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Perceiving the world through our senses 
 
When we interact with the outside world, we continuously need to adapt and adjust our 
behavior to this complex and dynamic environment. Through more than 500 million years 
of brain evolution, we are capable of perceiving complex external signals through six basic 
senses: vision, audition, smell, taste, touch and proprioception. Among all these senses, 
vision is probably the most complex and important one for humans and the visual system 
is the largest system in the human brain. Like other senses, the visual system has a 
hierarchical organization that consists of multiple brain areas. Three types of connections 
can be differentiated in this network: ascending feedforward projections, descending 
feedback projections and horizontal projections within a hierarchical level. 
 
This organization enables the processing of visual information at increasing levels of 
complexity, with the lower levels (thalamus, primary visual cortex (V1)) specialized at 
detecting dots and lines in particular orientations, and higher cortical regions recognizing 
object categories, faces, movement in space, etc. Importantly, the extensive feedback 
connections send the complex information processed in the higher cortical regions back 
to lower visual areas, thus providing contextual information about the feedforward inputs 
they are receiving. This allows the visual system to be highly efficient by continuously 
predicting what happens in our environment and updating these predictions with visual 
inputs.  
 
Anatomy of visual circuits 
 
The visual information processing begins with photoreceptors in the retina, which detect 
light. There are two types of primary photoreceptor cells: rods and cones. Rods and cones 
convert photoreceptor binding signals to changes in neurotransmitter release and transfer 
visual information to the horizontal, bipolar, and amacrine cells of the retina. The network 
of these cells serves as an initial information integrator and regulator. Then, retinal 
ganglion cells (RGCs) that receive this processed information, deliver the outputs of the 
eyes to the ~46 retinorecipient brain areas in mouse, including basal forebrain, 
hypothalamus, bed nucleus, thalamus, midbrain, and accessory optic nuclei1. More than 
30 different subtypes of RGCs are involved; each type has unique functional and 
physiological characteristics2. All those circuits can be divided into image-related and non-
image-related circuits. Image-related circuits generally involve visual perception, while 
non-image-related circuits support unconscious sight-related functions, such as pupil 
reflexes and involuntary eye movements. By far the most RGCs from retina target the 

  

image-related targets: dorsal geniculate nucleus (dLGN, ~30-40%) and the superior 
colliculus (SC, ~90%). Here, the initial information detecting, diverting, filtering and 
delivering takes place. 
  
Thalamus 
As a “first-order nucleus” of the thalamus, the dLGN serves as an information relay station 
between the eyes and visual cortex. Recent studies show that dLGN neurons receive 
inputs from on average 2-6 types of RGCs3,4, but only about two of those play a functional 
role in each relay neuron4.  Unlike like primate dLGN, mouse dLGN is a homogenous 
structure and does not have cytoarchitectural lamination. By using specific transgenic 
mice, RGC tracing shows that no distinct layers were present. However, mouse dLGN does 
have functional areas that are innervated by distinct types of retinogeniculate cells. The 
shell region of dLGN receives more ON-OFF direction-selective RGCs (DSRGCs) and non-
canonical DSRGCs, whereas ON sustained retinogeniculate cells (ONsRGCs), OFF sustained 
retinogeniculate cells (OFFsRGCs), OFF transient RGCs (OFFtRGCs), and also Suppressed-
by-Contrast (SbC-) RGCs (SbC-RGCs) show strong projections to the core part of dLGN5–7. 
By this functional segregation, the vast amount of complex visual information is efficiently 
divided and processed. In mouse (and human) dLGN, the segregation of RGCs axons is not 
only defined by cell types, but also by the eye in which they are situated. Previous studies 
with tracer injections showed that axons from the contralateral and ipsilateral eye have 
different destinations. The ipsilateral projections are restricted to a small dorsomedial 
part of dLGN, while most of the contralateral RGCs innervate the rest of dLGN8,9. However, 
a recent study using monosynaptic rabies tracing showed that many dLGN neurons receive 
anatomic inputs from both eyes3. Although more than half of dLGN neurons in the 
ipsilateral projection zone receive binocular inputs, the strengths of the inputs from the 
two eyes are inequal10. Thus, with functional and eye segregation of RGCs in dLGN, visual 
information is well organized in the visual thalamus.  
 
The thalamus plays the role of logistic center of sensory information. In the mouse, the 
majority of dLGN cells are excitatory glutamatergic relay cells (~90%). These can be 
subdivided in three types of region-specific thalamic relay cells (TC): X-like (biconical), Y-
like (symmetrical), and W-like (hemispheric), similarly to the X-, Y-, W- cells of cats11. Those 
cell types have different region preferences: X- like cells predominate at the ventrolateral 
part of dLGN, while Y- like and W- like cells are most abundant in the core and shell of 
dLGN. Moreover, the targets of W-like projections are cortex layer 1-3, while X-like and Y-
like TCs mainly innervate layer 4-6. Although those cells are quite different in morphology, 
their electrophysiological properties are very similar in vitro11. Different from other dorsal 
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thalamic nuclei, the dLGN also has GABAergic interneurons (~10%)12. Previous work shows 
that interneurons in mouse dLGN can be clustered in two major populations, based on 
morphology, cell size, and electrophysiological properties13. However, the actual 
functional differences between the two types of interneurons are still unknown. Since in 
the dLGN both TC and interneurons receive inputs from RGCs, a local inhibitory circuit is 
formed which can dynamically improve information encoding efficiency through a classic 
push-pull mechanism14 and increase signal-noise ratios. 
 
Thalamic inhibition 
Interestingly, dLGN interneurons are quite unique in having two very different ways of 
inhibiting thalamocortical neurons: classical axonal (F1) terminals and presynaptic 
dendritic (F2) terminals. Unlike classic F1 terminals, the F2 terminal is organized in a triadic 
structure, which consists of an inhibitory synapse between the interneuron dendrite and 
a TC cell, and a glutamatergic retinogeniculate synapse which provides excitation. 
Therefore, when thalamocortical neurons are excited by RGCs, the interneuron dendrite 
will also be activated via glutamate receptors (AMPARs, NMDARs, and mGluRs), which 
leads to very rapid GABA release and inhibition of the TC neuron. Moreover, multiple 
neuromodulators, such as 5-HT, dopamine, and muscarinic acetylcholine can cause slow 
and lasting GABA release at F2 terminals15–17 (Fig. 1). The activation of F2 terminals is 
dynamic, and can be trigged by dendritic back-propagating action potentials18, or 
independently by action potential firing at the soma. Although the role of F2 in 
information processing is not fully understood, it is believed that the combination of F1 
and F2 is involved with a push-pull or same-sign mechanism, which may improve temporal 
precision19–21 .  
 
 

  

 
Fig. 1. (A) Schematic of thalamic inhibitory inputs. F1 terminals are traditional inhibitory synapses. Unlike F1, 
meanwhile innervating thalamic relay cells, the F2 terminals are also innervated by retinogeniculate axons. (B) 
Schematic of a F2 triad. The output of F2 terminals are manipulated by various neuromodulators and 
retinogeniculate glumatergic inputs. Adopted from Cox and Beatty (2017). 

 
Primary visual cortex 
After initial visual input arrives in dLGN, information is sent to primary visual cortex (V1). 
In V1, layers 2/3 and 4 receive most dLGN input, and layer 5/6 receive less abundant 
inputs22.  Different V1 cells vary strongly in their responses to visual inputs. Based on their 
orientation-selectivity, V1 cells can be categorized into two different classes, ‘simple 
(linear)’ and ‘complex (nonlinear)’ cells. For simple cells, the classical receptive field (RFs) 
is spatially segregated by ON and OFF stimuli. Complex cells, in contrast, have overlapping 
ON and OFF subregions. By applying a Fourier transform, the ratio of neural responses at 
the drift frequency (F1, first harmonic) to the mean response (F0, 0th harmonic) can be 
computed. Thus, the cell type can be predicted based on the ratio F1/F0 ratio. Simple cells 
show strong modulation to sinusoidal stimuli, as reflected by a F1/F0 > 1. In contrast, the 
ON/OFF RFs of complex cells are partially overlapping, and the F1/F0 ratio is not 
necessarily larger than 123 (Fig. 2). Also, in mouse V1, the complex cells are significantly 
less orientation tuned than simple cells23. Thus, V1 neurons can pass on different types of  
feedforward information to particular downstream areas due to the functional differences 
between simple and complex cells24,25.  
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Fig. 2. Illustration of simple and complex cells. +: ON subregion; -:OFF subregion; +&-: both ON and OFF subregion. 
Adopted from Kim et al., 2020. 

 
Inhibitory neurons in V1 
Except excitatory neurons, inhibitory interneurons in V1 also have an essential role in 
information processing. GABAergic interneurons only make up 10-20% of the neuronal 
population in the cortex. Despite their relative sparsity, interneurons are a diverse set of 
neurons that provide various types of inhibition to pyramidal neurons and other 
interneurons. There are four major subtypes of interneuron in cortex: parvalbumin (PV)-
positive, somatostatin (SST)-positive, vasoactive intestinal peptide (VIP)-positive and 
neuron-derived neurotrophic factor (NDNF)-positive interneurons. The main 
developmental sources of cortical interneurons are the caudal ganglionic eminence (CGE) 
and medial ganglionic eminence (MGE). Among all sources, the MGE is origin of around 
60% of cortical interneurons in the mouse26, from which most of PV+ and SST+ cells are 
derived. The CGE produces around 30%-40% cortical neurons, which includes most of VIP+ 
interneurons and NDNF+ neurogliaform cells.  Each subtype has its unique role and feature. 
In cortex around 40% of GABAergic are PV+ cells27, and most of them are fast-spiking 
basket cells. PV+ cells are normally located in all layers except layer 1. PV+ basket cells 
strongly innervate proximal dendrites and somata of local neurons. They receive thalamic 
input and input from local pyramidal cells.  They are believed to broadly integrate the 
activity of these inputs, making them ideal for mediating gain control through feedforward 
inhibition. Moreover, PV basket cells are thought to generate cortical gamma oscillations 
(20-80Hz)28 through inhibitory-inhibitory (I-I) and excitatory -inhibitory (E-I) loops. This 
activity pattern is highly related to sensory perception28. SST+ cells are accounting for 30% 
of cortical GABAergic interneurons. Most SST+ cells are located in layer 2/3 and 5. They 
mostly receive major inputs from local or more remotely localized pyramidal cells in V1, 
but lack thalamic feedforward inputs. Because SST+ interneurons become increasingly 
active when a larger part of V1 is stimulated, they are thought to be involved in feature 
coding, like surround suppression. When visual stimuli of increasing size are presented, 

  

V1 neurons initially respond more strongly. However, if the stimulus is enlarged further, 
the response of the neuron will decrease. This phenomenon is called surround 
suppression. Surround suppression enhances apparent contrast and underlies visual pop-
out. Another interesting feature of SST+ cells is that they predominantly innervate distal 
dendrites of pyramidal cells, in particular the dendritic tufts in layer 1 where feedback 
projections from higher cortical areas or thalamic nuclei form their synapses. This may 
allow SST+ interneurons to efficiently control feedback-driven activity in V1. Unlike PV+ 
interneurons, SST+ cells do not innervate each other, but they do inhibit other types of 
interneurons, such as PV+ cells29. Therefore, SST+ cells might disinhibit thalamic 
feedforward information, by inhibiting PV+ neurons (Fig. 3).  

 
Fig. 3. Cortical main subtypes of interneurons and their main inputs/ outputs in visual cortext. Green, blue, purple 
and red indicate NDNF (Reelin) cells, VIP cells, PV cells and SST cells. Color lines indicate projections from each 
neuron type. Right panel indicate source of inputs for each subtype. Black circle sizes indicate the strength level 
of inputs. Adopted from Versendaal and Levelt, 2016.   

 
The third largest group of interneurons are VIP+ cells, which predominantly inhibit other 
interneurons such as SST+ and PV+ cells30,31. VIP+ interneurons also receive higher order 
cortical and thalamic feedback inputs. Due to the interconnectedness of VIP+, SST+ and 
PV+ interneurons, they form an effective switch controlling the relative influence of 
feedforward and feedback inputs to V1. When VIP+ interneurons are active, they will 
suppress SST+ interneurons thus strengthening the influence of feedback inputs. Reduced 
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SST+ interneuron activity may also increase PV+ basket cell activity, thus reducing 
responses driven by feedforward inputs. 
 
The last subtype of interneurons is NDNF+ neurogliaform cells. They can provide strong 
inhibition through volume release of GABA, resulting in the activation of metabotropic 
GABAB- and extrasynaptic GABAA receptors. This can cause strong and prolonged inhibition. 
Neurogliaform cells receive thalamic and local cortical inputs and feedback from higher 
visual areas. Like SST+ interneurons, neurogliaform cells inhibit both pyramidal and PV+ 
interneurons32. Therefore, they might also be involved in switching between feedforward 
and feedback inputs. In conclusion, interneurons regulate local, feedforward and feedback 
information, which is critical for visual perception.  
 
V1 feedforward to higher visual areas 
V1 innervates a variety of brain areas with distinct functions, and most V1 neurons project 
to more than one area. At least 9 visual areas of neocortex receive V1 projections. These 
are anterolateral (AL), lateromedial (LM), rostrolateral (RL), lateral intermediate (LI), 
posteromedial (PM), posterior (P), anteromedial (AM), postrhinal (POR) and anterior 
visual area (A) (Fig. 4). The information sent to each higher visual area is biased to the 
functions of these areas. Among all higher areas, AL and LM receive the strongest input 
from V1 and contain moreneurons with direction preference33. A large part of RL encodes 
the lower nasal visual field34 and also responds to movement33. LI neurons prefer high 
spatial frequencies24. PM neurons have large receptive fields35 and consist of two 
subpopulations: one prefers high spatial frequencies while the other prefers low spatial 
frequencies36. However, these preferences per brain region are not absolute; there are 
many functional overlaps in the response properties of neurons in different visual areas. 
Through these widespread V1-to-higher visual area connections, visual information from 
V1 can spread to different regions of neocortex and participate in cognition and behavior 
of the animal.   
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One example is figure-ground modulation. This is a feature that can already be detected 
in V1 and underlies pop-out of the key elements (figures) in a visual scene from the 
background. A recent study demonstrates that higher visual areas mediate figure-ground 
modulation by providing feedback to V1 neurons whose receptive fields match the figure37. 
In this study, optogenetic silencing of the higher visual areas strongly reduced figure-
ground modulation in V1, but had no effect on the initial visual responses. It proves that 
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Fig. 5. V1 figure-ground depends on higher visual area. Left top, figure condition stimuli, the green circle is the 
receptive field. Right bottom, ground condition stimuli. Mid, The example of V1 figure (black curve) and ground 
(gray curve) responses to figure-ground stimuli. Right, optogenetically inhibited HVAs while recording V1 activity. 
V1 figure-ground activity is reduced when HVAs are inhibited. Adopted from Kirchberger et al., 2021. 
 

Another example of feedback providing contextual information is predictive processing. 
In predictive processing, the brain forecasts the expected sensory input in higher-level 
areas and sends this prediction to lower areas through feedback projections. Lower level 
areas compute the differences between the prediction and actual inputs as a prediction 
error. This prediction error in the lower level areas is then sent to the higher-level area 
again through feedforward projections to update the prediction. Predictive coding is hard 
to study, because it is difficult to differentiate between predictive and sensory inputs. 
However, mismatch between motor and visual input can be readily observed in 
rodents38,39. Two-photon calcium imaging in mice has demonstrated that secondary motor 
cortex sends feedback to V1, conveying  body movement-based prediction of visual 
information38. A related study has shown that mouse V1 layer 2/3 neurons respond to 
mismatch between actual and predicted visual feedback39.  
 
Apart from direct corticocortical feedback, transcortical communication can also be 
delivered through the thalamus. Many studies have shown that pulvinar (a higher-order 
visual thalamic nucleus, equivalent to the lateral posterior thalamic nucleus in rodents) 
plays a significant role in predictive processing and attention40,41. Pulvinar lesions can 
interfere with new learning and attention shifts42–45. 
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Anatomy of whisker somatosensory system 
 
Like the visual system, the facial whisker sensory system is also important for rodents. It 
offers tactile information of the immediate surroundings. Whiskers on the snout of 
rodents are arranged in a matrix structure. The matrix also exists in the primary 
somatosensory cortex (S1), and each element of them is termed a ‘barrel’. These barrels 
are arranged in a similar map layout to the whiskers on the snout. Like the visual system, 
the somatosensory pathway involves multiple layers of hierarchy. 
 

 
 
Fig. 6. Organization of ‘barrel’ structure on the snout and somatosensory cortex. Each of barrels in cortex 
represents an individual whisker and is somatotopically organized. Adopted from Petersen, 2019. 

 
Sensory information is first detected in the whisker follicle, which is connected with 
trigeminal afferent neurons. Each follicle is connected to around 100-200 trigeminal 
neurons through mostly fast-conducting sensory fibers46. With each whisker stimulus, 
whisker motion transmits mechanical energy to the follicle. These analog signals are then 
translated into action potentials by follicle-connected trigeminal ganglion cells. The 
brainstem trigeminal nuclei are the first nuclei in the brain relaying and processing this 
tactile information. They are complex nuclei with multiple substructures. Within them, 
two neural compartments are highly related with whisker somatosensation: The principal 
(PrV) sensory nucleus for high-resolution mechanoreceptive aspects of touch and the 
spinal nucleus (SpV) for low-resolution touch.  
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Based on the target differences of trigeminal ganglion cells, they either project to PrV or 
to SpV. The whisker-cortex pathway is thus divided in two parallel pathways: the lemniscal 
pathway and paralemniscal pathway. In the lemniscal pathway, the PrV has an obvious 
whisker map, similar to the barrel cortex and whiskers on the snout. However, in the SpV, 
which forms the paralemniscal pathway, only some parts show a similar topographic 
organization. In PrV, most neurons only respond to a single whisker (70%)47 and transvey 
both touch and movement information48. It is still unclear which specific whisker 
information is transferred by SpV.  
 
The next hierarchical layer of the somatosensory pathway is thalamus. The ventral 
posteromedial nucleus (VPM) and posteromedial complex (PoM) are the major thalamic 
nuclei that receive trigeminal complex inputs. Like the visual thalamic nucleus dLGN, VPM 
is the first order nucleus of the somatosensory pathway49. As part of lemniscal pathway, 
VPM predominantly receives ascending excitatory inputs from PrV, thus inheriting a clear 
barreloid whisker map. The size of the barreloids is highly correlated with the length of 
the whiskers50. Except feedforward inputs from the trigeminal nuclei, VPM also receives 
excitatory and inhibitory feedback from primary somatosensory cortex and the thalamic 
reticular nucleus (TRN), respectively. In contrast to dLGN, rodent VPM barely has 
interneurons51. Therefore, the only GABAergic inputs are provided by TRN. Afferents from 
VPM mostly innervate layer 4, lower layer 2/3 and layer 5/6 of primary somatosensory 
cortex, forming a one-to-one connection between the VPM barreloid map and cortical 
barrels52. TRN and layer 6 of the barrel cortex also receive feedforward projections from 
VPM.  
 
PoM, like LP of the visual thalamus, is a higher order nucleus of the somatosensory 
system49. It is also the thalamic part of the paralemniscal pathway, which means it mostly 
receives inputs from SpV. Although there is evidence suggesting PoM has a topographical 
organization, it is more homogeneous and without a barreloid type of structure53. Unlike 
VPM, the receptive fields of PoM are large, and each neuron can respond to 6-8 whiskers54. 
However, responses to single whisker stimuli are much weaker. Like VPM, PoM also 
receives feedback from TRN and cortical layer 6. However, the TRN-VPM projection is 
topographically organized, while no somatotopic map is found in TRN-PoM projections55. 
Compared to VPM, PoM has much wider innervation areas, which includes the primary 
somatosensory, secondary somatosensory, insular and motor cortices and TRN56. Most 
PoM-cortex projections terminate in layers 1 and 5. 
 

  

In barrel cortex, neurons are structured in 200 to 300 um cortical columns, each 
representing a whisker on the snout. Each cortical barrel column contains around 6500 
neurons that include ~85% excitatory and ~15% inhibitory cells57. Like visual cortex, barrel 
cortex also has various types of interneurons, including VIP+, SST+, PV+ and NDNF+ cells 
and all of them also take part in regulating feedback and feedforward information. In 
conclusion, although the cortex and thalamic nuclei processing whisker inputs have some 
differences when compared to the visual system, the principle of thalamo-cortico-
thalamic networks for each system are quite similar.   
 
Development of thalamocortical and intracortical circuits 
 
The general development of neuronal connections arises through many steps. The 
development of thalamus and cortex occurs in a synchronized way. Before birth, shortly 
after thalamic neurogenesis, the thalamic and cortical projections start to growth towards 
each other. At around embryonic day (E) E14 to E16, guided by guidepost cells, 
thalamocortical and corticothalamic axons connect and reach their destination areas. 
After birth, development can be described in three major phases: before the critical period, 
the critical period, and after the critical period. 
 
Spontaneous activity 
One of the most essential features driving early postnatal development of the 
thalamocortical network is spontaneous activity. In the mouse visual system, spontaneous 
waves of activity start in the retina around embryonic day 16. Here, we focus on postnatal 
activity. Based on the time and features of the waves, the postnatal spontaneous activity 
periods can be divided into two stages. The first stage begins at ~P1 and lasts until ~P10, 
whereas the second stage begin at ~P10 and lasts until around eye opening. The first stage 
waves are slow and propagating and depend on cholinergic signaling58,59, while the second 
stage waves are faster and depend on glutamatergic signaling60,61. It is worth noting that 
retinal spontaneous waves can also drive wave-like activities in the visual thalamus, 
superior colliculus, and V1.  
 
Spontaneous activity in the rodent somatosensory and visual thalamus contains two 
categories: early gamma oscillations (30-50) and spindle bursts (8-20 Hz)62,62,63. These 
activities are mainly triggered by spontaneous activity in the upstream sensory organs62 
and have an essential role in shaping thalamocortical projections64. Since thalamus 
receives corticothalamic feedback, the thalamic spontaneous activities will also be 
affected by cortical activity62,65. 
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Electrophysiological recordings show that sensory cortex also has spontaneous spindle 
bursts in newborn rodents. It has been shown that impairments of sensory organs or 
thalamus causes defects in cortical spontaneous activity and the organization of cortical 
network. This suggests that most early spontaneous cortical activities underlying 
corticothalamic circuits depend on subcortical inputs. 
 
Experience-dependent plasticity: critical periods 
The second phase of postnatal development starts with experience-dependent plasticity 
during a critical period. Critical periods have been widely observed in many brain systems. 
The most used model for studying critical periods (CP) is ocular dominance (OD) plasticity 
in V166. In mammals, after eye opening, V1 cells fire more action potentials when the same 
visual stimuli are shown to one eye vs the other. This property is defined as OD. If one eye 
is experimentally closed for several days (monocular deprivation, MD), a shift in OD is 
induced, which means that V1 becomes less responsive to eye that was closed and more 
responsive to the open eye. This change in visual responsiveness is termed OD plasticity.  
 
In juvenile mice, a few days of MD induces a significant OD shift in V1. This effect is the 
strongest between P21 and P35, which is considered the critical period for OD plasticity. 
The peak of the critical period is around P28.  The onset of the critical period depends on 
the development of inhibitory innervation67. In mice lacking the GABA synthetic enzyme 
glutamic acid decarboxylase (GAD) 65 KO, the critical period does not start, unless the 
animals are treated with the GABA-A receptor agonist diazepam68. Treating P19 wild-type 
animals with benzodiazepines was found to induce a premature critical period68. 
  
Interestingly, in mice in which the GABA receptor alpha1 subunit was genetically rendered 
insensitive to benzodiazepine, an early onset of the critical period could not be induced 
with diazepam69.  This effect was not observed when the GABA receptor alpha2 subunit 
was made insensitive to benzodiazepine. As GABA receptor alpha1-containing synapses 
are mostly innervated by PV+ basket cells, it is thought that these interneurons are the 
most important regulators of critical period onset.  
 
These experiments directly show that GABAergic innervation is essential for critical period 
onset. Interestingly, other factors that were found to influence critical period onset often 
affect inhibitory innervation of V1. Overexpression of brain-derived neurotropic factor 
(BDNF) in mice, for example, causes an early onset of the critical period due to accelerated 
development of inhibitory synapses70–72. Moreover, IGF-1, a protein with a molecular 

  

structure similar to insulin, can speed up the development of inhibitory innervation, also 
causing an early onset of the critical period73. Also, in mice lacking polysialic acid (PSA) of 
neural cell-adhesion molecule before critical period onset, GABAergic synapse maturation 
is expedited, and results in a premature critical period onset74. Together, these findings 
support the idea that the development of inhibitory innervation underlies the onset of the 
critical period. 
 
Like the onset of the critical period of OD plasticity, its closure is also thought to involve 
inhibition by PV+ interneurons. In mice treated with chondroitinase, an enzyme that 
degrades the extracellular matrix (ECM), OD plasticity can readily be induced in adult mice. 
Interestingly, PV+ interneurons are encapsulated by perineuronal nets (PNNs), a densely 
organized ECM structure. PNNs are partially removed upon chondroitinase treatment. 
This suggests that PNNs may contribute to PV+ interneuron function involved in critical 
period closure. Indeed, more recently, it was discovered that PV+ interneurons rapidly 
lose excitatory input upon MD during the critical period, but not in adulthood.  The 
reduced activity of PV+ interneurons caused by loss of excitatory inputs was found to be 
essential for OD plasticity to occur. It is therefore thought that PNNs stabilize excitatory 
inputs onto PV+ interneurons, thus reducing the potential of V1 to undergo OD plasticity.  
 
Since the discovery of OD plasticity by Hubel and Wiesel, it was considered a cortical 
process, regulated by cortical mechanisms. However, a recent study has demonstrated 
that thalamic relay neurons in mouse dLGN also undergo OD plasticity during the critical 
period, and that this plasticity depends on thalamic inhibitory synapses containing the 
GABA receptor alpha1 subunit75. This study also showed that OD plasticity in V1 during 
the critical period was also dependent on thalamic inhibition and plasticity.  
 
Adult plasticity in the visual system 
Although OD plasticity can be induced most readily during the critical period, it still can be 
induced in adult mice. Compared to juvenile mice, OD plasticity in adult mice requires a 
longer period of MD76–78, and the OD shift is smaller and less sustained than in juvenile 
mice. The contribution of inhibition in the regulation of adult OD plasticity is less well 
understood. However, it was found that inhibitory boutons are lost during OD plasticity in 
adulthood as are inhibitory synapses on dendritic spines of pyramidal cells79–81. Moreover, 
there are indications suggesting that SST+ interneurons are also involved in facilitating OD 
plasticity in adult mice82,83. Interestingly, also in adult mice, OD plasticity does not only 
take place in V1 but also in dLGN.  Using in vivo two-photon imaging of calcium responses 
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in dLGN afferents in binocular V1, it was shown that a significant OD shift could be induced 
in thalamic neurons upon monocular deprivation84. 
 
Disorders involving the thalamocortical network 
 
One of the most common disorders of the thalamocortical network is amblyopia, also 
known as “lazy eye”.  About 1-5% of people suffer from it, and is caused by OD plasticity. 
If the two eyes do not provide strongly overlapping inputs, as is the case in children that 
are cross-eyed or when the refractory index of the two eyes differ strongly, plasticity in 
V1 will occur resulting in reduced responsiveness to the eye that provides the least reliable 
input. Treatment of this disorder has to happen before the critical period for OD plasticity 
in children closes, which occurs around 8 years of age.  
 
The typical treatment of amblyopia is occlusion therapy, which involves depriving the 
good eye with a patch in order to induce an ocular dominance shift and thereby providing 
the lazy eye with an advantage. Of course, this also requires correction of vision in this eye 
using glasses or surgery. The treatment for most of children requires a total of 150-250 
hours of patching, approximately 3 months of 3 hours per day85. Overall,  earlier 
intervention results in better recovery, and a later onset of therapy will require a longer 
period of occlusion85. Although clinical trials show that occlusion can still improve 
amblyopia in untreated children as old as 17 years old86, the visual benefits of occlusion in 
children that are older than 10 years are considered to be marginal87. Unfortunately, the 
vision loss in a child may not be noticed until vision is tested by an ophthalmologist, which 
does not always happen in time in all countries. Many studies suggest that it is possible to 
restore visual function using perceptual learning tasks in adults with amblyopia, although 
it remains unclear how persistent these improvements are. Studies on critical period 
regulation may help to develop novel approaches to improve amblyopia in adulthood. 
 
A very different type of disorder also thought to involve the thalamocortical network is 
schizophrenia. Schizophrenia is a mental illness characterized by a broad variety of 
symptoms divided into three categories: positive, negative and cognitive symptoms88. 
Positive symptoms include delusions, hallucinations, thinking abnormalities, disordered 
speech and motor impairments, among other things. Motivation loss, decreased initiative 
and energy, anhedonia and social retreat are all negative effects. Patients with cognitive 
impairments perform poorly on a variety of cognitive activities, including working memory, 
attention, reasoning and social interaction. Currently, schizophrenia is diagnosed using 
the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) and the 

  

11th International Classification of Diseases (ICD-11), both of which lack strong and 
precise biological markers. 
 
Schizophrenia normally starts in late adolescence or early twenties, rarely in childhood or 
adulthood89. Although no satisfactory etiological explanation exists for schizophrenia, 
research on twins or family members reveals a substantial connection between 
environmental and genetic variables90. Prenatal stress during pregnancy is one of the most 
researched environmental risk factors. Evidence shows that children from moms who 
have maternal hemorrhage, diabetes or infections during pregnancy are at a higher risk of 
developing schizophrenia91. Furthermore, there is some evidence that perinatal vitamin D 
insufficiency is a risk factor for schizophrenia92, with newborns born in the winter and 
spring, or at higher latitudes, having a greater chance of developing schizophrenia in the 
future. All the various environmental variables outlined above raise the possibility that 
schizophrenia is the outcome of abnormal neurodevelopment and maturation92. A variety 
of genetic loci have also been linked to schizophrenia90,93,94. Most genetic changes in 
schizophrenia are thought to be connected to neurotransmitters and their receptors; 
however, current investigations suggest a substantial association with aberrant 
structures95. 
 
An important theory about the pathogenesis of schizophrenia states that the symptoms 
of schizophrenia could be caused by N-methyl-D-aspartate receptor (NMDAR) malfunction. 
This theory is based on the discovery that NMDAR antagonists such phencyclidine (PCP) 
and ketamine can cause psychotic symptoms in healthy people96,97. This concept is 
supported in various ways by a large body of molecular and genetic research. Genes linked 
to schizophrenia include genes encoding for the endogenous NMDAR metabolizer 
flavoenzyme DAO98, glutamate signaling protein GRM399 and neuregulin 1, which are all 
associated with NMDAR driven synaptic signaling100,101. Moreover, there is evidence for 
low glutamate levels in schizophrenia patients' cerebral spinal fluid102. Reduced NMDAR 
binding has been observed in the hippocampus of schizophrenia patients, which can be 
reversed by antipsychotic medications102, as well as reductions in NMDAR subunit proteins 
in multiple brain areas, including the prefrontal cortex103, temporal lobe104 and 
thalamus105–107.  
 
Since systemically administered NMDAR antagonists can cause multiple schizophrenia-like 
behavioral deficits in rodents108–118, as well as in humans97,119, ketamine was proposed as 
an inducer of schizophrenia-like symptoms. Indeed, a study found that an intravenous 
infusion of ketamine can cause both sensory-motor and cognitive problems, akin to the 
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early stages of schizophrenia120. This finding lends credence to the notion that acute 
ketamine could be viewed as a model of psychosis transition121. Antipsychotic medications 
have been shown in preclinical trials to diminish the effects of NMDA receptor 
antagonists122–124. Although ketamine does not induce all symptoms of schizophrenia, it is 
a validated and well-recognized pharmacological model across the illness course of 
schizophrenia120,125–127. 
 
Ketamine interferes with NMDAR function by binding inside the receptor’s channel, which 
normally allows inwards currents of Ca2+ and Na+ upon binding of  glutamate. Ketamine 
will thus block NMDAR-mediated neuronal depolarization. As intracellular Ca2+ also plays 
an important part in long-term potentiation (LTP), long-term depression (LTD), and 
multiple metabolic activities, ketamine may also interfere with these processes too. Apart 
from acting on NMDARs, considered as ketamine’s primary target, it also affects other 
aspects of neural function. It was found to inhibit dopamine release128,129,  as well as serve 
as a partial agonist on GABA(A), dopamine D(2) and serotonin 5-HT(2)receptors130,131. It 
thus remains unclear whether ketamine causes various positive symptoms of 
schizophrenia through modulating NMDARs or through other mechanisms.  
 
It has long been debated whether schizophrenia is caused by malfunction of certain 
isolated brain circuits or by dysfunction of whole brain networks. According to the 
dopamine hypothesis, schizophrenia may be induced by changes in dopaminergic circuits, 
notably in the substantia nigra and ventral tegmental areas. Several investigations have 
shown deficits in the prefrontal cortex, hippocampus, striatum, substantia nigra and 
ventral tegmental area132–135. However, due to the widespread presence of glutamatergic 
neurons (80% of all neurons in the brain)136 and the evidence for glutamate/NMDAR-
related alterations, it seems improbable that schizophrenia is the consequence of a 
change in one or two brain areas. Furthermore, numerous studies have found immune 
response modifications, such as higher cytokine levels in the blood and cerebral fluid137, 
indicating whole-brain changes. Increasing evidence shows that schizophrenia is caused 
by a breakdown in communication across multiple brain areas, rather than by distinct and 
localized neurological impairments138–142. Imaging studies have revealed structural 
changes in schizophrenia patients, including changes in cerebral ventricle size (~130% of 
normal control), grey matter volume and white matter size. The hippocampus143, 
amygdala143, thalamus144, anterior cingulate145 and corpus callosum also show changes in 
schizophrenia patients146. Moreover, various aberrant brain network oscillatory activities 
are widely found in schizophrenia patients and animal models, from low delta147,148, 
theta149,150, alpha151,152 and beta153–155 frequencies to high gamma frequencies. 

  

One of the key features of schizophrenia is irregular gamma oscillatory activity. Various 
studies have described schizophrenia-related deficits in attention-related sensorimotor 
and cognitive processes associated with dysfunctional corticocortical and corticothalamic 
(CT) networks 156–160 showing disturbances of gamma (γ, 30-80 Hz) frequency oscillations. 
Under normal circumstances, two types of gamma frequency oscillations are involved in 
sensory/perceptual processes: sensory-evoked gamma oscillations, defined as phase-
locked to the stimulus161,162 and perception-induced gamma oscillation, defined as not 
phase-locked to the stimulus163,164. Clinical studies found that gamma disruptions are 
associated with cognitive impairments in schizophrenia, in both resting and task-related 
gamma oscillations. Some studies noted that baseline gamma power was increased in 
schizophrenia patients165,166, while others demonstrated a decrease in sensory-evoked 
gamma oscillations141,167. 
 
The schizophrenia-related disturbances in brain rhythms found in patients can be 
reproduced in schizophrenia animal models. NMDAR antagonists, such as ketamine or PCP, 
can dose-dependently increase the power of ongoing gamma oscillations in rodents168–171. 
This is consistent with ketamine upregulating gamma activities in humans during task 
performance172,173 or resting state127. 
 
Many lines of evidence indicate that the thalamocortical network is altered in 
schizophrenia. Postmortem studies show lower cell counts in thalamus of schizophrenia 
patients174,175. N-acetyl aspartate, a brain metabolite associated with ischemic brain injury 
and dementia, is also frequently reduced in the thalamus of schizophrenia patients, as 
determinded by proton magnetic resonance spectroscopy (1H-MRS)176. Also an MRS study 
reported significant elevations of glutamine level in the thalamus of schizophrenia 
patients177.  Several magnetic resonance imaging (MRI) studies in schizophrenia patients 
revealed aberrant structural and functional activity during cognitive tasks178–180. Notably, 
altered thalamocortical functional connectivity has been consistently reported in 
schizophrenia fMRI studies, including clinical high psychosis risk individuals126,181,  first-
episode patients182 and patients with established disease . 
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Thesis outline 
 
In this thesis, we examine the function of the corticothalamic-thalamocortical (CTC) 
network from the perspectives of schizophrenia and neural plasticity. We build on 
previous research suggesting that a dysfunctional corticothalamic network plays a 
significant role in mental and developmental disorders. 
 
In Chapter 2, we investigate the mechanism of spindle activity deficits in the CTC network 
in schizophrenia using in vivo electrophysiology in the thalamus and cortex of rats. We 
induce psychotomimetic states using low-dose ketamine and demonstrate that this 
reproduces spindle and delta oscillation deficits observed in human patients. To gain a 
better understanding of the impact of ketamine on thalamic neurons, we analyze the firing 
patterns of TRN and TC neurons. 
 
In Chapter 3, we investigate the effects of ketamine on sensory responses. We 
hypothesize that ketamine-induced dysfunction in the CTC network could result in sensory 
information chaos. To test this, we measure sensory information using multi-scale entropy 
analysis in both the thalamus and cortex. Additionally, we investigate the functional 
network connectivity of the CTC. 
 
In Chapter 4, we explore the role of the corticothalamic network in experience-dependent 
plasticity. We investigate how plasticity in the thalamus and cortex interact in the adult 
visual system. To assess the influence of thalamic plasticity on V1 plasticity in adult animals, 
we use multielectrode recordings in both V1 and dLGN in adult WT and thalamic GABA 
alpha1 subunit KO mice. We also silence V1 during thalamic recordings to investigate the 
role of V1 in thalamic OD plasticity. 
 
In Chapter 5, we investigate the role of endocannabinoids in experience-dependent 
neural plasticity. Previous studies have highlighted the unexpected role of astrocytic 
CB1Rs in plasticity, so we examine the impact of removing CB1Rs from interneurons or 
astrocytes during the critical period of OD plasticity in V1. To explore how cell type-specific 
loss of CB1Rs affects inhibitory synaptic maturation, we assess the dynamics of short-term 
transmission and long-term depression in acute brain slices. Additionally, we assess OD 
plasticity per layer in mice with and without astrocytic CB1Rs.  
 
In Chapter 6, we discuss the results of this thesis and provide an outlook on future 
research.  
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Abstract 
 
Background: In patients with psychotic disorders, sleep spindles are reduced, supporting 
the hypothesis that the thalamus and glutamate receptors play a crucial etio-
pathophysiological role, whose underlying mechanisms remain unknown. We 
hypothesized that a reduced function of NMDA receptors is involved in the spindle deficit 
observed in schizophrenia. 
 
