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Abstract
This thesis delves into the development of efficient Complete Coverage Path Plan-
ning (CCPP) approaches for agricultural wheeled robots, providing significant con-
tributions to the field of autonomous agricultural robotics. The research encom-
passes a systematic review of existing challenges and proposed solutions, highlight-
ing knowledge gaps and promoting collaboration between researchers and the agri-
cultural industry. By offering valuable insights into the most effective CCPP tech-
niques and technologies, researcher and technology developers can make informed
decisions about adopting autonomous agricultural robotics for various tasks.

An essential part of the research is the creation of a dataset containing 2D and 3D
models of 30 diverse fields in France. This dataset serves as a valuable resource
for researchers and technology developers in agricultural robotics, allowing them to
evaluate and validate path planning approaches across a wide range of real-world
scenarios and agricultural settings. The inclusion of both 2D and 3D terrain mod-
els not only fosters a deeper understanding of each modeling approach’s strengths
and weaknesses but also promotes their integration into other techniques, inspiring
further research and development.

The development of an efficient CCPP approach that generates optimal coverage
paths for autonomous agricultural robots is another significant contribution of this
research. This approach minimizes overlaps, non-working traveled distance, and
operation time, leading to increased efficiency in real-world applications. It also han-
dles headland coverage effectively. Furthermore, the exploration of a deep learning-
based approach for field decomposition in agricultural CCPP highlights the chal-
lenges and complexities of the required data. Although not yet successful, this ex-
ploration serves as a foundation for further advancements in the fields of agricul-
tural CCPP and autonomous agricultural robotics.

An advanced 3D hybrid path planning approach with multiple objectives is also
presented in this thesis, capable of considering trajectory inclinations and various
other factors to optimize coverage rate, overlaps, non-working traveled distance,
and operation time. This novel method combines the strengths of previous CCPP
approaches and shares the ability to effectively cover headlands. The advanced ap-
proach goes a step further by examining two distinct coverage patterns and offering
faster computation times, which can be crucial in real-world applications. Addition-
ally, it addresses complex field shapes while considering the robot characteristics
and field accessibility.

This thesis provides a comprehensive and balanced overview of the work accom-
plished in the development of efficient CCPP approaches for agricultural wheeled
robots. By reflecting on the journey undertaken and the knowledge gained through
this research, practical implications and applications of these findings are discussed.
This work aims to chart a path forward for continued exploration and advancement
in the domain of autonomous agricultural robotics, benefiting both farmers and the
industry as a whole.
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CHAPTER1
Introduction

Agriculture is a vital component of global food systems, playing a critical role in
feeding the world’s population. However, the industry faces unprecedented chal-
lenges that threaten its long-term sustainability. This thesis aims at exploring the use
of Complete Coverage Path Planning (CCPP) for wheeled robots in agriculture to assist
in the development of a more efficient approach to robotic agriculture, addressing
the challenges faced by the industry.

In this introduction, we set the context for our research by discussing the key chal-
lenges in farming, including the impact of the COVID-19 pandemic, climate change
and population growth. We then discuss potential solutions that have been pro-
posed for more efficient precision agriculture and smart farming, including data-
driven decision making and the use of autonomous systems such as wheeled robots.

Despite the potential benefits of autonomous systems in agriculture, there are still
significant challenges to be addressed in their development and deployment, partic-
ularly in the area of CCPP. In this chapter, we also discuss the different aspects and
challenges of CCPP for autonomous systems in agriculture, as well as the different
types of agricultural operations in which CCPP is required.

Finally, we outline the specific research questions and objectives that this thesis aims
at addressing and provide an overview of the structure of the thesis.

1.1 The State of Food and Agriculture

The COVID-19 pandemic has highlighted the vulnerability of agrifood systems to
shocks and stresses, leading to increased global food insecurity and malnutrition
[42]. Furthermore, climate change and population growth are putting increasing
pressure on the world’s food and agriculture systems.

The Intergovernmental Panel on Climate Change has projected that global warming
will reach 1.5◦C above pre-industrial levels by 2040, with significant impacts on agri-
culture [24]. These impacts include more frequent and intense heatwaves, droughts,
floods, and storms, which can reduce crop yields and threaten food security. At the
same time, the global population is expected to reach 9.9 billion by 2050 and 10.9
billion by 2100 [93], requiring a significant increase in food production to meet de-
mand.
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To address these challenges, the agriculture industry needs to find new ways to
make farming more efficient, sustainable, and resilient. One promising approach
is the use of autonomous systems, such as wheeled robots, to carry out tasks such
as planting, spraying, and harvesting. Autonomous systems have the potential to
increase efficiency, reduce costs, and minimize environmental impacts. However,
there are still significant challenges to be addressed in the development and deploy-
ment of these systems.

1.2 Precision Agriculture and Smart Farming

Precision agriculture can be defined as a farming management concept that uses in-
formation technology, data analysis tools, and various sensors to optimize crop pro-
duction and efficiency by making data-driven decisions. This approach involves col-
lecting and analyzing data on a large scale, including crop growth, weather, soil fer-
tility, pest and disease occurrences, and crop yield, and then using this information
to make precise, targeted decisions on various aspects of crop management, such
as irrigation, fertilization, and pesticide application. The goal of precision agricul-
ture is to increase crop yields while reducing input costs, minimizing environmental
impacts, and improving the overall sustainability of farming operations [109].

Smart farming is an evolution of precision agriculture that incorporates advanced
technologies such as robotics, automation, and the Internet of Things (IoT) to further
optimize farming operations [90, 157]. Smart farming relies on data from various
sources, including sensors, unmanned aerial vehicles, satellites, and weather sta-
tions, to enable real-time decision making and precise management of agricultural
activities such as planting, irrigation, fertilization, and harvesting. Machine learning
algorithms and artificial intelligence are also utilized in smart farming to analyze
vast amounts of data and provide insights for better crop management and yield
prediction [89]. The ultimate goal of smart farming is also to increase productiv-
ity, reduce waste, and improve the overall sustainability and profitability of farming
operations.

There are numerous applications of precision agriculture and smart farming, includ-
ing:

• Autonomous farming equipment: using autonomous vehicles to perform var-
ious farming tasks such as planting, harvesting, and crop scouting [163].

• Crop monitoring and management: Smart farming technologies, such as IoT
sensors and drones, can provide real-time data on crop health, soil moisture
levels, and nutrient content, allowing farmers to make informed decisions on
irrigation and fertilizer application [61].

• Livestock management: IoT sensors can be used to monitor animal health
and behavior, as well as track herd movements, enabling farmers to optimize
feeding and breeding practices [4].

• Precision irrigation: using sensors and data analysis to optimize irrigation,
reduce water waste, and increase crop yields [126].

• Yield prediction: using machine learning algorithms and artificial intelligence
to analyze data and predict crop yields [153].
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• Supply chain optimization: using data analysis to optimize logistics and re-
duce waste in the supply chain, from farm to market [88].

The central focus of this thesis is on the autonomous systems, specifically wheeled
robots, for achieving complete coverage of agricultural fields. Specifically, we aim at
addressing the challenges of CCPP for autonomous agricultural operations, which
requires a comprehensive and efficient approach to navigating and covering large
fields while performing a particular task. In the following section, we will outline
the essential requirements needed to realize an autonomous system in agriculture,
including the necessary hardware and software components.

1.3 Autonomous Vehicles in Agriculture

The development of an autonomous system in agriculture is a complex process that
requires the integration of several specialized and interrelated subsystems. Among
these, path planning, path following, positioning systems, and perception systems
are crucial for the success of the system. In addition, safety features are also impor-
tant to ensure the safe operation of the system in the presence of human workers,
other vehicles, or obstacles.

Path planning is the process of generating a feasible and optimal path from a start-
ing point to a goal point while considering the environment’s constraints and the
vehicle’s kinematic and dynamic constraints. This process can also involve generat-
ing a path that covers the entire field, ensuring that the entire area is covered while
considering and optimizing a set of constraints.

Path following, also known as path tracking, is the process of accurately tracking
the planned path with the vehicle’s actuators, which can be achieved by different
control techniques, including proportional-integral-derivative control, model pre-
dictive control, or nonlinear control [78, 155]. More recently, advancements in steer
control techniques, including the application of reinforcement learning, have further
improved path following capabilities [44, 56].

Accurate positioning is also essential for the reliable operation of autonomous sys-
tems. Global Navigation Satellite Systems (GNSS) can provide position information
with sub-meter accuracy, but their performance can be degraded in some scenarios,
such as in dense vegetation. In these cases, alternative positioning systems, such as
visual odometry [97], inertial measurement units [156], or LiDAR-based localization
[94], can be used to complement or replace GNSS.

Perception systems are responsible for sensing and understanding the environment,
including detecting and tracking obstacles, identifying crops, and estimating terrain
characteristics [23, 114]. These systems typically employ various sensors, including
cameras, LiDAR, radar, and ultrasonic sensors, in conjunction with algorithms for
object detection, segmentation, and tracking [16]. To achieve a robust perception
system, sensor fusion methods are crucial, as they enable the seamless integration of
data from multiple sensors, enhancing the overall understanding and representation
of the environment [3, 9].

Safety features, such as obstacle avoidance, collision detection, and emergency stop
mechanisms, are essential to ensure the safety of human workers and other vehicles
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in the vicinity of the autonomous system. These features can be achieved by combin-
ing data from different sensors and using advanced algorithms to detect and react
to potential hazards [154].

1.3.1 Different Types of Autonomous Vehicles

Autonomous systems in agriculture can take different forms depending on the appli-
cation and the specific requirements. On one hand, it is possible to retrofit traditional
farm machinery, such as tractors or sprayers, with sensors, actuators, and controllers
to enable both manual and autonomous operation. This approach offers the advan-
tage of leveraging existing equipment and infrastructure, as well as the possibility
of switching between manual and autonomous modes as needed. Fig. 1.1a shows
an example of a tractor equipped with required sensors.

(A) John Deere [69] (B) Naïo [92]

(C) Combined Powers [25] (D) Nexus Robotic [95]

FIGURE 1.1: Different types of autonomous robots in agriculture

On the other hand, it is also possible to design and build custom autonomous robots
tailored to specific tasks and environments. These robots can be smaller and more
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agile than traditional farm machinery, allowing them to navigate in challenging ter-
rain with greater ease. Figs. 1.1b, 1.1c and 1.1d show some examples of small au-
tonomous robots designed for a specific or multiple tasks.

In the interest of simplicity, we will refer to all the autonomous vehicles discussed in
this section as autonomous robots. However, the focus of this study is on autonomous
robots that are specifically designed to carry equipment or implements for a partic-
ular task.

1.3.2 Prototype Autonomous Robot

To design, test, and validate the different subsystems necessary for achieving full
autonomy, the Innovation Lab at Technology & Strategy in Strasbourg developed a
prototype robot. As shown in Figure 1.2, the robot is equipped with a range of sen-
sors, including LiDAR, RGB-D camera, and GNSS, as well as advanced algorithms
for path following, navigation, obstacle detection, and safety. The robot is designed
to navigate autonomously in deformable terrain.

GNSS antenna Linear actuator 3D LiDAR

RGB‐D camera

Ododmetric wheel coder

GPS box

Motor & gearbox
Motor break

Trailer / Implement

Control panel

Light column

Wifi

FIGURE 1.2: Prototype of an autonomous robot designed and devel-
oped at Innovation Lab at Technology & Strategy in Strasbourg

The primary objective of this thesis is to focus on the path planning subsystem,
with a specific emphasis on developing a CCPP approach for an autonomous robot
equipped with a task-specific implement. The goal is to obtain a planning algorithm
compatible with real-world use on a field, in conjunction with other subsystems that
have been developed and improved by our team, to demonstrate the effectiveness
and practicality of the proposed approach.

In the next section, we will discuss different types of agricultural operations, specif-
ically those that require complete coverage of the field using a robot equipped with
a specialized implement to perform the task.

1.4 Agricultural Operations and Required Machinery

As highlighted earlier, creating an autonomous system in agriculture is a challeng-
ing task that involves integrating multiple specialized and interconnected subsys-
tems. The successful integration of these subsystems is critical to ensure efficient
and effective operation of the system in the field. Furthermore, the requirements of
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each subsystem might vary depending on the specific agricultural operation being
performed. Additionally, different types of farming practices, such as arable farming
and orchard farming, may have distinct requirements for their respective operations.
In this section will explore various types of agricultural operations that could benefit
from the use of autonomous systems, specifically wheeled robots.

1.4.1 Orchard Farming

Orchard farming involves cultivating fruits and nuts, such as apples, pears, cherries,
and almonds, in closely planted trees, which can make it challenging to navigate and
perform tasks using traditional farm machinery.

Autonomous systems can address these challenges by providing a solution to navi-
gate between the trees and perform tasks such as pruning, spraying, and fruit pick-
ing. These systems can also help reduce labor costs and improve efficiency by us-
ing sensors and machine learning algorithms to optimize irrigation and fertilization
schedules and predict disease outbreaks.

The use of autonomous systems in orchard farming is facilitated by the location of
the existing trees. The trajectories are thus already predefined and it is sufficient to
determine the optimal sequence of trajectories to plan the path. However, in this
study, our focus is primarily on operations performed in arable farming, which typ-
ically involve large fields where generating a complete coverage path is necessary
and the direction of parallel trajectories is not predefined by such constraints.

1.4.2 Arable farming

Arable farming is the cultivation of crops on a large scale in fields. It is one of the
most common types of farming and is characterized by crops that are planted in
rows and grown in a particular pattern. The use of autonomous systems in arable
farming can be particularly advantageous due to the large size of fields and the
repetitive nature of tasks such as:

• Plowing and tillage: preparing the soil for planting

• Seeding: planting seeds in the soil to grow crops

• Planting: planting crops in the soil

• Fertilizing: adding nutrients to the soil to support crop growth

• Irrigation: providing water to the crops to ensure proper growth

• Spraying: applying pesticides or herbicides to crops to protect them

• Harvesting: collecting crops when they are ready for harvest

• Mowing: cutting down grass or other vegetation in a field

Autonomous systems can be used to perform these tasks efficiently and precisely,
reducing the need for manual labor and minimizing the risk of human error. For
example, autonomous seed drills can plant seeds at precise intervals and depths,
ensuring optimal plant growth. Autonomous spraying systems can also apply pes-
ticides and herbicides precisely, reducing the amount of chemicals used and mini-
mizing the risk of environmental damage.
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(A) Seeding (B) Fertilizing

(C) Harvesting (D) Spraying

FIGURE 1.3: Some examples of operations in arable farming

1.5 Path Planning

After contextualizing the use of autonomous systems in agriculture and identifying
the different agricultural operations that can benefit from their deployment, we can
now delve into a more comprehensive definition of path planning.

Path planning is an essential component in the field of robotics and autonomous sys-
tems, as it deals with the problem of finding a feasible path for a robot to move from
an initial position to a goal position while avoiding obstacles and fulfilling certain
requirements or constraints. Path planning can be broadly classified into two main
categories: point-to-point path planning and complete coverage path planning.

Point-to-point path planning focuses on finding a path from a starting point to a
destination point, usually optimizing for specific criteria such as distance, energy
consumption, or time. This type of planning is often employed in domains like
autonomous vehicles [66], drones [170], and robotic arms [159]. Some popular al-
gorithms used for point-to-point path planning include A* [52], Dijkstra’s algorithm
[30], Rapidly-exploring Random Trees [76], and Probabilistic Roadmaps [70].

Complete coverage path planning, on the other hand, deals with the problem of
covering an entire region or workspace while satisfying certain constraints or re-
quirements [165]. The concept of generating a path that covers a given area has been
studied for decades and has been applied in various domains requiring different
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sorts of environments and operation requirements such as geophysical surveys [8],
model reconstruction and mapping [18], vacuum cleaning [141], forest monitoring
[161], marine growth removal [53], water sampling [84], 3D printing [167], or demi-
ning [32], to name a few.

In agriculture, CCPP is an essential aspect of the majority of agricultural operations.
It involves navigating the robot through the entire field in an optimized and efficient
manner, covering all areas with minimal overlaps. CCPP requires generating a feasi-
ble and optimal path that considers the robot’s kinematic and dynamic constraints,
the characteristics of its implement, and optimizing a set of objectives.

However, as illustrated in Fig.1.3, different operations require different types of im-
plement and have distinct constraints that need to be taken into consideration which
make it challenging to propose a generic CCPP. For example, seeding requires an im-
plement that works with precision and at a specific depth, which requires the robot
to move straight forward while lowering or raising it. In contrast, the implement re-
quired for spraying does not touch the ground, but the robot must avoid damaging
the germinated crops.

Additionally, CCPP becomes even more challenging when the inclination and slopes
of a field need to be considered, as these can have a direct impact on the performance
of the robot and the quality of the results. This requires a 3D model of the field to be
constructed, which adds an extra layer of complexity to the CCPP problem. Never-
theless, taking into account these factors is crucial for optimizing the efficiency and
effectiveness of the generated path, particularly in terms of energy consumption and
soil erosion. Therefore, it is important to develop CCPP approaches that consider the
specific requirements of each operation and implement, as well as both the 2D and
3D characteristics of a field to ensure optimal performance.

1.6 Motivations

The primary motivation of this thesis is to develop a generic and efficient CCPP
approach for autonomous agricultural robots that can address the complexities of
various agricultural operations detailed in Section 1.4.2. Specifically, we aim at de-
signing CCPP methods that can consider the specific requirements of each operation
and implement, while also taking into account the 3D characteristics of the field
and optimizing multiple objectives such as coverage and overlap area, non-working
traveled distance, energy consumption, and soil erosion. Our approach should be
applicable to a wide range of agricultural applications and field shapes, ensuring
optimal performance. Ultimately, the objective of this thesis is to contribute to the
advancement of CCPP approaches for autonomous agricultural robots, providing a
foundation for further research and development in this area.

1.7 Contributions

The thesis proposes several significant contributions to the field of agricultural
robotics, which are outlined in the following paragraphs.

The first contribution is a systematic review of the various algorithms proposed in
the literature to address the challenges of CCPP for wheeled agricultural robots. This
review provides a comprehensive analysis of the solutions proposed in the literature
and the important aspects of the problem that may affect and improve the final result
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of a CCPP approach. A total of 48 articles were categorized and analyzed from
different perspectives, including terrain modeling, constraints modeling, and path
planning.

The second contribution provides a detailed discussion of the approaches for gen-
erating both 2D and 3D models of a field, along with a dataset of 30 fields located
in France. This contribution can serve as a guide for researchers in the field of agri-
cultural robotics, as it provides a comprehensive overview of the data required for
creating accurate and efficient solutions for agricultural operations. The dataset, that
is publicly available on Zenodo [115], can provide valuable insights into the evalu-
ation of future path planning approaches, helping researchers to better understand
the advantages and limitations of both 2D and 3D terrain modeling.

The third major contribution is the development of an efficient CCPP approach for
generating optimal paths for autonomous agricultural robots to cover fields with
high accuracy while minimizing overlaps, non-working path length, and overall
travel time. This approach incorporates a tree-based intelligent search algorithm,
which takes into account the geometry of the robot and its implement, as well as
other important factors, resulting in efficient and optimal solutions. The approach is
designed to handle complex field shapes and sizes, while also providing automated
headland coverage.

The fourth contribution is an exploration of a deep learning-based approach for field
decomposition in agricultural CCPP, which aimed to enhance the adaptability and
efficiency of existing methods. Although the results of this study were not as con-
vincing as hoped, it highlighted the challenges and complexities of the dataset and
the need to reconsider certain assumptions about farmers’ preferences, operation,
and machinery requirements. This study also emphasized the importance of devel-
oping a robust CCPP approach that can handle multiple dividing lines and diverse
constraints efficiently.

The fifth and final contribution is the development of an advanced 3D hybrid path
planning approach with multiple objectives for complete coverage. This approach
combines the strengths of the previous approach and an open-source algorithm to
generate coverage paths for agricultural robots that consider working trajectory in-
clinations, which have a direct impact on soil erosion and energy consumption. The
method optimizes several other objectives, including coverage rate, overlap rate,
non-working traveled distance, and operation time. The approach is capable of ex-
ploring all possible driving directions and considers two different coverage patterns
(sequential and row-skip). The method’s performance is evaluated and compared
to that of the original proposed algorithm, demonstrating its effectiveness and effi-
ciency.

1.8 Thesis Structure

Chapter 1 - Introduction: This chapter sets the context for the thesis by discussing
the importance of agriculture, the challenges faced by the industry, and the potential
of precision agriculture, smart farming, and autonomous vehicles to address these
challenges. It also introduces the concept of CCPP and highlights the motivations
and contributions of this research.

Chapter 2 - State of the Art: This chapter provides a comprehensive overview of
the current state of the art in CCPP for autonomous wheeled agricultural robots,
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submitted to the Journal of Field Robotics. It discusses the challenges involved in
agricultural CCPP, such as terrain modeling, constraints modeling, and path plan-
ning. The chapter reviews proposed solutions in the literature, factors that affect
CCPP results, and different validation methods for evaluating CCPP algorithms in
agriculture. The chapter concludes by emphasizing the need for further research to
develop more accurate models to account for all the constraints required in CCPP.

Chapter 3 - Terrain Modeling: Data Acquisition and Dataset Construction: In this
chapter, the process of terrain modeling is explored, discussing data acquisition
methods and the construction of both 2D and 3D models. The chapter introduces
a publicly available dataset of thirty fields located in France for evaluating various
applications and understanding the advantages and limitations of different terrain
modeling approaches. The dataset can be found on Zenodo [115].

Chapter 4 - Problem Statements and Challenges: In this chapter, the challenges and
constraints associated with CCPP for various agricultural operations are discussed.
The chapter proposes an exhaustive CCPP approach, evaluates its performance and
limitations through simulations, and sets the foundation for future, more efficient
CCPP approaches.

Chapter 5 - Intelligent Tree-based Search: This chapter presents a novel CCPP
approach for efficiently generating optimal paths for mobile robots in agricultural
fields, which has been accepted for publication in the Journal of Field Robotics [116].
By exploiting tree exploration, the method successfully adheres to hard constraints
while optimizing soft constraints such as worked area, overlaps, non-working trav-
eled distance, and operation time. The chapter delves into the methodology, offers
analytical results, and provides an in-depth discussion on the impact of various con-
sidered factors.

Chapter 6 - Extensions: Row-Skip Pattern and Deep Learning-based Field De-
composition: This chapter presents two extensions to the original CCPP approach,
proposed in Chapter 5, to improve its efficiency and versatility. The first extension
incorporates a row-skip coverage pattern, which was accepted and presented at the
9th International Conference on Automation, Robotics and Applications (ICARA
2023). This pattern allows for more efficient field coverage while minimizing over-
laps, non-working traveled distance, and operation time. The second extension in-
troduces a Deep Learning-based method for automating field decomposition, adapt-
ing it to various field characteristics and enhancing the overall efficiency of the CCPP
approach. The chapter provides a detailed description of both extensions, discussing
their methodologies, results, and impact on agricultural robot path planning.

Chapter 7 - Advanced 3D Hybrid Path Planning with Multiple Objectives for
Complete Coverage: This chapter introduces a sophisticated hybrid CCPP approach
for autonomous agricultural robots, seamlessly merging the advantages of prior
methods with the F2C algorithm. Taking into account multiple driving directions,
coverage patterns, and field inclination, the approach elegantly addresses soil ero-
sion and energy consumption optimization in an indirect manner.

Chapter 8 - Conclusion & Perspectives: This final chapter synthesizes and reflects
upon the research conducted throughout the thesis, summarizing major findings,
contributions, and practical implications in the development of efficient CCPP ap-
proaches for agricultural wheeled robots. It acknowledges the study’s limitations
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and outlines potential avenues for future research, providing suggestions for refin-
ing, optimizing, and expanding the CCPP approaches to address a broader range of
scenarios and applications in agriculture.
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CHAPTER2
State of the art

In this chapter, we provide an overview of the state of the art in CCPP for wheeled
robot performing agricultural operations.

We begin by discussing the challenges involved in agricultural CCPP, including ter-
rain modeling, constraints modeling, and path planning. We then review the pro-
posed solutions in the literature and highlight some of the important factors that
may affect the final result of a CCPP approach. Additionally, we examine different
types of validation that can be used to evaluate the effectiveness of CCPP algorithms
in agriculture.

The primary goal of this chapter is to provide a comprehensive understanding of
the current state of the art in CCPP for autonomous agricultural robots. By exam-
ining the challenges, proposed solutions, and validation methods, we hope to offer
insight into the development of effective CCPP algorithms for autonomous agricul-
tural robots.

2.1 Introduction

CCPP is a key challenge for developing an autonomous system for the majority of
field operations such as ploughing, harrowing, seeding and plowing, to name a few.
In general, CCPP is the process of generating a path that completely covers the area
of interest in a precise and feasible manner while avoiding obstacles and reducing
operating expense and time [48].

A CCPP approach consists of three different parts; 1) terrain modeling, 2) constraints
modeling and 3) path planning. These components might be adapted for various
robotic applications according to the environment, the robot’s capabilities and the
intended application but in general, if these procedures are followed, a complete
coverage of an area without overlapping should be achieved in a limited amount of
time. The generated path should also be collision-free and sufficiently smooth for
the robot to travel on.

The terrain can be represented using a 2D or 3D model, depending on the field’s
specifications. A 2D depiction may be adequate for a perfectly flat area in order to
carry out an exact path planning. However, to accurately design a path planning
algorithm for non-flat fields that include slopes and height variations of altitude, a
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3D model is necessary. Regarding energy consumption, soil compaction, soil ero-
sion, or robot operability, a number of restrictions that rely on the field’s relief can
be modeled and taken into account.

In agriculture, path planning is often performed at two separate levels. A cover-
age map is first generated using the field data including the position of the static
obstacles by a Coverage Map Computing (CMC) algorithm. The best path is then
allocated to one or more robots using the resultant coverage map. This second chal-
lenge is referred to as Agricultural Vehicle Routing Problem (AVRP). In order to
replan paths, a routing algorithm has to be robust and flexible. For instance, if a
robot is blocked by an animal or stops functioning, the path assignment may need
to be revised to ensure a high quality execution of the path.

It is well known that the CCPP in agriculture using a non-holonomic robot is highly
challenging to solve optimally. Nearly majority of the agricultural robots in use to-
day are far from holonomic. It takes time to turn an agricultural robot. It makes the
procedure much more difficult [100]. Most surveys on this subject address CCPP
algorithms in general [43, 72]. Almadhoun et al. [5] conducted a survey on multi-
robot CCPP for model reconstruction and mapping. Edan, Han, and Kondo [36]
published a more comprehensive survey on agricultural automation systems, that
comprised field equipment, irrigation systems, greenhouse automation, animal au-
tomation systems, and automated fruit production systems. Santos et al. [129] most
recently published a brief review on path planning for ground robots in agricul-
ture. They classified path planning approaches into two categories: Point-to-Point
and complete coverage path planning. In these surveys, several CCPP algorithms
in agriculture have been briefly discussed. However, certain additional factors that
have a significant impact on path planning for agricultural applications, such as
terrain modeling and constraints unique to agriculture, haven’t been taken into ac-
count. Therefore, it is necessary to study various CCPP applications in agriculture,
including their pro’s and cons, and to provide a perspective for further research.

The rest of this chapter is structured as follows: Section 2.2 goes through how this
survey was conducted. In Section 2.3 we review various methods for terrain mod-
eling and explain about the data required to produce an accurate model of the field.
Section 2.4 discusses various constraints that should be taken into account in agricul-
tural CCPP. Different path planing methods are detailed in Section 2.5. In Section 2.6
various types of validation are discussed. Finally Section 2.7 concludes this chapter.

2.2 Methodology

The primary aim of this chapter is to identify and review in a systematic manner:
Different challenges of CCPP, the proposed solutions in the literature, and also some
important aspects of the problem that may affect and improve the final result of a
CCPP approach.

To achieve this goal, several publications were gathered using the following search
terms from online research databases including IEEE Xplore, Science Direct, and
Google Scholar:

• ("agricultural" OR "agriculture") AND ( "trajectory planning" OR "path plan-
ning" OR "coverage path planning" OR "CPP")
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• ("agricultural" OR "agriculture") AND ("routing problem" OR "vehicle routing
problem: OR "VRP")

The top 300 articles for each of the two search terms and for each of the three search
engines were chosen after sorting the results using the default relevance criterion.
In total 1800 articles were selected. 1800 papers in total were chosen. By using the
following exclusion criteria, irrelevant publications were eliminated:

• Article is a duplicate

• Article is not related to the agricultural sector

• Article is not about CCPP

• Article is about CCPP for aerial robots in agriculture

• Article is about indoor agriculture

• Article is about positioning and navigation systems

• Article is not written in English

• Article is published before 2007

• Article is a review or survey, paradigm or benchmarking

• Full text of the article is not available

Once these exclusion criteria were applied 49 articles remained. The publication year
of these papers is depicted in Fig. 2.1 and their country of origin is shown in Fig.
2.2. Base on the following aspects, an overall analysis of the remaining articles was
performed: terrain modeling, constraints modeling and path planning. Depending
on the articles, these categories, which typically stand for the three CCPP algorithm
steps, are discussed in various degrees of detail. They served as inspiration for this
chapter’s organization as well.
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The articles were then carefully examined to determine their response to each chal-
lenge by answering to the following questions:

• Which techniques have been used to represent the terrain ?

• Which constraints have been considered and how have they been modeled ?

• Which approach has been used to obtain a coverage map of the field?

• How the coverage map was assigned to one or several robots ?

• How the study has been validated ?

The following sections detail the result of this analysis.

2.3 Terrain Modeling

The initial stage in implementing CCPP is modeling the terrain, which may also
include the locations of the accessible edges of the field to enter and exit and the
location of service unites. A field could be divided into three zones: Workable zone,
passable zone and impassable zone or obstacle. A workable zone is the area that the
robot is authorized to traverse while its implement is either on or off. For instance
the main part of the field that is needed to be cover by the robot’s implement is a
workable area. A passable zone is defined as an area that the robot is authorized to
cross only while its implement is off or its not in touch with the ground or crops.
For instance uncultivable part of a farmland is a passable area that could be used
for performing half-turns but crossing them while the implement is on may damage
the implement and/or the robot. A zone that the robot cannot traverse is referred to
as an impassable zone. This includes any obstacles located inside the field, such as
trees, lakes, and waterways.

Table 2.1 summarizes the data used for terrain modeling, as well as some included
features. In the rest of this section different considerations and approaches of field
representation based on 2D and/or 3D data are reviewed.

2.3.1 2D Representation

The majority of CCPP approaches only work with 2D field data. In these works, the
field is typically shown as a polygon that, depending on the field borders, may be
convex or concave. The obstacles and impassable zones inside the field borders are
represented by small polygons inside the field polygon.

By driving around the field and obstacles boundaries, Zhou et al. [169] stored their
coordinates. They described a ring as a collection of connected, ordered line seg-
ments where its start and the end point are the same. The field is then represented
by a combination of zero or several inner rings and one outer ring. The segments of
an inner ring are ordered counterclockwise, whereas the segments of an outer ring
are ordered clockwise. It is also possible to register and export these coordinates
by using a Geographic Information System (GIS) software. The second strategy is
more frequent and simpler.

As summarized in Table 2.1, The assumption that the field is perfectly flat serves as
the foundation for the majority of research projects. This may not be the case de-
pending on the region where the field is located. The distance between computed
trajectories on the topographic surface changes when the outcome of a 2D planning
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is projected to a 3D terrain, which causes skipped and/or overlapping areas be-
tween adjacent trajectories on the slopes [51]. Besides, a discrepancy between the
computed total area based on 2D data and the actual area of the field may arise in
cases of significant elevation changes across the field. This discrepancy will thus
have an impact on all other metrics and measures, including the worked area and
overlaps. For instance, as illustrated on Fig. 2.3, the distance between two adjacent
trajectories on the 2D surface is not the same comparing to the distance between
their projections on the 3D surface.

Ref. 2D data 3D data Entrances Obstacles Concave field
[12, 13, 14] ✓ ✓
[15] ✓ ✓ ✓
[17] ✓ ✓
[19, 20] ✓ ✓ ✓
[21] ✓ ✓
[22] ✓ ✓
[26, 28, 27] ✓
[31, 33] ✓ ✓ ✓ ✓
[37] ✓ ✓ ✓
[40] ✓ ✓
[47] ✓ ✓ ✓
[50] ✓ ✓
[49] ✓ ✓ ✓ ✓
[51] ✓ ✓ ✓ ✓
[48] ✓ ✓ ✓ ✓
[62] ✓ ✓ ✓
[64, 63] ✓ ✓
[65] ✓ ✓
[68] ✓ ✓ ✓
[67] ✓ ✓ ✓
[71] ✓ ✓
[86] ✓ ✓
[87] ✓
[96] ✓ ✓ ✓
[100, 101] ✓ ✓ ✓
[112] ✓ ✓ ✓
[110] ✓ ✓ ✓
[111] ✓ ✓ ✓ ✓
[130] ✓ ✓ ✓
[136, 135, 134, 137] ✓ ✓ ✓
[139] ✓ ✓ ✓ ✓
[147, 148] ✓ ✓
[151] ✓ ✓
[168] ✓ ✓ ✓
[169] ✓ ✓ ✓
[170] ✓ ✓ ✓

TABLE 2.1: Data used for terrain modeling
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Erosion of the soil and water conservation, which are a major concern when plan-
ning trajectories on a field, may not be optimized when elevation variations across
the field are ignored [67]. Van Doren, Stauffer, and Kidder [152] demonstrated that
plots planted with the direction perpendicular to the slope had lower soil losses and
surface runoffs than those planted with the same direction as the slope.

Dogru and Marques [31] stated that climbing increases significantly the consump-
tion of energy. As a result, disregarding elevation variations also results in inaccu-
rate energy cost estimates, which in consequence leads to incorrect optimization of
energy consumption on non-flat fields. As a result, CCPP algorithms built on a 3D
model of the field have a huge potential to generate more accurate and better paths.

FIGURE 2.3: The black polygon represents the field and the red poly-
gon is its 2D projection. The green trajectories are planned based on
the 2D representation of the field and the blue trajectories are their

projections on the 3D model of the field

2.3.2 3D Representation

To generate a 3D model of a field, usually the Digital Elevation Model (DEM) are
used in addition to the field’s 2D polygon. DEM data are structured as a grid of
squares or cells. A DEM file is arranged as an American Standard Code for Information
Interchange (ASCII) grid file containing in its header the file id, cell length, number of
grid lines along x-axis, number of grid lines along y-axis, minimum and maximum
x values of the grid, minimum and maximum y value of the grid and minimum and
maximum elevation values of the grid in the Universal Transverse Mercator (UTM).
Then elevation values of the grid cells (i.e., z values) are ordered in rows in the rest
of the file representing the elevation matrix [49].

Hameed [49] proposed an approach to constructed a set of parallel tracks using
the 2D field polygon. Afterwards, they estimated the elevation across each track.
Hameed, Cour-Harbo, and Osen [51] also proposed an approach to constructed a
set of parallel tracks using the 2D field polygon. Afterwards, they generated a 3D
representation of the field using DEM files and applying bi-linear interpolation in or-
der to estimate accurately skips and overlaps. As a hypothesis, considering that the
surface of the field is linear, Shen et al. [139] used DEM data to generate a linearized
3D structure of the field surface.

After acquiring the sparse altitude of the field by driving the robot over it, Dogru
and Marques [31, 33] applied the Kriging method as an interpolate method to esti-
mate the altitude of any points on the field’s surface. Kriging can provide a linear
unbiased prediction of the intermediate values [102]. They acquired also a dense
altitude of the field to compare and validate their terrain modeling approach. Jin
and Tang [67] implemented B-form splines interpolation method by tensor product
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splines to describe the topographic surfaces in 3D space by using DEM grid and 2D
field shape.

2.3.3 Discussion

As described in Section 2.3.1 and illustrated on Fig. 2.3, terrain modeling may have
an impact on the metrics and consequently it may lead to an inaccurate outcome.
This is mainly due to the projection of a non-flat field to a 2D plane where distances
and angles may not remain intact. Besides the covered area and skips/overlaps, it
might significantly affect the computations in term of soil erosion and energy con-
sumption.

