no other difference was found to be statistically significant.
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Figure 7.5: NASA TLX scores (lower is better). Significance is reported ; the levels are
ns (p> 0.05, not represented), ∗ (p< 0.05), ∗∗ (p< 0.01), ∗∗∗ (p< 1.10−3),
and ∗∗∗∗ (p< 1.10−4).

The two additional questions that the participants had to answer after each experi-
mental conditions were also analyzed for statistically significant effects (see Figure 7.6).
Participants reported they felt more in control (Q1) under AG and NG conditions
w.r.t. the IG condition. They also more strongly agreed with the statement Q2 under
AG and CG conditions w.r.t. the IG condition, indicating that they found the haptic
guidance significantly more helpful under AG and CG.

7.3 Analysis
7.3.1 Effects of inaccuracies
The performance under CG condition was found to be significantly better than under
condition IG. Not only are the execution errors lower and the movements smoother
under CG, but it was also experienced significantly more positively by participants.
They found the IG condition to be more demanding, more frustrating, and resulting in
a perceived decrease of performance. These quantitative results heavily support the first
part of hypothesis H1, which states that an inaccurate guidance will increase execution
errors and decrease performance.

We had initially hypothesized in H1 that condition IG would lead to performances
similar or worse than NG. In Chapter 6, there was no significant difference in objective
performance between IG and NG, suggesting that performances (execution errors only
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Figure 7.6: Scores obtained for the two additional survey questions (see question state-
ments in Table 7.1).

in that case) were similar. In this study with more participants, the level of smoothness
was found to be significantly different between IG and NG: the movements under
IG were smoother (p < 0.05). However, this is the only significant effect we found in
objective metrics. As for the subjective metrics, only the answers to Q1 were found to
be significantly different (p < 0.05), suggesting that participants felt more in control
under NG. Although not statistically significant, one can also see a trend in the NASA
TLX scores (see Figure 7.5) in favor of NG over IG.

To conclude, inaccuracies in the models used to generate guidance (i.e., IG) sig-
nificantly degrade performance. Although such inaccurate guidance still improved
movement smoothness compared to a non-assisted teleoperation (NG), no guidance
was overall preferred by the participants. They notably felt more in control without
the guidance than with an inaccurate one. However, a correct guidance (CG) led to
significantly better performances (accuracy, smoothness, and subjective metrics) than
both the inaccurate guidance (IG) and the absence of guidance (NG).

7.3.2 Performance and acceptance of adaptive haptique guidance
Hypothesis H2.1 was already supported by the results presented in Chapter 6: correct
parameters can be learned from the actions of the operator, even when the initially
incorrect parameters are used to guide the operator or when no guidance is generated.
The data collected during the study with participants confirmed these results. Similarly,
the experimental results support H2.2 that states that AG would lead to significantly
better performance than IG. Compared with the non-adaptive guidance (IG), the
adaptive guidance scheme (AG) significantly improves the performance and was largely
preferred by the participants. We did not find a single statistically significant perfor-
mance difference between AG and CG, suggesting that the performances under each
conditions are similar.

The overall trend is that AG and CG performed similarly, and better than both NG
and IG. Under condition AG, movements were found to be more precise and smoother
than under both IG and NG. Furthermore, although participants found the guidance
unhelpful under IG (see Q2 in Figure 7.6), they all found the guidance helpful under
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AG. Furthermore, AG was ranked as well as CG and significantly better than IG (and
NG) in the NASA TLX questionnaire.

7.3.3 Perception of guidance compliance
Although not statistically significant, there is a trend in the subjective results that
the condition AG is perceived more positively than the condition CG. This was not
expected, but as it was noticed early on in the study, the participants were asked
some questions at the end of their participation beyond the ones in the questionnaires,
including whether they preferred CG or AG and why. Although most had no preference,
some of the collected answers showed slight preference for AG because it was “more
compliant” and some mentioned a phenomenon for CG that they described as “damping”
along the path.

This “damping” phenomenon is normal and explained by the tracking of ψk, whose
dynamics tend to smooth the gesture, which is experienced as forces tangent to the
planned path by the operator. However, it is present under all condition except NG, such
that it does not explain the participants feedback. After investigation, it was found that
the guidance under the AG condition could indeed be more compliant concerning the
motion along the path due to a larger covariance, in part due to additional human path
deviation and the interactions of the temporal registration with the other parameters.
This could explain the fact that CG was given a slightly higher level of perceived
Frustration and Effort on the NASA TLX questionnaire (see Figure 7.5). However, note
that the difference remains statistically insignificant.

Another explanation is that the guidance path updates, and therefore the experienced
compliance of the guidance are perceived positively: at startup, under AG, the partici-
pants can feel that the guidance is incorrect, but then also sense that it is improving
over time. Such biases could be further investigated by implementing haptic guidance
in such a way that the uncertainty of the parameters does not impact the tracking of ψ
and that there is no sensation of damping (like a classical virtual fixture). It should,
however, be noted that the damping along the path introduced by the filter improves
numerical stability and smooths the guidance, especially when the underlying path is
incorrect and in the presence of strong curvature.

7.4 Effect of the mapping recalibration
During the mapping recalibration phases (clutching), the haptic guidance forces are
still generated on the master side since the guidance reference xgm,k is translated along
with the master position xm,k. Guidance forces could be turned off, for example using
variable impedance control to set the stiffness to zero. Although variable impedance
could lead to a loss of passivity, such issues can be avoided using so-called passivity
filters (Bednarczyk et al. 2020) or passivity tanks (Ferraguti et al. 2013). However, it
should be noted that turning the guidance on and off in such a way would still generate
sudden force variation over short time periods that could be experienced as a disturbance
by the operator. That is why the forces were kept on during the recalibration phases in
the work presented in the previous sections.
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To the best of our knowledge, very few studies on the effects of clutching during
teleoperation with haptic feedback were reported. A comparison of rate control teleoper-
ation against velocity-velocity (with clutching) teleoperation was reported by Abi-Farraj
et al. (2018) for a grasping task. The authors concluded that rate control was more
demanding (i.e., higher cognitive load) and that the participants preferred the velocity-
velocity teleoperation. However, the clutching process was experienced negatively by
the participants. The general consensus is that clutching has a negative impact on
performance, but the effects are rarely analyzed, if ever. In the following, we present
preliminary results on whether or not mapping clutching, during teleoperation with
haptic guidance, has a negative impact on the task execution accuracy.

Firstly, it can be observed that the experimental conditions do not seem to impact
the way participants use the mapping clutching (see Figure 7.7). Under all conditions,
the number of clutch events, as well as their duration (about 2 s) are similar. Although
no significant effect was found (ANOVA analysis resulted in p-value p = 0.55), the
participants tend to spend more time re-calibrating the mapping under IG (about 35%
more than under AG and CG). Then, whether the haptic guidance is correct, incorrect,
or even absent does no seem to significantly affect clutching patterns. This does not,
however, inform on whether mapping clutching impacts performance or not.

Figure 7.7: Collected data about mapping clutching under the different conditions
(N=12).

In order to provide a preliminary evaluation of the effect of clutching on performance,
the execution errors during a short period of time (2 s) before and after each mapping
recalibration are computed for the twelve participants of the previous user study. For
each event, the mean execution error norm ||ϵh|| is computed for the 2 s preceding and
following the event. Then, the difference between the pre and post clutching can be
computed for each event.

Once averaged across subject, the overall effect of clutching can be studied for each
condition. Under CG, the execution error is on average 10% higher after the clutch
events than before (see Figure 7.8). Similarly, there is a 9.8% increase under AG, but
neither increase is statistically significant (p > 0.1). However, clutch events have a
significant impact during IG and NG scenarios and locally increase the execution error
by 16% (p < 0.01) and 26% (p < 0.05) respectively.

The clutch events did not have a statistically significant impact on the task execution
accuracy when the guidance is correct. The fact that a significant error is introduced
under IG at clutch events could be explained by the larger guidance forces applied
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Figure 7.8: Comparison of the execution mean errors over the 2 s time periods before
and after the clutch events. Significance levels ns (p> 0.05), ∗ (p< 0.05),
∗∗ (p< 0.01) for the differences were computed using a Wilcoxon Sign test.

during the recalibration procedure. But the same phenomenon also appears when haptic
guidance is not provided (NG), suggesting that the force applied during clutching may
not be the only source of errors. A possibility is that under NG, the participants need
some time to readjust after the clutch events in order to regain a better sense of how
their actions affect the robot. Also, only minimal damping is introduced under NG, but
damping has a stabilizing effect that might help the participants to cope with seemingly
destabilizing effects introduced by the clutching process. This might partially explain
the fact that participants were less affected under AG and CG. Then, although the
effects of clutching could not be conclusively quantified from this experiment, it provides
us with interesting insights for future developments.