Methods: An electrophysiological multisite cell-to-network exploration was used to 
investigate, in pentobarbitalsedated rats, the effects of a single psychotomimetic dose of 
the NMDA glutamate receptor antagonist ketamine in the sensorimotor and 
associative/cognitive thalamocortical (TC) systems. 
 
Results: Under the control condition, spontaneously-occurring spindles (intra-frequency: 
10–16 waves/s) and delta-frequency (1–4 Hz) oscillations were recorded in the 
frontoparietal cortical EEG, in thalamic extracellular recordings, in dual juxtacellularly 
recorded GABAergic thalamic reticular nucleus (TRN) and glutamatergic TC neurons, and 
in intracellularly recorded TC neurons. The TRN cells rhythmically exhibited robust high 
frequency bursts of action potentials (7 to 15 APs at 200–700 Hz). A single administration 
of low-dose ketamine fleetingly reduced TC spindles and delta oscillations amplified 
ongoing gamma-(30–80 Hz) and higher frequency oscillations and switched the firing 
pattern of both TC and TRN neurons from a burst mode to a single AP mode. Furthermore, 
ketamine strengthened the gamma-frequency band TRN-TC connectivity. The 
antipsychotic clozapine consistently prevented the ketamine effects on spindles, delta- 
and gamma−/higher-frequency TC oscillations. 
 
Conclusion: The present findings support the hypothesis that NMDA receptor 
hypofunction is involved in the reduction in sleep spindles and delta oscillations. The 
ketamine-induced swift conversion of ongoing TC-TRN activities may have involved at 
least both the ascending reticular activating system and the corticothalamic pathway. 
  

  

 
1. Introduction  
 
Sleep abnormalities are detected not only during the early course of complex mental 
health diseases, such as schizophrenia (Kamath et al., 2015; Monti and Monti, 2005; 
Wamsley et al., 2012) but also in individuals having a high-risk mental state for developing 
a transition to psychotic and bipolar disorders (Zanini et al., 2015). Cortical EEG studies 
conducted in such patients have revealed a reduction in sleep spindles (Castelnovo et al., 
2017; Ferrarelli et al., 2007; Ferrarelli et al., 2010; Manoach et al., 2014; Manoach et al., 
2016) and slow-wave activity (Kaskie and Ferrarelli, 2018). The underlying neural 
mechanisms are unknown. 
 
Sleep spindles have a thalamic origin with the GABAergic thalamic reticular nucleus (TRN) 
being a leading structure in their generation by exerting a powerful rhythmic inhibitory 
modulation of thalamocortical (TC) activities (Pinault, 2004; Steriade et al., 1985; Steriade 
et al., 1993). The TRN, the principal inhibitory structure of the dorsal thalamus, is 
innervated by two major glutamatergic inputs, TC and layer VI corticothalamic (CT) axon 
collaterals, which mediate most of their excitatory effects through the activation of 
glutamate receptors (Crandall et al., 2015; Deschênes and Hu, 1990; Gentet and Ulrich, 
2003). Importantly, layer VI CT axons innervate simultaneously TC and TRN neurons 
(Bourassa et al., 1995), together forming a 3- neuron circuit robustly involved in the 
generation of sleep spindles (Bal et al., 2000; Bonjean et al., 2011). The specific, sensory 
and motor TC systems receive cortical inputs only from layer VI CT neurons, whereas the 
non-specific, associative/limbic/cognitive TC systems receive cortical inputs from both 
layer V and layer VI CT neurons (Guillery and Sherman, 2002). In contrast to layer VI CT 
neurons, layer V CT neurons do not innervate the TRN. 
 
There is accumulating evidence that dysfunction of thalamusrelated systems is a core 
pathophysiological hallmark for psychosisrelated disorders (Andreasen, 1997; Clinton and 
Meador-Woodruff, 2004b; Cronenwett and Csernansky, 2010; Pinault, 2011; Steullet, 
2019). NMDA receptors are also essential in the generation of thalamic spindles (Deleuze 
and Huguenard, 2016; Jacobsen et al., 2001), and a reduced function of these receptors is 
thought to play a critical role in the etio-pathophysiology of schizophrenia (Clinton and 
Meador-Woodruff, 2004a; Coyle, 2012; Krystal et al., 1994; Snyder and Gao, 2019; 
Vukadinovic, 2014). Furthermore, the NMDA receptor antagonist ketamine models a 
transition to a psychosis-relevant state in both healthy humans (Anticevic et al., 2015; 
Baran et al., 2019; Hoflich et al., 2015; Rivolta et al., 2015) and rodents (Chrobak et al., 
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neurons, layer V CT neurons do not innervate the TRN. 
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and Huguenard, 2016; Jacobsen et al., 2001), and a reduced function of these receptors is 
thought to play a critical role in the etio-pathophysiology of schizophrenia (Clinton and 
Meador-Woodruff, 2004a; Coyle, 2012; Krystal et al., 1994; Snyder and Gao, 2019; 
Vukadinovic, 2014). Furthermore, the NMDA receptor antagonist ketamine models a 
transition to a psychosis-relevant state in both healthy humans (Anticevic et al., 2015; 
Baran et al., 2019; Hoflich et al., 2015; Rivolta et al., 2015) and rodents (Chrobak et al., 
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2008; Ehrlichman et al., 2009; Hakami et al., 2009; Kocsis, 2012a; Pinault, 2008; Pitsikas et 
al., 2008). Therefore, we hypothesized that a reduced function of NMDA receptors is 
implicated in the reduction of the density of sleep spindles recorded in patients having or 
about to have psychotic disorders. In an attempt to test this hypothesis, the effects of a 
single low-dose of ketamine on sleep oscillations were investigated using network and 
cellular recordings in the dorsal thalamus and TRN along with an EEG of the frontoparietal 
cortex in the pentobarbitalsedated rat. 
 
2. Methods and materials 
 
2.1. Animals and drugs 
 
Sixty-nine Wistar adult male rats (285–370 g) were used with procedures performed under 
the approval of the Ministère de l'Education Nationale, de l'Enseignement Supérieur et de 
la Recherche. Ketamine was provided from Merial (Lyon, France); clozapine, MK-801, 
apomorphine, and physostigmine, from SigmaAldrich (Saint-Quentin Fallavier, France), 
pentobarbital from Sanofi (Libourne, France), and Fentanyl from Janssen-CILAG (Issy-
LesMoulineaux, France). 
 
2.2. Surgery under general anesthesia 
 
Deep general anesthesia was initiated with an intraperitoneal injection of pentobarbital 
(60 mg/kg). An additional dose (10–15 mg/kg) of pentobarbital was administered when 
necessary. Analgesia was achieved with a subcutaneous injection of fentanyl (10 μg/kg) 
every 30 min. The anesthesia depth was continuously monitored using an 
electrocardiogram, watching the rhythm and breathing, and measuring the withdrawal 
reflex. The rectal temperature was maintained at 36.5 °C (peroperative and protective 
hypothermia) using a thermoregulated pad. The trachea was cannulated and connected 
to a ventilator (50% air–50% O2, 60 breaths/min). The anesthesia lasted about 2 h, the 
time necessary to perform the stereotaxic implantation of the electrodes (Pinault, 2005). 
 
2.3. Cortical EEG and thalamic cell-to-network recordings under sedation 
 
To understand how ketamine could influence ongoing sleep oscillations, cortical EEG and 
cell-to-network recordings were performed in the TC system of pentobarbital sedated rats, 
a rodent model of slow-wave sleep with spindles (Connor et al., 2003; Ganes and Andersen, 
1975; Pinault et al., 2006). At the end of the surgery, the rectal temperature was set to 

  

and maintained at 37.5 °C. The analgesic pentobarbital-induced sedation was initiated 
about 2 h after the induction of the deep anesthesia and maintained by a continuous 
intravenous infusion of the following regimen (average quantity given per kg and per hour): 
Pentobarbital (4.2 ± 0.1 mg), fentanyl (2.4 ± 0.2 μg), and glucose (48.7 ± 1.2 mg). To help 
maintain a stable mechanical ventilation and to block muscle tone and tremors, a 
neuromuscular blocking agent was used (d-tubocurarine chloride: 0.64 ± 0.04 mg/kg/h). 
The cortical EEG and heart rate were under continuous monitoring to adjust the infusion 
rate to maintain the sedation. 
 
For the cortical EEG recordings (28 rats), a recording silver wire (diameter: 200 μm) 
sheathed with Teflon was implanted in the parietal bone over the primary somatosensory 
cortex (from bregma: 2.3 mm posterior and 5 mm lateral). 
 
The network and cellular recordings and labellings were done with glass micropipettes 
filled with a saline solution (potassium acetate, 0.5 M) and a neuronal tracer (Neurobiotin, 
1.5%). Three series of experiments were carried out: 1) The first (16 rats) was designed to 
perform, along with the cortical EEG, extracellular (field potential and single/multiunit) 
recordings in specific and non-specific thalamic nuclei. The regions of interest were 
stereotaxically (Paxinos and Watson, 1998) located behind the bregma (2.3 to 3.6 mm 
posterior). 2) To consolidate the ketamine-induced effects on the extracellular recordings 
(population activities), a second series (8 rats) consisting paired juxtacellular TC and TRN 
recordings were performed in the somatosensory system. The diameter of the 
micropipette tip was about 1 μm (15–30 MΩ) (Pinault, 1996). 3) In an attempt to 
understand the cellular membrane potential oscillations underlying the firing patterns, a 
third series of experiments (11 rats) was designed to record intracellularly TC neurons. 
The diameter of the micropipette tip was inferior to 1 μm (30–70 MΩ). The extracellular 
and juxtacellular signals (0.1–6000 Hz), and the intracellular signal (0–6000 Hz) were 
acquired using a low-noise differential amplifier (DPA-2FL, npi electronic, GmbH) and an 
intracellular recording amplifier (NeuroData IR-283; Cygnus Technology Inc.), respectively. 
All signals were sampled at 20 kHz 16-bit (Digidata 1440A with pCLAMP10 Software, 
Molecular Devices). At the end of the recording session, the target neurons were 
individually labeled with Neurobiotin using the extra- or juxtacellular nano-iontophoresis 
technique (Pinault, 1996) to identify formally both the recording site and the structure of 
the recorded neurons (Fig. 1B). Then the animal was humanely killed with an intravenous 
overdose of pentobarbital, transcardially perfused with a fixative containing 4% 
paraformaldehyde in 10 mM phosphate buffer saline, and the brain tissue was processed 
using standard histological techniques for anatomical documentation. 
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2.4. Data analysis 
 
Analysis software packages Clampfit v10 (Molecular Devices) and SciWorks v10 (Datawave 
Technologies) were used. The spindle density was estimated by the number per 10 s of 
detected bouts filtered at the sigma-frequency (10–16 Hz) oscillations. Spectral analysis of 
EEG and network oscillations was performed with fast Fourier transformation (FFT, 2-Hz 
resolution). The power of baseline activity was analyzed in 4 frequency bands: delta-(1–4 
Hz), sigma-(10–16 Hz, spindles), gamma-(30–80 Hz), and higher-(81–200 Hz) frequency 
oscillations. For each band, the total power was the sum of all FFT values. In single-unit 
juxtacellular recordings, single action potentials (APs) were detected using a voltage 
threshold and an inter-AP interval superior to 10 ms. High-frequency bursts (hfBursts) 
were identified based on a voltage threshold and an inter-AP interval inferior to 4 ms. A 
TC or TRN burst had a minimum of 1 inter-AP interval. Inter-AP time and autocorrelogram 
histograms, and the density (number per minute) of single APs and hfBursts were 
computed. To apprehend the time relationship between the network or cellular gamma 
waves and the cellular firing of a single TC or TRN neuron, a 25–55 Hz filter was used to 
make gamma waves detectable, to create a peri-event time histogram of the TC or TRN 
firings. Standard interAP interval (resolution 1 ms) histograms were computed. Each drug 
effect was measured relative to the vehicle condition with each rat being its control. 
Statistical significance of the observed effects was evaluated with the Student's paired t-
test (significant when p ≤ 0.05). 
 

  

 

Fig. 1. Ketamine reduces sleep oscillations in the thalamocortical systems. (A1) Experimental design showing 
the location of the two glass micropipettes designed to record the extracellular activities in the thalamic reticular 
nucleus (TRN) and in a dorsal thalamic nucleus along with the EEG of the frontal cortex. The hodology of the 4-
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neuron CT-TRN-TC circuit is also shown. The corticothalamic (CT) and thalamocortical (TC) neurons are 
glutamatergic while the TRN neuron is GABAergic. The cortical inputs of the specific thalamic nuclei (like the 
ventral posterior, VP (somatosensory), and the ventral lateral, VL (motor)) originate from layer VI whereas the 
cortical inputs of the associative/cognitive thalamic nuclei (like the posterior group, Po, or intralaminar/midline 
nuclei) originate from layers V and VI. In contrast to the layer V CT neurons, the layer VI CT neurons do innervate 
the TRN. The intrathalamic innervation pattern of layer VI CT neurons is regional whereas that of the layer V CT 
neurons, these latter CT neurons targeting only associative/limbic/cognitive thalamic nuclei, is more punctual. 
The layer V CT axon, which does not innervate the TRN, is a branch of the corticofugal main axon that targets 
the lower motor centers (brainstem and spinal cord). (A2) Design timeline illustrating the principal steps of the 
experiment. The color code of the brain state is dark gray for anesthesia, light gray for sedation and dark for 
death. (B) The left microphotograph shows, at low-magnification, the track left by the electrode and the 
extracellular labeling of the neurons located at and close to the recording site (here in the VL); the middle 
microphotograph shows, at higher-magnification, the recording site in the thalamic medial dorsal nucleus (MD, 
indicated by the arrowhead) and the somatodendritic complex of a couple of MD neurons; the left 
microphotograph shows the recording site with a few neural elements labeled in the TRN. On the right is 
presented, into a coronal plane, a mapping of the recording sites (black dots) into the TRN and the dorsal 
thalamic nuclei. The coronal plane represents a block of brain of about 3.6 mm thick posterior to the bregma 
(from −2.3 to −3.6 mm) in which recordings were performed. (C) Under the saline (control) condition, the cortex, 
the TRN and the dorsal thalamic nuclei exhibit a synchronized state, characterized by the occurrence of low-
frequency (1–16 Hz) oscillations, including spindles. The extracellular TRN recordings can contain high-frequency 
(200–700 Hz) bursts of APs (hfBurst, indicated by arrows). The framed expanded trace shows a couple of hfBursts 
associated with TC spindle waves. Under the ketamine condition, the TC system displays a more desynchronized 
state, characterized by the prominent occurrence of fast activities (N16 Hz), which include gamma-frequency 
oscillations. And the TRN cell fires more in the single AP (sAP) mode than in the hfBurst mode. Extracellular sAPs 
are indicated by the dots. Below, the expanded trace reveals sAPs associated with TC gamma waves. Single APs 
are also identifiable (indicated by dots) in the extracellular recording of the MD under the ketamine condition. 
(D) Spectral analysis of the cortical EEG (top) and of the thalamic extracellular activities (bottom) recorded under 
the saline then the ketamine conditions. Each value is a grand average (±SEM) from 6 rats, each rat being its 
control (per value: 23 epochs of 2 s/rat (hamming, resolution: 0.5 Hz)). In each chart, the part delimited by 2 
dotted lines indicates the sigma-frequency band, which corresponds predominantly to spindles. (E) Time course 
of the power of, from top to bottom, gamma oscillations, spindles, and delta oscillations recorded 
simultaneously in the frontal cortex (FrCx), the TRN and in the medial dorsal (MD) nucleus before and after 
subcutaneous administrations of saline and ketamine (at 20 and 40 min, respectively).  

3. Results 

3.1. Ketamine reduces thalamocortical spindles and delta-frequency oscillations  
 
The recordings started about 2 h after the onset of the infusion of the pentobarbital 
containing regimen (Fig. 1A2), that is when the on-line spectral analysis revealed a 
stationary amount of spindles and slower oscillations (Fig. S2, Fig. 1C), which were 
qualitatively similar to those recorded during the natural non-REM sleep (Fig. S1B2). 
Multisite extra- cellular recordings were performed in the TRN, in midline, posterior, and 
ventral thalamic nuclei. From ~5 min after a subcutaneous administration of ketamine (2.5 

  

mg/kg), the pattern of the cortical and thalamic baseline sleep activities was dramatically 
reduced in amplitude, supplanted by a more desynchronized pattern (Fig. 1C). Indeed, 
keta- mine significantly decreased the spindle density (Fig. S3A), and the power 
(synchronization index) of the spindles and delta oscillations (Figs. 1D,E, S3B). It also 
decreased the amount of theta-frequency (5–9 Hz) oscillations (Fig. 1D), a CT theta activity 
that is a hallmark of drowsiness (Pinault et al., 2001). Concomitantly, ketamine 
significantly increased the power of ongoing gamma- and higher-frequency oscillations. 
The ketamine effects, observed in all recorded regions (n ≥ 4 rats/region; Fig. 2), were 
transient (peaking at 15 – 20 min) with partial recovery at 60 – 80 min after the 
administration (Fig. 1E). In contrast to drugs modulating dopaminergic and cholinergic 
transmitter systems, dizocilpine (MK-801), a more specific NMDA receptor antagonist, 
well mimicked the ketamine effects on spindles and higher-frequency oscillations (S4). 
And the cholinomimetic physostigmine simulated the ketamine effects on delta 
oscillations and spindles, not on gamma and higher-frequency oscillations (Fig. S4a,b).  
 

 
Fig. 2. Ketamine reduces delta-frequency oscillations and spindles and increases gamma and higher-frequency 
oscillations. The histogram shows the ketamine-induced percent changes (±SEM, relative to the saline condition, 
each rat being its control; post ketamine: 20 to 30 min) in power of delta oscillations, spindles, gamma- and 
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higher frequency oscillations recorded in the frontal cortex, in the TRN and in sensorimotor (VPm, VL) and in 
association/cognitive (CM/MD, Po) thalamic nuclei. Number of rats given in parentheses. Paired t-test relative 
to saline condition (star when p b 0.05). For abbreviations, see Fig. 1 legend. 

3.2. Ketamine switches the firing pattern of thalamic relay and reticular neurons from the 
burst mode to the tonic mode 

In the following, all data are from the somatosensory system as it contains b1% of local-
circuit neurons (Harris and Hendrickson, 1987) and its 3-neuron layer VI CT-TRN-TC circuit, 
common to all nuclei of the dorsal thalamus, is the leading circuit in the generation of 
spindles. The location of the recording sites was identified based on electrophysiological 
and anatomical features (Fig. S5). From 11 extracellular thalamic recordings, 6 (from 6 rats) 
contained at least two TC units that were detectable using an automated spike sorting 
procedure (Fig. S6). Five out of 8 dual juxtacellular TC-TRN recordings (5 rats) had a 
duration long enough for data analyses under control and ketamine conditions, and 8 out 
of 15 TC cells met the intracellular requirements (Pinault et al., 2006). 

3.2.1. Thalamic relay neurons  
 
During the sedation, the extracellularly recorded TC units presented an irregular firing 
pattern consisting in hfBursts and single APs (Fig. S6A). It was extremely rare to see series 
of rhythmic hfBursts at the spindle frequency, suggesting that most of the TC spindle 
oscillations were subthreshold (Pinault et al., 2006), as demonstrated by the dual 
juxtacellular TRN-TC recordings (Fig. 3A1) and by the intracellular recordings of TC neurons 
(Fig. 3D). From ~5 min after the ketamine administration (16 TC units from 6 rats), the 
density of hfBursts significantly decreased whereas that of single APs increased for at least 
60 min (Fig. S6B). The spike sorting method may, however, not be precise and reliable as 
the amplitude and shape of the APs might not be stationary over time (Lewicki, 1998). For 
instance, in TC hfBursts, the AP amplitude became progressively smaller (Fig. S6A).  
 
Therefore, to better validate the ketamine effects observed in the extracellular TC 
recordings, we performed dual juxtacellular recordings of thalamic relay and reticular 
neurons. The juxtacellular single-unit recording-labeling technique allows the formal 
identification of the recorded neuron (Fig. 3A1, B1, C1) (Pinault, 1996). Ketamine, 
transiently and significantly, decreased the density of TC hfBursts and increased that of 
single APs (Fig. 3A1, A2 and B3). However, the decrease in the hfBurst density was ~50%, 
meaning that AP bursts still occurred under the ketamine condition. Embedded in the 
irregular tonic AP trains, a lot of them were doublets and triplets, whose intrafrequency 

  

was lower (inter-AP interval peak at 5–6 ms, Fig. 4A1, A2) than that of typical hfBursts 
(interval peak at 2–3 ms, Fig. 4A1). A partial recovery was noticeable 60–80 min after the 
ketamine administration (Fig. S6B, and Fig. 3B3). Of importance, ketamine increased the 
firing frequency band of TC neurons from, on average, 5–20 Hz (10.8 ± 2.9 Hz, N = 5 from 
5 rats) to 15–30 Hz (21.7 ± 3.5 Hz, N = 5) (Fig. 3E). Furthermore, in one of the experiments, 
designed to record in the posterior group (equivalent to the pulvinar in humans) of the 
thalamus, 2 nearby (100 μm apart) TC cells were simultaneously recorded in the 
juxtacellular configuration (Fig. S7). Ketamine consistently augmented their firing 
frequency band in a similar way (from 0 to 10 Hz to 0–35 Hz). 
 

 
Fig. 3. Ketamine switches the firing pattern from a burst mode to a single action potential mode in thalamic 
relay (glutamatergic) and reticular (GABAergic) neurons. (A1, A2) Typical simultaneous recordings of the cortex 
(EEG), and of two single TRN and TC neurons (juxtacellular configuration) of the somatosensory system. Under 
the saline (A1, control) condition, the cortex displays a synchronized state, characterized by the occurrence of 
medium-voltage (N0.1 mV) low-frequency (1–16 Hz) oscillations, the TRN cell exhibits a typical series of rhythmic 
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higher frequency oscillations recorded in the frontal cortex, in the TRN and in sensorimotor (VPm, VL) and in 
association/cognitive (CM/MD, Po) thalamic nuclei. Number of rats given in parentheses. Paired t-test relative 
to saline condition (star when p b 0.05). For abbreviations, see Fig. 1 legend. 
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meaning that AP bursts still occurred under the ketamine condition. Embedded in the 
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robust high-frequency bursts of action potentials (hfBursts, 300–500 APs/s), and the TC neuron exhibits single 
action potentials (sAPs) and, during the TRN burst series, a few bursts. A few minutes after the systemic 
administration of ketamine (A2, here: +20 min), the cortex displays a more desynchronized state, characterized 
by the prominent occurrence of lower voltage (b0.1 mV) and faster activities (N16 Hz), which include gamma-
frequency oscillations. Under the ketamine condition, both the TC and the TRN cells exhibit much more sAPs 
than hfBursts. (B1–B3) Data from juxtacellularly recorded TC neurons. (B1) Photomicrography of parts of the 
somatodendritic complex and of the main axon (ax) of a juxtacellularly recorded and labeled (with Neurobiotin) 
TC neuron of the somatosensory thalamus. (B2, top) Average and superimposition of 50 action potentials. (B2, 
below): Detection (from a voltage threshold, indicated by a dotted line) of a typical hfBurst of 3 APs and of 2 
successive single APs. (B3) The density (number per minute, ±SEM, 5 TC cells from 5 rats) of hfBursts and of sAPs 
under the saline and ketamine conditions. Paired t-test (star when p b 0.05). (C1–C3) Data from juxtacellularly 
recorded TRN neurons. (C1) Photomicrography of part of the somatodendritic complex of a juxtacellularly 
recorded and labeled (with Neurobiotin) TRN cell. (C2, top) Average and superimposition of 50 APs. (C2, below): 
Detection (from a voltage threshold, indicated by a dotted line) of a typical hfBurst of 12 APs and of 2 successive 
single APs. (C3) The density (number per minute, ±SEM, 5 TRN cells from 5 rats) of hfBursts and of sAPs under 
the saline and ketamine conditions. Paired t-test (star when p b 0.05). (D) Representative trace of an 
intracellularly recorded TC neuron showing the occurrence of subthreshold oscillations, including spindle-
frequency rhythmic waves, which are concomitant with a synchronized EEG state in the related cortex. Note that 
the subthreshold oscillations occur during the through of a long-lasting hyperpolarization. In the frame is shown 
the occurrence of a low-threshold potential topped by a high-frequency burst of APs (hfBurst) at the offset of a 
200-ms hyperpolarizing pulse. (E) Ratemeter of simultaneously juxtacellularly recorded TRN and TC neurons 
under saline then ketamine conditions. Each dot is the average (n = 5 neurons from 5 rats) of the number of 
inter-AP intervals per second. 

 
Curiously, under the ketamine condition, the mean firing frequency of TC neurons (b30 
Hz) was lower than the network gamma-frequency oscillations (frequency at maximal 
power: 33.6 ± 1.1 Hz, n = 7), raising the question whether or not TC single APs were related 
to the juxta- and extracellular gamma oscillations. In an attempt to address this question, 
firstly we looked at the raw juxtacellular recordings, in which we notice that TC neurons 
did not emit an AP at every wave of the gamma oscillations, which were not perfectly 
regular in waveform and timing (Figs. 4B1, S8), suggesting that the juxtacellular field 
potential variations reflected more membrane potential oscillations than APs. Secondly, a 
substantial number of single APs were phase-related to both the juxtacellular and the 
extracellular (100 μm apart) gamma waves (Fig. S8, Fig. 4B2). However, the temporal link 
was stronger with the juxtacellular (cellular activity) than the extracellular (nearby 
network activity) wave. In contrast to layer-organized cortical structures, the weak 
relation between the juxtacellular APs and the extracellular gamma waves seen in the 
somatosensory thalamus might have been due to an anarchic overlap of the current sinks 
and sources generated by the neural activities. On the other hand, there was no apparent 
relation between the TC firing and the cortical gamma waves (Fig. 4B2), which is not 
surprising as the EEG integrates the activities of interweaved large-scale networks. 
 

  

3.2.2. Thalamic reticular neurons  
 
During sedation, all extracellularly (Fig. 1C) or juxtacellularly (Fig. 3 A1) recorded TRN cells 
exhibited sequences of rhythmic hfBursts in relation to the sleep TC oscillations. The burst 
sequence naturally recurred at a low frequency (b1 Hz) (Figs. S2B1 and S5B), during which 
rhythmic hfBursts occurred at the sigma (spindle)- and lower-frequency bands, including 
the delta band. The rhythmic character of spindle burst patterns was identifiable with an 
autocorrelation histogram (Fig. S2D). In TRN neurons, such sustained rhythmic burst 
activity involves the activation of NMDA receptors (Jacobsen et al., 2001). From ~5 min 
after a single ketamine administration, all juxtacellularly recorded TRN cells suddenly and 
transiently switched their ongoing rhythmic burst firing pattern to a sustained tonic, single 
AP firing pattern (Fig. 3A1,A2,C3). Furthermore, ketamine decreased their firing frequency 
band from 0 to 60 Hz (16.5 ± 2.5 Hz) to 5–25 Hz (8.1 ± 1.8 Hz; n = 5 from 5 rats) (Fig. 3E). 
Remarkably and significantly, the single AP density increased whereas the hfBurst density 
decreased (Fig. 3C3, 5A2, B1–B2). In the inter-AP interval histogram, the first peak at 2–4 
ms, a marker of hfBursts, disappeared almost completely. Under the ketamine condition, 
the first peak (3–6 ms) reflects longer inter-AP intervals which, like in TC neurons, are the 
signature of doublets and triplets embedded in the irregular tonic AP trains (Fig. 5B2). 
 

 
Fig. 4. Thalamocortical firing related to gamma-frequency oscillations. (A1, A2) Averaged cumulated inter-AP 
interval histograms (IAPIH) from 5 juxtacellularly recorded TC cells (from 5 rats) under the control (A1) then the 
ketamine (A2) conditions (keta +15–25 min). Note the ketamine-induced diminution in the number of the short-
lasting IAPIs, especially those composing high-frequency bursts of APs (IAPI = 2–10 ms). A typical TC hfBurst (IAPI 



A single psychotomimetic dose of ketamine

55

2

  

robust high-frequency bursts of action potentials (hfBursts, 300–500 APs/s), and the TC neuron exhibits single 
action potentials (sAPs) and, during the TRN burst series, a few bursts. A few minutes after the systemic 
administration of ketamine (A2, here: +20 min), the cortex displays a more desynchronized state, characterized 
by the prominent occurrence of lower voltage (b0.1 mV) and faster activities (N16 Hz), which include gamma-
frequency oscillations. Under the ketamine condition, both the TC and the TRN cells exhibit much more sAPs 
than hfBursts. (B1–B3) Data from juxtacellularly recorded TC neurons. (B1) Photomicrography of parts of the 
somatodendritic complex and of the main axon (ax) of a juxtacellularly recorded and labeled (with Neurobiotin) 
TC neuron of the somatosensory thalamus. (B2, top) Average and superimposition of 50 action potentials. (B2, 
below): Detection (from a voltage threshold, indicated by a dotted line) of a typical hfBurst of 3 APs and of 2 
successive single APs. (B3) The density (number per minute, ±SEM, 5 TC cells from 5 rats) of hfBursts and of sAPs 
under the saline and ketamine conditions. Paired t-test (star when p b 0.05). (C1–C3) Data from juxtacellularly 
recorded TRN neurons. (C1) Photomicrography of part of the somatodendritic complex of a juxtacellularly 
recorded and labeled (with Neurobiotin) TRN cell. (C2, top) Average and superimposition of 50 APs. (C2, below): 
Detection (from a voltage threshold, indicated by a dotted line) of a typical hfBurst of 12 APs and of 2 successive 
single APs. (C3) The density (number per minute, ±SEM, 5 TRN cells from 5 rats) of hfBursts and of sAPs under 
the saline and ketamine conditions. Paired t-test (star when p b 0.05). (D) Representative trace of an 
intracellularly recorded TC neuron showing the occurrence of subthreshold oscillations, including spindle-
frequency rhythmic waves, which are concomitant with a synchronized EEG state in the related cortex. Note that 
the subthreshold oscillations occur during the through of a long-lasting hyperpolarization. In the frame is shown 
the occurrence of a low-threshold potential topped by a high-frequency burst of APs (hfBurst) at the offset of a 
200-ms hyperpolarizing pulse. (E) Ratemeter of simultaneously juxtacellularly recorded TRN and TC neurons 
under saline then ketamine conditions. Each dot is the average (n = 5 neurons from 5 rats) of the number of 
inter-AP intervals per second. 

 
Curiously, under the ketamine condition, the mean firing frequency of TC neurons (b30 
Hz) was lower than the network gamma-frequency oscillations (frequency at maximal 
power: 33.6 ± 1.1 Hz, n = 7), raising the question whether or not TC single APs were related 
to the juxta- and extracellular gamma oscillations. In an attempt to address this question, 
firstly we looked at the raw juxtacellular recordings, in which we notice that TC neurons 
did not emit an AP at every wave of the gamma oscillations, which were not perfectly 
regular in waveform and timing (Figs. 4B1, S8), suggesting that the juxtacellular field 
potential variations reflected more membrane potential oscillations than APs. Secondly, a 
substantial number of single APs were phase-related to both the juxtacellular and the 
extracellular (100 μm apart) gamma waves (Fig. S8, Fig. 4B2). However, the temporal link 
was stronger with the juxtacellular (cellular activity) than the extracellular (nearby 
network activity) wave. In contrast to layer-organized cortical structures, the weak 
relation between the juxtacellular APs and the extracellular gamma waves seen in the 
somatosensory thalamus might have been due to an anarchic overlap of the current sinks 
and sources generated by the neural activities. On the other hand, there was no apparent 
relation between the TC firing and the cortical gamma waves (Fig. 4B2), which is not 
surprising as the EEG integrates the activities of interweaved large-scale networks. 
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sequence naturally recurred at a low frequency (b1 Hz) (Figs. S2B1 and S5B), during which 
rhythmic hfBursts occurred at the sigma (spindle)- and lower-frequency bands, including 
the delta band. The rhythmic character of spindle burst patterns was identifiable with an 
autocorrelation histogram (Fig. S2D). In TRN neurons, such sustained rhythmic burst 
activity involves the activation of NMDA receptors (Jacobsen et al., 2001). From ~5 min 
after a single ketamine administration, all juxtacellularly recorded TRN cells suddenly and 
transiently switched their ongoing rhythmic burst firing pattern to a sustained tonic, single 
AP firing pattern (Fig. 3A1,A2,C3). Furthermore, ketamine decreased their firing frequency 
band from 0 to 60 Hz (16.5 ± 2.5 Hz) to 5–25 Hz (8.1 ± 1.8 Hz; n = 5 from 5 rats) (Fig. 3E). 
Remarkably and significantly, the single AP density increased whereas the hfBurst density 
decreased (Fig. 3C3, 5A2, B1–B2). In the inter-AP interval histogram, the first peak at 2–4 
ms, a marker of hfBursts, disappeared almost completely. Under the ketamine condition, 
the first peak (3–6 ms) reflects longer inter-AP intervals which, like in TC neurons, are the 
signature of doublets and triplets embedded in the irregular tonic AP trains (Fig. 5B2). 
 

 
Fig. 4. Thalamocortical firing related to gamma-frequency oscillations. (A1, A2) Averaged cumulated inter-AP 
interval histograms (IAPIH) from 5 juxtacellularly recorded TC cells (from 5 rats) under the control (A1) then the 
ketamine (A2) conditions (keta +15–25 min). Note the ketamine-induced diminution in the number of the short-
lasting IAPIs, especially those composing high-frequency bursts of APs (IAPI = 2–10 ms). A typical TC hfBurst (IAPI 
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at 2–3 ms) is shown in the control histogram. The remaining bursts were slower (IAPI at 5–6 ms) and shorter (e.g, 
especially doublets and triplets, like those shown on the right). Star when significant (paired t-test, p b 0.05). (B1) 
A typical short-lasting trace of a juxtacellularly recorded TC cell showing low-amplitude gamma-frequency 
oscillations in the field potential and the AP occurrence at some cycles of the gamma oscillation. Each arrow 
indicates a juxtacellular gamma wave. The APs are truncated. (B2) Peri-event (gamma wave) time histogram (1-
ms resolution) of the TC firing (cumulative count) under the ketamine condition (5 TC cells from 5 rats). Every 
gamma wave (juxta TC, extra TC (inter-tip distance = 100 μm, see drawing), and cxEEG) is an average of 100 
filtered (25–55 Hz) individual gamma (γ) waves. Time “0” corresponds to the time at which gamma waves were 
detected. 

 
Interestingly, the interval histogram reveals a second peak at ~30–50 ms. We predicted 
that the 30–50-ms peak represents a marker of juxtacellular gamma oscillations. Indeed, 
when looking closely at the juxtacellular recordings, it is obvious that the TRN cells fired 
at a certain proportion of gamma waves during their positive-going component (Fig. 5B1), 
meaning that the juxtacellular oscillations reflected threshold/suprathreshold and 
subthreshold membrane potential gamma oscillations. This observation is supported by a 
peri-gamma wave time histogram of the AP distribution (Fig. 5B2), which shows that the 
probability of firing reached a maximum at (virtually 0 ms) the positivegoing component 
of the gamma wave. Furthermore, a substantial number of TRN APs was also phase-
related to gamma waves recorded extracellularly in the related somatosensory thalamic 
nucleus, suggesting a certain degree of functional connectivity. Moreover, using the 
partial correlation coefficient (S9), the strength of the gamma-frequency band TRN-TC 
connectivity was significantly increased by ketamine (Fig. 6). On the other hand, in the 
same way as TC neurons, there was no apparent relation between the TRN firing and the 
cortical gamma waves (Fig. 5B2). 
 

  

 
Fig. 5. Thalamic reticular nucleus firing related to gamma-frequency oscillations. (A1, A2) Averaged cumulated 
inter-AP interval histograms (IAPIH) from 5 juxtacellularly recorded TRN cells (from 5 rats) under the control (A1) 
then the ketamine (A2) conditions (keta +15–25 min). In (A1), are shown the control (saline) IAPIH in full (left) 
and partial (right) Y scales. Note the ketamine-induced dramatic diminution in the number of the short-lasting 
IAPIs, especially those composing high-frequency bursts of APs (IAPI = 2–10 ms). A typical TRN hfBurst is shown 
in the control histogram. The remaining bursts were slower (increase in IAPIs) and shorter (e.g, especially 
doublets and triplets, like those shown). Star when significant (paired ttest, p b 0.05). (B1) A typical short-lasting 
trace of a juxtacellularly recorded TRN cell showing low-amplitude gamma-frequency oscillations in the field 
potential and that the AP occurrence at some cycles of the gamma oscillation. Each arrow indicates a juxtacellular 
gamma wave. (B2) Peri-event (gamma wave) time histogram of the TRN firing (cumulative count) under the 
ketamine condition (5 TRN cells from 5 rats). Every gamma wave (juxta TRN, extra TC, and cxEEG) is an average 
of 100 filtered (25–55 Hz) individual gamma (γ) waves. Time “0” corresponds to the time at which gamma waves 
were detected. 
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filtered (25–55 Hz) individual gamma (γ) waves. Time “0” corresponds to the time at which gamma waves were 
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nucleus, suggesting a certain degree of functional connectivity. Moreover, using the 
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Fig. 6. Ketamine strengthens the functional gamma TRN-TC connectivity. Direct interaction strength between 
two different sites is given by a partial correlation coefficient written (bold font) next to the edge connecting 
these sites. The plots presented next to these edges are cross-correlograms of 400 ms-epochs from signals 
recorded at the corresponding sites and filtered in the gamma-range (25-55 Hz). Under control condition, the 
strength of gamma interactions between TRN and TC sites was more than twice higher than for CT-TRN and CT-
TC interactions, which was also reflected by a high peak in the TRN-TC cross-correlogram. When ketamine was 
applied, the strength of TRN-TC gamma interactions was significantly increased (paired t-test, p b 0.001), 
resulting in a higher partial correlation coefficient and a higher peak in the average cross-correlogram. Although 
after ketamine application, correlations between CT and TRN and between CT and TC were higher in the cross-
correlograms, the strength of CT-TRN and CT-TC interactions given by partial correlation coefficients did not 
change significantly (paired t-test, p N 0.4). The plot on the right shows distributions of partial correlation 
coefficients П for CT→TRN, CT→TC and TRN→TC gamma interactions in all experiments (N = 11) under both 
control (black) and ketamine (red) conditions. (*) indicates significant difference revealed with a paired t-test 
with p b 0.001; ns, non-significant. 

