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Résumé

Cette these est consacrée au développement de techniques avancées d'apprentissage automa-
tique pour la modélisation des propriétés des molécules et des réactions. Le couplage de la
méthode d'apprentissage automatique multi-instances (MIL) avec les descripteurs 3D pharma-
cophoriques a permis de construire des modeles prédictifs prenant en compte l'ensemble des
conformations moléculaires. Cette approche 3D ne nécessite pas de sélection et d'alignement de
conformeres et a ét¢ validée dans les études de (i) la bioactivité des composés et (ii) 1'énanti-
osélectivité des catalyseurs organiques chiraux. Dans de nombreux cas, les modéles MIL multi-
conformationnelles 3D ont surpassé les approches classiques impliquant des descripteurs 2D
populaires. Dans la deuxiéme partie, un concept d'apprentissage automatique conjugué a été
introduit et appliqué a la modélisation des caractéristiques thermodynamiques et cinétiques des
réactions chimiques. L'apprentissage automatique conjugué intégre des équations fondamen-
tales avec des algorithmes d'apprentissage automatique, ce qui le distingue de 'apprentissage
multitache traditionnel ne capturant que la relation statistique entre les taches

Mots-clés : apprentissage multi-instances, modeles conjugués

Résumé en Anglais

This Ph.D. thesis is devoted to the development of advanced machine learning techniques for
the modeling of properties of molecules and reactions. Coupling the Multi-Instance machine
Learning (MIL) method with the pharmacophoric 3D descriptors enabled the construction of
predictive models accounting for an ensemble of molecular conformations. This 3D approach
does not require the selection and alignment of conformers and was validated in the case studies
of (i) the bioactivity of compounds and (ii) the enantioselectivity of chiral organic catalysts. In
many cases, 3D multi-conformation MIL models overperformed classical approaches involving
popular 2D descriptors. In the second part, a concept of conjugated machine learning was intro-
duced and applied to the modeling of thermodynamic and kinetic characteristics of reactions.
Conjugated machine learning integrates fundamental equations with machine learning algo-
rithms, which distinguishes it from traditional multi-task learning capturing only the statistical
relationship between the tasks.

Keywords: multi-instance learning, conjugated machine learning
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Résumé en francais

Introduction

Dans une modélisation « structure-propriété » classique, une molécule est encodée par des des-
cripteurs numériques qui sont corrélés avec la propriété cible a 1'aide d'algorithmes d'apprentissage
automatique. Une fois une corrélation acceptable établie, le modele obtenu peut étre utilisé pour
prédire les propriétés de nouvelles molécules qui n'ont pas encore été testées expérimentalement.
Il s'agit d'un protocole bien établi hérité de l'apprentissage automatique classique. Le but de cette
these de doctorat consiste a faire progresser la méthodologie de modélisation en mettant en ceuvre
de nouvelles techniques d'apprentissage automatique qui capturent mieux la complexité des sys-
témes chimiques (i) en tenant compte de conformations d'une molécule donnée, (ii) en reliant les

modeles statistiques a des équations cinétique et thermodynamique.

Partie |. Modélisation structure-propriété avec apprentissage automatique multi-instance

Par soucis de simplification, la modélisation « structure-propriété » a partir de structures 3D con-
cerne la représentation d’une molécule par un conformere unique (généralement le plus faible
énergie) encodé, a son tour, par un ensemble unique de descripteurs 3D. Cette pratique ignore donc
la nature dynamique des molécules — I’existence de conforméres multiples — qui, par conséquent,
n'est pas capturée dans les algorithmes d'apprentissage automatique. Cette approdimation n’est pas
nécessaire en utilidant 1’Apprentissage Automatique Multi-Instance (Multi-Instance Machine
Learning (MIL)) [1] (Figure I-1). Dans ce formalisme, un objet (molécule) est composé d’un en-
semble d'entités/instances qui le définissent simultanément (conformations, tautomeres, stéréoi-
someres, ¢tats de protonation, etc.). Ici, chaque conformeére est encodé par un vecteur de descrip-
teurs moléculaire 3D. Ainsi, les algorithmes MIL établissent une corrélation entre ces ensembles

et la valeur de la propriété a modéliser.

Single-instance learning Multi-instance leaming
Instance 1
ML o Instance 2 ML o
_> Model | —> Prediction @ —| Model | — Prediction
Instance N
(a) (b)

Figure I-1. Approche d’apprentissage par instance unique vs. approche d’apprentissage multi-instances.



Il a été¢ démontré [2] que la prise en compte de plusieurs conformeres a faible énergie MIL
apporte une solution au probléme de la modélisation QSAR en 3D : la sélection de conformeres
pertinents responsables de l'activité cible. L'approche 3D développée a été appliquée pour cons-
truire des modéles prédictifs de la bioactivité des molécules et de I'énantiosélectivité des cataly-

seurs organiques chiraux en synthése asymétrique.

I.I Modélisation d’activités biologiques a I'aide d'ensembles conformationnels

Une analyse comparative a grande échelle des approches de modélisation 2D et 3D a été réalisée
a l'aide de 175 jeux de données extraits de la base de données ChEMBL-23. Chaque ensemble de
données contenait un ensemble de molécules reliées a une constante de liaison expérimentale pKi
(bioactivité) mesurée par rapport a une cible particuliére. La taille des ensembles de données va-
riait de plusieurs centaines a plusieurs milliers de composés. Chaque ensemble de données a été
divisé au hasard en ensembles d'entrainement (pour la construction du modele) et de test (pour la

validation du mod¢le) dans une proportion de 80/20.
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Figure I.I-1. Les trois approches principales considérées dans cette étude pour modéliser la bioactivité : (a) L’approche
2D-QSAR traditionnelle, basée sur des descripteurs 2D, (b) ’approche 3D-QSAR, basée sur un conformere encodé
par des descripteurs 3D et (c) la nouvelle approche QSAR multi-instances basée sur de multiples conforméres encodés

avec des descripteurs 3D et des algorithmes d’apprentissage machine multi-instances.

Trois principales approches de modélisation ont été comparées (Figure I.I-1): une approche
classique a instance unique basée sur des descripteurs moléculaires 2D populaires (modele 2D);

une approche 3D mono-instance basée sur les conformeres de plus faible énergie (modele 3D



mono-conformére); et une approche multi-instances 3D basée sur plusieurs conformeres générés
(modele multi-conformeres 3D). Des signatures pharmacophores 3D [3] (package pmapper) ont
été utilisées comme descripteurs 3D. Chaque conformeére était représenté par un ensemble de ca-
ractéristiques pharmacophoriques (donneur/accepteur de liaison H, centre de la charge positive/né-
gative, hydrophobe et aromatique) déterminées en appliquant les définitions SMARTS correspon-

dantes.

Tableau 1. Performances des modéles 2D et 3D construits sur 139 jeux de test issus de la ChEMBL-23 : valeurs

moyennes et médianes du coefficient de détermination (R2res).

R?rest moyen R?1est médian
Modele 2D 0.39 0.45
Modg¢le 3D mono-conformere -0.01 0.04
Mode¢le 3D multi-conformeres 0.47 0.48

Tableau 2. Top-1 représente le nombre de jeux de données pour lesquels le modele était le meilleur. Top-2 est le
nombre de jeux de données ou le modele était en premier ou en second. Top-3 est le nombre de jeux de données ot le
modele était en premier, en second ou en 3° (nombre total de jeux de données ou au moins un modele a obtenu un

R27est > 0.4)

Top-1 Top-2 Top-3
Mode¢le 2D 50 136 139
Modele 3D mono-conformére 1 8 140
Modele 3D multi-conformeres 88 139 139
3D multi-conformer modes vs. 3D multi-conformer modes vs.
3D single-conformer models 2D models

oe|

/

: -0/ - -0
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Figure LI-2. Corrélation entre les valeurs de R’rey calculées pour les modeles 2D et 3D sur tous les 175 jeux de

données.



Tous les quadruplets possibles de caractéristiques d'un conformére particulier ont été¢ énumérés et
le nombre de signatures de quadruplets de pharmacophore 3D identiques a été¢ compté pour chaque
conformere, ce qui a donné un vecteur de descripteur constitu¢ de nombres entiers. Tous les mo-
deles ont été construits avec un réseau de neurones entierement connecté avec trois couches ca-
chées de 256, 128 et 64 neurones intégrant une fonction d'activation ReLU.

Par souci de clarté, 36 ensembles de données "non modélisables" pour lesquels aucun des
modeles 2D et 3D considérés n'avait un R%eq > 0.4 ont été exclus et 1'analyse a été effectuée sur la
base des 139 ensembles de données restants. Le Table 3 présente le R?1est moyen (coefficient de
détermination) des modeles 2D et 3D sur 139 ensembles de données filtrés. Le modéle 3D a un
seul conformére a montré de mauvaises performances (R2ress moyen=-0.01), ce qui peut s'expliquer
par le fait que le conformere de plus faible énergie pourrait différer considérablement du confor-
mere bioactif responsable de la bioactivité observée. Les performances du modele 3D augmentent
considérablement (R?rest moyen=0.47) dés que tous les conforméres générés disponibles sont in-
clus dans le modele multi-conformeres 3D, qui surpasse méme légérement les modeles 2D clas-
siques (R%rest moyen=0.39). Le modeéle multi-conforméres 3D a démontré avoir le R?req le plus
¢levé dans 63 % des ensembles de données (88 sur 139 ensembles de données) et le modéle 2D
était le meilleur dans 36 % des ensembles de données (50 sur 139 ensembles de données) (Figure

I.I-2, Tableau 2).

Aftention net algorithm | Lowest-energy conformer
Instance FCN
descriptors layers Instance Instance
representations embedding

.Instance 1

Instance 2 | Q
=4 . . .0 \O _, Bag
\M O/ prediction
*Instance N

FCN
layer

Experimental conformer

3D multi-conformer model

Experimental pKi: 7.42
Aliehtion;net 3D single-conformer model: pKi = 7.86, RMSD = 2.78 A
L 3D multi-conformer model: pKi = 7.41, RMSD = 1.55 A

(a) (b)

Figure 1.I-3. (a) Architecture de réseau de neurones multi-instances avec mécanisme d’attention ; (b) Structures 3D
du conformere extraites de la base de données PDB ainsi que la plus basse énergie et conforméres prédits par 1'algo-
rithme MIL.

Les modeles 3D multi-conformeres, construits avec le réseau de neurones avec mécanisme
d'attention (Figure 1.I-3a), permettent également d'identifier les conformeéres « bioactifs » les plus

pertinents. Pour l'illustrer, des structures 3D de ligands pour la cible CHEMBL2820 ont été ex-



traites de complexes protéine-ligand a partir de la base de données PDB. Ces conforméres expéri-
mentaux ont ét€¢ compares avec (i) ceux de plus basse énergie (calculés avec les champs de force
MMFF94s), (ii) une sélection aléatoire parmi tous les conformeres générés par mécanique molé-
culaire, (iii) ceux prédits par le réseau de neurones utilisant un mécanisme d'attention et (iv) ceux
obtenus avec le logiciel d’amarrage moléculaire AutoDock Vina. Les conformeéres de plus faible
énergie et d’amarrage moléculaire s’alignent correctement aux conformeres « bioactifs » pour 47%
des molécules, ce qui est encore moins bon qu’une sélection aléatoire (60%). Pour sa part, le mo-
dele multi-conforméres 3D identifie correctement les conformeéres bioactifs pour 80 % des molé-

cules (Figure 1.1-4).

all compounds challenging compounds

0.81
0.75
0.74

Te}
™~
o

CHEMBELZ2820 CHEMEI-LIIIZMB CHEMEI-LIIEE- CHEMBLA4802 CHEMBL2820 CHEMEL3048 CHEMBL335 CHEMBL4BOZ
[n=15) {n=5%9 {n=10) {n=25) (n=15) {n=25) (n=9) (n=16)
dataset

approach . 3DMIBag-AttentionMet . 3D/SUNet . docking . random choice

Figure 1.I-4. Identification des conformeres bioactifs parmi les composes du jeu de données de test pour 4 jeux de
données (n représente le nombre de composés). 3D/MI/Bag-AttentionNet est un modele 3D multi-conformeres cons-
truit avec des algorithmes dits « Bag-Attention net » et 3D/SI/Net est un modele mono-conformere. Challeging com-
pounds représente un sous-jeu de données des composés du jeu de données de test présentant un RMSD moyen entre
toutes les conformations générées et une conformation bioactive supérieur a 2 A. Le R%cy des modéles 3D/MI/Bag-
AttentionNet est de 0.49, 0.52, 0.74 et 0.55 pour les jeux de données CHEMBL2820, CHEMBL3048, CHEMBL335
and CHEMBL4802, respectivement.

Pour conclure, 1'approche de modélisation multi-conformeres 3D unifiée surpasse systéma-
tiquement 1'approche 3D a un seul conformere (la flexibilité conformationnelle est importante),
(i1) surpasse souvent I'approche 2D (l'information 3D est importante), et (iii) identifie potentielle-

ment les conformeres "bioactifs".
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I Modélisation de I'énantio-sélectivité d’un catalyseur a I'aide d'ensembles de conforméres

La synthése de composés €nantiomeriquement purs est un sujet majeur de la chimie organique
moderne, en raison de I'importance pratique de ces substances, particuliérement pour la production
des principes actifs de médicaments efficaces et stirs. En 2021, B. List et D. McMillan ont recu le
prix Nobel pour le développement d'organocatalyseurs asymétriques - de petites molécules chi-
rales capables de catalyser efficacement des réactions asymétriques. Des modéles d'apprentissage
automatique prédisant I'énantio-sélectivité permettent un criblage rapide des bibliothéques de ca-
talyseurs candidats, réduisant ainsi les ressources matérielles et humaines nécessaires pour décou-
vrir de nouveaux catalyseurs. Ici, 'approche multi-conformeres 3D a été appliquée pour dévelop-
per des modeles de prédiction de I'énantio-sélectivité des catalyseurs chiraux. Chaque catalyseur
était représenté par un ensemble de conforméres encodés avec des triplets d'atomes 3D (Figure
I.II-1a) a I'aide du package pmapper. Les transformations des réactions ont été transformées en un

graphe condensé de réaction (CGR) encodé avec des descripteurs de fragments ISIDA 2D (Figure
LII-1b).

/ Carbon Condensed Graph of Reaction
P g
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59 [::) y 1 3 1 3 1 3
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. ) s X R 2 R
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\ VU caon Ar Ar Ar
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Example CGR
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o |
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Figure 1.II-1. (a) Préparation de triplets 3D de descripteurs pour un conformere de catalyseur donné impliquant les
étapes suivantes : (1) génération de conformeres pour une structure de catalyseur 2D ; (2) sélection d'un conformére
de catalyseur 3D ; (3) énumération de triplets (la longueur de chaque aréte correspond a la partie entiére de la distance
par paire associée en A) ; et (4) calcul du nombre de triplets dans un conformére donné. (b) Addition de thiols aux
imines et graphe condensé de réaction (CGR) associé. Le CGR est une pseudo-molécule décrite a la fois par des
liaisons chimiques conventionnelles et des liaisons dynamiques décrivant des transformations chimiques. Des des-

cripteurs fragmentaux sont générés pour le CGR.
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L'application de quadruplets pharmacophoriques (H-donneur, H-accepteur, hydrophobes, ou
atomes chargés positivement ou négativement - descripteurs pmapper par défaut) permet d’enco-
der la configuration stéréo d'une molécule, ce qui garantit que deux énantiomeres d'une molécule
ont deux vecteurs de descripteurs différents. Dans un article précédent [4], il a été démontré qu'une
combinaison de quadruplets pharmacophoriques 3D et de MIL a conduit a générer des modeles
précis sur des données de catalyseurs a base d'acide phosphorique (PAC) (Figure LII-3a). Des
expériences supplémentaires ont montré que les triplets d'atomes réduisent considérablement le

nombre de descripteurs et conduisent a des performances encore meilleures que les quadruplets

1

d'atomes.
/ Catalyst encoding ‘\
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Figure L.II-2. Préparation des descripteurs qui encodent la combinaison des réactifs et des catalyseurs correspondants
dans I’approche de modélisation 3D. Une transformation de réactif est encodée par m descripteurs fragmentaires
CGR/ISIDA. Un catalyseur est représenté par N conforméres, chacun encodé par n descripteurs 3D pmapper. La
concaténation de m descripteurs 2D de réactifs et n descripteurs 3D de catalyseurs résulte en un ensemble de vecteurs
de taille (m+n). Au-dessus des fleches se trouvent les librairies Python 3 utilisées pour exécuter chaque étape du

protocole de modélisation.
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Figure 1.II-3. Exemple de réactions publiées (jeux de données) prises en considération pour la modélisation dans cette
étude : (a) I’addition asymétrique de thiols a des imines catalysée par des catalyseurs d’acide phosphorique chiral
(PAC) et (b) I’alkylation asymétrique de bases de Schiff dérivées de la glycine catalysée par des sels d'ammonium a

base d'alcaloide de quinquina.
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Des modeles 3D ont été générés avec des algorithmes MIL et comparés avec des modeles 2D
classiques et d'autres approches de 1’état de [’art. Une analyse comparative a été réalisée sur un
nouvel ensemble de données [5] sur I'énantio-sélectivité des catalyseurs a base d’acide phospho-
rique (PAC) pour la réaction d'addition asymétrique de thiols aux imines (Figure I.II-3a). Cet en-
semble de données concerne 1'énantio-sélectivité de 43 catalyseurs pour 25 combinaisons de réac-
tifs imine et thiol résultant en 43 x 25 = 1075 points de données. La concaténation de la réaction
CGR et des descripteurs de catalyseur dans le processus d’entrainement produit des modeles qui
peuvent étre utilisés dans différents scénarios (Tableau 3) pour la prédiction de (a) I'énantio-sélec-
tivité des réactions connues avec de nouveaux catalyseurs (certains catalyseurs étant exclus des
données d’entrainement), (b) I’énantio-sélectivité de nouvelles réactions pour des catalyseurs con-
nus (certaines réactions étant exclus des données d’entrainement), et (¢) 1’énantio-sélectivité de
nouvelles réactions avec de nouveaux catalyseurs (certains catalyseurs et réactions étant exclus
ensemble des données d’entrainement). Les modeles 2D et 3D générés ont également été comparés
a l'approche 3D dépendante de la conformation publiée par Denmark [5] et I'approche 2D publiée
par Glorius [6] et Miyao [7].

Tableau 3. Erreur Absolue Moyenne (MAE, kcal/mol) sur les prédictions de AAG, obtenue pour les ensembles de test

générés a partir de I’ensemble de données des catalyseurs a base d'acide phosphorique (PAC).

Test 3
Test 1 Test 2 Nouvelles
Mode¢le (descripteurs) Nouvelles  Nouveaux réactions et
réactions  catalyseurs nouveaux
catalyseurs
Approches  \oale 2D (ISIDA fragments) 0.15 0.27 0.30
développées
Modele 2D (CircuS fragments) 0.14 0.32 0.34
Modele 3D mono-conformere (Triplets d’atomes) 0.21 0.38 0.48
Modele 3D mono-conformere (Triplets d’atomes) 0.13 0.22 0.21
Approches Modg¢le 2D de Glorius (Empreintes MFFs)* 0.14 0.25 0.28
alternatives
publiées Mode¢le 2D de Miyao (Mol2vec) ** 0.13 0.34 0.40
Modele 2D de Miyao (ECFP6) ** 0.14 0.22 0.21
Modg¢le 3D mono-conformére (Dragon) ** 0.14 0.42 0.47
Mode¢le 3D mono-conformeére (MOE) ** 0.15 0.48 0.55
Modele 3D de Denmark modele dépendant du con- 016 0.21 0.24

formére (descripteurs ASO) ***

De fagon générale, I'approche multi-conformationnelle 3D surpasse les modeles 2D (Tableau 3)

dans la prédiction de I'énantio-sélectivité par de nouveaux catalyseurs — absents de l'ensemble
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d'apprentissage. Ce fait indique que les modeles bénéficient de I'informations 3D pour la prédiction

de I'énantio-sélectivité du catalyseur.

2D model (Morgan fingerprints) 3D single-conformer model 3D multi-conformer model
4 RPpg=-0.18 4 Repy=059 4 Ripy=074
- MAEq.s = 0.44 kcal/mol - MAE 145t = 0.26 kcal/mol - MAE 15t = 0.19 kcal/mol
£ £ E
T3 g R g3
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3 3 1 4 g !
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+ Test set o - Test set - Test set
1 1 2 3 4 A4 0 1 2 3 4 A 2 3 4
Observed AAG (kcal/mol) d Observed AAG (kcal/mol) ! Observed AAG (kcal/mol)
1 -1 -1
(a) (b) (c)

Figure LII-4. Performance des modéles 2D et 3D (Erreur Absolue Moyenne, MAE) sur un ensemble de données de

test comprenant des catalyseurs hautement sélectifs avec un excés énantiomérique > 80 %).

Afin d’examiner le potentiel des modéles a prédire les valeurs d'énantio-sélectivité au-dela
de I'ensemble d'apprentissage, 1'ensemble de données de 1075 réactions a été divisé en un ensemble
d'apprentissage de réactions avec un ee (exces énantiomérique) inférieur a 80 % (718 réactions) et
un ensemble de test de réactions hautement sélectives avec un ee supérieur a 80 % (357 réactions).
Les résultats ont montré que le modéle 2D ne parvient pas a extrapoler I’ee des catalyseurs haute-
ment sélectifs (Figure 1.1I-4) au-dela de 1'ensemble d'apprentissage, alors que le modéle multi-
conformeres 3D fournit des prédictions tres précises (MAETe=0.19 kcal/mol) et fonctionne encore
mieux que I’approche de Denmark (MAErte—=0.33 kcal/mol).

L'approche de modélisation 3D développée a également été appliquée a l'alkylation asymé-
trique de dérivés d'acides a-aminés catalysée par des catalyseurs a base d'alcaloides de quinquina
(Figure L.II-3b) publiée par Melville [8]. Melville et ses collegues ont proposé une approche basée
sur CoMFA 3D et ont rapporté un RMSE de 13,4 % sur les prédictions d'ee sur 18 catalyseurs de
test. Le modele 3D a conformere unique construit dans cette étude a obtenu des résultats considé-
rablement moins bons avec un RMSE de 18 %. L'inclusion de plusieurs conformeres de catalyseur
dans le modele multi-conforméres 3D a considérablement amélioré la précision de la prédiction
avec un RMSE de 8,8 % (Figure L.II-5¢) et a surpassé les modeles 2D entrainés avec ISIDA (RMSE
de 15,6 %, Figure 1.1I-5a) et CircuS (18,5 %, Figure LII-5b).
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2D model (ISIDA fragments): 2D madel (CircuS fragments): 3D multi-conformer model:
RMSE = 15.6 %, MAE (AAG) = 0.19 kcal/mol RMSE = 18.5 %, MAE (AAG) = 0.28 kcal/mol RMSE = 8.8 %, MAE (AAG) = 0.03 kcal/mol
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Figure L.II-5. Pourcentage de ee observe et prédit pour 18 catalyseurs de test & partir de I'ensemble de données APTC
: (a) *modele 3D-CoMFA vs modele 2D (fragments ISIDA), (b) *modele 3D-CoMFA vs modele 2D (fragments
CircuS) et (c) *Modele 3D-CoMFA vs modéle 3D multi-conformeres (triplets d’atomes). *Prédictions du modele 3D
CoMFA publiées par Melville [8].

Pour conclure, 1'approche 3D proposée a des performances comparables ou supérieures aux
autres approches 2D et 3D publiées, et présente plusieurs avantages. Le processus de construction
de modeles 3D est entierement automatisé et ne nécessite pas d'ajustement manuel (il ne nécessite
pas de sélection et d'alignement de conformeéres), et plus important encore, I'approche développée

est plus générale, c'est-a-dire applicable a différentes taches avec une grande diversité de structures
3D.

Partie Il. Modélisation structure-propriété avec apprentissage automatique conjugué

Les propriétés physicochimiques des molécules sont souvent liées par des relations cinétiques et
thermodynamiques. Dans ce contexte, il est important de s'assurer de la validité de ces relations
pour les propriétés prédites par les relations quantitatives structure-propriété (QSPR) individuelles
correspondantes. Cependant, en raison de la nature statistique des modeles QSPR et de I'impossi-
bilité de réduire les erreurs de prédiction a z€ro, la réalisation de cet objectif est assez improbable
méme si chaque propriété associée est prédite avec une précision raisonnable. Pour résoudre ce
probleme, le concept de modeles QSPR conjugués a été récemment introduit [9], concept dans
lequel les relations entre les propriétés sont explicitement intégrées dans I’algorithme d'apprentis-
sage automatique (Figure II-1). L'apprentissage automatique conjugué a ét€¢ mis en ceuvre a dans
les algorithmes de Régression Ridge (Ridge Regression - RR) et de Réseaux de Neurones (Neural

Network - NN) et appliqué (i) au probléme de la prédiction simultanée de la constante tautomeé-
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rique binaire et de 'acidité de tautomeres, (ii) a la prédiction des paramétres de I'équation d'Arrhe-
nius pour des réactions de cycloaddition et (iii) constante de sélectivité des réactions concurrentes

E2 and SN2.

e W A A
STATISTICAL LEARNING FUNDAMENTAL CHEMISTRY LAWS CONJUGATED LEARNING
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Figure II-1. Schéma conceptuel d’apprentissage machine conjugué pour le QSPR.

Dans la régression de créte ou Ridge Regression (RR), la caractéristique de réaction prédite
yPTed est calculée en multipliant les descripteurs de réaction X par le vecteur des poids de régres-

sion w:

ypred = Xw L.IT-a

Les poids de régression w sont estimés a l'aide de I'ensemble d'apprentissage et peuvent étre cal-

culés avec l'expression analytique :

w = (XTX + AD)~1xTyexp L.II-b

ou X and y®*P forment I'ensemble d'apprentissage des réactions associées aux valeurs expérimen-
tales de la caractéristique modélisée. L'hyperparametre A est un coefficient de régularisation con-
trolant la complexité du modele.

Les coefficients de régression w peuvent étre trouvés en minimisant la fonction de perte, qui
dans une régression de créte est la somme de l'erreur quadratique entre les variables observées

y©*P et prédites yP®? = xw et le terme de régularisation :

Loss = |ly®? — Xw||? + A|lw]|? L.II-c

La conception de fonctions de perte spéciales intégrées aux relations cinétiques et thermodyna-
miques fondamentales est a la base des méthodes d'apprentissage conjugué. Le processus de cons-

truction de modeles conjugués peut étre divisé en plusieurs étapes :
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1) Intégrer I'équation de la caractéristique principale en construisant une fonction de perte
basée sur une équation.

2) Combiner la fonction de perte basée sur une équation avec les fonctions de perte indivi-
duelles des caractéristiques connexes et les termes de régularisation de la complexité du modéle.

3) Calculer les poids de régression (parameétres) du modéle conjugué.
Les sections suivantes décrivent des exemples de construction de modeles conjugués pour les
équations de trois caractéristiques : la constante tautomerique, la vitesse de réaction et la constante

de sélectivité des réactions concurrentes.

[.I Modéles conjugués pour les équilibres tautomeériques

La tautomérie est I'un des phénomeénes les plus importants de la chimie organique et bioorganique.
Cela a conduit au développement d'approches informatiques pour énumérer les tautoméres pos-
sibles de composés chimiques, ainsi que pour évaluer la population de différentes formes tauto-

meres a 'équilibre en solution.

T ==Y

O O O OH
pKa(1) pKa(2)

Figure I1.I-1. Un exemple de tautomeres binaires provenant de cette étude

Dans le cas de la tautomérie prototrope (Figure I1.I-1), le logarithme de la constante tautomerique
(logK7), est égal a la différence entre les constantes d'acidité (pKa) des tautomeres correspondants

partageant un anion commun:

logKy = pKa(2) — pKa(1) ILL.I-a

Construction d’un modéle conjugué
1) Intégrer 1’équation de la caractéristique principale (logKr) en construisant la fonction de perte
basée sur 1'équation E.

Mod¢le individuel logK7:

exp

Erw) = |ly&® —y2red|” = |lye — xw]|* ILIb

Modele base sur 1’équation logKr:
logKy = pKa(2) —pKa(1) = yE™ = X,w — X,w = (X, — X)w I.I-c

2
Er(w) = |lye™ — y2e¢|” = [[yS% = (X, — X)w|| ILI-d
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2) Combiner la fonction de perte basée sur I'équation E; avec les fonctions de perte indivi-
duelles de la caractéristique associée (pKa of tautomers) et les termes de régularisation de la com-
plexité du modele :

Modgéle individuel pKa:

Eaw) = [ =33 = [y = xwll ILI-e

Modéle conjugué:

EWw) = aEr(W) + (1 — a)E,(w) + Allw||? ILI-f

ou o passe de 0 a 1 et controle le compromis entre la minimisation des erreurs de prédiction des
constantes tautomeriques et des constantes d'acidité.

3) Calculer les poids de régression (parametres) du modele conjugué

w=[a(X, = X)Xy — X)) + (1 — a)XTX + AU a X, = XD Ty ? + (1 — a)X Ty P ILI-g

Les poids de régression optimaux w (parametres) peuvent ¢galement étre trouves en utilisant la
méthode de descente de gradient.

Trois approches pour prédire le logKr et le pKa des tautomeéres ont été envisagées : (i) cons-
truire un modele avec un ensemble de données sur 2 371 pKa de molécules organiques pour prédire
le pKa des tautomeéres et calculer le logKr selon I'équation 1 ; (ii) construire un modele avec un
ensemble de données sur 639 réactions tautomeriques pour prédire directement le logKr et (iii)
construire un modele conjugué avec les deux ensembles de données pour prédire simultanément

le logKr et le pKa des tautomeéres pour une réaction donnée.

HiC CH, HyC CHy
togKr W 3 W
—_

PR » @ pe v oKL . 2 ©  Methanol, 25°C ° L
0) pKa(1) pKa(2) logKs
Shared:'eighls Shamd:cxghls Experimeni 11.78 11.13 .0.65

> —
Individual pKa model 9.38 4.79 -4.59
1 Individual logK; model 0.25 0.21 -0.40
' t Conjugated RR model .47 10.92 -0.25
@ —_— @ Adldiiy St Conjugated NN model 10.94 10.26 -0.67
dataset dataset
(a) (b)

Figure IL1.I-2. (a) architecture d'un réseau neuronal conjugué pour la prédiction simultanée du logKt de reaction et du
pKa des tautomeres; (b) valeurs expérimentales et prédites par différentes approches du logKt pour la réaction de

tautomérie céto-énol et pKa des tautomeéres correspondants.
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Pour illustrer les résultats, une réaction tautomerique avec un logKt=-0.65 expérimental, un
pKa(1) de 11.78 et un pKa(2)=11.13 mesurés dans les mémes conditions (méthanol, 25 °C) a été
choisie. L'acidité expérimentale de 1'énol pKa(2) a été¢ déduite de la formule pKa(2) = logKr +
pKa(1). Le mode¢le pKa individuel (Figure I1.I-2b) prédit avec précision le pKa de la cétone mais
ne parvient pas a prédire le pKa de 1'énol (car aucune donnée expérimentale sur les €nols n'est
disponible dans les données d’entrainement), ce qui conduit a une valeur calculée inexacte du
logKr en utilisant I’Equation LII-a. D'autre part, le modéle de logKr prédit bien le logKt mais le
pKa de la kétone et de 1’énol sont arbitraires (Figure II.I-2b). Le mode¢le conjugué RR (Ridge
Regression) prédit avec précision a la fois le pKa de la cétone et celui de I'énol, et un peu moins
bien le logKr de la réaction (Figure I1.I-2b). Le modele RR est intrins€quement linéaire ce qui ne
lui permet pas de s’ajuster finement sur chaque propriété impliquée dans 1’Equation LII-a. La non-
linéarité est apportée dans le modeéle NN conjugué (Figure I1.1-2a), ce qui conduit a des prédictions

plus précises du logKr (Figure ILI-2b).

[I.I Modeéles conjugués pour la cinétique de réaction
Une réaction chimique peut étre décrite quantitativement par des caractéristiques cinétiques telles
que la constante de vitesse (logk), le facteur pré-exponentiel (logA), et I'énergie d'activation (E,)

qui sont liées par 1'équation d'Arrhenius:

logk = logd — II.11-a

4
2.303RT

logK+
o) logA Y
N <
N L T £ ©7N>k|}1jo
7 W )
(0]

Figure IL.II-1. Un exemple de reaction de cycloaddition provenant de cette étude.

Le modele conjugué peut étre construit en intégrant 1'équation d'Arrhenius avec l'algorithme de

régression de créte :

logk = logd — =y = Xw, — TXwy ILII-b

Ey
2.303RT

Dans cette étude, un ensemble de données sur 1949 réactions de cycloaddition a été extrait
d'une publication précédente [10] et utilisé pour générer des modeles individuels, multitdiches et

conjugués pour la prédiction du logk, du logA de I’E, pour les réactions de cycloaddition. Des
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modeles individuels (a tache unique) ont été construits séparément pour chaque caractéristique,
tandis que le modele multitache a été entrainé en tenant compte des trois caractéristiques cinétiques
simultanément. L'apprentissage multitache peut améliorer la précision de la prédiction des carac-
téristiques modélisées lorsque les taches sont corrélées ou partagent certaines informations. Enfin,
les caractéristiques quantitatives des réactions sont souvent liées par des relations thermodyna-
miques qui peuvent étre incorporées dans des modeles conjugués. L'apprentissage conjugué utilise
toutes les données disponibles sur plusieurs taches et les intégre explicitement dans une relation
mathématique (ici, I’équation d'Arrhenius).

Les modéles conjugués ont été comparés a des modeles individuels entrainés indépendam-
ment pour prédire les parametres d'Arrhenius et des modeles multitaches, ou les parametres d'Ar-
rhenius ont été modélisés de maniere coopérative. Les performances des modeles conjugués, indi-
viduels et multitiches sont équivalentes (Tableau 4). Mais les modeles conjugués décrivent de
maniére beaucoup plus précise la dépendance a la température de la constante de vitesse des réac-
tions par rapport aux modeles individuels et multitdiches. En somme, les modeles conjugués ont
une meilleure stabilité pour extrapoler les constantes cinétiques des réactions a des températures
hors du domaine de valeurs exploré dans les données d’entrainement (températures extrémement

basses ou élevées) (Figure ILII-3).

/ Conjugated learning \

‘ ‘ Eé}r?d
/ Single-task learning \ / Multi-task learning \ logh?r? = logAP™®® ——pr

Iogkpred logApren Eapred [ogkpred ngApmd Enpred IOgApred Eﬂpy'ea

T T 1 N T A 11
[Model] [Model] [Model]
T 1 1 RN A1
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Figure IL.II-2. Approches de la modélisation des paramétres de I'équation d'Arrhenius. Dans l'apprentissage mono-
tache classique (I), chaque paramétre est modélisé indépendamment. L'apprentissage multi-tdches (II) ne considére
que la relation statistique entre les caractéristiques, tandis que l'apprentissage conjugué (III) intégre la relation mathé-

matique stricte (équation d'Arrhenius) entre elles avec un algorithme d'apprentissage automatique.
q q g pp g q
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Tableau 4. Coefficient de détermination (R?rest) des prédictions par des modeles individuels, multitiches et conjugués

des parametres de 1'équation d'Arrhenius & partir de l'ensemble de test.

logk logA Ea
Mode¢le individuel 0.78 0.46 0.91
Modeéle multitdches 0.76 0.48 0.83
Modele conjugué 0.75 0.57 0.90

Solvent boiling point (383.7K)

4.000

e 5 Max training T (373.1K) Solvent freezing point (178.1K)
Cycloaddition in toluene 3.000 |, $Min training T (282.5.1K)
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- Individual model
——Conjugated model

(a) (b)

Figure I1.II-3. Logk prédit et calculé avec I'équation expérimentale d'Arrhenius avec des modeles individuels et con-

jugués pour la réaction de cycloaddition a différentes températures dans le toluéne.

1.1l Modéles conjugués pour la constante de sélectivité les réactions E2/Sy 2 concurrentes
L'élimination bimoléculaire (E2) et la substitution nucléophile bimoléculaire (Sy2) sont des réac-

tions concurrentes conduisant a des produits différents (Figure ILIII-1).

e+ HOT O+ or

2
Cl 4+ o™~ o [E2] /[SN2]
W\
o SR g

Figure IL.III-1. Un exemple de réactions concurrentes E2 and Sn2 provenant de cette étude.

T

La constante de sélectivité log(E2/Sy2) des réactions concurrentes E2/Sy2 peut étre calculée

comme la différence entre les constantes de vitesse des réactions correspondantes.

log(E2/Sy2) = logkg, — logks,, IL.I1I-a

et peut étre intégrée a 'algorithme de régression de créte :

log(E2/Sy2) = logkg, — logks,, = yb** = Xwg — Xwg ILIII-b
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Trois types de modeles de prédiction de la constante de sélectivité ont été comparés : le
modele individuel, le modele a base d'équations et le modele conjugué. Les performances des
modeles sont rapportées dans le Tableau 5. Pour construire les modeles, un ensemble de données
de 1764 réactions E2, un ensemble de données de 5319 réactions Sy2 et un ensemble de données
sur les constantes de sélectivité pour 389 réactions E2/Sy2 ont été utilisés. L'ensemble de test
comprenait 100 réactions E2/Sy2 avec des valeurs expérimentales de logkg,, logks,, and
log(E2/Sy2). Le modeéle conjugué prédit la constante de sélectivité moins précisément que le
modele individuel standard de log(E2/Sy 2), mais prédit nettement mieux les vitesses de réaction

correspondantes des réactions E2 et Sy 2.

Tableau 5. Coefficient de détermination (R?rest) des prédictions par des modeéle individuel, le modéle a base d'équa-
tions et le modele conjugué des constantes de vitesse des réactions concurrentes E2 et Sy 2, et la constante de sélec-

tivité log(E2/Sy2) a partir de I'ensemble de test.

Approche Données de formation E2 Sy2 log(E2/Sy2)
Modele individuel logkp, 0.37 - -
Modeéle individuel logks,» - -0.11 -
Mode¢le individuel log(E2/Sy2) - - 0.89
Modeéle a base d'équations logkp, , logks,» 0.37 -0.11 -0.93
Modeéle conjugué logkg,, logks, », 10g(E2/Sy2) 0.60 0.31 0.72
Individual model Conjugated model
1.00 1.00

R?2=0.93

R?2=0.79

0.80

0.60

0.40

Predicted EZ2 yield
Predicted EZ2 yield

0.20

0.00
000 020 040 060 080 100 000 020 040 060 080 100
Experimental E2 yield Experimental E2 yield
(a) (b)

Figure ILIII-2.Valeurs expérimentales et prédites de la constante de vitesse logks,, pour 49 réactions de test.
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Conclusions

Une nouvelle méthodologie basée sur une combinaison d'approches d'apprentissage multi-instance
et de descripteurs 3D (pmapper) a été développée et appliquée avec succes a deux taches diffé-
rentes : la prédiction de la bioactivité de molécules organiques et 1'énantio-sélectivité de cataly-
seurs chiraux. Dans les deux taches, les modeles développés ont surpassé les modeles mono-tache
basés sur des descripteurs 2D. De plus, les modeles MIL sont capables de prédire a la fois I'activité
moléculaire et d'identifier les conformeres actifs. Le protocole de modélisation 3D entierement
automatisé a été écrit en Python 3. Le code source est disponible sur https://github.com/dzan-

kov/3D-MIL-QSAR et https://github.com/dzankov/3D-MIL-QSSR.

Le concept d'apprentissage automatique conjugué permet d’intégrer des lois thermodyna-
miques avec l'apprentissage automatique classique. Il a été appliqué a deux taches, chacune liée a
la modélisation prédictive de plusieurs propriétés physiques liées par des équations thermodyna-
miques: (i) constantes d'équilibre tautomérique/pKa et (2) parameétres de 1'équation d'Arrhenius.
Bien que la précision des prédictions des modeles conjugués soit comparable a celle de modeles
individuels, les modéles conjugués garantissent le respect des relations mathématiques entre les
propriétés modélisées. Le code du programme pour la construction de modeéles conjugués est dis-

ponible sur https://github.com/dzankov/CoLearn.
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Structure-property modeling
with advanced machine learning techniques

Introduction

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses on learning and
predicting from data. Machine learning is applied in finance, marketing, self-driving cars, social
media, language translation, healthcare, education, drug discovery, etc. Machine learning concepts
and methods often emerged as a way to solve specific problems from the real world. For example,
in 1989 LeCun [1] presented the first application of Convolutional Neural Networks (CNN) trained
with a backpropagation algorithm for the recognition of handwritten digits. CNN was inspired by
the visual nervous systems of living organisms and is based on such operations as feature extrac-
tion, pooling, and convolution. As a result, modern CNN architectures outperform humans in the
tasks of image recognition. In 1986, Rumelhart presented Recurrent Neural Networks (RNN) [2],
which were enhanced by the LSTM mechanism (Schmidhuber [3], 1997) and then by the attention
mechanism (Bahdanau [4], 2015). RNNs are successful in sequence modeling tasks such as text
classification, language translation, voice recognition, and DNA analysis. In 1997, Dietterich in-
troduced the concept of Multi-Instance machine Learning (MIL) [5], which deals with problems
where an object cannot be represented by a single instance and a single feature vector. This pivotal
work was motivated by the drug prediction problem, in which a compound can be represented by
multiple alternative conformations, and it is not known which conformation is responsible for the
observed bioactivity of a given compound. Dietterich proposed an Axis-Parallel Rectangles (APR)
approach to solving the MIL problem and demonstrated that addressing the MIL problem can
significantly increase the performance of predictive models. Since then, numerous MIL algorithms
have been developed and applied in various real-world tasks, such as computer vision, time series
analysis, text processing, bioinformatics, etc.

However, while MIL was first introduced for the drug activity prediction problem, it has
not become a popular approach in chemoinformatics and only a few papers on the application of
MIL to structure-activity modeling were known before this Ph.D. project. In this Ph.D. project, a
new 3D structure-property modeling approach was developed based on ensembles of molecular
conformations and multi-instance learning algorithms. This 3D approach does not require the se-
lection and alignment of conformers and can be applied to both classification and regression tasks.
Additionally, models obtained with the of this 3D approach not only predict molecular activity but

are also can identify some key conformations (for example, bioactive conformations) responsible
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for observed experimental values of the target property. The modeling protocol is written in Python
3 and is based only on free software packages and is fully automated, allowing the developed 3D
approach to be integrated into desktop or WEB applications for the automatic construction of pre-
dictive models. The developed approach was tested in the modeling of (i) the bioactivity of com-
pounds from the ChEMBL-23 database and (ii) the enantioselectivity of organic chiral catalysts in
asymmetric synthesis - these properties critically depend on the 3D structure of the molecule.

The second part of the thesis is devoted to the development of conjugated models, which
integrate thermodynamic and kinetic laws with machine learning algorithms. Some quantitative
characteristics of chemical reactions are related by mathematical equations (e.g., the Arrhenius
equation). In conjugated machine learning, such equation-related characteristics are embedded into
the machine learning algorithm, i.e., equation-based and individual models are algorithmically
combined into one conjugated model. As a result, conjugated models provide accurate predictions
of reaction characteristics that strictly satisfy fundamental equations. In such a way, the chemical
laws integrated with the machine learning algorithm act as a regularizer for predictive models. In
this research project, conjugated machine learning was applied to three types of reactions (and
equations): the tautomeric reactions (tautomeric equation), the cycloaddition reactions (Arrhenius
equation), and the competing E2/Sn2 reactions (selectivity equation).

This Ph.D. project contributes to the development of machine learning approaches that con-
sider the complexity of chemical objects (molecules) and processes (chemical reactions). Multi-
instance machine learning in combination with 3D descriptors allows the construction of 3D mod-
els, which does not require the selection and alignment of conformations. Conjugated QSPR mod-
els for predicting reaction characteristics are based on thermodynamic and kinetic laws, which

bridge chemistry with machine learning.
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Part 1. Multi-instance machine learning in chemoinformatics and
bioinformatics

Multi-Instance Learning (MIL) problem was formalized in 1997 and has since been successfully
applied in drug discovery (pharmacy), classification of text documents (information retrieval),
classification of images (computer vision), speaker identification (signal processing), bankruptcy
prediction (economy), etc. Although one of the first applications of MIL was drug activity predic-
tion, MIL has not become a popular approach in structure-activity modeling. On the other hand,
there are many examples of MIL applications to bioinformatics tasks for modeling interactions
between biological macromolecules such as proteins, DNA and RNA. However, there is still no
systematic review of MIL applications in chemoinformatics and bioinformatics. For this reason,
this review on the application of MIL to modeling the properties and functions of small molecules
(chemoinformatics) and biological macromolecules (bioinformatics) has been prepared. It also in-

cludes a description of the MIL framework, the type of tasks in MIL, and the MIL algorithms.