7.5 Conclusions
We presented a comprehensive study with participants that provides results about the
effects of both inaccurate and adaptive haptic guidance. Although the main objective
is to evaluate the adaptive guidance approach introduced in the previous chapters,
the results of this user study are more generally relevant to teleoperation with haptic
guidance. From the experimental results, we can conclude that when task and/or robot
models are inaccurate, the performance is negatively impacted: the accuracy is reduced,
the movements are less smooth, and the user experience is degraded. In this scenario,
adaptive guidance was then found to be preferable to non-adaptive guidance, both
objectively and subjectively.
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Discussion
In the following, we provide a synthetic discussion about the effect of inaccuracies in
guidance as well as conclusions drawn from the user study and the other experiments with
an operator in-the-loop. Additionally, an alternative learning method complementary
to the fading memory EKF is presented, allowing us to compare the advantages and
drawbacks of both. Finally, we briefly discuss the passivity of the generated adaptive
guidance.

To guide or not to guide?
The intuition that motivated the work presented in Part II is that a learning-based
adaptive guidance would significantly mitigate the effects of registration inaccuracies.
We found this to be the case for the tasks considered in our experiments: not only
the performance was objectively improved (i.e., accuracy and smoothness), but the
qualitative evaluation by participants was overall very positive.

In all the scenarios we considered, the parameters could be learned from teleoperation
data only, but this is not necessarily always the case. As is discussed afterwards,
including other sources of information (e.g., image measurements) would be a possibility
to cope with identifiability issues. Nonetheless, it is also pertinent to reflect on the
best policy to follow when parameters cannot, in fact, be corrected. The results from
Chapter 7 suggest that, in such a case, it might be preferable not to provide haptic
guidance, eventually to reintroduce the guidance once the models have been improved.
However, even inaccurate guidance was found to be beneficial in some telerobotic
scenarios (Oosterhout et al. 2015), such that the strategy to adopt will likely depend on
the nature of the task.

Something that could be interesting, rather than not guiding the operator at all,
would be to reduce the guidance authority (i.e., reduce the stiffness) until it becomes
possible to update the parameters. Ideally, the stiffness would reflect the uncertainty over
parameter estimates as proposed by Zeestraten et al. (2018). However, although Kalman
filtering usually makes it possible to obtain an estimate of this uncertainty, the fading
memory factor introduced in Chapter 5 is known to affect the estimation covariance Pk
in such a way that it has little physical meaning and is not, in fact, equivalent to the
real parameter estimates covariance (Simon 2010, Chapter 7). Therefore, the covariance
matrix of the fading memory cannot be used as it is to tune the stiffness of the guidance
online. Further work will then be necessary to implement a variable stiffness guidance.

It is also worth discussing the guidance along the tangent direction to the guidance
reference trajectory. We found that it helps smoothing the movements of the operator
by filtering the task execution velocity imposed by the operator, which in turn makes
learning the time parameters easier. Nonetheless, the study with participants we carried
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out revealed that the participants did not unanimously appreciate the guidance along
the trajectory due to perceived damping. We could reduce the phenomenon by actively
pulling the operator as in (Papageorgiou et al. 2020) or simply not guiding along the
tangent to the trajectory. Actually, it should be noted that guiding the operator along
the trajectory is not that common in telerobotics and, usually, virtual fixture-like
guidance is preferred. It would then be interesting to evaluate how different haptic
guidance strategies impact the performance for tasks of varied curvature and complexity
through a dedicated user study.

Sliding window-based learning – an alternative to EKF
When introducing the fading memory EKF filter approach for simultaneous task and
robot model parameters learning in Chapter 5 (see Section 5.3), we did so by approx-
imating the solution of a more generic learning problem defined in Equation (5.12).
As already commented, the proposed fading memory EKF is therefore not the only
possible implementation. Notably, another interesting approach consists in learning the
model parameters using a sliding window of collected measurements such that more
information is used for learning. However, when using a window of observations, the
time parameterization can potentially differ between the observations (e.g., over a part
of the window, the velocity is null because the operator paused). We therefore proposed
an approximated solution to learn the time parameters independently from the other
model parameters. The method is briefly presented in the following section and is
detailed in Appendix E. In the following, we discuss the implications of a window-based
learning compared to the fading memory EKF presented in the Part II of this thesis
and conclude with perspectives concerning the implementation of the learning.

An adaptive size sliding window learning method for online task
registration
In (Poignonec et al. 2021), we proposed a learning-based on an optimization performed
over a sliding window of sampled robot positions. Note that the formulated learning
problem and resulting method assume therefore that the robot model parameters are
known or that Cartesian robot pose estimation is available. The proposed approach is
akin to a non-rigid path registration such that the geometry and the dynamics of the
task become (nearly) independent problems:

• the parameters encoding the geometry of a task (i.e., all but the time parameters)
are learned by minimizing the distance between the sampled follower robot position
(resulting from the teleoperation by an operator) and the path underlying the
estimated desired trajectory as depicted in Figure 7.9a. This optimization is
performed over a sliding window and the cost computed as the sum of the squared
distances between the sampled follower robot positions and their closest point
on the desired path (see Figure 7.9b). Furthermore, an algorithm is devised to
adjust the size of the sliding window online. Details can be found in appendix
sections E.2.1 and E.2.2;
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• the time parameters are estimated separately, using only the most recent follower
robot position measurement such that the estimated desired position tracks the
follower robot motion (see Figure 7.9c). The haptic guidance is then generated
from the estimated desired follower robot trajectory obtained from the geometrical
parameters estimated over the sliding window and the local tracking of the time
parameters. Details can be found in appendix Section E.2.3.

Path underlying the
estimated desired 

trajectory        

Trajectory of the 
follower robot         

Sliding window of sampled
follower robot positions        

(a)

(b)

(c)

Points matching
(closest point search)

Distances to minimize

Current robot position

Current estimated
desired position

Figure 7.9: Overview of the sliding window learning approach.

Comparison of EKF with sliding window-based learning
The fading memory EKF and the sliding window approaches have noticeably different
properties. The most obvious difference is that the EKF is memoryless, whereas the
sliding window approach uses data sampled over a possibly large time horizon. This
significantly impacts execution time, as the sliding window approach involves the
inversion of large matrices and also relies on numerous line search optimizations to
compute the closest point matchings for each sampled robot position. Nonetheless, note
the update rate we could achieve with the sliding window approach was sufficient for
learning as demonstrated by the experimental results.

Another major difference lies in the way the time parameterization is modeled and
subsequently learned. The fading memory EKF learns the time parameters along the
others whereas the sliding window approach relied on a pure geometrical approach,
simply considering ψ as a free variable. Ignoring the time parameterization in such a
way allows to reduce the problem complexity, but it ignores the dynamic aspect of the
task when learning. In (Poignonec et al. 2021), we presented experimental results with
a high curvature desired trajectory (sinusoidal curve) to illustrate an identified limit of
our sliding window approach: line search local minima. As illustrated in Figure 7.10,
some scenarios can lead the line search (i.e., search of the closest points from robot
position xs,k on the path underlying x̂ds) to converge towards inaccurate values when
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there are large registration errors, typically near high curvature sections. Consequently,
the learning might not converge towards the correct parameters since the evaluated loss
function will have an artificially small value. Although the fading memory EKF could
also be impacted in such scenarios, it was found to be less subject to these issues due
to the smoothing of ψ̂k induced by the time parameters tracking.

Figure 7.10: Illustration of the effect of line
search (i.e., closest point search) lo-
cal minima on the point matching
procedure (see Equation E.6).

So far, solely the drawbacks of the sliding window approach were discussed, but it
also has one major advantage compared to memoryless learning implementations such
as the fading memory EKF. The fact that the learning uses a window of observations
means that the stored data can also be used to test parameters identifiability online,
thus considering the data actually available for learning as opposed to relying on offline
computation based on assumptions (see Section 6.2). Actually, the criterion used for
window size management (see γk in appendix Section E.2.2) could be defined as an
identifiability criterion similar to the one used in (Self et al. 2019), where the authors
devise a metric based on the singular values of the regressor to decide whether the
parameters should be updated or not. This type of scheme would allow the window to
expand until the parameters become identifiable.

A perspective of this work would then consist in devising a learning method that
combines the advantages of both filtering and sliding window approaches. For instance,
moving horizon estimation, i.e., MHE (Rawlings 2015), could be an interesting compro-
mise. Although MHE is by definition a sliding window learning method, it also makes
use of a Bayesian formulation similar to the EKF (actually, MHE is equivalent to EKF
for a window size of one). It would be more computationally demanding that the EKF,
but previous studies demonstrated that MHE could be implemented efficiently and that
for small window size, the achievable update rate was comparable (Kühl et al. 2011).
MHE would then combine advantages from the EKF (e.g., time parameters and noise
modeling) and from the sliding window method (i.e., the possibility to run tests on the
collected data). Furthermore, it would allow the integration of constraints to define the
admissible set of parameter values.

Passivity of adaptive haptic guidance
Except if the haptic guidance is turned on and off as discussed in Section 7.4 (i.e.,
during clutching), the guidance implementation with constant stiffness and critically
damped behavior is already passive under the commonly used definition (Hannaford
et al. 2002; Kronander et al. 2016). Furthermore, the update of model parameters has
the effect of reducing the guidance errors since the cost function minimized by the
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learning process is, in-fine, the guidance error2. Therefore, the learning itself does not
increase the energy stored into the virtual mass-spring-damper system, but the time
parameterization can, occasionally, lead to active behaviors.

