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Ziqiu ZENG

Vers des performances en temps réel dans les simulations physiques
à grande échelle

Résumé
Les simulations physiques ont suscité une attention considérable dans le domaine médical, en par-
ticulier dans le domaine des chirurgies virtuelles. Une préoccupation actuelle de la recherche dans
ce domaine est centrée sur l’obtention de comportements physiques réalistes dans les simulations
en temps réel d’objets déformables. Cependant, cela présente un défi car les simulations doivent
concilier les exigences contradictoires de précision et de temps de calcul rapide simultanément. Bien
que la finesse de la discrétisation soit préférée pour capturer des informations de forme détaillées,
elle conduit souvent à des systèmes plus importants au prix d’une augmentation des coûts de calcul.
L’objectif principal de ce manuscrit est d’améliorer les performances de calcul afin de permettre des
simulations en temps réel à grande échelle. Pour atteindre cet objectif, notre travail englobe plusieurs
méthodes visant à relever les défis de la résolution du système numérique dans différents domaines
problématiques. Ces méthodes comprennent l’assemblage de matrices et les techniques de résolution
parallèle pour simuler les déformations élastiques, l’assemblage de la matrice de conformité et les
approches de résolution des contraintes pour simuler les contacts de friction, ainsi que l’optimisation
de la qualité du maillage associée à un solveur efficace pour simuler les découpes. L’efficacité de ces
avancées est évaluée dans diverses applications, permettant des simulations efficaces de la déforma-
tion, du contact et de la friction, ainsi que des coupes virtuelles. En conséquence, la réalisation de
simulations physiques à grande échelle en temps réel devient réalisable.
Mots clés : Simulation physique, simulation en temps réel, méthode des éléments finis, simulation
de contact, simulation de découpe, parallélisation sur le GPU.



Ziqiu ZENG

Towards real-time performance in large-scale physics-based
simulations

Abstract
Physics-based simulations have garnered considerable attention in the medical field, particularly in
the application of virtual surgeries. A current focus of research in this field is centered on achieving
realistic physical behaviors in real-time simulations of deformable objects. However, this presents
a challenge as simulations must fulfill the conflicting requirements of both accuracy and fast com-
putation time simultaneously. While fine discretization is preferred for capturing detailed shape
information, it often leads to larger systems with the cost of increased computational costs. The
primary objective of this manuscript is to enhance computing performance to enable real-time sim-
ulations on a large scale. To address this objective, our work encompasses several methods aimed
at overcoming challenges in numerical system resolution within various problem domains. These
methods include matrix assembly and parallel solver techniques for simulating elastic deformations,
compliance assembly and constraint resolution approaches for simulating frictional contacts, and
mesh quality optimization combined with an efficient solver for simulating virtual cuts. The effec-
tiveness of these advancements is evaluated across various applications, enabling efficient simulations
of deformation, contact and friction, as well as virtual cutting. As a consequence, the attainment of
large-scale physical simulations in real-time becomes feasible.
Key words: Physics-based simulation, real-time simulation, finite element method, contact simula-
tion, cutting simulation, GPU-based parallelization.
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1
GENERAL INTRODUCTION

1.1 Physics-based simulations in medical applications

Surgical operations play a vital role in treating diverse medical conditions, from routine

procedures to complex interventions. While they have significantly advanced medical

practice, it’s essential to note that the surgeries carry inherent risks and potential com-

plications. To address these challenges, medical simulations have garnered significant

attention due to their ability to provide a safe environment for learning and practicing

complex surgical interventions. Using medical imaging techniques, it becomes possible

to generate surgical models that accurately replicate a patient’s anatomical structure in

a digital format. Surgeons can utilize these virtual models to meticulously plan and re-

hearse complex procedures, enabling the identification of potential challenges and the

optimization of surgical strategies before entering the operating room. Nowadays, vir-

tual surgery involves a wide range of applications, including surgical planning, preopera-

tive visualization, surgical training and education, as well as intraoperative guidance and

assistance. These advancements have revolutionized the field of surgery by improving

safety, efficiency, and overall patient care.

By employing principles from physics, mathematics, and computer science, medical

simulations facilitate the simulation and visualization of biological systems, providing in-

sights into intricate operations. Physics-based modeling forms the foundation of these

simulations, involving the creation of virtual models that faithfully represent anatomical

structures, biological systems, and their interactions. These interactions can vary across
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CHAPTER 1. GENERAL INTRODUCTION

applications, encompassing deformable solids (e.g., human tissues and organs), fluid dy-

namics (e.g., blood flow), and rigid objects (e.g., bones and surgical instruments). At the

core of physics-based simulations lies the concept of using fundamental laws of physics

to describe the behavior and interactions of biological systems. By integrating knowl-

edge from multiple disciplines such as computer graphics and bio-mechanics, these sim-

ulations can accurately replicate the mechanical processes occurring within the human

body.

The current focus in the field revolves around the potential to enhance medical sim-

ulations by integrating them more closely with the Operating Room (OR). This involves

either using simulations for preoperative planning or incorporating them directly into

the OR through visual assistance, registration, and augmented reality (AR). To achieve

this, simulations must fulfill the conflicting requirements of both accuracy and fast com-

putation time simultaneously. On one hand, the preference lies in employing complex

models that can provide realistic predictions of the behavior of organs during surgery.

On the other hand, real-time performance plays a crucial role in surgical simulations and

training scenarios. These applications necessitate interactive and dynamic simulations

capable of responding to user inputs and delivering immediate feedback. The primary

challenges in real-time computing arise from various factors such as deformations, inter-

actions, and topology modifications, among others.

Simulating the behavior of deformable solid is generally more challenging than that

of rigid one due to the need to accurately represent elastic behavior with a higher dimen-

sion of degree of freedom (DOF). The most commonly employed method to replicate the

behavior of deformable objects is the finite element method (FEM). This involves dis-

cretizing the object in the continuous space into finite elements, where a boundary value

problem is formulated for each element. The connection structure between finite ele-

ments forms a mesh topology. By coupling all the local problems, the FEM produces a

global system that can be solved using numerical methods. One of the challenges in com-

puting is based upon the FE discretization. Typically, a finer discretization is preferred to

accurately represent the shape and capture details. However, this leads to a larger num-

ber of DOFs and elements, resulting in expensive computational costs to solve the global

system.

On the other hand, we need physical models for each finite element to correctly pre-

dict the deformations. In the fields of computer graphics and bio-mechanics, the physics-

based modeling of deformable solids is typically derived from elastic models in contin-

uum mechanics. Another challenge comes form the elastic model employed. Compared

to straightforward linear elasticity models, hyperelastic models are preferred as they can

accurately represent realistic behavior in response to large deformations. However, the

2



1.2. THE OPEN-SOURCE FRAMEWORK SOFA

hyperelastic constitutive law leads to nonlinear formulations, requiring advanced numer-

ical methods and extra costs to linearize the problem. Thus, finding the right balance be-

tween discretization, choice of elastic model, and real-time performance is an ongoing

area of research and optimization.

Simulating interactions between objects presents another challenge, with frictional

contact being a significant concern in the field of computer graphics. Several problems

arise in this area: The first issue is how to model realistic frictional contacts. There are

both simple and complex frictional models available, and the choice depends on specific

application requirements. The second problem involves dealing with the discontinuities

introduced by contact and friction. These non-smooth models actually transform the

unconstrained problems in the deformation prediction into constrained ones, requiring

complex solution methods to solve them. Furthermore, coupling different models within

a multi-object system leads to the creation of an augmented system. In combination with

nonlinear constraints, frictional contact problems typically result in large, nonlinear, and

non-smooth problems, posing significant challenges for numerical resolution.

Our study also focus on simulating cutting operations, which encompass a diverse

range of surgical interventions involving the precise removal or separation of tissues, struc-

tures, or organs for various purposes such as resection or dissection. The simulation of

these cutting operations has significant interest, yet it also presents additional challenges.

The act of cutting an object virtually introduces topological changes to the originally dis-

cretized mesh. Furthermore, the interaction between the surgical instrument and the

object results in a cutting path that generally does not align smoothly with the existing

discretization. As a result, additional modifications are required to align the cut surface

with the cutting path. This can be achieved through various methods, such as subdividing

the elements or snapping the closest existing surface. On the other hand, the topological

changes caused by cutting have a direct impact on the numerical resolution of the system.

Many of state-of-the-art solvers employ efficient solutions that rely on specific precom-

putations based on the topological structure. However, the cutting operation invalidates

the precomputed data, posing significant challenges when utilizing these efficient solvers.

1.2 The open-source framework SOFA

Our research and development are based on the SOFA (Simulation Open Framework Ar-

chitecture) Faure et al. (2012), which is an open-source framework targeted at real-time

simulation, with an emphasis on medical simulations. Initially started in 2006 in Boston,

the SOFA project was piloted by INRIA (Institut National de Recherche en Informatique

3



CHAPTER 1. GENERAL INTRODUCTION

et en Automatique) engineers and researchers. Until 2023, SOFA has gathered about 15

years of research in physics simulation, involving diverse research topics such as soft

robot control, endovascular simulations, needle insertion process (in minimally invasive

operations), and virtual surgeries. Based on SOFA, many of works have been developed in

different communities such as medical images, bio-mechanics, and computer graphics.

The fundamental basis of the SOFA framework is in C++. Compiling the C++ project

generates various components that can be utilized in a scene graph, which is structured as

a Direct Acyclic Graph (DAG). This scenario can be designed and organized flexibly using

either an XML file or a Python file with the recently developed SofaPython plugin. Each

component, also referred to as a node in the scene graph, serves a role in computational

tasks such as algorithms, models, and tools. The interactions between the components

are realized through specific data types and links defined within them.

The framework offers diverse types of physics-based simulations, including rigid solids,

deformable solids using the FEM, and fluids using Smoothed Particle Hydrodynamics

(SPH) and Eulerian formulation. SOFA’s flexibility allows for a wide range of algorithms

and models to be employed for deformable solids. SOFA enables using both the Euler

explicit and the Euler implicit for time integration. The linearized system can be solved

using either iterative solvers like Conjugate Gradient or direct solvers like Cholesky de-

composition. Regarding contact problems, SOFA incorporates various discrete collision

detection methods, such as proximity-based techniques and Layer Depth Image (LDI), to

identify potential contacts. It provides the option to use penalty methods for fast contact

responses and constraint-based techniques for accurate and stable solutions.

A notable feature of SOFA is its ability to represent multiple models for the same ob-

ject. A general object can have different "states" for distinct purposes, such as mechanical

displacements, collisions, and visualization. Importantly, each state can be defined flexi-

bly to strike a balance between accuracy and real-time performance, based on specific re-

quirements. For instance, a complex discretization can be applied to the collision model

to achieve precise contact response, while a simpler mechanical model can be used to

gain speedup from the computation of deformation behavior. Alternatively, this configu-

ration can be inverted to prioritize accurate deformation prediction and provide a rough

estimation of contact behavior. Finally, all the other models are connected to the me-

chanical model trough a mechanism called the "Mappings".

Another vital aspect of SOFA is its strong extensibility, which facilitates extensive re-

search within the framework. This extensibility encompasses parallelization techniques

on both CPU (using multithreading techniques) and GPU (via the CUDA API). Detailed

explanations of these parallelization methods will be presented in the subsequent sec-

tion.

4



1.3. PARALLEL PROGRAMMING

1.3 Parallel programming

1.3.1 Multithreading

Multithreading is the capability of a program or operating system to execute multiple

threads simultaneously within a single process. A thread represents a sequence of in-

structions that can be executed independently, enabling different parts of a program to

be executed concurrently. This approach is widely used in simulation frameworks to en-

hance computational speed. Parallelization can be achieved at both the micro and macro

levels, with a key requirement being the independence of parallel tasks:

1. In the case of parallelization in massive independent unit tasks, tasks such as com-

puting triangle normals or matrix-matrix multiplications can be parallelized using

multithreading. This approach significantly reduces computation time compared

to sequential execution using loops. Various C++ libraries, such as the Pardiso solver

project for parallel Cholesky decomposition, provide support for multithreaded lin-

ear algebra operations.

2. Asynchronous programming also leverages multithreading between independent

modules. For instance, solving the mechanical equilibrium without considering

contact constraints and discrete collision detection at the beginning of a time step

are independent tasks and could be executed simultaneously, since they only re-

quire mechanical states at the start of the time step. Recent research has explored

advanced techniques such as asynchronous construction of preconditioners, allow-

ing the main simulation loop to proceed without blocking. However, careful syn-

chronization across sequential time steps is necessary for successful implementa-

tion of this technique.

To summarize, multithreading and asynchronous programming are valuable techniques

that improve computational speed and performance by enabling concurrent execution of

tasks.

1.3.2 GPU-based parallelization

Over the past two decades, the field of computer graphics has undergone a significant

transformation, driven by the advancements in Graphics Processing Units (GPUs). Orig-

inally developed as specialized hardware for graphics rendering and display, GPUs have

evolved into powerful parallel processing units that have revolutionized not only the gam-

ing industry but also various scientific and engineering applications.

5
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(a) (b)

Figure 1.1: Illustrations from the manuscript Dally et al. (2021): (a) The evolution of single
GPU performance over the past 20 years. (b) The architecture of NVIDIA A100 GPU which
was launched in November, 2020.

In particular, NVIDIA GPUs have gained prominence, with their CUDA (Compute Uni-

fied Device Architecture) cores playing a crucial role in parallel computing. The latest

GPU architectures contains a remarkable number of CUDA cores, exceeding 10,000, en-

abling the concurrent processing of massively parallel tasks. This has led to the widespread

use of General Purpose GPUs (GPGPUs) for accelerating computational workloads in fields

such as Deep Learning (DL) that requires High-Performance Computing (HPC). Many

methods in physics-based simulations also benefits from the boosted performance by

GPU-based parallelization.

Similar to multithreading on CPUs, at the heart of GPU-based programming lies the

concept of parallelism. However, implementing GPU-based methods presents challenges.

GPUs excel in executing large-scale parallel computations but struggle with irregular or

divergent control flow. Handling complex branching or conditional operations on GPUs

can result in performance inefficiencies compared to CPUs. Additionally, GPUs have ded-

icated memory separate from the system’s main memory, necessitating careful manage-

ment of data transfer between CPU and GPU memory, which can introduce complexities

and overhead. Debugging and profiling GPU code also pose difficulties, as GPUs execute

parallel threads, requiring identification and resolution of issues like thread divergence,

race conditions, or memory access conflicts. Debugging tools and profilers specific to

GPU programming are available but often require a learning curve.

In our research, we utilize the CUDA Toolkit provided by NVIDIA, a robust devel-

opment kit for implementing GPU-based methods. This toolkit includes a collection

of CUDA-accelerated libraries optimized for GPU computing, such as cuBLAS and cuS-

PARSE for linear algebra tasks. Leveraging these libraries simplifies the development pro-

cess by providing pre-optimized functions that enhance the performance of our applica-

6
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tions.

1.4 Contributions

The primary aim of this manuscript is to enhance computing performance to enable real-

time simulations on a large scale. We first study numerical solvers in real-time simula-

tion frameworks. An efficient matrix-free iterative solver is available in SOFA, which is

designed for linear elastic formulations and optimized for GPU-based implementation.

However, implementing this method for generic hyperelastic materials in a uniform way

proves to be challenging due to the divergence between different models. Conversely,

the traditional solving strategy involves solving the system with the assembled matrix.

Generic constitutive models can take advantage of GPU-based matrix operations, but the

process of matrix assembly typically incurs an overhead cost that cannot be ignored. To

address this issue, we introduce a fast matrix assembly method in our work Zeng and

Courtecuisse (2023b), which is compatible with generic constitutive models. Our ap-

proach exploits the fact that system matrices are created in a deterministic way as long as

the mesh topology remains constant. Using the sparsity pattern of the assembled system

brings about significant optimizations on the assembly stage. As a result, developed tech-

niques of GPU-based parallelization can be directly applied with the assembled system.

Moreover, an asynchronous Cholesky precondition scheme is used to improve the con-

vergence of the system solver. On this basis, a GPU-based Cholesky preconditioner is de-

veloped, significantly reducing the data transfer between the CPU/GPU during the solv-

ing stage. We evaluate the performance of our method with different mesh elements and

hyperelastic models and compare it with typical approaches on the CPU and the GPU.

The second problem we address pertains to contact simulations, which involves solv-

ing a coupled multi-object system. Typically, this problem is transformed into constraint

space by computing the Schur-complement of the system matrix. However, this process

becomes extremely time-consuming when the system has large dimensions. In our work

Zeng et al. (2022), we propose a fast method to handle large-scale FE simulations in the

presence of contact and friction. Our approach employs a precondition-based contact

resolution that performs Cholesky decomposition at a low frequency. By exploiting spar-

sity in assembled matrices, we propose a reduced and parallel computation scheme to

address the expensive computation of the Schur-complement caused by detailed mesh

and accurate contact response. An efficient GPU-based solver is developed to parallelize

the computation, making it possible to provide real-time simulations in the presence of

coupled constraints for contact and friction response. In addition, the preconditioner is

7
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updated at low frequency, implying reuse of the factorized system. To benefit a further

speedup, we propose a strategy to share the resolution information between consecutive

time steps. We evaluate the performance of our method in various contact applications

and compare it with typical approaches on both the CPU and GPU. The efficiency of the

method has also been proven in our subsequent work on needle insertion simulations

Martin et al. (2023).

Our subsequent work focuses on real-time virtual cutting. The mesh refinement meth-

ods, widely used in recent works, generate a large number of new DOFs, greatly increasing

computational costs in the subsequent numerical solution. Instead, we employ a node-

snapping strategy as the basis of our novel method to mitigate this issue. Using this strat-

egy requires addressing several critical problems encountered in previous work, such as

ill-shaped elements, topology changes, and energy preservation. With the solutions pro-

posed, our cutting method involves using a vertices-snapping strategy to fit the boundary

surface onto the cutting path while avoiding the generation of new elements: Using point

cloud to model unscheduled cuts in real-time, our approach enables operating with users.

We propose solving an elastic problem in order to minimize the volume change. To deal

with cutting while deforming and to ensure energy conservation, the elastic problem is

transferred into the reference state of the cutting object, and is solved in a second simula-

tion. Efficient geometry operations are developed to handle the topological modifications

during progressive cutting. Furthermore, we propose a modification to a fast matrix-free

iterative solver on the GPU that can efficiently update pre-processed data used in GPU-

based kernels, thus ensuring real-time performance in large-scale problems.

Our final study involves the potential works in contact and cutting problems. The first

perspective is a a novel implicit scheme for resolving constraints in contact simulations

Zeng and Courtecuisse (2023a). In our method, we propose a recursive corrective motion

scheme where the constraint forces are corrected in Newton iterations. This scheme has

the potential to handle the inconsistency of constraint directions at the beginning and

the end of time steps. Furthermore, to keep the resolution process as efficient as possible,

we propose a reformulation that provides efficient update of constraint matrices in the

iterative scheme. Nevertheless, we have only evaluated the computing efficiency of the

method, while the improvement of stability and behavior remains to be proven in the

future work.

In the perspective of our cutting method, we propose enhancements to the fast assem-

bly method Zeng and Courtecuisse (2023b) and the isolating mechanical DOFs method

Zeng et al. (2022). By combining these solutions with the new virtual cutting approach,

we overcome challenges related to the efficient update of pre-computed data in these

methods, ensuring their efficiency even with topology changes.
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1.5. OVERVIEW

In conclusion, our works contribute efficient solutions to simulating deformation,

contact and friction, and virtual cutting. With the integration of GPU-based paralleliza-

tion, our research enables real-time FE simulations for deformable solids, even with large-

scale problems (up to 10,000 - 15,000 vertices), frictional contact, and cutting operations.

This allows for interactive virtual surgeries with more detailed object shapes, providing

operators with relevant information in real-time.

1.5 Overview

We present the outline of this manuscript: After reviewing the related works in Chapter

2, Chapter 3 presents the background for deformable solids simulations, followed by the

fast matrix assembly strategy and the efficient GPU-based solution for the linear system

in FE simulations. Chapter 4 and Chapter 5 are dedicated to the new proposed methods

in contact problems and in virtual cutting, respectively. Finally, our works are concluded

in Chapter 6 with the perspectives.
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SIMULATIONS

2.1 Physics-based simulations of deformable solids

2.1.1 Time discretization

In the context of interactive simulations, an important choice is the time integration scheme.

The explicit Euler methods have been widely used for medical simulations for soft mate-

rials Joldes et al. (2009). In this case, the solution only involves the (diagonal) mass matrix

leading to very fast, simple to implement, and parallelizable solutions Comas et al. (2008).

Unfortunately, user interactions may introduce sudden and stiff contacts at arbitrary lo-

cation/frequency, which raises stability issues.

On the opposite, the implicit Euler methods are unconditionally stable, i.e., stable (but

not necessarily accurate) for large time steps and arbitrary stiff materials Baraff (1996).

Implicit schemes provide better control of the residual vector and hence that the external

and internal forces are balanced at the end of the time steps. Although these advantages

come at the cost of solving a set of linear equations at each time step, implicit integra-

tion schemes offer a reasonable trade-off between robustness, stability, convergence, and

computation time, particularly when combined with a GPU implementation.
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2.1.2 Deformation in solids

There is a considerable volume of works in the area of simulating deformable objects. Fi-

nite Element (FE) models using elastic/hyperelastic material provide a good understand-

ing of the mechanisms involved in physiological or pathological cases, mainly because

the soft-tissue behavior is directly explained through constitutive relations Courtecuisse

et al. (2014). A common way to formulate the solid deformations is to search for the min-

imum conservative energy function E(q) depending on the actual positions of vertices

(mechanical DOFs) q. However, dealing with such optimization problem in real-time is

very challenging. This problem is critical when using a complex FE model with a fine

mesh discretization and nonlinear mechanical laws because of the large dimension of

DOFs and the integration of the nonlinear mechanics at each step.

A standard approach to minimize the conservative energy function in implicit scheme

is the Newton-Raphson method (also known as Newton’s method). Using the energy gra-

dient ∇E (related to internal elastic forces) and the Hessian ∇2E (related to stiffness ma-

trix), the Newton’s method converges towards the minimized energy with a quadratic ap-

proximation in iterations. Consequently the Newton’s method is very expensive in time

consuming as it requires re-evaluating ∇E and ∇2E and resolve the linearized problem

in each iteration. With the rapid growth of computational power and some simplifica-

tions such as setting with one Newton iteration, this approach, known as the classical

force-based method, has become compatible with real-time and interactivity. First lim-

ited to linear elastic models Bro-Nielsen and Cotin (1996), it was later extended to large

displacements with the co-rotational formulation Felippa (2000). Allard et al. (2012) pro-

poses a parallel resolution on GPU for a co-rotational model without explicitly assembling

the system matrix. In Kugelstadt et al. (2018) a novel approach is proposed for co-rotated

FE simulations, splitting the deformation energy terms to a stretching part which can be

solved efficiently by a pre-computed factorization and a volumetric part correction which

is addressed approximately. This operator-splitting method shows considerably high per-

formance. FE models are now used for the simulation of hyperelastic or viscoelastic ma-

terials in real-time Marchesseau et al. (2010). However, although some validations of the

behavior against real objects have been conducted, these methods remain complex and

expensive, and the simulation of realistic boundary conditions such as interactions be-

tween deformable objects is still an issue.

Departing from the classical force-based method, the geometrically motivated meth-

ods give an alternative solution for simple, robust and computationally efficient simu-

lations. One of the successful works is the Position-Based Dynamics (PBD) Müller et al.

(2007) that redresses the unconstrained deformation by iterative constraint solver, in or-
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der maintain the undeformed shape. The main idea of PBD similar to those of the Shape

Matching methods Müller et al. (2005); Rivers and James (2007). With a Gauss-Seidel type

solver, the PBD keeps projecting the individual nonlinear constraints onto the global sys-

tem iteratively. Consequently the material stiffness will depend on the iteration number

and the fast method cannot correctly follow the elastic models in continuum mechanics.

Liu et al. (2013) uses Hookean springs to replace the inextensible springs in the PBD,

and introduces a local-global alternating minimization solver that transform the nonlin-

ear mechanics into coupling of a global linear system and localized nonlinear problems.

By generalizing the mass-spring in the localized constraints to co-rotational models, the

Projective Dynamics Bouaziz et al. (2014) successfully bridges the gap between the PBD

and the continuum mechanics, providing a good trade-off between the performance of

the PBD and the accuracy of continuum mechanics. This work is extended in Liu et al.

(2017) for hyperelastic materials using a Quasi-Newton method to boost convergence. Re-

cently, Trusty et al. (2022) models the elastic energy by mixed variational potential Reiss-

ner (1985) and uses the alternating solver to provide efficient and stable simulations for

general elastic constitutive models.

Despite being computationally efficient and robust, the Projective Dynamics suffers

from some drawbacks (e.g., the iteration number should be pre-adjusted to have correct

behavior Ly et al. (2020)) and it dose not offer the same convention of parameters in con-

tinuum mechanics. Therefore the Projective Dynamics is not yet widely used in applied

communities such as bio-mechanical simulations or soft robotics.

On the other hand, meshless methods and Neural Networks are other strategies to

model soft tissues in real-time. A detailed review of this topic goes far beyond the scope of

this article, but a survey can be found in Zhang et al. (2018). In this manuscript, our con-

tributions focus on the improvement of real-time simulation methods in the community

of SOFA Framework, which has an emphasis on bio-mechanical simulations and model-

ing of soft robotics. In these fields, the force-based FE methods still remain gold-standard

approaches to simulate realistic behavior with real material parameters.

