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Tanul GUPTA 
Novel phases in long-range interacting  

quantum many-body systems 
 

Résumé 
Cette thèse explore les propriétés de l’état fondamental des systèmes bosoniques 1D fortement corrélés avec 
un saut à longue portée, où la cohérence quantique et les phénomènes collectifs induisent des comportements 
distincts de ceux des systèmes à interactions de courte portée. En utilisant des méthodes numériques avancées 
comme la Monte Carlo à intégrale de chemin et l’algorithme du ver, elle analyse les transitions de localisation 
induites par le désordre et les interactions, du superfluide à l’état non-superfluide, avec un saut décroissant 
selon une loi de puissance. Une découverte clé est une transition de phase quantique continue et invariante 
d’échelle, s’écartant du scénario attendu de Berezinskii-Kosterlitz-Thouless (BKT). Les résultats remettent en 
question la théorie de bosonisation et les études numériques de moyenne échelle, identifiant la gamme où les 
interactions à longue portée dominent. Ces conclusions ont des implications expérimentales pour les 
plateformes réalisant des modèles XY avec couplages en loi de puissance, comme les réseaux d'atomes de 
Rydberg et les chaînes d'ions piégés. 
 
Mots-clés: Systèmes quantiques à plusieurs corps, Physique de la matière condensée, Méthodes numériques, 
Superfluidité, Transition BKT, Interactions à longue portée, Monte Carlo quantique 
 

 
Abstract 
This thesis investigates the ground-state properties of strongly correlated 1D bosonic systems with long-range 
hopping, where quantum coherence and collective effects create distinct behaviors compared to short-range 
systems. Using advanced numerical methods like Path Integral Monte Carlo and the Worm Algorithm, it 
explores disorder- and interaction-driven localization transitions from superfluid to non-superfluid states, with 
hopping decaying as a power law. A key finding is a continuous, scale-invariant quantum phase transition 
deviating from the expected Berezinskii-Kosterlitz-Thouless (BKT) scenario. The results challenge previous 
bosonization theory and mid-scale numerical studies, identifying the range where long-range interactions 
dominate. These findings have experimental relevance for platforms realizing XY models with power-law 
couplings, including cold dipolar atoms, Rydberg atom arrays, and trapped ion chains. 
 
Keywords: Quantum Many-Body Systems, Condensed Matter Physics, Numerical Methods, Superfluidity, BKT 
Transition, Long-Range Interactions, Quantum Monte Carlo 
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Résumé de la Thèse en Français

En physique quantique des systèmes à plusieurs corps, il est bien établi que les interactions
à longue portée, telles que les couplages qui décroissent selon une loi de puissance avec la
distance, 1/rα , peuvent donner lieu à des phénomènes physiques nouveaux, aussi bien dans les
propriétés d’équilibre que hors d’équilibre des systèmes quantiques. Ces interactions peuvent
être réalisées expérimentalement dans des systèmes atomiques, moléculaires et optiques avancés
[1–5], ce qui a récemment ravivé l’intérêt pour l’étude de ces effets.

Durant mes recherches de doctorat, j’ai étudié les phases de l’état fondamental de particules
bosoniques avec un saut décroissant selon une loi de puissance (1.0 < α < 3.0), dans des
systèmes avec ou sans désordre. Nos résultats montrent que la décroissance en loi de puissance
de l’élément de matrice de saut influence significativement la nature des transitions de phase
quantiques dans ces systèmes. Pour les systèmes bosoniques unidimensionnels à interactions
de courte portée, il est bien connu, grâce aux travaux de Giamarchi et al. [6, 7], que la
transition entre les états superfluides et non-superfluides suit le mécanisme de Berezinskii-
Kosterlitz-Thouless (BKT). Cependant, à l’aide de simulations à grande échelle par Monte
Carlo quantique, nous avons démontré que la transition de phase quantique induite par le
désordre dans les bosons durs unidimensionnels présente des fluctuations invariantes à l’échelle
du nombre d’enroulements au point de transition, indiquant une transition de type non-BKT
[8].

Cette étude a ensuite été étendue pour explorer l’impact du saut à longue portée sur les
bosons à interaction douce. Nous avons découvert que l’interaction entre le saut en loi de
puissance et la répulsion locale dans le modèle de Bose-Hubbard conduit à l’émergence d’un
véritable ordre à longue portée (LRO) pour α < 2.0, déviant de l’ordre quasi à longue portée
généralement attendu dans les systèmes bosoniques unidimensionnels à interactions de courte
portée.
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Résumé de la Thèse en Français

Introduction

Les systèmes à interactions à longue portée se réfèrent à des systèmes dans lesquels la force
d’interaction entre les éléments décroît lentement avec la distance, suivant souvent une loi de
puissance 1/rα , où r est la distance entre les éléments et α est l’exposant de décroissance.
Contrairement aux interactions à courte portée, où les effets sont localisés, les interactions à
longue portée influencent l’ensemble du système, conduisant à un comportement collectif et à
des dynamiques complexes et non triviales. Dans le cadre de notre étude, nous utiliserons la
classification des systèmes à longue portée proposée par [9].

Pour les systèmes quantiques en d dimensions, une distinction clé émerge selon que α < d

ou α > d. Lorsque 0 < α ≤ d, les interactions décroissent suffisamment lentement pour
induire une non-additivité, où l’énergie totale ne s’échelonne pas linéairement avec le nombre
de constituants microscopiques N. Cela définit le régime à longue portée forte, dans lequel
l’énergie ne peut pas simplement être sommée sur des sous-systèmes. Même pour α > d, les
interactions à longue portée peuvent encore influencer le comportement critique du système
et la propagation des excitations jusqu’à α∗, où α∗ > d est une valeur critique de l’exposant.
Ce régime, que nous appellerons régime à longue portée faible, est d’un intérêt particulier,
et dans ce travail, nous cherchons à l’explorer dans le contexte des systèmes bosoniques
unidimensionnels. En résumé, les trois régimes fondamentaux sont :

• Régime à longue portée forte : α < d

• Régime à longue portée faible : d < α < α∗

• Régime à courte portée : α > α∗

Dans ce travail, nous avons exploré numériquement les phases de l’état fondamental des
systèmes bosoniques unidimensionnels avec un saut suivant une loi de puissance pour α > d, se
situant dans les régimes à longue portée faible et à courte portée. Nous utilisons des simulations
Quantum Monte-Carlo à grande échelle, numériquement exactes, basées sur l’algorithme
du Worm [10]. Pour les bosons à interaction forte (hardcore bosons), nous considérons le
hamiltonien H1 confiné à un réseau unidimensionnel et étudions la transition de localisation
induite par le désordre. Pour les bosons à interaction douce (softcore bosons), nous examinons
la transition de Mott insulateur (MI) à superfluide (SF) induite par l’interaction décrite par H2.

H1 =−t ∑
i< j

a3

|ri j|α
[
b†

i b j +b†
jbi

]
+∑

i
εini =V +H0 (1)

x



H2 =−t ∑
i< j

a3

|ri j|α
[
b†

i b j +b†
jbi

]
+

U
2 ∑

i
ni(ni −1), (2)

Nous employons les notations standard pour les opérateurs de création et d’annihilation
bosoniques sur le site i et limitons le nombre d’occupations maximal, ni = b†

i bi, à l’unité.
L’amplitude de saut entre sites voisins, t, et l’espacement du réseau, a, sont respectivement pris
comme unités d’énergie et de longueur. Nous choisissons des énergies locales aléatoires εi

uniformément réparties entre −W et W . Les amplitudes de saut entre les sites i et j décroissent
avec la distance suivant 1/rα , et εi représentent les énergies locales aléatoires. U est la répulsion
locale lorsque deux bosons occupent le même site du réseau. Il est à noter que pour les bosons
à interaction forte (hardcore bosons), U → ∞, ce qui impose la contrainte qu’un site ne peut
être occupé que par un seul boson.

Worm algorithm

Les méthodes de Monte Carlo par intégrale de chemin (PIMC) [11] appartiennent à une classe
d’algorithmes de Monte Carlo quantique (QMC) basés sur une représentation graphique des
lignes de monde pour la fonction de partition Z. En termes de H0 et V , la fonction de partition
peut être exprimée comme Z = Tr[ρ], où ρ = e−βH = e−βH0σ . L’opérateur d’évolution de
Matsubara σ est

σ = 1−
∫

β

0
dτV (τ)+ · · ·+(−1)m

∫
β

0
d(τm)· · ·

∫
τ2

0
dτ1V (τm) . . .V (τ1)+ . . . (3)

Z peut alors être exprimé comme une somme de configurations de lignes de monde Cn avec un
nombre différent de coudes n.

Z =
∞

∑
n=0

∑
Cn

W (Cn)

⟨O⟩= 1
Z

Tr[Oe−βH ] =
1
Z

∞

∑
n=0

∑
Cn

⟨O⟩CnW (Cn) (4)

La valeur d’espérance des observables donnée par l’équation 4 peut alors être calculée ef-
ficacement via les méthodes de Monte Carlo par chaîne de Markov en échantillonnant des
configurations Cn à partir de la distribution W (Cn)/Z. L’algorithme du Worm est un schéma
permettant de mettre à jour les configurations PIMC en effectuant un échantillonnage dans un
espace de configurations étendu G = Tr

[
T (b†

i (tM)b j(ti)e−βH )
]
.
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Résumé de la Thèse en Français
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Fig. 1 Caractérisation de la phase superfluide pour W/t = 0 : (a) Matrice de densité à une
particule G (ℓ) en fonction de la distance ℓ, montrant une décroissance algébrique pour toutes
les valeurs de α avec L = 256. Les lignes pointillées indiquent le meilleur ajustement avec
A · c(ℓ)−γ , où c(ℓ) = sin(πℓ/L)/sin(π/L) est la distance de corde et A,γ sont des paramètres
d’ajustement. (c) Évaluation numérique du paramètre de liquide de Luttinger K en fonction de
α , à partir de la décroissance en loi de puissance G ∝ ℓ−1/(2K) (points verts) et de la relation
K = π

√
κYs (carrés rouges), extrapolée à la limite thermodynamique via une mise à l’échelle

polynomiale en 1/L.

Résultats et discussions

Pour caractériser les phases quantiques des hamiltoniens H1 (équation 1) et H2 (équation 2),
nous analysons la rigidité superfluide, Ys = L⟨W 2⟩/β , où ⟨W 2⟩ est la moyenne des carrés du
nombre d’enroulements obtenue à partir des simulations, L est la taille du réseau 1D, et β est
l’inverse de la température. De plus, nous examinons la matrice de densité à une particule,
G (l) = ⟨b†

i (τ)bi+l⟩, afin d’explorer plus en détail le comportement de phase du système.

Hardcore Bosons sur un réseau désordonné en 1D

Nous commençons notre analyse par la caractérisation du liquide bosonique en l’absence de
désordre (W/t = 0). Pour un état fondamental superfluide unidimensionnel, la matrice de
densité à une particule G (ℓ) devrait présenter une décroissance algébrique avec la distance ℓ,
avec une intégrale divergente sur l’espace. Nos données pour G sont présentées dans la Fig.

xii
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Fig. 2 Caractérisation de la transition de la phase superfluide à la phase non-superfluide pour
H1 : (a) Nombre moyen des carrés d’enroulement ⟨W 2⟩ en fonction de la force du désordre
W/t pour α = 2.7 (symboles vides) et 3.2 (symboles pleins) pour les tailles de système L = 64,
128, 256. (b)-(e) Zoom sur la zone près des transitions de phase pour α = 2.5, 2.7, 3.0 et 3.2,
montrant le croisement entre les courbes ; la courbe correspondant à la plus grande taille est
soustraite de toutes les données pour plus de clarté. Les barres d’erreur verticales indiquent
l’incertitude estimée provenant des simulations Monte Carlo et des moyennes sur le désordre.
Insets : Mise à l’échelle de la taille finie des points de croisement entre les courbes pour les
tailles de système L1 et L2 = 2L1 en fonction de L = L1.

3.1(a), pour les mêmes valeurs de α dans un système avec L = 256 sites et une température
inverse β = L/t. Nous observons une décroissance algébrique G ∼ ℓ−γ pour toutes les valeurs
de α . Nous avons tenté une comparaison avec les attentes de la théorie des liquides de
Luttinger en extrayant un paramètre effectif K en fonction de α par deux méthodes standard :
la décroissance en loi de puissance G ∼ ℓ−γ via la relation de bosonisation γ = 1/(2K) (points
verts) et la relation K = π

√
κYs (carrés rouges). Les valeurs de κ et Ys peuvent être facilement

calculées par Monte Carlo quantique à partir des fluctuations du nombre moyen de particules N

et du nombre d’enroulements W , en utilisant la relation de Pollock–Ceperley Ys = L⟨W 2⟩/β .
La Fig. 3.1(b) montre que les deux méthodes produisent des estimations similaires de K pour
toutes les valeurs de α , dans les barres d’erreur. De plus, K diminue de manière monotone
et continue avec α , passant d’une grande valeur K > 5 à α ∼ 2,3 à K ≈ 1 à α = 4. Ce
comportement s’explique par le fait que le saut en loi de puissance dans l’hamiltonien (1)
permet des échanges de particules à grande échelle pour des valeurs suffisamment petites de
α < 3, imitant le comportement des bosons à noyau mou, pour lesquels on peut facilement
obtenir K ≫ 1. La valeur K = 1 (ligne pointillée) correspond au cas à courte portée des bosons
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Fig. 3 Caractérisation de la phase superfluide : (a)-(d) Matrice de densité à une particule
G (l) en fonction de l pour α = 1.3, 1.9, 2.5, et 2.7. La ligne en pointillés indique le meilleur
ajustement avec A ·c(l)−γ où c(l)= sin(πl/L) est la distance de corde et A, γ sont les paramètres
d’ajustement. Inset : ∆G (ℓ) = G (ℓ)−G f it est la différence entre les valeurs réelles de la
matrice de densité à une particule et l’ajustement théorique G f it pour Lmax. La différence
indique une tendance à la hausse de G (ℓ) avec l’augmentation de la taille du réseau. (e) Échelle
thermodynamique de l’exposant de loi de puissance γ , indiquant un véritable Ordre de Longue
Portée (LRO) pour α ≤ 2±0.1.

à noyau dur avec le saut entre voisins immédiats, une limite qui est ici asymptotiquement
atteinte pour α > 3.

Dans ce qui suit, nous analysons la situation en présence de désordre fini et, en particulier,
nous explorons la nature du point de transition, qui est attendu comme étant du type BKT
pour les liquides de Luttinger. Cependant, nous notons que cela pourrait ne pas être le cas
ici : la transition BKT et son flux RG asymptotiquement exact reposent sur des interactions
logarithmiques entre les excitations de vortex. Ces interactions proviennent de l’énergie
cinétique du flux autour des vortex E ∼

∫
(ns/m)dr/r, où m est la masse des particules et ns

la densité superfluide. Le spectre à une particule dans notre modèle n’est pas parabolique et
correspond formellement à une « masse » dépendante de l’échelle m(r)∼ r3−α , ce qui implique
que les vortex dans la phase superfluide devraient être liés par un potentiel en loi de puissance,
et non logarithmique. Il peut donc être attendu que la physique BKT ne s’applique plus pour
α ≲ 3.

Nous caractérisons la transition via les fluctuations du nombre d’enroulements ⟨W 2⟩ car
elles sont une quantité invariant à l’échelle, contrairement à la rigidité superfluide Ys. La
Figure 3.2(a) montre l’évolution des propriétés superfluides mesurées par ⟨W 2⟩ en fonction du

xiv



désordre W/t, pour deux cas exemplaires α = 2.7 (symboles vides) et 3.2 (symboles pleins) et
pour plusieurs valeurs de L = 64,128,256. Dans les deux cas, ⟨W 2⟩ diminue monotoniquement
avec l’augmentation de W/t, jusqu’à atteindre des valeurs proches de zéro. Ce comportement
signale la transition entre les états superfluides et non-superfluides. Dans le cas à courte portée
α = 3.2, le comportement à des valeurs plus élevées de désordre rappelle ce qui est attendu pour
une transition BKT lorsque, dans le système infini, ⟨W 2⟩ affiche un saut à zéro au point critique
[7]. Cependant, de manière surprenante, pour α = 2.7, il y a un point de croisement clair de
⟨W 2⟩ autour de W/t ∼ 2. Cela est incompatible avec la criticité BKT et est, au contraire, une
signature de transitions de phase continues invariantes à l’échelle. Ce fait peut être utilisé pour
déterminer la force critique du désordre Wc où la superfluidité est perdue, en observant le point
de croisement des courbes ⟨W 2⟩ en fonction de W pour différentes valeurs de L. Les panneaux
(b)-(e) de la Fig. 3.2 présentent les données dans la proximité des points de transition pour
α = 2.5,2.7,3.0 et 3.2 en utilisant β = L/8t [même pour α = 3.2, notre température est un
facteur deux plus petite que le mode phonon le plus bas]. Les points de croisement sont très
prononcés dans (b) et (c) pour des exposants intermédiaires α , laissant peu de doute sur le
fait que nous traitons de transitions continues génériques à W/t = 3.24(5) pour α = 2.5 et à
W/t = 2.12(5) pour α = 2.7. Les croisements semblent persister lors du passage au régime à
courte portée α ≳ 3, voir les panneaux (d) et (e) dans la Fig. 3.2 avec des croisements autour
de W/t = 0.87(5) pour α = 3.0 et autour de W/t = 0.5(5) pour α = 3.2, contrairement à
toutes les attentes. Cependant, une mise à l’échelle soigneuse pour des tailles de système
plus grandes jusqu’à L = 1024 montre que le point de transition pour α > 3 se déplace vers
W/t → 0 dans la limite thermodynamique, voir l’Inset dans la Fig. 3.2(e), impliquant l’absence
de transition de phase continue à W fini dans la limite thermodynamique. Cela est différent de
α ≤ 3, où le point de transition se déplace vers une valeur finie de W/t, voir les Insets dans la
Fig. 3.2(b-d). La rupture du scénario BKT pour toutes les valeurs 2 < α ≤ 3 dans l’équation
(1) est surprenante et constitue le principal résultat de ce travail.

Transition induite par interaction dans le modèle de Bose-Hubbard à loi
de puissance

Nous avons réalisé des simulations du Hamiltonien H2 pour 1.0 < α < 3.0 dans l’ensemble
grand canonique à une densité commensurable afin d’étudier la nature de la transition non
triviale entre l’isolant de Mott et le superfluide (MI-SF) et de caractériser la phase superfluide
[12]. La matrice de densité à une particule, G (l), pour α = 1.3,1.9,2.5, et 3.0, tracée en
fonction de la distance de corde c(l), est montrée dans la Figure 3.3(a-d). Pour α < 2.0 (Figure
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Fig. 4 Diagramme de phase de l’état fondamental du modèle de Bose-Hubbard en 1D avec des
sauts suivant une loi de puissance (Equation (2)) pour α = 1.6, 1.9, 2.5, 2.7, et 3.0, montrant
la frontière entre les régions d’isolant de Mott (avec une densité unitaire) et de superfluide en
fonction du potentiel chimique µ/U et de l’amplitude de saut t/U .

3.3(a-b)), l’exposant de loi de puissance tend vers zéro dans la limite thermodynamique (Figure
3.3(e)), indiquant la présence d’un véritable Ordre de Longue Portée (LRO). En revanche,
pour α > 2.0, G (l) montre une décroissance algébrique, G (l) ∼ c(l)−γ , où γ est l’exposant
de la loi de puissance. Notamment, G (l) augmente avec la taille du système L, exhibant un
comportement anormal par rapport à ce qui est observé dans les interactions à courte portée.
Comme l’exposant de loi de puissance reste fini dans la limite thermodynamique (Figure
3.3(e)), nous classifions la phase pour 2.0±0.1 < α < 3.0 comme un Ordre Quasi-Long-Range
Anormal (AQLRO).

Le diagramme de phase dans le plan µ/U en fonction de t/U est présenté dans la Figure
4. Pour α < 2, le diagramme révèle des structures lobe-like lisses caractéristiques de la
phase d’isolant de Mott (MI) observée dans des dimensions supérieures. En particulier, pour
α = 1.6 et 1.9, les lobes de Mott près de la transition ont été théoriquement ajustés en estimant
l’exposant de longueur de corrélation ν , en utilisant l’énergie de gap Egap en fonction de t/U .
Ces ajustements théoriques sont représentés par des lignes noires dans la figure. La forme lobe-
like lisse indique l’émergence d’un ordre de longue portée, en accord avec le comportement
observé dans les fonctions de corrélation. Pour α > 2, la phase MI présente une structure
plus pointue le long de la ligne de densité commensurable. Cette caractéristique marquée
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est indicative de la nature quasi-longue portée de la phase sous-jacente, contrastant avec le
comportement lisse observé pour des valeurs plus petites de α .