The complexity of the computations, however, may increase by integrating a 3D
model of the field. This could be the reason that, as shown in Table 2.1, only few
researchers have included 3D data in their approaches. Using 2D surfaces to simplify
some aspects of the algorithms and then 3D surfaces to refine the path or compute
the metrics is perhaps an efficient solution to decrease computational cost without
significantly lowering accuracy. As summarized in Table 2.1, few authors already
integrated such a hybrid terrain modeling in their approaches. Another strategy
might be to use GPUs or parallelization to speed up the computations.

In the context of agricultural 3D modeling, the effects of the various interpolation
methods used to construct a 3D model have not been thoroughly investigated. The
quality of the terrain modeling may vary depending on the applied interpolation
method. For instance some methods may result a smoother surface comparing to
other methods. Therefore, it could be useful to compare the effectiveness of interpo-
lation and 3D reconstruction methods for agricultural terrain modeling.

In other domains or even for other applications of field robotics such as point to point
path planning and ground crops surveying, however, Several 3D modeling methods
have already been proposed. The scope of this thesis does not allow for a detailed
discussion on these researches. Therefore, we refer interested readers to [164] to
discover more about the impact of various interpolation methods on 3D modeling
approaches for object reconstruction, to [106] which reconstructed a 3D model of
ground crops using airborne LiDAR technology, to [161] for a triangulation-based
approach of 3D modeling of a general terrain, and to [127, 128, 131] for agricultural
terrain modeling by the robot’s laser scan.

The field’s accessibility is a crucial factor to consider for constructing a realistic
model of a field and consequently finding a feasible path. It is naive to assume
that a field can be accessible from all of its edges, which is not true for the majority
of fields. For most of the fields, this assumption may damage the robot when it cross
an edge of the field or even may damage the neighboring field. It could also lead to
a solution that the farmer can’t apply in practice. An approach that was frequently
used to address this issue was to consider an inner offset for a field polygon as head-
lands and perform the headland coverage afterward. Therefore, as illustrated in 2.1,
most of researchers considered the initial location of the robot somewhere inside the
field while others considered one or two points as entrance. Only Nørremark, Nils-
son, and Sørensen [99] considered the the field’s accessibility as line segments on the
field borders.

Considering one or two points as entrance for the robot would strongly limit the
possible solutions. Therefore, an ideal scenario is to consider the accessibility of a
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field, to determine several entry for the robot and to authorize the robot to finish its
path anywhere on an accessible edge of the field.

2.4 Constraints

CCPP is inherently a multiple objective problem. Numerous constraints come into
play due to the nature of a field such as slopes and static obstacles inside the field,
as well as due to the features of the robot and the implement attached to it. The
implement can be either on or off.

One of the main goals of every CCPP approaches is to maximize the coverage rate
which is also known as the worked area. The worked area is computed as the area
covered by the implement while it is on. Consequently, the distance traveled while
the implement is on and off are known respectively as working and non-working
traveled distances. Typically, the worked area is calculated as the working traveled
distance multiplied by the length of the implement. The length of the implement is
also referred to as the working width.

Ref. Operation time Non-working distance Obstacle Avoidance Skips/Overlaps
[12, 13, 14] ✓
[15] ✓
[17] ✓ ✓
[19, 20] ✓ ✓ ✓ ✓
[21] ✓
[22] ✓
[26, 28, 27] ✓
[31, 33] ✓
[37] ✓ ✓
[40] ✓
[47] ✓
[50] ✓ ✓
[49] ✓ ✓
[51] ✓ ✓
[48] ✓ ✓
[62] ✓ ✓
[64, 63] ✓
[65] ✓ ✓ ✓
[68] ✓ ✓
[67] ✓ ✓
[71] ✓
[86] ✓
[96, 99] ✓ ✓
[100, 101] ✓ ✓ ✓
[112] ✓
[110] ✓ ✓
[111] ✓ ✓
[130] ✓
[136, 135, 134, 137] ✓ ✓
[139] ✓
[147, 148] ✓
[151, 149, 150] ✓
[168] ✓
[169] ✓ ✓ ✓
[170] ✓ ✓

TABLE 2.2: Common constraints
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As summarized in Table 2.2, constraints that are most frequently used, most evi-
dent, and perhaps easiest to consider are the minimization of non-working traveled
distance and the obstacle avoidance. However, other significant and more compli-
cated factors also need to be taken into account, such as energy consumption, soil
condition and constraints due to the machinery features.

In the rest of this section, the different types of constraints that have been considered
in the literature are detailed.

2.4.1 Common Constraints: Traveled Distance and Obstacle Avoidance

The most prevalent constraint that is included in almost all of the research in the
literature is the minimization of non-working traveled distance. It is frequently as-
sumed that minimizing only non-working traveled distance will reduce the path
length while preserve the working traveled distance and consequently the total cov-
erage rate. Indeed, when minimizing the path length, chances to reduce the opera-
tion time, energy consumption and soil compaction are higher. This simplification
may, however, result in less accuracy. As summarized in Table 2.2, some researchers,
however addressed directly the minimization of the operation time.

The second most prevalent constraint is obstacle avoidance. Obstacles in a farm field
might be stationary, such trees, lakes, canals, or transmission towers. As described
in Section 2.3, static obstacles were always considered in the terrain modeling phase
by simply excluding the obstacle’s location from the field model. Obstacles may
also be dynamic such as domestic animals, humans and other robots in a multi-
robot system. It is obviously challenging in this situation to foresee their position
in advance and determine a course of action to avoid them and it requires a robust
CCPP approach for replanting the path if it is needed. This case is usually addressed
through sensors and decision making system of autonomous robots, or simply by
human decision in traditional agriculture.

As described in Section 2.3.1, considering a 2D model for a non-flat fields may lead
to skips and/or overlaps between two adjacent tracks. Overlaps, on the other hand,
may also occur between trajectories used for covering headlands and the parallel
tracks used for covering the main part of the field. This second case occurs if the par-
allel tracks are not perpendicular to the corresponding headland. Some researcher
attended to minimize skips and overlaps but non of them simultaneously took both
cases into account.

Besides these common constraints, some more complex factors need to be taken into
account. The studies that take into account more complex factors are described in
the next sections.

2.4.2 Soil Condition

A significant global issue that frequently leads to insufficient roots and low yield in
crops is soil compaction [29]. It significantly reduces the effectiveness of fertilizers
and water (from irrigation and rainfall). It raises also the risk of runoff and soil ero-
sion [10]. Traffic is the primary cause of soil compaction in agricultural fields. The
main reason of soil compaction in agricultural field is traffic [10]. In the literature,
the soil compaction is addressed indirectly by minimizing non-working traveled dis-
tance or using multiple light weight robots instead of a heavy tractor.
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Compacted soil can also accelerate soil erosion. Lands damaged by soil erosion
are vulnerable to the loss of nutrients and organic matter in the topsoil that re-
sults in poor agricultural productivity, higher water pollution, and the destruction
of wildlife habitats. Some of the primary causes of soil erosion are improper farming
methods combined with heavy precipitation, and rough slopes with few vegetation
[122].

With the assumption that planning paths perpendicular to slopes not only signifi-
cantly lowers energy consumption but also reduces soil losses and surface runoffs,
only a few researchers took the slopes into account. To directly address the mini-
mization of soil erosion, only Jin and Tang [67] integrated the Revised Universal Soil
Loss Equation (RUSLE) in their approach. RUSLE is an erosion model designed to
predict the longtime average annual soil loss carried by runoff from specific field
slopes in specified cropping and management systems as well as from rangelands
[121].

2.4.3 Robots and Machinery Constraints

Finding a feasible solution requires taking into account factors other than the im-
plement width, such as the minimum turning radius of the robot, its capacity for
carrying agricultural materials and its fuel consumption.

The minimum turning radius of the robot must be considered to generate feasible
half-turns. Fig. 2.4 illustrates all potential half-turns that were found in the liter-
ature. In general, Dubins curves can be applied for generating half-turns with no
reverse moves (Half-turns illustrated on Figs. 2.4a, 2.4b, 2.4c and 2.4d) [35]. For
half-turns containing reverse moves (Fig. 2.4e), the method proposed by Reeds and
Shepp [120] can be applied. Both methods compute the shortest curve from the
starting point to the destination point given a minimum turning radius, the starting
and destination coordinates, and the direction of the robot at these coordinates. The
Reeds-Shepp method also takes into account reverse moves, whereas all turns gen-
erated by the Dubins method only include forward moves. Table 2.3 summarizes
the various type of half-turns integrated in the reviewed approaches.

The majority of researchers assumed that the Dubins vehicle description could ad-
equately characterize the robot. Cariou et al. [21, 22] integrated a bicycle model of
a car-like vehicle. According to this model, the two front wheels (respectively the
two rear wheels) of the vehicle are lumped into a unique wheel located at the center
of the front axle (respectively of the rear axle) [113]. Considering the steering rate
capacity of the robot, its speed, and a maximum transverse acceleration, Cariou et al.
[21, 22] proposed an approach based on Euler spirals to generate feasible half-turns.

For some operations such as seeding sparing and harvesting, the capacity of the
robot to transport agricultural materials such as herbicides and seeds must be also
considered. In general, for big size fields, considering this factor requires also one
or several service units for loading and/or unloading materials even with a multi-
robot system. As summarized in Table 2.3, all researcher who took into account the
robot’s capability also took into account one or more service units. Service units can
be either stationary or mobile. In Section 2.5.2, methods that take into account one
or more service units are described.
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Ref. EC Multi-robot Service unit Robot capacity Turning type
[12, 13, 14] ✓ ✓ ✓ U, Bulb, Fishtail, Flat
[15] U, Flat
[17] ✓ U, Flat
[19, 20] ✓ U, Flat
[21] U, Bulb, Fishtail
[22] ✓ U, Bulb, Flat, Hook
[26, 28, 27] ✓ ✓ ✓ ✓ U, Bulb
[31, 33] ✓ In-place rotation
[37] U, Bulb, Flat, Hook
[40] ✓ ✓ ✓ U, Bulb, Hook
[47]
[50] U, Bulb, Hook
[49] ✓ ✓ ✓ U, Bulb
[51]
[48] U, Flat
[62] ✓ ✓ ✓
[64, 63] ✓ ✓ U, Bulb, Flat, Hook
[65] U, Fishtail
[68] U, Bulb, Fishtail, Flat, Hook
[67] U, Bulb, Fishtail, Flat, Hook
[71] ✓ ✓ ✓ Flat
[86] U, Flat
[87] U, Bulb, Fishtail, Flat, Hook
[96, 99] ✓ ✓ ✓ U, Bulb
[100, 101] U, Bulb
[112] ✓ ✓ Flat
[110]
[111] Flat
[130]
[136, 135, 134, 137] ✓ Bulb, Flat, Hook
[139] ✓ U, Bulb, Fishtail, Flat
[147, 148] ✓ U, Bulb, Flat
[151, 149, 150] ✓ ✓ U, Bulb, Hook
[168] ✓ ✓ U, Bulb, Flat
[169]
[170]

TABLE 2.3: Characteristics of the robot and implement. EC stands for
Energy Consumption

(A) Flat turn (B) U-turn (C) Bulb-turn (D) Hook-turn (E) Fishtail-turn

FIGURE 2.4: Different type of half-turns



24 Chapter 2. State of the art

2.4.4 Energy Model

A key objective is to reduce energy consumption for variety of reasons, such as to
reduce costs for farmers, to protect the environment and resources, and to reduce
pollution. To minimize the energy consumption, it is crucial to precisely predict
how much energy a robot will need to follow a certain path. This requires a complex
model that can account for all variables that affect the energy consumption including
the environment and soil condition, the feature of the robots and its implement and
the interaction between the implement and soil. For more detail about the different
energy models for wheeled mobile robots based on 2D and 3D data of the field, we
refer the readers to the survey performed by Zhang, Zhang, and Yang [166].

The main presumption in many works is that a robot has a limitless power supply
and/or that there is a small area that one or more fully charged robots can entirely
cover. However, recharging often may be required for a large field or when the goal
is to utilize some small and compact robots to reduce soil compaction. As summa-
rized in Table 2.3 some researchers took into account one or more service units in
their approach, but only for refilling agricultural material or unloading harvested
products. Only Conesa-Muñoz et al. [26, 27] considered both the robot capacity and
its energy level.

Based on a 3D model of a field, Dogru and Marques [31, 33] provided an analysis
energy model that was based on friction and gravity. They reported that driving in
the direction of slopes, where there is an excessive variation of elevation, increases
the energy consumption. Hameed [49] and Shen et al. [139] proposed an energy
consumption model that took into account slopes and the total mass of the robot
and its implement.

2.4.5 Discussion

As was previously stated, the CCPP is a multiple objective problem that demands
for the best compromise possible between a variety of constraints. It is challenging
to model all of these restrictions in a dynamic environment in which an interaction
between the robot and soil or crops is needed. A non-flat field might make this
task considerably more difficult. None of the papers included in this state of the
art explicitly took into account all the listed constraints due to the complexity of the
problem. However some constraints are only required for certain type of operations.
For instance, since no agricultural materials is required for ploughing, considering
the robot’s capacity for this operation is irrelevant.

The minimization of non-working traveled distance was the most common factor
took into account in cited papers because it is assumed that minimizing non-working
traveled distance can indirectly minimize the energy consumption, the soil com-
paction and total operation time. As summarized in Table 2.3, energy consumption
was addressed directly only by four research groups. However non of them took
into the account the interaction between the the implement and soil.

Non of the presented studies addressed directly the soil compaction. Besides the
minimization of non-working travel distance, replacing heavy tractors with a fleet of
little and lightweight robots was also proposed. However, smaller robots have also
smaller storage and fuel capacity. Therefore, this solution demands for a high num-
ber of service units for loading/unloading and refueling. Consequently, it may in-
crease the non-working travel distance and soil compaction. Furthermore, a smaller
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robot also has less power than a large tractor, and it might not be suitable for all
types of soil and climatic circumstances. Hence, including a soil compaction map,
acquired from previous operations on the field, into CCPP might be a proper solu-
tion to minimize the soil compaction. We refer readers to [131, 41, 54] for further
information about compaction maps.

Soil erosion received only slightly more attention. As described in Section 2.4.2, Only
Jin and Tang [67] integrated a soil erosion model to their approach.

Other constraints could also be mentioned but haven’t been researched in the liter-
ature lately, such as weather circumstances that can affect the state of the soil. For
instance, on a sunny day the most optimal solution may be acquired by a path but
the same path may not be a good choice on deformable soil due to rain. Another
constraint may arise only for operations in which the implement is in contact with
the ground while being used. In such operations, raising and lowering the imple-
ment to the ground can not be done instantly. It must be done gradually while the
robot travels straight forward a few meters. The area covered by the implement in
these few meter should not be considered as worked area. In such operation, the
robot may also have less degree of freedom when the implement is on and lowered
to the ground as contrast to when it is off and raised. Therefore, another constraint is
to forbid a tight turn while the implement is in contact with the ground. These kind
of turns may damage the implement and/or the robot. Neglecting these constraints
would lead to impractical paths or to an overestimation of coverage rate.

Clearly, successfully performing CCPP involves much more than just minimizing
the operation time and the total path length while avoiding obstacles. Directly sat-
isfying all constraints necessitates the integration of complex models, which is a
challenging process that frequently results in extensive calculation times. In addi-
tion, the outcome of an operation depends on earlier operations when taking soil
compaction into account. A multi-robot CCPP would make all of these tasks more
difficult.

2.5 Path Planning

CCPP is a challenging and complex problem. Consequently, a strategy is to split it
into two smaller problems. Therefore, CCPP is always addressed in the literature
as two separate tasks. Based on field data, the first task (CMC) is to create a set of
parallel trajectories to cover the main part of the field. These parallel trajectories
may also be known as parallel tracks or back and forth trajectories. The second task
(AVRP) is to assign the parallel tracks to one or multiple robots and connect them by
half-turns performed inside headlands.

However for some operations such as spraying and crop monitoring, parallel tracks
are predefined based on a tramline farming system which is usually done during
sowing or seeding. To prevent soil compaction caused by wheels in the cultivated
area, permanent parallel wheel tracks (tramlines) are created in the field [11]. There-
fore, to determine the optimal sequence of tramlines for these operations, only an
AVRP approach is required.

The core component of CCPP approaches is path planning. They can be categorized
using a variety of criteria, whether they are offline or online, multi-robot or single
robot, grid-based, graph-based, or based on cellular decomposition. Additionally,
they may be categorized based on the optimization method they use, such as greedy



26 Chapter 2. State of the art

algorithms, dynamic programming, or evolutionary algorithms. We refer the reader
to [43, 72] for further information regarding CCPP algorithms for robotics in general.
The review of Almadhoun et al. [5] on multi-robot path planning is another resource
we suggest to the reader.

Table 2.4 gives an outline of inputs of approaches reviewed in this chapter. It also
precise which approach addressed CMC and/or AVRP. The remainder of this section
describes CCPP approaches in context of two sub-problems, CMC and AVRP.

Ref. Inputs CMC AVRP
[12, 13, 14] Tracks, Initial location: Robot & Service unit ✓

[15]
Field shape, Mobile unit dimensions, Working
width, Minimum turning radius

✓

[17]
Tracks, Initial location of Robots, Minimum
turning radius

✓

[19, 20] Field shape ✓

[21]
Field shape, Working width, Robot steering
rate, its speed and its maximum transverse ac-
celeration

✓

[22]
Field shape, Working width, Robot steering
rate, its speed and its maximum transverse ac-
celeration

✓ ✓

[26, 28, 27]
Tracks, Headland paths, Robots capacity, Min-
imum turning radius

✓

[31, 33] Field shape, Field’s DEM ✓

[37]
Field shape, Entry points, Working width,
Minimum turning radius

✓ ✓

[40]
Field shape, Working width, Minimum turn-
ing radius

✓

[47]
Field shape, Working width, Minimum turn-
ing radius

✓

[50]
Field shape, Number of headland paths,
Working width, Minimum turning radius

✓ ✓

[49]

Field shape, Number of headland paths,
Field’s DEM, Robot speed, Fuel cost, Robot ca-
pacity, Working width, Minimum turning ra-
dius

✓ ✓

[51]
Field shape, Number of headland paths,
Field’s DEM, Driving direction, Working
width, Minimum turning radius

✓

[48]
Field shape, Number of headland paths, Driv-
ing direction, Working width, Minimum turn-
ing radius

✓ ✓

[62]

Field shape, Tracks and headlands, Road net-
work, Mobile unit speed: on tracks; on head-
land and on road, Working width, Minimum
turning radius

✓ ✓
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[64, 63]

Field shape, Reference line, Depot position,
Robot capacity, Preferred field edge to start
work at, Working width, Minimum turning
radius

✓ ✓

[65]

Field shape, Number of headland paths, Ini-
tial overlap length, Headland turning shape,
Working width, Minimum turning radius,
Working velocity, Turning velocity

✓ ✓

[68]
Field shape, Headland width, Working width,
Minimum turning radius

✓

[67]
Field shape, Field’s DEM, Headland width,
Working width, Minimum turning radius

✓

[71] Tracks, Headlands paths, Robot capacity ✓
[86] Occupancy grid map of the field ✓

[87]
Field shape, Headland width, Working width,
Robot width, Minimum turning radius

✓ ✓

[96, 99]
Field shape, Entry points/ Access segments,
Headland width, Reference direction, Work-
ing width, Minimum turning radius

✓ ✓

[100, 101]
Field shape, Number of headland paths,
Working width, Minimum turning radius

✓

[112]
Field shape, Tracks, Headland width, Entry
points, WW

✓

[110] Field shape, Reference line, WW ✓

[111]
Field shape, Headland paths, Interior lanes,
Entry points, WW

✓

[130] A satellite image of the field ✓

[136, 135, 134, 137]
Tracks, Headlands paths, Number of robots,
Minimum turning radius

✓

[139]
Field shape, Headland width, Field’s DEM,
Machinery mass, Rolling friction coefficient,
Working width, Minimum turning radius

✓ ✓

[147, 148]
Tracks, Headlands paths, Number of robots,
Robot capacity, Minimum turning radius

✓

[151, 149, 150]
Tracks, Headlands paths, Robot capacity, Lo-
cation of service units, Minimum turning ra-
dius

✓

[168]
Field shape, Number of headland paths, Driv-
ing direction, Robot capacity, Working width,
Minimum turning radius

✓ ✓

[169]
Field shape, Number of tracks in headlands,
Reference line, WW

✓

[170] Field shape ✓

TABLE 2.4: Inputs & Path planning

2.5.1 Coverage Map Computing

The majority of CMC algorithms work with fields that are represented as 2D terrains.
Only a few studies have attempted to use the field’s 3D data to increase the accuracy
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of CMC algorithms. This section describes in detail 2D and 3D CMC algorithms.

A common CMC method is to generate parallel trajectories based on a reference
direction or the field’s longest edge [21, 50, 48, 64, 63, 96, 99, 168, 170]. Additionally,
constructing parallel trajectories to a curved reference line was also suggested as an
improvement to this principle [47, 62, 110, 169]. For each field border, Edwards et al.
[37] created parallel straight tracks, and the best candidate with the least tracks was
chosen. Mier, Valente, and Bruin [87] applied a brute force algorithm to find the
optimal driving direction while trying discretized angles using a given step size.

To estimate way-points of existing tracks of a vineyard, Mazzia et al. [86] used a deep
learning model and A* algorithm. As an input, their method requires an occupancy
grid of the field and provides, as an output, a set of tracks. Applying a similar
approach, Santos et al. [130] intended to to detect and construct a topological map
of existing tracks of a field from satellite images. Their algorithm can detect and
construct curve tracks.

To generate parallel straight tracks, Jeon et al. [65] applied an approach based on
rotating the minimum bounding box of the field to minimize the number of tracks.
Cao et al. [20, 19] presented an approach based on the rotating calipers algorithm and
probabilistic roadmaps. In their method, the rotating calipers algorithm first gener-
ates a reference direction. Once the reference direction has been applied to the whole
field, the probabilistic road maps are then utilized to connect the ends of the straight
and parallel tracks. To find an optimal reference direction, Cariou et al. [22] applied
a brute force algorithm. Their strategy involves rotating the field polygon in steps
of 1 degree from 1 to 360 degrees. At each step, the external rectangle parallel to the
x and y axes including the field is determined and its area is calculated. Finally the
most optimal reference direction was chosen considering the three following crite-
ria: 1) the longest side of the rectangle was along the y-axis, 2) the rotations leading
to a discontinuity in the driving direction along the y-axis were not kept, 3) from the
remaining rotations, the rectangle which had the minimal area was selected as the
final solution. Their algorithm is limited to simple convex field shapes.

Oksanen et al. [100] and Oksanen and Visala [101] proposed a greedy approach
for dividing the field into trapezoids and constructing blocks from parallel trape-
zoids by using specific rules. The optimal driving direction was determined using
a heuristic algorithm. The search was repeated until the whole field has been di-
vided and processed. Their approach can find a solution for 2D fields with variety
of shapes and any number of obstacles.

Jin and Tang [68] proposed an approach based on undirected graphs to efficiently
divide a 2D field into sub-fields and identify a driving direction for each of them
while minimizing the number of turns and avoiding turns with high operational
cost.

Hameed [49] presented a two-step approach that employs both 2D and 3D models
of a field. First, the optimum driving direction that minimizes the number of field
tracks was determined applying a genetic algorithm on the field’s 2D model. At the
second level, 3D field data was taken into account to determine the optimal sequence
of tracks to ensure that the robot can explore all tracks with the least number of
headland turns and the lowest fuel consumption.

Shen et al. [139] suggested a 3D-based energy model for hilly terrains. After dividing
the field to sub-fields, They utilized this model to determine the driving direction
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that minimizes the energy consumption for each sub-field. The genetic algorithm
was then used to find the best order of sub-fields based on the known location of
entry point of each of them.

Using 2D data of a field, Hameed, Cour-Harbo, and Osen [51] generated parallel
tracks for all directions between 0 and 180. Then they applied and approach to
quantify the skips and overlaps. Finally, the driving direction that simply minimizes
the skips and/or overlaps was selected.

Dogru and Marques [31, 33] proposed a CMC algorithm that employs both 2D and
3D models of a field. To save the slopes contour in a 2D map, their system first esti-
mated the gradient of the terrain and verified it against a threshold. Afterwards, the
resultant map was combined with the 2D obstacle map and the final map was then
partitioned. Finally, the generic algorithm was applied to find an optimal driving
direction for each partition and the order in which the partitions must be visited.

Jin and Tang [67] presented a decomposition approach to divide a terrain into slope
and flat zones, and using field boundaries and slopes contour lines, they identified
a reference direction that results in the lowest coverage costs. In their approach, the
cost of turns in headlands, soil erosion and the curvature of trajectories were directly
addressed. Finally the resultant reference line, that could be curved or straight, was
applied to the entire field.

2.5.2 Agricultural Vehicle Routing Problem

To create a fully autonomous system for field operations, the agricultural routing
problem must be solved using a field coverage map and the robots kinematic and/or
dynamic models. The AVRP algorithm generates a sequence of tracks that can fulfill
a number of optimization requirements, including minimizing the operation time,
fuel consumed, soil compaction, while avoiding dynamic obstacles. Depending on
the characteristics of the robot and the optimization criteria, two successive tracks in
the resulting sequence may be adjacent or not.

As described by Plessen [112], An AVRP algorithm should take into consideration:
1) path following according to a field coverage path; 2) navigation from a position
along the path network to a nearest service unit for recharging and loading or un-
loading the storage tanks; 3) navigation from the service unit back to the position
along the field coverage path for resumption of work.

AVRP can be resolved for a single robot or a fleet of robots. An overview of single
robot and multi-robot approaches is provided in Table 2.3. The remainder of this
section provides details on single and multi robot approaches.

Single Robot

Studies focusing on a single robot operations are included in this section. With just
one robot, the issue of finite storage space quickly arises. This section describes
how the various studies addressed this issue. It is organized based on the number
of stationary service units that are available in the field, from none (the robot has
limitless storage capacity) to multiple.

Assuming one single robot with limitless storage and/or a small field, Edwards et al.
[37] applied a combinatorial optimization algorithm to connect tracks in headland
and connect headlands of sub-fields. Bochtis et al. [15] employed the Clarke-Wright
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method to provide an optimal sequence of tracks. Hameed, Bochtis, and Sorensen
[50], Hameed [48], and Shen et al. [139] used evolutionary algorithms to identify the
best possible track order. Plessen [111] provide an approach based on Eulerian graph
for full and partial field coverage. Their approach can find an optimal sequence of
tracks for fields with an arbitrary concave shape and multiple static obstacles. In
their approach, the problem was first separated into nine in-field routing scenarios.
Then a solution was proposed for each scenario.

Hameed [49] applied an evolutionary algorithm while considering a stationary ser-
vice unit for refilling the robot tank. Under the same consideration, Jensen, Bochtis,
and Sørensen [63] and Jensen et al. [64] presented a method based on the state-space
search strategy, where a solution is a series of planned driving actions that mini-
mize the non-working traveled distance. Plessen [112] presented a pattern-based
approach to reduce total traveled distance. They analyzed the impact of three dif-
ferent coverage patterns (sequential, circular, and modified circular) for identifying
an optimal sequence of tracks. Jeon et al. [65] examined sequential and gathering
patterns to connect the parallel tracks in headlands. In the gathering pattern, the
distance between two successive tracks is approximately half the field’s width. They
integrated in their approach a headland and boundary corner turning methods for
efficiently covering headland and corners. Mier, Valente, and Bruin [87] also pro-
posed a patter based approach that is able to generate different route patterns such
as sequential, row-skip and spiral pattern. The spiral pattern is a variation of the
row-skip pattern, that is able to skip several tracks instead of only one track.

Under the same consideration (one stationary service unit), Zhou and Bochtis [168]
used the Clarke-Wright savings algorithm and the Ant Colony Optimization algorithm
(ACO) to find an optimal sequence of tracks. The general principle of ACO is that
every ant every ant leaves a trail of pheromones along its path, which over time
start to evaporate and lose some of their strength as an attractant. A short path is
taken frequently by ants. The maximum pheromone density is therefore found on
the shortest path. After representing the set of tracks as a weighted graph, their
approach uses a local search in combination with pheromone tracing to optimize the
paths.

Nilsson and Zhou [96] presented a strategy built on the Artificial Bee Colony algorithm
(ABC) while considering one stationary service unit. ABC imitates bee activity in a
manner similar to how ACO does with ants. In order to make the solutions better,
a local search is employed. However, ABC generates a random solution if the local
search does not result in a better solution. That increases the probability of discover-
ing the global optimum. Nørremark, Nilsson, and Sørensen [99] expanded upon this
methodology for grain harvest operations by incorporating a mobile service unit for
on-the-go unloading in both the headland and main field, establishing unloading
timings irrespective of the harvester’s full bin level, and considering the transport
unit’s operational time outside the field. Their main objective was to minimize time
and distance costs for all vehicles engaged in harvest operations.

Considering one or several stationary service units, Vahdanjoo, Zhou, and Sørensen
[151], Vahdanjoo, Madsen, and Sørensen [149], and Vahdanjoo and Sorensen [150]
used the simulated annealing algorithm to identify a sequence of tracks that mini-
mizes the non-working travel distance. The authors experimented various combina-
tions of multiple stationary service units to determine how the number an placement
of service units can affect the non-working travel distance. They claimed that relo-
cating the service units might save the non-working travel distance by up to 40%.
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They also reported that increasing the number of service units could lead to a reduc-
tion of the non-working traveled distance up to 50.9%.

Multi-Robot

The works that took into account several robots operating at once are included in
this section. This section follows the same structure as the previous section with
only one difference that it ends with brief description of approaches that include
one or several mobile service units.

Some researchers assumed an infinite storage capacity for the robots or a small field
that several full-charge robots can cover completely. Solved a mixed-integer linear
programming problem, Burger, Huiskamp, and Keviczky [17] intended to minimize
total traveled distance such that the resultant path is distributed evenly among all
robots. With the intention of minimizing total operation time, Seyyedhasani and
Dvorak [136, 134, 135] and Seyyedhasani, Dvorak, and Roemmele [137] presented
an approach for path assignment among robots using both the Clarke-Wright algo-
rithm and a meta-heuristic algorithm (Tabu Search). Cariou et al. [22] introduced
an approach for identifying preassigned parallel tracks while taking into account a
convoy of homogeneous robots. In order to do this, a virtual robot whose steering
and speed limitations aggregate those of all robots was first created. Then, to join
a group of parallel tracks, suitable continuous curvature turns based on adaptive
clothoids were constructed.

Some other researcher developed approaches that comprised a single stationary ser-
vice unit for loading or unloading. Conesa-Muñoz et al. [26], Conesa-Muñoz, Pa-
jares, and Ribeiro [28], and Conesa-Muñoz et al. [27] introduced and integrated a
novel operator into the Simulated Annealing (SA) to create an expert system for route
planning in agricultural fields. Solution generation and replacement are repeated
by the SA until an acceptable solution is found or until another computational re-
quirement, such as exceeding a predetermined time limit or number of iterations,
is met. To identify the ideal sequence of tracks, Utamima, Reiners, and Ansaripoor
[147, 148] applied an evolutionary algorithm and a neighborhood search. Khaje-
pour, Sheikhmohammady, and Nikbakhsh [71] applied a route-first, clusters-second
heuristic method to find an initial solution. Afterwards, the adaptive large neighbor-
hood search was applied to find a better solution that determines the best sequence
of tracks for multiple robots.

Taking into account a mobile service unit and a primary robot, Evans IV et al. [40]
employed an evolutionary algorithm to identify a sequence of tracks that minimizes
the non-working distances. Their approach is able to find a solution for convex
fields with no obstacles. Jensen et al. [62] utilized the Dijkstra algorithm to generate
optimal in-field and inter-field paths to be followed by a primary robot cooperating
with a mobile service unit. They also examined on-the-go unloading. Bochtis and
Sørensen [13], Bochtis, Sørensen, and Vougioukas [12], and Bochtis and Sørensen
[14] introduced a breadth-first search algorithm, modified by additional heuristics,
in order to minimize the non-working traveled distance. They examined different
combinations of one or multiple primary robots, mobile service units and stationary
service units.
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Discussion

Path planning is the core problem of CCPP. The reliability and effectiveness of CCPP
on a field depends not only on the path planning algorithm but also depends on the
considered constraints and the model of the terrain. The complexity of the problem
necessitates that CCPP be addressed at two levels of optimization, CMC and AVRP.

The primary goal of CMC algorithms, which demand for a reference direction or
trajectory, was generally to generate parallel tracks. A simple strategy was to either
utilize the longest field boundary or take the reference direction as an input. To im-
prove the results, algorithms were then introduced to select the optimal reference
trajectory between field boundaries. In some cases slopes contours were also con-
sidered. Decomposing a concave field shape into convex and simple shapes, then
performing parallel track generation for each sub-field, was another improvement.
Some researchers also proposed advanced optimization strategies including genetic
algorithms, graph-based optimization, brute-force, and heuristic methods. Only two
research groups have employed a deep learning technique to estimate way-points of
existing tracks. It may be seen as a relatively small number of deep learning based
approaches in this domain regarding the success and widespread use of deep learn-
ing in most scientific domains during the past several years.

After calculating a coverage map or using it as an input, the main goal of AVRP was
to assign a set of tracks to one or more robots while taking into account one or more
constraints. Using predetermined patterns such as sequential or circular patterns
was a fundamental strategy. One of the most often used algorithms to perform AVRP
was the genetic algorithm. Other nature-based algorithms, including ant colony and
artificial bee colony algorithms, were also used in this domain. In some cases a
hybrid AVRP was carried out by combining the ant colony with the Clarck-Wright
saving algorithm. Some other hybrid algorithms were also experimented such as a
modified form of Clarck-Wright saving algorithm combined with a tabu search or
an evolutionary hybrid neighborhood search.

Divide and conquer may be an efficient strategy for resolving complex problems
with numerous constraints. The division of CCPP into CMC and AVRP was fre-
quently applied to find a solution in a reasonable amount of time. However, using
this method of division could result in disregarding certain solutions that might be
more beneficial than the ones that have been generated. Therefore, a solution might
be to remodel it as one-step CCPP to find a wide range of potential solutions that
satisfies some hard constraints. Afterwards, depending of the requirement of the
operation, a set of soft constraints can be defined to select the best solutions. The
efficiency to determine the optimal coverage map and assign each robot the best se-
quence of trajectories may also be significantly improved by deep learning, which
hasn’t been widely experimented in this domain yet.

2.6 Validation

Validation is a crucial step in any type of study to determine the efficacy and accu-
racy of a suggested approach. Validation could be challenging for an agricultural
CCPP approach since grand truth is not directly available.

In any kind of research, validation is a very important aspect to assess the accuracy
and efficiency of a proposed method. In agricultural path planning, validation is
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particularly tricky as ground truth is not directly available. To compare a novel
approach to a reference, there are three choices:

• comparison with a reference provided by an expert

• comparison with previous/other methods

• comparison with an exhaustive search

The first strategy involves comparing a resultant path with one suggested by an
expert. The reference path can be drawn by an expert or can be deduced from from
aerial images or GPS data of a tractor used for a field operation. This strategy has
the benefit of guaranteeing viability and feasibility since the expert (often the farmer)
has expertise with the specific field and is aware of the best ways to operate it. The
subjectivity of this reference is a limitation since there is no certainty that the path
identified by the expert as a reference is the absolute optimal path.

Comparing the new method against existing methods in the literature is the second
strategy. There are potentially two challenges in this case. Reproducing the algo-
rithms of the preceding method and the experiment’s settings with reliability is one
of these challenges. When precise implementation of existing methods is feasible,
the same metrics and experimental data may be utilized to evaluate the approaches
in a rigorous and appropriate manner. Otherwise, it is crucial to conduct the new
experiment under identical conditions and with the exact same input data as those
described in the literature, which might be challenging. Proposing and implement-
ing two or more approaches in order to conduct a rigorous comparison is another
solution which is also challenging.