1.1 Introduction

The properties of chemical compounds are a function of their structure. Structure-property mod-
eling approaches apply special algorithms to extract the correct relationship between the structure
of the molecule and its properties. In the traditional structure-property modeling approaches each
molecule is encoded with a set of numerical chemical descriptors followed by the application of
special algorithms like machine learning algorithms to establish the correlation between de-
scriptors and the property values. One of the key limitations of traditional structure-property mod-
eling is the requirement that each molecule has to be represented by a single instance with a fixed
conformation, protonation state, tautomer, stereoconfiguration, etc. As a result, a molecule has to
be associated with a single vector of descriptors. However, a molecule is a dynamic object and
simultaneously exists in many forms/instances in equilibrium. This raises the problem of the se-
lection of the molecular form for structure-property modeling, as the actual molecular form re-
sponsible for the observed property is often unknown.

The same problem exists in the «structure-function» modeling of biological functions of
macromolecules (proteins, DNA and RNA). Biological macromolecules are sequences of “mono-
mers” (amino acids or nucleotides) and can interact each with other to perform various biological
functions. However, only particular subsequences/segments of a macromolecule of limited length

are responsible for the interaction between macromolecules, and experimental information on
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these key segments and their exact location often is not available. This also leads to the problem
of many alternative representations of the object, which is often neglected in traditional «structure-

function» modeling approaches.

Single-instance learning Multi-instance learning
Instance 1
ML o Instance 2 ML o
| Model | > Prediction @ —| Mode| | —> Prediction
Instance N

(a) (b)

Figure 1. Single-instance vs. multi-instance learning approach

The problem of the selection of relevant molecular forms in predictive modeling can be han-
dled by Multi-Instance machine Learning (MIL) [5]. The main idea of the MIL approach (Figure
1) is that an object can be represented as a set of alternative entities/instances, where each instance
is encoded with a single vector of features (descriptors). The label of the object is associated with
one or more entities/instances from the entire set, but it is not known which one. In the terminology
of MIL, the set of entities/instances of the object is called a bag. The task is to establish the corre-
lation between the bag of the instances and the label of the bag. In this context, traditional super-
vised learning, where an object is represented by a single vector of features can be attributed to
Single-Instance machine Learning (SIL). Within the MIL framework, a molecule can be repre-
sented by multiple instances simultaneously, that are processed by special MIL algorithms. Multi-
instance learning includes modeling techniques in which feature vectors representing instances of
an object are directly processed by multi-instance machine learning algorithms.

In conventional MIL, models generate the prediction for the bag, but it is also desirable to
identify labels of individual instances, especially labels of key instances that determine a label of
the whole bag. The Key Instance Detection (KID) problem was formulated in [6] and is more
challenging than the prediction of bag labels since not all MIL algorithms can solve the KID prob-
lem.

The MIL framework was formalized in the seminal paper of Dietterich and co-workers [16],
where they formalized the MIL problem and considered it in the context of the drug activity clas-
sification problem. In their study, each molecule was represented as a bag of conformations asso-
ciated with an activity label.

Although the first publication on MIL focused on the modeling of drug activity based on

ensembles of conformations, only a few papers on the application of MIL to structure-activity
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modeling have been published then [7—13]. As part of this Ph.D. project, a large-scale comparison
of MIL models based on an ensemble of conformations and traditional 2D models based on pop-
ular 2D descriptors was published for the task of modeling the bioactivity of compounds from 175
datasets extracted from the ChEMBL-23 database [12—14]. In another part of this Ph.D. project,
the first application of MIL for modeling the enantioselectivity of chiral organic catalysts in asym-
metric organic synthesis [15] is recently published. Another illustrative example is paper [16],
where molecules were represented by a bag of atoms (instances) for the modeling of the acidity of
compounds. In bioinformatics, MIL has attracted significantly more attention, because of a large
number of tasks [17-30] perfectly fitting the MIL framework.

Despite the attractiveness of the MIL approach, there is still no comprehensive review of the
application of MIL in modeling the properties and functions of molecules. This part of the Ph.D.
project provides a detailed description of MIL approaches and their applications. This review in-
cludes a description of the MIL framework and the main MIL algorithms, as well as examples of

MIL applications in chemoinformatics and bioinformatics.

1.2 Origins of multi-instance learning

The first examples of multi-instance problems were known before Dietterich’s seminal paper in
1997 [5]. The first examples of such projects concern chemical structure determination by mass
spectroscopy [31], phoneme recognition [32], recognition of handwritten characters [33], dynamic
reposing in drug activity prediction [34], and modeling DNA promoter sequences [35].

The application of MIL to solve a particular machine learning problem is conditioned by the
structure of the data. Multi-instance learning is a suitable learning framework in tasks where the
modeled object is difficult to represent with a single feature vector. The sort of problems, where
an object can exist in several alternative representations, can be attributed to polymorphism ambi-
guity (Figure 2). In structure-property modeling, this type of ambiguity arises when the molecule
can be represented by alternative instances, such as conformations, tautomers, protonation states,
etc. The wrong choice of the key molecular form can result in the poor performance of predictive
models. MIL is a suitable framework for this problem because it can handle all available instances
simultaneously.

Another problem where MIL is applicable is characterized by a part-to-whole ambiguity
when only one or several parts of a modeled object are responsible for its observed property. A

molecule can be represented as a set of connected atoms/instances and its physicochemical or
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biological properties are generally influenced by a single atom or group of atoms, and it is often
unknown which particular atom determines the observed molecule’s property [16].

Polymorphism Part-to-whole Segment-to-sequence
ambiguity ambiguity ambiguity

O.__OH o Ke,y .
& segment/instance @)

HO OH o | ~o O ©
OH o

Molecule Instances Molecule Instances

(@) (b) (©)

Figure 2. Types of ambiguity in molecule structure data: (a) polymorphism ambiguity, (b) part-to-whole ambiguity,

and (c¢) segment-to-sequence ambiguity.

MIL is also a quite popular modeling approach in bioinformatics, where modeled objects are
sequences, such as protein, DNA, and RNA. Often only a certain segment of the sequence is re-
sponsible for the function of the whole sequence, but the length and boundaries of such a segment
may be unknown. Consequently, biological sequences can be represented by multiple segments,
which can overlap with each other. Each segment of the sequence is an instance encoded with a
special feature vector. This type of problem can be attributed to segment-to-sequence ambiguity.

Other multi-instance problems include multi-multi-instance learning [36], multi-instance
multi-label learning [37], key instance detection in multi-instance learning [6], multi-instance clus-
tering [38], multi-instance ranking [39]. Comprehensive reviews of the MIL concept and its appli-

cations can also be found in [40—47].

1.3 Multi-instance learning algorithms

The growing number of MIL algorithms requires their systematization. This review follows a cat-
egorization of algorithms similar to [44] (other types of categorization of MI algorithms are de-
scribed in [42,45,48,49]) and distinguishes two major groups of MIL algorithms: instance-based
and bag-based algorithms. Instance-based algorithms consider each instance as a separate training
object and generate predictions for each instance in the bag, and then apply a predefined rule to
aggregate the instance predictions to obtain a prediction for the entire bag.

In contrast to instance-based algorithms, bag-based algorithms consider the whole bag as

a training object and do not explicitly provide predictions for individual instances. The bag-level
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algorithms consider the bag as a whole object and define the distance between bags [50], bag

kernels [51], bag dissimilarities [52] or explicitly pooling operators.

Naive MIL algorithms

Naive MIL algorithms such as wrappers transform multi-instance data into single-instance repre-
sentation and apply a traditional machine learning algorithm to train the model. Following the
chosen categorization of MIL algorithms, there are two types of wrapper algorithms: instance-
based and bag-based wrapper algorithms (Figure 3).

In Instance-Wrapper (Figure 3a) each training instance of a bag is assigned the same label
as the parent bag. This results in a standard single-instance dataset in which each instance is man-
ually labeled and any single-instance machine learning algorithm can be applied to build the
model. To obtain a prediction for a new bag, the model first predicts a label for each instance of

the bag and then aggregates obtained instance predictions (e.g., averages) to produce a prediction

for the given bag.
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Figure 3. Prediction scheme in instance- and bag-wrapper MIL algorithms.

In Bag-Wrapper (Figure 3b) algorithm, there is no need to identify a label for each instance
in a bag. Instead, there is an operation that aggregates the instances to obtain a single vector rep-
resenting the bag. Then, any single-instance algorithm can be applied to train the model. In pre-
diction mode, all instances of the new bag are aggregated into a single vector, which is used to

obtain a prediction for a given bag.
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Traditional MIL algorithms

Naive MIL algorithms such as wrappers transform multi-instance data into single-instance data
and use a standard single-instance machine learning algorithm to train the model. However, several
classic machine learning approaches have been adapted to directly process raw multi-instance data.
These algorithms are instance-based approaches such as maximum likelihood-based methods [53—
56], decision rules and tree-based methods [57—60], SVM-based methods [43], and evolutionary-
based methods [61]. Bag-based algorithms include the adapted nearest neighbor methods [50,62]
and bag-level SVM methods [43].

For example, MILogisticRegression [63] is an adaptation of logistic regression, DPBoost
[64] and MIBoosting [63] are adaptations of boosting approach, ID3-MI and RipperMI [57] are
the MIL extensions of the decision tree, and decision rules approaches, MI-SVM is the multi-
instance version of SVM [65], Citation-kNN [50] is a multi-instance version of standard kNN,
bag-level SVM methods are based on the bag-level kernels [51]. There are also multi-instance
adaptations of neural networks (section 1.3.3).

The Diverse Density [53] is a maximum likelihood-based algorithm that implements the
assumption that positive instances occupy a specific area in the feature space. Diverse Density
searches for the area in the feature space where the difference between the density of instances of
positive and negative is maximal. For example, if one of the instances in a positive bag is close to
the prototype and no negative bags are close to the prototype, then the prototype will have a high
Diverse Density. The DD algorithm searches for the prototype instance that is a generalization of
a positive instance. Expectation-Maximization Diverse Density (EM-DD) uses the EM algorithm
to locate prototype instances more efficiently. There are several other MI algorithms based on the

Diverse Density approach, such as DD-SVM [66] and MILES [67].

Neural network MIL algorithms

Neural networks are appealing for solving MIL problems. Neural networks perform multi-instance
learning in an end-to-end, which takes a bag with a various number of instances as input and gen-
erates the bag label. Multi-instance neural networks were first described by Ramon et al. [68] for
classification problems where instance probabilities are computed to be further aggregated by the
log-sum-exp operator to calculate the bag probability. Zhou et al. [69] modified multi-instance
neural networks by employing a new loss function capturing the nature of multi-instance learning,
1.e. weights of the network are updated for each training bag, not for each training instance. Later,
this neural network was improved by adopting feature scaling with Diverse Density and feature

reduction by principal component analysis [70]. In [71] and [72] ensemble neural networks and
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RBF neural networks were introduced to solve MIL problems. Zhang et al. [73] extended multi-
instance neural networks by implementing a loss function for the MIL regression task.

Wang et al. [74] revisited multi-instance neural networks and proposed a series of novel
neural network frameworks for MIL. In contrast to previous multi-instance networks, their method
focuses on generating bag representations instead of inferring instance labels. The proposed net-
work consists of three fully-connected layers followed by one pooling layer that aggregates in-
stance representations learned by previous layers into a single embedding vector. A final fully-
connected layer takes the obtained embedding vector as input and calculates the bag probability.
The authors examined three typical pooling operators for aggregation instance feature vectors -
max, mean and log-sum-exp pooling and concluded that all pooling operators demonstrate similar
classification accuracy on benchmark datasets. Besides that, they integrated popular deep learning
tricks (deep supervision and residual connections) into MIL networks, which improved the
classification accuracy. The important outcome of this paper is that bag-level networks (Figure 4b)

outperform instance-level networks (Figure 4a) on popular MIL benchmark datasets.
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Figure 4. Examples of instance- and bag-based multi-instance neural networks.

Traditional pooling operators have a clear limitation, i.e. they are pre-defined and non-learn-
able. The max-pooling operator could be effective to aggregate instance scores but might be inap-
propriate for the aggregation of instance feature vectors in bag-level algorithms. Similarly, the
mean pooling operator might be unsuitable to aggregate instance scores but could succeed in gen-

erating the aggregated bag representation. Ilse et al. proposed an attention-based pooling operator,
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that replaces pre-defined pooling operators with a trainable attention network that can generate
instance weights [75]. Instance weights quantify the importance of each instance and its contribu-

tion to the aggregated bag representation.
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Figure 5. The architecture of the attention-based multi-instance algorithm

However, most MIL algorithms ignore the structural relationship among instances in the
bag because they consider the instances as independently and identically distributed (i.i.d) samples
[76]. In this context, instances are i.i.d if they have the same probability distribution and all are
mutually independent. For example, considering molecules as i.i.d data samples is reasonable, but
the conformation distribution of a molecule is not independent and identical because it depends on
predefined physical laws. Nevertheless, multi-instance neural networks that can capture structural
information within a bag have been proposed.

Tu et al. [77] proposed a multi-instance learning approach with graph neural networks. In
this approach, each bag of instances is converted to an undirected graph which is processed by
Graph Neural Network (GNN) to learn the aggregated bag representation. The authors claimed
that the graph representation of a bag allows for capturing the structural information within the
bag and demonstrated that it can improve the classification accuracy of the algorithm.

In [78] recurrent neural networks were proposed to model underlying structure among in-
stances. In this approach each bag is converted into an unordered sequence of instances, which is
processed by the recurrent neural network, that can memorize instances. In [79], a new pooling
operator based on the LSTM recurrent neural network was proposed. In this pooling operator, the
LSTM memory mechanism allows accumulating of information after processing each instance

representation to iteratively update the bag representation.
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In [80] a new dynamic pooling was proposed, which was inspired by the Routing Algorithm
from Capsule Networks [81]. The dynamic pooling iteratively updates instance contribution to
aggregated bag representation and captures the contextual information among instances.

Set Transformer [82], which is based on Transformer architecture [83], was proposed for
solving problems where data samples are organized as sets of instances, including multi-instance
learning. Set Transformer model pairwise interactions between instances in a bag using the multi-
head self-attention mechanism. Each head in multi-head self-attention highlights local relation-

ships between groups of instances in the bag.

Key instance detection algorithms

The main goal of MIL algorithms is to predict labels for bags. However, it is often desirable to
predict not only the bag label but also to infer labels of the instances in the bag. It is particularly
important to determine labels for the key instances that primarily contribute to the label of the bag.
This problem was called Key Instance Detection (KID) and was first formalized in [6]. The devel-
opment of MIL algorithms that can predict the label of a bag and identify key instances of this bag
is an attractive area of research. KID problem related to the problem of explainability of MIL
models. Following the categorization of [84], explainable approaches of MIL models can be di-
vided into model-specific and model-agnostic.

Model-specific approaches include MIL algorithms that can infer instance labels or estimate
the importance of instances (instance weights). These algorithms can be roughly divided into tra-
ditional and neural network-based algorithms. Most traditional instance-level algorithms can be
used to identify key instances. Instance-level algorithms rely on some process, which determines
the labels or probabilities of instances in a bag. In such algorithms [53,54,65,67,85,86][87], KID
is a subtask and instance labels are provided as by-products of the learning process. Other algo-
rithms are based on some key instance identification mechanism and specifically focused on solv-
ing the KID problem [6,88,89].

Multi-instance learning with key instance detection

Instance 1
Instance 2 ML
@ . 7| Model <
| Key Instance |
Instance N

Figure 6. Multi-instance learning with key instance detection
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Multi-instance neural networks are an attractive technology for solving the KID problem.
An important element of such neural networks is the pooling operator, which aggregates instance
representations and can also serve as a detector of key instances. In [75] Ilse et al. proposed a
pooling operator based on the attention mechanism [90], which was implemented as a two-layered
neural network followed by the softmax function that receives instance scores and generates in-
stance weights that sum to 1 (the higher the instance attention weight, the more important the
instance). The instances are then aggregated according to the attention weights. Both neural net-
works are trained consistently using a backpropagation algorithm. Li et al [91] proposed a deep
multiple instance selection frameworks (DMIS) based on hard attention [92] with Gumbel softmax
or Gumbel top-k functions. In contrast to soft attention, where continuous attention weights are
assigned to the instances, including negative instances, the proposed approach selects several key
instances, filtering out potential negative (non-key) instances. This approach is more efficient for
some tasks than standard attention-based MIL pooling [91]. Yu et al [93] applied a neural network
inversion mechanism [94] to the MIL classification problem and demonstrated that it can signifi-
cantly improve KID performance. In this approach, the attention-based multi-instance neural net-
work is first trained in standard mode and then neural network inversion is applied for each positive
bag, which changes the input instances, enhancing the probable key instances and attention
weights are recomputed for the updated bag. As a result, after neural network inversion, the key
instances are assigned higher attention weights.

There are also multivariate neural networks based on other types of pooling that can also
identify key instances. Gaussian pooling [95] applies a Gaussian radial basis function to calculate
instance weights, which is the main difference from attention-based pooling, which applies soft-
max for this purpose. Inspired by the Routing Algorithm from Capsule Networks [81], a new type
of pooling operator was proposed in [80], called dynamic pooling. This pooling operator iteratively
updates the instance contribution to its bag representation during each feed-forward step. Based
on these instance contributions, dynamic pooling highlights the key instance and models the con-
textual information among instances. Tu et al. [77] implemented an approach, where each instance
of a bag is a node in a graph that was processed by a graph neural network (GNN) and converted
to a fixed-dimensional representation by differentiable graph clustering pooling. This approach
can capture interactions between instances in a bag, which can improve KID performance in some
cases [77].

However, the interpretation of attention mechanisms in MIL is still an open question, since
validation of KID solutions requires labeled data at the instance level, and the amount of such data

is still scarce. A study [96] addresses this issue and concludes that models with high prediction
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accuracy can have poor key instance identification accuracy. This fact complicates the selection
of models that can be used to solve the KID problem. In the same paper [96] it was demonstrated
that using an ensemble of models instead of a single model, can improve the robustness of KID
models. These conclusions can be considered general and be extended to the case of other pooling
operators. It is necessary to further develop approaches that will increase the validity of KID mech-
anisms.

The model-agnostic approach for the interpretation of any MIL model in classification tasks
was proposed in [84]. This approach can be divided into methods that ignore interactions between
instances and methods that recognize these interactions. The first group of methods includes sim-
ple strategies such as single instance prediction or one instance removed prediction or their com-
bination. The second method is represented by the Multiple Instance Learning Local Interpreta-
tions (MILLI) approach, which is similar to the popular single-instance machine learning LIME
and KernelSHAP approaches for model interpretability. Interestingly, model-agnostic approaches
performed significantly better in the identification of key instances [84] than model-specific in-
herent KID mechanisms of popular MIL algorithms.

Boltzmann distribution. The distribution of conformers (fractional occupancy) in time and

space is described by the Boltzmann distribution function:

E;:

N ()
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where E is the energy of the conformer, £ is the Boltzmann constant, and 7 is the temperature of
the system. The Boltzmann distribution relates the energy of the conformer to its probability of
occurring. The distribution shows that conformers with lower energy always have a higher proba-
bility of occurring. The same distribution can be applied to an ensemble of tautomers. Boltzmann's
law implies that all molecular forms (conformers/tautomers) contribute to the observed property
of the molecule.

Having accurate ligand-target binding energies, the Boltzmann distribution can be used for
weighted averaging of the calculated or predicted properties of the molecules. For example, in [97]
the Boltzmann distribution (applied to the energies of an ensemble of ligand-target complexes)
was used to average the docking scores for the ensemble of each binding pose. As a result ligand
ranking accuracy was improved by Boltzmann weighting applied to the energies of an ensemble

compared to the straightforward averaging. The more accurate the estimated energies of the system
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(conformer, tautomer, ligand-target complexes), the higher the chance of identifying the key mo-
lecular form. However, the accuracy of the assessment of these energies is limited by the high
computational costs, limited force field accuracy, and technical challenges related to computa-

tional resources.

1.4 Multi-instance learning applications

Polymorphism ambiguity modeling
Bioactivity modeling with multiple tautomers. Many compounds exist as tautomers, which can
exhibit different physicochemical and biological properties. There are many examples [98] where
a minor tautomer binds to the target and is responsible for the observed bioactivity of a compound.
Several papers have studied the influence of tautomerism on QSAR modeling. In [99], it was
demonstrated that tautomerism significantly influences the descriptor selection process, as well as
in some cases the performance of QSAR models. The same authors later concluded [100] that the
inclusion of keto-enol tautomerism in the modeling of antimalarial activity does not affect the
performance of the models, but enables retrieving additional useful information on the relation
between structure and activity. Another study [101] demonstrated that inclusion in the modeling
of both the keto-form and the enol-form of compounds improves the prediction accuracy of the
anxiolytic activity, in comparison to models which are built using only one of the two tautomeric
forms.
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Figure 7. Possible tautomeric forms of tetracycline [102] are inputs to the MIL model. All tautomeric forms of each
molecule can be assembled into bags, which are used for structure-activity modeling using multi-instance learning

algorithms.
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Tautomerism can affect not only the accuracy of in-house QSAR/QSPR models but also the
output predictions of external models when they are applied to new compounds. It is well known
that logP and pKa can differ for different tautomeric forms of the compound. Recently, the Syn-
genta group has demonstrated [103] that logP and pKa predicted by industry-standard programs
(clogP program and ACD software) depend on the input tautomer of the compound, and using
more sophisticated QM calculations to find the correct tautomer significantly improves the accu-
racy of logP and pKa predictions.

Multi-instance learning can potentially solve the problem of selection of the relevant tauto-
mer by generating models that are trained on all available tautomers of a molecule. MIL models
(Figure 7) can be independent of input tautomer form and even can identify the key tautomer of
the compound.

Bioactivity modeling with conformation ensembles. 2D descriptors ignore the spatial mo-
lecular structure of compounds and their conformational flexibility. Therefore, some important
structural information that could increase the performance of predictive models may be lost. This
issue motivated the development of 3D modeling approaches. The Achilles' heel of these ap-
proaches is that the molecule is represented by a single generated conformation, which may not be
identical to the bioactive conformation. Therefore, it is important to consider the conformational
flexibility of the compound, since an incorrect choice of conformation for modeling can signifi-
cantly reduce the accuracy of the predictive models.

The idea of considering multiple molecule conformations in modeling bioactivity was im-
plemented in Compass [34], an algorithm that automatically selects bioactive conformations and
their alignments. Compass is based on a neural network that iteratively selects a more suitable
conformation of a molecule to improve a prediction of its bioactivity. The neural network marks
the best pose of each molecule according to the highest predicted activity. The best poses are then
used to iteratively update the neural network weights. As a result, the trained model can simulta-
neously predict both the bioactivity of a compound and its bioactive pose. Compass first was ap-
plied to predict the human perception of musk odor. The dataset contained 102 molecules, includ-
ing active (musk) and inactive (non-musk) examples. The model built with a single conformation
per molecule demonstrated performance of 71%, while the model generated from multiple confor-
mations demonstrated a significantly higher performance of 91%. This result is an illustrative ex-
ample of the importance of the representation of the conformational space of molecules.

In the seminal paper [5], Dietterich et al. first introduced the problem of multi-instance learn-
ing, motivated by the task of predicting drug activity. In this work, they proposed three basic ap-

proaches for the design of axis-parallel hyper-rectangles (APR) classification algorithms, which
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are based on the selection of the relevant features and the determination of optimal bounds along
these features. The «standard» APR bounds the positive examples and ignores the MIL problem.
The «outside-in» and «inside-out» algorithms address the MIL problem and aim to construct op-
timal hyper-rectangles avoiding negative examples. APR algorithms were compared on one arti-
ficial and two real Musk-1 and Musk-2 datasets. Additionally, the traditional single-instance neu-
ral network and C4.5 algorithms were chosen for comparison. The results indicated that the algo-
rithms ignoring the instance problem performed inferior to the multi-instance APR algorithms on
all three datasets. Although there were previously related works on MIL problems, Dietterich for-
malize the problem of multi-instance learning using drug activity prediction as an example and
propose the first MIL algorithm that directly solves the MIL problem, in contrast to earlier ap-
proaches that simply converted a multi-instance problem to a single-instance one.

Although Compass and APR algorithms had proven that consideration of the MIL problem
can improve the performance of models for predicting the bioactivity of compounds, MIL algo-
rithms had not become ubiquitous. In[11] Inductive Logic Programming (ILP) approach was used
to learn pharmacophores formulated as logical rules, which are used to encode conformations as a
binary vector, in which 1 means that the conformation satisfies a specified rule, that is has a cor-
responding pharmacophore. As a result, the molecule was represented by a set of conformers en-
coded by binary pharmacophore features, then multi-instance regression was used to construct a
linear model. The prediction of the bioactivity of a molecule can be obtained by weighted averag-
ing of the predicted activity of its conformations. The authors tested their approach on three da-
tasets on the activity of dopamine agonists, thermolysin inhibitors, and thrombin inhibitors and
demonstrated that the models built on the multiple conformers outperform single-conformer mod-
els in all three cases.

The popular multiple-instance learning via embedded instance selection (MILES) algo-
rithm was applied to construct models for the classification of bioactive chemical compounds [9].
MILES was applied to model the bioactivity of molecules against GSK-3, P-gp, and CBrs recep-
tors and demonstrated competitive with analogous approaches performance. MILES can inher-
ently identify key instances, which can be exploited to recognize bioactive conformations. For 10
of the 12 test molecules from the GSK-3 dataset, the MILES model was able to rank the experi-
mental bioactive conformation higher than the generated conformations. In a later paper [8], the
authors proposed a modification of the MILES algorithm based on the joint instance and feature
selection. The proposed approach demonstrated slightly lower classification accuracy than the

original MILES, but could efficiently select a representative subset of instances and features.
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Recently, the results of this Ph.D. thesis were published in a series of studies [12—14] de-
voted to modeling the bioactivity of compounds using conformer ensembles and multi-instance
algorithms. In paper [14], an adaptation of the algorithm of Zhou and Zhang [104] was proposed
to build 3D multi-conformer classification models, which were compared with traditional 2D mod-
els. A comparative analysis on a collection of >150 datasets extracted from the ChEMBL-23 da-
tabase showed that 2D models outperformed 3D multi-conformer models in most cases. Never-
theless, 2D and 3D models are comparable when the dataset size is less than 1000 compounds.

Catalysts enantioselectivity modeling with conformation ensembles. In 2021 D. Mac-
Millan and B. List received the Nobel Prize for the development of asymmetric organocatalysis.
In 2000 [105,106] they contemporaneously demonstrated that small chiral organic molecules can
catalyze asymmetric reactions to produce enantiopure compounds. The design of new chiral cata-
lysts is based on the iterative improvement of the reaction enantiomeric purity by reasonable mod-
ification of the catalyst structure. This process is guided by the chemical intuition and background
knowledge of the experimentalist and often culminates in the desired performance of the reaction.
However, computational approaches, such as quantum chemistry [ 107] and chemoinformatics are
especially attractive and can be used for screening virtual libraries of candidate catalysts, reducing
the time and overheads needed to discover highly enantioselective catalysts.

In Quantitative Structure-Selectivity Relationships (QSSR) approach descriptors encoding
catalysts structures are correlated with their experimental enantioselectivities using machine learn-
ing algorithms. The earliest studies on QSSR are based on Molecular Interaction Fields (MIF)
approaches such as CoOMFA [108,109]. The main problems of MIF-based 3D «structure-selectiv-
ity» modeling approaches are (i) the selection of catalyst conformers and (ii) their alignment. The
selection of irrelevant conformers can reduce model performance and alignment of conformers
becomes challenging if the dataset includes catalysts with different scaffolds. In the case of align-
ment-independent 3D descriptors, there is also (iii) the problem of the choice of relevant de-
scriptors. In this Ph.D. project, a new 3D-QSSR approach multi-instance learning was proposed
[15].

MIL algorithms can process all available catalyst conformers, solving the problem of con-
formers selection. Each catalyst conformer was encoded with 3D pmapper descriptors, which are
independent of translation and rotation of the conformer (do not require conformers alignment).
The developed 3D modeling approach was validated on the reaction of asymmetric nucleophilic
addition catalyzed by chiral phosphoric acids [110] and phase-transfer asymmetric alkylation cat-

alyzed by cinchona alkaloid-based catalysts [111]. The 3D multi-conformer model was compared
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with the state-of-the-art 3D conformer-dependent approach published by Denmark [110], and the
set of traditional 2D models based on popular 2D descriptors [112,113].

Part-to-whole ambiguity modeling

Property modeling with atoms as instances. A molecule can be represented as a set of connected
atoms. In this context, the molecule is characterized by part-to-whole ambiguity, where a particular
atom or group of atoms is responsible for an observable property of the molecule. Within this
framework, each atom of a molecule is represented by a separate vector of atom descriptors.
Bergeron et al. [39,114] introduced a novel learning framework called Multi-Instance Rank-
ing (MIRank). The proposed approach was applied to the problem of identification of metabolic
sites of molecules, i.e. atomic groups from which a hydrogen atom is removed. The experimental
data show only to which group the removed hydrogen atom belongs, and it is not known which
hydrogen atom is removed. Each hydrogen atom was represented by a set of descriptors such as
the charge, the surface area, hydrophobic moment, etc. For each molecule (box), the ranking func-
tion separates at least one instance (hydrogen) of the preferred bag (group) from the remaining
instances belonging to the box. Using a dataset of 227 compounds metabolized by the enzyme
cytochrome CYP3A4 [115] it was demonstrated that the MIRank model performs slightly better
than the standard classification model [39]. In a later work, Bergeron et al. [114] upgraded their

algorithm to analyze large datasets and validated it on an extended database of 10 CYP datasets.
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Figure 8. A general approach to multi-instance modeling of the properties of molecules represented by atom instances.
Vectors of atoms can include physico-chemical or quantum-chemical descriptors or can be extracted using graph

neural networks [16].

Recently, Xiong et al. [ 16] proposed a graph neural network based on multi-instance learning
to predict both the macro-pKa of the molecule and the micro-pKa of individual atoms. In their

approach, a molecule is a bag, which contains instances of the ionizable atoms of this molecule.
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Each atom of the molecule is described by a vector of features extracted with a graph neural net-
work. The extracted instance features are used to predict the micro-pKa of atoms, which are then
aggregated to derive a macro-pKa. Their model predicted the acidity of organic compounds with

high accuracy and provided reasonable micro-pKa of atoms.

Segment-to-sequence ambiguity modeling

Protein-protein interactions. Protein-protein interactions (PPI) play an important role in biolog-
ical processes. These interactions can occur between single proteins or groups of proteins (protein
complexes). In general, only particular segments of proteins (domains) determine the structure and
function of the protein and are involved in the interaction between proteins. For this reason,
knowledge of which domains of proteins can interact with each other enables the prediction of

new protein-protein interactions.
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Figure 9. Macromolecule data structures (a) generating a bag from an amino acid sequence using the sliding window

approach and (b) generating a bag from probable domain-domain pairs from protein-protein pairs.

Experimental PPI data provide information on the interacting protein pair and the type of
interaction (activation, ingestion, phosphorylation, dissociation, etc.), but information on the in-
teracting domains (key domains) is often not available. This scenario fits the MIL framework,
where each potential domain pair is an instance (Figure 9) and the whole collection of domain
pairs in a given protein-protein complex is a bag and at least one of these domain pairs interacts
defining the type of interaction (e.g. phosphorylation). If the proteins do not interact, there is no
pair of interacting domains in the bag.

Yamakawa et al. [116] used a dataset of 1279 PPI records labeled with ten different interac-

tion types (state, dephosphorylation, dissociation, inhibition, phosphorylation, binding association,
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indirect, activation, compound). They considered the simplified task of classification on whether
the PPI is phosphorylation or not. To solve this problem, they proposed a Voting Diverse Density
(VDD) algorithm based on the Diverse Density (DD) algorithm and demonstrated that their
method outperformed several other popular MIL algorithms and required much less time for train-
ing [116].

Multi-domain proteins can also perform many different functions. To predict the biological
functions of proteins, Wu et al. [22] used a Multi-Instance Multi-Label (MIML) framework, where
instances are protein domains and the protein (bag) is associated with multiple biological functions
(multiple labels). They demonstrated the applicability of the MIML approach to seven real-world
datasets on the main biological systems: archaea, bacteria, and eukaryotes.

Isoform—isoform interactions. Constructing and analyzing protein-protein interactions
helps to understand biological processes, enabling the development of more effective drugs. In
protein biosynthesis, a gene in a DNA sequence generates a particular protein with an inherent
structure and biological function. However, the alternative splicing (AS) mechanism makes it pos-
sible for the same gene to synthesize several proteins (protein isoforms) that have a similar amino
acid sequence and structure but sometimes perform different biological functions. Many compu-
tational tools neglect this aspect (mainly because of the lack of experimental data on isoform-
isoform interactions) and only consider the canonical (or the longest) protein derived from a gene
when constructing PPIs.

This may cause interactions between canonical proteins (gene-gene interactions) to be erro-
neously predicted as negative (false negative), in cases where alternative proteins (isoforms) of
two genes interact. This case is also suitable for the MIL framework, in which a gene (bag) gener-
ates several protein isoforms (instances). The interaction between a gene-gene pair is positive if at
least one of the isoform-isoform interactions (IIIs) is positive. To address these tasks Lietal. [117]
proposed a single-instance bag MIL (SIB-MIL) algorithm based on a Bayesian network classifier.
SIB-MIL works at the instance level and assigns each instance (isoform pair) a probability to be
positive (interactive). In SIB-MIL, the Bayesian network classifier is initially trained on positive
bags with single-instance (gene pairs with single pair of isoforms) and negative instances from
negative bags. The obtained classifier is then used to assign probability scores to the remaining
isoform pairs in multi-instance bags. Using the obtained probability scores, a witness (key in-
stance) is selected from each positive bag and labeled as positive. The instances with the highest
probability score from the negative bags are labeled as negative. Updated labels are used to retrain

the Bayesian network classifier. The instance labels are updated until the accuracy of the validation
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set stops to improve. At the gene-pair level, the label of a bag is defined as the maximum proba-
bility score of its instances. Zeng et al. proposed a DMIL-III method [25] based on a deep neural
network with convolutional layers. They demonstrated using a benchmark dataset that DMIL-III
significantly outperforms SIB-MIL and mi-SVM algorithms.

PPIs and IlIs databases include identified interactions, whereas classification algorithms for
training also require negative examples, which are usually generated artificially. This strategy of-
ten results in significantly more negative examples than positive ones, leading to imbalanced da-
tasets. Therefore Zeng et al. [17] implemented a novel loss function to handle the imbalanced data
and proposed the IDMIL-III method. They also enhanced the IDMIL-III with an attention mecha-
nism, which improved the accuracy of identification of isoform-isoform pairs. In general, IDMIL-
III improves the prediction accuracy of gene-gene pairs (bag level) in comparison to DMIL-III.

MHC-II-peptide interactions. The main function of major histocompatibility complex
(MHC) protein is the binding of short peptide fragments derived from proteins produced inside
(MHC-]) or outside (MHC-II) a cell and the presentation of these peptides at the cell membrane
for recognition by T-cell (white blood cells of the immune system) receptors. In the context of
vaccine design, it is very important to know which peptides bind to MHC molecules to initiate the
desired immune response. MHC molecules have a binding groove where peptide fragments bind.
MHC-I has a closed groove and usually binds peptides of lengths between 9 and 11 amino acids.
In contrast to MHC-I, the binding groove of the MHC-II molecules are open at both ends and can
bind peptides commonly with length from 11 to 30 amino acids [35], but it was established that
for binding of protein with MHC-II is responsible a 9-mer segment of peptide and there is often
no experimental information about which segment binds to the MHC-II molecule. This problem
motivated studies on the application of multi-instance learning for the prediction of binding pep-
tides.

Multi-instance learning was adapted to predict peptide binding activity to MHC-II in classi-
fication [118] and regression tasks [119]. Both approaches used bags of segments of 9 amino acids.
In [21], a new multi-instance approach for predicting MHC-II binding was proposed in which
flanking amino acids (11-mers) were considered in addition to the 9-mer segments. Also, the au-
thors used experimental information that amino acids at positions 1, 4, 6, 7, and 9 may be crucial
for peptide binding and integrated this information into the learning algorithm. In addition, their
study revealed that amino acids at position 2 may also influence peptide binding.

Each human has multiple MHC-II molecules, which can be represented in assays. Often,
experimental methods cannot precisely identify which MHC-II molecule was bound to a given

peptide. Malone et al. [18] formulated the MIL problem, where the bag contains multiple MHC-II
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molecules and is positive if at least one MHC-II molecule binds a given peptide and negative if
there are no binding MHC-II molecules in the bag. They used a combined dataset [120] of SA
(single-allele) and MA (multi-allele) data to train a transformer neural network BERTMHC and
showed that models trained on SA data only are inferior to MIL models.

Calmodulin-protein interactions. Calmodulin (CaM) is a calcium-binding protein that is
148 amino acids long. CaM can interact with more than 300 proteins and peptides [121], thereby
regulating many biological processes. The biological significance of CaM and the high diversity
of proteins that can interact with CaM have motivated the development of computational methods
for predicting both the proteins that can bind to CaM and the binding sites within these proteins.

Minhas et al. [28] used a dataset of 153 proteins with 185 experimentally annotated binding
sites. In a single-instance scenario, the subsequences annotated as binding sites were marked as
positive examples and all other parts of the protein (obtained using a sliding window approach) as
negative. However, experimental methods do not always accurately determine the position of the
binding site, which introduces ambiguity into the learning process of the classification model.
Therefore, in the multi-instance model, all subsequences overlapping the binding site formed a
positive bag, and all other subsequences formed a negative bag. As a result, it was demonstrated
[28,122] that the MIL approach slightly improves the accuracy of binding site prediction. For CaM
binding prediction, they used a dataset of experimentally identified 236 proteins that bind CaM
and achieved improvement in prediction accuracy in comparison with competing methods

Modeling genomic sequences. Transcription of genes is the process of copying a DNA se-
quence into an RNA molecule. A Transcription Factor (TF) is a special protein that binds to a
DNA sequence and activates or represses the expression of certain genes. Regions of DNA se-
quences that are bound by a transcription factor are called Transcription Factor Binding Sites
(TFBS). Modern experimental techniques [24] enable the identification of DNA segments that are
bound by the TF protein, but the precise identification of TFBS is still a challenge. Typically, a
DNA sequence may contain one or more binding sites and usually, the exact location of the TF is
not known (although preference information is sometimes available). Therefore, it is natural to
represent the DNA sequence as a bag of possible binding sites. In the MIL classification setting, a
bag (DNA sequence) is positive if it contains at least one TF and negative if it contains no TF. A
bag is generated by a sliding window of length » through the whole DNA sequence. The typical
length of a TF is 6-12 base pairs, which conditions the length of the subsequences (instances)

included in the bag.
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The in vitro protein binding microarray (PBM) experiments allow high-throughput screening
of DNA sequences that bind to a given TF. The typical length of DNA sequences in such experi-
ments is 35 base pairs (bp), whereas TF lengths normally vary from 6 to 12 bp. PBM data provide
an excellent source for modeling TF-DNA interactions and predicting in vivo binding. To model
in vitro binding, Gao and Ruan [19] used a dataset of the measured binding affinities of DNA
sequences against 20 mouse TFs. This dataset was obtained from the Dialogue on Reverse-Engi-
neering Assessment and Methods (DREAM) competition [123]. They compared SIL (whole DNA
sequence) and MIL (bag of DNA subsequences) based models. For building MIL models, they
used the Instance-Wrapper algorithm implemented in the WEKA package with the C4.5 decision
tree as the basic single-instance algorithm. They considered each candidate binding site with a
length of 5-8 ba as an instance and all possible subsequences as a bag. Consequently, the MIL
model outperformed the SIL model for each of the 20 mouse TFs (average AUC score 0.94 vs.
0.71). Later Gao and Ruan [27] proposed a MIL version of the TeamD (one of the best algorithms
in the DREAMS competition) algorithm. Using a PBM dataset of 86 mouse TFs as in their previ-
ous work, they demonstrated that for 78 of the 86 TFs, MIL-TeamD outperformed SIL-TeamD
(average AUC score 0.94 vs. 0.90).

Zhang continued to further improve the performance of models to predict TF-DNA binding.
They considered DeepBind [29] algorithm based on a deep convolutional neural network (CNN),
which has been successfully applied to predict DNA- and RNA-protein binding, and proposed its
MIL version called Weakly-Supervised CNN (WSCNN). A single-instance learning algorithm
(SIL-CNN), had the same architecture as DeepBind. They took the same PBM dataset of 86 mouse
TFs and found that the SIL-CNN model performed better than the MIL-TeamD. However, as ex-
pected the WSCNN (MIL-CNN) model performed better than the SIL-CNN.

Another source of information on TF-DNA binding sites is in vivo experiments performed
in living cells. Compared with in vitro PBM data, in vivo DNA sequences can be a few hundred
bp (genome-scale studies) in length, which makes their experimental analysis and modeling chal-
lenges. However, DNA-protein binding models built on PBM data can be applied to predict bind-
ing DNA in vivo data. It was demonstrated in the works described above that MIL algorithms
(MIL-TeamD, WSCNN) built on PBM or directly on in vivo data can significantly improve the
accuracy of DNA binding predictions in vivo experiments.

Pan and Shen proposed the iDeepE method [26] based on MIL and deep convolutional neural
networks. In their approach, instances are generated from RNA sequences using a sliding window

method and the bag is positive if the RNA interacts with the protein. For validation of their method,
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they used the RBP-24 dataset (http://www.bioinf.uni-freiburg.de/Software/GraphProt) that in-
cludes 24 experiments of 21 RNA-protein binding sites and RBP-47 which reports 502 178 binding
sites for 67 RNA-protein pairs. They compared iDeepE with eight of its modifications (based on
convolutional neural network, long-term memory network, and residual net) and three alternative
machine learning-based approaches (GraphProt, Deepnet-rbp, Pse-SVM). The authors concluded
that iDeepE performs better than its eight variants and other four state-of-the-art approaches and
demonstrated that iDeepE can identify binding motifs.

RNA modification is the process by which the nucleotides in synthesized RNA are chemi-
cally modified. Traditional supervised learning approaches for predicting RNA modifications re-
quire base-resolution data, which often are not available. Huang et al. [124] proposed the weakly
supervised learning framework (WeakRM) for modeling RNA modifications from low-resolution
datasets. Each RNA was considered as a bag consisting of regions (instances) obtained by a sliding
window approach. They examined their approach to three different types of RNA modification
and demonstrated that WeakRM outperforms traditional supervised approaches and can identify
regions containing the RNA modifications (key instances).

miRNA-mRNA interactions. mRNA regulates the synthesis of the peptides during gene
expression, while microRNAs (short non-coding RNA with 18-25 nucleotides) binds to the spe-
cific sites of the target mRNA, and deactivates part of the mRNA or initiate its degradation and
thereby inhibit gene expression. mRNA has a large number of potential binding sites (PBS) that
can be bound by given miRNA, but experimental identification of functional binding sites (FBS,
actual binding 2-8 nucleotide segments) is time- and money-consuming. In this context, computa-
tional approaches for predicting miRNA targets and their binding sites are highly desirable. In the
MIL framework, each miRNA-mRNA pair is considered as a bag and each PBS of target mRNA
as an instance. In the classification task, a bag is positive if it contains at least one FBS (key in-
stance), and negative if there is no FBS in the bag (given that miRNA-mRNA does not interact).

Using the MIL framework, Bandyopadhyay et al. [30] developed the MBSTAR (Multiple
instance learning of Binding Sites of miRNA TARgets) approaches, which is based on the MIL
Random Forest algorithm (MIL-RF) and can predict both miRNA-mRNA pairs (bag predictions)
and target binding sites (instance predictions). They compared MBSTAR with popular miRNA
target prediction tools: TargetScan, miRanda, MirTarget2, and SVMicrO. As a result, they demon-
strated that MBSTAR outperforms competing algorithms in accuracy in predicting miRNA-
mRNA interactions (bag level), and especially by a large margin in predicting binding sites (in-

stance level).
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1.5 Toolkits and software

The availability of new machine learning algorithms for testing them on different problems and
comparison with other algorithms is very important. Due to the rapid development of MI methods
in recent decades, many of their open-source implementations in different programming languages
and tools have been proposed.

WEKA [125] is a freely available software for data analysis, building machine learning mod-
els, and visualization of results of experiments. WEKA is written completely in Java and has a
simple API and user-friendly graphical interface. WEKA supports several popular MI classifiers,
including the aforementioned CitationKNN, Diverse Density algorithm, multi-instance extensions
of SVM, and wrappers.