Conclusion générale

Nous avons étudié les phases de l’état fondamental des bosons à cœur dur en une dimension
avec des sauts suivant une loi de puissance en présence de désordre, en utilisant des techniques
de Monte Carlo sur intégrale de chemin (PIMC). Nos résultats révèlent une transition de phase
non-Berezinskii-Kosterlitz-Thouless (BKT) à invariance d’échelle entre les phases superfluide
et non-superfluide pour diverses valeurs de l’exposant α . À travers une analyse détaillée du
modèle de Bose-Hubbard à loi de puissance, nous montrons que le véritable comportement de
longue portée est observable pour α < 2.0, comme en témoignent les fonctions de corrélation
et le diagramme de phase isolant de Mott-superfluide (MI-SF). Ces résultats remettent en
question la notion prédominante dans la littérature actuelle, qui suggère que l’ordre de longue
portée émerge autour de α ∼ 2.7 [13]. Nos simulations à grande échelle montrent de manière
concluante que ce n’est pas le cas.
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Chapter 1

Introduction

Quantum many-body systems with long-range, power-law decaying couplings offer a unique
landscape for exploring behaviors and emergent phenomena that lie beyond the scope of
traditional complex systems. In classical systems, long-range interactions are seen in models
where gravitational or electrostatic forces dominate, whereas in quantum systems, examples
include dipole-dipole or van der Waals interactions. These long-range forces influence collective
dynamics on scales often leading to complex behaviors, exotic phases, and novel dynamical
properties absent in short-range systems. In particular, long-range interactions may lead to
divergence of thermalization timescale in classical systems, and may even disrupt the traditional
notion of locality in quantum systems leading to non-local propagation of information and
correlations. This breakdown of locality positions long-range interacting systems as a fertile
ground for discovering unusual thermodynamic and quantum behaviors, including novel phase
transitions and unconventional equilibrium phases.

In the broader field of condensed matter physics, researchers investigate systems composed
of vast numbers of interacting particles in condensed phases, such as solids and liquids. Unlike
isolated atoms, these systems exhibit emergent phenomena arising from collective interactions,
as seen in materials like crystals, magnets, and superconductors. At low temperatures, their
macroscopic properties are governed by quantum mechanics and, in theory, can be derived from
the many-body Schrödinger equation. However, the sheer number of particles involved—often
on the order of 1023—renders a direct solution of this equation computationally infeasible,
surpassing the capabilities of even the most advanced conceivable classical computers. This
complexity necessitates the development of approximate numerical methods and theoretical
frameworks to understand macroscopic properties effectively. Techniques such as mean-field
theory, density functional theory (DFT), and quantum Monte Carlo simulations are essential for
capturing the key features of collective behavior. By advancing the study of both short- and long-

1



Introduction

range interactions, condensed matter physics provides a robust foundation for understanding
the intricate properties and emergent phenomena that characterize complex materials, offering
insights that are crucial for the advancement of materials science and quantum technology.

This thesis focuses on quantum many-body systems with long-range interactions, where
quantum effects intertwine with power-law decaying couplings, opening up new avenues for
exploring complex behaviors and emergent phenomena. In this chapter, we will begin by
discussing the theory of phase transitions in Section 1.1, where we examine how microscopic
fluctuations drive fundamental changes in state. We will explore critical phenomena associated
with these transitions, including the divergence of correlation length and time near critical points,
as well as the scale-invariant properties and power-law behaviors observed in both classical
and quantum phase transitions. We will then explore the origins of superfluidity in Section
1.2, an exotic quantum phase observed in bosonic systems, where particles exhibit frictionless
flow. In Section 1.3, we introduce the Bose-Hubbard model, a foundational framework for
describing quantum phases in lattice systems, particularly the transition between superfluid and
Mott-insulator states. We then review the Berezinskii–Kosterlitz–Thouless (BKT) transition in
Section 1.4, a topological phase transition that differs from conventional symmetry-breaking
transitions, explaining how 2D systems move from quasi-long-range order to disordered phases
due to vortex-antivortex unbinding, which disrupts phase coherence. This section further
illustrates the mapping of vortex dynamics in the XY model to models of a Coulomb gas and
the sine-Gordon model. In Section 1.5, we investigate the impact of long-range interactions
on strongly correlated systems, exploring how these interactions lead to novel phases and
critical phenomena. Finally, in Section 1.6, we provide a brief outline of the thesis structure,
summarizing the key objectives and contributions of this work.

1.1 Phase Transitions and Critical Phenomena in Condensed
Matter Physics

A key aspect of emergent behavior in condensed matter systems is the occurrence of phase
transitions, where a system undergoes fundamental change in state, such as melting, freezing,
or the onset of superconductivity. These transition are driven by microscopic fluctuations.
The universe itself has likely experienced several phase transitions as it cooled from the high-
temperature plasma state following the Big Bang to its present form [14]. When temperature
is the driving factor, thermal fluctuations are responsible for the transition. As the sample
temperature is raised above critical temperature Tc, thermal fluctuations—scaled by kBT , where
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kB is the Boltzmmann constant and T the temperature—destroy the system’s order and drive it
across the phase transition. The high-temperature phase, therefore, typically exhibits greater
disorder and higher symmetry compared to the low-temperature phase. However, when the
temperature of the system approaches zero, all thermal fluctuations die out. This prohibits
phase transition in classical systems at zero temperature. Quantum fluctuations, driven by
Heisenberg’s uncertainty principle, however, continue to live on at zero temperature and
under certain conditions trigger the system to undergo quantum phase transition (QPT). The
amplitude of these quantum fluctuations can be modulated by varying external parameters in
the system’s Hamiltonian. Examples include the charging energy in Josephson-junction arrays,
which governs the superconductor-insulator transition [15–18]; the applied magnetic field in
quantum Hall systems, which drives transitions between quantized Hall plateaus [19]; doping
levels in high-temperature superconductors, which suppress antiferromagnetic order [20, 21];
the degree of disorder in conductors, influencing the metal-insulator transition and determining
conductivity at zero temperature [22, 23]; and the on-site interaction strength in systems of
repulsive bosons, which controls the superfluid-insulator transition [24, 19].

Phase transitions are broadly categorized into first-order and continuous (second-order)
types. In first-order transitions, distinct phases coexist at the transition point, such as the
coexistence of liquid and vapor during boiling. Continuous transitions, on the other hand,
occur smoothly without phase coexistence and are characterized by an order parameter—a
thermodynamic variable that is zero in the disordered phase and non-zero in the ordered phase.
In addition to these types, there are topological transitions, such as the Berezinskii-Kosterlitz-
Thouless (BKT) transition, where phase changes occur without traditional symmetry breaking
(see Section 1.4). In systems that spontaneously break some symmetry in the ordered state, the
value of the order parameter reflects this broken symmetry. A good example is a Heisenberg
ferromagnet: The relevant symmetry of the Hamiltonian is the rotation symmetry in spin space,
and the disordered and ordered states are represented by the paramagnetic and ferromagnetic
states respectively. Although the average order parameter is zero in the disordered state,
fluctuations remain non-zero, and near the critical point, these fluctuations become long-ranged.
The correlation length ξ , which measures the spatial extent of these fluctuations, diverges
as ξ ∝ |t|−ν where ν is the correlation length exponent and t is a dimensionless measure
of distance from the critical point. If the transition is driven by disorder W and occurs at
nonzero disorder Wc, t equals |W −Wc|/Wc. In a quantum phase transition (QPT), temporal
correlations along the direction of imaginary time τ (iτ = kBT ) become long-ranged, with the
correlation time ξτ diverging as ξτ ∝ ξ z ∝ |t|−νz, where z is the dynamic critical exponent.
These divergences in correlation length and time near the critical point are central to critical
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phenomena. At the critical point, correlation length and time are infinite, fluctuations occur on
all length and time scales, and the system is said to be scale-invariant. As a consequence all
observables depend via power-laws on the external parameters.

Close to a second-order classical phase transition (CPT), the correlation length ξ becomes
large (though finite) and governs the scaling behavior of the system. Since ξ is only relevant
length scale, if all lengths are rescaled by a factor b while simultaneously adjusting the external
tuning parameter x such that ξ maintains its initial value, the physical properties of a system
should remain unchanged. This leads to a scaling form for the free-energy density f near the
critical point:

f (t,x) = b−d f
(

tb
1
ν ,xbyx

)
(1.1)

where d is the spatial dimensionality, yx is critical exponent associated with the external tuning
parameter x, which, for example, could be magnetic field or pressure. For QPTs not only does
ξ diverge in d dimensions, but also the correlation time ετ , acting as an extra dimension at zero
temperature. Therefore, the free-energy density scales as:

f (t,x) = b(−d+z) f
(

tb
1
ν ,xbyx

)
(1.2)

where z is referred as the dynamic critical exponent. Thus a QPT in d spatial dimensions is
equivalent to a CPT in d + z dimensions.

In classical statistical mechanics, dynamics and thermodynamics are decoupled; specifically,
the contributions of momentum and position in the partition function are entirely independent.
For instance, calculating positional correlations does not require knowledge of particle masses.
This independence simplifies the formulation of non-dynamical models, such as the Ising
model, where dynamics can be ignored without loss of generality. However, this convenience
does not extend to quantum systems due to the non-commutative nature of coordinates and
momenta [15]. As a result, the path-integral formulation of the partition function Z inherently
incorporates information on the system’s imaginary-time evolution over the interval [0,ℏβ ]. By
employing analytic continuation, this information allows us to extract real-time dynamics:

G(τ)−→ G(+it) (1.3)

where G(τ)≡ ⟨0|A(τ)A(0)|0⟩ is the ground state correlation function for any operator A. Thus,
in quantum statistical mechanics, thermodynamic and dynamic properties are intrinsically
linked, requiring a concurrent solution—an aspect that adds depth to the field but also introduces
significant complexity.
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1.2 Superfluidity

With a foundational understanding of quantum phase transitions and the intricate interplay
between thermodynamics and dynamics in quantum systems, we now shift our focus to
superfluidity. Superfluidity, an exotic phase of matter observed in certain bosonic systems at
ultralow temperatures, vividly demonstrates the macroscopic effects of quantum coherence.
In the following section, we explore the theoretical foundations of superfluidity, exploring the
conditions necessary for this phase to emerge and the mechanisms underlying its remarkable,
frictionless flow.

1.2 Superfluidity

Superfluidity is a state of matter characterized by the ability of a liquid to flow without
viscosity. This phenomenon was first observed in 1938 in liquid helium-4 (4He) by Kapitza,
and simultaneously by Allen and Misener [25]. Below a critical temperature of 2.17 K, known
as the lambda temperature, liquid helium transitions from a normal phase (He-I) to a superfluid
phase (He-II), where it exhibits the ability to flow through narrow capillaries and porous media
without encountering resistance, a behavior Kapitza termed “superfluidity.”

The key to understanding superfluidity lies in the concept of Bose-Einstein Condensation
(BEC). BEC occurs when a collection of bosons (particles with integer spin) condenses into a
single one-particle quantum state at low temperatures. For 4He, which behaves as a boson, this
phenomenon where a large fraction of the helium atoms occupies the same ground state leads
to collective behavior that manifests as frictionless flow.

The behavior of superfluid helium can be described using the two-fluid model, initially pro-
posed by Laszlo Tisza and later refined by Landau [26]. In this model, Helium-II was postulated
to consist of two components: a superfluid component, which flows without resistance, and a
normal component—composed of quasiparticles namely phonons and rotons—that behaves like
a typical viscous liquid. The superfluid component carries no entropy and flows irrotationally,
meaning its velocity vs satisfies the condition ∇× vs = 0. In contrast, the normal component
carries entropy and supports viscous flow. Based on these postulates, Landau predicted that, for
superfluidity to persist without dissipation, the fluid’s velocity (more precisely the superfluid
component of it) must be less than a critical value vc, given by

vc = min
(

ε(p)
|p|

)
(1.4)
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where ε(p) is the excitation energy at momentum p. This critical velocity represents the
maximum speed at which the superfluid component can flow without generating excitations
that would lead to dissipation.

The theory also predicted the excitation spectrum to consist of two different contributions,
one linear, due to phonons, and another quadratic due to rotons [26, 27]. Following Landau’s
phenomenological model, Bogoliubov demonstrated that the excitation spectrum of a weakly
interacting Bose gas at low momenta takes on a phonon-like (linear) form, ε(p) = cp, where c is
the speed of sound [28]. It explained why a weakly interacting Bose gas can exhibit superfluidity,
thereby establishing a direct link between Bose-Einstein condensation (BEC) and superfluid
behavior. However, it did not explain strongly interacting fluids like liquid helium-II. In 1956,
Feynman and Cohen proposed a more accurate description of the excitation spectrum of liquid
helium-II that could explain not only the low-momentum phonon excitations (ε(p) = cp) but
also the higher-momentum roton spectrum (ε(p) = ∆+(p− p2

0)/2m) observed experimentally
[29]. The figure 1.1 below compares the excitation spectra of a weakly interacting Bose gas
(a) proposed by Bogoliubov and a strongly interacting Bose liquid (b). For the Bose gas,
the spectrum is linear at low momenta, with the critical velocity equal to the sound speed c

[30]. In the Bose liquid, the spectrum shows more complex features, including a roton dip,
leading to a lower critical velocity vc < c. The critical velocity decreases as particle-particle
interactions weaken and vanishes in an ideal gas, where vc = minp

ε(p)
|p| = 0 for ε(p) = p2

2m .
Thus, particle-particle interactions are essential for superfluidity.

To describe the onset of superfluidity in three-dimensional systems, a key concept is off-

diagonal long-range order, introduced by Oliver Penrose [31]. This concept is tied to the
spontaneous breaking of gauge invariance symmetry (U(1)), leading to the emergence of a
macroscopic wave function and the macroscopic occupation of a single-particle ground state,
known as Bose-Einstein condensation [27, 32]. More specifically, the one-particle density
matrix, ρ1(r− r′) = ⟨ψ̂†(r)ψ̂(r′)⟩, characterizes this order. Here, ψ̂† and ψ̂ are field operators
for bosonic particles. The Fourier transform of this density matrix, nk = ⟨ψ̂†(k)ψ̂(k)⟩, is the
momentum distribution, where ψ̂(k) and ψ̂†(k) annihilate and create particles with momentum
k. In a Bose-Einstein condensate, a single state (e.g., k = 0) is macroscopically occupied, so
that nk = N0δ (k)+ f (k), where N0 is proportional to the total number of particles N, and f (k)

is a smooth function of k. For the one-body density matrix, this implies that as |r− r′| → ∞,
ρ1(r− r′)→ N0

V , where V is the system volume. This limiting behavior formally defines off-
diagonal long-range order and captures the essence of Bose-Einstein condensation in superfluid
systems.
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Fig. 1.1 (a) The excitation spectrum for a weakly interacting Bose gas, where the energy ε(p)
is given by ε(p) = p2

2m + gn (dashed curve), with a linear phonon-like dispersion ε(p) = cp
(solid line) at low momenta, indicating that the critical velocity vc is equal to the sound velocity
c. (b) The excitation spectrum for a strongly interacting Bose liquid such as 4He, showing a
more complex structure with phonon, maxon, and roton branches. Here, the critical velocity vc
is less than the sound velocity c, reflecting the presence of a local minimum in the dispersion
relation due to roton excitations. Taken from [30].

In uniform two-dimensional systems, conventional off-diagonal long-range order is dis-
rupted by thermal fluctuations at any finite temperature, preventing Bose-Einstein conden-
sation (BEC) in contrast to three-dimensional systems. This phenomenon is explained by
the Mermin-Wagner-Hohenberg theorem [33, 34]. However, 2D systems can still form a
quasi-condensate and exhibit superfluidity below a critical temperature, known as the Berezin-
skii–Kosterlitz–Thouless (BKT) phase transition (see Section 1.4) [35, 36]. A proposed phase
diagram for a weakly interacting 2D Bose gas shown in figure 1.2 illustrates this behavior [37].
As temperature decreases below a certain point TMF, macroscopic occupation of the ground
state occurs, but free vortices remain as primary excitations. With further cooling below the
BKT transition temperature TBKT, superfluidity emerges through the pairing of vortices with
opposite circulation. This vortex pairing reduces long-range phase fluctuations, allowing for the
formation of topological order in the system. At an even lower temperature TBEC, a crossover
occurs from the superfluid phase to a true BEC state without free vortex pairs. The details
of this phase transition remain an active area of research, with ongoing experimental studies
needed to fully understand the scenario presented in the phase diagram.

In one-dimensional (1D) systems with repulsive inter-particle interaction, as in two-
dimensional (2D) systems, true off-diagonal long-range order cannot emerge due to the
pronounced role of quantum fluctuations. This limitation, resulting from the Mermin-Wagner-
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Fig. 1.2 Schematic phase diagram illustrating different phases of a two-dimensional trapped
weakly interacting dilute Bose gas as a function of temperature T . Here, ρ0 represents the
density of the condensate, ρs denotes the superfluid density, and ρMF is the mean-field density,
estimated through perturbative methods. The temperature TBEC marks the crossover from
the superfluid regime to a true Bose-Einstein condensate phase. TBKT indicates the critical
temperature of the Berezinskii-Kosterlitz-Thouless (BKT) transition, at which topological
order emerges in the form of vortex-antivortex pairs. TMF denotes the onset of the mean-field
critical region. Regions I through IV depict different physical regimes: below TBEC (Region
I), the system exhibits condensation; between TBEC and TBKT (Region II), it transitions toward
a superfluid state; between TBKT and TMF (Region III), the mean-field description becomes
increasingly accurate; and above TMF (Region IV), thermal fluctuations dominate [37].

Hohenberg theorem, is particularly severe in 1D, where quantum and thermal fluctuations
are even more restrictive. Consequently, unlike in higher dimensions, a true Bose-Einstein
Condensate (BEC) cannot form in 1D, not even at absolute zero temperature (T=0). Superfluid
behavior in 1D is best understood through Luttinger liquid (LL) theory, which describes the
low-energy physics of a wide range of interacting 1D systems. In this framework, instead
of forming a BEC, particles exhibit quasi-long-range order characterized by correlations that
decay algebraically. This quasi-order leads to a power-law decay in the single-particle density
matrix, expressed as, ρ1(r− r′) = ⟨ψ̂†(r)ψ̂(r′)⟩ ∼ |r− r′|−1/2K , where K is the LL parameter.
The power-law behavior extends to other correlation functions, such as the density-density
correlation, with exponents that vary based on the Luttinger parameter K. This parameter, in
turn, depends on the particle density and interaction strength, effectively making the exponents
tunable [38]. The value of the Luttinger parameter K influences the system’s tendency to
different types of order at long distances. For instance, the single-component 1D Bose-Hubbard
model exhibits two distinct phases: a Mott insulating phase and a superfluid (Luttinger liquid)
phase (see Section 1.3). In the superfluid phase, K > 1, while at the superfluid-Mott transition,
K approaches 1. A unique case arises at the tip of the Mott lobe, where the transition belongs
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to the XY universality class [24], and the system undergoes a Berezinskii-Kosterlitz-Thouless
(BKT) transition (see Section 1.4) [35, 36], with K approaching 2.

Interestingly, superfluidity is not restricted to bosonic systems. Below the much lower
temperature of 3 mK, the fermionic isotope helium-3 (3He) also exhibits superfluidity. In this
case, superfluidity arises from Cooper pairing, a mechanism that enables fermions to behave
collectively in a manner analogous to bosons, leading to a superfluid phase. Further insights into
superfluidity have been gained through experiments on extremely dilute alkali gases confined
in magnetic traps at nanokelvin temperatures. Starting with the observation of BEC in trapped
atoms by Weiman, Cornell, and Ketterle in 1995, superfluid behavior has been observed in both
bosonic and fermionic atoms within these ultracold atomic gases. Although these systems are
not classified as condensed matter (being dilute vapors), they provide valuable experimental
platforms to study fundamental aspects of superfluidity and quantum collective behavior.

Having explored the unique properties of superfluidity, we now turn to the Bose-Hubbard
model, a foundational framework for understanding quantum phases in lattice systems. The
Bose-Hubbard model is a powerful tool for investigating the interplay between particle inter-
actions and mobility within a periodic potential. It is particularly valuable for describing the
quantum phase transition between superfluid and Mott insulating states, which arises from the
competition between kinetic energy, driving particle delocalization, and on-site interaction,
promoting localization. In this section, we will outline the theoretical structure of the Bose-
Hubbard model and explore the conditions for the superfluid-Mott insulator transition in one
and higher dimensions.

1.3 Bose-Hubbard Model

Typically, models of bosonic systems are employed to describe superfluid states. In the presence
of deep periodic potentials, atoms can transition between adjacent potential wells (lattice sites)
through quantum tunneling, leading to the development of discrete lattice models. For a system
of one-component, spinless bosons, the Bose-Hubbard model described by the Hamiltonian,

H =−t ∑
⟨i, j⟩

[
b̂†

i b̂ j +H.c.
]
+U ∑

i

n̂i(n̂i −1)
2

−µ ∑
i

n̂i (1.5)

provides a robust framework, characterized by parameters such as the hopping amplitude t,
which determines particle mobility within the lattice; the on-site interaction U , capturing local
interactions between particles; and the chemical potential µ , which controls the particle density.
Here b̂i and b̂†

i are the bosonic annihilation and creation operators at lattice site i, and n̂i = b̂†
i b̂i
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is the number operator that counts the bosons at site i. These operators obey the standard
bosonic commutation relations: [b̂i, b̂ j†] = δi j and [b̂i, b̂ j] = [b̂†

i , b̂
†
j ] = 0. Initially introduced in

a heuristic manner, this model aimed to distinguish the ground state and low-energy excitations
of interacting bosons in a uniform space, capturing the density-dependent transitions between
solid and superfluid phases in systems like 4He [39–42]. Later, the Bose-Hubbard model was
derived more formally within the context of solid-state physics [43], inspired by experimental
studies of 4He adsorbed in porous media and Cooper pairs in granular superconductors [24].
This model has since become a foundational tool for exploring phase transitions and the
superfluid-insulator dynamics in various quantum systems.

A remarkable feature of the Bose-Hubbard model is its ability to capture the quantum
phase transition from a superfluid to a Mott insulator state [24, 19], driven by the competition
between kinetic energy t and on-site repulsive interactions U . The model’s ground state is
inherently superfluid for any non-integer average filling n of the lattice, regardless of the
interaction strength t/U . However, at integer lattice fillings, a quantum phase transition can
occur between a weakly interacting superfluid and a strongly interacting Mott insulator. This
can be understood as follows: for weak interactions (in the limit U/t → 0, or t ≫U , bosons
can move freely across the lattice, leading to a superfluid phase where particles are delocalized.
Conversely, in the limit t/U → 0 (where U ≫ t), moving a boson to a neighboring site creates
an energetically costly configuration, with an empty site and a doubly occupied site. This
cost, on the order of U for a single filling n = 1, leads to a ground state where bosons are
localized at individual lattice sites, resulting in the “Mott insulator” phase. This transition from
superfluidity to the Mott insulating state, controlled by the ratio t/U , exemplifies the intricate
balance between kinetic and potential energy in quantum systems.