2.1.3 Linear problem solution

After an approximation of a first-order Taylor, which is equivalent to a single Newton iter-

ation (see in Section 3.1.3), the nonlinear problem in the implicit scheme is linearized as a

linear system Ax = b. The global system matrix A is a n×n symmetric and positive-definite

matrix, where n is the number of mechanical DOFs. Generally, such a linear system can

be solved either by a direct solver or an iterative solver. Direct solvers provide the exact

solution by computing a factorization (for instance, the Cholesky factorization Barbič and
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James (2005)) or a decomposition (QR decomposition), or eventually, the actual inverse

of the system matrix Bro-Nielsen and Cotin (1996) (though not recommended for large

matrices). Efficient libraries exist both on the CPU (Pardiso, MUMPS, Taucs) and GPU

(cuSPARSE, MAGMA, AmgX). The direct solvers provides robust results but the computa-

tion cost trends to be expensive with increasing of n. For example, as one of the popular

direct solvers, the Cholesky decomposition has a complexity of O (n3), which becomes

prohibitive for real-time performance in large-scale simulations. Therefore, the direct

solvers are usually used in relatively small-scale problems.

On the other hand, iterative methods are usually preferred in FE simulations because

they limit the number of iterations to compute an approximated solution and better con-

trol the time spent during the solving process. The most popular method is the Conjugate

Gradient (CG) algorithm Saad (2003), because of the fast convergence and its simple im-

plementation. Parallel implementations both on CPU Hermann et al. (2009); Parker and

O’Brien (2009) and GPU Allard et al. (2011); Bolz et al. (2005); Buatois et al. (2009) were

proposed. However, the convergence of iterative methods can be significantly impacted

for ill-conditioned problems, i.e., when the ratio of the largest and smallest eigenvalues is

large. The main issue to improve the CG is to gain speedup on sparse matrix-vector mul-

tiplication (SpMV ) operations. As it is presented in Bell and Garland (2009), to accelerate

the SpMV operations, many methods are explored to implement them on throughput-

oriented processors such as GPU.

2.1.4 Matrix-free solvers and matrix assembly

Several methods rely on the fact that CG iterations can be performed without explicitly

assembling the system matrix Martínez-Frutos et al. (2015); Müller et al. (2013). Matrix-

free methods significantly reduce the memory bandwidth and are proven to be fast and

stable. As an example, the method introduced in Allard et al. (2011) is designed for the

co-rotational formulation and relies on specific cache optimization to compute rotation

matrices directly on the GPU. However, the specific cache optimizations proposed for the

rotation matrices do not extend to other types of material, such as hyperelastic laws.

Explicit assembly of global matrices is necessary for direct solvers to compute the fac-

torization or decomposition of the system. The assembly step is usually less critical than

the solving process itself, but it may become the bottleneck when combined with efficient

solvers. There are several ways to construct sparse matrices; the most popular method is

first to collect triplets (the row/column index and the value); then compress the triplets in

a sparse format. A very efficient implementation is provided in the Eigen library. Recently

Hiemstra et al. (2019) proposed a row by row assembling method for isogeometric linear
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elasticity problems. To accelerate the assembling step and minimize memory transfers,

several approaches proposed to assemble the matrix directly on the GPU Dziekonski et al.

(2012); Fu et al. (2018); Zayer et al. (2017). However, specific GPU-based implementation

of the assembling procedure is needed for each particular model.

2.1.5 Precondition techniques

Another intense area of research aims to improve the performance of the CG algorithm

with the use of preconditioners to speed up its convergence. There are several typical pre-

conditioners: diagonal matrix is simple to build but has limited effect Baraff and Witkin

(1998); in contrast, precise ones such as incomplete Cholesky factorization are complex

and costly to make but can significantly reduce the condition number Hauth et al. (2003).

For a typical synchronous preconditioner, the construction of the preconditioner has

to be performed before the solving stage of each time integration, leading to additional

computation costs. Some of the recent works aim to find a balance between the cost of

applying the preconditioner and the effect of convergence boost, such as efficient precon-

ditioners using the result of incomplete factorization Anzt et al. (2015) and inner Gauss-

Seidel preconditioners Thomas et al. (2021).

On the other hand, the asynchronous preconditioners proposed in Courtecuisse et al.

(2010a) exploit the continuity of the time line in physically-based simulations. Relying

on the assumption that mechanical matrices undergo relatively small changes between

consecutive time steps, the asynchronous preconditioning scheme processes the matrix

factorization in a dedicated thread parallel to the main simulation loop and applies the

factorization result as a preconditioner after a short delay. It enables access to a very

efficient preconditioner with almost no overhead in the simulation loop. As a combina-

tion of a direct and iterative solver, the method requires explicitly assembling the ma-

trix at a low frequency in the simulation loop to factorize the system in the dedicated

thread. For both synchronous and asynchronous preconditioning schemes, applying the

preconditioner requires processing the forward/backward substitution, leading to solv-

ing sparse triangular systems (STS). Parallelizing the solution of STS remains challenging

in many applications. There are many works dedicated to improving the performance of

STS solvers on the CPU Bradley (2016) and on the GPU Li and Zhang (2020); Picciau et al.

(2017); Yamazaki et al. (2020). In Courtecuisse et al. (2014), a GPU-based asynchronous

preconditioner was designed to solve the STS with multiple right-hand sides (RHS) in the

contact problem. However, the method cannot efficiently exploit parallelization when

dealing with a single RHS. Therefore, despite the asynchronous preconditioning scheme

being introduced with a GPU-based CG implementation of the co-rotational model, ap-
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plying the preconditioner was performed on the CPU, requiring data transfers between

CPU/GPU for each iteration of the preconditioned CG.

2.2 Contact problem and coupled systems

2.2.1 Contact generation

In contact simulations, interactions in multi-objects systems usually cause discontinuity

in the velocities. This can be handled either by the event driven scheme or by the time

stepping scheme. The event driven scheme gives accurate results but is restricted with

limited instantaneous contacts. In contrast, the time stepping scheme involves all con-

tacts during a fixed time step Anitescu et al. (1999).

In the time stepping scheme, the interactions between objects are detected in each

time step by a collision detection process that defines potential constraint pairs for dis-

cretized systems. The detection methods are generally classified as two types: the Dis-

crete Collision Detection (DCD) and the Continuous Collision Detection (CCD). The DCD

Macklin et al. (2019) searches for potential contact at fixed intervals, providing efficiency

in computing performance. In contrast, the CCD Li et al. (2020) checks for collisions along

the trajectory of potential contact objects, being necessary for high-speed objects such as

bullets. Both of them could be either processed once at the time step beginning for per-

formance, or be integrated into the solving iterations for accuracy and stability.

While applied in bio-mechanical simulations, the DCD methods are usually preferred

since the fast-moving object is rare in application scenarios. As a straightforward method,

the proximity-based detection Martin et al. (2023) searches for the closest distances be-

tween elements on the mesh boundary. The Bounding Volume Hierarchy (BVH) is a tech-

nique that is usually used to efficiently accelerating the detection process, where the BV

types could be various: such as sphere Hubbard (1996), oriented bouning box (OBB)

Zachmann (2002), and axis aligned bounding box (AABB) Larsson and Akenine-Möller

(2001). The volume-based method computes the intersection between the bodies and de-

fines the contacts based on the intersected volume. This method could be combined with

the Layered Depth Images (LDI) technique, providing fast collision detection for complex

meshes while using a GPU-based implementation Allard et al. (2010). The Signed Dis-

tance Fields (SDF) Xu and Barbič (2014) give an implicit function for the mesh shape,

resulting in negative values if inside the object and positive values if outside (conven-

tionally). However, since the function is static and usually pre-computed in initialization,

using the SDF requires that at least one of the colliding object is rigid. There are also other

recent methods on the collision detection. For example, Masterjohn et al. (2022) pro-
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poses a new contact model that evaluates the contact with the surface of equal pressure

between two intersected pressure fields. Using different collision detection method will

not only impact the performance, but also the contact model and collision definition that

will be discussed in the next section.

2.2.2 Contact and friction models

Once the contacts are defined, one can solve the dynamic system with different con-

tact models that dominate the motion of interacting objects. As the earliest method,

the penalty methods apply approximate forces on contact points depending on the inter-

penetration and a problem-dependent parameter named penalty value. A larger penalty

value enforces a more limited interpenetration but also leads to a worse conditioned

problem. Consequently, the methods only give an approximate solution and can hardly

handle stable contacts. Being very simple to be implemented and fast, the penalty method

is still very popular in many applications of fast simulations Kugelstadt et al. (2018).

On the other hand, the constraint-based methods using Lagrange multipliers (Jean

(1999), Renard (2013)) solve the contact problem in a coupled way, addressing the lim-

itation in the penalty methods. Such methods provide accurate and robust solutions in

contact mechanics for large time steps, where interpenetration is entirely eliminated at

the end of time steps. To address the problem, the methods are commonly formulated

as a complementarity problem, which is based on the Signorini’s law for non-penetration

contact and the Coulomb’s law for the friction. The Lagrange multipliers methods can be

naturally used to impose displacement (bilateral constraints Galoppo et al. (2006)), but

interactions between multiple objects usually lead to define unilateral constraints.

The PBD and the Projective Dynamics come with a straightforward way to handle the

collision by simply adding penalty-based contact energy into the global system. Ly et al.

(2020) introduces the Signorini-Coulomb law into the Projective Dynamics to satisfy the

non-penetration and Couloumb constraints in the local solver. Lan et al. (2020) proposes

a new method that reduces the detailed mesh as a skeleton-like model via the Medial Axis

Transform (MAT) Li et al. (2016), and uses the Projective Dynamics to solve the reduced

model. Using the MAT, this work implements efficient transform between the original

shape and the reduced model, and an efficient collision detection between medial cones.

2.2.3 Numerical methods in complementarity problems

The force-based methods for the elastic deformation usually fit well with the constraint

based techniques for stability and accuracy. However, using Signorini-Coulomb law will
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introduce discontinuities into the dynamic equations, leading to a non-smooth formu-

lation. In the constraint resolution, different numerical methods can be used to address

the linear complementarity problem (LCP) in physics-based animations Erleben (2013).

Direct methods such as pivoting methods give exact resolution, but they are not com-

putationally efficient. In contrast, iterative methods have been more widely applied in

large-scale simulations, especially for those who require to perform real-time compu-

tations. Being simple to implement, projected Gauss-Seidel (PGS) (Duriez et al. (2006),

Courtecuisse and Allard (2009), Macklin et al. (2016)) is able to handle the friction re-

sponse with the Coulomb’s friction cone combined in the LCP formulation. However,

the algorithm is not efficient for ill-conditioned problems due to the slow convergence.

The non-smooth Newton methods reformulate the complementarity problem into a root

search problem using nonlinear complementarity problem (NCP) functions. However,

the NCP functions contains discontinuities in their derivatives, making it difficult to be

integrated into the Newton’s method. Macklin et al. (2019) proposes removing the discon-

tinuities with a complementarity preconditioner for the NCP function. Moreover, in order

to avoid recomputing and inverting the Hessian iteratively, the method approximates the

system matrix by a diagonal matrix, with an evalutation of the momentum balance gradi-

ent. The Increment Potential Contact (IPC) Li et al. (2020) formulates the contact model

as an unsigned distance function. Using designed barrier functions, the method trans-

forms the constrained problem as an unconstrained optimization which could be solved

by a Newton-like barrier solver.

2.2.4 Schur-complement in constraint-based methods

In physics-based animations with constrained dynamics, one efficient solution is to for-

mulate the Schur-complement of the augmented system, allowing this way to solve the

problem in the constraint space that usually has a much smaller size than the augmented

system. The Schur-complement results in a compliance matrix (also called Delasus opera-

tor) in the constraint space. As discussed in Andrews and Erleben (2021), the computation

of Schur-complement tends to be costly when dealing with soft-body since it implies to

solve a linear system with multiple right-hand sides. In such system, the discretization

of FE models determines the problem size (mechanical DOFs) and the constraints deter-

mines the right-hand sides. We would like to note here that although the geometrically

motivated methods (PBD and projective dynamics) also process constraint resolution,

they meet different challenges from the FE methods in the system resolution. Building

the Delasus operator is not necessary for projective dynamics as the internal and external

constraints are solved locally in each element then coupled in a global solver. But in FE
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simulations, the Delasus operator is important to couple contact forces in the resolution

and enables stable simulations with complex interactions.

Many methods have been proposed to efficiently process the Schur-complement in

interactive FE simulations. Saupin et al. (2008b) presents a compliance warping to pre-

compute a factorized system in initialization and to apply correction in online simulation

according to the co-rotational formulation. Unfortunately, the method is restricted with

small deformation. Schenk and Gärtner (2006) and Petra et al. (2014) present respec-

tively a fast factorization method and a fast Schur-complement computation using an

augmented factorization method. Both the two methods are parallelized in CPU threads

and integrated into Pardiso solver project, giving a fast CPU-based resolution for linear

systems and Schur-complement. Updating Cholesky factor is suitable for FE simulations

since the deformations are usually limited in consecutive time steps. This technique be-

comes very efficient by reusing factorization on sub-meshes Herholz and Alexa (2018)

and is extended to dimension addition cases (e.g., mesh cutting) in Herholz and Sorkine-

Hornung (2020).

However, even with highly optimized methods, factorizing large-scale systems remains

highly expensive and makes it hard to be applied in real-time simulations. These CPU-

based methods suffer from a very costly factorization for detailed meshes, making it hard

to perform real-time simulations. Since factorization remains a critical obstacle in real-

time applications, Courtecuisse et al. (2010a) proposed an asynchronous method to com-

pute a preconditioner for iterative method, moving the factorization of the system into a

parallel thread. This work is extended to the contact simulation in Courtecuisse et al.

(2014) to compute an approximate solution of Schur-complement, using a highly paral-

lelized solver on GPU. The method enables real-time simulations with up to 2000 nodes

with 300 constraints but the computation of the Schur-complement is dominant in the

time integration.

2.3 Cutting simulations and topology change

A significant amount of research has been conducted in the scientific literature on the

topic of virtual cutting. Virtual cutting methods can be broadly classified as either mesh-

based or meshless methods, depending on the approach used to simulate deformations.

Mesh-based methods, which utilize FE discretization, involve splitting the mesh and mod-

ifying its topology to accurately represent the shape of the object, consistent with the

methods discussed in previous sections on deformation and contact. However, these

methods face challenges in dealing with changes in topology and usually result in poorly
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shaped elements after cutting. Additionally, the necessary operations involved in modi-

fying the mesh incur extra computational costs, making it difficult to achieve real-time

performance. The topology changes often lead to geometrical discontinuities such as

cracks after virtual cuts. While the traditional FEM struggles to accurately represent such

problems, the eXtended FEM (XFEM) Bansal et al. (2019); Peng et al. (2014) overcomes

the limitations by enriching the standard finite element approximation with additional

functions that can capture the singularities or discontinuities in the problem. However,

using XFEM can be computationally expensive as the enrichment functions introduce

additional degrees of freedom, increasing the complexity of the problem.

Meshless methods, on the other hand, have emerged as an alternative to mesh-based

approaches and have been rapidly developing in recent years. These methods, such as

those described in Jin et al. (2012); Nguyen et al. (2008); Zhang et al. (2014), employ a

set of points to represent deformable objects without the need for mesh generation and

refinement. Consequently, meshless methods overcome the difficulties associated with

modifying mesh topology during cutting and efficiently model discontinuities by adapt-

ing the distribution of nodes and basis functions to the problem’s characteristics. How-

ever, meshless methods also face challenges such as the lack of convergence and stability

guarantees, difficulty in enforcing boundary conditions, and high computational costs

when dealing with a large number of nodes.

In this manuscript, our focus is on mesh-based cutting in order to maintain consis-

tency with the methods used in FE simulations. A comprehensive review of meshless

methods in the context of virtual cutting is beyond the scope of this manuscript, but in-

terested readers can refer to surveys conducted by Wang and Ma (2018); Wu et al. (2015)

for more information.

2.3.1 Mesh-based cutting methods

The meth-based cutting presents persistent challenges stemming from a range of factors,

encompassing:

1. Dealing with topology change The principal hurdle in virtual cutting involves effec-

tively managing alterations in the mesh topology required to divide the object into

multiple parts. This necessitates techniques capable of accurately handling such

changes.

2. Ensuring cutting surface quality It is crucial to maintain a high standard of quality

for the cutting surface. Attaining a smooth and precise surface following the cut is

imperative for accurate virtual simulations and visualizations. However, the inter-
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Figure 2.1: Illustrations for mesh-based methods from the survey Wang and Ma (2018) :
(A) mesh deletion; (B) splitting along the existing surface; (C) node snapping; (D) mesh re-
finement; (E) virtual node algorithm (mesh duplication); (F) mesh refinement with node
snapping

action between the surgical instrument and the object typically results in a cutting

path that lacks smooth alignment with the existing discretization. Consequently,

supplementary modifications are necessary to align the cut surface with the cutting

path.

3. Preserving mesh quality after cutting Current supplementary techniques, such as

subdivision or snapping strategies, are often employed to optimize the cut sur-

face. However, these methods inevitably generate ill-shaped elements, leading to

a degradation in the quality of the mesh. Preserving the overall quality of the mesh

becomes a critical challenge, as degraded mesh quality can have adverse effects on

subsequent numerical solutions, introducing ill-conditioned problems.

4. Efficient numerical solution with topology change Topology changes invalidate

precomputed data in many state-of-the-art solvers, where efficiency heavily relies

on these precomputations assuming an unchanged topology structure. As a result,

achieving an efficient numerical solution in the presence of topology changes be-
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comes an additional challenge that must be addressed.

In the context of real-time finite-element simulations of deformable solids, several

methods can be used to address the topological process of tetrahedral meshes: Although

the simple and efficient methods (element deletion Cotin et al. (2000); Forest et al. (2005)

and splitting along existing faces Nienhuys and van der Stappen (2000)) ensure both the

good quality of the mesh and real-time performance of the simulation, they cannot pro-

vide a cutting surface that fits onto the cutting path. Moreover, deleting elements will lead

to the destruction of volume conservation in the physical system. Being popular in recent

works of virtual cutting, the method of mesh subdivision Bielser et al. (1999); Burkhart

et al. (2010); Li et al. (2021); Paulus et al. (2015a) refines the local elements on the cutting

path, such that the cutting surface follows the path. However, the refined elements risk

being ill-shaped, and the cutting process generates new elements continuously, increas-

ing the computation cost for the numerical solver. On the other hand, the node snapping

method Nienhuys and van der Stappe (2001); Serby et al. (2001) adjusts the cutting sur-

face by moving the local vertices onto the cutting path. Similar to the refinement method,

the snapping approach provides good quality of cutting surface and risks generating ill-

shaped meshes. Furthermore, unlike the refinement method, it will not generate new

elements, limiting the increase in computation cost. Nevertheless, few of recent works

has developed the original node snapping method due to the difficulty of addressing the

ill-shaped mesh and progressive simulation. A hybrid approach Steinemann et al. (2006)

combines the methods of node snapping and element refinement. The virtual node al-

gorithm Molino et al. (2004) duplicates the elements to cut and embeds the material sur-

face into the duplicated element, allowing handling of the cutting surface while avoiding

ill-shaped meshes. Sifakis et al. (2007) and Wang et al. (2014) extend the work to high-

resolution material surface embedding and provide the possibility of arbitrarily cutting a

tetrahedron.

2.3.2 Numerical solvers with topology change

Many state-of-the-art solvers that aim for real-time performance heavily depend on pre-

computed data that is determined by the original mesh’s topological structure. Modify-

ing the topology during virtual cutting necessitates efficient updates to the precomputed

data, thereby posing a new challenge. In Section 2.1.3, we discussed both direct solvers

and iterative solvers as viable options for solving the linearized problem in deformation

simulations.

In the case of direct solvers used in static finite element simulations with a linear elas-

ticity model, the inverse of the system matrix can be precomputed and stored. When
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the cutting process alters the mesh topology, the Sherman-Morrison-Woodbury formula

Hager (1989) can be employed to update the precomputed data. Authors such as Courte-

cuisse et al. (2014, 2010b) utilized this formula in an asynchronous preconditioner to up-

date the compliance matrix after cutting. Another approach proposed by Yeung et al.

(2016, 2020) involves quickly updating the system solution by computing the Schur com-

plement of the stiffness matrix in an augmented system that accounts for changed or

added DOFs. In Herholz and Alexa (2018), an efficient method was introduced to update

the Cholesky factor by reusing factorization on sub-meshes, and this work was extended

in Herholz and Sorkine-Hornung (2020) to handle changes in dimension and topology. In

Projective Dynamics, a precomputed Cholesky factorization enables efficient system res-

olution. However, similar to the system matrix in typical force-based methods, topolog-

ical changes during the cutting process necessitate refactorization, compromising real-

time performance. To tackle this problem, Li et al. (2021) presents a novel algorithm to

update the Cholesky factor in the cutting simulation using the Projective Dynamics and

the element refinement technique. This method allows for efficient addition of arbitrary

new DOFs in the Cholesky factor update, whereas Herholz and Sorkine-Hornung (2020)

only permits copies of existing DOFs.

Simulating cuts with an iterative solver involves modifying the matrix pattern of the

global system matrix. Efficient matrix assembly strategies, such as the fast matrix assem-

bly method (one of our contributions in this manuscript), exploit the unchanged topol-

ogy structure and provide efficient assembly when the topology remains unaltered. Con-

versely, matrix-free methods Allard et al. (2011) encounter challenges when dealing with

topological modifications since their computational efficiency relies on extensive pre-

computation that is dependent on the mesh topology. In both methods, the cutting pro-

cess invalidates the precomputed data, necessitating costly recomputation. Thus, when

modifying the mesh topology, additional operations are required to effectively handle the

changes in the precomputed data instead of recomputing it.

23





C
H

A
P

T
E

R

3
PHYSICS-BASED SIMULATIONS OF

DEFORMABLE SOLIDS

In this chapter we will discuss the background for deformable simulations using the im-

plicit Euler integration in Section 3.1. This involves the typical formulations for elas-

tic deformation derived from continuum mechanics, the dynamic equations in implicit

scheme, and the matrix-free iterative solver. Then in the following sections we will clarify

the challenges of parallelizing the numerical resolution and introduce our new proposed

methods, including a fast assembly strategy and an efficient numerical solver in FE simu-

lations.

3.1 From continuum mechanics to numerical simulations

3.1.1 Elastic deformation and constitutive laws

In computer graphics, the conventional definition for a deformation gradient F is de-

scribed as a tensor that transforms the undeformed shape to the deformed shape Bargteil

et al. (2020); Sifakis and Barbic (2012):

q = Fqref +−→
T (3.1)

where we consider the deformed positions q and undeformed positions qref in a general

finite element, and
−→
T refers to a rigid translation from the initial position.
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Following Sifakis and Barbic (2012), we use the classical definition for hyperelastic ma-

terials in computer graphics (different from the definition in material mechanics): The

material whose strain energy is independent from the prior deformation history. This

property exposes a fact that the internal elastic forces F of hyperelastic materials are con-

servative, allowing for a formulation of the total strain energy E(q) that is only determined

by the final deformed shape.

The energy density Ψ(q) measures strain energy per unit undeformed volume on an

infinitesimal spaceΩ around the reference position qref. Generally we expect that the en-

ergy density is independent from the rigid translation in Equation (3.1), implying thatΨ is

expected to be a function of the deformation gradient, therebyΨ(F). This formula reveals

the relation between F andΨ , known as deformation-stress relation in constitutive mod-

els. There are several types of successful constitutive models that are designed for differ-

ent behaviors and different applications. These models differ in the constitutive law and

computing complexity, but share the same idea to define specific intermediate quantities

derived form F. In the following context we will discuss the definitions of deformation-

stress relation in several typical models, varying from linear elasticity to high-order laws.

Linear elastic model The linear elasticity model, which serves as a fundamental con-

stitutive model, employs the small strain tensor ξ as an intermediate variable. The small

strain tensor is defined as follows:

ξ= 1

2
(F+FT)− I (3.2)

while the strain energy density is defined as:

Ψ(F) =µ||ξ||2F +
λ

2
tr2(ξ) =µ||1

2
(F+FT)− I||2F +

λ

2
tr2(

1

2
(F+FT)− I) (3.3)

where µ and λ represent the Lamé coefficients, which can be derived from the Young’s

modulus E (indicating resistance to stretching) and the Poisson’s ratio ν (indicating in-

compressibility).

The linear elasticity model exhibits several important characteristics. It is relatively

straightforward to implement and computationally efficient since the nodal elastic forces

(represented by ∇Ψ) have a linear relationship with nodal positions. However, it is im-

portant to note that the small strain tensor approximation is only valid for small deforma-

tions. Furthermore, the model lacks rotational invariance, as a rigid rotation results in a

nonzero strain tensor ξ.
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Corotational model The corotated linear elasticity, also referred to as the corotational

model, is introduced as a solution to the problem of rotational invariance in the linear

model. By utilizing the Singular Value Decomposition (SVD), this model eliminates rota-

tions from the deformation gradient. The SVD representation is given as:

F = UΣVT (3.4)

Here, U and V are rotation matrices, while Σ is a diagonal matrix containing the singular

values of F, representing the deformation gradient with rigid rotations removed.

Replacing the small strain tensor with the modified tensor measure Σ− I, the strain

energy density for corotated elasticity is defined as follows:

Ψ(F) =µ||Σ− I||2F +
λ

2
tr2(Σ− I) (3.5)

The corotational model ensures rotational invariance in linear elasticity, albeit at the

additional cost of performing the SVD. However, it still encounters the limitation that the

reliable measure is only applicable to small-scale deformations.