KEEL (Knowledge Extraction based on Evolutionary Learning) [126], is another open-
source machine learning software written in Java and supported by a graphical interface. KEEL
provides a set of tools for building predictive models using machine learning algorithms, including
multi-instance learning algorithms. KEEL provides different variations of the APR algorithm and
several popular multi-instance methods, such as EM-DD, G3PMI, CitationKNN, and methods
based on evolutionary algorithms.

JCLEC (Java Class Library for Evolutionary Computation) [126] is a Java framework for
evolutionary computing that is executed via the command-line interface. JCLEC provides imple-
mentation of grammar-based genetic programming (GGP) algorithm.

MATLAB implementations of multi-instance algorithms can be found in the Matlab
Toolbox for Multiple Instance Learning [127]. Multiple-Instance Learning Python Toolbox [128]
is inspired by MATLAB Toolbox and provides popular multi-instance algorithms written in Py-
thon.

Various multi-instance modifications of SVM [43] methods are available online in Python.
Also, a lot of implementations of multi-instance deep neural networks can be obtained from
GitHub repositories: classical multi-instance neural networks [12], multi-instance neural networks
with attention mechanisms (https://github.com/AMLab-Amsterdam/AttentionDeepMIL), graph
multi-instance neural networks (https://github.com/Kostiuklvan/Multiple-instance-learning-with-
graph-neural-networks), and Transformer-based multi-instance architectures

(https://github.com/juho-lee/set transformer).

49



Part 2. 3D structure-property modeling with multi-instance
machine learning

A key limitation of traditional 3D structure-property modeling approaches is that the molecule has
to be represented by a single conformer and a single vector of descriptors. The most popular strat-
egy is to represent the molecule with a lowest-energy conformer, which, however, may differ from
the true conformer that is responsible for the observed property of the molecule. The representation
of molecules by irrelevant conformers makes it difficult to establish the correct relationship be-
tween the 3D structure of the molecule and its property. This problem can be solved by the appli-
cation of Multi-Instance machine Learning (MIL), in which an object (molecule) is represented by
a bag of instances (conformers) each encoded with its vector of chemical descriptors. Within this
Ph.D. project, a new 3D structure-property modeling protocol has been developed. It is based on
an ensemble of conformers and multi-instance learning algorithms, which does not require the
selection and alignment of conformers. Furthermore, this 3D modeling approach generates models
that not only predict the property of molecules but also can identify the key conformers responsible

for the observed molecular property.

2.1 Methodological developments

This chapter provides a detailed description of the 3D structure-property modeling approach based

on multi-instance machine learning.

Data » Conformers » 3D descrlptors - Multl-lnst_amce - 3D Model
generation calculation ML algorithm

Figure 10. The pipeline of generation of 3D multi-instance models

The process of building 3D models includes several steps (Figure 10). First, for a given molecule,
a set of conformers is generated which are encoded with alignment-independent 3D descriptors.
The sets of 3D descriptors are then used to build the model using special multi-instance algorithms.

1) Data. The input data can be stored in any standard format, e.g. as a CSV table (Figure
11), which contains the SMILES of the molecule and the value of the target property. The imple-
mented 3D modeling approach handles both regression and classification tasks, that is, the target

property can be defined as a continuous or binary variable. The implemented MIL algorithms can
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also be extended to solve multi-instance multi-task problems, where a molecule is represented by

multiple instances and is associated with multiple properties that are modeled cooperatively.

SMILES Y

1 |COclce2e(Ne3ece(Brjec3Fnenc2cc10CCICEN(C)CCL 5.7
2 | Cclee(Nc2ee{N3CCN(C)CC3)nc(Sc3cce(NC(=0)C4CC4)cc3)n2)[nH]nl 6.2
3 |COclcc(Ne2nec(F)c(Nc3cecdc(n3)NC(=0)C(C)(C)04)n2)cc(OC)c10C 7.5
4 | CS(=0)(=0)N1CCN(Cc2cc3nc(-c4ccecSn[nH]ccd5)nc(N4CCOCC4)c3s2)CC1 5.6
5 |CN1CCN(c2cce3ne(-cdc(N)e5c(F)eccce5[nH]c4=0)[nH]c3¢2)CC1 6.5
6 |CCN1CCN(Cc2ccc(NC(=0)Nc3cec(Ocdcec(NC)nend)ee3)cc2C(F)(F)F)CCL 6
7 |CCN1CCN(c2cce(Ne3nce(Cl)c(NcdeceSn[nH]ce5c4)n3)cc2)CCl 7.5
8 ‘»

N |0=C(0)clcsc2cINCCNC2=0 4.7

Figure 11. Example of an input data table for building 3D MIL models

2) Conformer generation. Conformers representing each molecule were generated using

the distance geometry algorithm implemented in RDKit [129], which is claimed by its authors to

be able to reproduce bioactive conformations of ligands from the Protein Data Bank (PDB) data-

base with reasonable accuracy. This algorithm is based on stochastic conformer generation which

is constrained by geometric patterns derived from experimental data. Precise bond lengths, bond

angles, and torsion angles are used to determine lower and upper distance bounds for all pairs of

atoms in the molecule. These distance bounds are collected in a distance bounds matrix, which is

used in combination with a conformation optimization using a Merck Molecular Force Field

(MMFF). If the RDKit algorithm failed to generate the conformers, then a systematic conformer

generator from the Open Babel package [130] is used and the full energies of obtained conformers

are recalculated using RDKit.
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Figure 12. Conformers generated by RDKit for the example molecule. Only conformers within the energy window

of 100 kcal/mol are selected for modeling.
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The diversity of the generated conformers depends on the width of the energy window, which is
specified manually. All conformers that differ in energy from the most stable conformer more than
the width of the energy window are discarded. Conformations with RMSD values below 0.5A to
the remaining ones are removed to reduce redundancy. Figure 12 demonstrates an example input
molecule and the corresponding generated conformers using the RDKit package.

3) Descriptors. The generated conformers of the molecule then can be encoded using 3D
descriptors. Several 3D alignment-independent descriptors (WHIM [131], GETAWAY [132],
MORSE [133], RDF [134]), which do not depend on the translation and rotation of molecules in
3D space are implemented in RDKit. The problem with the majority of alignment-independent 3D
descriptors developed so far is that not all of them can distinguish stereoisomers and not all of
them are interpretable. The developed 3D approach is based on novel 3D pharmacophore de-
scriptors [135], which are implemented in the pmapper package (https://github.com/Drr-
Dom/pmapper).

Modeling biological activity
Quadruplets of pharmacophore features

= smars_feaures 1 (3 |

11

Modeling catalyst enantioselectivity
Triplets of atoms features

is
¥
t
'
t
2 le
*
*
$
*
$
$

T

lines started from # are

(4] (=0) (=0) [CX4] (F) (E) )] D
c,8,7]=0)] D

§U[NX3]-[a]) 415 ([(¥X4]) &1S(NSC([C,NIN) ] A

24, 1)) (CX4, §1]) 615 ((x3]-+=[146])] ®
N]}](=N)-N

%2]11) )~ [CH2X4, CHIX3, CHOX2] ~ [CH2X4, CHIX3, CHOX2] H

(a)

Figure 13. Examples of input files containing SMARTS of combinations of atoms that are encoded for a given 3D
structure: (a) pharmacophore features used to build 3D models for prediction of bioactivity of molecules and (b)

individual atom features used to build 3D models for prediction of catalyst enantioselectivity.
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In the default setting of the pmapper package, each conformation is encoded by a set of
pharmacophore features (H-bond donor/acceptor, the center of positive/negative charge, hydro-
phobic, and aromatic) determined by the corresponding SMARTS notation. For a given confor-
mation, all possible quadruplets of predefined features were enumerated. Distances between fea-
tures are binned to allow fuzzy matching of quadruplets with small differences in the position of
features. In the default setting binning step of 1A is used as it demonstrated reasonable perfor-
mance in previous studies [15,135—-137]. Then 3D pharmacophore signatures are generated for
each quadruplet according to the algorithm in details described in the original publication [135].
These signatures encode distances between features and their spatial arrangement to recognize the
stereo configuration of quadruplets. The number of identical 3D pharmacophore quadruplet sig-
natures is counted for each conformation and the obtained vectors are used as descriptors for model

building.

= smarts_features ot £

§ lines started from §# are comments

#

# each line is SMARTS and feature label
#

5 # legend of feature labels:
$ a - aromatic
¢ A - H-bond acceptor
# D - H-bond donor
§ # - hydrophobic
# P - positive
§# N - negative

» 1 # aromatic

4 alaaaaal a
5 alaaaal a

I # atoms
[B,Br] H

pmapper descriptor vector

Figure 14. An example of the calculation of the pmapper descriptor vector for a phosphoric acid catalyst. For demon-

stration, combinations of three features (SMARTS:alaaaaal (aryl) and [P, Br]) were set in the input file.

However, the pmapper descriptors are customizable and any combination of atoms and

groups of atoms that encode the relevant 3D patterns in a given structure can be used instead of
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the default pharmacophore features. For example, the original 3D pharmacophore descriptors (Fig-
ure 13a) were used in this project to model the bioactivity of compounds extracted from the
ChEMBL-23 database. In another study on modeling the enantioselectivity of chiral organic cata-
lysts, more abstract triplets of individual atoms were chosen (Figure 13b, Figure 14).

4) Multi-instance learning algorithms. The implemented in this research MIL algorithms
can be divided into two groups. The first group includes two wrapper algorithms (Instance-Wrap-
per and Bag-Wrapper), which transform a multi-instance dataset into a single-instance dataset that
can be processed by any traditional single-instance machine learning method. The second group
of algorithms includes MIL algorithms that can directly process a multi-instance dataset. These
algorithms are either adaptations of traditional ML algorithms, or algorithms specially designed
[5] to solve MIL problems. In this project, MIL adaptations of neural networks (Instance-Net, Bag-
Net, and BagAttentionNet) were implemented and tested in several studies. A basic component of
some MIL algorithms is a pooling operator that aggregates instances (bag-level algorithms) or
instance predictions (instance-level algorithms). The pooling operators used in this study were
mean, max, log-sum-exp, and attention-based pooling.

Traditional pooling operators. In bag level algorithms mean pooling aggregates instances
by averaging the instance vectors resulting in an embedding vector, which is used for predicting
bag labels. In instance-level algorithms, mean pooling averages instance predictions to produce a
bag prediction. Max pooling selects the max value of each descriptor across all instance vectors in
bag-level algorithms or the max value of instance predictions in instance-level algorithms. The
convex version of max pooling is the log-sum-exp operator [68].

Attention-based pooling operators. Key instances define the observed bag label. In the
context of modeling the bioactivity of molecules with MIL approaches, it is considered that a
molecule is bioactive if at least one of its conformers is bioactive (binds to the target), and inactive
if none of the conformers is bioactive. Therefore, it is desirable not only to predict molecule prop-
erty but identify key conformations responsible for observed target property.

Traditional pooling operators (mean, max) are predefined and ignore the importance of
individual instances. This motivated the development of advanced pooling operators that adapt
during training and focus on the most important instances. In bag-level algorithms, these pooling
operators generate instance weights, which determine the contribution of each instance to the final
embedding vector. Such pooling operators are especially desirable because they make MIL models
interpretable, i.e., they allow not only the prediction of a bag label but also the identification of

key instances.

54



Attention-based pooling. In [75] IIse et al. proposed a pooling operator based on the atten-
tion mechanism [90], which was implemented as a two-layered neural network followed by the
softmax function that receives instance scores and generates instance weights that sum to 1 (the
higher the instance attention weight, the more important the instance). Instances are then aggre-
gated according to the attention weights (weighted mean). In this project, the attention neural net
is coupled with a fully-connected three-layered neural network, which generates instance repre-
sentations and predicts bag labels based on bag embedding. Both neural networks are trained con-
sistently using a backpropagation algorithm.

GatedAttention-based pooling. The default version of the Attention-based neural network
includes a tangent hyperbolic activation function (tanh), which is approximately linear for x in the
range of [-1, 1]. Therefore, in the same paper [75] Ilse and co-workers also proposed to use of a
gating mechanism [138] to increase the non-linearity of learned relationships. GatedAttention-
based pooling consists of two neural networks: one with a tanh and another with a sigmoid activa-
tion function and the resulting representation is calculated as element-wise multiplication tanh ©
sigmoid.

Self-attention pooling. Attention-based MIL pooling is flexible and suitable for aggregat-
ing information from individual instances. However, the contribution of each instance in the label
of the bag is evaluated by the attention neural network independently of the other instances in the
bag. This is an acceptable scenario when considering a standard assumption, where a bag is given
a positive label if it contains at least one positive instance. More complicated is the threshold-
assumption, when a bag is positive only when it contains at least N positive instances. The Pres-
ence-based assumption assumes that a bag is positive if it contains several instances of different
concepts. For example, the standard assumption is suitable for predicting the bioactivity of a com-
pound represented by multiple conformations, since a compound is active if at least one of its
conformations is bioactive, i.e. binds to the target. Another example relates to the presence-based
assumption. Let a compound is active when it contains an amide group, which consists of C, O,
and N atoms. In this case, the MIL method must be forced not only to identify the C, O, and N
atoms separately but also to be sensitive to cases when instances representing atoms C, O, and N
occur in the bag simultaneously. To handle tasks in which threshold - and presence-based assump-
tions prevail, more advanced pooling types are needed. These pooling functions must take into
account interactions between instances in the bag.

One of the approaches to solving this problem is to apply the self-attention mechanism.
The main idea of self-attention is to take into account the similarity between instances when cal-

culating the attention weights of bag instances. Thus, the weight of each instance depends on the
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composition of the bag, i.e. the presence of other instances in the bag. A possible architecture of a
MIL neural network combines a self-attention mechanism with attention-based pooling. First, the
input bag runs through a set of fully connected neural network layers, resulting in learned repre-
sentations of the instances. Next, the self-attention layer accepts the representations of the bag
instances as input and outputs new vectors of instance features, which contain information about
the interdependencies of instances. New vectors of instances generated by the self-attention layer
are fed into attention-based pooling, which aggregates them into an embedding vector under the
attention weights of the instances.

Attention weights regularization. Since only a few instances are responsible for the ob-
served bag label, the distribution of attention weights across instances is supposed to be sparse and
sharp, i.e., the attention mechanism must focus mainly on the key instances. The sparsity requires
that most of the attention weights are close to 0.0. The sharpness requires that the attention weight
of the key instances should be as high as possible. However, examples from other machine learning
tasks [139] and preliminary results obtained in this research project demonstrate that the standard
version of the attention mechanism tends to generate uniformly distributed attention weights with
a poor focus on key instances. This motivated the development of regularization techniques that
constrain the weights distribution, forcing the attention mechanism to focus on the fewest in-
stances. Details of the regularization techniques implemented within this project are provided in
this section.

Temperature softmax. In the standard attention mechanism, the weight «; of instance i is

calculated using the softmax function:

exp(z;)
Zji exp(z))

i=

2)

The modification of standard softmax is a temperature softmax, which includes the parameter of

temperature T > 0:

_exp(z/T)
%= K, exp(z;/T) )

The lower the T value, the sharper the attention weights distribution, and the higher the T value,
the more uniform the distribution. At T = 1, the temperature softmax is identical to the standard

softmax.
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Gumbel-Softmax. Originally, the Gumbel-Softmax function was proposed by Jang et al.
[140] to provide a continuous approximation to sampling from the categorical distribution in a

way that is differentiable and suitable for backpropagation algorithm in deep learning:

exp((log(z;) + g:)/T)
¥, exp((log(z)) + g;)/T)

(4)

i =

Gumbel-Softmax combines the deterministic part of sampling with the stochastic part g by add-
ing Gumbel noise (0, 1), which can be sampled as two logs of some uniform distribution.
Minimum Entropy Regularizer. In the attention-based mechanism sparse and sharp

weights distribution has low entropy, which is calculated as:

K
Entropy = —Zi a;log(a;) ®)]

Thus, minimizing the entropy of attention weights during the training of the neural network forces
the attention mechanism to generate a sharp attention weights distribution.

Attention weights dropout. In attention weights dropout the weights generated by the
attention mechanism are sorted and N % (N is set manually) of the instances with the lowest atten-
tion weights are discarded. The attention weights of the remaining instances are recalculated again
using a softmax so that they sum to 1. As a result, only a fixed number of instances with the highest
attention weights contribute to the embedding vector.

Other pooling operators. There are other types (non-attention) of pooling operators that
can estimate instance weights.

Gaussian weighting. Another type of pooling based on an additional neural network is
pooling with Gaussian weighting [95]. Gaussian pooling applies a Gaussian radial basis function
to calculate instance weights, which is the main difference from attention-based pooling, which
applies softmax for this purpose. As a result, each weight can independently take values from 0 to
1. This variant of pooling can be considered soft pooling in comparison with attention-based one.

Dynamic pooling. Inspired by the Routing Algorithm from Capsule Networks [81], a new
type of pooling operator was proposed in [80], called dynamic pooling. This pooling operator
iteratively updates the instance contribution to its bag representation during each feed-forward
step. Based on these instance contributions, dynamic pooling highlights the key instance and mod-

els the contextual information among instances. The multi-instance neural network with dynamic
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pooling is optimized with the margin loss in an end-to-end manner. Besides the ability to highlight
the key instance, the dynamic pooling function makes instance-to-bag relationships interpretable.

5) Model optimization. The developed 3D modeling protocol is fully automated, but some
parameters of this protocol (Table 1) can be configured manually for each particular task. Table 1
lists recommended values for the parameters of the modeling protocol which were obtained based
on preliminary experiments, except for the parameter «Feature composition (input SMARTS)»,

which has to be specified for each task or kept as default.

Table 1. The main parameters of the developed 3D multi-instance modeling protocol.

Parameters Default value
Conformer generation
Number of conformers From 1 to 200 (or more) 50 or 100
Energy window From 10 to 100 kcal/mol 100 kcal/mol
Pmapper Descriptors
Number of feature points Atom pairs (2), triplets (3), quadruplets (4) | Quadruplets (4)
Binning parameter 1 or more (less probable) 1
Feature composition (input SMARTS)  Any combinations [C,N,O,S,P,F, Cl, Br, I]
MIL algorithm
Descriptors scaling No or Yes Yes
Instance-Wrapper, Bag-Wrapper,
Type of algorithm Instance-Net, Bag-Net, BagAttention-Net, |Instance-Wrapper
BagDynamic-Net, etc.

6) Software. The developed 3D modeling protocol is based on open-source packages avail-
able using Python 3. The in-house modules of the modeling protocol are also written in Python 3.
The program code for the developed modeling protocol was organized in a migsar python package
(https://github.com/cimm-kzn/3D-MIL-QSAR) (Figure 15).

MIL Wrappers. The simplest algorithms that convert a multi-instance dataset into a single-
instance dataset. Then any standard ML algorithm is used to build the model (standard neural
network as default).

Instance-Wrapper. The algorithm transforms a multi-instance dataset into a single-instance
dataset by assigning all instances labels of the parent bag. Then any single-instance ML algorithm
is used to build the model. For a new object, the predictions of each instance are obtained, which

are then averaged to get the bag prediction.
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Bag-Wrapper. The algorithm transforms a multi-instance dataset into a single-instance da-
taset by mapping (i.e. averaging) a bag of instances to a single embedding vector. Then any single-
instance ML algorithm is used to build the model.

Upgraded MIL algorithms. These are multi-instance adaptations of the SVM algorithm
(MISVM, miSVM, NSK, STK, MissSVM, MICA, sMIL, stMIL, sbMIL) published by Doran and
Ray [43] (https://github.com/garydoranjr/misvm).

MI neural networks. Neural networks adapted to MIL framework.

Instance-Net. Hidden layers of neural networks transform instance features into instance
representations, from which instance scores are derived, that are aggregated to final bag prediction.

Bag-Net. Hidden layers of neural networks transform instance features into instance repre-
sentations, that are aggregated by pooling operator to a single embedding vector, which are pro-

cessed to derive bag prediction.

Tautomer _ Standard Instance-Net
——RDKIit generator
Generator NN
Bag-Net
iy r—RDKIit generator __ AttentionNet
Generator | |
miqsar —QpenBabel generator | GatedAttentionNet
package Aftention-based ;
—2D RDKit descriptors NN TempAttentionNet
Descript_or | 2D ISIDA descriptors | GumbelAttentionNet
Calculation —3D RDKit descriptors _
L—3D pmapper descriptors —SelfAttentionNet
—DPNet
—— Estimators Neural Nets
Others PNet
NN =
—HopfieldNet

Instance-Wrapper
— Wrappers {
Bag-Wrapper

'— Upgraded —MILSVM*

Figure 15. Structure of the migsar package for building 3D models using machine learning algorithms.

AttentionNet. Hidden layers of neural networks transform instance features into instance
representations, that are aggregated by an attention-based pooling operator (weighted mean) to a
single embedding vector, that is processed to derive bag prediction.

GatedAttentionNet. Two types of hidden layers are used to transform instance features into
instance representations: one with a tanh and another with a sigmoid activation function and the

resulting instance representations are calculated as element-wise multiplication tanh © sigmoid.
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Instance representations that are aggregated by an attention-based pooling operator (weighted
mean) to a single embedding vector, are processed to derive bag prediction.

TempAttentionNet. The algorithm applies temperature softmax instead of a standard sofi-
max function to calculate attention weights in attention-based pooling. The temperature parameter
is used to adjust the sharpness of attention weights distribution.

GumbelAttentionNet. The algorithm applies Gumbel softmax instead of a standard softmax
function to calculate attention weights.

SelfAttentionNet. Hidden layers of neural networks transform instance features into in-
stance representations, that are aggregated by a self-attention-based pooling operator to a single
embedding vector, that are processed to derive bag prediction.

DPNet. Hidden layers of neural networks transform instance features into instance represen-
tations, that are aggregated by a dynamic pooling operator to a single embedding vector, that are
processed to derive bag prediction.

GPNet. Hidden layers of neural networks transform instance features into instance repre-
sentations, that are aggregated by the gaussian weighting pooling operator (weighted mean) to a

single embedding vector, that are processed to derive bag prediction.
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2.2 Multiple conformer descriptors for QSAR modeling

Multi-instance algorithms can be categorized into instance-based and bag-based algorithms. In-
stance-based algorithms apply a predefined rule to aggregate the predicted instance scores to ob-
tain a single prediction for the entire bag. Bag-based algorithms aggregate instances of the bag into
a single vector, resulting in single-instance representation. Mapped bag-based algorithms use a
special mapping function, to transform multi-instance data into single-instance representations of
bags. Mapping methods can be based on bag statistics, representative instance concatenation,
counting, or distance [42]. In this study MIL-kmeans algorithm, which is similar to the approach
published by Zhou and Zhang [104] was developed and validated for the task of classification of
bioactive compounds.

In MIL-kmeans algorithm, all conformers of all compounds represented by corresponding
3D descriptors are clustered using the k-means algorithm. The obtained clusters are used to gen-
erate a new descriptor vector of a given compound (mapping process): the descriptor value was
equal to 1 if at least one conformer of the molecule fell into the corresponding cluster or 0 other-
wise. As a result, a new descriptor matrix of the size (the number of molecules) x (the number of
clusters) is generated. Any conventional regression or classification machine learning algorithm
then can then be applied to build models based on this descriptor matrix. Two approaches were
considered as alternatives for comparison. MIL-mean algorithm averages the descriptor vectors of
conformers transforming multi-instance data to single-instance data and applies the Random For-
est algorithm to build a model. The MIL-max approach also transforms data to single-instance
representation by a selection of the maximum value of each descriptor over conformers of a par-
ticular compound and then applies the Random Forest algorithm to build a model.

3D MIL classification models based on the proposed MIL algorithm were compared with
single-conformer models and 2D models based on 2D descriptors available in RDKit (Morgan
fingerprints, pharmacophore fingerprints, and physicochemical descriptors). The comparison was
performed on three types of datasets extracted from the ChREMBL-23 database: (i) collection of 6
chiral datasets containing only chiral molecules, (ii) collection of 5 achiral datasets containing only
achiral molecules, and (i) collection of 162 datasets, including both chiral and achiral molecules.
Compounds were labeled active if their pKi or pIC50 was 26 for enzyme targets and 27.5 for

membrane proteins, and inactive otherwise.
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Multiple Conformer Descriptors for QSAR Modeling

Aleksandra Nikonenko,"” Dmitry Zankov,"™ Igor Baskin,”” Timur Madzhidov,*™ and Pavel Polishchuk*®

Abstract: The most widely used QSAR approaches are
mainly based on 2D molecular representation which
ignores stereoconfiguration and conformational flexibility
of compounds. 3D QSAR uses a single conformer of each
compound which is difficult to choose reasonably. 4D QSAR
uses multiple conformers to overcome the issues of 2D and
3D methods. However, many of existing 4D QSAR models
suffer from the necessity to pre-align conformers, while
alignment-independent approaches often ignore stereo-
configuration of compounds. In this study we propose a
QSAR modeling approach based on transforming chirality-
aware 3D pharmacophore descriptors of individual con-

formers into a set of latent variables representing the whole
conformer set of a molecule. This is achieved by clustering
together all conformers of all training set compounds. The
final representation of a compound is a bit string encoding
cluster membership of its conformers. In our study we used
Random Forest, but this representation can be used in
combination with any machine learning method. We
compared this approach with conventional 2D and 3D
approaches using multiple data sets and investigated the
sensitivity of the approach proposed to tuning parameters:
number of conformers and clusters.

Keywords: 4D QSAR - multiple instance learning - 3D pharmacophore descriptors

1 Introduction

The quantitative structure-activity relationship (QSAR) mod-
eling is a universal approach applicable for predicting
activity of compounds as well as their side effects, ADME,
toxicity, —metabolites,  physicochemical, and other
properties.” The classical methodology of building QSAR
models encodes each molecule as a set of descriptors and
then applies machine learning to find the correlation
between descriptors and investigated activity. This gives
rise to one of the key limitations of conventional structure-
property modeling: the requirement that each molecule has
to be represented by a single instance with fixed
conformation, protonation state, tautomeric form, etc. In
other words, a molecule has to be associated with a single
set of descriptors. However, molecules are dynamic objects
and simultaneously may exist in many forms (conforma-
tional, tautomeric, protonation states, mixtures of stereo-
isomers, etc.) in equilibrium. These forms are important for
their biological response or physicochemical properties. For
example, only particular conformers of a compound may
bind to a protein target to produce desired response.”
Spatial configuration of compounds can also affect their
biological activity. Biological activity of different stereo-
isomers may differ up to several orders of magnitude.”
About half of marketed drugs are chiral compounds® and
about 25% of them have several tautomeric forms.”! The
same compound may bind in different tautomeric forms if
the energy difference between them is less than 1 kcal/
mol.®) Representation of each molecule as a single fixed
instance neglects complexity of molecular objects. Thus,
choosing the proper instance to represent a molecule
becomes important and may affect model accuracy.

‘Wiley Online Library © 2021 Wiley-VCH GmbH

There are many workarounds to overcome this issue.
For example, the recommended approach for treatment of
tautomers is canonicalization and using a single canonical
tautomer for each compound in QSAR modeling.” How-
ever, this canonicalization is mainly formal and does not
take into account stability of tautomers. It is difficult to
accurately predict tautomer stability in conditions, similar to
those in which biological assays are conducted. Some
compounds, e.g. sydnones, cannot be represented by a
single canonical structure at all. The similar workaround is
applied to represent protonation states of a molecule - the
most abundant (by prediction) protonation state is chosen.
Thus, if a compound exists in several protonation states
with comparable abundance only one will be chosen
reducing information supplied to a model. Bonachera et al.
proposed to cope with this problem by weighting pharma-
cophore descriptors for different protonation states and
tautomers according to their stability,”® but later problems
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with quality of tautomer prediction of applied tools were
reported.”’

Treatment of stereoisomers is more elaborated, and it
also has some issues. At the 2D level encoding of stereo-
configuration is complicated because molecules are repre-
sented as molecular graphs and explicit information about
conformation and spatial arrangement of atoms is absent.
Different approaches were suggested to overcome this
issue. However, all developed approaches of stereochemis-
try encoding at the 2D level are mainly limited to represent
chiral centers and cis-trans isomerism of double bonds."*"*!
At the 3D level of representation molecules are considered
as particular conformers. This enables more natural encod-
ing of compound chirality by direct incorporation of spatial
arrangement of atoms in the course of calculation of
chirality-aware descriptors. However, the biggest issue of
3D QSAR modeling approaches is the selection of proper
conformers, because this greatly determines success of
modeling. This can be partially overcome if one knows or
can reasonably suggest conformation of a compound
responsible for studied activity. Therefore, in the first
publications on 3D modeling researchers used conforma-
tionally rigid molecules as templates to align other
molecules of a dataset. This was implemented in the first
3D QSAR approach Comparative Molecular Field Analysis
(CoMFA)."l It suffered from atom-based alignment of
structurally diverse compounds that limits its applicability
to mainly congeneric compound series. Many other 3D
QSAR approaches were developed since then, e.g. Molec-
ular Shape Analysis (MSA),"” GRID,"™ Hypothetical Active
Site Lattice (HASL)" Comparative Molecular Similarity
Indices Analysis (COMSIA),! Comparative Molecular Surface
Analysis (CoMSA),?"! Continuous Indicator Fields.?? But to
some extent all of them suffered from the alignment issue
inherent to CoMFA. Many alignment-independent 3D
approaches were developed to overcome this issue. One of
them, Comparative Molecular Moment Analysis (CoMMA),
suggested to use zeroth, first-, and second-order spatial
moments of the charge and the mass distribution as
descriptors in 3D QSAR studies instead of interaction
fields.” Other alignment-independent 3D descriptors in-
clude WHIM,* GETAWAY,** MORSE,*® RDF,”” etc. Applica-
tion of alignment-independent descriptors does not solve
the issue related to proper selection of conformers for
modeling. They do not encode stereoconfiguration of
compounds which can be, in principle, reflected in align-
ment-dependent 3D QSAR approaches.

4D QSAR approaches were developed to enable
representation of a single compound by a set of
conformers.**** These approaches can also be divided into
alignment-dependent and alignment-independent ones.
The first alignment-depended 4D approach stochastically
searched for the best alignment among generated con-
former ensembles using genetic algorithm.”® However, this
modeling strategy is not feasible for large datasets which
are quite common nowadays. SOM-4D-QSAR is another

‘Wiley Online Library © 2021 Wiley-VCH GmbH
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alignment-dependent method. It takes pre-aligned con-
formers and maps them to 2D self-organized Kohonen
maps. Occupancy of neurons or mean charges are used to
build PLS models.*"

Another group of 4D approaches calculates 3D align-
ment-independent descriptors for individual conformers
and combines them in order to obtain a single vector of
compound descriptors. The most widely used combining
schemes are summation or averaging of descriptors of
individual conformers or summation, weighted by a
normalized Boltzmann distribution of conformers by
energy.?*3>33 But application of such schemes looks some-
what artificial. First, only few conformers can fit a binding
pocket. Thus, conformers do not contribute equally to the
activity. Second, the distribution of conformers by their
energy calculated in vacuum or even in water solution does
not necessarily resemble their distribution in protein-bound
state.

The approach of multi-instance learning (MIL) was
proposed by Dietterich et al.?¥ to address the issue of
representation of compounds by multiple instances, in
particular, conformers. The central idea is that each
molecule can be represented by a bag (set) of instances.
Each bag is associated with activity value but it is unknown
which instances contribute to the activity. Each instance is
represented by a vector of descriptors and the task is to
build a model that finds correlation between the set of
vectors corresponding to the instances of the bag and the
end-point value associated with this bag. This idea did not
receive much attention in chemoinformatics community
and only few papers were published so far.®*3 But it
attracted much attention in other fields, like text or signal
processing, information retrieval, computer vision, etc."!

There are two major groups of MIL modeling ap-
proaches: instance-based and bag-based."*” Instance-based
methods classify each instance individually and combine
the predicted instance labels to assign a bag label. Bag-
based approaches operate by whole bags of instances and
assign labels to the bags. The latter group can be divided
into two subgroups. The first one is based on calculation of
similarity/distances between bags. This was implemented in
methods based on k-nearest neighbors algorithm ' or
SVM-based algorithms.*¥ The second subgroup includes
embedding-based approaches, which transform a set of
feature vectors of individual instances of a bag into a single
feature vector representing the whole bag.”**!

It is important to note that conventional 4D QSAR
methods are a subset of embedding-based MIL approaches.
Descriptors of individual conformers in 4D QSAR are
averaged or summed up to create a single feature vector
representing the set of conformers. This is one of trivial
embedding schemes. An example of more advanced
scheme is unsupervised embedding implemented in SOM-
4D-QSAR. Conformers of compounds are projected to a
new space which is used for model building. The drawback
of SOM-4D-QSAR implementation is that it requires com-
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pound alignment and thus it is applicable to congeneric
series only.*3"

In this study we propose a new embedding scheme
similar to SOM-4D-QSAR. It is based on clustering of
compound conformers. Cluster membership of conformers
of a compound is encoded by the bit vector, which is then
used to build a model. The major difference from SOM-4D-
QSAR was the descriptors chosen, chirality-aware 3D
pharmacophore quadruplets, and no need for alignment of
molecules. We compare performance of the proposed
approach with conventional single instance 2D and 3D
models on multiple datasets and investigate sensitivity of
model performance to tuning parameters: number of con-
formers and clusters.

2 Materials and Methods
2.1 Data Sets

Two groups of data sets were collected and prepared based
on ChEMBL. The first ones consisted of only achiral
compounds to make a more fair comparison with 2D QSAR
models built on conventional descriptors which cannot
encode stereoconfiguration. Five data sets of compounds
with measured K; or IC;, values against different targets
were collected (Table 1). To split compounds into active
and inactive classes we used thresholds recommended for
different families of protein targets in the paper of Bose
et al.® Compounds were labeled active if their pK; or pICs,
was >6 for enzyme targets and >7.5 for membrane
proteins, and inactive otherwise. This resulted in well-
balanced classification data sets.

The second group comprised data sets consisting of
only chiral compounds with known configuration of all
chiral centers and double bonds. These data sets were

Table 1. Data sets consisting of only achiral compounds.
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chosen to investigate the ability of 3D models to predict
activity of chiral compounds which is tricky to encode at 2D
level of representation (Table 2).

We chose these two extreme cases, 2D-friendly and 2D-
unfriendly, to better investigate applicability of different
approaches. Of course, in the real applications there is often
a mixture of chiral and achiral compounds in data sets. To
evaluate performance of different approaches in more
realistic conditions we built models for 162 additional data
sets extracted from ChEMBL which comprised achiral
compounds as well as chiral compounds with known and
unknown configurations. They were processed identically to
the previously described data sets.

Structures of compounds were curated with previously
developed workflow which is publicly available at https://
bitbucket.imtm.cz/projects/STD/repos/std/browse. To build
3D and MIL models we generated up to 50 conformers
using RDKit."”? RDKit was chosen because it reasonably well
reproduces bioactive conformations of compounds in their
bound state that is important for success of 3D modeling
studies.”® Conformers with the root mean squared distance
less than 0.5 A were discarded. All data sets are available in
Supplementary materials.

2.2 Descriptors

For 2D QSAR models we used three groups of descriptors:
(i) binary Morgan fingerprints of radius 2 and length 2048,
(i) binary 2D pharmacophore fingerprints and (i) phys-
icochemical descriptors including EState indexes, the
number of different pharmacophore features, rings systems,
functional groups and fragments. All descriptors were
calculated with RDKit.*” Definitions of pharmacophore
features used for descriptor calculation were taken from our
previously published study describing the development of

Target CHEMBL ID  Protein name

Protein family

Activity type Total count Actives count Inactives count

CHEMBL253 Cannabinoid CB2 receptor Membrane protein  K; 1385 746 639
CHEMBL2409 Epoxide hydratase Enzyme IC;, 725 385 340
CHEMBL3155 Serotonin 7 (5-HT;) receptor Membrane protein  K; 641 335 306
CHEMBL3594 Carbonic anhydrase IX Enzyme ; 1327 618 709
CHEMBL3717 Hepatocyte growth factor receptor Enzyme 1Cso 584 249 335
Table 2. Data sets consisting of only chiral compounds.

Target CHEMBL ID Protein name Protein type Activity type Total count Actives count Inactives count
CHEMBL214 Serotonin 1a (5-HT1a) receptor Membrane protein pK; 355 229 126
CHEMBL217 Dopamine D2 receptor Membrane protein pK; 892 312 580
CHEMBL232 Alpha-1b adrenergic receptor Membrane protein pK; 158 67 91
CHEMBL233 Mu-opioid receptor Membrane protein pK; 802 486 316
CHEMBL2971 Tyrosine-protein kinase JAK2 Enzyme plCs, 780 332 448
CHEMBL4235 11-beta-hydroxysteroid dehydrogenase 1 Enzyme plC50 486 182 304
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pmapper software.*” The full list of 2D descriptors of the
third group is given in Supplementary materials (Table S1).

To encode conformers for 3D and MIL modeling we
chose two groups of 3D descriptors. The first group
consisted of 3D descriptors available in RDKit: asphericity,
eccentricity, inertial shape factor, NPR1, NPR2, PMI1, PMI2,
PMI3, radius of gyration, spherocity index, WHIM, PBF,
Autocorr3D, RDF, MORSE and GETAWAY all together."”
These descriptors cannot discriminate stereoisomers and
were used as a baseline for comparison purposes. The
second type of descriptors was 3D pharmacophore descrip-
tors. They were implemented based on the previously
developed 3D pharmacophore signature generation code
within pmapper software.”” Within this approach each
conformer is represented by a complete graph where the
corresponding pharmacophore features are vertices and
edges are binned distances between features. Binning is
required to enable fuzzy matching of pharmacophores. In
this study we used binning step equal to 1A. We
enumerated all possible quadruplets of pharmacophore
features. Canonical signatures were generated for quadru-
plets using the algorithm described in the previous paper
which took into account composition and configuration of
features of the quadruplet.” Thus, each conformer was
encoded by a feature vector of counts of pharmacophore
quadruplets having identical signatures. Since there are a
lot of possible 3D pharmacophore quadruplets the ob-
tained matrices were very sparse. To reduce their size we
discarded quadruplets which occurred in less than 5% of
compounds.
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2.3 Modeling

To build single instance 3D models we used conformers
with the lowest energy. To build multi-instance 3D models
we used several approaches. The first one is simple
averaging of descriptors among conformers of a particular
compound (MIL-mean approach) which is used in many
conventional 4D QSAR approaches. The second one is
selection of maximum value of each descriptor among
conformers of a particular compound (MIL-max approach).

The third approach creates new latent descriptors based
on clustering of conformers (Figure 1). It is an adaptation of
the approach published by Zhou and Zhang.®” All con-
formers of all compounds represented by corresponding 3D
descriptors are clustered together using the k-means
algorithm. The number of clusters is a tuning parameter
and can be optimized in the course of cross-validation. For
each molecule a new vector of latent variables is created.
Its length is equal to the number of clusters. Feature values
were equal to 1 if at least one conformer of the molecule
fell into the corresponding cluster or 0 otherwise. Thus, a
new descriptor matrix of the size (the number of molecules)
x (the number of clusters) was created. Any conventional
machine learning methods can be applied to build models
based on this feature matrix. Hereinafter, this approach will
be referred as MIL-kmeans.

All models within this study were built using the
Random Forest (RF) algorithm.*"” All models contained 250
trees. The optimal number of selected variables was
determined by the search within the following range: 10%,
209%, 30%, log2 or squared root of the total number of
descriptors. There are two additional tuning parameters of
MIL models — the number of conformers and the number of
clusters. The number of conformers was chosen to be from
5 to 50 with the step 5. To select the required number of

B. Calculation of :
A.instance \ | 35 ot c. g of descriptors D. Machine
RO, conformation learning
- Clusters
E « Conformer 1 —ji» 1100110 = ! 1
A — - - 2 Clusters
— > 3
~ BEE . W
4 + Conformer 1 ——f» 1100110 oid -E 9 - B
> o Random
* Conformer K* = 1100111 Mol 3 .m ¥ - B Forest
il - HE= - W
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-
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2 | ™ cosmaris = 1 i}
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Figure 1. Generation of multiconformer descriptors based on clustering of compounds and their conformers.
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conformers from up to 50 previously generated ones, all
conformers were ordered by their energy calculated with
MMFF94“? implemented in RDKit and the corresponding
number of uniformly distributed conformers was selected.
The number of clusters varied from 2 to 10 with step 1,
from 10 to 100 with step 5, from 100 to 500 with step 50,
from 500 to 1000 with step 100. To select optimal hyper-
parameters we applied grid search using five-fold cross-
validation with random splits. The model with the highest
accuracy estimated by cross-validation was chosen for
comparative studies.

To estimate predictive ability of models we made five
independent train/test splits for each data set. For achiral
data sets splits were done randomly. For chiral data sets
splits were done randomly but with restriction-all stereo-
isomers of a compound should be set to either a train or a
test set but not to both simultaneously. This should give
less biased estimation of predictive ability of models.
Statistics was calculated for each test split and averaged
among them. We calculated balanced accuracy as a
measure of the predictive ability which is an average of
sensitivity and specificity of a model.

It was reasonable to test consensus of multiple MIL-
kmeans models because this could improve the predictive
ability. Two consensus approaches were applied. The first
one is consensus of top 10, 15, 25, 50 or 100 models with
the highest cross-validation performance within all gener-
ated MIL-kmeans models (MIL-kmeans-consensus-top). Al-
ternatively, we calculated consensus for all models within
reasonable ranges of tuning parameters: the number of
conformers from 20 to 50 and the number of clusters from
100 to 1000. Overall 182 models were combined within this
consensus approach (MIL-kmeans-consensus-range). This
approach does not require selection of best performing
models that may simplify overall modeling workflow.
Consensus prediction was made by majority voting.
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3 Results and Discussion

3.1 Comparison of the Predictive Ability of 2D, 3D and
MIL QSAR Models on Achiral and Chiral Data Sets

We selected models with the highest cross-validation
performance and compared their accuracy on test sets.
Models trained on 2D descriptors, in particular Morgan
fingerprints, demonstrated high performance on achiral
and chiral data sets (Tables 3 and 4). MIL models trained on
3D pharmacophore descriptors had similar performance to
2D models and in several cases outperformed them. Single
instance models trained on 3D pharmacophores had lower
performance than corresponding MIL models. MIL-mean
and MIL-max models trained on 3D RDKit demonstrated
performance similar to 3D pharmacophore MIL models,
whereas MIL-kmeans models trained on 3D RDKit descrip-
tors had substantially lower performance than correspond-
ing models based on 3D pharmacophores. In general, there
were no obvious advantage of any single combination of
representation and modeling approach, regardless of data
sets being achiral or chiral.

To better compare different approaches we plotted
accuracies of the most accurate 2D classification models
versus the best MIL models (Figure 2). In many cases 2D
models already achieved high performance and, expectedly,
MIL models could not substantially improve model perform-
ance in these cases. However, in some cases of chiral data
sets, where 2D models demonstrated moderate accuracy,
MIL models were able to improve prediction accuracy.

Table 3. Balanced accuracy averaged across five test sets for QSAR models on achiral data sets (standard deviation is in brackets).

Descriptor name model algorithm CHEMBL2409  CHEMBL253 CHEMBL3155  CHEMBL3594 CHEMBL3717
2D Morgan Fingerprints  single instance 0.82 (+0.045) 0.82(+0.015) 0.83 (+0.063) 0.79 (+£0.025) 0.82 (+0.043)
2D phamacophore single instance 0.79 (£0.043) 0.77(+£0.023) 0.78 (+0.050) 0.74(+0.015) 0.81 (+£0.035)
2D physicochemical single instance 0.79 (+£0.021) 080(+0.016) 0.80 (+0.042) 0.75(£0.021) 0.81 (+0.035)
3D phamacophores MIL-kmeans 0.73 (£0.017) 0.78(+£0.015) 0.74 (+£0.045) 0.73(£0.036) 0.82 (+0.041)
MIL-kmeans-consensus-range  0.76 (+0.025) 0.80(+0.016) 0.74 (+0.069) 0.76 (+0.026) 0.82 (+0.039)
MIL-kmeans-consensus-top 0.75 (+0.027) 0.80(+£0.008) 0.74 (+0.063) 0.76 (+0.030) 0.83 (+0.039)
MIL-max 0.79 (+£0.028) 080(+0.013) 0.78(+0.067) 0.77 (£0.021) 0.81 (+0.028)
MIL-mean 0.75 (+0.038) 0.78(+0.012) 0.78 (+£0.044) 0.74(+0.026) 0.82 (+0.029)
single instance 0.73(+£0.039) 076(+0.013) 0.73(+0.040) 0.76(£0.018) 0.77 (+0.031)
3D RDKit MIL-kmeans 0.66 (+0.031) 065(+0.026) 0.63 (+0.023) 063 (+0.034) 0.64 (+0.051)
MIL-kmeans-consensus-range  0.69 (+0.018) 0.69(+0.037) 0.64 (+0.020) 0.65(+0.031) 0.66 (+0.054)
MIL-kmeans-consensus-top 0.68 (+0.025) 068(+0.027) 0.65(+0.038) 0.66(+0.029) 0.66 (+0.049)
MIL-max 0.76 (+£0.026) 0.78(+0.029) 0.75(+0.041) 076 (+0.012) 0.78 (+0.054)
MIL-mean 0.77 (£0.040) 080(+0.032) 0.78(+0.042) 0.74(+0.028) 0.79 (+0.042)
single instance 0.72 (+£0.036) 0.75(+0.028) 0.72 (+0.041) 0.75(£0.018) 0.73 (+0.052)
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Table 4. Balanced accuracy averaged across five test sets for QSAR models on chiral data sets (standard deviation is in brackets).