Figure 1.3 presents the ground-state phase diagram of the one-dimensional (d = 1) Bose-
Hubbard model, mapped in terms of the chemical potential-to-hopping ratio µ/t and the
hopping-to-interaction ratio t/U . In the regime of strong interactions (U ≫ t), the diagram
reveals a Mott insulating region where the average lattice filling is an integer. This Mott region
is surrounded by the superfluid phase, indicating a transition between localized and delocalized
states as the interaction strength decreases relative to the hopping amplitude. In the superfluid
phase, the excitation spectrum is gapless, and particle-number statistics follow a broad, Poisson-
like distribution. Here, the one-body density matrix (the first-order two-point correlation
function) displays off-diagonal long-range order in two and three dimensions and decays as a
power law in one dimension. Conversely, in the Mott insulator phase, a finite excitation gap
appears, particle-number fluctuations are suppressed, and the one-body density matrix decays
exponentially across all dimensions. The superfluid-to-Mott insulator (SF-MI) transition is
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Fig. 1.3 The phase diagram of the one-dimensional Bose-Hubbard model displays the superfluid
phase (SF) and the Mott insulator phase (MI) with density one. Solid lines represent a Padé
analysis of 12th-order strong-coupling expansions, while the boxed regions indicate Quantum
Monte Carlo (QMC) data. Circles denote Density Matrix Renormalization Group (DMRG)
results, and dashed lines mark the regions of integer density. The error bars in the µ-direction
are smaller than the circles, reflecting minimal uncertainty, while the error bars in the t-direction
represent the uncertainty in determining the Berezinskii-Kosterlitz-Thouless (BKT) transition.
[44]

described by an O(2) rotor model that captures the dynamics of the condensate phase at fixed
density, specifically at the tips of the Mott lobes in the phase diagram in higher dimensions.
For d=1, instead the fixed density transition is of the Berezinskii-Kosterlitz-Thoulezz (BKT)
type (see section 1.4). Outside these tips, where density fluctuates, the complex condensate
density serves as the order parameter, and the transition aligns with the universality class of the
dilute Bose gas [19]. Experimental realization of the SF-MI transition has been achieved in
optical lattices, initially observed in three dimensions [45] and subsequently in one [46] and
two dimensions [47].

Despite significant theoretical progress, a complete description of interacting quantum
systems remains challenging. Even the seemingly simple Bose-Hubbard model lacks general
analytical solutions, with exact results limited to special cases such as non-interacting or
infinitely strong interactions. Approximate solutions, derived through systematic expansions in
powers of small parameters, are valuable but inherently limited. Mean-field theory, based on the
Gutzwiller ansatz [48], has been crucial in studying the Bose-Hubbard model. This approach
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considers local fluctuations but neglects inter-site quantum correlations, making it exact in
infinite dimensions and insightful for high-dimensional systems, though less accurate in lower
dimensions. Efforts to refine mean-field theory by including distance-dependent quantum
correlations have led to methods such as random phase approximation [49], cluster Gutzwiller
method [50], and dynamical mean-field theory (DMFT). DMFT, originally developed for
fermions [51] and later adapted for bosons [52], is among the most successful approaches but
is computationally intensive. It can be viewed as an expansion in the inverse coordination
number [86], reducing the problem to solving an impurity model on a single site or cluster.
This requires robust numerical techniques, including exact diagonalization, density matrix
renormalization group (DMRG), and quantum Monte Carlo (QMC), due to the complexity of
the computational problem.

Alongside analytical methods, exact numerical approaches have been developed, with exact
diagonalization (ED) being the most widely used for systems with a few degrees of freedom. ED
involves constructing and diagonalizing the Hamiltonian matrix in a specified basis, enabling
precise control over calculation accuracy and providing access to the full energy spectrum.
This spectrum forms the basis for simulating time dynamics, as demonstrated in recent studies
on few-body systems [53–55]. However, ED is fundamentally constrained by the exponential
growth of the Hilbert space with system size, limiting its feasibility to small systems. The
largest example reported involves L = N = 18, where L and N denote the number of lattice
sites and particles, respectively, with a maximum of four particles per site [56]. Although the
Hamiltonian matrix is finite for systems with limited degrees of freedom, the “exponential
curse”—the exponential increase in Hilbert space with system size—necessitates truncation to
manage computational demands. To facilitate ED calculations, several open-source libraries,
such as ALPS [57] and QuSpin [58], offer general-purpose solutions, simplifying the setup and
execution of ED across various quantum models and enabling researchers to validate results
from approximate and other numerical methods.

For larger systems, the density-matrix renormalization group (DMRG) [59, 60] offers
a more efficient deterministic approach. DMRG leverages the fact that the system’s state
often occupies a small subspace of the Hilbert space. It is quite effective in one dimension,
where it can handle larger systems with N,L ≈ 1000. However, it becomes less practical in
higher dimensions and for finite temperature analysis, where quantum Monte Carlo (QMC)
methods [61, 10] are preferred. QMC utilizes stochastic sampling to handle stationary states in
experimentally realistic settings, accommodating up to N ∼ 105 bosons in a three-dimensional
lattice [62]. In this study, we utilize the Worm Algorithm [10], a Path Integral Monte Carlo
method exact for unfrustrated bosonic systems, to investigate the ground-state phase diagram
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of a one-dimensional system of bosons with long-range hopping. In the following section, we
examine the unique properties of long-range interactions, which can diverge significantly from
those of short-range interactions and present intriguing avenues for study.

Building on the foundational insights provided by the Bose-Hubbard model, we now turn
to the Berezinskii-Kosterlitz-Thouless (BKT) transition, a topological phase transition that
emerges in low-dimensional systems, particularly in the superfluid-insulator transition in one
and two dimensions. In these systems, true long-range order is suppressed by the Mermin-
Wagner theorem, which prohibits conventional symmetry breaking due to strong fluctuations.
The BKT transition is crucial for understanding the superfluid-insulator transition in 1D and 2D
lattice systems, where quasi-long-range order arises as vortex-antivortex pairs bind and unbind
at the transition point. In this section, we will first analyze the BKT transition through the 2D
XY model and then delve into its theoretical mapping to the 2D Coulomb gas and sine-Gordon
models. This approach provides a comprehensive view of topological phase transitions in
low-dimensional quantum systems and clarifies the critical mechanisms driving phase behavior
in the Bose-Hubbard model at low dimensions.

1.4 Berezinskii–Kosterlitz–Thouless (BKT) transition

The Berezinskii-Kosterlitz-Thouless (BKT) transition is a unique type of phase transition that
appears in a range of physical systems. It underlies phenomena such as vortex-antivortex
unbinding in the 2D XY model, dipole unbinding in the 2D Coulomb gas, metal-insulator
transitions in 1D chains, and superfluid-insulator transitions in 1D bosonic systems. Although
these phenomena may seem different, they share the same universality class and can be mapped
onto one another. Unlike conventional transitions, which involve symmetry breaking—such as
ferromagnetic to paramagnetic or liquid to solid—the BKT transition is marked by a shift in
topological order. Kosterlitz, Thouless, and Haldane were awarded the Nobel Prize in 2016 for
their contributions to understanding this remarkable transition.

A defining characteristic of the BKT transition in 2D systems is its dependence on vor-
tex–antivortex pairs, rather than a conventional order parameter. In a 2D vector spin model,
a vortex is a point around which spins rotate in a specific direction, either clockwise or coun-
terclockwise, while an antivortex is a point where spins rotate in the opposite direction. At
low temperatures, vortex-antivortex pairs remain bound, resulting in restricted fluctuations and
quasi-long-range order, with correlations decaying algebraically. As the temperature reaches
the critical BKT temperature, TBKT, thermal energy unbinds these pairs, generating free vortices
and causing a phase transition that disrupts quasi long-range order without symmetry breaking.
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Fig. 1.4 Visualization of the Berezinskii–Kosterlitz–Thouless (BKT) transition: at low tem-
peratures, vortex–antivortex pairs remain bound, maintaining quasi-long-range order. As
temperature approaches the critical BKT temperature TBKT, the pairs unbind, creating free
vortices that disrupt quasi-ordered system and lead to a phase transition.

For example, in a 2D vector spin model, one finds that the the average magnetization (order
parameter in 3D model) remains zero even below TBKT ( indicating no true long-range order),
while the spin-spin correlation function decays algebraically (quasi long range order). The
system’s O(2) symmetry (i.e. turning all spins at their position) remains unbroken at the
transition. Above TBKT, the correlation function decays exponentially, marking a transition
from quasi-ordered to a disordered phase. This transition, driven by the binding and unbinding
of these topological defects (vortices), is illustrated in Fig. 1.4.

The finite-temperature superfluid-to-normal transition in 2D systems (and the 1D superfluid-
Mott insulator transition at zero temperature) is governed by the Berezinskii-Kosterlitz-Thouless
(BKT) phenomena. This transition results in a characteristic jump in the superfluid density,
which drops from a finite value to zero at Tc in 2D. Despite this sharp change, the transition is
not first-order, as all thermodynamic quantities remain continuous [63]. Renormalization group
analysis by Kosterlitz and Thouless predicts the following behavior near the transition:

ρs(T )−ρs(Tc) ∝
√

Tc −T (T ≤ Tc) (1.6)

lnξ (T ) ∝ |Tc −T |−1/2 (1.7)

where ρs is the superfluid density, ξ the correlation length, and Tc the critical temperature.
The exponential divergence of the correlation length ξ at the critical point ensures that all
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thermodynamic quantities remain continuous across the transition, underscoring the unique
nature of the BKT transition.

In subsection 1.4.1, we discuss the BKT transition in the classical XY model, which
describes Heisenberg interactions between two-component classical spins on a 2D lattice. This
model captures the paramagnetic-ferromagnetic transition in 2D, providing a clear visualization
of topological excitations as spin vortices. In subsection 1.4.2, we establish a formal mapping
between this model and the 2D Coulomb gas screening transition. This analogy offers insight
into how vortices in the XY model disrupt the “quasi-long-range” order of the low-temperature
phase in a way similar to how charges screen each other in the Coulomb gas. Finally, we
introduce a mapping to the sine-Gordon model, which, while describing a different physical
scenario—a quantum field in one dimension—provides additional insight into the behavior of
the system.

1.4.1 2D XY model

The Berezinskii-Kosterlitz-Thouless (BKT) transition is fundamentally tied to the behavior of
two-dimensional systems where traditional long-range order is prohibited due to strong fluctua-
tions. To understand this unique phase transition, we begin with the XY model—a theoretical
framework that has been instrumental in exploring the BKT transition and topological ordering
in low-dimensional systems. The XY model describes a 2D lattice of classical spins (rotors),
each with a fixed magnitude (|Si|= 1) and free to rotate in the plane. Unlike the Ising model,
where spins are constrained to discrete orientations, the XY model allows continuous angular
variation, effectively modeling Heisenberg interactions for two-component spins in a plane.
This model is represented by the following Hamiltonian:

HXY =−J ∑
⟨i, j⟩

Si ·S j =−J ∑
⟨i, j⟩

cos(θi −θ j) (1.8)

where ∑⟨i, j⟩ denotes a summation over nearest-neighbor spins, J is a positive coupling constant
promoting ferromagnetic alignment, and θi is the angle that spin i makes with a reference axis.
The angle θi, often referred to as a "phase" variable, is significant because it highlights the
model’s connection to other physical systems, such as superfluids, where phase coherence plays
a central role.

The XY model possesses two important symmetries:

1. A continuous global U(1) symmetry: ∀i, θi → θi + c, where c is a constant shift across
all spins, reflecting the model’s invariance under uniform phase rotations.
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2. A discrete local Zn symmetry: θi → θi+2πn, allowing phase shifts by integer multiples
of 2π at each site.

These symmetries are essential to the model’s phase behavior and play a defining role in the
BKT transition (to be seen later), influencing the formation and dynamics of topological defects
and the system’s response to thermal fluctuations.

At low temperature, the difference in phase between neighboring spins is very small, so
that we can rewrite the Hamiltonian (1.8) by expanding the cosine up to the second order in its
argument.

HXY =−J ∑
⟨i, j⟩

[
1− 1

2
(θi −θ j)

2 +O((θi −θ j)
4)

]
(1.9)

Using a continuum approximation for small fluctuations in θ , such that the quantities of the
order (θi −θ j)

4 are negligible, the Hamiltonian can be approximated as,

HXY ≈ J
2

∫
d2r (∇θ(r))2 =

J
2

∫ dq
(2π)2 q2|θq|2 (1.10)

where the scalar field θ(r) labels the angles of rotors at each point in the plane, ∇θ(r) represents
the phase gradient, and θq denotes the Fourier component of θ at wavevector q. E0 =−2JN is
the energy of the system when all N rotors are aligned. This expression captures the energy
associated with phase fluctuations in the system.

We begin by examining the global U(1) symmetry. The minimum energy configuration
corresponds to a situation when all spins are aligned in a single direction, say θi = 0 for all
spins, effectively breaking the U(1) symmetry of the Hamiltonian. In such a fully aligned state,
the system would exhibit finite macroscopic magnetization. However, the Mermin-Wagner
theorem forbids spontaneous symmetry breaking of continuous symmetries in two-dimensional
systems at finite temperature.

At finite temperatures, the phase θi at each site fluctuates around its ground-state value due
to thermal effects. These phase fluctuations prevent the formation of macroscopic magnetization
in the thermodynamic limit. Specifically, in the low-temperature phase, the expectation value
of the magnetization, ⟨Si⟩, is given by:

⟨Si⟩= e−
T

4πJ ln( L
a ) =

(a
L

) T
4πJ L→∞−−−→ 0, (1.11)

where T is the temperature, L is the system’s linear size, and a is the lattice spacing between
neighboring spins. Thus, as L grows, the expectation value of the magnetization vanishes,
preventing true long-range order in the thermodynamic limit (see [64] for further details). It
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is worth noting, however, that real systems sometimes do not reach the thermodynamic limit
and may display finite magnetization at low temperatures. In other words, the observation of
spontaneous symmetry breaking in a finite system does not imply a violation of the Mermin-
Wagner theorem, but rather that the system is sufficiently far from the thermodynamic limit.

While a conventional order parameter is absent (with ⟨Si⟩= 0 at any finite temperature),
the spin correlation function reveals a transition between low- and high-temperature phases.
The correlation function between two spins at sites i and j is defined as:

C(ri − r j) = ⟨Si ·S j⟩= ⟨cos(θi −θ j)⟩. (1.12)

At low temperatures (βJ ≪ 1), using the approximated Gaussian Hamiltonian 1.10, the spin
correlation function is given by

C(r) =
〈

ei(θ(r)−θ(0))
〉
= e−

1
2 ⟨(θ(r)−θ(0))2⟩ = e−

T
2πJ ln(r/a) =

(a
r

) T
2πJ

. (1.13)

This result shows that the correlation function decays algebraically with distance r, a hall-
mark of quasi-long-range order in the low-temperature phase. However, for high-temperature
regime (βJ ≫ 1), one cannot make the assumption of small fluctuations in neighboring spins,
and therefore spin correlation function has to be estimated using the full cosine structure of
Hamiltonian 1.8. The correlation function estimated in this manner (see [65] for detailed
calculations) is given by

C(ri − r j)≃ e−|r1−r2|/ξ , ξ = ln
2T
J
. (1.14)

Thus, at high temperatures, the correlation function decays exponentially, with a correlation
length ξ that depends on temperature.

For reference, we consider the results from standard Landau theory for a second-order
phase transition. Below the critical temperature Tc, the correlation function is given by:

C(r)≈ m2 +Be−r/ξ−, T < Tc, (1.15)

where m = ⟨S⟩ is the average order parameter. Above Tc, the correlation function takes the
form:

C(r)≈ Ae−r/ξ+, T > Tc. (1.16)
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Here, the correlation lengths ξ+ and ξ− diverge as T approaches Tc:

ξ±(T )∼
1

|T −Tc|ν
, T → Tc, (1.17)

with ν = 1/2 in mean-field theory. Thus, in the disordered phase, the correlation function
decays to zero, while in the ordered phase, it decays to the square of the order parameter, m2.

In contrast, the results obtained for the XY model show significant differences. At high
temperatures, we observe an exponential decay to zero, as in Eq. 1.14, but the correlation length
does not diverge at any finite temperature. In the low-temperature regime, Eq. 1.13 shows
that the correlation function decays algebraically with a power law rather than exponentially,
suggesting ξ → ∞ in the ordered state. This behavior aligns with the Mermin-Wagner theorem,
as there is no finite-temperature order parameter. The sharp difference in correlation behavior
between low and high temperatures thus signifies a phase transition, marked not by a non-zero
order parameter, but by a shift in the scaling behavior of the correlation functions. At low
temperatures, spin fluctuations (spin waves) display finite phase stiffness, reflected in the
coefficient of the (∇θ)2 term in Eq. 1.10. This rigidity against phase fluctuations leads to the
power-law decay of correlations in 1.13. Conversely, at high temperatures, the Hamiltonian’s
full cosine interaction recovers an exponential decay (1.14), and phase rigidity is lost. To fully
understand this transition the role of vortices must be examined.

While going from original Hamiltonian 1.8 to approximated one 1.10, we have lost discrete
local Zn symmetry,

θi → θi +2πn (1.18)

where n ∈ Z, of the original XY model.
The presence of this discrete symmetry introduces a new type of phase excitations that are

topological in nature and cannot be smoothly connected to the unperturbed ground state [64].
These excitations, known as vortices, are characterized by a phase winding of ±2π around their
center: ∮

∇θ ·dℓ= 2πn. (1.19)

The existence of a vortex invalidates the assumption of smooth phase variations between
neighboring sites. As such, vortices are likely candidates responsible for driving the phase
transition in the system. A critical question, then, is the energy required to introduce a vortex,
as this determines the temperature scale at which vortex proliferation—and consequently, the
phase transition—occurs. To estimate the energy cost of introducing vortices, we consider
configurations θ(r) that include both smooth solutions θSW, representing longitudinal spin
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waves, and singular solutions θV (representing vortices), where the phase is allowed to be
discontinuous at a point r0.

These solutions are obtained by applying a variational principle to the Hamiltonian 1.10,
leading to the general equation δH = 0. This variational equation yields:

∇
2
θSW(r) = 0, (1.20)

for smooth spin waves throughout space, while vortices satisfy:

∇
2
θV(r) = 2πqδ (r− r0), (1.21)

where q ∈ Z is the vorticity of the topological excitation at r0. For a vortex with q = 1, the
solution in 2D is:

θV = arctan
y− y0

x− x0
. (1.22)

The energy associated with a vortex is then calculated by inserting this solution into the
Hamiltonian 1.10, giving:

E = πJ ln
L
a
, (1.23)

where a is the lattice spacing, and L is the system size. This logarithmic divergence with L shows
that single vortices are energetically costly, disfavoring their existence in the thermodynamic
limit at low temperatures.

However, at finite temperatures, we must also consider the entropy gain associated with
forming vortices. The number of possible independent vortex locations scales as (L/a)2,
leading to an entropy contribution:

S = 2ln
L
a
. (1.24)

The free energy F of a vortex configuration combines the energy and entropy contributions:

F = E −T S = πJ ln
L
a
−2T ln

L
a
= (πJ−2T ) ln

L
a
. (1.25)

This expression shows that at temperatures T > TBKT = πJ/2, the entropy gain from creating
vortices outweighs the energy cost, making vortex proliferation favorable and leading to a
phase transition. The estimate of the transition temperature assumed a single, infinitely large
vortex; however, in reality, the situation is more complex, with multiple vortex excitations
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typically occurring at shorter scales. For instance, if a vortex is located at r+ and an antivortex
with opposite vorticity at r−, then at distances greater than |r+− r−|, the phase configuration
of the system remains essentially unaffected. This leads to a natural cutoff of the logarithmic
divergence of the integral at a scale on the order of |r+− r−|. This cutoff implies that such
vortex “pairs” are energetically viable even below Tc and can alter the effective large-distance
coupling J that determines the transition temperature.

1.4.2 Mapping of 2D XY model to 2D coulomb gas and 1D sine-Gordon
model

To fully capture the transition dynamics, it’s crucial to account for vortex interactions, as
Kosterlitz did in [66]. The Hamiltonian governing these vortex interactions is equivalent to
that of a two-dimensional Coulomb gas [65]. In this analogy, each vortex in the 2D XY model
represents a “charge,” where a vortex and an antivortex (with opposite phase winding) act as
positive and negative charges, respectively. The interaction energy between two vortices at
positions ri and r j, with vorticities qi and q j (where q =±1), is analogous to the 2D Coulomb
interaction:

Ei j =−πJqiq j ln
|ri − r j|

a
. (1.26)

For a system with multiple vortices, the total energy of a system of vortices is given by

H =−πJ ∑
i̸= j

qiq j ln
(
|⃗ri − r⃗ j|

a

)
+µ ∑

i
|qi|, (1.27)

where µ = π2J/2 is the vortex-core energy. Here, the first term describes interaction between
vortices, and second term stands for sum of core energies. In this Coulomb gas model, vortices
interact logarithmically, with the system obeying a global charge neutrality condition

∑
i

qi = 0, (1.28)

indicating that vortices and antivortices appear in equal numbers, forming bound pairs below
the transition temperature. This pairing underlies the phase behavior characteristic of the
low-temperature phase in the BKT transition. Below TBKT, vortices and antivortices form
tightly bound pairs, corresponding to a low-temperature “dielectric” phase where the system
shows quasi-long-range order with algebraically decaying correlations. Above TBKT, unbound
vortices appear, leading to a “metallic” phase in the Coulomb gas analogy, where charges are
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free to move and screen each other. This screening behavior disrupts the quasi-long-range order
and results in an exponential decay of correlations.