 
3.3. Clozapine prevents the ketamine effects 
 
Clozapine is one of the most effective antipsychotic drugs against treatment-resistant 
schizophrenia (Kane et al., 1988). Its clinical effects are thought to be related to 
interactions with a variety of receptors, including the glutamatergic receptors and more 
specifically NMDA receptors via the glycine site (Hunt et al., 2015; Lipina et al., 2005; 
Schwieler et al., 2008). Also, clozapine is well-known to modulate sleep spindles (Tsekou 
et al., 2015), possibly due to the activation of GABAergic TRN neurons via a specific action 
on D4 dopamine receptors (Mrzljak et al., 1996), which would exert a tonic influence on 
the TRN activity (Barrientos et al., 2019). Therefore, it was interesting to probe whether a 
single systemic administration of clozapine could prevent the ketamine effects on TC 
oscillations. To address this issue, clozapine was subcutaneously administered at a dose 

  

(5 mg/kg) that durably decreases the power of spontaneously-occurring cortical gamma 
oscillations in the naturally-behaving rat (Jones et al., 2012) 20 or 120 min before the 
ketamine challenges. In all rats (n = 7), clozapine consistently prevented the ketamine 
peak (at ~15–20 min) effect on spindles, delta- and gamma−/higher-frequency oscillations 
(Fig. S10 and Fig. 7). When administered alone, clozapine significantly increased the power 
of delta oscillations (Fig. 7). 
 

 
Fig. 7. Clozapine (CLZ) prevents the ketamine effects. The histogram illustrates the druginduced percent changes 
(mean ± SEM; relative to their respective vehicle (saline for ketamine, saline/HCl 0.1 N for clozapine) condition 
(100%, indicated by dotted line); 5 rats/condition) in power of all frequency bands in the cortical EEG. Student 
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resulting in a higher partial correlation coefficient and a higher peak in the average cross-correlogram. Although 
after ketamine application, correlations between CT and TRN and between CT and TC were higher in the cross-
correlograms, the strength of CT-TRN and CT-TC interactions given by partial correlation coefficients did not 
change significantly (paired t-test, p N 0.4). The plot on the right shows distributions of partial correlation 
coefficients П for CT→TRN, CT→TC and TRN→TC gamma interactions in all experiments (N = 11) under both 
control (black) and ketamine (red) conditions. (*) indicates significant difference revealed with a paired t-test 
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3.3. Clozapine prevents the ketamine effects 
 
Clozapine is one of the most effective antipsychotic drugs against treatment-resistant 
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specifically NMDA receptors via the glycine site (Hunt et al., 2015; Lipina et al., 2005; 
Schwieler et al., 2008). Also, clozapine is well-known to modulate sleep spindles (Tsekou 
et al., 2015), possibly due to the activation of GABAergic TRN neurons via a specific action 
on D4 dopamine receptors (Mrzljak et al., 1996), which would exert a tonic influence on 
the TRN activity (Barrientos et al., 2019). Therefore, it was interesting to probe whether a 
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(5 mg/kg) that durably decreases the power of spontaneously-occurring cortical gamma 
oscillations in the naturally-behaving rat (Jones et al., 2012) 20 or 120 min before the 
ketamine challenges. In all rats (n = 7), clozapine consistently prevented the ketamine 
peak (at ~15–20 min) effect on spindles, delta- and gamma−/higher-frequency oscillations 
(Fig. S10 and Fig. 7). When administered alone, clozapine significantly increased the power 
of delta oscillations (Fig. 7). 
 

 
Fig. 7. Clozapine (CLZ) prevents the ketamine effects. The histogram illustrates the druginduced percent changes 
(mean ± SEM; relative to their respective vehicle (saline for ketamine, saline/HCl 0.1 N for clozapine) condition 
(100%, indicated by dotted line); 5 rats/condition) in power of all frequency bands in the cortical EEG. Student 
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paired t-test: (*) p < 0.05; ns, not significant. In the CLZ + keta condition, ketamine (2.5 mg/kg) was administered 
20 min after the CLZ (5 mg/kg) administration. 

 
4. Discussion 
 
In the present study conducted in the sedated rat, the psychotomimetic ketamine induced 
a transient dramatic decrease in ongoing thalamic and cortical spindles and slower 
oscillations, and a concomitant increase in gamma−/higher-frequency oscillations, which 
is reminiscent of an arousal effect. These new preclinical findings support the hypothesis 
of a reduced function of NMDA receptors in the reduction of spindles and slow-waves in 
schizophrenia. They also support the hypothesis that the spindle reduction observed in 
patients with schizophrenia is due to deficient TRN inhibition (Baran et al., 2019; Ferrarelli 
and Tononi, 2011; Manoach and Stickgold, 2019; Pratt and Morris, 2015; Young and 
Wimmer, 2017). However, because ketamine impacted simultaneously and similarly the 
cellular and network activity patterns of both the GABAergic TRN and the glutamatergic 
TC neurons (present study), and because ketamine disrupts the function of the CT 
pathway (Anderson et al., 2017) and forces the brain to generate persistent and 
generalized aberrant gamma oscillations in cortical and subcortical structures (Hakami et 
al., 2009; Slovik et al., 2017), nonexclusive alternative theories will be discussed in the 
following in an attempt to understand the possible underlying mechanisms. 
 
4.1. The arousal promoting effect of low-dose ketamine 
 
Interestingly, the present findings are in agreement with a previous study performed in 
the awake rat demonstrating that, in a subpopulation of cortical neurons, NMDA receptor 
hypofunction produces a sustained increase in the firing rate (sAP mode) and a 
concomitant reduction of burst activity associated with a psychosis-relevant behavior 
(Jackson et al., 2004). 
 
The arousal promoting effect of a single psychotomimetic dose of ketamine has been well 
documented in awake, free-behaving rats (Ahnaou et al., 2017; Hakami et al., 2009; 
Pinault, 2008). The ketamine-induced transient arousal effect is characterized by an 
abnormal, erratic behavior with hyperlocomotion, ataxias and stereotypies associated 
with deficits in cognitive performances (Chrobak et al., 2008; Pitsikas et al., 2008), and an 
excessive amplification of gammafrequency oscillations (Ehrlichman et al., 2009; Hakami 
et al., 2009; Pinault, 2008). These transient, behavioral, cognitive and electrophysiological 
abnormalities are reminiscent of a psychosis-relevant behavior, during which not a single 

  

sleep episode was observed during the time dedicated to sleep (S1). Moreover, a 
comprehensive study demonstrated that ketamine delays the sleep onset latency 
(Ahnaou et al., 2017). 
 
Clinical investigation showed that patients with psychosis have difficulties initiating sleep 
(Poulin et al., 2003). Abnormal levels of arousal may be a predictor of psychotic disorders 
(Lee et al., 2012; Tieges et al., 2013). Here, it is further shown that, in the sedated rat, 
ketamine elicited a fleeting arousal-like reaction, at least in the TC-TRN system, which is 
electrophysiologically reminiscent of REM sleep, a brain state considered as a natural 
model of psychosis (Dresler et al., 2015; Hobson, 1997; Mason and Wakerley, 2012; Mota 
et al., 2016; Scarone et al., 2008). Moreover, the NMDA receptor hypofunction-related 
increase in gamma−/higher-frequency oscillations observed in sedated rats is also 
recorded during the natural REM sleep (Kocsis, 2012b). So, we interpret the ketamine-
induced desynchronized state as uncharacteristic REM-like sleep phenomena or a 
pathological persistent UP state (Fig. 8). During the ketamine-induced pathological UP 
state, expected to occur within diverse cortical and subcortical structures (Hakami et al., 
2009), cortical and thalamic neurons would be more depolarized than during the DOWN 
state to generate more threshold (for AP initiation) and supra-threshold membrane 
potential oscillations (Destexhe and Pare, 1999). In thalamic neurons, the burst mode is a 
reliable hallmark of sleep oscillations, every hfBurst occurring at the top of a low-threshold 
Ca++ potential mediated by the activation of T-type channels, which are de-inactivated via 
membrane hyperpolarization (b−60 mV) (Crunelli et al., 2006). Both the synaptic 
interactions between TC and TRN neurons and the intrinsic pacemaker properties of TRN 
cells are well-known to play leading roles in the generation of thalamic spindles (Steriade 
et al., 1985; Steriade et al., 1993). Under the ketamine condition, the substantial increase 
in the single AP density suggests that the membrane potential of TC and TRN neurons was 
more often depolarized. This is supported first by the occurrence of gamma oscillations 
and single AP firing in our juxtacellular TC and TRN recordings and, second, by an increase 
in the gamma band TRNTC connectivity. The single AP mode is usually recorded when T-
type Ca++ channels are inactivated via membrane depolarization (N−60 mV) (Mulle et al., 
1986). Disruption of the CaV3.3 Ca++ channel, which encodes the low-threshold T 
channels (Astori et al., 2011), may be involved in the etio-pathophysiology of 
schizophrenia (Andrade et al., 2016). 
 
4.2. Contribution of the corticothalamic pathway 
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In the thalamus, ketamine would act principally on both the glutamatergic TC and the 
GABAergic TRN neurons. How did ketamine convert the firing from burst to the tonic 
mode simultaneously in both TC and TRN neurons? During sleep, sustained 
hyperpolarization would be the result of either excess inhibition or disfacilitation. Under 
the ketamine condition, a likely effect would be a sustained excitation of these two types 
of neurons by common afferent input. In addition to the influence of neuromodulatory 
inputs (see below), the CT pathway seems an excellent candidate (Lam and Sherman, 2010; 
Landisman and Connors, 2007). Indeed, the primary axon of the CT neurons splits into two 
branches, one innervating TRN neurons, the other TC neurons (Bourassa et al., 1995; 
Golshani et al., 2001). Furthermore, it is known that cortical GABAergic interneurons are 
highly sensitive to NMDA receptor antagonists (Grunze et al., 1996). The ketamine-
induced NMDA receptor-mediated disfacilitation of the GABAergic cortical interneurons 
would be responsible for the disinhibition (or excitation) of glutamatergic pyramidal 
neurons (Homayoun and Moghaddam, 2007), including CT neurons. So, the disinhibition 
of CT neurons would lead to the generation of a sustained thalamic AMPA-mediated 
gamma hyperactivity (Anderson et al., 2017; Crandall et al., 2015; Golshani et al., 2001). 
And the ketamine-induced hyperactivation of layer VI CT neurons could in addition 
promote the gamma-frequency pacemaker properties of the GABAergic TRN cells (Pinault 
and Deschênes, 1992a, 1992b). NMDA receptors are more critical for the CT-mediated 
excitation of TRN than TC neurons (Deleuze and Huguenard, 2016). Furthermore, the long-
lasting kinetics of NMDA receptors in the GABAergic TRN neurons are essential to promote 
rhythmic Ca++-mediated burst firing, which then cyclically hyperpolarizes the postsynaptic 
TC neurons through the activation of GABA receptors. Importantly, in TRN neurons, the 
NMDA-mediated effects of CT transmission can work across a wide range of voltages so 
as the voltage-dependent blockade by Mg++ is incomplete and that NMDA receptors can 
be activated by synaptically released glutamate even in the absence of AMPA receptor-
mediated activation (Deleuze and Huguenard, 2016). Thus, because CT neurons 
outnumber by a factor of ~10 TC neurons (Sherman and Koch, 1986), the ketamine NMDA-
mediated effects are expected to be stronger on TRN than on TC neurons in reducing burst 
activity, which, in fact, was indeed observed in the present study (Fig. 3B3,C3). The NMDA 
receptor hypofunction-related spindle reduction and gamma increase in the TRN-TC 
system may help to understand the increased TC connectivity correlated with spindle 
deficits in schizophrenia (Baran et al., 2019). 
 
Ketamine, at a psychotomimetic dose, is expected to affect almost, if not all, brain neurons. 
In the thalamus, it would impact at least TC and TRN neurons, which work together 
because of reciprocal connections through open and closed-loop circuits (Pinault and 

  

Deschenes, 1998). Interestingly, under the ketamine condition, both TRN and TC neurons 
fired in the single AP mode, and the TRN cells on average 2.7 times less than TC neurons. 
This finding is in line with an intra-cortical study showing that NMDA receptor 
hypofunction decreases the firing of GABAergic neurons and increases that of 
glutamatergic neurons (Homayoun and Moghaddam, 2007). Thus, NMDA receptor 
hypofunction would lead to TC and cortical excitations by disinhibition of the 
glutamatergic neurons, which would lead to an excessive accumulation of synaptic 
glutamate and subsequently to activation of AMPA receptors (Moghaddam et al., 1997). 
Such a psychosis-relevant state may be the source for the generation of abnormal 
internallygenerated information (Gandal et al., 2012; Hakami et al., 2009). 
 
4.3. Contribution of the ascending reticular activating system and basal forebrain 
 
The likely mechanisms underlying the effects of ketamine remain debatable as it acts in 
all brain structures and at many receptors (Dorandeu, 2013; Sleigh et al., 2014; Zanos et 
al., 2018). The ketamine-induced acute arousal-like effect may involve, among many 
others, cholinergic, monoaminergic, and orexinergic arousal systems (Ahnaou et al., 2017; 
Dawson et al., 2013; Lu et al., 2008). We should not exclude that, under our experimental 
conditions, the observed physostigmine effects (decrease in spindles and slower waves) 
suggest that ketamine could have acted also at acetylcholine receptors. Interestingly, the 
fact that a single low-dose of ketamine simultaneously affected, in an opposite manner, 
spindle−/delta-frequency and gamma−/higherfrequency TC oscillations is reminiscent of 
the seminal finding of Moruzzi and Magoun (Moruzzi and Magoun, 1949). Indeed, these 
pioneering investigators demonstrated that electrical stimulation of the reticular 
formation, a complex set of interconnected circuits within the brainstem, evokes in the TC 
system a switch of the EEG pattern from a synchronized to a desynchronized state, an 
effect interpreted as an EEG arousal reaction. Moreover, activation of the mesencephalic 
reticular formation effectively desynchronizes the cortical EEG in lightly anesthetized 
animals (Munk et al., 1996). Thus, the present findings give further support to the 
hypothesis of a dysregulation of the ascending reticular activating system, which includes 
the pedunculopontine nucleus, the basal forebrain, and the thalamus, in the 
etiopathophysiology of psychotic disorders (Dawson et al., 2013; GarciaRill et al., 2015; 
Heimer, 2000; Howland, 1997). Moreover, in a previous investigation we demonstrated 
that NMDA receptor hypofunction leads to a persistent increase in gamma oscillations in 
the basalis, a cholinergic structure with widespread axonal projections well-known to 
modulate the neocortex and the TC-TRN system (Hakami et al., 2009; Pinault and 
Deschenes, 1992). 
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Also, for the observed ketamine effects, we should not exclude a contribution of the 
ascending GABAergic pathways (originating from the brainstem, midbrain, ventral 
tegmental area, zona incerta, basal ganglia, and from the basal forebrain), which play a 
critical role in promoting TC activation, arousal and REM sleep (Brown and McKenna, 2015; 
Kim et al., 2015). In the present study, interestingly, physostigmine, known to promote 
REM sleep (Sitaram et al., 1976) and a cortical EEG arousal (Kenny et al., 2016; Roy and 
Stullken, 1981), exerted a ketamine-like effect on delta oscillations and spindles (Fig. S4a,b) 
and on the firing pattern of TRN neurons (Fig. S4c). The atypical antipsychotic clozapine 
consistently prevented the foremost ketamine-induced acute effects on sleep oscillations. 
The fact that clozapine alone increased delta oscillations, but did not enhance sleep 
spindles or reduce gamma activity may indicate a general slowing of the EEG power, which 
may counteract the arousal effects of ketamine and help keeping the rats in the slow wave 
sleep (Hinze-Selch et al., 1997). The fact that, in contrast to ketamine, clozapine alone did 
not affect the cortical gamma power suggests that ketamine and clozapine exerted their 
action via distinct neural/molecular targets, which does not discredit the hypothesis of a 
dysregulation of the reticular activating system (Dawson et al., 2013; Garcia-Rill et al., 
2015; Heimer, 2000; Howland, 1997), the TC system being nothing but its downstream 
part (Fig. 8). 
 
Further investigation is required to better understand, in the thalamus, the mechanisms 
underlying the relative contribution of the topdown and bottom-up effects of low-dose 
ketamine. 

  

Fig. 8. Theoretical prediction of the ketamine action in both the ascending reticular activating system and the 
corticothalamic pathway. (A) Simplified drawing of the hodology of the 4- neuron CT-TRN-TC circuit, which is 
considered as being the upper part of the ascending reticular activating system (RAS). See main text and Fig. 1 
legend for detailed description of the circuit, which receives sensory (S), motor (M) and cognitive/associative (C) 
inputs. It is important to specify that the layer VI CT neurons outnumber by a factor of about 10 the TC neurons. 
The thalamic nuclei are under the neuromodulatory influence of the various inputs from the ascending RSA and 
the basal forebrain (BF). (B, left) Physiological UP and DOWN states: During the non-REM sleep, the TC system 
displays principally a synchronized state, characterized by the occurrence of delta oscillations and spindles; the 
TRN cell exhibits mainly rhythmic (at the delta-, theta- and spindle-frequency bands) hfBursts of action potentials. 
The synchronized state includes two sub-states, UP and DOWN, which are usually associated with active and 
quiescent cellular firings, respectively. (B, right) Pathological persistent UP state: This ketamine-induced 
persistent UP state is assumed to be an abnormal REM sleep. After a single systemic administration of a 
subanesthetizing low-dose of ketamine, the TC system displays a more desynchronized state (peak effect at 
about +15–20 min) characterized by the prominent occurrence of lower voltage and faster activities (N16 Hz), 
which include beta-, gamma- and higher-frequency oscillations. Under the ketamine condition, both the TC and 
the TRN neurons exhibit a persistent irregular and tonic firing containing more single APs than hfBursts. ACh, 
acetylcholine; GLU, glutamate; 5HT, serotonin; DA, dopamine; NE, norepinephrine. 
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4.4. Conclusions and significance 
 
The present preclinical investigation with its limitations (S11) demonstrates that the acute 
effects of ketamine result in fast onset arousal promoting effect, suggesting that it acts 
like a rapid-acting inducer of REM sleep-associated cognitive processes, which is 
reminiscent of its ability to induce hallucinatory and delusional symptoms (Baldeweg et 
al., 1998; Becker et al., 2009; Behrendt, 2003; Ffytche, 2008; Spencer et al., 2004). Low-
dose ketamine not only disturbs brain rhythms, but also disrupts attention-related 
sensorimotor and cognitive processes (Grent-'t-Jong et al., 2018; Hoflich et al., 2015; Hong 
et al., 2010), supporting the notion that schizophrenia is a cognitive disorder with 
psychosis as a subsequent consequence (Cohen and Insel, 2008; Huang et al., 2019; 
Woodward and Heckers, 2016). The ketamineinduced changes in rodent EEG oscillations 
are reminiscent of those observed in at-risk mental state individuals (Fleming et al., 2019; 
Ramyead et al., 2015) and during the first episode of schizophrenia (Andreou et al., 2015; 
Flynn et al., 2008). Taken together, the present findings support more strongly the whole 
brain-networks hypothesis than the isolated brain circuit theory of schizophrenia 
(Kambeitz et al., 2016). 
 
The neural mechanisms underlying the ketamine-induced fleeting arousal-like effect may 
be, in part, those responsible for the initial stage of the rapid-acting antidepressant action 
of ketamine in patients with drug-resistant major depressive disorders (Duncan Jr. et al., 
2019; Krystal et al., 2019; Nugent et al., 2019), leading us to think that the ketamine effects 
are state-dependent. In addition, the present results suggest that the combined sleep and 
ketamine models have some predictive validity for the first-stage development of 
innovative therapies against psychotic, bipolar, and depressive disorders. 
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Fig. S1. Ketamine prevents the occurrence of natural sleep episodes in free-behaving rats. (A1-A2) Two typical 
80-min recording sessions (cortical EEG, bandpass: 1-800 Hz, recording cable-induced artifacts withdrawn) 
performed in a freely moving rat with one week interval under the saline (A1) and ketamine (A2) conditions. 
Saline (1 ml/kg) or ketamine (2.5 mg/kg, 1 ml/kg) was subcutaneously injected a few min after the beginning of 
the recording session (arrow). At the very beginning of the session, the rat is usually active with a cortical EEG 
displaying, prominently, low-amplitude (17 Hz) oscillations (B1). Under control (saline) condition, the rat usually 
becomes calm (quiet immobile wakefulness) then, after toileting, goes into slow-wave sleep episodes. Non-REM 
sleep episodes were identified on the basis of the occurrence of delta (1-4 Hz)- , theta (5-9 Hz)- and spindle (sp, 
10-16 Hz)-frequency oscillations (B2). Under the ketamine condition, the rat becomes quickly hyperactive 
(erratic behavior with stereotypies and ataxia) associated with a cortical EEG characterized by an abnormally 
excessive and persistent amplification of ongoing beta- and gamma-frequency (18- 29 and 30-80 Hz, respectively) 
oscillations (B3) with a partial recovery at the end of the recording session. No one sleep episode was identified 
during the 80-min recording session. The histogram on the right illustrates the number of non-REM sleep 
episodes during the 80-min recording session under the control (S or saline; N = 3.0±0.2, 18 recordings sessions), 
one week before (Wn-1) the ketamine challenge, or under the ketamine (K, 0.0±0.0, 15 recordings sessions) 
conditions. One week later (Wn+1), the ketamine-treated rats retrieve their sleep episodes under the saline 
condition (n = 3.3±0.3, 11 recording sessions). (B1-B3) Top traces: short bouts of desynchronized (during wake 
state, B1) and synchronized (during non-REM sleep, B2) cortical EEG recorded under saline condition, and of 
“hyper-desynchronized” cortical EEG under ketamine condition (B3, 7 minutes after injection). Middle traces: 
32-s bouts of wake-related desynchronized (during wake state, B1) and non-REM sleep-related synchronized (B2) 
cortical EEG recorded under saline condition, and of ketamine-induced “hyper-desynchronized” cortical EEG (B3, 
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Fig. S1. Ketamine prevents the occurrence of natural sleep episodes in free-behaving rats. (A1-A2) Two typical 
80-min recording sessions (cortical EEG, bandpass: 1-800 Hz, recording cable-induced artifacts withdrawn) 
performed in a freely moving rat with one week interval under the saline (A1) and ketamine (A2) conditions. 
Saline (1 ml/kg) or ketamine (2.5 mg/kg, 1 ml/kg) was subcutaneously injected a few min after the beginning of 
the recording session (arrow). At the very beginning of the session, the rat is usually active with a cortical EEG 
displaying, prominently, low-amplitude (17 Hz) oscillations (B1). Under control (saline) condition, the rat usually 
becomes calm (quiet immobile wakefulness) then, after toileting, goes into slow-wave sleep episodes. Non-REM 
sleep episodes were identified on the basis of the occurrence of delta (1-4 Hz)- , theta (5-9 Hz)- and spindle (sp, 
10-16 Hz)-frequency oscillations (B2). Under the ketamine condition, the rat becomes quickly hyperactive 
(erratic behavior with stereotypies and ataxia) associated with a cortical EEG characterized by an abnormally 
excessive and persistent amplification of ongoing beta- and gamma-frequency (18- 29 and 30-80 Hz, respectively) 
oscillations (B3) with a partial recovery at the end of the recording session. No one sleep episode was identified 
during the 80-min recording session. The histogram on the right illustrates the number of non-REM sleep 
episodes during the 80-min recording session under the control (S or saline; N = 3.0±0.2, 18 recordings sessions), 
one week before (Wn-1) the ketamine challenge, or under the ketamine (K, 0.0±0.0, 15 recordings sessions) 
conditions. One week later (Wn+1), the ketamine-treated rats retrieve their sleep episodes under the saline 
condition (n = 3.3±0.3, 11 recording sessions). (B1-B3) Top traces: short bouts of desynchronized (during wake 
state, B1) and synchronized (during non-REM sleep, B2) cortical EEG recorded under saline condition, and of 
“hyper-desynchronized” cortical EEG under ketamine condition (B3, 7 minutes after injection). Middle traces: 
32-s bouts of wake-related desynchronized (during wake state, B1) and non-REM sleep-related synchronized (B2) 
cortical EEG recorded under saline condition, and of ketamine-induced “hyper-desynchronized” cortical EEG (B3, 
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7 minutes after injection). Under the ketamine condition (B3), the rat behavioral hyperactivity generated many 
artifacts (a) in the cortical EEG due to intense electromyographic activities and cable artifacts. Bottom: Time-
frequency spectral analysis (resolution: 0.03 Hz, hamming, 50% overlap) of a 32-s recording episode for each 
condition. 

 

 
Fig. S2: Sleep-like activity patterns under the analgesic pentobarbital sedation. (A1) The hodology of the layer 
VI CT-TRN-TC circuit, the common circuit to all nuclei of the dorsal thalamus and the leading circuit in the 
generation of spindles. (A2) Location of the cortical (EEG), thalamic (extracellular configuration), and of the TRN 
(juxtacellular configuration) electrodes in the somatosensory system. (B1) A 32-s trace recorded in a 
pentobarbital sedated rat. Both the cortical EEG and the thalamic extracellular activities are prominently 
synchronized. During this synchronized state, the TRN cell fires rhythmic high-frequency bursts of APs at the 
delta- (1-4 Hz), theta- (5-9 Hz) and spindle- (10-16 Hz) frequency bands. (B2) A short-lasting trace showing spindle 
network (Cx EEG and thalamus extracellular) and cellular (TRN) activities. (C) Time-frequency spectral analysis of 
the 32-s cortical and thalamic records (resolution: 1 Hz, hamming, 50% overlap) of the B1 trace. (D) Averaged 
autocorrelogram (resolution: 1 ms, from ten 2-s traces ±SEM in grey) of the firing of a representative 
juxtacellularlyrecorded TRN neuron. 

  

 

Fig. S3A: Ketamine decreases the density and the power of spindles in the thalamocortical system. (upper 
graph) Time course of the density (% change relative to the saline condition, grand average (black) ± SEM (grey) 
from 8 rats) of cortical spindles before and after the subcutaneous administrations of saline (at 0 min) and 
ketamine (at 20 min). In the histogram, each column represents the average (± SEM) of a 10-minute period 
(density resolution: 10 s; 60 values x 8 rats). (bottom graph) Time course of the power (% change relative to the 
saline condition, grand average (black) ± SEM (grey) from 8 rats) of spindles (from non-filtered records) before 
and after the subcutaneous administrations of saline (at 0 min) and ketamine (at 20 min). In the histogram, each 
column represents the average (± SEM) of a 10-minute period (FFT resolution: 0.5 Hz; 300 values x 8 rats). Paired 
t-test relative to saline condition (star when p < 0.01). Saline condition: 5-15 min; ketamine condition: 30-40 min. 
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Fig. S3B: Ketamine significantly decreases the power of spindles and deltafrequency oscillations and increases 
that of gamma- and higher-frequency oscillations in the somatosensory thalamocortical system. (left panel) 
Time course of the power (% change relative to the saline condition, grand average (black) ± SEM (grey) from 6 
rats with simultaneous cortical and thalamic recordings) of neural oscillations before and after the subcutaneous 
administrations of saline (at 20 min) and ketamine (at 40 min). (right panel) Each dot is a Student's paired t-Test 
(one test ketamine relative to saline (100%) every 2 seconds). The 100% corresponds to the average of all the 
values (n=300 per rat) obtained during the 10 min period that precedes the ketamine administration. The pvalue 
0.05 is indicated by the green line. The smaller the p-value, the higher the significance. HFO, high-frequency 
oscillations. 

 
 
 
 
 
 
 

  

 
Fig. S4a: MK-801 mimics the ketamine effects better than physostigmine and apomorphine. Time course of 
the power (% change relative to the saline condition, mean (in black) ±SEM (in grey), 4 rats per condition, each 
rat being its own control) of cortical EEG oscillations (all frequency bands) before and after the subcutaneous 
administrations of saline (at 20 min) and (at 40 min) either MK-801 (0.1 mg/kg), physostigmine (0.5 mg/kg), or 
apomorphine (1 mg/kg). 

 

Fig. S4b: MK-801 mimics the ketamine effects better than physostigmine and apomorphine. The histogram 
illustrates the drug-induced percent changes (at 20-60 min postinjection, relative to the saline condition, each 
animal being its own control) in power of the four frequency bands in the cortical EEG (4 rats per drug; 
mean±SEM). Student t-test: (*) p< 0.001; ns, not significant.  
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Fig. S4c: Physostigmine or apomorphine decreases the hfBurst density in juxtacellularly recorded thalamic 
reticular nucleus neurons. The density (number per minute, ±SEM, 2 TRN cells from 2 rats) of hfBursts and of 
sAPs under the saline (A or B), physostigmine (A) or apomorphine (B) conditions. In the histograms, the 
normalized values are from the time period of 20-60 min postinjection (phys or apo), that is, 40-80 min in the 
charts. Note that, like ketamine, physostigmine increases the sAP density and decreases the hfBurst density. 

 
 

 
Fig. S5: Ketamine switches the firing pattern of thalamic reticular nucleus (TRN) neurons from the hfBurst 
mode to the sAP mode. (A) Experimental design showing the location of the recording glass micropipettes, a 
sharp one (tip diameter ~1µm) to record juxtacellularly (juxta) a single thalamic reticular nucleus (TRN) neuron, 
a semi-micropipette (tip diameter: 5-7 µm) to record the extracellular activities of a subpopulation of TC neurons 
in the somatosensory system (VPm, medial part of the ventral posterior nucleus). These intrathalamic recordings 
are done along with the cortical EEG of the related primary somatosensory cortex (S1). Is also shown, the 
hodology of the somatosensory 3-neuron layer VI CT-TRN-TC circuit, the principal leading cicuit in the generation 
of spindles. In the somatosensory system, the lemniscal (lm) input being the principal prethalamic input of the 
VPm. The corticothalamic (CT) and TC neurons are glutamatergic while the TRN neuron is GABAergic. At the end 
of the recording session, the location and the structure of the recorded neurons are labelled with the neuronal 
tracer Neurobiotine. The top microphotograph shows part of the somatodendritic complex and the main axon 
(ax) of a juxtacellularly recorded TRN neuron; the bottom microphotograph shows the extracellular labelling 
(methyl green counterstaining) of the recording site and electrode track in the VPm, the head arrow indicating 
the location of the extracellular recording site. In the frame is shown the functional identification of the recorded 
somatosensory neurons at the beginning of the recording session, that is, short-latency sensory-evoked activities 
simultaneously recorded in the cortical EEG and in thalamic relay (VPm) and reticular (TRN) neurons. (B) Typical 
simultaneous recordings of the S1 cortex (EEG), the somatosensory TRN (single-unit juxtacellular configuration) 
and related thalamus (extracellular configuration). Under the saline (control) condition, both the cortex and the 
thalamus exhibit a synchronized state, characterized by the occurrence of lowfrequency (1-16 Hz) oscillations, 
including spindles, and the TRN cell exhibits three series of rhythmic robust highfrequency bursts of action 
potentials (300-500 APs/s). Under the ketamine condition (here, 15 minutes post-ketamine injection), the TC 
system displays a more desynchronized state, characterized by the prominent occurrence of faster activities (>16 
Hz), which include gamma-frequency oscillations, and the TRN cell fires more in the single AP mode than in the 

  

burst mode. Ninety minutes after the subcutaneous administration of low-dose ketamine, the sleep state of the 
TC system is back in the CT-TRN-TC system. 

 

 
Fig. S6: Ketamine decreases the high-frequency burst (hfBurst) density and increases the single AP (sAP) 
density in extracellularly recorded thalamocortical (TC) neurons. (A) A typical example of a spike sorting of 3 
TC cells (TC1, TC2 and TC3) from an extracellular multiunit recording. In the recording bout (high-pass filter cut 
at 100 Hz), the three TC cells are visually well distinguishable, TC1 exhibiting a hfBurst of 2 APs then sAPs, TC2 a 
hfBurst of 3 APs then sAPs, and TC3 only sAPs. A typical extracellular hfBurst is shown in the frame. The mean±SD 
of 50 APs of the three detected TC neurons are shown. Three clusters are well distinguishable on the basis of the 
amplitude of the spike and valley components (spk ampl and V1 ampl, respectively) of the APs. (B) Grand average 
(±SEM, N=16, from 6 rats) of the relative changes of the density (normalized count per minute, 1 being the 
control value under the saline condition) of the sAPs and of the hfBursts. On the right, the histograms show the 
average values corresponding to 20-40 minutes ketamine postinjection. Asterisk when significant (paired t-test, 
p<0.01). 

 



A single psychotomimetic dose of ketamine

87

2

  

Fig. S4c: Physostigmine or apomorphine decreases the hfBurst density in juxtacellularly recorded thalamic 
reticular nucleus neurons. The density (number per minute, ±SEM, 2 TRN cells from 2 rats) of hfBursts and of 
sAPs under the saline (A or B), physostigmine (A) or apomorphine (B) conditions. In the histograms, the 
normalized values are from the time period of 20-60 min postinjection (phys or apo), that is, 40-80 min in the 
charts. Note that, like ketamine, physostigmine increases the sAP density and decreases the hfBurst density. 

 
 

 
Fig. S5: Ketamine switches the firing pattern of thalamic reticular nucleus (TRN) neurons from the hfBurst 
mode to the sAP mode. (A) Experimental design showing the location of the recording glass micropipettes, a 
sharp one (tip diameter ~1µm) to record juxtacellularly (juxta) a single thalamic reticular nucleus (TRN) neuron, 
a semi-micropipette (tip diameter: 5-7 µm) to record the extracellular activities of a subpopulation of TC neurons 
in the somatosensory system (VPm, medial part of the ventral posterior nucleus). These intrathalamic recordings 
are done along with the cortical EEG of the related primary somatosensory cortex (S1). Is also shown, the 
hodology of the somatosensory 3-neuron layer VI CT-TRN-TC circuit, the principal leading cicuit in the generation 
of spindles. In the somatosensory system, the lemniscal (lm) input being the principal prethalamic input of the 
VPm. The corticothalamic (CT) and TC neurons are glutamatergic while the TRN neuron is GABAergic. At the end 
of the recording session, the location and the structure of the recorded neurons are labelled with the neuronal 
tracer Neurobiotine. The top microphotograph shows part of the somatodendritic complex and the main axon 
(ax) of a juxtacellularly recorded TRN neuron; the bottom microphotograph shows the extracellular labelling 
(methyl green counterstaining) of the recording site and electrode track in the VPm, the head arrow indicating 
the location of the extracellular recording site. In the frame is shown the functional identification of the recorded 
somatosensory neurons at the beginning of the recording session, that is, short-latency sensory-evoked activities 
simultaneously recorded in the cortical EEG and in thalamic relay (VPm) and reticular (TRN) neurons. (B) Typical 
simultaneous recordings of the S1 cortex (EEG), the somatosensory TRN (single-unit juxtacellular configuration) 
and related thalamus (extracellular configuration). Under the saline (control) condition, both the cortex and the 
thalamus exhibit a synchronized state, characterized by the occurrence of lowfrequency (1-16 Hz) oscillations, 
including spindles, and the TRN cell exhibits three series of rhythmic robust highfrequency bursts of action 
potentials (300-500 APs/s). Under the ketamine condition (here, 15 minutes post-ketamine injection), the TC 
system displays a more desynchronized state, characterized by the prominent occurrence of faster activities (>16 
Hz), which include gamma-frequency oscillations, and the TRN cell fires more in the single AP mode than in the 

  

burst mode. Ninety minutes after the subcutaneous administration of low-dose ketamine, the sleep state of the 
TC system is back in the CT-TRN-TC system. 

 

 
Fig. S6: Ketamine decreases the high-frequency burst (hfBurst) density and increases the single AP (sAP) 
density in extracellularly recorded thalamocortical (TC) neurons. (A) A typical example of a spike sorting of 3 
TC cells (TC1, TC2 and TC3) from an extracellular multiunit recording. In the recording bout (high-pass filter cut 
at 100 Hz), the three TC cells are visually well distinguishable, TC1 exhibiting a hfBurst of 2 APs then sAPs, TC2 a 
hfBurst of 3 APs then sAPs, and TC3 only sAPs. A typical extracellular hfBurst is shown in the frame. The mean±SD 
of 50 APs of the three detected TC neurons are shown. Three clusters are well distinguishable on the basis of the 
amplitude of the spike and valley components (spk ampl and V1 ampl, respectively) of the APs. (B) Grand average 
(±SEM, N=16, from 6 rats) of the relative changes of the density (normalized count per minute, 1 being the 
control value under the saline condition) of the sAPs and of the hfBursts. On the right, the histograms show the 
average values corresponding to 20-40 minutes ketamine postinjection. Asterisk when significant (paired t-test, 
p<0.01). 

 



Chapter 2

88   

 
Fig. S7: Ketamine increases the firing frequency band similarly in two juxtacellularly recorded nearby TC 
neurons. (A) Experimental design showing the location of the recording EEG electrode on the primary 
somatosensory cortex and of the combined juxtacellular (tip diameter: 1 µm) and extracellular (tip diameter: 5 
µm) glass micropipettes (intertip distance: 100 µm, see microphotograph in the frame). In this experiment, the 
latter electrodes are located in the posterior group of the thalamus (the upper lip being the receptive field for 
the juxtacellular micropipette). (B) Each of the two combined micropipettes records juxtacellularly a single TC 
neuron. Under the control (saline) condition, the cortical EEG displays sleep oscillations, including spindles, 
whereas both TC1 and TC2 neurons fire sAPs and hfBursts. Four to 5 minutes after a subcutaneous administration 
of low-dose ketamine (2.5 mg/kg), the cortical EEG exhibits less spindles/slower oscillations and more higher-
frequency (>16 Hz) oscillations, including especially gamma oscillations, and the two adjacent TC neurons fire 
more sAPs than hfBursts. (C) Ratemeter of the simultaneously juxtacellularly recorded TC1 and TC2 neurons 
under saline then ketamine conditions. Each dot corresponds to the number of inter-AP intervals per second. At 
40 minutes, no available data for a short while because of the sudden occurrence of artifacts that prevented 
accurate AP detection. (D) Time course of the power of gamma oscillations (top) and of spindles (bottom) 
recorded simultaneously in the somatosensory cortex before and after subcutaneous administrations of saline 
and ketamine (at 0 and 20 min, respectively). 