Descriptor name

model algorithm

CHEMBL214 CHEMBL217 CHEMBL232 CHEMBL233 CHEMBL2971 CHEMBL4235

2D Morgan Finger- single instance 0.72 0.83 0.69 0.82 0.85 0.83
prints (+0.068) (£0.022) (+£0.151) (+£0.017) (+0.009) (£0.036)
2D pharmacophore single instance 0.74 0.78 0.62 0.80 0.83 0.82
(£0.066) (+0.024) (£0.137) (£0.041) (£0.029) (£0.029)
2D physicochemical  single instance 0.79 0.79 0.61 0.83 0.83 0.82
(£0.068) (£0.022) (+£0.122) (£0.012) (£+0.032) (£0.057)
3D pharmacophores ~ MIL-kmeans 0.76 0.81 0.74 0.78 0.84 0.81
(+0.049) (£0.021) (£0.152) (+0.037) (+0.024) (£0.025)
MIL-kmeans-consensus- 0.75 0.81 0.66 081 0.85 0.82
range (+0.062) (+0.014) (+0.161) (+0.021) (+0.025) (+0.046)
MIL-kmeans-consensus-top 0.77 0.80 0.64 0.80 0.86 0.80
(£0.042) (+£0.014) (+£0.179) (+0.022) (£0.025) (+0.028)
MIL-max 0.75 0.81 0.70 0.77 0.84 0.79
(+£0.033) (+£0.013) (+0.103) (+0.046) (+0.024) (+0.034)
MIL-mean 0.71 0.81 0.72 0.77 0.84 0.81
(£0.029) (£0.026) (£0.148) (£0.025) (£0.026) (£0.050)
single instance 0.68 0.78 0.67 0.74 0.82 0.78
(£0.049) (+0.027) (£0.150) (£0.031) (£0.022) (£0.041)
3D RDKit MIL-kmeans 0.65 0.63 0.62 071 0.69 0.73
(+0.081) (+0.029) (+0.078) (+0.042) (£0.033) (+0.045)
MIL-kmeans-consensus- 0.66 0.64 0.61 072 0.72 0.75
range (+0.089) (+0.015) (£0.095) (£+0.044) (+0.019) (£0.042)
MIL-kmeans-consensus-top 0.69 0.65 0.67 0.72 0.73 0.75
(£0.102) (+0.028) (£0.111) (+0.039) (+0.028) (£0.050)
MIL-max 0.72 0.76 0.66 0.81 0.81 0.80
(+£0.072) (+0.023) (+£0.107) (+0.026) (+0.006) (+0.054)
MIL-mean 0.74 0.78 0.70 0.82 0.82 0.79
(£0.070) (£0.021) (£0.134) (£0.032) (£0.013) (£0.047)
single instance 0.70 071 0.61 0.80 0.81 0.78
(£0.056) (£0.013) (£0.133) (£0.035) (£0.025) (£0.057)
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Figure 2. Test set balanced accuracy of the best performing 2D and MIL models.
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3.2 Influence of the Number of Conformers and the
Number of Clusters on the Predictive Ability of MIL
Models

First, we studied the influence of the number of clusters on
model predictive performance. We chose MIL-kmeans
models trained on 3D pharmacophore descriptors because
they had higher accuracy than models trained on 3D RDKit
descriptors. In the majority of cases we observed a similar
trend between cross-validation and test set prediction
performances. Therefore, we used only cross-validation
performance values for chosen data sets to illustrate the
influence of the number of clusters on model accuracy
(Figure 3). The full plots for all data sets were provided in
Supplementary materials (Figures S1-2).

We observed that in some cases model performance
substantially decreased with increasing of the number of
clusters (Figure 3). We explain this effect by the small total
number of conformers with distinct 3D pharmacophore
feature vectors. If the total number of conformers with
distinct feature vectors increases, the model cross-validation
performance also increases and reaches the plateau. A
smaller number of distinct conformers may result in less
populated clusters and lower generalizing ability of models.
For future studies we suggest to choose the number of
clusters at least 3-10 times less than the total number of
conformers with distinct 3D pharmacophore feature vec-
tors. Setting the number of clusters to >1000 did not
improve prediction performance of models even for data
sets having a large number of distinct conformers.

We chose the same data sets and models to demon-
strate the influence of the number of conformers on the
predictive ability of models (Figure 4). Plots for all models
are provided in Supplementary materials (Figures S3-4). For
each number of conformers we selected the model with
the highest cross-validation performance among those
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having different number of clusters. In general models were
not very sensitive to the number of conformers (Figure 4).
MIL-kmeans and MIL-max behaved most consistently on
almost all data sets. Their cross-validation and test set
performance was close and demonstrated slight improve-
ment with increasing of the number of conformers. MIL-
mean models were more sensitive to the number of
conformers. We supposed that in this case descriptor values
were changed more often with addition of new conformers,
whereas for MIL-max and MIL-kmeans approaches those
changes happened les frequently. CHEMBL232 data set
resulted in models with the most variable performance for
cross-validation as well as for test sets. This could be
explained by the small number of compounds in the data
set. Thus, we recommend using at least 20 conformers per
compound to build MIL models and aware of the need to
investigate model performance with respect to the number
of conformers for small data sets.

3.3 Comparative Study of Predictive Performance on
Additional Data Sets

To evaluate the predictive ability of 2D and MIL models we
applied them to 162 additional data sets. We chose Morgan
fingerprints to built 2D models and 3D pharmacophores to
build MIL-max and MIL-kmeans. MIL-mean approach dem-
onstrated comparable performance to MIL-max and we
decided to not use it. For building of MIL-kmeans models
we generated 50 conformers for all data sets and chose the
number of clusters as a 1/5 of the total number of unique
descriptor strings in a data set, but if this value was greater
than 1000 we set the number of cluster to 1000. We created
five test sets for each data set using the same procedure as
described above and calculated average balanced accuracy
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Figure 3. Cross-validation performance of MIL-kmeans models built on for achiral (CHEMBL253 and CHEMBL3717) and chiral (CHEMBL232,
CHEMBL233) data sets using 3D pharmacophore descriptors. Numbers in brackets are the number of compounds in data sets. Colored
numbers on the plots are the total number of conformers with distinct vectors of 3D pharmacophore descriptors within the corresponding

data set.
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Figure 4. Cross-validation and test set performance for models built for achiral (CHEMBL253 and CHEMBL3717) and chiral (CHEMBL232 and
CHEMBL233) data sets. For each number of conformers the model with the highest cross-validation performance was selected among

models having different number of clusters.

for each data set. Statistical parameters for all data sets are
provided in Supplementary materials (Table S2).

We removed from consideration 21 data sets which had
balanced accuracy below 0.7 for all models. For the
remaining 141 models we compared their predictive
performance (Figure 5). Variance of MIL model performance
relative to 2D models was lower in the case of MIL-max
than for MIL-kmeans models. For the MIL-max approach the
most notable improvement was observed only for the
CHEMBL4361 data set where balanced accuracy was
increased from 0.63 to 0.72, but in general MIL-max scheme
gave only marginal improvement. Large discrepancy of
model performance between 2D and MIL-kmeans may
indicate importance of proper tuning of hyperparameters
which are the number of clusters and conformers. However,
even with the chosen default parameters MIL-kmeans

models demonstrated certain improvement over 2D mod-
els.

We analyzed factors which can determine successfulness
of different types of models. The significant difference was
observed for the size of data sets (p-value in t-test was
below 0.05) (Figure 6). The data sets with more than 1000
molecules were better modeled using the conventional 2D
approach than 3D MIL ones. There was no significant
difference for the number of rotatable bonds but data sets
with greater average number of rotatable bonds in
molecules were better modeled by 2D descriptors (Supple-
mentary Figure S5).
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3.4 Performance of 3D MIL Approaches to Solve
Regression Tasks

We also studied performance of the suggested MIL
approaches based on 3D pharmacophore representation to
build regression models. However, we did not observed
substantial improvement relatively to conventional 2D
QSAR models based on Morgan fingerprints. Statistical
parameters of models are provided in Supplementary
materials (Table S3). This can be due to the chosen
procedure to create a latent representation based on
clustering. Clustering is more suitable to discriminate
actives from inactives rather than highly active molecules
from moderately active ones. Therefore, clustering may
result in many clusters with compounds having different
activity that will reduce the discriminative ability of MIL
models. Thus, we do not recommend using the suggested
MIL approach for regression tasks.

3.5 Comments on Interpretability of MIL Models

We believe that all QSAR models are interpretable and it is
possible to retrieve useful knowledge from any model."
The only issue is that not every interpretation approach can
be applied to every model. Since the suggested modeling
approach is alignment-independent, one can apply corre-
sponding interpretation approaches to MIL models, e.g.
one can retrieve a contribution of particular substructures
by removing or masking fragments of interest from the
studied molecules.” ™' We did not study interpretability of
MIL models, but there are no technical or theoretical
restrictions to interpret them as any other alignment-
independent model. Specific approaches developed for
interpretation of alignment-dependent models, like contri-
bution of steric and electronic factors in COMFA'®, cannot

‘Wiley Online Library © 2021 Wiley-VCH GmbH

be applied in this particular case. However, this does not
reduce the value of suggested MIL approaches.

4 Conclusions

In this study we demonstrated that conventional QSAR
models based on 3D descriptors trained on single-con-
former representation cannot outperform 2D models.
Representations based on multiple conformations using
MIL approach can result in models with similar or even
better performance than 2D models and almost always
better than single-conformer based 3D QSAR models. This
was especially notable in the case of data sets consisting of
stereoisomers with different activity which cannot be
captured by models trained on chirality-unaware 2D/3D
descriptors. Using 3D pharmacophore descriptors which are
chirality-aware resulted in substantial improvement of
predictive ability of models in several cases.

As we demonstrated, conventional 4D QSAR modeling
approaches which are commonly used for modeling of
compounds represented by several conformers can be
considered as a particular case of multiple instance learning.
The averaging scheme used by conventional 4D QSAR
approaches may be not optimal and the predictive ability
of models can be improved by using other embedding
schemes. Here, we used maximization and clustering MIL
approaches. They performed almost as good as or better
than traditional averaging of descriptors of individual con-
formers and can be recommended as a viable alternative. In
spite of complexity of the MIL-kmeans approach due to an
additional tuning parameter (the number of clusters) it may
outperform MIL-max in some cases. The optimum number
of conformers in MIL-max and MIL-kmeans models depends
on flexibility of training set compounds. We suggest to
generate at least 30 conformers and to choose the number
of clusters 3-10 times greater than the total number of
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conformers with distinct 3D pharmacophore feature vec-
tors.

We verified applicability of implemented MIL ap-
proaches in combination with 3D pharmacophore descrip-
tors on the number of additional data sets and demon-
strated that MIL classification models can be competitive to
conventional 2D models if data sets are not large (less
1000 compounds). For larger data sets conventional 2D
models were consistently better. Unfortunately, the devel-
oped MIL approaches demonstrated poor performance on
regression tasks and cannot be recommended for this kind
of modeling. Overall, 3D pharmacophore descriptors in
combination with MIL approaches can be considered as a
reasonable choice for classification data sets where 2D
models fail or result in low predictive accuracy.
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Conclusion

In this study, the clustering-based classification algorithm MIL-kmeans was compared with sim-
pler alternative MIL-mean and MIL-max algorithms. The MIL-kmeans and MIL-max algorithms
perform similarly to or better than the traditional MIL-mean algorithm. MIL-kmeans is a more
sophisticated method that requires the optimization of additional hyperparameters but can outper-
form the simpler MIL-max algorithm in some cases. Based on the comparison results, MIL-
kmeans was chosen as the main algorithm for analyzing 3D models trained with multiple conform-
ers.

3D models based on a single conformer were expectedly worse than 2D models. The inclu-
sion of multiple conformers in combination with the MIL-kmeans algorithm significantly in-
creased the accuracy of 3D models in almost all cases. A comparison of 3D multi-conformer mod-
els and traditional 2D models was performed on three collections of datasets: 5 achiral, 6 chiral,
and 162 mixed datasets. For 4 of the 5 achiral datasets, 2D models outperformed 3D multi-con-
former models based on 3D pharmacophore descriptors. In the case of chiral datasets, 3D multi-
conformer models significantly improved prediction accuracy only for the CHEMBL232 dataset,
whereas in the other datasets, 2D models based on Morgan fingerprints or physicochemical de-
scriptors from RDKit were the best. For an additional collection of 162 datasets containing both
achiral and chiral molecules, 2D models outperformed 3D multi-conformer models in most cases.
Nevertheless, 2D and 3D models are comparable when the dataset size is less than 1000 com-
pounds. In larger datasets (>1000), 2D models are consistently better.

In general, the developed MIL-kmeans algorithm in combination with 3D pharmacophore
descriptors can be considered as an alternative approach for modeling the bioactivity of com-

pounds in cases where traditional 2D models fail to accurately classify bioactive compounds.
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2.3 Modeling of compounds bioactivity with conformation ensembles

A common technique in ligand-based modeling approaches is based on correlating the ligand
structure with their experimental bioactivity using machine learning methods. The structure of
ligands can be encoded with 2D or 3D chemical descriptors. 2D descriptors are the more popular
because they are quick and easy to calculate as well as often predictive models based on 2D de-
scriptors demonstrate good performance. But, in special cases where the bioactivity of the mole-
cule is strongly related to the 3D structure, 3D descriptors are preferable.

However, the wide application of 3D descriptors is limited by a long-standing problem
related to the selection of probable bioactive conformers of the molecule. Molecules can be repre-
sented by multiple alternative conformers, but only a single bioactive conformer, which binds to
the target, is responsible for the observed bioactivity. Bioactive conformers can be determined
experimentally (e.g. with X-ray or NMR methods), but the amount of experimental data is still
limited. Therefore, often the lowest-energy conformer, generated using methods of geometry op-
timization, is selected for modeling. However, the independently optimized lowest-energy con-
former can significantly differ from the actual bioactive conformer, which makes it difficult to
establish a correct relationship between the structure and bioactivity of the compound.

To overcome this problem, a new 3D modeling approach based on multi-instance machine
learning (MIL), which does not require the selection of conformers, was developed within this
research project. In this approach, all available conformers of the molecule are processed simulta-
neously by special MIL algorithms, some of which can also automatically identify bioactive con-
formers. In this study, 3D multi-conformer models were compared with 3D single-conformer mod-
els as well as with traditional 2D models based on popular 2D descriptors. A large-scale compar-
ison analysis was performed on 175 datasets on the bioactivity of compounds extracted from the
ChEMBL-23 database. In addition, 4 datasets including experimental 3D ligand structures from
Protein Data Bank (PDB) database were used to test MIL algorithms in the task of identification

of bioactive conformers.
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ABSTRACT: Modem QSAR approaches have wide practical applications in drug discovery for designing potentially bioactive
molecules. If such models are based on the use of 2D descriptors, important information contained in the spatial structures of
molecules is lost. The major problem in constructing models using 3D descriptors is the choice of a putative bioactive conformation,
which affects the predictive performance. The multi-instance (MI) learning approach considering multiple conformations in model
training could be a reasonable solution to the above problem. In this study, we implemented several multi-instance algorithms, both
conventional and based on deep learning, and investigated their performance. We compared the performance of MI-QSAR models
with those based on the classical single-instance QSAR (SI-QSAR) approach in which each molecule is encoded by either 2D
descriptors computed for the corresponding molecular graph or 3D descriptors issued for a single lowest energy conformation. The
calculations were carried out on 175 data sets extracted from the ChEMBL23 database. It is demonstrated that (i) MI-QSAR
outperforms SI-QSAR in numerous cases and (ii) MI algorithms can automatically identify plausible bioactive conformations.

B INTRODUCTION

A typical QSAR model establishes a relationship between
bioactivity and molecular structure represented by a vector of
molecular descriptors. Meanwhile, one can consider descrip-
tors of different dimensionality: 0D (derived from the
empirical formula), 1D (derived from a vector of values, e.g,,
fingerprints), 2D (derived from a molecular graph), 3D
(derived from a single conformation), and 4D (usually derived
from a molecular-dynamic trajectory). Although 2D descrip-
tors are a gold standard in QSAR modeling because of the
simplicity of their calculation, 2D representation does not
directly encode the spatial structure of molecules which is
important for protein—ligand recognition. Ignoring this
information may reduce the performance of QSAR models.
This motivates the development of 3D-QSAR methods which
consider explicitly the spatial structure of the molecules."

The first proposed 3D-QSAR method was Comparative
Molecular Field Analysis (CoMFA),” which correlates the
biological activity of organic molecules with their electrostatic
and “steric” fields represented as interaction energies with
special probes placed at grid nodes around an aligned set of
molecules. To build a CoMFA model, a single conformation
(3D structure) should be chosen for each molecule, followed

© 2021 American Chemical Society

< ACS Publications 4913

by their alignment in space and calculation of interaction
energies considered as descriptors. Choosing irrelevant
conformations and/or alignment may result in a substantial
decrease in model performance. This issue becomes critical for
flexible molecules possessing several rotatable bonds and, as a
consequence, many possible conformations. Following
CoMFA, most 3D-QSAR methods rely on the choice of a
single “bioactive” conformation for a molecule, which can be
determined from the structures of protein—ligand complexes.
Although such conformations can be determined in X-ray,
NMR, and EM (electron microscopy) studies or computed
using molecular modeling techniques (docking, molecular
dynamics, etc.), there is a clear indication that using “receptor-
bound” conformations might be a bad choice for building
QSAR models.” Although multiple 3D-QSAR approaches have
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Figure 1. Approaches to constructing models for predicting the bioactivity of compounds. Multi-instance 3D MI-QSAR models can predict

bioactivity and identify the relevant conformation.

been developed so far, all of them suffer from the issue of
selection of relevant conformations.'™ "

The concept of 4D-QSAR,'”" in which a molecule is
represented by an ensemble of conformations, was introduced
to overcome the limitations of the 3D-QSAR approach
associated with the choice of a single conformation for each
molecule. Such ensembles may be extracted from molecular-
dynamics trajectories, sampled from Monte Carlo simulations,
or obtained using conformer generators. Most 4D-QSAR
approaches compute 3D alignment-independent descriptors
for individual conformations and combine them by some
schemes to obtain a single vector of descriptors for each
molecule to be used in conventional machine learning
methods. The most widely used schemes are summation or
averaging of 3D descriptors of individual conformations'* and
summation of 3D descriptors weighted by the Boltzmann
factor estimated for conformations in vacuum or water
solution.'™** Considering that the (a) energy assessment of
the conformations is subjected to high errors in the
parametrization of force fields and (b) energy of the
receptor-bound conformations of ligands may be rather high
and hence their Boltzmann factor may be very low, the
Boltzmann averaging schemes may introduce significant noise
to the data.

Multi-instance (MI) machine learning approaches can be
used to solve the issues of representation of each molecule by
multiple conformations (instances) and automatic selection of
the most relevant ones (Figure 1). In the multi-instance
approach, an example (i.e,, a molecule) is presented by a bag of
instances (i.e., a set of conformations), and a label (a
bioactivity value) is available only for a bag (a molecule) but
not for individual instances (conformations). MI learning was

4914

first introduced for recognizing handwritten numbers'~ but
became better known after the paper by Dietterich et al,”
where the authors developed a model to predict the odors of
compounds, which were represented by multiple conforma-
tions. The Compass algorithm®" is another example where MI
learning significantly improved the performance of models in
comparison with single-instance (SI) learning on the task of
predicting the bioactivity of the compounds. The Compass
algorithm implemented the idea of representing a molecule by
multiple conformations, which were used to train a neural
network. Though MI learning was initially developed for
modeling the properties/activities of chemical compounds, this
methodology has not found wide application in the QSAR
area, although it has become widely adopted in other fields.”>
Only a few studies with the application of MI learning to
predict the bioactivity of the compounds have been published
so far in mathematics and bioinformatics journals.”">~*
Moreover, recently proposed deep learning-based multi-
instance approaches have not been used in the chemistry
domain except in our recent work.”® Recently, we demon-
strated the applicability of unsupervised”” and supervised
clustering-based MI approaches to bioactivity predictions on
several data sets.”® However, a proper comparison of MI
learning approaches to conventional ones has not been made
so far.

The main goal of MI learning algorithms is to predict a label
for an object represented by a bag of instances. However, it is
often desirable not only to predict the bag label (in our case, to
assess the bioactivity of a given molecule) but also to identify
the key instances in the bag (ie, to assess bioactive
conformations). This problem, called Key Instance Detection
(KID), was first formalized in a prior publication.”” The

https://doi.org/10.1021/acs jcim.1¢00692
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Figure 2. Characteristics of data sets. Number of data sets of a particular size (a) and with the particular mean number of rotatable bonds (b).

identification of the conformation responsible for the observed
bioactivity of the molecule provides deeper insight into the
interaction mechanism between the ligand and the target
protein.

In this study, we show that the application of MI learning
can be used to solve the long-standing problem of 3D-
QSAR—the selection of relevant (or biologically active)
conformations for modeling. Instead of a single conformation,
MI learning considers the whole conformational ensemble,
which significantly improves the predictive performance of the
models based on 3D descriptors. Here, several 3D MI QSAR
approaches were implemented and their performances
compared on numerous data sets. It has been demonstrated
that in most cases, the 3D MI QSAR models outperformed
conventional 2D models. We also identified the physicochem-
ical characteristics of compounds impacting the performance of
3D MI or 2D models. In addition, we studied the ability of MI
models based on attention neural networks to identify relevant
bioactive conformations.

B METHODS

Data Sets. One hundred seventy-five data sets of
compounds with measured pK; or pIC, values were extracted
from the ChEMBL23 database. The size of the data sets varied
from several hundred to several thousand compounds (Figure
2a). Molecules with a molecular weight greater than 700 (3%
of the total number of molecules) were discarded. Because the
performance of the 3D models may depend on the flexibility of
the studied compounds, the average number of rotatable bonds
for molecules in each data set was calculated using RDKit
(Figure 2b). Most molecules in the data sets can be considered
as low to moderately flexible with the average number of
rotatable bonds within 3—6.

In addition, in the collected data sets, we identified
compounds deposited in the Protein Data Bank (PDB) and
retrieved their conformations. These PDB conformations were
used as references to compare with the conformations
predicted by MI models to provide the largest contribution
to biological activity.

Conformation Generation. Conformations representing
each molecule were generated using the algorithm imple-
mented in RDKit,*” which is claimed by its authors to be able
to reproduce bioactive conformations observed for ligands in
PDB complexes with reasonable accuracy. This ability is
important because it may improve the performance of the
obtained models, may make them more reasonable, and in the
case of MI modeling approaches would increase the probability
of identifying the most relevant/contributed conformations to
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the studied end point. It also increases the chance to find
conformations similar to those observed in the X-ray structures
of protein—ligand complexes if the latter are available. In our
study, we generated up to 100 conformations and removed
conformations with RMSD values below 0.5 A to the
remaining ones to reduce redundancy.

Descriptors. For the descriptor representation of the
conformations, we used previously developed 3D pharmaco-
phore signatures.”’ Each conformation is represented by a set
of pharmacophore features (H-bond donor/acceptor, center of
positive/negative charge, hydrophobic, and aromatic) deter-
mined by applying the corresponding SMARTS patterns. All
possible quadruplets of features of a particular conformation
were enumerated. Distances between features were binned to
allow fuzzy matching of quadruplets with small differences in
the position of features. Here, we used the 1 A bin step as it
demonstrated reasonable performance in our previous
studies.”*' ™ Three-dimensional pharmacophore signatures
were generated for each quadruplet according to the algorithm
described in our previous publication.’’ These signatures
consider distances between features and their spatial arrange-
ment to recognize the stereoconfiguration of the quadruplets.
We counted the number of identical 3D pharmacophore
quadruplet signatures for each conformation and used the
obtained vectors as descriptors for model building. The three-
dimensional pharmacophore descriptors used in this study
were implemented in the pmapper Python package (https://
github.com/DrrDom/pmapper). Since the pharmacophore
descriptors were very sparse, we kept only those quadruplets
that occurred in at least 5% of all conformations of the data set
molecules.

To build 2D models, we chose binary Morgan fingerprints
(MorganFP) of radius 2 and size 2048 calculated with RDKit
because they are widely used 2D descriptors and demonstrated
high performance in previous benchmarking studies.”* For
comparative purposes, we also used 2D physicochemical
descriptors (PhysChem) and binary 2D pharmacophore
fingerprints (PharmFP) calculated with RDKit. The former
included EState indexes, the number of different pharmaco-
phore features, rings systems, functional groups, and fragments
(the full list is provided in the Supporting Information). To
calculate the 2D pharmacophore descriptors, we used the same
definitions of the pharmacophore features as in pmapper to
make the comparison more robust. Afterward, pharmacophore
triplets were enumerated using default binning of the
topological distances (0—2, 2—5, 5—8, 8+).

Algorithms. In conventional SI-QSAR, each molecule is
represented by a single vector of 2D descriptors computed for

https://doi.org/10.1021/acs jcim.1¢00692
J. Chem. Inf. Model 2021, 61, 4913-4923

77



Journal of Chemical Information and Modeling pubs.acs.org/jcim

X Yo Conformation
predictions
ion 1 —»  Descrij 1 7142 5.69 Bioactivity
> prediction
@) \ 2 —» | Descriptors 2 742 —» Sl Algorithm 655 Mean —» 6.87
I Conformation N— | Descriplors N 7.12 838
1—> D 1 X Yoo Bioactivity
prediction
®) 2 —» | Descriptors2 | —» Mean —» | Descriplors | 7.42 —» S| Aigorithm —» 650
N—> D N

Figure 3. MI wrapper algorithms: (a) Instance-Wrapper and (b) Bag-Wrapper. Learning algorithm (SI Algorithm in the figure) was a three-layer
fully connected neural network having 256, 128, and 64 neurons in hidden layers.

Conformation Hidden
descriptors layers
Conformation
® scores Mean - B
= —00000 O Bioactivity prediction
Conformation Hidden g
descriptors layers Descriptors Averaged
representations representation
Mean . o e
(b) — — —_— —_— O Bioactivity prediction
Hidden
layer
Confor!nation Hidden
descriptors layers Descriptors Weighted
representations representation
(c) — — —_—— — | | O Bioactivity prediction
R Hidden
(Sofitiax )
(]}
—)
———)
Attention net

Figure 4. Multi-instance neural networks: (a) Instance-Net, (b) Bag-Net, and (c) Bag-AttentionNet.

the corresponding molecular graph or 3D descriptors for its vectors of descriptors which forms a bag of instances. To build
lowest energy conformation. In MI-QSAR, a molecule is a model in this case special algorithms should be applied. All of
represented by a set of conformations and a set of associated the considered MI algorithms can be divided into two groups:
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instance based and bag based.”® Instance-based algorithms
consider each conformation as a separate training instance.
Bag-based algorithms, on the contrary, represent a molecule by
a single vector of descriptors, which is produced from the
vectors of the conformation descriptors.

Single-Instance Algorithms. We considered traditional SI
learning as a baseline approach, where a molecule is described
by a vector of 2D descriptors or a vector of 3D descriptors
associated with the lowest energy conformation. We used a
three-layered fully connected neural network with ReLU
activation to construct SI-QSAR models. Our tests show that
such architecture gives quite high and stable results across
different data sets and does not require additional hyper-
parameter adjustment for a particular data set.

Multi-Instance Wrappers. The learning process in instance-
based algorithms occurs at the instance level. Instance-level
learning is applicable if it is possible to assign a label to
individual instances in a bag. Also, it is assumed that there is a
rule that aggregates the predictions for each instance to get the
prediction for the entire bag. The simplest instance-based MI
algorithm is Instance-Wrapper, where each training instance of
a bag is assigned the same label as for the whole bag. This
means, for example, that if a molecule is bioactive, it is assumed
that all of its conformations are bioactive. As a result, one gets
a data set where each conformation is an individual training
object and any conventional ML algorithms can be applied to
build the model. Given a new molecule, the bioactivity is
predicted for each conformation and predictions are averaged
to get the final predicted bioactivity of the molecule (Figure
3a). This approach has an obvious drawback because assigning
the same bioactivity to all conformations of a molecule in a
training set can bring some noise into the learning process
because the fact that a molecule is bioactive does not mean
that all of its conformations are biologically relevant and
responsible for protein—ligand recognition.

The learning process of bag-based algorithms occurs at the
bag level. In bag-based algorithms, there is no need to identify
a label for each instance in a bag. Instead, there is an operation
that aggregates the instances to get a single vector representing
the entire bag. Our implementation of the Bag-Wrapper
algorithm averaged descriptor values across all conformations
and supplied this single vector of descriptors to a conventional
SI machine learning method—a three-layer fully connected
neural network (Figure 3b). The Bag-Wrapper algorithm has a
drawback similar to Instance-Wrapper because aggregation of
the descriptor vectors of all conformations to the resultant
vector may introduce additional noise due to the contribution
of irrelevant conformations.

Multi-Instance Neural Networks. Multi-instance neural
networks learn in an end-to-end way and take a bag of
instances as input and directly output bag prediction. All
parameters in MI networks are optimized via back-
propagation. Wang et al.*® revisited MI neural networks and
proposed a series of novel neural network frameworks for MI
learning. They considered two types of MI neural networks:
mi-Net (hereafter Instance-Net) and MI-Net (hereafter Bag-
Net). We implemented both of these neural network
architectures. In Instance-Net (Figure 4a), instances are
running through fully connected layers and an output neuron.
Then, instance predictions are averaged in the pooling layer to
obtain a bag prediction, and its error is calculated and
backpropagated to adjust model weights. Bag-Net (Figure 4b)
consists of three fully connected layers followed by one pooling
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layer. The pooling layer averages instance representations
learned by previous layers into a single embedding vector as a
bag representation. The last fully connected layer takes the
embedding vector as input and outputs the bag prediction.
Wang et al.* examined three typical pooling operators—max
pooling, mean pooling, and log-sum-exp pooling—and
concluded that all of them provided a similar performance
on benchmark data sets. Our tests also supported this
conclusion for bioactivity prediction; thus, only mean pooling
was applied.

The Bag-Net uses an unlearnable mean pooling function,
and as mentioned above, the irrelevant conformations can
contribute noise to the prediction and reduce model
performance. This drawback can be eliminated using more
flexible types of pooling, such as weighted averaging pooling,
known as attention. This type of pooling was proposed in
another publication,”” where an additional two-layered neural
network was used to obtain weights of instances. In the Bag-
AttentionNet (Figure 4c), all instances are first fed to three
fully connected layers. Then, the learned instance representa-
tions are used by the attention network with a single hidden
layer. In the attention network, the number of output neurons
is equal to the number of instances. The output layer of
attention has the Softmax activation function and predicts
instance weights. Finally, the instance weights given by the
attention network are used for weighted averaging of instance
representations to get the embedding vector that is used to
produce the bag prediction. Implementation of weighted
pooling enables the Bag-AttentionNet to automatically identify
probable bioactive conformations.

Experimental Setup. A large-scale comparative analysis of
the above MI approaches was carried out using 175 data sets
extracted from the ChEMBL database. Each data set was
randomly divided into a training, validation, and test set. The
test set comprised 20% of the molecules of the initial data set;
the rest was used as a modeling set. In turn, the latter was
divided into a training set (80% of modeling set) and a
validation set (20%) used for hyperparameter adjustment.

The Bag-AttentionNet provides attention weights that
determine the contribution of each conformation to the
predicted bioactivity. We applied regularization of attention
weights to force the Bag-AttentionNet network to more
strongly highlight key conformations during training. In each
training epoch, instances (conformations) were ranked by the
attention unit of Bag-AttentionNet. Then X percent of
instances (X = 10%, 20%, 40%, 60%, 80%, 90%, and 95%)
was discarded and followed by recalculation of the attention
weights for the remaining key instances. The number of
discarded instances was a hyperparameter adjusted during the
training.

To compare several algorithms on multiple data sets, we
follow the recommendations from refs 38 and 39. First, we
performed the Friedman test to reject the null hypothesis,
which is that there were no significant differences in the
performance of the models. Then, we performed a pairwise
comparison of models using the Wilcoxon—Holm test with a
significance level of 5%. The results of a pairwise comparison
of the models were visualized with a critical difference
(:liagram.m'J0 The horizontal lines on the critical difference
diagrams connect models that are not significantly different in
performance. The pipeline of construction of critical difference
diagrams is reported in more detail in the Supporting
Information.

https://doi.org/10.1021/acs jcim.1¢00692
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For clarity, a special name was assigned to each type of
model. It consists of several parts: Representation Level/
Leaming Type/Algorithm. The Representation Level denotes
the descriptors type (2D or 3D). The Learning Type
distinguishes between single- and multi-instance learning
schemes (SI or MI) or in the case of 2D models the type of
descriptors used. The Algorithm is the machine learning
method that was used to build the model. For example, 2D/
MorganFP/Net denotes a neural network model based on 2D
Morgan fingerprints. The 3D/SI/Net model was trained on
the single lowest energy conformations of molecules
represented by 3D pharmacophore descriptors using an
ordinary multilayer neural network as the learning algorithm.

For analysis of groups of models and pairwise model
comparison, we excluded the data sets for which all compared
approaches resulted in models with low performance on the
test set (RL,, < 0.4). Thus, the total number of compared data
sets differs as a function of the list of compared models.

We consider that the threshold 0.4 is reasonable for several
reasons. (i) We did not tweak every model too much;
therefore, we believe there is a room to improve them with
tight tuning. (ii) We performed only a comparison between
models and do not suggest using them for predictive modeling.
(iii) The results and conclusions do not change if we will
choose threshold 0.5, but this will decrease the number of
considered data sets. Nevertheless, all data are disclosed in the
Supporting Information (Tables S1 and S4), and these
conclusions can be verified.

M RESULTS AND DISCUSSION

In this section, we present the results of a comparative analysis
of single- and multi-instance learning approaches. For clarity,
we first present the results of benchmarking MI learning
algorithms to choose the best MI models. Then, we compare
the best 3D MI models with 3D SI models as well as with
conventional 2D SI models and evaluate the ability of MI
models to identify relevant conformations in comparison to
docking.

Benchmarking of Multi-Instance Algorithms. For 45
data sets out of 175, no MI models achieved the required
performance of R%, > 0.4. These “non-modellable” data sets
were excluded from further consideration, and benchmarking
analysis was performed on the remaining 130 data sets. Among
the two simplest approaches represented by wrapper
algorithms, Instance-Wrapper performs significantly better
than Bag-Wrapper (Figure S). Thus, considering each
conformation as an individual training example represents a
better strategy than averaging descriptor vectors of individual
conformations.

MI neural networks represent a group of methods specially
modified to solve MI problems. In Bag-Net, the mean pooling
operation is performed not on descriptors of particular

mean rank
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3D/Ml/Bag-Wrapper"’4{T
3D/Mi/Instance-Net*>*

3D/MI/Bag-AttentionNet 22

J
us"3DIMIIInstanc<.LWrapper
2273D/MI/Bag-Net

Figure 5. Comparison of MI algorithms against each other. Groups of
models that are not significantly different in performance (at a
confidence level of 0.05) are connected by the horizontal line. Axis
plots the average ranks of models.
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conformations (as in Bag-Wrapper) but on their embeddings,
resulting from descriptors transformation by three fully
connected layers of the neural network. Comparative analysis
shows that there is no significant difference in performance
between the Bag-Net and the Bag-Wrapper models. To
increase the contribution of the relevant conformations during
training of the model, the Bag-Net architecture was enhanced
by the attention mechanism (Bag-AttentionNet). This,
however, does not lead to a significant increase in the
predictive performance of the model (Figure 5).

Overall, the analysis shows that the Instance-Wrapper
algorithm largely outperforms all other studied MI algorithms.
Other algorithms demonstrated comparable performance,
despite the substantial differences in their architecture.

Comparison of 2D and 3D Models. There is an ongoing
discussion about the preference of 2D and 3D descriptors in
QSAR. An important step in building QSAR models with 3D
descriptors concerns the selection of the bioactive conforma-
tion, which is hard to do reasonably without some additional
information. An MI model is free from the problem of arbitrary
selection of conformations. It considers all conformations and
automatically selects the most relevant ones. We compared MI
models with 2D models to estimate the importance of
accounting for 3D information in bioactivity prediction and
to assess contributions of particular conformations.

Six approaches were compared: three classical approaches
based on 2D molecular descriptors, a 3D single-instance
approach based on 3D pharmacophore descriptors calculated
for the lowest energy conformations, and two 3D multi-
instance approaches based on all generated conformations of
each molecule represented by 3D pharmacophore descriptors.
Among the MI approaches we chose the best performing
Instance-Wrapper algorithm and the most advanced Bag-
AttentionNet algorithm. For the sake of dlarity, 33 “non-
modellable” data sets for which none of the considered 2D and
3D models had RZ,, > 0.4 were excluded, and the analysis was
performed based on the remaining 142 data sets.

Table 1 presents the mean RZ,, of models across the chosen
142 data sets. The 3D SI models built with one conformation

Table 1. Performance Comparison of 2D and 3D Models”

model mean median top 1 top 2
3D/MI/Instance-Wrapper 0.524 + 0.131 0.526 69 105
3D/MI/Bag-Attention 0.468 + 0.161 0.474 12 57
2D/MorganFP/Net 0.464 + 0.199 0.502 39 66
2D/PhysChem/Net 0.450 + 0.144 0.443 17 37
2D/PharmFP/Net 0.382 + 0.216 0.404 4 17
3D/SI/Net 0.024 + 0.372 0.089 1 2

“Table reports mean, standard deviations, and median of RL.. Top 1
is the number of cases where the model was the best. Top 2 is the
number of cases where the model was the first- or second-best one.

per molecule demonstrated poor performance (mean Ri =
0.024) in comparison with the other models. The poor
performance of 3D SI models can be explained by the
ambiguous strategy when only one lowest energy conformation
is considered. The lowest energy conformation might
substantially differ from the actual bioactive conformation
responsible for the observed bioactivity of the molecule.
However, the performance of the 3D models drastically
increases as soon as all available generated conformations are
considered. Mean RZ, values of 0.524 and 0.468 were

https://doi.org/10.1021/acs jcim.1¢00692
J. Chem. Inf. Model 2021, 61, 4913-4923

80



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

obtained, respectively, for the 3D/MI/Instance-Wrapper and
3D/MI/Bag-AttentonNet models. The former even outper-
forms the 2D models built with Morgan fingerprints (mean
RL, = 0464). The 3D/MI/Instance-Wrapper models dis-
played the highest RZ, in almost 49% of the cases (69 out of
142 data sets), and they were in the top 2 models for 105 data
sets. The 2D/MorganFP/Net models were the best in 27% of
the cases (39 out of 142 data sets). The other 2D models
based on physicochemical or pharmacophore descriptors had
poorer performance than those based on Morgan fingerprints.

The critical differences diagram of a pairwise comparison of
the 2D and 3D models is shown in Figure 6. The 3D/MI/

mean rank
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Figure 6. Comparison of 2D SI, 3D SI, and 3D MI models against
each other. Similarly performed models (at a confidence level of 0.05)
are connected by the horizontal line. Numbers correspond to the
average ranks of models.

Instance-Wrapper models have an average rank of 1.96 and
outperform the 2D/MorganFP/Net model having an average
rank of 2.77. The 3D/SI/Net model showed the worst
performance across almost all data sets (average rank 5.72).
We calculated the number of wins and losses to perform a
pairwise comparison of models (Table 2). Wins represent the

Table 2. Pairwise Comparison of Models”

wins losses ties inconclusive

3D/MI/Instance-Wrapper vs 90 48 1 36
2D/MorganFP/Net

3D/MI/Bag-AttentionNet vs 50 72 0 53
2D/MorganFP/Net

3D/SI/Net vs 2D/MorganFP/Net 3 99 0 73

3D/MI/Instance-Wrapper vs 122 2 0 51
3D/SI/Net

3D/MI/Bag-AttentionNet vs 97 4 0 74
3D/SI/Net

“Wins are the number of data sets for which the accuracy of
predicting the biological activity of ligands by the first model is higher
than that of the second (model 1 vs model 2). Losses are counted as
the number of data sets where the biological activity of the ligands is
more accurately predicted by the second model. Ties are the number
of data sets where the accuracy of both models is equal. Inconclusive
is the number of data sets where RZ, of both models was less than 0.4.

number of tasks where the R’ of the first model was higher
than that of the second model and at least one model had R%,
> 0.4. For example, 3D/MI/Instance-Wrapper outperformed
3D/SI/Net in 122 out of 124 data sets (98%), and its R, was
higher than that of 2D/MorganFP/Net in 90 out of 139 data
sets (65%).

The 3D/MI/Instance-Wrapper models outperformed the
3D SI models in almost all cases except for few data sets for
which quite similar prediction accuracy between the two
approaches was observed (see Figure 7a). The 3D/MI/
Instance-Wrapper models also outperformed 2D models in
many cases. However, a large variability of model performances
was observed for these two approaches. Most notably, in 38
out of 142 compared data sets the 3D/MI/Instance-Wrapper
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models achieved RZ, > 0.4, while the 2D models had RZ,, <
0.4. This means that using multiple conformations in the
model building may significantly improve the model perform-
ance, and if the 2D models fail one may try to apply 3D MI-
QSAR approaches.

We investigated which factors can distinguish cases where
3D MI models outperformed 2D conventional ones. We
analyzed the distribution of the physicochemical characteristics
of data sets where the 3D/MI/Instance-Wrapper models
outperform 2D models and vice versa. The data sets were
divided into two groups. The first group consisted of 42 data
sets, for which the 3D/MI/Instance-Wrapper models were
significantly (AR* > 0.1) better than the 2D models. The
second group included 18 data sets where the 2D models
outperformed (AR? > 0.1) the 3D/MI/Instance-Wrapper
models. We established that the smaller number of rotatable
bonds is more favorable for the 3D/MI/Instance-Wrapper
models than for the 2D (Figure 8a). This may be caused by the
poorer ability of the conformer generator to generate
biologically relevant conformations for more flexible com-
pounds.”’ The 3D/MI/Instance-Wrapper models were favor-
able in cases where the fraction of unique Murcko frameworks
(the ratio of the number of unique scaffolds in the data set to
the total number of molecules) was high (Figure 8b). This
corresponds to data sets with higher scaffold diversity which
are more difficult for the 2D models. Similar box plots were
created for other characteristics of the data sets (see
Supplementary Figure S3), but on average they cannot
distinguish cases where the 3D/MI/Instance-Wrapper models
dominate.

B IDENTIFICATION OF BIOACTIVE

CONFORMATIONS

The attention mechanism allows the 3D/MI/Bag-Attention-
Net models to identify the most relevant conformations during
the learning. The question arises of how accurately the
attention mechanism recognizes the bioactive conformation?
To answer this question, we chose the 3D/MI/Bag-
AttentionNet models with R, > 0.4. Then, the 3D structures
of the ligands were extracted from the protein—ligand
complexes retrieved from the PDB database. Since these data
were sparse, four data sets having at least 10 test set molecules
with available information about the bioactive conformation
were chosen for the subsequent analysis. Experimental
bioactive conformations were compared with the three top
conformations that received the highest attention weights from
the 3D/MI/Bag-AttentionNet. To measure the accuracy of
identification of the bioactive conformations, we calculated the
top 3 success rate as a proportion of compounds for which at
least one of the three best conformations fits the experimental
structure with RMSD < 2.0 A,

To compare the accuracy of identification of relevant
conformations with docking, we chose for each protein target
a PDB complex with a binding site intersected with most of the
binding sites of other complexes and used it for docking of the
same test set compounds (CHEMBL2820-4Y8Y,
CHEMBL3048-4IMS, CHEMBL335-3EAX, and
CHEMBLA4802-4KCQ). This was more fair than performing
redocking to cognate receptor structures because in the case of
machine learning we do not use information about the
receptor conformation to select a relevant conformation.
Docking was performed using AutoDock Vina.'” Three top-

https://doi.org/10.1021/acs jcim.1¢00692
J. Chem. Inf. Model 2021, 61, 4913-4923
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Figure 7. Correlation between the RZ, values computed for the 2D and 3D models across all data sets. Each point represents a particular data set.
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Figure 8. Distribution of the mean number of rotatable bonds (a) and
mean values of the fraction of unique Murcko frameworks (b) in the
ensemble of 42 data sets (I), where the 3D/MI/Instance-Wrapper
models are significantly better than the 2D models (AR* > 0.1) and
in the ensemble of 18 data sets (II) where 2D models outperform
3D/MI/Instance-Wrapper (AR* > 0.1).

scored poses were taken to calculate the top 3 statistics
similarly as described above.
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Since it was claimed that the RDKit conformer generator
can reproduce bioactive conformations, we calculated two
baseline statistics. The first one used three conformations with
the lowest estimated energy. The second one corresponds to
the top 3 metric value of three randomly chosen conformations
for each molecule. We calculated the probability of choosing at
least one conformation with the RMSD below 2 A among the
three randomly selected ones for each molecule and averaged
these values across the test molecules.