Using the neutrality condition, the partition function for the vortex system can be derived
(see [64, 67] for details). For a system consisting of N vortex-antivortex pairs, the partition
function takes the form:

Z =
∞

∑
N=1

1
(N!)2 yN

0

∫
D⃗r exp

[
βπJ ∑

i̸= j
qiq j ln

(
|⃗ri − r⃗ j|

a

)]
(1.29)

where y0 = e−β µ is the fugacity associated with the vortex core energy µ .
This vortex system can be equivalently mapped to the sine-Gordon model, a quantum field

theory where vortex and spin-wave excitations are represented as cosine potentials. For a 1D
chain of length L, the sine-Gordon Hamiltonian is given by:

HSG =
vs

2π

∫ L

0
dx
(

K(∂xθ)2 +
1
K
(∂xφ)2 − 2g

a2 cos(2φ)

)
(1.30)

where θ and ∂xφ are canonically conjugated variables satisfying [θ(x′),∂xφ(x)] = iπδ (x′−
x). Here, K is the Luttinger liquid (LL) parameter, vs the velocity of 1D fermions, and g defines
the strength of the sine-Gordon potential [68]. In this formulation, the role of the spin angle or
phase is played by the field θ .

The partition function for φ assumes a similar form to Equation 1.29. Upon integrating
over θ , the partition function for φ can be written as:

Z =
∫

Dφe−W
∞

∑
l=0

1
n!

∫
d⃗r1 · · · d⃗rn

( g
2π

)n
cos(2φ (⃗r1)) · · ·cos(2φ (⃗rn)) (1.31)

where

W =
K
2π

∫
dx(∂xθ)2 (1.32)

By decomposing cosines into exponential functions,

cos(2φ (⃗ri)) =
e2iφ (⃗ri)+ e−2iφ (⃗ri)

2
= ∑

ε=±1

e2iεφ (⃗ri)

2
(1.33)

and evaluating the partition function, we observe that it essentially involves averaging over
exponential functions with Gaussian weights:
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〈
exp

(
2i∑

i
εiφ (⃗ri)

)〉
= exp

[
2K ∑

i< j
εiε j ln

(ri j

a

)]
(1.34)

The resulting partition function, with appropriate modifications of dummy variables, is
expressed as:

Z =
∞

∑
N=1

1
(N!)2

( g
2π

)N ∫
D⃗r exp

[
2K ∑

i< j
ln
(
|⃗ri − r⃗ j|

a

)]
(1.35)

By comparing equations 1.29 and 1.35, it becomes clear that the partition function of the
sine-Gordon model shares the same structural form as the partition function of an interacting
system of vortices, or equivalently, a 2D Coulomb gas, with the following parameter mappings:

K =
πJ
T

and g = 2πe−β µ . (1.36)

However, while the equations are formally equivalent, they describe distinct physical
systems. In the one-dimensional case, we consider a quantum phase transition in 1 + 1
dimensions, reflecting how the properties of a one-dimensional Luttinger liquid are modified
by the interaction term controlled by g. Generally, as g increases, the φ field becomes confined
within one of the minima of the cos(φ) term, resulting in a “massive” field. Consequently,
the correlation function of the Luttinger liquid loses the characteristic power-law decay of the
“massless” phase, leading the system to transition into an ordered state, potentially exhibiting
spin or charge order.

This mapping highlights an important insight: in the XY model, the vortex core energy µ is
fundamentally linked to the interaction coupling constant J. After mapping to the sine-Gordon
model, however, the core energy is governed by the strength g of the sine-Gordon potential,
which can now be treated as a tunable parameter to fit the vortex core energy.

1.5 Long-range interactions

Long-range interacting systems refer to systems in which the interaction strength decays slowly
with distance, often following a power-law 1/rα , where r is the distance between microscopic
elements and decay exponent α is small enough. Unlike short-range interactions, where
effects are localized, long-range interactions influence the system globally, leading to collective
behavior and complex, nontrivial dynamics. For the purpose of our study, we will use the
classification of long-range systems based on decay exponent α proposed by [9].
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1.5 Long-range interactions

For classical systems in d spatial dimensions, a key distinction arises depending on whether
α < d or α > d. To understand the distinction between these two regimes, we calculate the
interaction energy ε of a particle placed at the centre of a d-dimensional sphere of radius R,
interacting through a long-range interaction potential V (r) ∝ J /rα , where α determines the
decay rate and J is the coupling constant. Assuming a homogeneous particle distribution and
excluding particles within a small radius δ around the center, the interaction energy is given by,

ε =
ρ J Ωd

d −α

(
Rd−α −δ

d−α

)
, (1.37)

where ρ is the density (such as charge, particle, or mass density), Ωd is the d-dimensional
solid angle, and α ̸= d to avoid divergence. When the sphere radius R is allowed to grow, the
energy ε remains finite if α > d. In this regime, the total energy E =V ε scales linearly with
the volume size V ∝ Rd , meaning the system is extensive. However, if the potential decays
too slowly (i.e., α < d), the total energy grows superlinearly with the volume at constant
density, violating extensivity. Specifically, for α < d, the energy ε diverges with the volume
according to V 1−α/d , and the system loses the property of additive energy [69]. Physically,
this implies that when two identical copies of the system are placed adjacent to each other,
interface energy becomes significant, leading to a non-linear scaling of energy with volume V

[70]. This scenario corresponds to the strong long-range regime, where conventional definitions
of internal energy become non-extensive, and traditional thermodynamics fail to apply. Such
properties characterize a broad class of physical systems, including gravitational and plasma
models [9]. Furthermore, the behavior of strong long-range systems extends to mesoscopic
systems, where the interaction range, even if finite, is comparable to the system size, deviating
from the thermodynamic limit.

While it is evident that long-range interactions significantly influence the physics of the
system in the strong long-range regime, they can also affect the system’s behavior for α > d,
though in a less pronounced manner. A key result for classical systems with power-law
interactions [71] is that if α exceeds the critical threshold value α∗, then the critical behaviour
becomes indistinguishable from that of a short-range model. The exact value of α∗ depends on
the specific system and the nature of phase transition under consideration. In the intermediate
range when d < α < α∗, the energy is extensive yet long-range nature of the couplings affects
the long-distance properties of the system. This intermediate region, known as the weak

long-range regime, is the focus of our analysis, where we explore this regime in the extended
Bose-Hubbard model with power-law hopping in 1D (see Chapters 3 and 4).
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Beyond the question of extensivity, a fundamental distinction between the strong and
weak long-range regimes appears in their dynamical properties. Specifically, for α < d, the
thermalization timescale diverges with the system size N. Systems governed by gravitational
interactions [72–74] , for example, are known to become trapped in non-thermal quasi-stationary
states, with lifetimes that increase with the number of particles, as seen in the Chandrasekhar
relaxation timescale for stellar systems, which scales as N/ lnN [75]. In contrast, while
thermalization in the weak long-range regime resembles that of short-range systems, the non-
local nature of interactions influences information propagation [76–78, 2], can lead to breaking
of conformal symmetry [79, 80], breakdown of the MerminWagner theorem [33], and the
emergence of new topological phases and phase transitions [79, 81, 82].

Symmetry is fundamental in physics, shaping system behavior across scales. Symmetries
that are present at a system’s microscopic level can undergo spontaneous breaking at lower
temperatures, giving rise to phases like crystals and magnets [83]. Sometimes, however, new
symmetries emerge at low energies—known as emergent symmetry—even if absent at the
microscopic level, as seen in materials like Li0.9Mo6O17 [84]. At critical points in classical
short-range models in two and three dimensions, scale invariance is often enhanced to a broader
conformal symmetry (CS). This expanded symmetry includes not only scale invariance but also
translations, rotations, and special conformal transformations that combine translations with
spatial inversions [85, 86]. In 2D systems, CS allows exact solutions and predictions due to
its infinite-dimensional nature [87], although it becomes finite-dimensional (SO(d +1,1)) in
higher dimensions, limiting analytical methods [88, 89]. Nevertheless, numerical studies in both
two and three dimensions provide strong evidence for CS in short-range models, underscoring
its role in describing universal features at critical points across dimensions [90–92]. In long-
range models, a key question is whether their critical points exhibit conformal symmetry (CS)
and how the interaction range influences this symmetry. As α → ∞, short-range models and
their CS at criticality are recovered, so the key issue is to identify the values of α up to which
CS persists. This is linked to a related question of identifying upper limit of α (α∗ = d+σ∗) at
which critical exponents of short-range reappear [69, 71]. For instance, classical spin systems
with long-range couplings exhibit the same critical exponents as short-range models for σ > σ∗,
while for d/2 < σ ≤ σ∗ distinct long-range exponents appear [69, 71]. Studies on the Kitaev
chain with long-range pairings suggest that for α > 2, CS remains intact, but for α < 2, long-
range interactions break CS, altering correlation behavior while preserving short-range critical
exponents [80]. Exploring how long-range interactions influence CS and critical exponents
remains an active research area [9].
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In quantum mechanics, information propagation is fundamentally constrained by the Lieb-
Robinson bound. This bound limits the speed at which information, correlations, and distur-
bances can propagate in systems with local interactions, defining an effective "light cone"
where correlations decay exponentially outside the causal region [93–95]. However, in systems
with long-range interactions, the picture is substantially altered since the traditional definition
of group velocity does not apply, enabling correlations, information or entanglement to spread
faster than the Lieb-Robinson bound predicts, often violating locality [78]. Experiments with
trapped-ion quantum simulators have demonstrated violations of the local Lieb-Robinson bound
for 0.6 ≲ α ≲ 1.2 [3, 2]. For example, Jurcevic et al. [3] observed accelerated correlation
spread in a 15-ion chain under a long-range XY Hamiltonian, while Richerme et al. [2] noted
propagation velocities exceeding the Lieb-Robinson limit in systems with long-range Ising and
XY interactions. This faster propagation is due to direct coupling between distant particles,
which can enable rapid information transfer and efficient quantum state preparation [9]. Most
of our current understanding of correlations and entanglement in presence of long-range inter-
actions has been based on insights on prototypical systems [76, 96, 77, 97, 98]. This research
has produced a general qualitative framework for understanding propagation in long-range
systems, which applies across a variety of models, observables, and interaction decay rates α :

1. High α (α ≫ 3): The system behaves similarly to a short-range system, with correlations
confined within a light cone where they spread linearly over time.

2. Intermediate α : Correlations still exhibit light-cone-like behavior at shorter distances, but
propagate faster over larger distances, distorting the light cone. This regime highlights
the crossover between purely local and strongly long-range behavior.

3. Low α : The light cone concept breaks down entirely, allowing correlations to propagate
faster than any defined group velocity.

Extending the Lieb-Robinson theorem to systems with power-law interactions poses significant
challenges [99]. Hastings and Koma generalized the bound for long-range systems, but it fails
to capture propagation dynamics accurately for large α [100]. Further refinements, like those
proposed by Gong et al. [101], aim to tighten these bounds across different α values, though
achieving a universally applicable bound remains an open area of research [102–104, 9].

1.6 Outline of the results

The central aim of this thesis is to investigate the ground state properties of strongly correlated
bosonic systems with power-law decaying long-range hopping interactions.
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In Chapter 2, the working principles of the quantum Monte Carlo (QMC) methods are
presented. First, we outline the fundamental concepts of classical Monte Carlo methods in
Section 2.1. We then discuss the quantum Path Integral Monte Carlo (PIMC) method and the
associated worm algorithm for lattice systems in Section 2.2. This modern approach offers an
efficient way to obtain exact numerical results for many-body systems without approximations,
with the only limitation being statistical uncertainties, which can be minimized given sufficient
computation time.

In Chapter 3, I investigate the disorder-induced quantum phase transition between superfluid
and insulating states of one-dimensional (1D) bosonic particles. Specifically, I explore hard-
core bosons with a hopping interaction that decays with distance as 1/rα , resembling an XY
model with power-law couplings. Traditionally, such transitions in one-dimensional systems
are expected to follow the Berezinskii-Kosterlitz-Thouless (BKT) tranistion, but my study
reveals a non-BKT continuous phase transition for α ≤ 3. Using large-scale Quantum Monte
Carlo simulations, I demonstrate that for α ≤ 3, the superfluid-to-insulator transition shows
scale-invariant behavior—a characteristic of continuous phase transitions in higher dimensions
rather than the expected BKT scenario. I determined the phase diagram for different values of
the exponent α , and found that the disorder strength required to disrupt superfluidity decreases
with increasing α reaching zero for α > 3, indicating that the superfluid phase becomes unstable
under infinitesimal disorder in the short-range hopping limit.

In Chapter 4, I focus on understanding the interaction-induced phase transition behavior
of a one-dimensional Bose-Hubbard model with power-law hopping interactions. By tuning
the decay exponent, α , and the ratio t/U (where t represents the hopping amplitude and U the
on-site repulsion), I aim to explore the nature of the quantum phase transition when moving
from a superfluid to a Mott insulator phase at a fixed density. For 1 < α ≤ 3, the interaction-
driven quantum phase transition from superfluid to Mott insulator at unit filling emerges as
continuous and scale-invariant, deviating from the BKT framework, which applies only when
α > 3 — mirroring the disorder-induced transition findings of Chapter 3. Using large scale
Quantum Monte Carlo simulations, I examined both the phase boundaries and the critical
exponents that characterize the transition. Specifically, I study the effects of different α values
on the behavior of the single-particle density matrix G(ℓ) which helps in understanding the
presence of long-range or quasi-long-range order in the superfluid phase. My analysis reveals
that for α ≤ 2, G(ℓ) exhibits a plateau at large distances, consistent with long-range order. This
is further reflected in the condensate fraction, which attains a constant value, confirming the
presence of long-range coherence. However, for α > 2, G(ℓ) decays as a power law, aligning
with quasi-long-range order, showing that the system’s coherence properties are sensitive to the
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1.6 Outline of the results

interaction range. For 2 < α ≤ 3, the system behaves in a way that bridges one-dimensional and
higher-dimensional systems, displaying unique critical behavior and quasi-long-range order.
The phase diagram in the t/U − µ/U plane reveals that as α decreases, the Mott insulating
regions shrink, transitioning from pointed to more rounded lobes, indicating a dimensional
crossover.

Overall, this research provides a foundation for experimental studies on systems like cold
atoms, trapped ions, and Rydberg atoms, where power-law interactions can be engineered.
It contributes a new benchmark in understanding one-dimensional systems with long-range
interactions, particularly how dimensionality and long-range hopping impact quantum phase
transitions.
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Chapter 2

Quantum Monte Carlo Methods

Quantum Monte Carlo (QMC) methods are a natural extension of classical Monte Carlo
techniques, adapted to solve quantum mechanical problems. The key distinction lies in the
preliminary effort required to convert quantum degrees of freedom into a form that can be
sampled classically, often through techniques like path integrals [105] or auxillary fields [106].
This transformation encapsulates the quantum nature of the system, manifesting not only in
explicit features like the non-commutativity of quantum operators and the symmetrization or
antisymmetrization of the wavefunction but also in more subtle aspects such as the emergence
of the sign problem [107]. This chapter provides a concise overview of the numerical techniques
employed to derive the results presented in Chapters 3 and 4. We will outline the fundamental
concepts of classical Monte Carlo methods in Section 2.1, which serve as the foundation
for our discussion. In Section 2.2, we begin with an introduction to the Path Integral Monte
Carlo (PIMC) method for quantum statistical physics. Following this, we delve into the Worm
Algorithm, an advanced PIMC update technique renowned for its numerical exactness in
simulating bosonic lattice systems.

2.1 Monte Carlo methods

Monte Carlo methods are a class of computational algorithms that rely on random sam-

pling to obtain numerical results. They are particularly useful for problems with vast phase
spaces, where deterministic approaches are either impractical or impossible—such as in high-
dimensional integrals. The core idea is straightforward: by randomly sampling points within a
d-dimensional volume, we can estimate an integral at the price of statistical error. However, the
challenge lies in selecting these random samples strategically to minimize computational cost.
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(a) (b)

Fig. 2.1 Illustration of Monte Carlo integration to estimate the unknown area of a pond enclosed
by a rectangle of known area A. (a) Direct sampling — random points are uniformly scattered
across the entire rectangle.(b) Markov chain Monte Carlo sampling — a chain of correlated
samples gradually explores the pond’s area, with each new point dependent on the previous
one. The crossed-out point indicates an invalid step that was rejected.

To illustrate the sampling process, imagine you’re standing in a large field, trying to
determine how much of it is covered by a pond [108]. After enclosing the pond with a rectangle
of known area, one approach would be to randomly throw pebbles across the enclosed area
and observe how many land in the pond. The ratio of pebbles that land in the pond to the total
number of throws gives and estimate of the pond’s area. This technique is illustrated in figure
2.1(a) and is known as direct sampling in Monte Carlo methods—simple, unbiased, and based
purely on chance. Importantly, each pebble’s position is independent of the others r, and the
more pebbles you throw, the more accurate your estimate becomes.

If, however, the pond is very large, randomly throwing pebbles from a fixed position
becomes impossible. To explore the area more effectively, a targeted strategy like Markov
Chain Monte Carlo (MCMC) is necessary. Instead of randomly scattering pebbles across the
entire field, you start at a random position and throw a pebble in a random direction. After
each throw, you walk to the new location and repeat the process. If a pebble lands outside the
rectangular boundary, you reject the move and stay in the same spot, ensuring that the principle
of detailed balance (discussed later) is maintained, making the Markov chain reversible. Over
time, the pebbles will spread across the rectangular area, with clusters near the boundaries
where moves were rejected. This technique is illustrated in figure 2.1(b) and reflects the
logic of MCMC—a step-by-step, guided exploration where each new position is based on
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2.1 Monte Carlo methods

the previous one. By focusing on areas of interest, such as the pond, this method enhances
sampling efficiency, particularly in complex or high-dimensional spaces.

In a similar manner, random sampling of a function can be carried out to compute an
estimate of its integral. To illustrate the Monte Carlo approach to numerical integration, let us
try to integrate the one-dimensional function f (x) from a to b :

F =
∫ b

a
f (x)dx. (2.1)

The basic idea behind Monte Carlo integration is to estimate the integral by averaging the
function’s values over a set of random points uniformly distributed over the integration range.
To do this, we generate N random samples (x1,x2, . . . ,xN) uniformly in the interval [a,b]. The
Monte Carlo estimator for computing F using N samples is given by

FN =
b−a

N

N

∑
i=1

f (xi). (2.2)

Here, (b−a)/N represents the width of each subinterval if the samples were evenly spaced, but
since we are using random points, this factor scales the average value of the function over the
sampled points. As N increases, the estimate becomes more accurate due to the Law of Large

Numbers, and for sufficiently large N , the Monte Carlo estimator converges to the true value
of the integral, i.e., limN→∞ FN = F. We could have easily computed this integral by standard
integration methods like trapezoidal or Simpson’s rule which converge much faster in one
dimension. However, these standard methods suffer from the curse of dimensionality where
the convergence rate becomes exponentially worse with increased dimensions and error scales
as ∼ N−κ/d [108], where N represents the number of subdivisions of the integration interval,
d is the dimensionality of the integral, and κ is a method-specific constant. In contrast, the
error in the Monte Carlo estimator decreases as FN ∝ 1/

√
N, independent of the dimensionality.

This scaling makes Monte Carlo methods exceptionally useful for estimating integrals in
high-dimensional spaces, where traditional methods become computationally prohibitive.

The general problem these methods aim to solve is determining the expectation value of
an operator A(x) over a probability distribution π(x). To estimate the expectation value of an
operator A with respect to a probability distribution π(x), where x is an n-dimensional vector,
i.e., x ∈ Rn, we start by defining the expectation value. The expectation value of an operator A

with respect to π(x) is given by

⟨A⟩=
∫

A(x)π(x)dx. (2.3)
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In the Monte Carlo approach, we approximate this integral by drawing N samples xi from the
distribution π(x). The expectation value ⟨A⟩ can then be estimated as

⟨A⟩ ≈ 1
N

N

∑
i=1

A(xi), (2.4)

where xi are independent random samples drawn from π(x).
The Monte Carlo estimate of ⟨A⟩ has a statistical error that decreases as the number of

samples N increases. The standard error of the mean for the Monte Carlo estimate is

σ⟨A⟩ ≈
σA√

N
, (2.5)

where σA is the standard deviation of A(x) under the distribution π(x):

σA =
√

⟨A2⟩−⟨A⟩2 =

√∫
A(x)2π(x)dx−

(∫
A(x)π(x)dx

)2

. (2.6)

As N → ∞, the Monte Carlo estimate converges to the true expectation value ⟨A⟩ due to the law
of large numbers:

lim
N→∞

1
N

N

∑
i=1

A(xi) = ⟨A⟩. (2.7)

In summary, by generating samples from π(x) and evaluating A(x) at these sampled points,
we can estimate ⟨A⟩ efficiently, with a statistical error that decreases with

√
N. This approach

is particularly useful when direct integration is infeasible.
The key distinction between direct sampling and Markov Chain Monte Carlo (MCMC)

methods lies in how the set of samples {xi} is generated. In direct sampling, samples are drawn
independently from the probability distribution π(x), ensuring that each sample directly reflects
the target distribution. In contrast, MCMC methods create a Markov chain that generates
samples in a way such that the distribution π(x) serves as the chain’s equilibrium distribution,
meaning that, as the chain progresses, the distribution of the generated samples converges to
π(x).