The third strategy involves carefully calculating all feasible paths and choosing the
best one given the specified constraints. This strategy ensures that, given a certain
combination of parameters and constraints, the absolute optimal path is discovered
and used as a reference. However, this reference depends on the selected param-
eters and criteria, and there is no guarantee that different settings might not have
produced a more advantageous path. This issue may be partially resolved by look-
ing through several different parameter values.

Regardless of the selected validation strategy, the fields (input data) on which the
validation is conducted might either be actual fields or synthetic fields. Aerial im-
ages or data, collected by a GIS software, can be used to designate actual fields.
Despite the fact that synthetic fields may not accurately reflect reality, they offer the
benefit of being customizable.

Table 2.6 summarizes the validation settings for each work. The validation strategy
is represented in Column Validation of this table, where the word EXPERT denotes
validation by an expert, and the word COMP stands for comparison with other ap-
proaches or evaluation of two or more novel approaches. In certain works, experi-
ments have been conducted by changing several parameters for a single approach,
such as the number of robots or service units, or considering different case studies,
and comparing the outcomes. They are distinguished by the word PARAM. When
the findings had been published without a comparison, the validation was denoted
with a NON. The type of model used to represent the field in the method is shown
in Column Field type, with SYNTH denoting a synthetic field model. REAL denoting
models created using actual field coordinates, and BOTH denoting the case where
the authors performed the validation using both field types. It is essential to note
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that not all of the identified papers had the same objectives, considerations, or even
evaluations.

Ref. Field area (ha) Field type Validation Computation time Resources
[12, 13, 14] BOTH PARAM
[15] 10 BOTH COMP
[17] SYNTH NON
[19, 20] BOTH NON
[21] SYNTH PARAM
[22] REAL COMP

[26, 28, 27] SYNTH COMP
Core i5 3.3 GHz CPU

4 GB RAM
[31, 33] 0.1 - 0.6 SYNTH COMP
[37] 1.2 - 12.4 REAL EXPERT
[40] 11.5 - 27.2 REAL EXPERT

[47] 0.2 - 44.9 REAL PARAM 0.1 - 402.6 s
3.2 GHz CPU

1 GB RAM

[50] 7.9 - 17.2 REAL PARAM 18.8 - 23.7 min
2.4 GHz CPU

2 GB RAM
[49] 11.2 - 21.2 REAL COMP 66 - 380.1 min

[51] 21.2 BOTH
COMP

PARAM
[48] 21.2 REAL PARAM

[62] 6.7 - 7.6 REAL PARAM 0.1 s
2.5 GHz CPU

3 GB RAM
[64, 63] REAL EXPERT 7 min
[65] REAL PARAM

[68] BOTH
EXPERT
COMP

60 s
3.2 GHz ×4
1.5 GB RAM

[67] 24 - 48 REAL COMP

[71] SYNTH
EXPERT
PARAM

Core i5 CPU
4 GB RAM

[86] BOTH EXPERT
Core i5 CPU
4 GB RAM

[87] 0.01 - 1 BOTH
EXPERT
COMP

0.5 - 3.5 s
Core i7 2.8 GHz

4 cores, 8 threads

[96, 99] 5 - 26.5 BOTH
EXPERT
PARAM

0.6 - 400.7 s
Core i7 2.8 GHz

16 GB RAM
[100, 101] 3.9 (average) REAL COMP
[112] BOTH COMP
[110] 10.3 - 62.9 REAL COMP

[111] 13.5 - 74.3 REAL COMP 0.1 ms - 14 s
Core i7 4.2 GHz ×8

15.6 GB RAM

[130] 2.3 - 5.2 REAL COMP
Core i7 2.2 GHz ×12

16 GB RAM

[136, 135, 134, 137] 2.5 - 25.6 BOTH
EXPERT
COMP

[139] 0.2 - 2 REAL PARAM Core i5-1035 PC
[147, 148] BOTH COMP

[151, 149, 150] 0.1 - 16 BOTH COMP 93 - 139 s
Core i5 2.5 GHz

4GB RAM
[168] 3.3 - 4.1 REAL EXPERT

[169] 10.3 - 75.0 REAL PARAM 0.3 – 24.5 s
3.2 GHz CPU

4 GB RAM
[170] SYNTH COMP

TABLE 2.5: Validation settings

Discussion

As summarized in Table 2.5 none of the works have been validated against an ex-
haustive search, although it is a frequent strategy for validating optimization meth-
ods. The main reasons behind it could be the complexity of an exhaustive approach
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and the limitation of resources. Additionally, we can see that some researchers have
published their findings without making any comparisons. Since the optimization
criteria differ depending on the operation type and the preferences of individual
farmers, comparing CCPP approaches can be challenging in practice.

We can notice that almost 83% of the studies were validated on models generated
from actual fields coordinates while almost 50% validated on synthetic data only. A
validation on synthetic cases provides a better control over the types of shapes and
their variety, and allows to experiment on particular cases, it is also important to
validate on actual data. Validating on actual data often provides information about
the solution chosen by the farmer, that may be considered as a ground truth or expert
solution to compare the results.

2.7 Conclusion

Path planning for wheeled agricultural robots to cover a field autonomously is a
complex task that requires consideration of various factors and constraints. In this
chapter different challenges of CCPP and proposed approaches to address this prob-
lem were analyzed through a systematic review. 49 articles were included in this re-
view, which have been categorized and analyzed from different perspectives: terrain
modeling, constraints modeling and path planning.

Despite all of difficulties and complexity of CCPP, several researchers have provided
approaches to solve the problem. The suggested solutions often use divide and con-
quer strategy and/or simplify the hypotheses of the problem to generate interesting
paths through efficient algorithms.

Depending on the operation and required machinery to perform a CCPP, several
factor and constraints must be taken into account. Estimating the efficiency of a path
simply through the total time required for a complete coverage and/or through the
path length may be an oversimplification for some operations such as tillage like
operations. Using 2D data of non-flat field to compute skips and overlaps may not
be appropriate. In presence of inclinations, the minimization of the total path length
may not be sufficient for minimizing the energy consumption. Obstacle avoidance
can not be limited only to static and permanent obstacles. It is also important to take
into account temporary obstacles such as natural basins due to the rain and dynamic
obstacles such as animals.

To create an effective path for one or more robots in such a complex and dynamic en-
vironment necessitates accurate models of robots, field, soil erosion, and compaction
in different climates. However, no study included in this review covers all the fac-
tors and constraints of CCPP. Therefore, further efforts are required to account for
all constraints through realistic and accurate models. Such models and the interac-
tion between them could be extremely complex and demand for massive processing
resources. Accelerating computations using GPUs and parallel programming may
be a possible solution to achieve this goal.

Although this survey does not discuss the problem of real-time robot navigation
during an operation, the precision of navigation and the ability to follow the planned
path are also essential factors that can significantly affect the operation’s outcome.
These topics remain outside the scope of this thesis.
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In conclusion, this chapter provides a comprehensive overview of the state of the art
in CCPP for autonomous wheeled agricultural robots, highlighting the challenges
and proposed solutions in the literature. However, further work is needed to de-
velop more realistic and accurate models that can account for all the constraints of
CCPP.
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CHAPTER3
Terrain modeling: Data Acquisition
and Dataset construction

Terrain modeling is the process of creating a digital representation of the physical
land surface. This representation can be either in 2D or 3D format and serves as a
basis for various activities such as path planning, soil erosion analysis, and energy
consumption estimation. The quality of the model may have a direct impact on the
accuracy of the results of these applications.

2D terrain modeling involves creating a two-dimensional representation of the ter-
rain surface, which is usually a flat projection of the actual terrain onto a plane. On
the other hand, 3D terrain modeling involves creating a three-dimensional repre-
sentation of the terrain surface, which takes into account the actual topography and
elevation variations. This representation is usually created by interpolating eleva-
tion data to create a continuous surface that accurately represents the terrain in 3D.

In general, 3D terrain modeling provides a more accurate representation of the ter-
rain surface compared to 2D modeling, as it takes into account the actual elevation
variations and topography. Despite these advantages, the use of 3D models in agri-
cultural terrain modeling is still limited. This is primarily due to the computational
complexity associated with creating and processing 3D models.

In this chapter, we will provide a comprehensive overview of the data required for
generating both 2D and 3D models of a field. This will include a discussion of some
approaches for creating these models. Additionally, a dataset of thirty fields located
in France will be provided, which can be used to evaluate the performance of differ-
ent applications such as path planing, soil erosion analysis, and energy consumption
estimation approaches. This will also help to provide a better understanding of the
advantages and limitations of both 2D and 3D terrain modeling, and will provide a
basis for further research and development in this area.

The remainder of this chapter is organized as follows: the various data required
and their acquisition methods are discussed in detail in Section 3.1. Approaches
for creating 2D and 3D terrain models of a field are presented in Section 3.2. The
generated dataset, including thirty fields located in France, is described in Section
3.3. The chapter is concluded in Section 3.4.
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3.1 Data Acquisition

Accurate data acquisition is a critical aspect in constructing a realistic field model.
It is the foundation for generating a reliable representation of the terrain surface.
A field model that is based on inaccurate or inconsistent data can lead to incorrect
results in various applications. Furthermore, a field model that lacks precision can
negatively impact the effectiveness of decision-making processes that are based on
the model.

In this section, the necessary data for agricultural path planning and methods of
acquiring it are discussed in detail. The required data to construct both 3D and 2D
model of a field for this application include:

• a set of counterclockwise points representing the field border

• one or several pair of points representing access segments

• elevation data of the field, if available

• optionally some sets of clockwise points representing static obstacles

where access segments of the field are 2D line segments (i.e., pair of points) overlaid
on the field boundaries that specify the locations from where the robot can enter and
exit the field.

FIGURE 3.1: The Géoportail [45] annotation tool. a field polygon, an
obstacle inside it and one access segment are annotated in red, blue

and green

The access segments, the field and the obstacles borders are acquired using Géo-
portail [45] annotation tool. This annotation tool provides a GUI allowing to draw
geometrical forms such as points lines and polygons on satellite images and export
them as a Keyhole Markup Language (KML). KML is an XML notation for expressing
geographic annotations developed by Google. Therefore, a single KML file can con-
tains coordinate of the field and obstacles polygons as well as the coordinate of the
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access segments. Fig. 3.1 illustrates the annotation tool where an aerial image of the
field is displayed. In this figure, a field polygon, an obstacle inside it and one access
segment are also annotated in red, blue and green.

The elevation data of a field are acquired using IGN elevation calculation services
[58]. It is a Representational State Transfer API (REST API) that takes as input a point’s
coordinate and returns its elevation. IGN also provides DEM of the French territory
with three different resolutions: 1, 5 and 25 meters. However, downloading these
data require a huge amount of disk space.

Therefore, to acquire the elevation data of a field, a grid of points with a spacing
of ℓe, named elevation grid, is first generated inside the field bounding box. After-
wards, the REST API is employed to determine the elevation of each point of the
elevation grid. However, depending on the number of points, this method could be
extremely slow. For instance, setting ℓe to 0.5m, it takes over 13 hours to determine
the elevation of 136859 points for a field of 3.34ha. For a high resolution elevation
grid, this API might also produce some noises. This case is illustrated on Fig. 3.2,
where only points inside the field polygon are kept and for a better visualization, it
is represented as a surface.

FIGURE 3.2: High resolution elevation data acquired using the REST
API of IGN [58]

To address the challenges posed by acquiring high resolution elevation data using
the REST API, a practical solution is to create a lower resolution elevation grid with
a point spacing of ℓe = 5m. The altitude of the points in this grid is then determined
using the REST API. In addition, for each point in the elevation grid, a normaliza-
tion is applied to set the minimum altitude to zero, while preserving the original
elevation variation. Therefore, for all points Pi(xi, y,i , zi) in the elevation grid the
following normalization is applied:

zi = zi − zmin (3.1)

where zmin denote the minimum altitude of the elevation grid.

The resulting low-resolution elevation grid can then be used to construct a high-
resolution 3D surface of the field through elevation interpolation methods. Section
3.2.2 examines three well-known interpolation approaches for the construction of a
3D surface of the field.
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3.2 Terrain Modeling Approaches

Taking as input the required data and converting them from the geographic coordi-
nate system to the Cartesian coordinate system, this section provides a step-by-step
instruction for generating a high resolution 2D surface of a field. Afterwards, a 3D
surface of the field is also generated using the 2D surface of the field, its elevation
grid and a well-known interpolation method.

(A) (B)

(C) (D)

(E)

FIGURE 3.3: Different steps of 2D field construction for a convex field
with one static obstacle
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The implementation of the process of generating a high resolution 2D and 3D sur-
face of a field was carried out using the Visualization ToolKit (VTK) library [132]. VTK
is an open-source, freely available software system for 3D computer graphics, mod-
eling, image processing, volume rendering, scientific visualization, and 2D plotting.
It provides advanced modeling techniques including implicit modeling, polygon re-
duction, mesh smoothing, cutting, contouring, Delaunay triangulation and various
interpolation methods.

3.2.1 2D Surface Construction

The generation of a 2D surface of a field involves the following steps:

• constructing a 2D polygon combining the field and obstacles polygons

• generating a point grid, named 2D grid, inside the field bounding box

• eliminating the points of the 2D grid that are not inside the 2D polygon

• interpolating new points on the field and obstacle borders

• combining the 2D grid and the interpolated points and triangulating them

The result of this process is a homogeneous triangulated surface, with the exception
of possibly being non-homogeneous near the borders of the field and its obstacles.
A visual representation of this process on a small synthetic field is illustrated on Fig.
3.3.

As illustrated on Fig. 3.3a, for a field with only one obstacle, a 2D polygon of the
field is first generated excluding the obstacle (yellow points) from the field polygon
(green points). Afterwards, a 2D grid with a spacing of ℓg generated inside the field
bounding box (red points on Fig. 3.3b). Then, only points contained within the 2D
polygon are preserved. This step is illustrated in Fig. 3.3c. Following that, a series of
counterclockwise points and a series of clockwise points with a maximum spacing
of ℓg are interpolated respectively on the field and obstacle borders (pink points on
Fig. 3.3d). Finally, as illustrated in Fig. 3.3e, all remaining points are triangulated to
generate a 2D surface of the field.

3.2.2 3D Surface Construction

After constructing a high resolution 2D surface of the field, the elevation grid and an
interpolation approach can be used to estimate the altitude of every single point of
the 2D surface. The result of this process is a high resolution 3D surface. To generate
the 3D surface three well-known interpolation approaches are examined.

The first approach is Bilinear Interpolation (BI) [74]. In computer vision and image
processing, bilinear interpolation, also known as bilinear filtering or bilinear texture
mapping, is one of the fundamental interpolation methods. Assuming that the ele-
vation of points P11, P12, P21 and P22, illustrated on Fig.3.4, is already known. The
goal is to calculate the elevation at point P. It can be done as follows:

f (P) = a00 + a10x + a01y + a11xy (3.2)

where f (P) is the elevation at P. The coefficients a00, a10, a01 and a11 are found by
solving the following linear system :



42 Chapter 3. Terrain modeling: Data Acquisition and Dataset construction


1 x1 y1 x1y1
1 x1 y2 x1y2
1 x2 y1 x2y1
1 x2 y2 x2y2




a00
a10
a01
a11

 =


f (P11)
f (P12)
f (P21)
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 (3.3)

where f (P11), f (P12), f (P21) and f (P22) are respectively the elevation at points P11,
P12, P21 and P22. Therefore, this linear system can be solved as follows :
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FIGURE 3.4: Bilinear interpolation

The second interpolation approach is known as Inverse Distance Weighting (IDW)
(first proposed by Shepard [140]). In this approach, the elevation of a point is calcu-
lated with a weighted average of surrounding points that their elevation is already
known. The weights are computed as inverse of the distance to each neighborhood
point. Therefore, the elevation of point P is calculated according to its N nearest
neighbor points {Pi|Pi ∈ R2, i ∈ N, 1 ≤ i ≤ N} as follows :

f (P) =


∑N

i=1 wi(Pi) f (Pi)

∑N
i=1 wi(Pi)

, if d(P, Pi) ̸= 0 for all i

f (Pi), if d(P, Pi) = 0 for some i
(3.5)

where

w(Pi) =
1

d(P, Pi)
p (3.6)

where d denotes the euclidean distance and p is a positive real number, called the
power parameter.

The third interpolation approach, which is based on ray casting first proposed by
Roth [125], is referred to as Ray Casting Interpolation (RCI). To perform RCI, the el-
evation grid is first triangulated to obtain an elevation surface. After that, for each
point P on the field surface a vertical line is constructed at P. The elevation of P is
then determined finding the intersection of the line and the elevation surface.
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After using one of the interpolation methods to create a 3D surface of a field, the
same normalization from Equation (3.1), which was applied to the elevation grid, is
also applied to all Pi(xi, yi, zi) points of the resulting 3D surface. This normalization
helps to standardize the elevation data, making it easier to visualize the final result.

(A) Elevation grid (B) Satellite image

(C) BI (D) IDW (E) RCI

FIGURE 3.5: The visual result of three different interpolation methods
for 3D surface construction for a field of 4.22ha

Fig. 3.5 illustrates the result of the interpolation methods that have been discussed
on a real field of 4.22ha computed based on 2D data. For better visibility, the eleva-
tion grid in this figure is triangulated and shown as a 3D surface. Fig. 3.6 provides
a close-up of the results. To obtain these results, ℓe and ℓg were set to 5 and 0.25 me-
ters respectively. The number of nearest points for BI and IDW were set to N = 20
points and the power parameter of IDW was set to p = 2. Table 3.1 summarizes the
numerical result for each method. Note that each approach used the same elevation
grid and 2D surface that were generated only once.

Table 3.1 presents the area results obtained from the 3D surface generated by each
interpolation method, as compared to the surface computed based on the 2D data.
The results show that the area computed based on the 3D surface is 2.28%, 1.16%



44 Chapter 3. Terrain modeling: Data Acquisition and Dataset construction

and 1.03% higher than the surface computed based on the 2D data using BI, IDW,
and RCI, respectively.

Due to the absence of a ground truth, it is difficult to determine the accuracy of
these methods and compare them. It may require to use a drone equipped with
airborne LiDAR technology to construct an accurate grand truth dataset to study the
efficiency of different 3D reconstruction method for an agricultural field. However a
visual comparison of the outcomes reveals that IDW creates a smoother surface that
appears to be more realistic.

(A) BI

(B) IDW

(C) RCI

FIGURE 3.6: A close-up of a 3D surface generated using three differ-
ent interpolation methods

Method
Generation time (s) 3D surface

Elevation grid 2D surface 3D surface Points Triangles Variation in elevation (m) area (m2)
BI 1855.02 19.03 0.95 676023 1348210 16.0 43110.0
IDW 1855.02 19.03 1.05 676023 1348210 15.7 42639.1
RCI 1855.02 19.03 0.63 676023 1348210 16.2 42584.4

TABLE 3.1: Numerical results of three different interpolation method
for a field of 42150.5m2 (computed based on 2D data)
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3.3 A Dataset of Real Fields

To the best of our knowledge, there is no existing dataset in literature that contains
all the necessary information to evaluate and validate path planning approaches on
both 2D and 3D surfaces of agricultural fields. To address the lack of such a dataset,
we created a dataset of thirty agricultural fields located in France. These fields were
selected manually with the aim of obtaining a diverse range of shapes and sizes
(from 1.83 to 13.21 hectares), including simple shapes where no field decomposition
is necessary and more complex shapes requiring field decomposition. This ensures
that the dataset represents a broad range of real-world scenarios for evaluating and
validating path planning approaches. The dataset, containing all the necessary in-
formation for each of the thirty agricultural fields, is publicly available on Zenodo
[115].

(A) France (B) Poland

(C) Brazil (D) USA - Texas

FIGURE 3.7: Shape of fields in different continents/countries

The shape of agricultural fields is a product of a complex interplay of factors, includ-
ing historical, geographic, and topographic factors, as well as cultural and economic
practices. For instance, fields in countries with a more recent history of land own-
ership and partitioning may be more likely to have a simple, square or rectangular
shapes, while fields in countries with a more complex history of ownership and par-
titioning may have more complex shapes. Similarly, geography and topography can
also play a role in the shape of fields, with fields in flat, open areas likely having
simpler shapes than fields in mountainous, hilly regions and close to forest. For in-
stance, agricultural fields in the US tend to have a rectangular and simple shape,
whereas fields in Western European countries tend to have a more irregular and
complex shape.

Fig.3.7 illustrates the shape of agricultural fields in different continents and coun-
tries, including France, Poland, the US (Texas), and Brazil, with almost the same
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scale. The scale of the image provides a comparative representation of the size and
shape of fields in each location.

The size of agricultural holdings varies significantly across countries and regions. In
France, the average size of agricultural holdings was almost 39 hectares per holding
in 2016, according to Eurostat [39]. In Poland, the average size of agricultural hold-
ings was smaller, at almost 9 hectares per holding in 2016 [39]. In contrast, farms in
the US are much larger than those in France or Poland, with an average size of 180
hectares per farm in 2021 [2]. The large scale of agriculture in the US contributes to
the rectangular and uniform shape of fields, which are optimized for modern farm-
ing practices and machinery. In Brazil, the size of agricultural holdings can vary
widely depending on the region and type of farming, ranging from small family
farms to large industrial agribusinesses. This can result in a diverse range of field
shapes and sizes across the country.

The reason for choosing fields located in France to create a dataset is due to the va-
riety of field shapes in the country, which is partly due to its history and geography.
Additionally, the French government provides high-precision elevation data of the
French territory publicly and for free, making it an ideal location to obtain the nec-
essary information to create the dataset.

For each field, this dataset gathers the following information into separate files:

• an aerial image (PNG)

• a 2D polygon (XML)

• a 2D triangulated surface (PLY), where ℓg = 0.25m

• an elevation grid (PLY), where ℓe = 5m

• a 3D triangulated surface (PLY), with IDW parameters N = 20 and p = 2

• a set of 2D line segments representing the access segments (XML)

where the Polygonal File Format (PLY) is a file format used to store 3D computer
graphics data, including 3D models and 3D scans [146]. It is ASCII or binary file for-
mat that consists of a header and a body. The header contains information about the
format, such as the number of vertices, faces, and the properties of each vertex and
face, such as color, texture, and normal information. The body of the file contains the
actual data of the 3D object. Both the 2D and 3D surfaces of a field were represented
as a 3D model, but the only difference between them is that in the 2D surface, all
points have a z-value of zero.

Figs. 3.8, 3.9 and 3.10 provide an aerial image of each field. The shape of these
fields are illustrated in Figs. 3.11, 3.12 and 3.13 where green line segments represents
access segments. The 3D surface of each field is illustrated in Figs. 3.14 and 3.15.
Table 3.3 gives an access to annotated data on Géoportail [45] platform. For a field,
it provides also a point inside the field. For each field, the calculated area using both
2D and 3D surface of the field is provided in Table 3.2. As summarized in this table,
for all cases, the area of the 2D surface was less than the area of the 3D surface. This
is normal, because none of these fields are completely flat. Therefore, measuring the
area based on the 2D surface always leads to an underestimation.
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(A) field #1 (B) field #2

(C) field #3

(D) field #4 (E) field #5 (F) field #6

(G) field #7 (H) field #8

(I) field #9 (J) field #10

FIGURE 3.8: Dataset: aerial images. Part 1/3
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(A) field #11 (B) field #12

(C) field #13 (D) field #14 (E) field #15

(F) field #16 (G) field #17 (H) field #18

(I) field #19 (J) field #20 (K) field #21

FIGURE 3.9: Dataset: aerial images. Part 2/3
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(A) field #22 (B) field #23 (C) field #24

(D) field #25 (E) field #26 (F) field #27

(G) field #28 (H) field #29 (I) field #30

FIGURE 3.10: Dataset: aerial images. Part 3/3

(A) field #1 (B) field #2 (C) field #3

FIGURE 3.11: Dataset: 2D polygons and access segments. Part 1/3



50 Chapter 3. Terrain modeling: Data Acquisition and Dataset construction

(A) field #4 (B) field #5 (C) field #6 (D) field #7 (E) field #8

(F) field #9 (G) field #10 (H) field #11 (I) field #12

(J) field #13 (K) field #14 (L) field #15 (M) field #16

(N) field #17 (O) field #18 (P) field #19 (Q) field #20

(R) field #21 (S) field #22 (T) field #23

(U) field #24 (V) field #25 (W) field #26

FIGURE 3.12: Dataset: 2D polygons and access segments. Part 2/3
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(A) field #27 (B) field #28 (C) field #29 (D) field #30

(E) field #27 (F) field #28 (G) field #29 (H) field #30

FIGURE 3.13: Dataset: 2D polygons and access segments. Part 3/3

(A) field #1 (B) field #2 (C) field #3

(D) field #4 (E) field #5 (F) field #6 (G) field #7 (H) field #8

(I) field #9 (J) field #10 (K) field #11 (L) field #12

FIGURE 3.14: Dataset: 3D surfaces. Part 1/2
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(A) field #13 (B) field #14 (C) field #15 (D) field #16

(E) field #17 (F) field #18 (G) field #19 (H) field #20

(I) field #21 (J) field #22 (K) field #23

(L) field #24 (M) field #25 (N) field #26

(O) field #27 (P) field #28 (Q) field #29 (R) field #30

FIGURE 3.15: Dataset: 3D surfaces. Part 2/2
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Field #1 #2 #3 #4 #5
2D area (m2) 34038.2 50855.9 72346.3 82293.2 43937.7
3D area (m2) 34076.5 50915.7 72582.8 82351.5 44102.6

Field #6 #7 #8 #9 #10
2D area (m2) 22440.8 45813.8 42150.5 25502.7 38734.5
3D area (m2) 22525.0 45850.7 42639.1 25824.3 38823.5

Field #11 #12 #13 #14 #15
2D area (m2) 78497.4 18861.5 58107.7 19502.8 132047.0
3D area (m2) 78567.6 18883.1 58131.9 19541.5 132149.0

Field #16 #17 #18 #19 #20
2D area (m2) 35911.8 34391.0 18263.8 76803.0 43412.9
3D area (m2) 35958.7 34413.9 18300.8 77056.3 43460.9

Field #21 #22 #23 #24 #25
2D area (m2) 30886.2 22148.3 44999.8 61831.5 62527.0
3D area (m2) 30921.5 22185.6 45103.3 62088.5 62597.0

Field #26 #27 #28 #29 #30
2D area (m2) 104066.0 37968.8 35802.8 26899.1 41456.1
3D area (m2) 104267.0 37999.7 35848.8 27297.0 41505.8

TABLE 3.2: Dataset: calculated area based on 2D and 3D data

Field #1 #2 #3 #4 #5
Link bit.ly/3FYtuKu bit.ly/3WGAyRI bit.ly/3zX1vqJ bit.ly/3DJL0PI bit.ly/3htb8H3

Lon / Lat 7.435◦ / 48.7732◦ 7.474◦ / 48.7825◦ 2.9205◦ / 49.8115◦ 1.6713◦ / 47.9864◦ 3.3216◦ / 50.6623◦

Field #6 #7 #8 #9 #10
Link bit.ly/3WGTfER bit.ly/3DP8vqG bit.ly/3NLmQJf bit.ly/3EeTvUo bit.ly/3UOyTrv

Lon / Lat 7.4311◦ / 48.8245◦ 2.4845◦ / 50.3106◦ 7.5924◦ / 48.831◦ 7.4641◦ / 48.8146◦ 1.3491◦ / 48.012◦

Field #11 #12 #13 #14 #15
Link bit.ly/3zW7v30 bit.ly/3UMC6I3 bit.ly/3TjkOkA bit.ly/3UAmdo0 bit.ly/3GpjdXZ

Lon / Lat 3.4701◦ / 46.652◦ 7.5742◦ / 48.8071◦ 3.578◦ / 46.7016◦ 7.4269◦ / 48.8194◦ 3.5611◦ / 46.6875◦

Field #16 #17 #18 #19 #20
Link bit.ly/3tcGhRN bit.ly/3zW26sE bit.ly/3Trsqlq bit.ly/3DWHgKJ bit.ly/3NN8pnT

Lon / Lat 2.5127◦ / 48.2645◦ 2.6443◦ / 48.2546◦ 7.9196◦ / 48.9513◦ 2.1269◦ / 46.8124◦ 1.5874◦ / 47.1346◦

Field #21 #22 #23 #24 #25
Link bit.ly/3DShkA3 bit.ly/3zZK1dg bit.ly/3TmwcMC bit.ly/3E3l8OK bit.ly/3E0Raeq

Lon / Lat 0.6254◦ / 49.191◦ 2.7067◦ / 50.3336◦ 7.4416◦ / 48.7223◦ 3.1021◦ / 48.2449◦ 1.6183◦ / 49.9655◦

Field #26 #27 #28 #29 #30
Link bit.ly/3tvN0Xg bit.ly/3A0tZ2D bit.ly/3fTlQGl bit.ly/3hBeLL2 bit.ly/3Edm2cN

Lon / Lat 3.5476◦ / 50.1441◦ 3.6644◦ / 48.0046◦ 1.7086◦ / 47.2054◦ 1.6893◦ / 47.1421◦ 3.1018◦ / 48.5853◦

TABLE 3.3: Dataset: links to annotated data of each field in Géoportail
[45] platform as well as the coordinate of a point inside the field

3.4 Conclusion

This chapter has looked at the process of terrain modeling and its role in creating
a digital representation of a physical land surface in either 2D or 3D format. It ex-
plained that 2D terrain modeling creates a flat projection of the actual terrain onto a
plane, while 3D terrain modeling creates a representation that takes into account the
actual topography and elevation variations. Despite the fact that 3D terrain model-
ing offers a more accurate representation of the terrain surface, it has been limited in
its use due to computational complexity. In this chapter, a comprehensive overview
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of the data required for generating both 2D and 3D models of a field was also pro-
vided, along with a dataset of thirty fields located in France.

The dataset generated in this chapter can provide valuable insights into the evalu-
ation of future path planning approaches. However at the moment of writing this
manuscript, it contains fields with no obstacles inside them. As a future perspective,
our aim is to expand the variety of fields by adding more fields, and making it more
comprehensive and convenient.
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CHAPTER4
Problem Statements and Challenges

In this chapter, we will focus on discussing the challenges and constraints associated
with CCPP for various types of agricultural operations. These operations include
fertilizing, harvesting, mowing, planting, seeding, spraying, and tillage. We will
analyze some general metrics and constraints that are applicable to most of these
operations, as well as any additional factors that need to be taken into account, such
as the minimum working distance, turning limits, the implement transition state,
robot capacity, and predefined trajectories or driving direction.

To address these challenges, we will propose a first approach, which is an exhaustive
CCPP approach. This approach involves a complete search of all possible paths
in the field, taking into account the various constraints and limitations. We will
evaluate the performance and limitations of this approach through simulations. The
results of this evaluation will provide a foundation for the development of more
advanced and efficient CCPP approaches in future chapters.

The remainder of this chapter is organized as follows: the challenges and constraints
encountered in CCPP for various agricultural operations will first be covered in Sec-
tion 4.1. An exhaustive approach for CCPP will then be proposed in Section 4.2.
Finally, Section 4.3 concludes this chapter.

4.1 Agricultural Operations and CCPP

Agricultural operations such as fertilizing, harvesting, mowing, planting, seed-
ing, spraying, and tillage are critical processes for ensuring high-quality crops. To
achieve complete coverage of the field during these operations, a CCPP approach
must be used to compute a path for the machinery. This is crucial to guarantee
uniform crop growth and maximize yield.

However, the implementation of CCPP depends on the specific operation being per-
formed and can vary based on the machinery used. As a result, several factors and
constraints must be considered to ensure that the CCPP is performed optimally and
effectively. These factors and constraints may differ between the different types of
operations.

In the rest of this section, the focus will be on providing definitions and examples to
highlight some differences between various types of agricultural operations. After
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that, various metrics and constraints will be discussed that are necessary to ensure
optimal and effective implementation of the CCPP approach for these operations.

4.1.1 Definitions

Depending on the operation and required machinery to perform a CCPP, several
factor and constraints must be taken into account. To begin, let’s define a few terms
and notations. We define w as the working width which corresponds to the implement
width attached to the robot. The implement can be either on or off. Accordingly,
worked area is the surface that is covered while the implement is on. Conversely, the
surface that is never covered while the implement is on is referred to as unworked
area.

For some operations such as tillage like operations, the implement is in contact with
the ground while it is on. In such operations, to perform a half-turn or a tight turn
the implement must be turned off and elevated to avoid damages. To perform such
turns, the minimum turning radius of the robot γo f f must also be respected. When
the implement is on and it is in contact with the ground, it might be possible to
perform slight turns with a greater minimum turning radius γon. Consequently, the
corresponding surface will be considered as worked area.

During such operations, the robot cannot quickly switch the implement state from
on to off or vice versa. It needs to be carried out gradually while the robot advances
straight forward. Therefore, switching the implement from on to off and vice versa is
referred to as transition state. The straight trajectories during the transition state, that
is required before and after each tight turn, have a constant length of ℓt. During these
trajectories, that referred to as transition trajectories, the surface remains unworked.
These unworked areas are referred to as gaps.

For some other operation in which the implement is not in contact with ground or
crops, the implement state can be changed instantly from on to of or vice versa and
the robot can perform tight turns event with an activated implement. Consequently,
except worked and unworked areas other definition are redundant for such oper-
ations. For some other operations the trajectories or the driving direction may be
predefined based on the direction of already grown crops. For instance for spraying,
the trajectories can be predefined based on the previous seeding operation using a
tramline farming system [11]. In such operations the problem can be solve applying
a AVRP approach.

As result, considered definitions, metrics and constraints for an operation may differ
from those for another operation. The remainder of this section discusses all metrics,
constraints, and crucial factors needed for various field operations.

4.1.2 Metrics

Worked area: the first important metric for all operations in is the worked area. This
metric is calculated only when the implement is turned on. In case of a 2D and flat
field the worked area for a straight trajectory can be calculated as the product of the
product of w and the trajectory length. For a slightly curved trajectory, however, it
must be first sampled to a set of points. Having the direction at each simple, the two
lateral ends of the implement are then computed and a trapezoid is created for each
pair of consecutive samples. In this case the worked area is simply the sum of areas
of all trapezoids.



4.1. Agricultural Operations and CCPP 57

In case of a 3D and inclined field, the worked surface for a straight trajectory is first
acquired as a 2D rectangle, and for a curved trajectory as a set of 2D trapezoids.
Once one or a set of 2D polygons is acquired, a triangulated surface of the working
trajectory is constructed in the same way that we constructed a 2D field surface in
Section 3.2. Afterwards, the elevation of each point of the generated surface(s) is
calculated using RCI approach. Finally the worked area is calculated as the sum
of areas of all triangles. Fig. 4.1a illustrates the computed worked area on a 3D
surface for a trajectory of length 30m while w was set to 4m. For this trajectory the
worked area on a 2D surface was 120.0m2 while the worked area on a 3D surface
was 121.5m2.

(A) Worked area

(B) Overlap area

FIGURE 4.1: Illustration of computed worked and overlap areas on
a 3D surface, with worked area represented in blue and overlap in

orange

Overlap area: This metric, that calculates the overlap area of two trajectories, is only
calculated for two trajectories along which the implement is on. A 2D polygon rep-
resenting the worked surface is first generated for each trajectory. Afterwards, a
2D polygon referred to as the intersection surface is created by calculating their in-
tersection. In case of a 2D and flat field the overlap area is simply the area of the
intersection surface. In case of a 3D and inclined field, the overlap area is deter-
mined in the same way as the working area following resampling, triangulation and
elevation interpolation of the intersection surface.

Inside: This Boolean metric verifies whether the robot and its implement are com-
pletely inside the field. An accurate computation of this metric requires the size of
the robot and its implement as well as their position. However, most of the time the
implement width is was greater that the robot width. Therefore, it can be computed
knowing the position of two lateral ends of the implement. This metric can be calcu-
lated using only 2D data because if a point is placed on a polygon’s 3D surface, their
vertical projections on a 2D plane will likewise be superimposed.