St.Venant-Kirchhoff model The St.Venant-Kirchhoff model uses the Green strain ten-

sor, defined as:

E = 1

2
(FFT − I) (3.6)

It is important to note that the small strain tensor, denoted as ξ, employed in linear elas-

ticity, is an approximation of the Green strain tensor for small deformations. In a similar

fashion, the strain energy density for St.Venant-Kirchhoff elasticity can be derived by sub-

stituting ξ from Equation 3.3 with E, yielding:

Ψ(F) =µ||E||2F +
λ

2
tr2(E) =µ||1

2
(FFT − I)||2F +

λ

2
tr2(

1

2
(FFT − I)) (3.7)

The St.Venant-Kirchhoff model exhibits rotational invariance and demonstrates plau-

sible material response in various scenarios involving large deformations, where linear

elasticity would not be suitable. However, there are trade-offs associated with this model.

The relationship between nodal elastic forces and nodal positions is no longer linear, ne-

cessitating advanced solvers for numerical resolution. Additionally, the model has limita-

tions in terms of its resistance to extreme compression.

Neohookean model Instead of utilizing the strain tensor, the Neohookean elasticity model

employs isotropic invariants as its intermediate variables. These invariants, denoted as I1,
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I2, and I3, are defined as follows:

I1 =
∑

i
σ2

i I2 =
∑

i
σ4

i I3 =
∏

i
σ2

i (3.8)

where σi are singular values extracted from the SVD of F (as discussed in the corotated

model).

The Neohookean elasticity model defines its strain energy density as follows:

Ψ(I1, I3) = µ

2
(I1 − log(I3)−3)+ λ

8
log2(I3) (3.9)

The Neohookean model has many notable properties on the behavior, including ro-

tational invariance, a strong response to extreme compression, and the ability to prevent

inverted configurations. However, this model involves a high-order nonlinear formula-

tion, which requires significant computational resources for stress computations, mak-

ing real-time computations challenging. Other nonlinear models, such as Mooney-Rivlin

elasticity, also utilize isotropic invariants to formulate the energy density.

The divergence of formulations across different models poses a challenge when at-

tempting to assembly the elastic tensors (elastic force ∇E and stiffness matrix ∇2E) in

a uniform way. An efficient method to assemble the stiffness matrix for the high-order

models that utilize isotropic invariants in their formulations, can be observed in the im-

plementation within SOFA. This method involves the utilization of the Multiplicative Ja-

cobian Energy Decomposition (MJED) technique as described in the work Marchesseau

et al. (2010).

3.1.2 Discretization in numerical simulations

In the discretized problem, the formulation in constitutive laws explicitly describes the

deformation-stress relation, governing the behavior for each finite element. Since F is

constant over the element, we have the total strain energy of this element as:

E =
∫

V
Ψ(F)dV =VΨ(F) (3.10)

with V the undeformed volume of the element. Following the definition in Equation (3.1),

we can compute F with the currently deformed position q and the undeformed position

qref:

F = Ds(q)Dm(qref)−1 (3.11)

where Ds and Dm are tensors computed with q and qref, respectively. For example, as the

most widely-used discretization type in 3D problems, a tetrahedron element has Ds and
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Dm like:

Ds =


q1x −q0x q2x −q0x q3x −q0x

q1y −q0y q2y −q0y q3y −q0y

q1z −q0z q2z −q0z q3z −q0z



Dm =


qref

1x −qref
0x qref

2x −qref
0x qref

3x −qref
0x

qref
1y −qref

0y qref
2y −qref

0y qref
3y −qref

0y

qref
1z −qref

0z qref
2z −qref

0z qref
3z −qref

0z



(3.12)

where the indices represent the vertex index in the element and their position component

on each axis (e.g., q1x represents the position component on x-axis for the vertex 1). For

the purpose of eliminating the rigid transitions, the tensors are computed with the inter-

vals between vertices (instead of the positions), representing the "relative position" of the

vertices. Since Dm only depends on the undeformed shape qref that is generally consid-

ered as constant, its inversion Dm(qref)−1 and the undeformed volume V are computed in

the initialization process, and are considered as constant in the simulation loop.

Consequently, the total strain energy of the system can be computed with the position

at the beginning of each time step. Integrating the time step requires minimizing the total

energy in the system, including the strain energy and the kinematic energy:

argmin
q

Etotal(q) = argmin
q

[ ∑
k

Ek (q)︸ ︷︷ ︸
strain energy

+ 1

2
q̇TMq̇︸ ︷︷ ︸

kinematic energy

]
(3.13)

where k indicates the finite element indices, and M refers to as the diagonal mass ma-

trix. Solving this optimization problem is equivalent to finding the zero derivative of the

function:

(∇E)T +Mq̈ = 0 (3.14)

where the gradient of strain energy ∇E refers to the internal elastic forces. This formula-

tion is actually equivalent to the Newton’s second law (to be discussed in the next section)

without external forces.
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3.1.3 Implicit Euler integration

For each independent object in a multi-object system, a general description for the phys-

ical behavior can be expressed through the Newton’s second law:

Mq̈ = e− f+c (3.15)

where the derivative of the velocity q̈ is integrated with the external forces e, the internal

forces f =F (q, q̇), and the constraint forces c (to be discussed in Chapter 4).

In the context of interactive simulations, an important choice is the time integration

scheme. Indeed, explicit methods have been widely used for medical simulations Joldes

et al. (2009).
q̇t+h = q̇t +hq̈t

qt+h = qt +hq̇t+h

(3.16)

where h is the length of time interval [t , t +h]. The unknown motion q̈t+h depends on the

mechanical states at the time step beginning.

q̈t = M−1[e−F (qt , q̇t )+c] (3.17)

In this case, the solution only involves the (diagonal) mass matrix M−1 leading to very fast,

simple to implement, and parallel solutions Comas et al. (2008). Unfortunately, user in-

teractions may introduce sudden and stiff contacts at arbitrary location/frequency, which

raises stability issues.

On the opposite, as discussed in Section 2.1.1, implicit schemes provide better control

of the residual vector. To have a balance between different forces at the end of time steps,

we choose to integrate the time step t with a backward Euler scheme:

q̇t+h = q̇t +hq̈t+h

qt+h = qt +hq̇t+h

(3.18)

which leads to an implicit differential–algebraic equation (DAE):

q̈t+h = M−1[e−F (qt+h , q̇t+h)+c] (3.19)

For soft solids, the non-linear function of internal forces is linearized with a first-order

Taylor expansion Baraff (1996):

F (qt+h , q̇t+h) =F (qt , q̇t )+ ∂F (q, q̇)

∂q
hq̇t+h + ∂F (q, q̇)

∂q̇
hq̈t+h (3.20)
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This linearization corresponds to the first iteration of the Newton-Rapson method. The

incomplete approximation may cause numerical errors of the dynamic behavior, but they

lean towards decreasing at equilibrium.

In the practice of finite-element simulations, the partial derivative terms are expressed

as matrices: ∂F∂q̇ at (qt , q̇t ) as a damping matrix B, and ∂F
∂q at (qt , q̇t ) as a stiffness matrix K.

The dynamic equation for soft solids finally results in a second order differential equation:

[
M+hB+h2K

]︸ ︷︷ ︸
A

∆q̇ = (het −hft )−h2Kq̇t︸ ︷︷ ︸
b

+hc (3.21)

with ft = F (qt , q̇t ). For both rigid and soft solids, we have a common formulation of a

linear system A∆q̇ = b+hc to be solved.

3.1.4 Matrix-free iterative solver

In FE simulations, the linear problem Ax = b can be either solved with a direct solver or an

iterative solver. The iterative solvers are usually preferred in real-time applications as it

is easier to control the computation costs within a time step. An iterative solver (such

as CG) that requires a matrix-vector multiplication operation in each iteration z = Ay.

Generally, the CG algorithm requires assembling A before the iterations. Such assembly

cost is usually less critical than the solving process itself, but it may become the bottleneck

when combined with efficient solvers.

To parallelize the SpMV operations, the matrix-free method proposes not to assemble

matrix K, but instead to perform the calculations in parallel using elemental matrices Ke :

z = Ay = aMy+bKy = aMy+b
∑

GKe ye GT (3.22)

where G refers to the sparse global matrice that distributes stiffness values throughout the

global system, and ye = GTyG refers to the corresponding local part of y. The global prob-

lem is then transformed as resolving the local ones Ke ye in parallel and accumulate their

contributions to the final force. However, different elements may share same vertices that

determines the accumulation position in the result vector, leading to writing conflicts. Al-

lard et al. (2011) provides efficient parallelization for this problem on GPUs. To efficiently

parallelize the computation while avoiding writing conflicts, the resolution on the GPU is

implemented by two steps, separated by a global synchronization:

As illustrated in Figure 3.1, a first kernel is used where each thread is associated with

an element e. Each thread then computes the partial contribution of the force within el-

ement e using the element stiffness matrix Ke . Since all elements have the same number
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Figure 3.1: In each iteration of the matrix-free solver, accumulating the contributions to
the final forces is implemented by two GPU-based kernels.

of degrees of freedom, vertex IDs are used to determine a unique memory address in a

temporary array. A GPU structure vertices_per_elements, which contains the vertices con-

nected to each element, is used to collect the contribution from each element into the

temporary array.

After a global synchronization, a second kernel is used to sum up the partial contri-

bution for all nodes that are connected to multiple elements. This requires knowing the

address of all contributions from the same node in the temporary vector. This informa-

tion acan be expressed as a deterministic mapping elements_per_vertex that defines the

neighbor elements connected to each node. To facilitate the reading operation of ele-

ments_per_vertex, the solver allocates the same GPU memory size for each node, where

the size is determined by the maximum number of elements connected to the same node

in the mesh. Then the element indices are stored into elements_per_vertex, while the ab-

sent data is coded as −1 (see Figure 3.1). Consequently, this allows to launch a thread per

vertex, since each thread knows the start position in elements_per_vertex to accumulate.

The next step is to merge the partial contributions in each node, which requires handling

the writing conflicts. Since the mapping elements_per_vertex groups the contributions by

nodes, it will be straightforward to address the merging by parallel reduction operations.

Finally, the contributions are accumulated into the final force.
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3.2 Matrix assembly in finite element simulations

3.2.1 Fast Matrix assembly strategy

In order to solve the dynamic equation (3.21), the Conjugate Gradient algorithm is gener-

ally proposed to solve this problem since A is large, sparse, symmetric and positive defi-

nite. The highly efficient GPU-based solver Allard et al. (2011), discussed in 3.1.4 , offers a

matrix-free approach without the need to assemble the system matrix A. However, imple-

menting this method for generic hyperelastic materials proves to be highly invasive in the

code, as the GPU-based algorithm is specifically designed and optimized for tetrahedron

elements modeled with either a linear constitutive law or the co-rotational formulation.

The divergence of formulations in different models (as discussed in Section 3.1) also ex-

poses the challenge to parallelize the numerical resolution in a consistent manner. Con-

versely, the traditional solving strategy involves solving the system with the assembled

matrix. Generic constitutive models can take advantage of GPU-based matrix operations,

but the process of matrix assembly typically incurs an overhead cost that cannot be ig-

nored.

To solve this issue, we propose a novel approach to matrix assembly that satisfies both

efficiency and generality requirements. Our fast assembly method capitalizes on the fact

that the same assembly procedure is called during each time integration. By constructing

the system matrix in sequential order, we exploit the inherent topological structure, which

guarantees a definitive sequence for filling elements into the matrix and determines the

sparsity pattern of A. Consequently, we can establish a specific mapping from the filling

element sequence to the final matrix pattern. This deterministic mapping replaces the

time-consuming sorting of the initial filling sequence into the final sparse format, result-

ing in a substantial acceleration of the matrix assembly process.

Figure 3.2 provides an overview of the assembly procedure workflow of our method,

consisting of the following steps:

1. Collect data: Gather mass and stiffness data for each element and store it in a triplet

format, consisting of the row index, column index, and corresponding value (see

illustraion in Figure 3.3). Using the triplet format to store primary data collected

from the mesh is a common strategy in many assembly methods, including the im-

plementation using Eigen’s library.

2. Build matrix pattern: Arrange the collected triplet data in ascending order based

on the row and column indices. This step becomes necessary only if structural mod-

ifications have been identified during the data collection phase.
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3. Compress: Construct the system matrix in Compressed Sparse Row (CSR) format.

Sequential data collection (CPU) Data Compression (GPU)

FE Model

FE Model

FE Model

Unstructured 
contributions

Data Mapping

Values

Row Index

Col Pointer

Solving stage (GPU)

Check Ordering 
and Insert data

Rebuild Matrix 
Pattern

Values

Row Index

Col Pointer(If modified)

Data transferred on the GPU Data computed on the CPU Process on the CPU

Figure 3.2: General workflow of the matrix assembly procedure. Data Mapping corre-
sponds to the additional structure used to compress the unstructured contributions (see
section 11) in CSR format. It is computed and sent on the GPU only once until no modifi-
cations of the fill ordering are detected during the collection phase.

The current matrix assembly method relies on the assumption that the topology re-

mains invariant. Topological modifications are not addressed in this chapter, but the

method remains generic since the topology modification only occurs in specific cases,

such as cutting operations. A further discussion in Chapter 5 reveals the possibility to

efficiently update the matrix pattern while cuts occur. Additionally, applying the asyn-

chronous preconditioning in such case of sudden changes can be addressed with specific

correction on the preconditioner Courtecuisse et al. (2014).

Collect data The matrices M and K appearing in equations (3.21) are constructed by

summing the local contributions from each element into the corresponding global matri-

ces. Initially, the values are stored in a collection of triplets, which is a data structure con-

sisting of three variables: the row index, column index, and corresponding value. Since

the triplet vector represents the original process of filling elements into the matrices, the

sequence of row/column indices is unsorted and uncompressed1, but remains definitive

in each time integration step. Nevertheless, due to the frequency at which contributions

are inserted into the triplet list, it is crucial to optimize this process as much as possible.

1meaning that a pair of row/column indices may appear multiple times when filling the matrices

34



3.2. MATRIX ASSEMBLY IN FINITE ELEMENT SIMULATIONS

Algorithme 1 : Procedure used to add value in the matrix.

1 Function Add(row, col, val):

2 if keepStruct & id < prevVal.size() &

prevCol[id] = col & prevRow[id] = row then

3 prevVal[id] = val ;

4 end

5 else

6 keepStruct = false;

7 prevRow[id] = row ;

8 prevCol[id] = col ;

9 prevVal[id] = val ;

10 end

11 id=id+1;

The pseudocode for the Add function, responsible for inserting contributions into the

matrices, is presented in Algorithm 1, and it is exposed to the FE models to incorporate

their respective contributions. In the algorithm, the boolean variable keepStruct is em-

ployed to detect any modification in the filling order. The index variable id indicates the

next writing address in the uncompressed arrays (prevRow, prevCol, and prevVal) that

correspond to the list of triplets added in the previous time steps.

For each inserted value, the test performed in line 2 verifies the consistency of the pat-

tern with respect to the previously constructed matrices. This test incurs an overhead but

is necessary to identify any changes in the matrix structure. However, if no modifications

are detected, only the value val is stored (line 3). This approach leverages the CPU cache

and minimizes write operations.

Build matrix pattern Consider a generic matrix X that needs to be assembled, such as M

and K. To construct the final CSR format for X, A method inspired by Eigen’s library. This

method involves computing the transpose of the matrix twice to facilitate value sorting.

To store the temporary matrices, we introduce a format called the "uncompressed

structure," which bears similarities to the CSR format. Like the CSR, an arranged row

pointer encodes the index in the arrays of column index and values that are unsorted

and uncompressed (duplicate indices exist). We summarize the different stages of the

assembly process in Table 3.1:

1. Initially, the temporary transposed matrix XT is built using the uncompressed struc-

ture. Prior to computing the transposed matrix, we count the number of values per

row to allocate the necessary memory. Then, the data can be moved to their ap-
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propriate locations within the allocated structure. With the predetermined matrix

structure, the sequence of row indices can be arranged with a time complexity of

O (2n), while the sequence of column indices within each row remains unsorted.

2. Similar to the previous step, X is built in the uncompressed structure by transposing

(XT)T. The second transpose results in the initial matrix X, where the values are

sorted both by rows and columns, while the structure remains uncompressed.

3. Finally, the elements in the same position are merged, transforming the uncom-

pressed structure into the CSR format.

Matrix X XT X X

Format triplet set
uncompressed

structure
uncompressed

structure CSR

Row
unsorted

uncompressed
sorted

compressed
sorted

compressed
sorted

compressed
Column &

Values
unsorted

uncompressed
unsorted

uncompressed
sorted

uncompressed
sorted

compressed

Table 3.1: State of storage format at different stages in matrix assembly process

One notable distinction from Eigen’s implementation is that the values of the trans-

posed matrices are not directly stored in memory. This characteristic enables a strategy

called fast assembly in Figure 3.4. Exploiting the assumption that the mesh topology re-

mains unchanged, the filling order and the sparsity pattern (row pointer and column in-

dex arrays in CSR) can be reused. As long as the filling order remains unaltered during the

collection stage, we propose constructing a mapping C from the initial triplet set to the

CSR format, significantly enhancing the efficiency of building the value array. The main

operation involves merging duplicated values in the triplet array that has been arranged

using the deterministic mapping C . This operation must be performed at each time step,

but it can be easily parallelized on both CPU and GPU since the addresses of values in

the CSR format are known and unique. Importantly, parallelization can be accomplished

without impacting the code of the constitutive models that generate the matrices, making

our method highly efficient for any generic constitutive model. The deterministic map-

ping C can be reused as long as no modifications in the filling order are detected during

the previous stage. However, if modifications are detected during the collection stage, a

complete rebuild of the matrix pattern (referred to as full assembly in Figure 3.3) is per-

formed. In this mode, the method exhibits similar performance to the default implemen-

tation of Eigen’s library.
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Figure 3.3: Full Assembly: build matrix pattern and mapping vector from triplets set
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Figure 3.4: Fast Assembly: assemble the uncompressed format using the deterministic
mapping.

In order to get the global matrix A and the vector b in equation (3.21), we may note that
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both are generated from the sum of the same matrices M and K with various coefficients:

A = (1+hα)M+h(h +β)K

b = et − ft −hKq̇t

(3.23)

where the coefficients only depend on the time step and the Rayleigh damping constant

during the entire simulation.

One advantageous consequence of our approach is the ability to merge the computa-

tion of the right-hand side and left-hand side terms into a single procedure. This consol-

idation allows for the extraction of a substantial amount of data that is highly suitable for

GPU architectures. Moreover, it benefits from cache optimization since the mapping C is

accessed twice.

Once the vector of values is compressed, the CSR format can be directly employed

within a parallel CG solver, either on the CPU or the GPU2. To achieve this, parallelization

of the sparse matrix-vector product (SpMV ) operation is required, which is straightfor-

ward when working with the assembled system. Numerous efficient implementations ex-

ist for this common operation on both CPUs and GPUs. In this study, we utilize the SpMV

implementation provided by the CUSPARSE library developed by NVIDIA. This choice

can significantly enhance the efficiency of the CG iterations, resulting in a noteworthy

acceleration of the entire simulation without necessitating modifications to the code re-

sponsible for matrix generation.

3.2.2 Evaluation of matrix assembly strategy

3.2.2.1 Performances of matrix assembly

To evaluate the performance of the proposed matrix assembly strategy, the simulation

tests are conducted in the open-source SOFA framework with a CPU Intel@ core i9-9900k

at 3.60GHz and a GeForce RTX 2070 8 Gb.

Our matrix assembly strategy aims to reach a compromise between the computation

cost and the versatility of the code by assembling the matrix A with low cost. This sec-

tion compares the matrix building time between the current assembly method and the

standard assembly method implemented in the Eigen library. The simulation tests for the

assembly stage are executed with a group of deformable mesh representing the shape of

a raptor with various mesh resolutions (see table 3.2).

2Note that if the compression is performed on the GPU, the vector of values is already available on that
architecture. The row index and column pointer only need to be transferred if the mapping is modified.
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Example Raptor 1 Raptor 2 Raptor 3

Nodes 2996 4104 5992

Tetra 8418 12580 19409

Table 3.2: Number of nodes and tetrahedral elements of the meshes.

Raptor_1
fast_assembly

Raptor_2
fast_assembly

Raptor_3
fast_assembly

Raptor_1
full_assembly
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Figure 3.5: Computational costs for the matrix assembly in fast_assembly mode (oper-
ations excluding the re-computation of the compression mapping C ) and full_assembly
mode (when rebuilding the matrix pattern) introduced in Section 11. We compare the
performance between the Eigen’s library implementation (Eigen assembly) and our fast
assembly strategy (FA) with the compression performed on the CPU (with 8 CPU threads)
or on the GPU.

The figure 3.5 shows the performances of the assembling stage, including the accumu-

lation of triplets and the compression to the CSR format but excluding the computation

of the mapping C . With the exception of the first time step where the mapping is actu-

ally computed, it corresponds to the standard performances obtained during the entire

simulation with the various assembly methods. Compared with the standard method us-

ing Eigen library, the current method on CPU reduces by 72% time cost of building on

average. This cost reduction rises to 81% for the fast assembly method on the GPU. The

compression on the GPU provides a speedup of between 2.7× to 3× with respect to the

parallel implementation of the compression on the CPU using 8 threads.

If topological modifications are performed or if the filling order is modified, the matrix

pattern needs to be rebuilt. In this case, the building cost, including the computation of

the pattern, is measured in the figure 3.5. The time cost of the current method on CPU

when the matrix pattern is rebuilt is slightly slower than the Eigen implementation, but

it remains in the same order. The overhead is due to the additional computation of the
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index vector mapping C providing the position of the triplets in the CSR format. However,

the cost is balanced because the mapping can be reused for the next time steps. Indeed,

reusing the mapping for only two consecutive time steps already provides an acceleration

compared to the Eigen implementation. Since the computation of the mapping is per-

formed on the CPU, the GPU-based compression suffers a slowdown due to data transfers

between the CPU and the GPU.

3.2.2.2 Performances with the CG solver

Example Liver Cloth Cube Raptor

Model Co-rotational Hyperelastic

Type Tetrahera Triangle Hexahedra Tetrahedra

Nodes 2660 4900 8000 2996

Nb.element 12328 9522 6859 8418

Mesh

Table 3.3: Configurations of different scenario examples.

The performances of the global simulation are now compared in a complete simula-

tion of a deformable body, including the time for the computation of the FE model, the

assembling step and the solving process. Performances of the fast assembly method com-

bined with a Conjugate Gradient solver (CG GPU fast assembly) is measured and com-

pared with both a CPU-based matrix-free implementation of the Conjugate Gradient (CG

CPU matrix-free) and with the method introduced in Allard et al. (2011) which includes

a matrix-free GPU-based Conjugate Gradient (CG GPU matrix-free) for the tetrahedral

co-rotational model.

In order to verify the generality of the proposed solution, the specific GPU-based im-

plementation introduced in Allard et al. (2011) has been extended for other types of el-

ements (triangles and hexahedron), requiring the development of specific code for each

model on the GPU. In addition, the fast assembly method is also tested for hyperelastic

material laws. However, since developing an efficient GPU parallelization is not trivial,

the method is only compared with CPU-based matrix-free solvers. The scenarios are il-

lustrated in Table 3.3.

For the scenarios in Figure 3.6, the run time increases linearly along with the num-

ber of iterations. The fast assembly method combined with the GPU-based CG is up to

16× faster than the standard CPU method implemented in SOFA and reaches the same
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(a) Liver mesh (tetrahedron elements)
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(b) Cloth mesh (Triangular elements)
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Figure 3.6: Computation time of a single time step for different examples modeled with
the co-rotational formulation for various (fixed) number of CG iterations. The figures
share the same legend on the top. The details of different examples can be found in Table
??. We note that the y axis is logarithmic in these figures.

computation cost level as the GPU-optimized method. The Fast Assembly method suf-

fers a slowdown compared to the GPU matrix-free method with fewer iterations, but this

case is inverted when the iteration increases. This is due to the fact that the fast assembly

method takes time to build the matrix, but this overhead is compensated at each CG itera-

tion since the parallel implementation of the SpMV operation is faster with the assembled

matrix.

It’s important to note that although performances are comparable to the GPU-based

matrix-free implementation, the code of the co-rotational model is written for the CPU

where optimizations are simply obtained by calling the Add function of the algorithm 1,

which is completely transparent for the code and enforces the compatibility with the rest
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(a) Mooney-Rivlin model
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(b) St-Venant-Kichhoff model

Figure 3.7: Computation time of a single simulation step with hyperelastic models im-
plemented in SOFA for various (fixed) number of CG iterations per time step. The figures
share the same legend on the top. The scenarios simulate a tetrahedron raptor mesh (see
Table 3.3).

of the models implemented in the SOFA framework. In addition, for computers with-

out GPU-compatible hardware, the SpMV operation can also be parallelized on the CPU.

The method CG CPU fast assembly uses 8 threads to perform the matrix-vector prod-

uct, which leads to a speedup of up to 4.13× compared to the sequential method (see the

figure 3.6a).