To understand MCMC further, we start by defining a Markov chain on a discrete set of
states S as a sequence X1,X2,X3, · · · ∈ S, where each transition Xt → Xt+1 is independent of
prior transitions except the immediate preceding state. This property is called the Markov

property, where the state Xt+1 depends only on Xt and not on any earlier states. Mathematically,
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this property is expressed as

P(Xt+1 = x|X1,X2, . . . ,Xt) = P(Xt+1 = x|Xt). (2.8)

The transition probabilities of the chain are encoded in a transition matrix T , where each
element Tµν = P(µ → ν) = P(Xt+1 = ν |Xt = µ) represents the probability of moving from
state µ to state ν in a single step. For a valid Markov process, these transition probabilities
must be time-invariant, depend only on the current states µ and ν and satisfy the constraint

∑
ν

Tµν = 1 (2.9)

for each state µ .
For a Markov chain to have π as its equilibrium distribution it must meet the following

conditions:

1. Ergodicity: From any starting state, it should be possible to reach any other state within
a finite number of steps. This ensures the chain doesn’t get “stuck” in one part of the
state space and can explore the entire set of possible states.

2. Balance: The distribution π should be stable, meaning the flow of probability into each
state balances the flow out of that state. This is called the “balance” condition and is
expressed as:

∑
ν

pµP(µ → ν) = ∑
ν

pνP(ν → µ). (2.10)

where pµ ≡ π(µ) is the probability of state µ , and P(µ → ν) ≡ Tµν is the one-step
transition probability from µ to ν . Simplifying using the sum rule, Eq. 2.9, we get

pµ = ∑
ν

pνP(ν → µ) (2.11)

for each state µ .

Sometimes, instead of balance, a stricter condition called “Detailed Balance” is used:

3. Detailed Balance: This condition requires that the probability flow from µ to ν is exactly
matched by the flow from ν to µ . This means:

pµP(µ → ν) = pνP(ν → µ) (2.12)
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for all pairs of states µ and ν . Detailed balance ensures equilibrium by making sure
there’s no net flow between any two states.

If a Markov chain meets these conditions, it will converge to π over time. In MCMC, we
design a Markov chain with transition probabilities so that the distribution converges to π .
After running the chain for a certain number of steps (the *burn-in* period), the generated
samples can be considered as draws from π(x). This allows us to sample from π even if we
don’t know it explicitly.

A common method for constructing such a Markov chain is the *Metropolis-Hastings
algorithm* [109, 110], where we generate a candidate state x′ from a proposal distribution
q(x′|xt) based on the current state xt . The candidate state is then accepted with a probability α

defined by

α = min
(

1,
π(x′)q(xt |x′)
π(xt)q(x′|xt)

)
. (2.13)

If the candidate is accepted, xt+1 = x′; otherwise, the chain remains at xt*, so* xt+1 = xt .
This accept-reject mechanism ensures that the chain will eventually produce samples distributed
according to π(x), even if direct sampling is not possible.

MCMC methods are widely used in statistical physics, where the goal is to compute
expectation values of physical observables, such as energy, magnetization, specific heat, and
other measurable quantities. These expectation values are derived from the partition function,
which encapsulates the statistical properties of a system. For a system with Hamiltonian H, the
partition function Z in the canonical ensemble (where the temperature T is fixed) is given by

Z = Tr[e−βH ], (2.14)

where β = 1
kBT is the inverse temperature, and kB is the Boltzmann constant.

To compute the thermal average (or expectation value) of an observable O, we use the
following formula:

⟨O⟩= 1
Z ∑

states
Oie−βEi, (2.15)

where Ei is the energy of state i, and the sum is taken over all possible states of the system.
The factor e−βEi is the Boltzmann weight, which assigns a higher probability to lower-energy
states at a given temperature. The partition function Z acts as a normalizing factor, ensuring
that the sum of probabilities over all states is 1. This formalism allows us to calculate physical
observables by averaging them across all possible states, each weighted by its Boltzmann factor
e−βEi .
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In practice, direct evaluation of this sum is often infeasible for large systems due to the
exponential growth of possible states. MCMC methods address this by generating a representa-
tive sample of states according to their Boltzmann weights, enabling efficient computation of
thermal averages without summing over every state explicitly.

In the next section, we introduce the Path Integral Monte Carlo (PIMC) approach, which
extends MCMC methods to quantum statistical physics. We then explore the Worm Algorithm,
an advanced PIMC update technique that enables efficient sampling of states and highly
accurate calculation of off-diagonal observables, such as Green’s functions.

2.2 Path Integral Monte Carlo methods

Path Integral Monte Carlo (PIMC) methods represent a specialized class of quantum Monte
Carlo (QMC) algorithms that utilize a worldline graphical representation to compute the
partition function Z. These methods rely on the imaginary time path integral formalism, a
powerful framework for quantum statistical calculations. This formalism is especially useful
in finite-temperature quantum systems, as it allows for a systematic treatment of quantum
fluctuations and thermal effects by mapping the quantum system onto a classical system in an
additional imaginary time dimension.

Consider a Hamiltonian H with exact eigenvalues Ei and eigenfunctions ψi. In thermal
equilibrium, the probability of a given state i being occupied is e−Ei/kBT , where β = 1

kBT repre-
sents the inverse temperature (with kB being the Boltzmann constant and T the temperature).
Using this formalism, the thermodynamic expectation value of an observable O for a general
quantum system is given by:

⟨O⟩= Z−1
∑

i
⟨ψi|O|ψi⟩e−βEi =

Tr
(

Oe−βH
)

Z
, (2.16)

where ρ = e−βH is the statistical operator, and Z is the partition function, defined as Z =

Tr
(

e−βH
)
. The partition function Z serves as a normalization factor and encapsulates the

statistical properties of the system at thermal equilibrium. To facilitate numerical calculations,
the Hamiltonian H is often decomposed into two parts:

H = H0 +V (2.17)
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where H0 is diagonal in the computational basis, while V being off-diagonal induces transitions
between different basis states. The computational basis is specifically the Fock basis, defined
by the set of occupation numbers for each lattice site, {|n1, . . . ,nNsites⟩}, where Nsites denotes
the total number of sites, and n j ∈ Z≥0 = {0,1,2, . . .} represents any non-negative integer. The
diagonal part H0 typically includes contributions from terms like the chemical potential and
the potential energy, which do not induce state transitions. In contrast, V involves hopping or
interaction terms that enable particles to move between different states or lattice sites, thus
altering the basis state.

In this formalism, the statistical operator ρ = e−βH can be related to the Matsubara evolution
operator σ in the interaction picture. Specifically, we can write:

ρ = e−βH = e−βH0σ , (2.18)

where σ is given by the series expansion:

σ = 1−
∫

β

0
dτ V (τ)+ · · ·+(−1)m

∫
β

0
dτm · · ·

∫
τ2

0
dτ1V (τm) · · ·V (τ1)+ · · ·

=
∞

∑
m=0

(−1)m
∫

0<τ1<···<τm<β

dτm · · ·dτ1V (τm) · · ·V (τ1)
(2.19)

where V (τ) = eτH0Ve−τH0 is the interaction potential in imaginary time τ . By introducing
complete sets of states I = ∑ψ |ψ⟩⟨ψ| between each non-diagonal operator, we can expand the
partition function Z as follows,

Z(β ) = Trρ

=
∞

∑
m=0

(−1)m
∫

0<τ1<···<τm<β

dτm · · ·dτ1 ⟨ψ0|e−βH0V (τm)|ψm−1⟩

×⟨ψm−1|V (τm−1)|ψm−2⟩ · · · ⟨ψ1|V (τ1)|ψ0⟩

(2.20)

This expansion provides a systematic way to express partition function Z as a series of integrals
over imaginary time. Using the notation Ek for the eigen values of H0 in the eigenstate |ψk⟩,
such that Ek = ⟨ψk|H0|ψk⟩, each matrix element in above equation becomes

⟨ψk|V (τ)|ψl⟩= ⟨ψk|eτH0Ve−τH0|ψl⟩= eτEk⟨ψk|V |ψl⟩e−τEl (2.21)

36



2.2 Path Integral Monte Carlo methods

With this we can rewrite the partition function as

Z(β ) =
∞

∑
m=0

(−1)m
∫

0<τ1<···<τm<β

dτm · · ·dτ1 e−(β+τ1−τm)E0⟨ψ0|V |ψm−1⟩

× e−(τm−τm−1)Em−1⟨ψm−1|V |ψm−2⟩ · · ·e−(τ2−τ1)E1⟨ψ1|V |ψ0⟩
(2.22)
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Fig. 2.2 A worldline representation of a term in the partition function from Eq. (1), illustrating
state evolution across lattice sites in imaginary time. The horizontal axis spans imaginary time
from 0 to β , with discrete time points τ1 through τ4 marking instances of state transitions. The
vertical axis represents different lattice sites. The system begins in state |ψ0⟩ at imaginary
time τ = 0, evolves to |ψ3⟩ at time τ3, and subsequently returns to |ψ0⟩. Bold horizontal lines
indicate imaginary time evolution of states, while vertical jumps signify transitions between
states. Off-diagonal Hamiltonian terms, such as ⟨ψ1|V |ψ0⟩, enable these transitions, while
exponential terms like e−(τ3−τ2)E2 describe imaginary-time evolution governed by diagonal
components of the Hamiltonian.

This expression allows us to visualize the partition function as a sum over configurations
of worldlines. In this context, the off-diagonal terms in the Hamiltonian (e.g., ⟨ψm|V |ψm−1⟩)
correspond to hopping of particles between different sites happening at times 0 < τ1 < · · ·<
τm < β . Meanwhile, the diagonal terms (e.g., e−(τm−τm−1)V Em−1 ) describe the evolution of
the system in imaginary time. Thus, each term in this expansion contributes to a particular
"worldline" configuration in imaginary time, where transitions between states are punctuated
by intervals of diagonal evolution. For instance, Figure 2.2 shows worldline representation of
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Worldline configuration with one winding

Fig. 2.3 Example of a worldline configuration with periodic boundary conditions, showing a
winding number W = 1. This winding is characterized by the particle path (boson depicted
as yellow dot) looping around the spatial boundary in imaginary time, starting and ending at
the same lattice site while maintaining periodicity in imaginary time. Horizontal segments
represent imaginary time evolution on the same lattice site, and vertical segments indicate
boson jumping between sites, illustrating how the worldline completes a loop through the
boundary conditions.

following term in the expansion of the partition function,

Z = · · ·+(−1)4
∫

0<τ1<···<τ4<β

dτ4 · · ·dτ1 e−(β+τ1−τ4)E0⟨ψ0|V |ψ3⟩

× e−(τ4−τ3)E3⟨ψ3|V |ψ2⟩

× e−(τ3−τ2)E2⟨ψ2|V |ψ1⟩

× e−(τ2−τ1)E1⟨ψ1|V |ψ0⟩+ · · ·

(2.23)

It illustrates state evolution across lattice sites in imaginary time from 0 to β . Each continuous
solid line in Figure 2.2 is referred to as worldline and represents the path a particle traces in
imaginery time. Transitions occur at points τ1 through τ4, with the system starting in |ψ0⟩,
moving to |ψ3⟩ at τ3, and returning to |ψ0⟩. Vertical lines represents jumps from one lattice
site to other driven by off-diagonal Hamiltonian terms like ⟨ψ1|V |ψ0⟩. Each horizontal bold
line represents imaginary time evolution driven by diagonal terms like e−(τ3−τ2)E2 .

38



2.2 Path Integral Monte Carlo methods

The total partition function is obtained by summing over all possible configurations of the
system, and is expressed as,

Z =∑
ψi

〈
ψi

∣∣∣e−βH0
∣∣∣ψi

〉
︸ ︷︷ ︸

weight

−∑
ψi

∑
ψi′

∫
β

0
dτ1

〈
ψi

∣∣∣e−(β−τ1)H0
∣∣∣ψi′

〉〈
ψi′
∣∣Ve−τ1H0

∣∣ψi
〉︸ ︷︷ ︸

weight

+∑
ψi

∑
ψi′

∑
ψi′′

· · ·

(2.24)

In this context, worldlines represent the paths that particles trace in imaginary time. Due to
the expansion in Equation 2.24, these worldlines are periodic in imaginary time, meaning
that a configuration starting in state |ψ0⟩ at τ = 0 must return to the same state at τ = β . For
systems with periodic boundary conditions, the worldlines are also periodic in the spatial
dimensions, allowing them to wrap around the spatial boundaries multiple times. As we will
demonstrate, the winding numbers—representing the number of times worldlines wind around
the system—are directly related to the estimator for superfluid density. An example of a
configuration with winding number W = 1 is shown in Fig. 2.3.

To streamline the notation, we define a configuration Cm of order m as a sequence of m states
{|ψ0⟩, |ψ2⟩, . . . , |ψm−1⟩} along with a corresponding set of times {τ1, . . . ,τm}. We associate
with each configuration a weight,

W (Cm) =W (ψ0, . . . ,ψm−1,τ1, . . . ,τm)

= e−(β+τ1−τm)E0⟨ψ0|V |ψm−1⟩

× e−(τm−τm−1)Em−1⟨ψm−1|V |ψm−2⟩

× · · · e−(τ2−τ1)E1⟨ψ1|V |ψ0⟩

(2.25)

This weight W (Cm) represents the contribution of each configuration to the partition function.
Consequently, the expansion of the partition function in Eq. 2.24 can be interpreted as a sum
over the weights of all possible configurations. The partition function Z can therefore be
expressed as,

Z(β ) =
∞

∑
m=0

∑
Cm

W (Cm). (2.26)
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The thermodynamic expectation value of an observable O can then be calculated as follows

⟨O⟩= 1
Z

Tr
(

Oe−βH
)
=

1
Z

∞

∑
m=0

∑
Cm

⟨O⟩CmW (Cm), (2.27)

where ⟨O⟩Cm denotes the imaginary-time average of the observable O for a given configuration
Cm.

Expectation values, as shown in Eq. 2.27, can be evaluated using Monte Carlo methods
by stochastically sampling configurations Cm from the distribution W (Cm)/Z. This is typically
achieved using various algorithms, with Markov Chain Monte Carlo (MCMC) sampling being
especially effective for generating the desired configurations. In the following, we will discuss
the worm algorithm, an MCMC based Path Integral Monte Carlo method which is numerically
exact1 for unfrustrated bosonic systems.

2.2.1 Worm Algorithm

The worm algorithm, first introduced by Prokof’ev, Svistunov, and Tupitsyn in [10], is a scheme
of performing updates of PIMC configurations. It is among the earliest Path Integral Monte
Carlo (PIMC) methods capable of efficiently calculating the imaginary time dependent Green’s
function in large systems. The algorithm accomplishes this by extending the configuration
space from the physical partition-function space Z to a Green’s function space G , introducing
a discontinuity within the worldlines. This enables the direct sampling of Green’s functions
alongside the partition function.

The Green’s function in the expanded space is defined as,

G = Tr
{

Tτ

(
b̂†

i (τM)b̂ j(τI)e−βH
)}

(2.28)

where Tτ is the time-ordering operator in imaginary time, and the operators b̂†
i (τM) and b̂ j(τI)

correspond to creation and annihilation at two points of discontinuity. These discontinuities
in the worldline are referred to as Masha and Ira, representing the two endpoints, or "worm
heads," of the disconnected segments in the extended configuration. The algorithm is named
the "worm algorithm" because these disconnected worldline segments visually resemble the
shape of a worm.

The worm algorithm operates on the principle of utilizing the worm heads, within the
extended Green’s function space G to more efficiently sample a variety of configurations in

1The uncertainty in the estimated expectation values arises solely from stochastic error due to finite sampling.
This error is known to decrease as 1/

√
m, where m is the number of samples.
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Fig. 2.4 Graphical representation of an extended worldline configuration in the G sector which
includes the worm heads named Ira (green) and Masha (red).

the partition-function space Z. This approach is implemented through a series of Monte Carlo
moves, which include:

1. Opening and Closing the Discontinuity: This move introduces or removes a disconti-
nuity in the worldline, thereby switching between configurations in the Z and G spaces.
Opening the discontinuity corresponds to creating a worm by adding the two worm heads
(Masha and Ira) at a chosen site and time, while closing the discontinuity merges the
heads to return the configuration to the partition function space.

2. Moving a Worm Head in Imaginary Time: This move enables the worm heads to
traverse in imaginary time, altering the configuration while maintaining the discontinuity.
This also allows adjustments in the number of particles and the length of the worldline.

3. Moving a Worm Head in Space: This move enables one worm head to hop along spatial
dimensions, allowing for the insertion or removal of kinks in the worldlines.

Through these moves, the worm algorithm performs a random walk in the configuration
space, sampling both physical and Green’s function configurations according to their respective
weights. This random walk follows a Markov Chain, ensuring that the resulting samples
represent an equilibrium distribution which in this case is the Boltzmann distribution. Figure
2.4 illustrates an example of a disconnected worldline with worm heads, named Ira and Masha.
The update process begins by selecting the location these two heads and opening the path,
thus transitioning to a configuration in the G sector. The worm heads then move through
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space and imaginary time, altering the configuration until they eventually meet at the same site
and time. At this convergence point, the discontinuity is closed, returning the configuration
to the Z space, where thermodynamic expectation values of physical observables can be
computed. The algorithm’s capacity to efficiently sample configurations with discontinuities
is particularly important in systems exhibiting superfluidity where particle correlations play
a crucial role. Remarkably, the worm algorithm is a local Metropolis-based method but
exhibits an efficiency comparable to, or even exceeding, that of cluster algorithms at critical
points. It avoids the problem of critical slowing down, making it exceptionally useful in
simulations near phase transitions. Furthermore, it is capable of generating winding loops
around the system, supporting efficient simulations of off-diagonal correlations, grand canonical
ensembles, disordered systems, and other complex configurations [111].

2.2.2 Observables

In this subsection, we outline the types of observables that can be directly measured using Path
Integral Monte Carlo (PIMC) methods. These observables include quantities such as particle
density, energy, and superfluid density, which are evaluated within the Z sector. Additionally,
we discuss observables like the one-body density matrix and dynamic structure factor, which
are statistically estimated using configurations in the G sector. Collectively, these quantities
provide deep insights into the properties and behavior of quantum systems.

1. Density: The density at a specific site j is an important observable, often represented by
the expectation value of the density operator n j. For a given configuration Cn, the density
n j(Cn) can be computed by summing over all time intervals within the configuration.
The time intervals are decided based on kinks produced by off-diagonal Hamiltonian
terms. This is expressed as:

n j(Cn) =
1
β

n

∑
k=1

⟨ψk|n j|ψk⟩(τk − τk−1), (2.29)

where β is the inverse temperature, and tk − tk−1 represents the duration of each time
interval between successive time points tk−1 and tk within the configuration. Here,
⟨ψk|n j|ψk⟩ gives the matrix element of the density operator at site j for the state |ψk⟩ in
the configuration, thus allowing us to compute the average occupancy at that site over
the imaginary-time path.

2. Energy: The total energy E = ⟨H⟩ of a configuration Cn is derived from the sum of
the potential energy U and the kinetic energy K. The kinetic energy K is estimated by
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counting the number of hopping events (or transitions) in the configuration, as each hop
corresponds to kinetic energy contributions from the Hamiltonian’s off-diagonal terms.
The potential energy U , on the other hand, is calculated by considering the contributions
from the Hamiltonian’s diagonal elements, represented by H0. The potential energy for a
configuration Cn is given by:

U(Cn) =
1
β

n

∑
k=1

⟨ψk|H0|ψk⟩(τk − τk−1), (2.30)

where ⟨ψk|H0|ψk⟩ is the matrix element of the potential energy operator in state |ψk⟩ at
time τk.

3. Superfluid Density: The superfluid density ρs is a crucial observable for characterizing
quantum phases like superfluidity. Estimators for ρs depend on the form of the hopping
term in the Hamiltonian H1 and the dimensionality of the system. Detailed derivations
of these estimators can be found in [112]. In two-dimensional systems with uniform
nearest-neighbor hopping of strength t, the superfluid density is intimately connected
to the fluctuations of the winding numbers in the path integral representation. These
winding numbers arise due to the periodic boundary conditions imposed on the system
and reflect the topological properties of particle trajectories in imaginary time.

The estimator for the superfluid density is given by:

ρs =
1

4tβ

〈
W 2

x +W 2
y
〉
,

where Wx and Wy are the winding numbers along the x and y spatial dimensions, and
⟨· · · ⟩ denotes the expectation value over all configurations. The winding numbers Wx

and Wy quantify the net number of times particles wrap around the system in each
spatial direction due to the periodic boundaries. Physically, large fluctuations in these
winding numbers indicate the presence of long-range phase coherence—a hallmark of
the superfluid phase. Thus, by measuring ρs, we gain direct insight into the superfluid
properties of the system.

4. Density-Density Correlation Function: Correlation functions are fundamental tools for
understanding spatial and temporal correlations in quantum systems. They reveal how
particles at different sites or times influence each other, shedding light on phenomena like
ordering, excitations, and collective behavior. The density-density correlation function
Si j measures the correlation between particle densities at sites i and j:
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Si j = ⟨nin j⟩,

where ni and n j are the particle number operators at sites i and j, respectively. In PIMC
simulations, an estimator for Si j for a single configuration Cn is calculated as:

Si j(Cn) =
1
β

n

∑
k=1

⟨ψk|ni|ψk⟩⟨ψk|n j|ψk⟩(τk − τk−1),

where ⟨ψk|ni|ψk⟩ is the expectation value of the number operator at site i in state |ψk⟩,
and the sum runs over all segments k of the worldline configuration Cn.