Damage: Not all operations require this Boolean metric and it might need to be
customized for different operations. For instance for seeding, it verifies whether
the robot is crossing a previously worked surfaces while its implement is turned
off. This metric in this case is helpful to avoid unnecessary damages to previously
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worked surfaces with the robot wheels, and without working it again. For harvest-
ing, however, it quite opposite. It verifies whether the robot is crossing an area that
is not worked yet while its implement is turned off. This metric, in this case is used
for detecting damages to unharvested crops. These two types of damages are distin-
guished by the terms work damage and crop damage respectively.

The position of the robot’s wheels and/or the implement must be known in order to
calculate the damage. To achieve this, first a 2D polygon of worked area of each prior
traveled trajectory with an activated tool is constructed. Depending on the operation
type, this metric is then calculated deducing whether the robot’s wheels and/or the
implement are located inside at least one polygon. Similar to the previous metric,
this one can likewise be calculated using only 2D data.

the worked area, overlap area, and inside metrics are relevant to all mentioned op-
erations, while the damage metric only applies to specific operations where it is
necessary to avoid damages to crops or previously worked surfaces. Table 4.1 gives
an overview of the damage metric required for different type of operations.

Operation type Fertilizing Harvesting Mowing Planting Seeding Spraying Tillage
Damage NA crop damage NA work damage work damage NA work damage

TABLE 4.1: Damage constraint applicable to various operation types

4.1.3 Constraints and Important Factors

The following constraints can be defined in accordance with the metrics described
in the previous section:

• maximizing the worked area

• minimizing the overlaps

• preventing damages to previously worked areas or to unharvested crops

• the robot and its implement must remain inside the field during the operation

where according to Table 4.1, only for spraying, fertilizing and mowing operations,
preventing damages is not applicable.

To provide a precise and reliable CCPP approach, in addition to these constraints,
additional important factors must be taken into account. These factors are defined
as follows:

The Minimum Working Distance constraint (MWD): This constraint is mainly rel-
evant for operations in which the implement is in contact with the ground while it
is turned on. According to this constraint, the robot must travel at least ∆mwd when
its implement is turned on, to authorize to turn it off. The primary reason of this
constraint is because lowering the implement into the ground and raising it only for
a short distance is can be both inconvenient and expensive.

Turning limit: This constraint is also relevant only for operations in which the im-
plement is in contact with the ground while it is turned on. This constraint indicates
that while performing half-turns or tight turns, the implement must be lifted and
turned off in order to prevent damage to the implement or the robot. Depending on
the implement, slight turns while it is turned on might be authorized.
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Implement Transition State (ITS): For some operations, changing the state of the im-
plement from on to off or vise versa can not be done abruptly. To turn the implement
on or off, a transition state must be performed on a straight transition trajectory.

Robot capacity: The ability of the robot to transport agricultural materials must be
taken into account for some operations. For instance, seeding requires a seed storage
onboard.

Predefined Driving Direction (PDD): For some operations, the trajectories or driving
direction may be predetermined depending on the previous operation carried out
on the field.

Operation type MWD Turning limit ITS Robot capacity PDD
Fertilizing ✓ ✓
Harvesting ✓ ✓
Mowing ✓
Planting ✓ ✓ ✓ ✓
Seeding ✓ ✓ ✓ ✓
Spraying ✓ ✓
Tillage ✓ ✓ ✓

TABLE 4.2: Relevant constraints and factors for various operation
types

Table 4.2 summarizes the constraints and factors that must be taken into account
for different types of operations. However, mentioned metrics, constraints and fac-
tors may varies depending also on the kind of plant being cultivated on the field as
well as the machinery. For instance, harvesting may perform in multiple steps and
require different machinery for forage crops comparing to corn crops.

4.2 Exhaustive Approach for CCPP

This section describes a preliminary attempt towards developing an exhaustive
CCPP approach for a simplified tillage-like operation while considering some of
constraints that were detailed in the previous section.

In general, in terms of processing time and resources, an exhaustive method could
be quite expensive. Therefore, it would not be a feasible approach for widespread
usage. However, such an approach could be applied only on a limited number of
fields with a variety of shapes to find the optimal solution. These solutions can be
then used as references for evaluation further lightweight and robust methods.

4.2.1 Simplified Tillage-Like Operation

To develop the exhaustive approach, a simplified tillage-like operation was consid-
ered with the following assumptions:

• the field contains no obstacles

• the robot can enter and exit the field at any point along its boundaries

• the robot can only move straight forward when the implement is turned on

• the robot can instantly turn on or off the implement
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• the robot has an infinite energy and agricultural material capacity

• there is no distance between the robot and its implement

4.2.2 Tree Construction and Exploration

The exhaustive approach consists of constructing a tree, where each node represents
a pair of location and direction for the robot. The root of the tree represents the initial
location and direction of the robot. The node generation and exploration process
starts from the root using a depth-first exploration approach.

As illustrated in Fig. 4.2, the node generation and exploration start from the root
as a depth first exploration. For each unvisited node three children are generated:
one forward node representing the forward move of the robot while its implement is
turned on, and two turning nodes for turning to right and left while the implement
is off. Therefore, a turn or half-turn can be constructed as a sequence of turning
nodes.

FIGURE 4.2: Construction and exploration of the tree. Orange circle
represents the root. Visited nodes are represented as blue circles while

unvisited nodes are red

As illustrated in Fig. 4.3, the spacing and the direction of turning nodes are chosen
such that it includes a change of direction of 90◦ and 180◦.

FIGURE 4.3: Turn sampling. Visited nodes are represented as blue
circles while unvisited nodes are red

A node generated by the node generation and exploration process is added to the
tree if and only if the robot’s position and the two lateral ends of the implement are
found inside the field.

A path i.e., a sequence of trajectories is represented by a branch of the tree from the
root to a leaf node. A path that covers at least ∆cov percent of the field surface is
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considered as a solution. All found solutions are then added to a solution space and
the one that results the best field coverage is selected.

4.2.3 Computational Time Estimation

The processing time of the exhaustive approach was initially estimated using a syn-
thetic field of 194.0m2. This field is illustrated in Fig. 4.4 while the red arrow indicate
the initial location and direction of the robot.

FIGURE 4.4: The shape of a synthetic field used for estimating the
computational time of the proposed approach

The length of a forward branch and a turning branch was set to 300.0 and 46.9cm
respectively while turning branches were generate with a deviation of 9◦ to the left
and right. w, γo f f , ∆mwd and ∆cov are respectively set to 3m, 1.5m, 9m and 70%.

Two heuristics are also applied to stop the node generation for branches that cause:

• overlap of more than 5% of the field area

• consecutive turning branches that their cumulative length exceeds 10m

To cover at least 70% of the field illustrated in Fig.4.4, we estimated that at least a
sequence of 80 trajectories is needed. This implies that a tree with a height of at least
80 must be constructed and explored.

The number of nodes of a tree where each intermediate node have exactly three
children can be computed as follows:

V =
3d − 1

2
(4.1)

where V is the number of nodes and d indicate the height of the tree (the height
of the root is considered as one). However, in this approach some nodes might
not be validated by imposed heuristics or constraints which would prevent them
from being added to the tree. Therefore the number of nodes can not be estimated
accurately by Equation 4.1.

To determine the number of nodes accurately, first, the precise number of nodes is
calculated for low heights where it is feasible to construct the tree and counting its
nodes in a reasonable amount of time. Therefore, the accurate number of nodes is
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acquired limiting the height of the tree to 10, 15, ..., 65. Afterwards, for a known num-
ber of nodes V, in Equation 4.1, the height of the tree d is replaced by an unknown
variable u that can be calculated by Equation 4.2. Such that, a linear regression be-
tween the height of the tree and u may provide a better approximation of the num-
ber of nodes for greater heights where manually counting the number of validated
nodes can takes too much time. Table 4.3 summarizes the number of node and the
value of u for different heights and Fig. 4.5 illustrates their linear relationship.

u = 1 + log3 (V × 2) (4.2)

Height 10 15 20 25 30 35 40 45 50 55 60 65
V 5.1e2 1.0e4 2.1e5 9.9e5 2.4e6 9.3e6 5.1e7 2.1e8 6.2e8 2.1e9 4.3e9 5.5e9
u 6.1 9.0 11.8 13.2 14.0 15.2 16.8 18.1 19.1 20.2 20.8 21.1

TABLE 4.3: The exact number of nodes for different height of the tree
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FIGURE 4.5: The linear regression between tree heights and calcu-
lated u

According to the linear model, for a tree construction and exploration with a height
of 80, the estimated value of u is 26.5. Replacing d by u in Equation 4.1, the number
of validated nodes is then calculated as 2.2 × 1012.

We also determined that visiting 4 × 106 nodes i.e., generating one forward and two
turning nodes as children of the unvisited node and validating them, takes almost
one minute by one CPU and five second by twelve CPUs. Therefore, covering at
least 70% of the synthetic field takes almost 382 and 32 days respectively by one and
twelve CPUs.

4.3 Conclusion

In this chapter, the focus was on the examination of the difficulties and limitations
encountered in the implementation of CCPP for various agricultural operations, in-
cluding planting, harvesting, fertilizing, tillage, mowing, seeding, and spraying. The
study analyzed common constraints and metrics that apply to most of these opera-
tions, as well as specific considerations including minimum working distance, turn-
ing limits, implement transition state, robot capacity, and predefined trajectories or
driving direction.

A first approach, the exhaustive CCPP approach, was proposed to tackle these chal-
lenges. This approach involved a comprehensive search of all possible paths in the
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field, taking into account the various constraints and limitations. The performance
and limitations of this approach were evaluated through simulations.

The simulation results showed that even for small size fields and a simplified op-
eration with several heuristics while considering only three degree of freedom for
the robot, it took a huge amount of time to find a solution. As a result, it might be
impossible to implement an exhaustive CCPP approach for a field operation using
the available computational resources and programming paradigm.

Although the proposed exhaustive approach was found to be impractical on real-
world fields due to required computational time and resources, it served as a foun-
dation another approach that utilize intelligent tree construction and generation.
This approach is detailed in the following chapter.
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CHAPTER5
Intelligent Tree-based Search

In this chapter a novel CCPP approach is proposed to define the ideal motions of mo-
bile robots across an agricultural field. This approach is inspired from the exhaustive
approach presented in chapter 4 Section 4.2. However, the problem is reformulated
to find feasible solutions for big size fields in a reasonable amount of time. Similar
to the exhaustive approach, this novel CCPP includes a tree construction and explo-
ration to find all potential solutions that satisfy a set of hard constraints. Afterwards,
the best solutions are identified through a process called Similarity check and selection
of optimal solutions. The optimization objectives are to maximize worked area and to
minimize overlaps, non-working traveled distance and operation time.

The remainder of this chapter is organized as follows: The target operations as well
as the objectives and main contributions of the proposed approach are presented in
Section 5.1. Section 5.2 provides a detailed description of this approach. In Section
5.3, The results of an experimental study on real fields is provided and a comparison
to ground truth is conducted. The importance and efficiency of the proposed ap-
proach are also highlighted. Finally, Section 5.4 brings this chapter to a conclusion.

5.1 Objectives, Motivations and Contributions

As described previously in Chapter 4 Section 4.1.3, different constraints and factor
may apply to different kind of operations. For instance, the trajectories for fertilizing
and spraying are predefined based on the prior operations or the direction of plant-
ing/seeding. For these two kind of operations only a AVRP approach is sufficient
to determine the optimal sequence of trajectories while for other kind of operations,
both the trajectories and their sequence must be determined. Therefore, to cover a
wide range of operations, we decided to propose a CCPP approach for tillage like
operations in which the implement is in contact with the ground when it is turned
on. In this way, the proposed approach could be adapted to find solutions for har-
vesting, mowing, planting and seeding with a slight adjustment of the parameters
and/or constraints.

As described in chapter 2, all approaches proposed in the literature, performed
CCPP as two distinct tasks: CMC and AVRP. That appears to be an effective strat-
egy to solve this difficult and complex problem. However, this strategy could have
certain disadvantages and might miss some interesting solutions. We believe that
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generating a coverage path using a one-step approach might lead to some interest-
ing solutions that can not be found by a two-step approach. The novelty of the ap-
proach we provide is to generate the parallel tracks and the turns in a single process,
with the objective of allowing more possible alternatives.

Moreover, a variety of simplifications and assumptions have been applied in the
literature to overcome the complexity of the problem. Most of these simplification
facilitate the identification of a feasible solution for a variety of fields in a reasonable
amount of time, even if it may not be the most optimal. Applying simplifications
might accompany the risk of oversimplification, which might lead to unattainable
solutions in practice. For instance, presuming that a field can be accessible from all
of its boundaries, might result in a solution that the farmer couldn’t use in practice.
Since being accessible from all boundaries is not the case for the majority of fields,
crossing some edges may damage the robot or even the neighboring field.

A basic strategy to solve this problem was to generate an inner offset for a field poly-
gon as headlands. Covering the headlands was then performed manually at the end
of operation. Only Edwards et al. [37], Jeon et al. [65], Nilsson and Zhou [96], and
Nørremark, Nilsson, and Sørensen [99] took into consideration the automatic cov-
erage of the headlands. However Edwards et al. [37] and Jeon et al. [65] considered
all field boundaries as accessible. Consequently, their approaches might generate
half-turns in headlands that cross the field edges. Conversely, another simplification
might be to only consider one or two distinct points as potential entry or exit loca-
tions. This would severely limit the range of potential solutions. This strategy was
utilized by Nilsson and Zhou [96], who only took into account one point for both en-
tering and exiting the field. Only Nørremark, Nilsson, and Sørensen [99] considered
both headland coverage and access segments on the field boundaries.

For operations in which the implement is in contact with the ground while it is
turned on, two other simplifications can be mentioned. The first is supposing that
tight turns can be made with the implement on. This might cause damages to the
implement or reduce its lifespan. The second simplification is to consider that low-
ering and raising the implement could be done instantly which is not true and it
would lead to an overestimation of the worked area.

Therefore, another motivation of this approach is to provide feasible coverage path
for fields of various shapes and size, while preventing oversimplifications as much
as possible. To achieve this goal, we propose an integrated system taking into ac-
count the following considerations and contributions:

• automated identification of entry and exit point on the access segments

• generation of tracks and turns in one step while optimizing worked area, over-
laps, damage, and operation time

• various dividing lines to split complex fields to several simple shape sub-fields

• providing several optimal paths with a variety of properties

• intelligent coverage of the headlands

• geometry of the vehicle and the implement are taken into account:

– offset between the vehicle and the implement

– minimum turning radius of the vehicle when the implement is turned off
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– minimum turning radius of the vehicle when the implement is turned on

• distance needed for lowering/raising the implement is taken into account

• reverse moves are allowed for performing turns and half-turns

• curved edges are taken into account

5.2 Methodology

Our approach include the following three phases:

• preprocessing

• tree-based intelligent search: tree construction and exploration

• similarity check and selection of optimal solutions

Preparing the field is the goal of the preprocessing phase. Its inputs are the field
polygon, one or several dividing lines to split the field polygon if needed, the access
segments, the working width, and the minimum turning radius of the robot. The
output of this step is a set of entrances, the headlands and a set of turning spaces.
Turning spaces are essential for perform a turn from one headland to another or
taking a trajectory inside of a headland.

The second phase, also referred to as exploration algorithm, serves to discover almost
any possible solutions and store them in a solution space. A solution is a coverage
path i.e., a sequence of trajectories that begins at an entrance, covers the field and the
headlands at best, and ends on one of access segments.

If many entrances and/or dividing lines are given, these two phases would be per-
formed numerous times. The number of explorations is equal to the number of en-
tries for a simple field where no decomposition is necessary and the preprocessing
is performed only once.

For a complex field, that d different dividing lines are given and e entrances are
found, it requires to perform d reprocessing and d ∗ e explorations. The approach
conducts also one additional prepossessing and e exploration while considering nod
dividing line. Since the optimal solution for some concave fields might be found
without splitting the field. For instance, detecting three possible entrances and
proposing three distinct dividing lines requires the preprocessing phase to be run
four times (one time with no dividing line plus the number of dividing lines). Con-
sequently, it requires twelve iterations of the exploration algorithm (the product of
four different preprocessing results and three entrances). As a result, the twelve so-
lution spaces acquired by the exploration algorithm are merged into a single solution
space.

The cost of each solution is then calculated during the similarity check and selection
of optimal solutions. Then, families of solutions are constructed by grouping sim-
ilar solutions together using a similarity function. Finally, for each family, just the
least costly solution is preserved. In the following sections, after providing a few
definitions, each of these phases is detailed.
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5.2.1 Definitions

To describe the proposed approach, some notions and notations previously defined
in Chapter 4 Section 4.1 are required. In this section, we provide a brief reminder of
them. These notions can be summarized as follows:

• w: the working width i.e., the width of the implement

• implement sates: on, off and transition state

• worked area: the surface that is covered when the implement is on

• unworked area: the surface that is not worked

• γof f : the minimum turning radius of the robot while its implement is off

• γon: the minimum turning radius of the robot while its implement is on

• transition trajectory: a straight trajectory required during the transition state

• ℓt: the minimum length of a transition trajectory

• gaps: the unworked area due to transition trajectories

• ℓo: the distance between the robot and its implement

5.2.2 Preprocessing: Defining Headlands and Turning Spaces

Before launching the exploration algorithm, a preprocessing phase is required to
determine entrances, generate headlands and turning spaces. The following sections
provide details on each of these preparatory process.

Entrances

An Entrance include the location where the robot can enter the field as well as the di-
rection of the robot at this location. Given the field polygon and the access segments,
our approach determines the entrances on each corner of an access segment where
its distance from the adjacent boundary of the field polygon is w/2. Its direction is
the same as the direction of the adjacent boundary. Once all potential entrances have
been identified, an expert must confirm them or reject those that appear redundant.

Figs. 5.5 and 5.6 represent the selected entrances for the proposed dataset in Chapter
3 Section 3.3.

Headlands

A headland is a space adjacent to the field boundary where half-turns can be per-
formed. When half-turns are performed in a headland, this space is remains un-
worked. Each half-turn also causes two gaps before and after it along the trajecto-
ries. Headlands are generally worked once the main part of the field has been com-
pletely worked or the headland is no longer needed for performing half-turns. Our
approach begins by identifying these headlands and envisioning how they could be
covered.

For each field boundary, a headland area is constructed containing the following
information:

• one outer border that lines up with the field boundary
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• one inner border generated parallel to the outer border inside the field at a dis-
tance of p ∗ w, where p is given as an input, or indicated from w and γo f f

• p inner trajectories generated between the outer and inner borders and parallel
to them, at a distance of w/2 from the borders and w from each other

• one gap-covering trajectory generated inside the field at a distance of w/2 from
the inner border and parallel to it

Fig. 5.1 illustrates these elements with p = 2. Another type of headland is defined
if a dividing line is given. It is completely contained within the field polygon, has
two inner borders, p inner trajectories, and two gap-covering trajectories centered
around the dividing line, and has no outer border. Fig. 5.1 also illustrates this kind
of headland where the dividing line is depicted in brown.

(A) Preprocessing result for a field

(B) A close-up on a preprocessing result

-

FIGURE 5.1: Preprocessing result for p = 2. The field polygon is
represented by blue points and black and green solid segments
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The gap-covering trajectories are utilized to cover the unworked areas created by
gaps, whereas the inner trajectories are mostly beneficial for covering the unworked
areas caused by half-turns.

Turning Spaces

(A)

-

(C)

(D)

FIGURE 5.2: Trajectory (a, c) and tree (b) representations of turns in-
side the turning spaces. Sub-figure (b) is the tree representation of

trajectories of (c)

A turning space is constructed at the angle between two adjacent headlands. A
turning space ensure a safe and feasible turn to travel from one headland to another.
Therefor a turning space can be used for:

• Traveling between inner trajectories of adjacent headlands

• traveling from one of inner trajectories of a headland to the gap-covering tra-
jectory of the another one
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• traveling from the gap-covering trajectory of a headland to one of inner trajec-
tories of the another one

• Traveling between the gap-covering trajectories of adjacent headlands

• switching between sub-fields if a dividing line is provided

As shown in Figs. 5.2a and 5.2c, the angle bisector is first calculated (black dashed
line) for two adjacent headlands. Two turning lines (blue solid lines) are then cal-
culated parallel to the angle bisector with a spacing of l/2 where l is calculated as
follows:

l = max
(√

2(p ∗ w) , 2(ℓo + γo f f )
)

(5.1)

The intersections of turning lines with inner trajectories or gap-covering trajectories
are utilized to determine start and end point of turning trajectories for traveling
from one headland to another. As a result, regardless of angle between two adjacent
headland, turning spaces can guarantee a sufficient space for traveling from one
headland to another.

It is important to note that not all of the headlands and turning spaces produced
during the preprocessing phase will be utilized. The exploration algorithm will de-
termine which ones must be used. Section 5.2.4 provides more details about how
turning spaces and headlands are used.

5.2.3 Trajectory Types and Metrics

It is crucial to present certain practical concepts and metrics to make the proposed
approach easier to comprehend. Hence, this section describes several types of trajec-
tories and all possible and valid sequences that can be formed by these trajectories.
Additionally, metrics included in our approach are described.

To generate continuous and smooth turns, Dubins trajectories (first proposed by Du-
bins [35]) and Reeds–Shepp curves (fist proposed by Reeds and Shepp [120]) have
been employed.

Taking as input a minimum turning radius, the departure and destination locations,
and the orientation of the robot at these locations, both approaches calculate the
shortest curve from the departure to the destination location. To mention their differ-
ence, a trajectory generated by Dubins method contains only forward moves while
the Reeds-Shepp method considers also reverse moves.

A turn containing a reverse move requires the robot to stop, reversing its move,
accelerate, stop, do the reversing again and attain its target speed. As a result, in
terms of trajectory length, a turn produced by the Reeds-Shepp method is optimal.
However, in term of travel time, the Dubins method may provide a better turn. Fur-
thermore, during a slight turn respecting γon, the Dubins method can be employed
to generate slight turns, whereas the implement must remain off if a reverse move
is required. As a result, our approach prioritizes turns without any reversal moves.
A turn with reverse moves is also examined, if performing a turn with no reverse
moves is not possible.
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Taking into account these two types of turns as well as three various states of the
implement (on, off, and transition), six different kinds of trajectories can be defined
as follows:

• STRAIGHT_ON: straight trajectory (implement on)

• DUBINS_ON: turn computed via Dubins method (implement on)

• DUBINS_OFF: turn computed via Dubins method (implement off)

• REEDS_OFF: turn computed via Reeds-Shepp method (implement off)

• GAP_OFF_ON: transition trajectory of length ℓt (implement in transition from
off to on)

• GAP_ON_OFF: transition trajectory of length ℓt (implement in transition from
on to off)

When constructing a sequence of these six kinds of trajectories a few rules must be
respected. As the first rule, a GAP_OFF_ON trajectory must always be followed
by a STRAIGHT_ON trajectory, where both trajectories have the same direction.
The second rule is that a STRAIGHT_ON trajectory only can be followed by a DU-
BINS_ON or a GAP_ON_OFF trajectory. Consequently the third rule indicates that
a GAP_ON_OFF trajectory can be either used for exiting the field or it must be fol-
lowed by a DUBINS_OFF or a REEDS_OFF trajectory. According to the fourth rule,
a DUBINS_OFF or a REEDS_OFF trajectory can be either used for exiting the field
or it must be followed by a GAP_OFF_ON trajectory. These rules are referred to as
trajectory sequence rules. As a remark, a trajectory used for exiting the field must end
up on an access segment.

A path is a sequence of k trajectories, including six types of trajectories. A trajectory

Λi with a length of ℓi, where {i ∈ N|i ≤ k}, is defined as
(
(Pi, ϑi), (P′

i , ϑ′
i), Γi

)
. Here,

(Pi, ϑi) represents its starting point and direction, (P′
i , ϑ′

i) represents its destination
point and direction, and Γi denotes its trajectory type. Assuming that the robot and
its implement are moving in the same directions, Pi and P′

i denote the location of
the implement. The location of the robot on the path can be calculated using the
distance between the implement and the robot.

It is important to note that a DUBINS_ON trajectory must only be used to travel
from one headland to another while respecting γon. The angle between these two
headland must be between π − α and π + α where α is calculated as follows:

α = arcsin
(

l
2 ∗ γon

)
∗ 2 (5.2)

To evaluate the suitability of a trajectory being added to a sequence of trajectories,
the four metrics previously defined in Chapter 4 Section 4.1.2, are employed. These
metric are:

• worked area: only the 2D computation of this metric is considered

• overlap area: only the 2D computation of this metric is considered

• work damage

• inside
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The worked area is only calculable for STRAIGHT_ON and DUBINS_ON trajecto-
ries, and the working area for all other types of trajectories is zero. The overlap area
can be calculated for two trajectories of types STRAIGHT_ON, two DUBINS_ON, or
one STRAIGHT_ON and one DUBINS_ON. Otherwise it is equal to zero.

The work damage verifies whether the robot is crossing a trajectory that was previ-
ously worked (types STRAIGHT_ON or DUBINS_ON), with a new trajectory while
its implement is not turned on (types DUBINS_OFF, REEDS_OFF, GAP_OFF_ON or
GAP_ON_OFF). This prevents unnecessary damages to previously worked surfaces
with the robot wheels without working it again.

5.2.4 Intelligent Tree-based Search: Construction and Exploration

The general idea of the intelligent search is to construct a tree of nodes representing
potential sequences of trajectories (locations, directions, and trajectory types) satisfy-
ing the hard constraints. It takes as input the result of the preprocessing, the access
segments, a set of hard constraints, γon, γo f f , ℓt, ℓo and the coverage threshold. The
concept of a node, the hard constraints, and the procedure for creating the tree are
all explained in the following sections.

Nodes

Every node in the tree represents a potential candidate for the trajectory’s next step.
It includes a flag designating one of the six different trajectory types as well as the
associated destination and direction. A set of parent and child nodes Np and Nc are
represented respectively by (Pp, ϑp, Γp) and (Pc, ϑc, Γc). Consequently, a trajectory

Λc from Np to Nc is represented as
(
(Pp, ϑp), (Pc, ϑc), Γc

)
.

The root of the tree is a specific node represents the entrance location and direction,
as well as a default trajectory type with the implement off. A leaf node of the tree
must contain an exit point located on an access segment, a direction, as well as a
trajectory type for which the implement is not turned on. As a result, a solution is a
path represented by a branch of the tree i.e., a sequence of trajectories from the root
to a leaf node.

Hard Constraints

Each trajectory of a solution must satisfy the hard constraints. In this section five
hard constraints are defined where some of the are previously discussed in Chapter
4 Section 4.1.3. Most of them are linked to one of the previously mentioned metrics.
Therefore, a node Nc = (Pc, ϑc, Γc) can be added to the tree as a child of Np =

(Pp, ϑp, Γp) only if the candidate trajectory Λc

(
(Pp, ϑp), (Pc, ϑc), Γc

)
satisfies all the

hard constraints defined as follows:

Inside constraint: the inside metric of Λc must be true which means the robot and
its implement must remain inside the field during this trajectory.

Damage constraint: the work damage of Λc over trajectories constructed for all an-
cestor nodes of Np must remain false.

Limited overlap constraint: this constraint disallows overlaps in the center of the
field i.e., outside the headlands and the gap-covering trajectories.
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Global overlap constraint: The global overlap constraint imposes a threshold for
the overall overlap area within authorized zones. When adding Nc to the tree, the
overlap area of Λc with all its ancestors is computed, and added to a cumulative
sum. In other words, this cumulative sum represents the total overlap area caused
by all trajectories from root to Nc. If the cumulative overlap exceeds ∆global the node
Nc is discarded. ∆global is the global overlap threshold i.e., a percentage of the field area.
If a dividing line is provided, this metric is applied on each sub-field independently.

Local loop constraint: at a more local level, to prevent undesirable local loops, when
adding Nc to the tree, the overlap area between Λc and its ancestors is computed. If
the overlap area exceeds ∆local the node Nc is discarded. ∆local is a percentage of
the worked area of Λc named local loop threshold. In order to provide the robot a
trajectory towards an access segment to exit the field, an exception is made to the
local loop constraint when the objective in terms of coverage rate is satisfied.

Switch constraint: in case a dividing line is provided, this constraint implies that a
switch between sub-fields is permitted if one of the following cases is met:

• the worked area since the last switch is more than ∆switch i.e., switch threshold

• for the current sub-field, the objective coverage rate is already met

MWD constraint: this constraint makes sure that the total length of successive tra-
jectories STRAIGHT_ON or DUBINS_ON is higher than ∆mwd (i.e., MWD thresh-
old). Therefore, after a STRAIGHT_ON or a DUBINS_ON trajectory, only another
STRAIGHT_ON or DUBINS_ON trajectory is allowed if MWD is not met yet.

Tree Construction and Exploration

The tree construction and exploration can be detailed at two different levels:

• initialization

• node generation and exploration

– cycles of traversals and half-turns

– headland switch

– exiting the field

The initialization outlines the process used to construct the first trajectories. The
process of creating and adding back and forth trajectories to the tree is described as
the node generation and exploration. It describes also how and in which condition
a turning space is used to generate turns that guide the robot to an inner or gap-
covering trajectory of a headland. Finally, it describes possible ways to generate a
final trajectory towards an access segment to exit the field.

Initialization: the tree is first initialized by inserting an entrance N0 = (P0, ϑ0, Γ0) as
the tree’s root. The generation of the first branches of the tree, that illustrated in Fig.
5.3, is describes as follows:

• going straight and start working immediately: in this case, the first trajectory
will be of type GAP_OFF_ON to point N1. Afterwards, the next trajectory will
have to be of type STRAIGHT_ON.

• crossing the headland to point N2 with implement off. afterwards, the next
trajectory will have to be of type GAP_OFF_ON then STRAIGHT_ON.
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• turning immediately in the headland to points N3 or N4. afterwards, the next
trajectory will have to be of type GAP_OFF_ON then STRAIGHT_ON.

These nodes are added to the tree as children of N0 after being confirmed by the
hard constraints. N0 is the marked as visited. Further exploration is then conducted
on unvisited nodes of the tree. Since gap-covering trajectories are mainly utilized to
cover the unworked areas caused by transition trajectories, they are not employed
for the initialization. Consequently they are not illustrated in Fig. 5.3.

-

FIGURE 5.3: Trajectory and tree representation of the initialization.
Orange dashed lines represent trajectories from N0 toward its chil-

dren

Node generation and exploration: a depth first exploration is carried out after ini-
tializing the tree. In general, new nodes are created for each unvisited node while
respecting the trajectory sequence rules. After being validated by hard constraints,
these new nodes are then added to tree as children of the corresponding node. After-
wards, one of these children is chosen for further node generation and exploration.
If all generated nodes for an unvisited node violate at least one hard constraint, the
unvisited node is removed from the tree and the exploration continues on its sib-
lings.

For each unvisited node Np = (Pp, ϑp, Γp), a ray rp that starts from Pp with the
direction ϑp is first generated. Next, the intersection of rp with all headlands and
turning spaces is calculated. Therefore, three following cases are possible:

• rp intersects with the inner border of a headland that leads to generation of a
cycle of traversal and half-turn

• rp intersects with a turning space that leads to a headland switch

• rp intersects with and access segment. In this case exiting the field can be
planned

If the field polygon is divided into sub-polygons by a dividing line, only the inner
borders and turning spaces that are inside the same sub-polygon as Pp are taken
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into account. This helps to reduce the number of unnecessary transitions between
sub-polygons.

Cycle of traversal and half-turn: a cycle of traversal and half-turn refers to a spe-
cific sequence of trajectories. The sequence includes four different types of tra-
jectories: GAP_OFF_ON, STRAIGHT_ON, GAP_ON_OFF and DUBINS_OFF. These
movements can be executed in the main part of the field or within a headland along
the boundary of the field.

In Fig. 5.4, ray rp hits the inner border of the vertical headland on the right, de-
noted as destination inner border, at the position of Nc3. The path that goes from
Np to Nc3, via two intermediate nodes (Nc1 and Nc2), are direct trajectories of types
GAP_OFF_ON, STRAIGHT_ON and GAP_ON_OFF respectively. The possible turns
from Nc3 are then calculated to complete the cycle. To realize it, the location of Nc4
and Nc5 are first determined by finding the intersection of rays rr and rl with the
destination inner border. These two rays are parallel to rp with a spacing of w. The
direction at Nc4 and Nc5 is the opposite direction of ϑp.

In the specific scenario when we are near to a neighboring headland and the trajec-
tory is oblique to it, point Nc6 is also computed as the intersection of rays rr or rl
with the inner border of the neighbor headland. This gives more flexibility to the
algorithm to continue the back and forth moves on the inner border of the neighbor
headland when it arrives at a corner of the field.

Please note that to complete a cycle if a turn of type DUBINS_OFF does not satisfy
the hard constraints, a REEDS_OFF turn is also examined. In other word, if a turn
containing only forward moves is not possible then a turn containing both froward
and reverse moves is also examined.

-

FIGURE 5.4: Trajectory and tree representation of a cycle of traversal
and half-turn. Np is the selected leaf for which the node generation
is conducted. The purple point represents an exit node. For readabil-
ity purposes, turning spaces, inner and gap-covering trajectories of

headlands are not represented in this figure

headland switch: the process of traveling from one headland to an adjacent head-
land via a turning space is referred to as headland switch. It is used to cover the
headlands that remained unworked. It is also useful for going from one sub-field to
another, if the field is divided to sub-fields. Different possible headland switches are
illustrated in Fig. 5.2.
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As shown in Figs. 5.2a and 5.2c, Nc3 located at the intersection of rp and a turning
space referred to as the selected turning space. Fig. 5.2c illustrates a complex case
of headland switch where different ways to travel from the right headland to its two
neighbor headlands are shown. Sub-figure c represents a complex case in which all
possible ways to switch from the right headland to its two neighbor headlands are
shown. Such complex cases only occur around a dividing line.

A headland switch contains also a sequence of a GAP_OFF_ON, STRAIGHT_ON,
GAP_ON_OFF and DUBINS_OFF trajectories. The first three trajectories (trajectories
from Np to Nc3)), are used to arrive at the selected turning space. Afterwards, all
possible turns from Nc3 to other headlands at destination nodes (Nc4, ..., Nc10) are
computed. The location of destination nodes is calculated as the intersection of the
inner and gap-covering trajectories of the target headlands with the corresponding
turning spaces. The direction of a destination node matches the direction of the
target inner or gap-covering trajectory. The trajectory type of these turns is first set
to DUBINS_OFF. If they do not satisfy the hard constraints, their trajectory type is
modified to REEDS_OFF and a turn generation with the Reeds-Shepp method is also
examined. The number of destination nodes depends on the number of inner and
gap-covering trajectories of the target headland/headlands.

Exiting the field: the possibility of exiting the field during a cycle of traversal and
half-turn is examined, if rp intersects with an access segment. In this case the exit
path is a sequence of GAP_OFF_ON, STRAIGHT_ON and GAP_ON_OFF trajecto-
ries. An exit path is illustrated in Fig. 5.4 by the sequence of nodes Np → Nc1 → Nc7
→ Nc8.

Another possible way to exit the field is during a headland switch. This case occur
when a turning space gives an access to an access segment. This case is represented
in Fig. 5.2c with the sequence of nodes Np → Nc1 → Nc2 → Nc3 → Nc11.

In these two cases, a leaf node is generated to determine the end of a coverage path.
After computing the total worked area of a path, it is stored as a solution if the total
worked area is greater or equal to a predefined coverage threshold ∆cov. The output
of the exploration algorithm is a set of valid solutions that is referred to as the solution
space.

5.2.5 Similarity Check and Selection of optimal Solutions

The resulted solution space generally contains a large number of solutions. It is
difficult for a user to verify all these solutions one by one to find the ideal solutions.
To provide only a set of most pertinent solutions to the user, we first propose a cost
function based on four metrics and then describe how we classify the solutions into
families based on a similarity criterion and choose the best solution of each family.