  

 

 
Fig. S8: Time relationship between the APs of a single TC neurons and the related juxtacellular, extracellular 
and cortical gamma waves. (A) Simultaneous dual juxtacellular-extracellular recording of a single TC neuron 
along with the EEG of the related cortex of the somatosensory system. A schematic drawing of the experimental 
design is shown on the right. From top to bottom: Juxtacellular firing of a single TC neuron (bandpass: 1-6000 
Hz); juxtacellular TC gamma oscillations (25-55 Hz); extracellular (100 µm distant from the neuron) TC gamma 
oscillations (25-55 Hz); cortical EEG gamma oscillations (25-55 Hz). (B) Peri-event (gamma wave) time histogram 
(1-ms resolution) of the TC firing (cumulative count) under the ketamine condition. Every gamma wave (TC juxta, 
TC extra (inter-tip distance = 100 µm, see drawing), and Cx EEG) is an average of 100 filtered (25-55 Hz) individual 
gamma (γ) waves. Time “0” corresponds to the time at which gamma waves were detected. Two hundreds 
sweeps, each dot representing a detected AP. 
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Fig. S10: Clozapine prevents the ketamine effects on sleep TC oscillations. Each chart shows, for a given 
frequency band oscillation, the time course (1 FFT value/2 seconds) of the drug effects (% change in power) on 
the cortical EEG in 2 individuals (grey and black) during a 240 min recording session, the ketamine challenge 
being done at 160 minutes under the control (left panel) and clozapine (right panel) conditions. The horizontal 
white bars indicate the time periods used for statistical comparisons (paired t-test). Left panel: Ketamine (2.5 
mg/kg) was administered 120 minutes after the vehicle (NaCl/HCl 0.1N) administration (subcutaneous, 1 ml/kg). 
Right panel: Ketamine (2.5 mg/kg) was administered 120 minutes after the clozapine (dissolved in NaCl/HCl 0.1N) 
administration (subcutaneous, 5 mg/kg, 1 ml/kg). HFO, high-frequency oscillations (81-200 Hz). 
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1 INTRODUCTION 

In many neuropsychiatric illnesses, including schizophrenia, sleep disorders and deficits in 
attention-related sensorimotor and cognitive integration processes are common. These 
disorders insidiously start to occur during the prodromal phase (Lunsford-Avery et 
al., 2013; Manoach et al., 2014; Mayeli et al., 2021; McGhie & Chapman, 1961; Zanini et 
al., 2015). Administration of the non-competitive NMDA receptor antagonist ketamine at 
a subanaesthetic dose can induce a psychosis-relevant mental state in healthy humans 
(Anticevic et al., 2015; Grent-'t-Jong et al., 2018; Hetem et al., 2000; Hoflich et al., 2015; 
Krystal et al., 1994; Rivolta et al., 2015) and other species, including rodents (Chrobak et 
al., 2008; Ehrlichman et al., 2009; Hakami et al., 2009; Kocsis, 2012; Pinault, 2008; Pitsikas 
et al., 2008). The ketamine-induced psychosis-relevant mental state is reminiscent of both 
the prodromal phase of schizophrenia and the psychotic transition. 

Sensory-related perception is a very complex and relatively long-lasting (~2 s) process, 
which involves early (<200 ms) and late (>200 ms) stages. These two-time stages represent 
a continuum through highly distributed systems involving diverse cortical areas during the 
perceptual process (Portella et al., 2012, 2014; Saradjian et al., 2019). The dynamics of the 
cortico-thalamo-cortical (CTC) network in the late stage of perception remain little known 
in psychotic disorders. Literature suggests the existence of a link between late sensory-
related activities and perception. In a visual perception task, participants show sensory 
perception-related gamma activity increases in two separate components, early and late 
(Rodriguez et al., 1999). Likewise, in a study conducted in humans and mice two response 
activities (early: < 300 ms and late: > 300 ms) are recorded after visual stimulation, the 
latter response believed to be involved in visual perception (Funayama et al., 2015). 

In schizophrenia patients, deficits in perception are associated with a reduction of phase 
synchrony in beta/gamma-frequency (20–60 Hz) oscillations in the late period (Uhlhaas et 
al., 2013). These results suggest a decrease in induced sensory-related gamma oscillations 
during the late period of perception. There is a line of evidence showing a decrease in 
induced-gamma oscillations in individuals with a clinically at-risk mental state for 
psychotic transition (Haenschel et al., 2009; Reilly et al., 2018). The decrease in power and 
synchrony of task & sensory-induced gamma oscillations may be due to the abnormal 
amplification of basal gamma oscillations recorded in such patients (Ramyead et al., 2015). 
Indeed, in the acute rodent ketamine model, early sensory-evoked gamma oscillations 
decrease whereas ongoing gamma oscillations increase, supporting the hypothesis of a 

  

Abstract 

In prodromal and early schizophrenia, disorders of attention and perception are 
associated with structural and chemical brain abnormalities and with dysfunctional 
corticothalamic networks exhibiting disturbed brain rhythms. The underlying mechanisms 
are elusive. The non-competitive NMDA receptor antagonist ketamine simulates the 
symptoms of prodromal and early schizophrenia, including disturbances in ongoing and 
task & sensory-related broadband beta−/gamma-frequency (17–29 Hz/30–80 Hz) 
oscillations in corticothalamic networks. In normal healthy subjects and rodents, complex 
integration processes, like sensory perception, induce transient, large-scale synchronised 
beta/gamma oscillations in a time window of a few hundred ms (200–700 ms) after the 
presentation of the object of attention (e.g., sensory stimulation). Our goal was to use an 
electrophysiological multisite network approach to investigate, in lightly anesthetised rats, 
the effects of a single psychotomimetic dose (2.5 mg/kg, subcutaneous) of ketamine on 
sensory stimulus-induced oscillations. Ketamine transiently increased the power of 
baseline beta/gamma oscillations and decreased sensory-induced beta/gamma 
oscillations. In addition, it disrupted information transferability in both the somatosensory 
thalamus and the related cortex and decreased the sensory-induced thalamocortical 
connectivity in the broadband gamma range. The present findings support the hypothesis 
that NMDA receptor antagonism disrupts the transfer of perceptual information in the 
somatosensory cortico-thalamo-cortical system. 
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of experiments. Ketamine (Imalgene 1000, MERIAL), pentobarbital sodique (CEVA santé 
animale) and fentanyl (Fentadon@ DECHRA) were from CENTRAVET. 

Surgery under deep narco-analgesia 

Narcosis was initiated with an intraperitoneal injection of pentobarbital (60 mg/kg). An 
additional dose (10–15 mg/kg) was administered as soon as there was a nociceptive reflex. 
Analgesia was achieved with a subcutaneous injection of fentanyl (7.5 μg/kg) every 30 min. 
The depth of the surgical narco-analgesia was continuously monitored using an 
electrocardiogram, watching the rhythm and breathing and assessing the nociceptive 
withdrawal reflex. The rectal temperature was maintained at 36.5°C (peroperative and 
protective hypothermia) using a thermoregulated pad. The trachea was cannulated and 
connected to a ventilator (50% air–50% O2, 60 breaths/min). Under local anaesthesia 
(lidocaine), an incision of the skin on the skull was made, and the periosteum was removed 
to set the skullcap bare and to perform the stereotaxic positioning of the recording 
electrodes on the frontoparietal skull. The deep narco-analgesia lasted about 2.5 h, the 
time needed to complete all the surgical procedures. 

  

reduction in the signal-to-noise ratio (Anderson et al., 2017; Hakami et al., 2009; Kulikova 
et al., 2012). 

We wanted to study whether and how late sensory-induced beta/gamma oscillations (17–
29 Hz/30–80 Hz) are disturbed by NMDA receptor antagonism. To do so, we investigated 
the effects of low-dose ketamine in the somatosensory thalamocortical (TC) system during 
the late sensory stimulus-related period (200–700 ms post-sensory stimulation), involving 
highly distributed CTC systems (Alitto & Usrey, 2003; Briggs & Usrey, 2008; Homma et 
al., 2017; Urbain et al., 2015). Since sensory-induced gamma oscillations can be recorded 
in anesthetised rats (Neville & Haberly, 2003), the experiments were conducted in the 
pentobarbital-sedated rat. Spectral analysis and coherence connectivity were used in an 
attempt to estimate, respectively, the level of synchronisation and the functional 
connectivity between the recording sites (Kam et al., 2013). Unlike amplitude measures, 
coherence measurements show the synchronisation level between two signals based on 
the phase consistency (Srinivasan et al., 2007). EEG and extracellular signals are relatively 
complex as they are generated by multiple interacting cortical and subcortical oscillators. 
The complexity of such signals, related to functional aspects of the corresponding neural 
networks, can be assessed with non-linear analyses such as the multiscale entropy analysis 
(MSE) (Costa et al., 2005; Miskovic et al., 2019). The MSE has been applied to EEG from 
psychiatric patients (Fernandez et al., 2013). Higher MSE can indicate increases in the 
complexity of time-varying signals and may represent disruptions in long-range temporal 
connectivity or temporal integration (Breakspear & Stam, 2005). So, in an attempt to 
measure the dynamical complexity in the TC system at multiple timescales, MSE was 
applied to the extracellular local field potential (LFP) recordings. The present findings 
show that, in the somatosensory CTC system, ketamine disrupts the information transfer 
of sensory-induced gamma oscillations. 

2 MATERIAL AND METHODS 

Animals and drugs 

Seven adult (3–6-month-old, 285–370 g), Wistar male rats were used. All animal care 
procedures were performed with the approval of the Ministère de l’Education Nationale, 
de l’Enseignement Supérieur et de la Recherche. Animals were housed and kept under 
controlled environmental conditions (temperature: 22 ± 1°C; humidity: 55 ± 10%; 12 h/12 
h light/dark cycle; lights on at 7:00 am) with food and water available ad libitum. Every 
precaution was taken to minimise stress and the number of animals used for each series 
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somatosensory system. The VPm receives lemniscal afferents (lm). (d) the teguments of the vibrissae are 
electrically stimulated every 15 seconds (Sens stim). Sensory evoked potentials are recorded simultaneously 
within the cortex and the thalamus. For each recording site are shown an overlay of 15 recordings and their 
averaging. Extracellular field potentials can be accompanied by cellular discharges. The action potentials were 
identified using the spike sorting methods. In this example, the number of action potentials from the recordings 
within the VPm are shown (50 trials). At the end of the recording session, the location of the recorded neurons 
are labelled (extracellular iontophoresis) with the neuronal tracer Neurobiotin. The microphotograph shows the 
corresponding extracellular labelling (methyl green counterstaining) of the recording site and electrode track in 
the VPm,. HPC: Hippocampus; Po: Posterior nucleus of the thalamus. 

Pentobarbital-induced sedation 

At the end of the surgery, the body temperature was set to and maintained at 37.2°C. The 
analgesic pentobarbital-induced sedation (light narco-analgesia) was initiated about 2 h 
after the induction of the surgical narco-analgesia (Figure 1a) and was maintained by a 
continuous intravenous infusion of the following regimen (average quantity given per kg 
and per hour): Pentobarbital (7.2 ± 0.1 mg), fentanyl (2.4 ± 0.2 μg) and glucose (48.7 ± 1.2 
mg). In order to help maintain the ventilation stable and to block muscle tone and tremors, 
a neuromuscular blocking agent was used (d-tubocurarine chloride: 0.64 ± 0.04 mg/kg/h). 
The cortical EEG and heart rate were under continuous monitoring to adjust, when 
necessary, the infusion rate to maintain the sedation. The EEG recordings began 2 hours 
after the beginning of the infusion of the sedative regimen. During the recording session 
and every 2 hours, drops of the local anaesthetic lidocaine were applied to the surgical 
wounds. 

Under the pentobarbital-induced slow-wave sleep (ketamine-free) condition, the EEG 
recordings principally displayed oscillations in the delta-frequency band (1–4 Hz or slow-
waves) accompanied by oscillations in the sigma band (10–17 Hz or ‘spindle-like’ activities) 
(Mahdavi et al., 2020; Pinault et al., 2006). These oscillations were qualitatively similar to 
slow-wave sleep with spindles recorded in free-behaving rats in stage II sleep (Figure 1b). 
The slow-wave sleep-type oscillations were sometimes interspersed with smaller and 
faster oscillations, including, among others, broadband gamma- and higher-frequency 
oscillations. 

Electrophysiology-anatomy 

For the EEG recordings of the frontoparietal somatosensory cortex (stereotaxic 
coordinates relative to bregma (Paxinos & Watson, 1998): posterior 2.3 mm, lateral 5 mm), 
the section of the Ag/AgCl wires (diameter 150 μm), insulated with Teflon, was placed on 
the inner plate of the bone. Extracellular field potential and multi-unit activities were 

  

 

Figure 1. Experimental design. (a) Timeline illustrating the key events during the experimental procedure with 
repeated measures in one animal. One to three low-dose ketamine challenges can be done during one animal-
experiment. At the bottom, the colour code of the brain state is dark grey for deep narco-analgesia, light grey 
for sedation (light narco-analgesia) and dark for death. During deep narco-analgesia, the EEG is characterised by 
a burst suppression pattern (bsp) and, during the sedation, principally by delta- (1–4 Hz), theta- (5–9 Hz) and 
sigma- (10–17 Hz) frequency oscillations (δ, θ and σ, respectively). (b) Cortical EEG oscillations in the free-
behaving (left panel) or pentobarbital sedated (right) rat. Top: 32-s bouts of desynchronised, during wake state, 
and synchronised, during non-REM sleep, cortical EEG recorded in a free-behaving rat during a 90-minutes 
recording session; the right trace is from a pentobarbital-sedated rat. Bottom: Time-frequency spectral analysis 
(resolution: 0.03 Hz, hamming, 50% overlap) of a 32-s recording episode for each condition. The power scale (z 
scale in colour) is not the same for the two frequency bands 1–20 Hz (×1) and 20–80 Hz (×10). The records from 
the free-behaving rat are from the study performed by Pinault (biol psychiatry, 2008). (c) Simplified hodology of 
the thalamocortical (TC, in blue purple) and corticothalamic (CT, in green) pathways of the somatosensory 
system linked to the vibrissae. This involves the inhibitory afferents originating from the thalamic reticular 
nucleus (TRN, red). CT and TC neurons are glutamatergic and TRN neurons GABAergic. The right panel shows 
multi-site recordings within the thalamus (VPm) and neocortex (layer VI and cortical EEG) within the rat 
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2.6.1 Total power spectral 

In total, data of 40 trials (10 × 4 rats) were acquired. The total power in a given frequency 
range v was the sum of powers across the defined spectral range. We consider the 500 ms 
period before each stimulus the baseline. The baseline power for each trial is denoted 
as Pb1, Pb2, Pb3, … Pb40; stimulus-related power for each 200–700 ms post-stimulus 500-ms 
epoch is denoted as Pe1, Pe2, Pe3, … Pe40. Therefore, the average normalised power Pv for 
the frequency v range is computed as: 

 

Similarly, in ketamine conditions, Pkbi and Pkei stand for the baseline and stimulus-related 
power, respectively for each trial i. Thus, the average normalised ketamine power Pkv is 
computed as: 

 

2.6.2 Multi-scale entropy (MSE) 

The information complexity of extracellular LFP beta- and gamma-frequency oscillations 
(raw LFP filtered at 17–29 Hz and 30–80 Hz, respectively) was measured by MSE. Although 
the definition of complexity is various, it is associated with ‘meaningful structural richness’ 
and ‘information randomness’ (Costa et al., 2005; Hager et al., 2017). The MSE is 
calculated in two steps. First, coarse-graining is applied to the time series {x1, …, xi, …, xN}. 
It is constructed by averaging data points from non-overlapping time-windows of interest, 
τ. Every coarse-grained time series, 𝑦𝑦jτ, is calculated as: 

 

where N/τ is the length of each resulting coarse-grained time series. Then the sample 
entropy is calculated for each series 𝑦𝑦jτ and plotted as function of the scale factor. When 
τ equals one, 𝑦𝑦j1 is equivalent to the original time series. The higher scale factor is, the 
longer temporal range it is. The MSE values for low scales reflect short-range temporal 
irregularity, while high scales reflect long-range temporal irregularity. Other parameters 

  

recorded in the somatosensory thalamus, especially in the medial part of the ventral 
posterior nucleus (VPm, bregma −2.8 mm, lateral 2.8 mm), and in the medial part of the 
posterior group (PoM, bregma −2.8 mm, lateral 2.8 mm, depth 5.6 mm) using glass 
micropipettes (tip diameter of 5–10 μm) filled with artificial cerebrospinal fluid and 1.5% 
Neurobiotin). Semi-micro quartz/platinum-iridium electrodes (Thomas Recording, GmbH, 
Giessen, Germany) were used for recordings in the layer 6 (depth 1.6–2.0 mm) of the 
related somatosensory cortex (Figure 1c). All regions of interest were recorded 
simultaneously, and the electrophysiological signals were sampled at a rate of 20 kHz 
(Digidata 1440A with pCLAMP 10 Software, Molecular Devices). The recording electrodes 
were moved down until the electrophysiological identification of the receptive field 
(Figure 1d). The anatomical identification of the recording site was validated following 
extracellular iontophoresis of the neuronal tracer Neurobiotin (Figure 1d), which was 
revealed using a standard histological procedure (Pinault, 1996). Sensory-evoked 
potentials were recorded after electrical stimulation of the vibrissae teguments using a 
pair of subcutaneous needles (duration: 75 μs; intensity: 50–60% of the intensity that 
gives maximal amplitude evoked potential, 1.0 to 1.5 mA; frequency: 0.06 Hz). Every trial 
contained recorded signals after one stimulation (10 trials/rat). 

Pharmacology and repeated measures in one animal 

During the recording session under the sedation condition, every rat was under its own 
control. Saline (vehicle, NaCl 0.9%) and ketamine (2.5 mg/kg) were subcutaneously 
administered (1 ml/kg). As long as the pentobarbital-induced sedation is stable (4–6 hours) 
and knowing that, under the present experimental conditions, the ketamine effect 
(peaking at 15–20 min) lasts significantly less than 90 min (Anderson et al., 2017; Mahdavi 
et al., 2020), two to three conditions (20–40-minute saline condition followed by one or 
two ketamine challenges) could be performed in one animal (Figure 1a). 

Data analysis 

Data analyses were performed with Clampfit 10, SciWorks (Datawave Technologies) and 
MATLAB softwares. Spectral analysis was done with 2 Hz resolution, hamming windowing 
and no overlay. Recorded signals were analysed in five frequency bands: delta (1–4 Hz), 
theta (5–9 Hz), sigma (10–16 Hz), beta (17–29 Hz) and gamma (30–80 Hz). Sensory 
stimulus-induced gamma power was calculated by subtracting the evoked and basal 
power from the total power. 
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Pharmacology and repeated measures in one animal 

During the recording session under the sedation condition, every rat was under its own 
control. Saline (vehicle, NaCl 0.9%) and ketamine (2.5 mg/kg) were subcutaneously 
administered (1 ml/kg). As long as the pentobarbital-induced sedation is stable (4–6 hours) 
and knowing that, under the present experimental conditions, the ketamine effect 
(peaking at 15–20 min) lasts significantly less than 90 min (Anderson et al., 2017; Mahdavi 
et al., 2020), two to three conditions (20–40-minute saline condition followed by one or 
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Data analysis 

Data analyses were performed with Clampfit 10, SciWorks (Datawave Technologies) and 
MATLAB softwares. Spectral analysis was done with 2 Hz resolution, hamming windowing 
and no overlay. Recorded signals were analysed in five frequency bands: delta (1–4 Hz), 
theta (5–9 Hz), sigma (10–16 Hz), beta (17–29 Hz) and gamma (30–80 Hz). Sensory 
stimulus-induced gamma power was calculated by subtracting the evoked and basal 
power from the total power. 
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Figure 2. Simultaneous cortical (EEG & layer 6) and thalamic (VPm & PoM) recordings under saline and 
ketamine conditions from a lightly anaesthetised rat. They are filtered in the beta/gamma frequency band (25–
50 Hz). Each trace (sweep) shows the 2-s pre-stimulus and 2-s post-stimulus periods. The teguments of the 
vibrissae are stimulated (sensory stim). The traces under the saline condition were recorded 10 minutes before 
the ketamine administration. The ketamine traces were recorded 20 minutes after the subcutaneous 
administration of ketamine at a subanaesthetic low-dose (2.5 mg/kg). 

  

for MSE calculations were adopted from previous studies (Lake et al., 2002; Richman et 
al., 2004; Takahashi et al., 2010). 

2.6.3 Coherence connectivity 

Coherence was calculated by the MATLAB mscohere function. 

2.6.4 Statistics 

All statistics tests were calculated using MATLAB or Graphpad Prism 9. For comparing the 
baseline and stimulus-related activities in different frequency bands, we used a one-way 
ANOVA test with Holm-Šidák's multiple comparisons test as post-hoc analysis. For 
comparing normalised gamma total power under ketamine and saline conditions, paired 
t-tests were applied to each group, with each animal being its own control. For testing the 
effect of ketamine on induced gamma oscillations, we computed whether there was a 
significant interaction using a two-way ANOVA for time and condition (saline or ketamine). 
When assessing the coherence between recording sites, we used the Wilcoxon matched 
pairs signed-rank test. 

3 RESULTS 

Ketamine increases baseline and decreases induced beta/gamma oscillations 

A representative example of multisite cortical (EEG and layer 6) and thalamic (VPm and 
PoM) recordings, filtered at the beta/gamma frequency band, is shown in figure 2. It 
reveals the ongoing (baseline) and sensory-related oscillations 2-s before and 2-s after the 
stimulation (0 s), respectively. It is striking that ketamine increased the power of ongoing 
beta/gamma oscillations in the cortex and thalamus (Figure 3a and b) as demonstrated in 
previous studies (Hakami et al., 2009; Kocsis, 2012; Pinault, 2008). Immediately and later 
after the sensory stimulation, the amplitude of the beta/gamma oscillations was 
modulated. During the 200–700 ms post-stimulus period, the induced beta/gamma 
oscillations significantly decreased in power at all recorded cortical and thalamic sites 
following ketamine administration (Figure 3c and d). 
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Figure 4. Ketamine increases multi-scale entropy in the gamma band between the VPm and layer 
6. Comparison of the multi-scales entropies of saline (blue) and ketamine (red) conditions at all recording sites 
in the gamma band during the 200–700 ms post-stimulus period. Layer 6 and VPm show a significant increase in 
entropy. Each scale point is the average entropy (± SEM, from 40 values, 10 per rats, 4 rats). Asterisks when 
significant (< 0.05, paired t-test). Mean values: Layer 6: T(39) = 2.5509 (p < 0.05); VPm: T(39) = 2.2930 (p < 0.05). 

The present study shows that ketamine had a strong effect on information in the specific 
thalamic nucleus (VPm) and in the related layer 6 in the gamma band, indicating that the 
gamma connectivity in the whole network might also be dysfunctional. So, we used the 
coherence coefficient to measure the induced connectivity in the beta and gamma bands 
between the cortex and thalamus. We applied magnitude-squared coherence to measure 
similarities between two signals during the 200–700 ms post-stimulus period. Ketamine 
elicited a non-significant decrease (~25%) of the coherence coefficient between layer 6 
and the related thalamus (VPm) in the beta band connectivity (Figure 5a). On the other 
hand, in the gamma band connectivity, ketamine dramatically decreased (nearly 40%) the 
coherence between layer 6 and the VPm (Figure 5b). Furthermore, no significant change 

  

 

Figure 3. Ketamine increases baseline beta/gamma (a/b) oscillations, and decreases sensory-induced 
beta/gamma (c/d) oscillations. (a, b) each column stands for the average (± SEM, from 40 values, 10 per rats, 4 
rats) of the normalised total power of gamma oscillations relative to saline baseline. Asterisks when significant 
(paired t-test, all P value < 0.0001, check supplement for statistic details). (c, d) the power of the induced gamma 
oscillations was obtained when subtracting the power of the baseline gamma from the power of the sensory-
elicited total gamma. Each value (± SEM, from 40 values, 10 per rats, 4 rats) is the % change relative to the 
baseline gamma recorded before the sensory stimulation. Asterisks when significant (< 0.05, two-way ANOVA, 
corrected with holm-Sidak, check supplement for details). 

Ketamine disrupts information transferability in the corticothalamic (CT) network 

The post-stimulation time lapse of 200–700 ms is long enough to encode, integrate and 
perceive the incoming sensory signal (Rodriguez et al., 1999). We hypothesised that 
ketamine could interrupt information processing during this period. To test this, we 
measured the uncertainty of information based on MSE in the gamma band during the 
200–700 ms post-stimulus period (Figure 4). The measurement of entropy can be used as 
an estimation of ‘complexity’ in physiological systems. Higher entropy means the system 
is likely in a more ‘complex/dynamic’ state (Costa et al., 2005; Hager et al., 2017). In 
Figure 4, it is shown that the entropy of the VPm and that of layer 6 were significantly 
increased along different time scales. This indicates that the information contained in the 
VPm and layer 6 extracellular potential was biased toward a random or ‘noisy’ state. No 
difference was observed in the PoM (Paired t-test, p < 0.05). Also, no significant difference 
was observed on MSE for the beta band in both the cortex (layer 6) and the thalamus (VPm 
and PoM) (Figure S1). 



The psychotomimetic ketamine disrupts

103

3

  

 

Figure 4. Ketamine increases multi-scale entropy in the gamma band between the VPm and layer 
6. Comparison of the multi-scales entropies of saline (blue) and ketamine (red) conditions at all recording sites 
in the gamma band during the 200–700 ms post-stimulus period. Layer 6 and VPm show a significant increase in 
entropy. Each scale point is the average entropy (± SEM, from 40 values, 10 per rats, 4 rats). Asterisks when 
significant (< 0.05, paired t-test). Mean values: Layer 6: T(39) = 2.5509 (p < 0.05); VPm: T(39) = 2.2930 (p < 0.05). 

The present study shows that ketamine had a strong effect on information in the specific 
thalamic nucleus (VPm) and in the related layer 6 in the gamma band, indicating that the 
gamma connectivity in the whole network might also be dysfunctional. So, we used the 
coherence coefficient to measure the induced connectivity in the beta and gamma bands 
between the cortex and thalamus. We applied magnitude-squared coherence to measure 
similarities between two signals during the 200–700 ms post-stimulus period. Ketamine 
elicited a non-significant decrease (~25%) of the coherence coefficient between layer 6 
and the related thalamus (VPm) in the beta band connectivity (Figure 5a). On the other 
hand, in the gamma band connectivity, ketamine dramatically decreased (nearly 40%) the 
coherence between layer 6 and the VPm (Figure 5b). Furthermore, no significant change 

  

 

Figure 3. Ketamine increases baseline beta/gamma (a/b) oscillations, and decreases sensory-induced 
beta/gamma (c/d) oscillations. (a, b) each column stands for the average (± SEM, from 40 values, 10 per rats, 4 
rats) of the normalised total power of gamma oscillations relative to saline baseline. Asterisks when significant 
(paired t-test, all P value < 0.0001, check supplement for statistic details). (c, d) the power of the induced gamma 
oscillations was obtained when subtracting the power of the baseline gamma from the power of the sensory-
elicited total gamma. Each value (± SEM, from 40 values, 10 per rats, 4 rats) is the % change relative to the 
baseline gamma recorded before the sensory stimulation. Asterisks when significant (< 0.05, two-way ANOVA, 
corrected with holm-Sidak, check supplement for details). 

Ketamine disrupts information transferability in the corticothalamic (CT) network 

The post-stimulation time lapse of 200–700 ms is long enough to encode, integrate and 
perceive the incoming sensory signal (Rodriguez et al., 1999). We hypothesised that 
ketamine could interrupt information processing during this period. To test this, we 
measured the uncertainty of information based on MSE in the gamma band during the 
200–700 ms post-stimulus period (Figure 4). The measurement of entropy can be used as 
an estimation of ‘complexity’ in physiological systems. Higher entropy means the system 
is likely in a more ‘complex/dynamic’ state (Costa et al., 2005; Hager et al., 2017). In 
Figure 4, it is shown that the entropy of the VPm and that of layer 6 were significantly 
increased along different time scales. This indicates that the information contained in the 
VPm and layer 6 extracellular potential was biased toward a random or ‘noisy’ state. No 
difference was observed in the PoM (Paired t-test, p < 0.05). Also, no significant difference 
was observed on MSE for the beta band in both the cortex (layer 6) and the thalamus (VPm 
and PoM) (Figure S1). 



Chapter 3

104   

decreased the coherence between layer 6 and VPm in both the beta (not significant) and 
gamma (significant) frequencies. These findings suggest that beta and gamma oscillations 
have a common functionality, which is supported by a previous study demonstrating that, 
in the cerebral cortex, both frequency bands share cellular and biophysical mechanisms 
(Compte et al., 2008). Along these lines, intracellular recordings of TRN neurons 
demonstrated that the frequency of the intrinsically generated membrane potential 
oscillations responsible for generating gamma frequency (25–60 Hz) firing can drop up to 
18 Hz (Pinault & Deschenes, 1992). 

In the lightly-anesthetised rat, vibrissae stimulation generates a wide-band frequency 
response in extracellular recordings simultaneously in the VPm, PoM, and in the related 
somatosensory cortex (layer 6). Sensory-induced beta- and gamma-frequency oscillations 
were significantly decreased in a smaller post-stimulus time window (200–700 ms). The 
ketamine-induced obliteration of the sensory stimulus-induced beta/gamma oscillations 
at 200–700 ms may be the result of the ketamine-elicited abnormally and diffusely 
amplified basal gamma oscillations, which lead to disruption of beta/gamma-related 
information transferability in the somatosensory CTC system as assessed in the present 
study by an increase in MSE and a decrease in coherence connectivity in the specific CT 
system. 

The fact that ketamine aberrantly and diffusely amplifies ongoing beta/gamma oscillations 
at all the recorded cortical and thalamic sites supports a conception of NMDA receptor 
hypofunction-related beta and gamma hyper-synchronies as an aberrant generalised 
diffuse network noise. This NMDA receptor hypofunction would induce a noise state, 
which would contribute to disrupting the ability of neural networks to encode and 
integrate input signals. In other words, NMDA receptor antagonism decreases the signal-
to-noise ratio (Anderson et al., 2017; Gandal et al., 2012; Hakami et al., 2009; Kulikova et 
al., 2012). The disruption of the transfer of sensory information would start to occur at 
least during the very first stages (up to ~15 ms) of information processing, at the gate of 
cognitive processes (Anderson et al., 2017; Briggs & Usrey, 2008; Homma et al., 2017; 
Kulikova et al., 2012). The aberrant diffuse network beta/gamma noise may be a potential 
electrophysiological correlate of a psychosis-relevant state as increased gamma synchrony 
has been recorded in patients during somatic and visual hallucinations (Baldeweg et 
al., 1998; Becker et al., 2009; Behrendt, 2003; Spencer et al., 2004) and, importantly, in 
clinically at-risk mental state patients for psychosis transition and naïve in antipsychotic 
medication (Perrottelli et al., 2021; Ramyead et al., 2015). 

  

in coherence was observed between PoM and VPm, or layer 6 and PoM in both the beta 
and gamma connectivity (Figure 5a,b, Wilcoxon matched-pairs signed-rank test). 

 

Figure 5. Ketamine decreases coherence connectivity in the beta/gamma band between layer 6 and 
VPm. Comparison of coherences connectivity of beta/gamma bands within CT-TC network under saline and 
ketamine conditions. Blue and red columns stand for the average coefficients (± SEM, from 40 values, 10 per 
rats, 4 rats) of the coherences of beta (a)/gamma (b) oscillation in the saline and ketamine conditions, 
respectively. Asterisks when significant (< 0.05), Wilcoxon test. 

DISCUSSION 

The findings presented here demonstrate that the parietal CTC system significantly 
contributes to sensory stimulus-induced thalamic beta/gamma frequency oscillations, 
which occur at the late post-stimulus stage (200–700 ms), and that the administration of 
the NMDA receptor antagonist ketamine disrupts the transfer of perceptual information 
in the system. 

Low-dose ketamine decreases the signal-to-noise ratio 

The present study analysed beta (17–29 Hz) and gamma (30–80 Hz) oscillations separately. 
Following the subcutaneous administration of ketamine, spontaneously occurring beta 
and gamma oscillations increased in amplitude and power in the CT system. Furthermore, 
the sensory-induced beta and gamma oscillations were significantly decreased in power 
at all recorded cortical and thalamic sites; ketamine increased the MSE in the specific CT 
system (Layer 6-VPm) in the gamma but not in the beta frequency band; ketamine 
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Possible underlying mechanisms 

The CTC system is involved in multiple integrative functions, including sensory, perceptual 
and attentional processing (Pinault, 2004; Van Essen, 2005; Wolff et al., 2021). Sensory-
to-perceptual responses of the CTC system result from dynamic interactions between TC 
(bottom-up) and CT (top-down) processing (Alitto & Usrey, 2003; Briggs & Usrey, 2008; 
Homma et al., 2017). Both the TC and CT pathways are glutamatergic. In thalamic neurons, 
the response pattern depends on the brain state (Castro-Alamancos, 2002; Urbain et 
al., 2015) and on thalamic GABAergic inhibition that is mediated principally by the external 
source thalamic reticular nucleus (TRN) (Pinault, 2004). Under the present experimental 
sleep conditions, almost all the thalamic glutamatergic and GABAergic neurons are 
hyperpolarised and fire in the burst mode (Mahdavi et al., 2020; Pinault et al., 2006), and 
the arousal promoting effect of ketamine switches the spontaneous firing pattern of both 
the glutamatergic TC and the GABAergic TRN neurons from the burst to the tonic mode 
(Mahdavi et al., 2020). 

The post-inhibitory rebound excitation is a cellular intrinsic property that occurs during 
physiological and pathological brain oscillations or following the activation of prethalamic 
(e.g., sensory) or cortical inputs. For instance, during slow-wave sleep, a long-lasting 
hyperpolarisation gives rise, in the thalamic relay and reticular neurons, to a rebound 
excitation caused by a low-threshold calcium-dependent potential, de-inactivated by 
membrane hyperpolarisation, and can be topped by a high-frequency burst of action 
potentials (Deschenes et al., 1984; Grenier et al., 1998; Jahnsen & Llinas, 1984; 
Llinas, 1988; Urbain et al., 2019). Such a post-inhibitory rebound excitation is also 
recorded under anaesthesia in TC neurons following the activation of prethalamic or 
cortical inputs (Deschenes et al., 1984; Grenier et al., 1998). There is evidence that TC 
bursting may serve as a ‘wake-up call’ in the initiation of perceptual/attentional processes 
(Sherman, 2001; Swadlow & Gusev, 2001). Two potential mechanisms for the effect of the 
NMDA receptor antagonist ketamine could be responsible alone or in combination: 1) 
reduced TRN-mediated inhibition (see discussion by Mahdavi et al., 2020), and 2) a 
reduction of the hyperpolarisation-activated cationic current Ih (Kim & Johnston, 2020). 
Of course, ketamine also acts on multiple cortical and subcortical structures, and there is 
increasing evidence that it suppresses the activity of GABAergic interneurons leading to 
disinhibition of glutamatergic neurons (Ali et al., 2020; Homayoun & Moghaddam, 2007). 
Although ketamine acts at many other receptors, including dopaminergic, serotoninergic, 
opioid and GABAergic receptors (Kapur & Seeman, 2002; Lewis et al., 2008; Sarton et 
al., 2001; Seeman & Lasaga, 2005), it is generally believed that most of its effects are 
accounted for by NMDA receptor antagonism. 

  

Ketamine-induced increase in randomness or complexity in a signal 

Our MSE results show that the specific thalamic nucleus (VPm) and related layer 6 
somatosensory cortex have increased sample entropy (i.e. complexity) following ketamine 
administration, which is consistent with previous studies on human patients with 
schizophrenia (Takahashi et al., 2010). Of particular interest is that both layer 6 and the 
VPm showed increased MSE in the lower time scale factors, meaning those with the most 
detailed temporal information (i.e., with more high-frequency information incorporated 
in the complexity measure at these time scales). Interestingly, there is a tendency for 
younger, medication-free patients with higher positive symptoms to display higher levels 
of complexity in EEG (Fernandez et al., 2013), a finding that matches our interpretation of 
ketamine administration to model a psychotic-like state. It has further been suggested 
that these increases in neural complexity measures are evidence for the ‘disconnection 
hypothesis’ (Friston et al., 2016) whereby disruption (aberrant or reduced) in connectivity 
increases EEG signal complexity (Takahashi et al., 2010). In healthy humans submitted to 
a cognitive-visual task, ketamine increases the power of broadband gamma oscillations 
and disrupts feedforward and feedback signalling, leading to hypo- and hyper-connectivity 
in CTC networks (Grent-'t-Jong et al., 2018). 

Increased entropy may also be interpreted as an increase in ‘randomness’ in a signal (with 
a truly random signal having maximal entropy (Ahmed & Mandic, 2011). Applying such an 
interpretation to our present results would reflect ketamine administration adding ‘noise’ 
to the system increasing ongoing beta/gamma power and resulting in a more random 
signal. The increased ongoing gamma power reflects an aberrant and pathological 
increase in non-relevant beta/gamma activity that effectively attenuates sensory-related 
induced beta/gamma interfering with its sensory transmission. This decreases the overall 
beta/gamma signal-to-noise ratio in the CTC system, disconnecting these areas and 
impairing sensory perception. Accompanying this disconnection hypothesis, we also 
observed a functional disconnection of phase coherence measures in the gamma 
frequency band between layer 6 and VPm but not between PoM and layer 6 or VPm. This 
result supports the interpretation that sensory-generated gamma activity has been 
disrupted between the cortex and thalamus under the ketamine condition. Disorders in 
the intrinsic properties (amplitude, noise and complexity) and spatial dynamics 
(coherence) of gamma oscillations somehow reflect a fundamental disturbance of basic 
integrated brain network activities. 
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in CTC networks (Grent-'t-Jong et al., 2018). 

Increased entropy may also be interpreted as an increase in ‘randomness’ in a signal (with 
a truly random signal having maximal entropy (Ahmed & Mandic, 2011). Applying such an 
interpretation to our present results would reflect ketamine administration adding ‘noise’ 
to the system increasing ongoing beta/gamma power and resulting in a more random 
signal. The increased ongoing gamma power reflects an aberrant and pathological 
increase in non-relevant beta/gamma activity that effectively attenuates sensory-related 
induced beta/gamma interfering with its sensory transmission. This decreases the overall 
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frequency band between layer 6 and VPm but not between PoM and layer 6 or VPm. This 
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the full implication of the CT (feedback) and cortico-cortical (feedforward) pathways. 
However, the CTC system, which includes the TRN (Pinault, 2004), is functionally 
polyvalent in a state-dependent way as it is involved in sensory-perception processing 
(Saalmann & Kastner, 2011), wake–sleep brain oscillations (Steriade et al., 1993) and 
attention-sensory processes (Chen et al., 2015; Wimmer et al., 2015). So, it is not 
surprising that the highly distributed CTC systems play a central role in the disorders of 
sleep integrity, sensorimotor, perception and attentional processes observed in patients 
with psychotic disorders (Chen et al., 2015; Ferrarelli & Tononi, 2011; Pinault, 2011; 
Shipp, 2004; Steriade et al., 1993; Wolff et al., 2021). 