This estimator effectively averages the product of local densities over imaginary time,
weighted by the duration of each state. By accumulating these contributions over many
sampled configurations, one obtains an accurate estimate of Si j, revealing how particle
densities at different sites are correlated.

5. One-Body Density Matrix: The one-body density matrix G (ℓ) characterizes the off-
diagonal long-range order in the system, which is essential for understanding quantum
coherence and superfluidity:

G (ℓ) = ⟨b̂†
i b̂i+ℓ⟩,

In the worm algorithm framework, the one-body density matrix is efficiently estimated
using configurations in the G sector. The discontinuities introduced by the worm heads
(Masha and Ira) allow for direct sampling of off-diagonal correlation functions. By
tracking how the worm propagates through space and imaginary time, one can compute
G (ℓ) and thus gain insights into the coherence properties of the system.

6. Dynamic Structure Factor: The dynamic structure factor S(k,ω) provides information
about the excitations and response of the system to external perturbations, as a function
of momentum k and frequency ω:

S(q,ω) =
∫

∞

−∞

dt eiωt
∑
i, j

e−iq·(ri−r j)⟨ni(t)n j(0)⟩,

where ni(t) is the density operator at site i and time t, ri and r j are the position vectors
of sites i and j. The sum over i, j and the time integral capture spatial and temporal
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correlations. In PIMC simulations, direct calculation of S(q,ω) is challenging due to the
analytic continuation required from imaginary to real time. However, one can compute
its imaginary-time counterpart:

S(q,τ) = ∑
i, j

e−iq·(ri−r j)⟨ni(τ)n j(0)⟩,

which can then be analytically continued to obtain S(q,ω) using methods like the method
of consistent constraints [113, 114]. This allows the study of excitation spectra and
dynamic properties within the PIMC framework.

By measuring these observables, PIMC methods provide a powerful toolkit for in-
vestigating the rich physics of quantum many-body systems. The ability to compute
quantities in both the Z and G sectors enables comprehensive analyses of both diagonal
and off-diagonal properties, essential for understanding phenomena like superfluidity,
Bose-Einstein condensation, and quantum phase transitions.
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Chapter 3

Scale invariant phase transition of
disordered bosons in one dimension

The disorder-induced quantum phase transition between superfluid and non-superfluid states of
bosonic particles in one dimension is generally expected to be of the Berezinskii-Kosterlitz-
Thouless (BKT) type. Here, we show that hard-core lattice bosons with power-law hopping
decaying with distance as 1/rα with finite integral over space – corresponding in spin language
to a XY model with power-law couplings – undergo a non-BKT continuous phase transition
instead. We use exact quantum Monte-Carlo methods to determine the phase diagram for
different values of the exponent α , focusing on the regime α > 2. We find that the scaling
of the superfluid stiffness with the system size is scale-invariant at the transition point for
any α ≤ 3 – a behavior incompatible with the BKT scenario and typical of continuous phase
transitions in higher dimension. By scaling analysis near the transition point, we find that our
data are consistent with a correlation length exponent satisfying the Harris bound ν ≥ 2 and
demonstrate a new universal behavior of disordered bosons in one dimension. For α > 3 our
data are consistent with a BKT scenario where the liquid is pinned by infinitesimal disorder.

Bosonic particles with local interactions in one dimension (1D) are described by a uni-
versal harmonic theory, known as Luttinger liquid (LL). The latter corresponds to quantized
superfluid hydrodynamics (including instantons) and is fully characterized by the superfluid
velocity, v =

√
Ys/κ , and LL parameter, K = π

√
κYs, with κ the compressibility and Ys the

superfluid stiffness. Diagonal disorder induces an instability in LL towards a non-superfluid
Bose glass (BG) phase – a compressible insulator displaying exponential decay of off-diagonal
correlations. In their seminal paper [6], Giamarchi and Schulz found by means of a perturbative
renormalization group (RG) analysis that the LL-BG transition is of the Berezinskii-Kosterlitz-
Thouless (BKT) type that takes place at the universal value K = Kc = 3/2 (this result holds at
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the two-loop level [115]). In the strong-disorder limit, real-space RG treatments [116, 117] and
the “scratched-XY” criticality [118] also predict a BKT-type transition but at a non-universal
value of Kc > 3/2. These considerations exhaust known scenarios for the disorder-induced
superfluid to non-superfluid phase transitions in 1D.

In this work, we consider the disorder-induced localization transition in 1D superfluids of
bosons with power-law hopping decaying with distance as 1/rα . We utilize numerically exact
large scale Quantum Monte-Carlo simulations based on the Worm Algorithm [10] to determine
the ground-state superfluid phases and phase transitions for different values of α > 2. We find
that the superfluid phases can be approximately characterized by an effective LL parameter
K that reproduces the decay of correlation functions. However, contrary to existing theories,
we find that the disorder-induced quantum phase transition is generically scale-invariant and
incompatible with the BKT scenario with the effective Kc ≤ 3/2 for all α ≤ 3. As far as critical
exponents are concerned, the data is consistent with the correlation length exponent satisfying
the Harris bound ν ≥ 2 for all values of α ≤ 3. Thus, our results reveal a new universal
behavior of bosons with power-law hopping in one dimension with finite integral over space.
For α > 3 our results are instead consistent with a scenario where the superfluid is pinned by an
infinitesimal disorder in the thermodynamic limit, similar to a BKT-like scenario for hard-core
particles with short-range coupling. Our predictions are directly relevant for experiments with
dipolar atoms and molecules, exciton materials, and cold ions.

We consider the following 1D lattice Hamiltonian for hard-core bosons

H =−t ∑
i< j

aα

|ri j|α
[
b†

i b j +H.c.
]
+∑

i
εini, (ni ≤ 1). (3.1)

We employ standard notations for bosonic creation and annihilation operators on site i and
restrict the maximal occupation number, ni = b†

i bi, to unity. The nearest-neighbor hopping
amplitude, t, and the lattice spacing, a, are taken as units of energy and length, respectively.
We choose random on-site energies εi uniformly distributed between −W and W , and check
that a different (gaussian) choice of distribution does not affect the results. In spin language,
Eq. (4.1) is equivalent to an XY Hamiltonian with power-law exchange couplings, which, in
the absence of disorder, can be realized in experiments with cold polar molecules [1], trapped
ions [2–4] and Rydberg atoms [5, 119–123] (the latter can also be disordered [124]).

For ideal system with W/t = 0, the spectra and low-energy phases of Hamiltonian (4.1)
have been investigated by a variety of approaches. Using linear spin-wave theory, Ref. [125]
identified α > 3 as a regime where main properties reproduce those observed in the α = ∞

limit of finite-range interactions; 1 < α < 3 as an intermediate regime with the XY phase
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Fig. 3.1 Characterization of the superfluid phase for W/t = 0: (a) Dispersion relations E(k)
vs k for α = 2.5, 3.0 and 3.2 chosen in the intermediate and short-range regimes, respectively
(see text) for L = 256. (b) Single particle density matrix G (ℓ) vs chord distance c(ℓ) =
sin(πℓ/L)/sin(π/L) showing an algebraic decay for all α for L = 512. Dashed lines indicate
the best fit with A · c(ℓ)−γ where A,γ are fitting parameters. (c) Numerical evaluation of the
Luttinger liquid parameter K as a function of α from the power-law decay G ∝ ℓ−1/(2K) (green
dots) and from the relation K = π

√
κYs (red squares) extrapolated to the thermodynamic limit

via a polynomial scaling in 1/L.

characterized by a continuously varying dynamical exponent z = (α − 1)/2 (it governs the
k → 0 limit of the dispersion relation); and α < 1 as a long-range regime with dispersionless
excitations and properties similar to the infinite-range α = 0 case in the thermodynamic limit.
In this harmonic approach, α = 3 is the boundary between the intermediate and short-range
regimes. Using a bosonization approach supplemented by an RG analysis, Ref. [13] predicts
that power-law couplings are relevant in the RG sense for α < 3−1/(2K), with K > 1 to be
determined numerically for each given α . In the following, we study the ground-state superfluid
phases and phase transitions of Eq. (4.1) for α > 2 using large scale path-integral quantum
Monte-Carlo simulations based on the Worm algorithm [10]. Without loss of generality, we
focus on the particle density ρ = 1/2.
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We start our analysis by first characterizing the bosonic liquid in the absence of disorder
(W/t = 0). Figure 3.1(a) shows the dispersion relation E(k) vs k for three values of α = 2.5, 3.0,
and 3.2 where k is the quasi-momentum. It was deduced numerically from spectral peaks after
analytic continuation of the imaginary-frequency dynamic structure factor [114, 113]. The
chosen values of α correspond to values in the expected intermediate (α = 2.5), boundary (α =

3.0) and short-range (α = 3.2) limits of the spin-wave analysis, respectively. The dispersion
relation is non-linear in k for α = 2.5 (dots) and the data can be fit well by E(k)∼ kz∗ , with
z∗ ≃ 0.74, in good agreement with the z = 0.75 prediction of spin-wave analysis (continuous
black line). In the short-range regime, instead, the dispersion relation is consistent with the
linear law and a small negative quadratic contribution, also in agreement with literature. We
checked that E(k) for different system sizes agree with each other for the same values of k. [The
dispersion relation in the superfluid phase for α = 2.5 in the presence of disorder is sub-linear,
as presented in Appendix A1.]

For a 1D superfluid ground state, the single-particle density matrix G (ℓ) = ⟨b†
i bi+ℓ⟩ is

expected to show an algebraic decay with the distance ℓ with diverging integral over space. Our
data for G are shown in Fig. 3.1(b), for the same values of α as in panel (a) for a system with
L = 512 sites and inverse temperature β = L/t. We observe algebraic decay G ∼ ℓ−γ for all α .

Despite the non-linear dispersion relation demonstrated above, we attempt a comparison
with expectations from LL theory by extracting an effective LL parameter K as a function of
α from two standard methods: the power-law decay G ∼ ℓ−γ via the bosonization relation
γ = 1/(2K) (green dots) and the relation K = π

√
κYs (red squares). Both κ and Ys can be

conveniently computed by quantum Monte Carlo through mean-square particle, N, and winding
number, W , fluctuations using the Pollock–Ceperley relation Ys = L⟨W 2⟩/β . Figure 3.1(c)
shows that the two methods produce similar estimates of K for all α , within the error bars,
which is surprising, given the non-linear dispersion relation demonstrated above. Moreover, K

decreases monotonically and continuously with α from a large value K ≳ 5 at α ∼ 2.3 to K ≈ 1
at α = 4. Within an approximate LL scenario, this behavior may be explained by the fact that
power-law hopping in Hamiltonian (4.1) allows for large-scale particle exchanges for small
enough α < 3, mimicking the behavior of soft-core bosons, for which one can easily get K ≫ 1.
The K = 1 value (dashed dotted line) corresponds to the short-range case of hard-core bosons
with the nearest neighbor hopping, a limit that is here asymptotically approached at α > 3 [7].
In the following we analyse the situation at finite disorder strength and, in particular, explore
the nature of the transition point, which is expected to be of the BKT type for Luttinger liquids.

1See Appendix A for the supplemental material including the dispersion relation in the superfluid phase with
finite disorder. The supplemental material includes Refs. [126, 114, 113].
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Fig. 3.2 Characterization of the superfluid to non-superfluid phase transition: (a) Mean-square
winding number ⟨W 2⟩ vs disorder strength W/t for α = 2.7 (empty symbols) and 3.2 (full
symbols) for system sizes L = 64, 128, 256. (b)-(e) Zoom-in on the area near phase transitions
for α = 2.5, 2.7, 3.0 and 3.2, showing crossing between the curves; the curve corresponding
to the largest size L = 1024 is subtracted from all data for clarity. Vertical error bars indicate
the estimated uncertainty from the Monte Carlo simulations and disorder-averages. Insets:
Finite-size scaling of crossings points between curves for system sizes L1 and L2 = 2L1 as a
function of L = L1.

However, we note that this may not be the case here: BKT transition and its asymptotically
exact RG flow are rooted in logarithmic interactions between vortex excitations. The latter
originates from the kinetic energy of the flow around vortexes E ∼

∫
(ns/m)dr/r, where m is

the particle mass and ns the superfluid density. The single particle spectrum in our model is not
parabolic and formally corresponds to a scale dependent “mass” m(r)∼ r3−α , implying that
vortexes in the superfluid phase should be bound by a power-law, not logarithmic, potential. It
may thus be expected that BKT physics no longer applies for α ≲ 3.

We characterize the transition via the winding number fluctuations ⟨W 2⟩ since they are a
scale invariant quantity, differently from the superfluid stiffness Ys. Figure 3.2(a) shows the
evolution of superfluid properties measured by ⟨W 2⟩ with disorder, W/t, for two example cases
α = 2.7 (empty symbols) and 3.2 (full symbols) and for several values of L = 64,128,256.
In both cases, ⟨W 2⟩ decrease monotonically with increasing W/t, until they reach near zero
values. This behavior signals the transition between the superfluid and non-superfluid states. In
the short-range case α = 3.2, the behavior at larger values of disorder is reminiscent of what
is expected for a BKT transition when in the infinite system ⟨W 2⟩ displays a jump to zero
at the critical point [7]. However, surprisingly, for α = 2.7 there is a clear crossing point of
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Fig. 3.3 (a) Phase diagram, Wc vs α , of the superfluid and non-superfluid quantum phases for
model (4.1). (b) Critical values of LL parameter Kc at Wc vs α , as estimated from the power-law
decay of G (green dots) and from K = π

√
κYs (red squares) for L = 256.

⟨W 2⟩ around W/t ∼ 2. This is inconsistent with the BKT criticality and is, instead, a signature
of continuous scale-invariant phase transitions. This fact can be used to pinpoint the critical
disorder strength Wc where superfluidity is lost by the crossing point of ⟨W 2⟩ -vs- W curves
for different values of L. The panels (b)-(e) in Fig. 3.2 present data in the vicinity of transition
points for α = 2.5,2.7,3.0 and 3.2 using β = L/(8t) [even for α = 3.2 our temperature is a
factor of two smaller than the lowest phonon mode]. Crossing points are very pronounced in
(b) and (c) for intermediate exponents α , leaving no doubt that we are dealing with generic
continuous transitions at W/t = 3.24(5) for α = 2.5 and at W/t = 2.12(5) for α = 2.7. The
crossings appear to persist when transitioning to the short-range regime α ≳ 3, see panels (d)
and (e) in Fig. 3.2 with crossings around W/t = 0.87(5) for α = 3.0 and around W/t = 0.5(5)
for α = 3.2, contrary to all expectations. However a careful finite-size scaling up to large
system sizes L = 1024 shows that the transition point for α > 3 scales to W/t → 0 in the
thermodynamic limit, see Inset in Fig. 3.2(e), implying the absence of a continuous phase
transition at finite W in the thermodynamic limit. This is different from α ≤ 3, where the
transition point scales to a finite value of W/t, see Insets in Fig. 3.2(b-d). The breakdown of
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Fig. 3.4 (a)-(c) Data collapse for the scaled superfluid stiffness L−ζ/νYs vs L1/ν [(W/t)−(Wc/t)]
for α = 2.5, 2.7 and 3.0 using L = 64, 128, 256. The fitted values of the correlation length
exponent ν and ζ are reported directly in the figure. They satisfy ν ≳ 2 for all α .

the BKT scenario for all values 2 < α ≤ 3 in Eq. (4.1) is surprising and is the main result of
this work.

Figure 3.3(a) summarizes the ground state phase diagram of Hamiltonian (4.1) in terms of
Wc and α . Here, for each α ≤ 3, the critical point Wc is determined from the scale-invariant
crossing point as described above. The critical disorder strength Wc/t decreases monotonically
from a large value Wc/t ∼ 5.1 to ∼ 0.9 for α = 3. For α > 3 the transition in the thermodynamic
limit occurs at Wc/t = 0+. The limiting value Wc/t = 0+ would correspond to the strictly short-
range limit of hard-core bosons with short-range hopping, which are known to be localized by
an infinitesimal disorder [7].

Figure 3.3(b) shows the critical LL parameter Kc computed at Wc/t for each value of α

assuming that the approximate LL scenario properly describes the system. We find that, for
α ≲ 3, Kc remains smaller than the critical BKT value of 3/2 for short-range hopping models
with weak disorder [7], confirming that LL theory should not be used to describe the localization
transition in the whole range α ≤ 3. In contrast, for α > 3 our results are in agreement with
conclusion that ideal systems with K < 3/2 are ultimately pinned by disorder, leading to an
insulating BG phase for any finite value of W/t.
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Fig. 3.5 Data collapse for the scaled superfluid stiffness L−ζ/νYs vs L1/ν [(W/t)− (Wc/t)] for
α = 3.2 using L = 64, 128, 256. The fitted values of the correlation length exponent ν and
ζ are reported directly in the figure. Unlike for α < 3, this scaling corresponds here to a
finite-size effect, as the transition is not located at Wc/t = 0.57 and slowly shifts to Wc/t = 0,
see Fig. 3.2(e).

We complete our characterization of quantum phase transition in Fig. 3.3(a) by determining
the correlation length exponent ν using data collapse analysis near the critical points [127].
For each α , the results of Monte Carlo simulations are rescaled by L−ζ/νYs and collapsed
on a single master curve using L1/ν [(W/t)− (Wc/t)] as a variable. Critical values Wc/t are
taken from the crossing points in Fig. 3.2, while ν and ζ are treated as fitting parameters and
obtained using a Nelder-Mead algorithm [128] with a cost function based on the Kawashima-
Ito-Houdayer-Hartmann quality metric [129, 130]. Example results for α = 2.5, 2.7, 3.0 and
α = 3.2 are shown in Figs. 3.4 and 3.5, respectively. We observe good collapse of all data near
the critical points for α ≥ 2, and the obtained correlation length exponents always satisfy the
so-called Harris bound ν ≳ 2, see [131]. In fact, this result is expected from general arguments
for a large class of d-dimensional disordered systems where an appropriately defined correlation
length diverges [132]. Data collapse for α > 3 using Wc/t = 0.57 is a finite-size effect given
that this value of α is close to the boundary between the intermediate and short-range regimes
and crossing points slowly shift to zero with increasing the system size. However, this effect
will likely be observed in experiments dealing with finite systems.

In conclusion, we have demonstrated that the disorder-induced superfluid to non-superfluid
quantum phase transition for models with power-law hopping is a scale-invariant transition
if 2 < α ≤ 3, ruling out the expected BKT scenario for interacting one-dimensional bosons
in this regime. Our work opens up multiple other research directions, including whether the
finite-temperature BKT scenario is generally inconsistent with power-law hopping models also
in two dimensions [133, 134, 9]. Another open question is the nature of the non-superfluid
quantum phase for general values of α . In Ref. [135] it was conjectured that for α = 3 this
phase is a non-superfluid Bose metal phase with finite zero-frequency optical conductivity and
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algebraic decay of correlations. It is an open question whether similar behavior can be found
for other α values. Our predictions should be directly testable in experiments for XY models
realized via internal excitations of cold dipolar atoms and molecules, cold ions chains, and
Rydberg atoms.
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Chapter 4

Bose-Hubbard model with power-law
hopping in one dimension

We investigate the zero-temperature phase diagram of the one-dimensional Bose-Hubbard
model with power-law hopping decaying with distance as 1/rα using exact large scale Quantum
Monte-Carlo simulations. For all 1 < α ≤ 3 the quantum phase transition from a superfluid
and a Mott insulator at unit filling is found to be continuous and scale invariant, in a way
incompatible with the Berezinskii-Kosterlitz-Thouless (BKT) scenario, which is recovered
for α > 3. We characterise the new universality class by providing the critical exponents by
means of data collapse analysis near the critical point for each α and from careful analysis
of the spectrum. Large-scale simulations of the grand canonical phase diagram and of the
decay of correlation functions demonstrate an overall behavior akin to higher dimensional
systems with long-range order in the ground state for α ≤ 2 and intermediate between one and
higher dimensions for 2 < α ≤ 3. Our exact numerical results provide a benchmark to compare
theories of long-range quantum models and are relevant for experiments with cold neutral atom,
molecules and ion chains.

The Bose-Hubbard (BH) model describes the dynamics of interacting bosons confined
in a lattice potential with nearest-neighbor hopping energy t and local interactions U . It
features a localization quantum phase transition from a gapless superfluid to a gapped Mott
insulator as a function of the ratio t/U [24, 136–138]. The BH model has been successfully
used to describe quantum phase transitions in systems as diverse as cold atoms trapped in
optical lattices, superfluid 4He, and superconductors. In one dimension, the BH quantum phase
transition at constant integer density ρ belongs to the Berezinskii-Kosterlitz-Thouless (BKT)
[35, 36, 139, 66, 140, 68] universality class. The latter has been experimentally demonstrated
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Bose-Hubbard model with power-law hopping in one dimension

in cold atom experiments in Refs. [141, 142] and is widely believed to underpin all localization
transitions in one dimension.

In the last few years, advances in engineering Hamiltonians with Rydberg atoms, cold
dipolar atoms and molecules, trapped ions coupled to motional degrees of freedom and neutral
atoms coupled to photonic modes [143–147] have sparked significant interest in the many-
body physics of quantum models with long-range couplings. Theory and experiments have
provided evidence for novel static and dynamic phenomena in these systems [9], such as,
e.g., the non-local propagation of correlations [76–78, 2, 3], breaking of conformal symmetry
[79, 80], new topological phases of matter and phase transitions [79, 81, 82]. The most
interesting regime is that of so-called "weak long-range interactions" with d < α < α∗, which
is intermediate between the limit of infinite-range "strong interactions" for α < d and short-
range-like interactions for α > α∗, with d the dimension and α∗ a threshold value that depends
on the system and transition under study [9]. While integrable models provide a guidance in
some situations [79] and despite an intense theoretical effort, it remains an open challenge to
precisely characterize quantum phases and phase transitions in non-integrable quantum models
with long-range couplings. It is thus of fundamental importance to obtain exact results for these
systems, to which theories can be compared.