In the figure 3.7a, the method is directly tested with the Mooney-Rivlin material using

the implementation of the MJED Marchesseau et al. (2010) provided in SOFA, without any

modification of the code. The main difference with the co-rotational formulation lies in

the fact that the computation of the hyperelastic formulation is significantly slower, and

thus the time spent in the assembling and solving processes is smaller. Therefore, the ben-

efits of the CPU parallelization with 8 threads (CG CPU fast assembly) is balanced by the

overhead of assembling the matrix compared to the matrix-free version (CG CPU matrix-

free). However, the GPU-based internal parallelization of the assembling and solving pro-

cess provides a speedup between 1.31× and 2.05×. This represents the fastest method for

nonlinear materials available in SOFA because no specific GPU-based parallelization of

the MJED method is available. The method is also tested with the St Venant-Kirchhoff

model using the MJED implementation. Compared to the Mooney-Rivlin material, the

model is less complex so that the computation of the hyperelastic formulation is less

costly. In the figure 3.7b, the fast assembly method gains a speedup between 1.60× and

3.34× compared to the matrix-free method, which is the fastest current implementation
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for the nonlinear model in SOFA.

3.3 Linear system resolution

3.3.1 Asynchronous preconditioner

Following the matrix assembly, GPU-based implementations, such as NVIDIA’s cuSPARSE,

can effectively parallelize the SpMV operations within the CG solver, leading to acceler-

ated computation costs in each CG iteration. However, another crucial aspect of numeri-

cal solvers is the number of iterations required for convergence.

A common strategy to reduce the iteration count in an iterative solver is to employ

preconditioning techniques. In linear algebra, a preconditioner P approximates (through

various methods) the inverse of the system matrix A such that PA has a smaller condition

number compared to A. A problem with a smaller condition number necessitates fewer

iterations to achieve convergence in finding the solution.

Preconditioners can range from simple to precise, depending on the ability to approx-

imate A−1 Simple preconditioners, such as the Jacobi preconditioner that selects the diag-

onal elements of the system matrix (P = diag(A)−1), are easy to construct but offer limited

effectiveness in reducing the condition number. On the other hand, precise precondi-

tioners like the Cholesky preconditioner provide extremely accurate approximations to A,

significantly enhancing convergence. However, they also suffer from expensive construc-

tion overhead costs that block the simulation loop.

To address this challenge, an efficient approach was proposed by Courtecuisse et al.

(2010a), utilizing multithreading techniques to achieve a precise preconditioner without

blocking the main simulation loop. This strategy, known as the asynchronous precondi-

tioner, is accomplished by executing the expensive construction process in a dedicated

thread.

Main Simulation Loop

Time Step Time Step Time Step Time Step Time Step Time Step Time Step

Asynchronous Preconditioner

Cholesky CholeskyCholesky Factorization

Time Step

Figure 3.8: The scheme of the asynchronous preconditioner strategy.

Given the matrix At constructed at a specific time t , a preconditioner P can be derived

through a parallel thread executing an LDLT factorization (a Cholesky-type decomposi-
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tion):

P = At
−1 = (LDLT)−1 (3.24)

where the factorization yields the matrices D, a diagonal matrix, and L, a sparse lower

triangular matrix, enabling the expression P = At
−1 = (LDLT)−1.

The factorized matrices become available after the completion of the factorization,

typically several time steps after t . These matrices are then utilized as a preconditioner

under the assumption that P remains a reasonably accurate approximation of the inverse

of the current matrix At+n . As described in Courtecuisse et al. (2010a), this method is

highly efficient since the LDLT factorization only requires a few simulation steps (usually

n < 5) for updating. The method proves to be highly efficient, typically requiring only 2

to 5 preconditioned CG iterations to achieve convergence with a predefined threshold of

10−9.

3.3.2 Hybrid numerical solution

Considering the SpMV operations in CG solver with a LDLT preconditioner:

z = PAr = (LDLT)−1Ar (3.25)

where r is the residual vector in each CG iteration, z is the preconditioned residual vector,

and LDLT refer to as the approximation of the factorized A.

In Algorithm 2, the preconditioner is applied in the CG by two steps of STS.

Algorithme 2 : Applying a LDLT preconditioner in SpMV operations

1 v = Ar
2 s = L−1v
3 z = L−T(D−1s)

The forward and backward substitutions in gaussian elimination result in similar prin-

ciple in solution. Therefore we focus on discussing the parallelization challenges associ-

ated with the forward substitution step for lower triangular systems. We recall the main

obstacle for parallelizing a general lower triangular system Ls = r is that the solution r j of

a given row j depends on all previous solutions si :

s j = r j −
i< j∑
i=0

(si L j ,i ) (3.26)

Due to numerous data dependencies, applying the preconditioner (i.e, STSs in steps 2 and

3) remains on the CPU in current implementation, while the primary SpMV operations in
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the CG algorithm are processed on the GPU. This hybrid solving strategy necessitates sig-

nificant data transfers between the processors. During each CG iteration, the processors

are required to send the residual vector v from the GPU to the CPU to apply the precon-

ditioner and then send the resulting vector z back to the GPU. These data transfers, in ad-

dition to their associated costs, impose multiple synchronizations between the CPU and

GPU, which reduce the efficiency of the preconditioner. To address this issue, our objec-

tive is to develop a GPU-based preconditioner that is at least as efficient as its CPU-based

counterpart.

3.3.3 Cholesky-type preconditioner on GPUs

We propose a GPU-based Cholesky-type preconditioner, which is inspired by the solver

in Courtecuisse et al. (2014) for STS with multiple right-hand sides. Since the method in

Courtecuisse et al. (2014) was originally designed for multiple RHS, when applied in the

problem with a single RHS, the level of parallelism for multiple RHS will be left unused.

We present a GPU-based Cholesky-type preconditioner, which is inspired by the solver

proposed in Courtecuisse et al. (2014) for solving systems with multiple right-hand sides

(RHS). While the method in Courtecuisse et al. (2014) was originally developed for mul-

tiple RHS problems, when applied to a problem with a single RHS, the potential for par-

allelism stemming from multiple RHS remains untapped. To leverage this untapped par-

allelism, we introduce the domain decomposition technique, specifically employing the

nested dissection algorithm. The nested dissection algorithm serves to reduce the ma-

trix pattern filling by recursively dividing the mesh into two parts, ensuring that each part

contains approximately the same number of vertices while keeping the dividing part at a

smaller scale George (1973). As a result, the lower triangular matrix L is reorganized and

partitioned into sub-domains, with the indices of these sub-domains determined by the

nested dissection algorithm. By incorporating the nested dissection technique, we effec-

tively introduce additional parallelism in the context of a single RHS problem, thereby

utilizing the computational resources of the GPU more efficiently.

The reordering algorithm partitions the graph as follows in a local view:
L̂a

L̂b

Va Vb L̃c


︸ ︷︷ ︸

L̂(a,b,c)


sa

sb

sc

=


ra

rb

rc

 (3.27)
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where the diagonal domains a and b can be solved independently and the reordering

algorithm guarantees that the separator c (which requires the solution of a and b) is as

small as possible. The partition and reordering are processed recursively on diagonal

domains a and b until the block size is small enough.

a d c b a d c b a
a c b a d c b a
b a d c b a d c b a
b a a d c b a d c b a

c b c

b
c

c
d
d d

d a
a a
a
b

b c
b
b

c d
c
d a

d c

t

Upper Solver:
Row Major

t

ac
cu

m
u

la
ti

o
n

Lower Solver:
Column Major

Solve diagonal as a dense block

Accumulate Values:
𝑎𝑐𝑐 − = 𝐴𝑖𝑗 ∗ 𝑥𝑖

Sh
ar

ed
m

em
o

ry

accumulation

Figure 3.9: The solving stage for each subdomain is realized by GPU kernels, where con-
tributions are accumulated in parallel. For the lower triangular system, the solution can
be processed by column sequence (left), which pre-accumulates the data in higher levels,
allowing sharing of the computation cost. On the other hand, when solving the upper tri-
angular system, computation cost could be shared in lower levels, so the solution needs
to be processed oppositely by row sequence (top-right).

According to the elimination tree, each subdomain identified in the lower triangular

system Ls = r is assigned a specific level of parallelization. The rule is that blocks with

higher levels (left edge) require the solutions of lower-level blocks. Similarly, the upper

triangular system problem LTs = r can be solved using the same method but with the

computation sequence reversed, giving priority to blocks with higher levels, which exhibit

fewer dependencies.

Within each level, we can employ the parallelization strategy presented in Courte-

cuisse et al. (2014) to solve each diagonal block (L̂a , L̂b) and the separator (Va + Vb +

L̃c ) by processing rows in a sequential manner. This corresponds to the Row Major ap-

proach, where t × t threads are utilized to accumulate contributions, allowing for parallel

processing of t rows simultaneously (in the current implementation t = 16). Due to the

high dependencies, the diagonal part is treated separately as a dense matrix in shared
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memory. A parallel reduction technique is then used to sum the contributions for each

row, and finally, the t × t diagonal block is solved as a dense problem.

Alternatively, the Column Major approach is also feasible by pre-accumulating col-

umn contributions. In this case, the accumulation process of Va and Vb is integrated into

the kernels of L̂a and L̂b , respectively, instead of solving the combined block (Va + Vb +

L̃c ) in a single kernel. Since only the solution of L̂a (or L̂b) is required, the accumulation

of block Va (or Vb) can be performed in the same kernel. The part L̃c can be solved as a

diagonal block after the accumulation of Va and Vb . However, this pre-accumulation pro-

cess may lead to data writing conflicts when multiple columns contribute to the same row

simultaneously. To address this, the atomic add function provided by CUDA can handle

the data conflicts automatically.

As depicted in Figure 3.9, to distribute the computational load in lower levels, the

lower solver is implemented using the Column Major, while the upper system is solved

using the Row Major. Our level-based parallelization strategy shares similarities with the

approach in Yamazaki et al. (2020), but with several key differences:

1. Our solver utilizes the block-row parallelization strategy from Courtecuisse et al.

(2014) to effectively exploit the GPU’s parallel architecture (refer to Figure 3.9).

2. Our solver is optimized for FE simulations, where we continue to utilize the analysis

results of parallelization levels until the matrix pattern changes.

3. Our solver benefits from the pre-accumulation technique, allowing for the sharing

of computational costs in lower levels, resulting in improved efficiency (see Figure

3.9).

Data Transfer between processors In Section 3.3.4, we conducted a performance evalu-

ation of our newly developed GPU-based preconditioner. The results, presented in Table

3.5, demonstrate that our method outperforms the CPU-based implementation across

various examples. By replacing the CPU-based preconditioner with our GPU-based im-

plementation, we achieve significant speedup in the solver and successfully address the

data transfer issue between processors. As a result, our novel preconditioner enables

the execution of a fully GPU-based preconditioned CG algorithm, requiring only a sin-

gle scalar to be transferred from the GPU to the CPU at each iteration for convergence

checking (refer to Figure 3.10).
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Figure 3.10: Workflow of the asynchronous preconditioning scheme. The collect phase is
performed on the CPU with any generic implementation of FE models. The Op process
corresponds to the necessary operation to perform one CG iteration. All of them are either
Spmv or linear algebra operations on vectors that can be easily parallelized on the GPU.
The application of preconditioner Apply Precond is also performed on the GPU, resulting
in a preconditioned CG fully implemented on GPU. Only a scalar needs to be copied to
the CPU in each iteration to check the convergence state.

3.3.4 Evaluation of preconditioned CG solver performance

The performances of different sparse LDLT solvers (including both the lower and upper

triangular systems) are reported in the table 3.4. The proposed GPU-based paralleliza-

tion relying on the nested dissection method (GPU ND) introduced in section 3.3.3 is

20.3−24.0× faster than the GPU-based implementation provided in NVIDIA’s cuSPARSE

library. The main reasons lie in the fact that the cuSPARSE method requires perform-

ing the analysis of the data dependencies before actually solving the problem, and the

parallelization strategies are optimal for much larger problems than the ones used in the

context of real-time simulations. Such speedup compared to the golden-standard imple-

mentation (cuSPARSE library) is reported as maximally 5.8× in Picciau et al. (2017) and

19.5× in Yamazaki et al. (2020). The method is also compared with the GPU-based imple-

mentation proposed in Courtecuisse et al. (2014). As reported in this previous work, the

GPU-based LDLT solver is 3× slower than a sequential CPU implementation, whereas the

(GPU ND) provides a speedup of 1.4− 2×, enabling the possibility to solve the problem

directly on the GPU.

The method is tested in complete simulations of deformable bodies with various con-

stitutive laws (see Table 3.5). The tests are conducted with the same mesh group of rap-

tors and solved with the asynchronous preconditioned CG. On average, the asynchronous

preconditioner is updated every 2 to 4 simulation steps, which lead between 5 to 20 it-

erations (#it) according to different cases. Therefore, the asynchronous preconditioner
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Mesh Method LDL solver Lower Upper

Raptor 1

CUSPARSE 13.46 3.33 2.48

Courtecuisse et al. (2014) GPU 3.63 1.88 1.66

CPU 1.13 0.52 0.58

GPU ND 0.56 0.29 0.24

Raptor 2

CUSPARSE 22.77 5.63 3.91

Courtecuisse et al. (2014) GPU 6.36 3.18 2.78

CPU 1.97 0.90 1.04

GPU ND 1.12 0.60 0.49

Raptor 3

CUSPARSE 44.96 11.02 6.97

Courtecuisse et al. (2014) GPU 10.07 5.33 4.71

CPU 3.94 1.77 2.14

GPU ND 2.15 1.07 1.05

Table 3.4: Computation time (in ms) of various STS solvers

#it
Method

Raptor 1 Raptor 2 Raptor 3
Assembly CG Precond

C
o

ro
t

15

Fast Assembly CPU CPU 25.94 45.85 85.86

Fast Assembly GPU GPU 14.58 26.46 46.84

Matrix Free CPU CPU 43.18 65.65 118.33

Matrix Free GPU CPU 31.00 48.52 80.50

M
R

12

Fast Assembly CPU CPU 59.02 90.64 153.90

Fast Assembly GPU GPU 48.73 77.84 124.53

Matrix Free CPU CPU 56.76 89.76 152.11

SV
K

8

Fast Assembly CPU CPU 23.16 37.96 67.03

Fast Assembly GPU GPU 16.60 26.46 42.86

Matrix Free CPU CPU 24.18 37.35 64.67

Table 3.5: Computation time (in ms) for various models: Corotational (Corot), Mooney-
Rivelin (MR) and St-Venant-Kichhoff (SVK).

already provides a significant speedup with respect to the standard GPU-based CG. With

the preconditioner, the matrix operations needed during the CG iterations are performed

either with the fast assembly method or with the matrix-free method , either on the CPU
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or the GPU when available. The preconditioner is explicitly built using the fast assembly

method and applied on the CPU as done in Courtecuisse et al. (2014) or on the GPU with

the method introduced in section 3.3.3.

The method fast assembly + CG GPU + preconditioner GPU is the fastest method

and provides a speedup of between 1.7× and 2.1× for the co-rotational model compared

to the solution proposed in Courtecuisse et al. (2014). An important advantage of the

current solution is that the preconditioned CG is applied entirely on the GPU, without

any need for data transfers or synchronizations between the CPU/GPU during the solving

stage. In addition, since the matrix is assembled every time step, no additional overhead

is introduced when the factorization needs to be recomputed.

As no GPU-based matrix-free method is implemented for hyperelastic models in SOFA,

the comparison is made with the CG performed on the CPU. Although the computa-

tion cost of the hyperelastic formulation is significantly higher, the result of the proposed

GPU version also provides a speedup from 1.15× to 1.22× for the Mooney-Rivlin material.

For the St Venant-Kirchhoff material, where the model is more straightforward than the

Mooney-Rivlin material, this speedup is raised from 1.41× to 1.51×.

3.4 Conclusion

In this chapter, we provided an overview of the background pertaining to physics-based

simulation for deformable solids. By utilizing the constitutive laws derived from mate-

rial mechanics, the simulation frameworks can effectively handle diverse scenarios with

distinct requirements for deformation behavior and computational efficiency. However,

the existence of various formulations presents challenges in parallelizing different hyper-

elastic models uniformly, particularly within matrix-free iterative solvers. Consequently,

we propose a novel matrix assembly strategy that demonstrates high efficiency and ac-

commodates different constitutive models. Our newly introduced approach achieves a

significant acceleration when the topology structure remains unchanged, while maintain-

ing construction costs at the same level as standard methods when rebuilding the matrix

pattern becomes necessary. This expedited matrix assembly offers the potential for par-

allelization during the solving stage without requiring a specific parallel implementation

of the constitutive model. Furthermore, we replace the CPU-based preconditioner with

a newly developed GPU-based implementation during the solving stage. This enhance-

ment notably reduces data transfer between the CPU and GPU, enabling the utilization of

a fully GPU-based CG solver. Finally, we assess the effectiveness of our matrix assembly

and parallelization strategy through various examples, encompassing different types of
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elements and constitutive models. Additionally, our approach has been validated to be

compatible with contact problems, which will be discussed in the subsequent chapter.
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4
CONTACT PROBLEMS IN INTERACTIVE

SIMULATIONS

Interactive simulations received strong interest in surgical simulations and robotic simu-

lations. One of the main requirements is to provide simulations of multi-object systems

with complex interactions, such as contact and friction in real-time. This chapter will

begin with the introduction to the formulations in constraint-based contact resolution,

which is the background of our contributions. Then efficient methods will be proposed

to solve the challenging issues of computing the Schur-complement in constrained prob-

lem. Finally we evaluate the performance of our method in different contact applications

and compare it with typical approaches on CPU and GPU.

4.1 Formulating contact problem

4.1.1 Contact and friction model

As illustrated in Figure 4.1, a contact constraint involves a contact normal and a pair of

proximity points that is referred to the objects in touch. The contact normal defines the

direction of a non-interpenetration force to separate the objects. The pair of proximity

points p represent the current state of the surfaces of the objects. In different scenar-

ios, p can be directly the points on the object surface in a straightforward way, or the

representative points using a geometric mapping to transform between q and p with the
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(a) For typical method of discrete collision
detection, a threshold is usually used to test
if the proximity points are close enough.
The evaluation of potential contact normal
depends directly on the surface elements
(positions and normals) at the beginning of
time steps.

(b) For the image-based method of colli-
sion detection, the evaluation of contacts is
usually based on penetrated volume. The
evaluation of constraint normal depends on
the boundary of the interpenetration area,
which is computed by the positions of sur-
face elements.

Figure 4.1: Constraint linearization with different types of collision detection: To sim-
plify the solving process, collision detection is performed providing a set of discretized
constraints between both objects (red arrows). Each contact constraint involves the prox-
imity points and a direction of contact normal, which is used to apply the force to separate
objects. According to different collision detection algorithms, the contact normal is de-
pendent, directly or indirectly, upon the position of proximity points (red and black points
on the surface of contacting bodies).

multi-model representation discussed in Section 1.2. We can generally define the relation

between the mechanical DOFs q and the proximity positions p as a geometric mapping

function G :

p =G (q) (4.1)

The contacts between two objects are modeled as constraints, which are discretized

and linearized through the collision detection process. As illustrated in Figure 4.1, to pre-

vent interpretations, the distance between two solids 1 and 2 can be formulated as a gap

function:

δn =−→n [p1 −p2] =−→n [G1(q)−G2(q)] =Hn1(q)−Hn2(q) (4.2)

where the interpretation δn is the distance measurement between the proximity positions

G (q) projected on the contact normal −→n . The contact normal is the direction of a force

fn that separates the interpenetrating solids. The geometrical mapping function G (q) de-

scribes the mapping from the mechanical DOFs space to the proximity space. Integrating
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−→n into the geometric mapping function G (q) results in a new function Hn(q). Signorini’s

law presents the complementarity relationship along the constraint direction −→n for each

potential contact:

0 ≤δn ⊥λn ≥ 0 (4.3)

where the multiplierλn is the magnitude of the contact force
−→
λ along −→n as the constraint

direction has been normalized.

Equation (4.3) only guarantees to separate the contacting objects. To model the fric-

tion response, the frictional constraints should be added along with the contact normal.

In a 3D problem, a common frictional model complements each contact normal with two

tangential directions
−→
f . When a contacting is validated (λn ≥ 0), following Coulomb’s

friction law, we have:

0 ≤ δ̇ f ⊥µλn −λ f ≥ 0 (4.4)

where δ f is the the relative velocity measurement projected on the tangential directions−→
f , µ is the coefficient of friction, and λ f is the magnitude of frictional force

−→
λ f along

−→
f .

The friction model describes two states for the kinematic behavior: the contacting objects

are stuck (δ f = 0) whileλ f ≤µλn , and are slipping whileλ f achieves the maximum value

µλn :

δ̇ f = 0 ⇒λ f <µλn (st i ck)

δ̇ f ̸= 0 ⇒−→
λ f =λ f

−→
f =−µλn

−→
f =−µλn

δ̇ f

||δ̇ f ||
(sl i p)

(4.5)

In addition, δ f has a similar gap function to Equation (4.2):

δ f =
−→
f [p1 −p2] =−→

f [G1(q)−G2(q)] =H f 1(q)−H f 2(q2) (4.6)

The governing equations including the complementarity relationships result in the

following non-linear system:



A1∆q̇1 = b1 +hc1

A2∆q̇2 = b2 +hc2

δn =Hn1(q)−Hn2(q)

δ f =H f 1(q)−H f 2(q)

0 ≤δn ⊥λn ≥ 0

0 ≤ δ̇ f ⊥µλn −λ f ≥ 0

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

(4.7f)

Since the contact normal constraint along −→n and the frictional constraint along
−→
f
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have the same mapping function in the gap functions, in practice, the constraints are

grouped as constraint sets, where each one of them involves a normal constraint −→n and

two tangential constraints
−→
f . Consequently, the definitions of functions and vectors can

be uniformed: Hn(q) and H f (q) are uniformed as H (q); δn and δ f are uniformed as δ;

λn and λ f are uniformed as λ.

4.1.2 Constraint linearization

Following the previous section, the gap functions in Equation (4.2) and (4.6) are merged

as:

δ(t ) =H1(q1(t ))−H2(q2(t )) (4.8)

With the implicit integration (Equation (3.18)), the mapping functions are linearized

with a first-order Taylor expansion:

H (qt+h) =H (qt +hq̇t +h∆q̇) =H (qe +h∆q̇) ≈H (qe)+h
∂H (q)

∂q
∆q̇ (4.9)

where qe = qt +hq̇t represents the mechanical state after an explicit integration. Combin-

ing 4.9 and 4.8 we have the integration at the end of time step for the violation:

δt+h =H1(qt+h
1 )−H2(qt+h

2 )

=H1(qe
1)−H2(qe

2)+h(
∂1H1(q1)

∂q1
∆q̇1 − ∂2H2(q2)

∂q2
∆q̇2)

=δe +h(
∂1H1(q1)

∂q1
∆q̇1 − ∂2H2(q2)

∂q2
∆q̇2)

(4.10)

where δe =H1(qe
1)−H2(qe

2) represents the interpenetration after an explicit integration.

Once the potential contact information is available with the result of the collision de-

tection procedure, all the constraint equations are then evaluated along with the colli-

sion information that is assumed constant for the rest of the time step (see Figure 4.2).

This leads to an important simplification: J ≈ ∂H (q)
∂q at t the beginning of each time step

, known as the constraint Jacobian, can be defined, providing the constraint directions

(blue and orange arrows in Figure 4.2). The dimension of J is c ×n, where c is the number

of discretized constraints, and n is the number of mechanical DOFs. With the simplifica-

tion, the violation of the constraint at the end of the step can be rewritten as:

δt+h =δe +hJ1∆q̇1 −hJ2∆q̇2 (4.11)

On the other hand, the constraint Jacobian applies the constraint forces into the mechan-
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Figure 4.2: In practice, the evaluation and the linearization of the constraints equations
are difficult. To simplify the solving process, collision detection is performed providing a
set of discretized constraints between both objects (gree lines). The number of discretized
constraints usually depends on the resolution of the collision mesh and/or the collision
detection method itself (for instance, by filtering constraints afterward).

ical motion space:

c1 = J1
Tλ

c2 =−J2
Tλ

(4.12)

where the forces are applied for the two objects in opposite directions (−→n 1 = −−→n 2,
−→
f 1 =

−−→f 2).

With the constraint linearization, the Karush-Kuhn-Tucker (KKT) system in Equation

(4.7) is assembled as follows:


A1∆q̇1 −hJ1

Tλ= b1

A2∆q̇2 +hJ2
Tλ= b2

hJ1∆q̇1 −hJ2∆q̇2 +δe =δt+h

(4.13a)

(4.13b)

(4.13c)

In addition, δt+h and λ at the end of time steps should satisfy the complementarity ac-

cording to Signorini’s law (Equation (4.3)) and Coulomb’s law (Equation (4.4)).

4.1.3 Constraint resolution

By eliminating the unknowns x1 and x2 in Equation (4.7c), we have:

δt+h =δe +h[J1 A−1
1 b1︸ ︷︷ ︸
xfree

1

−J2 A−1
2 b2︸ ︷︷ ︸
xfree

2

]+h2 [J1A−1
1 J1

T + J2A−1
2 J2

T]︸ ︷︷ ︸
W

λ
(4.14)
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where W is the Schur-complement (also called compliance matrix or delassus operator in

constrained dynamics) that project the system matrix A in the motion space to the con-

tact space. We process a first step called free motion that computes the temporary mo-

tion xfree, which mathematically corresponds to physics dynamics without considering

the constraints of contact and friction:

xfree = A−1b (4.15)

With implicit integration we may note that:

δe +h[J1xfree
1 − J2xfree

2 ] =H1(qe
1)−H2(qe

2)+h
[

J1xfree
1 − J2xfree

2

]
=

[
H1(qe

1)+hJ1xfree
1

]
−

[
H2(qe

2)+hJ2xfree
2

]
=H1(qt

1 +hq̇t
1 +hxfree

1 )−H2(qt
2 +hq̇t

2 +hxfree
2 )

=H1(qfree
1 )−H2(qfree

2 )

=δfree

(4.16)

where the free interpenetration δfree is computed directly with the free position qfree (in-

tegrated with xfree). Once W and δfree are assembled, a complementarity system with

constraint dimension can be formulated:

δt+h =δfree +h2Wλ (4.17)

The unknownλ is solved by a projected Gauss-Seidel algorithm Duriez et al. (2006) during

the successive iterations (i ):

δα−h2Wααλ
(i )
α =

α−1∑
β=1

h2Wαβλ
(i )
β

+
c∑

β=α+1
h2Wαβλ

(i−1)
β

+δfree
α (4.18)

where Wαβ is a local matrix of W that couples the contact α and β. The complementarity

problem for each contact groupα is solved in the local solution while following Signorini’s

law for unilateral contact response and Coulomb’s law for frictional response. As a Gauss-

Seidel-like algorithm, after solving each contact α, the correction on λα is immediately

propagated to all the following contacts. In this way, the contact forces are coupled by the

compliance matrix during the constraint resolution.