The haptic guidance as experienced by the operator is in fact not strictly passive since
the haptic guidance potentially injects energy when the estimated desired velocity is not
null (i.e., ψ̇k ̸= 0). This is typically the case if the operator suddenly stops: the time
parameters will take some time to be corrected and the guidance reference will keep going
forth. Papageorgiou et al. (2020) used a passivity tank to avoid active behaviors when
providing a look-ahead haptic guidance such that the guidance reference is computed
for a future time (e.g., 0.1 s in the future) and therefore pulls the operator along the
desired trajectory. The energy tanks-based approach proposed in (Papageorgiou et al.
2020) might be a good solution to enforce the passivity in our case as well. To further
minimize the disturbance of operator gestures, a constraint could also be added on the
rate of energy transfer in a similar way to the so-called energy-aware control schemes,
where the energy generated and stored by the robot (resulting from inertia, typically) is
monitored and limited to implement safety features for physical human-robot interaction
(Raiola et al. 2018; Meguenani et al. 2016).

2In the case of the fading memory EKF. This is not necessarily true if a window of observations is
used since the cost would be computed from past observations, thus not the current guidance error.
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Part III

Final conclusion and perspectives



Conclusion and perspectives

Conclusion
In Part I, we proposed several complementary methods for the in-situ backlash model
identification of cable-actuated flexible endoscopes. Compared to existing in-situ
backlash model identification methods, the proposed approaches allow the use of
more complex backlash model, which is pertinent to real-world scenarios. All the
proposed methods are very generic and can be applied to different robot architectures
and different intra-operative sensors. Notably, the original problem formulation in
Chapter 3 allows the online backlash width identification of endoscopes with eye-in-hand
camera configurations, which was not possible using previous identification methods.
Furthermore, the proposed methods were evaluated in simulation and on real systems: a
clinical colonoscope in Chapter 3 and the cable-actuated endoscopic tool of a endoluminal
surgical platform in Chapter 4. These experimental results showed that the methods
could be used to retrieve the correct backlash width model from endoscopic images only.

In Part II, we proposed novel adaptive guidance schemes adapted for telerobotics.
The main contribution is the development of an online task and robot kinematic models
parameters learning method that uses the operator in-the-loop as a source of information.
The method is applicable when the models are known, but that the values of some
underlying parameters are not. This is typically the case when a task has been defined
but parameters have to be adapted to the actual environment during its execution.
Different challenges were identified and solutions put forth. Notably, a tracking of the
desired trajectory’s time parameterization was proposed to cope with variable velocity
imposed by the operator, which is critical in a teleoperation context. The proposed
implementation of the learning problem was evaluated through several comprehensive
experiments, both to characterize the learning performance objectively and, more
qualitatively, through a study with participants. The experimental results support the
idea that an adaptive guidance is preferable to its non-adaptative counterpart when
models are initially inaccurate, which would support its use during robot-assisted MIS
where registration errors are frequent. Such methods are a good compromise to use
automation based on a pre-operative plan while leaving the final control to the surgeon,
thus bridging the gap between manual and automatic task execution in surgical robotics.
As Yoda once said, although not of haptic guidance, “For my ally is the Force, and a
powerful ally it is” (The Empire Strikes Back, 1980). However, for the force to truly
be an ally in the realization of teleoperated robotic tasks, we argue that it should also
learn from its human partner throughout the realization of the task.

Much work is still needed until such methods can reach an operating room. Nonethe-
less, we hope that our work will contribute to the development of more flexible and



adaptable assistive systems that will, in the future, assist during minimally invasive
surgery.

Perspectives and future work
In addition to the more technical and focused perspectives presented at the end of
parts I and II, we give here other avenues for future research.

Improving the online learning of model parameters
The stability-plasticity dilemma

In this thesis, we mostly considered stationary model parameters for experimental
validation such that, although the parameters are initially incorrect, the correct values
do not change over time. However, parameters might vary online and, in the context of
surgical surgery, they would most likely do. For instance, the task registration could
be invalidated by tissue motion or the pose of a surgical instrument held by a gripper
could change due to slippage. Similarly, backlash model parameters necessary for the
control of an endoscope might vary in-situ due to a change in the shape of the (passive)
flexible body of the endoscope.

Experimental results showed that the fading memory EKF could cope with a sudden
(small) change in correct parameters (see Section 6.3.3), but it requires a relatively
small fading factor α. Similarly, a learning method based on a sliding window as
mentioned in the discussion of Part II could cope with such a change, but only if the
window is small enough. However, tuning a learning method so that it can cope with
non-stationary correct parameters would also reduce the robustness, since only the
latest observations would be given a significant weight. This trade-off between the
ability to cope with change and the robustness of the learning is sometimes referred to
as the stability-plasticity dilemma (Gama et al. 2014).

An interesting complement to our work would consist in detecting such changes to
implement different strategies: if the correct parameters are stationary, then robustness
is maximized; if the correct parameters are changing or have changed, the tracking
capabilities are maximized. For instance, if a change in the correct parameters is
detected, one could temporarily decrease the fading factor in the methods proposed in
chapters 2, 3, and 5. Then, once the estimation errors have been reduced, the fading
factor would be returned to its nominal value (see Figure 7.11b). Similarly, if the
learning is performed using a window of observation, a straightforward approach would
consist in refreshing the content of the window: when a change of parameters occurs,
the size of the window is reduced, but then is filled back up with the latest observations
(see Figure 7.11c).

Different solutions for parameters change detection have been proposed in the litera-
ture (Gama et al. 2014). For instance, an approach that would be applicable to both
sliding window-based and EKF-based learning consists in monitoring the residuals of
the learning process (i.e., remaining prediction errors after parameters update). The
so-called cumulative sum (CuSUM) metric is obtained by applying a negative offset
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Figure 7.11: (a) Parameters change detection could be used to modify the properties of
the learning process temporarily. (b) For a fading memory filter. (c) For a
sliding window-based learning process.

to the learning residual (i.e., threshold) and to compute the cumulative sum of the
resulting number (Page 1954). If the CuSUM is above a predefined threshold, the
parameters are assumed to have changed. We have conducted some preliminary tests
on the basis of this concept to vary the fading memory factor when the task parameters
suddenly change in a context similar to the one from Section 6.3.3. It seems to be a
promising way to achieve both tracking and steady state estimation accuracy. In future
work we might then investigate how to implement this on a medically relevant scenario.

Multi-modal learning

The learning method proposed in Chapter 5 was designed to also accommodate external
measurements, but the main line of investigation remained the correction of haptic
guidance from information extracted from the operator in-the-loop. Consequently,
the fusion of teleoperation data and exteroceptive measurements was not investigated
beyond some preliminary simulation studies.

However, the possibility of including additional measurements is a very interesting
feature of the proposed algorithm, since such measurements could not only improve
learning, but also make it possible in scenarios where human actions alone do not
yield rich enough information. For instance, consider a scenario where partial visual
measurements (i.e., of a part of the robot or the task) are available, but where they
are not sufficient to learn either the task or robot model. Such measurement could
still augment those extracted from the presence of the operator, hence increasing
achievable accuracy. Furthermore, scenarios could arise where the models parameters
are unidentifiable if only the presence of the operator is used for learning, but become
identifiable once more sources of information are used. Actually, such measurements
do not have to be acquired with an endoscopic camera; potential sensory inputs also
include force sensing if present and any real-time medical imaging modality.

Conversely, in chapters 2 and 3, only measurement acquired from exteroceptive sensors
were considered, but the online backlash estimation could potentially be improved by
also extracting information from the operator in-the-loop when present. However, doing
so would require knowledge about the intention of the operator and, therefore, would
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likely lead to the need for online task model estimation. Such simultaneous backlash
and task models learning is a natural perspective of our work, which we further discuss
in the following section.

Simultaneous backlash and task models correction
We proposed online backlash estimation methods for robotized cable-actuated endoscopes
in the first part of this thesis and focused on task registration and robot modeling
issues throughout the second part. However, combinations of the two problems is also
of great interest for medical applications; for instance, the realization of an inaccurately
registered task using an endoscope whose backlash modeling is likewise inaccurate.
Let us consider a scenario with an eye-in-hand endoscope (see Chapter 3) where a
contactless task has to be performed. The realization of the task by a surgeon could be
used to extract information about both the backlash and the registration of the task
such that models can be corrected.

The learning methods we used for backlash estimation (i.e., fading memory DEKF
in chapters 2 and 3) and for task parameters correction from using inputs (i.e., fading
memory EKF in Chapter 5) are compatible and can be used together. However, some
practical challenges remain. For one, the effect of (uncompensated) backlash on haptic
guidance will have to be investigated. Contrarily to the continuous errors that arose
in Part II, the guidance inaccuracies resulting from inaccurate backlash modelling will
also depend on the history of motor displacements. Furthermore, assessing parameters
identifiability will be more delicate due to the discontinuous backlash model. Nonetheless,
schemes of this type would be an interesting perspective building on different aspects of
our work to provide a novel way to assist during the teleoperation of endoscopes.