The proposed cost function built as a weighted average sum of four following met-
rics:

• Scov: coverage rate

• Sovl : overlap rate

• Snwd: non-working traveled distance

• Sotm: operation time
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The coverage and overlap rates are calculated for a solution i.e., a path, as the total
worked and overlap areas of the path. The operation time for each path is calculated
as follows:

Sotm =
Lon

Von
+

Lo f f

Vo f f
+

Lgap

Vgap
(5.3)

where Lon, Lon and Lgap are respectively the cumulative length of all trajectories dur-
ing which the implement is on, of and in transition. Accordingly Von, Vo f f and Vgap
are the average speed of the robot when its implement is in on, off and in transition.
Non-working traveled distance for the a path is then can be calculated as Lo f f + Lgap.

After being calculated, each metric S ∈ {Scov, Sovl , Snwd, Sotm} is normalized using
the following equation :

S =
S − Smin

Smax − Smin
(5.4)

where Smin and Smax represent the minimum and maximum value of the correspond-
ing metric across all solutions in the solution space.

Following the computation and normalization of all metrics for each solution, a set
of soft constraint (C) and their weight (W) can be defined as follows:

C = (1 − Scov Sovl Snwd Sotm) (5.5)

W = (Wcov Wovl Wnwd Wotm) (5.6)

where Wcov, Wovl , Wotm and Wnwd are weights given as input for the corresponding
soft constraint. Therefore, the final cost of each solution can be computed as follows:

f =
CW⊺

Wcov + Wovl + Wotm + Wnwd
(5.7)

The produced solution space could include a number of solutions that are quite sim-
ilar to one another and differ just by one or two turns. To eliminate the similarity
while preserving a variety of propositions, the solution space is first divided into
families of solutions based on a similarity criterion. From each family the solution
that has the lowest cost is proposed to the user.

The similarity criteria is based on the general direction of the solutions, which corre-
sponds to the primary direction of the back and forth trajectories i.e., the one that
is utilized the most in the main part of the field. The general direction is calculated
for each sub-polygon if the field polygon is split into sub-polygons. As a result, if
two solutions have the same general direction(s), the are regarded as similar and
added to the same family. Finally, the best solution of each family is proposed to the
user and the most optimal solution is highlighted. The maximum number of families
is determined by the number of potential general directions, which is equal to the
number of field boundaries.
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5.3 Results and Discussion

5.3.1 Experiment

To implement this approach, a program written in C++ was developed that includes
a GUI for setting input parameters and visualizing the output solutions. Through
the use of an OpenMP [104] implementation, all processes can operate in parallel to
speed up calculations. An Intel Xeon(R) W-2135 CPU @ 3.70GHz × 12 with 32GB
RAM were used to run the program.

The dataset proposed in Chapter 3 Section 3.3, were used to evaluate the presented
approach. Twenty of these fields (Fields #1 - #20), referred to as simple fields, have
been used with no field decomposition. Ten other fields (Fields #21 - #30), referred
to as complex fields, for which at least two different dividing lines were provided to
try different field decompositions.

Fig.5.5 and Fig.5.6 respectively show simple fields and complex fields. The field
polygons are represented by black and green line segments, with the green ones
indicating access segments. The entrances are depicted by red arrows, and in Fig-
ure 5.6, dividing lines are shown in brown. It is important to note that during each
exploration, only one of the dividing lines (if provided) and one of entrances will
be used. Therefore, multiple explorations may be performed for a given field, de-
pending on the number of provided dividing lines and entrances, with all possible
combinations of them being considered.

(A) field #1 (B) field #2 (C) field #3

(D) field #4 (E) field #5 (F) field #6 (G) field #7 (H) field #8

(I) field #9 (J) field #10 (K) field #11 (L) field #12

FIGURE 5.5: Simple fields: 2D polygons, access segments and en-
trances. Part 1/2
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(A) field #13 (B) field #14 (C) field #15 (D) field #16

(E) field #17 (F) field #18 (G) field #19 (H) field #20

(I) field #21 (J) field #22 (K) field #23

(L) field #24 (M) field #25 (N) field #26

(O) field #27 (P) field #28 (Q) field #29 (R) field #30

FIGURE 5.6: Complex fields: 2D polygons, access segments, en-
trances and dividing lines. Part 2/2

The approach was applied on each field with the variety of given dividing lines
(if provided) and entrances. Our approach identified several families of solutions
for each field and the best solution of each family is selected. One of them that
had the lowest cost was represented as the most optimal solution and others were
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represented as alternatives to the user. All selected paths were compared to the
ground truth, by visually comparing them to the reference satellite image of the
field, where the tracks are visible. The solution that had the most visual similarity to
the reference satellite image is referred to as the most similar solution.

To determine the most similar solution, the general direction of back and forth moves
in the main part of the field as well as how a field was divided into sub-fields were
verified. We considered a farmer as an expert who is completely familiar with
his/her own field. Consequently, the path that was chosen by the farmer can be
used as a reference.

From satellite images, it was simple to identify the headlands as well as the general
direction of back and forth moves. However, determining the number of trajectories
within a headland as well as the parameters of the vehicle and its implement was al-
most impossible. Therefor, these parameters were guessed at best for each field, and
their averages were then applied to all fields. Table 5.1 summarizes the parameters
used in our approach.

Parameter Description Value
w working width 3m

γon minimum turning radius - implement on 15m
γo f f minimum turning radius - implement off 1.5m
Von average speed - implement on 3.5m/s
Vgap average speed - implement transition 2.5m/s
Vo f f average speed - implement off 1.5m/s
ℓt transition trajectory length 2m
ℓo robot-implement offset 2m
p number of inner trajectories of headlands 2

Parameter Description Value
∆cov coverage threshold 97%

∆global global overlap threshold 5%
∆local local loop threshold 95%

∆switch switch threshold 93%
∆mwd minimum working distance threshold 8m
Wcov weight of Scov 0.6
Wovl weight of Sovl 0.1
Wnwd weight of Snwd 0.2
Wotm weight of Sotm 0.1

TABLE 5.1: The input and parameters of the proposed approach

In the reminder of this chapter an analytical result over the entire dataset is provided.
A subset of the dataset is then chosen to illustrate the results and highlight some
intriguing features of our approach without weighting down this chapter.

5.3.2 Analysis of The Results

Area (ha) Coverage Overlap Single exploration time (s) Selection time (s)
Mean STD Mean STD Mean STD Mean STD Mean STD
4.87 2.82 98.69% 0.62% 3.00% 1.39% 64.70 81.21 1.71 2.71

(A) Simple fields
Area (ha) Coverage Overlap Single exploration time (s) Selection time (s)
Mean STD Mean STD Mean STD Mean STD Mean STD
4.69 2.41 98.23% 0.58% 3.09% 1.17% 617.20 610.02 10.60 15.73

(B) Complex fields

TABLE 5.2: Numerical results of the evaluation

Table 5.2 summarizes the average results obtained from the evaluation. The results
indicate that our approach achieved a coverage rate of 98.69% with an average over-
lap of 3.00% for simple fields, while for complex fields the average coverage rate
was 98.23% with an average overlap of 3.09%. The success of our approach can be
attributed to its ability to handle curved edges and cover headlands efficiently.

In 85% of the simple fields, the solution that was most similar to the satellite images
was also identified as the most optimal solution. However, in the remaining 15%
of cases, although the most similar solution was found by our approach, it did not
meet the predefined criteria for being considered the most optimal solution.
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In the case of complex fields, the most optimal solutions were identical to the most
similar solutions in 70% of the cases. In 10% of the cases, the most similar solu-
tion was found but not considered the most optimal based on the predefined cri-
teria. However, in the remaining 20% of the cases, no similar solution was found.
We found two potential explanations. First, as mentioned earlier, we guessed the
parameters at best. It is possible that the values we used for the thresholds and
vehicle parameters do not match those used by the farmer. Modifying these pa-
rameters, such as lowering the coverage threshold ∆cov and/or raising the global
overlap threshold ∆global , could result in more solutions and potentially increase the
likelihood of finding the most similar solution. Another reason could be that the
farmer might have used certain constraints or preferences that were not taken into
account in our approach. For example, the farmer may have used visual clues to
help guide their work, which could have influenced the trajectory choices, but we
did not consider this as a relevant factor for a robot.

To clarify, the number of explorations conducted for a field is determined by the se-
lected entrances and provided dividing lines. Therefore, multiple explorations were
carried out for each field. As a result, the single exploration time shown in Table 5.2
represents the average and standard deviation of all explorations performed respec-
tively on simple and complex fields.

To provide an overview of the results, here we show the results of a subset of fields
from the dataset, including four simple (#6, #7, #8 and #9) and two complex fields
(#22 and #24).

Field
Exploration Similarity check and selection of optimal solutions

total Solutions time (s) time (s) CW⊺ f Coverage Overlap
#6 2 9459 147.30 0.24 0.000 0.081 0.038 0.049 0.168 98.43% 4.42%
#7 2 2511 22.32 0.07 0.000 0.036 0.022 0.044 0.101 98.58% 1.80%
#8 2 1258 42.16 0.06 0.000 0.048 0.012 0.023 0.083 98.35% 2.66%
#9 2 186 75.4849 0.01 0.000 0.099 0.073 0.085 0.256 97.77% 4.87%
#22 12 82 599.12 0.00 0.000 0.048 0.010 0.014 0.072 97.64% 3.61%
#24 9 280782 2848.74 12.32 0.056 0.036 0.011 0.017 0.121 98.91% 2.01%

(A) Most optimal solution

Field
Exploration Similarity check and selection of optimal solutions

total Solutions time (s) time (s) CW⊺ f Coverage Overlap
#6 2 9459 147.30 0.24 0.083 0.050 0.059 0.045 0.237 98.23% 3.48%
#22 12 82 599.12 0.00 0.398 0.038 0.013 0.012 0.461 97.22% 3.35%

(B) Most similar solution

TABLE 5.3: Numerical results of six fields from the dataset. The most
optimal and most similar solutions are the same for Fields #7, #8, #9

and #24

The obtained results on the six fields are illustrated in Figs. 5.7 and 5.8, and the
numerical results are summarized in Table 5.3. The figures demonstrate that our ap-
proach was effective in covering unworked areas caused by half-turns and gaps, and
was able to intelligently select the headlands to perform half-turns. In addition, Fig.
5.7f illustrates our approach’s ability to handle curved trajectories within headlands.
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(A) #6 - most optimal solution (B) #6 - most similar solution (C) #6 - satellite image

(D) #7 - most optimal & similar
solution

(E) #7 - satellite image

(F) #8 - most optimal & similar
solution

(G) #8 - satellite image

FIGURE 5.7: Obtained results on six fields from the dataset and their
reference satellite image. The black arrows indicate where the robot

enters and exits. Part 1/2
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(A) #9 - most optimal & similar solution (B) #9 - satellite image

(C) #22 - most optimal solution (D) #22 - most similar solution (E) #22 - satellite image

(F) #24 - most optimal solution (G) #24 - satellite image

FIGURE 5.8: Obtained results on six fields from the dataset and their
reference satellite image. The black arrows indicate where the robot

enters and exits. Part 2/2

Our approach for complex fields not only found the most optimal solution, but also
determined the optimal dividing line for field decomposition. Figs. 5.8f, 5.8c, and
5.8d represent the results obtained for the complex fields.

Generating the solution space for Fields #22 and #24 took almost 47 and 10 minutes,
respectively. This is because for these fields, nine and twelve successive explorations
had to be performed to account for all the combinations of entries and dividing
lines. To speed up the process for complex fields, a smart polygon decomposition
that considers the agricultural use case, such as the geometry of the field and the
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inclination, could be computed in a preliminary step. This approach would avoid
unnecessary explorations and accelerate the process.

The presented approach’s one-step strategy was able to produce solutions that cover
multiple sub-fields in a single path, as shown in Figs. 5.8f, 5.8g, and 5.8c. The path
covers the main part and some parts of the headlands of the first sub-field, then
proceeds to cover the second sub-field completely, and finally returns to cover the
remaining headlands of the first sub-field and exit the field. This kind of solution is
not possible with classic approaches that use two sequential steps (CMC and AVRP),
highlighting the interest of our approach’s one-step strategy. The following sections
explore other noteworthy features of the approach.

Interest of Grouping Solutions into Families

Fig. 5.9 depicts the most optimal solution from three distinct solution families for
Field #6, while Table 5.4 provides a summary of the numerical outcomes for each
solution. It is apparent that the differences between these solutions are rather small
according to the numerical results. However, as seen in Fig.5.9, the solutions appear
distinct in terms of their general direction. While two solutions share a similar entry
and exit, the first solution uses a different exit. This highlights the interest of cluster-
ing the solutions into separate families to present a variety of good solutions to the
farmer.

(A) #6 - first family (B) #6 - second family (C) #6 - third family

FIGURE 5.9: Most optimal solution from different families for Field
#6. The black arrows indicate where the robot enters and exits

Field Figure CW⊺ f Coverage Overlap
#6 5.9a 0.000 0.081 0.038 0.049 0.168 98.43% 4.42%
#6 5.9b 0.083 0.050 0.059 0.045 0.237 98.23% 3.48%
#6 5.9c 0.312 0.099 0.181 0.094 0.685 97.68% 4.95%

TABLE 5.4: Numerical results for different families for Field #6
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Benefit of Multiple Entrances

Table 5.5 summarizes the numerical result for each entrance of Field #9 separately.
The most optimal solution was through E1. Considering E2 as the entrance, our
approach was also capable to find some acceptable results. However they were not
as good as the one found while considering E1. That means, taking into account
more entrances enhances the probability of finding a better result. However it also
increases the exploration time. In this specific case, taking E1 into account in addition
to E2 increased the coverage rate by 0.71% and nearly doubled the exploration time.

Field Entrance
Exploration Similarity check and selection of optimal solutions

Solutions time (s) CW⊺ f Coverage Overlap
#9 E1 168 39.79 0.000 0.099 0.073 0.085 0.256 97.77% 4.87%
#9 E2 18 35.69 0.558 0.022 0.000 0.000 0.580 97.06% 3.09%

TABLE 5.5: Numerical results on Field #9 for each of its entrances

Impact of Field Accessibility

The optimal solutions for two scenarios on Field #7 are shown in Fig.5.10: the first
scenario assumes that the field is only accessible from its upper edge, which re-
flects the real-world situation, while the second scenario assumes that the field is
accessible from all its edges, which is an oversimplification. Table 5.6 presents the
numerical results for each scenario. Although we obtained a better solution accord-
ing to the defined criteria with the second scenario, in reality, this solution would
not be feasible as the robot would enter the neighbor’s field from the bottom. This
highlights that an inaccurate description of the accessibility of a field may result in
an unfeasible solution that can damage the robot or the neighbor’s field.

(A) #7 - one accessible edge (B) #7 - all edges are accessible

FIGURE 5.10: Most optimal solutions for Field #7 while considering
it is only accessible from its upper edge (a) or from all its edges (b).

The black arrows indicate where the robot enters and exits
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Field accessible edges
Exploration Similarity check and selection of optimal solutions

Solutions time (s) time (s) Coverage Overlap
#7 1 edge 2511 22.32 0.07 98.58% 1.80%
#7 all edges 10137 35.4729 0.30 98.61% 0.88%

TABLE 5.6: Comparison of results over Field #7 while considering it
is accessible only by its upper edge (real world scenario) and all its

edges

Forward and Reverse Half-Turns

We conducted an additional test on Field #7 to showcase our approach’s capacity
to perform half-turns other than U-turns. In this test, we kept all the parameters
identical to the previous tests, except for γo f f , which was set to 2 meters. As shown
in Fig.5.11, our approach selected to execute half-turns utilizing reverse movements
on the left side of the field, while no reverse moves were necessary on the right side.
Table 5.7 presents the numerical outcomes for this experiment.

FIGURE 5.11: Most optimal solutions for Field #7 when γo f f was set
to 2m. The black arrows indicate where the robot enters and exits

Field
Exploration Similarity check and selection of optimal solutions

total Solutions time (s) time (s) CW⊺ f Coverage Overlap
#7 2 135 7.70 0.02 0.002 0.062 0.059 0.065 0.187 98.46% 2.96%

TABLE 5.7: Numerical results of Field #7 while γo f f was set to 2m

Discussion on Comparative Results

Due to the significant variations in the nature of different approaches, the variety
of constraints considered or not, and the absence of a standardized dataset, it is
challenging, if not impossible, to make a direct comparison between our approach
and existing methods in the literature. To highlight the difficulty of comparing our
approach to previous studies in the literature, we attempted to compare it with an
open-source algorithm named Fields2Cover (F2C), which was proposed by Mier, Va-
lente, and Bruin [87]. F2C takes as input the field polygon, the width of headlands
(p ∗ w), the minimum turning radius of the robot (γo f f ), and one objective function
chosen from three options: minimizing the total path length, minimizing the number
of half-turns in headlands, and maximizing the coverage rate. The objective func-
tion chosen for this comparison was to minimize the number of half-turns. It should
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be noted that our algorithm simultaneously addresses these three constraints un-
der different terminology. It should also be mentioned that F2C does not include
headlands in its coverage computation.

We compared the performance of our approach and F2C on six fields (#6, #7, #8, #9,
#22, #24) by analyzing their computation times, number of half-turns, coverage, and
overlap. Fig.5.12 provides a visual comparison of the results obtained by the two
approaches for Field #6. Our method achieved a higher coverage rate than F2C by an
average of 12.42%. However, F2C had lower overlap area than our approach, with
an average overlap of 0% compared to 3.23% for our method. The computational
time of F2C was significantly lower than our approach, averaging 1.52s for F2C and
624.6s for ours. F2C also had slightly fewer half-turns than our approach, with an
average of 1.5 less half-turns.

However, it should be noted that the comparison of the two approaches must be
viewed in the context of headland coverage. As shown in Figs. 5.12, our method’s
overlaps and extra turns are primarily due to headland coverage, while the absence
of headland coverage in F2C leads to fewer turns, no overlaps, and ultimately less
computational time. Moreover, our method naturally provides better coverage as it
takes into account headlands.

(A) #6 - Our approach (B) #6 - F2C

FIGURE 5.12: Result obtained on field #6 from the dataset using our
approach and F2C
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The general direction of tracks in our approach is aligned with one of the borders of
the field, which is not the case with F2C. This may partly explain the lower coverage
achieved by F2C. Furthermore, the approach presented by F2C will still necessitate
coverage of an extra circular headland, ultimately leading to increased overlaps. Our
method already considers the headland coverage that is not fully circular, resulting
in less required work.

It is worth noting that F2C did not consider transition states of the implement in its
computation. As shown in Fig.5.12b, the right trajectory is too short and cannot be
achieved practically due to the minimal trajectory length required to activate and
deactivate the implement. This will ultimately result in a loss of coverage. These
examples highlight the challenge of comparing various approaches.

To address the limitations of comparing our approach to existing literature, we opted
to visually compare our results to satellite images as ground truth. Nonetheless, this
choice comes with some limitations, mainly due to variations in machinery and the
different preferences and constraints applicable to a human operator versus a robot.
Despite these challenges, we were able to show in this study that our approach can
provide optimal coverage paths, comparable to current practices, suitable for vari-
ous configurations and use cases, fully parameterizable, and achievable in a reason-
able amount of time.

5.4 Conclusion

In this chapter, we proposed a new CCPP approach that uses tree exploration to
generate an optimal path starting from an entrance location, covering the field and
headlands, and ending at an accessible edge of the field. To achieve this, it first con-
ducted one or more explorations while considering multiple entrances and dividing
lines (if provided). The result of this exploration was a solution space that contained
all possible solutions satisfying a set of hard constraints. Finally, a similarity check
and selection of optimal solutions was applied to extract a variety of most optimal
paths without redundancies, by minimizing a weighted average cost function of the
soft constraints. The main goal of this approach was to maximize worked area while
minimizing overlaps, non-working traveled distance, and operation time.

This study revealed that exploring multiple entrances and/or dividing lines can in-
crease the likelihood of finding better solutions. Additionally, it highlighted the im-
portance of considering the actual accessibility of the field when generating optimal
paths.

Currently, our approach is able to generate paths where working trajectories are se-
quential. It would be intriguing to explore other coverage patterns, such as skipping
adjacent rows. Another limitation of our approach is its reliance on dividing lines as
input to simplify complex field polygons into more manageable sub-polygons. This
process can be computationally expensive, as multiple dividing lines must be tested
to identify the one that leads to a better solution.

As we strive for an even more efficient and versatile CCPP approach, in the next
chapter, we will introduce two extensions to the presented approach. The first exten-
sion will incorporate row-skip patterns into the path generation process. The second
extension will focus on automating the field decomposition step and adapting it to
various field characteristics using a deep learning-based method.
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In pursuit of a more efficient and versatile CCPP approach, the next chapter will
introduce two extensions to the approach presented in this chapter. The first exten-
sion aims at incorporating row-skip patterns into the path generation process, en-
hancing its adaptability and performance. The second extension will concentrate on
automating the field decomposition step, tailoring it to various field characteristics
through the application of a deep learning-based method.
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CHAPTER6
Extensions: Row-Skip Pattern and
DL-based Field Decomposition

In the previous chapter, we presented a CCPP approach for autonomous agricultural
robots that generates an optimal path to cover a field and its headlands while min-
imizing overlaps, non-working path length, and operation time. While the original
CCPP approach, hereafter referred to as O-CCPP, demonstrates promising results for
various field shapes, its performance can be further enhanced to be more efficient.

As a reminder, the O-CCPP method, detailed in Chapter 5, comprises three main
steps: preprocessing, exploration, and selection of optimal solutions. In the pre-
processing step, headlands, trajectories within headlands, and turning spaces were
determined. Additionally, entry points were determined by considering the access
segments. The exploration algorithm found every potential solution that adhered
to predefined constraints and stored them in a solution space. Each solution repre-
sented a path, or sequence of trajectories, that began at an entrance, covered the field
completely, and ended at an access segment. Finally, in the last step, the cost of each
solution was calculated, and the ones with the lowest cost were selected.

In this chapter, we introduce two extensions to the O-CCPP approach to increase its
versatility and efficiency. The first extension involves incorporating row-skip pat-
terns into the path generation process, expanding its applicability and enhancing its
performance. The second extension aims at automating the field decomposition step
and adapting it to various field characteristics using a Deep Learning-based method.

In the remainder of this chapter, we will provide a detailed description of these ex-
tensions, exploring how they improve upon the O-CCPP approach and contribute
to a more robust and adaptive path planning process for agricultural robots.

6.1 Row-Skip Coverage Pattern

Skipping rows creates a pattern that can decrease the size of headlands, which are
often less-productive areas due to soil compaction. This technique has the potential
to increase the efficiency of field coverage. However, just as a driver operating a ve-
hicle would prefer to avoid reversing, he or she would also prefer to avoid skipping
rows because of the lack of visual cues to take the right tracks. On the contrary, for
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an automated system or robot equipped with a guidance system, row-skipping is a
perfectly viable option.

Several studies have investigated other coverage path patterns beyond sequential
patterns. For instance, Jeon et al. [65] examined sequential and gathering patterns to
connect the parallel tracks in headlands. In the gathering pattern, the distance be-
tween two successive tracks is approximately half the field’s width. They integrated
in their approach a headland and boundary corner turning methods for efficiently
covering headland and corners. However, they considered that the robot can per-
form rough turns even when its implement is in contact with the ground. This is
an oversimplification that might damage the machinery. It might also lead to an
overestimation of the coverage rate.

Another approach was proposed by Mier, Valente, and Bruin [87], which can gen-
erate different route patterns such as sequential, row-skip, and spiral pattern. The
spiral pattern is a variation of the row-skip pattern that is capable of skipping sev-
eral tracks instead of only one track. However, their approach does not account for
headland coverage.

In this section, we introduce a row-skip pattern approach that is able to generate a
coverage path with a row-skip pattern. Our approach aims at maximizing the cov-
ered area while minimizing overlaps, non-working path length, number of turns
containing reverse moves, and overall travel time. It covers the headlands automat-
ically while considering the geometry of both the robot and its implement.

6.1.1 Methodology

The Row-Skip CCPP also consists of three main parts: preprocessing, exploration,
and selection of optimal solutions. The preprocessing part is exactly the same as the
O-CCPP approach, where the headlands containing p inner trajectories and one gap-
covering trajectory, and turning space are generated based on the working width
and the robot parameters including γo f f , ℓo. It also determines entry points while
considering access segments of the field. For more detail about this process we refer
readers to Chapter 5, Section 5.2.2.

In this variant, the exploration step has been modified to generate solutions with a
row-skip pattern instead of a sequential pattern. Two consecutive working trajec-
tories in the main part of the field are not adjacent, except when they are located
close to a border of the field, allowing to go back and cover the previously skipped
tracks. Finally, the selection of the optimal solution is also slightly modified to take
into account the number of turns containing reverse moves, in addition to the other
soft constraints: coverage rate, overlap rate, non-working traveled distance, and op-
eration time.

Exploration Algorithm

The exploration algorithm takes as input the output of the preprocessing step, a set
of hard constraints, and several input parameters including γon, γo f f , ℓt and ℓo. All
input parameters are summarized in Table 6.1.

The exploration algorithm builds a tree of potential trajectory sequences, consider-
ing three scenarios: generation of a traversal cycle and half-turn, headland switch,
and field exit. Most scenarios remain unchanged from the O-CCPP approach. For
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-

FIGURE 6.1: Trajectory and tree representation of back-and-forth
moves. The purple point represents an exit node. For readability

purposes, only inner border of two headlands are represented

details, refer to Chapter 5, Section 5.2.4. This chapter highlights modifications to the
traversal cycle and half-turn generation.

As illustrated in Fig.6.1, for each leaf node Np a ray rp is constructed based on its
location and the direction of the robot at this location. The intersection of ray rp
with an inner border of a headland leads to the generation of a cycle of traversal and
half-turn.

If the ray rp intersects with an inner border of a headland, a sequence of three trajec-
tories is generated to reach the corresponding inner border. As shown in Fig.6.1, this
sequence includes a gap trajectory from Np to Nc1 to lower the implement, a working
trajectory from Nc1 to Nc2, and an another gap trajectory from Nc2 to Nc3 to raise the
implement. Afterwards, Four side rays rr1, rr2, rl1, and rl2 are then defined, which
are parallel to rp, with two on each side of rp, and are located at a respective distance
of w and 2w from rp. The closest rays rr1 and rl1 correspond to the adjacent tracks,
while rays rr2 and rl2 correspond to a track-skipping move. If the intersections of
the most distant rays rr2 and rl2 with an inner border both exist, two corresponding
nodes Nc6 and Nc7 are generated. Otherwise, nodes Nc4 and Nc5 are also generated at
the intersection with rr1 and rl1. Finally, a turn from Nc3 to each of these new nodes
is generated and added to the tree after being validated by hard constraints.

If there is no intersection between either rr2 or rl2 and an inner border, it indicates
that the robot is close to the field edges. In this scenario, the robot must take an
adjacent track to cover all of the previously skipped rows.

This process, along with other scenarios of the exploration i.e., headland switch and
exiting the field, is repeated for all unvisited nodes. Any sequences of trajectories
that achieve a certain level of coverage rate are stored in the solution space.

Selection of the Optimal Solution

After storing all possible solutions in a solution space, similar to the O-CCPP, cover-
age rate Scov, overlap rate Sovl , non-working distance Snwd and operation time Sotm
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are computed for each solution. However, a new metric, the number of turns with
reverse moves Srvs, is also considered in addition to the previous metrics. After-
wards all these metrics are normalized by following equation:

S =
S − Smin

Smax − Smin
(6.1)

where Smin and Smax represent the minimum and maximum value of the correspond-
ing metric over all solutions of the solution space.

The soft constraints are integrated by defining C = (1 − Scov Sovl Snwd Sotm Srvs)
and W = (Wcov Wovl Wnwd Wotm Wrvs), where Wcov, Wovl , Wotm, Wnwd, and Wrvs are
weights specified as input. The final cost of each solution is obtained by applying
Equation (6.2).

f =
CW⊺

Wcov + Wovl + Wotm + Wnwd + Wrvs
(6.2)

The final solution chosen by our approach is the one with the lowest cost, which is
determined by a combination of different soft constraints and their corresponding
weights. By adjusting the weights assigned to each soft constraint, the algorithm
can be customized to prioritize certain aspects of the path planning process, such as
reducing overlap or minimizing non-working distance. This allows users to tailor
the algorithm to their specific needs and requirements.

6.1.2 Results

To evaluate the performance of the proposed Row-Skip CCPP algorithm (RS-CCPP)
in comparison to the O-CCPP, six fields were selected from the dataset introduced
in Chapter 3 (#4, #5, #7, #11, #19, and #20). These fields vary in size from 4.34 to 8.23
hectares, as shown in Fig.6.2. The implementation and execution of both approaches
were conducted on an Intel Xeon(R) W-2135 CPU @ 3.70GHz × 12 with 32GB RAM.

To obtain a fair value for the cost function, the solution spaces acquired by the ex-
ploration algorithms of both approaches were combined and the selection method
was applied on the combined solution space. This allowed for a direct comparison
of the final cost of the most optimal result found by each approach.

Parameter Description Value
w working width 3m

γon minimum turning radius - implement on 15m
Von average speed - implement on 3.5m/s
Vgap average speed - implement transition 2.5m/s
Vo f f average speed - implement off 1.5m/s
ℓt transition trajectory length 2m
ℓo robot-implement offset 2m

∆cov coverage threshold 96%

Parameter Description Value
∆global global overlap threshold 5%
∆local local loop threshold 95%
∆mwd minimum working distance threshold 4m
Wcov weight of Scov 0.65
Wovl weight of Sovl 0.15
Wnwd weight of Snwd 0.05
Wotm weight of Sotm 0.05
Wrvs weight of Srvs 0.10

TABLE 6.1: The input and parameters of the proposed approach

To compare RS-CCPP and O-CCPP, we investigated the effect of two distinct mini-
mum turning radius values for the robot when its implement is off (γo f f ): 2m and
3m, while keeping other parameters constant. The number of trajectories within a
headland was set to two (p = 2), and other parameters are provided in Table 6.1. To
obtain a comprehensive evaluation, we computed the final cost of the most optimal
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result found by each approach. The results of these comparisons are presented in
Tables 6.3 and 6.4. Fig.6.5 illustrates the most optimal solution for Field #20.

(A) Field #4 (8.23ha) (B) Field #5 (4.39ha) (C) Field #7
(4.58ha)

(D) Field #11
(7.85ha)

(E) Field #19 (7.68ha) (F) Field #20 (4.34ha)

FIGURE 6.2: Access segments are in green. Red arrows are entrances

Field Approach time (s) Coverage Overlap Rvs Lnw (m) f
#4 RS-CCPP 160.59 98.93% 1.23% 2 1184, 17 0.110

CCPP 9.73 98.80% 2.27% 4 3005.92 0.281

#5
RS-CCPP 131.47 98.80% 2.05% 0 1485.36 0.118

CCPP 10.01 98.21% 3.58% 2 1433.84 0.336

#7
RS-CCPP 282.28 98.96% 1.39% 0 1565.47 0.118

CCPP 18.65 98.86% 2.15% 0 1303.98 0.136

#11
RS-CCPP 27.58 97.52% 2.46% 0 1990.87 0.363

CCPP 7.63 98.23% 2.11% 1 1957.83 0.168

#19
RS-CCPP 222.69 99.00% 0.31% 0 1249.25 0.074

CCPP 10.99 99.05% 2.38% 2 1402.57 0.180

#20
RS-CCPP 335.91 98.71% 1.20% 0 1314.63 0.105

CCPP 31.23 98.81% 3.15% 0 1194.58 0.135

FIGURE 6.3: Numerical results γo f f = 2m: time is exploration time,
Rvs counts turns with reverse move, Lnw is non-working distance

Field Approach time (s) Coverage Overlap Rvs Lnw (m) f
#4 RS-CCPP 58.08 98.61% 1.68% 10 2916.47 0.193

CCPP 14.14 98.42% 0.23% 57 882.89 0.199

#5
RS-CCPP 35.92 98.65% 2.01% 48 1415.98 0.201

CCPP 8.70 98.75% 3.31% 71 1080.41 0.224

#7
RS-CCPP 38.48 98.73% 3.39% 34 1206.01 0.193

CCPP 9.01 98.66% 4.35% 74 1117.74 0.312

#11
RS-CCPP 132.44 99.08% 2.28% 10 2013.52 0.137

CCPP 23.96 97.48% 4.24% 103 1485.31 0.585

#19
RS-CCPP 98.97 98.99% 0.31% 4 1243.58 0.088

CCPP 10.54 99.20% 2.09% 80 1093.59 0.188

#20
RS-CCPP 51.86 98.56% 1.20% 48 1222.81 0.140

CCPP 13.73 98.76% 3.12% 48 969.11 0.220

FIGURE 6.4: Numerical results γo f f = 3m: time is exploration time,
Rvs counts turns with reverse move, Lnw is non-working distance
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(A) Simple CCPP

(B) RS-CCPP

FIGURE 6.5: Most optimal results obtained for Field #6 while γo f f =
2m. The black arrows indicate where the robot enters and exits

6.1.3 Discussion

Let us remind that in our approach, turns and half-turns are achieved by first at-
tempting to use only forward moves, using the method presented by Dubins [35].
If this approach is not feasible, the algorithm considers turns that require reverse
moves. Such turns are generated using the method proposed by Reeds and Shepp
[120].

The results obtained by RS-CCPP and O-CCPP with γo f f = 2m are summarized in
Table 6.3. The table shows that, in general, RS-CCPP outperformed O-CCPP for five
out of six fields. Specifically, RS-CCPP achieved a better coverage rate than O-CCPP
for Fields #4, #5, and #7. Moreover, RS-CCPP resulted in considerably less over-
lap for Fields #4, #5, #7, #19, and #20. However, in terms of non-working traveled
distance O-CCPP was better for four fields.

When γo f f was increased to three meters, RS-CCPP outperformed O-CCPP for all
fields, as shown in Table 6.4. By skipping rows, RS-CCPP generated fewer turns
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that involved reverse moves, and reduced overlap rates by nearly 1% in average. O-
CCPP resulted in less non-working traveled distance compared to RS-CCPP, which
can be attributed to the fact that O-CCPP generates more turns that include reverse
moves.

The results depicted in Fig.6.5 reveal that when rows are skipped, the turns require
less space in the headlands. This is due to the fact that a tighter turn tends to have
a bulb shape that takes up more space, while a wider turn may be flatter. This high-
lights the ability of the row-skip pattern to decrease the size required for headlands.
Typically, headlands are less productive regions of a field, and reducing their size
has the potential to increase the productivity of the field.

Depending on various factors such as the characteristics of the robot, the shape and
accessibility of the field, headland width, implement size, and optimization goals,
one method may outperform the other. For example, if the primary objective is to
minimize non-working traveled distance, O-CCPP might be more effective. There-
fore, incorporating both approaches or developing a more advanced CCPP that can
combine both methods could enhance the effectiveness of the final method in finding
optimal solutions.

In conclusion, while the RS-CCPP offers a promising alternative to the traditional
O-CCPP, it is important to note that the current approach does not account for field
decomposition. To further enhance the capabilities of coverage path planning, in
the next chapter we will introduce a novel method that effectively incorporates both
sequential and row-skip patterns, handles field decomposition, and even allows for
the generation of different patterns for different sub-polygons of the field. This ad-
vanced approach aims at providing a more versatile and adaptable solution for op-
timizing field coverage and addressing a wider range of challenges in agricultural
applications.

6.2 DL-based Adaptive Field Decomposition

One of the strengths of the O-CCPP approach lies in its capability to evaluate multi-
ple field decomposition strategies, given a set of input dividing lines. However, this
feature also presents a drawback, as examining various field decomposition possi-
bilities and selecting the one that results in an optimal solution can be highly time-
consuming.

In this section, we present an extension to the O-CCPP that aims at address this
limitation. We propose the development of a deep learning-based method for agri-
cultural field decomposition, which seeks to enhance the efficiency of the O-CCPP
approach. By automating the decomposition step and tailoring it to various field
characteristics, our proposed solution avoids multiple runs of O-CCPP while main-
taining its adaptability and effectiveness.