Once the λ is solved, a corrective motion is processed to integrate the final motion

xt+h :
xt+h

1 = xfree
1 +hA−1

1 J1
Tλ

xt+h
2 = xfree

2 −hA−1
2 J2

Tλ
(4.19)

58



4.2. COMPUTING OF COMPLIANCE IN CONTACT PROBLEM

Finally, we summarize the time step integration with constraint resolution in Algo-

rithm 3.

Algorithme 3 : Standard simulation loop scheme with constraint-based contacts

1 while simulation do
2 collision_detection(qt ) ;
3 constraint_linearization(pt ) ;
4 foreach object do
5 Assemble A, b, J ;

6 ∆q̇free = A−1b ;

7 qfree = qh +h(q̇h +∆q̇free) ;

8 end

9 Compute δfree according to qfree;
10 W =∑

JA−1JT ;
11 foreach i ∈ PGS_iterations do
12 foreach j ∈ constraint_groups do
13 δc =δfree +Wλi ;

14 λi
j = solve(λi , δc , W) ;

15 end

16 ϵ= |λi−λi−1|
|λi | ;

17 if ϵ≤ PGS_error then
18 break ;
19 end
20 end
21 foreach object do
22 ∆q̇t+h =∆q̇free +hA−1JTλ ;

23 q̇t+h = q̇h +∆q̇t+h ;

24 qt+h = qh +hq̇t+h ;

25 end
26 end

4.2 Computing of compliance in contact problem

4.2.1 Compliance assembly

A primary challenge in real-time simulation is computing the Schur-complement in Equa-

tion (4.14). This involves the large system matrix A with a dimension size corresponding

to the number of mechanical DOFs. Inverting such large a system is highly expensive,

especially with multiple right-hand sides (RHS) in the contact Jacobian J with a size cor-

responding to the number of constraints. Processing an exact factorization for A in each

time step can be used in small scale problems but becomes prohibitive when dealing with
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detailed soft bodies. To address the problem, many works are dedicated to find a good ap-

proximation of the factorized system, such as incomplete factorization (Schenk and Gärt-

ner (2006) implemented in Pardiso solver project), updating Cholesky factor (Herholz and

Alexa (2018), Herholz and Sorkine-Hornung (2020)) and asynchronous preconditioning

strategy (Courtecuisse et al. (2010a)). In the current manuscript, our main contribution

relies on an hypothesis that the solver is able to obtain a good approximation of factor-

ization. Our work is based on the asynchronous preconditioning strategy that releases

the computing expense in the main simulation loop. The strategy was discussed in 3.3.1.

In free motion, the resolution in Equation (4.15) is solved with a preconditioned CG al-

gorithm, as discussed in Section 3.3. In constraint resolution, Courtecuisse et al. (2014)

presents a precondition-based approach for contact problems. The asynchronous pre-

conditioner P is reused as a close approximation of the inverse of the factorization of the

current system matrix A. As a result, the compliance matrix is approximately built as:

W =∑
JA−1JT ≈∑

JPJT =∑
J(LDLT)−1JT (4.20)

with the summation of contribution of all the contacting objects.

Algorithme 4 : Approximate computation of the Schur-complement with the sys-
tem factorized in asynchronous thread

1 S = L−1JT

2 W =∑
STD−1S

The contribution accumulation of each object on the compliance is processed in col-

umn independently with Algorithm 4: the first step is the resolution of multiple STS,

which is usually the most expensive task and tends to be very costly while processed se-

quentially on CPU. Courtecuisse et al. (2014) proposes an efficient GPU-based solution

for multiple STS using a two-level parallelization: each right-hand side in JT is computed

in parallel multiprocessors. Since the resolution of each triangular system involves num-

bers of dependencies, the left-hand side L is fully processed and the result S is stored in a

dense matrix. The second step consists of matrix-matrix multiplications and can be effi-

ciently processed on GPU. Despite the fact that the method already provides a significant

speedup compared to the sequential computation on CPU, the building of contact com-

pliance matrix still remains the most expensive process, taking a ratio of more than 70%

in time integration. Accelerating this process is an important issue that will be addressed

in the following sections 4.2.3 and 4.2.4. It has been proved in Courtecuisse et al. (2014)

that the asynchronous preconditioning strategy provides a good approximation to the ac-

tual W (assembled with A−1), allowing to efficiently couple the contact forces in constraint
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resolution.

4.2.2 Complementarity problem resolution

An iterative method like Equation (4.18) can be performed either with explicitly assem-

bled W, or with an unbuilt form since processing each iteration only requires an operation

of matrix-vector multiplication:

z = Wy =∑
(JA−1JT)y =∑

JA−1(JTy) (4.21)

where JTy leads to a vector, avoiding to apply the multiple right hand sides (A−1JT). How-

ever, the possibility to not build explicitly W is popular as long as A−1 is sparse and easy

to be computed. This is the case for instance for rigid objects with a diagonal matrix, or

beam elements with a block-tridiagonal matrix where Thomas algorithm used in Xu and

Liu (2018) can be used to invert the system. In these cases, the unbuilt version is known to

be faster. However, this assumption does not apply to FE models with large unstructured

matrices.

Following the context in Section 4.2.1, as long as an approximation of factorization can

be fast obtained, the matrix-multiplication in unbuilt scheme (Equation (4.21)) actually

requires solving a LDLT system:

z =∑
JA−1(JTy) ≈∑

J(LDLT)−1(JTy) (4.22)

Algorithm 5 implements the resolution of the LDLT system in Equation (4.22).

Algorithme 5 : Unbuilt scheme: implementation of the STS resolution (Equation
4.22) in iterations of relaxation methods. v1, v2, and v3 are temporary vectors

1 v1 = L−1(JTy)
2 v2 = D−1v1

3 v3 = (LT)−1v2

4 z = Jv3

This leads to extra cost in each iteration. When dealing with large scale problems, the

LDLT resolution becomes costly. Such an addition operation in iterations will result in

enormous extra computation cost. In Section 4.2.5.1 we will compare the cost of unbuilt

scheme and assembling W in different cases.
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4.2.3 Isolating mechanical DOFs: Reformulating the

Schur-complement

4.2.3.1 Exploit the sparsity of constraint Jacobian matrix

The constraint Jacobian matrix J describes how the contact constraints are applied to me-

chanical degrees of freedom (DOFs). Since the contacts are often limited in local areas, the

size of constraint dimension c is usually far more smaller than the dimension of mechan-

ical DOFs n. Coupled with the fact that each constraint is linked to limited mechanical

DOFs, J is very sparse in many cases. Based on this observation, we propose eliminating

empty columns in J and formulating a "compressed" matrix Ĥ. The relation between the

two matrices can be actually expressed by a matrix-matrix multiplication (see also Figure

4.3):

J = ĤĪ (4.23)

where Ī is a "partial identity" matrix that is formulated with the indices of non-zero columns

in J. By formulating Ī we actually isolate the indices information of mechanical DOFs that

Figure 4.3: The constraint Jacobian J is usually very sparse and contains many empty
columns. By eliminating these empty columns, we formulate a "compressed" matrix Ĥ
and a "partial identity" matrix Ī that contains one element in each row that corresponds
to a non-zero column in J. The relation between matrices can be expressed by a matrix-
matrix multiplication: J = ĤĪ (transposed format illustrated in the figure)

receive contributions from the constraints from J. This generates a new dimension "iso-

lated DOFs" (also abbreviated to "isodof "). The matrix Ī is also called as "isodof Jacobian".

Compared to the constraint dimension c, the isodof dimension k may be larger or smaller.

Now, with Equation (4.23), computing the Schur-complement in Equation (4.20) is refor-
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mulated as:

W =∑
Ĥ ĪA−1ĪT︸ ︷︷ ︸

W̄

ĤT (4.24)

where W is built with Ĥ and W̄ that is called "isodof compliance matrix".

Following Equation (4.20), we propose to compute with the asynchronous precondi-

tioner (A ≈ LDLT) in Algorithm 6. Step 1 is processed by analyzing the sparse pattern of

J; Step 2 involves solving multiple STS; Step 3 and Step 4 consist of matrix-matrix multi-

plications that can be efficiently computed on GPU. We underline that Algorithm 6 com-

putes the same result as in Algorithm 4 (i.e., the resolution proposed in Courtecuisse et al.

(2014)). The only approximation comes from using a delayed system that is factorized in

an asynchronous thread.

Algorithme 6 : Approximate computation of the Schur-complement with the sys-
tem factorized in asynchronous thread

1 Build Ī, Ĥ from J
2 S̄ = L−1ĪT

3 W̄ = S̄TD−1S̄
4 W =∑

ĤW̄ĤT

4.2.3.2 STS resolution strategy

The step 2 of Algorithm 6 remains a difficult task to be parallelized on the GPU due to the

data dependencies in triangular systems. However, the isodof scheme leads to a special

resolution. Each right-hand side is no more the combination of various values (in JT)

but only contains one element with value "1" on a specific column (in ĪT). An important

consequence is related to the fact that, for each column of ĪT, only a subset value needs

to be computed, leading to a sparse resolution of the triangular system (see Figure 4.4).

Therefore the density of S̄ is significantly reduced compared to S (i.e., dealing with JT). In

addition, the dependencies can formally be expressed with an elimination tree. Given that

the matrix pattern of L only depends on the mesh topology, the elimination tree can be

pre-computed, and the sparse matrix storage of the result is predictable for every column

index, as long as the topology is not changed.

While processing the STS resolution, it can be either processed in the "row-major"

or the "column-major" (see Figure 4.5). When assuming the solutions as dense vectors

(as in Courtecuisse et al. (2014)), processing the "row-major" is more efficient because it

does not cause data writing conflict in parallel resolution. However, as the structure of S̄

is very sparse, it accumulates zero contributions, causing a large amount of unnecessary

computation cost. Although the "column-major" requires pre-accumulating the data on
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Figure 4.4: Resolution of one RHS in LS̄ = ĪT (the elimination tree (top-right) helps visu-
alize the structure of dependency in L): Each right-hand side contains one element with
value "1" on a column index i , locating on a branch on the elimination tree. During the
resolution, only this branch with index i and its parent branches need to be processed (red
nodes on the elimination tree). Reflected on the matrix pattern, only the red elements in
L need to be processed. This sparse resolution is very efficient compared to process the
full matrix L.

the positions where the result is not yet solved (see below), it can naturally avoid this

unnecessary accumulation.

4.2.3.3 GPU-based implementation

To implement Algorithm 6, Step 1 requires to build Ī and Ĥ. According to the illustration

in Figure 4.3, Ī can be stored in a vector that contains the non-zero columns in J. As a

"compressed reformulation", Ĥ have the same data sequence of J. This means that, when

stored in Compressed Row Sparse (CSR) format, they have the same vectors of row index

and values, while the vector of column index of Ĥ is built as "compressed indices".

The GPU-based implementation of STS resolution in Step 2 is inspired from the block-

row parallelization strategy in Courtecuisse et al. (2014). Each right-hand side of S̄ is as-

signed to an independent multiprocessor since the multiple RHS are independent of each

other (see Algorithm 7).

To perform the sparse resolution in Figure 4.4 for each right-hand side, we pre-compute

offline the pattern to be processed for every index. Each pattern is composed of sub-

domains, with their indices given by the reordering algorithm. As illustrated in Figure

4.6, within each sub-domain, we process t columns simultaneously by using a group of

t × t threads. For each t columns, the block diagonal (diag) is firstly processed as a dense

problem; then, the off-diagonal data is accumulated into the result. The parallel accumu-
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Figure 4.5: The STS can either be solved in the "row-major" (Top) or in the "column-
major" (Bottom). In the "row-major", using the CSR format requires processing data in L
continuously on each row, leading to many unnecessary accumulations to the result with
zero contributions. Using the "column-major" scheme with CSC format can naturally ad-
dress this problem. When dealing with a column i , the result on the line i is fully solved
(red), but the rest lines remain unsolved (blue) and require to pre-accumulate the contri-
butions on the lines: r es[ j ] = r es[ j ]− r es[i ]∗Li , j .

lations may cause data writing conflicts, which can be handled with the atomic function.

As S̄ and Ĥ are stored in the sparse format, once the STS resolution is processed, Step

3 and 4 in Algorithm 6 can be implemented with the following operations:

X1 = D−1S̄ (Di ag −Spar se) (4.25a)

W̄ = S̄TX1 (Spar se −Spar se) (4.25b)

X2 = W̄ĤT (Spar se −Dense) (4.25c)

W = ĤX2 (Spar se −Dense) (4.25d)

where Operation (4.25a) is a diagonal matrix-sparse matrix multiplication, resulting in

a temporary matrix X1 with sparse format. Operation (4.25b) is a sparse matrix-sparse

matrix multiplication, where the sparse structure of S̄T and X1 can be pre-computed. Op-

erations(4.25c), and (4.25d) are sparse matrix-dense matrix multiplications (SpMM) with

normal or transposed format, resulting in matrices with dense format. As we process the
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Algorithme 7 : Algorithm to address Sparse Triangular System with multiple
right-hand sides of isolated DOFs using column-major

Result : columns res in S̄ solved by multiprocessors in parallel
1 Initialization: compute sub-domains to be processed and their indices in offline :

subDomai n, st ar t Ind , end Ind ;
2 i = 0 ;
3 bx = i sodo f ; // First sub-domain begins with isodof index
4 end = end Index[subDomai n[i ]] ;
5 while i < subD.si ze do
6 while bx < end do
7 copy_into_shared_memory(diag) ;
8 local_synchronization ;
9 solve_bloc_diagonal(diag,res) ; // see Courtecuisse et al. (2014)

10 local_synchronization ;
11 pre_accumulate_contributions(res) ; // Figure 4.5
12 local_synchronization ;
13 bx = bx + t ; // next t columns
14 end
15 i = i +1 ;
16 bx = st ar t Ind [subDomai n[i ]] ;
17 end = end Ind [subDomai n[i ]] ; // next sub-domain
18 end

sparse computation, an important consequence is that the operations in Step 2 and 3 in

Algorithm 6 are independent of the mechanical DOF dimension n. As a result, the isodof

method can be very efficient even with highly detailed mesh.

4.2.4 Reuse of solutions in consecutive time steps

In this section, by exploiting the isodof scheme and the asynchronous preconditioning

scheme, we present a "reuse isodof scheme" to benefit a further speedup.

Using the asynchronous preconditioning scheme implies that the solvers in the main

simulation loop keep using the factorized system (LDLT) until a new factorization is done.

In this case, we have the STS resolution with the isodof scheme in two consecutive time

steps t and t + i :

S̄t = L−1Īt
T

S̄t+i = L−1Īt+i
T

(4.26)

where t + i represents the consecutive time steps while the factorized system is not yet

updated.

Moreover, the mechanical DOFs that are impacted by the contact constraints directly

depend on the local mesh area where contact occurs. Figure 4.7 reveals that, in real-time
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Figure 4.6: The STS with isodof Jacobian is solved in column-major. Each right-hand side
is assigned to an independent multiprocessor, and for each one, t×t threads (represented
by different colors) are used to process the resolution simultaneously. The off-diagonal
contributions are pre-accumulated to the results in parallel threads.

Figure 4.7: The evolution of contact space in a contact simulation between a deformable
liver mesh and a rigid plane: The points on the mesh show the isolated DOFs that appear
in the previous time steps (blue) and the new isodofs (red). It is revealed that the consecu-
tive time steps usually shares same isodofs, which is relected on the isodof Jacobian matrix
Ī.

simulations, consecutive time steps usually share a part of contact area, so as the isodofs

impacted. Reflected on the matrices, the isodof Jacobian in consecutive time steps (Īt
T

and Īt+i
T) share a part of same right-hand sides. Consequently, while L is not updated, the
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results S̄t+i share the corresponding solutions with S̄t , which are computed in previous

time step t . Therefore, the following time step t +i only needs to solve those that have not

been shared:

S̄new = L−1Īnew
T (4.27)

where Īnew consists of new isodofs that emerges in Īt+1. Compared to the standard isodof

scheme presented in Section 4.2.3, we have a smaller dimension to deal with, implying a

further speedup.

To benefit speedup from the reuse scheme, we propose a hybrid implementation illus-

trated in Figure 4.8:

1. standard scheme While a new factorization is done in the asynchronous thread, the

solver follows the operations in Algorithm 6.

2. reuse scheme While the factorized system is not updated, the solver performs a

"reuse scheme" (see the implementation below).

In the "reuse scheme", a first step compares the current Ī with the previous one Īold,

outputting the new isodofs stored in a matrix Īnew. To formulate the relation between

Īold, Īnew and Ī, we use a function π, which is a actually partial permutation and can be

represented by a matrix Pπ:

Ī = Pπ

 Īold

Īnew

 (4.28)

Following Algorithm 6 and Equation (4.28), W̄ in the current time step is built as:

W̄ ≈ Ī(LDLT)−1ĪT

= Pπ

 Īold

Īnew

 (LDLT)−1
[

Īold
T Īnew

T

]
Pπ

T

= Pπ

 S̄TD−1S̄ S̄TD−1S̄new

S̄new
TD−1S̄ S̄new

TD−1S̄new

Pπ
T

= Pπ

 W̄old S̄TD−1S̄new

(S̄TD−1S̄new)T S̄new
TD−1S̄new


︸ ︷︷ ︸

W̄extend

Pπ
T

(4.29)
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Figure 4.8: Scheme of standard/reuse scheme of isodof method: While a new factoriza-
tion is done in the asynchronous thread, the solver performs a "standard scheme", storing
the isodof Jacobian Īold, the STS solution S̄, and the isodof delasus W̄old in GPU memory.
While the solver keeps using the same factorized system of the previous time steps, it per-
forms a "reuse scheme".
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with S̄ = L−1Īold and S̄new = L−1Īnew. The former has been computed in previous time

steps and the latter is to be solved in the current time step. To finally build the current W̄,

we have an "extended" matrix W̄extend to build, where the diagonal and the off-diagonal

parts are formulated as:

W̄diag = S̄new
TD−1S̄new (4.30a)

W̄off = S̄TD−1S̄new (4.30b)

The detail implementation of the "reuse scheme" is illustrated in Figure 4.8. Although

the number of operations is increased compared to the "standard scheme", the opera-

tions (i.e., STS resolution, SpMM...) are very efficient since they usually have much smaller

isodof dimension. Therefore, based on the isodof method presented in Section 4.2.3, the

"reuse scheme" benefit a further speedup on performance from reducing the isodof di-

mension size. We still underline that the "reuse scheme" computes the same resolution

as in Algorithm 4 and Algorithm 6.

4.2.5 Evaluation of computation cost in the Schur-complement

In this section we evaluate the computation cost of the isodof method presented in Sec-

tion 4.2.3 as well as the reuse isodof method in Section 4.2.4. The simulation tests are con-

ducted in the open-source SOFA framework with a CPU AMD@ Ryzen 9 5950X 16-Core at

3.40GHz with 32GB RAM, and a GPU GeForce RTX 3080 10GB.

The deformable meshes are modeled with the co-rotational formulation (although it

should be compatible with other materials as proposed in Courtecuisse et al. (2015) for

hyperelastic materials). Our methods are dedicated to assembling the Delasus operator

and are compatible with various methods in the other steps. The free motion is solved

with a preconditioned Conjugate Gradient (PCG), and the constraint resolution uses a

projected Gauss-Seidel (PGS).

In this section, we evaluate the performance of our methods in various conditions. We

simulate the collision between a deformable raptor mesh and a rigid plane mesh, using

a proximity-based method for the collision detection: The potential constraint pairs are

defined by searching the closest elements between surface triangle meshes of contacting

objects.

By simulating the simple collision between a deformable raptor mesh and a rigid

plane (see Figure 4.12, Left), the tests are executed in conditions of various numbers of

mechanical DOFs and contact constraints. We compare the performance of our methods

of isodof /Reuse isodof to the method proposed in Courtecuisse et al. (2014) that currently
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provides the fastest contact resolution in SOFA framework.
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Figure 4.9: Computation cost of Schur-complement of different methods for various con-
straint number: contact simulation between a rigid plane and a deformable raptor mesh
with 36069 mechanical DOFs. By changing the elasity parameters, the contact area is var-
ied, leading to different constraint numbers. We note that the y axis is logarithmic in this
figure.

In Figure 4.9, the isodof method shows an average speedup of 47.42× compared to

Courtecuisse et al. (2014) and the reuse isodof shows a further speedup of 2.81× compared

to the standard isodof and 133.31× compared to Courtecuisse et al. (2014). Our methods

efficiently limit the computation cost: with 367 constraints (326 mechanical DOFs im-

pacted) the isodof method takes 1.08ms; with 1860 constraints (1376 mechanical DOFs

impacted) the isodof method takes 5.73ms, while the reuse isodof method takes 2.03ms

by reusing 99.8% of the isodofs.

In Figure 4.10 we show the performances of our methods according to different mesh

dimensions. The method in Courtecuisse et al. (2014) reveals a quadratic function accord-

ing to the number of mechanical DOFs as the discretization of the mesh has an impact

on the searching of contact pairs in the proximity collision detection. When the prob-

lem size is increased, Courtecuisse et al. (2014) (dense resolution) suffers from extremely

large computation cost, while this cost is limited with our new methods (10.05ms for the

isodof method and 2.32ms for the reuse isodof method). The speedup from Courtecuisse

et al. (2014) to the isodof is averagely 50.55× and it is enlarged up to 133.57× for the reuse

isodof. As expected, our method is poorly sensitive to the mesh dimension while the cost
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Figure 4.10: Computation cost of Schur-complement of different methods for various
mechanical DOFs: contact simulation between a rigid plane and a deformable raptor
mesh with various discretization. The mesh discretization has an impact on the contact
constraints (dashed black line in the figure). We note that the y axis is logarithmic in this
figure.

Method Performance (in ms)

Free Motion Build W Build + Fac. Free Motion Build W Trans. GS Corr. Time step

Pardiso-16 1129.72 37.7 57.49 57.46 26.32 1308.69

PCG + LDLT Courtecuisse et al. (2014) 41.45(10#it) 554.15 27.09 48.06 3.60 674.35

PCG + LDLT isodof 42.20(10#it) 13.53 26.97 47.55 3.83 134.08

PCG + LDLT reuse isodof 42.45(10#it) 6.56 26.22 46.58 3.82 125.63

Table 4.1: Collision simulation between a rigid plane and a deformable raptor with 59 529
mechanical DOFs and 2250 contact constraints. Performance of various methods: sys-
tem assembly + analysis for Pardiso + factorization (Build + Fac.), free motion resolution,
Schur-complement (Build W), transfer W from GPU to CPU (Trans.), Gauss-Seidel (GS)
for constraint resolution, corrective motion (Corr.) as well as the entire time step (Step).
For the implementation in Pardiso (processed in 16 parallel threads), an augmented sys-
tem with the constraint Jacobian is factorized, while the factorized system is used in the
resolutions of the free motion, the Schur-complement, and the corrective motion.

of method in Courtecuisse et al. (2014) goes far beyond the real-time computation with

large mesh dimensions.

In Table 4.1 we evaluate the entire time step for a real-time application. We compare

our methods with the solvers in Pardiso project, which is a popularly used library for lin-

ear algebra due to its efficiency, especially while processing in parallel CPU threads. For

72



4.2. COMPUTING OF COMPLIANCE IN CONTACT PROBLEM

Other
18%

Build W
82%

BEFORE

Other
95%

Build W
5%

NOW

Figure 4.11: From Courtecuisse et al. (2014) to our methods, change of contribution of
the Schur-complement in the entire time step

direct solvers in Pardiso, a factorization process is necessary before the free motion reso-

lution and the Schur-complement. Although the Pardiso for the Schur-complement (i.e.,

the method in Petra et al. (2014)) is very fast, it requires a prerequisite augmented fac-

torization. Computing the factorization depends directly on the dimension of mechani-

cal DOFs, making it very difficult to achieve real-time computation for large-scale prob-

lems. On the other hand, the asynchronous preconditioner (i.e., the method in Courte-

cuisse et al. (2010a) (PCG) for the free motion, and the method in Courtecuisse et al.

(2014) for the Schur-complement) removes the costly building and factorization stage

out of the main simulation loop, showing a significant speedup compared to the direct

solvers. Although this method gains significant speedup, it becomes prohibitive in large-

scale contact problems in real-time applications (building W takes 554.15ms and 82.18%

in a time step). With the isodof and reusing isodof methods, we succeed to limit the

Schur-complement within a very low computation cost that is 13.53ms (10.09%) for isodof

method and 6.56ms (5.22%) for reuse isodof method (see Figure 4.11)

4.2.5.1 Assembling compliance vs. unbuilt scheme

As discussed in Section 4.2.1, when using a relaxation method such as PGS, the unbuilt

scheme can be an option to solve the problem. In Table 4.2, we compare the additional

computational cost between the unbuilt scheme and the assembly scheme (building W).