The calculated random baseline statistics was relatively high
(Figure 9). This indicates that the RDKit conformer generator
substantially enriches the set of conformations with those
which are close to the experimental ones. This also makes it
challenging to improve the statistics. Selection of three
conformations with the lowest energy performed comparable
to random choice, and in the case of CHEMBL2820, the
performance was even worse. The 3D/MI/Bag-AttentionNet
models could improve the baseline accuracy in the
identification of the bioactive conformations and perform
comparably well or better than the random choice. The most
remarkable improvement was for coagulation factor XI
(CHEMBL2820). For two targets, brain and endothelial
nitric-oxide synthases (CHEMBL3048 and CHEMBLA802,
correspondingly), 3D/MI/Bag-AttentionNet performed com-
parably to the baseline. Protein-tyrosine phosphatase 1B
(CHEMBL335) was the most difficult target for the
identification of relevant conformations, and all approaches
demonstrated low performance. This was caused by the fact
that only part of those compounds binds to the protein; the
remaining part was pretty flexible and exposed to a water

https://doi.org/10.1021/acs jcim.1c00692
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Figure 9. Identification of bioactive conformations within the test set compounds for four data sets (n is the number of compounds). Challenging
compounds is a subset of test set compounds that have mean RMSDs of all generated conformations to a bioactive conformation greater than 2 A.
R2,; values of the 3D/MI/Bag-AttentionNet models were 0.49, 0.52, 0.74, and 0.55 for CHEMBL2820, CHEMBL3048, CHEMBL335, and

medium. Therefore, even docking could not identify true
poses. In general, docking performed relatively poorly and
slightly worse than the random baseline in the case of
CHEMBL2820 and CHEMBL33S. Examples of the lowest
energy conformations and the conformations predicted by the
3D/MI/Bag-Attention model in comparison with the exper-
imental ones retrieved from the PDB are shown in Figure 10.

Experimental pKi: 6.10

3D/SI/Net pKi: 6.48, RMSD = 2.42 A
3D/MI/Bag-AttentionNet pKi: 6.31
(attention weight: 0.83), RMSD = 1.70 A

Experimental pKi: 7.42

3D/SI/Net pKi: 7.86, RMSD = 2.78 A
3D/MI/Bag-AttentionNet pKi: 7.41
(attention weight: 0.59), RMSD = 1.55 A

Figure 10. Examples of experimental, lowest energy, and predicted
conformations: green, PDB conformation; blue, the lowest energy
conformation; red, conformation predicted by the 3D/MI/Bag-
AttentionNet model. RMSD to the experimental conformation is
given.

In addition, we considered subsets of “challenging”
compounds with a mean RMSD to the bioactive conformation
greater than 2 A. These subsets were enriched by very flexible
compounds for which diverse sets of conformations were
generated. As expected, the performance of key conformation
identification for these compounds was lower (Figure 9), but
3D/MI/Bag-Attention had a performance comparable with or
higher than the random baseline, supporting an intelligent
selection of relevant conformations.

B CONCLUSION

This study reports a large-scale comparison of single- and
multi-instance machine leaming algorithms for predicting the
biological activity of chemical compounds. The molecules were
represented either by the lowest energy conformation (single-
instance) or by a set of generated conformations (multi-
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instances). The multi-instance learning algorithms reduce the
problem of ambiguous selection of a putative bioactive
conformation and simultaneously consider all available
conformations in the model building.

The present study is the first comprehensive comparison of
MI approaches with traditional QSAR based on 2D and 3D
descriptors. The results demonstrate that multi-instance
models generally outperform both single-instance 3D models
and traditional QSAR models built on 2D Morgan fingerprints
(mean RZ, = 0.524, 0.024, and 0.464, respectively).
Surprisingly, on average, the application of 3D descriptors of
the lowest energy conformation for QSAR modeling was only
slightly better than the null model. Thus, the highest accuracy
in the bioactivity predictions is achieved by the multi-instance
algorithm since it considers the whole conformational space of
an individual training object. This result demonstrates the
importance of accounting for the dynamic nature of chemical
objects for QSAR modeling.

Contrary to a previous finding,” our study shows that 3D
descriptors of molecules in combination with the MI learning
approach can compete with traditional 2D QSAR. Notably,
there were 38 data sets where the MI leaming approach
showed reasonable performance while the traditional 2D
QSAR model failed. This means that the MI learning approach
can be applied in cases where 2D QSAR modeling fails.

Last but not least, a multi-instance neural network with an
attention mechanism can correctly identify a “bioactive”
conformation close to the experimental structure of a ligand
retrieved from the PDB. However, it should be noted that the
performance of the multi-instance models depends on the
conformer generator used. The RDKit conformer generator
demonstrated a good ability to generate biologically relevant
conformations that was confirmed by a relatively high random
choice baseline estimate.

To facilitate the community being able to apply the MI
learning approach for QSAR modeling, a set of MI learning
algorithms based on different MI neural network architectures
as well as wrappers used in the work are available at https://
github.com/cimm-kzn/3D-MIL-QSAR.

https://doi.org/10.1021/acs jcim.1c00692
J. Chem. Inf. Model 2021, 61, 4913-4923
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Conclusion

A new 3D modeling approach based on conformer ensembles was applied to build 3D multi-con-
former models which were compared with 3D single-conformer and 2D models on the collection
of 175 datasets extracted from the ChEMBL-23 database. In a pairwise comparison, 3D multi-
conformer models almost for all datasets (99%) outperformed 3D single-conformer models. In
total, 3D multi-conformer model demonstrated the highest performance in 63 % of datasets, while
the 2D model was the best in 36% of datasets. Nevertheless, there were a few datasets in which
2D models failed to predict the bioactivity of compounds, while 3D multi-conformer models pro-
vided accurate predictions. This may indicate special cases where 3D structural information is
crucial for the correct prediction of bioactivity.

It was demonstrated, that the 3D multi-conformer models, built with the attention-based
multi-instance neural network, can also identify the bioactive conformers. For 3 of the 4 datasets,
the 3D multi-conformer model identified more bioactive conformers than the standard docking
approach. For example, for 15 experimental 3D structures from the CHEMBL2820 dataset, the
lowest energy and docking conformers correctly fit “bioactive™ conformers for only 7 molecules,
which is even worse than the random selection (9 molecules). Meanwhile, the 3D multi-conformer
model correctly identifies bioactive conformers for 12 molecules.

The developed 3D modeling approach does not require selection and alignment of con-
formers, which excludes manual configuration of the modeling protocol (but there are still options
to improve the performance of the 3D models, such as optimization of the number of confor-
mations, hyperparameters of machine learning algorithms, adjustment of descriptors, validation
strategy, etc.). Concerning future research, there are still many other popular 2D descriptors that
can be tested in the described benchmark. In the case of the 3D models, apart from the lowest-
energy conformation, there are other strategies (docking or other conformer generators) to select
a single conformer for modeling. Also, the benchmark analysis was designed to isolate the influ-
ence of the machine learning algorithm (as much as possible), and all 2D and 3D models were
built using the standard fully-connected neural network or its multi-instance modification. How-
ever, there are many other traditional single-instance algorithms and multi-instance algorithms that

can be used for building 2D and 3D models.



2.4 Modeling of catalysts enantioselectivity with conformation ensembles

Introduction

Synthesis of enantiopure compounds is a hot topic of modern organic chemistry because highly
effective drugs can be chiral and enantiomers often have different biological activities. In 2021,
B. List and D. McMillan were awarded the Nobel Prize for the development of asymmetric or-
ganocatalysis. In 2000 they demonstrated [105,106] that chiral organic molecules can effectively
catalyze asymmetric reactions with production enantiopure compounds. Since these seminal pub-
lications, numerous chiral catalyst systems have been designed [141]. The pursuit of perspective
catalysts is traditionally conducted by iterative modification of the catalyst structure aiming to
increase the enantioselectivity of the considered reaction. In this process, chemists rely on their
professional experience, chemical intuition, and available experimental data. This approach, albeit
often culminates in the desired result, still depends on the professional background of the re-
searcher. Despite significant progress in experimental studies of asymmetric organocatalysis, com-
putational chemistry is an appealing technology aiming to empower experimentalists in the quest
for developing new catalysts. Theoretical calculations may suggest the structure of promising cat-
alysts before their synthesis, and experimental testing, thus, reducing the time and overheads
needed to achieve their desired performance.

A perspective computational approach to the theoretical discovery of new catalysts is Quan-
titative Structure-Selectivity Relationship (QSSR) analysis, which applies machine learning algo-
rithms to find the relation between experimental enantioselectivity and the catalyst structure en-
coded by numerical descriptors. If a correct relationship between structure and selectivity is estab-
lished, the obtained model can be used for the virtual screening of candidate catalysts. The first
notable example of the application of QSSR in enantioselective catalysis was published by Norrby
et al. [142], where computational steric molecular descriptors (bond lengths, bond angles, and
dihedral angles of metal complex) and multivariate regression were used to analyze palladium-
catalyzed allylation.

Most other early studies on QSSR applied 3D modelling techniques based on the Molecular
Interaction Fields (MIF) [143] approaches. MIF approaches locate molecule in the 3D grid and
compute interaction energies between molecule and probe atoms/charges fixed on the grid around
the molecule. The most popular MIF-based approach is a Comparative Molecular Field Analysis
(CoMFA), in which 3D molecular structures (one conformer per molecule) are aligned and then
placed in a 3D grid where steric and electrostatic energies with a probe are calculated in the grid

nodes. Obtained steric and electrostatic descriptors are then correlated with experimental activity.
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In 2003 Lipkowitz et al. [108] demonstrated the first application of CoMFA to the prediction of
catalyst enantioselectivity in Diels-Alder reactions. Kozlowski et al. [109] described a QSSR ap-
proach for aldehyde alkylation with aminoalkoxide zinc catalysts, where semi-empirical methods
(PM3) were used to obtain reaction transition structures, which then were aligned and processed
in the calculation of interaction energies with 2s electron probe grid points.

In 2004 Melville et al. [111] published a 3D-QSSR approach based on the classic CoOMFA
for the glycine imine alkylation with quaternary ammonium ion catalysts in asymmetric phase-
transfer catalysis (APTC). They validated the proposed approach on a library of 88 cinchona alka-
loid-based catalysts and obtained accurate predictions of catalyst enantioselectivity on an external
test set, which contained catalysts with a new substituent not occurring in the training set. Consid-
ering the same reaction, later in 2005 Melville and coworkers [144], focused on the conformation
diversity of catalysts and applied 4D-QSAR to model the enantioselectivity of biphenyl catalysts,
thereby improving the accuracy of predictions in comparison with the standard 3D-QSSR model.
In the same paper, they proposed an advanced 3.5D-QSSR approach with Boltzmann-weighting
of selected catalyst conformers and obtained enantioselectivity predictions even more accurately
than in 4D-QSSR. Their results demonstrated the importance of molecular flexibility in enantiose-
lectivity modelling, which was addressed in later studies [110,145]. In 2011 the asymmetric gly-
cine imine alkylation catalyzed with a pyrrolizidine-based system was analyzed by Denmark group
[146] using CoMFA-based approach. To account for conformation diversity, they generated five
libraries with different combinations of scaffold conformers. This approach generates accurate
predictions if a proper conformer library is selected.

The development of various methods and approaches to QSSR analysis in asymmetric syn-
thesis culminated in the general chemoinformatics-based approach published by Denmark’s group
[110,145] in 2019. In this work, they explicitly state the necessity of incorporating conformation
diversity into the modelling process and propose novel 3D Average Steric Occupancy (ASO) de-
scriptors accumulating steric information from multiple catalyst conformers. They tested their ap-
proach to predicting enantioselectivity in the reaction of asymmetric addition of thiols to imines
catalyzed by phosphoric acids and demonstrated that multiple conformer descriptors outperform
single conformer variants.

Besides the selection of relevant conformers, the other important limitation of MIF ap-
proaches is conformers alignment. If analyzed molecules share a common scaffold, conformers
alignment is a trivial process. Otherwise, if the molecules have different scaffolds, conformers
alignment becomes problematic. This issue initiated the development of alignment-free 3D de-

scriptors that are invariant to the position or orientation of the molecule in space. The first example

88



of the use of MIF-based alignment-independent descriptors in asymmetric catalysis was the appli-
cation of GRid Independent Descriptors (GRIND)[147] demonstrated in 2005 by Sciabola and
Morao [148] for examples of asymmetric reactions previously studied by Lipkowitz et al. [108],
Kozlowski et al. [109] and Damen et al. [149]. GRIND uses MIF-based approaches to compute
interaction fields that are encoded by alignment-independent variables with autocorrelation trans-
form. In general, the predictive models generated with GRIND show comparable results to MIF
alignment-dependent approaches [148]. Also, GRIND models are still interpretable, contrary to
other models based on alignment-independent 3D descriptors, which apparently for this reason
have not been widely used in the 3D-QSSR analysis. Other details on the approaches and de-
scriptors used in QSSR can be found in the comprehensive review of Zahrt et al. [150]

Recently Asahara and Miyao [112] compared different 2D (ECFP6 and Mol2vec) and 3D
descriptors (Dragon and MOE) to model the enantioselectivity of chiral Bronsted acid catalysts.
The 3D descriptors were generated from the most stable conformers of reactants, products, and
catalysts obtained with the force-field approach. As a result, the authors concluded that ECFP6
descriptors are found to be the best representation.

The above studies revealed three main drawbacks of existing 3D-QSSR approaches to the
modelling of catalyst enantioselectivity: (i) selection of catalyst conformers, (i1) their alignment,
and (iii) relevance of 3D descriptors with respect to the enantioselectivity problem. Inheriting pre-
vious conceptual progress in computational catalyst design, we have suggested a new protocol for
the building of predictive models for catalyst enantioselectivity. In our approach, the catalysts are
represented by an ensemble of conformers, encoded by new alignment-independent pmapper 3D
descriptors which were successfully used in the modeling of ligands activity against 175 biological
targets [12,14]. In order to consider an ensemble of catalyst conformers instead of a single selected
conformer, the models were built using Multi-Instance machine Learning (MIL) algorithms. In the
MIL approach, a molecule (catalyst) is presented by a bag of instances (set of conformers), and a
label (experimental enantioselectivity) is associated with the bag (catalyst), but not with individual
instances (conformers). In contrast to conventional single-instance learning where the object is
represented by a single vector of descriptors, MIL determines a correlation between the bag de-
scriptors and the labels. Thus, the application of MIL algorithms solves the problem of conformer
selection and allows using all the generated catalyst conformers for the model building.

In this study, we demonstrate that the MIL-based 3D modelling approach can successfully
be used to predict the enantioselectivity of homogeneous and phase-transfer reactions catalyzed
by structurally different catalyst families. In both cases, the obtained models outperform traditional

2D models and previously reported 3D state-of-the-art approaches.
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Datasets

Over the past two decades, numerous chiral organic catalysts have been designed for different
types of reactions. Thus, BINOL (2,2'-Binaphthol) derivatives are popular catalysts in asymmetric
synthesis because of their backbone flexibility, which enables the proper orientation of the reagents
in 3D space. The Cinchona quaternary ammonium salts are extensively used in asymmetric phase-
transfer catalysis (APTC) due to their capability to dissolve simultaneously in aqueous and organic
liquids.

The catalyst enantioselectivity is often provided in enantiomeric excess (ee %) of the reac-

tion which is defined as the difference between the amount of each enantiomer:

ee % = %R — %S or ee % = %S — %R (6)

The formula for calculating ee % depends on the type of the experimental datasets published in
source papers. In this study, the ee % was converted to AAG (kcal/mol) - a difference in free energy

between competing reaction transition states leading to different enantiomers:

[R] 100 — ee%
—_ e — ——— 7
AAG RTIn 5] RTIn 100 T 000k (7)

To test our 3D modelling protocol, we selected two datasets on the chiral catalyst enantiose-
lectivity - homogenous asymmetric nucleophilic addition and phase-transfer alkylation - used in
previous modeling studies [110,111]. The phosphoric acid catalysts (PAC) dataset reported by
Zahrt et al. [110] contains the enantioselectivity values for 43 catalysts used in 25 reactions of
asymmetric addition of imine to thiol (Figure 16a) resulting in 43 x 25 = 1075 data points. Re-
ported ee % (in favor of R enantiomer) ranged from -34 to 99 and for modelling were converted
to AAG (kcal/mol). A detailed description of the catalyst and reactant structures can be found in
the original paper [110].

This dataset was divided into training and several test sets, as suggested by Zahrt et al. [110]
The training set consisted of 24 catalysts combined with 16 reactants resulting in 24 x 16 = 384
training reactions. Then, three test sets simulating different scenarios of the potential application
of the models in real campaigns of catalyst design were prepared. The reaction-out test set con-

taining 216 data points (24 training catalysts combined with 9 new reactions) is used to predict the
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enantioselectivity of new reactions with known (presented in the training set) catalysts. The cata-
lyst-out test set containing 304 data points (19 new catalysts combined with 16 training reactions)
examines the potential of the model to predict the enantioselectivity of known reactions with new
catalysts. The both-out test set represents the most challenging scenario where the model is used
to predict the enantioselectivity of new reactants with new catalysts. This test set consists of 171
data points corresponding to combinations of 19 test catalysts and 9 test reactions.

Asymmetric phase transfer catalysis (APTC) enables reactions between reactants located in
two immiscible phases with chiral catalysts to produce enantiopure substances. A classic example
of APTC is the asymmetric synthesis of a-amino acids catalyzed by quaternary ammonium salts,
particularly the alkylation of glycine-derived Schiff bases (R'R?C=NR?) (Figure 16b).

We considered an example of asymmetric alkylation of a-amino acid derivatives catalyzed
by cinchona alkaloid-based quaternary ammonium salts reported by Melville et al. [111] A cata-
lysts library was generated by a variation of 13 substituents resulting in 88 catalysts. One substit-
uent was presented only in a test set of 18 catalysts while the remaining 12 substituents were used
to generate a training set of 70 catalysts. The reported ee ranged from 16 to 93 % (in favor of the

S enantiomer).
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Figure 16. Examples of published reactions (datasets) considered for modeling in this study: (a) asymmetric addition
of thiols to imines catalyzed by chiral phosphoric acid catalysts (PAC dataset) and (b) asymmetric alkylation of gly-

cine-derived Schiff bases catalyzed by cinchona alkaloid-based ammonium salts (APTC dataset).
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Computational details
Generation of 3D models

Reactant and catalyst descriptors

Catalyst conformers generation. Each catalyst was represented by an ensemble of conformers gen-
erated using the distance geometry algorithm implemented in the RDKit package [129]. If the
RDKit algorithm failed to generate the conformers, we used a systematic conformer generator
from the Open Babel package [130] and recalculated the full energies of conformers using RDKit.

For each catalyst, we generated up to 50 conformers within an energy window of 50 kcal/mol.
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Figure 17. (a) Preparation of pmapper 3D descriptors for a given catalyst conformer: (1) given 2D catalyst structure;
(2) generation of 3D catalyst conformer; (3) generation of a 3D fully connected graph of atoms (for demonstration,
the graph of four atoms is chosen); (4) enumeration of all atom triplets; (5) counting of enumerated atom triplets in
given conformer; (b) addition of thiols to imines and related Condensed Graph of Reaction (CGR). A CGR contains
one created bond between the atoms S3 and C2 and one double bond transformed into a single one between the atoms
NI and C2.

Catalyst 3D descriptors. The generated catalyst conformers were encoded by pmapper de-
scriptors [135], representing 3D pharmacophore quadruplets [12,14]. The pharmacophore labels
(H-donor, H-acceptor, hydrophobic, positive or negative charges) are assigned to atoms, functional
groups, or rings. Rings are characterized by either hydrophobic or aromatic features. The applica-

tion of pharmacophore quadruplets enables encoding the stereoconfiguration of a molecule, which

92



guarantees that two enantiomers of a molecule have two different descriptor vectors. In our previ-
ous paper [15], we demonstrated that a combination of 3D pharmacophore quadruplets and MIL
generates accurate models for the PAC dataset. However, in this work, instead of pharmacophore
features, we used quadruplets and triplets of individual atoms (and centers of 5- and 6-membered
aromatic rings) - atom quadruplets and atom triplets. Preliminary experiments (which will be dis-
cussed later) revealed that atom triplets significantly reduce the number of descriptors, and demon-
strate even better performance than atom quadruplets. However, if a dataset contains catalysts in
both R and S configurations - the application of atom quadruplets is mandatory to distinguish the
two enantiomers. The atom triplets are applicable in this study because all catalysts in the consid-
ered datasets have the same stereoconfiguration.

The atom triplets are specified by (1) the list of the individual atoms (C, N, O, S, P, F, Cl,
Br, I) or 5-membered and 6-membered aromatic ring and (2) the distances between atoms and/or
center of rings in a triplet. The list of encoded atoms can be customized depending on the task. To
enable fuzzy matching of atom triplets and identify similar ones, the distances between atoms are
binned with the step of 1A (Figure 17a). Then the number of occurrences of each unique atom

triplet is counted for each conformer, resulting in an integer descriptor matrix (Figure 17a).
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Figure 18. Preparation of descriptors encoding a combination of reactants and corresponding catalysts in a 3D mod-
eling approach. A reactant transformation is encoded by m CGR/ISIDA fragment descriptors. A catalyst is represented
by its NV conformers, each encoded by n of 3D pmapper descriptors. Concatenation of m 2D reactant descriptors and
n 3D catalyst descriptors results in the set of vectors of (m + n) size. The Python 3 libraries used in the modeling

workflow are indicated in bold near the arrows.

Reactant 2D descriptors calculation. Each structural transformation of reactants is trans-

formed into a Condensed Graph of Reaction (CGR)[151] with a CGRtools package [152]. CGR
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considers a chemical reaction as one single pseudo molecule (Figure 17b) and contains conven-
tional chemical bonds (e.g. single, double, triple, aromatic, etc.) and so-called “dynamic” bonds
describing chemical transformations, i.e. breaking or forming a bond or changing bond order. Ob-
tained CGRs then are processed with In Silico Design and Data Analysis (ISIDA) tool to calculate
2D fragment descriptors [153]. ISIDA fragment descriptors count the occurrence of particular sub-
graphs (structure fragments) in given CGRs. ISIDA provides several strategies for molecule frag-
mentation. In this study, we used atom-centered subgraphs (atoms with first, second, etc. coordi-
nation spheres) where the radius varied from 2 to 5 atoms.

Reaction profile descriptors. Vectors of 2D fragment descriptors for reactions and 3D atom
triplets for catalysts were then concatenated to form reaction profile descriptor vectors (Figure 18).
If the dataset contained a single reactant transformation, there is no concatenation of catalyst and

reactant descriptors. Figure 18 shows the general scheme of our 3D modelling protocol.

Multi-instance learning algorithms

For the MIL algorithms benchmark, we used a PAC dataset, which was divided into 25 subsets
according to the number of reactant transformations. Each subset contained 43 catalysts with ex-
perimental AAG measured in a given reactant transformation. Middle Absolute Error (MAE) of
AAG predictions was evaluated in a 5-fold cross-validation repeated 5 times (5x5-CV). The com-
parison results show that the Instance-Wrapper algorithm considerably outperforms other algo-
rithms, including the most complex Bag-AttentionNet one.

The basic machine learning algorithm in Instance-Wrapper was a fully connected neural
network with three hidden layers of 256, 128, and 64 neurons and a ReLU activation function. The
optimized hyperparameters were weight decay (0.0001, 0.001, 0.01, 0.1) and learning rate (0.001

or 0.01). The maximum number of learning epochs was 1000.

Generation of 2D models

As an alternative to our 3D approach, we also considered the 2D modeling approach where the
reactants and catalyst structures are encoded by different fingerprint and fragment 2D descriptors.
The following fingerprints were generated using the RDKit library: Atom-Pairs (1024 bits) [154],
Avalon (1024 bits)[155], and Morgan fingerprints of radius 2 (1024 bits) [156]. Fragment ISIDA
[153] and CircuS [157] (Circular Substructures) descriptors can be calculated with different frag-

mentation strategies. For ISIDA, both atom-centered and linear fragments were used. CircuS are
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similar to ISIDA atom-centered fragments, but explicitly consider encountered branching or cy-
clical structures, which makes them more efficient for catalyst structures enriched with cyclical
groups and reduces the noise in the training data.

For a PAC dataset containing multiple reactant transformations, there were two encoding
strategies: (a) reactant transformations were converted to CGR and then encoded by ISIDA or
CircuS (fingerprints tools are unable to process CGR) fragment descriptors (Imine/Thiol CGR,
Table 2) or (b) imine and thiol were encoded by fingerprints or fragment descriptors and then
concatenated to a single descriptor vector (Imine/Thiol concatenation, Table 2). Then the resulting
reactant transformation vectors were concatenated with fingerprint or fragment descriptor vectors
of the catalysts.

Fragment-based descriptors can be calculated using different strategies and fragment
lengths, generating multiple sets of descriptors. In order not to be biased towards specific de-
scriptor sets, we applied a consensus method to calculate the final predictions. First, for each de-
scriptor type (ISIDA, CircuS, or fingerprints), we selected models with R%rrin > 0.7 to discard
descriptor sets that poorly describe the training set. Then the predictions of the filtered models for
the test set were averaged to obtain final consensus predictions of enantioselectivity. For model
training, the same fully connected neural network was used as in the Instance-Wrapper algorithm
in multi-instance models.

The following metrics were used to assess the performance of the models: Root-Mean
Squared Error (RMSE), Mean Absolute Error (MAE), determination coefficient (R?), Spearman
correlation coefficient measuring the correlation between predicted and experimental catalyst

ranks (ranking accuracy, RA).

Results and Discussion

Using the described datasets and modelling protocols, various 2D and 3D models for enantiose-
lectivity prediction were generated. The 3D single-conformer model was built on the lowest-en-

ergy catalyst conformers, while 3D multi-conformer model included all the generated conformers.

Benchmarking of 2D/3D descriptors and MIL algorithms

We were interested in how effectively existing 2D and 3D descriptors encode catalyst structure
isolating the influence of reactants transformation descriptors. For the comparison, we used the
PAC dataset divided into 25 subsets. Each subset included a particular chemical transformation in

presence of one of 43 catalysts. We choose ISIDA [153] and CircuS [157] fragment descriptors,
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2D fingerprints, and 3D descriptors available in RDKit, as well as our 3D atom triplets and quad-
ruplets descriptors. A set of 3D RDKit descriptors included Radial Distribution Function (RDF)
descriptors, Molecule Representation of Structure-based on Electron diffraction (MoRSE) de-
scriptors, Weighted Holistic Invariant Molecular (WHIM) descriptors, GETAWAY and Auto-
Corr3D descriptors. We compared 3D descriptors in a multi-instance setting, i.e., the considered
pmapper and RDKit 3D descriptors were generated for multiple conformers. The Instance-Wrap-
per MIL algorithm was used as a machine-learning method to build 3D models. In the case of 2D
descriptors, the MIL bag contained only one instance.

The performance of 2D and 3D models (MAE of AAG predictions, kcal/mol) was evaluated
in a 5-fold cross-validation repeated 5 times (5x5-CV). As a result, 25 MAE values of predicted

AAG for 43 catalysts were collected for each type of descriptor for each reactant transformation

(Figure 19).
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Figure 19. Comparison of different classes of 2D and 3D descriptors available online. Each catalyst was encoded by
2D fingerprint or fragment descriptors, 3D RDKit descriptors, or pmapper 3D descriptors. 3D descriptors were cal-
culated for multiple catalyst conformers (i.e. there is a set of 3D multi-conformer models). Each box contains a cross-
validated MAE of AAG predictions for 43 catalysts obtained from 25 models (25 reactant transformations). The red
horizontal line shows the accuracy of the default model, which constantly predicts AAG as the average experimental

AAG across all catalysts.

The comparison results show (Figure 19) that only 2D fingerprints and fragment descriptors,
as well as pmapper 3D quadruplets and triplets descriptors, generate predictive models (better than

the baseline null model - the model that predicts enantioselectivity always as an average value of
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the training experimental enantioselectivities - with MAE = 0.47 kcal/mol) for all 25 reactant
transformations, while 3D RDKit descriptors fail to predict the catalyst enantioselectivity for the
most reactant transformations (Figure 19). 3D atom triplets and quadruplets demonstrate similar
performance (median MAEcv = 0.27 vs. MAEcv = 0.31 kcal/mol), but the use of atom triplets
radically reduces the number of catalyst descriptors compared to atom quadruplets from 42824 to
2886 descriptors.

Generally, pmapper 3D descriptors generated from atom triplets perform slightly better (me-
dian MAEcv = 0.27 kcal/mol) than all other 2D descriptors (median MAEcv = 0.30-0.35 kcal/mol).

Thus, 3D RDK:it descriptors were found unsuitable for modelling the catalyst enantioselec-
tivity and are inferior even to 2D descriptors. The proposed 3D atom triplets demonstrated the best
performance.

Comparison of multi-instance learning algorithms. We compared the five MIL algo-
rithms[ 12]. The comparison was performed using the same setting as the benchmark of descriptors
mentioned in Figure 19. The median MAE (in kcal/mol) over 25 reactions (5x5-CV) are as fol-
lows: Instance-Wrapper (0.28 kcal/mol), Bag-Wrapper (0.31 kcal/mol), Instance-Net (0.31
kcal/mol), Bag-Net (0.32 kcal/mol) and BagAttention-Net (0.35 kcal/mol). Based on the obtained

results, Instance-Wrapper was chosen as the main algorithm for further experiments.

Asymmetric addition of thiols to imines

We compared the performance of our 2D and 3D models with the previously reported results.
Sandfort et al. [113] published a structure-based machine learning platform, where reactants and
catalysts were encoded by multiple fingerprint features (MFFs) resulting from the concatenation
of 24 fingerprints sets calculated with RDKit. Zahrt's conformer-dependent 3D approach [110] is
based on the ASO descriptors, accumulating steric information from an ensemble of catalyst con-
formers. Asahara and Miyao [112] benchmarked 2D (ECFP6 and Mol2vec) and 3D (Dragon and
MOE) single-conformer descriptors.

Our models. In the reaction-out test set, all generated 2D and 3D models demonstrated good
results. The 2D models accurately predict enantioselectivity with MAE = 0.14-0.18 kcal/mol. The
3D single-conformer model also provides accurate predictions with MAE = 0.21 kcal/mol, while
the inclusion of multiple conformers in the 3D multi-conformer model considerably increases the
prediction accuracy up to MAE = 0.13 kcal/mol. In contrast to the reaction-out test set, in the
catalyst-out test set the 3D multi-conformer model performs significantly better (MAE = 0.22
kcal/mol) than the 3D single-conformer model (0.38 kcal/mol) and 2D models (0.26-0.36
kcal/mol). Similar to the catalyst-out test set, in the both-out test set the 3D multi-conformer model
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is significantly more accurate (MAE = 0.21 kcal/mol) than the 3D single-conformer model (0.48
kcal/mol) and 2D models (0.28-0.34 kcal/mol).

Table 2. Mean Absolute Error (MAE, kcal/mol) of AAG predictions obtained for test sets generated from the phos-
phoric acid catalysts (PAC) dataset. 2D modelling approach published by Sandfort et al. [113], ®2D and 3D models
published by Asahara and Miyao [112], and ¢ 3D conformer-dependent approach published by Zahrt et al. [110].

Reactants . Model (descriptors) Reaction-out Catalyst-out Both-out
representation
2D model (Morgan fingerprints) 0.18 0.29 0.33
2D model (Avalon fingerprints) 0.15 0.26 0.28
Imine/Thiol . .
. 2D model (Atom-Pairs fingerprints) 0.16 0.36 0.33
concatenation
2D model (ISIDA fragments) 0.14 0.27 0.28
2D model (CircuS fragments) 0.14 0.31 0.33
2D model (ISIDA fragments) 0.15 0.27 0.30
Imine/Thiol 2D model (CircuS fragments) 0.14 0.32 0.34
CGR 3D single-conformer model (Atom triplets) 0.21 0.38 0.48
3D multi-conformer model (Atom triplets) 0.13 0.22 0.21
2D Sandfort’s model (MFFs fingerprints) 2 0.14 0.25 0.28
2D model (Mol2vec) ® 0.13 0.34 0.40
b
Alternative 2D rr.lodel (ECFPo) 0.14 0.22 0.21
approaches 3D single-conformer model (Dragon) ® 0.14 0.42 0.47
3D single-conformer model (MOE) ® 0.15 0.48 0.55
3D Zahrt’s conformer-dependent model 016 0.21 024
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Figure 20. Observed and predicted ee % for 18 test catalysts from the APTC dataset comparing the performance of
the 3D-CoMFA model by Melville et al [111] with: (a). 2D model (ISIDA fragments), (b) model (CircuS fragments),

and (a) 3D multi-conformer model (atom triplets).

Alternative approaches. The 3D single-conformer model based on 3D atom triplets (MAE
= 0.48 kcal/mol) and Miyao’s 3D models based on Dragon (0.47 kcal/mol) and MOE (0.55

kcal/mol) single-conformer descriptors displayed low performance on the both-out test set, which
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demonstrates that a single conformer was not sufficient to generate accurate models irrespective
of the type of 3D descriptors (Table 2). In contrast, 3D multi-conformer model based on atom
triplets was significantly more accurate (MAE = 0.21 kcal/mol) and perform slightly better than
3D conformer-dependent approach reported by Zahrt et al [110] (0.24 kcal/mol) (Table 2). Inter-
estingly that Miyao's 2D model based on ECFP6 descriptors achieved high accuracy (MAE =0.21
kcal/mol) similar to our 3D multi-conformer model.

To summarize, for the case of asymmetric addition of thiols to imines, the 3D multi-con-
former model outperforms the 3D single-conformer models, especially in the prediction of enan-
tioselectivity for new test catalysts, which proves the importance of accounting for conformational
flexibility. We suppose that the difference in the performance of 3D single-conformer and 3D
multi-conformer models will increase with the flexibility of modeled catalysts. The 3D multi-con-
former model outperforms the 2D models, generated with popular fingerprints and fragment de-

scriptors, which highlights the importance of 3D information in enantioselectivity modelling.

Asymmetric phase transfer catalysis

The dataset of asymmetric alkylation (APTC dataset) was divided into 70 training and 18 test
catalysts as described by Melville et al [111]. To build the models, the original enantioselectivities
were converted to AAG, then the predictions on the test set were converted to ee % to be compared
with the predictions of the competing approach. Melville and co-workers proposed a 3D CoMFA-
based approach based on minimal energy catalyst conformers and reported RMSE of ee predic-
tions on 18 test catalysts as 13.4 %. Our 3D single-conformer model performed considerably worse
(RMSE = 18%). Consideration of the ensemble of conformers in the 3D multi-conformer model
significantly reduced RMSE to 8.8% (Figure 20). The substantial difference in the performances
of 3D single-conformer and 3D multi-conformer models (RMSE of 18.0% vs. 8.8%), can be ex-
plained by the high conformation flexibility of the given catalysts — the average number of rotata-
ble bonds in the dataset was 10. The 2D models built on ISIDA and CircuS descriptors demon-
strated poor performance with RMSE of 15.6 and 18.5 %, respectively. This example demon-
strated that our modelling protocol without any modifications or manual adjustment can be applied
to catalysts with a new scaffold.

In a computational screening of candidate catalysts, the predictive model should effectively
identify potential highly selective catalysts, i.e. the model should rank them higher than the other
candidates. To quantify this characteristic of the model, we also calculated ranking accuracy (RA)
which is the coefficient of correlation between predicted and experimental catalyst ranks (Spear-
man correlation coefficient). Figure 20 shows that despite large prediction error (RMSE) the 2D
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models achieve high RA > 0.90, i.e. they well capture the general trend in enantioselectivity vari-
ation (Figure 20). The high absolute accuracy of 3D multi-conformer models in comparison to

other approaches is achieved by more accurate predictions for low-selective catalysts (Figure 20).

Enantioselectivity prediction beyond the training set

A new round of catalyst screening is expected to reveal more enantioselective catalysts. In this
context, it is desirable to prevent under-predictions where the predicted enantioselectivity is sig-
nificantly lower than the actual value. Incorrect behavior of the model in these examples can cause
underestimation of most perspective catalysts, which may not be sampled for experimental testing
in the next rounds of screening. Thus, the predictive model should be specially configured to avoid
under-predictions (yP"¢® < y°PS) of enantioselectivity. To increase the prediction accuracy for

highly selective catalysts, we propose to train the model with a special quantile loss function:

L = max[q x (yPred — yobs), (q — 1) x (yP"ed — y°bs)] ®)

Quantile loss function (3) asymmetrically penalizes over-predictions (y?"¢® > y°bS) and under-
predictions (yP7¢? < y°b%) For q equal to 0.5, under-predictions and over-predictions are penal-
ized equally. The lower the value of g < 0.5, the more under-predictions are penalized compared
to over-predictions. In this study, g was fixed at 0.1 which means that over-prediction is penalized
by a factor of 0.1, and under-predictions by a factor of 0.9, and, thus, the model tries to avoid

under-predictions.
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Figure 21. Predicted and observed catalyst enantioselectivity (AAG, kcal/mol) for (a) 2D model, (b) 3D single-con-
former model, and (c) 3D multi-conformer model. The training set included reactions with ee < 80% and the test set

with ee >= 80%. 2D and 3D models were trained with quantile loss.
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To examine the potential of the models to predict enantioselectivity values beyond the train-
ing set, we followed the validation strategy proposed by Denmark’s group in their original paper
[110]. The PAC dataset on 1075 reactions was divided into a training set of reactions with ee below
80% (718 reactions) and a test set of highly selective reactions with ee above 80% (357 reactions).
Then we built 2D and 3D models with classic mean squared error loss (MSE) and quantile loss.

All 2D models (ISIDA, CircuS, and RDKit fingerprints) built with MSE loss fails to predict
enantioselectivity beyond the training set (R?rest < 0), while the 3D single-conformer model (R?rest
=0.36) and 3D multi-conformer model (R*rest = 0.44) performs significantly better. Model training
with the quantile loss function considerably improved 3D single-conformer (R?rest = 0.59) and 3D
multi-conformer models (R%rest = 0.74). The 2D models built with the quantile loss function are
still worse than the null model (R?test < 0) (Figure 21).

Thus, the 3D multi-conformer model better predicts catalyst enantioselectivity beyond the
training set than 2D models. Furthermore, the proposed 3D multi-conformer model trained with
the quantile loss is better (MAErtest = 0.19 kcal/mol) compared to the results by Zahrt et al. ap-
proach (MAErest = 0.33 kcal/mol) [110].

Conclusion

In this study, multi-instance machine learning in combination with pmapper 3D descriptors was
applied to model and predict the enantioselectivity of chiral catalysts in asymmetric addition of
thiols to imines (BINOL-derived catalysts) and alkylation of glycine imine (cinchona alkaloid-
based ammonium salts). The catalysts were represented either by the lowest-energy conformer
(3D single-conformer model) or by multiple conformers (3D multi-conformer model). The catalyst
conformers were encoded by pmapper 3D descriptors, which in this study are configured to count
particular atom triplets and do not require alignment of the conformers. The developed 3D models
were compared with traditional 2D models built with popular fingerprint and fragment descriptors
and the state-of-the-art 3D approaches published in chemoinformatics papers.

In general, the inclusion of multiple catalyst conformers in the modeling process signifi-
cantly increases the accuracy of enantioselectivity predictions in comparison with single-con-
former modeling. The comparison analysis showed that the 3D atom triplets outperform other
RDKit alignment-independent descriptors and 2D RDKit fingerprints, ISIDA, and CircuS frag-
ment descriptors. The generated 3D multi-conformer models perform the same or better than pub-
lished state-of-the-art 3D approaches. This work demonstrates that the developed 3D modelling
protocol does not require the selection and alignment of conformers and applies to two different
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catalyst systems (BINOL derivatives and ammonium salts), showing the best performance. The
proposed pmapper 3D descriptors are customizable, i.e. one can manually specify the atom groups

or relevant 3D patterns that are responsible for observed enantioselectivity.
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Abstract Here, we report an application of the multi-instance learn-
ing approach to predictive modeling of enantioselectivity of chiral cata-
lysts. Catalysts were represented by ensembles of conformations en-
coded by the pmapperphysicochemical descriptors capturing
stereoconfiguration of the molecule. Each catalyzed chemical reaction
was transformed to a condensed graph of reaction for which ISIDA frag-
ment descriptors were generated. This approach does not require any
conformations’ alignment and can potentially be used for a diverse set
of catalysts bearing different scaffolds. Its efficiency has been demon-
strated in predicting the selectivity of BINOL-derived phosphoric acid
catalysts in asymmetric thiol addition to N-acylimines and bench-
marked with previously reported models.

Key words asymmetric catalysis, chemoinformatics, machine learn-
ing, QSSR

Enantioselective catalysis is widely used for the synthe-
sis of enantiomerically pure compounds. Design of perspec-
tive catalysts is traditionally conducted by iterative modifi-
cation of the molecular structure aiming to increase the en-
antioselectivity of a reaction product. Predictive
chemoinformatics models may guide chemists toward the
most promising catalysts before their synthesis and experi-
mental testing, reducing in such a way both human and
material resources.'? Such models built on molecular de-
scriptors encoding catalyst and reactants structures in com-
bination with machine learning methods are used for hunt-
ing potent catalysts in virtual screening experiments.

The early models of enantioselectivity by Kozlowski®
and by Lipkowitz* considered only one conformation per
catalyst. Later on, Melville et al.> suggested considering sev-
eral conformations along the molecular dynamics trajecto-

Catalyst selectivity

ry within the CoMFA approach. Another strategy to account
for multiple conformations was suggested by the Denmark
group who invented average steric occupancy (ASO)® and
average electronic indicator field (AEIF)’ descriptors. The
aligned conformations were placed in the rectangular box
followed by calculations of either relative occupancy by the
catalyst atoms of each node of the rectangular grid (ASO) or
normalized atomic charge of atoms overlapping with the
grid nodes (AEIF). These descriptors provided multidimen-
sional information for the CoMFA approach which signifi-
cantly improved the performance of the enantioselectivity
models.%’ Yamaguchi and Sodeoka successfully applied mo-
lecular field analysis to some catalyst-substrate complexes
in order to design new highly effective catalysts.® Recently,
Xu et al. reported spherical projection descriptors of molec-
ular stereostructure (SPMS),? which allows precise repre-
sentation of the molecular van der Waals surface. These de-
scriptors were calculated for each conformation of catalyst
and substrate and then used in a convolutional neural net-
work to train an enantioselectivity model on the dataset re-
ported in reference.b

Here, we report an alternative approach - multi-in-
stance machine learning'? algorithm (Figure 1) accounting
for multiple molecular conformations in structure-activity
tasks. This method in combination with original molecular
and reaction descriptors has been applied to the dataset on
the selectivity of phosphoric acid catalysts in asymmetric
addition of thiols to imines (Figure 2) reported by Zahrt et
al.% This dataset contains selectivity of 43 catalysts system-
atically measured in 25 reactions, which results in 1075
data points. The catalyst selectivities were estimated by en-
antiomeric excess (ee %) ranged from -43 to 99. For the
model development, the ee % values were converted into
AAG (kcal/mol), a free-energy difference between compet-

© 2021. Thieme. All rights reserved. Synlett 2021, 32, A-D
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ing transition states leading to different enantiomers. A de-
tailed description of the catalyst and reactant structures is
given in the original paper.

Conformations

2 Hidden 2
descriptors layers Learned Weighted
representations representation
Selectivity
prediction
— — — . - 0
ee e e "
Wy W, W3 Wy Wy ":'dden
ALY layer
%
[s]
)
CE——
Attention net

Figure 1 Multi-instance neural network with the attention mecha-
nism. The network receives an ensemble of descriptor vectors of all
considered conformations of a given molecule as an input in order to
predict both enantiomeric selectivity and the weights {w;] measuring
the importance of each conformation.