Ketamine exerts a wide range of dose-dependent effects (dissociative anaesthesia, 
sedation, psychotomimetic, antidepressant, analgesic so on). So, we should not exclude 
the analgesic effect of low-dose ketamine (Laskowski et al., 2011; Zanos et al., 2018). Pain 
involves the somatosensory CTC system among many other brain regions (amygdala, 
insula, S2, ACC and PFC). By examining the role of the auditory system in pain processing, 
it was demonstrated that the information to VPm and PoM is disrupted by the auditory 
CT pathway (Zhou et al., 2022). So, the ketamine-induced disruption of sensory 
information transfer in the CT network may be a common part of the mechanisms 
underlying the analgesic and psychotomimetic effects of ketamine. 

Conclusion and perspectives 

The present results provide anatomo-functional relevance to understanding the neural 
dynamics underlying ketamine-induced impairment of encoding processes (Hetem et 
al., 2000), perception-related (feedforward and feedback) dysconnectivity and abnormal 
amplification of gamma oscillations in human CTC systems (Anticevic et al., 2014; Driesen 
et al., 2013; Grent-'t-Jong et al., 2018; Hoflich et al., 2015; Rivolta et al., 2015). The NMDA 
receptor hypofunction-related gamma hyper-synchronies (power increases) are 
neurophysiological abnormalities that may represent a core biological feature of the 
psychotic transition. Although the interpretation of measures using complexity estimators 
(like MSE) of neural signals is not simple, in recent years there is accumulating evidence 
that increased and abnormal complexity may also be a hallmark of psychosis (Fernandez 
et al., 2013; Ibanez-Molina et al., 2018; Yang et al., 2015). Abnormal and diffuse 
amplification of spontaneously-occurring broadband gamma oscillations in neural 
networks (gamma noise) associated with reductions in sensory-related, evoked and 
induced gamma-band responses (gamma signal) are potentially predictive translational 
biomarkers of psychosis transition (Anderson et al., 2017; Gandal et al., 2012; Hakami et 
al., 2009; Kulikova et al., 2012). The sensory-evoked potential is also an appropriate index 

  

The late (200–700 ms post-stimulus) sensory-induced beta/gamma oscillations were, on 
average, measurable in the sedated rat. These late response activities would be involved 
in the perceptual process (Funayama et al., 2015). In sedated rats, the level of perception 
and the underlying neural activities are expected to be attenuated because of the 
presence of rhythmic GABAergic-mediated inhibitions at least in the delta- and sigma-
frequency bands (slow-wave sleep with spindles). Ketamine, by reducing the slow waves, 
spindles and burst activities, depolarises and switches the burst firing pattern to the 
irregular tonic mode (Mahdavi et al., 2020). This means that ketamine brings a persistent 
depolarising pressure to the membrane potential (persistent UP state) of the 
glutamatergic and GABAergic neurons, which is expected to disrupt the tonic firing pattern 
associated with a sensory-perceptual process. Moreover, it was demonstrated that, in the 
rat, NMDA receptor antagonism disrupts synchronisation of action potential firing in the 
prefrontal cortex, which would lead to a disruption of the transfer of information 
processing dependent on the timing of action potentials (Molina et al., 2014). 

Limitations of the study 

The experiments were performed on the pentobarbital-sedated rat (non-REM sleep 
model). The present findings do not allow drawing definitive conclusions. However, the 
combined two models, one for the brain state (sleep model) and one for the ketamine 
psychosis-relevant challenge (Mahdavi et al., 2020), provide interesting tools to 
conceptually and mechanistically advance our understanding of the neurobiology of 
psychotic disorders. The major requirement of the present study was to have the 
equivalent of a stationary stage II non-REM sleep, during which we could perform 
repeated measures. Furthermore, under the present experimental conditions, a single 
systemic administration of ketamine at a psychotomimetic dose (2.5 mg/kg, estimated 
from a study conducted in free-behaving rats (Pinault, 2008) induces most of the 
oscillopathies (especially basal gamma hyperactivity and delta/spindle hypoactivity) 
recorded in patients having psychotic disorders (Mahdavi et al., 2020). One advantage of 
the pentobarbital-induced sedation was its relative stability over time, allowing repeated 
measures. 

Under the present experimental conditions, the degree of perception and attention would 
have been weakened because the pentobarbital induces a slow-wave sleep with spindle-
like activities by increasing the GABAergic neurotransmission (Maldifassi et al., 2016). In 
short, the experimental conditions, which promote cortical slow waves (Knyazev, 2012; 
Murphy et al., 2009; Pinault et al., 2006; Urbain et al., 2019), would have prevented or 
attenuated the full corticalisation of sensory-perception processing and, subsequently, 
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Supplementary 

 

Figure S1: Ketamine does not change the multi-scale entropy in the beta band between the cortex and 
thalamus. Comparison of the multi-scales entropies of saline (blue) and ketamine (red) conditions at all 
recording sites in the beta band during the 200-700 ms post-stimulus period. Layer 6 and VPm show a significant 
increase in entropy. Each scale point is the average entropy (± SEM, from 40 values, 10 per rats, 4 rats). The 
statistical test does not reveal any significant difference between the saline and ketamine conditions (p > 0.05, 
paired t-test)  

  

to evaluate the expression of the plasticity of neural circuits (Kulikova et al., 2012). 
Because of their spatio-temporal structure and stereotyped pattern, sensory-evoked and 
induced gamma oscillations represent potential reliable and suitable variables (Hong et 
al., 2010; Leicht et al., 2016; Reilly et al., 2018; Spencer et al., 2008; Tada et al., 2016) for 
the development of innovative therapies preventing the psychotic transition. 
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Introduction  
 
Experience-dependent plasticity in the adult visual system is largely thought of as a 
cortical process (Gilbert et al., 2009; Gilbert and Wiesel, 1992).  However, several recent 
studies have demonstrated that plasticity also occurs in the adult dorsal lateral geniculate 
nucleus (dLGN) of the thalamus of human subjects during perceptual learning (Yu et al., 
2016) and mice upon monocular deprivation (MD) (Huh et al., 2020; Jaepel et al., 2017). 
How plasticity in adult dLGN is regulated and whether plasticity in dLGN and V1 influence 
each other has barely been studied.   
 
In this study, we addressed these questions using ocular dominance (OD) plasticity in mice 
as a model.  OD is the property that neurons preferentially respond to visual stimuli 
presented to one eye versus the other (Wiesel and Hubel, 1963a). Visual experience 
affects OD and a period of MD results in an OD shift in V1 neurons due to weakened 
responses to the deprived eye and strengthened responses to the non-deprived eye 
(Hensch and Stryker, 1996; Wiesel and Hubel, 1963a). OD plasticity is most prominent 
during a critical period of development (Gordon and Stryker, 1996; Wiesel and Hubel, 
1963a) but can also be induced in young adult mice (Heimel et al., 2007; Hofer et al., 2006; 
Lehmann and Löwel, 2008; Sato and Stryker, 2008; Sawtell et al., 2003). This requires a 
longer period of deprivation, however, and the shift is smaller and less persistent and is 
mediated predominantly by strengthening of responses to the non-deprived eye (Frenkel 
and Bear, 2004; Heimel et al., 2007; Hofer et al., 2006; Lehmann and Löwel, 2008; Sato 
and Stryker, 2008).  
 
Previously, we demonstrated that during the critical period, extensive OD plasticity can 
be induced in dLGN and that this requires synaptic inhibition in the thalamus (Sommeijer 
et al., 2017). Multielectrode recordings revealed that OD plasticity in dLGN is strongly 
reduced in mice in which thalamic synaptic inhibition is inactivated by deleting the gene 
encoding the GABA receptor alpha1 subunit (Gabra1) selectively in the dorsal thalamus 
(Gabra1fl-hom x Olig3-cre+ mice, hereafter referred to as “KO mice”). Interestingly, OD 
plasticity induced by long-term monocular deprivation (MD) is also reduced in V1 of these 
mice due to the absence of ipsilateral eye response strengthening (Sommeijer et al., 2017), 
suggesting that during the critical period, thalamic plasticity contributes to plasticity in V1. 
Here, we investigated how dLGN and V1 influence each other during OD plasticity in 
adulthood. We find that in adult mice lacking thalamic synaptic inhibition, OD plasticity is 
absent in both dLGN and V1. Silencing V1 of adult wild-type (WT) mice does not affect the 
OD shift in dLGN, showing that it does not depend on feedback from V1. In contrast, we 

  

Summary  
 
Experience-dependent plasticity in the adult visual system is generally thought of as a 
cortical process. However, several recent studies have shown that perceptual learning or 
monocular deprivation can also induce plasticity in the adult dorsolateral geniculate 
nucleus (dLGN) of the thalamus. How plasticity in the thalamus and cortex interact in the 
adult visual system is ill understood. To assess the influence of thalamic plasticity on 
plasticity in primary visual cortex (V1), we made use of our previous finding that during 
the critical period, ocular dominance (OD) plasticity occurs in dLGN and requires thalamic 
synaptic inhibition. Using multielectrode recordings we find that this is also true in adult 
mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult 
V1 is absent. To study the influence of V1 on thalamic plasticity we silenced V1 and show 
that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused 
by feedback from V1. We conclude that during adulthood, the thalamus plays an 
unexpectedly dominant role in experience-dependent plasticity in V1. Our findings 
highlight the importance of considering the thalamus as a potential source of plasticity in 
learning events that are typically thought of as cortical processes. 
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adult visual system is ill understood. To assess the influence of thalamic plasticity on 
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the critical period, ocular dominance (OD) plasticity occurs in dLGN and requires thalamic 
synaptic inhibition. Using multielectrode recordings we find that this is also true in adult 
mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult 
V1 is absent. To study the influence of V1 on thalamic plasticity we silenced V1 and show 
that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused 
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Results  
 
Visual responses in adult dLGN of WT and KO mice 
 
Previous work showed that during the critical period, visual responses of dLGN neurons 
in Gabra1flhom x olig3-cre+ KO mice were less sustained due to the lack of thalamic synaptic 
inhibition, while average response strengths and basic receptive field properties seemed 
surprisingly unaffected (Sommeijer et al., 2017).   
 
To assess whether this situation remained similar in adulthood, we measured visual 
responses in dLGN using a 16-channel silicon probe in anesthetized KO mice and Gabra1fl-

hom x olig3-cre- (WT) siblings. Recordings were performed in the ipsilateral projection zone 
of dLGN (Fig. 1A). Receptive field sizes and positions were determined by presenting white 
squares (5 deg) at random positions on a black background (Fig. 1B). We only included 
recordings from channels with receptive fields corresponding to the central 30o of the 
visual field. We observed no differences in receptive field sizes in KO and WT mice (Fig. 
1C). As receptive field sizes in dLGN are known to become smaller between eye opening 
and critical period onset (Tschetter et al., 2018), this observation suggests that dLGN 
develops surprisingly normally in the absence of synaptic inhibition. To investigate this 
further, we analyzed the numbers, densities and sizes of inhibitory and cholinergic 
boutons, which are also known to increase during the same developmental window 
(Bickford et al., 2010, Sommeijer et al. 2017, Sokhadze et al., 2018).  Again, in adult WT 
and KO mice we observed no differences (Suppl. Fig. 1).  

To record visual responses of dLGN neurons to the contra- or ipsilateral eye separately, 
the other eye was closed and visual stimuli (full screen, full contrast black/white reversals, 
at 3s intervals) were presented (Fig. 1B). We selected single units from non-deprived WT 
and KO mice and assessed their responses to the contra- and ipsilateral eye. Examples of 
monocular and binocular single units are shown in Figure 1D. To assess whether the 
temporal profile of visual responses differed in adult WT and KO mice, we compared the 
areas under the curve (AUC) of the peristimulus time histogram (PSTH) during different 
time bins (Fig. 1E). This revealed that in KO mice, visual responses attenuated faster than 
in wild-type siblings: responses were weaker during the second 150 ms after visual 
stimulation but a trend towards stronger responses was observed during the first 150 ms 
(P=0.095). Thus, while average response strength in KO mice was similar to that in WT 
mice, the attenuation index was  increased. These results show that like the situation 
during the critical period (Sommeijer et al., 2017), visual responses in dLGN neurons in 

  

find that during the critical period, the OD shift in dLGN is partially depends on activity in 
V1. Together, our findings show that thalamocortical interactions underlying OD plasticity 
change with age and suggest that the thalamus may be an important source of plasticity 
in adult learning events that have generally been considered cortical processes. 
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find that during the critical period, the OD shift in dLGN is partially depends on activity in 
V1. Together, our findings show that thalamocortical interactions underlying OD plasticity 
change with age and suggest that the thalamus may be an important source of plasticity 
in adult learning events that have generally been considered cortical processes. 
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Fig. 1| Visual responses of dLGN neurons in mice lacking thalamic Gabra1. A, Recording electrodes were placed 
in the ipsilateral projection zone of dLGN (see green fluorescent trace of actual electrode penetration in dLGN). 

  

adult KO and WT mice mostly differ in their temporal profile, while average response 
strengths and receptive fields sizes are hardly changed.  
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To address this question, we monocularly deprived WT and KO mice for 7 days, after 
which we recorded visual responses from single units in V1 of these mice and of normally 
sighted siblings (Fig. 3A).  Again, we only included channels with receptive fields within 
the central 30o of the visual field to ascertain we recorded from binocular V1. Like in dLGN, 
receptive field sizes did not differ between KO and WT mice and were not affected by a 
week of MD (Fig. 3B).   

 
 
Fig. 2| Reduced OD plasticity in dLGN of mice lacking thalamic synaptic inhibition. A, Illustration of the 
experiment design. In experiments, four groups of animals were used: deprived (MD) or non-deprived (NO MD) 
wild-type and knockout mice. Mice in the MD group had the eyelids of the eye contralateral to the recording 
side sutured 7 for days. B, 7 days of MD reduces the ODI in WT mice but not in KO animals (interaction of 
genotype with MD: two-way ANOVA, P=0.046, Tukey’s post-hoc test; WT NO MD vs. WT MD, P=0.040; WT NO 
MD, n=40 units, 7 mice; WT MD, n=22 units, 6 mice; KO NO MD, n=45 units, 9 mice; KO MD, n=34 units, 9 mice). 
C, In WT mice, responses to the ipsilateral eye are significantly increased after 7-d MD. Responses to the 
contralateral eye are unchanged (Mann-Whitney; contralateral, NO MD vs. MD, P=0.29; ipsilateral, NO MD vs. 
MD, P=0.032). D, In KO mice, MD causes no significant changes in responses to either the contralateral or the 
ipsilateral eye (Mann-Whitney; contralateral, NO MD vs. MD, P=0.73; ipsilateral, NO MD vs. MD, P=0.59).  

  

All receptive field centers of multi-units recorded in wild-type (WT, blue) and knockout (KO, green) mice (n=61 
units from 13 non-deprived or monocularly deprived (MD) mice and n=80 units from 18 NO MD or MD mice). 
Nose position is at 0 degrees horizontally and vertically. The black dashed lines indicate -30 degree and +30 
degree horizontal angles. B, Experimental setup to measure receptive field (RF) and single eye responses. C, RF 
sizes of multi-units in NO MD and MD (shaded area) KO and WT mice do not differ (interaction of genotype with 
MD: two-way ANOVA, P=0.07). D, Examples of dLGN neuron responses to full screen OFF-ON flash stimuli in WT 
(blue) and KO (green) mice. Colored and black lines indicate responses of contra- and ipsilateral eyes, 
respectively. Waveforms of each unit responding to the contra- or ipsilateral eye are shown in the upper right 
corner. E, Left, average responses of contralateral eye in WT (blue) and KO (green) mice. Middle, areas under 
curve (AUC) of early (0-150ms, left) and late responses (150-300ms, mid). Right, attenuation index of visual 
responses in WT and KO mice.   

 

OD plasticity in dLGN is reduced in adult mice lacking thalamic synaptic inhibition 

We then continued experiments to assess OD plasticity in the dLGN of WT and KO mice. 
We monocularly deprived adult WT and KO mice for 7 days, long enough to induce an OD 
shift in adult V1 (Frenkel and Bear, 2004; Heimel et al., 2007; Hofer et al., 2006; Lehmann 
and Löwel, 2008; Sato and Stryker, 2008), by suturing one eye closed. We recorded 
responses to the ipsi- and contralateral eye in dLGN neurons (Fig. 2A) and calculated the 
OD index (ODI)  of all units recorded in monocularly deprived and non-deprived KO and 
WT mice and averaged them to obtain an OD score (Fig. 2B). We found that after one 
week of MD, a significant OD shift occurred in dLGN of adult WT mice. This was 
predominantly caused by a significant increase in the responses to the non-deprived 
ipsilateral eye (Fig. 2C). In KO mice, no OD shift could be induced in dLGN (Fig. 2B) and no 
significant changes were observed in the responses to the ipsi- or contralateral eye (Fig, 
2D). Together, these results show that also in adulthood, OD plasticity in dLGN depends 
on thalamic synaptic inhibition.   
 

OD plasticity in adult V1 is reduced in mice lacking thalamic synaptic inhibition 

During the critical period, OD plasticity in V1 is partially deficient in KO mice. Brief MD 
induces a normal OD shift, but longer MD does not cause the OD shift to strengthen 
further (Sommeijer et al., 2017). This suggests that the critical period opens normally in 
V1 of KO mice, but that the second, homeostatic phase of the OD shift depends on 
thalamic inhibition and plasticity. Residual OD plasticity in adult V1 has various similarities 
with the second phase of OD plasticity during the critical period and also requires long 
term MD. We were therefore investigated whether OD plasticity in V1 was deficient in 
adult KO mice.  
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sizes of multi-units in NO MD and MD (shaded area) KO and WT mice do not differ (interaction of genotype with 
MD: two-way ANOVA, P=0.07). D, Examples of dLGN neuron responses to full screen OFF-ON flash stimuli in WT 
(blue) and KO (green) mice. Colored and black lines indicate responses of contra- and ipsilateral eyes, 
respectively. Waveforms of each unit responding to the contra- or ipsilateral eye are shown in the upper right 
corner. E, Left, average responses of contralateral eye in WT (blue) and KO (green) mice. Middle, areas under 
curve (AUC) of early (0-150ms, left) and late responses (150-300ms, mid). Right, attenuation index of visual 
responses in WT and KO mice.   

 

OD plasticity in dLGN is reduced in adult mice lacking thalamic synaptic inhibition 

We then continued experiments to assess OD plasticity in the dLGN of WT and KO mice. 
We monocularly deprived adult WT and KO mice for 7 days, long enough to induce an OD 
shift in adult V1 (Frenkel and Bear, 2004; Heimel et al., 2007; Hofer et al., 2006; Lehmann 
and Löwel, 2008; Sato and Stryker, 2008), by suturing one eye closed. We recorded 
responses to the ipsi- and contralateral eye in dLGN neurons (Fig. 2A) and calculated the 
OD index (ODI)  of all units recorded in monocularly deprived and non-deprived KO and 
WT mice and averaged them to obtain an OD score (Fig. 2B). We found that after one 
week of MD, a significant OD shift occurred in dLGN of adult WT mice. This was 
predominantly caused by a significant increase in the responses to the non-deprived 
ipsilateral eye (Fig. 2C). In KO mice, no OD shift could be induced in dLGN (Fig. 2B) and no 
significant changes were observed in the responses to the ipsi- or contralateral eye (Fig, 
2D). Together, these results show that also in adulthood, OD plasticity in dLGN depends 
on thalamic synaptic inhibition.   
 

OD plasticity in adult V1 is reduced in mice lacking thalamic synaptic inhibition 

During the critical period, OD plasticity in V1 is partially deficient in KO mice. Brief MD 
induces a normal OD shift, but longer MD does not cause the OD shift to strengthen 
further (Sommeijer et al., 2017). This suggests that the critical period opens normally in 
V1 of KO mice, but that the second, homeostatic phase of the OD shift depends on 
thalamic inhibition and plasticity. Residual OD plasticity in adult V1 has various similarities 
with the second phase of OD plasticity during the critical period and also requires long 
term MD. We were therefore investigated whether OD plasticity in V1 was deficient in 
adult KO mice.  
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Tukey’s post-hoc test; WT NO MD vs. WT MD, P<0.001; WT NO MD, n=71 units, 7 mice; WT MD, n=42, 6 mice; 
KO NO MD, n=63 units, 9 mice; KO MD, n=78 units, 9 mice). F, In WT mice, responses to the contralateral eye 
are significantly reduced after 7-d MD, while those to the ipsilateral eye are significant increased (Mann-Whitney; 
contralateral, NO MD vs. MD, P=0.0043; ipsilateral, NO MD vs. MD, P=0.0062). G, In KO mice, MD causes no 
significant changes in responses to either the contralateral or the ipsilateral eye (MannWhitney; contralateral, 
NO MD vs. MD, P=0.17; ipsilateral, NO MD vs. MD, P=0.66.). 

In adult KO mice, the OD shift after 7 days of MD was negligible and significantly smaller 
than in WT mice (Fig. 3G). The contra- and ipsilateral eye responses in V1 of non-deprived 
KO mice were of comparable strength as those observed in WT mice, despite the lack of 
synaptic inhibition in the thalamus. After 7 days of monocular deprivation, no significant 
strengthening of ipsilateral eye  responses or weakening of deprived eye responses 
occurred (Fig. 3F). We conclude that in adult mice, absence of synaptic inhibition in the 
thalamus reduces OD plasticity in V1.  
 
Effect of feedback from V1 to dLGN responses in the presence or absence of thalamic 
synaptic inhibition   

These results so far show that OD plasticity in dLGN affects the OD shift in V1.  OD 
plasticity in V1 may also influence the OD shift in dLGN. Apart from the retinal input dLGN 
relay cells receive, they are also strongly innervated by excitatory feedback connections 
from layer 6 cells in V1. Additionally, dLGN neurons receive bisynaptic inhibitory feedback 
from V1 via the thalamic reticular nucleus (TRN) and local interneurons (Fig. 4A). 
Depending on whether excitatory or inhibitory feedback dominates, responses of dLGN 
relay cells to the ipsi- or contralateral eye in dLGN may be strengthened or inhibited by 
V1 feedback (Denman and Contreras, 2015; Howarth et al., 2014; Jaepel et al., 2017;  
Kirchgessner et al., 2020; Olsen et al., 2012). These feedback inputs from V1 can thus 
influence the OD of relay cells in dLGN.   

To investigate how dLGN responses were influenced by V1 feedback and how synaptic 
thalamic inhibition affected this, we silenced V1 of WT and KO mice with the GABA-
receptor agonist muscimol while recording from dLGN. Muscimol injections effectively 
silenced V1 (Fig. 4A). On average, silencing V1 did not alter responses to the contra- or 
ipsilateral eye in individual units in dLGN of adult WT mice (Fig. 4B-D). In KO mice, V1 
silencing also did not significantly affect responses to the contralateral eye (Fig. 4E-G). 
Responses to the ipsilateral eye showed a trend towards weakening after silencing V1, 
but this did not reach significance (P=0.094). Thus, also in the absence of synaptic 
inhibition in the thalamus, V1 feedback has relatively little influence on dLGN responses 
to the contra- or ipsilateral eye.   
 

  

Visual responses to the contra- or ipsilateral eye were recorded in the same way as for 
dLGN, using the same visual stimuli (examples shown in Fig. 3C).  Like in dLGN, visual 
responses in V1 were more attenuated in KO mice than in WT mice (Fig. 3D). Next, we 
calculated the OD index from all single units in the four groups (Fig. 3E).  A clear OD shift 
was induced in V1 of monocularly deprived WT mice. As expected, the OD shift involved 
an increase in open, ipsilateral eye responses (Fig. 3F). We also found a significant 
decrease of deprived, contralateral eye responses (Fig. 3F). While several studies have 
provided evidence that a loss of contralateral eye responses contributes less to adult OD 
plasticity than during the critical period (Frenkel and Bear, 2004; Kalogeraki et al., 2017; 
Sato and Stryker, 2008), others have shown that it still occurs in adulthood (Rose et al., 
2016). Possibly, the OD shift and the loss of deprived eye responses are more pronounced 
in our recordings due to them being limited to the center of the visual field or the use of 
flash stimuli instead of moving gratings.  
 

 
Fig. 3| Reduced OD plasticity in adult V1 lacking thalamic OD plasticity. A, Recording electrodes are located in 
binocular V1. All receptive field centers of multi-units recorded in WT (blue) and KO (green) mice (n=112 units 
from 13 NO MD or MD mice and n=138 units from 18 NO MD or MD mice). Nose position is at 0 degrees 
horizontally and vertically. The black dashed lines indicate -30 degree and +30 degree horizontal angles. B, RF 
sizes of units in KO and KO mice do not differ (interaction of genotype with MD: two-way ANOVA, P=0.07). C, 
Two examples of single unit responses in V1 of a WT (blue) and KO (green) mouse  to the contra- and ipsilateral 
eyes to ON and OFF visual stimuli. Each stimulus lasted 3s. Colored and black lines indicate contra- and ipsilateral 
eye responses, respectively. D, Attenuation index of contralateral eye responses in V1 of WT and KO mice. E, 7 
days of MD reduces the ODI in WT but not KO mice (interaction of genotype with MD: two-way ANOVA, P<0.001, 
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Tukey’s post-hoc test; WT NO MD vs. WT MD, P<0.001; WT NO MD, n=71 units, 7 mice; WT MD, n=42, 6 mice; 
KO NO MD, n=63 units, 9 mice; KO MD, n=78 units, 9 mice). F, In WT mice, responses to the contralateral eye 
are significantly reduced after 7-d MD, while those to the ipsilateral eye are significant increased (Mann-Whitney; 
contralateral, NO MD vs. MD, P=0.0043; ipsilateral, NO MD vs. MD, P=0.0062). G, In KO mice, MD causes no 
significant changes in responses to either the contralateral or the ipsilateral eye (MannWhitney; contralateral, 
NO MD vs. MD, P=0.17; ipsilateral, NO MD vs. MD, P=0.66.). 

In adult KO mice, the OD shift after 7 days of MD was negligible and significantly smaller 
than in WT mice (Fig. 3G). The contra- and ipsilateral eye responses in V1 of non-deprived 
KO mice were of comparable strength as those observed in WT mice, despite the lack of 
synaptic inhibition in the thalamus. After 7 days of monocular deprivation, no significant 
strengthening of ipsilateral eye  responses or weakening of deprived eye responses 
occurred (Fig. 3F). We conclude that in adult mice, absence of synaptic inhibition in the 
thalamus reduces OD plasticity in V1.  
 
Effect of feedback from V1 to dLGN responses in the presence or absence of thalamic 
synaptic inhibition   

These results so far show that OD plasticity in dLGN affects the OD shift in V1.  OD 
plasticity in V1 may also influence the OD shift in dLGN. Apart from the retinal input dLGN 
relay cells receive, they are also strongly innervated by excitatory feedback connections 
from layer 6 cells in V1. Additionally, dLGN neurons receive bisynaptic inhibitory feedback 
from V1 via the thalamic reticular nucleus (TRN) and local interneurons (Fig. 4A). 
Depending on whether excitatory or inhibitory feedback dominates, responses of dLGN 
relay cells to the ipsi- or contralateral eye in dLGN may be strengthened or inhibited by 
V1 feedback (Denman and Contreras, 2015; Howarth et al., 2014; Jaepel et al., 2017;  
Kirchgessner et al., 2020; Olsen et al., 2012). These feedback inputs from V1 can thus 
influence the OD of relay cells in dLGN.   

To investigate how dLGN responses were influenced by V1 feedback and how synaptic 
thalamic inhibition affected this, we silenced V1 of WT and KO mice with the GABA-
receptor agonist muscimol while recording from dLGN. Muscimol injections effectively 
silenced V1 (Fig. 4A). On average, silencing V1 did not alter responses to the contra- or 
ipsilateral eye in individual units in dLGN of adult WT mice (Fig. 4B-D). In KO mice, V1 
silencing also did not significantly affect responses to the contralateral eye (Fig. 4E-G). 
Responses to the ipsilateral eye showed a trend towards weakening after silencing V1, 
but this did not reach significance (P=0.094). Thus, also in the absence of synaptic 
inhibition in the thalamus, V1 feedback has relatively little influence on dLGN responses 
to the contra- or ipsilateral eye.   
 

  

Visual responses to the contra- or ipsilateral eye were recorded in the same way as for 
dLGN, using the same visual stimuli (examples shown in Fig. 3C).  Like in dLGN, visual 
responses in V1 were more attenuated in KO mice than in WT mice (Fig. 3D). Next, we 
calculated the OD index from all single units in the four groups (Fig. 3E).  A clear OD shift 
was induced in V1 of monocularly deprived WT mice. As expected, the OD shift involved 
an increase in open, ipsilateral eye responses (Fig. 3F). We also found a significant 
decrease of deprived, contralateral eye responses (Fig. 3F). While several studies have 
provided evidence that a loss of contralateral eye responses contributes less to adult OD 
plasticity than during the critical period (Frenkel and Bear, 2004; Kalogeraki et al., 2017; 
Sato and Stryker, 2008), others have shown that it still occurs in adulthood (Rose et al., 
2016). Possibly, the OD shift and the loss of deprived eye responses are more pronounced 
in our recordings due to them being limited to the center of the visual field or the use of 
flash stimuli instead of moving gratings.  
 

 
Fig. 3| Reduced OD plasticity in adult V1 lacking thalamic OD plasticity. A, Recording electrodes are located in 
binocular V1. All receptive field centers of multi-units recorded in WT (blue) and KO (green) mice (n=112 units 
from 13 NO MD or MD mice and n=138 units from 18 NO MD or MD mice). Nose position is at 0 degrees 
horizontally and vertically. The black dashed lines indicate -30 degree and +30 degree horizontal angles. B, RF 
sizes of units in KO and KO mice do not differ (interaction of genotype with MD: two-way ANOVA, P=0.07). C, 
Two examples of single unit responses in V1 of a WT (blue) and KO (green) mouse  to the contra- and ipsilateral 
eyes to ON and OFF visual stimuli. Each stimulus lasted 3s. Colored and black lines indicate contra- and ipsilateral 
eye responses, respectively. D, Attenuation index of contralateral eye responses in V1 of WT and KO mice. E, 7 
days of MD reduces the ODI in WT but not KO mice (interaction of genotype with MD: two-way ANOVA, P<0.001, 
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Fig. 4| Effect of feedback from V1 to dLGN responses. A, Left, illustration of corticothalamic-thalamocortical 
feedback network. dLGN is innervated by V1 and receives glutamatergic feedback. All these projections send 
excitatory colaterals to the thalamic reticular nucleus (TRN) which sends inhibitory inputs to dLGN. By muscimol 
injection in V1, corticothalamic projections are silenced. Right, V1 is effectively silenced by muscimol injection 
(Wilcoxon signed rank, P<0.001, n=31 mice). B, Examples of dLGN responses before and after muscimol injection 

  

Feedback from V1 does not affect the OD shift in adult dLGN  
 
Finally, we investigated whether feedback from V1 influenced the OD shift in dLGN of 
adult WT and KO mice. In non-deprived mice, the OD index did not change after silencing 
V1 of WT mice (Fig. 5A), as expected considering that contra- and ipsilateral eye response 
strengths were not affected by V1 feedback (Fig. 4C, D). Similarly, the OD index in non-
deprived KO mice did not change upon silencing V1 (Fig. 5B), which was also expected 
based on the small changes in contra- and lateral eye responses that we observed (Fig. 
4F, G).  
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injection in V1, corticothalamic projections are silenced. Right, V1 is effectively silenced by muscimol injection 
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Feedback from V1 does not affect the OD shift in adult dLGN  
 
Finally, we investigated whether feedback from V1 influenced the OD shift in dLGN of 
adult WT and KO mice. In non-deprived mice, the OD index did not change after silencing 
V1 of WT mice (Fig. 5A), as expected considering that contra- and ipsilateral eye response 
strengths were not affected by V1 feedback (Fig. 4C, D). Similarly, the OD index in non-
deprived KO mice did not change upon silencing V1 (Fig. 5B), which was also expected 
based on the small changes in contra- and lateral eye responses that we observed (Fig. 
4F, G).  
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Fig. 5| The OD shift in dlGN is independent from V1 feedback in adult mice but not in critical period mice. A  

  

in V1 of non-deprived WT mice.  Waveforms of each unit are shown in upper right corner. Left and right panels 
correspond to contralateral and ipsilateral eye responses respectively. Dark and light lines represent responses 
before and after muscimol injection respectively. C & D, Silencing V1 feedback has no significant effect on 
contralateral (C) or ipsilateral (D) responses in WT mice (Wilcoxon signed rank; contralateral, WT NO MD vs. WT 
NO MD with muscimol, P=0.62; ipsilateral, WT NO MD vs. WT NO MD with muscimol, P=0.94, n=40 units, 7 mice). 
E, Examples of dLGN responses before and after muscimol injection in V1 of non-deprived KO mice. Waveforms 
of each unit are shown in upper right corner. Left and right panels correspond to contralateral and ipsilateral 
eye responses respectively. Dark and light lines represent responses before and after muscimol injection 
respectively. F & G, There is no significant effect of V1 silencing on contralateral (F) or ipsilateral (G) eye 
responses in KO mice, but a trend towards decreased ipsilateral eye responses is present (Wilcoxon signed rank; 
contralateral, KO NO MD vs. KO NO MD with muscimol, P=0.19; ipsilateral, KO NO MD vs. KO NO MD with 
muscimol, P=0.059, n=45 units, 9 mice).  

Despite the considerable OD shift we observed in V1 of adult WT mice, silencing V1 did 
not affect the OD measured in dLGN (Fig. 5C). Also, average responses to the two eyes 
were not altered in the absence of cortical feedback (Fig. 5D, E). This confirms that the 
OD shift in adult dLGN is not inherited from V1 (Jaepel et al., 2017) and supports the idea 
that dLGN plasticity involves the plasticity of retinogeniculate afferents.  Interestingly, 
when we repeated this experiment in (C57Bl/6JRj) WT mice during the critical period, we 
found that silencing V1 also did not affect ipsi- or contralateral eye responses in non-
deprived mice (Suppl. Fig. 2A, B), but selectively reduced ipsilateral eye responses in 
monocularly deprived mice (Fig. 5G-H). Consequently, silencing V1 significantly reduced 
the OD shift in these animals (Fig 5I). Thus, during the critical period, corticothalamic 
connections strengthen the OD shift in dLGN, while they do not in adulthood.  
 
In monocularly deprived adult KO mice (Fig. 5I-K), silencing V1 did not affect responses to 
the contralateral eye, but significantly reduced those to the ipsilateral eye (Fig.5J, K), 
similarly to what we observed in WT mice during the critical period. However, despite this 
effect of V1 silencing, the average ODI in monocularly deprived KO mice was not 
significantly altered by it (Fig. 5I). We conclude that feedback from V1 does not affect OD 
in the dLGN of adult mice, independently of whether they are monocularly deprived or 
lack synaptic inhibition in the thalamus. During the critical period, however, V1 silencing 
does reduce the OD shift observed in dLGN.   
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in V1 of non-deprived WT mice.  Waveforms of each unit are shown in upper right corner. Left and right panels 
correspond to contralateral and ipsilateral eye responses respectively. Dark and light lines represent responses 
before and after muscimol injection respectively. C & D, Silencing V1 feedback has no significant effect on 
contralateral (C) or ipsilateral (D) responses in WT mice (Wilcoxon signed rank; contralateral, WT NO MD vs. WT 
NO MD with muscimol, P=0.62; ipsilateral, WT NO MD vs. WT NO MD with muscimol, P=0.94, n=40 units, 7 mice). 
E, Examples of dLGN responses before and after muscimol injection in V1 of non-deprived KO mice. Waveforms 
of each unit are shown in upper right corner. Left and right panels correspond to contralateral and ipsilateral 
eye responses respectively. Dark and light lines represent responses before and after muscimol injection 
respectively. F & G, There is no significant effect of V1 silencing on contralateral (F) or ipsilateral (G) eye 
responses in KO mice, but a trend towards decreased ipsilateral eye responses is present (Wilcoxon signed rank; 
contralateral, KO NO MD vs. KO NO MD with muscimol, P=0.19; ipsilateral, KO NO MD vs. KO NO MD with 
muscimol, P=0.059, n=45 units, 9 mice).  

Despite the considerable OD shift we observed in V1 of adult WT mice, silencing V1 did 
not affect the OD measured in dLGN (Fig. 5C). Also, average responses to the two eyes 
were not altered in the absence of cortical feedback (Fig. 5D, E). This confirms that the 
OD shift in adult dLGN is not inherited from V1 (Jaepel et al., 2017) and supports the idea 
that dLGN plasticity involves the plasticity of retinogeniculate afferents.  Interestingly, 
when we repeated this experiment in (C57Bl/6JRj) WT mice during the critical period, we 
found that silencing V1 also did not affect ipsi- or contralateral eye responses in non-
deprived mice (Suppl. Fig. 2A, B), but selectively reduced ipsilateral eye responses in 
monocularly deprived mice (Fig. 5G-H). Consequently, silencing V1 significantly reduced 
the OD shift in these animals (Fig 5I). Thus, during the critical period, corticothalamic 
connections strengthen the OD shift in dLGN, while they do not in adulthood.  
 
In monocularly deprived adult KO mice (Fig. 5I-K), silencing V1 did not affect responses to 
the contralateral eye, but significantly reduced those to the ipsilateral eye (Fig.5J, K), 
similarly to what we observed in WT mice during the critical period. However, despite this 
effect of V1 silencing, the average ODI in monocularly deprived KO mice was not 
significantly altered by it (Fig. 5I). We conclude that feedback from V1 does not affect OD 
in the dLGN of adult mice, independently of whether they are monocularly deprived or 
lack synaptic inhibition in the thalamus. During the critical period, however, V1 silencing 
does reduce the OD shift observed in dLGN.   



Chapter 4

136   

strongly to OD plasticity in V1, it is interesting to speculate that OD plasticity in dLGN also 
involves the unsilencing and strengthening of these synapses (Huang et al., 2015; Yusifov 
et al., 2021). Indeed, the OD shift in adult mice involves many contralateral eye-selective 
neurons to become binocular (Jaepel et al., 2017).  
 