In the following sections, we will initially present a concise overview of existing
field decomposition methods employed in CCPP approaches found in the litera-
ture, along with a discussion on the application of DL-based methods in agricul-
ture. Subsequently, we will elaborate on the design and implementation of our pro-
posed Deep Learning-based solution, presenting it as an extension to the O-CCPP
approach, aiming at enhance its efficiency and adaptability in complex agricultural
scenarios.



98 Chapter 6. Extensions: Row-Skip Pattern and DL-based Field Decomposition

While our proposed approach may not provide an immediate definitive result, it
offers a valuable perspective for future research, paving the way for advancements
in this domain and enabling further exploration into effective solutions

6.2.1 Overview of Field Decomposition in Agriculture

Field decomposition is a crucial step for addressing fields with complex shapes. In
certain situations, it is also helpful for managing obstacles within the field. It con-
sists of dividing complex shapes into several sub-fields with much simpler shapes,
making it easier to plan coverage paths in agricultural settings.

Most field decomposition methods incorporated in CCPP approaches are shape-
based decomposition methods, which focus solely on the field’s shape during the
decomposition process. Oksanen et al. [100] and Oksanen and Visala [101] inte-
grated a split-and-merge strategy based on a trapezoid decomposition method. Due
to its distinctive shape, a trapezoid serves as an excellent candidate, as its two paral-
lel opposite sides can correspond to the driving direction, while the remaining sides
can function as headlands. Following the division of the field into trapezoids, the
subsequent step involves combining them as much as possible.

With the aim of finding and evaluating all planar subdivisions for optimal path plan-
ning, [68] proposed a method that constructed a topological undirected graph from
the field’s planar subdivision representation, added diagonals, and drew rays from
vertices. This new graph was used to perform depth-first searches, identifying all
possible dividing lines that separated the field into two sub-regions. The process
ensured the discovery of all dividing lines for optimal field decomposition.

Incorporating inclinations into field decomposition, Jin and Tang [67] introduced
an approach for obstacle-free fields that divides terrain into slope and flat zones
using field boundaries and slope contour lines. Dogru and Marques [31, 33] pro-
posed a method tailored for rectangular fields with obstacles. Initially, the terrain’s
gradient was calculated, and a threshold was applied, generating a 2D map delin-
eating boundaries between regions with distinct slopes. This map was subsequently
merged with the provided 2D obstacle map. Finally, the combined map was parti-
tioned into approximately convex polygons.

An effective field decomposition method integrated into CCPP approaches must
consider both the shape and inclinations of a field while minimizing partitioning.
Excessive partitioning could lead to an increased number of headlands for half-
turns, consequently resulting in less productive, compacted soil near the field edges
and dividing lines. It is important to note that some fields, even with complex and
inclined shapes, may not necessitate decomposition. Therefore, an efficient decom-
position method must first determine whether a field requires decomposition or not
and, if so, ensure minimal partitioning.

A CCPP approach is a multi-objective task, and altering the focus on each objective
can significantly impact the overall result. It is more efficient and ideal to let the
CCPP approach decide which partitioning would yield a better outcome based on
the specific objectives of the operation being performed on the field. The O-CCPP
approach, described in the previous chapter, can examine multiple dividing lines
and select the one leading to a better outcome, satisfying a unique set of objectives.
However, it was demonstrated that employing such an approach can be extremely
time-consuming.
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In an effort to address this challenge, we aim at develop a deep learning-based ap-
proach that offers effective field partitioning and optimal driving directions for each
sub-polygon within the field. Prior to exploring the details of this concept, let us
provide a brief overview of the role of Deep Learning in the domain of agriculture.

6.2.2 Overview of Deep Learning-based Approaches in Agriculture

Deep learning (DL) has significantly impacted various aspects of agriculture, enabling
researchers and practitioners to address complex challenges in this domain. The ap-
plications of DL-based approaches in agriculture can be broadly categorized accord-
ing to their primary goals, including classification, detection, segmentation, time
series forecasting, and reinforcement learning.

In the realm of classification and detection, DL techniques have been employed for
identifying and classifying crop diseases, pests [79, 82, 133], weeds [118, 119, 162],
and automating fruit harvesting [103].

Segmentation techniques have been applied to land cover classification [85, 105,
144], facilitating the efficient categorization of various land cover types, including
crops, forests, urban areas, and water bodies. Segmentation techniques have also
been applied for orchard trees segmentation using aerial images Anagnostis et al.
[6] and Sun et al. [143].

Time series forecasting models, such as recurrent neural networks and long short-
term memory networks, have been employed to predict crop yields (Elavarasan and
Vincent [38], Sharma, Rai, and Krishnan [138], and Sun et al. [142]). By analyz-
ing factors like weather, soil conditions, and crop growth stages, these models offer
accurate forecasts, assisting farmers in making informed decisions about crop man-
agement.

Reinforcement learning has been implemented for CCPP in kiwifruit picking robots
[158] and autonomous navigation in paddy fields [1]. These approaches enable
agricultural robots to navigate and perform tasks more efficiently, addressing labor
shortages and enhancing productivity in the sector.

Although deep learning has been applied across various aspects of agriculture using
a diverse range of models, the exploration of generative models in this domain re-
mains limited. Furthermore, only a few works have specifically focused on CCPP for
wheeled robots. To provide a deeper understanding of the current state of research
in CCPP for wheeled robots using DL, we will discuss some of the initial efforts in
this area.

One initial effort was DeepWay [86], an innovative DL-based approach for global
automatic path generation from satellite images of row-based crops. It leveraged
a lightweight DL model that predicted way-points on rows between trees from an
occupancy grid map derived from satellite images. DeepWay performed well on
real-world remote sensing-derived maps. Despite its promising results, DeepWay
had limitations, such as sensitivity to inter-row distance and dependency on ex-
ternal segmentation for occupancy grid map generation. Nevertheless, DeepWay
demonstrated the potential of combining DL and path planning for wheeled robots
in agricultural fields, paving the way for future research and development in this
area.
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In another study, a DL-based CCPP for a kiwifruit picking robot was proposed by
Wang et al. [158]. The researchers developed a deep reinforcement learning-based
method, employing a region partitioning algorithm to convert the CCPP problem
into a traveling salesman problem. The proposed approach resulted in faster con-
vergence and significantly enhanced coverage path efficiency, with a reduction in
path length and overall navigation time compared to existing approaches in the lit-
erature. However, the method’s applicability might have been limited to specific
environments or robotic systems, its performance relied on the quality of collected
environmental data, and it might not have been efficient for larger or more complex
environments due to increased computational resources and time requirements.

Lastly, a framework proposed by [77] consisted of three layers that handled envi-
ronment mapping, path generation, CCPP, and dynamic obstacle avoidance. These
layers worked sequentially, using the results of the previous layer as a reference to
decrease computational effort and improve efficiency. The CCPP approach was a
two-step process that first determined the search direction and then generated the
path using a DL-based method. The search direction aimed to minimize the total
length of back-and-forth coverage trajectories, while the DL-based path generation
used a fully convolutional deep neural network to estimate intersection points and
predict global CCPP trajectories. Advantages of this approach included efficient
path planning, adaptability and scalability, and low spatial complexity. However, it
also had limitations, such as a focus on single-objective optimization, limited start
and end points, lack of consideration for headland coverage, and the possibility of
not generating good coverage paths when the minimum turning radius of the robot
is greater than half of the distance between parallel tracks.

DL has seen considerable progress in agriculture, but few studies focus on CCPP
for wheeled robots. While DL-based CCPP excels in other domain, such as ship
hull inspection robots [91], tetromino-based cleaning robots [75], vacuum cleaning
robots [98], and collaborative unmanned aerial vehicles for monitoring [34]. This
presents an opportunity for further research and development, which can poten-
tially enhance the efficiency and effectiveness of agricultural operations involving
wheeled robots. By understanding and building upon the initial efforts in this area,
such as those mentioned in this section, researchers and developers can explore new
ways to leverage DL for more efficient and sustainable agricultural practices.

6.2.3 Conceptualizing a DL-based Approach for Field Decomposition

The integration of DL techniques in agriculture presents an opportunity to develop
novel solutions for field decomposition and CCPP. However, to develop such an
approach, a suitable dataset is required. To the best of our knowledge, no dedi-
cated dataset exists for this purpose. Therefore, the first step towards creating a DL-
based approach for field decomposition in agriculture is to develop a comprehensive
dataset that accurately represents the diversity of complex field shapes encountered
in real-world agricultural scenarios. This dataset can serve as a benchmark for eval-
uating and comparing various DL-based field decomposition methods, promoting
further research and development in this area.

Based on the assumption that farmers possess a unique expertise and understand-
ing of the distinctive characteristics of their fields, we constructed a dataset of aerial
images that indicate how farmers decompose their fields into sub-polygons (if re-
quired) and which driving direction they used for each sub-polygon. Our objective
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was to use this dataset to train a DL-based model capable of generalizing field de-
composition and determining the driving direction for a field or its sub-polygons
using the field boundaries and elevation data as input.

The proposed concept involves several steps, including data collection, annotation,
data preprocessing, model design, test and validation. In the remainder of this sec-
tion, we will describe each step in detail to provide a comprehensive understanding
of the proposed approach.

Data Collection

The process of data collection is of paramount importance when developing a DL-
based approach for field decomposition. To achieve this, various types of data are
necessary, such as satellite or aerial images, field boundaries, and elevation data. In
order to obtain these data, information from 900 fields located throughout France
was collected from the extensive public data collection maintained by the French
National Institute of Geographic and Forestry Information (IGN [59]). Their public
data collection contains various databases containing several types of geographic,
topographic, and image data covering the entire French territory.

Aerial images: To obtain high-quality aerial images of the fields, the BD ORTHO®

database was relied upon, which provides an extensive collection of aerial images
of the French territory at a resolution of 20cm [57]. The BD ORTHO® dataset is pro-
duced with both RGB and infrared channels, making it an excellent source for cap-
turing detailed information about the fields.

Field boundaries: To extract the contours of the fields, we used the RPG dataset,
which contains polygonal shapes of the fields located in France [60]. The contours
have been extracted automatically for each selected field.

Elevation data: To obtain elevation data, the REST API provided by IGN [58] is uti-
lized. This API offers a service for determining the altitude at one or more specified
points.

Annotation

To facilitate the annotation process of the collected data, an interactive annotation
tool was developed as a plugin for QGIS [7]. QGIS is a free and open-source GIS
software that allows users to create, edit, visualize, analyze, and publish geospatial
information. By developing the annotation tool as a plugin for QGIS, the flexibility
and functionality of QGIS were exploited to provide an efficient and user-friendly
interface for annotating the collected data.

The developed annotation tool allows to iterate through the fields within a specific
area. For each field, the corresponding boundary polygon and aerial image can be
loaded and visualized. Based on visual cues, the user can split the field polygon
into sub-polygons by drawing line segments. Finally, the driving directions for each
sub-polygon can be annotated as line segments as well.

The outcome of the annotation process for a field is a comprehensive set of data,
including high-resolution aerial images of the field in GeoTIFF file format [123],
one or multiple polygons representing the sub-divisions of the field in Shapefile for-
mat [107], and one or several driving directions annotated for each sub-polygon in
Shapefile format.
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Let us note that performing elevation queries for all pixel is a time-consuming pro-
cess that can significantly impair the usability of the annotation process. To avoid
slowing down the interactive annotation, elevation data for each field is added dur-
ing the preprocessing step instead.

Data Preprocessing

Data preprocessing is a critical step in developing a DL-based approach for field
decomposition, as it involves transforming raw data into a format that can be effi-
ciently used by the DL model. In this section, we will discuss the various prepro-
cessing steps employed to prepare the collected data for training and validation of
the proposed model.

Field Boundaries Processing: The Shapefile containing the field boundaries ob-
tained from the RPG dataset is used during the preprocessing stage to extract in-
dividual field polygons and crop the corresponding aerial images. Following this
process, the Shapefile is converted to a single-channel raster file where the value of
each pixel on the boundary represents its direction„ computed and discredited as
an angle between 1 and 180 degrees with a precision of 1 degree. The values of all
other pixels are set to zero. This method elegantly captures the necessary informa-
tion about the field boundaries in a format that can be effectively utilized by the DL
model during training and inference.

It is important to note that a line segment or boundary can form two different angles
with the x-axis, one falling in the quadrants with positive y-values, and another in
the quadrants with negative y-values. In order to maintain consistency and facilitate
the learning process of the DL model, only the angles that fall on the positive y side
are selected. In the special case of a horizontal line segment, which can form both
0 and 180 degrees angles with the x-axis, the 180◦ angle is preferred. This approach
ensures a unified representation of the angles, enabling the model to learn more
effectively from the input data.

Driving Directions Processing: In a similar way, the driving directions contained
in the second Shapefile are discretized as angles between 1 and 180 degrees. Subse-
quently, a single-channel raster image is created in which all pixels inside the field
polygon are associated with their corresponding angle, while all pixels outside the
field are set to zero. This approach effectively captures the driving direction infor-
mation within the field, providing valuable input for the DL model during training
and inference.

Image Cropping and Resizing: The high-resolution aerial images obtained from the
BD ORTHO® dataset may have varying dimensions, making it necessary to crop and
resize the images to a uniform size that is compatible with the input requirements
of the DL model. To achieve this, the images are first cropped based on the field
boundaries, ensuring that the cropped images only contain the area of interest (i.e.,
the field). Subsequently, the cropped images are resized to a fixed resolution, pre-
serving the aspect ratio, to prevent any distortion in the image content. This ensures
that all input images have the same dimensions, facilitating efficient training and
validation of the DL model.

Elevation Data Retrieval: As mentioned earlier, elevation data for each field is ob-
tained during the preprocessing step. For each field, the elevation at each pixel of
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the aerial image is queried using the REST API provided by IGN. This process gen-
erates a single-channel raster file containing the elevation data, where the value of
each pixel represents the elevation at the location of the pixel.

Binary Mask Generation: For each raster image generated in the previous steps,
a corresponding binary mask is also created. They allow to identify the relevant
areas and enable the DL model to focus on the meaningful information within the
field boundaries while ignoring the background or irrelevant regions. Binary masks
further enhance the model’s ability to learn and generalize from the input data ef-
fectively.

Fig.6.6 provides a visual representation of the generated images and their corre-
sponding masks for a single field. It is important to note that a single mask can
be employed for aerial images, driving directions, and elevation data, and this mask
is referred to as the field mask.

(A) Aerial image (B) Driving directions (C) Elevation data

(D) Field mask (E) Boundary directions (F) Boundary mask

FIGURE 6.6: Visual representation of generated images and corre-
sponding masks

The aerial images serve primarily as a reference for annotating the driving directions
during the annotation process. In the preprocessing stage, these images are used to
query the elevation data at the specific locations of their pixels. The aerial images
themselves are not directly incorporated into the DL model.

Data Augmentation: To enhance the robustness and generalization capabilities of
the proposed model, data augmentation techniques are employed during the pre-
processing stage. Four different augmentation functions are applied to each field: a
90◦ rotation, a 180◦ rotation, a horizontal flip, and a vertical flip. For each of these
augmentations, the value of pixels representing a direction (in both the driving di-
rection and boundary images) is modified accordingly to maintain consistency. Data
augmentation generates additional training samples by applying various transfor-
mations to the original images, which increases the diversity and size of the training
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dataset. In this case, the data augmentation process results in 3600 more samples, ul-
timately helping the model to better learn the underlying patterns and relationships
in the data.

Data Normalization: Normalization of the input data ensures that all input fea-
tures have the same scale, thereby improving the convergence and stability of the
model during training. In this case, the relevant input features, including the field
boundaries, driving directions, and elevation data, are normalized to a range of [0, 1].
Through this normalization process, the DL model is enabled to effectively learn and
generalize from the input data across different fields.

Data Splitting: The final step in the data preprocessing stage involves splitting the
collected dataset into training, validation, and test sets. This ensures that the model
is trained on a diverse range of samples, validated on a separate set of samples to
fine-tune the model hyperparameters, and finally tested on a completely unseen
set of samples to evaluate the model’s performance. A common approach for data
splitting, such as the 70− 15− 15 rule, is employed, where 70% of the dataset is used
for training, 15% for validation, and the remaining 15% for testing.

Model Design and Implementation

The objective of the model is to process the generated images and masks in order
to determine driving directions and enable field decomposition. The model’s inputs
consist of a two-channel image (2 × 512 × 512) containing elevation data in the first
channel and boundary directions in the second channel, and a two-channel mask
(2× 512× 512) with the field mask in the first channel and the boundary mask in the
second channel. The model’s output is a driving direction image representing the
field. Thus, the driving direction image generated during the preprocessing stage
serves as the labels for the model, providing a reference for learning and evaluation.
Field decomposition can be derived from the driving direction image.

Implementation: The implementation of the model follows a PyTorch training
pipeline [108]. In the initial stage, the PyTorch data loader is employed to load and
combine channels from various images and masks generated during the preprocess-
ing step. The model is then constructed using the PyTorch library and its associated
tools. Finally, training is carried out by adhering to the train loop paradigm pro-
vided by PyTorch.

Architecture: In our model, we chose a U-Net-like architecture [124], closely fol-
lowing the implementation used by Liu et al. [80], which incorporates the partial
convolution technique proposed by Liu et al. [81]. The implemented architecture
makes use of partial convolution layers in place of traditional convolution layers.
These partial convolutions help handling missing data by only considering valid
input values during convolutions, which is useful to consider only data inside the
field.

The architecture is designed as an encoder-decoder network, where the encoder cap-
tures high-level features through a series of convolutional and downsampling lay-
ers, while the decoder reconstructs the output image through a series of upsampling
and convolutional layers.
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Our model comprises several encoder blocks with partial convolution layers, each
followed by Batch Normalization and Leaky ReLU activation functions. The en-
coder section successively increases the number of channels while reducing the spa-
tial dimensions of the input image. In the decoder section, the feature maps are up-
sampled and concatenated with corresponding encoder feature maps, followed by
partial convolution layers, Batch Normalization, and Leaky ReLU activation func-
tions. The output layer of the network uses a traditional convolution layer followed
by a Sigmoid activation function to generate the final output image.

The overall architecture is designed to handle input images with dimensions of
512 × 512 pixels and two channels. It contains a total of 32, 856, 107 trainable pa-
rameters, resulting in a forward/backward pass size of approximately 717, 784 MB.
A detailed diagram of the network architecture can be found in Fig.6.7, illustrating
the structure and connectivity of the encoder and decoder blocks.
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FIGURE 6.7: U-Net-like architecture with partial convolutions and
skip connections

Loss function: We proposed a custom loss function for our model to effectively learn
the driving direction while preserving the field boundaries. This custom loss func-
tion combines two separate loss components, each responsible for calculating the
loss inside and outside the field using the provided field mask. The overall loss
function L is the sum of these two components, defined as:
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L = Linside + Loutside (6.3)

Linside: This component calculates the loss within the field. It employs the Smooth
L1 loss with β = 0.05 as its underlying loss function. The Smooth L1 loss is robust to
outliers and helps in learning the driving direction within the field. Mathematically,
the Smooth L1 loss is defined as:

ρβ(x) =

{
1
2 x2/β if |x| < β

|x| − 1
2 β otherwise

(6.4)

For each pixel (i, j) inside the field, the Smooth L1 loss is calculated between the
predicted pixel value ŷij and the ground truth pixel value yij. The sum of these
losses is divided by the number of pixels inside the field to obtain the average loss
Linside.

Loutside: This component calculates the loss outside the field. It utilizes the L1 loss as
its underlying loss function. The L1 loss encourages the model to generate output
values close to zero outside the field, ensuring that the generated driving direction
image is confined within the field boundaries. For each pixel (i, j) outside the field,
the L1 loss is calculated between the predicted pixel value ŷij and the ground truth
pixel value yij. The sum of these losses is divided by the number of pixels outside
the field to obtain the average loss Loutside.

By combining these two loss components, the proposed custom loss function helps
the model to learn the driving direction effectively while preserving the field bound-
aries.

6.2.4 Results and Discussion

Despite extensive experimentation and fine-tuning, the model’s performance on the
test data was unsatisfactory. Several attempts were made to improve the model’s
generalization capabilities, including parameter adjustments, layer freezing, the uti-
lization of various optimizers such as Adam, RMSprop, and SGD, as well as explor-
ing different learning rates and learning rate schedulers. However, these efforts did
not yield the desired outcome.

Upon investigating the dataset, it became apparent that the fundamental assump-
tion regarding farmers’ expertise might not be accurate. It was observed that farm-
ers often choose a driving direction that aligns with one of the field boundaries,
preferably the longest one. This alignment provides a visual reference for driving
the tractor parallel to the boundary and reduces the number of half-turns required,
resulting in fewer errors during the transition to the next track. Additionally, this
approach is less physically demanding for the farmers.

As a consequence, it is crucial to acknowledge that, in addition to the diverse con-
straints that may be considered by individual farmers based on their personal pref-
erences, manual tractor driving also presents challenges associated with the physical
demands and driving skills of the farmers. It is worth noting that, in the context of
an autonomous robot, factors such as physically demanding tasks and driving skill
become irrelevant.



6.3. Conclusion 107

Moreover, the unique characteristics of each field and the varying preferences of
farmers create substantial variability, which complicates the process of identifying a
common thread among their choices. This heterogeneity within the dataset has hin-
dered the model’s capacity to generalize effectively and accurately predict driving
directions across various fields.

In conclusion, the model’s inability to deliver satisfactory results on the test data
might be attributed to the complexities and inconsistencies in the dataset, as well as
the variety in farmers’ preferences, operation, and machinery requirements. Future
research may benefit from reevaluating these assumptions and exploring alternative
strategies to account for the diverse preferences and decision-making processes of
farmers.

In light of these hypotheses, a potential solution to improve the model’s performance
could involve generating a dataset using our CCPP approach detailed in the previ-
ous chapter. This approach would create coverage paths for a variety of fields while
considering multiple dividing lines, in consultation with an expert, and allowing the
CCPP approach to determine the optimal dividing line based on the optimization
criteria. The dataset could be generated for fields with various shapes and incorpo-
rate diverse weights for soft constraints.

However, as demonstrated in the previous chapter, the proposed CCPP can be ex-
tremely slow when evaluating multiple dividing lines. Therefore, it would be bene-
ficial to first develop a robust approach that can efficiently handle multiple dividing
lines. Once such an approach is established, a comprehensive dataset can be gen-
erated for the deep learning model.By incorporating this dataset, the deep learning
model can become even more robust and benefit from the enhancements provided
by the refined CCPP approach. In turn, this synergy between the CCPP and deep
learning model would lead to improved model performance, more accurate driving
direction predictions, and ultimately, a faster and more efficient CCPP approach.

Consequently our immediate focus will now pivot towards developing a sophisti-
cated CCPP approach capable of managing multiple dividing lines and accounting
for a wide range of constraints, including those related to field slopes while achiev-
ing a faster computation time. By establishing a comprehensive and efficient CCPP
approach, our intention is to lay a solid foundation for future improvements in the
proposed DL model. In the upcoming chapter, we will elaborate on this advanced
CCPP approach, which has been designed to tackle the complexities and inconsis-
tencies within the dataset, as we strive to create a more effective and comprehensive
solution.

6.3 Conclusion

In this chapter, we presented two extensions to the O-CCPP approach. The first
extension incorporated a row-skip pattern into the path generation process, which
improved the efficiency and versatility of the CCPP. The proposed RS-CCPP method
demonstrated promising results when compared to the original O-CCPP approach.
However, it is crucial to recognize that the choice between RS-CCPP and O-CCPP
depends on various factors, such as the robot’s characteristics, field shape, and op-
timization goals. As a result, incorporating both approaches or developing a more
advanced CCPP that can employ both patterns would be beneficial in finding opti-
mal solutions.
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The second extension aimed to automate the field decomposition step using a deep
learning-based method. However, the model’s performance on the test data was
unsatisfactory due to complexities and inconsistencies within the dataset. Future
research may benefit from generating a dataset using an advanced CCPP approach
that is capable of efficiently handling multiple dividing lines and accounting for a
wide range of constraints, including field slopes. By establishing a comprehensive
and efficient CCPP approach, the foundation for future improvements in the pro-
posed DL model can be laid.

In the next chapter, we will introduce a more advanced CCPP approach that com-
bines the strengths of the sequential and row-skip patterns, addresses field de-
composition, and allows for the generation of different patterns for different sub-
polygons of the field. This advanced approach aims at providing a more versatile
and adaptive solution for optimizing field coverage and addressing a wider range
of challenges in agricultural applications.
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CHAPTER7
Advanced 3D Hybrid Path Planning
with Multiple Objectives

In this chapter, we present a novel hybrid approach for CCPP that takes into consid-
eration the inclination of the field. Unlike previous approaches where the general
direction of parallel trajectories were limited to the direction of the field edges, this
method is capable of exploring all possible driving directions, from 0 to 180 de-
grees, with a predefined step size. For each driving direction, the method generates
parallel trajectories within the field and searches for the best entrance to reach and
travel them. It then covers the headlands and searches for an exit trajectory towards
the nearest accessible part of the field. Additionally, for each driving direction, the
method examines two different coverage patterns: sequential and row-skip.

In cases where a dividing line is provided, it decomposes the field polygon into sub-
polygons and explores all possible combinations of driving directions and coverage
patterns for each sub-polygon. Once a sub-polygon is fully covered, it searches for
the nearest uncovered sub-polygon and repeats the same process. Once all sub-
polygons have been covered, it searches for the nearest exit.

Upon generating all possible solutions, this method selects the optimal solution that
maximizes coverage rate, minimizes overlap rate, non-working traveled distance,
and operation time directly. Furthermore, the method optimizes soil erosion and
energy consumption indirectly by considering the slopes of the trajectories.

This new approach offers several advantages over previous CCPP methods, includ-
ing faster processing times, flexibility in choosing coverage patterns, and considera-
tion of slopes for finding the optimal solution. In this chapter, we provide a detailed
description of the methodology and evaluate its performance through simulations
and comparisons with other CCPP approaches.

7.1 Motivation and Concept

In Chapters 5 and 6, we presented our approach for generating coverage paths for
autonomous agricultural robots. Our original CCPP approach utilized a tree-based
construction and exploration algorithm, while the extension presented in Chapter 6
included the ability to generate row-skip patterns for more efficient coverage. Our
approach was effective in finding optimal solutions for both simple and complex
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fields, including those with headlands. However, it had some limitations, including
generating solutions with trajectories aligned only with one of the field edges, gener-
ating row-skip pattern only for simple fields, and being relatively slow compared to
the open-source algorithm, F2C [87], with an average computational time of 624.6s
for our approach and 1.52s for F2C. In contrast, while F2C was significantly faster in
finding solutions, it was limited in its ability to cover headlands, address complex
field shapes, account for the transition state of the robot, determine proper entry and
exit points, and perform multi-objective optimization.

To leverage the strengths of our previous approach, which effectively covers head-
lands, addresses complex field shapes, considers field accessibility, and accounts for
implement transition state, as well as the benefits of the F2C method, which effi-
ciently generates parallel trajectories for a variety of driving directions, we propose
a novel approach that combines the two. This novel approach overcomes the limita-
tions of both methods and considers working trajectory inclinations, which have a
direct impact on soil erosion and energy consumption of the robot.

7.2 Methodology

Similar to our previous approach, this novel method also begins with a preprocess-
ing step that involves decomposing the field into sub-polygons if a dividing line is
provided. It also constructs headlands and their corresponding trajectories, as well
as turning spaces. Afterwards, we utilized the F2C approach to generate parallel
trajectories (i.e., tracks) in the main part of the field (i.e., excluding the headlands),
with a specified driving direction in the range 0 to 180 degrees. Fig. 7.1 illustrates
the process for a single driving direction.

FIGURE 7.1: Diagram of the proposed approach

For a set of tracks, the method first excludes any short track that does not meet the
minimum working distance constraint. Next, the method examines two possible
cases: 1) ordering tracks sequentially, and 2) ordering them in a row-skip pattern.
The closest entry on an access segment is then determined for each case, and a path is
constructed from the entry towards the start of the ordered tracks. All ordered tracks
are added to the path including a transition state at the start and end point. The path
is then completed by covering all headlands inner trajectories, and gap-covering
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trajectories. The method then searches for the closest exit using inner trajectories of
headlands and completes the path towards the exit point.

For a driving direction, two solutions (i.e., paths), one with sequential and another
with row-skip pattern, are added to the solution space. This process is repeated for
several driving directions from 0 to 180 degrees with a fixed step size ℓs.

In the case of complex fields, where a set of dividing lines is provided to decom-
pose the field into sub-polygons, the method starts with each sub-polygon that has
at least one access segment. Starting from one sub-polygon, the method generates
parallel tracks, orders them in sequential and row-skip patterns, finds the nearest
entry, constructs a path from the entry towards the start of the ordered tracks, adds
all ordered tracks to the path while considering the transition state, and completes
the path by covering all inner trajectories and gap-covering trajectories. The method
then performs a search to find the nearest uncovered sub-polygon using inner tra-
jectories, and iterates to cover the remaining sub-polygons. Once all sub-polygons
are covered, the method performs a search to find an exit and complete the path.

Therefore, the solution space contains solutions that are a combination of all possi-
ble patterns, driving directions, as well as the order of visiting sub-polygons. For
instance, if there are two sub-polygons, each with at least one access segment, and
ℓs = 1 degree, the solution space will contain 259, 200 solutions. Equation (7.1) can
be used to compute the number of solutions, where Npolygon denotes the number of
sub-polygons, Naccessible represents the number of sub-polygons with at least one ac-
cess segment, and Npattern is the number of patterns used to generate parallel tracks.

Nsolution = (
180 × Npattern

ℓs
)Npolygon × Naccessible (7.1)

In the remainder of this section, we provide detailed explanations of each process
involved in the proposed method, including the specific algorithms and techniques
used to accomplish each step.

7.2.1 Preprocessing

The preprocessing step in this method is similar to the original approach, with only
one difference which is the number of gap-covering trajectories. In this version, the
number of gap-covering trajectories is user-defined rather than being fixed at one.

As a reminder, the preprocessing involves generating headlands containing p inner
trajectories and g gap-covering trajectories, as well as turning spaces based on the
working width and robot parameters such as γo f f and ℓo. Additionally, if a dividing
line is provided, the field is decomposed into sub-polygons. For a more detailed
description of this process, please refer to Chapter 5, Section 5.2.2.

In contrast to the original approach, where adding more inner trajectories in head-
lands or gap-covering trajectories increased the number of branches in the tree and
resulted in longer computational times (as shown in Chapter 5, Fig.5.2), the pro-
posed approach allows for a variable number of inner and gap-covering trajectories,
depending on the implement width and the length of transition trajectories.

In the original approach, entry points were determined during the preprocessing
stage, requiring an operator to decide which ones to keep and which ones to reject.
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(A) Parallel tracks for driving direction π
2 (B) After excluding short tracks

FIGURE 7.2: Parallel track generation. Headland borders and access
segment are depicted respectively in orange and green

However, increasing the number of entry points also resulted in longer computa-
tional times due to the additional explorations required. In the new approach, the
determination of entry points is more flexible, as they are not predetermined dur-
ing the preprocessing stage. Instead, a specific entry point is determined for a given
driving direction after generating the parallel tracks, by finding the closest point that
provides access to the parallel tracks.

7.2.2 Generating and Covering Parallel Tracks

The next process generates parallel tracks within the main part of the field, using the
F2C approach, with a predetermined driving direction and working width. In our
approach, all tracks that do not meet the minimum working distance constraint are
excluded. This constraint ensures that the robot travels a minimum distance, ∆mwd,
with its implement turned on, before it can be turned off (see Chapter 4, Section
4.1.3). Fig.7.2 provides an illustration of this process for a driving direction of π

2 .

Following the generation of parallel tracks, the shortest path for the robot is deter-
mined to enter the field and begin traveling along these tracks. For each coverage
pattern (sequential and row-skip), there are four possible cases depending on which
end of the first or last tracks is closest to an access segment. Figs. 7.3 and 7.4 depict
all of these cases, regardless of the presence of an access segment.

Considering the presence of an access segment, case 7.3b is selected for the sequen-
tial pattern, while case 7.4b is selected for the row-skip pattern. To achieve this, the
access segment is first democratized into a set of points with a spacing of ℓa, and
a direction perpendicular to the access segment towards the interior of the field is
associated with each point. The closest point to either end of the first and last track
is then selected, and a Dubins trajectory is generated to reach it [35]. Therefore, the
selected point on the access segment specifies which end of which track should be
used for reaching the parallel tracks and in which order they must be visited. Fig.7.5
presents the path that begins at the access segment and travels all parallel tracks for
both patterns. In addition, a transition trajectory is included at both ends of each
track for turning the implement on and off.

7.2.3 Covering Headlands

Following the addition of all parallel tracks to the path, the headland coverage pro-
cess begins by searching for the nearest headlands to the end point of the generated
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(A) (B)

(C) (D)

FIGURE 7.3: Variations in selecting a track and its ending point for
starting, depicted with turns and transition trajectories respectively

in red and white, for sequential pattern.

(A) (B)

(C) (D)

FIGURE 7.4: Variations in selecting a track and its ending point for
starting, depicted with turns and transition trajectories respectively

in red and white, for row-skip pattern.
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(A) Sequential pattern (B) Row-skip pattern

FIGURE 7.5: The path starting from an access segment and covering
all tracks for the selected cases. Turns and transition trajectories are

depicted respectively in red and white.

path. In this process, only the end points of the first-level inner trajectory of each
headland is considered i.e., the one closest to the field edge. Therefore, the first-level
inner trajectory with the shortest Dubins trajectory from the end of the last track to
one of its end points is chosen to complete the path. Once the first-level inner trajec-
tories of all headlands are covered, the method proceeds to cover the second-level
inner trajectories and all remaining inner and gap-covering trajectories.

The process for covering headlands, for both sequential and row-skip patterns, is
illustrated in Fig.7.6, excluding gap-covering trajectories for clarity. Figs.7.6a and
7.6c illustrate the path from the access segment to the end of the last covered inner
trajectory. Figs.7.6b and 7.6d, on the other hand, illustrate only a portion of the
path from the end of the last track to the end of the last covered inner trajectory.
It is important to note that in some cases, such as the example shown in the figure,
some of inner and gap-covering trajectories may not be covered due to the minimum
working distance constraint.

The circular coverage pattern for headlands can either be clockwise or counterclock-
wise, depending on which end point of a first-level inner trajectory is closest to the
end of the last track. Utilizing this circular pattern for covering headlands is mainly
for reducing computational time as well as for further improvement, allowing for
the coverage of all field corners.

7.2.4 Exiting the Field

Following the completion of headland coverage process, the method searches for the
nearest access segment to exit the field. This search process, referred to as circular
search, starts by traversing the first-level inner trajectories of the headlands in both
clockwise and counterclockwise directions until the nearest access segment is found.
The result is two potential paths around the field, with the shorter one being selected
as the exit path. Fig.7.7 shows the exit search results for both sequential and row-
skip patterns.

As depicted in Fig. 7.7b, if the last inner trajectory taken to reach the access segment
allows for continuing in the same direction towards the exit, a transition is made
just before the access segment to turn off the implement and exit the field without
changing direction. Otherwise, the access segment is discretized into a set of points
with a spacing of ℓa, with each point being associated with a direction perpendicular
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(A) Post-Headland coverage (sequential) (B) Headland path (sequential)

(C) Post-Headland coverage (row-skip) (D) Headland path (row-skip)

FIGURE 7.6: Illustration of the headland coverage process for both
sequential and row-skip patterns.

(A) Complete coverage (sequential) (B) Exit path (sequential)

(C) Complete coverage (row-skip) (D) Exit path (row-skip)

FIGURE 7.7: Illustration of the complete coverage path and exit path
for both sequential and row-skip patterns.
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to the access segment towards the exterior of the field. A Dubins trajectory is then
computed from the end of the path towards the closest point to it to complete the
exit path. Fig.7.7d shows an example of this second case.

This process may result in overlaps in headlands, depending on the proximity of an
access segment. In such cases, the first-level trajectory of some headlands may need
to be traversed again to reach the nearest access segment. For example, as shown in
Fig. 7.7b, the first-level trajectory of the lower headland is covered again to reach an
access segment located on the right side of the field.