Towards more autonomy
The work on endoscope backlash identification presented in Part I is readily applicable
to automatic task execution since only intra-operative measurements (i.e., endoscopic
images) are used for learning. A potential use case would consist in an automatic
backlash model identification stage followed by an automatic task realization. Nonethe-
less, practical challenges such as task registration would remain and implementing an
automatic mode might sometimes be difficult. In such scenarios, the method for online
task and robot models parameters learning we presented in Part II could be used to
correct the models parameters from a surgeon performing the task through teleoperation.
Once the parameters are corrected, the system could then complete the realization of
the task, still under supervision, but automatically.
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Appendix B
Kinematic model of the considered
cable-actuated endoscopes

B.1 Eye-to-hand 3 DOF endoscope (chapters 2 and 4)
As detailed in (Nageotte et al. 2020), the tip position of the 3 DOF (translation, bending,
and orientation) flexible robot depicted in Figure 2.11 can be computed as

xk = K(ck) =





(
L

c2,k
(1− cos(c2,k)) + d sin(c2,k)

)
cos(c3,k)(

L

c2,k
(1− cos(c2,k)) + d sin(c2,k)

)
sin(c3,k)

c1,k +
L

c2,k
sin(c2,k) + d cos(c2,k)


, if c2,k ̸= 0

 0
0

c1,k + L+ d

 , if c2,k = 0

(B.1)

B.2 Eye-in-hand 2 DOF endoscope (Chapter 3)
Mapping from cable displacement into configuration variable
The mapping from (distal) cable displacement ck ∈ R2 into configuration variables
ϕk ∈ R and βk ∈ R is [

ϕk
βk

]
= Kc(ck) (B.2)

where

ϕk =
0, if c1,k = c2,k = 0

atan2(−c2,k,−c1,k), otherwise
(B.3)
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and

βk =
2
D

√
c2

1,k + c2
2,k (B.4)

Finally, D is the distance between opposed cable fixtures on the distal side of the
bending section as illustrated in Figure 3.2.

Mapping configuration variable to Cartesian pose
The Cartesian pose of the robot is computed as

bTc(ck) =
[

bRc(ck) btc(ck)
0 0 0 1

]
= Kp(ϕk, βk) (B.5)

where btc(ck) ∈ R3 is the Cartesian position of the camera in the frame Fb (see Figure 3.2,
right) and bRc(ck) ∈ SO(3) is the orientation matrix of the camera frame Fc w.r.t. Fb.
As detailed by Ott et al. (2011), the Cartesian pose of the robot is computed as

btc(ck) =





(
L

βk
(1− cos(βk)) + d sin(βk)

)
cos(ϕk)(

L

βk
(1− cos(βk)) + d sin(βk)

)
sin(ϕk)

L

βk
sin(βk) + d cos(βk)


, if βk ̸= 0

 0
0

L+ d

 , if βk = 0

(B.6)

and

bRc(ck) =

 s2ϕk + cβkc2ϕk −sϕkcϕk(1− cβk) cϕksβk
−sϕkcϕk(1− cβk) c2ϕk + cβks2ϕk sϕksβk
−cϕksβk −sϕksβk cβk


where ϕk and βk are computed from ck using Equation (B.2).
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Appendix C
Identifiability analysis of the task and
robot parameters (Chapter 6)
For this analysis, continuous time will be used such that time varying variables are
denoted with (t). In order to build the dynamical system equivalent to the task and
robot parameters learning, the explicit time dependency is removed by modeling ψ
as the time-integral of ψ̇ = b with b the parameter encoding the velocity. The task
and robot parameters as previously defined (i.e., θ = [θg θr]T ) are then split between
time-varying state variables ψ(t) and stationary parameters θ (i.e., parameter a removed
from the definition of θ in Chapter 6) such that

θ =
[
b rz tx ty L

]T
(C.1)

The parameters can be included in the state of the system by considering a state transi-
tion model θ̇(t) = 0. We would then get an equivalent system with dynamic state X (t) =
[ψ(t) θT (t)]T , known input u(t) = qs(t), and measurement z(t) = h (X (t), u(t)) = ϵh(t),
where ϵh(t) = xds(t) − xs(t). However, with the chosen experimental setup, the ori-
entation of the tool is fixed such that we artificially choose the end-effector position
u(t) = xees (t) as the input of our system, in practice computed from qs(t). The robot
model is then rewritten such that the tool tip position xs(t) is computed from xees (t)
and the fixed end-effector orientation wRee. Finally, we obtain the dynamic system:

X (t) =
[
ψ(t)
θ(t)

]
Ẋ (t) = f (X (t), u(t))
z(t) = h (X (t), u(t))

(C.2)

(C.3)
(C.4)

where f(·) is the state transition model such that

f (X (t), u(t)) =
[
ψ̇(t)
θ̇(t)

]
=
[
b
0

]

and h(·) is the observation model defined as

h (X (t), u(t)) =


txty

0

+ wRt(rz)Γ(ψ(t))

−
xees (t) + wRee

0
0
L


 (C.5)
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We can then analyze the observability of this system. An observable system is defined
as a system whose initial state X (0) can be correctly estimated from the observation
of the input u(t), the output z(t), and their respective derivatives. The observability
analysis consists in building the observability matrix O(X ) of the system system and
to verify that its rank is full. It should be noted that due to the non linearity of
the system, the observability matrix is built using Lie algebra and, more precisely,
the so-called extended Lie derivatives of the system (Karlsson et al. 2012). To do so,
we use the STRIKE GOLDD toolbox1developed by Villaverde et al. (2019), a Matlab
script using the symbolic toolbox to compute O(X ) and its rank symbolically under
different assumptions about the type of inputs (Villaverde et al. 2019; Martínez et al.
2020). If the matrix is full rank, the augmented system is structurally observable and
by extension, the parameters θ are structurally identifiable and ψ(t) is observable. It
should be noted that, by construction, the system is equivalent to the initial parameters
learning problem. Therefore, the results of the analysis performed on this system is
also valid for the initial learning problem.

As the observability heavily depends on the implemented task model, especially
the underlying path Γ(ψ) that is then registered according to the task parameters,
the analysis is performed on a generic path of constant curvature. This simplified
path model can locally approximate other paths such that the structural identifiability
analysis of the parameters can then be generalized. We therefore distinguish three
scenarios as follows.

No motion

Unsurprisingly, if the operator does not move such that b = 0, ∀t > 0, then the task
and robot model parameters are found to be structurally unidentifiable. This can be
seen as an excitation condition: if the operator takes no action, then no information
can be extracted.

The path is a straight line

When path Γ(ψ) underlying the task model is a straight line on the drawing surface,
the analysis of the observability matrix reveals that only the parameters encoding the
task velocity (i.e., b) and the orientation of the path w.r.t. the world frame of reference
(i.e., rz) are identifiable. This is due to the fact that both ψ(0) and a combination of tx,
ty, and L have the same effect on the resulting task, namely translating the line along
its tangent. The redundancy of these parameters causes the lack of observability and
identifiability, respectively.

The path is an arc of constant curvature

Let ΓΠ be a path expressed in the drawing frame of reference such that

Γ(ψ) = tRΠΓΠ(ψ) + tOΠ (C.6)

1Source code available at https://github.com/afvillaverde/strike-goldd
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where tRΠ and tOΠ are, respectively, the rotation matrix and translation from the task
frame attached to the base of the tilted support to the drawing frame (see experimental
setup). The in-plane path is then defined as

ΓΠ(ψ) = r


cos(

1
r
ψ)− 1

sin(
1
r
ψ)

0

 (C.7)

where r is the radius of curvature of the arc. The different desired trajectories xds(t) are
then generated by a variation of r (see Figure C.1, left).

The rank of the observability matrix was full for generic initial conditions (rank
computed symbolically and with random numerical values) using the extended Lie-
derivative up to the first order. The task and robot model parameters were then found
to be structurally identifiable and the state variable ψ(t) observable, except when the
radius of curvature is infinitely large (i.e., the desired trajectory is a straight line).
However, although the task and robot parameters were found to be (locally) fully
identifiable anywhere the curvature of the task is finite, this is only a theoretical result
based on the rank of the observability matrix O(X ). In practice, the degree to which a
system is observable can greatly vary and this relative observability can be quantified.
Let the observability metric be the conditioning of the observability matrix computed
as

cond(O) =
λmax(O)
λmin(O) (C.8)

where λmax(O) and λmin(O) are, respectively, the largest and smallest singular values
of the matrix O(X ). The lower cond(O) is, the more observable the system is as long
as λmin(O) > 0.