The plasticity deficits we observe in KO mice during adulthood are similar to what we 
observed during the critical period. At first glance, this phenotype is reminiscent of that 
in heterozygous GAD65-deficient mice, in which synaptic GABA release is diminished and 
OD plasticity is reduced during the critical period and in adulthood. It is believed that in 
these mice, development of V1 is halted in a pre-critical period-like stage. This is not the 
case in mice lacking thalamic synaptic inhibition, however, as in these mice the critical 
period in V1 opens normally. In contrast to GAD65deficient mice, brief MD during the 
critical period results in a normal OD shift in KO mice. Whether reduced plasticity in dLGN 
of adult KO mice is caused by halted thalamic development remains unclear.  So far, we 
did not find evidence to support this. Receptive fields of dLGN relay cells become smaller 
between eye opening and critical period onset, and in WT and KO mice, receptive field 
sizes are the same. Furthermore, there is a substantial increase in inhibitory and 
cholinergic boutons during this developmental stage, but again, WT and KO mice are not 
different in this respect. The primary difference between WT and KO mice in dLGN thus 
appears to be the lack of synaptic inhibition. Together, our results indicate that thalamic 
inhibition and plasticity play a crucial role in OD plasticity in adult V1, regardless of the 
developmental contribution to the plasticity deficit in dLGN.  
 

The study by Bauer et al (Bauer et al., 2021) also showed that binocularity in mouse dLGN 
may be lower than suggested by the current study and earlier work (Howarth et al., 2014; 
Sommeijer et al., 2017) that involved multi-electrode recordings in dLGN. Although this 
difference may be caused by technical limitations of single unit recordings or calcium 
imaging, we think it is most likely explained by the fact that studies employing 
electrophysiological recording in dLGN targeted the frontal ipsilateral projection zone of 
dLGN, which is its most binocular region (Bauer et al., 2021). Recording in this region is 
essential when studying OD plasticity or binocularity in dLGN, but will strongly bias 
towards binocularly-responding relay cells. When using two-photon imaging of dLGN 
boutons in V1 (Bauer et al., 2021; Huh et al., 2020; Jaepel et al., 2017), neurons from other 
parts of dLGN including the monocular shell- and caudal regions are also sampled.   
 
It is unknown whether adult thalamic OD plasticity also occurs in species in which retinal 
inputs from the two eyes are organized in more strictly separated layers in dLGN, such as 

  

& B, Muscimol injection in V1 has no effect on the ODI in dLGN of adult non-deprived WT (A) and KO (B) mice  
(Wilcoxon signed rank; WT NO MD vs. WT NO MD with muscimol, P=0.86, n=40 units, 7 mice; KO NO MD vs. KO 
NO MD with muscimol, P=0.45, 45 units, 9 mice). C, D & E, Muscimol injection in V1 has no significant effect on 
the ODI (C), or contralateral (D) or ipsilateral (E) eye responses in dLGN of monocularly deprived WT mice 
(Wilcoxon signed rank; ODI, WT MD vs. WT MD with muscimol, P=0.89; contralateral, WT MD vs. WT MD with 
muscimol, P=0.21; ipsilateral, WT MD vs. WT MD with muscimol, P=0.10, n=22 units, 6 mice). F, G & H, During 
the critical period, V1 silencing has a significant influence on the ODI (F) and ipsilateral eye responses (H) in 
dLGN of monocularly deprived WT mice, but not on contralateral eye responses in these mice (G) (Wilcoxon 
signed rank; ODI, WT MD vs. WT MD with muscimol, P<0.001; contralateral, WT MD vs. WT MD with muscimol, 
P=0.46; ipsilateral, WT MD vs. WT MD with muscimol, P=0.003, n=41 units, 10 mice). I, J & K, Muscimol injection 
in V1 has no significant influence on the ODI and contralateral eye responses in KO MD mice, but significantly 
modulates dLGN ipsilateral eye responses (Wilcoxon signed rank; ODI, KO MD vs. KO MD with muscimol, P=0.13; 
contralateral, KO MD vs. KO MD with muscimol, P=0.97; ipsilateral, KO MD vs. KO MD with muscimol, P=0.004, 
n=34 units, 9 mice).   

 
Discussion  
 
In summary, we show that OD plasticity in dLGN is reduced in adult mice lacking thalamic 
synaptic inhibition. In these mice, OD plasticity in V1 is absent, suggesting that it requires 
thalamic plasticity. We do not find evidence that feedback from V1 affects the thalamic 
OD shift in adult mice. This differs from the situation during the critical period, in which 
the OD shift in dLGN is partially inherited from V1.   
 
How does inactivation of synaptic inhibition and OD plasticity in dLGN interfere with the 
OD shift in V1? It seems likely that MD-induced changes in dLGN relay cell responses to 
inputs from the two eyes will directly alter binocular responses in V1, and that reduced 
plasticity in dLGN will thus diminish the OD shift in V1. Additionally, the strengthening of 
responses to the non-deprived eye in dLGN neurons may provide their axons with a 
competitive advantage during OD plasticity in V1, further enhancing the OD shift in V1. 
We cannot rule out the possibility, however, that OD plasticity in V1 is also affected by 
the more attenuated nature of dLGN responses that we observe in mice lacking thalamic 
synaptic inhibition (Sommeijer et al., 2017), for example by altering spike-timing 
dependent plasticity in V1.   
 
The main substrate of plasticity in adult dLGN appears to be the retinogeniculate synapse, 
as silencing V1, the other main source of visual input to dLGN, does not affect the OD shift. 
Recent work has shown that while many relay cells in dLGN receive binocular inputs 
(Rompani et al., 2017), synapses from the non-dominant eye are often silent and 
dominated by NMDA receptors (Bauer et al., 2021). Because silent synapses contribute 
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strongly to OD plasticity in V1, it is interesting to speculate that OD plasticity in dLGN also 
involves the unsilencing and strengthening of these synapses (Huang et al., 2015; Yusifov 
et al., 2021). Indeed, the OD shift in adult mice involves many contralateral eye-selective 
neurons to become binocular (Jaepel et al., 2017).  
 
The plasticity deficits we observe in KO mice during adulthood are similar to what we 
observed during the critical period. At first glance, this phenotype is reminiscent of that 
in heterozygous GAD65-deficient mice, in which synaptic GABA release is diminished and 
OD plasticity is reduced during the critical period and in adulthood. It is believed that in 
these mice, development of V1 is halted in a pre-critical period-like stage. This is not the 
case in mice lacking thalamic synaptic inhibition, however, as in these mice the critical 
period in V1 opens normally. In contrast to GAD65deficient mice, brief MD during the 
critical period results in a normal OD shift in KO mice. Whether reduced plasticity in dLGN 
of adult KO mice is caused by halted thalamic development remains unclear.  So far, we 
did not find evidence to support this. Receptive fields of dLGN relay cells become smaller 
between eye opening and critical period onset, and in WT and KO mice, receptive field 
sizes are the same. Furthermore, there is a substantial increase in inhibitory and 
cholinergic boutons during this developmental stage, but again, WT and KO mice are not 
different in this respect. The primary difference between WT and KO mice in dLGN thus 
appears to be the lack of synaptic inhibition. Together, our results indicate that thalamic 
inhibition and plasticity play a crucial role in OD plasticity in adult V1, regardless of the 
developmental contribution to the plasticity deficit in dLGN.  
 

The study by Bauer et al (Bauer et al., 2021) also showed that binocularity in mouse dLGN 
may be lower than suggested by the current study and earlier work (Howarth et al., 2014; 
Sommeijer et al., 2017) that involved multi-electrode recordings in dLGN. Although this 
difference may be caused by technical limitations of single unit recordings or calcium 
imaging, we think it is most likely explained by the fact that studies employing 
electrophysiological recording in dLGN targeted the frontal ipsilateral projection zone of 
dLGN, which is its most binocular region (Bauer et al., 2021). Recording in this region is 
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It is unknown whether adult thalamic OD plasticity also occurs in species in which retinal 
inputs from the two eyes are organized in more strictly separated layers in dLGN, such as 

  

& B, Muscimol injection in V1 has no effect on the ODI in dLGN of adult non-deprived WT (A) and KO (B) mice  
(Wilcoxon signed rank; WT NO MD vs. WT NO MD with muscimol, P=0.86, n=40 units, 7 mice; KO NO MD vs. KO 
NO MD with muscimol, P=0.45, 45 units, 9 mice). C, D & E, Muscimol injection in V1 has no significant effect on 
the ODI (C), or contralateral (D) or ipsilateral (E) eye responses in dLGN of monocularly deprived WT mice 
(Wilcoxon signed rank; ODI, WT MD vs. WT MD with muscimol, P=0.89; contralateral, WT MD vs. WT MD with 
muscimol, P=0.21; ipsilateral, WT MD vs. WT MD with muscimol, P=0.10, n=22 units, 6 mice). F, G & H, During 
the critical period, V1 silencing has a significant influence on the ODI (F) and ipsilateral eye responses (H) in 
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contralateral, KO MD vs. KO MD with muscimol, P=0.97; ipsilateral, KO MD vs. KO MD with muscimol, P=0.004, 
n=34 units, 9 mice).   

 
Discussion  
 
In summary, we show that OD plasticity in dLGN is reduced in adult mice lacking thalamic 
synaptic inhibition. In these mice, OD plasticity in V1 is absent, suggesting that it requires 
thalamic plasticity. We do not find evidence that feedback from V1 affects the thalamic 
OD shift in adult mice. This differs from the situation during the critical period, in which 
the OD shift in dLGN is partially inherited from V1.   
 
How does inactivation of synaptic inhibition and OD plasticity in dLGN interfere with the 
OD shift in V1? It seems likely that MD-induced changes in dLGN relay cell responses to 
inputs from the two eyes will directly alter binocular responses in V1, and that reduced 
plasticity in dLGN will thus diminish the OD shift in V1. Additionally, the strengthening of 
responses to the non-deprived eye in dLGN neurons may provide their axons with a 
competitive advantage during OD plasticity in V1, further enhancing the OD shift in V1. 
We cannot rule out the possibility, however, that OD plasticity in V1 is also affected by 
the more attenuated nature of dLGN responses that we observe in mice lacking thalamic 
synaptic inhibition (Sommeijer et al., 2017), for example by altering spike-timing 
dependent plasticity in V1.   
 
The main substrate of plasticity in adult dLGN appears to be the retinogeniculate synapse, 
as silencing V1, the other main source of visual input to dLGN, does not affect the OD shift. 
Recent work has shown that while many relay cells in dLGN receive binocular inputs 
(Rompani et al., 2017), synapses from the non-dominant eye are often silent and 
dominated by NMDA receptors (Bauer et al., 2021). Because silent synapses contribute 
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silencing is due to balanced excitatory and inhibitory feedback, one would expect that in 
KO mice lacking thalamic synaptic inhibition, silencing V1 would cause a reduction of 
dLGN responses. However, such an effect in KO mice was only observed in dLGN 
responses to the ipsilateral eye, and reached significance only in monocularly deprived 
mice. This suggests that V1 feedback affects dLGN responses to the ipsilateral eye more 
strongly than those to the contralateral eye, possibly through a pathway involving callosal 
inputs to V1 that are fed back to dLGN (Cerri et al., 2010). In addition, extrasynaptic GABA 
(A) and GABA (B)-mediated inhibition are likely to be intact (Leresche and Lambert, 2018) 
in KO mice and could partially balance excitatory and inhibitory feedback to dLGN.  
 
We found that during the critical period, the influence of V1 feedback on the OD shift in 
dLGN was much stronger. Possibly, inhibition in dLGN is weaker during the critical period, 
resulting in a stronger decrease of ipsilateral eye responses upon V1 silencing, similarly 
to the situation in adult KO mice. Additionally, a strong OD shift occurs in V1 during the 
critical period, adding to the strength of the cortical feedback representing the ipsilateral 
eye. During the critical period, an experiencedependent phase of retinogeniculate 
refinement takes place, probably optimizing direction-selective inputs from the retina 
(Hooks and Chen, 2020; Rompani et al., 2017; Thompson et al., 2017).  This experience-
dependent refinement, like OD plasticity in dLGN, also depends on feedback from V1 
(Thompson et al., 2017, 2016). It is thus possible that refinement of binocular inputs and 
directionselective inputs in dLGN are one and the same process.  
We conclude that dLGN retains a high level of plasticity in adulthood and has considerable 
influence on cortical plasticity. This plasticity may not be restricted to binocular responses, 
but could also be relevant for other forms of perceptual learning (Yu et al., 2016). The 
findings stress that a thalamic involvement needs to be considered in amblyopia and 
learning disabilities. Additionally, the results may help understanding brain disorders that 
are thought to involve dysfunctional thalamocortical circuits, ranging from attention 
deficit disorder (Wells et al., 2016) to schizophrenia (Benoit et al., 2022; Pinault, 2011; 
Pratt et al., 2017). Future experiments focusing on changes in thalamic responses and 
their interaction with the cortex may provide exciting new insights in how the brain learns. 
 
 
Methods  
 
Animals 
 

  

cats or primates. Studies in cats consistently found that upon MD or squint during the 
critical period, the layers responding to the affected eye were thinner (Hickey et al., 1977; 
Wiesel and Hubel, 1963b) and that the neuronal responses in these layers were slower or 
weaker (Eysel et al., 1979; Ikeda and Wright, 1976; Sestokas and Lehmkuhle, 1986; Wiesel 
and Hubel, 1963b). Also in human amblyopes it was noted that dLGN responses to the 
amblyopic eye were weaker (Hess et al., 2009). So far, studies on dLGN plasticity by 
prolonged visual deprivation in adulthood are missing, though it was noted that in human 
subjects that suffered from glaucoma, the dLGN layers representing the affected eye 
were thinner (Yücel et al., 2001). Future research will need to establish whether plasticity 
in dLGN in humans contributes to amblyopia, and whether it can be enhanced to treat 
the disorder. That enhancement of thalamic plasticity is in principle possible is shown by 
experiments in mice, demonstrating that inactivation of the nogo-66 receptor in thalamus 
allows recovery of reduced acuity in adult mice that were monocularly deprived during 
development (Stephany et al., 2018).  
 
Despite extensive monosynaptic excitatory feedback and bisynaptic inhibitory feedback 
(through TRN) from V1, we found that feedback does not affect the average strength of 
response to ipsi- or contralateral eye stimulation and thus neither the measured OD shift 
in dLGN of adult mice. The absence of V1 on the OD shift in adult mice was also reported 
previously (Jaepel et al., 2017). However in that study, silencing V1 with muscimol 
reduced the imaged calcium responses in boutons of dLGN axons projecting to V1, 
suggesting that dLGN neurons became less responsive to inputs from both eyes. A 
possible explanation for this apparent discrepancy may be that muscimol also has a direct 
inhibitory effect on thalamocortical inputs (Wang et al., 2019), which may reduce calcium 
responses in synaptic boutons of dLGN neurons without actually reducing their spiking 
activity at the soma.   
 
Studies involving optogenetic stimulation of layer 6 neurons find that feedback from V1 
suppresses dLGN responses (Denman and Contreras, 2015; Kirchgessner et al., 2020; 
Olsen et al., 2012), though this differs per cell and changes with stimulus strength and 
frequency (Kirchgessner et al., 2020). When V1 feedback is silenced, however, the 
average strength of dLGN responses is not reduced in most studies (Denman and 
Contreras, 2015; Howarth et al., 2014; Kirchgessner et al., 2020). This suggests that broad 
optogenetic stimulation of layer 6 predominantly recruits inhibitory feedback, while 
visual stimulation provides either more balanced or more limited excitatory and inhibitory 
feedback to dLGN. In line with these previous studies, we find that silencing V1 does not 
significantly alter dLGN responses to either eye in WT mice. If the lack of effect of V1 
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Pratt et al., 2017). Future experiments focusing on changes in thalamic responses and 
their interaction with the cortex may provide exciting new insights in how the brain learns. 
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critical period, the layers responding to the affected eye were thinner (Hickey et al., 1977; 
Wiesel and Hubel, 1963b) and that the neuronal responses in these layers were slower or 
weaker (Eysel et al., 1979; Ikeda and Wright, 1976; Sestokas and Lehmkuhle, 1986; Wiesel 
and Hubel, 1963b). Also in human amblyopes it was noted that dLGN responses to the 
amblyopic eye were weaker (Hess et al., 2009). So far, studies on dLGN plasticity by 
prolonged visual deprivation in adulthood are missing, though it was noted that in human 
subjects that suffered from glaucoma, the dLGN layers representing the affected eye 
were thinner (Yücel et al., 2001). Future research will need to establish whether plasticity 
in dLGN in humans contributes to amblyopia, and whether it can be enhanced to treat 
the disorder. That enhancement of thalamic plasticity is in principle possible is shown by 
experiments in mice, demonstrating that inactivation of the nogo-66 receptor in thalamus 
allows recovery of reduced acuity in adult mice that were monocularly deprived during 
development (Stephany et al., 2018).  
 
Despite extensive monosynaptic excitatory feedback and bisynaptic inhibitory feedback 
(through TRN) from V1, we found that feedback does not affect the average strength of 
response to ipsi- or contralateral eye stimulation and thus neither the measured OD shift 
in dLGN of adult mice. The absence of V1 on the OD shift in adult mice was also reported 
previously (Jaepel et al., 2017). However in that study, silencing V1 with muscimol 
reduced the imaged calcium responses in boutons of dLGN axons projecting to V1, 
suggesting that dLGN neurons became less responsive to inputs from both eyes. A 
possible explanation for this apparent discrepancy may be that muscimol also has a direct 
inhibitory effect on thalamocortical inputs (Wang et al., 2019), which may reduce calcium 
responses in synaptic boutons of dLGN neurons without actually reducing their spiking 
activity at the soma.   
 
Studies involving optogenetic stimulation of layer 6 neurons find that feedback from V1 
suppresses dLGN responses (Denman and Contreras, 2015; Kirchgessner et al., 2020; 
Olsen et al., 2012), though this differs per cell and changes with stimulus strength and 
frequency (Kirchgessner et al., 2020). When V1 feedback is silenced, however, the 
average strength of dLGN responses is not reduced in most studies (Denman and 
Contreras, 2015; Howarth et al., 2014; Kirchgessner et al., 2020). This suggests that broad 
optogenetic stimulation of layer 6 predominantly recruits inhibitory feedback, while 
visual stimulation provides either more balanced or more limited excitatory and inhibitory 
feedback to dLGN. In line with these previous studies, we find that silencing V1 does not 
significantly alter dLGN responses to either eye in WT mice. If the lack of effect of V1 
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Sections were imaged using a confocal microscopy (Leica SP5) with constant gain and 
laser power across compared samples. Care was taken that no signal clipping was present. 
For quantification of GAD67 and VAChT puncta, and images were taken with a 40x 
objective (2048 x 2048 resolution). Background fluorescence was subtracted with ImageJ. 
VAChT and GAD67 puncta were quantified using the ‘SynQuant’ ImageJ plugin (Wang et 
al., 2020), creating ROIs corresponding to synaptic puncta. For each image we calculated 
the average size of identified puncta, the number of puncta per unit of area and the 
percentage of image area identified as part of punctum.  
 
Monocular deprivation 
 
The eyelids of the eye contralateral to the recording side were sutured for MD. The 
surgery was performed under isoflurane anesthesia (5% induction, 1.5-2% maintenance 
in 0.7 l/min O2). The eye was rinsed with saline. The eyelids were sutured together with 
7.0 Ethilon thread. Eyes were checked for infection in the following days and reopened 
during recording. Only mice with healthy eye conditions were included.   
 
Electrophysiology recordings, visual stimulation and V1 silencing 
 
Mice were anesthetized by intraperitoneal injection of urethane (Sigma; 20% solution in 
saline, 1.2g/kg body weight), supplemented by intraperitoneal injection of 
chlorprothixene (Sigma; 2.0mg/ml in saline, 8mg/kg body weight), followed by 
subcutaneous injection of atropine (Sigma; 1mg/ml, 6mg/kg body weight), and head-fixed 
by ear- and bite bars. The temperature was measured with a rectal probe and maintained 
at 36.5 °C. The craniotomies for dLGN (2.0 mm lateral, 2.5 mm posterior from bregma) 
and V1 (2.95 mm lateral, 0.45 mm anterior from lambda) recording windows were made 
using a dental drill. During recordings of V1 or dLGN responses to input from one eye, the 
other eye was covered with a double layer of black cloth and black tape. 

Using a linear silicon microelectrode (A1x16-5mm-25-177-A16, 16 channels spaced 50 μm 
apart, Neuronexus), extracellular recordings from V1 and dLGN were performed 
separately. Visual stimuli were projected by a gamma-corrected projector (PLUS U2-
X1130 DLP) on a back-projection screen (Macada Innovision, covering a 60X42 cm area) 
positioned 17.5 cm in front of the mouse. The visual stimuli were programmed using the 
MATLAB (MathWorks) scripts package Psychophysics Toolbox 3 (Brainard, 1997). V1 was 
first recorded at a depth of approximately 800 μm from the cortical surface. Receptive 
field position was checked by showing white squares (5 deg) at random positions on a 
black background. If the receptive field was not within 30o from the center, we relocated 

  

All mice used to assess OD plasticity in adulthood were bred from homozygous 
conditional Gabra1deficient mice (Gabra1fl-hom) (Vicini et al., 2001) crossed with 
homozygous Gabra1-deficient, heterozygous Olig3-cre knockin mice (Vue et al., 2009) 
(Gabra1fl-hom Olig3-cre+). Before crossbreading the lines, Gabra1fl-hom mice had been 
backcrossed to C57Bl/6JRj mice (Janvier) for at least 6 generations. Olig3-cre- mice were 
crossed to C57Bl/6JRj mice for at least 2 generations, but should be considered mixed 
background. All animals were tested for unintended germline recombination of the 
Gabra1fl locus, and such mice were excluded from breeding or experiments. In our 
experiments, we used 4 groups of animals: monocularly deprived or non-deprived 
Gabra1fl-hom Olig3-cre- mice and monocularly deprived or non-deprived Gabra1fl-hom Olig3-
cre+ siblings (P45-P90). The experimenter was blind to the genotype of the mice until the 
end of the experiment. Mice used for OD plasticity experiments during the critical period 
were C57Bl/6JRj mice. All mice were housed in a 12h/ 12h dark/light cycle. Both male and 
female mice were used. Mice housing conditions were according to  
Dutch law. All experiments were approved by the institutional animal care and use 
committee of the Royal Netherlands Academy of Arts and Sciences.  
 
Immunohistochemistry 
 
Age-matched mice were anesthetized with 0.1 ml/g body weight Nembutal (Janssen) and 
perfused with 4% paraformaldehyde (PFA) in PBS (~50 ml per mouse) and post-fixed for 
2-6 h. Post fixation time was consistent between compared groups. Sections from dLGN 
of 50 µm were made by using a vibratome (Leica VT1000S). Mouse-α-GAD67 (1:500, 
Chemicon, MAB5406) was used to label inhibitory boutons and and guinea pig-α-VaChT 
(1:500, SySy 139105) to label cholinergic boutons. Primary antibodies were visualized 
using Fluor 594 Goat-α-mouse (1:1000, Invitrogen, A11032  and Alexa Fluor 488 Goat-α-
Guinea pig  (1:1000, Invitrogen, A11073). Free-floating sections were briefly washed in 
PBS followed by 1-2 h blocking in PBS containing 5% normal goat serum and 0.1% Triton 
X100 at room temperature. Primary antibody incubation was performed overnight at 4 °C 
in fresh blocking solution. Next, the sections were washed three times for 10 min in PBS 
with 0.1% Tween-20 (PBST) followed by secondary antibody incubation in fresh blocking 
solution for 1.5-2 h at RT. After washing three times for 10 min in TBST the sections were 
mounted on glass slides using Mowiol (Calbiochem/ MerckMillipore), glass covered and 
stored at 4oC.  
 
Confocal microscopy and data analysis 
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and V1 (2.95 mm lateral, 0.45 mm anterior from lambda) recording windows were made 
using a dental drill. During recordings of V1 or dLGN responses to input from one eye, the 
other eye was covered with a double layer of black cloth and black tape. 

Using a linear silicon microelectrode (A1x16-5mm-25-177-A16, 16 channels spaced 50 μm 
apart, Neuronexus), extracellular recordings from V1 and dLGN were performed 
separately. Visual stimuli were projected by a gamma-corrected projector (PLUS U2-
X1130 DLP) on a back-projection screen (Macada Innovision, covering a 60X42 cm area) 
positioned 17.5 cm in front of the mouse. The visual stimuli were programmed using the 
MATLAB (MathWorks) scripts package Psychophysics Toolbox 3 (Brainard, 1997). V1 was 
first recorded at a depth of approximately 800 μm from the cortical surface. Receptive 
field position was checked by showing white squares (5 deg) at random positions on a 
black background. If the receptive field was not within 30o from the center, we relocated 
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response changes of V1 and dLGN units in WT and KO mice, were done by non-parametric 
Mann-Whitney U tests. For testing the significance of the effect of silencing V1 on adult 
and critical period dLGN responses, on the OD in adult deprived and non-deprived KO 
mice and WT mice, on the OD in critical period deprived WT mice, and the effects of 
muscimol injection on V1 responses, Wilcoxon signed rank tests were used.    
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Supplementary Figure 1. A, Examples of immunohistochemical staining for GAD67 in dLGN of adult WT and KO 
mice. B, Quantification of the density, number, and sizes of GAD67 puncta (putative inhibitory boutons). No 
differences were detected between WT and KO mice (T-test; puncta density, P=0.85; puncta number, P=0.82; 
puncta size, P=0.80. n=3 mice per group, 3 slices were imaged per mouse). C, Examples of  
immunohistochemical staining for VAChT puncta (putative cholinergic boutons) in dLGN of adult WT and KO 
mice. D, Quantification of the density, number, and sizes of VAChT. No differences were detected between WT 
and KO mice (T-test; puncta density, P=0.29; puncta number, P=0.35; puncta size, P=0.22. n=3 mice per group, 
3 slices were imaged per mouse).  

  

the electrode and checked again. ODI was measured by presenting alternating white and 
gray full-screen stimuli to each eye in turn. Each stimulus lasted 3s. Both white and gray 
screens were presented with 100 repetitions. When the V1 recording was finished, we 
relocated the electrode to dLGN at a depth of 2700-3000 μm from bregma. The receptive 
field and ODI measurement procedures were repeated in dLGN. We then silenced V1 by 
injecting muscimol (Sigma; 10 mM; ~150 µL per mouse), a selective agonist for GABAA 
receptors, in V1 and measured the ODI again in dLGN. After recording, we moved 
electrode back to V1 to verify that muscimol had silenced V1.  
 
The extracellular signals were amplified and bandpass filtered at 500 Hz-10 kHz and 
digitized at 24 kHz using a Tucker-Davis Technologies RX5 Pentusa base station. The spike 
detection was done by a voltage thresholder at 3x s.d. online per recording, or offline 
using the open-source sorting package KiloSort (Pachitariu et al., 2016). Spikes were 
sorted and clustered by either principle component analysis-based custom-written 
MATLAB scripts or integrated template matching-based KiloSort scripts.   
 
Analysis of electrophysiological data 
 
Data analysis was done using custom-made MATLAB scripts 
(http://github.com/heimel/inVivoTools). For each 3 s stimulus related activity, we treated 
the last 500ms of the previous trail as baseline. Therefore, we defined the visual 
responses as the difference between the first 500ms of the stimulus and the mean of the 
last 500ms activities of the previous stimulus. The peak visual responses of stimuli were 
considered as the maximum firing rates in first 300ms of visual related responses. The 
visual responses were calculated as average responses of 300ms. ODI was calculated as 
(Rcontra-Ripsi)/(Rcontra+Ripsi), where the Rcontra is the average firing rate of the unit when 
contralateral eye was open and ipsilateral eye was covered; Ripsi is opposite. For receptive 
field mapping, we computed the spike - triggered average of the random sparse squares 
stimulus. The peak rate threshold was set to 5 Hz when the patch was within the receptive 
field. The actual position and size of visual field were computed and corrected for the 
actual distance between stimuli and animal. 

Statistics 

For testing the interaction between genotype with MD on OD plasticity and RF size in V1 
and dLGN, we used a two-way ANOVA test with post-hoc Tukey-Kramer tests. 
Quantitation of immunohistochemical analyses were performed using using Student’s t-
test. All other tests were done with non-parametric tests. Statistical analyses of the 
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and critical period dLGN responses, on the OD in adult deprived and non-deprived KO 
mice and WT mice, on the OD in critical period deprived WT mice, and the effects of 
muscimol injection on V1 responses, Wilcoxon signed rank tests were used.    
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Supplementary data  
 

 

Supplementary Figure 1. A, Examples of immunohistochemical staining for GAD67 in dLGN of adult WT and KO 
mice. B, Quantification of the density, number, and sizes of GAD67 puncta (putative inhibitory boutons). No 
differences were detected between WT and KO mice (T-test; puncta density, P=0.85; puncta number, P=0.82; 
puncta size, P=0.80. n=3 mice per group, 3 slices were imaged per mouse). C, Examples of  
immunohistochemical staining for VAChT puncta (putative cholinergic boutons) in dLGN of adult WT and KO 
mice. D, Quantification of the density, number, and sizes of VAChT. No differences were detected between WT 
and KO mice (T-test; puncta density, P=0.29; puncta number, P=0.35; puncta size, P=0.22. n=3 mice per group, 
3 slices were imaged per mouse).  

  

the electrode and checked again. ODI was measured by presenting alternating white and 
gray full-screen stimuli to each eye in turn. Each stimulus lasted 3s. Both white and gray 
screens were presented with 100 repetitions. When the V1 recording was finished, we 
relocated the electrode to dLGN at a depth of 2700-3000 μm from bregma. The receptive 
field and ODI measurement procedures were repeated in dLGN. We then silenced V1 by 
injecting muscimol (Sigma; 10 mM; ~150 µL per mouse), a selective agonist for GABAA 
receptors, in V1 and measured the ODI again in dLGN. After recording, we moved 
electrode back to V1 to verify that muscimol had silenced V1.  
 
The extracellular signals were amplified and bandpass filtered at 500 Hz-10 kHz and 
digitized at 24 kHz using a Tucker-Davis Technologies RX5 Pentusa base station. The spike 
detection was done by a voltage thresholder at 3x s.d. online per recording, or offline 
using the open-source sorting package KiloSort (Pachitariu et al., 2016). Spikes were 
sorted and clustered by either principle component analysis-based custom-written 
MATLAB scripts or integrated template matching-based KiloSort scripts.   
 
Analysis of electrophysiological data 
 
Data analysis was done using custom-made MATLAB scripts 
(http://github.com/heimel/inVivoTools). For each 3 s stimulus related activity, we treated 
the last 500ms of the previous trail as baseline. Therefore, we defined the visual 
responses as the difference between the first 500ms of the stimulus and the mean of the 
last 500ms activities of the previous stimulus. The peak visual responses of stimuli were 
considered as the maximum firing rates in first 300ms of visual related responses. The 
visual responses were calculated as average responses of 300ms. ODI was calculated as 
(Rcontra-Ripsi)/(Rcontra+Ripsi), where the Rcontra is the average firing rate of the unit when 
contralateral eye was open and ipsilateral eye was covered; Ripsi is opposite. For receptive 
field mapping, we computed the spike - triggered average of the random sparse squares 
stimulus. The peak rate threshold was set to 5 Hz when the patch was within the receptive 
field. The actual position and size of visual field were computed and corrected for the 
actual distance between stimuli and animal. 

Statistics 

For testing the interaction between genotype with MD on OD plasticity and RF size in V1 
and dLGN, we used a two-way ANOVA test with post-hoc Tukey-Kramer tests. 
Quantitation of immunohistochemical analyses were performed using using Student’s t-
test. All other tests were done with non-parametric tests. Statistical analyses of the 
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Results and discussion 
 
Removal of astrocyte vs interneuron CB1 receptors 
 
Inhibitory synapses in primary visual cortex (V1) undergo a CB1 receptor (CB1R)-
dependent maturation step during postnatal development: they shift from an immature 
state characterized by strong short-term synaptic depression towards a state with 
reduced short-term depression (Jiang et al., 2010; Sun et al., 2015). This process is 
complete around P28, corresponding to the peak of the critical period for OD plasticity in 
mouse (Gordon and Stryker, 1996)10/25/23 6:05:00 PM. Furthermore, inhibitory 
maturation is absent in full CB1R knockout mice (Sun et al., 2015). CB1Rs are traditionally 
thought to reside on presynaptic axon terminals. However, the parvalbumin positive fast-
spiking interneurons that undergo developmental maturation(Jiang et al., 2010; Huang 
and Kirkwood, 2020) are thought to express no or only low levels of CB1Rs (Bodor et al., 
2005; Hill et al., 2007; Wedzony and Chocyk, 2009). Furthermore, it was previously shown 
that astrocytes also express CB1Rs (Navarrete and Araque, 2008; Min and Nevian, 2012), 
which are involved in plasticity of developing sensory circuits (Min and Nevian, 2012). To 
investigate how removal of CB1Rs from different cell types (astrocytes vs interneurons) 
affects inhibitory maturation in V1, we made use of conditional knockout mice lacking 
CB1Rs in either astrocytes or interneurons. We crossed mice containing a floxed CB1R 
gene (Marsicano et al., 2003) with different Cre-driver lines. For interneuron-specific 
recombination we used GAD2-Cre mice (Taniguchi et al., 2011), while for astrocyte specific 
recombination we used GLAST-CreERT2 mice (JAX stock #012586). The resulting mice 
lacked CB1Rs either in astrocytes (“GLAST-CB1R-KO mice”) or interneurons (“GAD2-CB1R-
KO mice”). 
 
Conditional recombination in GLAST-CreERT2 mice requires induction by tamoxifen 
injection. For our experiments, astrocyte-specific recombination needed to be induced at 
a young age, before the start of the critical period. A potential problem with early 
tamoxifen injection may be that recombination occurs in neuronal precursor cells, leading 
to recombination in neurons. We therefore tested at which age, GLAST-CreERT2 induction 
was specific for glial cell types. Using a TdTomato Cre-reporter line crossed to GLAST-
CreERT2 mice, we found that a single intraperitoneal (ip) tamoxifen injection at P1 indeed 
resulted in recombination in a small number of neocortical neurons (Fig. 1A). In contrast, 
a single injection between P3 and P5 resulted in efficient and specific recombination in 
glial cells, with no neuronal recombination in V1. 80% of V1 astrocytes showed 
recombination, while 77% of recombined cells were astrocytes (Fig. 1B,C), the rest being 

  

Summary and Introduction 
 
Neuronal circuits are shaped by experience. This happens much more readily in the young 
compared to the adult brain. The unique learning capacity of the young brain is regulated 
through postnatal critical periods, during which the ability of neuronal networks to re-wire 
is greatly enhanced (Hensch, 2005). Endocannabinoids, signaling through the cannabinoid 
CB1 receptor (CB1R), regulate several forms of neuronal plasticity (Chevaleyre et al., 2006). 
In the developing neocortex, CB1Rs play a key role in the maturation of inhibitory circuits. 
For example, interfering with CB1R signaling during development disrupts inhibitory 
maturation in the prefrontal cortex(Cass et al., 2014). In developing primary visual cortex 
(V1), endocannabinoid-mediated plasticity at inhibitory synapses regulates the 
maturation of inhibitory synaptic transmission, shifting synapses from an immature state 
characterized by strong short-term depression to a mature state with reduced short-term 
depression (Jiang et al., 2010; Sun et al., 2015). This maturation step correlates with the 
timing of the critical period. While CB1Rs were originally thought to reside mainly on 
presynaptic axon terminals, recent studies have highlighted an unexpected role for 
astrocytic CB1Rs in endocannabinoid mediated plasticity (Navarrete and Araque, 2008; 
Han et al., 2012; Min and Nevian, 2012). Here, we investigate the impact of genetically 
removing CB1Rs from interneurons or astrocytes on development of inhibitory synapses 
and network plasticity of V1. We show that removing CB1Rs from astrocytes interferes 
with maturation of inhibitory synaptic transmission in V1. In addition, it strongly reduces 
ocular dominance (OD) plasticity during the critical period. In contrast, removing 
interneuron CB1Rs leaves these processes intact. Our results reveal an unexpected role of 
astrocytic CB1Rs in critical period plasticity in V1, and highlight the involvement of glial 
cells in the plasticity and synaptic maturation of sensory circuits. 
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Results and discussion 
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Figure 1. Early astrocytic recombination in GLAST-CreERT2 mice. (A) GLAST-CreERT2 TdTomato mice received a 
single ip injection of tamoxifen at P1. Slices containing V1 were prepared at P28-35, processed for 
immunofluorescence imaging and visualized using confocal microscopy. Recombination (indicated by TdTomato 
expression, magenta) was observed in astrocytes (visualized using a glutamine synthetase antibody, green), but 
also in sparse neurons (visualized using NeuN antibody, blue). An example neuron with pyramidal morphology 
is indicated by the arrow. (B) Changing the tamoxifen injection regime to a single injection at P3-5 abolished 
neuronal recombination in V1, while astrocyte recombination was efficient (~80%). Arrows indicate TdTomato 
expressing astrocytes, arrowheads indicate TdTomato negative astrocytes. (C,D) Specificity of recombination 
was high for astrocytes, but some non-neuronal recombination was seen in glial cells positive for NG2 positive 
cells (C, green, arrows) or Olig2 positive cells (D, green, arrows). Arrowheads indicate TdTomato negative NG2 
and Olig2 positive cells. (E) Quantification of efficiency and specificity of recombination in astrocytes in mice 
receiving a single tamoxifen ip injection at P3-5, based on TdTomato and glutamine synthetase positivity.  
 

Loss of astrocytic CB1Rs interferes with inhibitory synaptic maturation  
 
To investigate how loss of CB1Rs from specific cell types affected inhibitory synaptic 
maturation we assessed short-term dynamics of inhibitory synapses in acute brain slices 
of P28-35 mice. Whole cell patch-clamp recordings were made from L2/3 pyramidal 
neurons, and evoked inhibitory postsynaptic currents (IPSCs) were measured upon 
repetitive extracellular stimulation (10 pulses at 25 Hz; see methods for recording details). 
V1 inhibitory synapses onto L2/3 pyramidal neurons normally mature towards a state 
characterized by less pronounced short-term synaptic depression at P28-35. This 
inhibitory maturation is absent in full CB1R knockout mice, with inhibitory synapses 
maintaining an immature state characterized by stronger short-term depression (Sun et 
al., 2015). We found that short-term dynamics of inhibitory synapses in P28-35 GAD2-
CB1R-KO mice did not differ from that in wildtype littermates (Fig. 2A; normalized steady 
state IPSC amplitude: wildtype: 0.42±0.05, n=16; GAD2-CB1R-KO: 0.45±0.05, n=19; P=0.71; 
Mann-Whitney test), suggesting normal inhibitory maturation in the absence of 
interneuron CB1Rs. In contrast, GLAST-CB1R-KO mice showed more pronounced short-
term depression when compared to wildtype littermates (Fig. 2B; normalized steady state 
IPSC amplitude: wildtype: 0.48±0.03, n=11; GAD2-CB1R-KO: 0.33±0.03, n=14; P=0.008; 
Mann-Whitney test). This suggests that loss of CB1Rs on astrocytes, but not on 
interneurons, interferes with the maturation of inhibitory synaptic transmission. 
 