At the end of this process, the method generates two complete coverage paths, one
with a sequential pattern and the other with a row-skip pattern, for each driving
direction. These paths are added to the solution space for further evaluation and
comparison.

7.2.5 Complex Fields with Sub-Polygons

For complex fields divided into sub-polygons using dividing lines, the proposed
method explores all possible combinations of driving directions and coverage pat-
terns for each sub-polygon. This involves generating all possible driving directions
for each sub-polygon, which can result in a large number of combinations. For in-
stance, if there are two sub-polygons and ℓs = 1 degree, the method would consider
all possible combinations of driving directions between 0 and 180 degrees, resulting
in 1802 potential combinations.

For each combination of driving directions, the method considers all possible orders
of visiting the sub-polygons, as well as both sequential and row-skip coverage pat-
terns for each sub-polygon. For instance, if there are two sub-polygons and both
have at least one access segment for the robot to enter the field, the method would
generate all possible combinations of visiting them in either order (i.e., sub-polygon
one followed by sub-polygon two, or sub-polygon two followed by sub-polygon
one), and for each order, consider both sequential and row-skip coverage patterns
for each sub-polygon. The number of solutions for covering all sub-polygons can be
determined by Equation (7.1).

Given a combination of driving directions, the method begins with each sub-
polygon that has at least one access segment and performs all previously detailed
process for entering the first sub-polygon, generating and covering all its tracks with
two different pattern, sequential and row-skip and covering its headlands. This re-
sults in two coverage paths for the first sub-polygon, one with sequential pattern
and another with row-skip pattern. Afterwards, for each of these paths a circular
search is performed similar to the search for finding the nearest access segment,
but instead for finding the nearest uncovered sub-polygon. Therefore, the path is
completed to reach the nearest uncovered sub-polygon.

After reaching the nearest uncovered sub-polygon, its tracks are generated and the
short ones are excluded, following the process detailed in Section 7.2.2. Then, for
each coverage pattern (sequential and row-skip) for the uncovered sub-polygon,
there are four possible cases depending on which end of the first or last tracks is
closest to the previous sub-polygon. After covering its headlands, the whole process
is repeated for reaching the next uncovered sub-polygon and covering it, until all
sub-polygons are fully covered.
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Afterwards, if the last covered sub-polygon has an access segment, a circular search
is performed to find the shortest exit path, following the process detailed in Sec-
tion 7.2.4. Otherwise, a circular search is performed to find the nearest sub-polygon
that has at least one access segment. After reaching it, another circular search is
performed to find the shortest exit path.

After obtaining all possible solutions for a combination of driving directions, the
method adds them to the solution space. Then, it proceeds to generate solutions for
another combination of driving directions, repeating the process until all combina-
tions have been considered.

7.2.6 Selection of the Optimal Solution

After generating all possible solutions and storing them in a solution space, the cov-
erage rate Scov, overlap rate Sovl , non-working distance Snwd, and operation time
Sotm are computed for each solution, similar to the original CCPP. In addition, a new
metric, the slope of working trajectories Sslp, is also computed and taken into con-
sideration.

The computation of the slope metric for working trajectories of a solution involves
discretizing each trajectory into a series of points with a spacing of ℓslp. The slope of
each segment between two consecutive points is then calculated as the angle of the
segment to the x-y plane by following equation:

SLP = arctan(
rise
run

)× 180.0
π

(7.2)

where rise represents the difference in height between the two points, and run repre-
sents the distance between the two points along the x and y axis. The length of each
segment is then cumulatively summed into the following slope categories:

• Flat (ℓs0): if 0◦ ≤ SLP < 2◦ or −2◦ < SLP ≤ 0◦

• Slightly sloped (ℓs1): if 2◦ ≤ SLP < 5◦ or −5◦ < SLP ≤ −2◦

• Sloped (ℓs2): if 5◦ ≤ SLP < 8◦ or −8◦ < SLP ≤ −5◦

• Steep (ℓs3): if 8◦ ≤ SLP < 12◦ or −12◦ < SLP ≤ −8◦

• Very steep (ℓs4): if 12◦ ≤ SLP < 16◦ or −16◦ < SLP ≤ −12◦

• Extremely steep (ℓs5): if SLP ≥ 16◦ or SLP ≤ −16◦

where for a solution, ℓs0, ℓs1, ℓs2, ℓs3, ℓs4, and ℓs5 represent the cumulative length of
all segments that fall into each corresponding slope category. Afterwards, each of
these values are normalized using the following Equation:

S =
S − Smin

Smax − Smin
(7.3)

where Smin and Smax represent the minimum and maximum value of the correspond-
ing slope category or metric over all solutions of the solution space.

For a solution, Ls = (ℓs0 ℓs1 ℓs2 ℓs3 ℓs4 ℓs5) and Ws = (Ws0 Ws1 Ws2 Ws3 Ws4 Ws5) are
defined, where Ws0, Ws1, Ws2, Ws3, Ws4, and Ws5 are weights of each slope category
given as input. For a solution, Sslp is computed as follows:
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Sslp =
LsWs

⊺

Ws0 + Ws1 + Ws2 + Ws3 + Ws4 + Ws5
(7.4)

For the computation of other metrics, we refer readers to Chapter 5, Section 5.2.5.
After computing all metrics, they are normalized using Equation (7.3).

Based on these metrics, a set of soft constraints or cost functions, along with their
corresponding weight given as input are defined as C = (1− Scov Sovl Snwd Sotm Sslp)
and W = (Wcov Wovl Wnwd Wotm Wslp), respectively. The final cost of each solution is
computed by applying the following equation:

f =
CW⊺

Wcov + Wovl + Wotm + Wnwd + Wslp
(7.5)

The solution with the lowest cost is selected by the approach, which combines var-
ious soft constraints and their corresponding weights. By adjusting the weights as-
signed to each soft constraint, as well as to each slope category, the algorithm can
be customized to prioritize specific aspects of the path planning process, such as
minimizing overlap or reducing non-working traveled distance. This allows users
to tailor the algorithm to their unique needs and requirements.

It is worth mentioning that the slope categories were developed in consultation with
an expert. However, it is important to note that they can be adjusted or modified to
meet the specific needs and requirements of a particular operation.

7.3 Results and Discussion

7.3.1 Experimental Setup

Similar to the original approach, we developed a program in C++ with a GUI to set
input parameters and visualize the resulting solutions. To speed up computations,
we used an OpenMP [104] implementation that allows for parallel processing. The
program was executed on the same hardware setup, an Intel Xeon(R) W-2135 CPU
@ 3.70GHz × 12 with 32GB RAM.

To evaluate the effectiveness of the presented approach, we used the same dataset
as the original approach, as introduced in Chapter 3 Section 3.3. Twenty fields of the
dataset are considered as simple (Fields #1 - #20) with no field decomposition and ten
other fields are considered as complex (Fields #21 - #30), where at least two dividing
lines are provided for exploring different field decompositions. The dividing lines
are visualized in Fig. 5.6.

We maintained the same parameters for the robot as in the original approach. How-
ever, some of the parameters used in the original approach, such as coverage, global
overlap, local loop, and switch thresholds, were not relevant to the presented ap-
proach. Instead, we introduced new parameters, such as the driving direction step
size (ℓs), the spacing of access segment discretization (ℓa) and the spacing of working
trajectory discretization for slope computation (ℓslp). These parameters were respec-
tively set to 3◦, 0.5m, and 0.5m. The values other parameters used for evaluating the
effectiveness of our new approach are listed in Table 7.1.
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Parameter Description Value
w working width 3m

γon minimum turning radius - implement on 15m
γo f f minimum turning radius - implement off 1.5m
Von average speed - implement on 3.5m/s
Vgap average speed - implement transition 2.5m/s
Vo f f average speed - implement off 1.5m/s
ℓt transition trajectory length 2m
ℓo robot-implement offset 2m

∆mwd minimum working distance threshold 8m
p number of inner trajectories 2
g number of gap-covering trajectories 1

Parameter Description Value
Wcov weight of Scov 0.25
Wovl weight of Sovl 0.10
Wnwd weight of Snwd 0.05
Wotm weight of Sotm 0.05
Wslp weight of Sslp 0.55
Ws0 weight of ℓs0 0.00
Ws1 weight of ℓs1 0.10
Ws2 weight of ℓs2 0.15
Ws3 weight of ℓs3 0.20
Ws4 weight of ℓs4 0.25
Ws5 weight of ℓs5 0.30

TABLE 7.1: The input and parameters of the proposed approach

With the aim of providing comprehensive data for fellow researchers and showcas-
ing the adaptability of our approach to a variety of robotic systems, at the time of
writing this thesis, we have published the results (i.e. a way-point) under a different
set of parameters on Zenodo [115], alongside the dataset used for evaluating our
method. Moving forward, we intend to contribute additional results based on an
increasingly diverse set of parameters and configurations.

In the following sections, we present an analytical and comparative evaluation of the
presented approach against the original approach, covering the entire dataset. In ad-
dition, we provide an illustrative result to highlight some of the interesting features
of the presented approach. However, we include a comprehensive visualization of
the results for the entire dataset in the appendix to avoid overwhelming the main
body of this chapter.

7.3.2 Analysis of the Results

As a reminder, the original approach clusters solutions into families based on the
general direction of working trajectories. To ensure a fair comparison between the
original approach (O-CCPP) and the presented approach (H-CCPP) on a field, we
added the best solution from each family in O-CCPP that met the criteria described
in Chapter 5, Section 5.3.1 to the solution space constructed by H-CCPP. The selec-
tion method of H-CCPP was then applied to the solution space to compute all costs
and detect the best solution. This allowed for a comparison of all computed costs,
including the slope cost, to be made between the two approaches under the same
criteria. Although it would be more relevant to add all the solutions of O-CCPP to
the solution space of H-CCPP, the large number of solutions obtained by the original
approach in most cases makes it highly time-consuming to compute the slope cost.

Table 7.2 presents the average results obtained by O-CCPP and H-CCPP. The re-
sults for simple fields indicate that O-CCPP achieved a slightly higher coverage rate,
while H-CCPP achieved a slightly lower overlap rate. For complex fields, O-CCPP
performed slightly better in term of coverage and overlap rates. However, in terms
of computational time, H-CCPP significantly faster than O-CCPP for both simple
and complex fields, despite covering more driving directions and attempting two
different coverage patterns (sequential and row-skip), as opposed to O-CCPP, which
only employed sequential coverage pattern.

The radar charts depicted in Fig. 7.8 provide an overview of the performance of
H-CCPP and O-CCPP using the criteria defined in Section 7.2.6. The charts indicate
the number of fields in which each approach achieved a better score than the other



120 Chapter 7. Advanced 3D Hybrid Path Planning with Multiple Objectives

Approach
Area (ha) Coverage Overlap Computational time (s)
Mean STD Mean STD Mean STD Mean STD

H-CCPP 4.87 2.82 98.30% 0.82% 2.56% 1.15% 3.12 1.86
O-CCPP 4.87 2.82 98.65% 0.63% 2.63% 1.35% 170.48 222.45

(A) Simple fields

Approach
Area (ha) Coverage Overlap Computational time (s)
Mean STD Mean STD Mean STD Mean STD

H-CCPP 4.69 2.41 97.48% 0.71% 3.56% 1.15% 1502.78 765.74
O-CCPP 4.69 2.41 98.04% 0.72% 2.55% 1.16% 5382.03 5077.03

(B) Complex fields

TABLE 7.2: Numerical results of the evaluation
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(D) Complex fields

FIGURE 7.8: Radar chart comparing the performance of H-CCPP and
O-CCPP on simple fields, showing the number of fields for which
each approach achieved a better score for each soft constraint. Higher

values for each criterion indicate better performance
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approach for each criterion. The higher the value for each criterion, the better the
performance of the corresponding approach in terms of minimizing the cost while
considering its weight.

The radar charts reveal that H-CCPP outperformed O-CCPP in terms of slope cost
for 18 out of 20 simple fields and for all complex fields. On the other hand, O-CCPP
performed better in terms of worked area, overlaps, non-working traveled distance,
and operation time, achieving better scores for 12, 11, 18, and 19 of the 20 simple
fields, respectively, and for 9, 7, 10, and 10 of the 10 complex fields, respectively.
This suggests that while H-CCPP is more effective in terms of slope cost, O-CCPP
performs better in terms of other criteria such as worked area and overlaps, as well
as non-working distance and operation time.

Despite O-CCPP’s better performance on certain individual criteria, averaging all
costs and computing the final cost using Equation (7.5) revealed that H-CCPP out-
performed O-CCPP for 60% of the simple fields. For complex fields, each approach
was efficient for 50% of cases. These results suggest that, on average, H-CCPP
achieves better overall performance, even though O-CCPP may perform better on
certain specific criteria.

In Fig.7.9, the results of applying H-CCPP and O-CCPP on Field #21 are presented,
where the field is only accessible by its two left side edges. To provide a more de-
tailed view of the outcomes, close-up 3D views are presented in Fig.7.10, which en-
able us to better observe the inclination and slope of trajectories.

The solution selected by H-CCPP has a row-skip pattern and did not include any
field decomposition, as it was able to propose trajectories perpendicular to the slope
of the field. This solution might be efficient in reducing energy consumption and
preventing soil runoff caused by irrigation or rain. However, it resulted in more
half-turns and consequently longer non-working traveled distances. Meanwhile,
the selected solution by O-CCPP include a field decomposition that result in shorter
non-working traveled distance.

The reason why O-CCPP did not select a solution similar to H-CCPP for Field #21
can be attributed to its limited capability to perform a row-skip pattern. This may
lead to more overlaps as the robot attempts to reach an access segment to exit the
field, thereby decreasing the overall efficiency of the solution.

It is important to note that changing the weight of the soft constraints can signifi-
cantly affect the outcome of both approaches. For example, giving more weight to
the cost of non-working traveled distance may lead H-CCPP to select a solution that
include a field decomposition as well. However, for O-CCPP, it is not possible to
improve its score in terms of slope cost. This is because the number of driving di-
rections i.e., the general direction, of results obtained by O-CCPP is limited to the
directions of the field’s edges. Moreover, since we have already included the best
solution of all families i.e., solutions with all possible driving directions for O-CCPP,
in the solution space and have given a significant weight to slope cost, the solutions
found by O-CCPP were not efficient in terms of slope cost. Hence, it could not be
improved beyond the performance achieved in this evaluation.

In order to illustrate the versatility of H-CCPP in satisfying various criteria, we
present the results of the selection method for Field #22 under different selection
settings in the next section.
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(A) H-CCPP

(B) O-CCPP

(C) 3D data

FIGURE 7.9: Illustration of the results obtained for Field #21 using H-
CCPP and C-CCPP
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(A) H-CCPP

(B) O-CCPP

FIGURE 7.10: Close-up views of the results obtained for Field #21
using H-CCPP and C-CCPP

7.3.3 H-CCPP under Different Optimization Settings

This section aims at illustrating the versatility of the proposed approach in generat-
ing solutions can satisfy various criteria. We conducted several tests on Field #22,
emphasizing the weight of a particular soft constraint as the setting of the selection
method. Table 7.3 presents the different settings of the selection method, while keep-
ing the other parameters unchanged as given in Table 7.1. To enable a clear visual
distinction between the solutions found under each selection setting, we adjusted
the weight of one soft constraint to one and set the others to zero in each selection
setting, as detailed in Table 7.3.

In the conducted tests on Field #22, the previously generated solution space for this
field was utilized. Hence, the part of the approach responsible for constructing the
solution space and computing all costs was executed only once, while only the fi-
nal cost (computed by Equation 7.5) was competed three times, once per selection
setting. Consequently, the computation time remained consistent for all tests.
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Parameter Description Value
Wcov weight of Scov 1
Wovl weight of Sovl 0
Wnwd weight of Snwd 0
Wotm weight of Sotm 0
Wslp weight of Sslp 0

(A) Selection Setting #1

Parameter Description Value
Wcov weight of Scov 0
Wovl weight of Sovl 1
Wnwd weight of Snwd 0
Wotm weight of Sotm 0
Wslp weight of Sslp 0

(B) Selection Setting #2

Parameter Description Value
Wcov weight of Scov 0
Wovl weight of Sovl 0
Wnwd weight of Snwd 1
Wotm weight of Sotm 0
Wslp weight of Sslp 0

(C) Selection Setting #3

TABLE 7.3: Different settings for the selection method of H-CCPP

Fig.7.11 illustrates the results obtained for each selection setting. The solution se-
lected for Setting #1 (top image), where all weight was placed on the coverage cost,
includes no field decomposition. This is primarily because decomposing the field
into sub-polygons would result in more corners remaining uncovered and, thus, a
lower coverage rate compared to solutions without field decomposition. However,
it should be noted that improving this approach to make it able to cover corners
during headland coverage by a reverse move might change this result.

The solution obtained for Setting #2 (middle image), where the weight was solely
put on the overlap cost, is noteworthy. The selected solution entails a field decom-
position, where a sequential pattern was used for one sub-polygon and a row-skip
pattern for another. This is primarily due to the use of a row-skip pattern for the first
sub-polygon, enabling minimal overlap when reaching the second sub-polygon.

In Setting #3, where all the weight was put on the non-working traveled distance
cost, the selected solution (bottom image) included a field decomposition where the
driving direction of each sub-polygon corresponded to its longest edge. This is not
surprising, as selecting the longest edge as the driving direction would result in a
lower number of half-turns, and consequently less non-working traveled distance.

Certainly, these tests demonstrated the flexibility and versatility of the proposed ap-
proach in generating solutions that can meet different combinations of constraints
and criteria. By adjusting the weight of each soft constraint, the selection method
was able to find different solutions that prioritize certain criteria over others. This
ability to adapt and find a good compromise between conflicting criteria is particu-
larly valuable in real-world applications, where multiple factors need to be consid-
ered and optimized simultaneously.

7.4 Conclusion

In this chapter, we presented a novel approach, H-CCPP, for generating efficient
coverage paths for agricultural robots. We evaluated the effectiveness of the new ap-
proach by comparing it with the original approach, O-CCPP, using the same dataset
introduced in Chapter 3, Section 3.3.

The evaluation revealed that H-CCPP is significantly faster than O-CCPP. For sim-
ple fields, the computational time is reduced on average from 170.48s to 3.12s, a
reduction of approximately 98.17%. For complex fields, the computational time is
reduced on average from 5382.03s to 1502.78s, a reduction of approximately 72.08%.
This substantial reduction in computation time offers notable advantages such as
faster decision-making, more efficient resource utilization, and the ability to adapt
to evolving field conditions.
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FIGURE 7.11: Illustration of the results obtained for Field #22 under
different selection settings: Settings #1 to #3 (top to bottom)
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Although H-CCPP achieved tremendously better performance in terms of minimiz-
ing the slope cost, O-CCPP performed slightly better in terms of worked area, over-
laps, non-working traveled distance, and operation time. However, when comput-
ing the final cost, which considers all criteria, H-CCPP outperformed O-CCPP for
60% of simple fields and 50% of complex fields.

Additionally, H-CCPP provided several quantitative advantages over O-CCPP, en-
hancing its effectiveness in generating coverage paths. These advantages include
examining various driving directions for parallel track generation inside the field,
rather than relying solely on trajectories aligned with one of the field edges. H-CCPP
also considered row-skip patterns for both simple and complex fields, examining all
possible coverage pattern combinations for all its sub-fields. Furthermore, H-CCPP
automatically determined both entry and exit points, as opposed to only determin-
ing the exit point based on a given entry point.

In addition to these advantages, we illustrated the versatility of H-CCPP in gener-
ating solutions that satisfy different combinations of constraints and criteria by con-
ducting several tests on Field #22. By adjusting the weight of each soft constraint, the
selection method was able to find different solutions that prioritize certain criteria
over others.

Overall, the results showed that H-CCPP is an effective approach for generating cov-
erage paths for agricultural robots, especially in terms of slope cost, and its flexibility
and adaptability make it valuable in real-world applications where multiple factors
need to be considered and optimized simultaneously. However, one potential area
of improvement for H-CCPP is to make it able to cover corners during headland
coverage by incorporating reverse moves. This enhancement may improve its per-
formance in terms of coverage rate.
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CHAPTER8
Conclusion & Perspectives

The objective of this chapter is to synthesize and reflect upon the research con-
ducted throughout this thesis, highlighting the major findings, contributions, and
implications. To achieve this goal, we will first summarize the major findings and
contributions that have arisen from our investigation, highlighting the innovative
progress made in the development of efficient and comprehensive Complete Coverage
Path Planning (CCPP) approaches for agricultural wheeled robots.

Furthermore, we will explore the practical implications of our findings, emphasizing
the potential influence on agricultural practices. Additionally, we will acknowledge
the limitations of our study and outline potential future research directions, offering
suggestions on how the CCPP approaches developed in this thesis could be further
refined, optimized, and expanded to address a wider range of scenarios and appli-
cations in the agriculture domain.

8.1 Major Findings and Contributions

Throughout this thesis, we have made numerous significant contributions that ad-
vance the state of the art in CCPP approaches, a key requirement for enabling effi-
cient autonomous systems in agriculture. These noteworthy contributions and find-
ings include:

• A systematic review of the challenges and proposed solutions for CCPP in
wheeled agricultural robots, providing valuable insights into the current state
of the art.

• The creation of a dataset containing 2D and 3D models of 30 fields located in
France, which serves as a valuable resource for future research and develop-
ment of path planning approaches.

• Development of an efficient CCPP approach that generates optimal coverage
paths for autonomous agricultural robots, minimizing overlaps, non-working
path length, and overall travel time.

• Exploration of a deep learning-based approach for field decomposition in agri-
cultural CCPP, highlighting the challenges and complexities of the required
data.
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• Development of an advanced 3D hybrid path planning approach with multi-
ple objectives, capable of considering trajectory inclinations and various other
factors to optimize coverage rate, overlap rate, non-working traveled distance,
and operation time.

By reflecting on the journey undertaken in this thesis and the knowledge gained
through our research, we aim at providing a comprehensive and balanced overview
of the work accomplished, as well as chart a path forward for continued exploration
and advancement in the field of autonomous agricultural robotics.

8.2 Practical Implications and Applications

In this thesis, when studying the theory of complete coverage path planning and
proposing algorithms, we always had in mind the practical implications and poten-
tial applications of our research findings. In this section, we highlight them for each
major contribution and explore the opportunities they present for the agricultural
industry.

8.2.1 Systematic Review and Open Dataset

The implications of the systematic review and the open dataset of 2D and 3D field
models are closely intertwined, as they will both facilitate the development and val-
idation of algorithms for the scientific community.

The systematic review of challenges and proposed solutions for CCPP for wheeled
agricultural robots has practical implications for both researchers and the agricul-
tural industry. For researchers, it serves as a comprehensive reference that highlights
knowledge gaps and helps prevent duplication of effort, promoting collaboration in
the field. For the agricultural industry, the review provides valuable insights into the
most effective CCPP techniques and technologies, enabling stakeholders to make in-
formed decisions about investing in and adopting autonomous agricultural robotics
for various tasks.

Moreover, the dataset featuring 2D and 3D models of 30 diverse fields located in
France is an invaluable resource that empowers researchers and technology devel-
opers in agricultural robotics to evaluate and validate path planning approaches
across a broad spectrum of real-world scenarios and agricultural settings. The in-
clusion of both 2D and 3D terrain models not only fosters a deeper understanding
of each modeling approach’s strengths and weaknesses but also promotes their in-
tegration into other techniques, inspiring further research and development. Con-
sequently, this may lead to the emergence of more precise and efficient algorithms
for a range of applications, such as path planning, soil erosion analysis, and energy
consumption estimation.

8.2.2 Advanced 3D Hybrid CCPP Approach

The advanced hybrid CCPP approach presented in this thesis offers several prac-
tical implications and applications. This novel method combines the strengths of
previous CCPP approaches, efficiently addressing complex field shapes and head-
land coverage, while considering the robot characteristics such as width, the tran-
sition state of its implement, and the offset between the robot and its implement.
Additionally, the approach considers field accessibility for automatically identifying
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entry and exit points. It examines two distinct coverage patterns (sequential and
row-skip) and explores various driving directions from 0 to 180 degrees for the field
or its sub-fields. Besides optimizing coverage rate, overlap rate, non-working trav-
eled distance, and operation time, the approach also accounts for slope costs, which
indirectly optimize soil erosion and energy consumption.

The hybrid CCPP approach is highly adaptable and flexible, enabling it to satisfy
various combinations of constraints and criteria. By adjusting the weights of soft
constraints, the selection method can prioritize specific criteria over others, provid-
ing tailored solutions for diverse agricultural scenarios.

With its faster processing times and improved performance, the hybrid CCPP ap-
proach offers enhanced efficiency for agricultural robots in real-world applications.
This adaptability enables simultaneous consideration and optimization of multiple
factors, making it a valuable tool for modern agriculture.

8.3 Limitations and Perspectives

Although the approaches that we have proposed in this manuscript have many ad-
vantages and interesting potential impact, they also have some limitations that may
be the subject of future research. We present here a number of perspectives in an
ordered manner, taking into account their relative difficulty and the time required
for realization, allowing for prioritizing future research efforts in an efficient and
effective manner.

8.3.1 Open Dataset

The dataset featuring 2D and 3D models of 30 diverse fields located in France has
some limitations that could be addressed in future works. These limitations include
the absence of fields with obstacles within them, the lack of deformable soil models
that consider variations in soil quality, the limited variety of field sizes, shapes, and
inclinations, and the narrow focus on fields in France.

To improve the dataset and address these limitations, future works could focus on
several aspects. First, new fields that incorporate obstacles could be added, which
would allow for a more comprehensive evaluation of the CCPP approaches in sce-
narios that closely resemble real-world agricultural settings, where various obsta-
cles such as trees, rocks, or infrastructure may be present. Second, integrating de-
formable soil models that account for variations in soil quality over the fields would
provide a more realistic representation of the agricultural landscape.

Moreover, the diversity of field sizes, shapes, and inclinations could be increased,
providing a more robust foundation for developing and testing algorithms that can
adapt to various constraints and conditions. The dataset could also be expanded to
include fields from other countries using various data sources, possibly creating an
open database with contributions from the wider research community. This inter-
national collaboration would not only increase the variety and number of fields but
also promote a more comprehensive understanding of agricultural challenges and
solutions.

In addition, fields could be assigned tags based on their properties, such as the pres-
ence of obstacles, complexity, or other features. This would enable researchers to
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extract specific subsets of fields for targeted testing on particular categories. Ex-
panding the dataset to include fields with different crop types, such as vineyards or
orchards, would also broaden the range of applications and provide more opportu-
nities for innovation.

Ultimately, an improved and more comprehensive dataset would contribute to the
progress of sustainable agriculture and the optimization of diverse agricultural prac-
tices. It would provide a basis for more realistic simulations that will drastically re-
duce the cost of on-field experiments, which could be extremely expensive. It would
also facilitate advancements in other applications such as soil erosion analysis, en-
ergy consumption estimation, and other techniques in precision agriculture, leading
to more robust and efficient solutions for autonomous agricultural robots.

8.3.2 CCPP Algorithms

Creating an autonomous system in agriculture requires the seamless integration of
multiple specialized and interconnected subsystems, including path planning, path
following, positioning systems, perception systems, and safety features. The result
of our CCPP approach is a coverage path, which consists of a set of way-points con-
taining information such as location, direction, and implement state. The planned
path can be executed with the assistance of other subsystems.

Although our research has made significant progress in advancing the field of CCPP
for agricultural wheeled robots, some limitations and areas for improvement still ex-
ist. In this section, we will discuss these limitations and propose potential directions
for future research to enhance the capabilities of CCPP approaches, highlighting the
subsystems that could be targeted for the suggested improvements.

Experimental Validation

The first limitation of our research is the lack of real-world experiments conducted
on a field in conjunction with other subsystems. Despite the progress made by our
research team in developing these subsystems, we could not perform field experi-
ments due to the unavailability of a suitable testing environment.

Conducting real-world experiments would have allowed us to thoroughly evalu-
ate the performance of our CCPP approaches in practical agricultural scenarios and
identify any unforeseen challenges or limitations that may arise when integrated
with other systems. For example, the reliability and accuracy of the location, or pos-
sible irregularities in the ground, may impact the precision with which the planned
trajectory is actually followed. It may then be necessary to consider adjusting the
planning in real time. Moreover, such experiments would have facilitated the fine-
tuning and optimization of our algorithms, resulting in more accurate and reliable
CCPP solutions.

Future research could focus on collaborations with agricultural institutions or orga-
nizations capable of investing in and acquiring suitable fields for testing purposes.
By conducting experiments in real-world environments, researchers can better un-
derstand the complexities of implementing autonomous agricultural robots and fur-
ther refine and optimize the CCPP approaches, ultimately leading to more effective
and reliable autonomous operations.
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Uncovered Field Corners

A limitation in our CCPP approach is the potential for uncovered corners in the field.
While the current approach effectively covers headlands, it does not adequately ad-
dress corner coverage when traveling from an inner trajectory of one headland to
another.

The circular coverage pattern for headlands, implemented in our latest approach,
presents an opportunity to address the issue of uncovered corners. This circular pat-
tern is primarily utilized for reducing computational time, but can also be adapted
to ensure comprehensive coverage of all field corners by considering the reverse
move requirement for reaching and positioning the implement on the edge of the
field before working an inner trajectory.

To tackle the issue of uncovered corners, future research could focus on refining
the CCPP approach by incorporating strategies that ensure corner coverage during
headland traversal. This may involve optimizing turning points and path transitions
between headlands and their inner trajectories.

By enhancing the coverage of field corners and headlands, the overall efficiency and
effectiveness of the CCPP approach can be improved, leading to more optimal solu-
tions in terms of coverage rate.

Compatibility with Boom Section Control

In recent years, the advent of map-based automatic boom section control has seen
widespread adoption by various manufacturers for agricultural sprayers. Leverag-
ing global positioning system technology, this innovative solution tracks material
application from previous sprayer passes. By dynamically accumulating and pro-
cessing this data, the system independently controls boom sections, yielding mate-
rial savings through the deactivation of sections in previously sprayed areas [83].
While this technology is primarily considered during execution, integrating it into
the CCPP approach presents the notable benefit of delivering more accurate cover-
age and overlap rates estimation.

To enhance the compatibility of our CCPP approaches with boom section control
technology, future research could focus on developing algorithms that efficiently
incorporate section control information during the path planning process. By con-
sidering the real-time coverage status of the field and the activation or deactivation
of implement sections, the final result of our approaches could be post processed to
yield even more accurate coverage and overlap rates estimation.

2D Projection of 3D Surface and Trajectories

Another limitation of our research lies in the handling of 3D field surfaces and tra-
jectories. Although our latest approach incorporates the 3D model of the field for
computing the slope of working trajectories, we have not employed the 3D model
for adjusting the spacing between parallel trajectories.

Integrating the 3D model for spacing adjustment can lead to more accurate and op-
timized trajectory planning, as it takes into account the variations in elevation and
slope, which can significantly impact the efficiency and coverage of the agricultural
operation. This approach can contribute to reducing missed areas or overlaps, ulti-
mately leading to more efficient resource usage and better overall performance. On
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the other hand, fully integrating the 3D model for trajectory planning and spacing
adjustment introduces additional computational complexity, which may result in
increased computation times.

Future work could focus on improving CCPP approaches that efficiently incorporate
3D field models for trajectory planning and spacing adjustment, taking into consid-
eration the trade-offs between computational complexity and solution efficiency. By
addressing these challenges, the resulting CCPP solutions can offer enhanced per-
formance and resource efficiency in various agricultural applications with complex
terrain.

Obstacle Avoidance

Obstacle avoidance, particularly when dealing with static obstacles such as trees,
rocks, or infrastructure is another limitation of our CCPP approaches. In many cases,
proper field decomposition can effectively manage these static obstacles, allowing
our approach to handle them without significant issues. However, in some situa-
tions, it may be more optimal to address these obstacles using innovative strategies
during the path planning stage of the CCPP approach.

Dynamic obstacles, such as moving labors, or animals, on the other hand, require de-
tection by the robot’s perception system and management through the autonomous
system’s safety features. To handle such obstacles, several strategies may be useful,
such as implementing a waiting strategy, informing the operator to resolve the issue,
or even slightly deviating the trajectory when feasible, while maintaining the overall
efficiency of the coverage path.

Incorporating obstacle avoidance techniques directly into the CCPP approach or
other subsystems, such as perception and safety features, can lead to more efficient
and adaptable solutions. This allows for better accommodation of both static and
dynamic obstacles, potentially reducing the need for extensive field decomposition.
Taking static obstacles into account during path planning enables the approach to
dynamically adapt to the unique layout and constraints of the field, resulting in
more optimal coverage paths. By refining the integration of these techniques, the
overall adaptability and efficiency of autonomous agricultural robots can be further
improved in various real-world scenarios and complex field environments.

Robustness and Computational Complexity

The robustness and computational complexity of the advanced CCPP approach, es-
pecially when applied to complex fields that require decomposition, can be men-
tioned as a current limitation. This issue could become more pronounced when
real-time path recompilation is required to address evolving field conditions due to
factors such as unpredictable weather events, soil moisture changes, or the presence
of unexpected obstacles.

While the approach demonstrates high efficiency for simple fields without decom-
position needs, taking just a few seconds, the computation time can increase sub-
stantially for complex fields that require decomposition, potentially taking several
minutes. The complexity of the approach is directly and exponentially dependent
on the number of sub-fields, leading to an increased computation time. This time
may further extend if the approach is provided with multiple sets of dividing lines,
as it must evaluate each set to identify the one that leads to the optimal solution.
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This increase in complexity is primarily due to the exploration of all possible com-
binations of driving directions, coverage patterns for each sub-field, as well as their
visiting order. The approach generates all potential driving directions for each sub-
field and, for each combination of driving directions, considers all possible orders
of visiting the sub-fields, as well as both sequential and skip-row coverage patterns
for each sub-fields. This results in a substantial number of combinations to evaluate.
As the number of sub-fields grows, the computational complexity of the algorithm
increases exponentially, potentially affecting the overall efficiency of the CCPP solu-
tion.

To address this limitation, we propose a two-step solution as a perspective for en-
hancing the robustness of the proposed approach while maintaining the same qual-
ity of the final solution. The first step involves finding the optimal driving direction
for each sub-field separately, instead of attempting all possible combinations. By iso-
lating the driving direction optimization, we can significantly reduce the complexity
of the problem. Once the optimal driving direction for each sub-field is determined,
all possible combinations of coverage pattern in every sub-field, as well as the order
of visiting them can be examined. This will reduce the number of possible combina-
tions drastically.

However, before proceeding further, the efficiency of the resulting approach must
first be determined through a comparison with our current approach. Once its effi-
ciency is proven, the second step would involve generating a comprehensive dataset
using the improved approach. This dataset would examine a set of dividing lines
provided by an expert and identify which set of dividing lines leads to the optimal
solution under the proposed optimization objectives for a large number of fields.
This information can be used to create an annotated dataset indicating the optimal
dividing lines, the optimal driving direction for each sub-field, and the optimization
objectives.

By utilizing the resulting dataset, the deep learning-based approach proposed in this
thesis can be refined. Once trained on the new dataset, the model can propose a set
of dividing lines for optimally decomposing the field and determining the optimal
driving direction for each sub-field while considering the optimization objectives.
The information provided by the deep learning model can further improve the com-
putation time of the CCPP approach developed in the first step. Moreover, it could
lay the foundation for a fully AI-based CCPP approach, offering a more elegant and
efficient solution to the challenges of agricultural path planning.

In conclusion, enhancing the robustness and computational efficiency of our CCPP
approach not only addresses the current limitations but also allows for the inclu-
sion of additional factors such as soil erosion and energy consumption directly us-
ing more complex models. Furthermore, it would enable the incorporation of new
constraints such as soil compaction through the use of soil-wheel interaction mod-
els and controlled traffic farming practices that track and provide information about
previously executed paths on the field [55, 145].