The effect of curvature on the local observability is illustrated in Figure C.1 where
a range of radiuses of curvature (i.e., r ∈ [1.10−2; 3.10−1] m) leads to a better and
rather constant observability metric conditioning. For radiuses out of this range, the
observability decreases. The decrease of observability for large values of r is explained by
the analysis provided previously with a line as underlying path of the desired trajectory.
This local analysis shows that the dynamic system equivalent to the learning problem
is fully observable anywhere the curvature is finite (i.e., not a straight line). However,
the observability decreases as the curvature of the task leaves the approximative range
r ∈ [10 mm; 300 mm] and then, so would the structural identifiability of the models
parameters θ.
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Figure C.1: Observability metric cond(O(X )) computed for different radii of curvature
of the task r, a task execution velocity ψ̇(t) = 0.01m.s−1, and an arbitrary
set of task and robot model parameters. A lower value of cond(O(X )) is
desirable. Left: trajectories xds(t) colored according to the resulting value
of cond(O(X )). Right: detailed values on a log-log scale.
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Appendix D
User study (Chapter 7)

D.1 Complement to Figure 7.2
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Figure D.1: Correct and estimated trajectories xds displayed in the XY plane of the
drawing frame under condition AG. For each snapshot, the execution time
(not including clutching time) and the task progress is provided.
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D.2 Questionnaire for subjective performance
assessment
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Appendix E
Alternative implementation of the
learning algorithm
In this appendix, we consider a simplified scenario where only the task parameters have
to be learned1. Since the model of the robot is not considered, the experimental setup
is simply composed of a physical master robot (haptic interface) and a simulated planar
robot. Note that the material presented in the following is adapted from the publication
(Poignonec et al. 2021) and the notations have not been fully harmonized, especially the
way time dependence is denoted. As in Chapter 6, the task model is updated while it is
simultaneously used to physically guide the user, allowing for in-situ correction of haptic
guidance from user inputs only. We show that a window-based learning method is a
pertinent solution to this class of problems and discuss its advantages and drawbacks.

E.1 Considered scenario and problem statement
An operator manipulates the master robot such that the follower robot follows the
desired trajectory xds,k. As in Chapter 5 (see Equation 5.9), the position of the robot
xs,k is considered to be a noisy observation of the desired trajectory such that

xs,k = xds,k + ϵh,k, ϵh,k ∼ N (0,Σh,k) (E.1)

where ϵh,k is the supposedly zero-mean error of Gaussian distribution N (0,Σh,k) intro-
duced by the operator. Let the desired trajectory be defined as a function parameterized
by a set of parameters θg (supposedly constant) that encodes the geometry of the
underlying path and a time-varying variable ψk that encodes the advancement along
this path such that

xds,k = g(θg, ψk) (E.2)

It should be noted that contrarily to chapters 5 and 6, the task parameters θg in
Equation (E.2) do not encode the time parameterization, ψk does.

1The presented approach could be extended to the more general case of task and robot models
correction. However, this work was actually carried out as a preliminary study of the material
presented in chapters 5 and 6 such that the focus was solely on the online task registration from
operator inputs.
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From the robot trajectory xs,k resulting from the realization of the desired task by an
operator, the learning problem consists in inferring the correct task parameters θg and
a model of the time-varying variable ψk. This problem formulation is then similar to
the one introduced in Chapter 5, except that the robot model parameters are assumed
known (or that Cartesian robot pose estimation is available) and that no assumption is
made about the model of ψk. Indeed, if we assume a constant velocity model for ψk
such that ψk+1 = ψk + aTs and include the execution velocity parameter a in the task
parameters θg, we find the previous problem formulation from Chapter 5.

E.2 Proposed sliding adaptive-size window-based
learning method

E.2.1 Learning the task parameters
We propose to implement the learning using a geometrical approach. If one ignores the
time parameterization and rather consider ψk as a free parameter, the learning problem
becomes similar to a non-rigid path registration problem. Recorded robot positions over
a time horizon are matched with their closest point on the current estimated desired
path. Under the assumption that the current task parameters estimation is correct, the
computed closest points are then an estimation of the desired robot positions. Finally,
we can update the estimated parameters θ̂g,k by minimizing the errors between robot
positions and estimated desired robot positions.

To do so, the operator inputs xs,k are sampled periodically to form a trace of N
observations spanning a finite temporal horizon. To differentiate discrete time from
the indexing of the sliding window, we introduce an indexing operator [·]. With this
notation, xs[k] = xs,k is the latest entry acquired at time tk and older entries are denoted

xs[k − i] = xs(t− iTs) (E.3)

where i ∈ [0;N − 1] is the index within the window and Ts is the sampling period. This
differentiation is necessary because some estimates related to older observations are
computed at current time tk. This is notably the case for ψ̂[k − i] in Equation (E.6).

The learning of the task parameters θg is formulated as a quadratic optimization
problem, minimizing the cost function L(θg) defined at discrete time tk as:

L(θg) = 1
N

N−1∑
i=0

l2i (θg) (E.4)

where

li(θg) = xs[k − i]− g(θg, ψ̂[k − i]) (E.5)

and ψ̂[k− i] results from a line search performed on the path underlying the task model
parameterized with the current parameters estimate θ̂k−1 (i.e., parameters estimates
computed at time tk−1) such that

ψ̂[k − i] = arg min
ψ

xs[k − i]− g(θ̂g,k−1, ψ) (E.6)
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Therefore, g(θ̂g,k−1, ψ̂[k − i]) is the closest point from xs[k − i] that belongs to the
path g(θ̂g,k−1, ψ) and li(θg), if evaluated with θg = θ̂g,k−1, is the distance between the
computed closest point and xs[k− i] as illustrated in Figure E.1. Note that the ψ̂[k− i]
values must be re-evaluated each time the task parameter estimates change, since
updating the task parameters effectively modify the path on which the line search is
performed, thus invalidating previous line search solutions.

Estimated task model 
(underlying path                    ) 

Figure E.1: Illustration of the result of the line search process for the first (latest) ele-
ments of the sliding window. The second sample is only partially annotated
so as to not clutter the figure.

To minimize the cost function L(θg) over time and consequently reduce task modeling
errors, a damped Gauss-Newton optimization (Björck 1996) is implemented. This
method is highly tractable for online schemes and allows the learning rate to be tuned,
a desirable property for online registration-like algorithms (Hersch et al. 2012). With
λθ the learning rate, the parameters update rule is

θ̂g,k = θ̂g,k−1 − λθ
(
JTθ,kJθ,k

)−1
JTθ,k


l0(θ̂g,k−1)
l1(θ̂g,k−1)

...
lN−1(θ̂g,k−1)

 (E.7)

where Jθ,k ∈ RNdim(xs)×dim(θg) is the Jacobian w.r.t. θg of the vector containing the resid-
uals li(θ̂g,k−1). The Jacobian matrix Jθ,k is evaluated using the latest task parameters
estimate θ̂g,k−1 such that

Jθ,k =



∂l0(θg)
∂θg

∂l1(θg)
∂θg
...

∂lN−1(θg)
∂θg


θg=θ̂k−1

(E.8)
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E.2.2 Online window size management
Using a window of observations raises a non-trivial question: that of its size. At startup,
new samples are added to the window one at a time such that we need a way to decide
whether enough data has been collected to start the learning or not. Then, the size of
the window has to be managed continuously: if the window is too small, the information
contained in the samples will be insufficient to learn the parameters; if the window is
too large, the learning will not be able to cope with any change in the parameters. In
order to adapt the size of the window online, it is necessary to have a way of evaluating
if the window contains enough information.

Let γk be a metric computed in such a way that if γk ⪕ γmax, then the current window
of size Nk is sufficient for a meaningful and stable learning. The size of the window
should therefore verify the inequality γk ⪕ γmax, with γmax a manually tuned threshold.
As new observations are sampled one at a time, the ideal size for the window varies
slowly. Therefore, we propose to expand or shrink the window used for learning by
unitary increments:Nmin += 1 if γk ⩾ sγmax and Nmin<Nmax

Nmin −= 1 if γk<sγmax and Nmin>1
(E.9)

where Nmin is the minimal size of the window verifying the criterion γk ⪕ γmax and s < 1
is a coefficient used to ensure a margin in the minimal window size Nmin. Finally, the
actual size Nk used for the learning is chosen such that Nk = Nmin,k and the parameters
are only updated if γk ⩽ γmax. The chosen metric γk is based on the expected covariance
of the estimated desired position further along the path given the collected data. For
more details about the criterion γk, we refer the reader to the publication (Poignonec
et al. 2021).

E.2.3 Adaptive haptic guidance
Note to the reader: As the haptic guidance is generated at a much higher rate than the learning (i.e.,
1 kHz vs. 10 Hz), continuous time will be used in the following equations so as to not introduce a
second discrete time. However, as the haptic guidance is implemented on numerical hardware, the
variables introduced in the following remain discrete in nature.

The proposed online parameters learning method can be used to implement an
adaptive haptic guidance similarly to what was done in Chapter 5. To do so, the
reference for master side haptic guidance is computed as

xgm(t) =M−1
(
x̂ds(t)

)
(E.10)

=M−1
(
g(θ̂g(t), ψ̂(t))

)
However, the time parameterization of the trajectory x̂ds(t) is not learned by the

proposed learning method such that the model ψ̂(t) has to be estimated in some way.
The most straightforward option consists in computing at all time the closest point on
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the estimated desired path such that

ψ̂(t) = ψc(t) (E.11)

where

ψc(t) = arg min
ψ

xs(t)− g(θ̂g(t), ψ) (E.12)

The haptic guidance would then be a classical virtual fixture (Bowyer et al. 2014), albeit
an adaptative one. It should be noted that using Equation (E.12), the movements of
the operator are completely free along the direction tangent to the path. Although this
is desirable in some cases, this might also lead to a discontinuous guidance if ψ̂(t) varies
suddenly, which is a common phenomenon with this type of line search optimization to
find the closest point on a path or surface (Pegna et al. 1996; Ko et al. 2014).