  

other glial cells (oligodendrocytes, oligodendrocyte precursor cells and NG2 cells; Fig. 
1D,E). Because astrocytes are the main glial cell type expressing CB1Rs (Allen Brain Atlas; 
www.brain-map.org), any phenotypic changes observed in GLAST-CB1R-KO mice that are 
treated with tamoxifen at P3-5 are most likely due to loss of CB1R expression in astrocytes. 
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baseline vs after iLTD induction: P=0.0002, paired t-test). iLTD was abolished in the 
presence of the CB1R antagonist AM251 (10 µM; iLTD: 0.0±4.2% iLTD, n=12, IPSC 
amplitude baseline vs after iLTD induction: P=0.92; % iLTD control vs +AM251:  P=0.002, 
unpaired t-test). 

 
Figure 3. iLTD is unaffected by removal of astrocyte or interneuron CB1 receptors. (A) Left: example traces 
showing the averaged IPSC during the 10 minutes of baseline recording and 10-20 minutes after iLTD induction 
by TBS. Black traces are from a control experiment, orange in the presence of the CB1 receptor antagonist AM251. 

  

Figure 2. Impaired inhibitory synaptic maturation upon loss of astrocyte CB1 receptors. (A) Left: example traces 
showing the dynamics of inhibitory synaptic transmission in acute brain slices from GAD2-CB1R-KO mice (blue) 
and their wildtype littermates (black). Middle: averaged IPSC amplitude normalized to the first, for each of the 
10 IPSCs in the train. Right: Steady state IPSC amplitude (averaged normalized amplitude of the last three IPSCs 
in the train) for all individual recorded neurons (dots). Bars show mean. (B) Same as in A, but for GLAST-CB1R-
KO mice (green) and their wildtype littermates (black). Error bars indicate SEM. 

 
Long-term depression of inhibitory synapses is intact upon removal of interneuron or 
astrocyte CB1Rs 
 
 Inhibitory synapses in V1 can undergo endocannabinoid-mediated long-term depression 
(iLTD) at early developmental stages, but this form of plasticity is lost during maturation. 
iLTD is blocked by CB1R antagonists, and absent in full CB1R knockout mice (Jiang et al., 
2010; Sun et al., 2015). To investigate how iLTD was effected by cell-type specific CB1R 
removal we prepared acute brain slices from young mice (P14-21), and performed whole 
cell patch-clamp recordings from L2/3 pyramidal neurons. Evoked IPSCs were recorded for 
a baseline period of 10 minutes, followed by iLTD induction using a theta-burst protocol 
(see methods for additional details). In wildtype mice this led to a significant reduction in 
IPSC amplitude, indicating robust iLTD expression (iLTD: 17.0±2.9%, n=29, IPSC amplitude 
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KO 3 days MD: P=0.95). In contrast, no significant OD shift was observed upon removal of 
astrocyte CB1Rs (GLAST-CB1R-KO: ODI non-deprived: 0.31±0.04, n=7; 3 days MD: 
0.22±0.04, n=8; two-way ANOVA; interaction of genotype with OD shift P=0.022; Tukey’s 
post-hoc test: wildtype non-deprived vs 3 days MD: P=0.006; GLAST-CB1R-KO non-
deprived vs 3 days MD: P=0.54; wildtype 3 days MD vs GLAST-CB1R-KO 3 days MD: 
P=0.021; Fig. 4B). Therefore, CB1Rs on astrocytes, not on interneurons, are required for 
OD plasticity during the critical period. 
 
OD plasticity is disrupted in deep cortical layers upon loss of astrocytic CB1Rs 
 
Previous studies that described effects of pharmacological CB1R blockade on OD plasticity 
revealed that the effect of acute CB1R blockade on OD plasticity is layer specific, with OD 
plasticity in layer 2/3 of V1 being sensitive to treatment with a CB1R antagonist, while 
deeper layers show normal OD plasticity upon CB1R antagonist treatment (Liu et al., 2008; 
Frantz et al., 2020). To investigate whether the disruption of OD plasticity upon 
developmental loss of astrocytic CB1Rs was equally layer specific, we performed 
electrophysiological recordings using laminar probes in GLAST-CB1R-KO mice. Analyzing 
OD plasticity over all cortical layers confirmed the disruption of OD plasticity that we 
observed using intrinsic signal optical imaging. Upon removal of astrocyte CB1Rs OD 
plasticity was still observed, but in significantly reduced from (wildtype: ODI non-deprived: 
0.32±0.03, n=162/11; 3 days MD: -0.04±0.03, n=104/7; GLAST-CB1R-KO: non-deprived: 
0.31±0.03, n=139/10; 3 days MD: 0.15±0.03, n=121/8; two-way ANOVA; interaction of 
genotype with OD shift P=0.002; Tukey’s post-hoc test: wildtype non-deprived vs 3 days 
MD: P<0.0001; GLAST-CB1R-KO non-deprived vs 3 days MD: P=0.0006; wildtype 3 days 
MD vs GLAST-CB1R-KO 3 days MD: P<0.0001; Fig. 4C). Next, we specifically looked at OD 
plasticity in deeper cortical layers, by separately analyzing units in layer 4 and layer 5/6, 
based on depth.  We found that loss of astrocytic CB1Rs reduced OD plasticity in deep 
cortical layers (Fig. 4D; L4: wildtype: ODI non-deprived: 0.32±0.06, n=33/11; 3 days MD: -
0.06±0.06, n=21/7; GLAST-CB1R-KO: non-deprived: 0.25±0.07, n=30/10; 3 days MD: 
0.14±0.05, n=24/8; two-way ANOVA; interaction of genotype with OD shift P=0.033; L5/6: 
wildtype: ODI non-deprived: 0.28±0.04, n=69/11; 3 days MD: -0.09±0.05, n=44/7; GLAST-
CB1R-KO: non-deprived: 0.31±0.04, n=56/10; 3 days MD: 0.11±0.03, n=56/8; two-way 
ANOVA; interaction of genotype with OD shift P=0.048). Therefore, genetic removal of 
astrocytic CB1Rs during development has a different and broader effect on OD plasticity 
than acute pharmacological CB1R blockade. 
 

  

Middle: Averaged time course of the IPSC amplitude normalized to baseline for all experiments under control 
conditions (black) and in the presence of AM251 (orange). Right: Averaged amount of iLTD (% reduction of the 
IPSC amplitude after TBS) for all individual recorded neurons (dots). Bars show mean. (B) Same as in A, but now 
for GAD2-CB1R-KO mice (blue) and their wildtype littermates (black). (C) Same as in A and B, but now for GLAST-
CB1R-KO mice (green) and their wildtype littermates (black). Error bars indicate SEM.  
 

Next, we investigated how iLTD was influenced by cell-type specific removal of CB1Rs. 
Surprisingly, we found that neither removal of interneuron CB1Rs, nor of astrocyte CB1Rs, 
affected the magnitude of iLTD (Fig. 3B,C). iLTD did not significantly differ between 
interneuron CB1R knockouts and wildtype littermates (GAD2-CB1R-KO iLTD: 17.7±3.7%, 
n=37, IPSC amplitude baseline vs after iLTD induction: P=0.0002, paired t-test; wildtype 
littermates iLTD: 15.3±3.6% iLTD, n=40, IPSC amplitude baseline vs after iLTD induction: 
P<0.0001; % iLTD wildtype vs GAD2-CB1R-KO:  P=0.65, unpaired t-test; Fig. 3B). The same 
was true for astrocyte CB1R knockouts (GLAST-CB1R-KO iLTD: 11.1±2.3%, n=44, IPSC 
amplitude baseline vs after iLTD induction: P<0.0001, paired t-test; wildtype littermates 
iLTD: 10.7±1.9% iLTD, n=37, IPSC amplitude baseline vs after iLTD induction: P<0.0001; % 
iLTD wildtype vs GAD2-CB1R-KO:  P=0.91, unpaired t-test; Fig. 3B). Therefore, while 
inhibitory synaptic maturation relies on astrocyte CB1Rs, iLTD surprisingly is independent 
of both astrocyte and interneuron CB1Rs. 
 
Loss of astrocytic CB1Rs disrupts OD plasticity  
 
The maturation of inhibitory synaptic transmission is known to be critical for the 
occurrence of OD plasticity during the critical period1. Therefore, we assessed OD 
plasticity in mice in which CB1R expression was disrupted in astrocytes or interneurons. 
Using optical imaging of intrinsic signal (Heimel et al., 2007), we measured responses to 
stimulation of the two eyes in the binocular region of V1, calculated the OD index (ODI; 
see methods), and compared mice that were reared normally (non-deprived) with mice 
that were monocularly deprived for three days starting around P28 (3 days MD). In 
wildtype littermates of both GAD2-CB1R-KO mice and GLAST-CB1R-KO mice 3 days MD 
caused a robust OD shift (GAD2-CB1R littermates: ODI non-deprived: 0.34±0.04, n=5; 3 
days MD: 0.07±0.05, n=6; GLAST-CB1R littermates: ODI non-deprived: 0.33±0.04, n=6; 3 
days MD 0.02±0.06, n=7; Fig. 4A,B). This OD shift was also observed upon interneuron 
specific CB1R removal (GAD2-CB1R-KO: ODI non-deprived: 0.31±0.04, n=5; 3 days MD: 
0.03±0.05, n=5; Fig. 4A). Statistical analysis yielded no interaction between genotype and 
molecular deprivation for GAD2-CB1R-KO mice (two-way ANOVA; interaction of genotype 
with OD shift P=0.93; Tukey’s post-hoc test: wildtype non-deprived vs 3 days MD: P=0.002; 
GAD2-CB1R-KO non-deprived vs 3 days MD: P=0.003; wildtype 3 days MD vs GAD2-CB1R-
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Loss of astrocytic CB1Rs disrupts OD plasticity  
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represent individual single units, bars show means. (D) Cumulative distribution of ocular dominance index 
against % of units, for deep cortical layers (L4 and L5/6). Dotted lines represent undeprived controls, solid lines 
represent 3 days monocular deprivation. Green lines show data from GLAST-CB1R-KO mice, black lines from 
wildtype littermates. 

 
Discussion 
 
In conclusion, we show that astrocytic CB1Rs contribute to the maturation of inhibitory 
synapses and affect OD plasticity in the developing V1. It is well known that the maturation 
of inhibitory synapses in V1 is required for the onset of the critical period of OD plasticity 
(Hensch et al., 1998; Hanover et al., 1999; Fagiolini and Hensch, 2000; Hensch, 2005). Our 
finding thus supports the idea that the deficit in OD plasticity we observe in astrocytic 
CB1R deficient mice is caused by deficient maturation of inhibitory synapses affecting 
critical period onset. 
 
During maturation of V1, inhibitory innervation changes extensively. During the first week 
after eye opening (p14-p21) the number and size of inhibitory synapses increase resulting 
in stronger inhibition(Huang et al., 1999). The causal link between inhibitory maturation 
and opening of the critical period of OD plasticity is well established:  In mice with reduced 
GABA-release due to the absence of GAD65, a protein involved in GABA synthesis, the 
critical period does not start (Hensch et al., 1998; Fagiolini and Hensch, 2000). Increasing 
GABAergic transmission in these mice by intraventricular benzodiazepine infusion rescues 
the phenotype and initiates the critical period (Fagiolini and Hensch, 2000). In addition to 
the general increase in synaptic strength, synaptic release and short-term depression 
decrease with development, resulting in more reliable and precise inhibition (Morales et 
al., 2002; Jiang et al., 2005; Tang et al., 2007). At inhibitory synapses formed by 
parvalbumin positive fast-spiking interneurons the maturation of inhibitory synaptic 
strength and dynamics depends on CB1R signaling, since both processes are blocked by 
CB1R antagonist treatment or by genetic CB1R knockout (Jiang et al., 2010; Sun et al., 2015; 
Huang and Kirkwood, 2020). This has been puzzling, since parvalbumin positive 
interneurons express no or only low levels of CB1Rs (Bodor et al., 2005; Hill et al., 2007; 
Wedzony and Chocyk, 2009). Our findings that inhibitory synaptic transmission is intact 
upon interneuron CB1R removal, but that it is disrupted when astrocyte CB1Rs are 
removed, provide an explanation for this apparent discrepancy. Furthermore, we show 
that interfering with CB1R dependent maturation of inhibition disrupts OD plasticity. 
 
The mechanism underlying CB1R mediated inhibitory synapse maturation is not clear yet. 
In previous studies, CB1R inactivation resulted in a reduction of both i-LTD and synapse 

  

 
Figure 4. Ocular dominance plasticity is disrupted upon loss of astrocyte CB1 receptors. (A) Summary graphs of 
the ocular dominance index, as assessed using optical imaging of the intrinsic signal. Data is shown for GAD2-
CB1R-KO mice (blue) and their wildtype littermates (black), both under control conditions and after three days 
of monocular deprivation (3 days MD). Dots indicate recorded ocular dominance index for individual mice, bars 
show means. (B) Same as in A, but now for GLAST-CB1R-KO mice (green) and their wildtype littermates (black). 
(C) Same as in A and B, but here ocular dominance index was assessed using in vivo electrophysiology. Dots 
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shown that OD plasticity also occurs in the thalamus, and that thalamic synaptic inhibition 
is essential for OD plasticity both in dLGN and in V1 (Sommeijer et al., 2017). However, in 
the absence of thalamic inhibition, OD plasticity was predominantly affected after 7 days 
of MD, while after 3 days of MD, the OD shift was barely reduced (Sommeijer et al., 2017). 
In our current study, we saw a strong decrease of OD plasticity already after 3 days of MD 
in GLAST-CB1R mice, suggesting that reduced thalamic inhibition is not the main cause of 
this plasticity deficit. 
 
Taken together, we show that astrocytic CB1Rs are crucial for critical period plasticity in 
V1. These findings add to a larger body of research that reveal a role for astrocytes in 
regulating critical periods in the brain (Ackerman et al., 2021; Ribot et al., 2021). 
Interestingly, transplanting astrocytes from kittens into V1 of adult cats reopens the 
critical period of OD plasticity (Muller and Best, 1989). A more recent study found that 
transplanting immature astrocytes in V1 of adult mice reopens the critical period through 
degradation of the extracellular matrix (Ribot et al., 2021). Adult astrocytes no longer have 
the ability to re-open the critical period due to decreased metalloprotease 9 activity. 
Whether the expression of CB1Rs on immature astrocytes also contributes to their ability 
to alter critical period plasticity remains unclear. Future experiments involving the 
transplantation of astrocytes from young mice lacking CB1Rs may provide an answer. 
 
Methods 
 
Animals 
Experimental procedures involving mice were in strict compliance with animal welfare 
policies of the Dutch government and were approved by the Institutional Animal Care and 
Use Committee of the Netherlands Institute for Neuroscience. Transgenic mice were bred 
on a C57Bl6/J background. For generation of conditional CB1R knockout mice, mice 
homozygous for a loxP-site flanked CB1R gene (Marsicano et al., 2003) and heterozygous 
for either Gad2-IRES-Cre (GAD2-Cre mice; Jax Stock No: 019022) (Taniguchi et al., 2011) 
or GLAST-CreERT2 (Jax Stock No: 012586) were bred. To assess efficacy and specificity of 
recombination in GLAST-CreERT2 mice these were crossed with ROSA-TdTomato reporter 
mice (Madisen et al., 2010), in which a Cre-dependent transgene encoding the tdTomato 
fluorescent protein is inserted in the ROSA26 locus (Jax Stock No: 007908). Experiments 
were performed on mice of either sex. Animals were housed on a 12 h light/dark cycle 
with unlimited access to standard lab chow and water. 
 
 

  

maturation, and therefore these processes were considered to be causally related (Jiang 
et al., 2010; Sun et al., 2015). Our observation that in GLAST-CB1R-KO mice inhibitory 
synapse maturation is affected, while i-LTD is still intact, is puzzling. One possible 
explanation is that recombination in GLAST-CB1R-KO mice is incomplete, leading to 
residual CB1R expression in some astrocytes. Experiments with TdTomato reporter mice 
(Figure 1) reveal recombination in ~80% of astrocytes upon a single early postnatal 
tamoxifen injection. Since full genetic CB1R removal from an astrocyte requires bi-allelic 
recombination, it is expected that 60-70% of astrocytes in GLAST-CB1R-KO mice lack 
CB1Rs. i-LTD induced by strong electrophysiological stimulation of a large number of 
inhibitory synapses might be resilient to such incomplete CB1R inactivation, with CB1R 
activation on the remaining astrocytes being sufficient for i-LTD induction. Alternatively, 
i-LTD could rely on CB1Rs in both inhibitory neurons and astrocytes. The physiological 
maturation of inhibitory synapses, which would involve molecular mechanisms 
overlapping with those of i-LTD may then be more sensitive to astrocytic CB1R removal. 
 
Previous work has shown that acute pharmacological blocking of CB1Rs during the critical 
period reduces OD plasticity.  In those experiments, OD plasticity was only affected in the 
superficial layers, while an OD shift could still be induced in layers 4-6 (Liu et al., 2008; 
Frantz et al., 2020). LTD of excitatory synapses in layer 2/3 of sensory cortex is dependent 
on CB1Rs, while excitatory LTD in deeper layers is CB1R independent (Crozier et al., 2007; 
Banerjee et al., 2009). It is therefore believed that the effect of acute CB1R blockage on 
OD plasticity is caused by selective interference with e-LTD in layer 2/3.  We find that in 
astrocytic CB1R-deficient animals, OD plasticity is reduced in all layers of V1.  This suggests 
that CB1Rs regulate OD plasticity through multiple mechanisms: acutely by mediating LTD 
at excitatory synapses in layer 2/3 neurons and indirectly by driving the development of 
inhibitory synapses in all cortical layers (Sun et al., 2015). We do not know whether 
inactivating CB1Rs in astrocytes will also acutely affect OD plasticity by an acute effect on 
excitatory LTD. But several studies have shown that astrocyte CB1Rs can regulate plasticity 
at excitatory synapses (Min and Nevian, 2012), for instance by driving D-serine release 
necessary for NMDA receptor activation (Robin et al., 2018). One would need to inactivate 
CB1Rs in astrocytes at a later age to dissociate developmental and acute astrocyte CB1R 
effects.  
 
In GLAST-CB1R-KO mice, astrocyte CB1Rs are not only inactivated in V1, but also in the 
rest of the brain. We can therefore not rule out that the observed reduction of OD 
plasticity is caused by the absence of astrocytic CB1Rs in other brain structures, such as 
the dorsal lateral geniculate nucleus (dLGN) providing input to V1. We have recently 
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OD measurements was performed as previously described (Heimel et al., 2007). In brief, 
the exposed skull was illuminated with 700 ± 30 nm light and the intensity of reflected 
light was measured.  Responses were acquired with an Imager 3001 system (Optical 
Imaging, Israel). A gamma corrected computer screen was placed in front of the mouse, 
covering an area of the mouse visual field ranging from − 15 to 75 degrees horizontally 
and − 45 to 45 degrees vertically. First the retinotopic representation of V1 was mapped. 
Full contrast, square wave gratings of 0.05 cycles per degree (cpd), moving at 2 Hz and 
changing direction every 0.6 s were shown every 9 s for 3 s in a pseudorandomly chosen 
quadrant while the rest of the screen was a constant gray. Fifteen stimuli in each quadrant 
were sufficient to construct a robust retinotopic map of V1. To subsequently measure OD, 
shutters were placed in front of both eyes. Either shutter opened independently at preset 
intervals, for a period of 6 seconds. After full opening of the shutter, the visual stimuli 
described above were presented in the upper nasal quadrant of the screen for a period of 
3 seconds. Fifty responses to stimulation were recorded for each eye. For quantification, 
the response of a defined region of interest within the binocular part of V1 (as determined 
by retinotopic mapping) was normalized to the response seen in a region of reference 
(ROR) outside of V1, which lacked a stimulus specific response. The negative ratio of ROI 
over ROR signal was taken, normalized to the stimulus onset and averaged from the first 
frame after stimulus onset until 2s after stimulus offset. The Ocular Dominance Index (ODI) 
was calculated as (contralateral response − ipsilateral response)/(contralateral response 
+ ipsilateral response). 
 
For in vivo electrophysiology, a craniotomy was prepared over V1, 2.95 mm lateral and 
0.45 mm anterior to lambda. Mice were placed in front of a gamma-corrected projector 
(PLUS U2-X1130 DLP), which projected visual stimuli onto a back-projection screen 
(Macada Innovision, the Netherlands; 60X42 cm area) positioned 17.5 cm in front of the 
mouse. One eye was covered with a double layer of black fabric and black tape while 
neuronal responses to stimulation of the other eye were recorded. Visual stimuli were 
created with the MATLAB (MathWorks) software package Psychophysics Toolbox 
3(Brainard, 1997). The position of the receptive field was determined by displaying white 
squares (5 degrees) at random locations on a black background. The ODI was calculated 
by presenting each eye with alternating white and gray full-screen stimuli. Each 
stimulation lasted 3 seconds. There were 100 repetitions of both white and gray screens. 
Extracellular recordings from V1 were made using a linear silicon microelectrode (A1x16-
5mm-25-177-A16, 16 channels spaced 50 m apart, Neuronexus, USA). Extracellular signals 
were amplified and bandpass filtered at 500 Hz-10 kHz before being digitized at 24 kHz 
using a RX5 Pentusa base station (Tucker-Davis Technologies, USA). A voltage thresholder 

  

Tamoxifen injection 
 
Mouse pups received a single intraperitoneal (i.p.) tamoxifen injection to induce Cre 
mediated recombination in the GLAST-CreERT2 line. Tamoxifen was dissolved in corn oil 
at a final concentration of 5 mg/ml. Dissolving of the tamoxifen was aided by placing the 
Eppendorf tube in an ultrasonic water bath, heated to 30°C, for ~1 hour. 20-25 µl 
tamoxifen was injected using a thin insulin needle. To assess specificity and efficacy of 
recombination injections were performed either at P1 or between P3-P5. For all further 
experiments, a single injection between P3-P5 was used. 
 
Monocular deprivation 
 
Surgery for monocular deprivation (MD) was performed as follows: Mice were 
anesthetized using isoflurane (5% induction, 1.5–2% maintenance in 0.7 l/min O2). Edges 
of the upper and lower eyelids of the right eye (contralateral to the side on which 
recordings were performed) were carefully removed. Antibiotic ointment (Cavasan) was 
applied. Eyelids were sutured together with 2–3 sutures using 7.0 Ethilon thread during 
isoflurane anesthesia. Postoperative lidocaine ointment was applied to the closed eyelid. 
Eyes were checked for infection or opacity once reopened 3 days later, and only mice with 
clear corneas were included.  
 
Intrinsic signal optical imaging and electrophysiology 
 
Mice were anesthetized by intraperitoneal injection of urethane (20% solution in saline, 
1.2 g/kg body weight), supplemented by a subcutaneous injection of chlorprothixene (2.0 
mg/ml in saline, 8 mg/kg body weight). Sometimes a supplement of about 10% of the 
original dose of urethane was necessary. Injection of anesthetic was immediately followed 
by a subcutaneous injection of atropine sulfate (50 μg/ml in saline, 1 μg/10g body weight) 
to reduce secretions from mucous membranes and facilitate breathing. Anesthesia 
reached sufficient depth after 45–60 min. Body temperature was monitored with a rectal 
probe and maintained at a temperature at 36.5 °C using a heating pad. The animal was 
fixated by ear bars with conical tips prepared with lidocaine ointment. A bite rod was 
positioned behind the front teeth, 4 mm lower than the ear bars. A continuous flow of 
oxygen was provided close to the nose. For analgesia of the scalp, xylocaine ointment 
(lidocaine HCl) was applied before resection of a part of the scalp to expose the skull. 
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reached sufficient depth after 45–60 min. Body temperature was monitored with a rectal 
probe and maintained at a temperature at 36.5 °C using a heating pad. The animal was 
fixated by ear bars with conical tips prepared with lidocaine ointment. A bite rod was 
positioned behind the front teeth, 4 mm lower than the ear bars. A continuous flow of 
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(lidocaine HCl) was applied before resection of a part of the scalp to expose the skull. 
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pyramidal neurons in Layer 2/3 of V1 were made using a Multiclamp 700B amplifier in 
voltage clamp mode and PClamp software (Molecular Devices, USA). Cells were patched 
with borosilicate glass electrodes with tip resistances of ~3.5 MOhm, and filled with 
intracellular solution containing (mM): 120 CsCl, 8 NaCl, 10 HEPES, 2 EGTA, 10 Na-
phosphocreatine, 4 Mg-ATP, 0.5 Na-GTP and 5 QX-314 (pH: 7.4; osmolarity ~285 mOsm). 
IPSCs were evoked with an ACSF filled glass electrode with a broken tip or with a 
concentric bipolar stimulation electrode, placed in Layer 4. Intensity of the stimulation 
pulse was adjusted to obtain a reliable and stable IPSC response. 
 
For experiments in which iLTD was evoked, IPSCs were evoked every 20 seconds until a 
stable baseline was established. Next, iLTD was induced using theta burst stimulation 
(TBS), consisting of 8-10 thetaburst epochs delivered every 5 seconds. Each theta-burst 
epoch consisted of 10 trains of 5 pulses at 100 Hz, with the trains being delivered at 5 Hz 
(adapted from4,5). In a small subset of experiments, the strength of extracellular 
stimulation was doubled during TBS delivery. Because this did not affect the magnitude or 
dynamics of iLTD, all experiments were grouped for final analysis. AM251 was diluted in 
DMSO, and the stock solution was added to ACSF to obtain a final concentration of 10 µM 
(final DMSO concentration: 0.1%).  

 

IPSC amplitude was analysed using custom scripts in IGOR pro (WaveMetrics, USA). For 
iLTD analysis, magnitude of iLTD was determined by comparing the IPSC amplitude during 
the 10 minute baseline to the IPSC amplitude 10-20 minutes after TBS. Recordings were 
excluded if the IPSC amplitude differed >12.5% between the first and the last 6 responses 
of the baseline, if input resistance increased >25% between baseline and iLTD window, if 
access resistance increased to >20 MOhm, or if leak current reached lower than -500 pA.  

 
Immunohistochemistry 
 
Mice were anesthetized with an overdose of pentobarbital (100 mg/kg i.p.), followed by 
transcardial perfusion with 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS). 
Brains were isolated and post-fixated for >2 hours in PFA at 4°C. After changing to PBS, 
coronal slices (50 μm thickness) were prepared. Slices were incubated for 2 hours in 500 
μl blocking solution (0.1% Triton X-100, 5% NGS in PBS) on a rotary shaker at room 
temperature. Afterwards, slices were incubated with primary antibody containing solution 
and left overnight at 4°. The next day primary antibody solution was discarded, and slices 
were washed three times for 10 min at room temperature on the rotary shaker with 500 

  

at 3x standard deviation was used to detect spikes online. Custom-written MATLAB 
programs (http://github.com/heimel/inVivoTools) were used to analyze the data. We 
computed the spike - triggered average of the random spare square stimulus for receptive 
field mapping. The actual position and size of the visual field were calculated and 
corrected for the distance between the stimulus and the animal. We used the last 500ms 
of the previous trail as the baseline for each 3 s stimulus-related activity. As a result, we 
characterized visual responses as the difference between the first 500ms of the stimulus 
and the mean of the prior stimulus's last 500ms activities. The greatest firing rates in the 
first 300ms of visual related reactions were regarded the peak visual responses to stimuli. 
The visual responses were calculated as 300ms average multi-unit responses. ODI was 
calculated as "𝑅𝑅!"#$%& − 𝑅𝑅'()'	% "𝑅𝑅!"#$%& + 𝑅𝑅'()'%' , where the 𝑅𝑅!"#$%&  is the average 
multi-unit firing rate of the unit when contralateral eye was open and ipsilateral eye was 
covered; 𝑅𝑅'()' is opposite. 
 
Slice electrophysiology 

For acute brain slice preparation, animals aged between P14-35 were briefly anesthetized 
using isoflurane, followed by decapitation. Brains were removed and placed in ice-cold 
slicing medium. For most experiments sucrose based slicing medium was used, containing 
(in mM): 212.7 sucrose, 26 NaHCO3, 3 KCl, 1.25 NaH2PO4, 1 CaCl2, 3 MgCl2 and 10 D(+)-
glucose (carboxygenated with 5% CO2/95% O2; osmolarity 300-310 mOsm). For some 
early experiments choline chloride based slicing medium was used, containing (in mM): 
110 choline chloride, 7 MgCl2, 0.5 CaCl2, 2.5 KCl, 11.6 Na-ascorbate, 3.10 Na-pyruvate, 
1.25 NaH2PO4, 25 D-glucose and 25 NaHCO3 (carboxygenated with 5% CO2/95% O2; 
osmolarity 300-310 mOsm). Quality of slices and properties of recorded neurons were 
indistinguishable for both solutions. Coronal slices (350 μm) containing V1 were prepared 
using a vibratome. Within each slice, the hemispheres were separated with a scalpel at 
the middle axis to be used for individual recordings. The slices were transferred to a 
holding chamber and left to recover for at least 30 min at 35°C in carboxygenated artificial 
cerebrospinal fluid (ACSF), containing (mM): 124 NaCl, 26 NaHCO3, 3 KCl, 1.25 NaH2PO4, 
2 CaCl2, 1 MgCl2 and 10 D(+)-glucose (carboxygenated with 5% CO2/95% O2; osmolarity 
300-310 mOsm). After recovery the holding chamber was moved to room temperature 
and slices were kept until recording (up to 8 hours after slice preparation).  

For recording, slices were transferred to the stage of an upright microscope, where they 
were continuously perfused with heated (30-32°C) ACSF. NMDA receptor and AMPA 
receptor mediated glutamatergic synaptic responses were blocked by addition of D-AP5 
(50 µM) and DNQX (10 µM) to the recording ACSF. Whole cell patch-clamp recordings from 
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μl of washing solution (0.1% Tween in PBS). 250 μl of secondary antibody solution was 
added per well and slices were incubated for 1 h at room temperature on the rotary shaker. 
Next, slices were again washed three times for 10 min at room temperature on the rotary 
shaker with washing solution. Stained slices were mounted on glass slides using mowiol. 
The following antibodies were used: Glutamine Synthetase (monoclonal mouse, MAB302, 
Merck Millipore, USA), NeuN (monoclonal mouse, 1:1000, MAB377, Merck Millipore, USA), 
NG2 (polyclonal rabbit, 1:250, AB5320, Merck Millipore, USA) and Olig2 (monoclonal 
mouse, 1:250, MABN50, Merck Millipore, USA). Secondary antibody conjugated with 
Alexa-488 was used (1:250 or 1:500, ThermoFisher, USA). Imaging of the immunostained 
sections was done using a Leica TCS SP5 Confocal microscope (Leica, Germany).  
 

Statistics 

Data representation and statistical analysis were performed using GraphPad Prism 9.0 
(GraphPad Software, USA). The used tests are indicated in the text. Statistically significant 
differences were defined as P ≤ 0.05. Data are represented as mean ± SEM. 
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In conclusion, we find that ketamine can induce changes in arousal levels and decrease 
spindle activity, possibly due to alterations in the firing pattern within the strongly 
reciprocally connected CTC system. 
 
Disrupted sensory information from local to network 
 
In the preceding section, we explored the impact of ketamine on the cortico-thalamo-
cortical (CTC) network under baseline conditions. Previous research on human subjects 
has shown that gamma activity increases in two distinct components, early and late, 
during perceptual tasks21. This suggests that the sensory perception process may consist 
of both early (<200ms) and late (>200ms) stages, with different cortical areas involved in 
each stage22–24. However, the dynamics of the CTC network during the late stage of 
perception remain poorly understood in psychotic disorders. Therefore, in Chapter 3, we 
investigated the effects of ketamine on the late stage of sensory responses during 
sedation. 
 
We first demonstrated that ketamine increases the baseline thalamic beta (17-29 Hz) and 
gamma (30-80 Hz) oscillatory activity at all recorded cortical and thalamic sites (VPM, POM, 
layer VI of somatosensory cortex, and frontoparietal somatosensory cortex), while 
decreasing the sensory-induced gamma and beta activity. Since induced activity is defined 
as the relative response (absolute response minus baseline activity) and contains sensory 
information, our finding implies that the sensory information may be submerged in the 
abnormally high background noise. 
 
Furthermore, it is worth noting that schizophrenia patients exhibit a similar reduction in 
beta/gamma-frequency activity during the late stages of perception, which is linked to 
performance deficits in a perception task25. Earlier research has also reported that NMDA 
receptor agonists decrease the signal-to-noise ratio during the first stage of perception 
(<200ms)17,26–28. Since we discovered a similar deficit in the late stage, the disruption of 
sensory information induced by ketamine may be long-lasting. 
 
After finding a reduction in the signal-to-noise ratio in the ketamine condition, which could 
potentially impair sensory information processing, we employed multi-scale entropy (MSE) 
analysis to quantify changes in information. MSE is an information-theoretic index that 
estimates the complexity of signal information. In mathematical information theory 
developed by Claude Shannon, the term "complexity of information" or "entropy" can be 
understood as the "randomness" of a signal. Thus, increased entropy can be interpreted 

  

Proper neural firing pattern in CTC is essential for arousal level and 
spindle 
 
In Chapter 2, we found that a low dose of ketamine induces a decrease in spindle activity 
in the CTC system and an increase in gamma and higher frequency oscillations. These 
results are in line with previous arousal-promoting effects of ketamine detected in awake, 
freely moving animals1–3. Additionally, these activity patterns are reminiscent of 
oscillatory activity during natural REM sleep4. Previous researchers have suggested that 
REM sleep and especially dreaming are natural forms of psychosis5–9. The ketamine-
induced desynchronized state we observe may thus be interpreted as a pathological REM-
sleep-like arousal level.  
 
In thalamic neurons, the burst-firing mode is a reliable hallmark of sleep oscillations. 
During sleep, membrane hyperpolarization causes the deinactivation of T-type calcium 
channels. Subsequent depolarization of the neuron, caused by synaptic inputs, then 
results in burst firing10. Since ketamine increases the arousal level of the animal, the 
cortical and thalamic neurons are expected to be less hyperpolarized. This is thus expected 
to result in less burst firing and more AP firing, which is exactly what we observed: in the 
ketamine condition, the single AP density is substantially increased in TC and TRN neurons. 
Also, the interaction between TC and TRN neurons and intrinsic properties of TRN are key 
to generate thalamic spindle activities11,12. Therefore, disrupting the firing mode of these 
neurons is expected to cause deficits in spindle oscillation, which is what we demonstrated 
in chapter 2.  Interestingly, disrupted T-type calcium channel activity may be involved in 
schizophrenia13. Ketamine may mimic this effect by causing the membrane potential to be 
less hyperpolarized, thus keeping the T-type calcium channels in an inactivated state. 
 
Since we found that both TC and TRN neurons switch from burst to tonic AP firing upon 
ketamine administration, it is possible that these effects are caused by a common input 
that contributes to sustained excitation and depolarization of both regions. This source 
may well be cortical feedback, as TRN and TC neurons are innervated by axonal branches 
from the same CT neurons14,15. Since cortical GABAergic interneurons are highly sensitive 
to NMDA receptor antagonists16, CT neurons may become disinhibited in the presence of 
ketamine. Thus, the sustained thalamic gamma hyperactivity15,17,18 and increased gamma-
frequency of TRN cells19,20 induced by ketamine, may be an indirect effect caused by 
disinhibition of CT neurons innervating both TRN and TC cells.  
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In conclusion, we find that ketamine can induce changes in arousal levels and decrease 
spindle activity, possibly due to alterations in the firing pattern within the strongly 
reciprocally connected CTC system. 
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perceptual processes and spindle activities. This suggests that a similar mechanism may 
exist in patients with schizophrenia symptoms. 
 
Thalamic inhibition regulates plasticity in the CTC network 
 
In Chapter 4, we demonstrate that synaptic inhibition is essential for OD plasticity in dLGN 
and V1 of adult mice. Although the mechanism behind it is not clear, we notice that dLGN 
neurons in mice lacking thalamic synaptic inhibition (“KO mice”) attenuate more strongly 
than in wild-type mice. Combined with previous results in KO mice obtained during the 
critical period, which also showed transient thalamic responses39, it is possible that this 
change in the firing properties of thalamic neurons alters spike-timing dependent 
plasticity. This could affect OD plasticity in both dLGN and V1. 
 
Due to the absence of synaptic inhibition in the thalamus, the thalamocortical (TC) 
neurons may be in a more depolarized state. This could cause TC neurons in KO mice to 
have more tonic than burst mode firing. However, there may also be a paradoxical effect: 
reduced fast synaptic inhibition may cause stronger dLGN activation, resulting in stronger 
activation of TRN, and consequently, stronger GABA-release in dLGN. This, in turn, can 
activate extrasynaptic GABA(B) receptors which are slower and cause stronger an longer-
lasting inhibition of TC neurons. It is thus possible that in the absence of thalamic synaptic 
inhibition, dLGN is dominated by burst firing. Currently, experiments are being performed 
to understand which of the two scenarios apply, and how information processing is 
affected in the absence of synaptic thalamic inhibition. 
 
We also assessed how corticothalamic (CT) feedback affected the OD shift in dLGN. After 
inducing OD plasticity, we silenced primary visual cortex (V1) during the recordings of eye-
specific responses in dLGN. We found that silencing V1, and thus CT feedback to dLGN, 
does not affect the OD shift in dLGN of adult mice. This result is in accordance with 
previous work40. Feedback from V1 to dLGN can result in increased dLGN responses, but 
V1 to TRN feedback may instead result in dLGN inhibition. Previous studies using 
optogenetics to activate layer 6 neurons in the primary visual cortex (V1) have shown that 
feedback from V1 suppresses responses in dLGN41–43. However, these effects vary 
depending on the strength and frequency of stimulation. In most studies in which V1 is 
silenced, the average strength of dLGN responses in not reduced, suggesting that 
excitatory and (indirect) inhibitory feedback from V1 to dLGN are balanced.  
 

  

as an increase in the randomness of the signal, with maximal entropy being achieved in a 
truly random signal29. 
 