We collect the data from two of our examples in the application section 4.3.1 to compare

the methods in both limited (Pass Torus) and rich contact (Rich Contact) cases. Accord-

ing to different contact cases, PGS will need several iterations to hundreds of iterations

to converge. As illustrated in the table, for both limited/rich contact cases, the extra cost

of applying LDLT in each iteration overcomes the overhead of building the compliance

matrix after several PGS iterations. With ten iterations, building W with our methods is

already more efficient than the unbuilt scheme. This gap tends to be extremely large when
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the relaxation method needs hundreds of iterations to converge. We note that we use the

same LDLT factorization with the same reordering technique for the different schemes

in this test. For the unbuilt scheme, the LDLT resolution process in Algorithm 5 is opti-

mized on GPU using a domain-decomposition technique in the forward/backward sub-

stitutions: The patterns of L/LT matrices are partitioned into sub-blocks that correspond

to the branches on the elimination tree (see Figure 4.4). We can parallelize the resolu-

tion of branches for those who have no data dependency between each other. Following

the structure of the elimination tree, such parallel resolution can be processed recursively

until the root.

Assembly scheme Unbuilt scheme

Example Mecanical DOFs Constraints Overhead (Build W) Solving LDLT PGS ite. Extra cost

Pass Torus 31302 227.7 2.19 1.61
10 16.1

200 322.0

Rich Contact 6561 1328.4 2.03 0.61
10 6.1

200 122.0

Table 4.2: Comparison of the additional computation cost (in ms) between the assembly
scheme and the unbuilt scheme. Since the choice of scheme will not impact the PGS
performance, we can compare the overhead/extra cost in different schemes. The unbuilt
scheme requires an extra cost of solving LDLT (see Algorithm 5) in each PGS iteration.
Hence, the total extra cost scales linearly with the number of iterations. In contrast, the
assembly scheme with our new method only requires a small overhead of building W and
will not cause any extra cost in the iterations.

4.3 Applications

4.3.1 Applications of isolating mechanical DOFs in various scenarios

Figure 4.12: Our new methods provide a fast process for the schur-complement while
being capable of completing different challenges in various examples such as simple col-
lision test (Left), complex interaction (Middle), and gripping task (Right).

In this section, we apply our methods to different examples. To perform fast collision

detection, we use the GPU-based method Allard et al. (2010) that relies on volume inter-
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penetration. The tests are executed in the following examples, with various deformable

meshes and challenges (detailed meshes, multi-objects, complex interactions, heteroge-

neous materials...).

4.3.1.1 Complex interaction: Pass Torus

Figure 4.13: Pass a deformable armadillo through a torus. The zoom figure shows the
detailed mesh discretization with arrows that represent the constraints of contact and
friction.

Figure 4.13 shows complex interactions between a rigid ico-sphere, a fixed rigid torus,

and a deformable armadillo that has a detailed discretization with 31302 mechanical DOFs.

The contact from the sphere is on the center of the armadillo, pushing it through the torus.

On the other hand, the stiffness and the contacts on arms and legs generate the forces re-

sisting against sphere’s movement. It is, therefore, necessary to efficiently discretize con-

tacts with mechanical coupling to compute and distribute the contact forces.

4.3.1.2 Multi-objects

Our methods are compatible with multi-object systems, such as a scenario of multi-torus

(see Figure 4.14). In the test we simulate 10 deformable torus with 3357 mechanical DOFs

for each one. Each deformable torus is contacting with the others and the fixed pillars.
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Figure 4.14: Collision between multiple deformable torus. The zoom figure shows the
detailed mesh discretization with arrows that represent the constraints of contact and
friction.

Although we solve smaller mechanical problems in this scenario, the contact forces are

transmitted among the objects, forming a complex multi-object system. Beyond the fact

that the methods also provide speedup in multi-body contact simulations, building the

Delasus operator is crucial to take into account the mechanical coupling of the system.

4.3.1.3 Dynamic contact: Rolling

To better evaluate the reuse isodof method, we design a "dynamic test" where the contact-

ing area keeps shifting and numbers of new isolated DOFs appear in each time step (Figure
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Figure 4.15: Rolling cylinder: a dynamic contact test for the reuse isodof method. The
zoom figure shows the detailed mesh discretization with arrows that represent the con-
straints of contact and friction.

4.15). Although the contact area keeps changing, more than 89% of isodofs are reused. The

reuse isodof method has an additional speedup of 1.5× compared to the standard isodof

method (7.58ms → 5.06ms). In this case, the reuse isodof method still receives interest

since the isodofs are efficiently reused between the consecutive time steps even when the

contact area is constantly varying.

4.3.1.4 Heterogeneous material

Figure 4.16: Heterogeneous material: the red parts are 10× stiffer than the blue parts,
while the green parts are fixed. The zoom figure shows the detailed mesh discretization
with arrows that represent the constraints of contact and friction.

Our methods are compatible with heterogeneous materials. In Figure 4.16, we simu-

late the collision between a rigid ico-sphere and a deformable armadillo of heterogeneous

material with 31302 mechanical DOFs. The main difficulty of this example is related to

the fact that the sphere applies contact forces on stiffer parts (in red), whereas softer parts

(arms and legs in blue) should deform more obviously. By formulating the Delasus oper-
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ator, the contacts are solved with mechanical coupling and contact forces are efficiently

distributed in heterogeneous material while enforcing fast computation time.

4.3.1.5 Needle Insertion

Figure 4.17: Needle insertion. The zoom figure shows the detailed mesh discretization
with arrows that represent the constraints of contact and friction.

Besides contact constraints (unilateral constraints), our methods are also compati-

ble with other constraint types. We apply our methods in a scenario of needle inser-

tion, which is a popular topic in medical simulations Adagolodjo et al. (2019). Figure 4.17

shows a process of inserting a needle into a deformable liver mesh (highly detailed, with

31566 mechanical DOFs). Our methods are compatible with the needle constraints (bi-

lateral constraints) that only impact the mechanical DOFs nearby the insertion trajectory,

making the isodof method very efficient. Moreover, the reuse isodof method can benefit

a significant speedup from reusing the isodofs nearby the insertion trajectory.

4.3.1.6 Rich contact

We apply our methods in a scenario where a soft pad is covering on a rigid sphere. The

contact area is very large and 1200-1300 contact constraints are generated while about 900

out of 6561 mechanical DOFs are impacted by the constraint. The ratio of constraints/DOFs

in this scenario is about 0.2, which is significantly higher than other examples (less than

0.02). Our methods remain efficient in such rich contact cases: building W takes 2.03ms

with the reuse isodof method, providing a speedup of 14.98 × compared to the method in

Courtecuisse et al. (2014).
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Figure 4.18: Rich contact.

Figure 4.19: Stacking problems. Top: assembling W allows to couple the forces between
stacking boxes with increasing masses which are represented by gradient blues. Bottom:
assembling W is especially important for the stability in a heterogeneous stacking sce-
nario with different stiffness (the blue pads are 10 × stiffer than the red pads).

4.3.1.7 Stacking problem

We apply our methods in a stacking problem, which is similar to the example in Mack-

lin et al. (2019). In the first scenario, the stacking boxes are modeled with FEM and large

young modulus to have a behavior near to rigid bodies. With increasing masses of the

boxes, PGS can still handle the problem when the total mass ratio is of 256:1. When deal-

ing with a mass ratio of 4096:1, the problem becomes very poorly conditioned and diffi-

cult to be solved with PGS. However, by assembling W, our methods allows to formulate a

standard complementarity (linear system in Equation (4.17) combined with complemen-

tarity conditions in Equation (4.3) and (4.5)) discussed in Erleben (2013), making it flexible

to be solved by different methods (e.g. pivoting methods to handle such a ill-conditioned
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problem).

Besides the homogeneous stacking, our methods are also tested in a heterogeneous

stacking problem. In the second scenario, the stacking soft pads are modeled with dif-

ferent stiffness. Such a test will be failed when the contact forces are not coupled (W is

diagonal) as the system is extremely unstable, which is discussed in Andrews and Erleben

(2021). In this test, the coupling of contact forces is very complex since the interaction on

each contacting faces has impact on the other objects. Therefore, building the compli-

ance matrix is very important to propagate the forces over different objects. Our methods

allow to efficiently address this problem by fast building W that correctly couples the con-

tact forces.

4.3.1.8 Gripping raptor

Figure 4.20: Grip a raptor with friction constraints. The zoom figure shows the detailed
mesh discretization with arrows that represent the constraints of contact and friction.

We apply our methods on a gripping test. In a first scenario (see Figure 4.20), we use

a soft gripper Duriez (2013) with two fingers to compress a deformable raptor mesh with

30033 mechanical DOFs. In a second scenario (see Figure 4.21), we fetch the raptor and

deal with a pick-and-place task. This scenario implies comprehensive challenges: The

deformable raptor is highly detailed, and the soft fingers are also deformable models (with

474 mechanical DOFs for each one). While gripping (compressing) the raptor, the fingers

and the raptor are deformed to fit the contacting surface, generating numbers of contact

constraints. Lifting, rotating, and moving the raptor by the fingers are complex operations

where friction constraints are necessary. Moreover, the fingers, the raptor, the rigid plane,

and the torus are grouped into a multi-object system, requiring efficient distribution of

contact forces through mechanical coupling.

80



4.3. APPLICATIONS

Figure 4.21: A pick-and-place task with Soft-Robot

4.3.1.9 Evaluation

In these scenarios, we meet various challenges: The complex interactions usually require

to efficiently distribute the contact forces through the mechanical coupling, such as the

cases in multi-object systems and in the problems with heterogeneous materials; The

needle insertion operation necessitates simulating both the unilateral constraints for con-

tacts and bilateral constraints for needle insertion at the same time; The pick-and-place

task is even more challenging with different requirements. Moreover, all the scenarios

simulate highly detailed meshes, raising large-scale problems. In this case, typical CPU-

based or GPU-based approaches suffer from high computation costs to assemble the sys-

tem W for the constraint resolution. However, our methods can complete the challenges

with limited costs to build the compliance matrix. In Table 4.3 we evaluate the compu-

tation cost of the Schur-complement as well as its contribution in an entire time step.

Although in different applications, our methods have different performances, we succeed

in limiting the cost of building the Delasus operator within less than 10ms in all the ex-

amples. Consequently, with our methods, the Schur-complement process in constraint-

based resolutions is no more a critical obstacle in real-time simulations.
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Example Mecanical DOFs Constraints Time Step Build W % Speedup

Pass Torus 31302 227.7 109.2 2.19 2.01 % 12.89×
Multi-torus 3357 × 10 323.28 89.81 8.83 9.83 % 3.87×

Rolling 26082 537.99 36.56 5.06 13.84 % 14.27×
Hetero-Material 31302 270.96 156.17 2.14 1.37 % 19.84×
Needle Insertion 12555 96.84 25.56 3.29 12.87 % 1.86×

Rich Contact 6561 1235.40 24.95 2.03 8.14 % 14.98×
Stacking 30240 163.26 121.54 4.00 3.29 % 1.00×

Hetero-Stacking 2205 240.0 18.86 1.69 8.96 % 1.04×
Catch Raptor 30033 486.59 144.76 0.73 0.50 % 64.00×

Table 4.3: Performance (in ms) in various examples: we evaluate the computation cost of
the Schur-complement (Build W with the reuse isodof method), its percentage in a time
step, and the speedup compared to the method in Courtecuisse et al. (2014).

4.3.2 Isolating mechanical DOFs in needle insertion simulations

In this section we provide more details about the application of our isolating mechanical

DOFs in needle-based procedures, which are beneficial for patients but are technically

challenging to perform. Martin et al. (2023) proposes a new needle insertion approach,

relying on the needle-tissue interaction model introduced in Duriez et al. (2009). The lo-

cation of constraints is improved by prescribing the relative displacements of all the DOFs

involved during the insertion. It results from the intersections between the needle and

volume meshes. Compared to previous solutions, our approach improves the accuracy

and generates a realistic haptic rendering, but a significantly larger number of constraints

are generated. To limit the computational cost, the method is combined with the isolating

mechanical DOFs approach Zeng et al. (2022) proposed in Section 4.2.3.

During needle insertion, the DOFs impacted by the constraints (known as isolated

DOFs) in the previously inserted part remain in the current time step. Therefore, the im-

proved IsoDOFs method, which reuses common results in consecutive time steps, is ex-

ploited to further accelerate the resolution.

To assess the improvement of constraint placement by the intersection process, a rigid

needle was numerically inserted into a very soft beam-like gel (500 Pa) (see Fig. 4.22). A

mesh of 50 nodes over 15 cm in the direction of the needle, against 6 nodes over 2 cm in

the two other directions was used.

A needle was numerically inserted into a gel, following a defined curved trajectory.

During the insertion, bilateral and friction constraints were generated from the inter-

section process. The time required to build W and the number of impacted DOFs were
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evaluated (see Fig. 4.23). Comparisons were made between the IsoDOFs and reuse IsoD-

OFs methods, exposed in Zeng et al. (2022). Results show that only a minor portion of

DOFs was newly constrained between consecutive time steps, thus decreasing the com-

putation time required to build W: although our approach gives rise to a large number of

constraints, the reuse of IsoDOFs allows the computation of W to be minimally impacted.

4.4 Conclusion

This chapter provides an introduction to the background of constraint resolution in FE

simulations, followed by the presentation of novel methods aimed at efficiently address-

Figure 4.22: Bilateral constraints (green and red arrows) were generated between the rigid
needle (purple) and the volume. Gravity was applied to generate a motion of the uncon-
strained volume nodes, producing unrealistic needle-tissue relative motions as circled.
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Figure 4.23: Average computation time to build W (in ms) over 50 time steps from the reuse
and standard IsoDOFs methods, during a needle insertion. Amounts of reused and total
IsoDOFs are compared. Most IsoDOFs are reused between consecutive time steps.
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ing issues in contact simulations.

To overcome the computational cost associated with building the compliance ma-

trix, we propose fast approaches based on precondition-based contact resolution. The

isodof method reformulates the costly Schur-complement by isolating the mechanical

DOFs in the constraint Jacobian matrix. This reformulation enables us to perform sparse

resolution, which is suitable for parallelization on a GPU. The reuse isodof method fur-

ther reduces the problem dimension, improving the efficiency of computing the Schur-

complement. Even when the number of constraints and mechanical DOFs is significantly

increased, our methods effectively limit the computational costs, eliminating the obstacle

posed by the Schur-complement in real-time simulations (see Figure 4.11). Additionally,

our methods yield mathematically equivalent results to those obtained by the method

described in Courtecuisse et al. (2014), thereby enabling the computation of large-scale

real-time simulations involving contact and friction.

Our work has limitations and suggests avenues for future research. For the isodof

method, the fast computation achieved through our methods introduces a limitation for

asynchronous preconditioners. While the computation cost in the main simulation loop

is significantly reduced, the factorization in asynchronous threads remains computation-

ally expensive. Consequently, the number of simulation steps required to update the

asynchronous factorization increases considerably. Using a slowly updated matrix may

lead to significant errors in the case of large deformations. One potential solution is to

perform the asynchronous factorization on a GPU, which would involve conducting asyn-

chronous multi-GPU computations.

Lastly, the isodof method relies on a precomputed structure based on the elimination

tree. Any modification to the mesh topology would invalidate the precomputed data, ren-

dering the method incompatible with cutting processes. In response to this challenge, we

will discuss a new approach for simulating cutting operations in Chapter 5 and explore

potential methods to extend the isodof method to accommodate topological changes in

Chapter 6.
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5
DYNAMIC CUTTING SIMULATIONS

Interactive simulations have the potential to revolutionize surgical training by enabling

surgeons to practice various procedures. As one of the typical applications, cutting de-

formable solids is always challenging due to topological changes that introduce addi-

tional issues. Although simple techniques, such as element deletion and splitting along

existing faces, are effective, they produce poor cutting surfaces. Mesh refinement is a

popular alternative in recent studies as it provides better cutting surfaces and maintains

reliable volume conservation. However, this method may generate ill-shaped elements

and large amounts of new elements, invalidating real-time performance. Alternatively,

the vertices-snapping approach offers the advantages of mesh refinement without gen-

erating new elements. Despite its potential benefits, this method was limited to static

simulations due to issues related to energy conservation and topology changes.

This chapter aims to simulate progressive cutting with an advanced vertices-snapping

method. Our method optimizes the mesh quality in a vritual FE system, and enables real-

time peformance with efficient topology operations and fast numerical solver. According

to the topological modification, we further propose an efficient strategy to update the

stiffness matrices and the precomputed structure in matrix-free iterative solver. All these

method finally result in an efficient cutting method with good mesh quality and smooth

cutting surface.
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5.1 Dynamic cutting simulation with mesh quality opti-

mization

As discussed previously, we opt for the vertices-snapping strategy Nienhuys and van der

Stappe (2001) as our preferred method for fitting the cutting boundary surface onto the

cutting path. This approach avoids generating new elements, thereby minimizing addi-

tional computational costs in numerical solvers.

(a) Snapping the boundary (b) Elastic snapping

Figure 5.1: (a) The original snapping strategy risks of compressing the elements, leading
to ill-shaped mesh. (b) We propose solving an elastic problem, where the equilibrium
between the snapping forces and the elastic internal forces optimizes the mesh quality.

We propose solutions to address the major limitations of the original vertices-snapping

strategy in dynamic simulations:

1. Unscheduled cutting path Working with an unscheduled cutting path requires a

robust method that is able to deal with the potential perturbations in applications.

To make sure a reliable and progressive cutting path, we propose generating the

path mesh with point cloud and using polynomial fitting to smooth the path.

2. Ill-shaped mesh During cutting, the displacement of vertices may lead to ill-shaped

elements, particularly when elements are significantly compressed. To overcome

this issue, a previous study Serby et al. (2001) proposed a method for re-meshing

the topology to improve mesh quality after each cut. However, this solution is pri-

marily suitable for static simulations, and the re-meshing process adds extra com-

putational costs to numerical solvers. In the case of dynamic simulations, we pro-

pose a modification to the conventional vertices-snapping strategy. Rather than
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only snapping vertices near the cutting path, we suggest solving am elastic problem

to optimize the mesh quality (see Figure 5.1).

3. Energy conservation In dynamic simulations where the objects are deformed, fix-

ing vertices in their snapped positions may invalidate external/internal forces, lead-

ing to energy loss in the finite-element system. To address this issue, we propose

snapping vertices in the reference shape such that the deformed object conforms

to the cutting path while preserving existing external and internal forces.

4. Separating boundary In dynamic simulations, finding a boundary geometry that is

accurately snapped onto the cutting path and effectively divides the local mesh into

two parts can be challenging. Additionally, ensuring the connection of the bound-

aries between consecutive time steps is a crucial issue. To address these challenges,

we propose a set of efficient geometry operations to search for the boundary. The

details of the method are explained in the subsequent sections.

2.Cutting Path
Mesh

1.Point Cloud of 
Instrument Positions

3.Booundary 
Manifold Mesh

4.Elastic Snapping

5.State Modification 6.Split Topology

Actual Simulation
(Deformed Shape)

Virtual Simulation
(Replica of Reference Shape)

Transfer to the
reference state

Apply modification to 
the reference & 
deformed state of the 
actual object

Figure 5.2: Workflow of the cutting method within a time step.

We propose a new method that integrates the above approaches to achieve the desired

outcome. The workflow of the method is illustrated in Figure 5.2. At the beginning of each

time step, we search for the interactions between the mesh and the instrument, generat-

ing a point cloud (with the instrument positions) in the deformed state. Subsequently,

the point cloud is transferred into the reference state. After a polynomial fitting that re-

duces perturbations, we create a surface mesh by a triangulation algorithm, depicting the

cutting path in the reference shape. The following step involves the identification of a

boundary geometry consisting of pre-existing surfaces in the mesh that requires cutting,

while ensuring that the boundary geometry is in close proximity to the cutting path. All

these information is transferred into a second simulation, where the boundary vertices

undergo constraint forces that leads their displacement onto the cutting path. The resul-

tant displacement is then applied to the reference state of the actual physical object being
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simulated. Finally, the method utilizes the boundary geometry to separate the local mesh

into two distinct parts.

5.1.1 Cutting path

In this section, we propose a method for generating a cutting path in 3D problems. First,

the positions of the cutting instrument are recorded in each time step, with a user-defined

sampling distance to avoid excessive density. This collection of positions creates a point

cloud representing the instrument’s trajectory. In order to obtain a cutting path in the

reference shape, the point cloud is transferred using barycentric coordinates (see Figure

5.3) between each point and its corresponding element in the mesh. For each point in the

point cloud, we determine its corresponding element as the element that contains the

point if the point lies within the mesh, or the nearest element if the point is outside the

mesh.

𝑻𝟎

𝑻𝟏
𝑻𝟐

𝑷

(a) Deformed shape.

𝑻𝟎

𝑻𝟐

𝑻𝟏

𝑷

(b) Reference shape.

Figure 5.3: We use the barycentric mapping to transfer the point cloud from the deformed
shape to the reference shape: (a) In the deformed shape, we compute the barycentric
mapping u, v , and w such that q(P ) = uq(T0)+vq(T1)+wq(T2) while u+v +w = 1. (b) In
the reference shape, we use the barycentric coordinates to compute the relative position
for the point: qref(P ) = uqref(T0)+ vqref(T1)+wqref(T2)

Due to displacements and deformations, the transformed point cloud may not be as

smooth as it is in the deformed shape. To address this, a polynomial fitting procedure

using Moving-Least Squares (MLS) Alexa et al. (2003) is used to create a smooth plane in

the reference state. Finally, a fast triangulation method Marton et al. (2009) is employed

to generate a surface mesh that represents the cutting path. Both the polynomial fitting

and triangulation methods are implemented in the Point Cloud Library (PCL). In the ap-

plications with interactions of user, the micro perturbations are usually inevitable due to

unpredictable movement of the object and the instrument. Such as the slight shaking of

hands that handle the cutting tool, or the motion of organ with respiration in the virtual
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surgery. Therefore it is important to use MLS to efficiently smooth the cutting path. How-

ever, such smooth will lead to a drawback: In progressive cutting, the front end of the

cutting path will be continuously updated with new polynomial fitting, leading to slight

changes of the last path (see Figure 5.4). The effect of such change will be discussed in the

next section.

Point Cloud

Cutting Path Previous
Cutting Path

New Points

New Path

Path Changed

Figure 5.4: Moving Least Square (MLS) can efficiently smooth the cutting path, but will
cause slight change in the last cutting path.

5.1.2 Boundary surface

Boundary

Sub-Topology

Cutting Path

(a)

Sub-Topology

ABOVE Side

(b)

Sub-Topology

ABOVE Side

Cutting Path

(c)

Figure 5.5: Our geometry operations to search for the boundary surface: (a) the interacted
elements are grouped as a 3D-manifold mesh and its boundary forms a 2D-manifold
mesh. (b) by selecting one side of the boundary, we obtain the boundary surface. (c) as
the simulation is progressing, the subset is augmented and remains a 3D-manifold mesh.
Therefore the boundary remains a 2D-manifold mesh.

After generating the cutting path mesh, the next step is to find out which vertices to be

snapped. To ensure that the mesh is correctly cut, we search for a 2D-manifold mesh that

consists of surfaces inside the original mesh. This 2D-manifold mesh, named as "bound-

ary surface", will be snapped onto the cutting path and be used as splitting boundary that

locally divide the mesh into two parts. As long as the cutting is progressing, the bound-

ary surface found in a following time step should be able to connect to the previous one,
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forming an enlarged 2D-manifold mesh and ensuring the progressive cutting. Finally, to

minimize the vertices displacement caused by the snapping, the boundary surface should

be as close as possible to the cutting path. With so many constraints, searching for the

boundary surface is very difficult in progressive simulations.

(a) The detection of interactions is highly sensitive to the change of cutting path in Figure 5.4. This
may cause topological error since a selected boundary cannot be unselected in subsequent time
steps.

(b) We set a threshold to prevent the propagation of boundary manifold in the area where inter-
actions remain being changed. The threshold is defined with the scale of the front end of cutting
path for interaction detection.

Figure 5.6: Interaction change.

We propose a set of geometrical operations to search for the boundary surface (see

the illustration in Figure 5.5): Tetrahedral elements that interact with the cutting path are

computed, assembling a subset of the cutting mesh. Such subset of tetrahedron, call-

ing "interacted sub-topology", can be considered as a 3D-manifold. The boundary of this

sub-topology is divided into two parts ABOVE/BELOW by the cutting path. The boundary

of a n dimension manifold mesh is a n−1 dimension manifold. Therefore, by selecting ei-

ther ABOVE or BELOW side of the sub-topology’s boundary, we obtain the desired bound-
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ary geometry that is guaranteed to be a 2D-manifold mesh. As the progressive simulation

is going on, the new interacted tetrahedra will be connected to the previous subset (as

long as the cutting path is continuous), forming a larger subset (see Figure 5.5c). Conse-

quently the selected boundary is guaranteed to be a 2D-manifold mesh in close proximity

to the cutting path, ensuring correct separation in progressive cutting.

As discussed in Section 5.1.1, the front end of the cutting path will be continuously

updated with polynomial fitting and triangulation, in order to smooth the cutting path.