The multi-instance learning algorithm represents a
neural network with an attention mechanism, which prior-
itizes few conformations responsible for the observed activ-
ity and ignores the irrelevant conformations introducing
noise in the modeling process (Figure 1). Namely, the atten-
tion mechanism assigns to each conformation a weight
from O to 1, determining its importance in terms of predict-
ing catalyst selectivity. The sum of all attention weights
equals 1. In the learning process, each instance (conforma-
tion descriptor vector) runs through three fully connected
layers with 256, 128, and 64 hidden neurons, respectively.
Then the learned instance representations inputs to the at-
tention network with 64 hidden neurons, in which the
number of output neurons is equal to the number of input
instances. The output neurons are followed by a Softmax
unit which calculates attention weights for each instance.
The weighted averaging of learned instance representations
results in the embedding vector, which, in turn, is used to
predict reaction selectivity (Figure 1). In the multi-instance
approach, a catalyst molecule is represented by a bag of in-
stances (i.e., a set of conformations) to which a label (a se-
lectivity value) is assigned. The multi-conformation models
were compared with single-conformation models con-
structed for the lowest-energy catalyst conformation. Each
catalyst was represented by a set of its conformations,
which were encoded by pmapper descriptors.'' These de-
scriptors were developed in our group and probed in pre-
dicting the biological activity of molecules.'> They do not
require alignment of conformations and can potentially be
applied to model catalysts with diverse scaffolds. Also,
pmapper descriptors are sensitive to the stereoconfigura-
tion of the molecule, i.e., enantiomers are described by dif-
ferent descriptor vectors.

Condensed Graph of Reaction

Oy _Ph O _Ph Oy Ph
1 3 1 3 '_I 3
N\j, + HSR — HN\z(S\R = YS‘R
Ar Ar Ar

Figure 2 Reaction of N,S-acetal formation and related condensed
graph of reaction (CGR). The created bond between the atoms S3 and
(2 and double bond transformed to single between the atoms N1 and
Q2 are highlighted.

Each reaction was transformed to a condensed graph of
reaction (CGR)'® with a CGRtools package.'* CGR is a single
graph, which encodes an ensemble of reactants and prod-
ucts as is shown in Figure 2. CGR results from the superpo-
sition of the atoms of products and reactants having the
same numbers. It contains both conventional chemical
bonds (single, double, triple, aromatic, etc.) and so-called
‘dynamic’ bonds describing chemical transformations, i.e.,
breaking or forming a bond or changing bond order. Given
CGRs were encoded by (in silico design and data analysis
(ISIDA) fragment descriptors,'® counting the occurrence of
particular subgraphs (structural fragments) of different to-
pologies and sizes. In this study, atom-centered subgraphs
containing a given atom with the atoms and bonds of its
ncoordination spheres (n= 1-4) were used.

For each catalyst, up to 50 conformations within a 10
kcal/mol energy window have been generated using the
distance geometry algorithm implemented in RDKit.!® The
conformations with RMSD values below 0.5 A with respect
to selected conformations were removed in order to reduce
redundancy. Then, selected conformations were encoded by
a vector of pmapper'' descriptors. Each conformation is
represented by an ensemble of physicochemical features
assigned to atoms, functional groups, or rings: H-donor, H-
acceptor, or hydrophobic, or positively or negatively
charged. Rings are characterized by either hydrophobic or
aromatic features. All possible combinations of features
quadruplets are enumerated. Each quadruplet is encoded
by a canonical signature, which contains information about
comprising features, the distance between them, and ste-
reoconfiguration. To enable fuzzy matching of quadruplets
to identify similar ones, the distances between features are
binned with the step of 1 A. Each unique quadruplet is con-
sidered as a descriptor whereas its count is a descriptor val-
ue (Figure 3) mmsentence OK?mm. More details about de-
scriptor generation are reported in our previous paper.'!
Vectors of 2D fragment reaction descriptors and 3D physi-
cochemical quadruplets were then concatenated to form a
combined reaction/catalyst descriptor vector (Figure 4). For
the sake of comparison, some models were built using RD-
Kit 3D descriptors, which were used in reaction/catalyst de-
scriptor vector instead of pmapper descriptors.

The single- and multi-conformation models (SCM and
MCM, respectively) were built on the training set of 384
data points resulted from a combination of 24 catalysts
combined with 16 reactions. The models were validated on

© 2021. Thieme. All rights reserved. Synlett 2021, 32, A-D
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Quadruplet graph with atom pair distances (A)

Conformation 1 4 1 o 1 o 1 0 1

Conformation 2 2 0 1 0 0 1 1 0

e e e e e e e o

Conformation K L] 0 0 2 3 1 0 1 1
Pattern matrix

Figure 3 Workflow of preparation of pmapper descriptors for a given conformation. The physicochemical labels are assigned to particular atoms or
functional groups followed by the preparation of a 3D fully connected graph for which an ensemble of quadruplets is generated.
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Figure4 Preparation of descriptors encoding reaction/catalyst combinations. A chemical reaction is encoded by mISIDA/CGR descriptors calculated for
the condensed graph of reaction. A catalyst is represented by its N conformations, each encoded by n pmapper descriptors. Concatenation of reaction

and catalyst descriptors results in the vector of (m+n) size.

three test sets selected according to different scenarios: (a)
new reactions with known catalysts, (b) known reactions
with new catalysts, and (c) new reactions with new cata-
lysts. Thus, Test set 1 contained 216 instances resulted from
a combination of 24 catalysts from the training set with 9
new reactions, Test set 2 included 314 instances (19 new
catalysts/16 training reactions), and Test set 3 contained
171 instances (19 new catalysts/9 new reactions).

Performances of single-conformation and multi-confor-
mation models (mean absolute error, MAE) in comparison
with those of the model by Zahrt et al.® are given in Figure
5. One may see that for Test set 1, both SCM and MCM per-
form similarly to Zahrt's model, whereas for Test sets 2 and
3, performances of MCM and Zahrt's models are similar
whereas SCM performs much worse.

These results demonstrate the importance of account-
ing for all representative catalyst conformations in predic-
tive modeling. We expect that the difference in the perfor-
mance of single- and multi-conformation models would in-
crease when more flexible catalysts are considered. This

emphasizes the importance of the choice of 3D descriptors
able to capture relationships between the structure of mol-
ecules and their catalytic activity. It seems that our pmap-
per descriptors are well suited for this task. Our benchmark-

 Single-conformation model
Multi-conformation model
0,50 = Zahrt's model
0,40
E 0,40 0%
4
g 0,30 0,25 0,26 024
0,21

020 018047 g4

" I I

0,00

Testset 1 Testset 2 Testset3

Figure 5 Mean absolute error (MAE, kcal/mol) obtained for Test sets
1-3.
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ing studies demonstrated that multi-conformation models
built on pmapper descriptors outperformed those based on
3D descriptors calculated with RDKit (Figure 6).

1.0

0.5 % _|_

0.0

T
-0.5 " —I—

_1:5 l

5 < 3 3 & QO
.I,QQz & & N {\‘?‘\ &

o G o
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Figure 6 Performance of models based on different classes of 3D de-
scriptors in predicting BINOL-derived catalysts selectivity in 25 reac-
tions. Each box contains a cross-validated determination coefficient R?
for 25 models (one model per reaction).

To summarize, our approach combining original ISI-
DA/CGR descriptors for chemical reactions, 3D physico-
chemical pmapper descriptors for catalysts, and multi-in-
stance machine learning method performs similarly to the
state-of-the-art model recently reported by Denmark’s
group. Unlike conventional 3D or 4D QSAR techniques, our
approach is more general because it doesn't require any
conformations or atomic alignment and potentially allows
training a model on structurally diverse datasets combining
catalysts with different scaffolds.!”
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Part 3. Modeling reaction characteristics with conjugated machine
learning

Conjugated machine learning is a new concept in reaction QSPR modeling that integrates funda-
mental thermodynamic and kinetic laws with machine learning algorithms. Conjugated models
can be built using ridge regression or artificial neural networks. This part demonstrates how fun-
damental chemical equations can be integrated with a learning algorithm to model the character-

istics of binary tautomerism reactions, cycloaddition reactions, and competing E2/Sn2 reactions.

3.1 Methodological developments

1) Design of conjugated learning algorithms. Fundamental thermodynamic and kinetic equa-
tions can be integrated with machine learning algorithms by designing special loss functions. This
process can be divided into several steps:

1. Design an equation-based loss function in which the main characteristic 4 is calculated
using an integrated equation and the related characteristics B and C.

Define equation F relating main characteristic A with characteristics B and C:
A=F(B,C) ()]
Design equation-based quadratic loss function for 4:

Apred — F(Bpred’cpred) (10)

EA — ”Aexp _ Apredllz — ”Aexp _ F(Bpred’cpred)llz (1 1)
2. Combine equation-based loss function with individual loss functions of related charac-
teristics B and C.
Individual B model:
Ey = ”Bexp — Bpred(ﬁB)llz (12)

Individual C model:

E. = ”Cexp _ Cpred(lgc)llz (13)



Conjugated model:

E=aEA+bEB+CEC 14

E = a”Aexp _ F(Bpred' Cpred)llz + b”Bexp _ Bpredllz + C”Cexp _ Cpredllz ( )

where a, b, and c are trade-off coefficients that control the contribution of each loss function to
the conjugated loss function.

3) Estimate regression weights (parameters) 8 and S of the conjugated model:

Bg, Bc = argmin(0fy, 9f¢) (15)

Regression weights can be estimated either analytically by calculation of the analytic derivative of
E and setting it equal to 0, or the solution can be found numerically by gradient decent approach.
The obtained optimal parameters Sz and S, can be used to generate predictions that satisfy the
equation embedded in the conjugated model.

2) Contribution coefficients optimization. The conjugated machine learning algorithms
(ridge regression and neural networks) are based on specially designed multi-objective loss func-
tions. In the optimization process, multiple objectives optimization is balanced by adjusting the
contribution coefficients (trade-off coefficients) in equation (14). In this research, several ap-
proaches were applied to adjust the contribution coefficients.

Grid search. Grid search is a standard method for the optimization of hyperparameters of
machine learning methods. In grid search, all available combinations of hyperparameters are tested
and the best combination is selected according to a prediction accuracy metric. Grid search can be
adapted to find optimal contribution coefficients, but this method can be computationally expen-
sive because of the large number of tested combinations. In this study, the grid search method was
used to build conjugated models for predicting the tautomeric constant in Section 3.2, where the
conjugated model had a single contribution coefficient &, which can be optimized using a «nested»
grid search technique. This type of grid search is based on several consecutive sessions of scanning

possible values of the optimized parameter (Figure 22).
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Nested Grid Search Approach

Session 1 [0,0.1,0.2,03,00.4| 0.5,06,07,08,09, 1]

Session 2 [0.30,0.32,0.34,0.36,0.38, 0.40 ,|0.42 ,[0.44|, 0.46|, 0.48, 0.50]
I
Session 3 [0.420,0.422 ,0.424 ,(0.426|, 0.428 , 0.430, 0.432, 0.434 ,

0.436,0.438,0.440,0.442 ,0.446,0.448 ,0.450, 0452, 0.454 , 0.456 , 0.458, 0.460]
Optimal value: 0.426

Figure 22. An example of optimization of a single continuous parameter using nested grid search. The range of pos-

sible parameter values is iteratively specified until the optimal value is found.

The conjugated models for the tautomeric constant have a single contribution coefficient
a, which ranged from 0 to 1. It was observed that the possible optimal value of a was between 0.9
and 1 and to precise it, new values ([0.95, 0.975, 0.9875, 0.99375, 0.996875, 0.9984375,
0.99921875, 0.999609375, 0.9998046875, 0.99990234375]) were scanned, calculated using the

following equation a™*t + 0.1 x 0.5™, where a™¢*t

= 1is a value and n ranged from 1 to 11.
Thus, the grid search is a suitable method for optimizing the small number (1 or 2) of contribution
coefficients.

Bayesian optimization. A bayesian optimization is an efficient approach for optimizing the
objective function when traditional optimization methods such as gradient descent are not appli-
cable, due to time and computational cost. The idea of bayesian optimization is to build a proba-
bility model of the objective function and use it to select the most promising hyperparameters to
evaluate in the true objective function. Optimization of hyperparameters of machine learning al-
gorithms is a suitable task for bayesian optimization approaches because to test each combination
of hyperparameters one needs to train and validate the model, which can be a time-consuming
process, especially for deep learning algorithms. In addition, hyperparameters can be real-valued,
discrete, or conditional variables and the simultaneous optimization of which is impossible in tra-
ditional optimization methods but is feasible in bayesian optimization. Hyperopt [158] is a Python
package for the bayesian optimization of ML hyperparameters, based on the Tree-of-Parzen-Esti-
mators (TPE) algorithm [159].

In this research, hyperopt was used to optimize the hyperparameters of the ridge regression
conjugated models for predicting Arrhenius equation parameters. The values of contribution co-

efficients were sampled from a continuous space defined between 0 to 1, and the regularization
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coefficients took discrete values between 107'° to 10°. The hyperopt algorithm adjusts the hyperpa-
rameters by maximizing the validation accuracy of the model.

Genetic algorithm. Evolutionary algorithms are stochastic search methods that seek to im-
prove search performance by exploring a set of promising areas in the solution space [160]. They
are based on the mechanisms of evolution of biological organisms. A genetic algorithm is a type
of evolutionary computation. A distinctive feature of the genetic algorithm is the emphasis on the
use of the crossover operator, which operates by recombining candidate solutions. Genetic algo-
rithm manipulates several solutions simultaneously, which reduces the probability of getting
trapped in local optima compared with optimization methods that proceed from point to point in
the solution space. Also, genetic algorithms can work with almost any type of optimized function,
because it does not require the differentiability of the function. In this research project, the basic
implementation of the genetic algorithm (https://github.com/dzankov/GenOpt) was adapted to op-
timize the hyperparameters of machine learning algorithms, including the contribution coefficients
in the conjugated models. Preliminary experiments indicated that the developed genetic algorithm
approach for optimization of hyperparameters of machine learning algorithms performs similarly
to the hyperopt approach.

Optimization of contribution coefficients with gradient decent. Contribution coeffi-
cients in conjugated neural network algorithms can be automatically adjusted during neural net-
work training using gradient descent. In this approach, contribution coefficients are not fixed be-
fore training the neural network as hyperparameters but are internal global parameters of the neural
network, which are optimized along with neural network weights. As a result, a single training of
the conjugated neural network is enough to obtain optimal values of the contribution coefficients.

3) Descriptors. Each reaction was transformed into the Condensed Graph of Reaction
(CGR) [153] generated with the CGRtools module [152]. CGR is derived from the superposition
of products and reactants and contains both conventional chemical bonds (single, double, triple,
aromatic, etc.) and so-called “dynamic™ bonds describing chemical transformations, i.e. breaking
or forming a bond or changing bond order. Generated CGRs were processed by the ISIDA tool
[161,162] to calculate fragment descriptors by counting the occurrence of particular subgraphs
(structural fragments) of different topologies and sizes.

The vector of fragment descriptors for each reaction was concatenated with the vector of
solvent descriptors, which included 14 descriptors, describing such properties of solvent as polar-
ity, polarizability, Catalan constants SPP, SA, SB, Kamlet-Taft constants a, B, ©*, dielectric con-
stants, function of the refractive index. These descriptors were successfully applied in previous

publications [163—166].
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4) Software. The conjugated ridge regression and neural network algorithms are imple-
mented using the PyTorch package [167]. Ridge regression algorithms are implemented using
PyTorch tensor objects, which perform matrix calculations using the graphics processing unit
(GPU). Neural network algorithms were implemented using standard PyTorch modules.
CGR/ISIDA  descriptors were generated using CGRTools [152] and CIMTools
(https://github.com/cimm-kzn/CIMtools) packages. The open-source code of the implemented
conjugated ridge regression and neural networks algorithms is available at

(https://github.com/dzankov/CoLearn).
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3.2 Modeling of tautomeric constant

If two tautomeric forms share a common anion, the tautomeric equilibrium constant can be ex-
pressed as the difference between the acidity constants of the corresponding tautomers. The tauto-
meric equation is used in calculating the tautomeric equilibrium constant in commercially availa-
ble tools for predicting the population of tautomeric forms in water [168,169] (equation-based
models). But, in previous works [170,171] it was demonstrated that direct prediction of the tauto-
meric equilibrium constants often is more accurate. The poor performance of equation-based mod-
els in predicting the tautomeric equilibrium constant stems from the fact that it is extremely diffi-
cult to measure the acidity of all tautomeric forms which leads to the lack of training data on minor
tautomers.

In this study, a tautomeric equation relating the tautomeric equilibrium constant and the
acidity of the corresponding tautomers was integrated with ridge regression and neural network
algorithms. Three models for predicting the logK7 tautomeric constant was compared:

1) The individual logK; model, which is trained with the logKy data on 639 tautomeric
reactions. The individual log Ky the model directly predicts the logKy for a given reaction.

2) The equation-based model, which calculates the prediction of logKy using the tauto-
meric equation and the pKa of tautomers predicted by the individual pKa model trained with pKa
data on 2371 organic compounds.

3) The conjugated model, which is trained on both logK; and pKa datasets.
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ABSTRACT: Here, we describe a concept of conjugated models for several properties (activities) linked by a strict
mathematical relationship. This relationship can be directly integrated analytically into the ridge regression (RR) algorithm or
accounted for in a special case of “twin” neural networks (NN). Developed approaches were applied to the modeling of the
logarithm of the prototropic tautomeric constant (logK;) which can be expressed as the difference between the acidity
constants (pKa) of two related tautomers. Both conjugated and individual RR and NN models for logKy and pKa were
developed. The modeling set included 639 tautomeric constants and 2371 acidity constants of organic molecules in various
solvents. A descriptor vector for each reaction resulted from the concatenation of structural descriptors and some parameters for
reaction conditions. For the former, atom-centered substructural fragments describing acid sites in tautomer molecules were
used. The latter were automatically identified using the condensed graph of reaction approach. Conjugated models performed
similarly to the best individual models for logKy and pKa. At the same time, the physically grounded relationship between logKy:
and pKa was respected only for conjugated but not individual models.

1. INTRODUCTION

Physicochemical properties of chemical compounds are often
closely related by physically meaningful mathematical relations.
In this context, it is important to ensure the validity of such a
relationship for the properties predicted by corresponding
individual quantitative structure—property relationship
(QSPR) models. However, due to the statistical nature of
QSPR models and the impossibility to reduce prediction errors
to zero, the achievement of the goal is pretty improbable even
if each related property is predicted with reasonable accuracy.
In order to solve this problem, we introduce the concept of
conjugated QSPR models, in which relationships between the
properties are explicitly embedded in the modeling method-

v ACS Publications  © 2019 American Chemical Society

ology. Here, the conjugated QSPR technique is demonstrated
for the case of tautomeric equilibria.

Tautomerism is one of the most important phenomena in
organic and bioorganic chemistry. It is a key factor influencing
spontaneous mutagenesis, the functioning of nucleic acids,
proteins and sugars, and protein—ligand interactions, along
with other important natural processes in biology. Considering
tautomerism is also of prime importance for computer-aided
drug discovery. In the field of chemoinformatics, this
phenomenon leads to uncertainty in representing chemical
structures, which can cause problems when storing and
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Table 1. Predictive Performance of Individual and Conjugated Models Estimated in § X 10-fold Cross Validation”

data set used for training model's type method hyperparameters
logKy individual RR a=14=03
NN a=1
logKy and pKa conjugated RR a=095 =01
NN a= 090
pKa individual RR a=04=1
NN a=0

logKr pKa
RMSE Q RMSE Q
0.92 (0.01) 0.67 (0.01) 10.73 —4.87
0.85 (0.004) 0.73 (0.003) 10.9 —5.06
0.92 (0.01) 0.67 (0.01) 1.56 (0.01) 0.88 (0.01)
0.88 (0.05) 0.70 (0.01) 1.52 (0.05) 0.88 (0.01)
4.90 —831 1.56 (0.04) 0.88 (0.02)
7.38 -20.14 1.49 (0.04) 0.89 (0.01)

“Mean values for performance metrics are presented, and standard deviations are given in parentheses.

processing chemical data, as well as when building QSAR/
QSPR models. For this reason, the importance of taking into
account tautomeric transformations when registering com-
pounds, computer design of new drugs, and searching for
molecules with desired properties has been repeatedly
emphasized.'"™ In turn, this led to the development of
computational approaches to enumerate possible tautomers of
chemical compounds, ™" as well as to evaluate the po ulatxon
of different equilibrium tautomeric forms in solution.” *~"* I
the case of prototropic tautomerism, the logarithm of
tautomeric constant, logKy, is equal to the difference between
the acidity constants, pKa, of two tautomers sharing common
anion after deprotonation: '’

logK = pKa(2) — pKa(1) ¢y

Similarly, the tautomeric constant can also be expressed in
terms of the basicity constants of the compounds, if both
tautomers have a common protonated form. Equation 1 is used
in several commercially available tools to estimate logKy from
the values of pKa predicted for two tautomers using QSPR
models for acidity, as an intermediate stage for assessing the
population of different tautomeric forms in water.””*' The
disadvantage of this approach stems from the difficulties to
measure the acidity constant of little populated minor
tautomers. Moreover, logKy assessment as the difference of
two pKa values according to eq 1 leads to the accumulation of
uncertainties of the predictions. These two reasons may
significantly reduce the performance of QSPR models for
logKy. Alternatively,””** logK; can be modeled directly
without any need to use eq 1. However, despite the high
predictive performance of these models, the exact agreement of
calculated logKy and pKa values with “fundamental” eq 1 is no
more guaranteed.

In order to solve this problem, we suggest developing
conjugated QSPR models, which output logK;. and pKa always
complying to eq 1. For linear conjugated models, an analytical
expression extending the popular ridge regression (RR)
method was developed. For nonlinear conjugated models,
special neural network (NN) architecture was proposed.

2. METHODOLOGY

In this section, we describe the methodology of the preparation
of linear and nonlinear conjugated models.

2.1. Conjugated Ridge Regression Model. Let us
consider a linear regression equation
red
% @)

where X is a matrix of molecular descriptors, w is a row vector
of regression coefficients, and yi™ is a column vector of

predicted pKa values. Regression coefficients w can be found
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by minimizing the sum of squared differences between
predicted and experimental acidity values y§™¢ for a training

set:
E O

Ey(w) =

-5 = OFF - Xw) (0 - Xw)

(3)

A combination of eqs 1 and 2 results in an equation for

predicted tautomeric equilibrium constants yi?
d

W =Xw — Xw = (X, — X))w (4)

where X, and X, are descriptor matrix for the tautomers in
equilibrium. Similarly to eq 3, regression coeficients w are
determined by minimizing the error of logK predictions:

Ep(w) = - (X, - Xl)"")T(}’—f-xp -

— min

(X, — X)w)
(%)
It should be noted that eqs 2—3 for pKa and eqs 45 for
logK involve exactly the same vector of regression coeflicients
w. In order to determine optimal w values, three different
objective functions should be simultaneously minimized:
Er(w) and Eu(w) calculated according to eqs 3 and §,
respectively, and the model complexity, expressed by the term
w'w. A common way of minimizing several objectives
simultaneously is to minimize their linear combination with
adjustable mixing coefficients:

E(w) = aEx(w) + (1 — a)E,(w) + JwTw — min (6)

where 4 is a regularization coefficient, while a takes values
from 0 to 1 and controls the trade-off between minimizing
prediction errors of tautomeric constants vs acidity constants.
Thus, @ = 1 (or @ = 0) correspond to minimizing prediction
errors for logKy (or pKa) according to eq S (or eq 3). Values
of a between 0 and 1 correspond to the models trained
simultaneously on two different data sets: one for logKy
(tautomers data set) and another one for pKa (acidity
constants data set).

Differentiation of E(w) with respect to w and equating the
derivative to zero leads to an analytical expression for weights
w corresponding to the minimum of E(w):

w=[a(X, - X)' (X, - X)) + (1 —a)X"'X + 21]”"

[a(X, - X)'y5® + (1 — @)X y;¥) @)

The vector of regression coeflicients w estimated by eq 7 can
be used to simultaneously predict pKa and logKy according to
eqs 2 and 4, respectively. Notice thatata =0 anda = 1, eq 7
becomes identical to classical RR method™* built solely on the
acidity or tautomerism data correspondingly. Indeed, at a = 0
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w=(X"X + lI)_lXTy;"P (8)
and at a = 1
w=[(X, - X)' (X, - X)) + A7 (X, - X)) ()

Thus, the models built with @ = 0 or @ = 1 are individual
models, while the models with 0< @ < 1 are conjugated models.

It should be noted that for two tautomers in equilibrium,
solvent and temperature descriptors are identical. Therefore,
subtraction X, — X in eqs 4 and 5 results in the deletion of
any information about the experimental conditions. Hence, the
models for logKy resulting from eq S are not able to describe
the dependence of logKy on solvent and temperature. This
means that conjugated RR models can be developed only for
tautomeric equilibria measured strictly at the same conditions.
This limitation is a consequence of the hypothesis of the linear
dependence of logK; from solvent and temperature
descriptors.

2.2. Conjugated Artificial Neural Network Model. To
overcome the above limitation by introducing nonlinearity
between descriptors and predicted properties, we have
developed a special architecture of “twin” neural networks
(NN) based on fully connected feed-forward multilayer NN
with shared values of connection weights @.

The entire network consists of three “twin” subnetworks I—
III (Figure 1). Each subnetwork is a “shallow” multilayer

logK;
Ry O ~_ PK,
Shared weights Shared weights
w w
— A ——
| ] n
Tautomer
Acidity
@ e
dataset dataset

Figure 1. Architecture of the “twin” neural network for simultaneous
prediction of tautomeric and acidity constants.

perceptron with a single hidden layer containing several
rectified linear units. Tautomer data set feeds to subnetworks I

and II, whereas acidity constants data set feeds to subnetwork
III. The outputs of these subnetworks are acidity constants
pKa(1l), pKa(2) (acidities of two tautomeric forms in
equilibrium), and pKa, respectively. The outputs of the
subnetworks I and II feed to special unit computing logKy
according to eq 1. It should be noted that the same values of
network parameters @ are used in all three subnetworks, thus
subnetworks are identical. These weights are determined by
minimizing the functional E(@):

E@) = a ) 65 — i) + (1 - )
exp _ _ predy2
Z (yA,) Yaj
j (10)

This NN architecture has been realized with the PyTorch
package™ which allows usage of the same network in different
applications. Since PyTorch dynamically constructs a computa-
tional graph, it can determine the gradient of the error
functional E(@) with respect to weights @ of subnetworks
followed by their updating in order to reduce prediction errors
for logKy and pKa.

Thus, similarly to conjugated RR models, the NN
parameters @ were optimized in such a way that the logK;
and pKa were predicted simultaneously. However, unlike the
linear ridge regression method, neural networks establish
nonlinear relationships between experimental condition
descriptors and equilibrium constants.

Thus, the trained network is able to predict both logK and
pKa. It can also be used to build individual models for logK;
and pKa. Thus, at a = 1, the neural network is trained only on
logK because the error of pKa prediction does not affect the
updating of the weights. Similarly, at a = 0, the model learns
the only pKa.

3. COMPUTATIONAL DETAILS

3.1. Data. Two data sets were used in the modeling:
tautomers data set and acidity constants data set. A data set for
tautomeric equilibrium constants (fautomers data set) consisted
of 575 reactions from reference’” and 64 equilibria collected by
M. Nicklaus’ group.”® Only binary equilibria with known
temperature, solvent, and tautomers ratio were selected. Ring—
chain tautomeric equilibria were excluded since eq 1 could not
be applied for that case. Thus, the resulting tautomers data set
consisted of 639 reactions studied in 24 different solvents and
corresponding to 10 different types of prototropic tautomer-
ism. In addition, we used acidity constants data set contained

175 200
150
1254 150
£ 100 E
3 3100+
Q 75 ()
3079 50
254
ol— . . . 0l . . ; . ,
-15 -10 -5 0 5 10 1 0 5 10 15 20 25 30
logK+ pKa
(a) (b)

Figure 2. Distribution of (a) the logarithm of tautomeric constant and (b) the acidity constant over the corresponding training sets.
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manually collected pKa values of 2371 organic molecules in 13
different solvents, manually extracted from the Palm’s
handbook.”” Distribution of the logarithm of tautomeric
equilibrium constant (logK;) and pKa for the data sets is
given in Figure 2. Both data sets are described in the
Supporting Information and a link to download them is given.

Chemical structures were standardized using the ChemAxon
Standardizer tool:** functional groups (nitro, sulfo, and others)
were reduced to a standard form, Kekule structures were
transferred to aromatic structures if they were in accordance
with the Hiickel's rule. The data sets were also visually
inspected in order to avoid the errors in the data.

The atom-to-atom mapping was determined in a consensus
manner’” using the ChemAxon Standardizer™ and GGA
Indigo programs’’ followed by visual inspection.

The predictive performance of the models was assessed on
two external test sets taken from paper.”” The first one
(TEST1) consisted of tautomeric equilibria present in the
training data set but studied under different experimental
conditions. The second test set (TEST2) contained unique
transformations that were absent in the training data set.
Notice that ring—chain tautomerization reactions were
excluded from these test sets.

3.2. Descriptors. Descriptors vector for each molecule
resulted from the concatenation of structural and condition
descriptors. The ISIDA fragment descriptors™ were used to
encode molecular structure. At the first stage, the atoms
representing acid sites in molecules were labeled. For the
acidity constants data set, the labels were assigned manually
when the corresponding molecule entered the database. For
tautomeric rearrangements, the assignment of the label was
performed automatically. For this purpose, each tautomeric
ethbnum was encoded by condensed graph of reaction
(CGR).” Hydrogen atoms in CGR were explicitly accounted
for (Figure 3). Obtained CGRs allow identification of breaking
or forming bonds and, hence, the atoms adjacent to these
bonds. In prototropic tautomeric rearrangement, a hydrogen
atom moves from atom A in tautomer 1 to atom B in tautomer
2. Thus, both atoms A and B were marked as acid sites in the
corresponding tautomeric forms (Figure 3).

Y —= 1Y
—
o o o oH

e ow R ¥

“w{ ] W
_—.) T
H 7

7

Selected tautomeric equilibrium

Hydrogens addition and
atom-to-atom mapping

o
3

Condensed Graph of Reaction

Labeling of acid sites

Figure 3. Automatized labeling acid sites in tautomeric rearrangement
reactions with the help of condensed graph of reaction (CGR). The
latter results from the superposition of atoms of two tautomers having
the same number. Black dots and perpendicular dashes in CGR
depict, respectively, the formed and broken bonds. The asterisk (*)
marks the atoms of the acid center in tautomers.
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Fragment descnptors were calculated using the ISIDA
Fragmentor program.”’ This program computes fragment
descriptors by enumerating fragments (subgraphs of molecular
graphs) belonging to some topology type (for example, chains)
and evaluating their values by counting the number of times
they occur in each molecule from the data set. In this study,
atom-centered fragments including from 1 to 3 atoms were
used as descnptors Upon fragment generation marked atom
approach” ™" was used, i.e. fragments that include an acid
center label (so-called marked atom) are distinguished from
those without such labels. Both fragments with and without
marked atoms were included in the pool as different
descriptors (so-called MA3 approach in papers’"*?). This
allowed us to distinguish acid sites from other atoms.

A vector of fragment descriptors was concatenated with a
vector of descriptors characterizing the solvent and the
temperature. A set of 14 solvent descriptors including Catalan
constants SPP,** SA,** SB,*® Kamlet—Taft constants a,’ ﬂ,

7%, four functions of dielectric constant & (Born function
£-1 e—1

fB = and Kirkwood function fK Y, f S and

f2 = F+2), three functions of the refractive index n®
- o | Ko n—1 (n*—-1)(e—-1)

(gl =aer LT T (2n1+1)(2s+1)) were used.

Solvent parameters were taken from original literature sources
(SPP, SA, SB, a, f§, n*) or were calculated on the basis of
dielectric constants (fg, fx, f,, f2) and refractive indices (g;, g,
h). Since in some cases aqueous—organic mixtures were used
as solvents, the mole fraction of the organic solvent in the
mixture (for a pure solvent, 100%) was also used as descriptor.
Besides, the inverse temperature, 1/T, was also used. Such
reaction condition descriptions have shown good results in our
previous papers. e

3.3. Building and Validation of QSPR Models.
3.3.1. Descriptor Preparation. Molecular descriptors resulting
from the concatenation of structural and condition descriptors
were computed according to the procedure described in
section 3.2. Descriptors matrix X was prepared for all
molecules from the acidity constants data set, whereas X;
and X, matrices were prepared for the tautomers data set.
Notice that the matrices X, X, and X, have the same set of
descriptors in the columns. The number of rows in the matrix
X coincides with the number of compounds in the acidity data
set, whereas in the matrices X, and X,—with the number of
tautomeric equilibria in the tautomers data set.

3.3.2. Ridge Regression Modeling. Equation 7 was used to
identify optimal regression coefficients w in RR models.
Optimal hyperparameters a and 4 were found in a grid search
of possible combinations of a and 4. Two ways of varying a
were considered: (i) linearly from 0 to 1 with step 0.1 and (ii)

nonlinearly as @ = 1 — 0.1 X (%)” for n varying from 0 to 10

with step 1. The second approach was found particularly useful
to find the optimal value of a since it is often close to 1. The
following values of the regularization coeflicient A were used in
the grid search: 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1,
03, 1, 3, 10, 30, 100, 300.

The optimal values of the hyperparameters (a and 1)
corresponded to the maximal value of the coeflicient of
determination Q* (or, equivalently, the minimal value of the
root-mean-square error of prediction, RMSE) found in 10-fold
cross-validation procedure repeated S times after random
structures reshufflings (S X10 CV):
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3.3.3. Neural Network Modeling. The NN described in
section 2 was implemented using the PyTorch framework.”
The NN hyperparameters such as the number of neurons in
the hidden layer and the number of learning epochs were
optimized. The weights @ were updated using the Adam
optimizer.”” In one batch 64 tautomeric equilibrium reactions
and 216 acidity data were used. The batch size was selected in
a way that all tautomeric and acidity data is fed to the network
in one epoch. Feed-forward networks with one hidden layer
and 2" (n = 6 . .. 11) neurons in layer with the ReLU
activation function was considered. Our tests have shown that
the multilayer architecture does not provide any benefit to the
model performance. Based on cross-validation results, a
network containing one hidden layer with 512 neurons trained
on 300 epochs with a learning rate of 0.001 was selected.

It has been found that the value of L2 weight regularization
did not affect the accuracy of logK; and pKa predictions,
therefore this hyperparameter was not optimized and set to 0.
The coefficient a varied in the same range as in RR modeling.

The source code for RR and NN modeling is provided as
part of the Supporting Information.

3.3.4. Model Validation. Each individual (RR or NN)
models for logKy or pKa were validated in § X 10 CV both on
tautomers and acidity constants data sets. The hyper-
parameters leading to the minimum average RMSE of logKy
and pKa were selected. A model for one property (e.g., logKr)
was applied to predict both logK; and pKa in two different
data sets. The individual and conjugated model performances
in cross-validation are reported in Table 1, whereas an example
of logKy and pKa predictions for one selected tautomeric
equilibrium is given in Table 2.

Particular attention was paid to the prediction of acidity
constants of minor tautomers. Table 3 reports the results of the
application of individual and conjugated models to a subset of
18 tautomeric keto—enol equilibria.

Table 2. Predicted and Experimental Values of Tautomer
Equilibrium Constant and Tautomer Acidity”

”3°WCH3

—
S
o] [e] (o] OH
method  logK;  pKa(l)  pKa(2)
experiment —-021 993 971"
individual models (logKy) RR -027 0.66 0.39
NN -02§ 041 0.16
individual models (pKa) RR 093 1022 11.16
NN 0.83 1029 11.12
conjugated models RR —026 1026 10.00
NN -022 10.16 9.94

“Conditions: 100% dioxane, 25 °C. bExperimental value for pKa(2)
was calculated according to eq 1 based on measured acidity of ketone
form and tautomeric equilibrium constant.

4573

Table 3. Performance of the Models for Predicting the
Acidity Constant of Major (Ketone) and Minor (Enol)
Tautomers for a Subset of 18 Selected Keto-Enol Equilibria

model’s type method RMSE R
Tautomer 1 (Ketone)
individual (pKa) RR 094 0.75
NN 092 0.76
conjugated RR 0.97 0.74
NN 098 0.74
Tautomer 2 (Enol)
individual (pKa) RR 231 -033
NN 223 -0.28
conjugated RR 093 0.77
NN 095 0.78

Examples of prediction outliers are drawn in Table 4.
Performances of the models on external sets TEST1 and
TEST?2 are given in Table 5.

Table 4. Some of Outliers of the Conjugated NN Model

Predicted  Experimental

No Equilibrium logKs logKr Conditions
1 .
@/‘L« — @/& 3.02 83 o
2 & &
ANy — A 278 96 Lo
3 i w
= Acetone (100%),
" — 1 -4.28 1.28
4
@ — @ 141 4.69 #o,
. N : : 203K
s " 4
O — (Jj 881 Al ARy
6 - -
H,0 (100%),
@ - d 125 & 204K

4. RESULTS AND DISCUSSION

4.1. Individual and Conjugated QSPR Models.
4.1.1. Individual Models. Individual RR models for logKy
and pKa were obtained using eq 7 with @ = 1 and a = 0,
respectively. The models for pKa were also used to predict
tautomeric constants according to eq 1. Individual NN models
for these properties were built by minimizing the error
function (eq 10) with a = 1 (for individual logK; models) and
a = 0 (for individual pKa models).

Variation of regularization coefficient A from 0.0001 to 1 in
RR modeling did not change much the accuracy of logKy
prediction (Q* = 0.67). However, starting from 4 = 3 the
model performance started to decrease. The predictive
performance of the individual NN model for logKy is a bit
higher (Q* = 0.73).

The predictive performance of the RR individual model for
pKa (a = 0) increases with the regularization coefficient 4 and
reaches its maximum Q* = 0.88 at A = 3.0. The NN model for
pKa performed similarly (Q* = 0.89).

As one can see from Table 1, both RR and NN individual
models for predicting pKa (@ = 0) were not able to assess
logK correctly with the help of eq 1. The NN and RR models
trained on logKy data only (at @ = 1) can be used to predict
“pseudo-acidities” whose difference is logKy. However, as
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Figure 4. Comparison of the difference in direct prediction of the tautomeric equilibrium constant and its indirect computation based on eq 1
based on predictions made with individual RR (left) and NN (center) models, as well as by the conjugated model (right). The best individual and
conjugated models given in Table 1 are used here (& corresponds to the best conjugated model; see Table 1).

expected, their values do not generally correspond to the actual
values of acidity constants of tautomers (see Table 1).

4.1.2. Conjugated QSPR Models. When « varies from 0 to 1
(excluding the bounds), the models are built on both
tautomers and acidity constants data sets. Such models can
predict logK;y and pKa of the corresponding tautomers
simultaneously or acidity of any molecule. Hyperparameters
of conjugated models discussed below were optimized to
achieve the optimal performance of both properties (largest
sum of Q on logK; and pKa data). Conjugated models can
also be optimized to achieve the best performance on logKy or
pKa, but anyway, the performance of models obtained does
not exceed the one for individual models according to
statistical tests.

In cross-validation, both RR and NN models perform
similarly to individual models for logKy (applied to tautomeric
equilibrium constant predictions) and pKa (applied to acidity
constant predictions); see Table 1.

Results reported for cross-validation in Table 1 are in
agreement with logKy and pKa predictions for the selected
molecule (see Table 2). One may see that predictions of
tautomers acidity constants with the individual model for
logKr and, vice versa, predictions of logK; with the individual
model for pKa fail. On the other hand, conjugated models
predict both properties with reasonable accuracy.

Conjugated modeling represents a special case of multitask
learning when an exact equation uniting two modeled
properties is known. The link between properties predicted
with the conjugated model is assured by the model building
algorithm.

In order to illustrate this for the tautomers case, the
distributions of difference between predicted directly tauto-
meric equilibrium constant and that found as the difference of
acidities of two tautomeric forms AlogKf}"ed = logK%mi —
(pKa(2)" — (pKa(1)") were prepared for logKy and pKa
predicted with individual or conjugated models. One may see
that in the case of conjugated model AlogKh™! = 0 which
strictly follows eq 1; see Figure 4 (right). For logKy and pKa
predicted with individual models, AlogKi™ varies from —15 to
13, see Figure 4 (left and center). It means that eq 1 is not
respected when logK and pKa are modeled individually.

In general, individual pKa models predict acidity constants
of organic molecules with reasonable accuracy. However, pKa
prediction of minor tautomers is problematic because these
compounds are underrepresented in the acidity constants data
set. This is illustrated for a subset of 18 keto—enol equilibria

extracted from the tautomers data set. The pKa values for
major tautomers (pKa(1)) measured at the same experimental
conditions as logKy were extracted from the acidity constants
data set. Since experimental pKa values for minor tautomers
(pKa(2)) were not available, they were estimated from logK.
and pKa(1) using eq 1.

To estimate the ability to predict the acidity constant of
minor tautomers, we used the leave-one-out procedure in
which the model was built on the entire tautomers set
excluding one (out of 18) keto—enol equilibria.

One can see from the results presented in Table 3 that only
the conjugated models were able to predict accurately the
acidity constants of both, major (ketone) and minor (enol),
tautomers, while the individual models provided reasonably
accurate predictions only for the major tautomer.

Equilibria for which deviations of logK; values predicted
with the NN model from the experimental ones exceeded 3
RMSE were considered as outliers; six of them are given in
Table 4 and discussed below. They could be interpreted by
either erroneous experimental data used in the model building
or specificity of particular equilibria. Thus, logKy values for
equilibria 1 and 2 are pretty large. When such examples are
included in a test set at a given cross-validation fold, their
equilibrium constants are outside of the logKy range for the
corresponding training set. This may lead to big errors because
of data extrapolation. Notice 1 and 2 were also detected as
outliers in our previous study” in which the same tautomers
data set was used. Reactions 3 and 4 represent the same
equilibrium with permuted reactant and product. If reaction
conditions are similar, equilibrium constants of forward and
backward reactions (by absolute value) must also be similar
and have opposite sign. A drastic difference in absolute values
of experimental logKy (1.28 for 3 and 4.68 for 4) seems to be
erroneous and can hardly be explained by solvent and
temperature effects. For conjugated model, based on eq 1,
logK for forward and backward reactions are predicted with
different signs and thus equilibrium constants for reaction 3
and 4 are predicted with large errors. Drastic difference
between experimental equilibrium constant of reactions 5 and
6 is likely to be erroneous too.

4.2. External Validation. The performance of the
conjugated model to predict logK; was assessed on two
external test sets TEST1 and TEST2 described in section 3.1.
It was revealed by the fragment control applicability domain*’
that 13 out of 21 instances in TEST2 included new structural
moieties absent in training set. Such molecules are potentially
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subjected to large extrapolation errors and were excluded from
consideration as out of the model's applicability domain.
TEST1 molecules cannot be outside of the fragment control
applicability domain since the data set included only those
tautomers pairs that exist in the training set.

As one may see from Table 5, reasonable RMSE values in
the range of 0.82—0.89 were obtained for both sets. They are

Table 5. Validation of Conjugated Models for logK; on 17
Equilibria from the TEST1 Set and 8 Equilibria from the
TEST2 Set Retained by the Models” Applicability Domains

method RMSE
TEST1
RR 0.89
NN 0.82
TEST2
RR 0.85
NN 0.84

also similar to RMSE values (0.92 for RR and 0.88 for NN)
obtained for the conjugated model in cross-validation, see
Table 1. Despite this, we cannot directly compare these results
with paper™ since data sets are different (ring—chain
tautomers were excluded, and the fragment control applic-
ability domain was not applied in ref 22), but results of external
validation are similar to corresponding values in it (0.66 for
TEST1 and 1.63 for TEST2).

5. CONCLUSIONS

In this paper, we introduce the concept of conjugated QSPR
models for the simultaneous prediction of several mutually
related properties. Mathematical relations between property
values are ensured by specially constructed machine learning
algorithms. Here, conjugated RR and NN models were built
for the prototropic tautomeric equilibrium constant (logK;)
and acidity constant (pKa) related by eq 1. For this purpose,
we have derived an analytical expression for calculating
regression coefficients in the RR and developed a special
architecture of NN strictly accounting for eq 1.