Therefore, we propose instead to smooth the evolution of ψ̂(t), which also has the
added benefit of smoothing the operator’s movements. To that end, we introduce
a parametric model of the time parameterization ψ̂(t) = a(t)t + b(t) and the error
eψ(t) = ψc(t) − ψ̂(t), where ψc(t) is computed using Equation (E.12). The update
rule for the time parameters a(t) and b(t) uses a damped Gauss-Newton method with
learning factor λψ as follows:

ψ̂(t) = a(t)t+ b(t) (E.13)[
ȧ(t)
ḃ(t)

]
= λψ

(
Jψ(t)TJψ(t)

)−1
Jψ(t)T

[
eψ(t)
ėψ(t)

]
(E.14)

where

Jψ(t) =


∂ψ

∂a

∂ψ

∂b

∂ψ̇

∂a

∂ψ̇

∂b

 (E.15)

E.3 Experimentation with an operator in-the-loop
The sliding window learning method is experimentally validated with an operator in-the-
loop on a 2D path-following task. The master robot is a haptic interface and a simulated
robot and environment serves as the teleoperated follower robot (see Figure E.2). The
aim is to show that the proposed sliding window learning method is capable of correcting
an initially inaccurate task registration online and from operator actions alone.

E.3.1 Experimental setup
The master robot is a 3DOF haptic interface Omega 3 from Force Dimension. The
simulated robot has no dynamic and the position-position teleoperation mapping M(·)
is a one-to-one mapping such that we denote x(t) = xm(t) = xs(t) the position of both
the master and follower robot (that are here exactly the same). A master side haptic
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Path to follow

XY plane

(a) (b)

Virtual follower 
robot 

Figure E.2: Experimental setup: (a) 3 DOF haptic interface manipulated by the operator.
(b) Visual feedback during the experiment.

guidance is generated from the guidance reference xgm(t) defined by equations (E.10)
and (E.13). In order to smooth the transitions introduced by the update of θ̂k, the
estimated parameters used for haptic guidance θ̂(t) are filtered (see Figure E.3) by
a first order filter with a time constant of 1 s. Since the task is two-dimensional,
the operators movements are constrained to the XY plane through a higher guidance
stiffness kplane = 1500 N in the Z direction (see Figure E.2). The haptic guidance
stiffness Kd is set to diag(Kd) = [kg, kg, kplane], where kg = 200 N. The haptic loop runs
at 1 kHz and the learning loop runs at 10 Hz (Ts = 0.1 s). The learning process is
implemented as described in Figure E.3, with hyperparameters λθ = 0.001, and λθ = 0.2,
Nmax = 200. The other hyperparameters used for the window size management can be
found in the publication (Poignonec et al. 2021).

The experiment is as follows. A path is displayed on the screen, along with a dot
representing the position of the follower robot (see Figure E.2). The user is asked to
manipulate the haptic interface to follow the path with the virtual “robot,” with no
constraint on the velocity. The path displayed on the screen is considered to define the
ground truth for the geometrical part of the desired task xds(t) such that

g(θg, ψ) =

txty
0

+

cos rz − sin rz 0
sin rz cos rz 0

0 0 1

Γ(ψ) (E.16)

where θg = [rz, tx, ty] is the vector of task parameters and Γ(ψ) is a known path
(b-spine) in the XY plane, parameterized such that ∥Γ̇(ψ)∥ is constant and ψ ∈ [0; 1]
for the considered range of motions.

E.3.2 Results
As visible in Figure E.4, new observations are added to the sliding window as the
operator performs the task. The size of the sliding window increases slowly at startup
and then stabilizes around Nk = 55 (see Figure E.7). We did not detail the computation
of the criterion γk, but it should be noted that the window continuously expands and
shrinks to keep γk in a predefined range (Poignonec et al. 2021). After some time (about
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Window size
management

Filter

Estimation 
(Eq. E.14)

Learning

(Eq. E.10)

Guidance
reference

Impedance
control

Master
robotControl thread

Learning thread

Points
matching(Eq. E.7)

(Eq. E.9)

(Eq. E.6)

Figure E.3: Overview of the proposed method and experimental implementation.
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Figure E.4: Snapshots of the different positions of interest at different times throughout
the experiment. All in mm, the scale displayed in the bottom-left figure.
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9 s), the criterion used to evaluate the quality of the information is met and the learning
starts. The estimated parameters then quickly converge towards their correct values
such that the registration is corrected (see Figure E.4). The evolution of individual
parameters is reported in Figure E.5, where one can observe that the estimation errors
converge to very small values. At steady state, the RMSE of the parameter estimation
over the sliding window computed as

RMSE(θ̂g,k) =
√
Lθ(θ̂g,k) (E.17)

is reduced to 0.45 mm. This is a significant reduction as the RMSE(θ̂g,k) reaches as
high as 14 mm (i.e., 98% decrease of the task prediction errors).

Figure E.5: Top: evolution of the estimated parameters and comparison with the
ground truth. The notation θg,i(t) refers to the ith element of θg(t) such that
θg,1(t) = rz, θg,2(t) = tx, and θg,3(t) = ty. Only the parameters θ̂g(t) used
for generating the guidance reference are shown, except for θ̂g,1,k, included
to show the effect of the filter. The correct parameter values are displayed
using dotted lines. Bottom: absolute error on estimated parameters used
for guidance |θg,i(t)− θ̂g,i(t)|.

The tracking of the time parameter ψ(t) (see Figure E.6) behaves as expected: it
smooths the results obtained from the line search (see Equation E.12). For instance,
at t = 8.5 s, the line search results in a discontinuity visible in Figure E.6, but also
in Figure E.4 (upper right of the vignette t = 8.5 s). Such a discontinuity would be
experienced as jerk by the operator if ψc(t) was directly used to generate the guidance
reference, but the time parameters tracking effectively filters out these artifacts (see
Figure E.6).
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E.4 Conclusions
The approach developed in the previous can successfully correct the geometrical pa-
rameters of the task (i.e., all but the time parameters) online and efficiently. These
parameters can then be used to generate a haptic guidance, provided that the time
parameterization is reintroduced through either the estimation of time parameters or
the implementation of a virtual fixture. We chose to do the former, allowing to smooth
the movements of the operator along the path. Nonetheless, it should be noted that the
independent time parameters learning could be exploited to seamlessly implement other
guidance strategies such as classical virtual fixture or a so-called look-ahead guidance.

This approach, although not as generic as the one proposed in Chapter 5, has the
advantage of learning the parameters from a window of observations and not only from
the latest observation. This is an interesting feature that can be exploited to perform
online analysis (e.g., for parameters identifiability) of the data actually collected.

0 5 10 15
0

0.5

1

Figure E.6: Estimated values for ψ̂(t) and ψc(t).
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Figure E.7: Top: criterion γk and threshold γmax during the experiment, displayed on
a log-scale. Center: zoom of the figure at the top. Bottom: the window
shrinks or expands to keep the criterion within a predetermined range.
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F.1 Introduction
F.1.1 La chirurgie minimalement invasive
Grâce aux progrès de la médecine au cours des dernières décennies, de nouvelles
approches de moins en moins invasives sont apparues dans nos hôpitaux. Notamment,
la miniaturisation des technologies de capture vidéo et des outils chirurgicaux ont
permis le développement de la cœlioscopie pour accéder aux cavités abdominales à
travers de petites incisions à la surface. De façon similaire, les progrès en endoscopie
flexible ont permis la réalisation d’opérations chirurgicales dites « sans cicatrice » qui
consistent à opérer en accédant à la zone d’intérêt par des orifices naturels. Ces nouvelles
approches minimalement invasives améliorent grandement la qualité des chirurgies, avec
des patients qui ont un temps de récupération plus court, des risques postopératoires
réduits, ainsi que des cicatrices moins visibles. En revanche, ce passage depuis la chirurgie
ouverte vers des techniques moins invasives a également fortement dégradé le confort
et l’ergonomie des chirurgies pour les praticiens. Notamment, leur champ de vue s’est
vu réduit et ils opèrent maintenant avec des outils miniatures et souvent complexes
à manipuler, qui plus est, avec des postures inconfortables durant des chirurgies plus
longues.

Endoscopie rigide
Cœlioscopie Cœlioscopie chirurgicale

Cœlioscopie à 
trocart unique

Chirugie dite NOTESIntervention endoscopique Endoscopie flexible

Figure F.1 : Illustration de l’évolution des techniques endoscopiques.

Pour répondre à ces problèmes, les technologies de chirurgie robotisée se sont déve-
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loppées en parallèle pour apporter une assistance à la chirurgie minimalement invasive,
d’abord avec des assistants robotiques à la cœlioscopie, puis avec des solutions variées
permettant de télémanipuler des outils chirurgicaux complexes à partir d’une seule
console maitre. Maintenant bien répandue dans les hôpitaux du monde entier, cette
assistance robotique permet d’améliorer la dextérité, la précision et le confort du chi-
rurgien. Les robots pour l’assistance à la chirurgie minimalement invasive sont conçus
pour répliquer exactement les gestes effectués par le chirurgien sur la console maitre,
tel que tout mouvement est initié par l’humain et, éventuellement, mis à l’échelle. Cette
télémanipulation transparente des robots permet aux chirurgiens de maitriser tous les
aspects de l’acte chirurgical, mais dans certains cas une aide plus active de la part du
robot serait bénéfique.