Consequently the last cutting path will be slightly changed. As illustrated in Figure 5.6a,

although the displacement is usually very slight in the physical space, the detection of

interactions is highly sensitive to the change, as the detection output results only in 0 (not

interacted) or 1 (interacted). To solve this problem, we set a delay with a threshold to

exclude the latest topology operation (see Figure 5.6b). The threshold is defined with the

scale of the front end of the cutting path, such that we prevent selecting the boundary

surface from the sub-topology that still risk of changing.

5.1.3 Vertices snapping

The subsequent step is to execute the process of snapping the boundary vertices onto the

cutting path. A noteworthy enhancement from the original vertices-snapping method to

our novel approach is the inclusion of neighborhood vertices while snapping the bound-

ary vertices. This addition resolves the critical issue of creating ill-shaped meshes. To

achieve this, we employ a second simulation wherein a finite element system is con-

structed with a replica of the reference mesh shape to be cut. This second simulation is

called ’virtual simulation’ while the cutting simulation is referred as ’actual simulation’. To

maintain the surface point positions, the vertices on the mesh surface are subjected to a

force field. Constraint forces are applied on the boundary vertices to move them onto the

cutting path. Consequently, this solves an elastic problem, leading to the movement of

all the vertices in the mesh. Upon one-step numerical resolution of the system, the finite

element model attains equilibrium between the snapping forces and the internal forces.

This equilibrium optimizes the distribution of element volumes, thereby minimizing the

possibility of generating ill-shaped mesh.

Snapping constraints definition The first step is to define the direction of the con-

straints that will be applied to the boundary vertices. A straightforward strategy is to

project a vertex to its closest position on the cutting path. This approach works well with

most of meshes with good quality, but risk of compressing the elements in some arbitrary

structures (see Figure 5.7a). Therefore we propose defining the constraint of a vertex with
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Snapping

(a) Projecting the vertices to their closest position on the cutting path may
folds the boundary, leading to compressed elements.

SnappingSnapping

(b) For each vertex, we use the average direction of the its neighbor edges in
the sub-topology, preventing ill-shaped mesh.

Figure 5.7: Different strategies to define the constraint directions.

the average direction of its neighbor edges in the sub-topology. As illustrated in 5.7b, this

strategy prevents folding the boundary, thus avoiding the compression of elements.

Elastic problem resolution The virtual simulation can be performed independently from

the actual simulation, enabling us to employ a simplified constitutive law for the virtual

object, even if the actual object employs complex models such as hyperelastic law. In

the virtual problem, a finite element linear model is adequate, as the object is only de-

formed to fit the cutting path. Moreover, the boundary geometry defined in Section 5.1.2

is in proximity to the intended cutting path, avoiding significant deformation. In a simi-

lar formulation of the contact problem (see Section 4.1), employing the constraint-based

technique in the virtual simulation necessitates solving a KKT system with bilateral con-

straints: Av xv − Jv
Tλ= bv

Jv xv =∆δ
(5.1)

where Av , xv , and bv refer to a FE system (see Equation (3.21)) used in the virtual simu-

lation. The constraint Jacobian matrix, denoted as Jv , defines how the constraints are ap-

plied to the degrees of freedom (DOFs) in the mechanical state. The Lagrange multiplier

λ denotes the constraint force, and δn signifies the constraint violation. An efficient so-
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lution for the constrained system is to formulate the Schur-complement W = ∑
Jv A−1

v Jv
T

and solve the problem in the constraint space. An important aspect of our virtual problem

is that we use a linear finite element model for the static simulation. Thus the matrix Av

remains invariant. For small-scale problems, it is efficient to pre-compute the inverse of

Av and store the result in CPU memory to compute the Schur-complement Saupin et al.

(2008a). However, for large-scale problems, the storage cost of the dense matrix A−1
v with

dimension n ×n becomes prohibitively high.

In Chapter 4, we proposed a method that efficiently addresses the Schur-complement

in large-scale constrained problems using the "isolating mechanical DOFs (isodof)" method

Zeng et al. (2022). This approach exploits the sparsity in J and performs a reduced and

parallelized computation on the GPU. Since each constraint in our virtual simulation af-

fects a single vertex on the boundary geometry, the constraint Jacobian Jv is very sparse.

The factorization of Av can be precomputed and stored on the CPU with reasonable space

costs. Furthermore, we can utilize the "reuse isodof " method from Zeng et al. (2022) to

avoid recomputing previous constraints. Consequently, the constraint resolution is ex-

tremely fast in virtual snapping. More details on the "isodof " and "reuse isodof " methods

can be found in Zeng et al. (2022).

After building the compliance matrix, the system is solved within the constraint space.

We use the Projected Gauss-Seidel (PGS) method to solve the unknown forces λ. In order

to improve the stability in the constraint resolution, a strategy in constraint-based tech-

niques is to set a maximum value for the snapping forces. In the PGS iterations, the con-

straint forces will be limited as the maximum value while exceeding the threshold. With

the maximum value, the limited snapping forces may not guarantee to move the vertices

onto the cutting path within a time step. Once λ is solved, a corrective motion is pro-

cessed to integrate the motion in the virtual system. Similar to the first order linearization

in equation (3.20), the virtual system actually performs only the first Newton-Raphson it-

eration within a time step, therefore it cannot guarantee the equilibrium at the end of time

step. However, the dynamic virtual simulation is able to overcome this drawback since

the constraint will be continuously applied on the boundary vertices in successive time

steps. Therefore, each virtual simulation step can be considered as a Newton-Raphson

iteration, while the progressive time steps continue approaching the equilibrium of the

dynamic system.

5.1.4 State and topology correction

After the snapping process in the virtual simulation, the displacement result is applied

back to the reference state of the actual simulation. To prevent generating large inter-
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nal forces after snapping (particularly in stiff materials), we apply a correction to the de-

formed position by computing the inverted strain-stress with displacements in the refer-

ence shape. In the actual FE system, the displacement of vertices in the reference shape

requires updating the reference stiffness matrices Ke0. With the elastic equilibrium in

the reference state, all the mesh vertices undergo more or less displacement in the actual

object, requiring an update to the reference shape matrix for all elements. This update

operation can be computationally expensive in large-scale systems. Nevertheless, as illus-

trated in Figure 5.8, not all the vertices are significantly displaced due to snapping. Thus,

setting a user-defined snapping displacement threshold and filtering out the vertices that

have undergone negligible displacement can significantly reduce the computational cost.

We list three issues may reduce the mesh quality after cutting, within each time step:

1. The linearization with first Newton-Raphson iteration: equilibrium may not be reached

within time step.

2. The maximum force that limits the snapping forces.

3. The snapping threshold that limits the displacements.

As discussed in Section 5.1.3, the virtual simulation keeps approaching the equilibrium

in successive time steps. Consequently, the previous cut part remains possibility of evo-

lution. We can efficiently deal with this change with the snapping threshold, since the

vertices will be snapped only with sufficient displacement. In applications, the snapping

threshold will effect both the performance and the quality of the cutting surface, which

will be evaluated in Section 5.1.6.4.

Large Displacements

Small Displacements

Figure 5.8: In the virtual simulation, the constraints that snaps the boundary to the cut-
ting path (red plane) will effect all the vertices, leading to different scales of displacements
(blue lines).
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The last step of our cutting method is to process the topology change. From the per-

spective of topology, our method splits the mesh along its existing surfaces (the bound-

ary surface defined in Section 5.1.2). In the cutting progress, the mesh of the boundary

surface (containing triangles, edges, and vertices) is duplicated as two. The two sides of

neighbor element of the boundary surface can be marked as side A/B. One side A is cho-

2.Cutting Path

1.Deformed Shape

3.Booundary 4.Vertices Snapping

5.State & Topology Modification
Actual Simulation

Virtual Simulation

Figure 5.9: Workflow of the cutting method in 3D simulation. (View in SOFA Framework)

Side A

Side B

(a)

Duplicate
Surface

(b)

Sub-Topology

(c)

Sub-Topology

(d)

Figure 5.10: The method to split the mesh: (a) the boundary surface has two sides of
neighbor elements. (b) we choose one side to contain the original boundary, and the
other side to contain the duplicated boundary. (c) the criterion for selecting the side B is
to choose neighbor elements from the sub-topology. (d) using the sub-topology helps to
guarantee the topology consistency.
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sen to contain the original boundary, and the other side B contains the copied boundary.

The definition of sides should keep consistency in progressive cutting, such that the ele-

ments remains on the same side. The sub-topology in Section 5.1.2 can be used to define

the sides. Since the boundary surface is the boundary of the sub-topology, choosing the

elements in the sub-topology as the side that contains the copied boundary, guaranteeing

the consistency of the side (see the illustration in Figure 5.10).

An important advantage of our vertices snapping method is that there is no addition

or remove of original tetrahedron elements. The increases of new vertices, edges, and

triangles are minimized since the mesh is split from the existing surface in the mesh. After

the cutting progress, the numerical solvers in the actual simulation requires update with

the topology change. How to efficiently update the solver is an issue and will be discussed

in the next section.

5.1.5 Efficient numerical solver with topology change

0 1 4 1 2 4 2 4 5 2 3 5 3 5 6 9 10 7 10 5 7 5 7 8 5 6 8

0 -1 -1 -1 -1 -1 0 1 -1 -1 -1 -1 7 8 -1 -1 -1 -1 5 -1 -1 -1 -1 -1 5 6 -1 -1 -1 -1
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Figure 5.11: Modified matrix-free iterative solver: with the topology change information,
we propose efficient modification to the precomputed GPU-based vectors.

The cutting process described in the current section produces vertex displacements in

the reference shape and modifies the topology. As discussed in Section 3.1.4, the matrix-

free method is an efficient approach for solving the dynamic system in the actual simu-
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lation, but it necessitates a precomputed GPU-based structure. In Allard et al. (2011), the

GPU structures vertices_per_elements and elements_per_vertex contain the information of

neighbor vertices in elements, and neighbor elements in vertices respectively. This infor-

mation can be directly obtained from the mesh topology, and is precomputed and stored

in vectors that will be transferred to the GPU only once. The information remains valid

as long as no topological change occurs in the simulation. In contrast, cutting operations

will easily invalidate the information. But recomputing the GPU structures requires large

computation cost. Therefore, efficiently updating the GPU structure is an important issue

to make sure the real-time performance.

Based on our cutting method, we propose an approach that efficiently update the

such structures without redoing the pre-computation. Since the cutting method splits the

mesh along its existing surfaces, the topology change results in following modifications:

1. Duplicated boundary mesh: new triangles, edges, and vertices.

2. Modified elements: the indices of contained structure (triangles, edges, vertices)

should be updated with the new (duplicated) indices.

Based on these changes, we propose modifications to the matrix-free iterative solver, as

illustrated in Figure 5.11: The mapping vertices_per_elements should update the vertex

indices for the modified elements. Consequently, some previous connections exist no

longer, and we set the removed neighbor element in elements per vertex as −1. The struc-

ture for the new vertices is added at the end of elements per vertex, storing the indices of

their neighbor elements. And the contributions will be finally accumulated into the final

force that is augmented with new vertices. The modification information can be obtained

from the topology change operations in Section 5.1.4. In progressive simulations, the local

cutting usually impacts limited elements. Therefore updating the structures requires rel-

atively small cost, compared to recomputing the structures. We evaluate the performance

of our modified matrix-free solver in Section 5.1.6.4.

5.1.6 Evaluation of cutting method

In this section we evaluate the behavior of our cutting method and the computing per-

formance of the numerical solver. The simulation tests are conducted in the open-source

SOFA framework with a CPU AMD@ Ryzen 9 5950X 16-Core at 3.40GHz with 32GB RAM,

and a GPU GeForce RTX 3080 10GB.

The deformable meshes are modeled with the co-rotational formulation, while the

cutting method should be compatible with hyperelastic materials (as discussed in Section
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5.1). The numerical solver is based on the matrix-free solver Allard et al. (2011) which is a

specific implementation for co-rotational models.

5.1.6.1 Evaluation of mesh quality

In this section, we evaluate the mesh quality of our cutting method. To compare with

the related work, we simulate a similar cutting to the example in Paulus et al. (2015b). As

illustrated in Figure 5.12, we set a similar cutting path to progressively cut a deformable

beam into two pieces. As our method is compatible in simulations with different systems

scales, the shape is meshed with various discretizations. The number of elements and the

initial number of vertices in each experiment set can be found in Table 5.1. Using existing

manifold to split the mesh, our propose method is not suitable for meshes with extremely

simple topology, as the geometric operations risk of selecting the object surface as split-

ting boundary. Therefore, instead of reproducing the exact same example in Paulus et al.

(2015b) where the shortest beam edge only contains two layers of elements, we test our

method with larger systems (765−9471 vertices) to guarantee correct geometric splitting.

The mesh refinement methods are more suitable for the problems with extremely simple

topology.

Figure 5.12: A deformed beam with size of 1:2:4 is progressively cut.

The scenario in Figure 5.12 takes approximately 60 time steps to perform a progressive

cut from the beginning to the full cut. For different mesh discretizations, the evolution of

the vertices number is illustrated in Figure 5.13. With the initial vertices number from

765 to 9471, our proposed method increases from 9.11% to 20.00% of the initial vertices

number. According to the report in Paulus et al. (2015b), the methods Paulus et al. (2015b)
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Example
Actual Virtual Actual

AllPoint Cutting Boundary Vertices Snapping Update
CG

Vertices Elements Cloud Path Manifold Delasus PGS Corr State+Topo Stiffness+Map

765 3072 0.47 0.58 0.71 0.70 0.64 0.60 0.26 0.43 0.84 7.01

1386 6000 0.72 0.58 1.22 1.01 1.63 0.89 0.47 0.70 0.66 10.03

2275 10368 0.92 0.58 2.00 1.63 3.71 1.38 0.68 0.85 0.90 15.46

3480 16464 1.31 0.59 3.13 2.61 7.15 2.02 1.19 1.42 0.75 24.06

5049 24576 1.50 0.60 4.48 3.77 12.36 2.83 1.88 1.60 0.78 34.80

7030 34992 2.18 0.60 6.34 5.70 21.23 4.38 2.71 2.24 1.03 53.22

9471 48000 2.97 0.60 8.66 8.44 33.66 6.11 4.90 2.56 1.07 77.59

Table 5.1: Performance (in ms) of cutting a deformable beam (see Figure 5.12) with differ-
ent discretizations. Different steps within a time step: Actual: process in the actual simu-
lation; Virtual: process in the virtual simulation; Point Cloud: generating the point cloud;
Cutting Path: generating the cutting path using MLS and fast triangulation; Boundary
Manifold: searching for the boundary surface; Delasus: building the compliance matrix
in the constrained system; PGS: Projected Gauss-Seidel method in the constraint resolu-
tion; Corr: constraint correction in the virtual simulation; Update State+Topo: modifying
the state and topology in the actual simulation after snapping; Update Stiffness+Map up-
dating the stiffness matrix (snapping threshold = 0.01) and the GPU-based mapping for
the matrix-free solver; CG: matrix-free Conjugate Gradient solver in the actual simulation.
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Figure 5.13: During progressive cutting, the evolution of vertices number in the beam
to cut. The deformable beam is discretisized from 765 vertices to 9471 vertices (initial
number of vertices).
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Figure 5.14: During progressive cutting, the evolution of condition number of the system
matrix of the beam to cut. The experiment set is the same to Figure 5.13.

and Bielser et al. (1999) generate more than 200% and 400% of the initial vertices num-

ber, respectively. The result is consistent with the discussion in Section 5.1.4: Our method

actually splits the mesh from its existing surface, minimizing the generation of new ver-

tices. On the other hand, within the same experiments, we evaluate the mesh quality by

measuring the condition number of the system matrix of the object to cut. The condition

number gives an indication how difficult to solve a numerical system. A higher condition

number implies requiring more iterations to address the problem by iterative solvers. Fig-

ure 5.14 illustrates the evolution of the condition number of the system. With different

mesh discretizations, the condition numbers are increasing to 1.13× to 20.40× of their

original values. While, according to the report in Paulus et al. (2015b), the method Bielser

et al. (1999) quickly leads to ill-conditioned systems with 107× of their original values. The

best results of the method Paulus et al. (2015b) are 104× of the initial value and less than

10× of the initial value with different thresholds ϵ, which is a parameter defined in their

manuscript for snapping close boundary. Our result is comparable to the best result in

Paulus et al. (2015b). As discussed in Section 5.1.3, the virtual simulation searches for an

equilibrium between the snapping forces and the internal stiffness forces. This actually

optimizes the redistribution of element sizes and the numerical quality of mesh.
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5.1.6.2 Evaluation of boundary surface

In this section, we evaluate the computing performance of our cutting method and the

advanced numerical solver. While keep using the experiment set in the previous section,

we add more discretization sets to show the performance in high resolution cases.
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Figure 5.15: Performance (in ms) in updating initial stiffness matrices with different
thresholds of the snapping displacement.

In Section 5.1.4, we have discussed the effect of setting the maximum snapping dis-

placement. In Figure 5.15, we measure the effect of the snapping threshold to the com-

puting performance in updating the initial stiffness matrices. While updating all the el-

ements becomes prohibitive in large-scale problems, controlling the snapping threshold

can efficiently reduce the computation cost. A higher threshold results in more efficient

computing, but suffers from a worse cutting surface. In Figure 5.16 we show the surface

quality with different thresholds. In this scenario, setting the snapping threshold as 0.01

is a good compromise since it ensures both the good cutting surface and the real-time

performance.

5.1.6.3 Evaluation of numerical solver

In this section, we evaluate the method of updating the matrix-free solver presented in

Section 5.1.5. In Figure 5.17 we compare the performance between updating the full

GPU-based mappings vertices_per_elements and elements per vertex. While process the
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(a) Snapping threshold = 0.1 (b) Snapping threshold = 0.05

(c) Snapping threshold = 0.01 (d) Snap all vertices

Figure 5.16: The cutting surface with different snapping displacement. The beam size is
2×4×8.
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Figure 5.17: Performance (in ms) of updating GPU-based structure. The values less than
0.01 are set as 0.01 due to the measure precision.

full vectors becomes costly as the system scale increases, our method remains highly effi-

cient, requiring negligible computing cost to update the GPU-based structures.
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5.1.6.4 Evaluation of computing performance

To have an overview of the performance of our cutting method and numerical solver, we

present in Table 5.1 the detail computing costs in different steps within a time step. The

cutting method is generally very efficient, while the iterative solver PGS in virtual con-

straint resolution becomes dominant as the system scale increases. This is because the

cutting path crosses most of the elements in the scenario in Figure 5.12, generating a large

number of snapping constraints. However, this is not always the fact. In many other cases

where the cutting path interacts with local areas, the PGS will be more efficient with lim-

ited constraints.

5.2 Applications

5.2.1 Progressive cutting while the object is deforming

(a) (b)

(c) (d)

(e) (f )

Figure 5.18: Modeling a cut while deforming.

In order to visualize that our method is able to conserve the system energy, in Figure

5.18 we model a cut while the object is deforming. A soft beam is initially stretching while
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the both ends are fixed (Figure 5.18a). As discussed in Section 5.1, our method address the

problem of energy conservation by snapping the vertices in the reference shape instead

of the deformed shape. The displacements in the reference shape will not invalidate the

internal and external forces. As illustrated in Figures from 5.18b to 5.18e, the elastic in-

ternal forces keep tensions to pull the shape back to its initial (reference) shape during

the progressive cutting. After the beam is fully cut, the system is able to be restored as the

reference shape (see Figure 5.18f).

5.2.2 Arbitrary cutting path and irregular mesh

Cutting
Path

Boundary
Manifold

Snapped
Boundary

(a) In the virtual simulation. Top: our method searches for the boundary manifold mesh (blue)
in proximity to the cutting path (yellow). Bottom: after the vertices snapping, the manifold is
snapped onto the cutting path, generating smooth boundary for splitting the mesh.

(b) The mesh is split in the actual simulation (View in SOFA Framework).

Figure 5.19: Modeling a cut with arbitrary cutting path.

Our method is compatible with arbitrary cutting path and irregular object shape. In

Figure 5.19 we model a progressive cut where the cutting instrument is handled by a user.
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Our geometric operations in Section 5.1.2 is able to efficiently find the boundary manifold

mesh in proximity of the unscheduled cutting path. In the virtual simulation, the mani-

fold mesh is snapped onto the cutting path and used as splitting boundary to divide the

mesh into two parts. Consequently our proposed method results in a cutting with smooth

splitting surface, while preventing generating new elements.

5.3 Conclusion

In this chapter we presented a novel cutting method based on the vertices-snapping strat-

egy. While inheriting the advantages smooth cutting surface and limited new generalized

vertices, our method is able to optimize the mesh quality by simulating a virtual FE model.

To have correct splitting of the mesh, we implemented a set of efficient geometry opera-

tions to search for the boundary manifold. Moreover, according to the properties in the

cutting method, we propose a modification to the matrix-free iterative solver to efficiently

deal with the topological change. Finally, all these methods result in progressive cutting

with high computing efficiency, good mesh quality, and smooth cutting surface. Our pro-

posed method holds great potential for extending our previous works. We will discuss the

details of these potential works in the next chapter.
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6
PERSPECTIVE AND CONCLUSION

6.1 Perspective: implicit constraint resolution

In Chapter 4, we have discussed the constraint resolution with a Gauss-Seidel solver. The

current integration loop (see Algorithm 3) reveals a problem where the initial evaluation

of constraint directions is not guaranteed to be consistent with the state at the end of

the time step. To address this issue, we introduce a novel implicit scheme for constraint

resolution in this section. Instead of using the standard motion correction scheme, we

propose an iterative method where constraint forces are corrected in Newton iterations.

This scheme allows for recursive updating of constraint directions, leading to more accu-

rate contact and friction response.

6.1.1 Recursive corrective motion

For both discrete and continuous collision detection algorithms, the constraints will be

linearized only once each time step. Nevertheless, it cannot be guaranteed that the initial

evaluation of the constraint directions is always consistent with the state at the end of the

time step. Figure 6.1 gives an example: in a grasping scenario, while acting a moving/ro-

tation, the constraint directions undergo large deviations from the initial guess.

To address this problem, we propose a recursive motion correction scheme: Instead

of using a single corrective motion as in Equation (4.19), a iterative correction is applied:

∆q̇t+h =∆q̇free + (∆q̇cor
1 +∆q̇cor

2 +·· ·+∆q̇cor
n ) (6.1)
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Time step beginning
(initial guess) Time step end

Figure 6.1: Grasping a solid while applying a fast rotation will case a large deviation of
constraint directions from the beginning to the end of a time step. Such a deviation may
cause inaccurate contact responses, instability of contact forces, and eventually failed
simulations.

where n interactions are performed, and the corrective motion of a given iteration k is

computed as following:

∆q̇cor
k = hA−1

k Jk
Tλk (6.2)

where Ak and Jk are reevaluated in each iteration according to the current mechanical

state (qk ). For the integration between two successive iterations k and k +1 in Equation

(6.1), we have:

qk+1 −qk = (qfree +h∆q̇k+1)− (qfree +h∆q̇k ) = h∆q̇cor
k+1 (6.3)

Such a recursive scheme is a Newton-Raphson method that provides a more accu-

rate correction. However, performing such a scheme requires repeating the compliance

assembly, the constraint resolution, the corrective motion, and the time integration in re-

cursive iterations. These additional processes multiply the computational cost, making

the system resolution very inefficient.

6.1.2 Efficient update of constraint tensors

In this section, we propose a strategy that is able to efficiently process the iterations in

Equation (6.1). In the recursive motion correction scheme (Equation (6.1)), the system

matrix A is actually the mass matrix M for a rigid object. Therefore Ak = A0 = M, k ∈ Rn .
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Algorithme 8 : Recursive correction scheme with standard rebuilding of the con-
straint matrices

1 foreach k ∈ New ton_i ter ati ons do
2 Linearize contact constraints with the proximity positions pk , then update Jk with the

constraint directions.
3 Update compliance matrix: Wk =∑

Jk A−1
k Jk

T

4 Compute constraint forces within local PGS: λ= W−1δ

5 Compute corrective motion: ∆q̇cor
k = hA−1

k Jk
Tλk

6 Integrate corrective motion: q̇k = q̇k−1 +∆q̇cor
k , qk = q0 +hq̇k

7 Update the proximity positions: pk =G (qk )

8 end

Time step beginning
(initial guess for 

constraints)

Free motion
(interpenetration 
to be eliminated)

Intermediate motion 
correction

(constraints re-linearized)

Time step end
(constraints solved in 

implicit scheme)

Figure 6.2: Our method solves the constraints in an implicit scheme: The constraints are
linearized at the beginning of each time step using discrete collision detection. Contact
and friction responses are computed to eliminate the interpenetration between solids in
the free motion. The constraint resolution is performed in a recursive corrective motion
scheme, where contact forces are computed in each iteration by a local solver. Using the
contact forces, the boundary conditions of colliding solids and the constraint matrices
are updated in the next iteration to compute new motion corrections. In this way, the
constraint directions are re-linearized recursively until the interpenetration is eliminated.

On the other hand, the corrective motion usually causes small deformation in motion

corrections. Relying on this hypothesis, we have an approximation for Ak in the iterations:

Ak = A0, k ∈Rn . Following Equation (6.1) and (6.2), we have:

∆q̇t+h =∆q̇free +hA−1(J0
Tλ0 + J1

Tλ1 +·Jn
Tλn) (6.4)

We recall the definition of the contact Jacobian J. For a given constraint with a direc-
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tion −→c , the contribution in J is expressed as:

J(−→c ) =
∂H (q)

∂q
= ∂(−→c G (q))

∂q
=−→c ∂G (q)

∂q
(6.5)

as in practice, the constraint direction −→c is independent of the mechanical state after a

constraint linearization.