The predictive performance of conjugated models was
compared with that of individual models for logKy and pKa
built independently using classical QSPR workflow. It has been
demonstrated that individual models for pKa are not able to
predict accurately logKy using eq 1. Moreover, individual
models for pKa fail to predict acidity values for minor
tautomers because of the lack of experimental data for the
models training. This problem can also be solved with the help
of the conjugated models in which eq 1 is strictly respected,
and hence, accurate predictions of logK; and pKa for the
major tautomer leads to a good prediction of acidity of the
minor tautomer as well.
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Conclusion

In this study, a tautomeric equation relating the tautomeric equilibrium constant and the acidity of
the corresponding tautomers was integrated with ridge regression and neural network algorithms.
Three main approaches for predicting the tautomeric constant were compared: the individual
model, the equation-based model, and the conjugated model. The individual logK; the model
predicts the tautomeric constant more accurately than the equation-based model, which calculates
the tautomeric constant based on the predicted acidities of tautomers and the tautomeric equation.
The reason for the poor performance of the equation-based model is that the pKa predictions of
minor tautomers (e.g., enols) have a high prediction error since they are not represented in the
training set. However, the conjugated model accurately predicts the acidity of the minor forms
and, consequently, the tautomeric constant.

Conjugated models can be built using ridge regression and neural network algorithms. The
current architecture of the conjugated ridge regression ignores the conditions (solvent, tempera-
ture) of tautomerism reactions, which decreases the predictions accuracy of logKy. On the con-
trary, the conjugated model based on neural networks takes into account these conditions, which
leads to slightly higher accuracy in predicting logKy. In addition, in the case of large datasets,
matrix calculations in ridge regression can be significantly slower, as well as require more memory
resources. In this case, neural networks can be trained on batches of data, which makes it possible

to use them to build conjugated models on large datasets.
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3.3 Modeling of Arrhenius equation parameters

Introduction

A chemical reaction can be quantitatively described by such kinetic characteristics as the rate con-
stant (logk), the pre-exponential factor (logA), and activation energy (E,). Their knowledge is of
particular importance because the distribution of reactants and product concentration at any mo-
ment can be calculated based on known kinetics. QSPR modeling of chemical reactions has made
significant progress in recent years [172—174]. QSPR methodology employs machine learning al-
gorithms to the data on reaction characteristics measured in the experiment to predict the same
characteristics for new reactions. Many approaches were proposed for reaction rate calculation.
Usually, quantum chemistry approaches are used for the search for elementary reaction mecha-
nisms and estimate reaction barriers and rates [ 175—177]. Computationally efficient machine learn-
ing potentials were shown to be a valuable alternative to quantum chemistry in the estimation of
local minima and transition states energy [178]. Machine learning is currently widely used to pre-
dict reaction rate constants based on structural features of reactants and products represented by a
set of chemical descriptors [179]. Thus approach may be dated back to early studies based on the
Linear Free Energy Principle [180] and the application of substituent constants as descriptors
[181]. It has also been shown that quantum chemical descriptors are a good alternative to structural
descriptors [182].

In our previous publications, we reported predictive models for the rate constants of Sn2
[183,184] and E2 [185,186] reactions. There are also examples of machine learning applications
for predicting the activation energies of reactions. Singh et al. applied popular machine learning
algorithms to predict the activation barriers of hydrogenation/dehydrogenation reactions [187].
Gambow and coworkers developed a deep graph convolutional neural network trained on the ac-
tivation barriers of gas-phase reactions obtained with quantum-chemical calculations [175,188].
Jorner et al. proposed an approach that combines traditional DFT transition state modeling and
machine learning [182] and trained the model using different machine learning algorithms to ac-
curately predict the reaction barriers of the nucleophilic aromatic substitution reaction (SnAr).

Previously, the temperature dependence of the reaction rate was mostly modeled by adding
the temperature to the set of structural descriptors [186]. In this case, the dependence of the rate
constant (logk) on the temperature known to be expressed by the Arrhenius equation (1) that re-
lates reaction rate with the temperature and two other parameters that are assumed to be tempera-
ture independent: the pre-exponential factor (4), and activation energy (E,) was assumed to be

learnt by the machine learning model.
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In our previous study [166] we reported SVR (Support Vector Regression) and GTM (Gen-
erative Topographic Mapping) modeling of logk, logA and E, of cycloaddition reactions. Two
scenarios for logk assessment was examined. In the first scenario, the SVR algorithm learns to
predict logk directly from descriptors. In the second scenario, two independent individual models
are built: (i) for predicting the logA and (ii) for predicting the E4, which were used to calculate
logk using the Arrhenius equation:

Ey
2.303RT

logk = logA — (16)
We observed that the predicted values of logk calculated using the Arrhenius equation (Arrhenius-
based model) were less accurate in comparison to the individual model built using the experi-
mental values of logk.

Models with embedded thermodynamic and kinetic laws were called conjugated QSPR mod-
els and were proposed in our previous paper [165]. In a follow-up study, we proposed a machine
learning model that combines ridge regression and a neural network with an equation that relates
tautomer acidities with their equilibrium constants. The predictive performance of such conjugated
models was shown to be as good as for the individual ones, while the former had some additional
benefits like a good prediction of acidities for minor tautomers. Motivated by the above project,
here we demonstrate that the Arrhenius equation can be embedded into the ridge regression and

neural network algorithms for building QSPR models.

.apred / \ / FAszN
loghk?me? = logAPTed — il logkPred = logAPTed — ———
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Figure 23. Approaches to modeling kinetic characteristics related by Arrhenius equation. In ordinary single-task
learning (I) each characteristic is modeled independently. Multi-task learning (II) performs simultaneous prediction
of all three characteristics, whereas conjugated learning (IIT) embeds the strict mathematical relationship relating the

kinetics characteristics (Arrhenius equation) into the machine learning algorithm.
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We used the dataset from our previous study [166] to build individual (single-task), equa-
tion-based (Arrhenius-based), multi-task, and conjugated models for predicting logk, logA and E,4
of cycloaddition reactions. /ndividual models were built independently for each kinetic character-
istic (Figure 23, I). The Arrhenius-based model uses the Arrhenius equation to calculate the logk
with logA and E4 predicted by individual models (Figure 23, I). The multi-task approach (Figure
23, II) uses all available data across the different reaction characteristics and models them cooper-
atively in contrast to single-task learning. Multi-task learning can improve the prediction accuracy
of modeled characteristics when tasks correlate or share some information. Conjugated learning
(Figure 23, III) uses all available data on multiple tasks, but, in contrast to the multi-task approach,
explicitly embeds a mathematical equation (in this study it is the Arrhenius equation) relating the
tasks to the machine learning algorithm. This approach ensures that the predicted reaction charac-
teristics satisfy the fundamental chemical laws and empowers the conjugated QSPR models with

new capabilities.

Design of conjugated learning algorithms

Ridge regression individual models

Ridge regression (RR) is a popular machine learning algorithm that was extensively used in prac-
tice [189]. In ridge regression, the prediction of reaction characteristic y? ¢ is performed by mul-

tiplying the reaction descriptors X’ by the vector of regression coefficients w:
yPred = X'w (17)
The regression coefficients w can be calculated using the following expression:
w=XTX + A" 1XTyerp (18)
where x is the descriptor matrix of training reactions associated with experimental values ye*» of
the target characteristic. Hyperparameter 1 is a regularization coefficient controlling the complex-
ity of the model. We used ridge regression to independently build three individual models for

predicting the logk, logA and E, of cycloaddition reactions. The regularization coefficient was

adjusted using the grid search technique.
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Ridge regression conjugated models

In conjugated models, fundamental chemical laws are integrated with machine learning algo-
rithms. In this study, we consider the Arrhenius equation, which can be embedded into the ridge
regression algorithm. Let us consider an equation-based (Arrhenius-based) model, where the rate

constant y?** is calculated using the Arrhenius equation applied to the values of logA and E,

predicted by individual QSPR models:

= y}{)red = XKWA - TXKWE (19)

logk = logA Ea
08K = 1084 = 5 303RT

where T is the diagonal matrix with the elements that are calculated as:

1

2.303RT, (20)

and T; is the temperature of the i-th reaction. On the other hand, if experimental data on logk are
available, the Arrhenius equation can be integrated with ridge regression using a special quadratic

loss function:

2
Exwawg) = [y = y2” = |y = Xew, + TXws 1)

In the case of Ex (w4, wg), there are two sets of regression coefficients, w, (for predicting logA)
and w;, (for predicting E4), which can be optimized to predict the logk. To enable correct prediction
of logA and the E,, loss function Ex(w,,w;) can be combined with individual quadratic loss func-

tions for the logA and E, and regularization terms:

2
Eswa) = 757 = 7" = lye® = Xawal| + 2aww, (22)

exp

2
Exwg) = [y = y2" = |ly&® = Xewi || + Aewfw (23)

resulting in a conjugated model loss function:

E(wy, wg) = cxEx(Wa, wi) + caEs(Wy) + cgEg(Wp)+ Lwiw, + Azwiwg (24)
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where ¢, ¢4, c; are trade-off coefficients that control the contribution of each type of the loss func-
tion to conjugated loss E(w,,wg), 4, and 1, are regularization coefficients. After differentiation of
the loss function E(w,, wg), the optimal regression weights w, and w; can be calculated using the
following analytical expressions:

w, = (I — BD)™*(4 + BC) (25)

wg = (I — DB)™'(C + DA) (26)
where matrices 4,B, ¢, D are obtained as follows:

A = (e XX + caXiXy + D)7 (cx Xy + caXiya)
B = (cxXEXy + caXI X, + 2D (e XET X))
C = (cxXgT'TXg + cgXg Xp + ApD) ™ (ceXgye — cx Xk TYx)
D = (cxXFTTTXy + cpXTXp + Az~ (cxk XTTXy)

27)

As a result, regression coefficients w, and w; in the conjugated model are estimated using the

training sets of logk (xx), logA (x,) and E4 (x;) data.

Neural network individual, multi-task and conjugated models

Individual, multi-task, and conjugated models can be built using neural networks (NN). In indi-
vidual models, each characteristic is modeled independently using a standard multilayer neural
network with one or more hidden layers and one output neuron (Figure 24a). Multi-task models
can be built using a neural network with three output neurons, each predicting one of the kinetic

characteristics (Figure 24b). Such neural network can be trained using the multi-task loss:
Multi-task loss = cx(logk®™ — logkP™*®)? + c,(logA®*® — logAP™®?)? + cp(ESTF — E"l’”"d)2 (28)

where ¢, c,, ¢ are coefficients that control the contribution of each type of error to the multi-task
loss.

The conjugated models can be built using the neural networks shown in Figure 24c. This
neural network has two output neurons. The first output neuron predicts logA and the second one
predicts E4 (Figure 24c). The predicted values of logA and E, are then used to calculate the pre-
diction of logk using the Arrhenius equation. Finally, the obtained predicted values of logk, logA

and E, are used to calculate the conjugated loss:

pred

) _ exp _ pred _ "4
Conjugated loss = cx <lvgk <l"g‘4 2.303RT

)) + c,(logA®*® — logAP™e?)? + ¢, (ESF — Eg”’d)2 (29)
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Individual, multi-task, and conjugated NN models discussed hereafter had one hidden layer
with 256 neurons. Neural network weights were optimized using a gradient descent algorithm at a
learning rate of 0.001. The complexity of the individual and conjugated NN models was controlled
by the weight decay parameter (L2 regularization), which took values from 10 to 10!. Neural

networks were implemented using the PyTorch package [167].

logkPred
A
" red ed d d
logkpred | !og:Ap’ o4 /EETe loykf* logarre ‘EEW
d ed
loyArH’e E(]:r
Individual model Multi-task model Conjugated model
(a) (b) (c)

Figure 24. Neural network architectures for building an individual (a), multi-task (b), and conjugated (c) model for

prediction of the kinetic characteristics related by the Arrhenius equation.

Computational details

Data

The data on cycloaddition reactions were taken from our previous paper [166]. The dataset in-
cludes 1849 reactions with 1849 experimental values of logk, 1236 experimental values of logA,
and 1350 experimental values of E, (kJ/mol). The rate constants logk were measured in different
solvents and at different temperatures T. The dataset contains Diels-Alder (4+2) cycloaddition,
(3+2) dipolar cyclization, and (2+2) cycloadditions. Within the 1849 reactions, there are 763
unique structural transformations (Table 3).

The dataset was divided into training and test sets (in the proportion of 90/10) so that the test
set contained structural transformations which did not occur in the training set (Table 3). As a
result, the test set contained 73 unique structural transformations that were not represented in the
training set, which consisted of 690 unique structural transformations (Table 3). The training set
was used to build the individual, Arrhenius-based, multi-task, and conjugated models, while the
test set was used to evaluate the predictive performance of the models.

Table 3. Description of the training and test set on cycloaddition reactions.

. # unique structural # kinetic characteristics
# reactions .
transformations logk logA E,
Training set 1478 690 1478 1008 1120
Test set 371 73 371 228 230
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Descriptors

Each cycloaddition reaction was transformed into the corresponding Condensed Graph of Reaction
(CGR) (Figure 25) [153] generated using the CGRtools package [152]. A CGR is derived from the
superposition of products and reactants and contains both conventional chemical bonds (single,
double, triple, aromatic, etc.) and so-called “dynamic” bonds describing chemical transformations,

1.e., breaking or forming a bond or changing bond order.

Ha CHy HC CHy Mo CHs
9"‘- M i )X\ : }L-
O3+ L — O = O~
~N CHy }' N
Cycloaddition reaction Condensed Graph of Reaction

Figure 25. A cycloaddition reaction from the dataset and the corresponding CGR describing the structural transfor-

mation. The formed bonds are denoted with a circle, while the broken ones are crossed.

All generated CGRs were processed using the ISIDA tool [161,162] to calculate fragment de-
scriptors by counting the occurrence of particular subgraphs (structural fragments) of different
topologies and sizes. We tested different types of fragment descriptors and selected atom-centered
descriptors with a radius from 2 to 5. The total number of fragment descriptors was 3733. The
vector of fragment descriptors for each reaction was concatenated with the vector of solvent de-
scriptors, which included 14 descriptors describing such properties of solvent as polarity, polar-
izability, Catalan constants SPP, SA, SB, Kamlet-Taft constants a, B, m*, dielectric constants, func-
tion of the refractive index. These descriptors were successfully applied in our previous publica-
tions [163—166].

To build individual and multi-task models, the fragment/solvent descriptor matrices were
concatenated with the temperature descriptor. In conjugated models, only fragment and solvent
descriptors were used as reaction descriptors, while reaction temperatures were included in the
model using the Arrhenius equation. The calculated descriptors constituted three matrices: Xg, X,
and X; , where the number of rows in each matrix corresponds to the number of experimental

values of logk, logA and E4 for cycloaddition reactions (Table 3).

Model building

The best models were selected with the coefficient of determination (R?) calculated using the 5-
fold transformation-out cross-validation procedure [190] implemented in the in-house CIMtools
package (https://github.com/cimm-kzn/CIMtools). Transformation-out cross-validation prepares
test folds that include structural transformations that are not presented in training folds. This cross-
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validation strategy provides an unbiased estimation of the predictive performance of the models
for novel types of structural transformations.

Building ridge regression models. /ndividual and conjugated RR models were imple-
mented using PyTorch tensors [167], which enabled the training of RR models on both CPU and
GPU. Individual RR models have hyperparameter 1, the regularization coefficient, which controls
the model complexity. For individual models, we tested values of 2 between 1071 to 10° and found
the optimal value using the grid search technique.

Conjugated RR models have hyperparameters c, c, and ¢; that balance the prediction error
of the logk, logA and E4 characteristics. The other two hyperparameters of the conjugated model
are the regularization coefficients 1, and 4, (Figure 26). To optimize the hyperparameters of the
RR conjugated models, we used the hyperopt package [158], which applies advanced optimization
algorithms to navigate in the hyperparameters space. The values of coefficients c, ¢, and c; were
sampled from a continuous space defined between 0 to 1, while the regularization coefficients A,
and 1, took discrete values between 107'° to 10° (Figure 26). The hyperopt algorithm adjusts the
hyperparameters by maximizing the value of the objective function which was calculated as an
average prediction accuracy of all characteristics: [R%(logk) + R%(logA) + R*(E,)]/ 3. The hyperopt
algorithm takes the average accuracy and proposes the next combination of possible optimal hy-
perparameters (Figure 26).

| Sampling

I —

Continuous space H — ¢,

0 1 Conjugated
CE Ridge

Regression

10-10 10°
EEEEEEEEE — }
10-10 5 ’

Discrete space 10
EEEEEEEERN —_— iﬁ

HYPEROPT

Figure 26. The workflow for optimization of hyperparameters of ridge regression conjugated models using hyperopt
package. The trade-off coefficients were sampled from continuous space defined between 0 to 1. The regularization
coefficients 4, and Az took values from discrete 107'° to 103. Conjugated models were built with sampled hyperpa-

rameters and evaluated using internal 5-fold cross-validation.

Building neural network models. Individual, multi-task, and conjugated NN models were
built with the architectures depicted in Figure 24. In NN multi-task and conjugated models, the
coefficients ¢, c,, and ¢, were automatically adjusted together with other neural network weights
using the gradient descent algorithm. This means that the trade-off coefficients are learned directly
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from the training set, rather than being fixed as hyperparameters before model training as in RR
conjugated models. This approach to optimization of the trade-ff coefficients in the NN mul/ti-
task and conjugated models significantly reduces the computational resources required for model

training and hyperparameters optimization.

Results and discussion

Comparison of individual, Arrhenius-based, multi-task, and conjugated models

This section reports the results of the performance comparison of individual, Arrhenius-based,
multi-task, and conjugated models. The prediction accuracy of the models on the external test set
is presented in Table 4. For clarity, we discuss NN models only, whereas the results obtained for
RR models are available in Table 2 and share similar trends. We tested two single-task approaches
for the prediction of logk: (1) direct modeling of logk, when the individual model was built on
experimental data on logk and (2) Arrhenius-based model when first individual models for pre-
dicting the logA and E4 were built and then used to calculate the prediction of logk with the Ar-
rhenius equation. The results demonstrate (Table 4) that the direct predictions of logk by the indi-
vidual model are more accurate (R?1est = 0.76) than those calculated with the Arrhenius equation
in the Arrhenius-based model (R?1est = 0.35). The prediction accuracy of the conjugated model

(R*1est = 0.71) is close to the individual (R*1est = 0.76) and multi-task model (R?rest = 0.76).

Table 4. Predictive performance of individual, Arrhenius-based, multi-task, and conjugated models. RR — Ridge
Regression models and NN — Neural Network models.

R? (Test set)

Model Training set Method
logk logA E,
RR 0.78 - -
Individual model logk
NN 0.76 - -
RR - 0.46 -
Individual model logA
NN - 0.56 -
RR - - 0.91
Individual model E,
NN - - 0.90
) RR 0.27 - -
Arrhenius-based model log4, E,
NN 0.35 - -
Multi-task model logk, logA4, E, NN 0.76 0.48 0.83
RR 0.75 0.57 0.90
Conjugated model logk, logA, E,
NN 0.71 0.56 0.84
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Individual and Arrhenius-based models often disagree and provide significantly different
predictions of logk for the same reaction. The assessment of this difference in logk predictions is
illustrated in Figure 27. For demonstration, logk of each reaction in the test set was predicted by
both the individual model and the Arrhenius-based model, while the difference between the pre-

dicted values was calculated as:

pred

pred _— pred __ pred __ a 30
Alogk logk (logA 53037 (30)

The conjugated model predicts logk, logA and E, with similar accuracy as the individual
models, while the predictions exactly follow the Arrhenius equation (Figure 27b), which is em-

bedded into the conjugated learning algorithm. This feature of conjugated models is important

because it bridges QSPR models with fundamental chemical laws.
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Figure 27. The difference between the logk values predicted directly and with the Arrhenius-based model according

to eq. 15. Two scenarios are considered: predicted values obtained with the individual (a) and conjugated (b) models.

Table 4 demonstrates that the RR and NN conjugated models have similar accuracy. Ridge
regression models are easy to build since the optimal regression weights are calculated using ana-
lytical expressions. However, more sophisticated optimization of the hyperparameters (trade-off
and regularization coefficients) may require a lot of time. On the other hand, the single NN model
trains slower than the RR model, but the trade-off coefficients (ck, ¢, and ¢;) in the NN model are
optimized automatically during model training, which reduces the number of optimized hyperpa-
rameters. In addition, the current implementation of RR conjugated models requires a lot of com-
putational resources in the case of large training sets (large sizes of descriptor matrices), while NN

models can be trained on large datasets divided into smaller training batches.
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Building models with limited data

As follows from Table 4, individual, multi-task, and conjugated models perform similarly if a
training set is big enough. We hypothesized that in multi-task and conjugated models, abundant
data for one modeled characteristic (e.g. logk) can compensate for the lack of training data for
another characteristic (e.g. logA or E,). In contrast to the standard case, we simulated a scenario
in which the training sets for the logA or E, characteristics were significantly reduced and tested
the performance of the models under these conditions. We used the same test set of 371 reactions
for the model evaluation (Table 4) but varied the size of the training set. For the sake of clarity,

only results for NN models are reported.
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Figure 28. Predictive performance of an individual, multi-task, and conjugated neural network models on test set

reactions at different sizes logA (a) and E, (b) training sets.

The initial training set contained 1480 experimental values of logk, 1008 values of logA
and 1120 values of E,. We gradually reduced the number of logA and E, training data and evalu-
ated the resulting models on the test set. For this purpose, we randomly selected and removed N%
(N =90, 80, 70, 60, 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) of training reactions associated
with logA and E, from the initial training set and used reduced training sets to build individual
Fina(logATe®cedy and Fpq (E,"°**°°*) models. The same reduced training sets on logA and Ej, as well
as all available training data for logk, were used to build the multi-task Fy;(logk, logAre®uced,
E,"*%*?y and conjugated Feonj(logk, logATe®uced, g e?ucedy model. The models built on the reduced
training sets were then used to predict the logA and E, for reactions from the test set.

To alleviate the effect of random reduction of the training sets, the above procedure was
repeated 20 times, followed by the averaging of related R? values. Figure 28 reports the average
R? on the test set at different sizes of the training set of logare®uced and Ejedueed. For logA models
built on small training sets, conjugated learning has no advantages over single and multi-task

learning. The performance of all models gradually decreases as the logA and E, training sets were
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reduced until the models lose their predictive power at extremely small training sets < 6% (< 70
training reactions). Notice that conjugated models are more stable toward data shrinkage than other
approaches.

Similar behavior is observed in modeling E, on reduced training sets. When the size of the
training set is large (e.g. 1120 training reactions with known E,, Figure 28b), the individual
Fina(Ea"%¢) (R%1est = 0.90) and multi-task model Fy;(logk, logAreduced, g reducedy (R2rey = (.83)
demonstrate the accuracy comparable with the conjugated model F,,;(logk, logATeduced, g reduced)
(R%1est = 0.84). However, for significantly reduced E, training set (11 training reactions corre-
sponding to 1% of the initial set), the conjugated models were still predictive (R%rest = 0.33),
whereas the individual (R*1est = -0.60) and multi-task (R*test =-0.30) models failed.

Thus, conjugated models can correctly predict a target characteristic of reactions even for a
few training instances if data on another characteristic related to the target characteristic by a strict

mathematical relationship is available.

Modeling the temperature dependence of the reaction rate constant

The dependence of the reaction rate constant on temperature is described by the Arrhenius equa-
tion. In the conjugated model, the Arrhenius equation is directly embedded into the machine learn-
ing algorithm (ridge regression or neural network). In the Arrhenius-based model, the logk is cal-
culated using individual logA and E, predictions and Arrhenius equation.

In building individual and multi-task models, the reaction temperature is a descriptor along
with fragment and solvent descriptors. Therefore, the individual and multi-task model can only
capture the statistical relationship between logk and temperature. In this context, we were inter-
ested to examine the models’ performance as a function of reaction temperature. For this purpose,
we generated a new temperature test set. The initial test set (Table 3) contained 1 reaction in 1,4-
dioxane, 3 reactions in chlorobenzene, 4 reactions in benzene, and 53 reactions in toluene (a total
of 61 reactions) for which logA and E, were experimentally determined. We used the experimental
logA and E4 values of these 61 reactions to calculate new logk using the Arrhenius equation at
hypothetical temperatures, which significantly deviates from the temperature range of the training
set. For example, for each cycloaddition reaction in toluene, the logk was calculated for a list of
temperatures that start with the freezing temperature of toluene, change in increments of 5K, and
end with the boiling temperature of toluene. Thus, for each cycloaddition reaction in toluene, logk
were calculated at 42 hypothetical temperatures (from freezing to the boiling point of toluene).
The same procedure was repeated for reactions in 1,4-dioxane (18 hypothetical temperatures),

chlorobenzene (36 hypothetical temperatures), and benzene (15 hypothetical temperatures). As a
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result, the temperature test set consisted of 61 reactions associated with 2412 logk values calcu-
lated from the Arrhenius equation for hypothetical temperatures; all remaining reactions with ex-
perimental temperatures were included in the training set.

The lists of hypothetical temperatures were used in the logk predictions by the NN models.
In the conjugated and Arrhenius-based models, the hypothetical temperatures were directly used
in predicting the logk, while in the individual and multi-task models, these temperatures were used
as a descriptor. Then, predicted with each model logk values were compared with logk for hypo-
thetical temperatures. As a result, the conjugated and Arrhenius-based models had similar perfor-
mance with mean RMSE of logk predictions of 0.24 and 0.29, respectively. However, the individ-
ual and multi-task models demonstrated errors (0.56 and 0.57, respectively) of logk predictions

almost twice as high as the conjugated model.
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Figure 29. Calculated with experimental Arrhenius equation and predicted logk with individual and conjugated mod-

els for the cycloaddition reaction at different hypothetical temperatures in toluene.

To take a closer look at the reasons for this behavior of the models we extracted one of the
test cycloaddition reactions in toluene, for which we plotted the logk predicted at hypothetical
temperatures by the individual and the conjugated models (Figure 29). We can see (Figure 29) that
both models perfectly predict the rate constant at temperatures inside the training temperature
range (for all reactions in all solvents). However, in the range beyond the training temperatures,
the logk predicted by the individual model significantly deviate from the experimental ones, while
the conjugated model predicts the logk accurately, even at extremely low temperatures close to
the freezing point of the solvent. This can be explained by the fact that the individual model
accounts for only the statistical relationship between the reaction rate constant and the temperature
descriptor, whereas the conjugated model includes the true relationship in the form of the

Arrhenius equation.
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Conclusion

In this study, the concept of conjugated learning was applied to model kinetic characteristics re-
lated by the Arrhenius equation: rate constant logk, pre-exponential factor log4, and activation
energy E, of cycloaddition reactions. In conjugated QSPR models, the Arrhenius equation was
embedded into ridge regression and neural network machine learning algorithms. The conjugated
models were compared with individual (single-task) models that were trained independently for
each characteristic and multi-task model, where the kinetic characteristics were modeled cooper-
atively. An equation-based (Arrhenius-based) model was also considered in which the rate con-
stant logk is calculated using the Arrhenius equation and predicted by individual models logA and
E,.

It was observed that the individual logk model is more accurate in predicting the rate con-
stant than the Arrhenius-based model, which calculates logk using the Arrhenius equation. The
predictions of the logk of individual and Arrhenius-based models often disagree, which demon-
strates that the standard QSPR models do not always obey the fundamental chemical laws. How-
ever, the conjugated model predicts logk, logA and E, with similar accuracy to the individual
models, but the predicted characteristics exactly comply with the Arrhenius equation. Furthermore,
the conjugated models are more accurate in predicting logk at the wide range of reaction temper-
atures. In the individual model, the temperature is treated as a descriptor, whereas in the conjugated
models the exact relationship between the rate constant and the temperature is embedded into the
model in the form of the Arrhenius equation. To validate the models in new scenarios, a new
temperature test set was generated which included logk values associated with “virtual” tempera-
tures significantly deviating from the temperature range of the training set. It was demonstrated
that the individual model cannot correctly predict the values of logk at temperatures that are sig-
nificantly different from the training data, while the conjugated model correctly predicts logk even

for the temperatures close to the freezing and boiling points of the solvent.
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3.4 Modeling of selectivity constant of competing reactions

Introduction

The ratio of products log(E2/Sy2) (selectivity constant) of competing for E2/Sy2 reactions can

be estimated as the difference between the rate constants of the corresponding reactions:
log(E2/Sy2) = logkg, — logks,» 3D

This equation can be used to calculate the prediction of the selectivity constant using the logkg,
and logks, , values predicted by the individual models. On the other hand, in conjugated learning,
this equation can be directly integrated with a machine learning algorithm, which allows all three
characteristics to be predicted simultaneously.

Conjugated model building. Conjugated models can be built based on ridge regression
algorithms and neural networks.

1) Integrate the equation of the main characteristic (logk) by constructing an equation-

based loss function E¥.

Individual logk model:
F) = e =8I = e - xewl| (32)
Equation-based logk model:
log(E2/Sy2) = logkg, — logks,, = yp'* = Xyewg — Xxws (33)
Ecwi,ws) = [y = y2 " = [lye™ = Xiws + Xiws|| (34)

2) Combine equation-based loss function E with individual loss functions of related char-
acteristics (logkg, and logks, ) and regularization terms of model complexity.

Individual logkg, model:

exp

2 2
Exwe) = [y — 32" = [lye - Xew | (35)

Individual logks, , model:

137



2 2
Es(ws) = Iy = y&™ " = [lys™® — Xows]| (36)
Conjugated model:

E (wg,ws) = aEg + bEp + cEs + Agllwgll* + Asllws|? (37)
where a, b, ¢ are coefficients that control the contribution of each type of loss function into conju-
gated loss E (wg, wg) and 2 and A are the regularization coefficients.

3) Then derivatives wrt to weights wg, wg were calculated and were set equal to 0 in the

extremum point. After some mathematical operations one has:

wg = (I — BD)"'(A + BC)

(38)
ws = (I — DB)"Y(C + DA)
where matrices 4, B, C, D can be obtained as follows:
A = (aXIXp + bXIXg + 2D (bXEye + aXEyy)

C = (aXIXg+ cXIXs + A7 (cXTys — aXIyy)
D = (aXTXg + cXTXg + A1) aXT Xy

Optimal regression weights wy and wg (parameters) can also be found by the gradient de-
scent method. Also, conjugated models can be built using special neural networks with conjugated

loss functions (Figure 30).

logkpred
logk? ¢ /logk?;* logkZTs?
I logk}’__f;m Iogkg;;d
Individual model Conjugated model

(a) (c)

Figure 30. The general architecture of neural networks for building (a) individual and (b) conjugated models for

predicting the selectivity constant of competing for E2 /Sy 2 reactions.
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Conjugated ridge regression models can be built quickly by calculating optimal weights
using matrix equations (38) and (39). However, in the case of large datasets, the standard imple-
mentation of conjugated ridge regression can be expensive on memory resources due to the large
matrices in equations (39). In this case, conjugated neural networks can be trained on batches of
data using gradient descent. Contrary to linear ridge regression, neural networks can capture the

nonlinear relationship between reaction descriptors and rate constant.

Model building

Data. There were two types of data to build individual, equation-based, and conjugated models:
(i) competing reactions E2 and Sy 2 (489 reactions) with known reaction rates logkg, and logks, ,
and selectivity constants log(E2/Sy2) for these reactions and (ii) reactions E2 (1275 reactions)
with known logkg, (and unknown Igks, ») and reactions Sy 2 (4830 reactions) with known logks, »
(and unknown logk,). In the second type of data the selectivity constant of the competing E2 and
Sy 2 reactions are unknown. A dataset of 489 reactions with known logkg, was randomly divided
into a training and test set in the proportion of 90/10. The second type of data (1275 E2 reactions
and 4830 Sy 2 reactions) were included in the training set.

Descriptors. Each E2 and Sy 2 reaction was converted into a condensed graph of the reac-
tion, which was encoded with ISIDA fragment descriptors. The total number of descriptors was
1922.

Model optimization. Individual, equation-based and conjugated models were imple-
mented using the PyTorch package, in which matrix operations can be executed using CPUs and
GPUs. Regularization and contribution coefficients a, b, ¢ were optimized using the in-house im-

plementation of the genetic algorithm.

Results and discussion
Three types of models for predicting the selectivity constant were compared: the individual model,
the Equation-based model, and the conjugated model. The performance of the models is reported
in Table 5. The development of neural networks for building conjugated models is part of future
research.

The logkg, the individual model demonstrated moderate performance (R2rest = 0.37, Figure
31a), while the accuracy of logkg, , individual model was unnaceptable (R%rest = -0.11, Figure
32a). Due to the low accuracy of the individual models for logkg, and logks, -, the values of the

selectivity constant log(E2/Sy2) calculated from equation (31) in the equation-based model were
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also inaccurate (R7est = -0.93). In contrast to equation-based models, an individual model built

directly on experimental data on log(E2/Sy2) provides very accurate predictions (R%rest = 0.89).

Table 5. Performance (R?1ey) of the individual, equation-based and conjugated models on 49 test reactions.

Approach Training data E2 Sn2 log(E2/Sy2)
Individual model logkp, 0.37 - -
Individual model logks,» - -0.11 -
Individual model log(E2/Sy2) - - 0.89
Equation-based model logkg, , logks, > 0.37 -0.11 -0.93
Conjugated model logkp,, Igks, 2, log(E2/Sy2) 0.60 0.31 0.72
Individual model Conjugated model
0.00 0.00
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Figure 31. Experimental and predicted values of the rate constant logky, for 49 test reactions.

The conjugated model built on the data on logkp,, logks, » and log(E2/Sy2) significantly
improved the accuracy of predictions of logkg, and logks, , in comparison with individual models
(R27est = 0.37 vs. 0.60 and R?rest = -0.11 vs. 0.31) (Figure 31 and Figure 32). However, the predic-
tion accuracy of the log(E2/Sy2) of the conjugated model is lower than that of the individual
model (R%rest = 0.72 vs. 0.89). For clarity, the experimental and predicted by the individual and
conjugated model selectivity constants log(E2 /Sy 2) were converted to E2 reaction yield and plot-
ted in Figure 33.

Thus, the conjugated ridge regression algorithm increases the prediction accuracy of the rate

constants of E2 and Sy 2 reactions compared with independently constructed individual models.
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Figure 32. Experimental and predicted values of the rate constant logks, , for 49 test reactions.
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Figure 33. Experimental and predicted values of the yield for 49 E2 test reactions.

Conclusion

In this project, the concept of conjugated learning was applied to model the selectivity constant of
competing E2 /Sy 2 reactions. The kinetic equation relating the rate constants of E2 and Sy 2 reac-
tions were integrated with the ridge regression method. The conjugated models significantly im-

proved the accuracy of logkg, and logks, , predictions compared to the individual models.
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Conclusion

1. This project is devoted to the development of advanced machine learning approaches accounting
for the complexity of chemical objects (molecules) and processes (reactions). Two approaches and
related software tools have been developed: (i) multi-instance machine learning (MIL) considering
an ensemble of conformers of each considered molecule, and (i7) conjugated machine learning
algorithms accounting for fundamental thermodynamic and kinetic relationships in the modeling

of reaction characteristics.

2. A set of multi-instance algorithms, including a naive Wrapper and several multi-instance neural
network architectures based on the attention mechanism, dynamic pooling, and gaussian pooling,
have been implemented. Various techniques for regularization of instance weights for better iden-
tification of key instances have been applied. The developed tools: (i) do not require selection and
alignment of conformers, (ii) use only open-source software based on Python 3 packages, and (iii)

are fully automated.

3. The MIL-kmeans algorithm for the classification modeling of bioactive compounds has been
developed. In this algorithm, each conformer of a given molecule was represented by the 3D pmap-
per descriptors followed by the clustering with the k-means algorithm. The obtained clusters were
used to generate a new descriptor vector of a given compound (mapping process) further used in

any conventional regression or classification machine learning algorithm.

4. The developed MIL algorithms in combination with the pmapper descriptors were applied to
the modeling of (i) the bioactivity of compounds from the ChEMBL-23 database and (ii) the en-
antioselectivity of chiral organic catalysts in asymmetric reactions. The obtained models per-

formed better than related 3D single-conformer models and models involving 2D descriptors.

(i) In a large-scale benchmark on 175 datasets from ChEMBL-23, we have demonstrated
that the 3D multi-conformer models approach performed better than 3D single-conformer models
built with the lowest-energy conformer and in most cases (>60%) better than the models built on
2D descriptors. In some cases, 2D models completely failed to predict bioactivity whereas 3D
multi-conformer models demonstrated a reasonable performance. It has also been demonstrated
that the attention-based multi-instance neural network was able to identify bioactive conformers

that are similar (RMSD < 2A) to experimental structures extracted from Protein Data Bank.

(if) The developed 3D modeling approach was applied to the modeling of enantioselectivity

in the reaction of asymmetric nucleophilic addition catalyzed by chiral phosphoric acids and phase-
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transfer asymmetric alkylation catalyzed by cinchona alkaloid-based catalysts. The descriptor vec-
tors resulted from the concatenation of the reaction descriptors generated for Condensed Graphs
of Reaction and pmapper descriptors encoding the catalyst conformers. Obtained results demon-
strated that the 3D multi-conformer models performed similarly or better than the alternative state-

of-the-art 2D and 3D approaches reported in the literature.

5. In the conjugated learning approach mathematical equations relating thermodynamic or kinetic
characteristics of chemical reactions were used in combination with two different machine learning
algorithms - ridge regression and artificial neural networks. The new approach was applied to the
modeling of (i) equilibrium constants of tautomerism reactions, (ii) parameters of the Arrhenius
equation for cycloaddition reactions, and selectivity constant for competing for E2/Sn2 reactions.
In tautomeric equilibria, the conjugated models provide a reasonable estimation of the pKa of
minor tautomers, which can hardly be measured experimentally. In cycloaddition reactions, con-
jugated models were able to predict the experimentally unreachable rate constant of reactions at
extremely low and high temperatures. In some cases, conjugated learning helps to increase the
prediction accuracy of the characteristics related by the equation, as demonstrated in the case study

of competing E2 and Sn2 reactions.
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List of abbreviations

Al - Artificial Intelligence

ML - Machine Learning

SIL - Single-Instance Learning

MIL - Multi-Instance Learning

MIML - Multi-Instance Multi-Label

KID - Key Instance Detection

RF - Random Forest

SVM - Support Vector Machines

LSTM - Long Short-Term Memory

RNN - Recurrent Neural Network

GNN - Graph Neural Network

CNN - Convolutional Neural Network

ILP - Inductive Logic Programming

PPI - Protein-Protein Interactions

IIT - Isoform-Isoform Interactions

PDB - Protein Data Bank

PBM - Protein Binding Microarray

PBS - Potential Binding Sites

FBS - Functional Binding Sites

TF - Transcription Factor

TFBS - Transcription Factor Binding Sites

MHC - Major Histocompatibility Complex

QM - Quantum Mechanics

MIF - Molecular Interaction Fields

MMEFF - Merck Molecular Force Field

DFT — Density Functional Theory

CGR - Condensed Graph of Reaction

ISIDA - In Silico Design and Data Analysis

ECFP - Extended Connectivity Fingerprints

QSAR - Quantitative Structure-Activity Relationship

QSPR - Quantitative Structure-Property Relationship

QSSR - Quantitative Structure—Selectivity Relationship
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AUC - Area under the ROC Curve

MAE - Mean Absolute Error

RMSE - Root Mean Square Error

RMSD - Root Mean Square Deviation
API - Application Programming Interface
GPU - Graphics Processing Unit

145



References

[1]

[10]

[11]

[12]

Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel,
Backpropagation Applied to Handwritten Zip Code Recognition, Neural Comput. 1 (1989)
541-551. https://doi.org/10.1162/neco.1989.1.4.541.

D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating
errors, Nature. 323 (1986) 533—536. https://doi.org/10.1038/323533a0.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735—
1780.

D. Bahdanau, K.H. Cho, Y. Bengio, Neural machine translation by jointly learning to align
and translate, 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. (2015).

T.G. Dietterich, R.H. Lathrop, T. Lozano-Pérez, Solving the multiple instance problem with
axis-parallel rectangles, Artif. Intell. 89 (1997) 31-71. https://doi.org/10.1016/s0004-
3702(96)00034-3.

G. Liu, J. Wu, Z.H. Zhou, Key instance detection in multi-instance learning, in: J. Mach.

Learn. Res., 2012: pp. 253-268.

K. V. Chuang, M.J. Keiser, Attention-Based Learning on Molecular Ensembles, ArXiv
Prepr. ArXiv2011.12820. (2020). http://arxiv.org/abs/2011.12820.

Z. Zhao, G. Fu, S. Liu, K.M. Elokely, R.J. Doerksen, Y. Chen, D.E. Wilkins, Drug activity
prediction using multiple-instance learning via joint instance and feature selection, BMC

Bioinformatics. 14 (2013). https://doi.org/10.1186/1471-2105-14-S14-S16.

G. Fu, X. Nan, H. Liu, R\Y. Patel, P.R. Daga, Y. Chen, D.E. Wilkins, R.J. Doerksen,
Implementation of multiple-instance learning in drug activity prediction., in: BMC

Bioinformatics, 2012: p. S3. https://doi.org/10.1186/1471-2105-13-S15-S3.

R. Teramoto, H. Kashima, Prediction of protein-ligand binding affinities using multiple
instance  learning, J. Mol. Graph. Model. 29 (2010)  492-497.
https://doi.org/10.1016/j.ymgm.2010.09.006.

J. Davis, V.S. Costa, S. Ray, D. Page, An integrated approach to feature invention and
model construction for drug activity prediction, in: ACM Int. Conf. Proceeding Ser., 2007:
pp. 217-224. https://doi.org/10.1145/1273496.1273524.

D. V. Zankov, M. Matveieva, A. V. Nikonenko, R.I. Nugmanov, I.I. Baskin, A. Varnek, P.

Polishchuk, T.I. Madzhidov, QSAR Modeling Based on Conformation Ensembles Using a
146



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Multi-Instance Learning Approach, J. Chem. Inf. Model. 61 (2021) 4913-4923.
https://doi.org/10.1021/acs.jcim.1c00692.

D. V. Zankov, M.D. Shevelev, A. V. Nikonenko, P.G. Polishchuk, A.I. Rakhimbekova, T.I.
Madzhidov, Multi-instance learning for structure-activity modeling for molecular
properties, in: W.M.P. van der Aalst, V. Batagelj, D.I. Ignatov, M. Khachay, V. Kuskova,
A. Kutuzov, S.0. Kuznetsov, [.LA. Lomazova, N. Loukachevitch, A. Napoli, P.M. Pardalos,
M. Pelillo, A. V. Savchenko, E. Tutubalina (Eds.), Commun. Comput. Inf. Sci., 8th
International Conference Analysis of Images, Social networks, and Texts, Kazan, 2020: pp.

62-71. https://doi.org/10.1007/978-3-030-39575-9 7.

A. Nikonenko, D. Zankov, I. Baskin, T. Madzhidov, P. Polishchuk, Multiple Conformer
Descriptors for QSAR Modeling, Mol. Inform. 40 (2021) minf.202060030.
https://doi.org/10.1002/minf.202060030.

D. Zankov, P. Polishchuk, T. Madzhidov, A. Varnek, Multi-Instance Learning Approach to
Predictive Modeling of Catalysts Enantioselectivity, Synlett. 32 (2021) 1833-1836.
https://doi.org/10.1055/a-1553-0427.

J. Xiong, Z. Li, G. Wan, Z. Fu, F. Zhong, T. Xu, X. Liu, Z. Huang, X. Liu, K. Chen, H.
Jiang, M. Zheng, Multi-instance learning of graph neural networks for aqueous pKa
prediction, Bioinformatics. 38 (2022) 792-798.
https://doi.org/10.1093/bioinformatics/btab714.

G. Yu, J. Zeng, J. Wang, H. Zhang, X. Zhang, M. Guo, Imbalance deep multi-instance
learning for predicting isoform—isoform interactions, Int. J. Intell. Syst. 36 (2021) 2797—
2824. https://doi.org/10.1002/int.22402.

J. Cheng, K. Bendjama, K. Rittner, B. Malone, BERTMHC: improved MHC—peptide class
I interaction prediction with transformer and multiple instance learning, Bioinformatics.

37 (2021) 4172-4179. https://doi.org/10.1093/bioinformatics/btab422.

Z. Gao, J. Ruan, A structure-based Multiple-Instance Learning approach to predicting in
vitrotranscription  factor-DNA  interaction, BMC Genomics. 16 (2015) S3.
https://doi.org/10.1186/1471-2164-16-S4-S3.

Y.P. Zhang, Y. Zha, X. Li, S. Zhao, X. Du, Using the multi-instance learning method to
predict protein-protein interactions with domain information, in: Lect. Notes Comput. Sci.
(Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2014: pp. 249—

259. https://doi.org/10.1007/978-3-319-11740-9_24.
147



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Y. Xu, C. Luo, M. Qian, X. Huang, S. Zhu, MHC2MIL: A novel multiple instance learning
based method for MHC-II peptide binding prediction by considering peptide Flanking
Region and residue positions, BMC Genomics. 15 (2014) S9. https://doi.org/10.1186/1471-
2164-15-S9-S9.