F.1.2 Vers une assistance active à la chirurgie robotisée
Une plus grande autonomie des dispositifs robotiques permet de réduire la fatigue
mentale et physique de l’opérateur ainsi que d’augmenter la procédure par des tech-
nologies d’imagerie et d’IA, ou par l’exécution de gestes qui seraient complexes, voire
impossibles pour un humain. En revanche, dans le contexte de la robotique chirur-
gicale, les contraintes légales ne permettent pas à ce jour de passer le cap vers une
autonomie totale et la technologie n’est de toute façon pas suffisamment mature. Des
modes semi-automatiques restent toutefois pertinents, par exemple dans le cas de
tâches répétitives nécessitant peu voire pas de prise de décision, comme la suture ou la
palpation. Ces sous-tâches pourraient être automatisées, partiellement ou totalement,
afin d’améliorer la répétabilité du geste tout en réduisant la charge cognitive pour le
chirurgien. Cependant, ce type d’automatisation n’est à ce jour utilisée que dans des
domaines où la tâche chirurgicale peut être définie et planifiée précisément, par exemple
en neurochirurgie ou en chirurgie orthopédique où les tâches peuvent être définies à
partir d’images préopératoires, puis recalées à l’aide de marqueurs. Ce n’est pas le cas
avec les chirurgies de l’appareil digestif ou des cavités abdominales, notamment,car le
recalage de la tâche doit se faire à partir d’images endoscopiques d’un environnement
non structuré et de surcroit prône aux déformations.

La commande partagée pour une collaboration robot-chirurgien

Dans ce contexte, une assistance au geste qui laisse l’autorité finale au chirurgien est
intéressante, vu qu’elle permet d’assister tout en laissant le chirurgien prendre les
décisions et est alors plus robuste aux erreurs de modélisation comme le recalage. La
commande partagée consiste à commander le robot à travers une collaboration avec
un système d’assistance qui a une connaissance, parfois partielle, de la tâche à réaliser.
Une méthode particulièrement pertinente dans le cas d’une opération chirurgicale est la
commande partagée dite « haptique », qui consiste à communiquer au chirurgien les
intentions du système d’assistance à travers des efforts appliqués sur la console maitre
(voir Figure F.2). Cette approche permet de restreindre les zones accessibles par le
robot ou de guider le geste de façon continue à travers l’application de forces de guidage.
Cependant le système d’assistance, bien qu’il n’ait pas l’autorité finale, doit tout de
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Système

Interface
haptique

Robot
distant

Operateur

Forces de guidage

Reference de
position / vitesse

Forces appliquées par l'opérateur

Figure F.2 : Illustration (simplifiée) de la commande partagée haptique.

même avoir une représentation correcte de son environnement pour pouvoir apporter
une aide effective.

Difficultés rencontrées par un système d’assistance

L’environnement chirurgical est par nature déformable, hautement complexe et dépen-
dant du patient, ce qui rend la planification en ligne de la tâche complexe et peu robuste.
La planification peut se faire à partir de données préopératoires, mais dans ce cas il reste
à recaler la tâche dans le repère de référence du robot, avec les mêmes difficultés. De plus,
hormis pour des scénarios où les tissus considérés sont rigides, une trajectoire robotique
définie à partir de données préopératoires devra être corrigée lors de la procédure pour
tenir compte des déformations. Même dans le cas où une planification peut être effectuée
à partir d’images ou de données intra-opératoires (caméra embarquée, OCT, etc.), les
conditions cliniques telles que l’éclairage non homogène de la scène, les réflexions ou les
occlusions rendent la trajectoire prône aux erreurs. Ces deux cas de figure sont illustrés
par la Figure F.4.

Plannif. pre-op. Recalage intra-op. 

(a)

Plannif. intra-op. Tracking intra-op. 

(b)

Figure F.3 : Illustration des erreurs de recalage in-situ d’une tâche robotique causées
par une erreur de recalage entre preopératif et intra-opératif (a) ou bien
introduites peu à peu par des erreurs dans le tracking de l’environnement
(b).

Aux challenges de modélisation de la tâche robotique viennent aussi s’ajouter ceux
relevant de son exécution. Les robots chirurgicaux souffrent souvent de problèmes
de positionnement absolu qui, bien que n’impactant pas les performances quand un
chirurgien téléopère, posent problème pour des modes automatiques ou des stratégies
d’assistance. Cela est causé par le manque de capteurs distaux, mais aussi par des erreurs
de recalages entre la caméra et les outils robotisés. Un des cas les plus pathologiques
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est celui du jeu mécanique parfois présent dans la transmission, typiquement dans le
cas des transmissions à câbles utilisées en endoscopie flexible (voir Figure F.4a). Non
seulement ces jeux peuvent introduire des erreurs de positionnement conséquentes (voir
Figure F.4b), mais ils sont aussi ressentis par le chirurgien comme des latences dans la
commande du robot. Le jeu mécanique peut être compensé par la commande, mais un
modèle de la non-linéarité doit être estimé au préalable.
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Figure F.4 : (a) Illustration de la transmission à câbles utilisée par beaucoup d’endo-
scopes flexibles, la figure est adaptée de (Bardou et al. 2012). (b) Si
le jeu mécanique n’est pas compensé, des erreurs de positionnement de
l’effecteur du robot apparaissent (Aleluia Porto 2021).

Les erreurs de modélisation de la tâche et de la géométrie du robot impactent les
modes automatiques de façon évidente, mais les effets sur des stratégies d’assistance sont
similaires. Par exemple, dans le cas où un guidage haptique est implémenté pour assister
le geste médical, le chirurgien peut compenser les erreurs de modélisation. Néanmoins,
il ou elle sera guidée vers une trajectoire incorrecte, ce qui sera une source de conflit
entre le chirurgien et le système. Idéalement, le système d’assistance devrait pouvoir
être corrigé in-situ, voire en ligne lors de son utilisation afin d’améliorer en continu la
qualité de l’assistance.

F.1.3 Objectifs de la thèse
Nos travaux visent donc à développer des moyens d’affiner en cours de chirurgie (in-situ)
les modèles internes du système d’assistance, ce qui comprend entre autres le recalage de
la tâche chirurgicale. Un modèle correct de la géométrie du robot est aussi nécessaire, à
la fois pour permettre un positionnement précis et pour générer une assistance effective.
Les objectifs sont alors multiples :

1. apprendre in-situ les modèles de recalage de tâche et de la géométrie/dynamique
du robot ;

2. utiliser ces modèles pour apporter une assistance au geste chirurgical ;
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3. continuer d’améliorer les modèles durant leur utilisation afin d’améliorer le guidage
en continu.

Plus généralement, cette thèse s’intéresse à la mise à jour des modèles précédents afin
d’améliorer l’assistance robotisée aux gestes chirurgicaux, avec un intérêt particulier
pour les applications endoscopiques.

F.2 Organisation du document et contributions
De façon générale, les travaux présentés dans ce document de thèse traitent de l’appren-
tissage des modèles nécessaires à l’assistance de gestes médicaux chirurgicaux. Le travail
se divise en deux axes principaux qui adressent deux défis importants de la robotique
pour la chirurgie minimalement invasive : la compensation du jeu mécanique présent
dans les endoscopes flexibles ou autres robots actionnés par câbles et l’apprentissage
de modèles pour la commande partagée des robots chirurgicaux. De fait, le document
lui-même est organisé en deux parties qui sont décrites ci-dessous.

F.2.1 Identification du jeu mécanique des endoscopes flexibles
robotisés

Nous proposons de nouvelles méthodes pour l’identification in-situ du modèle du jeu
mécanique dans la transmission à câbles des robots endoscopiques flexibles, un problème
critique aussi bien lors de la téléopération directe ou de l’exécution de trajectoires
automatiques. Le jeu mécanique est principalement causé par le jeu dans les câbles
antagonistes, leur élasticité et la déformation de l’endoscope lui-même (voir Figure F.4a).
Le jeu mécanique complexifie la manipulation des systèmes endoscopiques, car il est
ressenti par le chirurgien comme un retard entre les déplacements proximaux et distaux.
De plus, la présence d’un jeu mécanique dégrade la précision du positionnement et rend
l’implémentation de modes de commande automatiques complexes, voire impossibles. De
fait, il convient d’estimer ces jeux afin de les compenser. En revanche, le comportement
peut évoluer au cours du temps et avec la manipulation de l’endoscope (déformation du
corps de l’endoscope) tel qu’une identification in-situ du modèle du jeu mécanique est
préférable.

Dans le chapitre 2, nous présentons la littérature scientifique autour de l’identification
des modèles d’endoscopes. Puis, nous proposons une approche permettant une identifi-
cation en ligne des modèles de jeu mécanique adaptée au cas de l’endoscopie flexible.
L’approche est basée sur le principe de filtrage de Kalman discontinu, ce qui permet une
formulation générale du problème. Nous modifions la méthode originale de Chatzis
et al. (2017b) afin de simplifier le réglage du filtre et d’améliorer ses performances,
notamment à travers l’ajout d’un mécanisme d’oubli exponentiel. La méthode est évaluée
sur une simulation d’un outil endoscopique à trois degrés de liberté.