In this work, we investigate the phase diagram of the 1d BH model with power-law
hopping that decays with distance as 1/rα in the regime of weak long-range couplings α > 1.
We use exact large-scale Quantum Monte Carlo simulations based on the Worm Algorithm
[10] to determine the ground state phase diagram and to characterize the superfluid phases.
Qualitatively, the phase diagram in the grand-canonical ensemble shows a shrinking of the
MI lobes in the t/U-µ/U plane (µ is the chemical potential) with respect to short-range
models for all α < 3 [148] and a rounding of the lobes akin to higher-dimensional models
for α < 2. Interestingly, for constant ρ = 1 a finite-size scaling analysis of the winding
number fluctuations, measuring superfluid properties, shows that the superfluid-Mott insulator
quantum phase transition is incompatible with the BKT universality class for any 1 < α ≤ 3. It
corresponds instead to a new continuous scale-invariant phase transition in the whole parameter
range of weak long-range couplings. We characterize this new universality class for bosons in
one dimension by determining the critical exponents by data collapse at the critical point and
the energy spectrum. For α > 3 the system resembles short-range models, which fixes α∗ to
α∗ = 3. From a large-scale analysis of correlation functions, we confirm that long-range order
exists for α < 2 in the superfluid phase, in agreement with literature, while we find no evidence
of such order for α > 2. These exact results provide benchmarks for theories and experiments.
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The 1d BH model with power-law hopping reads

H =−t ∑
i< j

aα

|ri j|α
[
b†

i b j +H.c.
]
+

U
2 ∑

i
ni(ni −1)−µ ∑

i
ni (4.1)

Here, b†
i , bi, and ni = b†

i bi are the bosonic creation, annihilation and particle number operators
on site i, respectively; t, U and µ are the hopping energy, the on-site interaction energy and
the chemical potential, respectively, with a the lattice spacing. The energy and length scales
are set by choosing t = 1 and a = 1. For nearest neighbor hopping (α → ∞) and density
ρ = 1, Eq. (4.1) displays a zero-temperature quantum phase transition of the BKT type from
a superfluid to a Mott insulator at a critical value (t/U)c = 0.300±0.025 [149–151, 44]. For
finite α and U/t → ∞ (hard-core bosons), Eq. (4.1) maps into a long-range XY model, for
which spin-wave and semi-analytical renormalization group analyses predict a continuously
varying dynamical exponent z = (α −1)/2 for α < 3 as well as a breaking of U(1) symmetry,
and ensuing long-range order, for a given αc < 3, to be determined numerically. In Ref. [13],
αc was estimated to be αc ≃ 2.8 using a density matrix renormalization group approach for
system sizes up to L ≃ 100. In this work, we investigate Eq. (4.1) for 1 < α ≤ 3 and all values
t/U via large scale quantum Monte Carlo simulations of up to L = 1024 sites and inverse
temperature β = Lz∗ , small enough to probe ground state properties. We focus first on the
superfluid-Mott insulator quantum phase transition at varying and constant densities and then
discuss the correlation functions in the liquid phase.

Figure 4.1 shows the ground state phase diagram as a function of µ/U and t/U for different
α ≤ 3. For each α , the figure shows the existence of a lobe, corresponding to a MI phase
at unit filling surrounded by a SF phase. For each ratio t/U , the boundaries in µ of the
lobe are determined by computing the energy gap in the MI phase from the Green function
G(k = 0,τ), which is obtained via the spatial averaging of the Matsubara Green function,
G(i,τ) = ⟨b†

i (τ)b0(0)⟩, with τ ∈ [−β/2,β/2] the imaginary time and k the quasi momentum.
By employing the Lehmann expansion, the Green function behaves as G(k,τ) ∝ e−ε±(k)|τ| for
τ → ±∞, where ε± denote the particle and hole energies, respectively [152, 153] (see also
example in Inset of Fig. 4.2 and below): For τ > 0, G(k,τ) describes a particle excitation,
whereas for τ < 0, it represents a hole excitation in the MI phase. By fitting the asymptotic
behavior of G(k = 0,τ) to an exponential form, the particle and hole excitation energies are
extracted from the slopes. These excitation energies are measured relative to the chemical
potential in the grand canonical ensemble. The insulating gap, ∆, is then determined as
∆ = µ+−µ−, where µ± = µ ± ε± and µ is the chemical potential used in the simulation.
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Fig. 4.1 Ground state phase diagram of the 1D Bose-Hubbard model with power-law hopping
for α = 1.6, 1.9, 2.5, 2.7, and 3.0, showing the boundary between the Mott insulator (at unity
filling) and superfluid phases as a function of chemical potential µ/U and hopping amplitude
t/U . Markers represent simulation data, while the solid black line (for α = 1.6) and the dashed
black line (for α = 1.9) are obtained from fitting the energy gap ∆/t near the critical point as
∆/t ∼ |t/U − t/Uc|−z∗ν (see also Fig. 4.2 and text). Inset: Gap Energy ∆/t fitted as a function
of t/U − t/Uc

.

Figure 4.1 shows two distinct behaviours of the lobe structure for α < 2 and α > 2.
Surprisingly, for α < 2 the Mott lobes are smooth and rounded, similar to those observed for
corresponding MI phases in higher dimensions [154, 153]. For α > 2, instead, the MI phase
exhibits a progressively more pointed and asymmetric structure with increasing α and the
critical point at constant density (i.e. the tip of the lobe) shifts to larger values of t/U . This
behavior is reminiscent of the pointy lobe structure of the short-range hopping model associated
to a BKT transition at ρ = 1, indicating a behavior intermediate between higher dimensions
and one dimension. We come back below to the precise nature of the critical point.

We further investigate the properties of the superfluid phase near the transition point at
constant density by computing the excitation spectrum. Figure 4.2 shows the dispersion relation
E(k) vs k for different 1 < α < 3, where quantum Monte-Carlo data for E(k) (symbols) are
obtained by fitting the large-τ decay of the Green’s function G(k,τ) to an exponential form (see
Inset for examples). The resulting dispersion relations are sub-linear in k, in excellent agreement
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Fig. 4.2 Dispersion relation E(k) vs. k for α = 1.6, 1.9, 2.5, and 2.7 in the superfluid phase near
the transition along the commensurate density line. Symbols denote numerical data obtained
from fitting the long-time exponential decay of G(k,τ), while lines show the spin-wave analysis
prediction E(k)∼ kz∗ , with z∗ = (α −1)/2 [125]. Inset: Single-particle Green function G(k,τ)
for k = π/64 (represented by empty markers) and α = 1.6,1.9,2.5, and 2.7. The black dashed
line represents the numerical fit to the exponential decay.

with the predicted scaling E(k) ∼ kz∗ from spin-wave theory for all α , with z∗ = (α − 1)/2
[125].

We characterize the SF-MI quantum phase transition at constant density ρ = 1 by computing
the mean-squared winding number fluctuations ⟨W 2⟩ – a scale-invariant quantity proportional
to the superfluid stiffness Ys as ⟨W 2⟩= Ys/(LT ) – up to sizes L = 1024. ⟨W 2⟩ is expected to
have a finite value and a zero value in the SF and MI phases, respectively. Figures 4.3(a) and
(b) present example results for ⟨W 2⟩ as a function of t/U for two power-law exponents α < 2
and α > 2 in Eq. (4.1), respectively, and for different system sizes L. In the figures, the values
of ⟨W 2⟩Lmax for the largest sizes Lmax used in the computations have been subtracted for clarity.
Panels (a) and (b) show a clear crossing of ⟨W 2⟩ vs t/U when plotted for different L at values
(t/U)c = 0.043±0.005 and (t/U)c = 0.131±0.008, respectively. These crossings correspond
to a quantum phase transition at the respective values of the critical ratio (t/U)c (see Insets for
further extrapolation to thermodynamic limit). Interestingly, the very presence of a crossing
in the ⟨W 2⟩− (t/U) curves rules out the Berezinskii-Kosterlitz-Thouless universality class
for these power law models, in contrast to familiar short-range models in one dimension [7]
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Fig. 4.3 Characterization of the Mott insulator to superfluid phase transition: (a)-(b) Mean-
square winding number ⟨W 2⟩ vs t/U for α = 1.6 and 2.7 near phase transitions, showing
crossing between the curves; the curve corresponding to the largest lattice size is subtracted
from all data for clarity. Vertical error bars indicate the estimated uncertainty from the Monte
Carlo simulations. Insets: Finite-size scaling of crossings points between curves for system
sizes L1 and L2 = 2L1 as a function of L = L1. (c) Phase diagram, t/Uc vs α of the Mott
insulator and superfluid quantum phases for model (4.1).

and long-range models with power-law density-density interactions [155, 156, 7]. Similar
crossings are observed for all 1 < α ≤ 3, implying a continuous scale-invariant phase transition
in this whole range of α . For α > 3 the transition is instead of the BKT type, consistent with
short-range models. This fixes α∗ = 3 for the model (4.1).

Figure 4.3(c) summarizes the ground state phase diagram of Eq. (4.1) as a function of
(t/U)c and 1 < α ≤ 3. In this diagram, (t/U)c for each value of α is identified based on
the scale-invariant crossing point, as previously detailed. The discovery of this family of
scale-invariant phase transitions is a key result of this work.

We further characterize the SF-MI quantum phase transitions at commensurate density by
determining the correlation length exponent ν associated to the continuous transition using data
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Fig. 4.4 Superfluid stiffness Ys near the critical interaction strength t/Uc for α = 1.6,1.9 and
2.7 and lattice size L = 128,256,512. Inset: Data collapse for the scaled superfluid stiffness
L−ζ/νYs vs L1/ν [(t/U)− (t/Uc]. The fitted values of the correlation length exponent ν are
directly reported in the inset. For α = 1.6 and 1.9, ν is consistent with the value derived by
fitting energy gap ∆. (see Figure 4.1)

collapse analysis near the critical points. For each α , we rescale the superfluid stiffness using
L−ζ/νYs as a function of L1/ν [(t/U)−(t/U)c] , where ν and ζ are fitting parameters (see Insets).
These parameters are determined through optimization using the Nelder-Mead algorithm [128],
with a cost function based on the Kawashima-Ito-Houdayer-Hartmann quality metric [129, 130].
Example results for α = 1.6,1.9, and 2.7 are shown in Figure 4.4, demonstrating good data
collapse near the critical points for all α ≥ 1.

For consistency, we further estimate the correlation length exponent ν by using the expected
expression for the gap energy ∆/t ∼ |t/U − t/Uc|−z∗ν near the critical point (see Fig. 4.1),
with z∗ obtained numerically from the energy dispersion relation, as discussed above. As an
example, for α = 1.6 and 1.9 we obtain ν = 1.77±0.03 and ν = 1.49±0.04, respectively, in
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Fig. 4.5 Characterization of the superfluid phase: (a)-(d) Single-particle density matrix, G (ℓ),
plotted against ℓ for α = 1.3, 1.6, 2.5, and 2.7. The dashed line represents the best fit to
A · c(ℓ)−γ , where c(ℓ) = sin(πℓ/L) is the chord distance, and A and γ are fitting parameters.
For α = 1.3 and 1.9, G (ℓ) saturates to a constant as ℓ→ ∞. For α = 2.5 and 2.7, G (ℓ) exhibits
algebraic decay. Insets: Difference ∆G (ℓ) between G (ℓ) for system size L and the numerical
fit for L = Lmax, plotted as a function of the chord distance c(ℓ). The difference indicates
an upward trend of G (ℓ) for increasing lattice size. (e) Finite-size scaling of the power-law
exponent γ to the thermodynamic limit.

good agreement with the estimate from data collapse. Our results for different α values show
that ν decreases monotonically in the range 1 < α < 2, with ν(α = 2)≃ 1.4, and then grows
again to ν ≃ 2.0 for α = 3 (see Supplemental Material in Appendix B).

We conclude by discussing the behavior of the single-particle density matrix G (ℓ) =

⟨b†
i bi+ℓ⟩ as a function of distance ℓ near the critical point. Example results are shown in Fig.

4.5(a-d) as a function of the chord distance c(ℓ) = sin(πℓ/L) to account for periodic boundary
conditions. In the figure, we present results for Eq. (4.1) for hard-core bosons (t/U → 0) at
half-filling, which allows us to explore the behavior of G (ℓ) up to sizes as large as L = 1024
and to directly compare to existing predictions for the long-range XY model [13, 126]. Figure
4.5 shows that G (ℓ) decays with increasing c(ℓ) up to the largest sizes considered, for all
1 < α ≤ 3. Interestingly, for each α and given size L, this large-distance decay is very well
approximated by a simple power-law as G (l)∼ c(l)−γ (see Supplemental Material). However,
in contrast to familiar 1D quantum liquids with short-range hopping, the value of γ is dependent
on L, and in fact it decreases with L (see also Insets). The fitted values of γ are plotted vs
1/L in panel (e), showing values consistent with γ = 0 for 1 < α ≲ 2 and γ > 0 for 2 ≲ α ≤ 3
in the thermodynamic limit. For 1 < α ≲ 2, this is a clear sign of long-range order, a result
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consistent with literature. For 2 ≲ α ≤ 3 instead, our results can be fitted essentially equally
well by the simple power law and a power-law with an additional constant (see Supplemental
Material). Since the former fit is marginally better and produces cleaner results, we term this
region 2 ≲ α ≤ 3 as anomalous quasi-long-range-order, departing from expectations from
literature. This analysis is further corroborated by a computation of G (ℓ) at distance ℓ= L/2 in
Fig. 4.5(f). The latter, corresponding to the condensate fraction in the presence of a condensate,
is expected to be L-independent in the presence of long-range order and to decay as a power-law
with increasing L in the presence of quasi-long-range order. Figure 4.5(f) shows that G (L/2)
is constant for α < 2 and it decays as a power-law with increasing L for α > 2. While it
remains possible that long-range order appears at even larger scales, we find no evidence of
such behavior up to the large sizes computed here. In the Supplemental Material we present
corresponding data for G (ℓ) for soft-core bosons computed up to distances L = 512, showing
identical behavior of correlations to Fig. 4.5.

In summary, our results depart from existing approximate results based on bosonization
theory and medium-scale numerical approaches [13] in identifying the region of α where
long-range effects are dominant as α ≤ α∗ = 3. For α > 3 we find a pure power-law decay with
γ independent of L, as expected from short-range hopping models. This is consistent with recent
results for disordered induced localization transition in 1d [8]. Interestingly, we demonstrate
and characterize a new universality class of one dimensional bosons in the whole weak long-
range limit d < α < α∗, a result incompatible with the usual BKT scenario. Large-scale
simulations of the grand canonical phase diagram, of the constant density phase transition and
of the decay of correlation functions demonstrate an overall behavior akin to higher dimensional
systems with long-range order in the ground state for α < 2 and intermediate between one and
higher dimensions in the range 2 < α ≤ 3.

Our predictions for the superfluid dispersion relation and the correlation functions can be
directly measured in experiments with dipolar atoms and molecules (α = 3, [145, 45, 157, 158])
and cold ions (1 < α ≲ 3, [147, 2, 3]). Our work provides exact results to benchmark theories
for long-range quantum models and opens up multiple other research directions, including the
nature of the groundstate in higher dimensions.
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Chapter 5

Conclusions and Outlook

In my Ph.D. work, I investigated the emergence of exotic phenomena in strongly correlated
models that hold direct experimental relevance for ultracold atomic gases and trapped-ion
systems. My research specifically focused on one-dimensional many-body systems of bosonic
particles with long-range, power-law decaying hopping, where quantum coherence and col-
lective effects produce unique behaviors not found in short-range interacting systems. By
leveraging state-of-the-art numerical techniques, detailed in Chapter 2, I have explored the
ground-state properties of these systems, with a particular attention on how long-range hopping
influences phase transitions.

In Chapter 3, we studied the influence of disorder on the phase transition between superfluid
and non-superfluid states in a one-dimensional model of hard-core bosons, where the hopping
amplitude falls off with distance as 1/rα . By mapping out the phase diagram for various α

values, we observe a clear trend: as α increase, the superfluid phase becomes progressively
more sensitive to disorder. Specifically, the critical disorder strength required to disrupt the
superfluid phase decreases with increasing α , ultimately reaching zero when α > 3. This
behavior is consistent with the short-range scenario where the superfluid is pinned by an
infinitesimal disorder in the thermodynamic limit. For 2 < α ≤ 3, we observed a clear crossing
in the mean-square winding number ⟨W 2⟩ versus disorder W/t for different system sizes,
revealing that the disorder-induced localization transition is continuous and scale-invariant.
This finding is incompatible with the expected Berezinskii-Kosterlitz-Thouless (BKT) scenario,
suggesting instead the emergence of a novel universal behavior in disordered bosons under
these conditions. These results broaden our understanding of quantum phase transitions in
one-dimensional bosonic systems, especially in cases where long-range hopping and disorder
are involved.
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Conclusions and Outlook

In Chapter 4, we examined the interaction-driven phase transition in a one-dimensional
Bose-Hubbard model with power-law hopping. In this context, I have analyzed the behaviour
of the superfluid-to-Mott-insulator (SF-MI) transition as both the decay exponent α and the
hopping-to-interaction ratio t/U are varied. Our findings challenge previous approximate
results from bosonization theory and mid-scale numerical studies by pinpointing α ≤ α∗ = 3
as the range where long-range interactions are dominant. We found that for 1 < α ≤ 3, the
interaction-driven quantum phase transition from superfluid to Mott insulator at unit filling
emerges as continuous and scale-invariant, deviating from the conventional BKT framework,
which applies only when α > 3. This is consistent with our insights from disorder-induced
localization in one dimension [8] (discussed in Chapter 3). When α ≤ 2, the single-particle
density matrix G (ℓ) remains finite at large distances, indicating long-range order. On the
other hand, for α > 3, the system exhibits algebraic decay in G (ℓ) ∝ ℓ−γ with power-law
exponent γ independent of system size L, aligning with quasi long-range order expected in
short-range models. For the intermediate regime 2 < α ≤ 3, the system behaves in a way that
bridges one-dimensional and higher-dimensional systems, displaying unique critical behavior
and quasi-long-range order. Through large scale Quantum Monte Carlo simulations, we have
established a new universality class for one-dimensional bosons within the weak long-range
interaction regime (d < α < α∗). Additionally, we have mapped the phase diagram in the t/U

vs. µ/U plane, showing that as α decreases, Mott insulating regions contract, transitioning
from pointed to rounded lobes—a reflection of dimensional crossover effects.

This work challenges the standard BKT transition expected in one-dimensional bosonic
systems when power-law hopping is present, proposing a continuous, scale-invariant transition
as a new paradigm. This discovery has significant implications for future theoretical and
experimental research. Several interesting avenues for further research arise from this work:
one is to investigate if the finite-temperature BKT framework, typically applied to short-range
systems, fails similarly in two-dimensional power-law hopping models. Another key question
centers on the characteristics of the non-superfluid quantum phase for different values of α .
Previous studies suggest that for α = 3, this phase could manifest as a non-superfluid Bose
metal with finite optical conductivity at zero frequency and correlations that decay algebraically
[135]. Whether this behavior extends to other α values remains an open question.

The implications of our findings are experimentally accessible, particularly in platforms
where XY models with power-law couplings can be realized, such as in systems with internal
excitations of cold dipolar atoms and molecules and Rydberg atom arrays (for α = 3), and chains
of cold ions (1 < α ≲ 3). These systems provide a promising landscape for experimentally
validating our predictions regarding correlation functions and superfluid dispersion relation,
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and further exploring the nature of scale-invariant phase transitions in one-dimensional systems
with power-law interactions. Our work provides exact benchmarks for theories on long-
range quantum models and paves the way for further exploration into the characteristics of
ground states in higher dimensions, potentially expanding the understanding of quantum phase
transitions and scaling behaviors in low-dimensional systems with engineered long-range
interactions. It establishes a benchmark for understanding the impact of dimensionality and
long-range hopping on phase transitions in one-dimensional systems, highlighting how these
factors shape the unique quantum behavior observed.

In addition to the work presented in this thesis, I am collaborating with Tom Hartweg on an
ongoing project studying a Bose polaron system within a Bose-Hubbard bath on a 2D square
lattice. A Bose polaron forms when an impurity particle moves through a bosonic lattice,
attracting nearby bosons and forming a localized “cloud,” effectively creating a quasiparticle.
These polarons are of great interest because they can significantly affect material properties in
various systems, such as superfluid mixtures of helium isotopes (3He and 4He) [159], nuclear
matter [160], and ultracold atomic gases [161]. Investigating impurities in quantum-critical
environments like the Bose-Hubbard bath provides valuable insights into how these impurities
interact with their surroundings. For instance, in certain continuous systems, the polaron’s
energy can abruptly shift across specific phase transitions, such as the Berezinskii-Kosterlitz-
Thouless transition [162], or Bose polarons may even disappear when the system undergoes
Bose-Einstein condensation [163]. Recent work by Colussi et al. [164], using the quantum
Gutzwiller method, demonstrated that when interaction between bath and impurity is weak, the
impurity serves as an effective probe of bath states with polaron’s properties like bath-induced
energy shifts and effective mass ratio changing notably across phase transitions. Building
on this, we are using Quantum Monte Carlo simulations with a modified worm algorithm
[165] to study the Bose-Hubbard bath and impurity interactions more precisely, addressing
the limitations of existing Gutzwiller-based approach near the superfluid-to-Mott-insulator
transition.