J.S. Wu, S.J. Huang, Z.H. Zhou, Genome-wide protein function prediction through multi-
instance multi-label learning, IEEE/ACM Trans. Comput. Biol. Bioinforma. 11 (2014) 891—
902. https://doi.org/10.1109/TCBB.2014.2323058.

Y. Zhang, Y. Chen, W. Bao, Y. Cao, A Hybrid Deep Neural Network for the Prediction of
In-Vivo Protein-DNA Binding by Combining Multiple-Instance Learning, in: Lect. Notes
Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
2021: pp. 374-384. https://doi.org/10.1007/978-3-030-84532-2 34.

A. Emamjomeh, D. Choobineh, B. Hajieghrari, N. MahdiNezhad, A. Khodavirdipour,
DNA-protein interaction: identification, prediction and data analysis, Mol. Biol. Rep. 46

(2019) 3571-3596. https://doi.org/10.1007/s11033-019-04763-1.

J. Zeng, G. Yu, J. Wang, M. Guo, X. Zhang, DMIL-III: Isoform-isoform interaction
prediction using deep multi-instance learning method, in: Proc. - 2019 IEEE Int. Conf.
Bioinforma. Biomed. BIBM 2019, 2019: pp- 171-176.
https://doi.org/10.1109/BIBM47256.2019.8982956.

X. Pan, H. Bin Shen, Predicting RNA-protein binding sites and motifs through combining
local and global deep convolutional neural networks, Bioinformatics. 34 (2018) 3427-3436.
https://doi.org/10.1093/bioinformatics/bty364.

Z. Gao, J. Ruan, Computational modeling of in vivo and in vitro protein-DNA interactions
by multiple instance learning, Bioinformatics. 33  (2017) 2097-2105.
https://doi.org/10.1093/bioinformatics/btx115.

W.A. Abbasi, A. Asif, S. Andleeb, F. ul A.A. Minhas, CaMELS: In silico prediction of
calmodulin binding proteins and their binding sites, Proteins Struct. Funct. Bioinforma. 85

(2017) 1724-1740. https://doi.org/10.1002/prot.25330.

B. Alipanahi, A. Delong, M.T. Weirauch, B.J. Frey, Predicting the sequence specificities of
DNA- and RNA-binding proteins by deep learning, Nat. Biotechnol. 33 (2015) 831-838.
https://doi.org/10.1038/nbt.3300.

S. Bandyopadhyay, D. Ghosh, R. Mitra, Z. Zhao, MBSTAR: Multiple instance learning for

148



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

predicting specific functional binding sites in microRNA targets, Sci. Rep. 5 (2015) 1-12.
https://doi.org/10.1038/srep08004.

B.G. Buchanan, E.A. Feigenbaum, Dendral and meta-dendral: Their applications
dimension, Artif. Intell. 11 (1978) 5-24. https://doi.org/10.1016/0004-3702(78)90010-3.

K. Aikawa, Phoneme recognition using time-warping neural networks, J. Acoust. Soc.

Japan. 13 (1992) 395—402. https://doi.org/10.1250/ast.13.395.

D.E. Rumelhart, A Self-Organizing Integrated Segmentation and Recognition Neural Net,
Aerosp. Sensing, 1992. 4 (1991) 496-503.

A.N. Jain, T.G. Dietterich, R.H. Lathrop, D. Chapman, R.E. Critchlow, B.E. Bauer, T.A.
Webster, T. Lozano-Perez, Compass: A shape-based machine learning tool for drug design,

J. Comput. Aided. Mol. Des. 8 (1994) 635—652. https://doi.org/10.1007/BF00124012.

H.G. Rammensee, T. Friede, S. Stevanovi¢, MHC ligands and peptide motifs: first listing,
Immunogenetics. 41 (1995) 178-228. https://doi.org/10.1007/BF00172063.

A. Tibo, M. Jaeger, P. Frasconi, Learning and interpreting multi-multi-instance learning

networks, J. Mach. Learn. Res. 21 (2020) 191-193. http://arxiv.org/abs/1810.11514.

Z.H. Zhou, M.L. Zhang, Multi-instance multi-label learning with application to scene
classification, in: Adv. Neural Inf. Process. Syst., 2007: pp. 1609-1616.
https://doi.org/10.7551/mitpress/7503.003.0206.

H.-P. Kriegel, A. Pryakhin, M. Schubert, An EM-approach for clustering multi-instance
objects, in: Pacific-Asia Conf. Knowl. Discov. Data Min., 2006: pp. 139-148.

C. Bergeron, J. Zaretzki, C. Breneman, K.P. Bennett, Multiple instance ranking, in: Proc.
25th Int. Conf. Mach. Learn., ACM Press, New York, New York, USA, 2008: pp. 48-55.
https://doi.org/10.1145/1390156.1390163.

M.A. Carbonneau, V. Cheplygina, E. Granger, G. Gagnon, Multiple instance learning: A
survey of problem characteristics and applications, Pattern Recognit. 77 (2018) 329-353.
https://doi.org/10.1016/j.patcog.2017.10.009.

M.-A. Carbonneau, Multiple Instance Learning Under Real-World Conditions, PhD Thesis,
Univ. Due Québec. (2017) 1-271. https://www.etsmtl.ca/getattachment/Unites-de-
recherche/LIVIA/Recherche-et-innovation/Theses/multiple-instance-learning(3).pdf.

F. Herrera, S. Ventura, R. Bello, C. Cornelis, A. Zafra, D. Sanchez-Tarrag6, S. Vluymans,

Multiple instance learning: Foundations and algorithms, in: Mult. Instance Learn. Found.
149



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Algorithms, Springer, 2016: pp. 1-233. https://doi.org/10.1007/978-3-319-47759-6.

G. Doran, S. Ray, A theoretical and empirical analysis of support vector machine methods
for multiple-instance  classification, Mach. Learn. 97 (2014) 79-102.
https://doi.org/10.1007/s10994-013-5429-5.

J. Amores, Multiple instance classification: Review, taxonomy and comparative study,

Artif. Intell. 201 (2013) 81-105. https://doi.org/10.1016/j.artint.2013.06.003.

J. Foulds, E. Frank, A review of multi-instance learning assumptions, Knowl. Eng. Rev. 25

(2010) 1-25. https://do1.org/10.1017/S026988890999035X.

B. Babenko, Multiple instance learning: algorithms and applications, View Artic.
PubMed/NCBI Google Sch. (2008) 1-19.
http://vision.ucsd.edu/~bbabenko/data/bbabenko re.pdf%5Cnpapers3://publication/uuid/2
CDB4FD4-9E25-4F12-826C-E67049137B7C.

D.R. Dooly, Q. Zhang, S.A. Goldman, R.A. Amar, Multiple-instance learning of real-valued
data, J. Mach. Learn. Res. 3 (2003) 651-678.

X. Xu, Statistical Learning in Multiple Instance Problems, University of Waikato, 2003.
https://hdl.handle.net/10289/2328.

J. Foulds, Learning instance weights in multi-instance learning, The University of Waikato,

2008.

J. Wang, J.-D. Zucker, Solving Multiple-Instance Problem: A Lazy Learning Approach,
Proc. 17th Int. Conf. Mach. Learn. (2000) 1119--1125. http://cogprints.org/2124/.

T. Gértner, P.A. Flach, A. Kowalczyk, A.J. Smola, Multi-instance kernels, in: ICML, 2002:
p. 7.

V. Cheplygina, D.M.J. Tax, M. Loog, Multiple instance learning with bag dissimilarities,
Pattern Recognit. 48 (2015) 264-275. https://doi.org/10.1016/j.patcog.2014.07.022.

O. Maron, T. Lozano-Pérez, A framework for multiple-instance learning, in: Adv. Neural

Inf. Process. Syst., 1998: pp. 570-576.

Q. Zhang, S.A. Goldman, Em-dd: An improved multiple-instance learning technique, in:

Adv. Neural Inf. Process. Syst., 2002: pp. 1073—1080.

S. Ray, M. Craven, Supervised versus multiple instance learning: An empirical comparison,

in: ICML 2005 - Proc. 22nd Int. Conf. Mach. Learn., 2005: pp. 697-704.

150



[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

https://doi1.org/10.1145/1102351.1102439.

P. Auer, R. Ortner, A boosting approach to multiple instance learning, in: Lect. Notes Artif.
Intell. (Subseries Lect. Notes Comput. Sci., 2004: pp. 63—74. https://doi.org/10.1007/978-
3-540-30115-8 9.

Y. Chevaleyre, J.D. Zucker, Solving multiple-instance and multiple-part learning problems
with decision trees and rule sets. Application to the mutagenesis problem, in: Lect. Notes
Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
2001: pp. 204-214. https://doi.org/10.1007/3-540-45153-6 _20.

H. Blockeel, D. Page, A. Srinivasan, Multi-instance tree learning, in: ICML 2005 - Proc.
22nd Int. Conf. Mach. Learn., 2005: pp. 57—64. https://doi.org/10.1145/1102351.1102359.

L. Bjerring, E. Frank, Beyond trees: Adopting MITI to learn rules and ensemble classifiers
for multi-instance data, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), 2011: pp. 41-50. https://doi.org/10.1007/978-3-642-
25832-9 5.

C. Leistner, A. Saffari, H. Bischof, MIForests: Multiple-instance learning with randomized
trees, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), 2010: pp. 29—42. https://doi.org/10.1007/978-3-642-15567-3 3.

A. Zafra, S. Ventura, G3P-MI: A genetic programming algorithm for multiple instance
learning, Inf. Sci. (Ny). 180 (2010) 4496—4513. https://doi.org/10.1016/j.ins.2010.07.031.

M.L. Zhang, A k-nearest neighbor based multi-instance multi-label learning algorithm, in:
Proc. - Int. Conf. Tools with Artif. Intell. ICTAIL 2010: pp. 207-212.
https://doi.org/10.1109/ICTAIL.2010.102.

X. Xu, E. Frank, Logistic regression and boosting for labeled bags of instances, in: Lect.
Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), 2004: pp. 272-281. https://doi.org/10.1007/978-3-540-24775-3 35.

S. Andrews, T. Hofmann, Multiple instance learning via disjunctive programming boosting,

Adv. Neural Inf. Process. Syst. 16 (2004).

S. Andrews, I. Tsochantaridis, T. Hofmann, Support Vector Machines for Multiple-instance
Learning, in: Proc. 15th Int. Conf. Neural Inf. Process. Syst., MIT Press, Cambridge, MA,
USA, 2002: pp. 577-584. http://dl.acm.org/citation.cfm?1d=2968618.2968690.

Y. Chen, J.Z. Wang, Image categorization by learning and reasoning with regions, J. Mach.

151



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Learn. Res. 5 (2004) 913-939.

Y. Chen, J. Bi, J.Z. Wang, MILES: Multiple-instance learning via embedded instance
selection, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 1931-1947.
https://doi.org/10.1109/TPAMI.2006.248.

J. Ramon, L. De Raedt, Multi Instance Neural Networks, ICML-2000 Work. Attrib.
Relational Learn. (2000) 53—60.

Z.-H. Zhou, M.-L. Zhang, Neural Networks for Multi-Instance Learning, 2002.

M.L. Zhang, Z.H. Zhou, Improve Multi-Instance Neural Networks through Feature
Selection, Neural Process. Lett. 19 (2004) 1-10.
https://doi.org/10.1023/B:NEPL.0000016836.03614.9f1.

M.L. Zhang, Z.H. Zhou, Ensembles of multi-instance neural networks, in: IFIP Adv. Inf.
Commun. Technol., 2005: pp. 471-474. https://doi.org/10.1007/0-387-23152-8 58.

M.L. Zhang, Z.H. Zhou, Adapting RBF neural networks to multi-instance learning, Neural
Process. Lett. 23 (2006) 1-26. https://doi.org/10.1007/s11063-005-2192-z.

M.L. Zhang, Z.H. Zhou, Multi-instance regression algorithm based on neural network, Ruan

Jian Xue Bao/Journal Softw. 14 (2003) 1238-1242.

X. Wang, Y. Yan, P. Tang, X. Bai, W. Liu, Revisiting multiple instance neural networks,

Pattern Recognit. 74 (2018) 15-24. https://doi.org/10.1016/j.patcog.2017.08.026.

M. llse, J.M. Tomczak, M. Welling, Attention-based deep multiple instance learning, 35th
Int. Conf. Mach. Learn. ICML 2018. 5 (2018) 3376—-3391. http://arxiv.org/abs/1802.04712.

Z.H. Zhou, J.M. Xu, On the relation between multi-instance learning and semi-supervised
learning, in: ACM Int. Conf. Proceeding Ser., ACM, New York, NY, USA, 2007: pp. 1167—
1174. https://doi.org/10.1145/1273496.1273643.

M. Tu, J. Huang, X. He, B. Zhou, Multiple instance learning with graph neural networks,
(2019). http://arxiv.org/abs/1906.04881.

A.S. D’avila Garcez, G. Zaverucha, Multi-instance learning using recurrent neural
networks, Proc. Int. Jt. Conf. Neural Networks. (2012) 10-15.
https://doi.org/10.1109/1IJCNN.2012.6252784.

K. Wang, J. Oramas, T. Tuytelaars, In Defense of LSTMs for Addressing Multiple Instance
Learning Problems, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell.

152



[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Lect. Notes Bioinformatics). 12627 LNCS (2021) 444—460. https://doi.org/10.1007/978-3-
030-69544-6_27.

Y. Yan, X. Wang, J. Fang, W. Liu, J. Huang, J. Zhu, 1. Takeuchi, Deep Multi-instance
Learning  with ~ Dynamic  Pooling, in: Acml, 2018: pp. 662-677.
https://proceedings.mlr.press/v95/yan18a.html.

S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, in: Adv. Neural Inf.
Process. Syst., 2017: pp. 3857-3867.

J. Lee, Y. Lee, J. Kim, A.R. Kosiorek, S. Choi, Y.W. Teh, Set Transformer: A Framework
for Attention-based Permutation-Invariant Neural Networks, ArXiv  Prepr.

ArXiv1810.00825. (2018). http://arxiv.org/abs/1810.00825 (accessed April 19, 2020).

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, 1.
Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 2017-Decem (2017)
5999-6009.

J. Early, C. Evers, S. Ramchurn, Model Agnostic Interpretability for Multiple Instance
Learning, ArXiv Prepr. ArXiv2201.11701. (2022). http://arxiv.org/abs/2201.11701.

D. Wang, J. Li, B. Zhang, Multiple-instance learning via random walk, in: Lect. Notes
Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
2006: pp. 473—484. https://doi.org/10.1007/11871842 45.

D. Zhou, B. Scholkopf, T. Hofmann, Semi-supervised learning on directed graphs, Adv.
Neural Inf. Process. Syst. 17 (2005).

M.A. Carbonneau, E. Granger, A.J. Raymond, G. Gagnon, Robust multiple-instance
learning ensembles using random subspace instance selection, Pattern Recognit. 58 (2016)

83-99. https://doi.org/10.1016/j.patcog.2016.03.035.

J. Liu, R. Qiao, Y. Li, S. Li, Witness detection in multi-instance regression and its
application for age estimation, Multimed. Tools Appl. 78 (2019) 33703-33722.
https://doi.org/10.1007/s11042-019-08203-x.

Y.F.Li, J.T. Kwok, . W. Tsang, Z.H. Zhou, A convex method for locating regions of interest
with multi-instance learning, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), 2009: pp. 15-30. https://doi.org/10.1007/978-3-
642-04174-7 2.

Z. Lin, M. Feng, C.N. Dos Santos, M. Yu, B. Xiang, B. Zhou, Y. Bengio, A structured self-
153



[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

attentive sentence embedding, Sth Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track
Proc. (2017).

X.C. Li, D.C. Zhan, J.Q. Yang, Y. Shi, Deep multiple instance selection, Sci. China Inf.
Sci. 64 (2021) 1-15. https://doi.org/10.1007/s11432-020-3117-3.

K. Xu, J.L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R.S. Zemel, Y. Bengio,
Show, attend and tell: Neural image caption generation with visual attention, in: 32nd Int.

Conf. Mach. Learn. ICML 2015, 2015: pp. 2048—-2057.

B. Shin, J. Cho, H. Yu, S. Choi, Sparse network inversion for key instance detection in
multiple instance learning, in: Proc. - Int. Conf. Pattern Recognit., 2020: pp. 4083—4090.
https://doi.org/10.1109/ICPR48806.2021.9413230.

J. Kindermann, A. Linden, Inversion of neural networks by gradient descent, Parallel

Comput. 14 (1990) 277-286. https://doi.org/10.1016/0167-8191(90)90081-J.

M. Looks, M. Herreshoff, D. Hutchins, P. Norvig, T.D. Team, Deep Multiple Instance
Learning With Gaussian Weighting, (2020) 1-12.

J. Haab, Is Attention Interpretation ? A Quantitative Assessment On Sets, Grenoble 2022,
ECML PKDD Int. Work. Explain. Knowl. Discov. Data Min. Sept. 19, 2022, Grenoble, Fr.
1(2022).

J.L. Paulsen, A.C. Anderson, Scoring ensembles of docked protein: ligand interactions for

virtual lead optimization, J. Chem. Inf. Model. 49 (2009) 2813-2819.

F. Milletti, A. Vulpetti, Tautomer preference in PDB complexes and its impact on structure-
based drug discovery, J. Chem. Inf. Model. 50 (2010) 1062-1074.
https://doi.org/10.1021/c1900501c.

V.H. Masand, D.T. Mahajan, T. Ben Hadda, R.D. Jawarkar, A.M. Alafeefy, V. Rastija,
M.A. Ali, Does tautomerism influence the outcome of QSAR modeling?, Med. Chem. Res.
23 (2014) 1742-1757. https://doi.org/10.1007/s00044-013-0776-0.

V.H. Masand, D.T. Mahajan, P. Gramatica, J. Barlow, Tautomerism and multiple modeling
enhance the efficacy of QSAR: Antimalarial activity of phosphoramidate and
phosphorothioamidate analogues of amiprophos methyl, Med. Chem. Res. 23 (2014) 4825—
4835. https://doi.org/10.1007/s00044-014-1043-8.

A.P. Toropova, A.A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, J. Leszczynski,
QSAR modeling of anxiolytic activity taking into account the presence of keto- and enol-

154



[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

tautomers by balance of correlations with ideal slopes, Cent. Eur. J. Chem. 9 (2011) 846—
854. https://doi.org/10.2478/s11532-011-0064-0.

H.A. Duarte, S. Carvalho, E.B. Paniago, A.M. Simas, Importance of tautomers in the
chemical behavior of tetracyclines, J. Pharm. Sci. 88 (1999) 111-120.
https://doi.org/10.1021/js980181r.

C.M. Baker, N.J. Kidley, K. Papachristos, M. Hotson, R. Carson, D. Gravestock, M.
Pouliot, J. Harrison, A. Dowling, Tautomer Standardization in Chemical Databases:
Deriving Business Rules from Quantum Chemistry, J. Chem. Inf. Model. 60 (2020) 3781—
3791. https://doi.org/10.1021/acs.jcim.0c00232.

Z.H. Zhou, M.L. Zhang, Solving multi-instance problems with classifier ensemble based on
constructive clustering, Knowl. Inf. Syst. 11 (2007) 155-170.
https://doi.org/10.1007/s10115-006-0029-3.

W.S. Jen, J.J.M. Wiener, D.W.C. MacMillan, New strategies for organic catalysis: The first
enantioselective organocatalytic 1,3-dipolar cycloaddition [20], J. Am. Chem. Soc. 122
(2000) 9874-9875. https://doi.org/10.1021/ja005517p.

B. List, R.A. Lerner, C.F. Barbas, Proline-catalyzed direct asymmetric aldol reactions [13],

J. Am. Chem. Soc. 122 (2000) 2395-2396. https://doi.org/10.1021/ja994280y.

Y. Guan, V.M. Ingman, B.J. Rooks, S.E. Wheeler, AARON: An Automated Reaction
Optimizer for New Catalysts, J. Chem. Theory Comput. 14 (2018) 5249-5261.
https://doi.org/10.1021/acs.jctc.8b00578.

K.B. Lipkowitz, M. Pradhan, Computational studies of chiral catalysts: A Comparative
Molecular Field Analysis of an asymmetric Diels-Alder reaction with catalysts containing
bisoxazoline or phosphinooxazoline ligands, J. Org. Chem. 68 (2003) 4648-4656.
https://doi.org/10.1021/j00267697.

M.C. Kozlowski, S.L. Dixon, M. Panda, G. Lauri, Quantum mechanical models correlating
structure with selectivity: Predicting the enantioselectivity of B-amino alcohol catalysts in
aldehyde  alkylation, J.  Am. Chem. Soc. 125 (2003) 6614-6615.
https://doi.org/10.1021/ja0293195.

A.F. Zahrt, J.J. Henle, B.T. Rose, Y. Wang, W.T. Darrow, S.E. Denmark, Prediction of
higher-selectivity catalysts by computer-driven workflow and machine learning, Science

(80-.). 363 (2019). https://doi.org/10.1126/science.aau5631.

155



[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

J.L. Melville, B.I. Andrews, B. Lygo, J.D. Hirst, Computational screening of combinatorial
catalyst libraries, Chem. Commun. 4 (2004) 1410—1411. https://doi.org/10.1039/b402378a.

R. Asahara, T. Miyao, Extended Connectivity Fingerprints as a Chemical Reaction
Representation for Enantioselective Organophosphorus-Catalyzed Asymmetric Reaction
Prediction, ACS Omega. 7 (2022) 26952-26964.
https://doi.org/10.1021/acsomega.2c03812.

F. Sandfort, F. Strieth-Kalthoff, M. Kithnemund, C. Beecks, F. Glorius, A Structure-Based
Platform for Predicting Chemical Reactivity, Chem. 6 (2020) 1379-1390.
https://doi.org/10.1016/j.chempr.2020.02.017.

C. Bergeron, G. Moore, J. Zaretzki, C.M. Breneman, K.P. Bennett, Fast bundle algorithm
for multiple-instance learning, IEEE Trans. Pattern Anal. Mach. Intell. 34 (2012) 1068—
1079. https://doi.org/10.1109/TPAMIL.2011.194.

R.P. Sheridan, K.R. Korzekwa, R.A. Torres, M.J. Walker, Empirical regioselectivity
models for human cytochromes P450 3A4, 2D6, and 2C9, J. Med. Chem. 50 (2007) 3173—
3184. https://doi.org/10.1021/jm0613471.

H. Yamakawa, K. Maruhashi, Y. Nakao, Predicting types of protein-protein interactions
using a multiple-instance learning model, Lect. Notes Comput. Sci. (Including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics). 4384 LNAI (2007) 42-53.
https://doi.org/10.1007/978-3-540-69902-6 5.

H.D. Li, R. Menon, R. Eksi, A. Guerler, Y. Zhang, G.S. Omenn, Y. Guan, A Network of
Splice Isoforms for the Mouse, Sci. Rep. 6 (2016) 1-11. https://doi.org/10.1038/srep24507.

N. Pfeifer, O. Kohlbacher, Multiple instance learning allows MHC class II epitope
predictions across alleles, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), 2008: pp. 210-221. https://doi.org/10.1007/978-3-540-
87361-7 18.

Y. El-Manzalawy, D. Dobbs, V. Honavar, Predicting MHC-II binding affinity using
multiple instance regression, [IEEE/ACM Trans. Comput. Biol. Bioinforma. 8 (2011) 1067—
1079. https://doi.org/10.1109/TCBB.2010.94.

B. Reynisson, B. Alvarez, S. Paul, B. Peters, M. Nielsen, NetMHCpan-4.1 and
NetMHClIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif
deconvolution and integration of MS MHC eluted ligand data, Nucleic Acids Res. 48 (2021)

156



W449-W454. https://doi.org/10.1093/NAR/GKAA379.

[121] C. Andrews, Y. Xu, M. Kirberger, J.J. Yang, Structural aspects and prediction of
calmodulin-binding  proteins, Int. J. Mol.  Seci. 22  (2021) 1-26.
https://doi.org/10.3390/ijms22010308.

[122] F.U.A.A. Minhas, A. Ben-Hur, Multiple instance learning of Calmodulin binding sites,
Bioinformatics. 28 (2012) 1416--1422. https://doi.org/10.1093/bioinformatics/bts416.

[123] G. Stolovitzky, D. Monroe, A. Califano, Dialogue on reverse-engineering assessment and
methods: The DREAM of high-throughput pathway inference, Ann. N. Y. Acad. Sci. 1115
(2007) 1-22. https://doi.org/10.1196/annals.1407.021.

[124] D. Huang, B. Song, J. Wei, J. Su, F. Coenen, J. Meng, Weakly supervised learning of RNA
modifications from low-resolution epitranscriptome data, Bioinformatics. 37 (2021) 1222—

1230. https://doi.org/10.1093/bioinformatics/btab278.

[125] L.H. Witten, E. Frank, J. Geller, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, SIGMOD Rec. 31 (2002) 76-77.
https://doi.org/10.1145/507338.507355.

[126] J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sdnchez, F. Herrera, KEEL
data-mining software tool: Data set repository, integration of algorithms and experimental

analysis framework, J. Mult. Log. Soft Comput. 17 (2011) 255-287.

[127] D.M.J. Tax, V. Cheplygina, A Matlab Toolbox for Multiple Instance Learning, Version 0.7.
9 (2015). http://prlab.tudelft.nl/david-tax/mil.html.

[128] J.M. Arrieta, MILpy: Multiple-Instance Learning Python Toolbox, (2016).
https://github.com/jmarrietar/MILpy.

[129] S. Riniker, G.A. Landrum, Better Informed Distance Geometry: Using What We Know to
Improve Conformation Generation, J. Chem. Inf. Model. 55 (2015) 2562-2574.
https://doi.org/10.1021/acs.jcim.5b00654.

[130] N.M. O’Boyle, C. Morley, G.R. Hutchison, Pybel: A Python wrapper for the OpenBabel
cheminformatics toolkit, Chem. Cent. J. 2 (2008) 1-7. https://doi.org/10.1186/1752-153X-
2-5.

[131] R. Todeschini, P. Gramatica, The Whim Theory: New 3D Molecular Descriptors for Qsar
in  Environmental Modelling, SAR QSAR Environ. Res. 7 (1997) 89-115.
https://doi.org/10.1080/10629369708039126.

157



[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

V. Consonni, R. Todeschini, M. Pavan, P. Gramatica, Structure/response correlations and
similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D
molecular descriptors to QSAR/QSPR studies, J. Chem. Inf. Comput. Sci. 42 (2002) 693—
705. https://doi.org/10.1021/c¢i0155053.

J.H. Schuur, P. Selzer, J. Gasteiger, The coding of the three-dimensional structure of
molecules by molecular transforms and its application to structure-spectra correlations and
studies of biological activity, J. Chem. Inf. Comput. Sci. 36 (1996) 334-344.
https://doi.org/10.1021/c1950164c.

M.C. Hemmer, V. Steinhauer, J. Gasteiger, Deriving the 3D structure of organic molecules
from  their  infrared spectra, Vib.  Spectrosc. 19  (1999) 151-164.
https://doi.org/10.1016/s0924-2031(99)00014-4.

A. Kutlushina, A. Khakimova, T. Madzhidov, P. Polishchuk, Ligand-based pharmacophore
modeling using novel 3D pharmacophore signatures, Molecules. 23 (2018) 3094.
https://doi.org/10.3390/molecules23123094.

T.I. Madzhidov, A. Rakhimbekova, A. Kutlushuna, P. Polishchuk, Probabilistic approach
for virtual screening based on multiple pharmacophores, Molecules. 25 (2020) 385.
https://doi.org/10.3390/molecules25020385.

P. Polishchuk, A. Kutlushina, D. Bashirova, O. Mokshyna, T. Madzhidov, Virtual screening
using pharmacophore models retrieved from molecular dynamic simulations, Int. J. Mol.

Sci. 20 (2019) 5834. https://doi.org/10.3390/ijms20235834.

Y .N. Dauphin, A. Fan, M. Auli, D. Grangier, Language modeling with gated convolutional
networks, in: 34th Int. Conf. Mach. Learn. ICML 2017, 2017: pp. 1551-1559.

J. Zhang, Y. Zhao, H. Li, C. Zong, Attention with sparsity regularization for neural machine
translation and summarization, [IEEE/ACM Trans. Audio Speech Lang. Process. 27 (2019)
507-518. https://doi.org/10.1109/TASLP.2018.2883740.

E. Jang, S. Gu, B. Poole, Categorical reparameterization with gumbel-softmax, 5th Int.

Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc. (2017).

B. Han, X.H. He, Y.Q. Liu, G. He, C. Peng, J.L. Li, Asymmetric organocatalysis: An
enabling technology for medicinal chemistry, Chem. Soc. Rev. 50 (2021) 1522—-1586.
https://doi.org/10.1039/d0cs00196a.

J.D. Oslob, B. Akermark, P. Helquist, P.O. Norrby, Steric influences on the selectivity in

158



[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

palladium-catalyzed allylation, Organometallics. 16 (1997) 3015-3021.
https://doi.org/10.1021/0m9700371.

P.J. Goodford, A Computational Procedure for Determining Energetically Favorable
Binding Sites on Biologically Important Macromolecules, J. Med. Chem. 28 (1985) 849—
857. https://doi.org/10.1021/jm00145a002.

J.L. Melville, K.R.J. Lovelock, C. Wilson, B. Allbutt, E.K. Burke, B. Lygo, J.D. Hirst,
Exploring phase-transfer catalysis with molecular dynamics and 3D/4D quantitative
structure - Selectivity relationships, J. Chem. Inf. Model. 45 (2005) 971-981.
https://doi.org/10.1021/ci0500511.

J.J. Henle, A.F. Zahrt, B.T. Rose, W.T. Darrow, Y. Wang, S.E. Denmark, Development of
a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset
Selection, and Training Set Analysis, J. Am. Chem. Soc. 142 (2020) 11578-11592.
https://doi.org/10.1021/jacs.0c04715.

S.E. Denmark, N.D. Gould, L.M. Wolf, A systematic investigation of quaternary
ammonium ions as asymmetric phase-transfer catalysts. Synthesis of catalyst libraries and
evaluation of catalyst activity, J. Org. Chem. 76 (2011) 4260-4336.
https://doi.org/10.1021/;02005445.

M. Pastor, G. Cruciani, I. McLay, S. Pickett, S. Clementi, GRid-INdependent descriptors
(GRIND): A novel class of alignment-independent three-dimensional molecular

descriptors, J. Med. Chem. 43 (2000) 3233-3243. https://doi.org/10.1021/jm000941m.

S. Sciabola, A. Alex, P.D. Higginson, J.C. Mitchell, M.J. Snowden, I. Morao, Theoretical
prediction of the enantiomeric excess in asymmetric catalysis. An alignment-independent
molecular interaction field based approach, J. Org. Chem. 70 (2005) 9025-9027.
https://doi.org/10.1021/j0051496b.

M. Hoogenraad, G.M. Klaus, N. Elders, S.M. Hooijschuur, B. McKay, A.A. Smith, E.-W.P.
Damen, Oxazaborolidine mediated asymmetric ketone reduction: Prediction of
enantiomeric excess based on catalyst structure, Tetrahedron Asymmetry. 15 (2004) 519—
523. https://doi.org/10.1016/j.tetasy.2003.12.013.

A.F. Zahrt, S. V. Athavale, S.E. Denmark, Quantitative Structure-Selectivity Relationships
in Enantioselective Catalysis: Past, Present, and Future, Chem. Rev. 120 (2020) 1620—1689.
https://doi.org/10.1021/acs.chemrev.9b00425.

159



[151] F. Hoonakker, N. Lachiche, A. Varnek, Condensed Graph of Reaction: Considering a
Chemical Reaction as One Single Pseudo Molecule, Int. J. Artif. Intell. Tools. 20 (2011)
253-270. http://dtai.cs.kuleuven.be/ilp-mlg-srl/papers/ILP09-5.pdf.

[152] R.I. Nugmanov, R.N. Mukhametgaleev, T. Akhmetshin, T.R. Gimadiev, V.A. Afonina, T.I.
Madzhidov, A. Varnek, CGRtools: Python Library for Molecule, Reaction, and Condensed
Graph of Reaction Processing, J. Chem. Inf. Model. 59 (2019) 2516-2521.
https://doi.org/10.1021/acs.jcim.9b00102.

[153] A. Varnek, D. Fourches, F. Hoonakker, V.P. Solov’ev, Substructural fragments: An
universal language to encode reactions, molecular and supramolecular structures, J.
Comput. Aided. Mol. Des. 19 (2005) 693—-703. https://doi.org/10.1007/s10822-005-9008-
0.

[154] D.H. Smith, R.E. Carhart, R. Venkataraghavan, Atom Pairs as Molecular Features in
Structure-Activity Studies: Definition and Applications, J. Chem. Inf. Comput. Sci. 25
(1985) 64—73. https://doi.org/10.1021/c¢i00046a002.

[155] P. Gedeck, B. Rohde, C. Bartels, QSAR - How good is it in practice? Comparison of
descriptor sets on an unbiased cross section of corporate data sets, J. Chem. Inf. Model. 46

(2006) 1924—1936. https://doi.org/10.1021/¢i050413p.

[156] D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model. 50 (2010)
742-754.

[157] N. Tsuji, P. Sidorov, C. Zhu, Y. Nagata, T. Gimadiev, A. Varnek, B. List, Predicting Highly
Enantioselective  Catalysts Using Tunable Fragment Descriptors, (2022).
https://chemrxiv.org/engage/chemrxiv/article-details/62e376ed7f3aa6012ffc2e12.

[158] J. Bergstra, D. Yamins, D.D. Cox, Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures, in: 30th Int. Conf. Mach.

Learn. ICML 2013, 2013: pp. 115-123.

[159] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter optimization,
Adv. Neural Inf. Process. Syst. 24 (2011).

[160] R. Popa, Genetic algorithms in applications, BoD--Books on Demand, 2012.

[161] G.Marcou, V.P. Solov’ev, D. Horvath, A. Varnek, ISIDA Fragmentor - User Manual, 2017.
http://infochim.u-strasbg.fr/recherche/Download/.

[162] A. Varnek, D. Fourches, D. Horvath, O. Klimchuk, C. Gaudin, P. Vayer, V. Solov’ev, F.
160



[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

Hoonakker, 1. Tetko, G. Marcou, ISIDA - Platform for Virtual Screening Based on
Fragment and Pharmacophoric Descriptors, Curr. Comput. Aided-Drug Des. 4 (2008) 191—
198. https://doi.org/10.2174/157340908785747465.

T. Gimadiev, T. Madzhidov, I. Tetko, R. Nugmanov, I. Casciuc, O. Klimchuk, A. Bodrov,
P. Polishchuk, 1. Antipin, A. Varnek, Bimolecular Nucleophilic Substitution Reactions:

Predictive Models for Rate Constants and Molecular Reaction Pairs Analysis, Mol. Inform.

38 (2019) minf.201800104. https://doi.org/10.1002/minf.201800104.

T.I. Madzhidov, T.R. Gimadiev, D.A. Malakhova, R.I. Nugmanov, I.I. Baskin, I.S. Antipin,
A.A. Varnek, Structure—reactivity relationship in Diels—Alder reactions obtained using the
condensed reaction graph approach, J. Struct. Chem. 58 (2017) 650-656.
https://doi.org/10.1134/S0022476617040023.

D. V. Zankov, T.I. Madzhidov, A. Rakhimbekova, T.R. Gimadiev, R.I. Nugmanov, M.A.
Kazymova, 1.I. Baskin, A. Varnek, Conjugated Quantitative Structure-Property
Relationship Models: Application to Simultaneous Prediction of Tautomeric Equilibrium
Constants and Acidity of Molecules, J. Chem. Inf. Model. 59 (2019) 4569-4576.
https://doi.org/10.1021/acs.jcim.9b00722.

M. Glavatskikh, T. Madzhidov, D. Horvath, R. Nugmanov, T. Gimadiev, D. Malakhova,
G. Marcou, A. Varnek, Predictive Models for Kinetic Parameters of Cycloaddition
Reactions, Mol. Inform. 38 (2019) e1800077. https://doi.org/10.1002/minf.201800077.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An imperative style,
high-performance deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

J. Szegezdi, F. Csizmadia, Tautomer generation. pKa based dominance conditions for
generating dominant tautomers., in: 234th ACS Natl. Meet. Boston, MA, August 19-23,
2007, Boston, 2007.

F. Milletti, L. Storchi, G. Sfoma, S. Cross, G. Cruciani, Tautomer enumeration and stability
prediction for virtual screening on large chemical databases, J. Chem. Inf. Model. 49 (2009)
68—75. https://doi.org/10.1021/ci800340;.

T.R. Gimadiev, T.I. Madzhidov, R.I. Nugmanov, L.I. Baskin, I.S. Antipin, A. Varnek,
Assessment of tautomer distribution using the condensed reaction graph approach, J.

Comput. Aided. Mol. Des. 32 (2018) 401—414. https://doi.org/10.1007/s10822-018-0101-
161



[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

6.

M. Glavatskikh, T. Madzhidov, L.I. Baskin, D. Horvath, R. Nugmanov, T. Gimadiev, G.
Marcou, A. Varnek, Visualization and Analysis of Complex Reaction Data: The Case of
Tautomeric Equilibria, Mol. Inform. 37 (2018) 1800056.
https://doi.org/10.1002/minf.201800056.

W.A. Warr, A Short Review of Chemical Reaction Database Systems, Computer-Aided
Synthesis Design, Reaction Prediction, and Synthetic Feasibility, Mol. Inform. 33 (2014)
469-476. https://doi.org/10.1002/minf.201400052.

I.I. Baskin, T.I. Madzhidov, I.S. Antipin, A.A. Varnek, Artificial intelligence in synthetic
chemistry: achievements and prospects, Russ. Chem. Rev. 86 (2017) 1127-1156.
https://doi.org/10.1070/rcr4746.

A. Fernandez-Ramos, J.A. Miller, S.J. Klippenstein, D.G. Truhlar, Modeling the kinetics of
bimolecular reactions, Chem. Rev. 106 (2006) 4518-4584.
https://doi.org/10.1021/cr050205w.

C.A. Grambow, L. Pattanaik, W.H. Green, Reactants, products, and transition states of
elementary chemical reactions based on quantum chemistry, Sci. Data. 7 (2020) 137.

https://doi.org/10.1038/s41597-020-0460-4.

Y. Zhao, D.G. Truhlar, Density Functionals with Broad Applicability in Chemistry, Acc.
Chem. Res. 41 (2008) 157-167. https://doi.org/10.1021/ar700111a.

R.A. Friesner, Ab initio quantum chemistry: Methodology and applications, Proc. Natl.
Acad. Sci. 102 (2005) 6648—6653. https://doi.org/10.1073/pnas.0408036102.

P.-L. Kang, Z.-P. Liu, Reaction prediction via atomistic simulation: from quantum
mechanics to machine learning, IScience. 24 (2021) 102013.
https://doi.org/10.1016/j.1s¢1.2020.102013.

T.I. Madzhidov, A. Rakhimbekova, V.A. Afonina, T.R. Gimadiev, R.N. Mukhametgaleev,
R.I. Nugmanov, L.I. Baskin, A. Varnek, Machine learning modelling of chemical reaction

characteristics: yesterday, today, tomorrow, Mendeleev Commun. 31 (2021) 769-780.
https://doi.org/10.1016/j.mencom.2021.11.003.

P.R. Wells, Linear Free Energy Relationships., Chem. Rev. 63 (1963) 171-219.
https://doi.org/10.1021/cr60222a005.

C. Hansch, A. Leo, R.W. Taft, A survey of Hammett substituent constants and resonance

162



[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

and field parameters, Chem. Rev. 91 (1991) 165—-195. https://doi.org/10.1021/cr00002a004.

K. Jorner, T. Brinck, P.-O.0. Norrby, D. Buttar, Machine learning meets mechanistic
modelling for accurate prediction of experimental activation energies, Chem. Sci. 12 (2021)

1163—-1175. https://doi.org/10.1039/DOSC04896H.

R.I. Nugmanov, T.I. Madzhidov, G.R. Khaliullina, I.I. Baskin, I.S. Antipin, A.A. Varnek,
Development of “structure-property” models in nucleophilic substitution reactions
involving azides, J. Struct. Chem. 55 (2014) 1026-1032.
https://doi.org/10.1134/S0022476614060043.

T.I. Madzhidov, P.G. Polishchuk, R.I. Nugmanov, A. V. Bodrov, A.L. Lin, L.I. Baskin, A.A.
Varnek, [.S. Antipin, Structure-reactivity relationships in terms of the condensed graphs of
reactions, Russ. J. Org. Chem. 50 (2014) 459-463.
https://doi.org/10.1134/S1070428014040010.

P. Polishchuk, T. Madzhidov, T. Gimadiev, A. Bodrov, R. Nugmanov, A. Varnek,
Structure—reactivity modeling using mixture-based representation of chemical reactions, J.
Comput. Aided. Mol. Des. 31 (2017) 829-839. https://doi.org/10.1007/s10822-017-0044-
3.

T.I. Madzhidov, A. V. Bodrov, T.R. Gimadiev, R.I. Nugmanov, [.S. Antipin, A.A. Varnek,
Structure—reactivity relationship in bimolecular elimination reactions based on the
condensed graph of a reaction, J. Struct. Chem. 56 (2015) 1227-1234.
https://doi.org/10.1134/S002247661507001X.

A.R. Singh, B.A. Rohr, J.A. Gauthier, J.K. Norskov, Predicting Chemical Reaction Barriers
with a Machine Learning Model, Catal. Letters. 149 (2019) 2347-2354.
https://doi.org/10.1007/s10562-019-02705-x.

C.A. Grambow, L. Pattanaik, W.H. Green, Deep Learning of Activation Energies, J. Phys.
Chem. Lett. 11 (2020) 2992-2997. https://doi.org/10.1021/acs.jpclett.0c00500.

M.H.J. Gruber, Improving efficiency by shrinkage: the James-Stein and ridge regression

estimators, Routledge, 2017.

A. Rakhimbekova, T.N. Akhmetshin, G.I. Minibaeva, R.I. Nugmanov, T.R. Gimadiev, T.I.
Madzhidov, LI. Baskin, A. Varnek, Cross-validation strategies in QSPR modelling of
chemical reactions, SAR QSAR Environ. Res. 32 (2021) 207-219.
https://doi.org/10.1080/1062936X.2021.1883107.

163



- EDSC

UNIVERSITE DE STRASBOURG 7y
/ Ecole Doctorale des
D m itry ZAN KOV Sciences Chimiques

Modélisation structure-propriété avec des techniques
avancées d'apprentissage automatique

Résumé

Cette these est consacrée au développement de techniques avancées d'apprentissage automa-
tique pour la modélisation des propriétés des molécules et des réactions. Le couplage de la
méthode d'apprentissage automatique multi-instances (MIL) avec les descripteurs 3D pharma-
cophoriques a permis de construire des modeles prédictifs prenant en compte l'ensemble des
conformations moléculaires. Cette approche 3D ne nécessite pas de sélection et d'alignement de
conformeres et a ét¢ validée dans les études de (i) la bioactivité des composés et (ii) 1'énanti-
osélectivité des catalyseurs organiques chiraux. Dans de nombreux cas, les modéles MIL multi-
conformationnelles 3D ont surpassé les approches classiques impliquant des descripteurs 2D
populaires. Dans la deuxiéme partie, un concept d'apprentissage automatique conjugué a été
introduit et appliqué a la modélisation des caractéristiques thermodynamiques et cinétiques des
réactions chimiques. L'apprentissage automatique conjugué intégre des équations fondamen-
tales avec des algorithmes d'apprentissage automatique, ce qui le distingue de 'apprentissage
multitache traditionnel ne capturant que la relation statistique entre les taches

Mots-clés : apprentissage multi-instances, modeles conjugués

Résumé en Anglais

This Ph.D. thesis is devoted to the development of advanced machine learning techniques for
the modeling of properties of molecules and reactions. Coupling the Multi-Instance machine
Learning (MIL) method with the pharmacophoric 3D descriptors enabled the construction of
predictive models accounting for an ensemble of molecular conformations. This 3D approach
does not require the selection and alignment of conformers and was validated in the case studies
of (i) the bioactivity of compounds and (ii) the enantioselectivity of chiral organic catalysts. In
many cases, 3D multi-conformation MIL models overperformed classical approaches involving
popular 2D descriptors. In the second part, a concept of conjugated machine learning was intro-
duced and applied to the modeling of thermodynamic and kinetic characteristics of reactions.
Conjugated machine learning integrates fundamental equations with machine learning algo-
rithms, which distinguishes it from traditional multi-task learning capturing only the statistical
relationship between the tasks.

Keywords: multi-instance learning, conjugated machine learning