Our MSE results demonstrate that neural activity in VPM and layer 6 of the somatosensory 
cortex exhibited increased complexity following ketamine administration. This finding is 
consistent with previous studies of schizophrenia patients that observed increased MSE 
of EEG30. Furthermore, clinical studies have found that medication-free patients with 
higher levels of positive symptoms tend to display higher levels of complexity in EEG31. 
Given that increased entropy or complexity can be interpreted as an increase in the 
randomness of a signal29, our MSE results suggest that ketamine administration 
introduced more noise into the system. 
 
Additionally, we observed that ketamine reduced functional connectivity (coherence) 
between layer 6 and VPM, but we did not find any changes in the connectivity between 
layer 6 - POm and VPM - POm. Taken together with the finding that MSE increased upon 
ketamine treatment, this result may indicate that information transfer is less efficient due 
to higher noise levels in the system. 
 
It is worth noting that the late period of perception we focused on overlaps with the post-
inhibitory rebound activity period. This suggests that the abnormal late-stage activity we 
observed may reflect deficits in post-inhibitory rebound activity. In the thalamus, this 
rebound excitation is caused by a low-threshold calcium-independent potential that leads 
to burst firing32–36. Therefore, the impairment of rebound activity could result from 
abnormal burst firing. Our results of the ketamine state may be due to ketamine 
interrupting the firing pattern of the thalamus. Notably, burst firing in the thalamocortical 
(TC) pathway may serve as an initiation signal for perception37,38. Thus, impairment of 
burst firing could lead to perception dysfunction. 
 
In addition, our findings in Chapter 2 revealed that ketamine converts neurons from burst 
to tonic firing, suggesting that the information deficits (signal-to-noise ratio, MSE) might 
share the same mechanism as described in Chapter 3. The timing of neural firing that 
carries information is altered by ketamine. 
 
In conclusion, Chapters 2 and 3 demonstrated that ketamine exerts a persistent 
depolarizing pressure on the membrane potential of TC and thalamic reticular nucleus 
(TRN) neurons, which is expected to disrupt the firing pattern associated with sensory-
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not complete. This partial deficit may not be sufficient to interfere with iLTD induced by 
powerful stimulation in a slice electrophysiology experiment, but may still interfere with 
the more protracted synapse maturation process that occurs during normal cortical 
development.  Whether iLTD would be abolished by removing CB1R more efficiently from 
astrocytes or whether that would also require deletion of CB1R from interneurons remains 
to be investigated. 
 
We also demonstrated that CB1 receptors in astrocytes, but not in interneurons, are 
necessary for OD plasticity in V1. Animals lacking astrocytic CB1 receptors exhibited 
reduced plasticity in all layers of V1. Previous work has shown that acute pharmacological 
blocking of CB1 receptors also interferes with OD plasticity, but only in the superficial 
layers of V154,55. It is thought that this plasticity deficit is caused by diminished CB1R-
dependent LTD of excitatory connections (eLTD)56,57. We believe that the early CB1R 
removal from astrocytes affects OD plasticity in all layers by interfering with the 
development of inhibitory synapses52, which is required for critical period opening. 
 
It is important to note that CB1 receptors in GLAST-CB1R-KO mice are not only inactivated 
in astrocytes in V1 but in the entire brain. This could include the removal of CB1 receptors 
in dLGN. In the previous section, we demonstrated that thalamic synaptic inhibition is 
essential for OD plasticity in both dLGN and V158. Therefore, the CTC network may also 
contribute to the OD plasticity deficit in mice lacking astrocytic CB1 receptors. However, 
given that in juvenile mice lacking thalamic synaptic inhibition, OD plasticity in V1 is 
unaffected during the first 3 days of monocular deprivation58, while in mice lacking 
astrocytic CB1 receptors the deficit is already present during that period, it is unlikely that 
the reduction of thalamic inhibition is the primary cause of this plasticity deficit. 
 
Neural plasticity, CB1 receptors and schizophrenia 
 
Previous studies have shown that structural and functional changes in the brain can occur 
before the onset of symptoms of schizophrenia. Schizophrenia typically begins in late 
adolescence and these changes may be a result of pathological neurodevelopmental 
processes that can lead to psychotic symptoms during adolescence or young adulthood59.  
 
Adolescence is a critical period in brain development, characterized by fast functional and 
structural changes. During this time, there is significant synapse pruning, reduction in gray 
matter, and enhanced myelination in the human frontal brain60. Long-term MRI studies 

  

We observed that in KO mice lacking thalamic synaptic inhibition, dLGN responses to the 
ipsilateral eye were selectively reduced upon silencing of V1. This suggests that V1 
feedback predominantly strengthens dLGN responses to the ipsilateral eye in these mice.  
A possible explanation for this is that V1 does not only receive ipsilateral eye input directly 
from dLGN, but also indirectly through callosal connections from contralateral V1. These 
two sources of ipsilateral eye inputs to V1 may result in relatively stronger ipsilateral eye 
feedback to dLGN. With reduced inhibition in dLGN, the effect of V1 silencing may thus 
affect ipsilateral eye responses in dLGN than responses to the contralateral eye. 
 
Interestingly, during the critical period, we do find an effect of V1 feedback on the OD shift 
in dLGN. Like in adult KO mice, silencing V1 predominantly affects dLGN responses to the 
ipsilateral eye. Possibly, during the critical period, inhibition in dLGN is weaker (like it is in 
V1).  Notably, an experience-dependent retinogeniculate refinement also takes place in 
this period, resulting in the reduction of the number of retinal ganglion cells providing 
inputs to each dLGN TC cell44–46. This process also depends on V1 feedback46,47 and may 
thus involve the same plasticity mechanisms. If silencing feedback from V1 has an acute 
effect on binocular responses in dLGN during the critical period, it may have a larger effect 
on OD plasticity in dLGN when silenced during the entire process. Future research may 
reveal the importance of recurrent activity in the CTC loop during developmental plasticity.  
 
In conclusion, these results show that the CTC system is much more important for 
plasticity in the adult and developing cortex than anticipated. This may have important 
consequences for understanding developmental disorders, as observed changes in 
cortical organization, function or plasticity may have a thalamic origin and reversely, 
deficits in thalamic organization may a cortical origin.  
 
Astrocyte CB1 regulates plasticity in V1 
 
In Chapter 5, we investigated how CB1 receptors on astrocytes affect critical period 
regulation and plasticity in V1. Because maturation of inhibitory innervation is one of the 
key factors regulating the onset and closure of the critical period48–51, we first measured 
the IPSCs from L2/3 pyramidal neurons and found that inhibitory synaptic maturation 
requires astrocytic CB1 receptors but not interneuron CB1 receptors. We discovered that 
the absence of astrocytic CB1 receptors did not affect endocannabinoid-mediated long-
term depression (iLTD). This is surprising as it is generally believed that the changes in 
synaptic transmission that were absent in mice lacking astrocytic CB1Rs might be 
mediated through iLTD52,53. A possible explanation is that CB1R deficiency in our mice was 



Discussion

177

6

  

not complete. This partial deficit may not be sufficient to interfere with iLTD induced by 
powerful stimulation in a slice electrophysiology experiment, but may still interfere with 
the more protracted synapse maturation process that occurs during normal cortical 
development.  Whether iLTD would be abolished by removing CB1R more efficiently from 
astrocytes or whether that would also require deletion of CB1R from interneurons remains 
to be investigated. 
 
We also demonstrated that CB1 receptors in astrocytes, but not in interneurons, are 
necessary for OD plasticity in V1. Animals lacking astrocytic CB1 receptors exhibited 
reduced plasticity in all layers of V1. Previous work has shown that acute pharmacological 
blocking of CB1 receptors also interferes with OD plasticity, but only in the superficial 
layers of V154,55. It is thought that this plasticity deficit is caused by diminished CB1R-
dependent LTD of excitatory connections (eLTD)56,57. We believe that the early CB1R 
removal from astrocytes affects OD plasticity in all layers by interfering with the 
development of inhibitory synapses52, which is required for critical period opening. 
 
It is important to note that CB1 receptors in GLAST-CB1R-KO mice are not only inactivated 
in astrocytes in V1 but in the entire brain. This could include the removal of CB1 receptors 
in dLGN. In the previous section, we demonstrated that thalamic synaptic inhibition is 
essential for OD plasticity in both dLGN and V158. Therefore, the CTC network may also 
contribute to the OD plasticity deficit in mice lacking astrocytic CB1 receptors. However, 
given that in juvenile mice lacking thalamic synaptic inhibition, OD plasticity in V1 is 
unaffected during the first 3 days of monocular deprivation58, while in mice lacking 
astrocytic CB1 receptors the deficit is already present during that period, it is unlikely that 
the reduction of thalamic inhibition is the primary cause of this plasticity deficit. 
 
Neural plasticity, CB1 receptors and schizophrenia 
 
Previous studies have shown that structural and functional changes in the brain can occur 
before the onset of symptoms of schizophrenia. Schizophrenia typically begins in late 
adolescence and these changes may be a result of pathological neurodevelopmental 
processes that can lead to psychotic symptoms during adolescence or young adulthood59.  
 
Adolescence is a critical period in brain development, characterized by fast functional and 
structural changes. During this time, there is significant synapse pruning, reduction in gray 
matter, and enhanced myelination in the human frontal brain60. Long-term MRI studies 

  

We observed that in KO mice lacking thalamic synaptic inhibition, dLGN responses to the 
ipsilateral eye were selectively reduced upon silencing of V1. This suggests that V1 
feedback predominantly strengthens dLGN responses to the ipsilateral eye in these mice.  
A possible explanation for this is that V1 does not only receive ipsilateral eye input directly 
from dLGN, but also indirectly through callosal connections from contralateral V1. These 
two sources of ipsilateral eye inputs to V1 may result in relatively stronger ipsilateral eye 
feedback to dLGN. With reduced inhibition in dLGN, the effect of V1 silencing may thus 
affect ipsilateral eye responses in dLGN than responses to the contralateral eye. 
 
Interestingly, during the critical period, we do find an effect of V1 feedback on the OD shift 
in dLGN. Like in adult KO mice, silencing V1 predominantly affects dLGN responses to the 
ipsilateral eye. Possibly, during the critical period, inhibition in dLGN is weaker (like it is in 
V1).  Notably, an experience-dependent retinogeniculate refinement also takes place in 
this period, resulting in the reduction of the number of retinal ganglion cells providing 
inputs to each dLGN TC cell44–46. This process also depends on V1 feedback46,47 and may 
thus involve the same plasticity mechanisms. If silencing feedback from V1 has an acute 
effect on binocular responses in dLGN during the critical period, it may have a larger effect 
on OD plasticity in dLGN when silenced during the entire process. Future research may 
reveal the importance of recurrent activity in the CTC loop during developmental plasticity.  
 
In conclusion, these results show that the CTC system is much more important for 
plasticity in the adult and developing cortex than anticipated. This may have important 
consequences for understanding developmental disorders, as observed changes in 
cortical organization, function or plasticity may have a thalamic origin and reversely, 
deficits in thalamic organization may a cortical origin.  
 
Astrocyte CB1 regulates plasticity in V1 
 
In Chapter 5, we investigated how CB1 receptors on astrocytes affect critical period 
regulation and plasticity in V1. Because maturation of inhibitory innervation is one of the 
key factors regulating the onset and closure of the critical period48–51, we first measured 
the IPSCs from L2/3 pyramidal neurons and found that inhibitory synaptic maturation 
requires astrocytic CB1 receptors but not interneuron CB1 receptors. We discovered that 
the absence of astrocytic CB1 receptors did not affect endocannabinoid-mediated long-
term depression (iLTD). This is surprising as it is generally believed that the changes in 
synaptic transmission that were absent in mice lacking astrocytic CB1Rs might be 
mediated through iLTD52,53. A possible explanation is that CB1R deficiency in our mice was 



Chapter 6

178   

reduction during late adolescence (even lower than childhood level), suggesting that 
cortical networks might reorganize during the transition from adolescence to adulthood71. 
Researchers suggest that cortical networks increasingly express high-frequency 
oscillations along with enhanced long-range synchronization between different regions 
during the adolescent period72. All these studies indicate that the brain goes through a 
process of functional and anatomical restructuring from adolescence to adulthood. 
Notably, while these rapid changes are crucial for proper brain function in adulthood, they 
may also make adolescents more vulnerable to psychotic disorders73. 
 
During adolescence, the normal development of neural synchrony and cortical networks 
can be disrupted by various pathological changes. For instance, increased myelination 
during adolescence can decrease conduction times and reduce the response latency74.  
Thus, abnormal development of white matter pathways can impair the synchrony of 
neural activity72. Additionally, aberrant pruning during this stage may increase synchrony, 
leading to pathological coactivation of different brain regions and the development of 
psychotic symptoms75. Finally, abnormal modifications in GABAergic neurotransmission 
can be a potential pathological factor. The increase in gamma oscillations during the 
transition from adolescence to adulthood, which is closely linked with perceptual and 
cognitive processes, is likely due to changes in GABAa receptor composition76. Therefore, 
alterations to the GABAergic system during adolescence could potentially affect normal 
maturation and neural synchrony. 
 
Endocannabinoids are imortant for normal brain maturation during adolescence and may 
also be involved in the developpment of schizophrenia. Adolescent tetrahydrocannabinol 
(THC) exposure will significantly impact CB1R expression and functionality. Previous 
studies demonstrated that high doses of THC decrease CB1R levels in PFC, striatum, 
hippocampus and thalamus in rat77. CB1Rs are widely distributed presynaptically and the 
activation of endocannabinoids can affect both glutamatergic and GABAergic synapses78. 
In rats, chronic exposure to THC significantly downregulates GAD67 in PFC, the enzyme 
for GABA synthesis, which could reduce GABAergic level in adulthood79. THC exposure 
during adolescence could also increase the expression of multiple glutamatergic receptors 
in PFC, such as NMDA receptor subunits GluN2A and GluN2B, and the AMPA receptor 
GluA1 subunit in rats80,81. Notably, these changes can lead to maturation issues in 
adulthood. For example, GluN2B expression, which normally declines from adolescence 
into adulthood, remains high due to earlier THC exposure. Moreover, rat adolescent THC 
exposure also reduces endocannabinoid- mediated LTD in PFC layer 5 pyramidal cells82 
and reduces dendritic spines and arborizations in layer 2/3 pyramidal neurons even after 

  

have shown that while gray matter volumes rise during childhood, they begin to fall in the 
cortex during human adolescence61. 
 
Neurotransmitter systems, including GABAergic and glutamatergic transmission, also 
undergo substantial structural alterations, particularly in the frontal lobe. For instance, in 
the primate GABAergic system, the density of PV-positive axons of basket neurons steadily 
increases in the cortex62. Additionally, mRNAs encoding GABAa receptor α1 and α2 
subunits in both human and primate dorsolateral prefrontal cortex (DLPFC) exhibit 
opposite trajectories, with α1 levels increasing and α2 decreasing63. This could be 
functionally significant, as increased α1 subunit expression is important for generating 
gamma oscillations in the cortex, which are associated with working memory and 
perception64. 
 
In the glutamatergic circuit, the expression of NMDAR subunit GluN3A, which plays a 
crucial role in unitary NMDAR current conductance, decreases from childhood to 
adulthood in the human prefrontal cortex65. Moreover, previous in vitro mouse studies 
have shown that the frequency of excitatory postsynaptic currents (EPSCs) on pyramidal 
output neurons remains relatively stable from adolescence to adulthood in prefrontal 
cortex (PFC). However, inhibitory postsynaptic currents (IPSCs) increase sharply during 
this period66. 
 
Furthermore, research on mouse models of sensory systems has demonstrated that the 
maturation of the GABAergic inhibitory circuitry is the key to the onset of the critical 
period. Taken together, the studies underscore the rapid increase in GABAergic 
innervation of PFC from adolescence to adulthood, possibly leading to a reduction in the 
general excitation: inhibition (E: I) ratio67. This, in turn, may eventually result in an increase 
in the signal-to-noise ratio by suppressing spontaneous activity68 and triggering the onset 
of the critical period. 
 
Besides these anatomical changes, functional maturation of neural oscillations and 
synchrony also occurs during this period. For example, changes in resting-state oscillatory 
activity are well known to occur between adolescence and adulthood69,70. In adult cortex, 
resting-state activity is characterized by alpha oscillations and attenuated low and high 
frequencies. However, in adolescence, the amplitudes in the delta and theta band are 
reduced, while alpha and beta range are more prominent69,70. Also, in perception-related 
tasks, like the Mooney faces test, the phase synchrony of gamma band oscillations 
increases gradually from early childhood to adulthood. However, there is a substantial 
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low-dose THC exposure83. This evidence suggests that adolescent THC exposure could lead 
to deficits in maturation and pruning. These adolescent THC-induced alterations could 
impact the excitatory-inhibitory balance and affect signal-to-noise ratio and may underlie 
psychotic events. Notably, previous work demonstrated that the activation of GABAa 
receptors in PFC can reverse psychotic behavior  induced by THC in rat79. This might 
indicate the link between CB1 receptor and schizophrenia could be mediated by the 
GABAergic system.  
 
Although there is not enough direct cellular evidence to link deficits in CB1R-mediated 
changes in inhibition with psychotic disorders, many studies indicate that GABAergic 
dysfunction might be related to schizophrenia. For example, in schizophrenia patients, 
decreased GAD67 mRNA is observed in PV neurons in PFC84. Mice with a homozygous 
deletion of the Gad67 gene in PV neurons or a heterozygous deletion in cortical and 
hippocampal interneurons show schizophrenia-like negative symptoms and reduced 
inhibitory synaptic transmission85,86. The concentration of GABA in the cerebrospinal fluid 
is also significantly reduced in patients experiencing their first episode of schizophrenia87.  
 
Until now, it is difficult to tell whether all schizophrenia symptoms are consequences of 
one decisive factor, but based on all evidence above and my research in this thesis, 
schizophrenia could result from an abnormal inhibition-excitation balance. This imbalance 
could start with CB1-related maturation deficits of the GABAergic system, as we described 
in Chapter 5, which may lead to impairment of neural plasticity and pruning during 
development. It may become further aggravated to abnormal network connectivity and 
deficits in information transfer in perception, as we mentioned in Chapter 3. Eventually, 
all these structural and functional disturbances are behaviorally presented as 
schizophrenia symptoms. 
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Summary 
 
The work presented in this thesis aimed at investigating the function and mechanism of 
corticothalamic-thalamocortical network in schizophrenia and experience-dependent 
plasticity, further discussed their possible connection. 
 
In Chapter 2, we investigated the effects of ketamine on the corticothalamic circuit (CTC) 
system. The study found that a low dose of ketamine caused a decrease in spindle activity 
in the CTC system and an increase in gamma and higher frequency oscillations. These 
activity patterns are similar to those seen during natural REM sleep and may be 
interpreted as a pathological REM-sleep-like arousal level. The study also found that 
ketamine caused thalamic neurons to switch from burst-firing to tonic AP firing, which 
possibly disrupted the firing mode of these neurons and caused deficits in spindle 
oscillation. This effect may be caused by the less hyperpolarized membrane potential of 
the neurons, which keeps the T-type calcium channels in an inactivated state. 
Furthermore, the study suggests that the sustained thalamic gamma hyperactivity 
induced by ketamine may be an indirect effect caused by disinhibition of cortical neurons 
innervating both thalamic reticular nucleus (TRN) and thalamocortical (TC) cells. Overall, 
the study concludes that ketamine can induce changes in arousal levels and decrease 
spindle activity, possibly due to changes in the firing pattern in the CTC system. 
 
In Chapter 3, we investigated the effects of ketamine on the late stage of sensory 
responses during sedation. The study found that ketamine increased the baseline thalamic 
beta and gamma oscillatory activity while decreasing the sensory-induced gamma and 
beta activity. The disruption of sensory information induced by ketamine may be long-
lasting and impair sensory information processing dude to low signal noise ratio. The study 
used multi-scale entropy (MSE) analysis to quantify changes in information and found that 
neural activity in VPM and layer 6 somatosensory cortex exhibited increased complexity 
following ketamine administration. This result may indicate that information transfer is 
less efficient due to higher noise levels in the system. Additionally, ketamine reduced 
functional connectivity between layer 6 and VPM. The abnormal late-stage activity 
observed in the study may reflect deficits in post-inhibitory rebound activity caused by 
abnormal burst firing.  
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NEDERLANDSE SAMENVATTING  
 
Het werk dat in dit proefschrift wordt gepresenteerd is gericht op het onderzoeken van 
de functies en het mechanismen van het corticothalamus-thalamocorticale netwerk in 
schizofrenie en ervaringsafhankelijke plasticiteit, waarbij hun mogelijke verband verder 
wordt besproken. 
 
In hoofdstuk 2 onderzochten we de effecten van ketamine op het corticothalamus circuit 
(CTC) systeem. Uit het onderzoek bleek dat een lage dosis ketamine een afname van de 
spindelactiviteit in het CTC-systeem en een toename van gamma- en hogerfrequente 
oscillaties veroorzaakt. Deze activiteitspatronen zijn vergelijkbaar met die tijdens de 
natuurlijke REM-slaap en kunnen worden geïnterpreteerd als een pathologisch REM-
slaap-achtig alertheidsniveau. Uit het onderzoek bleek ook dat ketamine ervoor zorgt dat 
thalamische neuronen van burst-vuren overschakelen naar tonisch aktiepotentiaal (AP)-
vuren. Mogelijk verstoort dit de vuurpatronen van deze neuronen veroorzaakt het een 
afname van spindeloscillaties. Deze effecten zijn mogelijk het gevolg van een minder 
gehyperpolariseerde membraanpotentiaal van de neuronen, waardoor de T-type 
calciumkanalen in een geïnactiveerde toestand blijven. Verder suggereert het onderzoek 
dat de aanhoudende thalamus gamma hyperactiviteit geïnduceerd door ketamine, een 
indirect effect kan zijn, veroorzaakt door disinhibitie van corticale neuronen die zowel de 
thalamus reticulaire nucleus (TRN) als thalamocorticale (TC) cellen innerveren. Over het 
geheel genomen concludeert het onderzoek dat ketamine veranderingen in 
alertheidsniveaus kan induceren en spindelactiviteit kan verminderen, mogelijk door 
veranderingen in het vuurpatroon van het CTC-systeem. 
 
In hoofdstuk 3 onderzochten we de effecten van ketamine op de late fase van sensorische 
reacties tijdens sedatie. Uit het onderzoek bleek dat ketamine de baseline thalamus bèta- 
en gamma-oscillatoire activiteit verhoogt, terwijl het de sensorisch-geïnduceerde gamma- 
en bèta-activiteit vermindert. De verstoring van sensorische informatie veroorzaakt door 
ketamine kan langdurig zijn en de sensorische informatieverwerking schaden door een 
lage signaalruisverhouding. Voor het onderzoek werd gebruik gemaakt van multischaal 
entropie (MSE) analyse om veranderingen in informatie te kwantificeren. Dit maakte 
duidelijk dat neurale activiteit in de ventrale posteromediale kern van de thalamus (VPM) 
en in laag 6 van de somatosensorische cortex een verhoogde complexiteit vertoonde na 
toediening van ketamine. Dit resultaat kan erop wijzen dat informatieoverdracht minder 

  

In Chapter 4, we discussed the role of thalamic synaptic inhibition in regulating ocular 
dominance (OD) plasticity in the dLGN and V1 of adult mice. We found that thalamic 
synaptic inhibition is crucial for OD plasticity, and its absence possibly causes changes in 
the firing properties of thalamic neurons, affecting spike-timing dependent plasticity in 
both dLGN and V1. We also studied how corticothalamic (CT) feedback affected thalamic 
OD plasticity and found that silencing primary visual cortex (V1) did not affect the OD shift 
in dLGN of adult mice, although it did have an effect during the critical period. We suggest 
that these findings have important implications for understanding developmental 
disorders as changes in cortical organization, function, or plasticity may have a thalamic 
origin, and deficits in thalamic organization may have a cortical origin. 
 
In Chapter 5, studied how CB1 receptors on astrocytes affect critical period regulation and 
plasticity in the primary visual cortex (V1). We found that astrocytic CB1 receptors are 
necessary for inhibitory synaptic maturation in L2/3 pyramidal neurons, which is an 
important factor in regulating the onset and closure of the critical period. The absence of 
astrocytic CB1 receptors surprisingly did not affect endocannabinoid-mediated long-term 
depression (iLTD). We also demonstrated that CB1 receptors in astrocytes, but not in 
interneurons, are necessary for ocular dominance (OD) plasticity in V1. Animals lacking 
astrocytic CB1 receptors exhibited reduced plasticity in all layers of V1. We concluded the 
early CB1R removal from astrocytes affects OD plasticity in all layers by interfering with 
the development of inhibitory synapses, which is required for critical period opening. 
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Résumé étendu en français 
Le travail présenté dans ce mémoire consistait à étudier avec des modèles murins les 

propriétés fonctionnelles et dysfonctionnelles du circuit cortico-thalamo-cortical (CTC) afin de 

comprendre certains aspects des mécanismes qui sous-tendent la schizophrénie (Strasbourg) 

ainsi que la plasticité neuronale dépendante de l'expérience visuelle (Amsterdam). Leurs 

possible liens sont discutés.  

Dans les troubles psychotiques, comme la schizophrénie, sont fréquents des troubles du 

sommeil, des comportements anormaux, des déficits cognitifs, des anomalies moléculaires et 

génétiques et des oscillations neurales aberrantes (ou oscillopathies). Par exemple, les 

oscillations électro-encéphalographiques ou EEG du sommeil (fuseaux et ondes delta) sont 

diminuées. Les oscillations neurales sont des électro-biomarqueurs de l'état de connectivité 

au sein de systèmes hautement distribués, qui incluent les voies corticothalamiques (CT) et 

thalamocorticales (TC). Les oscillopathies peuvent être enregistrées dès la phase 

prodromique. Grâce à ses propriétés bioélectriques de type oscillatoire, le thalamus joue un 

rôle central dans le processus et le transfert d'informations spécifiques (sensorielles et 

motrices) et contextuelles lors des traitements sensori-moteurs, cognitifs et émotionnels 

ascendants et descendants (connexions fonctionnelles mutuelles entre les structures 

corticales et sous-corticales). Le traitement et le transfert des informations sont affectés dans 

la maladie. La plasticité corticale visuelle est, elle-aussi, altérée. De nombreuses évidences 

cliniques et expérimentales s'accumulent au fil des ans soutenant à la fois l'implication du 

thalamus et des transmissions glutamatergiques (récepteurs au glutamate de type NMDA) et 

GABAergiques dans les troubles psychiatriques et la plasticité neuronale. Les modèles 

pharmacologiques et génétiques de l'antagonisme des récepteurs NMDA reproduisent les 

symptômes et les oscillopathies enregistrés chez les patients psychiatriques. Une 

administration systémique unique à une dose subanesthésique de kétamine, un antagoniste 

non compétitif des récepteurs NMDA du glutamate, reproduit transitoirement, chez l’homme 

et le rongeur, les oscillopathies avec un tableau clinique rappelant la transition psychotique. 

Un tel modèle pharmacologique aigu pourrait aider la recherche et le développement de 

traitements innovants chez des patients avec un état mental à haut risque vers une conversion 

psychotique.  



  

Chapitre 2 : En combinant des enregistrements EEG et cellulaires durant le sommeil à ondes 

lentes chez le rat adulte, nous avons étudié l’effet psychotomimétique de la kétamine sur les 

réponses du circuit CTC à une stimulation sensorielle. Une dose subanesthésique de kétamine 

entraîne une diminution des fuseaux EEG du sommeil et une augmentation de la puissance 

des oscillations gamma (30-80 Hz) et des oscillations à plus haute fréquence. Ces patrons 

d'activités rapides (hyperactivité gamma) et persistant rappellent ceux observés dans la 

schizophrénie ainsi que ceux associés au sommeil paradoxal naturel. Parallèlement, la 

kétamine change le mode de décharge des neurones thalamiques, du mode courte (20-30 ms) 

rafale à haute fréquence (200-500ms) (mode phasique) de potentiels d’action au mode 

potentiel d’action isolé (mode tonique et irrégulier). Cet effet est dû à une variation du 

potentiel de membrane qui devient moins hyperpolarisé sous l’influence de la kétamine. En 

effet, l’hyperpolarisation (< -60 mV), naturellement très dominante durant le sommeil, dé-

inactive les courants calciques de type T qui sont à l’origine du mode phasique. Cette 

hyperactivité gamma thalamique persistante induite par la kétamine pourrait être un effet 

indirect causé par la désinhibition des neurones CT qui innervent à la fois les neurones 

GABAergiques du noyau réticulaire thalamique (TRN) et les neurones TC glutamatergiques. 

Ces résultats soutiennent l'hypothèse selon laquelle un hypofonctionnement des récepteurs 

NMDA est impliqué dans la réduction des oscillations du sommeil (fuseaux et oscillations 

delta) observée dans la schizophrénie. La conversion rapide induite par la kétamine des 

activités TC-TRN impliquerait à la fois le système réticulaire ascendant et la voie CT.  

  

Chapitre 3 : Dès la phase prodromique de la schizophrénie, les déficits de perception 

sensorielle observés sont associés à une réduction de la synchronisation de phase des 

oscillations dans la large bande de fréquence bêta-gamma (20-60 Hz). Cela suggère une 

diminution en puissance des oscillations induites par une stimulation sensorielle durant la 

période tardive (> 200 ms), celle qui est associée au processus perceptuel. De nombreuses 

observations indiquent une diminution des oscillations bêta-gamma induites chez les individus 

présentant un état mental cliniquement à risque de transition vers la psychose. La diminution 

de la puissance et de la synchronisation des oscillations gamma induites par une tâche 



cognitive ou une stimulation sensorielle peuvent être dues à l'amplification anormale des 

oscillations gamma basales (ou spontanées) enregistrées chez ces patients. En effet, dans 

notre modèle kétamine murin, les oscillations bêta-gamma évoquées à courte latence (< 100 

ms, ou précoces) par une stimulation sensorielle diminuent alors que les oscillations gamma 

spontanées – survenant plusieurs secondes avant ou après toute stimulation sensorielle - 

augmentent, confortant l'hypothèse d'une réduction du rapport signal (réponse)/bruit 

(oscillations basales). Ces résultats soutiennent l'hypothèse selon laquelle le 

dysfonctionnement du réseau CTC induit par la kétamine entraîne un brouillage de 

l'information sensorielle.  

C’est pourquoi nous avons étudié les effets du blocage des récepteurs NMDA par la kétamine 

au sein du système CTC sur les oscillations bêta-gamma induites, c’est-à-dire tardives 

(survenant 200 à 700 ms après une stimulation sensorielle). Les oscillations gamma induites 

étaient enregistrées chez des rats légèrement anesthésiés. Dans ces conditions, des 

enregistrements EEG étaient combinés avec des enregistrements extracellulaires multisites 

(cortex et thalamus) au sein du système somatosensoriel (vibrisses). L'analyse spectrale et la 

cohérence de connectivité ont été utilisées pour estimer, respectivement, le niveau de 

synchronisation et la connectivité fonctionnelle entre les sites d'enregistrement. La mesure 

de cohérence montre le niveau de synchronisation entre deux signaux en fonction de la 

cohérence de phase. Les signaux EEG et extracellulaires sont relativement complexes car ils 

sont générés par plusieurs oscillateurs corticaux et sous-corticaux en interaction. La 

complexité de ces signaux, liée aux aspects fonctionnels des réseaux neuronaux 

correspondants, peut être évaluée avec des analyses non linéaires telles que l'analyse 

entropique multi-échelle (MSE). La MSE a déjà été appliquée à l'EEG de patients 

psychiatriques. Une MSE plus élevé indique une augmentation de la complexité des signaux 

variant dans le temps, suggérant ainsi des perturbations dans la connectivité temporelle 

durant les processus d'intégration temporelle au sein des circuits hautement distribués 

comme les systèmes CTC. Ainsi, pour tenter de mesurer la complexité dynamique du système 

TC à plusieurs échelles de temps, la MSE a été appliquée aux enregistrements extracellulaires. 

Nos résultats montrent que, dans le système somatosensoriel CTC, la kétamine augmentait de 

manière transitoire la puissance des oscillations gamma basale et diminuait les oscillations 

gamma induites par la stimulation sensorielle. En outre, elle perturbait la transférabilité des 



informations à la fois dans le thalamus somatosensoriel et dans le cortex associé et diminuait 

la connectivité TC dans la bande de fréquence bêta-gamma induite par le stimulus. En 

conclusion, nos résultats soutiennent l'hypothèse selon laquelle l'antagonisme des récepteurs 

NMDA perturbe le transfert d'informations associé à un processus perceptuel dans le système 

CTC somatosensoriel.   

  

Chapitre 4 : Dans le système visuel adulte, la plasticité dépendante de l'expérience est 

généralement considérée comme un processus cortical. La façon dont la plasticité dans le 

thalamus et le cortex interagit dans le système visuel adulte est mal comprise. Ici, nous avons 

exploré le rôle du réseau CT dans la plasticité dépendante de l'expérience. Nous cherchons à 

comprendre comment la plasticité dans le thalamus et le cortex interagit dans le système 

visuel adulte. Pour évaluer l'influence de la plasticité thalamique sur la plasticité de V1 (aire 

visuelle primaire) chez les animaux adultes, nous avons utilisé des enregistrements multi-

électrodes dans V1 et dans le dLGN (noyau thalamique visuel) chez des souris adultes WT et 

des souris KO à sous-unité GABA alpha1 thalamique. Nous avons également réduit au silence 

V1 pendant les enregistrements thalamiques pour étudier le rôle de V1 dans la plasticité 

thalamique de l'OD (dominance oculaire).  

C’est pourquoi nous avons examiné le rôle de l'inhibition synaptique thalamique dans la 

régulation de la plasticité de l’OD dans le dLGN et V1 de souris adultes. Nous avons mis en 

évidence que l'inhibition synaptique thalamique est cruciale pour la plasticité de l’OD et que 

son absence peut entraîner des changements dans les propriétés de déclenchement des 

neurones thalamiques, affectant la plasticité dépendante de la synchronisation des décharges 

à la fois dans le dLGN et dans V1. Nous avons également étudié comment le feedback (CT) 

affectait la plasticité thalamique de l'OD et nous avons constaté que la mise sous silence du 

cortex visuel primaire (V1) n'affectait pas le déplacement de l'OD dans le dLGN de souris 

adultes, bien qu'elle ait eu un effet pendant la période critique. Nous pensons que ces 

résultats ont des implications importantes pour la compréhension des troubles du 

développement, car les changements dans l'organisation, la fonction ou la plasticité corticale 

peuvent avoir une origine thalamique, et les déficits dans l'organisation thalamique peuvent 

avoir une origine corticale.  



  

Chapitre 5 : Les circuits neuronaux sont façonnés par l'expérience. Les endocannabinoïdes, 

par l'intermédiaire du récepteur cannabinoïde CB1 (CB1R), régulent plusieurs formes de 

plasticité neuronale. Dans le néocortex en cours de développement, les CB1R jouent un rôle 

clé dans la maturation des circuits inhibiteurs. Dans ce chapitre, nous étudions le rôle des 

endocannabinoïdes dans la plasticité neuronale dépendante de l'expérience. Des études 

antérieures ont mis en évidence le rôle inattendu des CB1R astrocytaires dans la plasticité. 

Nous examinons donc l'impact de la suppression des CB1R des interneurones ou des 

astrocytes pendant la période critique de la plasticité de l'OD dans V1. Afin d'explorer 

comment la perte des CB1Rs selon le type cellulaire affecte la maturation synaptique 

inhibitrice, nous évaluons la dynamique de la transmission à court terme et de la dépression 

à long terme dans des tranches de cerveau en phase aiguë. En outre, nous évaluons la 

plasticité OD par couche chez des souris avec et sans CB1R astrocytaires.  

Nous avons donc étudié comment les récepteurs CB1 des astrocytes affectent la régulation de 

la période critique et la plasticité dans V1. Nous avons découvert que les récepteurs CB1 

astrocytaires sont nécessaires à la maturation synaptique inhibitrice des neurones pyramidaux 

L2/3, ce qui est un facteur important dans la régulation du début et de la fin de la période 

critique. L'absence de récepteurs CB1 astrocytaires n'a étonnamment pas affecté la 

dépression à long terme médiée par les endocannabinoïdes. Nous avons également démontré 

que les récepteurs CB1 dans les astrocytes, mais pas dans les interneurones, sont nécessaires 

pour la plasticité de l’OD dans V1. Les animaux dépourvus de récepteurs CB1 astrocytaires 

présentent une plasticité réduite dans toutes les couches de V1. Ces résultats nous ammènent 

à conclure que l'élimination précoce des CB1R des astrocytes affecte la plasticité de la 

dominance oculaire dans toutes les couches en interférant avec le développement des 

synapses inhibitrices, ce qui est nécessaire pour l'ouverture de la période critique. 
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La symphonie thalamocorticale : comment le thalamus et le cortex s'accordent 
ensemble dans la schizophrénie et la plasticité 

 

Résumé 

La thèse explore la fonction et le mécanisme du réseau corticothalamique-thalamocortical dans la 
schizophrénie et la plasticité dépendante de l'expérience. Nos résultats révèlent que la kétamine induit 
des oscillations anormales dans le système CTC et des déficits de perception sensorielle dans la 
schizophrénie. Nous avons également exploré la plasticité dépendante de l'expérience, en soulignant 
le rôle de l'inhibition synaptique thalamique dans la plasticité de la dominance oculaire et l'influence 
de la rétroaction corticale. Nous avons étudié l'implication des récepteurs CB1 dans la maturation 
synaptique inhibitrice et la plasticité de la dominance oculaire dans le cortex visuel primaire. La 
discussion générale soulève la possibilité d'un lien entre la plasticité neuronale et la schizophrénie, en 
particulier pendant la phase de transformation de l'adolescence, lorsque le cerveau subit des 
changements significatifs. 

 

 

 

Résumé en anglais 

The thesis explores the function and mechanism of corticothalamic-thalamocortical network in 
schizophrenia and experience-dependent plasticity. Our findings reveal that ketamine induces 
abnormal oscillations in the CTC system and sensory perception deficits in schizophrenia. We also 
explored experience-dependent plasticity, highlighting the role of thalamic synaptic inhibition in ocular 
dominance plasticity and the influence of cortical feedback. We investigated the involvement of CB1 
receptors in inhibitory synaptic maturation and ocular dominance plasticity within the primary visual 
cortex. The general discussion raises the possibility of a link between neural plasticity and 
schizophrenia, particularly during the transformative phase of adolescence when the brain undergoes 
significant changes.  

 