69





Appendix A

Supplemental Material: Scale-invariant
phase transition of disordered bosons in
one dimension

In this work, we study a one-dimensional disordered lattice boson model with hopping ampli-
tude decaying with distance as 1/rα using large scale quantum Monte-Carlo simulations. A
recent work [126] based on approximate functional renormalization group methods (submitted
to the archive after our work was published online) proposes that in the stable superfluid phase
at finite disorder strength (W/t > 0), a density mode with linear dispersion (dynamical exponent
z = 1) should emerge and the superfluid–Bose-glass transition follows the BKT universality
class for any α , in contradiction to our results. In this Supplemental Material we check the
predictions of [126]. Our analysis based on large scale numerical simulations confirms the
picture that we present in the main text.

A.1 Dispersion relation in the superfluid phase with finite
disorder

The study presented in [126] proposes, using approximate functional renormalization group
methods, that in the stable superfluid phase a density mode with linear dispersion (dynamical
exponent z = 1) should emerge, and that the superfluid–Bose-glass transition follows the BKT
universality class. To test these predictions, we performed large scale quantum Monte Carlo
simulations for α = 2.5 and disorder strength W/t = 2.0 to determine the dispersion relation
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Supplemental Material: Scale-invariant phase transition of disordered bosons in one
dimension

by numerically analyzing the spectral peaks after performing an analytic continuation of the
imaginary-frequency dynamic structure factor [114, 113].

k
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E(
k)

0.1
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𝛼 = 2.5, W = 2.0

L = 256

L = 64

E(k) = A ⋅ k𝛽, 𝛽 = 0.76

Fig. A.1 Dispersion relation E(k) vs k for α = 2.5 in the superfluid phase at finite disorder
strength W/t = 2.0.

Our results, presented in Figure A.1 of this Supplemental Material, demonstrate that the
spectrum is non-linear in k for α = 2.5 at W = 2.0 and the data is well described by E(k)∼ kz∗ ,
with z∗ ≃ 0.76. We checked for finite size effects (e.g., L = 64 in the figure), founding no
significant impact. These results contradict the theoretical predictions of linear dispersion
proposed in [126].
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Appendix B

Supplemental Material: Bose-Hubbard
model with power-law hopping in one
dimension

In this chapter, we provide a detailed discussion of the single-particle density matrix, G (ℓ),
for a system of hardcore bosons confined to a one-dimensional (1D) lattice with power-law
hopping for 1 < α ≤ 3. Here, we focus on the condensate fraction, which we estimate by
analyzing the behavior of the asymptotic tail of G (ℓ). Furthermore, we present the large-ℓ
asymptotic behavior of G (ℓ), comparing two distinct fitting models: a pure power-law decay
characterized by the expression A · ℓ−γ , and a more complex model combining a constant term
with a power-law decay, expressed as A+B · ℓ−γ . Additionally, we extend our analysis by
providing data for G (ℓ) in the case of a 1D system of softcore bosons at unit filling in the
superfluid phase near Mott insulator-superfluid (MI-SF) phase transition.

B.1 One-body density matrix for hardcore bosons on 1D
lattice

In dimensions, d ≥ 3, superfluidity is accompanied by Bose-Einstein condentation (BEC)
where a finite fraction of bosons occupy a single particle state. The off-diagonal elements of the
one-body density matrix (OBDM) G (ℓ) = ⟨b†

i bi+l⟩, therefore, develop a long tail and approach
a constant for large distances ℓ. In BEC, the condensate fraction, n0, is proportional to the
limiting value of the G (ℓ) at large distances, n0 ∼ limℓ→∞ G (ℓ). For systems exhibiting long-
range order (LRO), G (ℓ) approaches a constant as ℓ increases, signifying a finite condensate
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Supplemental Material: Bose-Hubbard model with power-law hopping in one dimension

fraction. For one dimension systems, the low energy phenomenon is expected to follow predic-
tions of Luttinger Liquid (LL) theory [166] and undergo a Berezinskii–Kosterlitz–Thouless
(BKT) transition [35, 36, 66, 140]. The OBDM for short-range interactions in 1D superfluids
algebraically decays as a power-law ⟨b†

i bi+l⟩ ∼ l−K/2 showing quasi long-range order (QLRO).
In such scenario, condensate fraction n0 also decays to zero as a power-law. If the decay of
the interaction is sufficiently slow, long-range (LR) effects can influence the universal critical
properties and may even induce spontaneous symmetry breaking (SSB) in low-dimensional
systems. This occurs because the well-known Hohenberg-Mermin-Wagner theorem, which pro-
hibits SSB in low dimensions with short-range interactions, does not apply when LR couplings
are present[167].
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Fig. B.1 (a) Correlation function or single-particle density matrix G (ℓ) vs chord distance
c(ℓ). The black dashed line represents the best fit to A · c(ℓ)−γ showing long-range order for
α <= 2.0 and an algebraic decay for α > 2.0. (b) G (L/2) vs L showing power-law decay for
α > 2.

B.1.1 Condensate Fraction

We perform large scale quantum Monte Carlo simulations of a 1D system of hardcore bosons
with power-law hopping 1/rα in the path-integral representation in the grand-canonical en-
semble using the worm algorithm for system sizes as large as L = 1024. Worm algorithm
allows for efficient sampling G (ℓ). Figure B.1(a) shows the single-particle density matrix G (ℓ)

as a function of the chord distance c(ℓ) = sin(πℓ/L), which is used to take care of periodic
boundary conditions. It confirms the power-law decay of the Green function for α > 2 and
long-range order for α ≤ 2.0. The condensate fraction for a finite size system is given by the
tail of (ℓ) given by n0 = G (L/2). Figure B.1(b) represents G (L/2) as a function of lattice size

74



B.1 One-body density matrix for hardcore bosons on 1D lattice

L showing that the tail of the Green function decays to zero in the thermodynamic limit for
α > 2, further confirming that there is no long-range order in the system – at least up to the
considered lengths. For α <= 2, the condensate fraction reaches a constant value indicating
long-range order.

B.1.2 Fitting of G (ℓ)

Figure B.2 illustrates the single-particle density matrix, G (ℓ), as a function of c(ℓ) for the
case where α = 2.3. This figure provides a comprehensive comparison of two distinct fitting
methodologies: a standard power-law fit and a power-law fit with an additional constant term.
In panel (a), the dashed black line represents a power-law fit to the data, expressed as A ·c(ℓ)−γ .
This form attempts to capture the decay of G (ℓ) over the range of distances, with the inset
providing an estimate of the power-law exponent γ . This exponent is determined by fitting
G (ℓ) over the interval from ℓ= xmin to ℓ= L/2, where xmin is defined as a fraction of the total
system size, i.e., xmin = xmin fraction×L/2. In panel (b), a more elaborate fitting model is
considered, where the power-law is supplemented by a constant term, resulting in the functional
form A · c(ℓ)−γ +B. The dashed black line illustrates this fit to the data, and the inset again
shows the estimated power-law exponent γ , obtained by fitting the same range of ℓ.

c(ℓ)
1 10 50 100 200

𝓖
(ℓ

)

0.3

0.4

0.6

0.8

1.0

(a)

A ⋅ c(ℓ)𝛾

xmin fraction
0.4 0.5 0.6 0.7

𝛾

−0.14

−0.12

−0.10

−0.08

−0.06

c(ℓ)
1 10 50 100 200

𝓖
(ℓ

)

0.3

0.4

0.6

0.8

1.0

(b)

A ⋅ c(ℓ)𝛾 + B

xmin fraction
0.4 0.5 0.6 0.7

𝛾

−2.5

0.0

2.5

L = 128 L = 256 L = 512 L = 1024

Fig. B.2 Single-particle density matrix, G (ℓ), plotted against c(ℓ) for α = 2.3. (a) The dashed
black line represents the power-law fit A ·c(ℓ)−γ to G (ℓ). Inset: Power-law exponent γ estimated
by fitting G (ℓ) from ℓ = xmin to ℓ = L/2 where xmin = xmin fraction×L/2. (b) The dashed
black line represents the power-law fit with additional constant A · c(ℓ)−γ +B to G (ℓ). Inset:
Power-law exponent γ estimated by fitting G (ℓ) from ℓ= xmin to ℓ= L/2.

Both the simple power-law and the extended constant-plus-power-law fits are found to be
equally effective in describing the overall behavior of G (ℓ). However, the simple power-law fit
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Supplemental Material: Bose-Hubbard model with power-law hopping in one dimension

demonstrates significantly greater stability and robustness. It fits the tail of the data equally
well over a broad range of xmin fractions, from 0.2 to 0.8, indicating that the exponent γ derived
from this fit remains consistent and reliable across various fitting windows. In contrast, the
extended fit that includes the additional constant term introduces instability in the estimation of
the exponent. The value of γ fluctuates substantially depending on the choice of xmin, and in the
large-ℓ limit, the fit becomes unreliable. This variability renders the constant-plus-power-law
fit impractical for accurately capturing the asymptotic, long-range behavior of G (ℓ).

B.2 Single particle density matrix for softcore bosons on 1D
lattice
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Fig. B.3 Characterization of the superfluid phase near MI-SF phase transition: (a)-(d) Single-
particle density matrix, G (ℓ), plotted against ℓ for α = 1.3, 1.9, 2.7, and 3.0. The dashed line
represents the best fit to A · c(ℓ)−γ , where c(ℓ) = sin(πℓ/L) is the chord distance, and A and γ

are fitting parameters. For α = 1.3 and 1.9, G (ℓ) saturates to a constant as ℓ→ ∞. For α = 2.7
and 3.0, G (ℓ) exhibits algebraic decay. Insets: Difference ∆G (ℓ) between G (ℓ) for system
size L and the numerical fit for L = Lmax, plotted as a function of the chord distance c(ℓ). The
difference indicates an upward trend of G (ℓ) for increasing lattice size. (e) Finite-size scaling
of the power-law exponent γ to the thermodynamic limit.

In order to characterize the superfluid phase of a system of softcore bosons on a 1D lattice
with power-law hopping, G (ℓ) is estimated for 1 < α ≤ 3 for lattice sizes upto L = 512. In
Figure B.3, panels (a)-(d) display the single-particle density matrix, G (ℓ), plotted as a function
of ℓ for values of α = 1.3, 1.9, 2.7, and 3.0. The dashed lines represent the best fit to the
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form A · c(ℓ)−γ , where c(ℓ) is the chord distance, and A and γ are the fitting parameters. For
α = 1.3 and 1.9, G (ℓ) saturates to a constant as ℓ approaches infinity, indicating long-range
order. In contrast, for α = 2.7 and 3.0, G (ℓ) exhibits an algebraic decay, reflecting quasi-long-
range order. The insets in each panel display the difference ∆G (ℓ) between G (ℓ) for a system
size L and the numerical fit for the maximum system size L = Lmax, plotted as a function of the
chord distance c(ℓ). This difference reveals an upward trend in G (ℓ) with increasing lattice
size. Panel (e) illustrates the finite-size scaling of the power-law exponent γ as it approaches
the thermodynamic limit. The fitted values of γ are plotted vs 1/L, showing values consistent
with γ = 0 for 1 < α ≲ 2 and γ > 0 for 2 ≲ α ≤ 3 in the thermodynamic limit.
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1 Caractérisation de la phase superfluide pour W/t = 0 : (a) Matrice de densité
à une particule G (ℓ) en fonction de la distance ℓ, montrant une décroissance
algébrique pour toutes les valeurs de α avec L = 256. Les lignes pointillées
indiquent le meilleur ajustement avec A ·c(ℓ)−γ , où c(ℓ)= sin(πℓ/L)/sin(π/L)

est la distance de corde et A,γ sont des paramètres d’ajustement. (c) Évaluation
numérique du paramètre de liquide de Luttinger K en fonction de α , à partir de
la décroissance en loi de puissance G ∝ ℓ−1/(2K) (points verts) et de la relation
K = π

√
κYs (carrés rouges), extrapolée à la limite thermodynamique via une

mise à l’échelle polynomiale en 1/L. . . . . . . . . . . . . . . . . . . . . . . xii
2 Caractérisation de la transition de la phase superfluide à la phase non-superfluide

pour H1 : (a) Nombre moyen des carrés d’enroulement ⟨W 2⟩ en fonction de la
force du désordre W/t pour α = 2.7 (symboles vides) et 3.2 (symboles pleins)
pour les tailles de système L = 64, 128, 256. (b)-(e) Zoom sur la zone près des
transitions de phase pour α = 2.5, 2.7, 3.0 et 3.2, montrant le croisement entre
les courbes ; la courbe correspondant à la plus grande taille est soustraite de
toutes les données pour plus de clarté. Les barres d’erreur verticales indiquent
l’incertitude estimée provenant des simulations Monte Carlo et des moyennes
sur le désordre. Insets : Mise à l’échelle de la taille finie des points de croise-
ment entre les courbes pour les tailles de système L1 et L2 = 2L1 en fonction
de L = L1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

79



List of figures

3 Caractérisation de la phase superfluide : (a)-(d) Matrice de densité à une
particule G (l) en fonction de l pour α = 1.3, 1.9, 2.5, et 2.7. La ligne en
pointillés indique le meilleur ajustement avec A · c(l)−γ où c(l) = sin(πl/L)

est la distance de corde et A, γ sont les paramètres d’ajustement. Inset :
∆G (ℓ) = G (ℓ)−G f it est la différence entre les valeurs réelles de la matrice de
densité à une particule et l’ajustement théorique G f it pour Lmax. La différence
indique une tendance à la hausse de G (ℓ) avec l’augmentation de la taille du
réseau. (e) Échelle thermodynamique de l’exposant de loi de puissance γ ,
indiquant un véritable Ordre de Longue Portée (LRO) pour α ≤ 2±0.1. . . . xiv

4 Diagramme de phase de l’état fondamental du modèle de Bose-Hubbard en 1D
avec des sauts suivant une loi de puissance (Equation (2)) pour α = 1.6, 1.9,
2.5, 2.7, et 3.0, montrant la frontière entre les régions d’isolant de Mott (avec
une densité unitaire) et de superfluide en fonction du potentiel chimique µ/U

et de l’amplitude de saut t/U . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1.1 (a) The excitation spectrum for a weakly interacting Bose gas, where the energy
ε(p) is given by ε(p) = p2

2m + gn (dashed curve), with a linear phonon-like
dispersion ε(p) = cp (solid line) at low momenta, indicating that the critical
velocity vc is equal to the sound velocity c. (b) The excitation spectrum for a
strongly interacting Bose liquid such as 4He, showing a more complex structure
with phonon, maxon, and roton branches. Here, the critical velocity vc is less
than the sound velocity c, reflecting the presence of a local minimum in the
dispersion relation due to roton excitations. Taken from [30]. . . . . . . . . . 7
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1.2 Schematic phase diagram illustrating different phases of a two-dimensional
trapped weakly interacting dilute Bose gas as a function of temperature T . Here,
ρ0 represents the density of the condensate, ρs denotes the superfluid density,
and ρMF is the mean-field density, estimated through perturbative methods.
The temperature TBEC marks the crossover from the superfluid regime to a
true Bose-Einstein condensate phase. TBKT indicates the critical temperature
of the Berezinskii-Kosterlitz-Thouless (BKT) transition, at which topological
order emerges in the form of vortex-antivortex pairs. TMF denotes the onset of
the mean-field critical region. Regions I through IV depict different physical
regimes: below TBEC (Region I), the system exhibits condensation; between
TBEC and TBKT (Region II), it transitions toward a superfluid state; between
TBKT and TMF (Region III), the mean-field description becomes increasingly
accurate; and above TMF (Region IV), thermal fluctuations dominate [37]. . . 8

1.3 The phase diagram of the one-dimensional Bose-Hubbard model displays the
superfluid phase (SF) and the Mott insulator phase (MI) with density one. Solid
lines represent a Padé analysis of 12th-order strong-coupling expansions, while
the boxed regions indicate Quantum Monte Carlo (QMC) data. Circles denote
Density Matrix Renormalization Group (DMRG) results, and dashed lines mark
the regions of integer density. The error bars in the µ-direction are smaller than
the circles, reflecting minimal uncertainty, while the error bars in the t-direction
represent the uncertainty in determining the Berezinskii-Kosterlitz-Thouless
(BKT) transition. [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Visualization of the Berezinskii–Kosterlitz–Thouless (BKT) transition: at low
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lead to a phase transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Illustration of Monte Carlo integration to estimate the unknown area of a pond
enclosed by a rectangle of known area A. (a) Direct sampling — random points
are uniformly scattered across the entire rectangle.(b) Markov chain Monte
Carlo sampling — a chain of correlated samples gradually explores the pond’s
area, with each new point dependent on the previous one. The crossed-out
point indicates an invalid step that was rejected. . . . . . . . . . . . . . . . . 30
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2.2 A worldline representation of a term in the partition function from Eq. (1),
illustrating state evolution across lattice sites in imaginary time. The horizontal
axis spans imaginary time from 0 to β , with discrete time points τ1 through
τ4 marking instances of state transitions. The vertical axis represents different
lattice sites. The system begins in state |ψ0⟩ at imaginary time τ = 0, evolves to
|ψ3⟩ at time τ3, and subsequently returns to |ψ0⟩. Bold horizontal lines indicate
imaginary time evolution of states, while vertical jumps signify transitions
between states. Off-diagonal Hamiltonian terms, such as ⟨ψ1|V |ψ0⟩, enable
these transitions, while exponential terms like e−(τ3−τ2)E2 describe imaginary-
time evolution governed by diagonal components of the Hamiltonian. . . . . 37

2.3 Example of a worldline configuration with periodic boundary conditions, show-
ing a winding number W = 1. This winding is characterized by the particle
path (boson depicted as yellow dot) looping around the spatial boundary in
imaginary time, starting and ending at the same lattice site while maintaining
periodicity in imaginary time. Horizontal segments represent imaginary time
evolution on the same lattice site, and vertical segments indicate boson jumping
between sites, illustrating how the worldline completes a loop through the
boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Graphical representation of an extended worldline configuration in the G sector
which includes the worm heads named Ira (green) and Masha (red). . . . . . 41

3.1 Characterization of the superfluid phase for W/t = 0: (a) Dispersion relations
E(k) vs k for α = 2.5, 3.0 and 3.2 chosen in the intermediate and short-range
regimes, respectively (see text) for L = 256. (b) Single particle density ma-
trix G (ℓ) vs chord distance c(ℓ) = sin(πℓ/L)/sin(π/L) showing an algebraic
decay for all α for L = 512. Dashed lines indicate the best fit with A · c(ℓ)−γ

where A,γ are fitting parameters. (c) Numerical evaluation of the Luttinger
liquid parameter K as a function of α from the power-law decay G ∝ ℓ−1/(2K)

(green dots) and from the relation K = π
√

κYs (red squares) extrapolated to the
thermodynamic limit via a polynomial scaling in 1/L. . . . . . . . . . . . . . 49
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3.2 Characterization of the superfluid to non-superfluid phase transition: (a) Mean-
square winding number ⟨W 2⟩ vs disorder strength W/t for α = 2.7 (empty
symbols) and 3.2 (full symbols) for system sizes L = 64, 128, 256. (b)-(e)
Zoom-in on the area near phase transitions for α = 2.5, 2.7, 3.0 and 3.2,
showing crossing between the curves; the curve corresponding to the largest
size L = 1024 is subtracted from all data for clarity. Vertical error bars indicate
the estimated uncertainty from the Monte Carlo simulations and disorder-
averages. Insets: Finite-size scaling of crossings points between curves for
system sizes L1 and L2 = 2L1 as a function of L = L1. . . . . . . . . . . . . 51

3.3 (a) Phase diagram, Wc vs α , of the superfluid and non-superfluid quantum
phases for model (4.1). (b) Critical values of LL parameter Kc at Wc vs α , as
estimated from the power-law decay of G (green dots) and from K = π

√
κYs

(red squares) for L = 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 (a)-(c) Data collapse for the scaled superfluid stiffness L−ζ/νYs vs L1/ν [(W/t)−

(Wc/t)] for α = 2.5, 2.7 and 3.0 using L = 64, 128, 256. The fitted values of
the correlation length exponent ν and ζ are reported directly in the figure. They
satisfy ν ≳ 2 for all α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Data collapse for the scaled superfluid stiffness L−ζ/νYs vs L1/ν [(W/t)−
(Wc/t)] for α = 3.2 using L = 64, 128, 256. The fitted values of the correlation
length exponent ν and ζ are reported directly in the figure. Unlike for α < 3,
this scaling corresponds here to a finite-size effect, as the transition is not
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4.1 Ground state phase diagram of the 1D Bose-Hubbard model with power-law
hopping for α = 1.6, 1.9, 2.5, 2.7, and 3.0, showing the boundary between the
Mott insulator (at unity filling) and superfluid phases as a function of chemical
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4.2 Dispersion relation E(k) vs. k for α = 1.6, 1.9, 2.5, and 2.7 in the superfluid
phase near the transition along the commensurate density line. Symbols denote
numerical data obtained from fitting the long-time exponential decay of G(k,τ),
while lines show the spin-wave analysis prediction E(k) ∼ kz∗ , with z∗ =

(α − 1)/2 [125]. Inset: Single-particle Green function G(k,τ) for k = π/64
(represented by empty markers) and α = 1.6,1.9,2.5, and 2.7. The black
dashed line represents the numerical fit to the exponential decay. . . . . . . . 61

4.3 Characterization of the Mott insulator to superfluid phase transition: (a)-(b)
Mean-square winding number ⟨W 2⟩ vs t/U for α = 1.6 and 2.7 near phase
transitions, showing crossing between the curves; the curve corresponding to
the largest lattice size is subtracted from all data for clarity. Vertical error bars
indicate the estimated uncertainty from the Monte Carlo simulations. Insets:
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range order for α <= 2.0 and an algebraic decay for α > 2.0. (b) G (L/2) vs
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