With Equation (6.5), we propose to assembly a Jacobian matrix H for the Jacobian

of the geometric mapping ∂G (q)
∂q , and a block-diagonal matrix C to store the constraint

directions:

C =



−→c 1

−→c 2

. . .

−→c c


(6.6)

where −→c =
[
−→n −→

f (1)
−→
f (2)

]
groups the normal and frictional constraints on a shared

proximity point. The relation between the two matrices can be actually expressed by a

matrix-matrix multiplication:

J = CH (6.7)

With Equation (6.7), a standard compliance assembly (Equation (4.14)) can be then

reformulated as:

W =∑
JA−1JT =∑

C HA−1HT︸ ︷︷ ︸
WH

CT (6.8)

where W can be built with J and WH. The geometrical mapping G (q) usually undergoes a

slight change in the recursive corrective motion scheme. Based on this hypothesis, H and

WH are considered invariant during a time step.

Figure 4.1 illustrates that the linearization of contact constraints will based on the

proximity positions p. With a Taylor expansion, p in the recursive motion correction

scheme can be as follows:

pk+1 =G (qk+1) ≈G (qk )+ ∂G (q)

∂q
(qk+1 −qk ) (6.9)

where k and k +1 represents two successive iterations in the recursive motion correction

scheme. With Equation (6.3) and ∂G (q)
∂q linearized as H, we continue the development in

Equation (6.9):

pk+1 ≈G (qk )+ ∂G (q)

∂q
(qk+1 −qk ) = pk +hH∆q̇cor

k+1 (6.10)
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Combining Equation (6.2), (6.10), (6.7) and (6.8), we have:

pk+1 ≈ pk +hH∆q̇cor
k+1

= pk +hH(hA−1Jk
Tλk )

= pk +h2HA−1HTCk
Tλk

= pk +h2WHCk
Tλk

(6.11)

Now with Equation (6.8) and (6.11), once WH is built, a recursive scheme can be per-

formed in Algorithm 9.

Algorithme 9 : Recursive correction scheme with fast update of the constraint
matrices

1 foreach k ∈ New ton_i ter ati ons do
2 constraint_linearization(pk ).
3 Update Ck with linearized constraint directions.
4 Update compliance matrix: Wk =∑

Ck WHCk
T

5 Compute constraint forces within local PGS: λk = W−1
k δ

6 Update the proximity positions: pk = pk−1 +h2WHCk
Tλk

7 end

Compared with the strategy of rebuilding the matrices with J, the computation is greatly

simplified in the new scheme. Instead of inverting the system matrix A, the new scheme

only needs matrix-matrix multiplications to update the compliance matrix W, and a matrix-

vector multiplication to update the boundary state (proximity positions p). As the basic

operations in linear algebraic, the matrix multiplications have highly efficient implemen-

tations, especially with parallelization on the GPU.

6.1.3 Evaluation of performance in implicit constraint solver

In this section, we evaluate the computation cost of the method presented in Section

6.1.2 that provides a fast update of constraint matrices in the recursive correction scheme

proposed in Section 6.1.1. The simulation tests are conducted in the open-source SOFA

framework with a CPU AMD@ Ryzen 9 5950X 16-Core at 3.40GHz with 32GB RAM and a

GPU GeForce RTX 3080 10GB.

We keep using the precondition-based technique in Courtecuisse et al. (2014) to as-

semble the compliance matrix W. As illustrated in Algorithm 9, a recursive corrective

motion scheme helps to improve the constraint correction in an iterative way, which

performs Newton-Rapshon iterations. Within each Newton iteration, a local PGS is per-

formed to solve the complementarity problem in contact and friction responses, giving
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DOFs Cst. Method Build WH Update W PGS Corr. Newton ite. Total Update

18003 308.19
rebuilding 19.89 ms

3.76 ms
0.82 ms 24.47 ms 122.39 ms 84.60 %

fast update 19.26 ms 0.59 ms 0.08 ms 4.43 ms 41.45 ms 15.09 %

24066 365.97
rebuilding 32.21 ms

4.84 ms
1.19 ms 38.24 ms 191.21 ms 87.34 %

fast update 31.27 ms 0.78 ms 0.07 ms 5.69 ms 59.72 ms 14.94 %

30033 410.58
rebuilding 45.47 ms

5.87 ms
1.47 ms 52.81 ms 264.07 ms 88.88 %

fast update 45.16 ms 0.98 ms 0.06 ms 6.91 ms 79.73 ms 15.04 %

36069 482.25
rebuilding 64.32 ms

7.91 ms
1.87 ms 74.10 ms 370.52 ms 89.32 %

fast update 63.73 ms 1.29 ms 0.07 ms 9.27 ms 110.10 ms 14.67 %

Table 6.1: Comparison of performance between rebuilding the matrices and the fast up-
date scheme for different numbers of mechanical DOFs (DOFs) and constraints (Cst.):
For the fast update scheme, building the mapping compliance matrix (Build WH) is per-
formed once each time step. The following processes are performed once in each Newton
iteration: updating the compliance matrix (Rebuild W), processing the local PGS (PGS),
and computing the corrective motion (Corr.). Then the cost of each Newton iteration
(Newton ite.) and the whole recursive corrective motion scheme (Total) are compared.
Finally, the proportion of the update constraint matrix process in the Newton iteration
(Update) is illustrated.

temporary contact forces. The matrix operations in Algorithm 9 are realized with typical

GPU-based implementation in cuBLAS and cuSPARSE libraries.

Such contact forces are used to compute the position of the surface elements, which

are further used to define the constraint directions in the next iteration. In Table 6.1,

we compare the computational cost between the rebuilding scheme and the fast update

scheme in In a simple contact scenario, a recursive corrective motion scheme with 5 New-

ton iterations is performed. Each Newton iteration is accompanied by a local constraint

resolution with 30 PGS iterations. In the rebuilding scheme (see Algorithm 8), updating

constraint matrices takes massive computation cost: Rebuilding the compliance matrix

W and applying the constraint correction with traditional way (see Equation (4.19)) re-

quire to invert the system matrix A. The extra cost by these updating processes is enor-

mous, taking 84-90 % of each Newton iteration. On the other hand, in the fast updating

scheme (see Algorithm 9), the computation of the mapping compliance matrix WH is out-

side of the recursive scheme and is performed only once in each time step. Our method

allows fast rebuilding of the compliance matrix (by matrix-matrix multiplications) and

efficiently computing the correction on proximity positions (by matrix-vector multiplica-

tion). The matrix multiplication operations are very suitable to be parallelized on GPU.

Moreover, the extra updating cost takes 14-15 % of each Newton iteration. Our method

is 6.97 × faster than the rebuilding scheme for each Newton iteration. For the cost of the

whole Newton scheme, including the overhead of building WH, our method benefits a
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speedup of 3.20 × compared to the rebuilding scheme.

Besides the computational performance, our method is straightforward since only

matrix operations are required in the recursive scheme. Moreover, the implementation

of the method remains flexible. In fact, Algorithm 8 could be applied in different ways.

Since the update process is very efficient, it is possible to update the constraint direc-

tions in each PGS iteration, or even to carry out the update after the resolution of each

constraint, which is similar to the resolution scheme in the PBD Müller et al. (2007).

Our method enables the handling of inconsistencies in constraint directions between

the beginning and end of time steps while maintaining an efficient resolution process.

However, we have only evaluated the computing efficiency of the method, while the im-

provement of stability and behavior remains to be proven. Our future work is therefore

to find more applications for the recursive corrective motion scheme with the fast update

method.

6.2 Perspective: enhancements of virtual cutting

Owning to the mesh modification property employed in our cutting method, we have

successfully enhanced the matrix-free iterative solver. By exploiting this same property,

we present several potential advancements for existing approaches in this section.

6.2.1 Fast matrix assembly approach with topology change

In Section 3.2.1, we introduced a fast matrix assembly technique that relies on a deter-

ministic mapping associated with the mesh topology. However, changes in the topology

invalidate the mapping, necessitating a full matrix assembly to reconstruct the matrix pat-

tern. As a result, our matrix assembly method encounters reduced efficiency during cut

events, despite being as efficient as Eigen’s implementation.

To address this, we propose an enhancement to the fast matrix assembly, integrated

with the topology change in our cutting method discussed in Section 5.1. The upgrade

follows a similar principle to the matrix-free iterative solver (discussed in Section 5.1.5).

Splitting the mesh along existing surfaces results in a duplicated boundary and the mod-

ifications of the element indices. Based on the information obtained from the cutting

process outcome, the modified connections (represented by pairs of row-column indices)

can be identified in both the triplet set and the unmerged format. With this information,

we can update the deterministic mapping. However, modifying the mapping can still

be inefficient as it may require rearranging the mapping vector. In contrast, we propose
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retaining the use of the deterministic mapping and performing a specific modification

during the merge stage.

As depicted in Figure 6.3, we first gather the modified connections in the unmerged

format and construct the CSR format for the newly generated DOFs at the end of the pre-

vious CSR matrix. Subsequently, the original portion of the CSR matrix can be built using

the fast assembly strategy by clearing the values of all the modified elements.

Our proposed enhancement avoids the need to rebuild the deterministic mapping,

employing minimal modifications during the merge process. Since local cutting typically

affects only a limited number of elements in progressive simulations, the construction

of CSR for new DOFs is highly efficient. Consequently, the fast assembly strategy can be

extended to be compatible with cut events.

Triplet Triplet
0 0 9 4 4 4 7 7 7 4 4 4 7 7 7 5 5 5 9 9 9 10 10 10 7 7 7 10 10 10 7 7 7 5 5 5

0 7 4 4 7 0 7 4 0 4 7 5 7 5 4 5 4 7 9 7 10 10 7 9 7 10 9 10 7 5 7 5 10 5 10 7

Unmerged Format Unmerged Format
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10

0 0 1 4 4 7 0 0 1 1 2 2 4 4 4 4 4 5 5 7 7 0 0 1 4 10 7 0 9 1 1 2 2 4 4 4 10 10 5 5 7 7

0 0 0 0 0 0 0 0
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Figure 6.3: At the right: we collect the modified elements and build the CSR structure at
the end of the CSR matrix. At the left: we clear the values of the modified elements and
assemble the original part of the CSR matrix with the previous deterministic mapping.

6.2.2 Asynchronous cutting strategy

Accumulating Interactions

Main Simulation Loop

Time Step

Asynchronous Thread

Cutting Process

Time Step Time Step Time Step Time Step Time Step Time Step

Cutting Process

Topology Change

Cutting Process

Time Step

Figure 6.4: Executing the cutting process in an asynchronous thread.

The second potential avenue of our work involves implementing a the majority of our

cutting method within an asynchronous thread. As indicated by the performance results
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in Table 5.1, our method incurs substantial computational cost (73.8%) during virtual sim-

ulation in case of large-scale problems (10,000 vertices), while the actual simulation re-

mains efficient.

We draw inspiration from the asynchronous preconditioner technique (see Section

3.3.1) and propose the following idea: after generating the point cloud, the remaining

steps of the cutting process in the virtual simulation are independent of the main simula-

tion loop. Therefore, we can move this computationally expensive process to a dedicated

thread. Similar to the strategy employed in the asynchronous preconditioner, we do not

synchronize the actual and virtual simulations within the current time step. Instead, we

continue running the main simulation loop until the asynchronous thread returns the

result of the virtual cutting. The resulting topology and state modifications are then pro-

cessed in the actual simulation.

While this strategy offers high efficiency, it also presents a challenge. While the vir-

tual simulation is running in the asynchronous thread, the actual system may continue to

encounter interactions in subsequent time steps. However, these interactions cannot be

immediately addressed because the asynchronous thread is still occupied by the previous

cutting operation. To address this, we propose accumulating the results of the interac-

tions until the next synchronization event. The generated point cloud is preserved and

will be utilized after the next topology change. As a result, the modifications to the mesh

and reference state will be updated at a lower frequency, determined by the efficiency of

the virtual simulation.

The schematic representation of the proposed scheme is illustrated in Figure 6.4. Im-

plementing this method introduces another challenge: how to combine this approach

with the asynchronous preconditioner to reap the benefits of both asynchronous tech-

niques. The potential solution to this challenge will be discussed in the subsequent sec-

tion.

6.2.3 Updating contact compliance with topology change

The final potential extension of our cutting method aims to make it compatible with the

methods in contact problem discussed in Chapter 4. In this context, the asynchronous

preconditioning scheme proves highly efficient by moving the computationally expen-

sive Cholesky factorization out of the main simulation loop to compute the Schur com-

plement. o combine both the asynchronous cutting and asynchronous preconditioning,

a primary idea is to set them into two dedicated threads. However, implementing this

idea presents the challenge of synchronizing the threads with the main simulation loop.

To address this, we define the following requirements in order of priority (from high to
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Main Simulation Loop

Time Step

Asynchronous Cutting Thread

Time Step Time Step Time Step Time Step Time Step Time Step

Update Cholesky FactorCutting Process

Asynchronous Preconditioner

Time Step

Accumulating Interactions

Update Cholesky FactorCutting Process

Cholesky Factorization

Wait for the synchronization

Cholesky Factorization

Topology Change

Figure 6.5: Asynchronous scheme, combining the precondition technique and the cut-
ting method.

low):

1. The currently used Cholesky factor must be updated with topology changes.

2. The main simulation loop should be as efficient as possible.

3. The delay of the currently used Cholesky factor (from the start of its factorization)

should be minimized.

In conjunction with the asynchronous cutting scheme proposed in Section 6.2.2, we

propose an advanced scheme that combines both asynchronous methods, as illustrated

in Figure 6.5: To fulfill the first and second requirements, we suggest incorporating a

Cholesky factor update process after the cutting process to avoid blocking the main simu-

lation loop. This involves transferring the current Cholesky factor to the dedicated thread

at the beginning of the cutting process. To meet the third requirement, the full Cholesky

decomposition is synchronized with the next topology change, and we determine the

choice of the Cholesky factor to be transferred to the cutting thread as follows:

1. If a new full Cholesky factorization is completed just before the topology change,

the cutting thread will utilize the newly factorized data.

2. Otherwise, the cutting thread will use the Cholesky factor updated by the previous

cut.

As a result, the Cholesky factor used in the main simulation loop is ensured to be updated

as frequently as possible in terms of data (when a new factorization is performed) and

topology structure (otherwise).

Another challenge lies in efficiently updating the Cholesky factor with topology changes.

The algorithm proposed in Herholz and Sorkine-Hornung (2020) specifically addresses
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updating the symbolic factorization with duplication of DOFs, which aligns with the re-

sults of our cutting method. Therefore, a potential approach is to implement the algo-

rithm from Herholz and Sorkine-Hornung (2020) to locally update the Cholesky factor,

which is significantly more efficient than performing a full factorization. Additionally, it

will be straightforward to extend the isodof method (discussed in Section 4.2.3) to the pro-

posed scheme since the precomputed data in the method corresponds to the branches for

each isodof index in the elimination tree. Updating the symbolic factorization will directly

yield the updated elimination tree, thereby enabling compatibility of the isodof method

with cut events.

6.3 Conclusion

In this manuscript, we have presented an overview of physical simulations and discussed

the current state of the art in the field, focusing on topics such as simulating solid defor-

mation, contact problems, coupled systems, and virtual cutting.

In Chapter 3, we provided a comprehensive background on physics-based simulations

for deformable solids, along with the challenges associated with parallelizing different

hyperelastic models uniformly. To address this challenge, we introduced a novel matrix

assembly strategy Zeng and Courtecuisse (2023b) that offers high efficiency and accom-

modates various constitutive models. Additionally, we replaced the CPU-based precondi-

tioner with a GPU-based implementation during the solving stage, reducing data transfer

between the CPU and GPU and enabling a fully GPU-based CG solver. Chapter 4 focused

on the background and challenges in the context of contact problems. To tackle the com-

putational cost associated with building the compliance matrix, we proposed the efficient

isodof method and the enhanced reuse isodof method Zeng et al. (2022). These methods

involve a reformulation of the contact Jacobian matrix and efficient GPU-based imple-

mentation. In Chapter 5, we presented a novel cutting method that enables progressive

cutting with high computational efficiency, good mesh quality, and smooth cutting sur-

faces. By leveraging the mesh modification property employed in the cutting method, we

successfully enhanced the matrix-free iterative solver.

Finally in the current chapter we introduced several potential approaches that remain

further researches on their implementations and applications. For the contact problem,

We introduced a recursive motion correction scheme Zeng and Courtecuisse (2023a) to

address inconsistencies in constraint directions between the initial guess and the end of

time steps, as well as an efficient updating process for constraint matrices during iter-

ations. In a similar principle of the upgraded matrix-free iterative solver, we proposed a
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potential advancements for fast matrix assembly. We also discussed a novel asynchronous

cutting scheme and an enhancement for the isodof method to enable compatibility with

cut events and topology changes. The proposed solutions give the possibility to address

the major drawback of the approaches in the previous chapters by effectively handling

topology changes.

Although our contributions involves various problems such as linear system resolu-

tion, contact problems, coupled systems, and virtual cutting, our overarching objective in

these works is to enhance computing performance in large-scale simulations. Through

the proposed methods and experimentation results, our contributions enable real-time

simulations on a large scale (up to 10,000 -15,000 vertices), with particular emphasis on

contact problems and virtual cutting. We hope that our proposed approaches will benefit

other researchers and engineers in the field of medical simulations and soft robotics, and

that one day they may be applied in surgical simulations, providing surgeons with more

detailed relevant information in real time.
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Vers des performances en temps réel dans les 
simulations physiques à grande échelle 

 

Les simulations médicales ont suscité un intérêt considérable car elles offrent un environnement 
sûr pour l'apprentissage et la pratique d'interventions complexes, permettant ainsi de répondre 
aux préoccupations éthiques liées à l'expérimentation humaine directe. Pour atteindre des 
simulations interactives, elles doivent satisfaire simultanément aux exigences contradictoires de 
précision et de rapidité de calcul. D'une part, la préférence est d'utiliser des modèles complexes 
capables de fournir des prédictions réalistes sur le comportement complexe des organes 
pendant la chirurgie. D'autre part, les performances en temps réel sont nécessaires dans les 
simulations chirurgicales et les scénarios de formation. Ces applications nécessitent des 
simulations interactives et dynamiques capables de répondre rapidement aux entrées de 
l'utilisateur et de fournir des retours immédiats. Les principaux défis de l'informatique en temps 
réel découlent de divers facteurs tels que les déformations, les interactions et les modifications 
de topologie. L’objective principal de la thèse est d'améliorer les performances de calcul pour 
permettre des simulations en temps réel à grande échelle.  
 
Nous étudions d'abord les solveurs numériques dans les cadres de simulation en temps réel, en 
nous concentrant spécifiquement sur le solveur itératif sans assembler la matrice du système. La 
méthode le plus efficace dans SOFA, qui est optimisée pour une implémentation basée sur GPU, 
est conçu pour l'élasticité linéaire ou la formulation co-rotationnelle. Cependant, les modèles 
hyperélastiques nécessitent un assemblage de matrices, ce qui entraîne des coûts 
supplémentaires lors de l'utilisation d'implémentations typiques comme la bibliothèque Eigen. 
Pour résoudre ce problème, nous présentons une méthode rapide d'assemblage de matrices, 
compatible avec des modèles constitutifs génériques. 
 
Notre approche exploite le fait que les matrices du système sont créées de manière déterministe 
tant que la topologie du maillage reste constante. L'utilisation du schéma de parcimonie de la 
matrice assemblée apporte des optimisations significatives à l'étape d'assemblage. En 
conséquence, les techniques développées de parallélisation basée sur GPU peuvent être 
directement appliquées avec le système assemblé. De plus, un schéma de préconditionnement 
de Cholesky asynchrone est utilisé pour améliorer la convergence du solveur du système. Sur 
cette base, un préconditionneur de Cholesky basé sur GPU est développé, réduisant 
considérablement les transferts de données entre le CPU et le GPU pendant l'étape de résolution. 
Nous évaluons les performances de notre méthode avec différents éléments de maillage et 
modèles hyperélastiques, et nous les comparons avec des approches typiques sur le CPU et le 
GPU. 
 
Le deuxième problème que nous abordons concerne les simulations de contact, qui impliquent 
la résolution d'un système multi-objet couplé. Typiquement, ce problème est transformé en 
espace de contrainte, et le problème de complémentarité est ensuite résolu. Cependant, le 
calcul du complément de Schur de la matrice du système, qui est nécessaire pour cette approche, 
devient extrêmement chronophage lorsque le système a de grandes dimensions. Dans notre 
travail, nous proposons une méthode rapide pour gérer les simulations EF à grande échelle en 
présence de contact et de frottement. Notre approche utilise une résolution de contact basée 
sur un préconditionnement qui effectue une décomposition de Cholesky à basse fréquence. 
 



En exploitant la parcimonie des matrices assemblées, nous proposons un schéma de calcul réduit 
et parallèle pour traiter le calcul coûteux du complément de Schur causé par un maillage détaillé 
et une réponse de contact précise. Un solveur efficace basé sur GPU est développé pour 
paralléliser le calcul, ce qui permet de réaliser des simulations en temps réel en présence de 
contraintes couplées pour la réponse au contact et au frottement. De plus, le préconditionneur 
est mis à jour à basse fréquence, ce qui implique la réutilisation du système factorisé. Pour 
accélérer davantage le processus, nous proposons une stratégie permettant de partager les 
informations de résolution entre les pas de temps consécutifs. Nous évaluons les performances 
de notre méthode dans diverses applications de contact et nous les comparons avec des 
approches typiques sur le CPU et le GPU. 
 
Notre travail ultérieur présente une nouvelle méthode implicite pour résoudre les contraintes 
dans les simulations impliquant des contacts avec frottement. Au lieu d'utiliser le schéma de 
correction de mouvement standard, nous proposons une méthode itérative dans laquelle les 
forces de contrainte sont corrigées dans des itérations de Newton. Dans ce schéma, nous 
sommes capables de mettre à jour les directions des contraintes de manière récursive, ce qui 
permet une réponse au contact et au frottement plus précise. Cependant, la mise à jour des 
matrices de contraintes entraîne des coûts de calcul massifs. 
 
Pour résoudre ce problème, nous proposons de séparer la direction des contraintes et la 
correspondance géométrique dans la matrice jacobienne de contact et de reformuler le 
complément de Schur de la matrice du système. Lorsqu'elle est combinée à une parallélisation 
basée sur GPU, cette reformulation fournit un processus de mise à jour très efficace pour les 
matrices de contraintes dans le schéma itératif de correction du mouvement récursif. Notre 
méthode permet de gérer l'incohérence des directions de contraintes au début et à la fin des pas 
de temps. En même temps, le processus de résolution est maintenu aussi efficace que possible. 
Nous évaluons les performances de notre schéma de mise à jour rapide dans une simulation de 
contact et nous les comparons avec le schéma de mise à jour standard. 
 
Notre dernière étude se concentre sur la découpe virtuelle en temps réel. Les méthodes de 
raffinement de maillage, largement utilisées dans les travaux récents, génèrent un grand nombre 
de nouveaux degrés de liberté, ce qui augmente considérablement les coûts de calcul dans la 
solution numérique subséquente. Au lieu de cela, nous utilisons une stratégie de "node-
snapping" comme base de notre nouvelle méthode pour atténuer ce problème. L'utilisation de 
cette stratégie nécessite de résoudre plusieurs problèmes critiques rencontrés dans les travaux 
précédents, tels que les éléments mal formés, les changements de topologie et la préservation 
de l'énergie. 
 
Avec les solutions proposées, notre méthode de découpe consiste à utiliser une stratégie de 
"vertices-snapping" pour ajuster la surface frontière sur le chemin de découpe tout en évitant la 
génération de nouveaux éléments : En utilisant un nuage de points pour modéliser les découpes 
non programmées en temps réel, notre approche permet de travailler avec les utilisateurs. Nous 
proposons de résoudre un problème élastique afin de minimiser le changement de volume. Pour 
gérer la découpe tout en déformant et pour garantir la conservation de l'énergie, le problème 
élastique est transféré à l'état de référence de l'objet découpé et est résolu dans une deuxième 
simulation. Des opérations géométriques efficaces sont développées pour gérer les 
modifications topologiques lors de la découpe progressive. De plus, nous proposons une 
modification d'un solveur itératif de style ‘matrix-free’ rapide sur le GPU qui peut mettre à jour 
efficacement les données prétraitées utilisées dans les noyaux basés sur le GPU, garantissant 
ainsi des performances en temps réel pour les problèmes à grande échelle. 



 
Dans la perspective de nos travaux, nous proposons des solutions pour surmonter les limitations 
de la méthode d'assemblage rapide et de la méthode "isolating mechanical DOFs" 
(reformulation du complément de Schur). En combinant ces solutions avec la nouvelle approche 
de découpe virtuelle, nous surmontons les défis liés à la mise à jour efficace des données 
précalculées dans ces méthodes, ce qui leur permet de fonctionner efficacement même avec des 
changements de topologie.  
 
En conclusion, nos travaux apportent des solutions efficaces pour la simulation de la 
déformation, du contact et du frottement, ainsi que pour la découpe virtuelle. Grâce à 
l'intégration de la parallélisation basée sur GPU, notre recherche permet des simulations EF en 
temps réel pour les solides déformables, même avec des problèmes à grande échelle (10 000 - 
15 000 nœuds), des contacts avec frottement et des opérations de découpe. Cela permet des 
interventions chirurgicales virtuelles interactives avec des formes d'objets plus détaillées, 
fournissant aux opérateurs des informations pertinentes en temps réel. 
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