Robot capacity

One more limitation to consider is the robot’s capacity, both in terms of agricultural
materials and fuel or energy levels. Efficiently managing these resources is crucial
to ensure the robot can effectively cover the field without interruptions or delays.
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One potential solution could be achieved by incorporating a post-processing method
into our latest approach. This approach focuses on first covering the main part of
the field before addressing the headlands. This strategy offers an advantage, as the
circular headlands surrounding the field can be used for recharging or reloading the
robot. By planning a path within the headlands towards a stationary service station
or even incorporating a secondary mobile service unit, the primary robot can be
recharged or resupplied as needed.

Once the main part of the field is covered, a similar strategy can be employed us-
ing the remaining uncovered headlands. Additionally, if the robot is near an access
segment and its current energy or material level is insufficient to complete the job,
a mobile service unit can be deployed to recharge or resupply the robot, ensuring it
can finish its task without disruptions.

By incorporating these strategies into the CCPP approach, the system can better
address capacity constraints, ultimately leading to more efficient and reliable au-
tonomous agricultural robots.

Multi-Robot Systems

Our research primarily focuses on CCPP approaches for single-robot systems. How-
ever, many real-world scenarios involve deploying multiple robots that coopera-
tively complete tasks, necessitating coordination and collaboration among them. In-
corporating multi-robot systems into CCPP approaches can result in more efficient
and effective solutions, as robots can cover different areas of the field simultaneously,
reducing operation time and mitigating the impact of individual robot failures.

A potential solution for integrating multi-robot systems is to divide the coverage
path generated by our latest approach into several shorter segments, preferably
at points where turns or half-turns occur in headlands and turning spaces. These
shorter segments can then be allocated to multiple robots. During this process, it is
essential to consider the robots’ capacity to ensure that each segment can be covered
by a fully charged robot without requiring recharging or reloading.

Future work could investigate the development of CCPP approaches that incorpo-
rate multi-robot systems, addressing challenges such as inter-robot communication,
task allocation, and collision avoidance. The emergence of 5G connectivity could
play a crucial role in enabling real-time communication and coordination among
multiple robots, significantly enhancing their collaborative capabilities. Implement-
ing these systems may necessitate improvements in perception and safety features.
Furthermore, a management system, possibly leveraging IoT and 5G technology,
could be essential for allocating, controlling, and re-planning tasks, or even for alert-
ing the operator if a robot is unable to complete its assignment on time or experiences
a malfunction. This would promote more efficient resource utilization and enhance
overall performance in large-scale agricultural operations.

8.3.3 Fully Deep Learning-Based Approaches

At the time of writing this thesis, there is no deep learning-based approach to agri-
cultural CCPP. Our exploration towards a deep learning-based approach for field
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decomposition in agricultural CCPP represented one of the first steps in this direc-
tion, highlighting the challenges and complexities associated with acquiring and an-
notating training data. This exploration emphasizes the need for a comprehensive
dataset that accurately captures diverse field shapes from real-world scenarios.

As a long-term perspective, future research could focus on leveraging deep learning
not only for field decomposition but also for learning and reproducing coverage
paths. The first step toward such an approach would be to create a comprehensive
dataset that includes various field shapes, annotated field decompositions, and the
coverage paths along with the objectives that lead to those paths.

It is important to consider that identifying the objectives that lead to the coverage
path can be a challenging task. Currently, most of the coverage paths are gener-
ated by farmers and are executed by manually or semi-manually operated tractors.
As a result, the factors influencing the coverage paths may not only depend on pri-
mary goals such as coverage rate, overlaps, soil erosion, soil compaction, energy
consumption, and environmental pollution, but also on farmers’ preferences, which
can vary from one individual to another. Furthermore, the physical demand and
driving skills of the farmers can play a significant role in shaping the coverage paths.

However, when it comes to fully autonomous robots, factors that depend on individ-
ual farmers become irrelevant. Autonomous robots do not experience fatigue while
performing difficult maneuvers, nor do they rely on visual cues to approximately
locate the next track to follow. Instead, these robots can consistently execute optimal
coverage paths, taking into account the primary objectives and constraints.

Given these considerations, creating a comprehensive dataset could be achieved by
extracting data from various fields needed by latest CCPP approaches, with the help
of an expert to determine the best or the most pertinent set of dividing lines for
field decompositions, to generate full coverage paths under various optimization
criterion. These coverage paths, as well as their objectives could serve as a good
reference for deep learning models.

Potential models that could be explored for training include generative models such
as variational autoencoders [73] and generative adversarial networks [46], which
can learn the underlying structure of the data and generate new, plausible coverage
paths. Additionally, reinforcement learning approaches [160] could be employed
to learn optimal policies for navigating complex fields while considering multiple
objectives.

In conclusion, the integration of deep learning approaches in agricultural CCPP
holds great promise for the future of autonomous farming. By building upon the
foundation laid in this thesis and advancing the development of comprehensive
dataset, researchers can explore a wide range of deep learning models to create inno-
vative solutions for complex agricultural scenarios. These solutions will not only im-
prove the efficiency and sustainability of agricultural practices, but also contribute to
meeting the growing global food demand while minimizing environmental impacts.

With the groundwork laid by the research presented in this thesis, it is our hope to
inspire further exploration and innovation in the realm of autonomous agriculture,
ultimately fostering a brighter and more sustainable future for agriculture. By em-
bracing interdisciplinary collaboration and incorporating cutting-edge technology,
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researchers can drive significant progress in autonomous agricultural robotics, rev-
olutionizing the way we approach agricultural challenges and ushering in a new era
of smart farming.
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Calcul et optimisation de trajectoires pour
véhicules autonomes soumis aux contraintes d’un

environnement agricole

“Trajectory optimisation for autonomous vehicles under agricultural
environment constraints”

Résumé

Dans cette thèse, nous développons une approche générique et efficace pour la planification de cou-
verture complète de trajectoires (CCPP) pour les robots agricoles autonomes. Nous visons à concevoir
des méthodes de CCPP qui tiennent compte des exigences spécifiques de chaque opération et outil,
ainsi que des caractéristiques 3D du champ, tout en optimisant plusieurs objectifs tels que la couverture,
les chevauchements, la distance non travaillée, la consommation d’énergie et l’érosion des sols. Les
contributions incluent une revue systématique des algorithmes de CCPP, la modélisation du terrain, la
création d’un ensemble de données et le développement d’approches efficaces pour la planification des
trajectoires.

Mots-clés : Planification de Trajectoire pour une Couverture Complète, Robots Agricoles Autonomes,
Modélisation du Terrain, Recherche Intelligente Basée sur les Arborescences, Apprentissage Profond,
Décomposition des Parcelles, Planification de Trajectoire en 3D.

Résumé en anglais

This thesis focuses on developing a generic and efficient Complete Coverage Path Planning (CCPP)
approach for autonomous agricultural robots. The research addresses the complexities of various agricul-
tural operations, considering the specific requirements of each operation and implement, along with the
3D characteristics of the field. The thesis contributions include a systematic review of CCPP algorithms,
a detailed discussion of 2D and 3D terrain modeling with a dataset of 30 fields in France, development
of an efficient tree-based intelligent search algorithm for CCPP, exploration of deep learning-based
field decomposition, and the creation of an advanced 3D hybrid path planning approach with multiple
objectives. The ultimate goal is to contribute to the advancement of CCPP approaches for autonomous
agricultural robots and provide a foundation for further research in this area.

Keywords: Complete Coverage Path Planning, Autonomous Agricultural Robots, Terrain Modeling,
Tree-based Intelligent Search, Deep Learning, Field Decomposition, 3D Hybrid Path Planning.
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APPENDIXA
Résumé en Français (Version
Longue)

A.1 Introduction

Les systèmes agro-alimentaires ont été mis à rude épreuve par la pandémie de
COVID-19, le changement climatique et la croissance démographique, entraînant
une insécurité alimentaire et une malnutrition accrues à l’échelle mondiale. Selon le
Groupe d’experts intergouvernemental sur l’évolution du climat, le secteur agricole
devrait être gravement touché par le réchauffement climatique d’ici 2040. De plus,
la population mondiale devrait atteindre 10,9 milliards d’ici 2100, nécessitant une
augmentation de la production alimentaire. Pour relever ces défis, des méthodes
agricoles efficaces, durables et résilientes sont nécessaires. Les systèmes autonomes,
tels que les robots autonomes à roues, offrent des perspectives d’amélioration de
l’efficacité et de réduction des coûts en agriculture. Cependant, des défis importants
subsistent dans le développement et le déploiement de ces systèmes autonomes
pour améliorer l’agriculture de précision et l’agriculture intelligente.

L’agriculture de précision utilise la technologie de l’information, les outils d’analyse
de données et les capteurs pour optimiser la production agricole grâce à la prise de
décision basée sur les données. Son objectif est d’augmenter les rendements, de min-
imiser les impacts environnementaux et d’améliorer la durabilité de l’agriculture.
L’agriculture intelligente, une évolution de l’agriculture de précision, emploie des
technologies avancées telles que la robotique, l’automatisation et l’Internet des ob-
jets (IoT) pour optimiser davantage les opérations agricoles. Elle exploite les don-
nées de diverses sources pour la prise de décision en temps réel et la gestion précise
des activités agricoles.

Les principales applications de ces pratiques comprennent l’équipement agri-
cole autonome, la surveillance et la gestion des cultures, la gestion du bétail,
l’irrigation de précision, la prédiction des rendements et l’optimisation de la chaîne
d’approvisionnement.

Développer un système autonome pour l’agriculture implique d’intégrer plusieurs
sous-systèmes, tels que la planification de trajectoire, le suivi de trajectoire, les sys-
tèmes de positionnement, les systèmes de perception et les fonctionnalités de sécu-
rité.
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La planification de trajectoire consiste à créer un itinéraire réalisable et optimal d’un
point à un autre tout en tenant compte des contraintes environnementales et du
véhicule. Elle peut également impliquer la génération d’un chemin assurant une
couverture complète du champ. Le suivi de trajectoire, en revanche, consiste à ad-
hérer avec précision au chemin prévu à l’aide de diverses techniques de contrôle et
des dernières avancées en matière de contrôle de direction [78, 155, 44, 56].

Un positionnement précis est essentiel, et les Systèmes Globaux de Navigation par
Satellite (GNSS) fournissent des informations de position. Cependant, d’autres sys-
tèmes de positionnement tels que l’odométrie visuelle, les unités de mesure inertielle
ou la localisation basée sur LiDAR peuvent être nécessaires dans certains scénarios
où les performances du GNSS sont dégradées [97, 156, 94].

Les systèmes de perception permettent de comprendre l’environnement en utilisant
plusieurs capteurs et algorithmes pour la détection, la segmentation et le suivi des
objets [23, 114, 16]. Une perception robuste repose sur des méthodes de fusion de
capteurs qui intègrent les données de plusieurs capteurs [3, 9].

Les fonctionnalités de sécurité, y compris l’évitement d’obstacles, la détection de
collisions et les mécanismes d’arrêt d’urgence, sont essentielles pour protéger les
travailleurs humains et les autres véhicules à proximité du système autonome. Ces
fonctionnalités sont généralement réalisées grâce à des algorithmes avancés utilisant
les données des capteurs [154].

Les systèmes agricoles autonomes peuvent être adaptés à partir de machines agri-
coles traditionnelles en les équipant de capteurs, d’actionneurs et de contrôleurs
pour des opérations manuelles et autonomes. Cette adaptation offre des avantages
tels que l’utilisation de l’équipement et de l’infrastructure existants et la possibil-
ité de passer d’un mode à l’autre selon les besoins. En alternative, des robots au-
tonomes personnalisés peuvent être spécialement conçus pour des tâches et des en-
vironnements particuliers. Ces robots, plus petits et plus agiles, sont excellents pour
naviguer sur des terrains difficiles. Dans cette étude, tous les véhicules autonomes
sont désignés sous le terme de "robots autonomes", avec un accent mis sur ceux
conçus pour des tâches spécifiques.

Le Laboratoire d’Innovation de Technology & Strategy à Strasbourg a développé un
prototype de robot équipé de divers capteurs, dont un LiDAR, une caméra RGB-D et
un GNSS. Le robot intègre des algorithmes sophistiqués pour le suivi de trajectoire,
la navigation, la détection d’obstacles et la sécurité. Sa conception permet une navi-
gation autonome sur un terrain déformable. Cette thèse se concentre principalement
sur le sous-système de planification de trajectoire du robot, en développant spé-
cifiquement une approche de Planification de Trajectoire de Couverture Complète
(PTCC) pour un robot autonome équipé d’un outil spécifique à une tâche. L’objectif
est de créer un algorithme de planification adapté à une utilisation sur le terrain réel,
en conjonction avec d’autres sous-systèmes développés et améliorés par l’équipe,
pour démontrer l’efficacité et la praticité de l’approche proposée.

Comme mentionné précédemment, développer un système autonome en agricul-
ture est une tâche complexe qui implique d’intégrer plusieurs sous-systèmes spécial-
isés et interconnectés. L’intégration réussie de ces sous-systèmes est cruciale pour
le fonctionnement efficace et efficient du système sur le terrain. De plus, les exi-
gences de chaque sous-système peuvent varier en fonction de l’opération agricole
spécifique effectuée. De plus, différentes pratiques agricoles, telles que l’agriculture
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arable et l’agriculture en verger, peuvent avoir des exigences distinctes pour leurs
opérations respectives.

L’agriculture en verger consiste à cultiver des fruits et des noix, tels que les pommes,
les poires, les cerises et les amandes, dans des arbres plantés de manière rapprochée.
La disposition dense des arbres présente des défis pour la navigation et l’exécution
de tâches à l’aide de machines agricoles traditionnelles. Les systèmes autonomes
offrent une solution pour naviguer entre les arbres et effectuer des tâches telles que
la taille, la pulvérisation et la cueillette des fruits. Ces systèmes peuvent optimiser
les calendriers d’irrigation et de fertilisation et prévoir les épidémies de maladies,
réduisant ainsi les coûts de main-d’œuvre et améliorant l’efficacité. La localisation
prédéfinie des arbres en agriculture en verger facilite l’utilisation de systèmes au-
tonomes, car les trajectoires sont déjà définies. Cependant, cette étude se concentre
principalement sur les opérations effectuées en agriculture arable, où la génération
d’un chemin de couverture complète est nécessaire, et la direction des trajectoires
parallèles n’est pas prédéfinie par de telles contraintes.

L’agriculture arable implique la culture à grande échelle de cultures dans les champs.
Elle comprend des tâches répétitives qui peuvent bénéficier considérablement
des systèmes autonomes. Les tâches comprennent le labour et le travail du sol,
l’ensemencement, la plantation, la fertilisation, l’irrigation, la pulvérisation, la ré-
colte et la tonte. Les systèmes autonomes peuvent effectuer ces tâches efficacement
et avec précision, minimisant le risque d’erreur humaine et le besoin de main-
d’œuvre. Par exemple, les semoirs autonomes peuvent garantir une croissance
optimale des plantes en plantant des graines à des intervalles et des profondeurs
précis, tandis que les systèmes de pulvérisation autonomes peuvent appliquer avec
précision les pesticides et les herbicides, minimisant les risques environnementaux.

En agriculture, la PTCC joue un rôle crucial pour naviguer efficacement un robot
sur l’ensemble du champ tout en minimisant les chevauchements. Elle implique la
création d’un chemin réalisable et optimal qui prend en compte les contraintes du
robot et les caractéristiques de l’outil, tout en optimisant un ensemble d’objectifs.

Cependant, développer une approche PTCC générique pour l’agriculture est diffi-
cile en raison des diverses opérations, outils et contraintes impliqués. Par exem-
ple, l’ensemencement nécessite une mise en œuvre précise à une profondeur spé-
cifique, nécessitant un mouvement droit tout en ajustant la hauteur de l’outil. En
revanche, la pulvérisation ne nécessite pas de contact avec le sol, mais le robot doit
éviter d’endommager les cultures germées.

De plus, la PTCC devient complexe lorsqu’on prend en compte l’inclinaison et les
pentes du champ, qui peuvent affecter les performances du robot et la qualité des
résultats. Construire un modèle de champ en 3D ajoute une autre couche de com-
plexité mais est crucial pour optimiser l’efficacité et l’efficience du chemin, en par-
ticulier en termes de consommation d’énergie et d’érosion du sol. Par conséquent,
les approches PTCC doivent prendre en compte les exigences spécifiques de chaque
opération et outil, ainsi que les caractéristiques 2D et 3D du champ, pour garantir
des performances optimales.

A.1.1 Motivations

La principale motivation de cette thèse est de développer une approche PTCC
générique et efficace pour les robots agricoles autonomes qui peut répondre aux
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complexités de diverses opérations agricoles. Plus précisément, l’objectif est de
concevoir des méthodes PTCC qui peuvent prendre en compte les exigences spé-
cifiques de chaque opération et outil, tout en intégrant les caractéristiques 3D du
champ et en optimisant plusieurs objectifs tels que la zone de couverture, la réduc-
tion des chevauchements, la distance non travaillée, la consommation d’énergie et
l’érosion du sol. L’approche proposée devrait être applicable à une large gamme
d’applications agricoles et de formes de champs, garantissant des performances
optimales. En fin de compte, l’objectif est de contribuer à l’avancement des ap-
proches PTCC pour les robots agricoles autonomes, fournissant une base pour des
recherches et un développement ultérieurs dans ce domaine.

A.1.2 Contributions

Cette thèse introduit plusieurs contributions significatives au domaine de la robo-
tique agricole:

Une revue systématique des algorithmes existants pour résoudre les problèmes de
PTCC dans les robots agricoles à roues. La revue analyse 48 articles et discute des
facteurs clés qui impactent l’efficacité des approches PTCC, y compris la modélisa-
tion du terrain et des contraintes, et les techniques de planification de trajectoire.

Des discussions détaillées et un ensemble de données sur la génération de modèles
de champs 2D et 3D, en utilisant des données provenant de 30 champs en France.
L’ensemble de données, disponible sur Zenodo [115], offre des perspectives pré-
cieuses pour les chercheurs en robotique agricole, aidant au développement de so-
lutions précises et à l’évaluation des futures approches de planification de trajectoire.

Développement d’une approche PTCC efficace pour créer des chemins optimaux
pour les robots agricoles autonomes. L’approche vise à obtenir une couverture de
champ de haute précision tout en minimisant les chevauchements, la longueur du
chemin non travaillé et le temps de déplacement global. Elle utilise un algorithme de
recherche intelligent basé sur un arbre et prend en compte des facteurs importants
tels que la géométrie du robot et de l’outil.

Investigation sur une approche basée sur l’apprentissage profond pour la décompo-
sition de champ dans la PTCC agricole. Cette recherche met en évidence les com-
plexités de l’ensemble de données et souligne la nécessité de reconsidérer certaines
hypothèses sur les préférences des agriculteurs, les opérations et les exigences des
machines. Bien que les résultats puissent ne pas répondre aux attentes initiales, cette
étude souligne l’importance d’une approche PTCC robuste capable de gérer efficace-
ment plusieurs lignes de division et diverses contraintes.

Développement d’une approche avancée de planification de trajectoire hybride 3D à
objectifs multiples pour une couverture complète. Cette approche combine les forces
de la méthode précédemment proposée et d’un algorithme open-source, en tenant
compte des inclinaisons de la trajectoire de travail qui impactent l’érosion du sol
et la consommation d’énergie, parmi d’autres objectifs. L’évaluation par rapport à
l’algorithme proposé à l’origine démontre l’efficacité et l’efficience de cette approche
hybride.



A.2. Modélisation du Terrain 157

A.2 Modélisation du Terrain

La modélisation du terrain permet de créer des représentations numériques 2D ou
3D d’une surface terrestre physique, essentielle pour la planification de trajectoires,
l’analyse de l’érosion des sols et l’estimation de la consommation d’énergie. La qual-
ité du modèle influence considérablement la précision de ces applications. La mod-
élisation du terrain en 2D offre une projection plate du terrain, tandis que la modéli-
sation en 3D tient compte de la topographie et des variations d’altitude. Bien que les
modèles 3D offrent une représentation du terrain plus précise, leur utilisation dans
la modélisation du terrain agricole est limitée en raison de la complexité computa-
tionnelle associée.

L’acquisition de données précises est essentielle pour créer des modèles de champ fi-
ables. Dans notre cas d’utilisation, les données nécessaires pour construire des mod-
èles de champ 3D et 2D comprennent des points dans le sens antihoraire représen-
tant les frontières du champ, un ensemble de segments de ligne pour les segments
d’accès, des données d’altitude et des points optionnels dans le sens horaire pour
représenter les obstacles statiques. Les segments d’accès sont des lignes 2D sur
les frontières du champ indiquant d’où le robot peut entrer et sortir des points du
champ.

Les frontières du champ, les obstacles et les segments d’accès sont acquis à l’aide de
l’outil d’annotation Geoportail [45]. Il offre une interface graphique pour dessiner
des points, des lignes et des polygones sur des images satellites, et les résultats peu-
vent être exportés sous forme de fichier Keyhole Markup Language (KML), qui com-
prend toutes les coordonnées.

Les données d’altitude sont acquises à l’aide des services de calcul d’altitude de
l’IGN [58]. Une grille d’altitude est générée dans la boîte englobante du champ, puis
l’API REST est utilisée pour déterminer l’altitude de chaque point. Cependant, ce
processus peut être long et peut générer du bruit dans les données pour les grilles
haute résolution.

Une solution pratique à ce problème est de créer une grille d’altitude de résolu-
tion inférieure. Cette grille d’altitude de faible résolution peut ensuite être utilisée
pour construire une surface 3D haute résolution du champ à travers des méthodes
d’interpolation d’altitude.

A.2.1 Construction de Surface 2D

La création d’une surface 2D d’un champ est un processus en plusieurs étapes :

• Un polygone 2D est créé qui combine le champ et les polygones d’obstacle

• Une grille 2D est générée dans la boîte englobante du champ

• Les points trouvés en dehors du polygone 2D sont supprimés

• De nouveaux points sont interpolés le long des frontières du champ et des
obstacles

• Tous les points restants sont combinés et triangulés

Le résultat est une surface triangulée de manière homogène, sauf près des frontières
du champ et des obstacles où elle peut être non homogène. Dans le cas d’un champ
avec un obstacle, le polygone du champ est généré en premier, en excluant l’obstacle.



158 Appendix A. Résumé en Français (Version Longue)

Ensuite, une grille 2D est générée dans la boîte englobante du champ. Seuls les
points à l’intérieur du polygone 2D sont conservés. Ensuite, des points sont inter-
polés sur les frontières du champ et des obstacles. Enfin, tous les points restants sont
triangulés pour créer une surface de champ 2D.

A.2.2 Construction de Surface 3D

Après avoir construit une surface 2D haute résolution du champ, la grille d’altitude
et une approche d’interpolation peuvent être utilisées pour estimer l’altitude de
chaque point de la surface 2D. Le résultat de ce processus est une surface 3D haute
résolution. L’une des méthodes couramment utilisées à cette fin est le Inverse Dis-
tance Weighting (IDW).

Dans cette approche, l’altitude d’un point est calculée avec une moyenne pondérée
des points environnants dont l’altitude est déjà connue. Les poids sont calculés
comme l’inverse de la distance à chaque point voisin. Par conséquent, l’altitude
du point P est calculée en fonction de ses N points voisins les plus proches {Pi|Pi ∈
R2, i ∈ N, 1 ≤ i ≤ N} comme suit :

f (P) =


∑N

i=1 wi(Pi) f (Pi)

∑N
i=1 wi(Pi)

, si d(P, Pi) ̸= 0 pour tout i

f (Pi), si d(P, Pi) = 0 pour certains i
(A.1)

où

w(Pi) =
1

d(P, Pi)
p (A.2)

où d désigne la distance euclidienne et p est un nombre réel positif, appelé paramètre
de puissance.

En l’absence d’une vérité terrain, il est difficile de déterminer la précision de cette
construction de surface 3D. Il peut être nécessaire d’utiliser un drone équipé de la
technologie LiDAR aéroportée pour construire un ensemble de données de vérité
terrain précis pour étudier l’efficacité des différentes méthodes de reconstruction 3D
pour un champ agricole.

A.2.3 Un ensemble de données de champs réels

Il existe un écart reconnu dans la littérature existante pour un ensemble de données
englobant des données complètes pour évaluer les stratégies de planification de tra-
jectoire sur les surfaces de champ agricole 2D et 3D. Pour combler ce vide, nous
avons créé un ensemble de données publiquement disponible sur Zenodo composé
de trente champs agricoles diversifiés en France. Cet ensemble de données, allant
de 1, 83 à 13, 21 hectares et présentant des formes variées, offre un large éventail de
scénarios réels pour valider les approches de planification de trajectoire.

Pour chaque champ, cet ensemble de données rassemble les informations suivantes
dans des fichiers séparés :

• une image aérienne (PNG)

• un polygone 2D (XML)
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• une surface triangulée 2D (PLY), avec un espacement de 0,25 mètres

• une grille d’altitude (PLY), avec un espacement de 5 mètres

• une surface triangulée 3D (PLY), avec des paramètres IDW N = 20 et p = 2

• un ensemble de segments de ligne 2D représentant les segments d’accès (XML)

• des ensembles de lignes de division pour 10 champs pour les décomposer

où le Polygonal File Format (PLY) est un format de fichier pour stocker des données
graphiques 3D, y compris des modèles et des scans. Notamment, les surfaces de
champ 2D et 3D peuvent être représentées comme des modèles 3D dans ce format,
la seule différence étant que tous les points d’une surface 2D ont une valeur z de
zéro.

A.3 Méthodes

A.3.1 Recherche basée sur un arbre intelligent

L’une de nos approches est un PTCC basé sur un arbre pour trouver un ou plusieurs
chemins de couverture. Elle comporte trois phases clés : le prétraitement, la
recherche intelligente basée sur un arbre (ou algorithme d’exploration) et la vérifi-
cation de similarité pour sélectionner les solutions optimales.

Dans la phase de prétraitement, nous préparons le champ en utilisant des entrées
comme le polygone du champ, les lignes de division, les segments d’accès, la largeur
de travail et le rayon de braquage minimum du robot. Cette phase produit des sor-
ties comme un ensemble d’entrées, des bordures et des espaces de rotation néces-
saires pour la navigation entre les bordures.

L’algorithme d’exploration, la deuxième phase, vise à découvrir toutes les solutions
possibles et à les stocker dans un espace de solution. Chaque solution est un chemin
de couverture - une séquence de trajectoires qui commence à une entrée, couvre
de manière optimale le champ et les bordures, et se termine sur l’un des segments
d’accès.

Dans des scénarios avec plusieurs entrées et/ou lignes de division, ces phases sont
répétées plusieurs fois. Pour les champs complexes, s’il y a d lignes de division dif-
férentes et e entrées, cela nécessite d exécutions de prétraitement et d ∗ e explorations.
Nous considérons également des cas sans lignes de division, car la solution optimale
pour certains champs peut ne pas nécessiter de division du champ.

La phase finale consiste à calculer le coût de chaque solution qui est un coût moyen
pondéré de couverture, de chevauchement, de distance parcourue non travaillée et
de coûts de temps d’opération, à regrouper des solutions similaires en familles à
l’aide d’une fonction de similarité, et à ne conserver que la solution la moins coû-
teuse de chaque famille.

L’arbre est construit à l’aide de nœuds qui représentent des séquences potentielles
de trajectoires, qui doivent satisfaire à certaines contraintes strictes.

Nœuds : Chaque nœud de l’arbre représente une étape potentielle suivante dans la
trajectoire. Il contient des informations sur le type de trajectoire, la destination et la
direction. L’arbre commence par un nœud racine représentant l’entrée et se termine
par un nœud feuille représentant un point de sortie.
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Contraintes strictes : Chaque trajectoire doit respecter un ensemble de contraintes
strictes. Ces contraintes garantissent que le robot reste à l’intérieur du champ, évite
de causer des dommages, limite les chevauchements et respecte des longueurs et
modalités de trajectoire spécifiques. Certaines de ces contraintes comprennent :

• Contrainte intérieure : Le robot doit rester à l’intérieur du champ.

• Contrainte de dommage : Le robot ne doit pas endommager les trajectoires
existantes.

• Contrainte de chevauchement limité : Les chevauchements au centre du
champ ne sont pas autorisés.

• Contrainte de chevauchement global : Il y a un seuil pour la superficie totale
de chevauchement.

• Contrainte de boucle locale : Empêche les boucles locales indésirables.

• Contrainte de commutation : Permet de passer d’un sous-champ à l’autre
dans certaines conditions.

• Contrainte MWD : Garantit une longueur de trajectoire minimale.

Construction et exploration de l’arbre : L’arbre est initialisé avec un nœud d’entrée.
De là, les nœuds sont générés et explorés en utilisant une approche en profondeur.
L’exploration prend en compte divers scénarios comme les cycles de traversées et
les demi-tours, les commutations de bordure et la sortie du champ.

Vérification de similarité et sélection des solutions optimales

Après avoir construit l’arbre et généré des solutions potentielles, l’étape suivante
consiste à évaluer et à sélectionner les solutions les plus optimales.

Fonction de coût : Une fonction de coût est introduite pour évaluer chaque solu-
tion. Cette fonction prend en compte quatre métriques : le taux de couverture, le
taux de chevauchement, la distance parcourue non travaillée et le temps d’opération.
Chaque métrique est normalisée pour garantir une évaluation cohérente.

Classification des solutions : Pour faciliter la sélection d’une solution idéale par
les utilisateurs, les solutions générées sont regroupées en familles en fonction de
leur similarité. La similarité est déterminée par la direction générale des solutions.
De chaque famille, la solution ayant le coût le plus bas est proposée à l’utilisateur,
garantissant une variété d’options sans redondance écrasante.

Développement du programme et ensemble de données

Un programme sophistiqué a été développé en C++ pour déterminer les trajec-
toires optimales pour les robots opérant dans les champs agricoles. Ce programme,
équipé d’une interface graphique, permet aux utilisateurs de définir des paramètres
d’entrée et de visualiser les trajectoires résultantes. En exploitant les capacités de
traitement parallèle de la bibliothèque OpenMP, le programme atteint des temps de
calcul plus rapides. L’efficacité du programme a été testée sur un ensemble de don-
nées présenté dans un chapitre précédent, qui comprend à la fois des champs sim-
ples et complexes. Ces champs ont été visualisés à l’aide de figures, avec différentes
couleurs et marqueurs indiquant diverses caractéristiques comme les entrées, les
lignes de division et les polygones de champ.
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Évaluation et Résultats

L’approche a été rigoureusement appliquée à chaque champ de l’ensemble de don-
nées, en tenant compte des différentes lignes de division et entrées fournies. Les
trajectoires générées ont ensuite été comparées à de véritables images satellite pour
évaluer leur précision et leur praticité. Les résultats ont été prometteurs : pour les
champs simples, le taux de couverture était impressionnant à 98, 69%, et pour les
champs complexes plus difficiles, il était de 98, 23%. Fait intéressant, dans de nom-
breux cas, la solution la plus optimale (en termes de couverture et de chevauche-
ment) ressemblait également étroitement aux trajectoires réelles visibles sur les im-
ages satellite.

Familles de solutions et accessibilité du champ : L’un des aspects innovants de
l’approche était sa capacité à regrouper les solutions en "familles". Cela signi-
fie que pour un champ donné, plusieurs chemins optimaux étaient présentés à
l’utilisateur, offrant une variété de choix qui pourraient convenir à différents besoins
ou préférences. L’importance de l’accessibilité du champ a également été soulignée.
Si l’accessibilité d’un champ est décrite de manière inexacte, la solution générée
pourrait être impraticable ou même nuisible, car le robot pourrait involontairement
s’aventurer dans un champ voisin.

Comparaison avec d’autres méthodes : Une comparaison directe a été faite avec un
autre algorithme, Fields2Cover (F2C). Bien que F2C ait été plus rapide sur le plan
computationnel, la nouvelle approche a affiché un taux de couverture plus élevé.
Cependant, cette comparaison a mis en évidence les défis inhérents à la comparaison
directe de différentes méthodologies, en particulier lorsqu’elles prennent en compte
différentes contraintes et objectifs. Par exemple, les trajectoires de F2C ignoraient
les contraintes pratiques comme la longueur minimale de trajectoire requise pour
activer et désactiver les outils agricoles.

A.3.2 Modèle de couverture avec saut de rangée

Notre prochaine approche est basée sur le concept d’un modèle de couverture "Row-
Skip", où certaines rangées d’un champ sont intentionnellement sautées lors de la
couverture initiale et couvertes plus tard. Ce modèle peut réduire la taille des bor-
dures, qui sont souvent moins productives en raison de la compaction du sol. Bien
que les opérateurs humains puissent trouver le saut de rangée difficile en raison du
manque de repères visuels, les systèmes automatisés ou les robots avec des systèmes
de guidage peuvent efficacement mettre en œuvre cette stratégie. Plusieurs études
ont exploré divers modèles de couverture, mais beaucoup simplifient trop certains
aspects ou ne tiennent pas compte de défis spécifiques comme la couverture des
bordures. La section introduit une nouvelle approche de modèle de saut de rangée
qui vise à maximiser la couverture du champ tout en tenant compte de diverses
contraintes.

Le Row-Skip PTCC se compose également de trois parties principales : le prétraite-
ment, l’exploration et la sélection des solutions optimales. Le prétraitement est sim-
ilaire à l’approche O-PTCC, en se concentrant sur la génération des bordures et la
détermination des points d’entrée. L’étape d’exploration, cependant, est modifiée
pour générer des solutions avec un modèle de saut de rangée. Le processus de sélec-
tion est également ajusté pour tenir compte de nouvelles métriques, telles que le
nombre de virages avec des mouvements inverses.
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L’algorithme d’exploration construit un arbre de séquences de trajectoires poten-
tielles, en tenant compte de scénarios tels que les cycles de traversée, les commuta-
tions de bordure et les sorties de champ. Une grande partie de l’exploration consiste
à déterminer quand sauter des rangées et quand couvrir les rangées précédemment
sautées, en particulier lorsque le robot approche des bords du champ. L’algorithme
utilise des rayons pour déterminer le chemin du robot et les intersections potentielles
avec les bordures.

Après avoir exploré les solutions possibles, l’algorithme calcule des métriques telles
que le taux de couverture, le taux de chevauchement, la distance non travaillée,
le temps d’opération et le nombre de virages avec des mouvements inverses pour
chaque solution. Ces métriques sont ensuite normalisées et pondérées pour déter-
miner le coût final de chaque solution. La solution ayant le coût le plus bas est
sélectionnée comme solution optimale.

Résultats

Le Row-Skip PTCC a été comparé à l’approche précédente (O-PTCC) en utilisant six
champs d’un ensemble de données. Les résultats ont montré que le Row-Skip PTCC
surperformait généralement l’O-PTCC, en particulier lors de la prise en compte de
métriques telles que le taux de couverture et le taux de chevauchement. Cependant,
l’O-PTCC avait parfois une distance non travaillée plus faible.

Les résultats indiquent que le Row-Skip PTCC pourrait être une stratégie viable
pour maximiser la couverture du champ tout en minimisant le chevauchement.
Cependant, des recherches supplémentaires sont nécessaires pour déterminer les
meilleures stratégies de saut de rangée pour différents types de champs et de cul-
tures.

A.4 Conclusion

La planification de trajectoire pour les robots agricoles est un défi complexe qui né-
cessite une prise en compte minutieuse des contraintes du champ, des capacités
du robot et des besoins de l’opération agricole. Cette recherche a introduit deux
approches pour résoudre le problème de la planification de trajectoire : l’O-PTCC
et le Row-Skip PTCC. Les deux approches ont montré des résultats prometteurs
lorsqu’elles sont testées sur des ensembles de données réels, bien que chacune ait
ses propres avantages et inconvénients.

À l’avenir, il serait bénéfique d’explorer d’autres modèles de couverture, d’intégrer
des données en temps réel pour une planification adaptative et de tester ces méth-
odes sur un plus grand ensemble de données. De plus, l’exploration de l’intégration
de la technologie de détection pour éviter les obstacles dynamiques pourrait égale-
ment améliorer la robustesse et la fiabilité des solutions de planification de trajectoire
pour les robots agricoles.
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