L’approche proposée dans le chapitre 2, ainsi que la plupart des méthodes d’identifica-
tion existantes, nécessite une mesure directe de la position distale du robot. Cependant,
il existe des cas où une telle mesure est impossible, typiquement pour des configurations
dites eye-in-hand, c’est-à-dire quand la caméra est embarquée sur l’organe terminal
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du robot (voir Figure F.5). Nous proposons donc dans le chapitre 3 une méthode
d’identification du jeu mécanique inspirée des notions de localisation et cartographie
simultanées (SLAM, pour “simultaneous localization and mapping”) qui permet d’effec-
tuer l’identification in-situ du jeu mécanique à partir des seules images endoscopiques.
La méthode proposée repose sur une modélisation particulière de jeu mécanique qui
permet de séparer la largeur du jeu de la relation mathématique globale. Afin de résoudre
le problème, l’approche proposée dans le chapitre 2 est utilisée. Nous validons cette
méthode expérimentalement sur un endoscope clinique dont la configuration eye-in-hand
ne permet pas l’utilisation de méthodes plus classiques.

{Section flexible actionnée

Section flexible 
passive

Caméra endoscopique
Caméra

endoscopique
X

YZ

X
Y

Z

...

{{
Jeu mécaniqueMoteurs

(a) (b)

Outil endoscopique
robotisé (3ddl)

Figure F.5 : (a) Illustration de l’outil endoscopique à trois degrés de liberté (ddl)
considéré dans les chapitres 2 et 4. (b) Illustration d’un endoscope flexible
robotisé dans une configuration dite eye-in-hand tel que considéré dans
le chapitre 3.

Enfin, dans le chapitre 4, nous explorons comment la modélisation alternative du
jeu mécanique consistant à rendre la largeur du jeu indépendante du reste peut être
exploitée pour apprendre (partiellement) le modèle à partir de la simple détection
binaire du mouvement dans l’image endoscopique. Une fois la largeur de jeu identifiée, le
jeu mécanique peut être compensé par la commande. En revanche, ce modèle partiel ne
permet pas un positionnement correct du robot. Nous proposons alors une identification
de la non-linéarité restante basée sur des méthodes plus classiques d’estimation de pose
du robot. L’originalité consiste à combiner cette information avec le modèle de largeur de
jeu estimé par détection de mouvement afin que les deux phases d’identification puissent
être utilisées de façon indépendante. Cette approche fut validée sur une plateforme
d’endoscopie robotisée développée au sein du laboratoire ICube.

Pour résumé, nos contributions à l’identification in-situ de ces jeux mécaniques sont
les suivantes :

• nous proposons un cadre unifié et général pour l’estimation du jeu mécanique
adapté à l’identification en ligne de modèles d’endoscopie flexible. La méthode et
les résultats seront publiés dans (Poignonec et al. 2023a) ;
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• nous proposons une nouvelle approche pour l’estimation du jeu mécanique basée
image et adaptée aux endoscopes « eye-in-hand ». Ce travail fait l’objet d’une
publication en préparation ;

• enfin, nous développons une nouvelle approche pour l’estimation in-situ du jeu
mécanique qui ne nécessite pas une estimation intermédiaire de la pose du ro-
bot contrairement aux méthodes existantes. L’approche est basée sur la détec-
tion du mouvement dans l’image endoscopique. Ces travaux furent publiés dans
(Poignonec et al. 2020).

F.2.2 Apprentissage de modèles pour la commande partagée
Dans le cadre de la commande haptique partagée, nous proposons des algorithmes pour
corriger le recalage d’une tâche et autres erreurs de modélisation à partir d’informations
extraites de la présence du chirurgien qui reste présent dans la boucle. Cette approche
ne repose sur aucun capteur extéroceptif (comme des caméras) dont les mesures pour-
raient devenir indisponibles ou erronées, mais utilise plutôt l’opérateur comme source
d’information. L’apprentissage en ligne des modèles est utilisé pour implémenter un
guidage haptique adaptatif qui s’améliore à l’utilisation : si le guidage est initialement
erroné, l’opérateur va résister en appliquant des forces sur la console maitre (interface
haptique). Cela cause la mise à jour des modèles puis, mécaniquement, la réduction des
erreurs de guidage.

Dans le chapitre 5, après avoir introduit la littérature scientifique relevant de l’ap-
prentissage de modèles pour le guidage et la coopération humain-robot, nous proposons
une approche d’apprentissage en ligne pour corriger simultanément les paramètres des
modèles du robot et de la tâche. Une implémentation récursive basée sur le filtrage de
Kalman est proposée et validée à travers des simulations. Afin de pouvoir appliquer par
la suite la méthode à des scénarios avec un humain dans la boucle, certains aspects
pratiques sont traités. Entre autres, nous proposons une méthode pour améliorer le
tracking des paramètres temporels pour que le filtre puisse s’adapter à des vitesses
d’exécution variables imposées par l’opérateur. Les chapitres 6 et 7 sont alors dédiés à
la validation expérimentale.

Dans le chapitre 6, la méthode proposée dans le chapitre 5 est validée expérimentale-
ment avec une tâche de téléopération générique (dessin) sur une plateforme robotique
composée d’un robot industriel et d’une interface haptique. Dans le scénario envisagé,
une tâche a été définie à partir de données preopératoire, mais son recalage dans l’espace
opérationel du robot est incorrecte. De plus, il y a une incertitude sur la position de
l’outil par rapport à l’effecteur du robot (voir Figure F.6). Notre méthode d’apprentis-
sage est utilisée pour apprendre en ligne le recalage de la tâche et de l’outil à partir des
actions de l’utilisateur seules. La performance de l’apprentissage et du guidage haptique
sont évaluées dans différents scénarios afin de démontrer l’applicabilité de l’approche.

Enfin, dans le chapitre 7, les résultats d’une étude avec participants (N = 12) sont
présentés. L’étude vise à valider expérimentalement la méthode d’apprentissage et le
guidage, à la fois quantitativement à travers des métriques comme la précision ou la
régularité du geste, mais aussi qualitativement. À cette fin, des questions permettant
d’évaluer des notions subjectives telles que la pénibilité ou la sensation de contrôle sont
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Figure F.6 : Illustration du scénario considéré pour les validations expérimentales des
chapitres 6 et 7.

posées aux participants à travers des questionnaires. Globalement, l’étude confirme
qu’un guidage adaptatif permet d’améliorer les performances par rapport à un guidage
qui ne le serait pas. De plus, nous montrons qu’un guidage incorrect est comparable à
une absence de guidage en termes de performances, tous deux bien inférieur au cas avec
guidage adaptatif.

Pour résumé, nos contributions à l’apprentissage en ligne de modèles pour le guidage
haptique les suivantes :

• nous proposons une nouvelle méthode la correction simultanée du recalage de la
tâche et du modèle géométrique de robot. Il s’agit d’un cadre théorique unifié qui
permet la correction en ligne des paramètres des modèles à partir de l’observation
des actions de l’opérateur. Ce travail fait l’objet d’une publication en préparation ;

• nous présentons des résultats complets concernant l’effet du guidage haptique
adaptatif sur la performance de l’opérateur et la pénibilité perçue recueillis
lors d’une étude avec participants. Les principaux résultats font l’objet d’une
publication en préparation ;

• nous présentons également une méthode d’apprentissage basée sur une optimisation
sur une fenêtre glissant de mesures pour réaliser la correction du recalage de la
tâche à partir des actions de l’utilisateur. Ce travail a fait l’objet d’une publication
(Poignonec et al. 2021).

F.3 Conclusions
Dans la première partie, nous proposons plusieurs méthodes complémentaires pour
l’identification in situ du modèle de jeu mécanique présent dans les transmissions à câbles
des endoscopes flexibles. Par rapport aux méthodes existantes, les approches proposées
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permettent l’utilisation d’un modèle de jeu plus complexe, ce qui est pertinent pour
les scénarios cliniques. Toutes les méthodes proposées sont très génériques et peuvent
être appliquées à différentes architectures de robots ainsi qu’à différents capteurs
intraopératoires.

Dans la seconde partie, nous proposons de nouvelles méthodes de guidage adaptatifs
adaptées à la télérobotique. La principale contribution est le développement d’une
méthode d’apprentissage en ligne des paramètres de la tâche et du robot qui utilise
l’opérateur dans la boucle comme source d’information. La méthode est applicable
lorsque les modèles sont connus, mais que les valeurs de certains paramètres sous-jacents
ne le sont pas. C’est typiquement le cas lorsqu’une tâche a été définie, mais que les
paramètres doivent être adaptés à l’environnement réel durant l’exécution. Différents
défis ont été identifiés et des solutions ont été proposées. Les résultats expérimentaux
soutiennent l’idée qu’un guidage adaptatif est préférable à son équivalent non adaptatif
lorsque les modèles sont initialement imprécis. Ces méthodes constituent alors un bon
compromis pour exploiter une planification préopératoire tout en laissant le contrôle
final au chirurgien.
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